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Preface

Transgenic Plants – known also as Biotech Plants, Genetically Engineered Plants,

or Genetically Modified Plants – have emerged amazingly fast as a boon for science

and society. They have already played and will continue to play a significant role in

agriculture, medicine, ecology, and environment. The increasing demands for food,

feed, fuel, fiber, furniture, perfumes, minerals, vitamins, antibiotics, narcotics, and

many health-related drugs and chemicals necessitate development and cultivation

of transgenic plants with augmented or suppressed trait(s). From a single transgenic

plant (Flavr SavrTM tomato with a longer shelf-life) introduced for commercializa-

tion in 1994, we have now 13 transgenic crops covering 800 million hectares in 25

countries of six continents. Interestingly, the 13.3 million farmers growing trans-

genic crops globally include 12.3 million (90%) small and resource-poor farmers

from 12 developing countries. Increasing popularity of transgenic plants is well

evidenced from an annual increase of about 10% measured in hectares but actually

of 15% in “trait hectares.” Considering the urgent requirement of transgenic plants

and wide acceptance by the farmers, research on transgenic plants is now being

conducted on 57 crops in 63 countries. Transgenic plants have been developed in

over 100 plant species and they are going to cover the fields, orchards, plantations,

forests, and even the seas in the near future. These plants have been tailored with

incorporation of useful alien genes for several desirable traits including many with

“stacked traits” and also with silencing of genes controlling some undesirable traits.

Development, applications, and socio-political implications of transgenic plants

are immensely important fields now in education, research, and industries. Plant

transgenics has deservedly been included in the course curricula in most, if not all,

leading universities and academic institutes all over the world, and therefore

reference books on transgenic plants with a classroom approach are essential for

teaching, research, and extension. There are some elegant reviews on the transgenic

plants or plant groups (including a 10-volume series “Compendium of Transgenic

Crop Plants” edited by two of the present team of editors C. Kole and T.C. Hall

published by Wiley-Blackwell in 2008) and on many individual tools and techni-

ques of genetic transformation in plants. All these reviews could surely serve well
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the purpose for individual crop plants or particular methodologies. Since transgenic

plant development and utilization is studied, taught, and practiced by students,

teachers, and scientists of over a dozen disciplines under basic science, agriculture,

medicine, and humanities at public and private sectors, introductory reference

books with lucid deliberations on the concepts, tools, and strategies to develop

and utilize transgenic plants and their global impacts could be highly useful for a

broad section of readers.

Deployment of transgenic crop plants are discussed, debated, regulated, and

sponsored by people of diverse layers of the society including social activists,

policy makers, and the staff of regulatory and funding agencies. They also require

lucid deliberations on the deployment, regulations, and legal implications of

practicing plant transgenics. More importantly, depiction of the positive and realis-

tic picture of the transgenic plants should and could facilitate mitigation of the

negative propaganda against transgenic plants and thereby reinforce moral and

financial support from all individuals and platforms of the society. Global popula-

tion is increasing annually by 70 million and is estimated to grow up to 8 billion by

2025. This huge population, particularly its large section from the developing

countries, will suffer because of hunger, malnutrition, and chemical pollution

unless we produce more and more transgenic plants particularly with stacked traits.

Compulsion to meet the requirements of this growing population on earth and the

proven innocuous nature of transgenic plants tested and testified for the last

13 years could substantiate the imperative necessity of embracing transgenics.

Traditional and molecular breeding practiced over the last century provided

enormous number of improved varieties in economic crops and trees including

wheat and rice varieties that fostered the “green revolution.” However, these crop

improvement tools depend solely on the desirable genes available naturally, crea-

table by mutation in a particular economic species or their shuffling for desired

recombinations. Transgenic breeding opened a novel avenue to incorporate useful

alien genes not only from other cross-incompatible species and genera of the plant

kingdom, but also from members of the prokaryotes including bacteria, fungi, and

viruses, and even from higher animals including mice and humans. An array of

plant genetic engineering achievements starting from developing insect resistance

transforming with the cry genes in cotton from the bacteria Bacillus thuringiensis to
the present-day molecular pharming expressing the interferon-a gene from human

in tobacco evidence for this pan-specific gene transfer.

Human and animal safety is another general concern related to transgenic food

or feed. However, there is no reliable scientific documentation of these health

hazards even after 13 years of cultivation of transgenic plants and consumption of

about one trillion meals containing transgenic ingredients. Utilization of transgenic

plants has reduced the pesticide applications by 359,000 tons that would otherwise

affect human and animal health besides causing air, water, and soil pollution and

also mitigated the chance of consumption of dead microbes and insects along with

foods or feeds.

Gene flow from transgenic crop species to their cross-compatible wild relatives

is a genuine concern and therefore required testing of a transgenic crop plant before

vi Preface



deployment followed by a comprehensive survey of the area for the presence of

interfertile wild and weedy plants before introduction of a transgenic crop is being

seriously conducted.

Addition of novel genotypes with transgenes in the germplasms is increasing the

biological diversity rather than depleting it. Use of the genetically engineered plants

has also eliminated greenhouse gas emission of 10 million metric tons through fuel

savings. In fact, 1.8 billion liters of diesel has been saved because of reduced tillage

and plowing owing only to herbicide-resistant transgenic crops. Many transgenics

are now being used for soil reclamation. Above all, cultivation of transgenic crops

has returned $44 billion of net income to the farmers. Perhaps these are the reasons

that 25 Nobel Laureates and 3,000-plus eminent scientists appreciated the merits

and safety and also endorsed transgenic crops as a powerful and safe way to

improve agriculture and environment besides the safety of genetically modified

foods. Many international and national organizations have also endorsed health and

environmental safety of transgenic plants; these include Royal Society (UK),

National Academy of Sciences (USA), World Health Organization, Food and

Agriculture Organization (UN), European Commission, French Academy of Medi-

cine, and American Medical Association, to name a few.

Production, contributions, and socio-political implications of biotech plants are

naturally important disciplines now in education, research, and industries and

therefore introductory reference books are required for students, scientists, indus-

tries, and also for social activists and policy makers. The two book volumes on

“Transgenic Crop Plants” will hopefully fill this gap. These two book volumes have

several unique features that deserve mention. The outlines of the chapters for these

two books are formulated to address the requirements of a broad section of readers.

Students and scholars of all levels will obtain a lot of valuable reading material

required for their courses and researches. Scientists will get information on con-

cepts, strategies, and clues useful for their researches. Seed companies and indus-

tries will get information on potential resources of plant materials, and expertise,

and also for their own R&D activities. In brief, the contents of this series have been

designed to fulfill the demands of students, teachers, scientists and industry people,

for small to large libraries. Students, faculties, or scientists involved in various

subjects will be benefited from this series: biotechnology, bioinformatics, molecu-

lar biology, molecular genetics, plant breeding, biochemistry, ecology, environ-

mental science, bioengineering, chemical engineering, genetic engineering,

biomedical engineering, pharmaceutical science, agronomy, horticulture, forestry,

entomology, pathology, nematology, and virology, just to name a few.

It has been our privilege to edit the 23 chapters of these two books, contributed

by 71 scientists from 14 countries, and the list of authors includes one of the

pioneers of plant transgenics Prof. Timothy C. Hall (one of the editors also);

some senior scientists who have themselves edited books on plant transgenics;

and many scientists who have written elegant reviews on invitation for quality

books and leading journals. We believe that these two books will hopefully serve

the purposes of the broad audience: those who are studying, teaching, practicing,

supporting, funding, and also those who are debating for or against plant
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transgenics. The first volume dedicated to “Principles and Development” elucidates

the basic concepts, tools, strategies, and methodologies of genetic engineering,

while the second volume “Applications and Safety” enumerates the utilization of

transgenic crop plants for various purposes of agriculture, industry, ecology and

environment, and also genomics research. The second volume also deliberates

comprehensively on the legal and regulatory aspects; addresses the major concerns;

and finally justifies the compulsion of practicing plant transgenics.

Little more detail on the contents of the volume “Transgenic Crop Plants:

Principles and Development” will hopefully substantiate its usefulness. This vol-

ume focuses on the methods for constructing gene vectors, introducing these gene

vectors into plant tissue, targeting gene insertion to specific tissues, methods for

detecting transgene expression, generation of transgenic plants, and types of traits

and bioproducts that are targeted for these technologies. The first chapter of this

volume presents glimpses on these aspects and also on those related to deployment

of transgenic plants.

One important factor that determines successful transgene insertion is the deci-

sion of explant type for use in transformation. A comprehensive review in Chap.2 is

provided from previous research with both herbaceous and woody plants. The use

of morphogenic calli for cereals is discussed along with somewhat standardized

protocols for each individual woody species. Gene transfer methods have been

discussed including use of Agrobacterium, biolistics, electroporation, liposomes,

microinjections, and bioactive beads in Chap.3.

Once a transgene is inserted, markers have been used to either score the success

of the transgene event or screen for the successful events. Although much work has

been done using npt and gus, recent work has looked at marker gene removal in the

final transgene product in order to belie environmental concerns. Further molecular

characterization with Southern blot analysis and PCR confirm definitive transgene

integration and copy number. Chapter 4 has been devoted to these critical steps.

Stable and regulated transgene expression, as described in Chap.5, is necessary

for the transgenic plant to express the trait of interest for further research or

commercial applications. The use of constitutive and tissue-enhanced promoters

along with attention to attachment regions within the DNA, introns, RNA integrity

factors, and transcription factors will determine transgene expression and the levels

thereof. Besides using transgenes for introduction of nucleic acid for novel trait

production, transgenes have also been used to silence native genes for applications

such as resistance to nematodes, insects, and viruses. As interesting are the applica-

tions to reduce production of compounds in some plants, such as caffeine in coffee

and sulfur metabolites in onions, that are disagreeable to portions of the human

populations. All of these silencing events rely on RNAi technology to degrade

native RNA for those traits of interest. Chapter 6 provides a commentary on the

employment of RNAi technology and the implications and outcome of expression

and gene silencing have been explicated in Chap.7.

Researchers have also been successful with organelle transfer, which has appli-

cations to molecular pharming, as have been enumerated in Chap.8. This technique

can be employed to overcome some transgene expression difficulties. Cell culture
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biosynthesis and metabolic engineering are the focus of the last two chapters

(Chaps.9 and 10) in this volume and these chapters offer an intriguing look at

research into production of high-value energy and medicinal products, secondary

metabolites, and plants with attractive esthetic qualities. Because we still have a

rudimentary understanding of many biochemical pathways, we are continuing to

gain new knowledge and insight into pathway function, but commercial plant

systems are still lacking in most desirable traits when economic viability, environ-

mental safety, and sustainability are taken into account.

We thank the 31 scientists from 9 countries for their elegant and lucid contribu-

tions to this volume and also for their sustained support through revising, updating,

and fine-tuning their chapters. We also acknowledge the recent statistics we have

accessed from the web sites of Monsanto Company on “Conversations about Plant

Biotechnology” and “International Service for the Acquisition of Agri-Biotech

Applications on ISAAA Brief 39-2008: Executive Summary” and used them in

this preface and elsewhere in the volume.

We enjoyed a lot our Clemson-Purdue-Texas A&M triangular interaction,

constant consultations, and dialogs while editing this book and also working with

the editorial staff of Springer, particularly Dr. Sabine Schwarz, who had been

supportive since the inception till the publication of this book.

We look forward to suggestions from all corners for the future improvement of

the content and approach of this book volume.

Chittaranjan Kole, Clemson, SC

Charles H. Michler, West Lafayette, IN

Albert G. Abbott, Clemson, SC

Timothy C. Hall, College Station, TX
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Chapter 1

Generation and Deployment of Transgenic

Crop Plants: An Overview

Michael R. Davey, Jaya R. Soneji, M. Nageswara Rao, Sofia Kourmpetli,

Anjanabha Bhattacharya and Chittaranjan Kole

1.1 Introduction

As biotechnology increasingly affects almost all aspects of human life, it is essen-

tial that the science behind this technology is explained in simple terms to the public

to eliminate the misconceptions that may inhibit its acceptability. The basic ques-

tion that is often asked is what is a gene, a promoter and a terminator? Genes are the

basic units of heredity, composed of DNA sequences, which are transmitted from

parents to offspring and which, independently or in combination with other genes,

control specific traits in an organism. These traits may be, for example, plant height,

flower color, fruit and seed size together with regulatory processes, such as assimi-

late partitioning and drought resistance. Genes are the basis for both the similarity

and differences that exist among organisms, and are transmitted from one genera-

tion to another. Promoters are DNA sequences that are recognized by RNA

polymerase in plant cells and that initiate and regulate transcription, the initial

and most important step of gene expression. Terminators are those sequences that

command or signal the termination of transcription.

It is possible to identify and to isolate genes from plants, animals, and micro-

organisms, to modify their promoters, structural sequences and terminators, and to

introduce and express chimeric genes in the same or other genus, species, or

cultivar. Consequently, it is feasible to control or modify physiological processes.

Gene manipulation, combined with the ability to induce cultured plant cells to

express their totipotency leading to the regeneration of fertile plants, provides a
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unique opportunity to extend the genetic pool available to breeders for crop

improvement.

The successful development of transgenic plants necessitates a reliable tissue

culture regeneration system, gene construct(s), suitable vector(s) for transformation

and efficient procedures to introduce desired genes into target plants. Once transfor-

mation has been performed, it is essential to recover and to multiply the transgenic

plants. The latter must be characterized at the molecular and genetic levels for stable

and efficient gene expression (Sharma et al. 2005). It may also be necessary to

transfer the introduced genes to elite cultivars by conventional breeding.

Prime targets for genetic manipulation include modification of plants to enhance

their tolerance to the herbicides used to control weeds, and to confer resistance to

insects, bacteria, fungi, and viruses, since these agents account for major crop

losses. Other targets include the genetic engineering of plants for biosynthesis of

health-care products, increased nutritional value, extension of the shelf-life of crops

that deteriorate rapidly following harvest, and tolerance to abiotic stress. Similarly,

although not essential for human existence, modification of the esthetic appeal of

plants has considerable commercial potential.

1.2 Target Cells and Organelles for Genetic Transformation

A reliable tissue culture-based shoot regeneration system is a pre-requisite for plant

genetic transformation. The recognition that, under optimum hormonal and nutri-

tional conditions, somatic cells are totipotent and can be stimulated to develop into

whole plants in vitro via organogenesis (shoot formation) or somatic embryogene-

sis, forms the basis of regeneration in tissue culture (Sharma et al. 2005). Genetic

transformation without plant regeneration is of limited or no value. Hence, the

identification of explants (cells/tissues/organs) that are capable of regenerating into

plants is fundamental to any transformation procedure. Isolated protoplasts (Davey

et al. 2005), callus and suspension cultured cells (Rachmawati and Anzai 2006),

thin cell layers (Soneji et al. 2007a), leaf disks (Li et al. 2007), root sections (Huang

and Ma 1992), stem segments (Song et al. 2006), floral tissues (Zale et al. 2008),

epicotyls (Soneji et al. 2007b), hypocotyls (Wang and Xu 2008), cotelydonary

nodes (Yi and Yu 2006), and axillary buds (Manickavasagam et al. 2004) have

been used for genetic transformation. Explants of mature organs have also been

used as target material in transformation experiments to overcome juvenility

(Cervera et al. 1998). Tissue culture systems for several plants have been summar-

ized (Khachatourians et al. 2002; Curtis 2004; Loyola-Vargas and Vázuez-Flota

2005) together with aspects of gene introduction into target plants using such

systems (Birch 1997; Newell 2000; Sharma et al. 2005; Davey et al. 2008).

Shoot regeneration from cultured cells may lead to chromosomal or genetic

variation known as “somaclonal variation.” This variation may be useful or

detrimental. Tissue culture also requires extensive facilities for maintenance

and manipulation of axenic explants, which is labor intensive and expensive.
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Consequently, approaches have been reported that reduce or eliminate in vitro

procedures. For example, genes have been inserted into pollen and the latter used

for fertilization to produce transgenic seed (Saunders and Matthews 1995; Hägg-

man et al. 1997), while Clough and Bent (1998) described a “floral dip” procedure

that is discussed later.

In most investigations, gene insertion has been directed primarily to the nuclei of

recipient plant cells. Additionally, plastid transformation has been established in

several laboratories (Heifetz 2000; Daniell et al. 2002; Maliga 2002, 2004). Exten-

sion of plastid transformation to more species constitutes a logical step in the

development of genetic manipulation technology (Bock and Khan 2004) as plastid

transformation has several advantages for the engineering of gene expression in

plants. These advantages include 10–50 times greater transgene expression in

plastid genomes, compared to nuclear-inserted genes (Liu et al. 2008a). The plastid

genome provides readily obtainable high protein concentrations and the possibility

of expressing multiple proteins from polycistronic mRNAs from a single promoter

(Maliga 2002). Importantly, uniparental plastid gene inheritance in most crop plants

prevents pollen transmission of foreign DNA (Heifetz 2000). As transgenes inte-

grate into the plastid genome via homologous recombination, this facilitates tar-

geted gene replacement and precise transgene control, while sequestration of

foreign proteins in plastids prevents adverse interactions with the cytoplasmic

environment. Maliga (2004) and Verma and Daniell (2007) discussed the design

of vectors for plastid transformation and the selection of transplastomic plants. To

date, plastid transformation has been reported in cabbage, lettuce, oilseed rape,

petunia, poplar, potato, tobacco, and tomato, with transplastomic plants being

regenerated by organogenesis in these cases, or by somatic embryogenesis in carrot,

cotton, rice, and soybean (Verma et al. 2008). Extension of plastid transformation to

other major crop plants still necessitates reproducible explant, cell, or protoplast-

to-plant regeneration systems.

1.3 Methods for Introducing Genes into Plants

Transformation of plants involves the stable introduction of DNA sequences usu-

ally into the nuclear genome of cells capable of developing into a whole transgenic

plant (Sharma et al. 2005). Once a reliable shoot regeneration system is available,

foreign DNA can be introduced into cells by either vector-mediated or direct

transfer. Although the technology associated with the construction of chimeric

genes is becoming more routine and simple, the transformation process itself

remains a comparatively rare event. Consequently, the procedure must be robust

and combine reproducible culture of recipient plant cells with efficient gene

delivery. Gene transfer experiments focus mainly on maximizing the efficiency of

recovery of stably transformed plants, and extending the range of species that can

be engineered using a specific procedure.
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Agrobacterium-mediated gene transfer and direct DNA transfer into cells by

microprojectile bombardment (Fig. 1.1) are the most widely exploited methods for

introducing genes into plants because of their ability to transform intact, regener-

able tissues and organs. Although aspects of the precise molecular events of

Agrobacterium-mediated gene delivery are still not fully understood, particularly

the transfer and integration of the T-DNA (transferred DNA) from the bacterial

tumor-inducing (Ti) plasmid of Agrobacterium into the nuclei of recipient plants,

Agrobacterium-mediated gene delivery remains the preferred method of plant

transformation in many laboratories. Lacroix et al. (2006a, 2006b) and Tzfira

and Citovsky (2006) proposed mechanisms for the process. Knowledge of foreign

gene integration into plant genomes is essential for precise gene targeting in the

future.

Immersion of totipotent explants in a suspension of Agrobacterium is the main

procedure for plant transformation. Several parameters affect transformation,

including bacterial virulence, incubation temperature, age of the bacterial suspen-

sion, and the cocultivation period of the bacteria with the explants (Gelvin 2003;

Wu et al. 2003). Sonication promotes gene delivery (Liu et al. 2006). In planta

procedures have been developed to simplify the transformation procedure. Thus,

the “floral dip” technique (Clough and Bent 1998) involves immersion of develop-

ing flowers in suspensions of Agrobacterium, followed by growth of the plants to

maturity, the harvesting and germination of seeds, and the selection of transformed

seedlings. This procedure, used routinely to transform Arabidopsis thaliana, has
facilitated progress in understanding the genetics of this plant that is exploited

extensively as a model in plant genetics and molecular biology. Chung et al. (2000)

compared floral spraying with the floral dip procedure and reported comparable

results with the two methods, enabling floral spraying to be used for transforming

plants which are too large for the floral dip approach. Probably, in planta techniques

will assume increasing importance for gene delivery.

Particle (microprojectile) bombardment has also been exploited extensively for

plant transformation (Sharma et al. 2005; Davey et al. 2008) with instruments such

as the helium driven HE-1000 device, facilitating technology transfer between

laboratories. Microprojectile systems involve high-velocity particles penetrating

cell walls and introducing DNA into cells, circumventing the host range limitations

of Agrobacterium. This transformation procedure is versatile, independent of plant

cell type and genotype, and has permitted the transformation of some of the most

recalcitrant plants, such as cereals and legumes (Altpeter et al. 2005). Importantly,

simple gene constructs, comprising only a promoter, the gene coding sequence and

a terminator, may be used for transformation. A criticism of particle bombardment

and Agrobacterium-mediated gene delivery is the complexity of patterns often

associated with the integration of genes into recipient plants, especially with

particle delivery. This necessitates detailed molecular analyses to select individuals

carrying simple integration events, as such transformed plants are more applicable

to longer-term breeding programs. Undoubtedly, the two procedures will continue
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Agrobacterium-mediated
transformation

Overnight culture of
Agrobacterium

Co-cultivation

Microprojectile 
bombardment (Biolistics)

Plant material (e.g., leaf
bases, embryogenic callus,

stem segments)

Selection of transformed
tissues on appropriate

culture medium

Regeneration of putatively transgenic
plants on suitable culture medium

Rooting of putatively transformed plants

Molecular and/or histochemical assays of putatively
transgenic plants to confirm transgene integration and

expression (e.g., PCR, RT-PCR, Southern, Western and
Northern blotting, GUS/GFP analyses) 

 

Acclimation of transgenic plants in a
growth room/glasshouse

Evaluation of the performance of
transgenic plants under contained

conditions or in field trials

Fig. 1.1 A generalized flow chart depicting the steps involved in plant transformation

1 Generation and Deployment of Transgenic Crop Plants: An Overview 5



to be exploited routinely for gene delivery to plants, the procedure used depending

upon the product required and the expertise of the personnel.

Other gene delivery procedures have been exploited, including uptake of DNA

into isolated protoplasts, treatment with polyethylene glycol, and/or electroporation

inducing DNA uptake. However, the development of robust protoplast-to-plant

systems is a labor-intensive, specialized part of the procedure. Several parameters

influence transformation, including the stage of the cell cycle of the recipient

protoplasts, temperature, pH, and the intensity and duration of the electric field.

Even with optimal conditions, the frequency of stable transformation is low and

rarely exceeds one transformed cell in every 104 treated protoplasts. Protoplast

transformation was the procedure of choice for monocotyledons, particularly cer-

eals such as rice, but was superseded by particle bombardment and, more recently,

by Agrobacterium-mediated gene delivery. Rakoczy-Trojanowska (2002) and

Sharma et al. (2005) discussed transformation procedures involving micro- and

macroinjection, the use of silicon carbon fibers, and pollen-tube-mediated DNA

delivery. Virus-based DNA delivery methods have been reported (Chung et al.

2006). The real success and application of several transformation procedures

remains unclear. Specific crops necessitate particular adaptation of techniques to

generate transgenic plants, an excellent example being provided by some of the

difficulties encountered in applying Agrobacterium-mediated gene delivery devel-

oped for rice to other cereals (Shrawat and Lörz 2006). However, gene sequencing,

as in rice (Matsumoto et al. 2005), and general advances in plant bioinformatics,

will facilitate broader application of transformation technology.

1.4 Vector Construction and Genes for Plant Transformation

Vector development has proceeded from the cointegration of foreign genes into

the T-DNA region of Ti plasmids, to the construction of disarmed binary and

superbinary vectors (Komori et al. 2007; Davey et al. 2008). As Tzfira et al. (2007)

explained, although binary vectors were initially revolutionary, subsequent gene-

rations of vectors have had more versatility, often being designed for specific

transformation purposes (Chung et al. 2005). Some vectors have incorporated

recombinase-mediated gene cloning (Karimi et al. 2002). Importantly, advances

in vector construction have enabled Agrobacterium-mediated transformation to be

exploited for gene introduction into monocotyledons (Cheng et al. 2004), as well

as dicotyledons. New gene expression technologies developed for nonplant sys-

tems rapidly become adapted and exploited in plant biology (Tzfira et al. 2007).

This emphasizes the necessity for plant biologists to recognize and exploit devel-

opments in fields of research other than their own. A schematic representation of

the steps involved in the construction of vectors for plant transformation is shown

in Fig. 1.2.

6 M.R. Davey et al.



1.4.1 Promoters for Plant Transformation

Efficient and reliable procedures are essential for constructing vector(s) for plant

genetic engineering. Venter (2007) highlighted the importance of focusing attention

on promoter construction, because the choice of promoter and its fine-tuning

Selection of suitable vector Identification and isolation of
the gene of interest

Digestion with suitable
restriction enzymes

Ligation

Transformation of Escherichia coli
with the product of ligation

Plasmid isolation from selected transformed clones
of E. coli and verification of plasmid construct

Introduction of plasmid from
selected clones of E. coli into  

Agrobacterium

Use plasmid for plant
transformation by Biolistics

Use Agrobacterium carrying the
foreign gene(s) of interest for

Agrobacterium-mediated plant
transformation

Fig. 1.2 Flow chart depicting the steps involved in the construction of vectors for plant

transformation
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determine constitutive, spatial, and/or temporal transgene expression. Considerable

effort has focused on gene promoters. Efficient expression of genes is assured only

when they are controlled by plant-derived promoters, or by promoters that are

active in plant cells, such as the cauliflower mosaic virus 35S promoter (CaMV

35S). In early transformation assessments, the choice of promoter was governed by

promoter availability. The nos promoter from the nopaline synthase gene of the

T-DNA of the Ti plasmid of A. tumefaciens was one of the first to be used in plant

genetic engineering, with the 35S promoter from CaMV also featuring in many of

the early transformation assessments. Subsequently, other constitutively expressed

viral promoters were evaluated, including those from cassava vein mosaic virus

(CsVMV), sugarcane bacilliform badnavirus (ScBV), and figwort mosaic virus

(Samac et al. 2004; Govindarajulu et al. 2008). The CaMV 35S promoter may

have a negative effect on transgene expression in some plants (Yoo et al. 2005).

A limitation of the promoters of viral origin is that host plants may recognize and

inactivate these sequences (Potenza et al. 2004). However, this may be negated by

using promoters of plant origin. Indeed, several promoters including those from

Medicago truncatula (Xiao et al. 2005), Vigna radiata (Cazzonelli et al. 2005), and
the tobacco EI1a together with the Cab promoters (Aida et al. 2005) have been

evaluated.

Constitutive expression at the incorrect time may have a serious negative effect

on plant development, emphasizing the need to refine the promoters for transgene

expression. Tissue-specific promoters fulfill this requirement. Examples include a

tissue-specific promoter driving a b-1, 3 gluconase gene in pea (Buchner et al.

2002), promoters from fruit-ripening and seed-specific genes (Zakharov et al.

2004) particularly seed storage glutelin genes (Qu et al. 2008) and promoters of

glycoproteins in tubers and roots. Flower-specific promoters have application in

the genetic manipulation of fruit trees and ornamental plants (Annadana et al.

2002; Sassa et al. 2002). Comparisons of promoter function are important, a

cotton a-globulin promoter being evaluated in cotton, Arabidopsis, and tobacco

(Sunilkumar et al. 2002). Potenza et al. (2004) provided a schematic representation

of the sources of many promoters. Tissue-specific promoters have been combined

with RNA interference (RNAi) technology to modify flower pigmentation (Nakatsuka

et al. 2007a). Modification of promoters may result in changes in tissue and

developmental specificities (Kluth et al. 2002). Promoters of considerable potential

are those associated with the interaction of plants and microorganisms, such as root-

specific promoters involved in nutrient uptake and legume-Rhizobium symbiotic

associations. These promoters from green tissues confer light-inducible and tissue-

specific expression. Cell-type-specific promoters are available, such as those from

trichomes, guard cells and stomata, root hairs, phloem (Zhao et al. 2004; Guan and

Zhou 2006), and cortical cells (Fruhling et al. 2000). Vectors for plastid trans-

formation normally employ promoters from the plastid genomes of the target

plants.

Some plant promoters are induced by biotic and abiotic stress (Pino et al. 2007),

wounding (Yevtushenko et al. 2004; Luo et al. 2006), iron deficiency (Kobayashi

et al. 2007), and exogenously applied chemicals. The latter include antibiotics,
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steroids, copper, ethanol (Peebles et al. 2007), inducers of pathogen-related pro-

teins, herbicide safeners and insecticides (Padidam 2003). Synthetic promoters

have been assembled, such as a chimeric endosperm-specific promoter for cereal

transformation (Oszvald et al. 2008). Liu et al. (2008b) constructed a novel pollen-

stigma and carpel-specific promoter, which has potential in controlling pollen and

seed-mediated gene flow from genetically manipulated plants. However, some

synthetic promoters are unsuitable for plant transformation. For example, the

(AocS)(3)AmasPmas promoter driving the bar gene for herbicide tolerance inhib-
ited shoot regeneration (Song et al. 2008). Synthetic promoters, with the minimum

of sequence similarity, could reduce homology-dependent gene silencing in trans-

genic plants during gene pyramiding experiments. Indeed, the availability of a

broad spectrum of promoters that differ in their ability to regulate temporal and

spatial expression patterns of transgenes could increase dramatically the success of

transgenic technology (Potenza et al. 2004). Promoter development is still in its

infancy. Major advances in transcriptomics, proteomics, and genome sequencing

(Yu et al. 2007) will contribute to future development of promoters to drive gene

expression in specific cells and tissues.

The correct assembly of constructs for plant transformation is fundamental for

maximum gene expression at the correct time in target tissues (Butaye et al. 2005).

The merit of bidirectional as well as unidirectional promoters necessitates con-

sideration. Undoubtedly, continued advances in plant genetics, bioinformatics,

systems biology, and high through-put gene expression technology will be crucial

in predicting coordinated gene expression and the design of synthetic promoters.

Terminator sequences must also originate from plant sources or from plant pests

such as the CaMV or Agrobacterium. Although most investigations are targeted to

maximizing gene expression in transgenic plants, the ability to silence genes is

equally important in some cases, virus-induced gene silencing (VIGS) being a way

of down-regulating expression (Robertson 2004).

1.4.2 Reporter and Selectable Marker Genes

Transformation, being a rare event, requires an efficient selection system to distin-

guish between transformed and nontransformed plant cells. Reporter genes enable

cells and tissues to be monitored soon after the transformation procedure to assess

the success of a specific construct and/or protocol. Such genes may permit the

manual or automated selection of transformed from nontransformed cells, but do

not enable transformed cells to outgrow their nontransformed counterparts in

culture. In contrast, selectable marker genes provide transformed cells with a

competitive advantage, enabling them to outgrow nontransformed cells in vitro,

usually in the presence of specific substrates in the culture medium.

Although more than 50 genes have been exploited in nuclear and plastid

transformation strategies, only a limited number are used routinely (Miki and

McHugh 2004). The uidA (gusA) gene for b-glucuronidase is a versatile reporter.
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In fluorometric and histochemical assays, cleavage of the substrate 5-bromo-

4-chloro-3-indolyl-b-D-glucuronide (X-Gluc) by b-glucuronidase results in an

indigo compound that is readily observed in transformed cells. A disadvantage of

the GUS assay is its destructive nature. Consequently, it has been superseded in

many investigations by more versatile, nondestructive assays based on expression

of the luciferase (luc) gene, or the green fluorescent protein (gfp) gene, the latter

from the jellyfish, Aequorea victoria. Mutant versions of the gfp gene that emit

blue, cyan, and yellow light are available. Novel proteins from reef coral organisms

that fluoresce cyan, red, green, and yellow have also been developed as nondestruc-

tive reporters for plant transformation (Wenck et al. 2003). Importantly, significant

differences in the excitation and emission wavelengths of some of these proteins

permit simultaneous visualization of more than one of these fluorescent proteins in

transformed cells. Dixit et al. (2006) emphasized the importance of fluorescent

proteins to image dynamic processes within plant cells, highlighting some of the

practical issues in exploiting these proteins for live cell imaging. Genes for antho-

cyanin and carotenoid biosynthesis have also been used to visualize transformed

cells prior to their manual selection.

Selection systems have been reported that encourage the growth of transformed

cells, although “escapes” may occur, with some nontransformed cells growing in

the presence of a selective agent. Commonly used selection systems employ

tolerance to antibiotics, particularly kanamycin, encoded by the neomycin phos-

photransferase (nptII) gene, and to hygromycin through expression of hygromycin

phosphotransferase (hph, hpt, aphIV) genes. Phosphinothricin and glyphosate have
featured in selection systems based on herbicide resistance, tolerance to phospho-

thricin being encoded by expression of the bar (pat) gene, while the aroA, cp4, and
epsps and gox genes confer tolerance to glyphosate. Streptomycin and spectinomy-

cin have been used to select transplastomic plants. Recently, Pinkerton et al. (2008)

introduced resistance based on the enzyme organophosphate hydrogenase, encoded

by the bacterial opd gene, to generate a new scorable and selectable marker system

for transgenic plants. Some investigators have focused on plant genes as selectable

markers. For example, Yemets et al. (2008) based selection on a modified plant

a-tubulin gene that conferred resistance to dinitroaniline herbicides, with trifluralin
as the selective agent. Ogawa et al. (2008) used a mutated rice acetolactate synthase

gene to select transgenic plants of wheat. Acetolactate synthase catalyzes the first

step in the biosynthesis of the essential branched-chain amino-acids, isoleucine,

leucine, and valine, and is a target enzyme for several herbicides. Other procedures

have incorporated toxic drugs and metabolite analogs into the culture medium.

Genes that stimulate cytokinin biosynthesis stimulated shoot regeneration from

transformed cells without the need for selection based on toxic compounds (Zuo

et al. 2002). The Escherichia coli pmi gene for phosphomannose isomerase con-

verts mannose-6-phosphate, an inhibitor of glycolysis, to fructose-6-phosphate, an

intermediate in glycolysis. Expression of pmi in plant cells allows transformed cells

to grow on medium containing mannose, as in the case of transgenic flax, following

Agrobacterium-mediated transformation (Lamblin et al. 2007). Future legislation

will, almost certainly, demand the elimination of antibiotic resistance genes as
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selectable markers. Although selectable markers are generally indispensable in

plant transformation protocols, they are not required once transgenic plants have

been generated. General strategies to eliminate selectable marker genes have been

reported. Jia et al. (2006) exploited the Cre/lox site-specific recombination system,

while Charng et al. (2008) developed an inducible transposon system to terminate

selectable marker gene function in transgenic plants. More detailed description of

selection systems is presented byMiki and McHugh (2004) and Davey et al. (2008).

1.5 Methods for Screening of Genes Introduced into Putatively

Transformed Plants

The strategies used for screening transformed plants usually depend on the type of

selectable marker and/or reporter gene used. When an antibiotic resistance gene is

employed as a selectable marker, screening is performed by culturing the trans-

formed cells on a medium containing that particular antibiotic (Soneji et al., 2007b,

2007a). In the case of reporter genes, screening is for the distinctive phenotype

(Chalfie et al. 1994). However, putative transgenic plants selected by scoring for the

presence of selectable marker and/or reporter genes need to be evaluated for the

integration and expression of the transgene(s) to minimize escapes. Polymerase

chain reaction (PCR)-based screening techniques are used to assess the presence of

a specific DNA sequence of the foreign gene of interest, or the selectable marker/

reporter gene by screening putative transgenic plants with primers specific to these

gene(s) (Xu et al. 2005; Soneji et al. 2007b, 2007a). Southern hybridization con-

firms the presence of transgenes and their copy number (Bhat and Srinivasan 2002).

Enzyme-linked immunosorbent assay (ELISA) is the preferred method to detect the

presence of a specific protein produced by a transgene in a recipient plant. Real-

time polymerase chain reaction (RT-PCR) is utilized when more than one gene

needs to be analyzed by PCR, along with the detection of the copy number of the

desired gene(s) (Yuan et al. 2007).

1.6 Gene Expression in Transgenic Plants

Integration of transgenes into the genomes of plants is a random process, necessi-

tating investigations of their expression in transformed plants. Expression is influ-

enced by several parameters, including the site and pattern of integration, the

location of heterochromatic regions, the presence of enhancer elements, the nature

of the promoter, gene copy number, truncation, rearrangement, silencing and the

presence of any DNA sequences from the vector into which the foreign DNA has

been cloned. Although some of these factors can be circumvented by experimental

design, it is still necessary to correlate phenotypic differences between transgenic
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and control plants with transgene expression (Page and Minocha 2005). Thus,

transgenic plants require detailed phenotypic, physiological, and molecular ana-

lyses to complete their characterization. Techniques such as Western blotting,

Northern blotting, ELISA, and quantification and localization of mRNA transcripts

are used to analyze transgene expression. These assessments are essential, espe-

cially when transgenic material is incorporated into breeding programs.

The use of genetic manipulation in crop improvement also requires transgenes to

be expressed either constitutively or in specific cell or tissue types, often at definite

stages of plant development (Perret et al. 2003). Although individual transgenic

plants within a population may be phenotypically identical, generally they all differ

in some subtle way at the molecular level. This emphasizes the requirement to

generate as many transgenic plants as possible from an individual experiment and to

analyze the maximum number of the regenerants at the phenotypic and molecular

levels (Bhat and Srinivasan 2002). Currently, there is no reliable procedure to target

foreign genes to specific regions of the genome of plants. It may also be necessary to

test individual promoters to establish their expression patterns in different species

(Perret et al. 2003). While gene targeting by homologous recombination is poten-

tially extremely important, the development of a routine procedure that incorporates

this process remains a major challenge (Cotsaftis and Guiderdoni 2005).

In order to determine the value and application of transformed plants, it is

important to understand the inheritance and stability of introduced gene(s). Trans-

mission and segregation analyses of the transgene(s) in subsequent progenies allow

insight into transgene inheritance (Yin et al. 2004). Agrobacterium-mediated trans-

formation, as well as direct DNA uptake, enables foreign genes to be integrated at a

single Mendelian locus, regardless of copy number (Spencer et al. 1992). Stably

integrated transgenes are usually inherited in a dominant, Mendelian fashion.

However, in subsequent generations, some instability may be observed probably

due to rearrangements or methylation of the T-DNA region, and/or to homologous

recombination between copies of the transgene inserted into the same nucleus. A

non-Mendelian segregation pattern is usually associated with unstable transfor-

mation or poor transgene expression (Limanton-Grevet and Jullien 2001).

1.7 Target Genes for Genetic Transformation

Major advances in gene isolation, vector construction, and DNA delivery enable

plants to be modified for specific traits, providing an important underpin to conven-

tional breeding. Although genetic engineering reduces the time to integrate desired

genes into target plants, it will not replace gene manipulation by sexual hybridi-

zation. It has been emphasized that many of the constraints associated with con-

ventional breeding can be overcome by advances at the molecular level (Dalal et al.

2006). Transgenes to be introduced into plants are selected on the basis of their

economic/agronomic importance. Recent advances in DNA array technology allow
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researchers to detect sets of genes that function co-ordinately in the biological

processes of interest (Gachon et al. 2005). Several constructs have been developed

for use in gene transfer to facilitate the generation of herbicide-, insect-, viral-,

fungal-, bacterial-, and nematode-resistant plants (Gubba et al. 2002; Hsieh et al.

2002; Jeanneau et al. 2002; Dasgupta et al. 2003; Grover and Gowthaman 2003;

Ranjekar et al. 2003; Prins et al. 2008). Transgenes that may affect quality traits of

important crops (Paine et al. 2005), and those for antigens and proteins of pharma-

ceutical importance, have been introduced into transformation vectors.

Agronomically important genes for biotic and abiotic stresses and quality attri-

butes have been the major focus of research on genetic manipulation, with an

extensive range of chimeric genes being introduced into plants (Babu et al.

2003). The majority of transgenes introduced express enzymes that confer novel

traits on the respective plants. Proteins lacking enzymatic activity have also been

expressed. About 50 important genetically manipulated crops are cultivated in more

than 25 countries (Wenzel 2006; James 2008).

1.7.1 Resistance to Biotic and Abiotic Stresses

Biotic and abiotic stresses have a considerable impact on crop growth, develop-

ment, and productivity throughout the world (Zhao and Zhang 2007). Plant genetic

engineering holds the promise of circumventing the problems faced in wide hybri-

dization programs, especially when sources of resistance are not available in

taxonomically related species. During the past decade, understanding of the com-

plex molecular events that occur in plant-pathogen interactions has progressed

considerably and has provided the opportunity for exploiting the theoretical know-

ledge and practical skills to generate transgenic plants resistant to pathogens (Grover

and Gowthaman 2003). The discovery of abiotic stress-related novel genes, deter-

mination of their expression patterns and their roles in adaptation to stress have also

provided the foundation for efficient transgenic strategies (Zhao and Zhang 2007).

It is not unexpected that since major crop losses are incited by weeds, insects,

viruses, and fungi, increased tolerance to these agents will continue to be a focus of

genetic manipulation technology. Transformation of crop plants for increased

herbicide tolerance dominated the initial stages of the application of genetic

manipulation technology to crop plants. Castle et al. (2006) discussed the ways in

which technological advances have been incorporated into agricultural practice and

traits introduced into crops such as alfalfa, cotton, maize, oilseed rape, papaya,

soybean, and squash, together with the first year of commercialization of the

products. Importantly, it is possible to stack transgenes in target plants, conferring

tolerance simultaneously to more than one agent.

Behrens et al. (2007) indicated that there has been a rapid increase in the weeds

that are tolerant or resistant to the herbicides used with genetically manipulated

crops, indicating that such economically important weed management traits may

have a finite life. In order to prolong the durability of genetically manipulated
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herbicide tolerance, these workers developed a nuclear and chloroplast-encoded

herbicide balance strategy based on the inexpensive, widely used, and ecologically

safe herbicide, dicamba. Similarly, Soberón et al. (2007) discussed the ways in

which the evolution of insecticide resistance by insects threatens the application

of effective Bt toxins from the soil bacterium Bacillus thuringiensis that are

employed as bacterial sprays, and Bt genes that are introduced into genetically

manipulated crops. The natural resistance of insects to insecticides will probably

necessitate the use of modified Bt toxins in the future. Likewise, Gatehouse (2008)

stressed the fact that not all pests are targeted adequately by the Bt toxins currently
in use. Bt toxin expression needs to confer adequate protection against target

insects, with plastid transformation being superior to nuclear transformation in

this respect. Other approaches for maximizing gene expression include the use of

novel Bt toxins, gene stacking to effect multiple Bt toxin expression and protein

engineering.

The exploitation of plant defense proteins, such as a-amylase inhibitors and

lectins, is also a possibility; novel approaches include the exploitation of new

insecticidal proteins such as those from nematodes, the use of bacterial cholesterol

oxidase, and the strong insecticidal effect of avidin. Engineering secondary metab-

olism of plant defense compounds and of the volatiles emitted by plants, and an

RNAi approach to generate double-stranded RNAs are also possibilities. Dudareva

and Pichersky (2008) discussed the importance of enhancing plant defense by

metabolic engineering of volatile compounds, and suggested that priming crops

by planting transgenic plants, that constantly emit defense volatiles, among their

nontransgenic counterparts, may provide efficient protection. More needs to be

known about the properties of specific plant volatiles in terms of their ability to

attract or inhibit insect pests.

The status of virus resistance in transgenic plants has advanced considerably

since the initial studies involving coat protein-mediated resistance (Prins et al.

2008). The precise mechanism of coat-protein-mediated resistance is not fully

understood. It varies with different viruses, but the procedure has been successful

in a range of target plants. Other approaches include replicase-mediated resistance

and resistance based on movement proteins. RNA-mediated resistance against

RNA and DNA viruses is also discussed, as are nonviral sources of resistance

using genetic manipulation, particularly an antibody strategy to induce plants to

synthesize similar compounds (plantibodies). Transgene-mediated resistances

against viroids have been investigated, a promising approach being the expression

of recombinant dsRNA-specific RNases by transgenic plants. Several strategies for

virus and viroid resistance have been described in the literature, but only a limited

number have progressed past the “proof-of-principle” stage, or small-scale field

trials (Prins et al. 2008).

In a critique of the deliverables from genetic manipulation technology, Collinge

et al. (2008) emphasized the fact that, to date, very few genetically manipulated

disease resistant cultivars have been generated, in contrast to plants tolerant to

insect pests using a Bt approach, and plants that are herbicide tolerant. Indeed,

insect- and herbicide-tolerant plants represent more than 90% of all genetically
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manipulated crops generated to date. Weed control exploiting genetic manipulation

technology has been facilitated by understanding the biology of herbicide tolerance

and the specificity of synthetic herbicides. Similarly, success in the genetic mani-

pulation of insect resistance was based, at least initially, on knowledge arising from

the extensive use of the soil bacterium B. thuringiensis as a natural insecticide.

Since the organisms that cause disease are taxonomically and physiologically

diverse with complex life cycles, Collinge et al. (2008) advocated a balance

between classical plant breeding and genetic manipulation to generate disease-

resistant plants. They concluded that transgenic fungal and bacterial resistances

will probably not be introduced into commercial crops in the near future, although

progress in the introduction of a barley class II chitinase gene into wheat to confer

resistance to Fusarium graminearum represents an advancement in engineering

fugal resistance (Shin et al. 2008). Plants experience considerable environmental

stresses, with drought posing one of the most important constraints for agriculture

on a global scale in the near future (Umezawa et al. 2006; Bhatnagar-Mathur et al.

2008). Tolerance to drought, cold, and salinity are often linked, which may facili-

tate genetic manipulation to combat these natural agents. Mutasa-Gottgens et al.

(2009) showed that genetic modification of gibberellin signaling and metabolism

significantly delays bolting in crops such as sugar beet, that are vulnerable to

vernalization-induced premature bolting and flowering, reducing crop yield and

quality. This approach confirms the potential in genetically modifying plants to

minimize yield losses due to unfavorable environmental conditions.

1.7.2 Improvement of Quality

Nutritional value, being one of the most important traits for improvement of crop

quality, involves enhancement of the content of amino acids and proteins, micro-

nutrients, vitamins, minerals, dietary fiber, sugars, carbohydrates, starch, lipids and

oils, which are essential for a healthy diet (Singh et al. 2008). Staple crops, such as

cereals, are low in lysine, while proteins of legumes, roots, tubers, and most

vegetables are deficient in sulfur-containing amino acids (Sun 2008). Engineering

complex synthetic pathways may not be a simple task, as changing one biosynthetic

route may have a detrimental effect on other aspects of metabolism.

Attempts have been made to enhance the essential amino acid and protein

content of crops (Sun and Liu 2004). Transgenic technology will continue to be

used to biofortify crops to increase vitamins and minerals. Engineering of provita-

min A to generate “Golden Rice” and “Golden Rice 2” represents a major techno-

logical advance in this respect (Ye et al. 2000; Paine et al. 2005). As vegetables and

fruits contribute significantly to human nutrition, they represent another important

target for genetic modification in terms of tolerance to abiotic stress, nutritional

quality, storage products, aromas and, in certain cases, seedlessness (Fraser et al.

2002; Dalal et al. 2006). Larkin and Harrigan (2007) discussed the attempts made to

improve the nutritional value of maize and cotton seed, while others focused on
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vitamins C (Agius et al. 2003) and E (Chen et al. 2006), particularly on oilseeds

(Hunter and Cahoon 2007). Volatiles determine the aromas of fruits, vegetables, and

herbs, with genetic engineering being able to ameliorate some of the deficiencies of

classical breeding (Dudareva and Pickersky 2008). Tomatoes have been engineered

for tolerance to chilling damage (Park et al. 2004), this being of relevance during

growth of the plants and during transport of harvested fruit. Delay of fruit ripening

and increased shelf-life are also targets for genetic manipulation.

Flavonoids and carotenoids play an important role in human nutrition and health,

particularly anticancer activity, and understanding flavonoid and carotenoid bio-

synthetic pathways has enabled anthocyanins and carotenoids to be up- and down-

regulated (Tanaka and Ohmiya 2008). Schijlen et al. (2004) also reviewed the

modification of flavonoid biosynthesis in crop plants, while Enfissi et al. (2006)

concentrated their attention on the genetic engineering of carotenoids in tomato.

Plants have been engineered to produce unusual fatty acids, particularly very long-

chain polyunsaturated fatty acids normally found in fish oils and marine organisms

(Napier 2007). The longer-term result of engineering complex pathways will be

influenced not only by the pathways per se, but also by the host plant and physical

and chemical parameters. Food allergy is a prevalent medical problem in the

western world. Allergen reduction is an important topic for genetic engineering,

with RNAi technology being applied to reduce allergens in plants such as apple,

peanut, rice, soybean, and tomato (Herman et al. 2003; Gilissen et al. 2005; Le et al.

2006; Chu et al. 2008).

1.7.3 Biopharmaceuticals

Vaccines and antibodies play a major role in human healthcare. The majority of

drugs used by humans are derived from plants and have resulted in pharmaceu-

tical companies initiating chemical synthesis of medicinally important com-

pounds (Sharma et al. 1999). However, the full potential of synthesizing

compounds has been hampered by production costs and maintaining distribution.

The progress in plant transformation has attracted attention in exploiting plants

as potential bioreactors or biofactories for the synthesis of immunotherapeutic

molecules and recombinant proteins. Plants offer several options for transgene

targeting and modification (Warzecha 2008). Indeed, as health care becomes an

increasing global issue, the longer-term focus of plant genetic manipulation will

be towards the biosynthesis of pharmaceuticals (Zhou and Wu 2006) and other

specialty compounds (Fischer et al. 2004, 2007; Yonekura-Sakakibara and Saito

2006). Biofortification of crops with micronutrients is another target for genetic

manipulation (Poletti and Sautter 2005). Linked to these goals are issues of

biosafety, especially the use of marker genes for antibiotic resistance that are

common to many transformation procedures. Davey et al. (2008) presented some

of the merits and disadvantages of marker gene technology in the transformation

of food crops.
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Vaccines such as Hepatitis B surface antigen, Norwalk virus capsid protein,

cholera toxin B subunit, Rabies virus glycoprotein, and insulin have been expressed

in transgenic plants (Mason et al. 1998; Srinivas et al. 2008), as have immunother-

apeutic molecules and industrial proteins, including serum albumin, human

a-interferon, human erythropoetin, and murine IgG and IgA immunoglobulins. Oral

vaccines synthesized in plants may circumvent some of the limitations of traditional

vaccines (Robert and Kirk 2006), especially if vaccines can be synthesized in leafy

vegetables that are consumed in the raw state. They will also be cost effective, easy to

administer and store, and socioculturally readily acceptable (Lal et al. 2007).

1.7.4 Phytoremediation

Activities, such as intensive mining, agriculture, and military operations, release

considerable amounts of toxic heavy metals and organic pollutants, posing a serious

threat to living organisms (Cherian and Oliveira 2005). Consequently, there is an

urgent requirement to decontaminate polluted environments. Phytoremediation,

involving the use of plants and microbes to remove pollutants from contaminated

soils, sludge, sediments, groundwater, surface water and waste water, is emerging

as a cost-effective and environment-friendly technology compared with conven-

tional methods of remediation (Czako et al. 2006).

Plants harbor highly versatile enzymes such as cytochrome P450 monoxygenases,

glutathione S-transferases, glycosyltransferases, laccases, peroxidases, and transpor-

ters that detoxify pollutants. Although these enzymes may not completely degrade

pollutants, they may form complexes, which can be harvested. In recent years,

genetic engineering has been used to introduce key genes to increase the remedia-

tion ability of several species. Several genes, such as merApe9, merB, MT1, MT2,
CUP1, gshI, ZAT1, ZntA, arsC (for heavy metal tolerance), mammalian cyto-

chrome P450 2E1 (CYP2E1), cbn4 (for chlorinated solvents), CYP1A1, CYP2B6,
CYP2C9, CYP2C18, CYP2C19 (for herbicide tolerance), and genes encoding

rhamnolipid biosynthesis (for oil degradation), have been overexpressed in trans-

genic plants (Doty et al. 2000; Dhankher et al. 2002; Lee et al. 2003; Thomas et al.

2003; Cherian and Oliveira 2005; Czako et al. 2006), providing a basis for plant-

based phytoremediation.

1.7.5 Floriculture

While food crops will continue to be prime targets for genetic manipulation,

ornamentals have featured extensively in genetic manipulation strategies because

of the significant contribution of the horticultural industry to the economy of many

countries (Tanaka et al. 2005). Ornamentals, especially flower species, are well

suited to genetic manipulation. As the end product is not food, it does not
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necessitate food safety studies, removing major obstacles for commercialization

and reducing the cost of production. Chandler and Lu (2005) tabulated the floricul-

ture crops that have been transformed and those with modified characteristics. The

latter include disease resistance, herbicide and freezing tolerances (Pennycooke

et al. 2003) and, most importantly, modification of pigmentation following manip-

ulation of the genes for pigment biosynthesis (Lu et al. 2003; Tsuda et al. 2004;

Suzuki et al. 2007). Attempts have been made to increase the number of flowers

produced and extending the life of cut flowers (Shaw et al. 2002). Early and delayed

flowering traits have also been introduced (Baker et al. 2002), together with

modification of plant architecture (Zheng et al. 2001) and stature (Aswath et al.

2004). The importance of gibberellic acids in controlling plant height in agriculture,

horticulture, and silviculture is well recognized (Radi et al. 2006). Dwarf plants

may be preferred in amenity planting because of their resistance to unfavorable

weather conditions. In this respect, ectopic expression of a gibberellin 2-oxidase

from oleander (NoGA2ox3) in Nicotiana tabacum resulted in dwarf plants (Ubeda-

Tomás et al. 2006). Subsequently, Agharkar et al. (2007) demonstrated that genetic

manipulation of gibberellin biosynthesis genes can improve the quality of turf grass

by increasing the number of vegetative tillers, enhancing turf density under field

conditions. Likewise, in order to demonstrate proof of principle and the application

of a genetic engineering approach, Dijkstra et al. (2008) overexpressed a gibberellin

2-oxidase gene (PcGA2ox1) from Phaseolus coccineus to enhance gibberellin

inactivation and to induce dwarfism in Solanum species. The ability to engineer

plant stature through a genetic engineering approach should be of interest to the

ornamental industry.

Fragrance will receive more attention (Xiang et al. 2007), since many plants

have lost their traditional perfumes through classical breeding. Several

approaches have been evaluated to alter scent by genetic modification, as in

petunia (Lücker et al. 2001) and carnation (Lavy et al. 2002). However, even

though the transgenic plants synthesized more volatiles, the latter could not be

detected by humans. In contrast, Zuker et al. (2002) generated carnations with

altered floral scent that could be detected by humans, but the resulting plants also

had severe alteration in flower color. More recently, Lücker et al. (2004) demon-

strated the possibility of modifying the flower fragrance profile by metabolic

engineering of tobacco plants using three monoterpene synthases from lemon.

These investigators stressed the difficulty of genetically modifying scent because

of the need for multigene engineering. Flavonoids and carotenoids are important

not only in nutrition and healthcare, as already discussed, but also in flower

pigmentation (Nakatsuka et al. 2007b; Tanaka and Ohmiya 2008). Modification

of flower color has always been one of the greatest challenges in floricultural

plant breeding, since certain colors are difficult to achieve in some species.

However, in some cases, genetic manipulation has enabled changes to be made

to pigmentation, where classical breeding has failed, by introducing genes from

other species and modifying the anthocyanin, carotenoid, or flavonoid biosyn-

thetic pathways. This approach has enabled the generation of purple carnations

(Fukui et al. 2003) and blue roses (Potera 2007).
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1.8 Risks and Concerns

As with any new technology, there are uncertainties regarding the deployment of

genetically engineered plants. There is an increasing concern that insect pests have

the capacity to develop resistance against transgenes introduced into plants, or that

transgenic properties may be transferred to insects, viruses, and bacteria. Appre-

hension has also been raised concerning the introgression of transgenes into wild

relatives of genetically modified plants and the development of superweeds result-

ing from introgression of herbicide resistance from transgenic plants to weeds

(Sharma et al. 2001, 2002). Transgenic plants may also affect nontarget species

and the environment. Food biosafety research has also focused on toxicity and

allergenicity of transgenic products.

Although concerns for ecological safety and the human well-being have led to

mistrust over the application of genetic manipulation technology, many of these

fears appear unsubstantiated or based on misinformation (Stewart et al. 2000).

A concerted effort must be made to identify valid concerns and risks, and to provide

reliable information to the public. The advent of plant genetic manipulation in

vaccine production and quality improvement will increase the emphasis on con-

sumer health benefits, which may facilitate, in turn, acceptance of the use of

genetically engineered foods. Active participation of researchers from the fields

of biotechnology, ecology, and nutritional sciences may be essential to better

determine the biosafety of transgenic plants (Stewart et al. 2000).

1.9 General Conclusions

Modern agricultural biotechnology has been one of the most promising develop-

ments in recent years (Sharma et al. 2002). Major advances in understanding gene

structure and expression have made significant contributions to the assembly of

genes and their regulatory elements for plant genetic engineering. Likewise, prog-

ress in DNA delivery technologies has facilitated the introduction of novel genes

into a wide range of plants. A common restriction to gene introgression into many

crops is the recalcitrance of these plants to express their totipotency in culture.

However, the exploitation of procedures that by-pass the requirement for extensive

in vitro manipulations should eliminate some of these difficulties. Currently,

genetic engineering is not a routine plant breeding tool (Arias et al. 2006), but is

an important adjunct to classical breeding (Shewry et al. 2008).

World food supplies will demand more intensive crop production, despite a

reduction in available agricultural land because of deterioration of soil quality,

drought, climatic change, disease, and political unrest. Farmers will demand more

value per unit of agricultural land. Genetic engineering, when used in collaboration

with traditional or conventional breeding methods, will be able to increase crop

production, increase resistance to major pests and diseases, develop tolerance

to adverse weather conditions, improve the nutritional value of some foods, and
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enhance the durability of products during harvesting or shipping (Sharma et al.

2002). Reduced use of agrochemicals will have less environmental impact. In the

future, agriculturally important traits must satisfy not only the requirements of

farmers, but also the availability of materials from researchers, governments,

distributors, processors, and the opinions of the public (Castle et al. 2006).

Discussions on transgenic crops have placed undue stress on risk assessment,

overshadowing potential advantages (Sharma et al. 2002). The issues relating to

genetically modified plants, especially food crops, have been analyzed from a

scientist’s perspective (Lemaux 2008). These issues are not only complex, but are

often aggravated by personal opinions, especially by those members of the public

who have limited understanding of plant breeding and gene technology. The rapid

escalation of increasingly stringent biosafety regulations regarding transgenic

plants or food, in the absence of any scientifically proven genetic risk, is most

likely to limit application of transgenic research to meet either the production of

sustainable staple foods or the alleviation of poverty (Sharma et al. 2002). Moving

crop production from one region to another will influence global trade patterns;

legislation and the perceived risks of genetically engineered crops will also affect

exploitation of these crops (Singh et al. 2006).

What remains clear is that changes in the genetic complement of those plants

that contribute to our food supplies are primarily the result, to date, of sexual

hybridization. Genetic engineering provides a precise approach to effect genetic

modification over a much reduced time-scale. The safety of genetically engineered

plants and those generated by conventional breeding needs to be evaluated on a

case-by-case basis (Lemaux 2008). Condemning biotechnology for its potential

risks without considering the risks associated with prolonging human misery caused

by hunger, malnutrition, and infant mortality is unwise and unethical. The global

community must endeavor to remain focused on the target of assuring food for all,

and cannot afford to be philosophical and elitist regarding any part of a possible

solution, including agricultural biotechnology (Sharma et al. 2002).
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Chapter 2

Explants Used for the Generation of Transgenic

Plants

A. Piqueras, N. Alburquerque, and K.M. Folta

2.1 Introduction

The objective of this chapter is to discuss the types of explants more frequently used

in the currently published transformation protocols as well as the morphogenic

pathways selected for the regeneration of the transgenic plants.

The process of plant genetic transformation can be divided into three phases: (1)

foreign DNA transfer into the plant genome, (2) regeneration of the transformed

explant into a normal plant, and (3) selection of transgenic plants and confirmation

of their transgenic nature. To develop efficient transformation protocols both in

herbaceous and woody plants, different explants of distinct morphogenetic poten-

tial have been used. For example, hypocotyls, cotyledons, leaves, stems, and roots

are all used as starting materials for transformation and regeneration. The following

chapter is divided into two principal parts: the first discusses explant selection and

utilization in a series of herbaceous crops and the second reviews explant usage in

select woody species.

In herbaceous plants, leaf segments are the preferred explants. Organogenesis

and somatic embryogenesis, the two more important morphogenetic alternatives in

plant tissue culture (Piqueras and Debergh 1999), have been used depending on

the recalcitrance of the selected plant. Adventitious shoot regeneration is most

frequently used for transgenic shoot regeneration followed by direct somatic

embryogenesis from explants or embryogenic cultures.

The following sections present a review of the literature regarding explant

selection for transformation and regeneration. These foundations should serve as
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an outstanding platform to test new experimental systems, as well as define new

protocols to hasten processes in established models.

2.2 Explants Used for the Transformation of Herbaceous Plants

2.2.1 Cereals

For genetic transformation of cereals, various methods of direct and indirect

transfer of foreign DNA are used, and their morphogenic calli or immature embryos

(with subsequent stimulation of morphogenic callus formation) are normally used

as explants. However, most cereal crops are characterized by a low morphogenic

potential and that significantly limits their application for genetic engineering

(Danilova 2007).

As a general rule, the morphogenic calli are used as explants for genetic

transformation of cereal crops. Alternatively, immature embryos can be used with

subsequent initiation of morphogenic callus formation. Regeneration is the next and

probably the most important step in genetic transformation of plants. The overall

efficiency of transformation greatly depends on the regeneration potential of

explants. Much work is being done in many scientific centers throughout the

world to increase the regeneration potential of cereal crops. New methods and

approaches are tried to widen the range of transformable crops and increase the

regeneration potential of calli used. In most cases, the regeneration potential

depends on explant type, genotype, and the composition of the cultivation medium

(Rout and Lucas 1996; Cheng et al. 2003; Eudes et al. 2003). Traditionally for

induction of morphogenesis in vitro, the phytohormones and synthetic hormone-

like regulators were used that belong to the auxin family in different combinations

with cytokinins (for example BA). Among the most commonly used inducers

are 2,4-D-picloram (4-amino- 3,5,6-trichloropicolinic acid) and dicamba (3,6-

dichloroanisic acid) (Bahieldin et al. 2000) .

2.2.2 Brassica

Various methods used for Brassica transformation and the factors affecting trans-

formation efficiencies have been reviewed by Poulsen (1996). Agrobacterium
tumefaciens-mediated transformation is most widely used for Brassica and it is

generally quite efficient and practical for most species in the genus. Although

seedlings parts, such as hypocotyls, cotyledons, and cotyledonary petioles, are the

most common explants, pieces of flowering stalks also regenerate well (Christey

and Earle 1991). Flowering stalk explants are less convenient to obtain and more

subject to contamination, but have some advantages, particularly when the supply

of seeds of a particular genotype is limited (Metz et al. 1994). However, there is still
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a need for developing efficient transformation methods to overcome genotype

dependency (Cardoza and Stewart 2004).

2.2.3 Cassava

The plant tissue types used for transformation of cassava include shoots induced by

organogenesis (Siritunga et al. 2004; Puonti-Kaerlas et al. 1997) and germinating

somatic embryos. Direct shoot induction from cotyledons of somatic embryos has

been used in both biolistics (Zhang and Puonti-kaerlas 2000) and Agroinfection

(Msikita et al. 2002). However, plant regeneration efficiency is highly variable

(5–70%) and genotype dependent (Zhang and Puonti-kaerlas 2000). As a result of

these cultivar-dependent differences, a variety of tissues including axillary buds

(Puonti-Kaerlas et al. 1997), apical leaves (Siritunga et al. 2004), and floral

meristems (Woodward and Puonti-Kaerlas 2001) have been used, as various groups

found differing success with the various explants from different cultivars.

2.2.4 Potato

Many protocols used now are based on a two-stage regeneration and transformation

using stem and leaf explants developed by Visser et al. (1989). The relative ease of

shoot regeneration from different tissues of potato (e.g., stem section, leaf, petiole,

and tuber disk) conditions the development of the systems used for transformation

of this species. At the present moment, most protocols use a two-step regeneration

procedure with a callus induction stage followed by a shoot outgrowth stage. The

callus stage is minimized to prevent the high incidence of somaclonal variation

reported in potato (Heeres et al. 2002). This initial stage is facilitated by treating the

explant with zeatin or zeatin riboside in combination with low levels of NAA or

IAA. The second stage has the zeatin level reduced by 20% and the auxin level

reduced by a factor of 10, plus the addition of gibberellin to stimulate shoot

elongation. Usually regeneration rates are high and after 10 weeks of culture ten

shoots per explant is a common result.

2.2.5 Sugarcane

Both embryogenic calli (Arencibia et al. 1998) and meristematic tissues from

micropropagated plants (Enrı́quez et al. 1998) have been used as explants for the

transformation of sugarcane. The production of sugarcane transgenic plants by

agroinfection has been achieved by combining several tissue culture procedures,

particularly the use of young regenerable material characterized by the presence of
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actively dividing cells competent for agroinfection, pre-induction of the regenera-

tion capacity and treatments to improve the adhesion of Agrobacterium during

cocultivation (Arencibia et al. 2000).

2.2.6 Banana

Several types of explants have been used for banana transformation (Gómez-Lim

and Litz 2004), the most frequently used are embryogenic cultures (Khanna et al.

2004). These cultures are usually induced from immature male (Escalant et al.

1994) and female flowers (Grapin et al. 2000). Wounded meristems of in vitro

plantlets have been used for banana transformation as well (May et al 1995).

Although transformed plants were regenerated, this procedure has not been widely

used because of low transformation rates and chimeras.

2.2.7 Carnation

Stem sections were the first explants used for carnation transformation (Lu et al.

1991); thin sections of node explants have been also used for carnation transforma-

tion (Nontaswatsri et al. 2004). So far, the most reproducible and efficient explant

used for carnation transformation has been the leaf base of micropropagated plant-

lets (Firoozabady et al. 1995; Van Altvorst et al. 1995; Kinouchi et al. 2006). By

using the leaf base from in vitro grown shoots three cultivars representing three

major commercial carnation groups have been transformed in what could be

considered a proof to the cultivar independence of this method, transformation

efficiency was high and fully transformed carnation plants were produced without

chimerism (Firoozabady et al. 1995; Van Altvorst et al. 1995). An example of

carnation regeneration is presented in Fig. 2.1.

2.2.8 Tomato

Tomato (Solanum lycopersicum) was one of the first crops for which a genetic

transformation system was reported involving regeneration by organogenesis

from Agrobacterium-transformed explants. Commonly, cotyledons from seeds of

different tomato lines have been chosen as explants (Frary and Van Eck 2005;

Sun et al. 2006; Qiu et al. 2007). With this procedure several tomato cultivars

transformed obtained transformation efficiencies that range from 10 to 14%

(Van Eck et al. 2006).
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2.2.9 Soybean

Transgenic soybean [Glycine max L. Merr] plants have been produced by different

methods using explants as embryogenic suspension cultures, proliferating meris-

tems, immature cotyledons, or shoot and axillary meristems from mature cotyle-

dons. Microprojectile bombardment has been used to transform embryogenic

suspension cultures and shoot meristems (McCabe et al. 1988; Parrott et al.

1989a; Finner and McMullen 1991; Rech et al. 2008). Agrobacterium-mediated

transformation methods have been developed with the rest of target tissues (Aragao

et al. 2000; Ko et al. 2003, 2004; Liu et al. 2004). The criteria for choosing the type

of explants to transform are strongly influenced by the genotype; for instance, the

embryogenic response varied with genotype (Parrott et al. 1989b). In a recent work,

Cao et al. (2008) have found that there are significant differences among soybean

genotypes in their susceptibility to Agrobacterium rhizogenes when germinated

seedlings have been infected.

Fig. 2.1 Sequence of morphogenic events leading to adventitious bud regeneration at the leaf base

of carnation. (a) Emergence of meristemoid, (b) Initial shoot cluster formation, (c) Developed

adventitious shoot
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2.2.10 Alfalfa

Although different transformed plants of alfalfa (Medicago sativa L.) have been

obtained by different methods (Samac and Temple 2004), the use of leaf explants of

a highly regenerable genotype infected with A. tumefaciens followed by induction

of somatic embryos have allowed the recovery of transgenic alfalfa plants with

extremely high efficiencies (Samac and Austin-Phillips 2006). Samac (1995)

reported that transformation at the whole plant level is germplasm dependent,

while in tissue culture the bacterial strain used is the critical variable for successful

transformation. Other authors (Desgagnes et al. 1995) found a high influence of the

genotype, the expression vector and the bacterial stain on the ability to produce

stable transgenic material by the method described earlier.

2.2.11 Sunflower

Sunflower (Helianthus annuus L.) is considered one of the most difficult species to

be genetically transformed because its competent cells for regeneration are not able

to be transformed. To overcome this problem, different approaches have been

reported such as the origin of the explants, the transformation vectors or systems,

and even combinations of approaches. Schrammeijer et al. (1990) developed a

routine A. tumefaciens-mediated transformation protocol using meristems from

late-stage embryonic tissues as efficient explants with low transformation efficien-

cies. Later, other groups have reported changes in the procedure that have allowed

improvement of the efficiency or reduction of chimeral shoot and plant production

derived from this kind of explant (Knittel et al. 1994; Rao and Rohini 1999;

Molinier et al. 2002).

2.2.12 Cucumber

Cucumber (Cucumis sativus L.) transformation has been approached with different

kinds of explants using A. tumefaciens. Cotyledons (Chee and Slightom 1991;

Tabei et al. 1998), hypocotyls (Trulson et al. 1986; Nishibayashi et al. 1996), or

petioles (Raharjo et al. 1996) have been used as explants. Embryogenic callus

tissues have been bombarded with microprojectiles coated with several plasmid

DNAs (Chee and Slightom 1992). One method, which has advantages like fast and

efficient plant regeneration from a wide range of genotypes, consisted of producing

direct regeneration from leaf microexplants selected on kanamycin-containing

medium. The transformation efficiencies varied from 0.8 to 6.5% depending on

the genotype and the construct (Yin et al. 2005). Other method involves regenera-

tion from a long-term established embryogenic suspension culture, obtaining higher

transformation efficiencies (from 6.4 to 17.9%) (Burza et al. 2006).
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2.2.13 Eggplant

Different authors have developed regeneration and transformation procedures to

transform eggplant (Solanum melongena L.) using seedling explants like hypocotyl,
epicotyl, and node segments as well as cotyledon segments (Arpaia et al. 1997;

Magioli et al. 1998), leaf disks (Yadav and Rajam 1998), or roots (Franklin and Sita

2003). When an Agrobacterium-mediated transformation protocol was used with

cotyledons, hypocotyls and leaves from two eggplant genotypes high transfor-

mation efficiencies were reported (Van Eck and Snyder 2006).

2.2.14 Melon

In melon species, the transformation frequency is very low due to the production

of “escapes” (Guis et al 1998; Galperin et al. 2003). In previous studies, trans-

genic plants were generated using adventitious shoot organogenesis. To reduce

the problem of “escapes,” an alternative regeneration system that can enable

transformation was developed, and several groups reported the production of

somatic embryos from melon cell suspension cultures (Guis et al. 2000). Pub-

lished protocols for melon genetic engineering use the process of organogenesis

(Dong et al. 1991). Although this sometimes leads to problems, such as abnormal

embryos, the liquid culture system is considered very useful for the efficient

selection of transformed tissues, as whole explants absorb antibiotics more easily

when suspended in liquid media than when cultured on solidified media.

Embryogenesis is also a useful regeneration system for transgenic research

because none of the transgenic plants are chimeric (Asaka-Kennedy et al.

2004). The efficiency of embryogenesis in melons is closely related to the

genotype (Oridate et al. 1992).

2.2.15 Strawberry

Strawberry transformation has been reported for many genotypes, although con-

fined to diploid wild species (e.g., Fragaria vesca) and cultivated octoploid vari-

eties (Fragaria x ananassa). Most of the transformation reports generate transgenic

plants from Agrobacterium-mediated transformation of leaf disks or cut leaves

(El Mansouri et al. 1996; Passey et al. 2003; Landi and Mezzetti 2005). In some

cases petiole segments are particularly prolific (Folta et al. 2006). New systems in

strawberry transformation are being constantly retooled or developed because of

strawberry’s position as a functional system to test gene activity in the valued

Rosaceae family (Shulaev et al. 2008). A demonstration of regeneration from

diverse tissues is shown in Fig. 2.2.
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2.3 Explants Used for the Transformation of Woody Plants

Woody plant transformation has become a central area of interest, for valuable

forest products, both economical and ecological. Studies of lumber-crop transfor-

mation are driven by a need for improved lumber, food, paper, fuels, and other

materials that are derived from tree crops. In addition, valuable nutritious fruit and

nut products are borne from woody perennials. Lumber, biomass, food, and ecolo-

gically intended tree crops will benefit from in vitro propagation or development of

genetically enhanced germplasm. Interest has been piqued since the unveiling of

the Populus genome. There is now extensive interest in transformation of tree crops

to validate in planta the findings of genome sequencing and functional genomics

studies. The generally long juvenile periods and dormancy issues make breeding

efforts and crop improvement strategies difficult and arduous. The need for

improved woody species is being met in two ways. First, direct engineering and

deployment of tree crops featuring genes of interest permit favorable traits to be

directly introduced into production scenarios. A few such examples include the

Fig. 2.2 Shoot emergence from diploid strawberry leaf explants. Culture conditions have been

optimized for prolific regeneration from a number of diploid accessions, providing an outstanding

functional genomics resource for rapid elucidation of gene function
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notable engineering feats of introducing papaya ringspot virus resistance into

papaya (reviewed in Tripathi et al. 2008) and plum pox virus resistance into stone

fruits (Ravelonandro et al. 1997). Transformation has also been used to engineer

rootstocks to reduce the time before scion reproductive competence. The goal is to

introduce genes associated with inducing the floral transition so that traditional

breeding techniques could be implemented. Such milestones have been met in

poplar (Hsu et al. 2006) and citrus (Nishikawa et al. 2007). The challenge to

these processes is the engineering itself, as many tree species are recalcitrant to

genetic manipulation.

For generation of transgenic materials, it is necessary to regenerate organs and/

or embryos using fairly standardized protocols. In these cases, explant selection is

central to successful transformation and regeneration. The tissue chosen, as well as

the health status and developmental state of the donor plant are critical to the

success of adventitious shoot production. In just about all cases callusing and

shoot production was greatly accelerated by specific growth regulators, viz. thia-

diazuron, discussed elsewhere in this volume. This part of the chapter focuses on

economically important woody crops, primarily those used in fruit and forest

industries.

2.3.1 Almond

The almond (Prunus dulcus Mill.) literature presents several complementary

studies of transformation or regeneration, but relatively efficient protocols that

combine the two have only been recently developed. Agrobacterium-mediated

transformation (albeit without regeneration) of almond leaf disks was reported in

1995 (Archilletti et al. 1995). Successful transformation and regeneration of

almond was reported 4 years later. Miguel and Oliveira (1999) used the four

most recent fully expanded leaves from 3-week-old shoots in culture as explants.

A subset of the leaves received a pretreatment on the callus induction media for

3–4 days before wounding. These tissues were cut with a scalpel dipped in

bacterial suspension. The efficiency of this approach was low, but successful,

and could be greatly increased with addition of acetyosyringone to cocultivation

medium (Costa et al. 2006). A contemporaneous study carefully examined regen-

eration conditions for two major cultivars (Ainsley et al. 2000) leading to higher

regeneration efficiency. This study also used young leaves from in vitro grown

plantlets, cutting them into 5-mm2 pieces. Additional reports examined the regen-

eration from embryonic cotyledons under different culture conditions and growth

regulators, greatly improving efficiency (Ainsley et al. 2001b). A complementary

study from the same group examined transformation protocols (Ainsley et al.

2001a) but did not report regeneration. Efficient transformation and regeneration

has been reported using the same explants – the fully expanded leaves from 21- to

28-day-old micropropagated shoots, cut across the midrib (Costa et al. 2006;

Ramesh et al. 2006).
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2.3.2 Apple

Generation of adventitious shoots from apple (Malus x domestica Borkh.) leaf

explants has been documented since 1983 (Liu et al., 1983a, 1983b). Genetic

transformation of apple tissue was reported two decades ago using leaf explants

(James et al. 1989; Maheswaran et al. 1992), and stable integration and segregation

of transgenes were later reported (James et al. 1994, 1996). In these early studies

Agrobacterium-mediated transformation was used with leaf explants, and the

effects of explant age, orientation, and genotype were explored (Debondt et al.

1994; Yepes and Aldwinckle 1994; Puite and Schaart 1996). Regeneration from

embryonic cotyledons and axes was reported (Keulemans and Dewitte 1994). The

effect of various growth regulators was also assessed on leaf explants (Yancheva

et al. 2003) as were the effects of acetyosyringone and explant pretreatment (Seong

and Song 2008). Internodal seedling explants were shown to be especially amena-

ble to transformation, particularly when etiolated (Liu et al. 1998). Another study

utilized stem microcuttings and A. rhizogenes to create chimeric apple trees that

later yielded transgenic plants (Lambert and Tepfer 1992). Leaf explants have also

been successfully used for particle bombardment (Gercheva et al. 1994).

2.3.3 Apricot

Apricots (Prunus armeniaca L.) are less routinely transformed than other Prunus
counterparts such as plum (reviewed later in this chapter), but have benefited from

careful studies that have defined optimal conditions. Early studies defined the

conditions of regeneration, and sometimes transformation, from a variety of explant

types. Transfer of genes using Agrobacterium has been accomplished using embry-

onic cotyledons, leaf disks, and somatic embryos as initial culture material

(Machado et al. 1994). Efficient regeneration was achieved from young in-vitro-

derived leaves (typically the first four from 21-day-old in vitro plants), but was

highly dependent on genotypes and cytokinin and gelling agent used (Perez-Tor-

nero et al. 2000; Burgos and Alburquerque 2003), and could be accelerated with

ethylene inhibitors (Burgos and Alburquerque 2003). A series of studies have

increased the efficiency of transformation and regeneration of the “Helena” cultivar

using a series of selection strategies, growth regulators, and culture conditions, but

the explant source has remained unchanged (Petri et al., 2004, 2005a, 2005b,

2008a). Emerging shoots from an apricot explant are presented in Fig. 2.3.

2.3.4 Blueberry

Successful transformation of leaf materials from a blueberry hybrid (Vaccinium
corymbosum x V. angustifolium) was first achieved by Graham et al. (1996). Since
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then, multiple studies have examined gene transfer to cut leaf sections from

multiple V. corymbosum genotypes raised in vitro (Cao et al. 1998; 2003; Sink

and Song 2004; Song and Sink 2004). One of the factors affecting transformation

efficiency is explant age, as those removed from recently transferred source mate-

rial typically performed better (Cao et al. 1998). Song and Sink (2004) report

successful transformation and regeneration using leaf explants when the petiole is

removed and the distal third of the leaf blade is discarded. This latter protocol has

been successfully implemented in testing various promoters in this valuable, yet

recalcitrant crop (Song et al. 2008).

2.3.5 Birch

The first reports of birch transformation were obtained in Japanese white birch

(Betula platyhphylla). Here leaf disk explants were transformed and regenerated

with reasonable efficiency (Mohri et al. 1997). A study in silver birch (Betula
pendula) tested regeneration in leaf, internodal stem segments, and nodal stem

Fig. 2.3 Adventitious bud regeneration on a leaf segment base of apricot cv. Helena
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segments, and the results showed that all were capable of producing adventitious

shoots at a high (> 90%) rate (Lemmetyinen et al. 1998). Transformation was

performed on explants that were precultured and wounded before cocultivation

(Lemmetyinen et al. 1998). Cultivated callus and shoots were used for biolistic-

assisted transformation of silver birch, producing stable plantlets (Valjakka et al.

2000).

2.3.6 Citrus

There is a desire to transform both the scions and the rootstocks of major citrus

cultivars, as a changing spectrum of pests, pathogens, and production challenges

forces new and rapid innovation. Many genotypes have been regenerated, namely

sour orange (Citrus aurantium L.), sweet orange (Citrus sinensis L. Osbeck),

grapefruit (Citrus paradisi), mandarin (Citrus reshni Hort. ex Tan.), alemow

(Citrus macrophylla Wester), and the hybrid Troyer citrange (Citrus sinensis [L.]
Osbeck) among others. The development of transgenic plants was performed by

generating transgenic shoots that could be grafted to seedling rootstocks. These

shoots arose from internodal stem segments from 5-week-old seedlings, or on the

cut end of epicotyls treated with Agrobacterium (Pena et al. 1995). In one particular

study epicotyl segments from germinated seedlings were cultured in darkness,

horizontally, and robust shooting occurred on the basipetal end, arising from the

cambial region (Bordon et al. 2000).

2.3.7 Cherry

Cherry is also considered to be recalcitrant to transformation and regeneration.

A number of reports have demonstrated the ability to regenerate shoots of several

sweet cherries (P. avium) grown in vitro (Grant and Hammatt 2000; Bhagwat and

Lane 2004; Feeney et al. 2007; Canli and Tian 2008). Bhagwat and Lane (2004)

tested a series of explants in two cultivars, comparing the furled leaves at the apex

to the expanding leaves to mature leaves, with and without perpendicular wounds

across the midrib. The results showed that regeneration occurred only in the upper

expanded leaves that were wounded. An evaluation of several explant types was

performed by Feeney et al. (2007). In this study explants arose from orchard trees,

demonstrating that organogenic callus could be derived from ex vitro materials.

Wounding was also advantageous in regeneration of orchard and in vitro tissues.

The study by Feeney et al. (2007) also indicates that callus formation becomes less

robust as explants are located near the bottom of the plant, as those proximal to the

shoot tip performed better. In sour cherry (P. cerasus L.) the cultivar “Montmo-

rency” was used for regeneration and transient expression, again using leaf explants

with cuts perpendicular to the midrib, much like in apricot (see earlier). These
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protocols were the basis of transformation of the “Montmorency” cultivar, where

additional culture conditions were evaluated (Song and Sink 2006).

2.3.8 Eucalyptus

The first report of transgenic eucalyptus (Eucalyptus globulus Labill.) trees

describes Agrobacterium-mediated transformation of wounded seedlings (Moralejo

et al. 1998). The process was also described with careful detail using Eucalyptus
camaldulensis hypocotyl segments and organogenesis from callus (Ho et al. 1998).

Transgenic plants bearing genes for resistance to herbicide and insect larvae were

generated from cut hypocotyls and cotyledons of 2-week-old seedlings (Harcourt

et al. 2000). Stable transformation was also achieved by sonicating seeds or

seedlings in the presence of Agrobacterium (Gonzalez et al. 2002), where the

most efficient transformation occurred in the intersection of the root and shoot or

cotyledons. Particle bombardment of eucalyptus hybrid callus derived from seed-

ling hypocotyls and cotyledons also resulted in successful regeneration of stable

transgenic trees (Sartoretto et al. 2002). While the typical goal of a transformation

system is to generate stable plants bearing a transgene, other attempts have exam-

ined stably engineered tissue to study wood formation (Spokevicius et al. 2005) or

cell fate in transformed cambium (Van Beveren et al. 2006).

2.3.9 Kiwi

Successful transformation and/or regeneration was/were reported for several spe-

cies of Actinidia. The first reports appear from Actinidia chinensis (Suezawa et al.
1988). Callus was produced from field-grown leaves and then regenerated through

cell suspension cultures. Later, Rugini et al. (1991) transformed elite kiwi germ-

plasm, inserting the rol A, B, and C genes from Agrobacterium rhizongenes, with
the intent of affecting root morphology and rooting ability. Here leaf disks were

used to directly generate roots, approaching 100% efficiency. At the same time

other groups found great success from cocultivation of kiwi hypocotyls or stem

segments (Uematsu et al. 1991). In a separate study, kiwi hypocotyls were inocu-

lated with A. rhizogenes, leading to prolific hairy root production in culture,

eventually generating transformed whole plants (Yazawa et al. 1995). The same

group later switched to petioles as leaf explants from several cultivars and obtained

up to 31% generation of transformed adventitious buds, again using A. rhizogenes
protocols (Yamakawa and Chen 1996). Leaf disks and petioles were used to install

the stilbene synthase gene (Kobayashi et al. 2000). A smaller, less vigorous, faster

flowering species (Actinidia eriantha) was transformed and regenerated from leaf

strips as a potential system for functional genomics (Wang et al. 2006). Transgenic

plants have been regenerated from leaf disks of “Hayward” to test effects of a grape

MYB protein on plant pigmentation (Koshita et al. 2008).
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2.3.10 Larch

Hypocotyls of developing European larch (Larix deciduas Mill.) seedlings were

used to introduce transgenes via A. rhizogenes-mediated transformation.

Wounded hypocotyls from 7-day-old seedlings would produce adventitious

shoots 4 weeks after transformation (Shin et al. 1994). An alternative approach

introduced genes through “embryogenic masses,” cultures formed from long-term

maintenance of embryogenic tissue derived from embryos isolated from polli-

nated cones. Transient expression was observed through microprojectile bom-

bardment (Duchesne 1993) into these masses. Stable transformation of somatic

embryos was achieved in L. laricina (tamarack). These embryos were both from

the precotyledonary stage and those with elongating or developed cotyledons

(Klimaszewska et al. 1997). Embryogenic masses were also the preferred starting

point for transformation of hybrid larch (Levee et al. 1997). Eventually optimiza-

tion of particle bombardment protocols would yield stable transformants as

zygotic embryos from L. gmelinii L. were transformed with this method (Lin

et al. 2005). The tissues were cultured to callus that was then induced to form

shoots with reasonable frequency.

2.3.11 Peach

Among major tree crops, transformation of peach (Prunus persica L. Batsch.) has

remained difficult. Despite the efficient systems devised for apricot and plum

mentioned elsewhere in this chapter, reports of peach transformation are sparse.

Peach has been successfully regenerated from in vitro leaves from plant apices

(Gentile et al. 2002), mature and immature cotyledons (Mante et al. 1989; Pooler

and Scorza 1995), and zygotic embryos (Hammerschlag et al. 1985). A variety of

peach explants, including leaf segments, immature embryos, and embryogenic

calli, have been transformed via Agrobacterium (Scorza et al. 1990) and biolistics

(Ye et al. 1994), but routine regeneration of transformed tissue has remained

elusive. Only two reports of successfully reproducing stable transgenic plants

were reported and indicate a relatively inefficient transformation and regeneration

rate (Smigocki and Hammerschlag 1991; Perez-Clemente et al. 2004). The most

successful report demonstrated that regeneration could occur from embryo sections,

but was poor or nonexistent from hypoctoyls and cotyledons (Perez-Clemente et al.

2004). Padilla et al. (2006) performed a strategic study using Agrobacterium-
mediated transformation and GFP markers to assess transformation efficiency of

various bacterial strains and explants. The study showed that internodes, cotyle-

dons, and embryonic axes were superior to embryonic hypocotyl slices, the choice

material for plum. Still, further optimization will be required to make peach

transformation and regeneration routine.
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2.3.12 Pear

Pear (Pyrus communis L.) has been successfully transformed and regenerated using

leaf explants and Agrobacterium-mediated gene transfer (Mourgues et al. 1996).

Various culture conditions and genotypes were tested, using in vitro-derived leaves

from recently transferred plantlets, cut perpendicularly across the midrib (Chevreau

et al. 1997; Bell et al. 1999; Yancheva et al. 2006). The same protocols were

employed by other studies (Reynoird et al. 1999) demonstrating their utility.

Regeneration remained an issue in some genotypes and Matsuda et al. (2005)

examined other explant sources to improve efficiency. This report used the same

cut leaves from in vitro plants, but then also included 0.5-mm sections of axillary

shoot meristems. The meristematic tissues proved superior in otherwise recalcitrant

cultivars, and the authors noted that the poor regeneration on selection agents in leaf

explants arose from a lack of transformation, not an inherent inability to regenerate.

Embryonic cotyledons in mature seeds of the Asian pear (Pyrus betulaefolia) have
also been amenable to transformation and regeneration (Kaneyoshi et al. 2001).

2.3.13 Pine

Stable transformation of conifers dates back over two decades to efforts of Ron

Sederoff and colleagues in loblolly (Pinus taeda L.) and sugar pine (Sederoff et al.

1986; Loopstra et al. 1990). Despite these early gains, most reports of pine

transformation acknowledged only transient expression, and not the generation of

transgenic plants. Efficient generation of transgenic plants is limited by the cell

division capacity of the explants in these recalcitrant species. Studies in both pine

and spruce (noted later in this chapter) demonstrated increased transformation

efficiency when embryogenic tissues are used as explants.

White pine (Pinus strobus L.) transgenics were efficiently produced using

Agrobacterium-mediated transformation against embryogenic tissues (Levee et al.

1999). Pinus radiata has also been successfully transformed (Walter et al. 1998).

2.3.14 Plum

Transformation of plum (Prunus domestica L) is routine and efficient, at least

compared to other closely related stonefruits like apricots, almonds, and peaches.

Plum transformation dates back almost two decades to reports of Agrobacterium-
mediated transformation of hypocotyl segments isolated from the embryonic axes

in ungerminated seeds (Mante et al. 1991). Here the surface-sterilized seed was split

and the hypocotyl was removed and cut into three sections. The radicle and the

epicotyl were discarded, and the central portion was used for transformation by
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slicing it transversally into several thin (< 1 mm) explants. These protocols have

remained generally unchanged, except for a 10� increase that comes from pre-

conditioning explants with growth regulators (Petri et al. 2008b). Similar protocols

also work with the Japanese plum (Prunus salicina) (Urtubia et al. 2008)

2.3.15 Populus

Populus species and related hybrids have become extremely useful model plants in

the study of gene function in woody plants, due in part to the full accounting of genes

in a sequenced genome and rich expressed sequence tag (EST) resources. Transfor-

mation in Populuswas first achieved over two decades ago (Parsons et al. 1986), and
subsequent studies improved on the techniques. Explants used include internode

pieces from 6- to 8-week-old in vitro plants (Deblock 1990), and leaf disks from

ex vitro plants (Tsai et al. 1994). Transformation of P. tremula (Tzfira et al. 1996)

and cottonwood varieties (Han et al. 1997) was accelerated using A. rhizogenes
against stem segments that would develop adventitious roots with great efficiency.

Additional protocols were specifically designed for the P. trichocarpa genotype

Nisqually-1, the line used for genome sequencing. Here internodal stem explants

proved superior to midrib or leaf explants in regeneration efficiency (Song et al.

2006). This study showed that explant selection was critical to the transformation

process, both in the discrete tissue used and the age of the explant source plant.

Specifically, the fifth to eighth stem internode sections from vigorous 5–6month-old

plants performed best in culture. Recent modifications hasten the process in quaking

aspen (P. tremuloides) inoculating hypocotyl sections leading to the regeneration

of transgenic trees in 3–4 months instead of 6–12 months (Cseke et al. 2007).

2.3.16 Spruces

Low transformation rates in spruces were caused by explant materials with limited

competence for cell division. A comprehensive assessment of transformation com-

petence during embryo development optimized parameters of white spruce (Picea
glauca) transformation by particle bombardment (Ellis et al. 1993). Embryogenic

callus, embryos themselves, and seedlings were receptive to the treatment, leading

to transformed plants. Experiments using cell suspension cultures of Norway spruce

further accelerated efficiency. Norway spruce (Picea abies) offers the advantage of
a well-studied system with prolific cell growth, excellent culture viability, and

strong regeneration potential for embryogenic cultures (von Arnold et al. 1996).

Studies in P. abies demonstrated that biolistics technologies could be used to

introduce transgenes, such as GUS (Duchesne and Charest 1991). Biolistics or

Agrobacterium have been used to generate transgenic plants arising from somatic

embryos (Walter et al. 1999).
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2.3.17 Walnut

The transformation of walnut (Juglans spp.) via Agrobacterium-associated means

was originally tested by Polito et al. (1989) when they were able to produce somatic

embryos in culture. At the same time, studies at the University of California-Davis

were demonstrating that the somatic embryos of walnut could be transformed and

regenerated into plants (McGranahan et al. 1988, 1990; Dandekar et al. 1989). As

with many hardwoods, the most efficient transformations have been performed on

somatic embryos (Escobar et al. 2000; Tang et al. 2000). Somatic embryos them-

selves have even been reported to produce secondary embryos (Raemakers et al.

1995), appropriate for transformation. Transformation of agriculturally useful

transgenes has been reported for Persian walnut (Juglans regia) when somatic

embryos derived from a repetitively embryogenic lines were cocultured with

Agrobacterium bearing the gene encoding Bt toxin (Dandekar et al. 1998). An

additional study defined the boundaries of transient and stable transformation of

somatic embryos in Persian walnut using GFP (Escobar et al. 2000). This visible

marker allowed detection of transformed materials that could be subcultured into

plants on appropriate media.

2.4 Concluding Remarks

Explant selection is a critical parameter to consider when performing transforma-

tion and regeneration experiments. Different explant types often have varying

potential for transformation and certainly for organogenesis or development of

somatic embryos. Just as a complete test for transformation and regeneration

includes a complete assessment of growth regulators, media constituents, and

culture conditions, the choice of explant should be a central consideration in the

development of transgenic resources.
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Chapter 3

Gene Transfer Methods

Seedhabadee Ganeshan and Ravindra N. Chibbar

3.1 Introduction

The ability to alter the genetic composition of a plant is fundamental to crop

improvement and development of new cultivars with desirable characters. Plant

breeders have utilized the naturally occurring genetic variability in existing germ-

plasm to develop new lines by sexual hybridization. In the absence of natural

variation for a trait, chemical and radiation mutagenesis was used to create genetic

variability for use in the development of varieties with desirable traits. In another

approach, genes for superior traits in close relatives were identified and recombined

by wide hybridization, thereby generating interspecific or intergeneric hybrids

between the donor and target species. However, all these chromosome-mediated

gene transfers need sexual hybridizations. Sexual compatibility and chromosome

pairing are key components for the introgression of a desired trait. To overcome

limited sexual compatibility, embryo rescue using in vitro culture techniques

was used to induce genetic variability for desirable traits (Raghavan 1986). The

development of protoplast culture and somatic cell hybridization was one of

the first examples to create genetic variability by asexual means. Furthermore,

in vitro culture of plant cells in suboptimal conditions was found to induce genetic

variations termed somaclonal variation, subsequently exhibiting an altered pheno-

type (Larkin and Scowcroft 1981). The Agrobacterium tumefaciens-mediated

integration of foreign DNA into a cell’s nuclear genome and production of a

transgenic plant in which the inserted gene was inherited following Mendelian

genetics was the ultimate method to create genetic variation across species, irre-

spective of genetic proximity or sexual compatibility (Otten et al. 1981).
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3.2 Gene Delivery Methods

The availability and the versatility of different plant DNA delivery methods have

become even more pertinent in recent years with the availability of gene sequence

data and the need for functional analysis of cloned and sequenced genes. Although

the existence of a vast depository of sequences of known functions in the databases

can be used for the prediction of gene function of unknown sequences based on

homology, limitations are often encountered with respect to precisely determining

functions of the genes of interest (Sessions et al. 2002). Therefore, the availability

of high-throughput gene transfer systems for economically important crop plants

has become highly desirable to expedite gene function analysis. While such trans-

formation systems are routine in model systems such as Arabidopsis, for many

economically important crop plants, extensive effort is still required to achieve

routine, high efficiency transformation. It is, therefore, imperative to understand the

practicality, usefulness, and versatility of the different gene transfer methods that

can contribute to specific transformation projects. This is particularly critical for

species which are presently relatively recalcitrant to genetic transformation.

Since the first report of Agrobacterium-mediated delivery of genes to produce

transgenic plants in the early 1980s, a number of other gene delivery methods have

been reported in the literature (Table 3.1). Some of these have been successfully

used to produce transgenic plants for commercial applications and/or basic studies to

understand plant growth and development. However, there still remains a challeng-

ing task ahead to find the best suited transformationmethod for various plant species.

There is also a need to find cost-effective methods for transformation so that

laboratories with limited funding resources are capable of conducting such research.

Furthermore, due to patenting issues currently covering some of the transformation

methods such as Agrobacterium, methods need to be developed for availability in

the public domain. Notwithstanding these issues, gene transfer to plants overall

appears to be simple, but requires careful interphasing of several different systems.

Thus, simply iterated, gene transfer to plants involves the integration of three

components, which include a tissue culture system (discussed in Chap. 2), a DNA

delivery system, and a vehicle for carrying the DNA to be transferred (Fig. 3.1). An

ideal gene delivery method transfers the carrier DNA to a cell with minimum

damage to the recipient tissue, allows for stable transgene integration into the

recipient genome and sustained cell proliferation of recipient tissue for subsequent

regeneration of a transgenic plant. The commonly used gene transfer methods can

be classified into several different groups. In this chapter, two broad groups of gene

delivery methods will be discussed: (a) biological, and (b) physical. The biological

group includes a living organism, such as a bacterium or virus, to deliver a gene to a

host cell. The physical methods include direct DNA delivery techniques, which use

a chemical alteration or physical force such as pressure or electric discharge to

deliver the vector DNA into a host cell. Recently, a third group of techniques, which

use a combination of biological and physical techniques to deliver the vector DNA,

has been developed. These techniques use the desirable features of both the groups

to achieve optimal delivery of vector DNA into host cells. Essentially, the methods
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follow a general plan (Fig. 3.2). The initial step is the DNA delivery to cells or

tissues, followed by culture and selection to allow only those cells and tissues

having a marker gene (e.g., antibiotic or herbicide resistance gene) to survive and

proliferate further. Subsequently, plants are regenerated from the surviving cells,

rooted and hardened in the soil. Such primary transformants are thereafter used for

molecular analyses for determination of integration and copy number of the trans-

genes of interest.

3.2.1 Biological Methods

3.2.1.1 Agrobacterium-Mediated Gene Transfer

The first report of a transgenic plant was as a result of A. tumefaciens-mediated

delivery of foreign DNA (Otten et al. 1981; Barton and Chilton 1983; Fraley and

Horsch 1983). Since then, Agrobacterium has been used to deliver DNA in several

Transgenic
Plant

DNA delivery
method:
Physical/
Biological

Plant
regeneration
from explant

tissues

Expression
cassette for

gene of
interest in

vector DNA/
construct

Fig. 3.1 A three-component

system required for

successful production of

transgenic plants. The three

components integrate a tissue

culture system, a DNA

delivery system, and a vector

carrying the gene of interest
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Fig. 3.2 Schematic depiction of physical and biological methods commonly used for gene transfer

to plants and the general steps leading to the growth of a putative transgenic plant
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plants to understand the basic principles of plant biology and for developing crop

cultivars with improved agronomic traits including enhanced crop quality traits.

Agrobacterium as a genus can transfer DNA to a very broad range of organisms

including plants (both monocotyledonous and dicotyledonous angiosperms),

gymnosperms, fungi, and recently to human cells (Kunik et al. 2001). Among the

five known Agrobacterium species, A. radiobacter is avirulent, three species

are pathogenic and cause crown galls (A. tumefaciens, A. rubi, and A. vitis), while
A. rhizogenes is responsible for hairy root disease. This chapter will focus on

A. tumefaciens and A. rhizogenes, the two most common species used for DNA

delivery to produce transgenic plants.

A. tumefaciens causes crown galls on a large number of dicotyledonous and a

limited number of monocotyledonous plant species, and gymnosperms (Levee et al.

1997; Levee et al. 1999). The A. tumefaciens-induced tumors can be grown in vitro

in simple culture media without the bacterium and any added plant growth hor-

mones (Braun 1941; Braun and Laskaris 1942; Braun and Laskaris 1943). The

crown gall disease is caused by the transfer into plant cells of a specific DNA

fragment (T-DNA), which originates from a tumor-inducing (Ti) plasmid present

within the bacterium. The T-DNA becomes integrated into the plant nuclear

genome, and expression of the genes present on the T-DNA gives rise to the

crown gall phenotype. The T-DNA carries some of the genes responsible for

auxin and cytokinin synthesis, which result in the rapid and autonomous growth

of crown gall tissue in the absence of added plant hormones. The other T-DNA

genes are responsible for the synthesis of specific amino acids or sugars which are

normally not present in plant cells. These plant tumor-specific compounds are

collectively known as opines, but classified as octopines, nopaline, agropine,

succinamopine, or chrysopine produced by specific Ti plasmids. These opines can

be metabolized by the respective Agrobacterium strains but not by other soil

microorganisms thus creating a niche environment and host strain specificity,

which results in a very conducive environment for Agrobacterium-mediated genetic

modification of plant cells. A. rhizogenes causes hairy root plant disease, which is

characterized by the rapid proliferation of roots at the infection site. A. rhizogenes
transfers an Ri plasmid in a manner similar to the Ti plasmid of A. tumefaciens.

Agrobacterium-mediated T-DNA transfer to plants is governed by three basic

genetic elements. A native Ti or Ri plasmid generally varies in size from 200 to

800 kb (Goodner et al. 2001; Wood et al. 2001) and usually contains one T-DNA

region, which is usually about one-tenth (10–30 kb in size) of the total plasmid. In

some instances, a Ti plasmid may contain multiple T-DNA regions (Merlo et al.

1980). The first major element is defined by border sequences, which are 24–25 bp

imperfect direct repeats flanking and defining the T-DNA region (Zambryski et al.

1982; van Haaren et al. 1988). These border sequences are the only DNA

sequences required in cis for T-DNA transfer (Zambryski et al. 1983a). DNA

present in between the border sequences is transferred to the recipient plant cell’s

nucleus. The second important element is composed of virulence (vir) genes

also present on the Ti plasmid but outside the T-DNA. VirA and VirG located

on the virulence region make a two-component regulatory system for controlling
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transcriptional activation of the vir operons (Stachel and Zambryski 1986). Some

of the vir genes are critical in the transfer of T-DNA from the bacterium to host

cell, while others help in targeting T-DNA to the nucleus and probably to the

precise integration site in the host cell for T-DNA. The third important bacterial

genetic element comprises the chromosomal genes critical for attachment of the

bacterium to the host plant cell (Sheng and Citovsky 1996). Thus, in the vicinity of

wound sites in the plant and the release of signal molecules, bacterial cells are

chemotactically attracted to the host cells (Hawes and Smith 1989). It has been

found that at the wound site release of monocyclic phenolic compounds such as

acetosyringone leads to the induction of the vir genes (Stachel et al. 1985). It has
generally been proposed that at the initial onset of the infection process, the wound

signals are perceived by the VirA protein, which activates the virG transcription

factor by phosphorylation, leading to the upregulation of other vir genes (Citovsky
et al. 1992). Among these up-regulated vir genes, protein product from the virD2
gene recognizes the imperfect direct repeats of the T-DNA and in concert with the

virD1, virD2, virC1 and virC2 proteins cause a nick in the T-DNA strand

(Yanofsky et al. 1986; Yanofsky and Nester 1986; Stachel et al. 1987). The

virD2 protein covalently binds the 50 end of the single-stranded T-DNA (Yanofsky

et al. 1986; Vos and Zambryski 1989) and the virE2 protein forms a complex with

the T-DNA strand for mobilization into the plant cell nucleus (Citovsky et al.

1988, 1989). It is believed that the type IV secretion system, T4SS, of the vir
system in Agrobacterium is assembled by 11 proteins coded for by the virB operon

and the virD4 protein leading to the channel bridging the bacterial and plant cell

wherein the passage of the T-DNA complex occurs (Christie 1997, 2004; Zupan

et al. 1998; Zupan et al. 2000). Once the T-DNA complex is within the plant

nucleus, it has been suggested that doubling of the T-DNA occurs and there is

integration into plant chromosomes (DeNeve et al. 1997) or transient expression of

the genes on the T-DNA.

The utilization of Agrobacterium as a gene delivery method was further

enhanced by the observations that the disarmed T-DNA lacking functional onco-

genes can be transferred and integrated into plant genomes to produce transgenic

plants (Barton et al. 1983; Zambryski et al. 1983b). The ability of the vir genes
to act in trans resulted in the development of a small, easy-to-handle binary vector

system, which contains two replicons, one containing T-region constituting a

binary vector and another replicon containing the vir genes termed the vir helper
(Hoekema et al. 1983). The vir helper plasmid contained the disarmed T-DNA

and was unable to induce tumors. A number of Agrobacterium strains contain-

ing nononcogenic vir (disarmed) helper plasmids have been developed such as

LBA4404 (Ooms et al. 1981), GV301 MP 90 (Koncz and Schell 1986), AGL1

(Lazo et al. 1991), and EHA101, 105 (Hood et al. 1986; Hood et al. 1993). The

binary vectors have a variety of restriction sites and carry scorable and selectable

markers to estimate transformation events and select transgenic tissues, respec-

tively. The host range of Agrobacterium defined its utilization as a gene transfer

method to produce transgenic plants. Therefore, initial studies focused on host-

pathogen interaction to extend Agrobacterium’s host range, which was limited to
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dicotyledonous plants, as monocotyledons were considered outside its host range.

In order to find the factors limiting its infectivity, most of the studies were devoted

to identifying the factors for Agrobacterium infection and expanding its host range.

3.2.1.2 Agroinfection

Introduction of plant infectious agents via Agrobacterium has been defined as

agroinfection (Grimsley et al. 1986; Grimsley and Bisaro 1987) or agroinoculation

(Elmer et al. 1988). This technique is applicable to molecules that can replicate

independent of the plant chromosomal DNA and has been used to deliver viral

DNA by two different methods. In the first approach, viral DNA is placed in tandem

in the bacterial T-DNA, and systemic spread of the virus occurs in a recipient host

plant after inoculation. This technique does not require preparation of nucleic acids

or insect vectors. In the second approach, Agrobacterium carrying viral nucleic

acid sequences can be integrated into the nuclear genome of every cell in a

transgenic plant. The first technique, which has been used to introduce genomes

of cauliflower mosaic virus (CaMV), was agroinfectious on turnips when placed in

the T-DNA, but not when on a different plasmid replicon, suggesting that the

infection was not as a result of Agrobacterium lysis (Grimsley et al. 1986).

Agroinfection as a DNA delivery method has been used to study the basic aspects

of virology, recombination, and T-DNA transfer.

3.2.1.3 Virus-induced Gene Silencing (VIGS)

Due to their economic importance as some of the most severe crop-disease-causing

entities, plant viruses have been extensively studied to develop resistant crop

cultivars. As early as the 1920s and 1930s, it was recognized that certain virus-

infected plants became resistant to the same virus or closely related strains of the

virus (McKinney 1927, 1929, 1937) and eventually the term crossprotection came

to be widely used to describe this acquired resistance as a result of prior exposure to

viruses (Fulton 1986). During the same period, the concept of pathogen-derived

resistance (PDR) was proposed to genetically engineer resistance against pathogens

(Sanford and Johnston 1985; Grumet et al. 1987). Pathogen-derived genes coding

for coat proteins, replicases, movement proteins, defective interfering RNAs and

DNAs, and nontranslated RNAs have been associated with PDR (Beachy 1997).

The concept as such gained credibility with the production of transgenic tobacco

plants carrying a gene coding for the tobacco mosaic virus (TMV) coat protein,

which delayed symptom development (Abel et al. 1986). The molecular basis for

the delay or absence of symptoms was ultimately attributed to post-transcriptional

gene silencing (PTGS) (Ratcliff et al. 1997). It is now well established that PTGS is

a result of occurrence of double-stranded RNA, first reported in Caenorhabditis
elegans (Fire et al. 1998) and subsequently in plants (Waterhouse et al. 1998).

3 Gene Transfer Methods 65



In principle, virus-induced gene silencing (VIGS), which was the term first used

to describe the recovery of a virus-infected transgenic plant from virus infection

(van Kammen 1997), is a result of PTGS (Kumagai et al. 1995). VIGS has been

recognized as a powerful tool to down-regulate the activity of specific genes and

use in high-throughput functional genomics studies in plants (Baulcombe 1999).

Initial experiments involved engineering phytoene desaturase (PDS) cDNA into the

chimeric sequences derived from the TMV and the tomato mosaic virus and

application of the in-vitro-transcribed viral RNA to Nicotiana benthamiana leaves

by rubbing (Kumagai et al. 1995), which led to down-regulation of the PDS gene.

The PDS gene has also been used in conjunction with the barley stripe mosaic virus

(BSMV) for gene silencing studies in monocotyledonous plants such as barley

(Holzberg et al. 2002). Furthermore, more pronounced silencing was possible by

inserting 40–60 bp direct inverted repeats into viral vectors for both TMV and

BSMV (Lacomme et al. 2003).

3.2.1.4 Other Microorganisms for DNA Delivery

Although Agrobacterium-mediated transformation of many plant species is now

possible, there still remains one major constraint for commercialization aspects of

transgenics relating to the numerous patents involving Agrobacterium-mediated

transformation methodologies (Roa-Rodriguez and Nottenburg 2003). There has,

therefore, been an interest in recent years at the possibility of exploring other

microorganisms for the transfer of DNA to plants. Even prior to the advent of such

patents or before the understanding of the detailed molecular aspects of the

T-DNA transfer to the plant genome, it was shown that crown gall induction

property could be transferred from virulent A. tumefaciens strains to avirulent

strains as well as to A. rubi, A. radiobacter, and Rhizobium leguminosarum (Klein

and Klein 1953). It was eventually shown that transfer of the Ti plasmid to

avirulent Agrobacterium strains or to Rhizobium (Hooykaas et al. 1977) and to

the bacterium, Phyllobacterium myrsinacearum (Veen et al. 1988) caused the

tumor formation. In order to explore the feasibility of using such nonagrobacterial

microorganisms for transfer of DNA to plants, attempts were made to transfer the

disarmed Ti plasmid, pEHA105, to other species of bacteria (Broothaerts et al.

2005). Modified forms of the Ti plasmid were introduced into Rhizobium
sp. NGR234, Sinorhizobium meliloti, and Mesorhizobium loti and transformation

of plants, such as tobacco, rice, and Arabidopsis, indicated GUS activity as well as

GUS-positive signals on the Southern blots (Broothaerts et al. 2005). This study

has therefore widened the scope of the T-DNA transfer technology to plants.

Furthermore, this alternative approach is available under open-source-modeled

licenses. Further details regarding this concept of sharing and technology improve-

ment in an open environment are available at Bioforge project (http://www.
bioforge.net) and Biological Innovation for Open Society (BIOS; http://www.
bios.net).

66 S. Ganeshan and R.N. Chibbar

http://www.bioforge.net
http://www.bioforge.net
http://www.bios.net
http://www.bios.net


3.3 Physical Methods

3.3.1 Liposome-Mediated Delivery

Liposomes are unilamellar phospholipid vesicles ranging in diameter of 0.2–1.6 mm
(Olson et al. 1979; Szoka et al. 1980; Jousma et al. 1987) depending on extrusion

techniques and measurement approaches. The encapsulation process preserves

the structural integrity of small molecules (5–10 kb). The liposomes with the

carrier molecules can be fused with the protoplasts using a fusiogenic agent,

polyethylene glycol (PEG), or polyvinylalcohol followed by a high calcium ion

treatment to promote protoplast fusion (Keller and Melchers 1973). Infection of

tobacco mesophyll protoplasts with liposome-mediated delivery of TMV RNA

has also been attempted (Nagata et al. 1981). TMV-specific immunofluorescence

assay showed the presence of TMV particles in the infected tobacco mesophyll

protoplasts. Similar findings were confirmed showing that negatively charged

liposomes delivered nucleic acids into protoplasts better than other types of

liposomes (Fraley et al. 1982). Liposome-mediated delivery of other viral nucleic

acids has also been shown (Caboche 1990). Liposomes were used to transfer a

chimeric gene construct encoding chloramphenicol acetyl transferase (CAT) into

various plant protoplasts. The marker gene assay showed that this liposome-

mediated DNA transfer technique was comparable to PEG-mediated techniques

but less efficient than electroporation (Caboche 1990). Liposome-mediated DNA

delivery into tobacco mesophyll protoplasts and subsequent regeneration into

mature transgenic plants has also been demonstrated. The introduced kanamycin

resistance gene was integrated into the host genome and was inherited in a

Mendelian fashion (Bellini et al. 1989). The inserted plasmid DNA was integrated

into the host tobacco genome in a complex pattern. Liposome-mediated DNA

transfer to produce transgenic plants has been tested for only a limited number of

plant species, although there are some reports of success, including those encoding

cationic liposomes or lipofectin. Cationic liposomes were developed to overcome

some of the earlier difficulties associated with DNA delivery into eukaryotic

cells and involved synthesis of a cationic lipid N-[1-(2,3-dioleyloxy)propyl]-N,

N,N-trimethylammonium chloride (DOTMA), which readily interacted with DNA

for delivery to mammalian cell culture lines (Felgner et al. 1987; Felgner and

Ringold 1989). Similar cationic liposomes have therefore been used for the

transformation of protoplasts from tobacco (Sporlein and Koop 1991) and lentils

(Maccarrone et al. 1992), with evidence of transient expression. More recently,

DNA encapsulated within a novel cationic vesicle derived from vernonia oil was

shown to pass undamaged across isolated plant cuticular membranes (Wiesman

et al. 2007). Further studies are required to improve this system and show that

indeed physical barriers of the plant cell can be obviated for DNA delivery by

this method, possibly not necessitating protoplasts for transformation and regener-

ation. Generally, the transformation frequencies with liposome-mediated techni-

ques are low compared to other direct DNA delivery techniques. Therefore,
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liposome-mediated DNA delivery has not gained widespread attention for exten-

sive studies or production of transgenic plants.

3.3.2 Nanoparticles

With the recent explosion in nanotechnology-based research for addressing

biological questions and providing solutions, particularly in medicine and thera-

peutics, there has been increasing interest in pursuing such approaches in resolving

plant biology-related research objectives and questions. Thus, for gene transfer to

plants, exploration on the use of nanoparticles would be valuable. It can probably be

argued that efforts undertaken with the use of liposome-mediated DNA delivery

have already heralded nanotechnology-directed gene transfer technology in plants.

Nanoparticles have been defined as materials which span the nanometric size range,

with one of the dimensional size range being within a few hundred nanometers

(Gonzalez-Melendi et al. 2008), or colloidal polymeric systems, either biodegrad-

able or nonbiodegradable, of less than one micrometer in size (Brigger et al. 2002).

In animal cells and tissues and for drug therapy, the use of nanoparticles is being

viewed as effective carriers for delivery of molecules (Yih and Al-Fandi 2006),

circumventing degradation if taken orally or delivered unprotected by other means,

and also allowing more targeted delivery and release for drugs (Brigger et al. 2002).

With the extensive research to develop delivery systems in drug therapy, there has

been similar interest for targeted and controlled DNA delivery to plant cells.

However, as mentioned earlier, the presence of the ubiquitous plant cell wall as a

barrier often complicates application of nanoparticle delivery systems developed

for mammalian cells and tissues. Notwithstanding these obstacles, a recent report

on the use of functionalized mesoporous nanoparticles (MSNs) for gene transfer to

plant cells appears promising (Torney et al. 2007). In this approach, MSNs were

filled with b-estradiol, which is an estrogen-receptor-based transactivator (Zuo

et al. 2000), for induction of GFP expression, and capped with gold particles coated

with the construct of interest and delivered to tobacco plant cells by particle

bombardment (Torney et al. 2007). More recently, the use of a new zeolite-based

silicalite nanoparticle system consisting of polyethylene imine-plasmid DNA com-

plex was shown to enhance transfection efficiencies in human embryonic kidney

cells (Pearce et al. 2008). Zeolite is a crystalline aluminosilicate of open three-

dimensional structure with numerous cavities and channels (Mumpton 1999). The

inert nature and holding capacity of zeolite therefore opens up new possibilities for

gene delivery approaches to plant cells.

3.3.3 Microinjection

One of the most direct methods for gene transfer is to inject DNA directly into the

nucleus. Electromechanical devices are used to control the insertion of fine glass
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needles into the nucleus of individual cells to deliver the DNA (Spangenberg et al.

1986). Recipient cells or protoplasts are immobilized onto a holding capillary, or in

gels, or onto surfaces coated with poly-L-lysine. The nucleus is visualized and the

DNA is mechanically injected into it. The recipient cells are cultured and subse-

quently selected for integration of inserted genes by growth on culture media

containing a selective agent. Microinjection has been used to insert genes into

individual cells (Nomura and Komamine 1986), microspore-derived embryoids

(Neuhaus et al. 1987), or single protoplasts (Steinbiss and Stabel 1983; Morikawa

et al. 1986a; Reich et al. 1986). Microinjection method has been used to produce

transgenic alfalfa (Reich et al. 1986) by injecting Ti plasmid into alfalfa protoplasts.

The microinjection technique is labor intensive and slow, but transformation

efficiencies close to 26% were achieved for alfalfa protoplasts (Reich et al. 1986).

3.3.4 Silicon Carbide Whiskers

Silicon carbide is intrinsically very hard and breaks readily to give sharp edges,

which are adequate to penetrate plant cell walls. The pores created by the whiskers

allow the DNA to be delivered into plant cells. Silicon carbide whiskers are mixed

with recipient cells and plasmid DNA by vigorous vortexing and then plated on

culture medium. The cultured cells are subsequently assessed for DNA insertion

into the cells and integration with nuclear DNA. The silicon carbide whisker-

mediated DNA delivery has been shown to produce stably transformed plant cells

(Kaeppler et al. 1992, 1994; Kaeppler and Somers 1994) and algae (Dunahay 1993).

Silicon carbide whiskers were the most effective in delivering vector DNA as

compared to other materials such as silicon nitride or carborundum – a spherical

form of silicon carbide and glass beads (Wang et al. 1995). The efficiency of DNA

delivery by silicon carbide whiskers could be increased by exposing cells to high

molarity of sorbitol or mannitol (Wang et al. 1995). Silicon carbide whiskers have

been used to produce transgenic plants of Lolium, Festuca, and Agrostis sp. (Dalton
et al. 1998), rice (Matsushita et al. 1999), and maize (Petolino et al. 2000). More

recently, a supersonic treatment was combined with the silicon carbide treatment of

rice cell suspension cultures, and it was claimed that high efficiency transformation

could be obtained (Terakawa et al. 2005).

Although the attributes of silicon carbide whiskers for being simple, cost effec-

tive, and less resource demanding for DNA delivery into plants cells have been well

recognized, it has also been reported that silicon carbide whiskers exhibit toxic

properties and may be harmful to human beings, if not handled with caution

(Vaughan et al. 1991; Svensson et al. 1997). There has, therefore, been a search

for other possible materials, which could be used for similar DNA transfer pur-

poses. Thus, the use of aluminum borate whiskers (ABW) was suggested as a

possible alternative, with previously unreported mutagenic effects and was used

to transform scutellar tissues from mature embryos of Japonica rice and produced

Southern positive transgenic plants (Takahashi et al. 2000). Recent improvements
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to the ABW method included use of a multidirectional shaker instead of a vortex

and the type of ABW for rice callus transformation (Mizuno et al. 2004). Trans-

genic tobacco plants have also been produced using the ABW method (Mizuno

et al. 2005).

3.3.5 Microprojectile Bombardment

The microprojectile method of DNA delivery, called biolistic (biological ballistic),

was invented by Sanford et al. in 1987 as a means of bypassing many of the host

range limitations of Agrobacterium and also overcoming the physical barrier for

Z-DNA uptake by the plant cell wall (Weissinger et al. 1987; Klein et al. 1988b, c).

The basic principle underlying microprojectile bombardment is to accelerate

microparticles to a speed at which they can penetrate the plant cell wall and be

incorporated into the interior of a cell (Sanford 1990). This technique can be used to

deliver a range of compounds into a cell and has found applications in several

disciplines from agriculture to medicine. Microprojectile bombardment has been

used to produce transgenic plants in species which were not amenable to Agrobac-
terium-mediated genetic transformation.

The particle bombardment apparatus essentially consists of a mechanism to

accelerate the particles to desired velocities and regulate their penetration into the

recipient cells. The original apparatus designed by the inventors used a gun powder

discharge to accelerate inert metal microprojectiles coated with biologically active

compounds (Sanford 1988; Klein et al. 1988b). The gun powder was quickly

replaced with the inert gas, helium (Sanford et al. 1991), to provide the force for

microprojection. The main component of the most commonly used helium gun

(Biolistics1 PDS-1000/He, BioRad, Inc.) is a rupture disk assembly that controls

the helium pressure at which the microprojectiles carrying the vector DNA are

propelled. The rupture disk assembly consists of a gas acceleration tube with a

rupture disk placed at the bottom of the tube inside a retaining cap. The micro-

projectiles coated with the biological compound of interest are placed on a carrier

situated below the rupture disk. The chamber is partially evacuated and the helium

gas pressure is allowed to build up to the desired level to rupture the rupture disk.

The optimized helium gas pressure propels the microprojectiles at the optimized

velocity through a metal screen to deliver biologically active compounds into the

target cells. The main consideration in microprojectile-mediated delivery is to

deposit in a cell optimal amounts of biologically active compounds with minimal

damage to the cell wall. A major limitation of the microprojectile projection

technique has been the uneven penetration and distribution of the microprojectiles.

To regulate microprojectile penetration into cells, several modifications have

been made to the power source used to propel the microprojectiles carrying the

biologically active compounds. Regulated nitrogen gas pressure (Morikawa et al.

1989), compressed air (Iida et al. 1990), or an air gun (Oard et al. 1990) has been

used to propel microprojectiles to deliver biologically active compounds into
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plant cells. In another approach, a particle in-flow gun (PIG) in which micro-

projectiles are accelerated directly into a stream of helium rather than being

supported by a macrocarrier has been also developed (Finer et al. 1992). An air

gun generating a pressure pulse of approximately 2 ms at a pressure of 60 bars to

deliver the microprojectile/DNA suspension into the cells has also been used

(Sautter et al. 1991). A major difference in this technique is that the DNA is

suspended with the microprojectiles rather than being coated on them. The main

function of the microprojectiles is to create holes through which DNA passes

into the cells. The inventors consider that the movement of DNA independent

of microprojectiles allows them to target small areas of tissues. In another

modification, electric-discharge-generated shock waves have been used to propel

gold microprojectiles coated with DNA or other biologically active compounds

(Christou et al. 1988).

Several factors influence the biolistics-mediated delivery of DNA into plant

cells. The main determinant is the delivery of optimal amount of DNA with

minimal injury to the recipient plant cell or tissue. Material and size of micro-

projectiles, attachment of DNA to microprojectiles, pressure at which micropro-

jectiles are propelled and the recipient tissue are all critical factors. Most of these

parameters need to be optimized and vary with individual laboratories. By only

adjusting the distance that the microparticles travel to the target tissue or changing

the target diameter, it can be shown that transformation events may be affected.

Using GUS histochemical assays it can be shown that the number of GUS-positive

spots was greatly increased when the flight distance of the microparticles was set at

six centimeters and the target diameter of one centimeter, consisting in this example

of wheat mature embryos tightly packed within this area (Fig. 3.3). Increasing the

flight distance and the diameter of the target area led to fewer GUS spots (Fig. 3.3).

Thus depending on the type of tissues, parameters for particle bombardment can be
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Fig. 3.3 Distance between target tissue and macrocarrier holder containing DNA-coated gold

microparticles and their influence on the number of GUS-positive spots on wheat mature embryos.

Numbers on x axis indicate target distance in cm and number in parentheses indicate target

diameter in cm
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accordingly optimized for maximal transient expression, prior to performing actual

transformation experiments. Transient expression based on the Gus gene or the

GFP gene is a good indication of adequate coverage of the tissue in terms of

possible integration of the transgene across the tissue surface. Biolistics-mediated

transformation has been used to genetically transform a large number of plant

species including major agricultural crops such as maize, cotton, soybeans, rice,

sorghum, and wheat and is likely to be the method of choice for plant species where

Agrobacterium-mediated transformation is still inefficient.

3.3.6 Electroporation

Short, high-intensity electric pulses reversibly permeabilize the lipid bilayers of cell

membranes in all living cells. The electric pulses cause extensive compression and

thinning of the plasmalemma, resulting in the transient formation of pores in the

plasma membrane (Neumann and Rosenhec 1972). The transiently formed pores

allow the diffusion of a range of macromolecules including proteins and nucleic

acids. The apparatus used for electroporation is fairly simple. High electric fields

are applied to protoplasts, cells, or tissues suspended in a liquid culture medium

enclosed in a discharge chamber. The electric field is applied by a capacitor

discharge which in some commercial instruments can produce voltage up to

2,500 V. The time and voltage applied depends upon the cell and tissue type used

for electroporation.

Electroporation has been used to deliver DNA in a range of plant cells and

tissues. However, protoplasts, which lack cell walls, are the most amenable recipi-

ent system for electroporation-mediated DNA delivery. Electroporation-mediated

gene transfer into plant protoplasts has been shown in several plants such as

tobacco (Shillito et al. 1985; Negrutiu et al. 1987), corn (Fromm et al. 1986), rice

(Shimamoto et al. 1989), soybean (Dhir et al. 1991), sugarcane (Chowdhury and

Vasil 1992), and oilseed rape (Bergman and Glimelius 1993). Even though over the

years there have been many other reports of transformation of protoplasts from

other plant species by electroporation, the major limitation has been regeneration of

fertile transgenic plants from the electroporated protoplasts for a number of species.

This was even more problematic for monocotyledonous species. There was, there-

fore, an interest in bypassing the protoplasts for electroporation. It was reported that

tobacco pollen grains subjected to electroporation treatments stayed viable (Mishra

et al. 1987) and that electroporation of barley microspores with propidium iodide

subsequently produced callus that regenerated plants (Joersbo et al. 1990).

Successful DNA delivery into tobacco pollens by electroporation was also reported,

including transient GUS expression and positive Southern hybridization signals

from blots with DNA extracted from the transformed pollen grains (Abdulbaki et al.

1990; Matthews et al. 1990). Since then there have been numerous reports on

optimizing DNA delivery into intact plant cells or tissues, mainly pertaining to

the duration of electric pulses and field strength. The first report of stable
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transformation via electroporation of intact tissues was with rice seeds cultured

2 days prior to being subjected to electroporation with a plasmid containing NPTII
gene (Li et al. 1991). Subsequently, electroporation of immature corn embryos and

callus (D’Halluin et al. 1992) and nodal buds of pea and lentils (Chowrira et al.

1995) led to the production of stable transformants.

3.3.7 Other Potential Physical Methods

Over the years that followed physical methods of transformation of plants by

electroporation and biolistic, attempts at developing other versatile and less expen-

sive methods have been made, including improvising existing systems (Table 3.1).

Among these developments, some of the approaches based on alginate microbeads

in combination with PEG and/or electroporation or DNA-lipofectin complexes

(Sone et al. 2002; Liu et al. 2004; Murakawa et al. 2008a, b) are promising.

However, only the method using PEG for uptake of the bioactive beads was

shown to produce transgenic plants that were Southern positive. Thus, the require-

ment for protoplasts would still be a major impediment for the bioactive beads-

based transformation system due to difficulties still associated with regeneration of

fertile plants from protoplasts for a vast majority of plant species.

3.4 Combined Physical and Biological DNA Delivery

3.4.1 Agrolistic

Attempts to maximize the benefits of the different available gene transfer methods

in plants have been extensively pursued and are still actively being explored. It has

been widely recognized that both the Agrobacterium-mediated and the biolistic-

mediated gene transfer approaches have their respective advantages and disadvan-

tages, depending on the species and circumstantial requirements. Thus, to utilize

the benefits of these two systems, a combination of Agrobacterium-mediated

transformation with the biolistic delivery was developed and was termed the

“agrolistic” transformation system (Hansen and Chilton 1996). In this system, the

virD1/virD2 genes are cotransformed by particle bombardment with a plasmid

DNA containing the T-DNA borders flanking the gene of interest. Thus, there is

transient expression of the virD1/D2 proteins and excision of the T-DNA occurs in

planta similar to that with Agrobacterium-mediated transformation. Even though

this method has included the underlying benefits of both systems, reports on the

successful use of this approach for the generation of stably transformed plants have

been lacking.
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3.4.2 Sonication-Assisted Delivery

Further improvement to the Agrobacterium transformation method included brief

treatments of the plant tissues with ultrasound in the presence of Agrobacterium, a
method called sonication-assisted Agrobacterium-mediated transformation (SAAT)

(Trick and Finer 1997). Sonication as such has previously been used in conjunction

with gene transfer to protoplasts of Beta vulgaris and tobacco (Joersbo and

Brunstedt 1990). Using the sonication approach, leaf segments of tobacco showed

transient expression and regenerated R1 plants exhibited stable expression of the

transgenes (Zhang et al. 1991). Unlike the agrolistic method there have been several

reports on the successful production of stably transformed plants using the SAAT

method (Christiansen et al. 2000; Pathak and Hamzah 2008; Rashid et al. 2008). It

is likely that further refinement using the SAATmethod will lead to more reports on

the stable transformation of other plant species.

3.5 Concluding Remarks

Development of gene transfer methods in plants has probably been one of the most

challenging aspects of plant research. Currently the two methods of choice are

undoubtedly the Agrobacterium-mediated and the biolistic-mediated DNA delivery

systems. In the latter two decades of the last century, development of trans-

formation technology was viewed primarily as an objective to the production

of transgenic crops with improved agronomic characteristics for enhanced crop

productivity. However, the emergence of functional genomics and the requirement

for high-throughput technology for assessment of gene function in plants have

generated a whole new focus on generation of transgenic plants. This has become

even more evident for economically important crop plants, wherein high efficiency

transformation systems are generally lacking, compared to model systems such as

Arabidopsis thaliana. Nonetheless progress made in rice and corn is encouraging

with the use of Agrobacterium for transformation in a fairly high-throughput

manner. The focus is, therefore, still centered around those other economically

important plants, which can be made amenable for high-throughput gene transfer

in order to make utmost use of the vast repertoire of data flowing from genome

projects.

Thus, gene transfer methods to plants will continue to receive renewed interest in

the future. The development of nanoparticles for DNA delivery into plant cells is

emerging as the next generation transformation system and is likely to combine the

benefits of Agrobacterium and biolistic. Meanwhile, the approach of in planta

transformation using Agrobacterium (Bechtold et al. 1993; Clough and Bent

1998) is likely to continue receiving attention, due to circumvention of a tissue

culture step for the regeneration of transformation events. In planta transforma-

tion for several species such as Brassica rapa ssp. chinensis (Qing et al. 2000),
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Medicago truncatula (Trieu et al. 2000), Hibiscus canabinus (Kojima et al. 2004),

rice (Supartana et al. 2005), and wheat (Supartana et al. 2006) has been reported.

However the transformation efficiency achieved by this method thus far for all these

species is yet to be convincing and requires further refinement and research.

Furthermore, several of the other different methods reviewed in this chapter and

listed in Table 3.1 are likely to be explored further. The likely successes, however,

will come from a combination or refinement of several existing methods, with the

most suitable, and most likely popular, gene transfer method possessing the versa-

tility, simplicity, and accessibility for a large number of plant species.
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Chapter 4

Selection and Screening Strategies

Haiying Liang, P. Ananda Kumar, Vikrant Nain, William A. Powell,

and John E. Carlson

4.1 Introduction

A number of transformation systems have been developed to insert foreign DNA into

the appropriate plant genome (nuclear or plastid) (discussed in Chap. 3). However,

only a small fraction of the treated cells become transgenic, while the majority of the

cells remain untransformed using any of these methods. Thus, effective selection

and screening strategies are needed to pick up the rare transgenic lines from a pool

of nontransformed cells or plants. To date, more than 50 marker genes and a few

molecular techniques have been developed to serve this essential purpose.

In general, a marker gene is cointroduced into a plant genome along with the

transgene of interest to help identify the cells that have taken up the foreign DNA,

which is especially important when the transformation frequency is low (e.g.,

1.0 � 10�3 to 10�6) (Curtis et al. 1995). In some cases, the marker gene is the

gene of interest that will express an agronomic characteristic, such as herbicide

resistance. Marker genes can be divided into two categories, i.e., selectable markers

and screenable (scorable, reporter, visible) markers. Selectable markers are genes

that can provide a selective/metabolic advantage to the transformed cells for them to

grow under conditions, which inhibit the growth of nontransformed cells. Selectable

markers allow selective multiplication of transformed cells by killing or starving the

nontransformed ones. Examples of selectable markers include genes that provide

either antibiotic or herbicide resistance, or necessary growth regulators. Screenable

markers usually encode for specific proteins, such as b-glucuronidase (GUS), green
fluorescent protein (GFP), and luciferase (LUX), that can produce distinctive

phenotypes, thus enable the identification of transformed cells without adding any

toxic compounds. Assays for screenable markers can be destructive or nondestruc-

tive. Screenable markers are helpful in monitoring transgenic events and manually
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separating transgenic tissues from nontransformed tissues, but provide no selection

pressure on cells or regenerated shoots. It is not a surprise that identifying transgenic

cells among many more nontransgenic cells only with screenable markers can be

time consuming. Therefore, screenable markers are usually paired with selectable

markers in transformation systems. Indeed, studies have shown that the number of

transgenic events is reduced almost ten-fold in the absence of selectable markers

(Birch 1997; de Vetten et al. 2003; Darbani et al. 2007).

Here we describe the characteristics of individual selectable and screenable

marker genes available to date for plant transformation and their applications in

production of transgenic plants. The molecular tools that can be utilized for

transformant screening and the strategies for marker gene removal after successful

transformation events are also described.

4.2 Selection Strategies

Selection strategies can be classified into two categories depending on whether they

confer an advantage (positive) or a disadvantage (negative) selection. In negative

selection, a more traditional mode of selection, toxic or inhibitory compounds such

as antibiotics or herbicides are used to kill or prevent the growth of nontransformed

cells. In the case of positive selection, transformed cells are given the ability to grow

by using a specific carbon or nitrogen source or a growth regulator as the selection

agent. Thus, positive selectable marker genes are defined as those that promote the

growth of transformed tissue, whereas negative selectable marker genes result in

death or growth inhibition of the nontransformed tissue. As a relatively new mode

of selection strategy, positive selection has been demonstrated to be successful in a

large variety of monocot and dicot species, and usually provides a higher transfor-

mation frequency than negative selection.

4.2.1 Positive Selection

4.2.1.1 Shoot/Root Phenotypic-Based Positive Selection (Table 4.1)

Isopentyl Transferase

The enzyme isopentyl transferase (IPT) contributes to crown gall formation in

infected plants and is encoded by the T-DNA of Agrobacterium tumefaciens Ti

plasmids. IPT catalyzes the first step in cytokinin biosynthesis, the synthesis of

isopentyl-adenosine-50-monophosphate, leading to elevated cytokinin levels in

transgenic plants. Since high cytokinin:auxin ratios are required for shoot formation

in culture, introduction of the ipt gene into plants can enhance regeneration of

shoots without the inclusion of exogenous cytokinin in the media. It has been
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demonstrated that the ipt gene is effective as a positive selectable marker for

transformation in tobacco, tomato, muskmelon, sweet pepper, and citrus (Kunkel

et al. 1999; Endo et al. 2001, 2002; Mihálka et al. 2003; Ballester et al. 2007).

However, the main issue with this system is that transgenic plants usually show

abnormal phenotypes, such as loss of apical dominance and roots, when ipt is
expressed constitutively. Therefore, the ipt gene cannot be constitutively expressed
in the same way as traditional markers. Two approaches have been used to avoid

this drawback. In one approach, the marker has been excised from the transgenic

plant by inducible site-specific recombination (Sugita et al. 2000). The other

approach has been to place the ipt gene under an inducible promoter, so that

cytokinins are produced only when needed. Thus, regeneration is carried out in

cytokinin-free medium in the presence of the inducing agent, so that only trans-

formed cells produce the enzyme required to stimulate cytokinin synthesis (Zuo

et al. 2002).

Plant ipt genes have been cloned from Arabidopsis and investigated as possible

selectable markers (Kakimoto 2001; Takei et al. 2001). Overexpression of Arabi-
dopsis IPT (e.g., PGA22) has been found to promote shoot formation from explants

in the absence of external cytokinins. Direct selection with plant ipt genes needs to
be tested in crop species.

Enhancer of Shoot Regeneration 1

The Arabidopsis enhancer of shoot regeneration 1 (ESR1) gene encodes an AP2/

EREBP (APETALA2/ethylene response element binding protein)-domain-containing

Table 4.1 Agents and enzymes for shoot/root phenotypic-based positive selection

Agents Genes Enzymes Sources Genome References

None ipt Isopentyl transferases Agrobacterium
tumefaciens

Nuclear Endo et al. (2001)

pga22 Arabidopsis
thaliana

Zuo et al. (2002)

None esr1 Transcription factor

(enhancer of shoot

regeneration 1)

Arabidopsis
thaliana

Nuclear Banno et al. (2001)

None cki1 Histidine kinase

(cytokinin-

independent 1)

Arabidopsis
thaliana

Nuclear Zuo et al. (2002)

None knotted1 Transcription factor

(enhancer of shoot

regeneration 1)

Zea mays Nuclear Luo et al. (2006)

Benzyladenine-

N-3-glucuronide

uidA (gusA) b-Glucuronidase Escherichia
coli

Nuclear Joersbo and Okkels

(1996)

None rol Enzymes involved in

rhizogenesis

Agrobacterium
rhizogenes

Nuclear Ebinuma et al. (1997)
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transcription factor. It can cause high-frequency shoot regeneration in the absence

of external cytokinins (Banno et al. 2001). Several ESR1-like genes, e.g., ESR2,
were also found in the Arabidopsis genome. The utility of the ESR1 and ESR1-like
genes as promising markers in genetic transformation of crop plants has not been

demonstrated.

Histidine Kinase

The Arabidopsis Cytokinin-Independent 1 (CKI1) gene appears to be a receptor-

like histidine kinase, and was proposed as the putative cytokinin receptor

(Kakimoto 1996). Overexpression of CKI1 was able to promote shoot regenera-

tion independent of exogenous cytokinins and caused typical cytokinin responses.

Under the control of the b-estradiol-inducible promoter and in the presence of the

inducer b-estradiol, CKI1 served as a successful selection marker in Arabidopsis
and tobacco in the absence of external cytokinins. All transformed shoots were

found to develop into normal adult plants when transferred onto a noninductive

medium and no nontransgenic escapes were found among the regenerated plants

(Zuo et al. 2002).

Homeodomain-Containing Knotted1 Protein

Homeobox gene knotted1 (kn1) is normally expressed in shoot meristem and

appears to play a critical role in meristem initiation (Hake et al. 2004). Transgenic

plants overexpressing kn1 gene exhibit morphological alterations that are similar to

the characteristics of ipt-expressing plants, including changes in leaf shape, loss of

apical dominance, and production of ectopic meristems on leaves. Although the

functional mechanism of the kn1 gene is not well understood, the maize kn1 gene

produced similar effects in selection of transgenic plants as the ipt gene in the

absence of cytokinin and auxin (Luo et al. 2006). Under the control of the cauli-

flower mosaic virus (CaMV) 35S promoter, transformation efficiencies with the

maize kn1 gene as selectable marker were slightly higher than those with the ipt
gene, while three-fold higher than neomycin phosphotransferase II (nptII) gene.
Like ipt gene, abnormal morphology is a major drawback of using kn1 as a

selectable marker.

b-Glucuronidase

Benzyladenine N-3-glucuronide is an inactive, glucuronide derivative of cytokinin.
When hydrolyzed by b-glucuronidase (GUS, E.C. 3.2.1.31), benzyladenine is

released from benzyladenine N-3-glucuronide and stimulates transformed

cells to regenerate. Joersbo and Okkels (1996) first applied the E. coli gusA gene

as a positive selection strategy in tobacco. When paired with 7.5–15 mg L�1
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benzyladenine N-3-glucuronide, the transformation frequency scored by shoot

regeneration was 1.7–2.9-fold higher than that achieved by the nptII gene in control
experiments. In addition, gusA can be used as a scorable marker, which obviates the

need for any traditional selectable marker gene.

Root Locus (ROL) Proteins

The root locus (ROL) genes from the T-DNA of Agrobacterium rhizogenes Ri-

(root-inducing) plasmid have profound effects on root development. Vilaine and

Casse-Delbart (1987) and Schmulling et al. (1988) reported that a cluster of rolA,
rolB, and rolC genes (rolABC) is sufficient to induce a typical root proliferation

response (hairy root) on A. rhizogenes-infected plants in vitro when no exogenous

auxins are supplied to the cultivation medium. Rol genes have provided a hairy root
phenotypic-based selection scheme in transgenic tobacco and Antirrhinum snap-
dragon (Cui et al. 2001; Komarnytsky et al. 2004). Hairy roots are not desirable in

standard transformation. Thus, rol genes usually are deleted after transformation

and selection are done.

4.2.1.2 Carbon-Based Positive Selection (Table 4.2)

Xylose Isomerase

Plant cells from species such as potato, tobacco, tomato, and several coffee

species cannot use D-xylose as a sole carbon source, unless D-xylose is iso-

merized to D-xylulose by xylose isomerase (D-xylose ketol-isomerase, E.C.

5.3.1.5). Xylose isomerase/xylose selection was efficient in these plants

(Haldrup et al. 2001; Samson et al. 2004). The xylose isomerase genes (xylA)
employed were from Thermoanaerobacterium thermosulfurogenes or Strepto-
myces rubiginosus.

Table 4.2 Agents and enzymes for carbon-based positive selection

Agents Genes Enzymes Sources Genome References

D-Xylose xylA Xylose isomerase Streptomyces rubignosus,
Thermoanaerobacterium

thermosulfurogenes

Nuclear Haldrup et al. (1998)

D-Mannose manA (pmi) Phosphomannose

isomerase

Escherichia coli Nuclear Joersbo and Okkels

(1996)

D-Arabitol atlD d-Arabitol

dehydrogenase

Escherichia coli Nuclear LaFayette et al. (2005)

4 Selection and Screening Strategies 89



Phosphomannose Isomerase

Mannose is not toxic to plant cells. However, plant cells can take up mannose and

use hexokinase to convert it to mannose-6-phosphate, an inhibitor of glycolysis.

The production of mannose-6 phosphate also depletes the cell of inorganic

phosphate. Phosphomannose isomerase (PMI, E.C. 5.3.1.8) converts mannose-

6-phosphate to fructose-6-phosphate, an intermediate of glycolysis, thus allows

mannose to become a carbon source. Phosphomannose isomerase is absent in

many plants except leguminous plants (Lee and Matheson 1984; Chiang and

Kiang 1988). Using mannose as the selective agent (usually in combination with

sucrose or glucose), the E. coli manA (pmi) gene under the control of the CaMV 35S

promoter was found to be an effective selectable marker. Since its first demonstra-

tion in potato, sugar beet, and corn in 1999 (Bojsen et al. 1999), the pmi/mannose

selection system has been utilized in many crop species, including rice, sweet

orange, wheat, papaya, barley, watermelon, tobacco, sorghum, Chinese cabbage,

cucumber, almond, apple, and sugarcane (Reed et al. 2001; Sigareva et al. 2004;

Gao et al. 2005; Zhu et al. 2005; Degenhardt et al. 2006; He et al. 2006; Ramesh

et al. 2006; Jain et al. 2007; Min et al. 2007; and references therein). In most of the

cases, transformation frequencies obtained from the pmi/mannose selection scheme

were higher than antibiotics selection, and no adverse phenotypes were observed.

Besides legumes, which have PMI activity, this pmi system is also not suitable for

transformation of grapevine and coffee since grapevine and coffee embryos can use

mannose or xylose as the sole carbohydrate source (Kieffer et al. 2004; Samson

et al. 2004).

D-Arabitol Dehydrogenase

While many plants cannot metabolize most sugar alcohols, including D-arabitol

(Stein et al. 1997), some bacteria contain an arabitol gene encoding D-arabitol

dehydrogenase (EC 1.1.1.11). This enzyme converts arabitol into xylulose on

which plants can grow, since xylulose is an intermediate of the oxidative pentose

phosphate pathway (Haldrup et al. 1998). An E. coli form of D-arabitol dehydroge-

nase encoding gene, atlD,was plant-codon modified and expressed in rice under the

control of a CaMV 35S promoter. Selection with 27.5 g L�1 arabitol and 2.5 g L�1

sucrose resulted in transformation rate that was comparable to selection with

hygromycin and pmi, while transgenic rice plants obtained with the arabitol selec-

tion scheme appeared morphologically normal during differentiation and regenera-

tion (LaFayette et al. 2005).

4.2.1.3 Auxotrophic Markers

Auxotrophic mutants can be supplemented by transformation with a functional

gene, which can serve as a selectable marker gene. Such auxotrophic marker gene
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enables transformed cells to synthesize an essential component, usually an amino

acid, which the cells cannot otherwise produce. The surrounding medium is made to

intentionally lack the essential component, which cells require to grow. Cells that

have successfully incorporated the selectable marker and the rest of the gene

construct will produce the essential components within the cells, and thereby

survive. While this technology is commonly used in bacteria and yeast transforma-

tion, it is not widely utilized in plants due to the lack of homozygous mutants that

require nutritional supplements (Aragão and Brasileiro 2002). Examples include

two tobacco mutants that are deficient in threonine dehydratase or nitrate reductase

(Vincentz and Caboche 1991).

4.2.1.4 Selection with Biotic and Abiotic Stresses (Table 4.3)

Pathogen Resistance

A sweet pepper ferredoxin-like protein (pflp) has antimicrobial activity in planta

(Lin et al. 1997; Tang et al. 2001; Liau et al. 2003). You et al. (2003) and Chan et al.

(2005) successfully utilized the pflp gene as selection marker and a bacterial

pathogen Erwinia carotovora as the selection agent for transformation of Oncidium
orchid. This selection scheme has not been reported in crops.

High Salt Tolerance

Coupled with 200 mM NaCl as the selectable agent, two salt tolerance genes

DREB2A and SOS1, cloned from rice and Arabidopsis, respectively, were superior
to using an antibiotic or herbicide for selection in producing salt tolerant rice plants

(Zhu and Wu 2008).

Heat Shock Tolerance

Overexpression of the plant heat shock protein gene HSP101 confers basal thermo-

tolerance in crops such tobacco (Chang et al. 2007) and rice (Katiyar-Agarwal et al.

Table 4.3 Agents and enzymes for biotic and abiotic stress-based positive selection

Agents Genes Enzymes Sources Genome References

Erwinia carotovora
(Baterial pathogen)

pflp Ferredoxin-like

protein

Capsicum
annuum

Nuclear You et al. (2003),

Chan et al. (2005)

200 mM NaCl dreb2a Transcription

factor

Oryza sativa Nuclear Zhu and Wu (2008)

sos1 Plasma

membrane

antiporter

Arabidopsis
thaliana

47�C, 60 min Hsp101 Heat shock

protein

Oryza sativa Nuclear Chang et al. (2007)

4 Selection and Screening Strategies 91



2003). The feasibility of using the rice heat shock protein gene (osHsp101) as a
selection marker was successfully demonstrated in rice under heat treatment (47�C,
60 min) for selection (Chang et al. 2007).

4.2.1.5 Antibiotics-Based Positive Selection

Under appropriate conditions, some antibiotics like streptomycin and spectinomycin

bleach sensitive plant cells instead of killing them, while resistant plants stay green,

thus provide a color differentiation between wild-type and transgenic plants

(Table 4.4). The streptomycin phosphotransferase (SPT) gene from Tn5 provides

resistance to streptomycin and has been used to select transgenic tobacco, driven by

the T-DNA transcript 20 promoter (Maliga et al. 1988). The efficiency of transfor-

mation using this streptomycin resistance marker was found comparable to the

nptII gene under the control of the nopaline synthase (nos) promoter (Maliga et al.

1988). The SPT marker was also successfully applied to monitor transposon

excision by providing a cell autonomous resistance phenotype (Ziemienowicz

2001). However, this marker system has not been adopted for general use. The

bacterial aminoglycoside-3000-adenyl-transferase gene (aadA) conferring resis-

tance to both streptomycin and spectinomycin (Svab et al. 1990) has been used

as a selectable marker in tobacco, white clover, and maize (Miki and McHugh

2004). While this gene has not been broadly utilized as a nuclear selectable marker

gene for the production of transgenic plants, it is the most widely used selectable

marker for plastid transformation.

4.2.2 Negative Selection

4.2.2.1 Antibiotics (Table 4.5)

Neomycin Phosphotransferase

Neomycin phosphotransferase (also known as aminoglycoside30-phosphotransferase)
confers resistance to various aminoglycoside antibiotics, including kanamycin,

Table 4.4 Agents and enzymes for antibiotics-based positive selection

Agents Genes Enzymes Sources Genome References

Spectinomycin, aadA Aminoglycoside-300 0

adenyl transferase

Shigella sp. Nuclear Svab et al. (1990)

Streptomycin Plastid Svab and Maliga

(1993)

Streptomycin spt Streptomycin

phosphotransferase

Tn5 Nuclear Maliga et al. (1988)
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neomycin, geneticin (G418), butirosin, gentamycin B, and paromomycin (Norelli

and Aldwinckle 1993), by catalyzing the transfer of the terminal phosphate of ATP

to the drug (Jimenez and Davies 1980). In plants, because of this ATP-dependent

phosphorylation, binding of the antibiotic to ribosomes in mitochondria and chlor-

oplasts is prevented; thus, protein synthesis is not impaired. Three kinds (I, II, and

III) of neomycin phosphotransferase genes (npt or neo) have been used as selection
markers in plants. Among them, nptII (neomycin phosphotransferase II, E.C

2.7.1.95) gene from E. coli transposon has become the most widely used since it

was first established in 1983 (Bevans et al. 1983; Fraley et al. 1983; Herrera-

Estrella et al. 1983). Many crop plants, such as maize, cotton, tobacco, soybean,

almond, and poplar, have been successfully transformed with the nptII gene.

Endogenous NPTII activity is very rare in plant tissues. No adverse effects of either

NPTII enzyme or the nptII gene on humans, animals, or the environment have been

reported (Flavell et al. 1992; Nap et al. 1992; US Food and Drug Administration

1998; European Food Safety Authority 2007). In addition, NPTII protein activity

can be detected by enzymatic assay.

Hygromycin Phosphotransferase

The hygromycin phosphotransferase (HPT, HPH, E.C. 2.7.1.119) enzyme, also

known as aminoglycoside 40-phosphotransferase (APHIV), gives resistance to

Table 4.5 Toxic antibiotics for negative selection

Antibiotics Genes Enzymes Sources Genome References

Neomycin neo, nptII Neomycin

phosphotransferase

Escherichia coli Tn5 Nuclear Fraley et al. (1983)

Kanamycin Plastid Carrer et al. (1993)

Paramomycin,

G418

Hygromycin B hph (aphIV) Hygromycin

phosphotransferase

Escherichia coli Nuclear Waldron et al.

(1985)

Aminoglycosides aaC3 Aminoglycoside-

N-acetyl

transferases

Serratia marcesens Nuclear Hayford et al.

(1988)

6´ gat Shigella sp. Gossele et al.

(1994)

Bleomycin Ble Bleomycin resistance Escherichia coli Tn5 Nuclear Hille et al. (1986)

Streptoalloteichus Perez et al. (1989)

Sulfonamides sulI Dihydropteroate

synthase

Escherichia coli
pR46

Nuclear Guerineau et al.

(1990)

Streptothricin sat3 Acetyl transferase Streptomyces sp Nuclear Jelenska et al.

(2000)

Chloramphenicol cat Chloramphenicol

acetyl transferase

Escherichia coli Tn9 Nuclear DeBlock et al.

(1984)

Phage p1cm Plastid DeBlock et al.

(1985)

Kanamycin Atwbc19 ATP binding cassette

(ABC) transporter

Arabidopsis thaliana Nuclear Mentewab and

Stewart (2005)
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hygromycin B antibiotic (Van Den Elzen et al. 1985). Like neomycin phospho-

transferase, HPT catalyzes the phosphorylation of the hydroxyl group in the

hygromycin antibiotic thus preventing its binding to ribosomes. The hpt gene was
originally derived from E. coli and has been extensively utilized, especially when

the use of the neo gene is not possible. Hygromycin B is also an aminoglycoside

antibiotic, causing the same symptoms as other aminoglycoside antibiotics

(Benveniste and Davies 1973). As the second most frequently used antibiotic for

selection after kanamycin, hygromycin B has proved very effective in the selection

of a wide range of plants, including monocots. Compared to kanamycin, hygro-

mycin B is usually more toxic and kills sensitive cells more quickly. Since hygro-

mycin B exhibits highly toxic effects in mammalian cells, careful working

procedures are recommended (McDaniel and Schultz 1993). Working concentra-

tions range from 20 to 200 mg ml�1 for plant cells.

Aminoglycoside-3-N-acetyltransferase (ACC3) and

Aminoglycoside-6-N-acetyltransferase (ACC6)

The aminoglycoside acetyltransferases comprise four classes of enzymes, desig-

nated AAC(1), AAC(20), AAC(3), and AAC(60), according to the site of acetyla-

tion of the deoxystreptamine core of the aminoglycoside antibiotic (Braeu et al.

1984). These enzymes are common among both gram-negative and gram-posi-

tive bacteria. Three genes encoding the AAC(3) enzyme, acc(3)-I, acc(3)-III, acc
(3)-IV, have been used successfully as selectable markers for transformation of

canola, tobacco, and tomato (Hayford et al. 1988). The enzymes AAC(3)-III and

AAC(3)-IV have broad substrate specificity, detoxifying gentamycin, kanamy-

cin, tobramycin, neomycin, and paromomycin by acetylation. AAC(3)-IV also

modifies aparmycin and G418. The ACC(3)-I enzyme, on the contrary, modifies

only gentamycin and some close derivatives (i.e., fortimicin), and may be useful

if one wants to combine it with other selection markers (Shaw et al. 1993).

Lastly, an AAC(6) encoding gene 60 gat from Shigella spp., when under the

control of the CaMV 35S promoter, was proved as efficient for selection of

transformed tobacco protoplasts as nptII on high levels of kanamycin (Gossele

et al. 1994).

Bleomycin-Binding Protein

Bleomycins are a family of metalloglycopeptide antibiotics. They bind to specific

DNA sequences and produce single-stranded and double-stranded DNA breaks.

An analog of bleomycin, phleomycin differs in that one of the two thiazole ring

moieties is partially saturated (Sugiura et al. 1985). Encoding a bleomycin-bind

protein, two bleomycin resistance determinants (ble) from E. coli transposon Tn5

(Tn5Ble) and chromosome of Streptoalloteichus hindustanus (ShBle), respectively,
have been cloned. The binding of Tn5Ble and ShBle proteins to bleomycin is

irreversible, thus rendering them inactive. So far Tn5Ble and ShBle genes have
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been introduced into Nicotiana (Hille et al. 1986; Perez et al. 1989; El Amrani et al.

2004); however, only selection with phleomycin was able to generate transgenic

plants. Several reports have indicated that bleomycin inhibits plant morphogenesis

and transgenic plant production and ShBle was found to be more effective than

Tn5ble under the control of the CaMV 35S promoter (Perez et al. 1989; Singh and

Sansavini 1998; Schmidt et al. 2008).

Dihydropteroate Synthase

Dihydropteroate synthase (DHPS, E.C. 2.5.1.15) catalyzes a rate-limiting step for

folic acid synthesis in bacteria and plants, and its enzymatic activity can be

inhibited by a large number of antimicrobial compounds such as sulfonamides or

sulfa drugs. The resistance gene sulI from plasmid R46 codes for a mutant form of

DHPS that is resistant to inhibition by the sulfonamides. Highly efficient selection

systems based on sulI and sulfonamides were demonstrated in tobacco (Guerineau

et al. 1990) and potato (Wallis et al. 1996). In both cases, the mutant form of

dihydropteroate synthase was targeted to the chloroplast.

Streptothricin Acetyltransferase

Streptothricins are antimicrobial agents produced by Streptomyces spp. The mech-

anism of action of streptothricins is similar to that of aminoglycoside antibiotics:

inhibition of protein synthesis by binding to the ribosomal small subunit (see for

review Jelenska et al. 2000). The E. coli sat3 gene codes for an acetyl transferase

activity that inactivates streptothricins. When controlled by the 35S promoter, the

sat gene acted as a selectable marker gene in a variety of dicotyledonous plant

species including tobacco and carrot (Jelenska et al. 2000).

Chloramphenicol Acetyltransferase

Antibiotic chloramphenicol inhibits protein synthesis and the uptake of cations and

anions in higher plants (Jyung et al. 1965). Chloramphenicol acetyltransferase (CAT)

(E.C. 2.3.1.2, CAT) catalyzes the transfer of an acetyl group from acetyl-CoA to the

30-hydroxy position of chloramphenicol, thus inhibiting chloramphenicol from

binding to the ribosome. The cat gene from E. coli Tn9 or Phage p1cm, driven
by the nos promoter, has been used for the selection of tobacco transformants by

introduction into the nuclear or chloroplast genomes (DeBlock et al. 1984, 1985).

However, selection on chloramphenicol was much less efficient than selection on

kanamycin conferred by the nptII gene. This gene is primarily used as a reporter gene

rather than a selectable marker.
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ATP-binding Cassette (ABC) Transporter

An Arabidopsis ATP-binding cassette (ABC) transporter (Atwbc19) gene has been
shown recently to confer kanamycin resistance in transgenic tobacco (Mentewab

and Stewart 2005). Under the control of the CaMV 35S promoter, the ABC

transporter’s selection efficiency is comparable to that of nptII. This is the first

identified plant gene that confers antibiotic resistance. The mechanism of action is

not clear. It has been hypothesized that kanamycin is actively sequestered in the

vacuole as a substrate of this ABC transporter, where it would not interfere with

ribosomes in the cytoplasm, mitochondria, and chloroplasts, thereby mitigating its

toxicity (Mentewab and Stewart 2005).

4.2.2.2 Herbicides (Table 4.6)

Phosphinothricin Acetyltransferase

Phosphinothricin (PPT) is an active ingredient in the broad-spectrum herbicide

Basta. PPT is an analog of glutamate that inhibits the amino acid biosynthetic

enzyme glutamine synthase (GS) of plants and bacteria. In plants, GS is involved in

assimilation of ammonia and in regulation of nitrogen metabolism. Inhibition of GS

by PPT causes rapid accumulation of intracellular ammonia levels, which leads to

disruption of chloroplast structure resulting in inhibition of photosynthesis and

plant cell death (Tachibana et al. 1986). PPT resistance genes bar and pat from
Streptomyces sp. encode phosphinothricin acetyltransferase (PAT), an enzyme that

acetylates the free NH2 group of PPT, thereby rendering it nontoxic. The PAT

enzymes encoded by these two genes are functionally identical and show 85%

identity at the amino acid level (Wohlleben et al. 1988; Wehrmann et al. 1996). The

bar gene is the most widely and successfully used selection marker for all the major

cereal species. Basta or PPT can be used to select for PPT-resistant plants by

spraying full-grown plants or by adding it to selective medium in earlier stages.

In the media, 1–10 mg L�1 PPT is adequate to select for transformed cells in many

plant species.

5-Enolpyruvyl-Shikimate-3-Phosphate Synthase and Glyphosate Oxidase

The plastid enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSP synthase,

E.C. 2.5.1.19) is essential in the shikimate pathway for the biosynthesis of the

aromatic amino acids (e.g., tryptophan, tyrosine, and phenylalanine) in plants and

bacteria and a primary target of herbicide glyphosate. EPSP synthase uses phos-

phoenol pyruvate (PEP) and shikimate-3-phosphate as substrates to make EPSP.

However, glyphosate competitively interferes with the binding of PEP to the active

site of EPSP synthase, hence blocking the pathway (Anderson et al. 1988; Schönbrunn

et al. 2001). Both overexpression of wild-type EPSPS and expression of mutant
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versions carrying one or more resistance mutations have been shown to be capable

of conferring glyphosate tolerance in transformation selection. The utilization of

a wild-type petunia EPSP synthase gene has been reported in transgenic petunia

(Shah et al. 1986) and tobacco (van Bel et al. 2001) selection. A naturally

glyphosate-resistant EPSP synthase gene from the A. tumefaciens strain CP4 has

been used as a selective marker for transgenic soybean (Clementea et al. 2000),

corn (Heck et al. 2005), wheat (Zhou et al. 1995; Hu et al. 2003), and tobacco

(Ye et al. 2001). Mutant forms of the EPSP synthase genes (aroA) from E. coli
(Della-Cioppa et al. 1987) or from Salmonella typhimurium (Comai et al. 1988)

have been proved successful in selection of crop species such as cotton (Zhao et al.

2006), canola (Wang et al. 2006, 2008), and tobacco (Wang et al. 2003). Mutant

maize (Howe et al. 2002) and rice (Charng et al. 2008) ESPSP genes also have been

employed. The modified EPSPS enzymes encoded by these mutant genes have a

decreased affinity for glyphosate while their kinetic efficiency is unaffected. In most

of the cases mentioned earlier, the EPSP synthase gene was fused to a transit peptide

sequence for chloroplast targeting. Working dosages of 20–200 mM glyphosate

have been reported.

Glyphosate oxidase (GOX) is an enzyme that can break down glyphosate into

two nontoxic compounds, aminomethylphosphonic acid (AMPA) and glyoxylate.

A GOX gene cloned from Ochrobactrum anthropi strain LBAA (Barry et al. 1992)

has been used as a selectable marker in tobacco, Arabidopsis, potato, and sugarbeet
(Barry and Kishore 1995). A combination of CP4 EPSPS and GOX genes has been

successfully used to transform wheat (Zhou et al. 1995) and sugarbeet (Mannerlöf

et al. 1997).

Acetolactate Synthase

Acetolactate synthase (ALS, E.C. 4.1.8.13), also known as acetohydroxyacid synthase

(AHAS), catalyzes the first reaction in the biosynthesis of the branched-chain amino

acids isoleucine, valine, and leucine (Umbarger 1978). Inhibition of AHAS leads to

the starvation of these amino acids in plants. The deficiency of these amino acids can

also cause secondary effects such as accumulation of a toxic substrate (a-ketobuty-
rate), disruption of protein synthesis, and disruption of photosynthate transport.

Eventually inhibition of AHAS leads to cell death and rapid growth cessation in

susceptible species (Chaleff and Mauvais 1984; Ray 1984). Thechemical classes of

commercial herbicides that can inhibit ALS include sulfonylureas (SU), imidazoli-

nones (IM), triazolopyrimidines (TP), pyrimidinyl thiobenzoates (Saari et al. 1994 and

references therein), and sulfonylamino-carbonyl-triazolinones (Santel et al. 1999).

Plant species differ in herbicide susceptibility and can develop resistance to different

classes of AHAS inhibitors. In most cases, resistance to AHAS-inhibiting herbicides,

in otherwise susceptible species, is caused by point mutations in AHAS genes that

reduce the affinity of the enzyme to herbicide inhibition (Kolkman et al. 2004).

Consequently, the enzymatic pathway will continue to work, making the plants

resistant to the herbicide. The mutant forms of plant AHAS can act as effective
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selectable marker genes when combined with AHAS-inhibiting herbicide. Mutated-

AHAS (mAHAS) genes have been isolated from a number of resistant plant genomes,

such asArabidopsis (Haughn and Somerville 1986), lettuce (Eberlein et al. 1999), and

rice (Wakasa et al. 2007). The most commonly used mAHAS genes are crs1 genes

isolated frommutants ofArabidopsis thaliana, which are resistant to sulfonylurea and
imidazolinone herbicides. These csr1 genes have been used in selection of several

transgenic plant species, such as rice (Li et al. 1992), tobacco (Charest et al. 1990),

maize (Fromm et al. 1990), canola (Miki et al. 1990), common bean (Bonfim et al.

2007), soybean (Aragão et al. 2000), potato (Andersson et al. 2003), poplar (Brasileiro

et al. 1992), and jujube (Zizyphus jujubaMill.) (Gu et al. 2008). It was found that an

Arabidopsis double mutant (two mutation points) gene (crs 1-4) seems to provide

more efficient selection thanmost single mutant genes (Ray et al. 2004). The mAHAS

genes from rice (Wakasa et al. 2007) and cotton (Rajasekaran et al. 1996) have also

been successfully used as selective marker.

Bromoxynil-Specific Nitrilase

Oxynil herbicides are phenolic molecules that inhibit photosynthesis in plants by

binding to electron-transport components of photosystem II in the thylakoid mem-

brane. Two oxynil herbicides are available: bromoxynil and ioxynil. The bromox-

ynil nitrilase (bnx) gene from Klebsiella ozaenae codes for a bromoxynil-specific

nitrilase 3,5-dibromo-4-hydroxybenzonitrile aminohydrolase (E.C. 3.5.5.6) that

hydrolyzes bromoxynil into 3,5-dibromo-4-dihydroxybenzoic acid and ammonia

(Stalker et al. 1988), thus confers resistance to bromoxynil. Successful transforma-

tion using the bnx gene as a selectable marker has been reported in tobacco and

canola without using other selectable markers (Freyssinet et al. 1996; Warwick

and Miki 2004). However, the bnx gene has not been widely used. Cereal plants and
several other monocotyledonous crops such as onions are naturally resistant to

oxynil herbicides because they are able to metabolize the molecule to the non-

phytotoxic benzoic acid (Freyssinet et al. 1996). Thus bxn is not a suitable select-

able marker for the transformation of monocotyledonous species.

Cytochrome P450 Monooxygenase

P450 monooxygenases are heme proteins that use electrons from NADPH to

catalyze the activation of molecular oxygen. Mammalian P450 species show over-

lapping and broad substrate specificity and confer the ability to metabolize a

number of chemicals, including herbicides. Most classes of herbicides are aryl- or

alkyl-hydroxylated or N-, S-, or O-dealkylated by P450 species. The phenylurea

herbicide chlortoluron is detoxified either via hydroxylation of the ring-methyl or

via di-N-demethylation (Gonneau et al. 1988). Human P450 species have been used

to generate herbicide-tolerant tobacco, potato, and rice plants (Shiota et al. 1994;

Inui et al. 2000, 2001). The feasibility of human P450 as a selectable marker has
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been tested in Arabidopsis. A combination of chlorpropham and amiprophos-

methyl resulted in a transformation rate that was equal to that of kanamycin

selection in the transgenic plants expressing CYP1A1 and CYP2C19 cDNAs,

respectively (Inui et al. 2005).

Protoporphyrinogen Oxidase

Protoporphyrinogen oxidase (PPO, EC 1.3.3.4), a key enzyme in the chlorophyll/

heme biosynthetic pathway, catalyzes the oxidation of protoporphyrinogen IX to

protoporphyrin IX (Smith et al. 1993). Inhibition of PPO by the PPO family of

herbicides, e.g., butafenacil, causes accumulation of protoporphyrin IX, which then

causes light-dependent membrane damage (Lee et al. 1993). Plants overexpressing

native PPO genes or naturally tolerant PPO showed resistance to diphenyl ether

herbicide (Li et al. 2003 and references therein). A PPO double mutant gene was

cloned from Arabidopsis (Li et al. 2003). In combination with butafenacil, the

Arabidopsis mutated PPO proved to be an effective selectable marker in maize

transformation, with transformation frequency comparable to pat and pmi systems

(Li et al. 2003). A Myxococcus xanthus native PPO (Mx PPO, under the control of
the constitutive maize ubiquitin promoter) and butafenacil (0.1 mM) selection

system was recently demonstrated in rice (Lee et al. 2007).

Organophosphate Hydrolase

Bensulide herbicide is a lipid synthesis inhibitor (not at the acetyl CoA carboxylase

site) (Prather et al. 2002). This herbicide can cause precocious vacuolization of

meristem cells and inhibit shoot and root development (Cutter et al. 1968). A

bacterial organophosphate hydrolase (OPH; EC 3.1.8.1) gene has been recently

tested in maize. The encoded enzyme hydrolyzes the toxic organophosphate. It was

suggested that this OPH gene may serve as screenable as well as scorable maker

(Pinkerton 2008).

Mutant a-Tubulin Genes

Tubulin is the main protein component of microtubules. Antimicrotubule herbi-

cides, such as dinitroanilines and phosphoroamidates, can directly poison microtu-

bule dynamics in plant cells, which results in the cessation of mitosis (Morejohn

and Fosket 1984). Thus, antimicrotubule herbicides have been used for chromo-

some doubling (see for review Khosravi et al. 2007). At higher concentration levels,

this type of herbicide inhibits callus growth and plant regeneration and can serve as

strong selection agents (see for review Sundar and Sakthivel 2008). The feasibility

of using antimicrotubule herbicides as selective reagents in plant transformation has

been explored both in monocots and dicots (see for review in Sundar and Sakthivel
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2008). According to Yemets et al. (2008), a selection scheme with a combination of

a mutant a-tubulin gene from goosegrass (Eleusine indica) and dinitroaniline

generated an efficiency of transgenic plant selection that was comparable with

those using kanamycin or PPT. The effective concentrations of trifluralin range

from 3 to10 mM, depending on the species.

4.2.2.3 Other Toxic Compounds (Table 4.7)

2-Deoxyglucose

2-Deoxyglucose (2-DOG) is an analog of glucose. In the cytosol of plant cells,

2-DOG is phosphorylated by hexokinase yielding 2-DOG-6-phosphate (2-DOG-6-P).

2-DOG-6-P acts as a competitor of glucose-6-phosphate. 2-DOG-6-P is known to

severely impair plant growth due to multiple effects in metabolism. In addition

to inhibiting glycolysis and overall protein synthesis, it interferes with the

glycosylation of proteins and the synthesis of cell wall polysaccharides (Kunze

et al. 2001 and references therein). Two yeast genes encoding 2-deoxyglucose-6-

phosphate phosphatase (EC 3.1.3.68) (DOGR1 and DOGR2) have been identified.

When overexpressed in yeast, DOGR1 and DOGR2 conferred 2-DOG resistance

(Randez-Gil et al. 1995). Selection based on yeast DOGR1 and 2-DOG has been

demonstrated successfully in pea (Sonnewald and Ebneth 2004), potato, and

tobacco (Kunze et al. 2001). Whereas the use of this selection scheme resulted

in lower efficiency for transgenic tobacco plants than the nptII gene, compar-

able efficiency was achieved in the selection of transgenic potato (Kunze et al.

2001). It was also reported that 2-deoxyglucose-6-phosphate phosphatase has

narrow substrate specificity and no abnormalities were observed in the transgenic

plants.

Betaine Aldehyde Dehydrogenase (BADH)

Betaine aldehyde is phytotoxic to many plant cells and has an adverse effect on

growth. According to a study conducted by Rathinasabapathi et al. (1994), shoot

regeneration from tobacco leaves, cotyledon expansion, and greening in germi-

nating seedlings were severely inhibited in the presence of 5 mM betaine alde-

hyde. Genes encoding betaine aldehyde dehydrogenase (BADH, EC 1.2.1.8) have

been cloned from several plant species, including spinach, sugarbeet, and ama-

ranth. BADH is highly specific for betaine aldehyde and converts it to glycine

betaine, which accumulates in a few crop species as an osmoprotectant. BADH is

well suited as a chloroplast selectable marker gene. Expression in the chloroplast

allowed direct selection and regeneration of transgenic tobacco plants in the

presence of betaine aldehyde with an efficiency that was 25-fold higher than

spectinomycin resistance conferred by the aadA gene (Daniell et al. 2001). But

when expressed in the nuclear genome of tomato, BADH was not as effective as
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nptII (Ursin 1996). BADH also has been used for salt resistance in several crops,

e.g., tomato (Jia et al. 2001) and tobacco (Rathinasabapathi et al. 1994; Liang

et al. 1997).

Dihydrodipicolinate Synthase and Aspartate Kinase

Dihydrodipicolinate synthase (DHDPS, EC 4.2.1.52) and aspartate kinase (AK,

EC 2.7.2.4) are key enzymes in the aspartate family pathway, which leads to

the biosynthesis of lysine, threonine, methionine, and isoleucine. Both enzymes

are feedback-regulated: aspartate kinase is feedback-inhibited by lysine and

threonine (LT), while dihydrodipicolinate synthase is inhibited by lysine or its

toxic analog S-aminoethyl l-cysteine (AEC). Growth in the presence of milli-

molar concentration of LT causes methionine starvation due to the complete

inhibition of aspartate kinase activity by these two amino acids and results in

strong inhibition of growth in a wide range of plant species (Rognes et al. 1983;

Arruda et al. 1984; Miao et al. 1988). The DHDPS enzymes from E. coli are
less sensitive to feedback inhibition. Tobacco plants expressing a bacterial

dihydrodipicolinate synthase gene in their chloroplasts had an increased produc-

tion of LT (Shaul and Galili 1991). When controlled by the CaMV 35S pro-

moter, a bacterial desensitized aspartate kinase gene has been successful as a

selectable marker for use in the production of transgenic potato (Perl et al. 1993)

and chickpea (Tewari-Singh et al. 2004), coupled with 2 mM of each of LT.

A selection system with a bacterial dihydrodipicolinate synthase gene and

0.15 mM AEC was also successful in production of transgenic potato (Perl

et al. 1993). One of the potential drawbacks is that the overproduction of lysine

or threonine resulting from the modification of metabolism causes abnormalities

in some plants (Perl et al. 1993).

Tryptophan Decarboxylase

The enzyme tryptophan decarboxylase (TDC; EC 4.1.1.28) catalyzes the conver-

sion of L-tryptophan into tryptamine (Noé et al. 1984), which is an intermediate in

the biosynthesis of terpenoid indole alkaloids. Besides L-tryptophan, toxic com-

pounds like 4-methyltryptophan (4-mT), 4-fluorotryptophan, and 5-fluorotrypto-

phan can be substrates of TDC. When a Catharanthus roseus gene coding for TDC
was placed under the control of the CaMV 35S promoter and introduced into

tobacco, direct selection on 0.1-mM 4-mT yielded transgenic plants with the

same efficiency as the nptII gene (Goddijn et al. 1993), and the transgenics

appeared normal in the greenhouse. To date, this selection system has not been

widely employed. A possible disadvantage associated with this TDC/4-mT selec-

tion scheme is the accumulation of tryptamine in the transformed tissue. The

applicability of this selection system in other plant species will depend on their
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endogenous tryptophan decarboxylase activity as well as their tolerance to elevated

TDC-directed tryptamine levels.

Dihydrofolate Reductase

Dihydrofolate reductase (DHFR, E.C. 1.5.1.3) plays an essential role in the meta-

bolic pathways of adenine, histidine, methionine, and thimidilate biosynthesis by

reducing dihydrofolate to tetrahydrofolate. Antifolate drugs, such as trimethoprim

and methotrexate (Mtx), can bind very tightly to the active site of the enzyme

DHFR, therefore impairing protein, RNA, and DNA biosynthesis and, conse-

quently, leading to cell death (Habert et al. 1981). Production of transgenic plants

by using a mouse or a fungal dihydrofolate reductase gene (dhfr) as a new selectable

marker and methotrexate (Mtx) as selection agent was successful in tobacco (Irdani

et al. 1998; Aionesei et al. 2006), canola (Pua et al. 1987), and petunia (Eichholtz

et al. 1987). A high transformation rate of 10% was reported in canola (Pua et al.

1987). Plant cells are generally very sensitive to low levels of Mtx presumably

because of the inherent low activity of the enzyme (Ratnam et al. 1987). Metho-

trexate dosage ranges of 3–100 ng mL�1 have been used.

Tryptophan Synthase b1

5-methyl-tryptophan, an analog of the essential amino acid tryptophan, is toxic to

plants, since it inhibits tryptophan biosynthesis. Hsiao et al. (2007) recently

reported that enhanced expression of Arabidopsis tryptophan synthase (EC

4.2.1.20) b1 (AtTSB1) and the use of 5-methyl-tryptophan and/or CdCl2 as

selection agent(s) yielded comparable transformation efficiency in Arabidopsis
to the conventional hygromycin selection system (Hsiao et al. 2007). Thus, the

TSB1 system provides a novel selection system. In addition, overexpression of

AtTSB1 in Arabidopsis and tomato confers tolerance to cadmium stress (Hsiao

et al. 2008).

Peptide Deformylase

Peptide deformylase (DEF, EC 3.5.1.88) catalyzes the removal of the N-formyl

group from the initiating methionine in newly translated proteins, thus is essential

for all subsequent N-terminal protein processing as well as cell survivability.

Actinonin, a specific inhibitor of peptide deformylase, has broad-spectrum

herbicidal activity against a wide range of plants, including many agriculturally

important weed species (Hou et al. 2007). Actinonin has been reported to cause

chlorosis and severe inhibition of growth and development, thus having profound

herbicidal effects when applied to many plant species both pre- and postemergence

(Hou et al. 2006). A direct selection system with an Arabidopsis Atdef2-D and
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actinonin (1.2 mM actinonin) yielded transformation efficiency equal to kanamycin

in tobacco (Hou et al. 2007). Cotyledons of plants expressing the AtDEF2 transgene
remained white, but all subsequent growth was normal.

Threonine Deaminase

Threonine deaminase (TD, EC 4.2.1.16) catalyzes the initial step in the synthesis of

isoleucine (Ile) by deaminating of threonine to 2-ketobutyrate and ammonia. This

enzyme is feedback-regulated by Ile. Overexpression of wild-type or Ile-insensitive

mutant threonine deaminase genes in planta increases cellular concentrations of Ile

(Slater et al. 1999) and provides resistance to L-O-methylthreonine (OMT)

(Mourad et al. 1995; Garcia and Mourad 2004). A structural analog of Ile, OMT

is able to compete effectively with Ile during translation and induce cell death.

When coupled with OMT as the selection agent, an E. coli wild-type threonine

deaminase gene, ilvA, could be utilized as a selectable marker to identify tobacco

transformants (Ebmeier et al. 2004). However, the transformation efficiency was

substantially lower than that observed with nptII using kanamycin as the selection

agent. In addition, a severe off-phenotype was observed under greenhouse condi-

tions, which correlated with increased levels of expression of the ilvA transgene in a

subset of the transformants. The Arabidopsis mutant, feedback-insensitive threo-

nine deaminase alleles (omr1-5, omr1-7, and omr1-8) may serve as better selectable

markers since Arabidopsis plants transformed with either of these mutant genes had

a normal phenotype, undistinguishable from wild-type (Garcia and Mourad 2004).

However, direct selection with these Arabidopsis genes and OMT needs to be

further demonstrated in crop species.

Anthranilate Synthase

Anthranilate synthase (AS, EC 4.1.3.27) is the first enzyme in the tryptophan

biosynthetic pathway and catalyzes the conversion of chorismate to anthranilate.

Its catalytic activity is regulated by feedback inhibition of tryptophan (Trp).

Feedback-insensitive forms of AS have been found in a number of cell lines of

crop species, including tobacco, rice, and potato (Barone and Widholm 2008 and

references therein). These cell lines showed resistance to toxic Trp analogs, such as

4-methylindole (4MI), 5-methyltrypthopan (5MT), and 7-methyl-DL-tryptophan

(7MT). The feasibility of the selection system with the feedback-insensitive anthra-

nilate synthase a-subunit (ASA) gene in combination with the use of Trp or indole

analogs as selective agent has been demonstrated in potato, rice, and tobacco

(Yamada et al. 2005; Barone and Widholm 2008). Transformed plants grew

normally, and a dosage of 300 mM Trp analog was proved effective for selection.

Selection with AS system was as effective as hygromycin B selection in rice

(monocotyledon) and kanamycin selection in potato (dicotyledon), according to

Yamada et al. 2005.
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D-Amino Acid Deaminase

Plants have low capacity for D-amino acid metabolism and several D-amino acids

are toxic to plants even at relatively low concentrations (Brückner and Westhau-

ser 2003; Forsum et al. 2008). Using D-amino acids and the dsdA (D-serine

ammonia lyase) gene from E. coli and the dao1 (D-amino acid oxidase) from

yeast Rhodotorula gracilis as selectable makers has been evaluated in recent

years. The dsdA gene encodes D-serine ammonia lyase (EC 4.3.1.19), which

catalyzes the deamination of D-serine into pyruvate, water, and ammonium.

D-amino acid oxidase (DAAO, EC 1.4.3.3) catalyzes the oxidative deamination

of a range of D-amino acids (Alonso et al. 1998), including the toxic D-serine and

D-alanine. When driven by the CaMV 35S promoter, the bacterial dsd1 and the

yeast dao1 provided efficient selection in Arabidopsis and maize transformation

(Erikson et al. 2004, 2005; Lai et al. 2006), coupled with appropriate D-amino

acids. Transgenic plants did not exhibit any adverse phenotypes. Both dsdA and

dao1 markers allowed flexibility in application of the selective agent in Arabi-
dopsis: it can be applied in sterile plates, in foliar sprays, or in liquid culture

(Erikson et al. 2004, 2005). The yeast DAAO was able to metabolize nontoxic D-

amino acids D-isoleucine and D-valine into toxic compounds and killed trans-

genic Arabidopsis (Erikson et al. 2004). Considering that the natural occurrence

of D-amino acids in plants is generally low, especially with no detectable levels of

D-valine and D-isoleucine (Brückner and Westhauser 2003; Forsum et al. 2008),

dao1 gene can serve as a substrate-dependent, dual-function, selectable marker

in plants.

Glutamate-1-semialdehyde Aminotransferase

Glutamate-1-semialdehyde aminotransferase (GSA-AT, EC. 5.4.3.8) is involved

in the C5 pathway and catalyzes the conversion of glutamate-1-semialdehyde into

aminolaevulinic acid (ALA). Gabaculine (3-amino-2,3-dihydrobenzoic acid) is

a bacterial phototoxin, an irreversible inhibitor of a wide range of pyridoxal-

5-phosphate-linked aminotransferases (Rando 1977). A mutant form of GSA-AT,

encoded by the hemL gene, was discovered in a gabaculine-resistant cyano-

bacterium, Synechococcus PCC6301 strain GR6 (Grimm et al. 1991) and utilized

in transformation of tobacco and alfalfa as a selectable marker, where it was

driven by the double CaMV 35S promoter and targeted to chloroplasts with the

transit peptide of the ribulose bisphosphate carboxylase small subunit (Gough

et al. 2001; Rosellini et al. 2007). Gabaculine could be applied in media or by

spray. According to Rosellini et al. (2007), the gabaculine-based system is more

efficient than the conventional, kanamycin-based system. The inheritance of

hemL was Mendelian, and no obvious phenotypic effect of its expression was

observed.
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Galactose-1-phosphate Uridyltransferase

Galactose has long been known to be toxic to a broad range of plant species

(Joersbo et al. 2003). The toxicity of galactose is believed to be due to accumulation

of galactose-1-phosphate, generated by endogenous galactokinase after uptake. An

E. coli UDP-glucose:galactose-1-phosphate uridyltransferase (EC 2.7.7.12) (galT)
gene, driven by a CaMV 35S promoter, was found to allow transgenic shoots of

potato and canola to regenerate on galactose-containing selection media, resulting

in high transformation frequencies (up to 35% for potato with 1.25 g L�1 galactose)

(Joersbo et al. 2003). However, use of the galT/galactose selection system did not

promote regeneration of transgenic apple plants (Degenhardt et al. 2007).

Cyanamide Hydratase

Cyanamide is a nitrogen-rich compound that has been used as a nitrogen fertilizer,

defoliant, and herbicide. Due to its toxicity, cyanamide has also been used as a

selection agent for plant transformation paired with a gene for the enzyme cyana-

mide hydratase (E.C. 4.2.1.69) (Cah) isolated from the soil fungus Myrothecium
verrucaria (Maier-Greiner et al. 1991). This enzyme converts cyanamide to the

common metabolite urea and has an extremely narrow substrate specificity. The

Cah gene and cyanamide selection has been used to select transformants of wheat,

tobacco, potato, rice, sorghum, soybean, and tomato (Miki and McHugh 2004;

Ulanov and Widholm 2007).

Octopine Synthase

Octopine synthase (also called lysopine dehydrogenase) catalyzes the synthesis of

opines by the reductive condensation of certain amino acids with pyruvate. This

enzyme also metabolizes lysine toxic analog S-aminoethyl l-cysteine (AEC) and

toxic arginine analog homo-arginine. The gene encoding octopine synthase is part

of the T-DNA component of the A. tumefaciens octopine Ti plasmids. Dahl and

Tempe (1983) found that callus tissues expressing the enzyme appear to be 20-fold

more tolerant to AEC. Selective growth of callus on AEC or homo-arginine was

shown in experiments with petunia stem explants (Koziel et al. 1984) or tobacco

(Van Slogteren et al. 1982). This selection scheme has not been widely adopted.

4.3 Screening Strategies

Transgenic plants are generally developed by coinsertion of a selectable marker

gene with a gene of interest. Putative transgenic plants selected for antibiotic

resistance further need to be evaluated for integration of the transgene and its
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expression because some cells may escape from the effect of antibiotics during

tissue culture. Diffusion of selectable marker gene product to neighboring cells may

facilitate nontransgenic cells to survive the selection pressure and regenerate. In

addition, expression of the gene of interest also varies among different integration

events. This necessitates a screening strategy that can confirm integration and

expression of the gene of interest. Use of reporter genes (cat, lacZ, uidA, luc, gfp)
allows discrimination of transformed and nontransformed plants and also monitor-

ing their expression. By employing vital marker (luc, gfp) gene expression, protein
localization and intracellular protein traffic can be observed in situ, without

destroying the plants (Ziemienowicz 2001). Commonly used reporter genes have

been summarized in Table 4.8.

4.3.1 Scorable Markers

A fundamental difference between a selectable marker gene and a reporter gene is

that selectable markers allow transgenic cells to survive and multiply at lethal

concentrations of a selective agent (e.g., antibiotic), while scorable markers pro-

duces distinct phenotype that can be easily identified in the background of non-

transformed cells (e.g., GUS, GFP, luciferase) (Miki and McHugh 2004). Reporter

genes encode proteins that can be detected directly (e.g., GFP), or they catalyze

specific reactions the products of which are detectable (e.g., GUS and luciferase).

An ideal scorable marker should have certain desirable features such as, (1)

Availability of sensitive detection system with a high signal-to-noise (endogenous

background) ratio; (2) Reporter signal should be measurable quantitatively; (3)

Reporter gene products should be resistant to chemicals and processes used in

histological processing; (4) Histochemical assays should have low diffusion of

assay products across the neighboring cells; (5) Reporter gene products should

have a short half-life so that it gives a true representation of transcription activity of

a cell; and (6) Assays should be nondestructive to plant tissue. Although none of the

currently used reporter systems have all these features, a suitable reporter gene can

be selected on the basis of experimental requirements.

4.3.1.1 b-Galactosidase

LacZ gene of E. coli that encodes b-galactosidase is the most extensively used

reporter gene system in microorganisms and animals. b-galactosidase (E.C.

3.2.1.23) a tetramer in its active form has a molecular weight of 116 kDa and

optimum pH 7.0–7.5 for its activity. LacZ reporter gene has also been used in plant

systems (Helmer et al. 1984), but its applications have been hampered by the

presence of endogenous galactosidase (David et al. 1998; Stano et al. 2002; Esteban

et al. 2005), which is active at pH 7–7.5 suitable for LacZ activity. Consequently
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the LacZ reporter gene has not been as widely used in plants as in microorganisms

and animals.

b-galactosidase can be assayed directly in plant extracts when they contain high

levels of LacZ expression. At low levels of expression, endogenous galactosidase

and LacZ activities are separated electrophoretically followed by detection of the

enzymes with a fluorogenic substrate (4-methyl umbelliferyl-3-D-galactoside).

LacZ protein is resistant to various physiochemical factors. Tissue containing

LacZ can be fixed with glutaraldehyde without loss of activity. These factors

make LacZ a good reporter gene for histochemical analysis (Teeri et al. 1989).

4.3.1.2 GUS, b-Glucuronidase (uidA)

Among all reporter genes developed so far, E. coli gene uidA, encoding b-glucu-
ronidase (GUS, E.C. 3.2.1.31) has been the most extensively used reporter gene in

transgenic plants. The b-glucuronidase is a homotetramer with a molecular mass of

approximately 68 kDa and a pH optimum of 7–8. The uidA reporter system

possesses most of the features required for use in plants, such as ease of assay,

high sensitivity, sufficient specificity of the enzymatic reaction, possibility of

histochemical localization, activity of the enzyme in translational fusions, and

availability of substrates for spectrometric, fluorometric, and histochemical assays

(Jefferson et al. 1987). There is little or no detectable b-glucuronidase activity in

almost any higher plant at pH levels used in the assay and endogenous GUS activity

is abolished by including methanol in the assay buffer (Hu et al. 1990; Kosugi et al.

1990) (Fig. 4.1a).

For spectrometric, fluorometric, and histochemical assays, p-nitrophenyl-p-D-glu-

curonide, 4-methylumbelliferyl glucuronide (4-MUGIuc), and 5-bromo-4-chloro-3-

indolyl glucuronide (X-Gluc) are commonly used substrates. b-glucuronidase cleaves
4-methylumbelliferyl glucuronide (4-MUGIuc) to fluorescent compound 4-methy-

lumbelliferon, while the colorless, water-soluble product of the enzymatic cleavage of

5-bromo-4-chloro-3-indolyl glucuronide (X-Gluc) undergoes an oxidative dimeriza-

tion to yield an indigo blue precipitate. The disadvantage of all the GUS assays is that

the plant tissue has to be discarded.

One way of performing a nondestructive GUS assay is to test the excreted

b-glucuronidase in liquid plant culture media or wound exudates, with florescent

substrate 4-MUGIuc. In another viable test, either X-Gluc is applied to solid growth

media for root staining or 4-MUGIuc is sprayed on b-glucuronidase expressing

leaves (Martin et al. 1992). This GUS assay can be used for screening large

transgenic populations, but high toxicity of X-Gluc and weak detection limit its

applications.

While the stability of GUS protein is a major advantage to analyze the activities

of weak promoters, it can interfere with the correct interpretation of promoter

reporter expression data. A rapid change in the transcription of the reporter

gene may not be reflected in corresponding rapid changes in GUS activity (Taylor

1997). Secondly, 5-bromo-4-chloro- 3-indoxyl (X-gluc product) diffuses into the
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neighboring cells, where it precipitates giving a false GUS expression signal in the

nonexpressing cells (Mascarenhas and Hamilton 1992). Several reports involving

analysis of temporal expression patterns (Hird et al. 1993; Caissard et al. 1994;

Treacy et al. 1997; Ariizumi et al. 2002; de Ruijter et al. 2003) have commented on

the possible errors in deducing activities using GUS as a reporter. Although

technical solutions have been proposed to alleviate these artifacts (De Block and

Debrouwer 1993), they have not always been found to be adequate (de Ruijter et al.

2003; Kavita and Burma 2008).

Another artifact in GUS assay arises with residual Agrobacterium cells (harbor-

ing GUS construct) that have been used for infection of explants, in a genetic

transformation experiment. Leaky GUS expression in Agrobacterium cells stains

blue in a GUS assay, which in turn gives a false GUS signal to the plant tissue as

well. This problem is circumvented by inserting an intron (with a stop codon) in the

coding region of GUS. As Agrobacterium does not have a splicing mechanism and

the intron has a stop codon in the reading frame, GUS transcripts formed by leaky

expression in Agrobacterium do not translate into functional GUS enzyme. What-

ever GUS activity is detected comes from the plant tissue only. The pCAMBIA

series of vectors such as pCAMBIA1201; 1301; 2201; and 2301 consist of an intron

(from the castor bean catalase gene) in the coding sequence to ensure that the

activity is derived only from b- Glucuronidase expressed in the plant cell.

Fig. 4.1 (a) Histochemical analysis of GUS activity driven by the CaMV 35S promoter in

nontransgenic (A1) and transgenic eggplant (Solanum melongena) (A2) (V Nain, unpublished).

(b) GFP transformed cells (green spots) on American chestnut (Castanea dentata) somatic

embryos under different lights and filters (WA Powell & CA Maynard, unpublished). Chlorophyll

emits red florescence at 680 nm (B1) while green florescence is emitted at 522 nm (B2) that can be

distinguished from background. (c) An oxalate oxidase assay: without oxalic acid (negative

control) (C1) and with oxalic acid added in assay buffer (C2). This is of tissue culture leaves

from transgenic American chestnut transformed with OxO transgene driven by a vascular pro-

moter (LCG Northern, CA Maynard, and WA Powell, unpublished)
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4.3.1.3 Luciferase

The search for a reporter gene that could be used in viable plant tissues and whose

signal is representative of changes in transcriptional activity of the gene at any

given time, culminated with the development of the North American fire fly

(Photinus pyralis) luciferase (LUC) gene as a reporter system (Ow et al. 1986).

The enzyme luciferase (E.C. 1.13.12.7) confers on the organism the ability to glow

(exhibits luminescence at 562 nm) in the dark. In the first step, luciferase catalyzes

the oxidative carboxylation of luciferin (6-hydroxy-benzothiazole) to excited form

of oxyluciferin in the presence of ATP, Mg2+, and O2. The reaction produces a light

flash at a maximum of 562 nm.

Hydrozoan’s (Renilla reniformis) luciferase is encoded by the ruc gene. When

used with luciferin and ATP, firefly luciferase/luciferin emits light at 560 nm, while

Renilla luciferase/coelenterazine emits light at 475 nm. Because these two reporter

systems emit light at quite different wave lengths, it is possible to use firefly

luciferase/luciferin and Renilla luciferase/coelenterazine as a dual reporter system.

Luciferases have been isolated from bacteria (Vibrio harveyi) also. The bacterial

luciferase (LUX, E.C. 1.14.14.3) is a heterodimer, with two peptide subunits

encoded by genes lux A and lux E, while firefly luciferase consists of a single

polypeptide encoded by a gene luc.
There are two different methods of luciferase substrate application to plant

tissues. In in vivo methods plants are grown in substrate supplemented medium,

so that the substrate is absorbed through roots and gets distributed in the plant. This

method needs extensive physical handling and a long time period for plant growth.

It also limits the size of plant that can be analyzed. In the second method luciferin

solution containing a mild detergent is sprayed on leaves. It requires only 10-min

incubation time before measuring the light emission.

Advantages of the luc reporter gene are that it is not destructive to the plant

tissue and has a short half-life in vivo that generally reflects real-time gene expression

status in the transgenic tissue under investigation. Because of the high reaction effici-

ency of the firefly luciferase, this reporter gene is excellent for screening purposes.

4.3.1.4 GFPs

Since the first reports of Aequorea victoria green fluorescent protein (AvGFP)

as a reporter gene in the nematode Caenorhabditus elegans (Chalfie et al. 1994),
it has found wide applications in transgenic plants. O. Shimomura, M. Chalfie, and

R. Y. Tsien won the 2008 Nobel prize in chemistry for discovery and development

of GFP. Its high sensitivity, absence of external substrate application, and viability

of the tissue under testing make it an ideal reporter gene (Fig. 4.1b). GFPs have

several advantages over the previously utilized markers for transformation, gene

expression, and protein localization studies (Stewart 2001, 2006).

Because of the presence of a cryptic splice site, native AvGFP does not express up

to its detection limit in plants (Haseloff et al. 1997). Removal of the splice site and
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targeting to endoplasmic reticulum resulted in high expression of AvGFP in plants.

Another green fluorescent protein, AcGFP, has been isolated from a nonbiolumines-

cent jellyfish (Aequorea coerulescens) (Gurskaya et al. 2006). Moreover, a full range

of color variants of fluorescent proteins are now available for transformation, with the

opportunity to further customize fluorescence to specific applications (see Sect. 3.1.5

and reviews by Galbraith 2004 and Stewart 2006). Synthetic GFP (sgfp) genes that
have codon usage and RNA stability optimized for plant expression are even better

reporters, especially in comparison to GUS, for assessment of the temporal activities

of promoters that have very narrow windows of expression. This is due to the short

half-life of the GFP protein (18 h) (de Ruijter et al. 2003) as compared with that of

GUS, that has a half-life of 3–4 days in tobacco plants (Weinmann et al. 1994) and

about 50 h in tobacco protoplasts (Jefferson 1987; Jefferson et al. 1987).

Another application of GFP is in the determination of zygosity of transgenic

plants. Fluorescent proteins can provide instantaneous data on homo- or heterozy-

gosity. Halfhill et al. (2003) have found that heterozygous (hemizygous) transgenic

canola plants exhibit half of the green fluorescence of homozygous plants and

expression levels are inherited quantitatively at the same heterologous level of

florescence in wild relatives also. This finding opened GFP application to the

analysis of hybridization and introgression status in transgenic crops.

4.3.1.5 Reef Coral Proteins

Biotechnological advances with AvGFP reporter gene have increased the demand

of florescent proteins with different emission colors. Scientists have been successful

in cloning AsRed, AmCyan, ZsYellow, ZsGreen, and DsRed genes from reef corals.

The first report of the expression and characterization of one of these reef coral

proteins as a marker in plants was DsRed (Jach et al. 2001) isolated from the reef

coral Discosoma sp. Unlike A. victoria GFP, which is a monomer, reef coral

florescent proteins are homotetramers that limit their application as fusion tag.

Some of the first anthozoan fluorescent proteins were reported by Matz et al.

(1999, 2002). Following these reports, Wenck et al. (2003) demonstrated that

AsRed, AmCyan, ZsYellow, ZsGreen, and DsRed could be expressed and visua-

lized in several monocotyledonous and dicotyledonous plants in both transient and

stable gene integration. The AmCyan1, AsRed, and DsRed transgenic callus

appeared to be yellow-green and red under white light. This is significant because,

unlike GFP that require low wave length (UV) light source, AmCyan1, AsRed, and

DsRed provided passive altering of tissues under room light (Wenck et al. 2003).

Many plants contain phenolic compounds that emit green fluorescence under UV

light, used for GFP excitation and mimic GFP results (Stewart 2006). In this

context, red fluorescent proteins gain an interest in plant applications because red

fluorescence is rarely observed when higher wave lengths’ light source (used red

fluorescent proteins) is used for analysis of plant samples. As chlorophyll does not

autofluoresce at higher wavelengths used for either AsRed or DsRed, these systems

may be the best choice for utilization in plant biology.
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One limitation of AsRed and DsRed is that in the native form both the proteins

are found as tetramers, so they cannot be utilized as fusion tags in localization

studies. Recently a monomeric form of DsRed has been produced (Merzlyak et al.

2007). Red fluorescent protein DsReD and its variant DsReD2 from reef corals have

been used in transient assay and under stable nuclear genome integration in tobacco

and soybean (Glycine max), respectively (Jach et al. 2001; Nishizawa et al. 2006).

Fertile transgenic plants were regenerated without any negative morphogenic or

physiological effect. In confirmation with Wenck et al. (2003) transgenic plants

were distinguishable from nontransgenics under white light and worked as a visual

marker for transgene expression.

Another red fluorescent protein, eqFP611, has been isolated from the sea anem-

one (Entacmaea quadricolor). Forner and Binder (2007) reported that transient and
stable expression of eqFP611 protein had no detrimental effects on cell viability.

Targeting of eqFP611 protein to mitochondria inherited mitochondria florescence.

Another application of eqFP611 was its compatibility with GFP in dual labeling of

plant cell organelles.

4.3.1.6 Oxalate Oxidases

The oxalate oxidases (OxO), which belong to the family of the germin-like proteins,

catalyze the oxidation of oxalate, whereby hydrogen peroxide is formed. OxO

enzymes are absent in most of the dicotyledonous plants and have a narrow window

of expression in monocots (Grzelczak et al. 1985; Caliskan and Cuming 1998).

Inexpensive substrates and availability of detection and quantification protocols

(Thompson et al. 1995; Zhang et al. 1996) further add to the suitability of OxO as a

reporter gene for plants (Simmonds et al. 2004). Activity of OxO can be measured

histochemically as well as quantitatively (Simmonds et al. 2004) (Fig. 4.1c).

4.3.1.7 Anthocyanin Formation (Maize R, C1, and B Transcription Factors)

Maize R, C1, P1, and B transcription factor genes regulate the anthocyanin biosyn-

thesis pathway in a tissue-specific manner in maize. The introduction of C1, R, and
B regulatory genes under the control of constitutive promoters induces cell-

autonomous anthocyanin pigmentation and allows for direct visualization of trans-

formed cells and tissues (Ludwig et al. 1990; Radicella et al. 1992). Screening of

transgenic tissue on the basis of anthocyanin pigmentation is a reporter system that

would not require the application of selection pressure or external substrates for the

detection of transgenic cells. Introduction of a plasmid encoding the maize R and

C1 transcriptional factors, each under the control of a separate CaMV 35S promoter

with maize Adh1 intron, into immature wheat embryos resulted in the production of

anthocyanin expressing cells. Pigmented cells were observed in the callus derived

from these embryos for up to 1 month after bombardment, but these cells failed to

proliferate (McKinnon et al. 1996). In a similar study, in which suspension cells of

wheat were cotransformed with an anthocyanin marker and a selectable marker,
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anthocyanin expressing callus was isolated (Dhir et al. 1994). Toxicity of these

genes toward transformed cells and the requirement of environmental factors for

expression (Chawla et al. 1999) limit the use of these genes as a reporter system.

4.3.1.8 Phytoene Synthase

Genes involved in carotenoid biosynthesis can be used as visual markers for

identification of transgenic cells. The phytoene synthase enzyme catalyzes a reac-

tion to produce phytoene from geranylgeranyl pyrophosphate. In the carotenoid

biosynthesis pathway, phytoene is a precursor of the red carotenoid lycopene, a

carotenoid that gives tomato fruit red color, followed by b-carotene in the next

reaction. Trulson et al. (1997) reported that expression of phytoene synthase (from

Erwinia herbicola) under transcription regulation of tomato callus-specific E8

promoter resulted in orange pigmentation in the callus. E8-phytoene synthase

transgenic tomatoes were phenotypically similar to nontransgenic tomato plants,

with the only difference being that fruits of transgenic plants developed color

earlier than nontransgenic plants. Although phytoene synthase seems to be a good

visual marker, its general application in other transgenic systems has been ham-

pered because the other genes required for carotenoid synthesis are not present in all

other plant species.

4.3.1.9 NPTII

NPTII, the most commonly used selectable gene, from transposon 5 (Tn5) of E. coli
K12, encodes aminoglycoside 3-phosphotransferase II (APHII), commonly known

as neomycin phosphotransferase II (NPTII, E.C 2.7.1.95), which inactivates the

sugar-containing antibiotics, neomycin, kanamycin, geneticin (G418), and paromo-

mycin by phosphorylation. Endogenous NPTII activity is rarely observed in plant

tissues, making it a suitable reporter gene for plant applications. For an enzyme

assay of NPTII, protein sample is first fractionated using nondenaturing polyacryl-

amide gel electrophoresis (PAGE), followed by phosphorylation of kanamycin with

radioactively labeled ATP (32P), by layering kanamycin containing agar over the

enzyme containing polyacrylamide gel. The whole set is incubated at 35�C and the

phosphorylation leading to incorporation of 32P in kanamycin is detected by

autoradiography (Fregien and Davidson 1985). Alternatively, filters with dot blots

of the protein sample can be incubated with the substrates and then subjected to

autoradiography. Presence of NPTII gene product can also be easily quantified by

using NPTII-specific antibodies in an ELISA test (Nagel et al. 1992.)

4.3.1.10 Opines

The presence of opines in tumors in plants was discovered long before the identifi-

cation of pathogenic Ti (tumor inducing) and Ri (root inducing) plasmids of
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Agrobacterium or the demonstration of T-DNA transfer (Johnson et al. 1974). An

advantage of opines as screenable markers for plant transformation is that they are

natural markers of genetic transformation (crown gall or hairy root cells). The

presence of opines in any plant material clearly indicates the transformed status of

the plant cells. As a result, opine synthesis and the related genes have been widely

used to construct numerous Agrobacterium-based vectors designed to engineer

plant cells. Most of these vectors carry a wild-type or a modified nos (nopaline

synthase) or ocs (octopine synthase) genes.
Nopaline and octopine are generally detected in plant extracts by high-voltage

paper electrophoresis followed by reaction with phenanthrenequinone. Presence of

UV-fluorescent products indicates the presence of opines. Yang et al. (1987)

introduced a heat treatment step, compatible with paper electrophoresis that results

in rapid production of a red-purple pigment. This colorimetric assay is sensitive to

1.25-mg quantities of opine and eliminates problems of background fluorescence

encountered with crude plant extract.

4.3.1.11 Chloramphenicol Acetyl Transferase

Chloramphenicol acetyltransferase (CAT, E.C. 2.3.1.2), from the E. coli Tn9 gene,

neutralizes the antibiotic chloramphenicol by transfers of acetyl groups and thus

changes its structure and prevents the antibiotic from inhibiting protein synthesis.

CAT was the first bacterial gene to be introduced in plant cells (Herrera-Estrella

et al. 1984), and it is still widely used as a reporter gene today, because of the

stability of the enzyme and high sensitivity and ease of the enzymatic assay. The

CAT gene is absent in mammals and higher plants, so its activity can be measured in

the plant extract without any electrophoretic separation.

To measure the CAT activity, extracts from CAT transgenic plants are incubated

with radiolabeled chloramphenicol. The acetylated products generated by the

action of CAT are separated from the unmodified chloramphenicol by thin-layer

chromatography and quantified by scraping the spots from the thin-layer plates and

counting them by scintillation spectroscopy. Another assay substitutes the standard

acetyl donor with butyl-CoA; the higher hydrophobicity of the butyl-chloramphen-

icol allowing for good separation of the butyl-compound and easy quantification of

a large number of samples. Some plants have a nonspecific acetylase that can

acetylate chloramphenicol as well, that necessitate use of controls. Extracts of

some plant species may contain CAT enzyme inhibitors, although this problem

can be eliminated in most cases with a heat treatment at 65�C.

4.3.2 PCR-Based Screening

The polymerase chain reaction (PCR) method is most sensitive among all mole-

cular biology techniques used for testing the presence of the specific DNA sequence

of a gene. Because of its sensitivity, the presence of a small quantity of contaminating
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DNA can show false positives. For the screening of transgenic plants, PCR is

generally performed with primers specific to the selectable marker and gene of

interest, used for developing the transgenic plants. When large numbers of trans-

genic plants are screened, isolation of DNA becomes labor- and time intensive. As

the PCR reaction does not require highly purified DNA, protocols have been

standardized for rapid DNA isolation without freezing the plant samples in liquid

nitrogen. A duplex PCR reaction is performed using two set of primers – one for the

gene of interest (transgene or marker gene) and another for an enodgenous plant

gene to confirm the DNA quality for PCR amplification (Mannerlof and Tenning

1997; Xu et al. 2005).

The advent of real-time PCR has made multiplexing and relative quantification

easy. As compared with traditional transgene copy number detection technologies

such as Southern blot analysis, real-time PCR provides a fast, inexpensive, and

high-throughput alternative. Real-time PCR can be used to determine copy number

and zygosity in transgenic plants (as reviewed by Bubner and Baldwin 2004; Prior

et al. 2006; Yuan et al. 2007). The availability of different chemistries for fluores-

cence detection in real-time PCR created some confusion about their relative merits.

In a comparative study, molecular beacon, SYBR Green, TaqMan, andMGB assays

were designed for the event-specific detection and quantification of the 3’ integra-

tion junction of GTS 40-3-2 (Roundup Ready) soybean. Sensitivity as well as

robustness in the presence of background DNA was tested. None of the PCR-

based approaches appeared to be significantly better than any of the other (Andersen

et al. 2006). In another study, five different chemistries employing TaqMan, Lux,

Plexor, Cycling Probe Technology, and LNA were tested, and it was concluded that

none of chemistries outperformed the others (Gasparic et al. 2008).

Adaptor ligation PCR (AL-PCR) of genomic DNA flanking T-DNA borders is

another attractive alternative to genomic DNA blot hybridization. An adapter is

ligated to restriction enzyme-digested genomic DNA and PCR is carried out using

primers specific for a T-DNA border and the adapter sequence. Each independent

integration event shows a PCR amplicon of different size (Spertini et al. 1999).

Alternatively PCR amplicons can be sequenced to find the locus of integration.

The AL-PCR patterns obtained in Allium cepa were specific and reproducible

for a given transgenic line and gave insight in the number of T-DNA copies

(Zheng et al. 2001).

The presence of latent Agrobacterium in the plant can give false-positive results

in a PCR analysis of putative transgenic plants. Nain et al. (2005) have reported a

simple protocol for PCR analysis of Agrobacterium-contaminated transgenic plants

that is based on denaturation and renaturation of DNA in a time-dependant manner.

The contaminating plasmid vector becomes double stranded most quickly during

renaturation and is cut by a restriction enzyme having site(s) within the PCR

amplicon. Once this plasmid DNA is digested, it will eliminate PCR amplification

from contaminating plasmid DNA. The genomic DNA with a few copies of the

transgene remains single stranded and unaffected by the restriction enzyme, leading

to amplification by PCR. Hence, only the transgene present in the genomic DNA is

amplified by PCR (Fig. 4.2).
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4.3.3 Southern Hybridization Analysis

Southern blotting (Southern 1975) is a technique for transfer of single-stranded

(denatured) DNA molecules from an electrophoresis gel to a nitrocellulose or nylon

membrane. The nitrocellulose membrane is incubated with a specific radiolabeled

probe and the location of the DNA fragment that hybridizes with the probe is

detected by autoradiography (Sambrook et al. 1989) or with a Phosphor Imager (for

Quantitative Filmless Autoradiography). High sensitivity, low background, and

Fig. 4.2 Confirmation of transgene integration in plant genome by PCR. After processing the

genomic DNA from putative transgenic plants, PCR amplification comes only from transgene

integrated in plant genome Nain et al. (2005)
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determination of transgene copy number integrated to plant genome make this

technique indispensable for molecular analysis of transgenic plants (Fig. 4.3).

The standard radioactively labeled DNA detection system used in such experi-

ments requires licensing to handle radioactive materials. The development of a

nonradioactive biotin, digoxigenin (DIG), and fluorescein isothiocyanate (FITC)

labeling-based nucleic acid detection system has made such DNA hybridization

experiments safe and more generally feasible (Leary et al. 1983; Peterhaensel et al.

2007). Bound biotin labeled probe is detected by an alkaline phosphatase conjugate

of streptavidin, while for digoxigenin detection an antidigoxigenin antibody conju-

gate is used. Alkaline phosphatase conjugate is visualized with chromogenic

alkaline phosphatase substrates. Chromogenic substrates produce a colored signal

directly on the membrane. More sensitive chemiluminescence substrates for alka-

line phosphatase produce light that can be conveniently recorded with X-ray film

(as with 32P probes). Fluorescence signal emitted by FITC labeled probe is recorded

with chemiluminescence detection system. Although various modifications of

Southern hybridization have been reported, the use of radiolabeled probes is still

the most common and the most reliable method.

When determining the integration of transgenes into the plant genome, Southern

hybridization is the most reliable technique. Sometimes reporter gene signal may

be absent even after the integration of transgene in the plant genome. This may

be because of silencing of the transgene after integration, low RNA stability, poor

translation efficiency or integration of a truncated gene. Under these conditions

Fig. 4.3 Methodology for confirmation of transgene integration in plant genome by Southern

hybridization
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only Southern hybridization can give a true picture of an integration event. Further-

more, Southern hybridization can reveal the presence of genomic DNA flanking the

transgene, which is the ultimate confirmation of insertion, and which is not always

possible using PCR. However, Southern hybridization requires a large quantity

(5 mg) of DNA from each transgenic plant that can limit its application when plant

tissue is not available in adequate quantity.

To determine the transgene copy number and distinguish different integration

events, the plant genomic DNA is digested with a restriction enzyme that does not

have a restriction site in the T-DNA and when the T-DNA or transgene is used as a

probe, each independent integration event will appear as a unique band. Presence of

more than one band will indicate a multicopy transgenic event. If the restriction

enzyme used for genomic DNA digestion has a unique site between the marker gene

and gene of interest (transgene) and the membrane is probed with the marker gene

and the transgene separately, then each integration event will show up as a single

band. The size of the band identified with each probe will be different, but the

number of bands in each plant sample will remain the same. Any mismatch will

represent an integration of a truncated copy. To identify a multiple-copy tandem

integration at one locus, genomic DNA is digested with restriction enzymes flanking

the gene of interest in the T-DNA. Probing the blot with the transgene will give a

single band of size of the transgene in all the samples, but intensity of the band will

be proportionate to the number of gene copies integrated (Bhat and Srinivasan 2002).

4.3.4 ELISA

Enzyme-linked immunosorbent assay (ELISA) tests for the presence of the specific

protein that the transgene produces in the plant. ELISA procedures use antibodies

that react specific with the new protein(s) produced in the transgenic plants. There

are different versions of the ELISA method used for detection of heterologous

protein expressed in transgenic plants. One method uses lateral flow strips that

deliver results in 2–5 min. This “strip test” technology is also marketed as the

“dipstick” procedure. Advantages of the ELISA strip tests are speed, relative ease

of use, and low cost. On the other hand, a major disadvantage is that it cannot

quantify the protein of interest in a transgenic plant sample. Another version of the

ELISA test, the “plate test,” allows quantification of protein of interest. A standard

ELISA plate can test 96 samples at a time, including positive and negative controls.

Intensity of color indicates the amount of the protein present (Fig. 4.4). The plate

test can take 2–4 h and is more laborious and costly than the strip test.

4.4 Marker-Removal Strategies

Marker genes play a crucial role during plant transformation for identifying rare

transgenic cells/plants. However, the presence of marker DNA sequences in the

final transgenic plants is often problematic for commercial biotechnology products
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because of biosafety regulatory requirements and public concerns, especially when

marker genes of nonplant origin are employed. Additionally, elimination of marker

genes, whose functions are no longer in need, can save the cell from the burden of

maintaining the unwanted transgene, allow gene stacking through reuse of the same

marker gene in subsequent transformations, and avoid negative pleiotropic

effects that may be associated with the marker gene in plants. These concerns

have prompted the development of several approaches to generate marker-free

transgenic crops. Technologies in this area have advanced greatly in recent years

and new marker-removal strategies are expected to be continually explored. Cur-

rently, the use of site-specific-recombinases under the control of inducible promoter

presents the greatest promise in terms of efficiency, preciseness, and time period

required.

4.4.1 Cotransformation and Subsequent Segregation

The simplest strategy to eliminate marker gene is the cotransformation of genes of

interest with marker genes followed by segregation through sexual crosses. Both

desirable transgene and marker gene can be delivered into plant genomes by

separate plasmids in one or two Agrobacterium strains or with single plasmids

carrying multiple T-DNA regions (transposon-based), based on Agrobacterium- or
biolistics-mediated transformation (Miki and McHugh 2004; Zhao et al. 2007). The

unlinked marker gene can subsequently be removed from the plant genome during

segregation and recombination that occurs during sexual reproduction by selecting

on the transgene of interest, and not the marker gene, in progeny. Screening for the

Fig. 4.4 Confirmation of transgene expression by strip test and ELISA plate method (V Nain,

unpublished)
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progeny without the marker gene can be assisted by PCR or Southern hybridization

analysis, as well as by incorporating an extra conditionally negative or scorable

marker gene next to the original selective marker gene in the same construct

(Darbani et al. 2007). Some selective marker genes have been developed for this

purpose (Table 4.9). Each of these selective markers encodes an enzyme that

converts nontoxic agents to toxic agents resulting in the death of the transformed

cells containing the marker genes used for transformation selection or screening.

Recently, a novel marker gene, dao1 from yeast, has been established for either

positive or negative marker in Arabidopsis, depending on the substrate (Erikson

et al. 2004). D-amino acid oxidase (DAAO, EC 1.4.3.3) catalyzes the oxidative

deamination of a range of D-amino acids. This enzyme can metabolize toxic

D-alanine and D-serine into nontoxic products, whereas it converts D-isoleucine

and D-valine, which have low toxicity, into the toxic keto acids 3-methyl-2-

oxopentanoate and 3-methyl-2-oxobutanoate, respectively. Hence, both positive

and negative selection is possible with the same marker gene through changing

D-alanine or D-serine to D-isoleucine or D-valine for the substrates. The bifunc-

tional dao1 marker gene yielded unambiguous results and allowed selection imme-

diately after germination in Arabidopsis (Erikson et al. 2004).

The removal of selectable markers by cotransformation can be time consuming

and labor intensive. The requirement of sexual crosses limits its application in

woody, vegetatively propagated, or sterile plant species or cultivars. The efficiency

of this strategy also depends on the loose linkage between the cointegrated DNAs.

Table 4.9 Chemicals and enzymes for the conditional-negative selection of transgenic tissuesa

Substrates Genes Enzymes Sources Genome References

5-Fluorocytosine codA Cytosine

deaminase

Escherichia coli Nuclear, Stougaard (1993)

plastid Serino and Maliga

(1997)

Naphthalene

acetamide

aux2 Amido hydrolase Agrobacterium
rhizogenes

Nuclear Béclin et al. (1993)

Indole-3-

acetamide

tms 2 Indoleacetic acid

hydrolase

Agrobacterium
tumefaciens

Depicker et al.

(1988)

Dihaloalkanes dhlA Dehalogenase Xanthobacter
autotrophicus

Nuclear Naested et al.

(1999), Moore

and Srivastava

(2008)

Sulfonylurea

R7402

cyp105a Cytochrome

P450 mono-

oxygenase

Streptomyces
griseolus

Nuclear O’Keefe et al.

(1994)

Allyl alcohol cue Alcohol

dehydrogenase

Arabidopsis
thaliana

Nuclear Lopez-Juez et al.

(1998)

ganciclovir HSVtk thymidine kinase

type 1 gene

Homo sapiens
virus

nuclear Czakó et al. (1995)

glyceryl

glyphosate

pehA phosphonate

monoesterase

Burkholderia
caryophilli
PG2982

Nuclear Dotson et al. (1996)

aTable was adapted from Miki and McHugh (2004)
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4.4.2 Transposon-based Marker Gene Removal

The maize Ac/Ds transposable element system has been used to transpose marker

genes and transposases from the T-DNA, thus leaving only the gene of interest in

the inserted copy of the T-DNA (Yoder and Goldsbrough 1994). In one such

system, the maize Ac transposable element was engineered to contain the ipt
gene, which conferred an extreme shooty phenotype in the first positive selective

step and also served as a negative selectable marker in the second selection step

(due to the elimination of the ipt and transposase genes by transposition, normal

shoots appeared after several weeks or months in culture) (Ebinuma et al. 1997).

A marker-free frequency of about 5% was obtained in tobacco and hybrid aspen

(Ebinuma et al. 1997). Since this system does not require a sexual reproduction

step, it is an alternative for vegetatively propagated cultivars and plants with a

long reproductive cycle. However, several drawbacks of this system, such as

imprecise excision, low excision frequency, and genomic instability of transgenic

plants, have undermined its efficacy (Scutt et al. 2002; Darbani et al. 2007).

The maize Ac/Ds transposable element system has also been used to transpose

(separate) the gene of interest that is previously linked together with marker

gene and transposase in the T-DNA. However, this technology relies on sexual

segregation to remove the marker gene and the transposase (Miki and McHugh

2004).

4.4.3 Site-specific Recombination-mediated Marker Deletion

The site-specific recombination systems mediate control of a variety of biological

functions by carrying out precise excision, inversion, or integration of defined DNA

units in their natural prokaryote and lower eukaryote hosts. Due to their accuracy

and relative simplicity, the Cre/lox genes of bacteriophage P1 of E. coli, R/RS from
the SR1 plasmid of Zygosaccharomyces rouxii, and FLP/FRT from the 2-mm
plasmid of Saccharomyces cerevisiae have been the focus of the most intense

studies in plants and other organisms. These systems function through the interac-

tions of a single recombinase (e.g., Cre, R, FLP) with a pair identical recognition

target sites (34 bp lox and FRT; 31 bp RS) in a “cut and paste” recombination

process. The required recombinase can be introduced to target sites in transformants

by retransformation to activate the marker gene excision. The recombinase locus is

then removed by sexual segregation (see for review Miki and McHugh 2004;

Darbani et al. 2007; Gidoni et al. 2008). Since constitutive expression of recombi-

nase may cause aberrant developmental phenotypes in plants, the use of site-specific

recombinases under the control of inducible promoters provides a more promising

avenue. Table 4.10 lists the inducible promoters that have been paired with recom-

binase genes for marker gene excision. Depending on the type of inducible promo-

ters being utilized, this inducible recombination strategy can provide further control
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Table 4.10 Induced recombination-mediated auto-excision of markers and recombinase genes

Induction signal/

promoter system

Recombination

system/plant tested

Stage of induction/

treatment

Excision

rate

References

Chemical/

herbicide

antidote-

inducible maize

GST

R-RS/tobacco Shoot explants/

inducer in the

medium

14–58%a Sugita et al.

(2000);

Ebinuma et al.

(2001)

Chemical/b-
estradiol

inducible

transactivator

XVE

Cre-lox/Arabidopsis,
rice, tomato

Shoot explants,

callus-

germinating

seeds/inducer in

the medium

15–66%a,b,c Zuo et al. (2001);

Sreekala et al.

(2005); Zhang

et al. (2006)

Chemical/

dexamethasone-

activated

R-LBD

R-RS/strawberry Regenerating leaf

explants/

inducer in the

medium

N.D. Schaart et al.

(2004)

Chemical/Salicylic

acid-induced

activated PR-1a

Cre–loxP/tomato Shoot explants/

inducer in the

medium

38.7%a Ma et al. (2009)

Heat-shock/

Arabidopsis
HSP81–1

Cre-lox/Arabidopsis Whole seedlings/

�2 alternate

37�C-16 h and

recovery

N.D. Hoff et al. (2001)

Heat-shock/

Arabidopsis
HSP81–1

Cre-lox/tobacco Whole seedlings/

�2 alternate

37�C-16 h and

recovery

< 100%b Liu et al. (2005)

Heat-shock/

soybean

HSP17.5E

Cre-lox/maize Callus and

immature

embryos/42�C
for 3–5 h

< 100%b,c Zhang et al.

(2003)

Heat-shock/

soybean

HSP17.5E

Cre-lox/tobacco Seed, leaf/�3

alternate 42�C-
2 h and recovery

40–80%a,b,c Wang et al.

(2005)

Heat-shock/

Drosophila
hsp70

Cre-lox/potato Shoot internodes

and mini-tubers/

42�C for 2–3 h

5–14%a Cuellar et al.

(2006)

Heat-shock/

Arabidopsis
HSP18.2

FLP-loxP, FRT/

tobacco

Regenerating leaf

explants/65�C
for at least 1 h

60%a Luo et al. (2008)

Embryo-specific/

Arabidopsis
app1

Cre-lox/soybean Somatic

embryogenesis

5–59%a,b,c Li et al. (2007)

Microspore-

specific/tobacco

NTM19

Cre-lox/Arabidopsis,
tobacco

Early pollen

development

< 99.98%a,c Mlynárová et al.

(2006)

Pollen-specific/B.
campestris

Cre-or FLP-lox-FRT

fusion/tobacco

Mature pollen

development

< 100%a,c Luo et al. (2007)

(continued)
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of the excision process on timing, flexibility and tissue specificity. In addition, this

inducible system allows a single recombination construct where a marker gene and

a recombinase gene coreside between the recombination target sites; therefore,

genetic segregation is not required to remove the recombinase gene since excised

circular DNA containing both marker and recombinase genes are expected to be lost

via cellular degradation. Transient expression of recombinase through cocultivated

or infiltration of Agrobacterium T-DNA vectors or systemic infection with plant

virus vector has also been developed for tobacco (Gleave et al. 1999; Kopertekh and

Schiemann 2004; Jia et al. 2006) and maize (Kerbach et al. 2005). Employment of

two site-specific recombination systems has been recently explored in tobacco (Luo

et al. 2007) and maize (Djukanovic et al. 2008). It was found that the two site-

specific recombination systems could provide more efficient and complete excision.

In addition to deletion of a marker gene from the transgenic plant, site-specific

recombination systems can also be useful in site-specific integration of a gene into a

predetermined genomic location in a precise, single copy pattern.

Besides the Cre/lox, R/RS, and FLP/FRT mentioned earlier, new recombination

systems are being discovered and explored, including the b/six from Streptococcus
pyogenes (Grønlund et al. 2007) and a small serine resolvase ParA from bacterial

plasmids RK2 and RP4 catalyses (Thomson et al. 2009), which have proven

efficient in marker gene deletion in tobacco and Arabidopsis. Site-specific recom-

bination holds great promise for marker deletion and has advanced quickly in recent

Table 4.10 (continued)

Induction signal/

promoter system

Recombination

system/plant tested

Stage of induction/

treatment

Excision

rate

References

BGP1 and

tomato LAT5

Pollen and seed-

specific/

Arabidopsis
PAB5

Pollen and seed

development

Male germline-

specific/

Arabidopsis
SDS

Cre-lox/Arabidopsis Male gamete

development

83–100%a,c Verweire et al.

(2007)

Floral meristem-

specific/

Arabidopsis
AP1

Flower meristem-

male and female

germ lines

Floral-specific/rice

OsMADS45

Cre-lox/rice Floral organs 13–100%a,c Bai et al. (2008)

GST Glutathione-S-transferase (GST-II-27) promoter-MAT vector, R-LBD glucocorticoid recep-

tor ligand binding domain fused to the C-terminus of R recombinase gene, AP1Apetala1, SDS solo
dancers, N.D. not determined

Table was adapted from Gidoni et al. (2008)
aComplete plant gene excision events
bIncomplete plant (chimeric) gene excision events
cProvided indications for germline excision events
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years. However, the commercial potential of this technology has not been yet

demonstrated.

4.4.4 Intrachromosomal Homologous Recombination System

The intrachromosomal homologous recombination system is very similar to the

site-specific recombination systems described above, except that there is no

requirement for recombinase, whose action on cryptic excision sites in the plant

genomes may cause pleiotropic effects. When placed between two 352 bp attach-

ment P (attP) regions in bacteriophage, three marker genes (nptII, gfp, and tms2)
were deleted from transgenic tobacco with a deletion frequency of 44% (Zubko

et al. 2000). Interestingly, most plantlets that have lost the marker gene region also

have lost transgene regions outside the attP cassette, suggesting that intrachromo-

somal homologous recombination is not always associated with precise homolo-

gous recombination between the two attP regions but that it can generate larger

deletions probably as a result of illegitimate recombination (Zubko et al. 2000). The

attP intrachromosomal excision system has also been utilized in transformation of

tobacco plastids (Kittiwongwattana et al. 2007).

4.4.5 Cytokinin-Based Backbone-Free Approach

Recently, Richael et al. (2008) have described a new method that was based on

transient expression of the bacterial isopentenyltransferase (ipt) gene that was

positioned within the backbone (outside the T-DNA region) of binary vectors. It

was found that the resulting temporary production of the natural cytokinin isopen-

tenyl adenosine induced explants to produce shoots on media containing neither a

selection agent nor synthetic hormones. This approach has been tested in various

Solanaceous plant species including potato, tomato, tomatillo, and tobacco, as well

as canola (Richael et al. 2008; Rommens et al. 2008). Transformation frequencies

achieved were similar to conventional backbone-free transformation with marker-

containing T-DNAs and higher than conventional methods that simply omit a

selection step (de Vetten et al. 2003). Since shoots displaying a cytokinin over-

expression phenotype were ignored and only shoots with a wild-type appearance

were selected, the abnormal shoot morphology usually associated with the ipt gene
in transformants is not an issue in this approach. This approach provides both

marker-free and backbone-free transformation.

4.4.6 Radiation Method

The use of g-radiation to physically remove a marker gene previously introduced

into the soybean genome was evaluated by Tinoco et al. (2006). Preliminary data
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indicated a very low success rate of marker gene removal. In most cases, the gene of

interest was deleted along with the marker gene. In addition, abnormal phenotypes

were observed

4.5 Conclusions

Selectable and scorable marker genes play a vital role in identifying transformed

plant cells. A wide range of marker genes have been employed for successful plant

genetic transformations. Due to the substantial public concern about the potential

spread of marker genes of nonplant origin, there is a momentum for research toward

environment-friendly selection system involving natural plant materials and precise

marker gene removal.
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Czakó M, Marathe RP, Xiang C, Guerra DJ, Bishop GJ, JonesJDGML (1995) Variable expression

of the herpes simplex virus thymidine kinase gene in Nicotiana tabacum affects negative

selection. Theor Appl Genet 91:1242–1247

Dahl GA, Tempe J (1983) Studies on the use of toxic precursor analogs of opines to select

transformed plant cells. Theor Appl Genet 66:233–239

Damm B (2003) Selection marker. US Patent No 6,660,910: http://www.patentstorm.us/patents/

6660910/description.html

Daniell H, Muthukumar B, Lee SB (2001) Marker free transgenic plants: engineering the chloro-

plast genome without the use of antibiotic selection. Curr Genet 39:109–116

Darbani B, Eimanifar A, Stewart CNJ, Camargo WN (2007) Methods to produce marker-free

transgenic plants. Biotechnol J 2:83–90

David LS, David AS, Kenneth C, Gross A (1998) Gene coding for tomato fruit b-galactosidase II
is expressed during fruit ripening. Plant Physiol 117:417–423

de Vetten N,Wolters AM, Raemakers K, van der Meer I, der Stege R, Heeres E, Heeres P, Visser R

(2003) A transformation method for obtaining marker-free plants of a cross-pollinating and

vegetatively propagated crop. Nat Biotechnol 21:439–442

DeBlock M, Herrera-Estrella L, Van Montagu M, Schell J, Zambryski P (1984) Expression of

foreign genes in regenerated plants and in their progeny. EMBO J 3:1681–1689

DeBlock M, Schell J, Van Montagu M (1985) Chloroplast transformation by Agrobacterium
tumefaciens. EMBO J 4:1367–1372

DeBlock M, De Brower D, Tenning P (1989) Transformation of Brassica napus and Brassica
oleracea using Agrobacterium tumefaciens and the expression of the bar and neo genes in the

transgenic plants. Plant Physiol 91:694–701

De Block M, Debrouwer D (1993) Engineered fertility control in transgenic Brassica napus L.:
histochemical analysis of anther development. Planta 189:218–225

Degenhardt J, Poppe A, Montag J, Szankowski I (2006) The use of the phosphomannose-

isomerase/mannose selection system to recover transgenic apple plants. Plant Cell Rep

25:1149–1156

130 H. Liang et al.

http://www.patentstorm.us/patents/6660910/description.html
http://www.patentstorm.us/patents/6660910/description.html


Degenhardt J, Poppe A, Rösner L, Sza I (2007) Alternative selection systems in apple transforma-

tion. Acta Hortic 738:287–292

Della-Cioppa G, Bauer SC, Taylor ML, Rochester DE, Klein BK, Shah DM, Fraley RT, Kishore

GM (1987) Targeting a herbicide-resistant enzyme from Escherichia coli to chloroplasts of

higher plants. Biotechnology 5:579–584

Depicker A, Jacobs AM, Van Montagu MC (1988) A negative selection scheme for tobacco

protoplast-derived cells expressing the T-DNA gene 2. Plant Cell Rep 7:63–66

Dhir SK, Pajeau ME, Fromm ME, Fry JE (1994) In: Henry JR, Ronalds JA (eds) Improvement of

Cereal Quality by Genetic Engineering. Plenum Press, New York, USA, pp 71–75

Djukanovic V, Lenderts B, Bidney D, Lyznik LA (2008) A Cre::Flp fusion protein recombines

FRT or LOXP sites in transgenic maize plants. Plant Biotechnol J 6:770–781

Dotson S, Lanahan MB, Smith AG, Kishore GM (1996) A phosphonate monoester hydrolase from

Burkholderia caryophilli PG2982 is useful as a conditional lethal gene in plants. Plant J

10:383–392

Eberlein CV, Guttieri MJ, Berger PH, Fellman JK, Mallory-Smith CA, Thill DC, Baerg RJ,

Belknap WR (1999) Physiological consequences of mutation for ALS-inhibitor resistance.

Weed Sci 47:383–392

Ebinuma H, Sugita K, Matsunaga E, Yamakado M (1997) Selection of marker-free transgenic

plants using the isopentenyl transferase gene. Proc Natl Acad Sci USA 94:2117–2121

Ebinuma H, Sugita K, Matsunaga E, Endo S, Yamada K, Komamine A (2001) Systems for the

removal of a selection marker and their combination with a positive marker. Plant Cell Rep

20:383–392

Ebmeier A, Allison L, Cerutti H, Clemente T (2004) Evaluation of the Escherichia coli threonine
deaminase gene as a selectable marker for plant transformation. Planta 218:751–758

Eichholtz DA, Rogers SG, Horsch RB, Klee HJ, Hayford M, Hoffman NL, Braford SB, Fink CF,

Flick J, O’Connell KM, Fraley RT (1987) Expression of mouse dihydrofolate reductase

gene confers methotrexate resistance in transgenic petunia plants. Somat Cell Mol Genet

13:67–76

El Amrani A, Barakate A, Askari BM, Li X, Roberts AG, Ryan MD, Halpin C (2004) Coordinate

expression and independent subcellular targeting of multiple proteins from a single transgene.

Plant Physiol 135:16–24

Endo S, Kasahara T, Sugita K, Matsunaga E, Ebinuma H (2001) The isopentenyl transferase gene

is effective as a selectable marker gene for plant transformation in tobacco (Nicotiana tabacum
cv. Petite Havana SRI). Plant Cell Rep 20:60–66

Endo S, Sugita K, Sakai M, Tanaka H, Ebinuma H (2002) Single-step transformation for

generating marker-free transgenic rice using the ipt-type mat vector system. Plant J 30:

115–122
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Tü494 and its expression in Nicotiana tabacum. Gene Dev 70:25–37

Weinmann P, Gossen M, Hillen W, Bujard H, Gatz C (1994) A chimeric transactivator allows

tetracycline-responsive gene expression in whole plants. Plant J 5:559–569

Xu C-J, Yang L, Chen KS (2005) Development of a rapid, reliable and simple multiplex PCR

assay for early detection of transgenic plant materials. Acta Physiol Plant 27:283–288

Yamada T, Tozawa Y, Hasegawa H, Terakawa T, Ohkawa Y,Wakasa K (2005) Use of a feedback-

insensitive a subunit of anthranilate synthase as a selectable marker for transformation of rice

and potato. Mol Breed 14:363–373

Yang N-S, Steven GP, Paul C (1987) Detection of opines by colorimetric assay. Ann Biochem

160:342–345

Ye G-N, Hajdukiewicz PTJ, Broyles D, Rodriguez D, Xu CW, Nehra N, Staub JM (2001) Plastid-

expressed 5-enolpyruvylshikimate-3-phosphate synthase genes provide high level glyphosate

tolerance in tobacco. Plant J 25:261–270

Yemets A, Radchuk V, Bayer O, Bayer G, Pakhomov A, Baird WV, Blume YB (2008) Develop-

ment of transformation vectors based upon a modified plant a-tubulin gene as the selectable

marker. Cell Biol Int 32:566–570

Yoder J, Goldsbrough A (1994) Tranformation systems for generating marker-free transgenic

plants. Biotechnology 12:263–267

You S-J, Liau C-H, Huang H-E, Feng T-Y, Prasad V, Hsiao H-H, Lu J-C, Chan M-T (2003) Sweet

pepper ferredoxin-like protein (pflp) gene as a novel selection marker for orchid transforma-

tion. Planta 217:60–65

Yuan JS, Burris J, Stewart NR, Mentewab A, Stewart CN Jr (2007) Statistical tools for transgene

copy number estimation based on real-time PCR. BMC Bioinform 8:S6

Zhang W, Subbarao S, Addae P, Shen A, Armstrong C, Peschke V, Gilbertson L (2003) Cre/lox-

mediated marker gene excision in transgenic maize (Zea mays L.) plants. Theor Appl Genet
107:1157–1168

Zhang Y, Li H, Ouyang B, Lu Y, Ye Z (2006) Chemical-induced autoexcision of selectable

markers in elite tomato plants transformed with a gene conferring resistance to lepidopteran

insects. Biotechnol Lett 28:1247–1253

Zhang Z, Yang J, Collinge DB, Thordal-Christensen H (1996) Ethanol increases sensitivity of

oxalate oxidase assays and facilitates direct activity staining in SDS gels. Plant Mol Biol Rep

14:266–272

Zhao F-Y, Li Y-F, Xu P-L (2006) Agrobacterium-mediated transformation of cotton (Gossypium
hirsutum L. cv. Zhongmian 35) using glyphosate as a selectable marker. Biotechnol Lett

28:1199–1207

Zhao Y, Qian Q, Wang H-Z, Huang DN (2007) Co-transformation of gene expression cassettes via

particle bombardment to generate safe transgenic plant without any unwanted DNA. In Vitro

Cell Dev Biol Plant 43:328–334

Zheng SJ, Henken B, Sofiari E, Jacobsen E, Krens FA, Kik C (2001) Molecular characterization of

transgenic shallots (Allium cepa L.) by adaptor ligation PCR (AL-PCR) and sequencing of

genomic DNA flanking T-DNA borders. Transgenic Res 10:237–245

142 H. Liang et al.



Zhou H, Arrowsmith J, Fromm M, Hironaka C, Taylor M, Rodriguez D (1995) Glyphosate-

tolerant cp4 and gox gene as a selectable marker in wheat transformation. Plant Cell Rep

15:159–163

Zhu YJ, Agbayani R, McCafferty H, Albert HH, Moore PH (2005) Effective selection of

transgenic papaya plants with the PMI/Man selection system. Plant Cell Rep 24:426–432

Zhu Z, Wu R (2008) Regeneration of transgenic rice plants using high salt for selection without the

need for antibiotics or herbicides. Plant Sci 174:519–523

Ziemienowicz A (2001) Plant selectable markers and reporter genes. Acta Physiol Plant

23:363–374

Zubko E, Scutt C, Meyer P (2000) Intrachromosomal recombination between attp regions as a tool

to remove selectable marker genes from tobacco transgenes. Nat Biotechnol 18:442–445

Zuo J, Niu QW, Moller SG, Chua NH (2001) Chemical-regulated, site-specific DNA excision in

transgenic plants. Nat Biotechnol 19:157–161

Zuo J, Niub QW, Ikedab Y, Chua N-H (2002) Marker-free transformation: increasing transforma-

tion frequency by the use of regeneration-promoting genes. Curr Opin Biotechnol 13:173–180

4 Selection and Screening Strategies 143



Chapter 5

Levels and Stability of Expression of Transgenes

Rajib Bandopadhyay, Inamul Haque, Dharmendra Singh,

and Kunal Mukhopadhyay

5.1 Introduction

It is well known that in a given cell, at a particular time, only a fraction of the entire

genome is expressed. Expression of a gene, nuclear, or organellar starts with the

onset of transcription and ends in the synthesis of the functional protein. The

regulation of gene expression is a complex process that requires the coordinated

activity of different proteins and nucleic acids that ultimately determine whether a

gene is transcribed, and if transcribed, whether it results in the production of a

protein that develops a phenotype. The same also holds true for transgenic crops,

which lie at the very core of insert design.

There are multiple checkpoints at which the expression of a gene can be

regulated and controlled. Much of the emphasis of studies related to gene expres-

sion has been on regulation of gene transcription, and a number of methods are used

to effect the control of gene expression. Controlling transgene expression for a

commercially valuable trait is necessary to capture its value. Many gene functions

are either lethal or produce severe deformity (resulting in loss of value) if over-

expressed. Thus, expression of a transgene at a particular site or in response to a

particular elicitor is always desirable.

Usually, the regions responsible for the initiation of transcription lie within the

50 region, upstream to the coding sequence of the gene. These are the promoter

regions, defined as cis-acting (as they are on the same DNA strand that codes for the

gene) nontranscribed elements, which provide sequences for the binding of various

transcription initiation factors and RNA polymerase.

One can use a promoter that has known regulatory characteristics; for example, a

promoter that is expressed throughout the plant tissue or only in vascular tissues, in

R. Bandopadhyay (*)

Department ofBiotechnology,Birla Institute of Technology,Mesra, Ranchi, Jharkhand 835215, India

Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA

e-mail: rajib_bandopadhyay@bitmesra.ac.in

C. Kole et al. (eds.), Transgenic Crop Plants,
DOI 10.1007/978-3-642-04809-8_5, # Springer-Verlag Berlin Heidelberg 2010

145



the leaf epidermis, seed endosperm or embryo, and so on. One can mix and match

fragments of DNA and transcription factors to develop chimeric promoters that

have the desired patterns and levels of gene expression.

In this chapter, we will discuss the basic aspects of designing genes for insertion

and quantifying transgene expression, followed by the different types of promoters

and their use in transgenic crops. Also, several factors responsible for high-level

expression and stability in transgenic plants/crops will be discussed.

5.2 Gene Design for Insertion

Once a gene of choice has been targeted and cloned, it has to undergo several

modifications before it can be effectively inserted into a plant. A promoter sequence

is added for the gene to be expressed. Most promoters used for transgenic crop

varieties have been “constitutive,” i.e., causing gene expression throughout the life

cycle of the plant in most of the tissues. The most commonly used constitutive

promoter is CaMV 35S, from the cauliflower mosaic virus, which generally results

in a high level of expression in most plants. Some promoters are more specific and

are discussed in detail in Sect. 5.4.

Genes of interest are sometimes modified to achieve high level of expression. As

plants prefer G-C rich regions, as compared to A-T rich bacterial genes, in order to

overexpress bacterial genes in plants, A-T rich regions are to be substituted by G-C

rich regions in such a way that the amino acid sequence of the protein remains

unaltered (Evans et al. 2003). A selectable marker gene is inserted into the construct

so as to identify the cells or tissues that have been successfully transformed (as

discussed in Chap. 4). In some cases (e.g., resistance to pesticides), the transgene

itself acts as a selectable marker. In other instances, a reporter gene is also inserted in

the construct. A reporter gene is a coding sequence that upon expression in the

transgenic plant provides conclusive evidence of genetic transformation. These

reporter genes are very useful for transient expression experiments where the spatial

and temporal activity of a promoter can be elucidated. The genes naturally exhibit an

enzyme activity that does not exist in the host plant. Most common reporter genes

are from bacteria, insects, or jellyfish as these organisms are so unrelated to

angiosperms that their cis-regulatory elements are not functional in plants. Thus,

when cloned into plant transformation vectors, a terminator sequence should also

be fused downstream to the gene. Commonly used reporter genes are CAT (E. coli),
b-GUS (E. coli), luciferase (firefly), green fluorescence protein (jellyfish), etc.

5.3 Quantification of Transgene Expression

It is necessary to know how a transgene is expressing in order to evaluate its

effectiveness and level of expression in transgenic plants. The transgene copy

number can greatly influence the expression level and genetic stability in the
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plant, and therefore, estimation of the transgene number is of prime importance

(Bhat and Srinivasan 2002). Previously, Southern and Northern analyses were used

for this purpose (Sabelli and Shewry 1995a, b). But, with time, other methods such

as comparative genomic hybridization, fluorescence in situ hybridization, multiplex

amplifiable probe hybridization, and microarray had been employed to determine

the transgene copy number. All these methods are time consuming, laborious, and

require large quantities of DNA. Moreover, nucleic acid hybridization-based tech-

niques often involve the application of hazardous radioisotopes.

Recently, quantitative real-time PCR (qPCR) has proved to be an efficient

method for transgene expression studies in plants. In qPCR, expression level is

monitored per cycle of the reaction, comparing the fluorescent signal generated by

the DNA or mRNA sample proportional to its initial quantity (Page and Minocha

2004). It has proved to be a more sensitive and rapid method, providing stringent

evaluation through the use of SYBR Green I Fluorescent intercalating dye, which

has the ability to detect a single gene among a number of genes in combination

with highly specific gene primers. Till now, qPCR has been extensively applied to

several transgenic crops such as maize (Ingham et al. 2001; Song et al. 2002; Shou

et al. 2004; Assem and Hassan 2008), wheat (Li et al. 2004), rice (Yang et al.

2005), potato (Toplak et al. 2004), rapeseed (Weng et al 2004), tomato (Mason

et al. 2001), tobacco (Miyamoto et al. 2000), cassava (Beltrán et al. 2009), and

strawberry (Schaart et al. 2002) for analyzing transgene expression.

5.4 Promoters

As discussed earlier, the 50 upstream regions of a gene are not transcribed but

provide sites for attachment of transcription initiation factors. The promoter itself

contains many elements (short regions of a defined DNA sequence) for initiation

factor attachment. The very basic of these elements is the TATA box, which is

present about 25–30 bp upstream of the transcription start site and is primarily

responsible for the correct positioning of RNA polymerase II. Many genes contain

multiple operational TATA boxes, for example, three for inrpk1 gene in Ipomoea
nil (Bassett et al. 2004) and three for phas gene in Phaseolus vulgaris (Grace et al.
2004). It was thought earlier that the absence of TATA box is associated with

constitutively expressing housekeeping genes, but recently TATA box was found to

be absent in some inducible genes as well. Apart from TATA box, CAAT and GC

boxes are also found to be present upstream; they too enhance the activity of RNA

polymerase. Sequence elements like TATA boxes are also referred to as minimal or

core promoter elements.

Along with the core promoter elements, other sequence elements are also found

that provide sites for attachment of specific transcription factors or enhancer

binding protein that trigger transcription of the gene (Alberts et al. 2002). These

sequence elements are also called regulatory elements, enhancer binding elements,

or simply enhancers. Enhancers are consensus DNA sequence motifs and are

5 Levels and Stability of Expression of Transgenes 147



associated with levels, place, and timing of expression in response to internal or

external (biotic or abiotic) factors. Enhancers can be located upstream, down-

stream, within coding regions or even in the intron sequences. One of the chief

factors responsible for control of gene expression at the transcription level is the

activation of enhancer sequences. A few cis-elements have the ability to silence or

repress expression of the gene; these are called silencers. The activities of some of

the plant promoters are summarized in Table 5.1. The table was generated using

TGP, PlantCARE, NCBI, and Plant-Promoter databases for different genes specifi-

cally expressed in plants under the influence of suitable reporters/inducers, resulting

in higher expression.

5.4.1 Types of Promoters and Their Applications
in Transgenic Crops

5.4.1.1 Constitutive Promoters

Constitutive promoters maintain a constant level of activity. The cauliflower

mosaic virus (CaMV) 35S promoter (derived from a DNA viral genome) is proba-

bly the most widely used plant promoter (Odell et al. 1985). Although “constitu-

tive,” many show differences in the level of expression in different tissues. Apart

from delivering very high levels of expression in virtually all regions of the

transgenic plant, the CaMV 35S promoter is easily obtainable for research purposes

as plant transformation vector cassettes that allow for easy subcloning of the insert

transgene of interest.

High levels of transgene expression can be achieved by the CaMV 35S pro-

moter in both monocot and dicot plants (Benfey et al. 1990; Battraw and Hall

1990). The original full-size promoter (�941 to +9) has no significant difference

in activity when compared to a �243 bp fragment. Interaction between the cis-
acting elements within 343 bp upstream of the promoter results in high constitu-

tive expression (Fang et al. 1989). However, tissue-specific individual elements

have also been found (Benfey and Chua 1989). For the control of expression in

specific tissues, two domains “Domain A” (�90 to +8) and “Domain B” (�343 to

�90) are very important. Domain A is involved in expression in roots (Lam et al.

1989), while Domain B contains a conserved GATA motif, very much similar to

the light responsive cis elements of light inducible promoters (Potenza et al. 2004).

Even though CaMV 35S is a very strong promoter, it is strongly down-regulated in

plant parasitic nematode feeding sites (Urwin et al. 1997). With the success of

CaMV 35S promoter, other viral promoters have also been developed. They

include the cassava vein mosaic virus (CsVMV; Verdaguer et al. 1996, 1998; Li

et al. 2001), Australian banana streak virus (BSV; Schenk et al. 2001), mirabilis

mosaic virus (MMV; Dey and Maiti 1999), and figwort mosaic virus (FMV; Maiti

et al. 1997) promoters.
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There are a few limitations in the use of virus-derived promoters: first, the

potential risk to human health from the genes of infective plant viruses (Hodgson

2000), and second, the ability of plant cells to recognize the inserted sequences of

nonplant origin and inactivate them via “transcriptional gene silencing.” Silencing

is less common in promoters of plant origins.

Strong constitutive promoters of plant origin have also been isolated and used

for the development of transgenic plants. Actin, a fundamental cytoskeleton com-

ponent of the cell, is expressed in almost all the cells of a plant. The Act2 promoter,

developed from Arabidopsis showed strong expression in all other parts except the

seed coat, hypocotyl, ovary, and pollen sac (An et al. 1996). Similarly, rice Act1

promoter has also been developed (Zhang et al. 1991). Ubiquitins, a highly con-

served protein family, are linked to many important cellular functions like chroma-

tin structure and DNA repair. Maize ubiquitin 1 promoter (pUbi) has been

successfully used for plant transformation of monocots (Weeks et al. 1993; Gupta

et al. 2001) and has shown high levels of expression in actively dividing cells.

Transgenic plants developed using Ubi.U4 promoter from Nicotiana sylvestris
showed a three-fold higher activity when compared to the CaMV-based promoters.

The ubiquitin-derived promoters perform very well in metabolically and mitotically

active cells.

The constitutive action of a promoter has many drawbacks. Expression (or

overexpression) of the transgene at a place where it is not expressed or expressed

at a wrong time can have severe consequences on the growth and development of

the plant. It can lead to enhanced susceptibility to some pathogens (Berrocal-Lobo

et al. 2002) or decreased growth (Bowling et al. 1997). Another concern is the

development of resistance by target insects against overexpressed toxins like, e.g.,

Bt toxin (Huang et al. 1999). For these reasons, it is ideal to strategically develop

promoters that are “switched on” precisely when they are needed.

5.4.1.2 Nonconstitutive (Tissue-Enhanced) Promoters

Development of a new trait or value-addition of a previously existing one by

genetic engineering requires the development of transgenes that are under control

and expressed in a tissue-specific, developmental, or inducible manner. This will

conserve energy and circumvent the drawbacks associated with constitutive

expression to a large extent. It is more realistic to call these promoters tissue

enhanced rather than tissue specific as their expression may not be confined to a

specific tissue or plant part. Tissue-enhanced gene expression pattern is achieved as

a result of several factors executed at various levels of gene control. Also, the more

distant 50-cis acting enhancer element may be eliminated during isolation of the

promoter, and there may not be effective functional interaction between the

promoter cis-elements with the heterologous trans-acting factors present in the

transgenic host plant. Thus, the development of such promoters can be very

complex and difficult. Because of these complexities, it is preferable to use

promoters from homologous or closely related plant taxa, and knowledge about
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the functionality of both homologous and heterologous promoters in target crop

plants is essential.

Roots

These promoters are of high interest as they can be used for multiple applications.

Expression of proteins responsible for resistance against drought and salt tolerance,

resistance to bacterial (or fungal) pathogens or nematodes (Atkinson et al. 2003),

and phytoremediation (Grichko et al. 2000) can improve crop yield. Although root-

specific promoters have been isolated in plants (Yamamoto et al. 1991; Liu and

Ekramoddoullah 2003), other stress-related studies have identified many candidate

genes and their promoters. In maize, bacterial promoters are more popular (Qing

et al. 2009). Agrobacterium rhizogenes causes hairy root disease in dicots. The

promoters for rooting loci genes (rol) present in the root-inducing (Ri) plasmids are

largely studied because of their root-mediated transformation and expression of the

transgenes. Most important of the rol promoters is the rolD promoter, which has

been much utilized (Stearns et al. 2005; Jayaraj et al. 2008) and extensively used in

nitrogen assimilation studies (Fraisier et al. 2000; Fei et al. 2003). Very high levels

of rolD promoter activity have been reported earlier (Elmayan and Tepfer 1995),

but recently, in a comparative study, it was reported that Arabidopsis ubiquitin

promoter (UBQ3) has the highest expression in roots (Wally et al. 2008). The

domain A (�90 bp upstream) of CaMV 35S also shows root-specific activity

(Benfey and Chua 1989; Benfey et al. 1990).

TobRB7, a putative membrane channel aquaporin, is another valuable plant

based root-specific promoter isolated from tobacco (Yamamoto et al. 1991).

Root-specific activity of this promoter was observed within 2 days of germination.

Recently, a novel gene has been isolated from tomato, having very high expression

levels in roots (SlREO); the 2.4-kb region representing the SlREO promoter

sequence showed strict root specificity (Jones et al. 2008).

Root Nodules

Root nodules are formed as a result of an endosymbiotic association between

Rhizobium and other species of bacteria with leguminous host plants. Within the

nodule, the bacteroids fix atmospheric nitrogen that is used by the plant and in

return, receive carbon substrates from the plant. This type of symbiosis is well

studied. Leghemoglobin is an oxygen-binding protein synthesized in the nodule.

The expression of leghemoglobin coincides with the nitrogen fixation in the nodule.

Thus, this promoter can be used in nodules to increase nitrogen assimilation. The

leghemoglobin promoter glb3 from Sesbania rostrata was expressed in Lotus
corniculatus and tobacco-harboring chimeric glb3-uidA (gus) gene fusions (Szabados

et al. 1990; Szczyglowski et al. 1996). A 1.9-kb fragment of the glb3 50-upstream
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region was found to direct high level of nodule-specific b-glucuronidase (GUS)

activity in L. corniculatus that is restricted to the Rhizobium-infected cells of the

nodules. In tobacco (a nonleguminous plant), the activity was restricted primarily to

the roots and to phloem cells of the stem and petiole vascular system. A deletion

analysis revealed that the region between �429 and �48 bp relative to the ATG was

effective for nodule-specific expression.

Tubers

Tubers are storage organs in roots and are staple food source in many countries of

the world. Improvement of tuber nutrition value, resistance toward infectious

disease and pesticides can be manifested by using tuber-specific expression of

transgenes. Patatins are glycoproteins that are one of the major products found in

potato tuber. These are tuber- specific and can be induced by sucrose (Jefferson

et al. 1990). The patatin promoters Pat1 and Pat2 were used to overexpress

transgenes from the minipathway, of bacterial origin, to drive the synthesis of

b-carotene (Provitamin A) in vitamin-A-deficient tubers of potato (Diretto et al.

2007). To enhance the metabolism of the environmental contaminants in tubers the

rat P450 monooxygenase gene (CYP1A1) was overexpressed in tubers of potato,

also under the control of patatin promoter (Yamada et al. 2002). High transgene

expression was seen in developing tubers, and the amount of residual herbicides

was much lower than that in nontransgenic plants, indicating that the transgenic

plant metabolized and detoxified the herbicides. The processing quality of potato

products (fries and chips) was increased by overexpressing transgenes in potato

tuber under the control of TSSR (tuber-specific and sucrose-responsive) sequence

from potato class I patatin promoter (Zhu et al. 2008). It was also demonstrated

that tuber-specific expression of the native and slightly modified MYB transcrip-

tion factor gene StMtf1(M) activates the phenylpropanoid biosynthetic pathway.

The transgenic potato tubers contained four-fold increased levels of caffeoylqui-

nates, including chlorogenic acid while also accumulating various flavonols and

anthocyanins (Rommens et al. 2008). An 800-bp 50 upstream sequence of the

granule-bound starch synthase (GBSS) gene from potato was highly expressed in

stolons and tubers (Visser et al. 1991), where the activities of the transgene in

these two organs were 3–25-fold higher than the expression of the CaMV-GUS
gene. The GBSS gene promoter was also used to obtain tuber-specific high

expression of AmA1, a nonallergenic seed albumin gene from Amaranthus hypo-
chondriacus in potato (Chakraborty et al. 2000). Two promoters, sporamin and

b-amylase, have been well characterized in sweet potato (Maeo et al. 2001). The

sweet potato sporamin promoter was found to control the expression of the E. coli
appA gene in transgenic potato, which encoded a bifunctional enzyme exhibiting

both acid phosphatase and phytase activities (Hong et al. 2008). Phytase expres-

sion levels in transgenic potato tubers were stable over several cycles of

propagation. The study demonstrated that the sporamin promoter can effectively

direct high-level recombinant protein expression in potato tubers. Moreover,
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overexpression of phytase in transgenic potato offers an ideal feed additive for

improving phytate-Phosphorous digestibility in monogastric animals along with

improvement of tuber yield, enhanced Phosphorous acquisition from organic

fertilizers, and has a potential for phytoremediation.

Leaves

The light received in the environment can be roughly categorized as UV, visible,

and far red. Three classes of photoreceptors have been identified in higher plants:

red light and far-red light absorbing phytochromes (PHYs), blue-light receptors,

and UV-light receptors. In Arabidopsis, five members compose the PHY family of

photoreceptors (PHYA-E) and at least three different blue light photoreceptors have

been identified [cryptochromes (CRYs), NPH1, and NPL1] (Martı́nez-Hernández

et al. 2002). These photoreceptors, with association of other molecular systems

(transcription factors), control the expression of many genes at the transcriptional

and post-transcriptional level. Two important transcription factors are basic Leucine

zipper factor HY5 (Oyama et al. 1997) and bHLH factor PIF3 (Martı́nez-Garcı́a

et al. 2000).

The photosynthesis-associated nuclear genes (PhANGS), like the chlorophyll

a/b-binding proteins (Cab) and the small subunit of Rubisco (RbcS), contain a

number of cis-acting elements, the transcription of which is controlled by light.

Some of the motifs like G, I, and GTI boxes are found in the promoter regions of

many light-regulated genes (Giuliano et al. 1988; Green et al. 1988; Menkens et al.

1995). The LS5-LS7 region from the Lemna gibba Cab19 gene (Kehoe et al. 1994)
and the CGF-1 factor-binding site from the Arabidopsis CAB2 gene (Anderson and

Kay 1995) contain the GATA and GT-1 sequences; still these two regions are

unable to activate transcription, thus suggesting that additional regulatory elements

are involved. This has led to the general hypothesis that light-responsive elements

(LREs) are formed by the aggregation of different transcription factors. It has also

been shown that artificial sequences composed of paired combinations of tetrameric

repeats of G- and GATA boxes or GT1- and GATA-boxes, but not multimers of a

single motif, function as LREs (Puente et al. 1996). Monocot rbcS promoters have

different cis-acting elements and have different patterns of spatial expression than

dicots. The C3 rbcS is specifically expressed in mesophyll cells, while the C4 rbcS

is expressed in bundle sheath cells, and not in mesophyll cells (Nomura et al. 2000;

Patel and Berry 2008). Overexpression of Arabidopsis phytocrome A (PHYA),

under the control of rbcS promoter, in commercially important rice varieties

produced an increased number of panicles per plant (Garg et al. 2006). In an attempt

to obtain high-level production of intact Acidothermus cellulolyticus endoglucanase
(E1) in transgenic tobacco plants using the constitutive (Mac) as well as light-

inducible tomato Rubisco small subunit promoter (RbcS-3C), it was observed that

RbcS-3 promoter was more favorable for E1 expression in transgenic plants than

the Mac promoter (Dai et al. 2005). Moreover, by replacing RbcS-3C UTL with

AMV RNA4 UTL, E1 production was enhanced more than two-fold. In a
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comparative study of the expression pattern of heterologous RbcS, RbcS3CP

(0.8 kbp) from tomato, SRS1P (1.5 kbp) from soybean, and CaMV 35S in apple,

it was found that the activity of SRS1P promoter was strictly dependent on light,

whereas that of the RbcS-3C promoter appeared not to be so (Gittins et al. 2000).

Later rolCP and CoYMVP were used for expression in vegetative tissues of apple;

the CoYMV promoter was slightly more active than the rolC promoter, although

expression was at a lower level than the CaMV 35S promoter (Gittins et al. 2003).

The results indicated that both promoters could be suitable to drive the expression

of transgenes to combat pests and diseases of apple that are dependent on interac-

tion with the phloem.

The Cab proteins are highly expressed in green tissues and are often associated

with other proteins to form the light-harvesting complex (Lhc). The expression

pattern of the Cab gene in plants is different from that of the RbcS under certain

physiological conditions as response to light quality and diurnal rhythm is different

between these two genes (Ha and An 1988). Upon analysis of regulatory elements

of Cab-E gene from Nicotiana plumbaginifolia, three positive and one negative

cis-acting elements that influence photoregulation were found and of the three

positive promoters two (PRE1 and PRE2) confer maximum level of photoregula-

tion (Castresana et al. 1988). Tobacco plants when transformed with a chimeric

gene encoding the A1 subunit of cholera toxin regulated by wheat Cab-1 promoter

greatly reduced susceptibility to the bacterial pathogen Pseudomonas tabaci (Beffa
et al. 1995).

Both RbcS and Cab are members of a multigene family and are expressed at very

high level in green tissues (especially leaves), but many genes within the family

contribute to the total protein content. Thus, the level of transgene expression is

potentially dependent on the gene promoter used, so a strong green tissue-specific

promoter from a single gene family will be most valuable.

Flowers

A substantial economic market has developed for cut flowers. Floral-specific

promoters are therefore important for use in engineering transgenic flower varieties

that may enhance vase life, visually appealing character of the flowers (reviewed by

Mol et al. 1999) along with fragrance of interest and resistance to pests (Dolgov

et al. 1995). The UEP1 promoter from Chrysanthemum when fused with a reporter

gene (GUS) and transformed back into Chrysanthemum showed very high levels of

expression in ray florets and three-fold lower expression in disk florets (Annadana

et al. 2002). The activity of UEP1 promoter in ray florets is limited to petal tissues

and does not extend into the tube of the petal or the sexual whorls of the floret. The

promoter had 50-fold higher expression when compared with double CaMV-based

promoters in petal tissues of ray florets (Annadana et al. 2002). This study also

showed that CER6 promoter, associated with the wax biosynthesis pathway, had

very high expression in ray florets, but the expression was much variable when

compared to the UEP1 promoter.
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Flavonoids are common color pigments in flowers and also perform many

other functions including signaling and UV-protection. Engineering of the flavo-

noid biosynthetic pathway has led to the development of blue carnations (Holton

1995) and blue roses (Katsumoto et al. 2007). Chalcone synthase (CHS) genes as

well as promoters have been studied extensively. The French bean CHS15

promoter showed expression in flowers and root tips of transformed tobacco

plants (Faktor et al. 1996). In flowers, expression was confined to the pigmented

part of petals and was induced in a transient fashion. Floral and root-specific

expression required two conserved motifs, G-box and H-box, located near the

TATA box. To evaluate the tissue-specific role of these motifs, a 39-bp DNA

fragment containing the two motifs was prepared and fused with minimal pro-

moters of CHS15 and CaMV 35S along with a marker gene (GUS). Tobacco
plants were transformed and it was observed that the 39-bp polymer confers, upon

both minimal promoters, a high level of expression that follows the typical tissue-

specific expression pattern (Faktor et al. 1997). A chromoplast-specific caroten-

oid-associated gene (OgCHRC) and its promoter (Pchrc) was isolated from an

orchid species (Oncidium), which showed very high and had flower-specific

expression (Chiou et al. 2008).

Pistils

Pistil comprises the female part of the flower and includes stigma, style, and ovary.

Identification of ovule-specific promoters is useful for the genetic engineering of

crops with a variety of desirable traits, such as genetically engineered partheno-

carpy, female sterility, or seedless fruits. The SK2 gene from Solanum tuberosum
encodes a pistil-specific endochitinase; the promoter from this gene was fused with

a reporter (GUS) and when transformed back into potato, high-level expression

specific to pistil was observed (Ficker et al. 1997). The 2.4-kb 50-flanking region of
the pistil-specific thaumatin gene (PsTL1) from Japanese pear, when transformed in

tobacco, showed high expression in pistil, low in anther, and no detectable expres-

sion in the floral organs or the leaves. The promoter for Arabidopsis AGL11 gene,

when transformed back into Arabidopsis, showed high expression in the center of

the young ovary, while expression was not seen in vegetative plant tissues, sepals,

petals, or androecium (Nain et al. 2008).

Pollen/Anther

Anther as well as pollen-specific expression can be classified into “early” and “late”

phases. The “early” phase comprises genes that are expressed during anther devel-

opment and sporophytic tissue formation, while “late” phase involves expression

during gametophyte generation and pollen formation/maturation. The 122-bp

50 region of a tapetum-specific gene (TA29) isolated from tobacco programmed
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tapetum-specific expression as seen by fusing this promoter with a reporter (Koltunow

et al. 1990). The expression increased in the developing anther and decreased as the

microspores began to mature into pollen. The TA29 promoter, fused with RNase

(barnase), has been used to develop nuclear male-sterile plants (Mariani et al.

1990). In a comparative analysis, expression patterns of Bp4 promoter from

rapeseed and the NTM19 promoter from tobacco were studied in transgenic

tobacco (Custers et al. 1997). The Bp4 promoter became active only after the

first pollen mitosis and not in the microspores, while the NTM19 promoter turned

out to be highly microspore specific and directed very high level of GUS expres-

sion to the unicellular microspores; more importantly both the promoters were

expressed only in the male germline (Custers et al. 1997). In indica rice, promoter

of OSIPA was active during the late stages of pollen development and remained

active till anthesis, whereas OSIPK promoter was active at a low level in develop-

ing anther till the pollen matured. OSIPK promoter activity diminished before

anthesis. Both the promoters showed a potential to target expression of the genes of

interest in developmental stage-specific manner and could help engineer pollen-

specific traits in transgenic crops (Gupta et al. 2007). The anther- and tapetum-

specific gene TomA108 was present in as single copy per haploid genome of

tomato. The fusion of b-glucuronidase to the TomA108 promoter demonstrated

that the promoter was highly active from early meiosis to free microspores produc-

tion in tapetum of tobacco (Xu et al. 2006).

Recently, a gene from pea, PsEND1, showed very high and early expression in

anther primordium cells. Later PsEND1 expression became restricted to the epider-

mis, connective, endothecium, and middle layer, but it was never observed in

tapetal cells or microsporocytes. On fusion of the PsEND1 promoter region to the

cytotoxic barnase gene to induce specific ablation of the cell layers, where the

PsEND1 was expressed it produced male-sterile plants in tobacco and tomato

(Roque et al. 2007). The PsEND1-barnase gene is quite different from other

chimeric genes previously used to obtain male-sterile plants. The tapetum-specific

promoter produces the ablation of specific cell lines during the initial steps of the

anther development, but this chimeric construct (PsEND1-barnase) arrests the

microsporogenesis before differentiation of the microspore mother cells and so,

no viable pollen grains are produced. This strategy represents an excellent alterna-

tive to generate genetically engineered male-sterile plants. The PsEND1 promoter

has high potential to prevent undesirable horizontal gene flow in many plant species

(Roque et al. 2007). Two anther-specific cDNAs (designated GhACS1 and

GhACS2) encoding acyl-CoA synthetases (ACSs) isolated from cotton flower

cDNA library were seen to accumulate in developing anthers. GUS expression

controlled under the GhACS1 promoter showed high and specific expression in

primary sporogenous cells, pollen mother cells, microspores, and tapetal cells

(Wang and Li 2009).

Compared to “early” phase genes a few “late” phase genes have also been

characterized. The promoter of tomato Lat52 gene showed pollen-specific activity
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when transformed to tomato, tobacco, and Arabidopsis plants. Its expression was

also correlated with the onset of microspore mitosis and increased progressively

until anthesis (Twell et al. 1990). The elements necessary for expression in trans-

genics were present within 600 bp of the 50 flanking region. The promoter sequence

of BAN215-6 gene from Chinese cabbage (Brassica campestris) showed high simi-

larity with the Lat52 gene (Kim et al. 1997). Expression studies, by Agrobacterium-
mediated transformation of tobacco plants, revealed that 383 bp of the BAN215-6
promoter region was sufficient for the anther-specific expression. The expression

level was increased during anther development, reaching highest levels in mature

pollens (Kim et al. 1997). The promoter of a maize pectin methytransferase gene

(ZmC5) was found to be expressed specifically in late pollen development when

transformed to tobacco plants (Wakeley et al. 1998). By genome walking PCR, a

novel b-mannase gene (LeMAN5) was discovered in tomato, which is involved

in cell wall disassembly and degrading mannan polymers. The 50-upstream region

of this endo-b-mannanase gene contained four copies of the pollen-specific cis-
acting elements POLLEN1LELAT52 (AGAAA). The expression of the putative

LeMAN5 promoter region (�543 to +38) in transgenic Arabidopsis was detected
in mature pollen, sporangia, discharged pollen, and elongating pollen tubes

(Filichkin et al. 2004).

Fruit

Fruits are one of the best delivery vehicles for value-added nutrients and other

characters like increasing shelf-life, development of oral vaccines, etc. and there

has always been a need for fruit-enhanced gene expression. The promoters of

fruit-specific genes, especially fruit ripening genes, have been sought after. The

ACC (1-aminocyclopropane-1-carboxylate) oxidase gene, the E8 gene, and poly-

galacturonase (PG) genes are all fruit-ripening-specific promoters and have been

characterized from apple and tomato (Montgomery et al. 1993a,b; Nicholass et al.

1995; Atkinson et al. 1998). The ACC oxidase gene is induced by application of

ethylene, and fragments of 1,966 and 1,159 bp of the 50 region showed both fruit

and ripening specificity, whereas for the PG gene promoter, fragments of 1,460

and 532 bp conferred ripening-specific expression in transgenic tomato fruit

(Atkinson et al. 1998). The promoter of the E8 gene of tomato is by far the

most important fruit-ripening-specific promoter. It has been successfully applied

in a number of instances including enhancement of aroma of tomato by expressing

Clarkia breweri S-linalool synthase gene (LIS) (Lewinsohn et al. 2001), fruit-

specific expression of viral proteins (Sandhu et al. 2000), and cholera toxin gene

(CTB) in an effort to make edible vaccines (He et al. 2008). The tomato PG gene is

also associated with fruit ripening and its promoter was successfully employed to

overexpress a bacterial phytoene synthase gene resulting in increased carotenoid

content (Fraser et al. 2002) and a lemon basil a-zingiberene synthase gene (ZIS) in
tomato fruit to increase both mono- and sesqui-terpene contents (Davidovich-

Rikanati et al. 2008).
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Seeds

Like fruits, seeds are also an excellent vehicle to pack transgenic products. Seed-

specific transgenic technology can be used to enhance nutrient quality, production

of pharmaceutical compounds, edible vaccines, etc. The genes expressed at very

high level in the seeds are seed storage proteins and these have become the target

of choice. Promoters for dicots as well as monocots have been extensively studied

and several seed-specific elements have been characterized. The promoter region

of soybean b-conglycinin was expressed in the embryo during the mid to late

stages of seed development (Chen et al. 1989). The 2.4-kb upstream region of the

sunflower Helianthinin gene (HaG3-A) also conferred high embryo-specific

expression in transgenic Arabidopsis (Nunberg et al. 1994). The 0.8-kb fragment

of the 50 b-phaseolin gene of French bean (Phaseolus vulgaris) showed strong,

temporally regulated, and embryo-specific expression in transgenic tobacco plants

(Bustos et al. 1989). The expression pattern of the promoter fragment (1,108 bp)

of the a-globulin gene in cotton was studied in transgenic cotton, Arabidopsis, and
tobacco. Expression was initiated during the torpedo stage of seed development in

tobacco, Arabidopsis, and during cotyledon expansion stage in cotton. The acti-

vity increased sharply until embryo maturation in all the three species. Expression

was not detected in stem, leaf, root, pollen, or floral bud of transgenic cotton, thus

confirming the high seed specificity of the promoter (Sunilkumar et al. 2002).

For monocots, several seed-specific promoters have been used successfully to

incorporate many traits. The promoter region of the endosperm-specific protein

hordein (D and B hordein) from barley has been well characterized in transgenic

rice, barley, and wheat (Furtado et al. 2008, 2009). Six promoters (GluA-1, GluA-2,

GluA-3, GluB-3, GluB-5, GluC) of seed storage glutenin genes were isolated from

rice and their expression potential was checked in transgenic rice. The GluA-1,

GluA-2, and GluA-3 promoters directed expression in the outer portion of the

endosperm, while GluB-5 and GluC promoters directed expression in the whole

endosperm. The GluB-3 promoter directed expression solely in aleurone and sub-

aleurone layers, while maximum activity was pertained to the GluC promoter

(Qu et al. 2008). Recently, edible vaccines are being made in transgenic rice against

house dust mite allergy (Yang et al. 2008) and Japanese cedar pollen allergen (Yang

et al. 2007) under the control of GluB-1 promoter and cholera toxin B subunit under

the control of wheat Bx17 promoter containing an intron of the rice act1 (Oszvald

et al. 2008). The zein promoters from maize have been used for many applications.

Transgenic maize with enhanced provitamin A content in the kernel was developed

by endosperm-specific expression of the bacterial genes (crtB and crtI) under the
control of a “super g-zein promoter” (Aluru et al. 2008). Increase of total carote-

noids was up to 34-fold with a preferential accumulation of b-carotene in the maize

endosperm. The phyA2 from Aspergillus niger was successfully expressed in maize

seeds using the maize embryo specific globulin-1 promoter. The transgenic seeds

showed a 50-fold increase in phytase activity (Chen et al. 2008). The developed

maize hybrids had improved phosphorus availability for pig and poultry feed.

5 Levels and Stability of Expression of Transgenes 163



5.5 Factors Affecting Stability and Level of Transgene

Expression

5.5.1 SAR/MAR Effect on Transgene Expression

Transgenic plants often display the chromosomal position effect, which results

because of transgene integration events taking place within euchromatin, producing

irregular and mixed expression. The pre-existing chromatin structure at the site of

integration ultimately determines the expression level, acting either as an enhancer

or as a silencer (Taddei et al. 2004). The chromosomal position effect can be

prevented if the transgene is flanked by matrix attachment regions (MARs) also

known as scaffold attachment regions (SARs) which are DNA elements that bind to

the nuclear matrix (Mirkovitch et al. 1984; Allen et al. 2000). The location of

MARs within transcription regulatory elements suggests that MARs may serve to

bring these DNA sequences in proximity to the scaffold, thereby promoting

enhancer and promoter activity by facilitating interaction with transcription factors

(Nardozza et al. 1996). This inference is supported by loop domain model studies in

which different expression profiles were observed on comparative analysis of

transgenes that were flanked by MARs and those lacking it. Transgenes lacking

MARs are influenced much by the surrounding chromatin structure; their expres-

sion levels are also dependent on local chromatin state. Transgenes that are flanked

by MARs act independent of local chromatin state; thus, multiple copies of MAR-

flanked transgene insertion might proportionally increase expression (Gasser and

Laemmli 1986; Stief et al. 1989).

During gene activation chromatin structure becomes relaxed and the DNA is

more accessible to DNase I. MARs that flank the chromatin loop domain function

as the boundaries to differentiate active from inactive chromatin (Martienssen

2003). Later, on the basis of this inference, comparative study of the higher order

chromatin structure and their accessibility to DNase I was performed in Arabidopsis
and maize nuclei resulting in 45-Kb and 25-Kb domains, respectively, (Paul and

Ferl 1998). It was reported that transgenic plants containing the synthetic MAR

(sMAR) sequences derived from the MAR 30 end of the immunoglobulin heavy

chain (IgH) enhancer, exhibited high levels of expression compared to transgenic

plants that lacked the sMARs (Nowak et al. 2001). A diversity of promoters and

MAR sequences has been used to analyze transgene expression. Mankin et al.

(2003) analyzed the effects of a MAR, from the tobacco RB7 gene on transgene

expression from six different promoters in stably transformed tobacco cell cultures.

The presence of MARs flanking the transgene increased expression of constructs

based on the constitutive CaMV 35S, NOS (nopaline synthase 50 region), and
OCS (octopine synthase 50 region) promoters (Mankin et al. 2003). Expression

from a heat-shock induced promoter also increased five- to nine-folds, and MARs

did not cause expression in the absence of heat shock (Schöffl et al. 1993). The

effect of MAR fragments from tobacco gene transformed to two hybrid poplar
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clones and in tobacco plants was analyzed and found that MARs increased expres-

sion approximately ten- and two-fold, respectively, 1 month after cocultivation with

Agrobacterium. Apart from gene expression, increased frequency of kanamycin

resistance was also reported in poplar shoots (Han et al. 1997).

Different studies on MAR function in plant transgene expression provided

interesting conclusions. The effect of MAR on transgene expression is analyzed

only after the integration of transgene construct within plant genome. Enhancement

of transgene expression has been reported in MARs containing stably transformed

plant cell lines of soybean Gmhsp 17.6.L (Schöffl et al. 1993), yeast ARS1 (Allen

et al. 1993; Vain et al. 1999), tobacco and rice Rb7 (Allen et al. 1996), tomato

HSC80 (Chinn and Comai 1996), bean phaseolin (van der Geest et al. 1994), maize

Adh1, Mha1 (Brouwer et al. 2002), and Arabidopsis ARS (Liu and Tabe 1998).

In a nutshell, MARs are not highly conserved but possess AT-rich DNA motifs

of 100–3,000 bp containing binding sites for DNA topoisomerase II, DNA helicase,

and DNA polymerase and thus are involved in structural organization of the

genome. The loops created by MARs are topologically independent units of gene

regulation and were found to facilitate the transcription of genes by changing

topology along with less-condensed chromatin structure. The transgene constructs

containing MARS are observed to create its own chromatin domain favorable for

transcription; thus, MARS can reduce variability of transgene expression and

increase level of expression.

5.5.2 Effect of 50 and 30 UTR Regions

The use of a specific promoter, with or without one or more enhancers, does not

necessarily guarantee the desired level of gene expression in plants. In addition to

the desired transcription levels, other factors such as improper splicing, polyade-

nylation, and nuclear export can affect accumulation of both mRNA and the protein

of interest. Therefore, methods of increasing RNA stability and translational effi-

ciency through mechanisms of post-transcriptional regulation are needed in the

transgenic approach.

With regard to post-transcriptional regulation, it has been demonstrated that

certain 50 and 30 untranslated regions (UTRs) of eukaryotic mRNAs play a major

role in translational efficiency and RNA stability. For example, the 50 and 30 UTRs
of tobacco mosaic virus (TMV) and alfalfa mosaic virus (AMV) coat protein

mRNAs can enhance gene expression 5.4-fold and three-fold, respectively, in

tobacco plants (Zeyenko et al. 1994). The 50 and 30 UTRs of the maize alcohol

dehydrogenase-1 gene (adh1) are required for efficient translation in hypoxic

protoplasts (Bailey-Serres and Dawe 1996; Hulzink et al. 2002).

Experiments with various 50 UTR leader sequences demonstrate that various

structural features of a 50 UTR can be correlated with levels of translational

efficiency. It was reported that 50 UTR elements are required for the high-level

expression of pollen ACT1 gene in Arabidopsis (Vitale et al. 2003). During the
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process of initiation of translation 40S ribosomal subunit enters at 50 end of the

mRNA and moves linearly until it reaches the first AUG codon, whereupon a 60S

ribosomal subunit attaches and the first peptide bond is formed. Certain 50 UTR
contain AUG codons in mRNA, which interact with 40S ribosomal subunit result-

ing in a weak context in terms of initiation codon, thus decreasing the rate of

translation (Kozak 1991; Lee et al. 2009; Luttermann and Meyers 2009). Addition-

ally, the 50 UTR nucleotide sequences flanking the AUG initiation site on the

mRNA have an impact on translational efficiency. If the framework of the flanking

50 UTR is not favorable, part of the 40S ribosomal subunit fails to recognize the

translation start site such that the rate of polypeptide synthesis will be slowed down

(Kozak 1991; Pain 1996). Secondary structures of 50 UTRs (e.g., hairpin formation)

also obstruct the movement of 40S ribosomal subunits during their scanning

process and therefore negatively impact the efficiency of translation (Kozak

1986; Sonenberg and Pelletier 1988). The relative GC content of a 50 UTR sequence

was shown to be the stability indicator of the potential secondary structure, high GC

content indicated instability (Kozak 1991), and long UTRs exhibit a large number

of inhibitory secondary structures. The translational efficiency of any given 50 UTR
is highly dependent upon its particular structure and optimization of the leader

sequence, which has been shown to increase gene expression as a direct result of

improved translation initiation efficiency. Furthermore, significant increase in gene

expression has been produced by addition of leader sequences from plant viruses or

heat-shock genes (Datla et al. 1993).

In addition to 50 UTR sequences, 30 UTR sequences of mRNAs also influence in

gene expression and known to control nuclear export, polyadenylation status,

subcellular targeting, and rates of translation and degradation of mRNA from

RNases. In particular, 30 UTRs contain one or more inverted repeats that can fold

into stem-loop structures, which act as a barrier to exoribonucleases, and interact

with RNA-binding proteins known to promote RNA stability (Gutiérrez et al.

1999). However, certain elements found within 30 UTR were reported to be RNA

destabilizing, one such example occurring in plants is the DST element which can

be found in small auxin up RNAs (SAURs) (Gil and Green 1996). A further

destabilizing feature of some 30 UTRs is the presence of AUUUA pentamers

(Ohme-Takagi et al. 1993).

The 30 UTRs were demonstrated to play a significant role in gene expression of

several maize genes. Specifically, a 200-bp 30 sequence is responsible for suppres-
sion of light induction of maize small m3 subunit of the ribulose-1, 5-biphosphate

carboxylase gene (rbc/m3) in mesophyll cells (Viret et al. 1994). Monde et al.

(2000) observed that the pet D30-UTR stem loop secondary structure was not able to

form RNA-protein complex, essential for translational activity and thus acted as

weak terminator required for RNA maturation. One 30 UTR frequently used in

genetic engineering of plants is derived from nopaline synthase gene (30 nos)
(Wyatt et al. 1993).

In certain plant viruses, such as alfalfa mosaic virus (AMV) and tobacco mosaic

virus (TMV), the highly structured 30 UTRs are essential for replication and can be

folded into either a linear array of stem-loop structures, which contain several high-
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affinity coat protein binding sites or a tRNA-like site recognized by RNA-dependent

RNA polymerases (Olsthoorn et al. 1999).

5.5.3 Effect of Introns

Introns are the intragenic regions that are not translated into proteins. These

noncoding portions are present in pre-mRNA and further removed by splicing

to yield mature RNA. Introns contain acceptor and donor sites at either end as

well as a branch point site, which is required for proper splicing by the

spliceosome. The number and the length of introns vary widely among species

and among genes within the same species. Introns with alternative splicing may

introduce greater variability in protein sequences translated from a single gene.

Introns also enhance the level of transgene expression in plants (Callis et al.

1987).

Recent studies provided several examples of introns, whose impact on expres-

sion is larger than that of the promoter from the same gene. Many genes with

fully functional promoter are not essentially expressed at all but require an

intron for their expression. A study in Arabidopsis showed that PRF2 intron is

required for full expression of a PRF2 promoter and the b-glucoronidase (GUS)
and also to convert PFR5:GUS fusion from a reproductive to vegetative pattern

(Jeong et al. 2006). Introns can increase the expression level through their

enhancer element, an alternative promoter activity, or it can be independent of

their conventional enhancer elements, i.e., intron-mediated enhancement (IME).

The second intron of Arabidopsis agamous gene (AG) is a well-characterized

enhancer-containing intron that can function in both orientations to force the

expression of a reporter from a minimal promoter. The Arabidopsis AG, STK,
FLC introns and wheat VRN-1 intron act as enhancers. All these introns are large

in size providing sufficient room for controlling elements and allow the estab-

lishment of stable chromatin conformation required for appropriate expression

(Rose 2008).

The studies conducted by Morello et al. (2002, 2006) revealed the role of

intron as an alternative promoter in rice. Presences of introns in promoterless

genes drive weak expression; these introns are considered to contain promoters

that are responsible for expression. The first intron acts as the alternative

promoter as observed in Ostub16 and OsCDPK2 in rice, PpAct1 and PpAct5 in

Physcomitrella patens and sesame, and FAD2 in Arabidopsis (Kim et al. 2006;

Weise et al. 2006).

IME of gene expression in plants indicates that the insertion of one or more

introns in a gene construct results in increased accumulation of mRNA and protein

relative to similar fusions that lack introns (Mascarenhas et al. 1990). The deletion

studies of different introns such as maize Adh1, Sh1 first intron, rice Ostub A1 first

intron, Arabidopsis TRP1 first intron and PRF2 intron1 revealed that no specific

sequences were absolutely required and no conserved motif was found between
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enhancing introns (Rose 2008). Sequence analog studies showed enhancement can

be restored by substituting the U/GC-rich region of intron with similar sequence

analog from another part of intron (Rose 2002). The mutation studies in Arabidopsis
TRP1 intron1 and maize Sh1 intron1 revealed that IME is destroyed by simultaneous

elimination of branch-points and the 50 splice site, further indicating that splicing

machinery is required for IME (Rose 2002). Additionally, the positions of introns

also influence IME on gene expression. The most prominent is the location of the

intron within the gene, i.e., the introns present in 50 UTR of the rice rubi3 gene was
shown to enhance expression (Lu et al. 2008). The other significant position of

intron is near the starting of the gene (Rose 2004; Chung et al. 2006). Presently,

there are several examples of introns (e.g., first intron of OsTua2, OsTua3, OsTub4,
and OsTub6) that can greatly influence both the amount and the actual size of the

expression, attributing different patterns of expression to the different intron iso-

types, thus generating the intron-dependent spatial expression (IDSE) profile (Gianı̀

Table 5.2 Introns affecting transgene expression in different plants

Intron Specificity Remark Reference

COX 5c-1 Arabidopsis Increased GUS expression level Curi et al. (2005)

COX 5c-2
Ubi7 Potato Ten-fold higher expression Garbarino et al. (1995)

Adh1 Maize 40–100-fold increase in

expression

Callis et al. (1987)

Act1 Arabidopsis High level of reproductive

tissue expression

Vitale et al. (2003)

RBCS2 Chlamydomonas
reinhardtii

Stable high-level expression Lumbreras et al. (1998)

reg A3 Volvox carteri Required for regA expression Stark et al. (2001)

regA5
STK Arabidopsis Intron-mediated promoter

expression in ovules and

septum

Kooiker et al. (2005)

VRN-1 Wheat Essential for promoter activity Fu et al. (2005)

Ostub 16 Rice Required for maximum

promoter activity

Morello et al. (2002)

OsCDPK 2 Rice Required for promoter activity Morello et al. (2006)

PpAct 1 Physcomitrella
patens

11–18-fold higher expression Weise et al. (2006)

PpAct 5
PpAct 7
Sh1 Maize 10–1,000-fold enhanced

expression

Maas et al. (1990, 1991)

Gap A1 Maize Required for full promoter

activity

Donath et al. (1995)

Actin 3rd intron Maize IME Luehrsen and Walbot

(1991)

Hsp81 Maize IME Sinibaldi and Mettler

(1992)

Act 1 Rice IME McElroy et al. (1990)

tpi Rice Required for promoter activity Xu et al. (1994)
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et al. 2009). The specificity of introns acts as enhancer, and alternative promoter, or

mediates enhancement on the basis of their numbers and position in a gene con-

struct. Some of the introns with defined specificity have been summarized in

Table 5.2.

5.5.4 Role of Transcription Factors

Transcription factors are sequence-specific DNA-binding proteins that interact with

the promoter regions of the target genes and modulate the rate of initiation of

mRNA synthesis by RNA polymerase II (Gantet and Memelink 2002). The role of

transcription factors in transgene expression is studied by overexpression and

antisense technology. For highly conserved transcription factors such as MADS-

box or the Myb-like transcription factors, generation of antisense plant is difficult

since the target requires an antisense RNA homology of over 50 bp, which is not

preferred. Also, due to the presence of highly conserved regions, the specificity of

antisense RNA is significantly reduced (Cannon et al. 1990). High-level expression

of a transcription factor in a transgenic plant cell might favor the binding of the

transcription factor to low affinity binding sites and result in activation of gene

expression from noncognate promoters.

To study the effect of transcription factor on transgene, the steroid-binding

domain of the glucocorticoid receptor is fused to a plant transcription factor. The

absence of ligand represses nuclear localization and DNA-binding activities of

transcription factor. After induction, repression is relieved and active protein can

rapidly enter the nucleus and exert its transcription factor function. A glucocorticoid-

responsive GAL4-VP16 fusion protein has been used to induce the activation of a

luciferase reporter gene in transgenic Arabidopsis and tobacco plants, either by

growing the plants on nutrient agar containing dexamethasone or by spraying the

plants with the inducing compound (Aoyama and Chua 1997).

The Arabidopsis transparent testa glabra (ttg) mutant plants are not able to

produce trichomes, anthocyanins, and seed coat pigment but generate excess root

hairs. Production of trichomes and anthocyanins could be restored by overex-

pression of the maize transcription factor R in a constitutive and inducible manner

(Lloyd et al. 1994). An interaction study carried out between transcription factor

(myb305) and its promoter-binding site in PAL2 in transgenic tobacco plant

revealed that when leaves were inoculated with a PVX-construct expressing

Myb305 reporter gene, expression increased (Sablowski et al. 1995). Thus, the ectopic
expression ofMyb305 in infected tissue incites the higher expression ofGUS reporter
gene in transgenic tobacco plant with nonmutant PAL2 promoter element.

Synthetic transcription factors are an assembly of multiple zinc finger domains

designed to achieve better regulation of gene expression. It is estimated that Arabi-
dopsis contains 85 genes that encode zinc finger transcription factors (Riechmann

and Ratcliffe 2000). Such synthetic zinc finger transcription factors (TFsZF) can
be custom designed for binding to any DNA sequence (Segal and Barbas 2001).
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Furthermore, the addition of herpes simplex virus VP16 activation domain to the

polydactyl six-zinc finger protein 2C7 increased the expression more than 450-fold

in transgenic plants (Liu et al. 1997). Later, Van Eenennaam et al. (2004) con-

structed five, three-finger zinc finger protein (ZFP) DNA-binding domains which

tightly bound to 9-bp DNA sequences located on either the promoter or the coding

region of the Arabidopsis GMT gene. When these ZFPs were fused to a maize

opaque-2 nuclear localization signal and the maize C1 activation domain, four out

of the five resulting ZFP-TFs were able to up-regulate the expression of the

GMT gene in leaf protoplast transient assays. The seed-specific expression of these

ZFP-TFs was reported to produce heritable increase in seed a-tocopherol level in
subsequent generations of transgenic Arabidopsis.

The transcription factors, R and C1, interact to regulate anthocyanin biosynthesis
in the maize kernel (Grotewold et al. 2000). In a recent study, it was reported that

ectopic expression of a conifer Abscisic Acid Insensitive 3 (ABI3) transcription

factor induced high-level synthesis of recombinant human a-L-iduronidase gene in
transgenic tobacco leaves (Kermode et al. 2007). Transgenic rice with DREB
1s/CBF or OsDREB 1A/1B transcription factor interact specifically with DRE/CRT
or OsDRE cis-acting elements and control the expression of many stress-inducible

genes (Ito et al. 2005). In continuation, Zhao et al. (2009) reported on the role of

transcription factors on abiotic stress where the expression of yeast YAP1 gene in

transgenic Arabidopsis resulted in increased salt tolerance. The YAP1 contains a

basic leucine zipper domain similar to that of Jun (Moye-Rowley et al. 1989), which

is a component of mammalian AP-1 transcription factor complexes. Nuclear YAP1
regulates the expression of up to 70 genes that are related to oxidative stress caused

by high salinity (Zhao et al. 2009).

5.5.5 Effect of DNA Acetylation and Methylation

The interaction of histones with DNA plays an important role in chromatin

remodeling and consequently the activation or repression of gene expression

(Tian et al 2005). Intrinsic histone acetyltransferases (HATs) and histone deace-

tylases (HDs, HDAs, HDACs) drive acetylation and deacetylation, respectively,

thus providing a mechanism for reversibly modulating chromatin structure and

transcriptional regulation (Jenuwein and Allis 2001). Hyperacetylation relaxes

chromatin structure and activates gene expression, whereas hypoacetylation

induces chromatin compaction and gene repression. Histone acetylation and

deacetylation are reversible and therefore play a significant role in transcriptional

regulation associated with developmental programs and environmental condi-

tions. These include day-length (Tian et al. 2003), flowering (He et al. 2003),

osmotic and oxidative stress (Brunet et al 2004, De Nadal et al 2004), and cell

aging (Imai et al 2000).

Acetylation neutralizes the lysine residues on the amino terminal tails of the

histones, thereby neutralizing the positive charges of histone tails and decreasing
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their affinity to bind DNA. HATs are often associated with proteins forming

coactivator complexes, stabilizing the chromatin in an open conformation and

transcriptionally active state. These complexes are targeted to promoters by specific

transcription factors, allowing the RNApol II holoenzyme to access the promoter

DNA sequence, which results in activation of transcription and increased gene

expression. Histone deacetylases (HDAC) ameliorate the affinity of histones for

DNA as deacetylation of histone tails result in stronger interaction between the

basic histone tails and DNA. HDACs are often associated with other proteins that

are associated with chromatin condensation and repression of transcription. These

corepressor complexes promote heterochromatin formation, blocking access of

RNApol II, thus resulting in repression of transcription.

Arabidopsis has 18 members of putative histone deacetylase family (Pandey

et al. 2002). Among them AtHDA6 is responsible for silencing transgenes

(Murfett et al. 2001), whereas AtHD1 is reported to be a global transcriptional

regulator throughout the development of Arabidopsis (Tian et al. 2003). The

analysis of microarray data revealed that gene activation is associated with

increased levels of site-specific histone acetylation, whereas gene repression

does not correlate with the changes in histone acetylation or histone methylation.

Many of the HDACs found in plants are Rpd3, HD2, SIR2, and their homologs

(Chen and Tian 2007).

DNA methylation is known to play a role in plant gene silencing (Ng and Bird

1999). Methyl CpG-binding protein (MeCP2) was reported to be involved in the

recruitment of HDAC to methylated DNA through a corepressor complex, which

results in gene silencing. Earlier studies showed that hemimethylation results in

inhibition of transient gene expression, whereas nonmethylated gene expressed

normally (Weber et al. 1990). In one of the studies, a mutation isolated via a

transgene reactivation screen in Arabidopsis, mom1, was thought to act down-

stream of DNA methylation signals in controlling silencing because it did not

confer obvious methylation changes (Amedeo et al. 2000). In recent studies,

Shibuya et al. (2009) reported that the pMADS3 gene in petunia, specifically

expressed in the stamen and carpels of developing flower, showed ectopic expres-

sion after introduction of intron 2. This is known as ect-pMADS3 phenomenon and

is due to transcriptional activation based on RNA-directed DNA methylation

(RdDM) occurring in a particular CG in a putative cis-element in pMADS3 intron 2.

The CG methylation was maintained over generations, along with pMADS3
ectopic expression, even in the absence of RNA triggers. Transcriptional or post-

transcriptional gene silencing was expected; instead, upregulated gene expression

was observed (Shibuya et al. 2009).

Recently, the new Amplicon-plus targeting technology (APTT) has been

developed to overcome the problems of post-transcriptional gene silencing and

lower accumulation of transgenic protein. This technology uses a novel combina-

tion of techniques, i.e., expression of a mutated PTGS suppressor, P1/HC-Pro,

with PVX (potato virus X vector) amplicon encoding a highly-labile L1 protein of

canine oral papillomavirus (COPV L1). Appreciable amount of protein accumu-

lation was achieved by targeting the L1 to various cellular compartments, by
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creating a fusion between the protein of interest and different targeting peptides.

Additionally, a scalable “wound-and-agrospray” inoculation method has been

developed that allows high-throughput Agrobacterium inoculation of Nicotiana
tabacum to facilitate large-scale application of this technology (Azhakanandam

et al. 2007).

5.6 Conclusions

Genetic transformation of crops has opened a new dimension to increase production

that benefits both producers and consumers. Its effect can be best utilized in less

developed or developing countries where crop yield is severely affected by biotic

and abiotic stress. Also, value addition of existing nutrients along with production

of novel nutraceuticals will help alleviate nutrition-related deficiencies in famine-

stricken countries. Apart from enhancing food value in crop species, transgenic

technology can be used to develop visual marker systems to monitor crops and

carry out fine scale studies of agricultural crops. Despite the hostility against

genetically modified crops in Eastern Europe, many countries in Asia and North

America have accepted transgenic crops. In the present scenario, some of the

factors responsible for the control of transgene expression at different levels have

been summarized in Fig. 5.1. The primary challenge lies with the detailed under-

standing of the underlying mechanism involved in gene expression, and there is a

pressing need to study gene expression, especially its regulation.

Transgene Transcription

Driver Factors Boosting Transcript Level

Promoters 3'UTR
petD 3'UTR
nos 3'UTR IME MARs

MARs flanking
RB7 gene
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Fig. 5.1 Transgene expression and stability factors
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Chapter 6

Silencing as a Tool for Transgenic Crop

Improvement

Pudota B Bhaskar and Jiming Jiang

6.1 Introduction

RNA silencing, also known as post-transcriptional gene silencing (PTGS) or RNA

interference (RNAi), is a form of RNA degradation believed to be an important

defense against foreign nucleic acids (Waterhouse et al. 2001). It was initially

discovered in plants and was thought to function as part of a defense mechanism

against viruses (Ratcliff et al. 1997). Subsequently, it was shown to be a common

gene-silencing mechanism occurring in all eukaryotes, including plants and ani-

mals. The term RNAi was coined for the phenomenon when it was observed in the

nematode Caenorhabditis elegans (Fire et al. 1998). However, this phenomenon of

RNAi (PTGS) had actually been reported previously in transgenic petunia but was

referred to as cosuppression, because transformation with a sense chalcone synthase

transgene suppressed the expression of both the transgene and the endogenous gene

(Napoli et al. 1990). It is now widely accepted that dsRNA is the effective trigger of

PTGS/RNAi in plants and that this process operates by sequence-specific degrada-

tion (Kusaba 2004). Several milestones related to RNAi-based silencing are sum-

marized in Table 6.1. In plants, cosuppression, PTGS, and virus-induced gene

silencing (VIGS), all describe a homology-dependent gene-silencing phenomenon

that involves what is more broadly known as RNAi. The science of RNAi broadly

includes a few different and diverse RNA-silencing pathways that alter the expres-

sion levels of specific genes in plants, mediate the amplification and mobile

signal mechanisms in RNAi pathways, and yield RNA-mediated DNA methylation

(Baulcombe 2004; Lippman and Martienssen 2004).
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In this chapter, we will focus on the RNAi-mediated gene-silencing method

available for the development of transgenic crop plants, with a focus on usable and

deployable crop improvements. Readers interested in a more extensive deliberation

on RNAi mechanism may consult a number of recent reviews (Waterhouse and

Helliwell 2003; Vazquez 2006; Matzke et al. 2007; Ramachandran and Chen 2008;

Eamens et al. 2008). Another gene-silencing-based method that has proven suc-

cessful for crop improvement is tilling (Henikoff et al. 2004). However, desirable

phenotypes obtained using this approach are not transgenic (a non-GMmethod) and

hence not discussed in the current chapter.

6.2 Procedures for Development of RNAi-Based Transgenic

Gene-Silencing Lines

RNA silencing is a homology-based process that is triggered by double-stranded

RNA (dsRNA) and eventually leads to suppression of gene expression. Initially,

sense or antisense RNA strands were used to mediate PTGS, most often with

modest effects on gene expression (Waterhouse et al. 2001). Through cleavage by

endonucleases called Dicers, dsRNAs are efficiently converted into small RNAs

(~21–24 nt), which are then used to direct a sequence-specific degradation of

cognate single-stranded RNAs (Vazquez 2006). Considerable research has been

conducted to determine the most efficient silencing construct. Intron-containing

hairpin RNA (hpRNA)-based vectors have been proven to be highly efficient for

plant RNAi-based gene silencing (Smith et al. 2000). In a hpRNA vector, the target

gene is cloned as an inverted repeat spaced with an intron and is driven by either

a strong whole plant promoter, such as the 35S CaMV (dicots) or the maize

Table 6.1 Time-line showing the breakthroughs related to RNAi-based silencing technology

Year Breakthrough Publication

1990 Cosuppression of purple color in plants (Petunia) Napoli et al. (1990)

1998 A concept of using double-stranded RNA for

triggering silencing

Fire et al. (1998)

2000 First successful intron-based hairpin RNA construct

for silencing

Smith et al. (2000)

2002 First successful attempt of using RNAi for crop

improvement

Liu et al. (2002)

2005 RNAi shown to improve the quality aspects by

organ-specific silencing

Davuluri et al. (2005)

2006 A concept of using RNAi for improving nematode

resistance was demonstrated

Huang et al. (2006)

2007 First artificial microRNAs used for gene silencing

for virus resistance

Qu et al. (2007)

2007 RNAi was demonstrated to be successfully applied

for the insect resistance in crops

Baum et al. (2007),

Mao et al. (2007)

2008 amiRNAs shown to trigger gene silencing in a crop

plant, rice

Warthmann et al. (2008)
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ubiquitin1 (monocots) or alternatively, an organ-specific silencing promoter. A

spacer fragment between the arms of the inverted repeat is useful for increasing

the stability of the vector in Escherichia coli, and using a splicable intron as a

spacer has been shown to dramatically increase the frequency of strong silencing

phenotypes (Smith et al. 2000). Typically, target-sequence inserts of 300–650 nt

have been reported to provide reliably strong and frequent silencing in many crop

plants (Helliwell et al. 2002; Matthew 2009).

Several types of RNAi-based vectors thatmake use ofAgrobacterium tumefaciens-
based plant transformation are available to the public and are being widely used.

Predominantly, vectors developed by Waterhouse and colleagues at CSIRO,

Australia, are supported by Gateway technology TM and facilitate easy incorporation

of target sequence in the sense and antisense direction with an intron between them

(http://www.pi.csiro.au/rnai). Another set of RNAi vectors are available through

the Arabidopsis Biological Resource center (ABRC, http://www.arabidopsis.org)
and were donated by the Functional Genomics of Plant Chromatin Consortium

(http://www.chromdb.org). Despite similar designs, these vectors differ in terms of

selectable markers, type of promoters, and cloning strategies. Detailed information

about the choices of different RNAi vectors is available (Matthew 2009; Preuss

and Pikkard 2003).

RNAi is also affected by the transformation method. The most effective and

heritable silencing has been achieved through stable transformation by Agrobacter-
ium or particle bombardment (Waterhouse and Helliwell 2003). One drawback of

this system is that if PTGS in the whole organism is desired, then stably transformed

plants carrying these constructs must be generated. Nevertheless, stable transfor-

mation of RNAi constructs has currently been used as a tool for the genetic

improvement in a variety of crops (Mansoor et al. 2006; Eamens et al. 2008).

Currently, we have a much great understanding of the endogenous gene-silencing

mechanism, providing knowledge that can be used to develop precisely targeted

gene-silencing approaches.

6.3 Crop Improvements with Silencing Tools

6.3.1 RNAi for Resistance to Diseases and Pests

6.3.1.1 RNAi for Resistance to Viruses

Although the mechanism was not clear at that time, the effects of gene silencing in

plants were first used in efforts to develop resistance to diseases, particularly those

caused by viruses (Powell-Abel et al. 1986). This “pathogen-derived resistance”

(PDR) was achieved by transforming plants with either genes or genetic fragments

derived from the pathogen with the aim of blocking a specific step in the life or

infection cycle of the pathogen. Most of the strategies used for PDR were shown to
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be mediated by RNA, rather than protein, and led directly to the identification of

PTGS – a phenomenon that is believed to be a form of antiviral defense (Voinnet

2001). An important finding recognized first in plants was that, once triggered, the

silencing spreads throughout the organism by virtue of a gene-silencing signal, thus

providing systemic rather than localized resistance (Voinnet et al. 1998). Unsur-

prisingly, virus-resistant transgenic plants are one of the first commercial applica-

tions resulting from gene-silencing technology.

The first demonstration that dsRNA mediates gene silencing in plants is the

genetic study of Waterhouse et al. (1998). Transgenic plants were generated that

expressed either the sense or antisense strand of a gene of potato virus Y (PVY).

Both transgenic lines of tobacco were susceptible to PVY infection. However,

progeny resulted from crosses between these susceptible tobacco lines showed

resistance to PVY by generation of dsRNA. This suggests that two complemen-

tary RNAs transcribed from unlinked loci were able to anneal in the nucleus

and induce a gene-specific suppressive state (Sharp 1999). This experiment first

successfully demonstrated that dsRNA molecules are potent inducers of RNA

silencing (Waterhouse et al. 1998).

Wang et al. (2000) first applied the deliberate use of RNA silencing for virus

protection in the important cereal crop species barley. Barley yellow dwarf virus

(BYDV) is a virus of global importance, as it infects and reduces yields of several

crop species worldwide. An RNAi construct targeting the 50 end of this virus was

transformed into barley, and the lines obtained showed complete immunity to

BYDV. The transgenic lines were field tested and have been commercially

released. During the last several years, efforts to control various viruses infecting

several crop plants have been reported. These include RNAi approaches to control

single-stranded DNA viruses (Geminiviruses Pooggin et al. 2003) or RNA viruses

(Poty viruses, Waterhouse et al. 1998). In some cases, a simultaneous silencing of

diverse plant viruses was achieved by designing a single RNAi construct that

targets multiple distinct viruses (Missiou et al. 2004). Viruses have been the

obvious targets for RNAi technologies, as most viruses have single-stranded

RNA genomes. Currently transgenic lines of several crop plants have been field

tested or commercially released and continue to show very strong resistance to

several plant viruses. For a complete, detailed list of the types of crops transformed

for resistance to viruses and about the performance of virus-resistant transgenic

crop plants, refer to a recent review by Fuchs and Gonsalves (2007).

6.3.1.2 RNAi for Resistance to Parasitic Nematodes

Plant-parasitic nematodes, in particular root-knot nematodes, are the most eco-

nomically devastating group of plant-parasitic nematodes worldwide, attacking

nearly all food and fiber crops grown. The inadequacy of current control methods

provides an opportunity for transgenic approaches to make an important contri-

bution to an integrated pest management strategy. One of the recent approaches

to GM-mediated nematode resistance is host-induced RNAi gene silencing.
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Plants can be engineered to produce dsRNAs that silence essential genes in the

nematode. This dsRNA, or its siRNAs, would then be delivered from the plant to

the nematode through ingestion of the plant cytoplasm. Once the siRNAs are

inside the nematode, the RNAi process would inactivate the gene targeted by the

dsRNA (Bakhetia et al. 2005).

This logic has been put into use for the first time in a recent report in which the

goal was to engineer a host plant to become resistant to root-knot nematodes. Huang

et al. (2006) targeted the parasitism gene, 16D10 from the nematode Meliodogyne
incognita that encodes a small peptide necessary for the infection. This gene/

peptide is secreted by the nematode into the plant roots and is thought to have an

important role in the early signaling that occurs during feeding-site formation

playing an important role in the plant-parasite infection. Expression of dsRNA

directed against this gene (using a 35S promoter) resulted in Arabidopsis thaliana
plants with a 70–90% reduction in the number of nematode eggs in the host plant. In

other words, host plants showed resistance to multiplication of the nematodes. This

range of resistance extended to four different types of root-knot nematodes. The

range of resistance was unique and had not been previously obtained by any natural

root-knot nematode resistance genes. This work is a good illustration of how

fundamental RNAi mechanism might lead to engineering crop plants for nematode

resistance. However, the method is still in the discovery phase involving only

model plants, but this unique method might in the near future emerge as a viable

and flexible means of developing novel and durable nematode-resistant crops for

this devastating pathogen and others.

6.3.1.3 RNAi for Resistance to Insects

Transgenic expression of Bacillus thuringenesis (Bt) toxin in crop plants has proven
to be a great success for pest control in several crops. However, many important

pests are not susceptible to Bt-protection, and there is a danger that some crop pests

might develop resistance to Bt. In integrated pest management, there is always a

search for alternative and potentially complementary control strategies, particularly

for agents that are more robust and/or broadly applicable (Gordon and Waterhouse

2007).

Recently, RNAi-mediated resistance has been exploited to control insect pests

via the in planta expression of a dsRNA (Baum et al. 2007; Mao et al. 2007). This is

in fact the first demonstration that the lessons learned from the use of RNAi

in model organisms can be applied to real-life biological processes to obtain

gains in controlling crop pests. The observations that ingested dsRNA can silence

genes in both nematodes and Drosophila lead to the possibility of applying this

technology to control crop insect pests. In this method, RNAi is induced in insects

after ingestion of plant-expressed hairpin RNA.

This concept was demonstrated through managing a coleopteran insect pest.

The Western corn rootworm (Diabrotica virgifera) is one of the most devastating

pests in North America. The USDA estimates that the corn rootworm causes
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US$1 billion in lost revenue each year, which equals $800 million in yield losses.

Transgenic corn plants were engineered to express dsRNAs that target a western

corn rootworm V-ATPase gene. V-ATPases are found in the plasma membrane of

many organelles, such as endosomes, lysosomes, and vesicles, playing crucial roles

in the function of these organelles. It was hypothesized that disruption of this

enzyme is detrimental to the insects; thus, RNAi was directed to silence this

gene. The transgenic plants expressing lethal insect dsRNAs were challenged

with rootworm larvae and showed significant root protection compared with the

nontransgenic control plants (Baum et al. 2007). No negative agronomic effects

were seen in multiple generations of these transgenic plants.

Another successful RNAi strategy was reported by Mao et al. (2007) to improve

resistance against a notorious lepidopteran insect pest, Helicoverpa armigera,
commonly called cotton bollworm. First a cytochrome P450 gene was identified

from cotton boll worm that acts as an antidote allowing the pest to resist the

naturally occurring toxin, gossypol, produced by cotton plants. Transgenic tobacco

and Arabidopsis plants were generated expressing dsRNAs against the bollworm

cytochrome P450 gene. When larvae were fed leaves from these transgenic plants,

the expression of the gene decreased and larval growth was retarded. It was recently

reported that the engineered cotton plants showed partial resistance to cotton

bollworm pest, as expected (Price and Gatehouse 2008).

This new method of in planta RNAi against feeding insects seems to have

potential for future pest control strategies. A wide range of potential targets

among various crop pests can be identified and targeted for suppression of gene

expression to achieve increased resistance in plants.

6.3.2 RNAi to Enhance Quality Traits

6.3.2.1 Decaffeinated Coffee

The first example of using RNAi to improve the quality aspects of any crop plant

was demonstrated in coffee. A cup of coffee, on average, contains 150 mg of

caffeine, which can cause health problems for many people worldwide (Ogita

et al. 2005). Consequently, decaffeinated coffee is preferred by buyers who are

sensitive to caffeine and accounts for about 10% of the world coffee market (Ogita

et al. 2005). The solvent extraction process used currently to chemically reduce the

caffeine levels of coffee beans may leave undesired components in the decaffein-

ated beans. Therefore, coffee plants that produce caffeine-free beans have always

been an objective. Currently, it takes ~20 years to develop a coffee variety with

reduced levels of caffeine. Ogita et al. (2003) addressed this problem with an

RNAi strategy. Coffee plants were transformed with RNAi constructs to silence

the theobromine synthase gene in the caffeine biosynthetic pathway. The trans-

genic plants obtained showed a 70% reduction in caffeine content compared to
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nontransformed coffee plants, and no phenotypic abnormalities were reported.

While transgenic “decaf” lines have yet to be commercialized, this research has

provided the first successful example of metabolic engineering of the alkaloids for

quality improvement in crop plants.

6.3.2.2 Reduction of Toxic Gossypol in Cotton

One of the recent, dramatic applications of RNAi has been the elimination of the

toxic compound gossypol from cottonseeds by Sunilkumar et al. (2006). This study

clearly demonstrated the feasibility of a targeted RNAi-based approach to solve an

age-old problem of cottonseed toxicity and provided an avenue to exploit the

considerable quantities of protein and oil available in the global cottonseed output.

Gossypol and related terpenoids are present throughout the cotton plant in the

glands of foliage, floral organs, and bolls, as well as in the roots. These terpenoid

compounds protect the cotton plants from both insects and pathogens and are

essential for the survival of cotton under normal agricultural conditions, where it

is exposed to a variety of pests and diseases, although its presence in the seed might

be expendable (Townsend and Llewellyn 2007). A glanded-plant and glandless-

seed trait does occur naturally in the native Australian cotton species Gossypium
sturtianum. Gossypol-filled glands develop as the seeds germinate in order to

provide the needed protection against pests and pathogens. Efforts to breed this

trait into cultivated cotton were not successful, mainly due to considerable genome

differences between two species. A natural glandless mutant of cotton was identi-

fied in the 1950s, and several breeding programs were launched to transfer this

glandless trait into commercial cotton cultivars. However, glandless cotton vari-

eties were a commercial failure due to their extraordinary susceptibility to insect

pests since they constitutively lacked gossypol and protective terpenoids.

Remarkably, this long-standing goal of cotton geneticists was achieved through

RNAi-mediated silencing that eliminates toxic gossypol from cottonseeds. This

objective was achieved by silencing the d-Candinene synthase. This enzyme cata-

lyzes the first committed step involving in the cyclization of farnesyl diphosphate to

d-candinene (Chen et al. 1995), the compound from which gossypol and other

sesquiterpenoid compounds are derived. The d-cadinene synthase gene was

silenced under the control of the cottonseed-specific /-globulin promoter. Seed

from the transgenic cotton plants exhibited a significant reduction in gossypol

content, whereas the cotton foliage, floral parts, and floral organs contained normal

levels of gossypol. Transgenic plants with seed gossypol levels reduced to as low as

99% were stable and were maintained for three generations (Sunilkumar et al.

2006). Gossypol values in the seeds from some of the silenced lines were well

below the limit deemed safe for human consumption by the United Nations Food

and Agriculture Organization and World Health Organization. In this example,

once again the use of an endogenous gene and a native promoter of cotton ensure

appropriate spatial and temporal expression of the transgene.
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6.3.2.3 Tearless Onions

Manipulation of plant secondary metabolic pathways can result in dramatic and

simultaneous down- and up-regulation of products within that pathway and the even

production of novel products. Onions (Allium cepa) synthesize a unique set of

secondary sulfur metabolites. When onions are chopped, these metabolites are

cleaved by the enzyme alliinase into their corresponding sulfenic acids and volatile

sulfur compounds that give the respective flavors. One of the volatiles released is

Lachrymatory Factor (LF), the chemical responsible for inducing tearing. In addi-

tion, it is hypothesized that LF production causes the absence of otherwise pre-

dicted sulfur volatiles, analogs of which in garlic (A. sativum) are known for their

health attributes (Eady et al. 2008). Current “tearless” onion cultivars (e.g., Vidalia)

are achieved through deficient uptake and partitioning of sulfur and/or growth in

sulfur-deficient soils, but in so doing they accumulate fewer secondary sulfur

compounds in the bulb, reducing their sensory and health qualities compared with

more pungent high-sulfur cultivars.

Eady et al. (2008) made a healthier and tearless onion by reducing the levels of

Lachrymatory Factor Synthase (LFS) and preventing the conversion of 1-propenyl

sulfenic acid to the undesirable and irritating LF. By means of RNAi, LFS activity

in onions was reduced by up to 1,544-fold. When these onions are chopped,

significantly reduced levels of LF are produced. No phenotypic abnormalities

were reported among the transgenic onion plants compared to the controls in

greenhouse experiments. The authors also confirmed that RNAi silencing of LFS

shifted sulfur metabolism away from tearing agents, giving rise to a cascade of

predicted secondary compounds that had not been detected previously or only in

trace amounts in onion (Minorsky 2008). The researchers hope to initiate formal

taste evaluation trials of these transgenic, tearless onions following regulatory

approval. These onions may add potential value to the future agrifood industry

due to their desirable health promoting attributes.

6.3.2.4 Low-acrylamide French Fries and Potato Chips

Acrylamide is a toxic substance that is naturally produced in starchy foods as a

result of high-temperature cooking, such as baking, grilling, or frying. In 2002, the

Swedish National Food Administration reported alarmingly high levels of acrylam-

ide in carbohydrate-rich heated foods (products from potato tubers, wheat flour, and

coffee beans) (Tareke et al. 2002). Since acrylamide is considered as probably

carcinogen for animals and humans, this finding resulted in worldwide concern.

In potato, acrylamide is formed by a Maillard-type reaction among amino acids

(Asparagine) and reducing sugars at high frying temperatures (Mottram et al. 2002).

Several food companies recently have agreed to substantially reduce the acrylamide

levels in fried potato products over the next 3–5 years. Thus novel methods to

reduce the acrylamide levels in fried potato products have been a major goal for

potato industry breeding programs.
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Previous attempts to lower the acrylamide levels negatively affected color,

texture, taste, and overall consumer palatability of the fried products. In some

cases these required changes in current grower or processor practices, which limited

their broader acceptance (Rommens et al. 2008). A most effective approach to

reduce acrylamide levels by RNAi technology has recently been reported by

SimplotTM Company (Rommens et al. 2008). Potato plants were transformed with

an all-native sequence RNAi-silencing construct (Rommens 2004; Yan et al. 2006)

that targets two asparagine synthetase genes under the control of potato tuber

specific promoters. Asparagine synthetase catalyzes the ATP-dependent conversion

of aspartate into asparagines. The resulted intragenic plants produced tubers with

very low levels of the acrylamide precursor asparagine. Green house experiments

have shown that these lines contained a 20-fold reduction of asparagines in tubers.

Chips and fries processed from these tubers remarkably showed as little as 5%

accumulation of acrylamide compared to the controls. Surprisingly, this modifica-

tion neither altered overall yield of the tubers grown under greenhouse conditions;

nor the color, texture, or taste of the fried products. If silenced lines retain all the

original agronomic characteristics under field conditions, the researchers hope

all-native-DNA potato products with very low levels of acrylamide could be

offered as a choice on the market.

6.4 Limitations of RNAi-Silencing Technology

A possible limitation of RNAi technology is the off-target effects of siRNA that might

silence nontarget genes. Since RNAi is based on sequence recognition, targeting a

gene by RNAi may give rise to the silencing of another gene that has short regions

of similar sequence. This phenomenon is referred to as off-target silencing. However,

no potential off-target effects were reported so far in plants (Mansoor et al. 2006;

Xu et al. 2006). Transcript profiling has extensively been used in plant research and as

of yet no off-target expression level changes have been noticed. Several reports

recently confirm that RNAi in plants exhibits a high level of sequence specificity.

Nevertheless, the possibility of off-target effects in plants cannot be ruled out

and therefore needs careful attention. Caution is warranted in interpreting gene

function and phenotype information resulting from RNAi experiments.

Other limitations of RNAi occur when there is a lack of efficacy or variable

levels of silencing effects. Traditional DNA mutations (insertion or deletion) most

often are irreversible and the effect on the function of the affected gene is generally

predictable. By contrast, RNAi silencing can have widely varying effects depend-

ing on the target gene and the region of the transcript that is targeted. Sibling plants

carrying identical RNAi constructs can produce varying phenotypes (Wang et al.

2005; Small 2007). There are multiple reasons for this variability that need to be

considered when interpreting RNAi phenotypes. One should examine multiple

independent lines to check for a reproducible phenotype and attempts should

6 Silencing as a Tool for Transgenic Crop Improvement 195



also be made to check that off-target effects are not affecting genes related to the

target gene.

6.5 Future Directions

Only a few of the achievements through RNAi technology were discussed in this

chapter. However, RNAi has been used for a variety of applications, including

altering the flower color or obtaining novel colors by RNAi-mediated engineering

of flavonoid biosynthetic pathways (Tanaka et al. 2005); developing cyanogen-free

transgenic cassava, which is a major staple crop in sub-Saharan Africa (Jorgensen

et al. 2005); and changing the pattern and quality of fatty acid composition of

soybean by silencing the undesirable fatty acids (Flores et al. 2008). These exam-

ples, among others, demonstrate that targeted gene silencing can be used to

modulate biosynthetic pathways in a specific tissue in order to obtain a desired

phenotype, a feat that is often not possible by traditional breeding. These studies

open the gateway to new frontiers in the use of genetic manipulation to enhance

global food supply. Over the horizon, plant molecular biologists and plant breeders

can see the possibility of using similar approaches to eliminate harmful compounds

from plants that otherwise could serve as potential food sources, such as Lathyrus
sativus, a hardy tropical/subtropical legume plant that naturally contains the neuro-

toxin b-N-oxalylamino-L-alanine (BOAA). This noneconomic crop is a potential

target of RNAi silencing of the gene(s) responsible for the production of BOAA.

A similar strategy could be applied to fava beans in order to eliminate various

glycosides, undesirable compounds for human consumption. Tissue- or organ-

specific silencing approaches are needed to achieve targeted gene silencing in

particular plant cells with minimal interference to the normal plant lifecycle

(Tang and Galili 2004).

The study of gene silencing has led to a revolution in the understanding of gene

expression, as underlined by the recent award of a Nobel Prize on this concept

(2006 Nobel Prize in Physiology/Medicine to Dr. Andrew Fire and Dr. Craig Mello

on Gene Silencing). Because RNAi is a very efficient knockdown technology in

plants, it is useful for genetic improvement in cultivars and crop plants with low

transformation efficiencies, although transformation is still a challenge to face. That

having been said, RNAi has clear advantages over insertional mutagenesis. The

primary advantage is an ability to specifically target the gene of interest. As RNAi is

a homology-dependent process, careful selection of a unique region of the target

sequence can ensure that a specific gene family member is silenced, or targeting

highly conserved sequence domains can silence multiple members of a gene family.

In this way, redundancy is not limiting. RNAi can also be used to analyze the

functions of essential genes. Variable levels of gene silencing can be achieved

in different transgenic lines using the same RNAi construct, allowing selection of

lines with a greater or lesser degree of silencing.
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Since its identification several years ago, RNAi has become the technology of

choice for plant scientists investigating gene function and manipulating plants for

novel traits. Though most of the products developed using RNAi technologies are

yet to hit the commercial line, there seems to be an enormous promise for future

improvement especially quality traits in crop plants. The use of tissue-specific and

inducible promoters should improve our ability to silence gene expression in

desired target tissues and at the appropriate developmental stage, thus minimizing

off-target effects. New approaches such as amiRNA (Warthmann et al. 2008)

promise to bring more precision and predictability to the technology in the near

future. Nevertheless, the bottleneck of public acceptance of crops derived through

genetic modification should not be neglected, and remains a political and not

technical challenge.
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Chapter 7

Transgene Integration, Expression and Stability

in Plants: Strategies for Improvements

Ajay Kohli, Berta Miro, and Richard M. Twyman

7.1 Introduction

The transfer of DNA into plants has been common practice for over 20 years, and

transgenic plants are now a burgeoning industry. In 2007, over 114 million ha

(282.4 million acres) of transgenic crops were grown commercially in 23 countries,

the most prevalent traits being herbicide tolerance, pest resistance, or both traits

stacked together (James 2007). In the laboratory, one encounters a vastly greater

diversity of traits, including disease resistance, stress tolerance, nutritional

improvement, modified development, and the use of plants to produce specific,

high-value molecules, such as secondary metabolites, chemical precursors, anti-

bodies, vaccine subunits, and industrial enzymes. It is notable that in the majority of

cases, the purpose of gene transfer into plants is to achieve a specific, desirable

phenotype. Plants that fail to live up to expectations are routinely discarded so that

the best performers can be nurtured.

Despite the focus on phenotype, over the last decade there has been an increasing

interest in creating transgenic plants to study the process of gene transfer itself

(Kohli et al. 2003). On the academic side, it has been appreciated for many years

that the structure of a transgene locus can have a major influence on the level and

stability of transgene expression; thus, researchers have studied DNA integration

mechanisms, particularly with regard to how transgenes interact with the plant’s

DNA repair and genome defense systems. On the applied side, the global adoption

of transgenic crops and the development of transgenic plants producing pharma-

ceuticals and other important molecules have attracted the interest of regulatory

authorities (Ramessar et al. 2008). The demand for robust risk assessment practices
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means that transgenic plants have to be characterized in great detail, including

information on the sequence, structure, organization, and genomic position of the

transgenic locus. Recently, this has culminated in the first report of the genome

sequence of a transgenic plant, including the analysis of the transgenic locus (Ming

et al. 2008). The principles and practices of transgenic technology have come under

scrutiny, leading to research focusing on the use and elimination of marker genes,

the role of vector sequences that integrate along with the transgene, and the random

nature of transgene integration events with regard to copy number, transgene

orientation, and transgene rearrangements. Researchers, therefore, have practical

as well as academic reasons for studying transgene integration and expression, and

have developed new ways to analyze transgenic loci. Current research focuses on

ways to better control the way DNA integrates into the plant genome.

In this chapter, we describe the methods used to study transgene locus structure

and discuss evidence supporting current models of transgene integration for both

Agrobacterium-mediated transformation and direct transfer methods. We discuss

how transgene loci are organized and how this affects the level and stability of

transgene expression from generation to generation. Finally, we look to the future

by describing how recent research has advanced the state of the art in gene transfer

technology.

7.2 Methods for the Analysis of Transgenic Loci

Most gene transfer experiments are phenotype driven, by which we mean that

successfully transformed plants tend to be identified on the basis of the phenotype

conferred by the transgene rather than the structure of the transgene itself. This is

pertinent because the appearance of the desired phenotype is prima facie evidence

that the transgene has integrated into the genome and is intact, thus allowing

expression of the encoded protein. Since most transgenic plants are regenerated

under selection for the product of a selectable marker gene, the fact that a transgenic

plant exists at all indicates that at least one intact copy of the marker gene is present

in the genome. Similarly, the phenotypes conferred by any other transgenes can

be used as evidence to support successful integration and expression. This infor-

mation is of limited value, however, because it divides all plants into just two

categories – (a) plants transformed with at least one intact transgene and (b) plants

not transformed at all or transformed with a nonfunctional transgene. It provides no

quantitative information, yet every gene transfer experiment produces a population

of plants with a range of phenotypes reflecting the level of transgene expression.

Since the same input DNA is used in each case, the only explanation for quanti-

tative differences in phenotype is differences in the structure and activity of the

integrated transgenes.

The technique used most commonly for a definitive analysis of transgenic loci is

the Southern blot, in which genomic DNA is digested with one or more restriction
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enzymes, fractionated by agarose gel electrophoresis, denatured, transferred to

a membrane, and hybridized to a labeled probe. Many different types of infor-

mation can be obtained from Southern blots depending on the restriction

enzymes and probes used. One of the most common strategies is to use an

enzyme that cuts once within the transgene in combination with a probe that

hybridizes to the body of the transgene. This generates DNA fragments whose

size depends on the distance between a fixed point in the transgene (the restric-

tion site) and the adjacent restriction site in the genomic DNA, which of course

varies according to the site of insertion. Where multiple copies of a transgene

have integrated, a single cutter enzyme tends to generate a unique pattern of

bands that serves as a genetic fingerprint of that plant and all its descendants,

thereby helping to identify clonal relatives of the original transformant and

allowing transgene segregation to be followed through generations. Because it

is unlikely that any of the transgene copies will generate identical-sized bands

(unless they are perfect concatemers, in which case the band size will correspond

exactly to the size of the transgene), this method also provides an estimate of

transgene copy number. A variant of the technique is to use a probe that

hybridizes to the vector backbone instead of the transgene body, which helps to

identify inserts of vector DNA.

Another handy method is to use an enzyme that cuts twice in the transgene and

liberates a specific DNA cassette in combination with a probe that hybridizes to that

cassette. If all copies of the transgene are intact, there should be only one hybridizing

band, corresponding to the size of the cassette, and the intensity of the hybridization

signal will be proportional to the number of transgene copies (since one cassette

should be released from each integrated transgene copy). Copy number determina-

tion is best achieved by “spiking” genomic DNA from an untransformed plant with

a known amount of transforming plasmid DNA, and then digesting this and the

genomic DNA from genuine transgenic plants. It may be useful to set up a series of

control DNA samples, containing for example one, five, and ten copies of the

transforming plasmid per genome equivalent of DNA. In this way, a calibration

curve of signal intensities relative to copy number can be generated, onto which any

transgenic plant can be mapped. Band sizes greater or smaller than the diagnostic

fragment indicate truncations or rearrangements. It is also useful to digest genomic

DNA with an enzyme known not to cut within the transgene. If all copies of the

transgene have integrated at a single locus as a concatemer, digestion with such

enzymes should liberate the locus as a single, high-molecular-weight fragment.

Thus, the presence of two or more bands suggests either the presence of two or more

independent transgenic loci (this can be confirmed by segregation analysis as

discussed below), or the presence of interspersed genomic DNA between transgene

copies at a single locus (this can be confirmed, if required, by fiber-FISH

as discussed below).

The polymerase chain reaction (PCR) is a rapid technique that can be used to

confirm transgene integration through the use of primer combinations that generate

a transgene-specific product. Although quicker than Southern blots and more
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amenable to multiplexing, false positives can occur through the amplification of

episomal plasmid DNA so the PCR should only be used indicatively, with Southern

blots used for definitive confirmation of DNA integration. Long PCR is a variation

that allows larger products to be amplified and is potentially useful for analyzing

larger transgenic loci (Mehlo et al. 2000). Another PCR variant, real-time quantita-

tive PCR, is now used for the rapid estimation of transgene copy number by

comparison with a control sample in which a single-copy endogenous gene is

amplified. The relative signal intensities of the control and transgenic samples

reveal the transgene copy numbers in the transgenic plants (Li et al. 2004; Yang

et al. 2005). Although the PCR can show the presence or absence of a transgene and

provide a dependable copy number estimate, it provides little in the way of

information about the structure of a transgenic locus unless the genomic flanking

sequences are already known. DNA sequencing is the highest-resolution transgene

analysis method, and permits the precise definition of structural organization and

rearrangement. It also allows the nature of transgene-genomic and transgene-

transgene junctions to be investigated at the nucleotide level, and the integration

site in genomic DNA to be identified. Prior to sequencing, the transgenic locus must

be isolated, which can be achieved by standard molecular cloning or through a

variety of methods such as inverse PCR, thermal asymmetric interlaced (TAIL)-

PCR, or plasmid rescue (Twyman and Kohli 2003). The complete sequencing of a

transgenic papaya variety, SUNUP, was recently reported, allowing intricate struc-

tural analysis of the transgenic locus (Ming et al. 2008).

All these methods involve the identification of discrete DNA fragments of

precise length, which is useful for fine structural analysis but not for the characteri-

zation of transgenic loci at the chromosome level. In this context, fluorescence in

situ hybridization (FISH) can be useful as it allows target sequences to be identified

in isolated DNA fibers, interphase chromatin, and even metaphase chromosomes.

FISH involves the use of fluorescently labeled nucleic acid probes to identify

particular target sequences, revealing higher-order transgene organization and the

distribution of integration sites. FISH to metaphase chromosomes allows the

insertion sites to be mapped cytogenetically and simultaneous analysis in interphase

allows the nuclear territory of transgenes to be determined (Abranches et al. 2000).

Fiber-FISH on extended chromatin gives an overview of locus structure, revealing

the presence of single-copy inserts, transgene concatemers, and interspersed geno-

mic DNA (Jackson et al. 2001). The resolution of FISH lies somewhere between

that of genetic segregation and Southern blot hybridization and can provide impor-

tant correlative data for both techniques.

Segregation analysis involves studying the transmission of particular DNA

sequences or the phenotypes thus conferred over several generations of transgenic

plants. Closely linked transgene copies are unlikely to be separated by recombina-

tion, while widely separated loci are likely to segregate at meiosis in some plants.

This allows the number of transgenic loci to be determined. Problems with pheno-

type analysis include the misleading results caused by epigenetic gene silencing,

but analysis of DNA sequence segregation by Southern blot hybridization can be

highly informative.
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7.3 Locus Structure in Plants Transformed by Agrobacterium
tumefaciens

7.3.1 Principles of Gene Transfer

Agrobacterium tumefaciens is a soil pathogen that colonizes wounded plant cells

and induces the formation of a tumor (or crown gall) that produces special amino

acid derivatives called opines, which the bacteria are able to use as a carbon and

nitrogen source. The ability of virulent Agrobacterium strains to induce tumor

growth and opine synthesis, and the capacity to utilize opines, is conferred by a

resident tumor-inducing plasmid (Ti-plasmid). During the colonization process, a

segment of DNA from this plasmid called the transferred DNA (T-DNA) is

transferred to the plant nuclear genome. The T-DNA encodes enzymes that synthe-

size auxins and cytokinins, resulting in unregulated cell proliferation, and enzymes

that synthesize opines from standard amino acids (reviewed by Gelvin 2003).

The Ti plasmid is a naturally occurring vector for plant transformation, but wild-

type Ti-plasmids are not suitable vectors for genetic engineering in plants because

they are too big to manipulate, and the oncogenes contained in the T-DNA cause

uncontrolled proliferation of transformed plant cells and prevent efficient regenera-

tion. The T-DNAmust therefore bemoved to a smaller, more convenient vector, and

disarmed by deleting the oncogenes. A marker gene must also be included to allow

transformed cells to be propagated. T-DNA transfer is controlled by about 30 genes

located in a separate virulence (vir) region of the Ti plasmid, and these must be

supplied in trans using a binary vector system if the T-DNA is placed on a smaller

plasmid. Modern binary vectors contain multiple unique cloning sites within the

T-DNA, a lacZ marker gene for blue-white selection of recombinants, and a choice

of selectable markers to identify transformed plant cells (Hellens et al. 2000).

The transfer mechanism is pertinent to the resulting locus structure. The T-DNA

is flanked by 25-bp imperfect direct repeats known as border sequences, which are

not transferred to the plant genome intact, but they are required for the transfer

process. T-DNA transfer is mediated by the virA and virG gene products, which

transduce external signals and activate other vir genes resulting in the construction

of a pilus for DNA transfer, and the release of the T-DNA by an endonuclease

comprising the products of the virD1 and virD2 genes. This introduces either

single-strand nicks or a double-strand break at the 25-bp borders of the T-DNA.

It is thought that the intermediate formed (a double stranded T-DNA or a single

T-strand) may depend on the virulence functions particular to the Agrobacterium
strain (Steck 1997). Either the left or right border sequence can initiate T-DNA

transfer, although it is more usual for initiation to occur at the right border due to

the presence of an adjacent overdrive sequence, which is recognized by the VirC1

and VirC2 proteins and acts as a transfer enhancer (Shaw et al. 1984). For this

reason, deletion of the right T-DNA border severely reduces the efficiency of

transfer, whereas deletion of the left border has little effect (Jen and Chilton 1986).
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The VirD2 protein remains covalently attached to the 50 end of the processed

T-DNA strand and has been proposed to protect the T-DNA against nucleases, to

target the DNA to the plant cell nucleus, and to help integrate it into the plant

genome (Tzfira et al. 2000).

7.3.2 T-DNA Locus Structure

Most investigations of T-DNA transfer have suggested that there may be preferen-

tial integration into transcription units, with up to 90% of events occurring in genes

(e.g., Lindsey et al. 1993). In petunia, FISH analysis showed that T-DNA inserts

were found preferentially at the gene-dense distal chromosome sites (Wang et al.

1995; Ten Hoopen et al. 1996), and a comparative analysis in Arabidopsis and rice

showed that T-DNA inserted randomly in the Arabidopsis genome (which is

globally gene-rich, with little repetitive DNA) but homed in on the 10–20% of

the rice genome known to be gene-dense while avoiding the more widespread

heterochromatic regions (Barakat et al. 2000). It has also been suggested that

T-DNA integration occurs preferentially in regions showing microhomology to

the T-DNA borders (Matsumoto et al. 1990), which may also be enriched in the

transcribed part of the genome. The bias in T-DNA insertion is valuable for gene-

tagging experiments, ensuring a high gene hit rate in genomes with large tracts of

gene-poor heterochromatin while showing little bias among different genes (Jeon

et al. 2000; Weigel et al. 2000; Hsing et al. 2007; Wan et al. 2009).

The structure and complexity of transgenic loci generated by Agrobacterium
depends on the strain, plant species, and explant type, but generally gives rise to

lower transgene copy numbers than direct transformation methods. An informative

experiment was performed by Cheng et al. (1997) by transforming wheat using both

Agrobacterium and particle bombardment. Of 26 Agrobacterium-mediated trans-

formants, more than one-third contained a single T-DNA insert, half contained 2–3

copies, and the remainder (about 15%) contained 4–5 copies. There were no

transformants containing more than five T-DNAs. In contrast, from the population

of 77 bombarded transformants, only 13 (17%) contained a single copy of the

transgene. The maximum number of transgene copies in this population was not

reported. Hu et al. (2003) also observed more complex transgene insertions from

particle bombardment than from Agrobacterium-mediated techniques. More

recently, similar experiments in barley showed that all the Agrobacterium-derived
lines contained 1–3 copies of the transgene, while 60% of the transgenic lines

derived by particle bombardment contained more than eight copies (Travella et al.

2005). Dai et al. (2001) found in rice that the average transgene copy numbers were

1.8 for Agrobacterium-derived lines and 2.7 for plants obtained by particle bom-

bardment. However, Khanna and Raina (2002) observed multiple transgene inser-

tions in rice transformants generated through both techniques together with the

transfer of partial T-DNA fragments.

206 A. Kohli et al.



The organization of integrated T-DNA sequences differs among Agrobacterium
strains, but a common feature of nopaline-type derivatives such as C58 is the

preferential integration of T-DNA as dimers with an inverted repeat configuration,

linked either at the left or right borders (Jones et al. 1987; Jorgensen et al. 1987).

Where cotransformation is carried out with two T-DNAs containing different

markers, the different T-DNAs were often present as heterodimer inverted repeats,

preferentially around the right border (De Block and Debrouwer 1991). Similarly,

cotransformation of rice with the vectors pGreen and pSoup (each containing

different selectable and visible markers) resulted in 56% of plants with the two

T-DNAs cointegrated, although there was also a high proportion of plants contain-

ing separate integration events (Afolabi et al. 2004). In contrast, Spielmann and

Simpson (1986) carried out transformation using the octopine Agrobacterium strain

LBA4404. They found only two integration events among the 22 characterized

transformants that resulted in dimer formation, while most of the rest were single-

copy integrations. When cotransformation experiments were carried out with this

strain (McKnight et al. 1987), three double transformants were obtained and in all

cases the two T-DNAs were genetically unlinked. These results suggest that the

virulence functions carried by a particular Agrobacterium strain strongly influence

the structure of the transgene locus.

Another important aspect of locus structure is the amount and types of transgene

rearrangement. Occasionally, it has been reported that T-DNA has undergone

spontaneous rearrangement prior to or during integration (e.g., Offringa et al.

1990; Puchta et al. 1992), and this has been demonstrated directly by fiber-FISH

in potato (Wolters et al. 1998). In some cases, rearrangements may be induced by

specific recombinogenic sequences such as the CaMV 35S promoter (Kohli et al.

1999), which may have been responsible for T-DNA rearrangements in some

transgenic potato lines (Porsch et al. 1998). In many cases, however, rearrange-

ments may reflect “collateral damage” occurring spontaneously during the transfer

process. Afolabi et al. (2004) found that nonintact T-DNAs were present in >70%

of transgenic rice lines, in most cases reflecting loss of the mid to right border

portion of the T-DNA. Similarly, Rai et al. (2007) found that about 50% of rice

plants transformed with a T-DNA containing the phytoene synthase (psy) and

phytoene desaturase (crtI) genes showed evidence of T-DNA rearrangements, and

in the majority of cases the rearrangements occurred in the crtI expression cassette,
which was adjacent to the right T-DNA border.

7.3.3 T-DNA Integration Mechanism

A number of groups have investigated the structure of genomic/T-DNA and

T-DNA/T-DNA junctions in plants and have concluded that integration occurs

by illegitimate recombination (see Salomon and Puchta 1998; Somers and

Makarevistch 2004). A strand invasion mechanism of integration has been pro-

posed (reviewed by Tinland 1996), in which the 30 end of the T-strand initiates the
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integration process by hybridizing to a short region of homology in the plant

genome, the second strand being completed by primer extension of the plant

DNA. Other models suggest conversion of the T-strand into a double-stranded

intermediate, which integrates at the site of naturally occurring chromosome breaks

via double-strand DNA break repair. This is supported by experiments that show

transformation efficiency increases following UV irradiation, which generates

nicks and breaks in genomic DNA. However, since T-DNA integration occurs

normally, if less frequently, in DNA repair mutants, it is possible both mechanisms

occur simultaneously.

DNA repairmodels argue that proteins encoded by the host plant have amuchmore

important role in T-DNA integration than Agrobacterium proteins, such as VirD2,

which are imported into the plant with the T-DNA. However, since VirD2 protein

remains covalently attached to the 50 end of the T-strand during transfer it is also likely
to influence integration (Ward and Barnes 1988). In an in vitro assay, VirD2 can ligate

together a cleaved T-DNAborder sequence but cannot ligate T-DNA to other genomic

targets unless plant cell extracts are also present (Pansegrau et al. 1993; Ziemienowicz

et al. 2000).

Plant proteins are certainly required for integration, as a number of Arabidopsis
mutants have been identified that are deficient for T-DNA insertion. The role of

DNA strand break repair in T-DNA integration was supported by the discovery

of Arabidopsis mutants uvh1 and rad5, which are hypersensitive to UV and gamma

irradiation, respectively, and show a low frequency of stable transformation by

Agrobacterium. Since these mutants showed normal levels of transient expression,

it was suggested that they caused deficiencies in the repair of radiation-induced

breaks and that break repair is essential for T-DNA integration (Sonti et al. 1995).

However, Nam et al. (1998) showed that uvh1 is no less transformation proficient

than wild-type plants and that rad5 is deficient for both transient and stable

transformation, indicating that the dysfunction affects a process occurring much

earlier than T-DNA integration. Other mutants resistant to Agrobacterium transfor-

mation (rat mutants) have been identified, and five are thought to be blocked at the

point of T-DNA integration (Nam et al. 1999). One of the corresponding genes,

rat5, encodes a histone protein, suggesting that efficient T-DNA integration is

dependent on chromatin structure at the integration site.

Much can be learned about the T-DNA integration mechanism by the inspection

of borders, especially the borders between adjacent T-DNA sequences in multicopy

insertions. The formation of heterodimers during cotransformation argues in favor

of T-DNA concatemerization prior to integration. Although inverted repeats around

the right border are often precise, those around the left border and those separating

direct T-DNA repeats are often characterized by the insertion of variable-sized

regions of filler DNA, which may be derived from the T-DNA sequence or

from plant genomic DNA (De Buck et al. 1999; Kumar and Fladung 2000, 2002).

This suggests either the simultaneous integration of multiple T-DNAs at a single

locus, or a two-phase mechanism, in which a primary T-DNA integration event

stimulates further secondary integrations in the same area, similar to those pro-

posed for particle bombardment (see Sect. 7.4.3). Zhu et al. (2006) carried out a
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comprehensive study of T-DNA border characteristics in a population of transgenic

rice plants including 156 T-DNA/genomic DNA junctions, 69 T-DNA/T-DNA

junctions, and 11 T-DNA/vector backbone junctions, which included 171 left

borders and 134 right borders. Conserved cleavage was observed in 6% of left

and 43% of right borders, microhomology was observed in 58% of T-DNA/

genomic DNA, 43% of T-DNA/T-DNA, and 82% of T-DNA/vector junctions,

mostly at left borders, and about one-third of the T-DNA/genomic DNA and

T-DNA/T-DNA junctions showed evidence of filler DNA (up to 344 bp). This

was derived mainly from the T-DNA region adjacent to the breakpoint and/or from

the rice genomic DNA flanking the T-DNA integration site, with T-DNA/T-DNA

filler DNA showing the greatest complexity. Interestingly, when two T-DNAs were

integrated in the inverted repeat configuration, significant truncation was always

observed in one of the two T-DNAs, whereas with direct repeat configuration, large

truncations were rare. These data suggested no single integration mechanism could

account for all observations, but the presence of filler DNA at many of the junctions

argued that a template-driven DNA synthesis mechanism must be involved, proba-

bly reflecting abortive gap repair through a synthesis-dependent strand annealing

(SDSA) process. For example, a 16-bp filler DNA that was identical to a reversed

T-DNA fragment close to the right border was observed at a left/right border

junction. This was most likely produced by invasion of the 30 end of a T-DNA

into another T-DNA near the right border in reverse orientation during recombina-

tion or interaction of these two T-DNAs. When the right border is not protected by

VirD2, it is subjected to 50 exonuclease degradation that creates a free 30 end in its

complementary strand. This 30 end is able to invade another template to produce

filler DNA at the right border end. Multiple template switches can be used to

explain the origin of complex filler DNA structures, and longer regions of homolo-

gous DNA might reflect a single-strand annealing process in addition to SDSA.

7.3.4 Cotransfer of Vector Backbone Sequences

Agrobacterium was initially thought to be a clean transformation method because

the T-DNA is more or less precisely defined (cleavage occurs at a precise position

within the right border repeat and the cleavage site at the left border varies by about

100 bp). However, it is now evident that T-DNA transfer is much less precise than

originally envisaged, and 25–30% of transformants may commonly contain vector

sequences linked to the T-DNA insert, indicating that the cleavage reaction during

T-DNA transfer can be rather inefficient (Martineau et al. 1994; Rai et al. 2007).

Other studies have shown that in some systems, the frequency of vector back-

bone transfer can reach as high as 66% (Afolabi et al. 2004). Ramanathan and

Veluthambi (1995) constructed binary vectors, in which the selectable marker was

located outside the left T-DNA border. In accordance with the T-DNA transfer

mechanisms discussed above, it was considered likely that this strategy would catch

those transfer events in which transfer, initiated at the right border, overran the left
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border and terminated somewhere along the plasmid backbone. Surprisingly,

these investigators found that none of the transformants contained any T-DNA

sequences, indicating that, in these cases, transfer had initiated at the left border and

had proceeded around the plasmid away from the T-DNA, presumably breaking off

before completing the circuit and reaching the right border sequence. Further

investigations have shown that vector sequence transfer is probably a very common

event, occasionally involving the entire plasmid backbone with or without the T-

DNA. Concatemers of the entire binary vector have also been seen, indicating that

transfer does not necessarily terminate at the T-DNA border even after one or more

complete circuits of the vector (Wenck et al. 1997). The exact structure of the insert

and the presence or absence of T-DNA in recovered transgenic plants depend of

course on the position of the selectable marker. In the strategy of Ramanathan and

Veluthambi (1995), the external position of the marker allowed non-T-DNA trans-

formants to be recovered. The experiments carried out by Kononov et al. (1997) are

particularly informative because this group constructed binary vectors, in which a

selectable marker was present within the T-DNA and a screenable marker gene was

present outside either the left or the right borders of the T-DNA. Over 200

transformants were obtained under selection and 75% were shown to carry the

external screenable marker gene gusA. Interestingly, both vectors appeared to

transfer gusA to the plant genome with equal efficiency, suggesting that T-DNA

transfer could be initiated nonselectively at either the left or right borders. It is also

notable that Kononov and colleagues used three alternative Agrobacterium strains:

LBA4404, GV3101, and EHA105, representing octopine, nopaline, and agropine-

type virulence functions, respectively. There were no significant differences

among the strains in terms of the frequency of vector sequence transfer. Finally,

these investigators reported that they could also detect independent integration

events involving plasmid backbone sequences alone. Since the selectable marker

in these experiments was located within the T-DNA, such vector-only integrations

must have occurred in addition to the T-DNA-linked integration events. This

indicates that in the natural course of transformation, many vector-only integration

events may occur, but will not be recovered under selection. It is also likely that

vector-only integration events occur, undetected, in many plant transformation

experiments.

7.4 Locus Structure in Plants Transformed by Direct

DNA Transfer

7.4.1 Principles of Gene Transfer

A number of direct DNA transfer methods have been developed to transform plants

recalcitrant to Agrobacterium-mediated transformation (reviewed by Twyman et al.

2002). Among these methods, particle bombardment has become the most successful
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because it is based on purely mechanical principles and is therefore not dependent

on the biological factors that restrict the Agrobacterium “host range”. Particle bom-

bardment works with any plant species, variety, and explant, leaving the regenera-

tion of fertile plants rather than the DNA transfer process itself as the only

significant bottleneck (Altpeter et al. 2005). Particle bombardment involves the

acceleration of small DNA-coated metal particles (either gold or tungsten) into

plant tissue with sufficient force to break through the cell wall and membrane. Some

of the particles reach the nucleus, where the DNA is released, probably by a simple

diffusion mechanism (Altpeter et al. 2005). Notably, the foreign DNA entering a

bombarded cell is naked, double-stranded, and competent for both transient

episomal expression and integration into the genome. Transient expression also

occurs in the process of Agrobacterium-mediated transformation, but the T-strand

must first be converted into a double-stranded intermediate (Narasimhulu et al.

1996). Other direct DNA transfer methods are gentler, using chemicals (e.g., PEG,

calcium phosphate) or physical methods (e.g., electroporation) to persuade plant

protoplasts to take up DNA from the surroundings. However, this DNA must ulti-

mately find its way to the nucleus, and integration occurs in the same way as

described below for particle bombardment.

While Agrobacterium-mediated transformation involves a number of virulence

gene products that must be supplied either on the same plasmid as the T-DNA or on

a separate binary vector, particle bombardment has no such requirements because

the introduction of DNA is governed entirely by external physical factors (Sanford

et al. 1993). For convenience, therefore, vectors used for direct transfer are gener-

ally based on bacterial cloning plasmids, and incorporate a selectable marker and

origin of replication functional in bacteria. In Agrobacterium-mediated transforma-

tion, the T-DNA is meant to be excised from the vector during the transformation

process, and any vector backbone transfer results from inefficient processing. In

contrast, there is no such processing in particle bombardment, although this can be

achieved before transformation by excising the linear cassette, purifying it, and

using just this cassette as the substrate for coating the metal particles (Fu et al.

2000). This practice has the interesting side effect of reducing the complexity of

transgene loci as discussed in Sect. 7.4.3.

7.4.2 Transgenic Locus Structure

There have been few studies, in which integration sites generated by particle

bombardment have been carefully mapped, so whether there is a preference for

inserting in transcription units is not so clear as in the case of T-DNA integration.

The variable nature of the input DNA linear cassette sequences should remove any

sequence-dependent bias (compared to the preserved ends of the T-DNA), but as

discussed in Sect. 7.3.4, the T-DNA cutting process can overshoot the left and/or

right border, so it is likely that the substrates for integration are equally variable in

T-DNA transfer. Chen et al. (1998) noted that in rice plants cotransformed with up
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to 13 plasmids, there was no preference for the integration of particular transgenes,

indicating that the insertion mechanisms operated independent of input gene

sequence. Svitashev et al. (2000) showed by FISH analysis of transgenic oat that

integration occurred randomly with respect to the A/D and C genomes, and there

was no preference for chromosomes from a particular genome. However, the

majority of integration events occurred at telomeric and subtelomeric regions,

which are typically gene-rich. It is also possible that this preferential integration

may reflect some aspect of the nuclear architecture in oat rather than the distribution

of genes, since FISH analysis of a limited number of transgenic wheat plants

generated by particle bombardment showed no preferential integration in terms of

the chromosome region. In the commercial papaya variety SUNUP, five of the six

sequences flanking the three indentified transgene integration sites were genomic

copies of plastid genes (Ming et al. 2008). Since the plastid genome is more AT-rich

than typical genomic DNA, this both supports the possibility of preferential insertion

in or near genes and matches the observation of AT-rich sequences at the insertion

sites in other transgenic lines generated by Agrobacterium and direct DNA transfer.

Unlike the situation with Agrobacterium-mediated transformation, a vast litera-

ture has accumulated on the structure and complexity of transgenic loci generated

by direct DNA transfer, particularly particle bombardment. As discussed in

Sect. 7.3.2, T-DNA integration usually occurs with a low copy number, rarely

exceeding five copies, and the T-DNA is generally intact. In contrast, direct DNA

transfer often generates much larger transgenic loci. Typically, these contain from

1 to 20 transgene copies (e.g., Klein et al. 1987; Register et al. 1994; Cooley et al.

1995; Dai et al. 2001; Travella et al. 2005). The structure of such loci is highly

variable, comprising single copies, tandem or inverted repeats, concatemers, intact

transgenes, truncated and rearranged sequences, and interspersed genomic DNA.

The analysis of transgenic cereal plants by FISH to extended DNA fibers, meta-

phase chromosomes, and interphase chromatin has revealed a higher-order level of

organization where discrete integration events are interspersed by large fragments

of genomic DNA, up to several hundred kilobase pairs in length. This organization,

which generates immense (megabase) transgenic loci, appears unique to particle

bombardment, and could thus reflect the nature of the transformation process itself

(see Sect. 7.4.3).

A useful overview of transgene organization in wheat has been reported by

Jackson et al. (2001) using the technique of fiber-FISH. This study showed that

transgene loci in bombarded wheat plants can be organized in three ways. The

simplest arrangement, described as a type III locus, is characterized by a single

discrete fiber-FISH signal corresponding approximately to the length of the trans-

forming plasmid. This represents an intact, single copy transgene. Type III loci may

be present uniquely in a given plant, or there may be two or more unlinked inserts

representing multiple genetic loci. These two possibilities can be distinguished by

FISH to metaphase chromosomes and genetic segregation analysis. Other loci,

described as type I loci, are longer than the single plasmid copy yet still generate

a continuous signal along the extended chromatin fiber. For example, Jackson and

colleagues reported a type I transgenic locus with a continuous signal of 77 kb,
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representing 11 contiguous plasmid copies. Such loci represent concatemers of the

transforming plasmid and are characterized by the absence of intervening genomic

DNA. The presence of concatemers can also be confirmed by Southern blot analysis

and sequencing across plasmid/plasmid junctions. Loci thus characterized have

been described by Kohli et al. (2003) as “transgene arrays” (Fig. 7.1). Until the

late 1990s, both head-to-head and head-to-tail concatemers had been sporadically

reported in the literature, but it was unusual for the structure of a transgenic locus to

be examined in such detail. Concatemerization is probably quite a common phe-

nomenon. Extensive concatemerization, for example, has been reported by Hadi

et al. (1996) in transgenic soybean simultaneously transformed with 12 different

plasmid vectors. The remaining class of locus (type II) is the most complex. It is

characterized by fiber-FISH signals that extend for a significant distance (>100 kb)

over the chromosome, but which are punctuated regularly by intervening segments
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Fig. 7.1 Mechanism for

transgene integration at

regions of microhomology.

A mixture of DNA fragments

with ragged ends (a) interacts

with a double-stranded DNA

break with partially

complementary ragged ends

(b). Repair synthesis across

the gap (c) generates a

recombination junction (d)

which may be completely

conserved if the homology is

precise, or may involve either

the loss of terminal sequences

or the insertion of filler DNA

if the homology is partial
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of genomic DNA (no signals). Such loci have also been identified in transgenic oat,

rice, barley, and maize. In barley, for example, some transgene integration sites

showed simple structures represented by one single FISH signal, whereas in others

it was possible to identify up to six spots organized in a linked cluster and separated

by barley DNA, making the locus several megabase pairs long (Travella et al.

2005). Kohli et al. (2003) defined such loci as “transgene clusters.” Type II loci

contain genomic interspersions ranging from a few tens of base pairs to approxi-

mately 10 kb (Fig. 7.2). Although dispersed over a distance of up to 100 kbp, such

RC

RC RCRC

RCRC

RC

RC

RCGenomic DNA Transgene DNA DNA repair complex

b

c

a

Fig. 7.2 Explanation for the formation of transgene arrays and transgene clusters interspersed with

genomic DNA. A mixture of DNA fragments interacts with a double-stranded DNA break where a

repair complex has already assembled (a). The repair complex may stitch together DNA fragments

to form concatemers prior to integration, or may integrate single copies. The first integration event

stimulates further repair complex activity nearby, resulting in additional nicks and breaks in the

genomic DNA that act as further integration sites (b). This results in a cluster of transgenes (single

copies and concatemers) interspersed with short regions of genomic DNA (c)
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loci would still be expected to generate a single discrete signal if FISH analysis was

applied to metaphase chromosomes due to the low resolution of this technique.

However, the analysis of metaphase wheat chromosomes by FISH has revealed an

unexpected third level of organization, involving the dispersion of transgene arrays

and/or clusters over a larger area comprising megabase pairs of DNA (Abranches

et al. 2000). Instead of discrete spots for each transgenic locus, two or more

separable FISH signals were often observed, restricted to a particular chromosome

region (Fig. 7.3). To be separable at the cytogenetic level, each signal must be

interspersed by hundreds of kilobase pairs of genomic DNA. Similarly large

genomic interspersions have been seen in transgenic oat (Svitashev and Somers

2001).

Interestingly, FISH analysis of interphase chromatin and metaphase chromo-

somes in the same transgenic wheat plants showed that the dispersed metaphase

FISH signals could come together at interphase (Abranches et al. 2000). Occasion-

ally, the signals clustered at a specific region of the nucleus but remained discrete.

7.4.3 Mechanisms of Transgene Integration

The analysis of plasmid/plasmid and plasmid/genomic junctions in transgenic

plants generated by particle bombardment reveals features characteristic of illegiti-

mate recombination similar to those seen for T-DNA junctions, suggesting that the

same overall integration mechanisms may be involved (Svitashev et al. 2002). For

example, such junctions are characterized by regions of microhomology, filler

DNA, trimming of the DNA ends so sequences are lost and AT-rich elements

surrounding the junction site, with similarity to topoisomerase I binding/cleavage

sites (Fig. 7.1). In the analysis of multiple plasmid/plasmid junctions in 12 trans-

genic rice lines, Kohli et al. (1998) observed ten plants with microhomology at the

junctions and two plants where junctions appeared to be generated by blunt ligation,

with no overlap. A similar ratio of conserved end-joining to microhomology-

mediated recombination was observed by Gorbunova and Levy (1997) and Salomon

and Puchta (1998). Topoisomerase I sites were also observed adjacent to 10 out of

12 junctions characterized in transgenic Arabidopsis plants generated by particle

bombardment (Sawasaki et al. 1998) and in four of the six junctions in the com-

mercial SUNUP variety of papaya (Ming et al. 2008). Illegitimate recombination,

therefore, appears to be responsible both for the integration of foreign DNA into the

plant genome and the linking of multiple plasmid copies, which is similar to the

mechanism proposed for T-DNA integration (Sect. 7.3.3).

Any model for transgene integration following particle bombardment must take

into account the three-tier organization revealed in transgenic cereals: contiguous

arrays, interspersed clusters, and widely dispersed FISH signals. Two-phase trans-

gene integration mechanisms have been proposed to explain the first two levels of

organization, and in such models concatemerization is proposed to occur prior to

integration, while interspersion occurs during the integration process (Kohli et al.
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Fig. 7.3 Higher order transgene locus organization in cereals transformed by particle bombard-

ment. Transformation occurs during interphase, when the chromatin is distributed into specific

nuclear zones and territories. If a metal particle causes localized damage, DNA repair complexes

will form at these sites and initiate transgene integration (a). During metaphase, when FISH

analysis is generally carried out, loci that are brought together in interphase may be separated,

resulting in multiple signals from the same transformation event (b). If the DNA were stretched

out, this would reveal large (megabase) interspersed sequences, which have also been observed in

fiber-FISH experiments
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1998; Pawlowski and Somers 1998; Svitashev et al. 2002) (Fig. 7.2). In each model,

penetration of the cell is proposed to elicit a wound response, which would include

the induction of DNA repair enzymes, such as nucleases and ligases. The presence

of these enzymes and an excess of foreign DNA would result in the linking together

of several copies to form concatemers, which would be the substrates for integration.

This might be stimulated by homology between individual copies of transforming

plasmids, and “backbone” homology might also result in the concatemerization of

plasmids carrying different transgenes in cotransformation experiments. However,

cotransformation and cointegration were also shown to occur when two nonhomol-

ogous minimal cassettes were used for transformation, so homology might not be as

important as the presence of free DNA ends (Fu et al. 2000). Kohli et al. (1998)

suggested that transgene clusters arise in a second phase where a primary integra-

tion event occurring by illegitimate recombination at a chromosome break gener-

ates a “hot-spot” for further integration events in the same area. This might be due,

for example, to the presence of local repair complexes that slide along the DNA

and introduce nicks which can be exploited by more foreign DNA (Gelvin 1998).

Pawlowski and Somers (1998) suggested an alternative second phase where a

number of discrete transgene concatemers integrate simultaneously at a site con-

taining multiple replication forks. Although there is no direct evidence for either

mechanism, it is interesting to note that DNA integration is stimulated in rapidly

dividing cells and is blocked in Arabidopsis mutants lacking essential components

of the DNA recombination machinery.

The higher order organization of transgenic loci observed by metaphase FISH

is thus far unique to particle bombardment and demands a model which takes

into account the three-dimensional structure of the nucleus. In one scenario, it is

possible that the transformation event affects a local region of the interphase

nucleus. For example, it is possible that the metal particle causes damage to a

particular area of chromatin, which is arranged in loops attached to the nuclear

matrix. If the particle “skims” several loops, there will be regions of DNA damage

close together in trans, but widely separated in the cis configuration were the DNA

to be stretched out (Fig. 7.3). Each of these sites could act as a nucleation point

where foreign DNA diffusing from the metal particle is used to patch up double-

strand breaks, generating widely separated arrays and/or clusters (Abranches et al.

2000; Kohli et al. 2003). In support of this induced break and repair model,

Svitashev et al. (2000) have shown that in six of 25 transgenic oat plants generated

by particle bombardment, transgene integration sites were associated with re-

arranged chromosomes. This suggests that DNA breaks caused by incoming parti-

cles are repaired with foreign DNA and may also result in deletions, inversions, and

translocations involving genomic DNA. Chromosomal rearrangements have also

occasionally been seen associated with T-DNA integration (Nacry et al. 1998;

Laufs et al. 1999).

The model above suggests that dispersed metaphase signals come together at

interphase due to the physical position of the transgenic loci at the moment of

transformation. In another scenario, the bringing together of transgene sites at

interphase could represent recruitment, for example to a common transcription
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factory in the nucleus (Cook 1999). A further scenario involves transgenes that are

brought together by virtue of their homology, perhaps as a consequence of their

initial placing in the same region of the nucleus. This is an exciting prospect

because the coincidence of FISH signals observed in wheat nuclei could represent

a physical basis of the postulated DNA-DNA interactions that precede transcrip-

tional transgene silencing in plants (see below).

Transgene rearrangements following particle bombardment have been widely

reported in the literature, and many publications repeat the “lore” that direct DNA

transfer is more likely than T-DNA transfer to generate complex rearranged loci.

The number of rearrangements that can be detected depends entirely on the resolu-

tion of the method being used. Thus, careful analysis of locus structure by Southern

blot hybridization, PCR, and DNA sequencing has recently shown that rearrange-

ments may be more widespread than first envisaged in both transformation meth-

ods. The analysis of transgenic oat loci by Somers and colleagues has shown that

transgene rearrangements can be extensive and extremely complex, with multiple

small insertions, inversions, and deletions within any transgene, plus the presence

of filler DNA (Svitashev et al. 2000). In maize, Mehlo et al. (2000) noted that every

single plant among the population they analyzed showed some form of rearrange-

ment, and they speculated that undetected “minor” rearrangements could be respon-

sible for many instances of transgene silencing otherwise attributed to epigenetic

effects (see Sect. 7.5). In particular, certain transgene rearrangements were not

detectable by Southern blot hybridization because they were too subtle, but they

could be picked up by PCR and sequencing. Since in most cases, Southern blot

hybridization is used to determine whether a given locus is intact or rearranged, this

suggests caution should be used in relying on such results, since only “major”

rearrangements can be detected in this manner.

Few researchers have characterized transgene rearrangements in detail, but work

by Kohli et al. (1999) has shown that rearrangements may involve palindromic

sequences in the transforming plasmid, which tend for form three-dimensional

structures such as hairpins and cruciforms. These investigators characterized 12

transgenic rice lines, transformed by particle bombardment, which had been shown

to contain rearranged transgenes. Interestingly, they found that an imperfect palin-

drome in the CaMV 35S promoter was involved in one-third of all rearrangements,

i.e., the sequence of this palindrome was adjacent to the rearrangement junction.

Similar phenomena have been noted in T-DNA transformants containing the same

promoter (Sect. 7.3.2). This sequence has the ability to adopt a cruciform secondary

structure, which may stimulate recombination events. Many other promoters con-

tain palindromic sequences of variable length within 100 bp of the transcription

start site. The DNA secondary structures formed at these sites enable DNA-protein

interactions for transcription under normal circumstances, but may also participate

in aberrant recombination events. The fully sequenced papaya genome (Ming et al.

2008) also revealed a number of previously unidentified transgene rearrangements,

i.e., a 1,533-bp fragment composed of a truncated, nonfunctional tetA gene and

flanking vector backbone sequence, and a 290-bp nonfunctional fragment of the

nptII gene, in addition to the intact, primary transgene conferring virus resistance.
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7.5 Locus Structure and Transgene Stability

One of the most profound insights to come from the detailed analysis of transgene

loci over the last decade is that many integrated transgenes contain minor rearran-

gements. As discussed above, these are difficult to pinpoint using low-resolution

detection methods such as Southern blot hybridization and FISH, but high-

resolution methods such as sequencing are rarely used as a routine analysis tool.

Therefore, the impact of physical rearrangements on transgene expression is likely

to be vastly underestimated, since unstable loci are often blamed on epigenetic

phenomena with no further analysis to draw confirmatory evidence.

There are many factors that influence transgene stability, and these lead to highly

variable expression within populations of plants generated in the same gene transfer

experiment. One of the most important factors is the position effect, which reflects

the influence of genomic DNA surrounding the site of transgene integration (Wilson

et al. 1990). Another is the structure of the locus, including the number of transgene

copies, their intactness, and their relative arrangement, which influences the likeli-

hood of physical interactions and further recombination within the locus (physical

instability) and the induction of silencing through DNA methylation and/or the

production of aberrant RNA species from the locus (Heinrichs 2008).

7.5.1 Position Effects

Specific position effects result from the influence of local regulatory elements on

the transgene. For example, an integrated transgene may come under the influence

of a nearby enhancer, such that its expression profile is modified. The effect is

transgene-specific because the enhancer interacts with regulatory elements in the

transformation construct to control transcription; hence, the final expression pattern

reflects the combined influence of both regulatory elements. Such effects are clearly

revealed by entrapment constructs, which contain minimal control sequences linked

to a visible marker gene and therefore “report” the activity of local regulatory

elements (e.g., Goldsbrough and Bevan 1991).

As well as specific position effects governed by local regulatory elements,

nonspecific position effects can also be generated by the surrounding chromatin

architecture. Where the local environment is favorable for transgene expression,

i.e., a positive position effect, it is generally taken for granted. However, nonspe-

cific and repressive position effects reflect the integration of the transgene into a

chromosomal region containing repressed chromatin (heterochromatin). The

molecular features of heterochromatin, including its characteristic nucleosome

structure, deacetylated histones, and hypermethylated DNA, spread into the trans-

gene causing it to be inactivated (Pikaart et al. 1998). Analysis of the genomic

context of silenced transgenes suggests that integration in the vicinity of certain

repetitive DNA sequences, such as microsatellites and retrotransposon remnants,

may predispose the transgene to silencing (Tanako et al. 1997). The chromosomal
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location is important, since in many plants, the genes are restricted to a small

portion of the genome known as gene space, and the majority of the DNA is taken

up by repetitive sequences. Thus, stable transgene expression has been associated

with gene-rich telomeric and subtelomeric integration sites, whereas mosaic expres-

sion and silencing occurs at predominantly heterochromatic centromeric loci.

A third type of position effect reflects the tolerance of the surrounding DNA for

“invasion” by foreign DNA. In this case, the effect is not automatic (as above) but is

set off by the presence of the transgene. It appears that certain sequences can trigger

de novo methylation, perhaps because the GC-content or sequence architecture is

recognized as abnormal (reviewed by Kumpatla et al. 1998). Prokaryotic DNA may

be recognized in this manner, since silencing is often associated with the presence

of prokaryotic vector backbone DNA, particular binary vector sequences joining

T-DNA to genomic DNA (Iglesias et al. 1997).

7.5.2 Locus Structure Effects

At least three aspects of locus structure influence transgene stability and expression:

copy number, intactness, and arrangement. It is natural to assume that increasing the

number of copies of a particular transgene will lead to an increase in the level of its

product. However, even from the earliest plant transformation experiments, it was

appreciated that multiple transgene copies could induce transgene silencing and that

the phenomenon was associated with DNAmethylation at the transgenic locus (e.g.,

Gelvin et al. 1983; Hepburn et al. 1983). A strikingly visual demonstration of

this effect was provided by introducing the maize AI gene into mutant petunia plants

with white flowers. Expression of the transgene resulted in pelargonidin production,

generating a red pigment. However, it was shown that red flowers generally

appeared on plants with single copy transgenes, while plants with multiple transgene

copies had white or variegated flowers. Where transgene silencing had occurred,

increased methylation of the transgene DNA was observed (Meyer et al. 1992).

Similarly, it was thought that the amount of pigment in wild-type petunia flowers

could be increased by introducing extra copies of the chalcone synthase (chs) gene
(Napoli et al. 1990). Chalcone synthase converts coumaryol-CoA and 3-malonyl-

CoA into chalcone, a precursor of anthocyanin pigments. The presence of multiple

transgene copies was expected to increase the level of enzyme and hence cause

stronger flower pigmentation. However, in about 50% of the plants recovered from

the experiment, exactly the opposite effect was observed. The flowers were either

pure white, or variegated with purple and white sectors. It appeared that integration

of multiple copies of the transgene led not only to the suppression of transgene

expression, but also to the cosuppression of the homologous endogenous gene.

Rooke et al. (2003) looked at the integration, inheritance, and expression of

transgenes in six transgenic wheat lines generated by particle bombardment with

two plasmids containing genes encoding a glutelin subunit and a selectable marker,

respectively. Transgene insertion number ranged from 1 to 15, with most lines

carrying multiple copies consistent with previous reports (Becker et al. 1994;
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Blechl and Anderson 1996; Srivastava et al. 1996; Stoger et al. 1998; Cannell et al.

1999). Four of the transgenic loci were clusters interspersed with genomic DNA, in

some cases enough to allow independent segregation which contrasts with previous

reports in which cointegration and cosegregation were the norm, and independent

segregation rare (Stoger et al. 1998). There was no evidence for a direct correlation

between transgene copy number and expression level, and no evidence for cosup-

pression of endogenous glutelin genes even in multicopy lines. The presence of

multiple transgene copies has been implicated in transgene silencing, but other

studies in cereals have shown that multiple copies do not necessarily lead to

silencing and can even enhance expression levels in proportion to copy number

(Stoger et al. 1998; Gahakwa et al. 2000). In contrast, Spencer et al. (1992) failed to

recover progeny expressing the marker transgenes from maize lines containing

more than five or six copies of the integrated plasmid, while Cannell et al. (1999)

observed silencing or a gradual reduction in marker gene expression over three

generations of transgenic wheat lines. It has been suggested that the production of

lines with single transgenes or low copy numbers is desirable as such lines may be

more stable and less likely to exhibit transgene silencing (Finnegan and McElroy

1994), but with several studies reporting contrary results, this may indicate that

chance plays a role in the impact of copy number, perhaps reflecting insertion

events near to boundary elements (Sect. 7.5.3).

Variation in transgene expression levels can also result from uncontrolled

differences in experimental protocols reflecting gene-environment interactions,

which means that proper comparisons between transgenic lines should take place

in a standardized environment. To study sources of spurious variation, transgene

expression levels were quantified over five homozygous generations in two inde-

pendent transgenic rice lines created by particle bombardment (James et al. 2004a,

b). Both lines contained the same gusA expression unit which was stably inherited,

and all plants were cultured and sampled using previously developed standardized

protocols. Plants representative of each generation (T2–T6) were grown either all

together or across several different growth periods. Where the plants were grown

and characterized independently, the amount of extraneous variation in transgene

expression levels was up to three-fold higher than in plants grown and analyzed

together. This study therefore provided important evidence that the growth and

analysis of all plants from all generations together, using standard operating

procedures (SOP), can reduce extraneous variation associated with transgene

expression and is the key to improving the reproducibility of transgenic studies

conducted over multiple generations (James et al. 2004a, b).

7.5.3 Overcoming Position and Locus Structure Effects by
Buffering the Transgene

As discussed earlier, analysis of the genomic context of transgene integration sites

has shown that silenced transgenes are often surrounded by repetitive elements,

which are sequestered into repressed chromatin. The same studies have also shown
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that stably expressed transgenes are often associated with matrix attachment

regions (MARs) (Iglesias et al. 1997). MARS are AT-rich elements that attach

chromatin to the nuclear matrix and organize it into topologically isolated loops

(Holmes-Davis and Comai 1998). A number of highly expressed endogenous plant

genes have also been shown to be flanked by matrix attachment regions (e.g., Chinn

and Comai 1996). One strategy that has been proposed to overcome position effects

is therefore to protect or buffer the transgene by flanking it with MARs prior to

transformation. In this way, it is hoped that the transgene will form a discrete

chromatin loop which will be isolated from surrounding chromatin.

Several experiments have been carried out in which a reporter gene such as gusA
has been flanked by MARs. Such constructs have been introduced into transgenic

plants and compared to populations containing the same reporter gene without

MARs (e.g., Mlynarova et al. 1994, 1995, 1996; Van Leeuwen et al. 2001;

Mlynárová et al. 2002). Generally MARs do have a positive effect on transgene

expression and can significantly reduce position effects, but they cannot rescue all

lines and restore full expression. It is acceptable to say that they generally reduce

expression variability within a population (e.g., Breyne et al. 1992). Expression

may increase as much as five-fold, but some remarkable exceptions include a

25-fold enhancement using a yeast MAR and a 140-fold enhancement using

a tobacco MAR in tobacco callus (Allen et al. 1993, 1996).

7.5.4 Overcoming Position and Locus Structure Effects
by Homologous Recombination

As discussed in Sects 7.3.3 and 7.4.3, transgene integration in higher plants occurs

almost universally by illegitimate recombination, which may involve microhomology

but is not dependent upon it. Since there is only minimal sequence relationship

between the transgene and the genomic region into which it integrates, the experi-

menter has little control over the integration site. In other systems, notably yeast,

homologous recombination is favored over illegitimate recombination if the vector

carries a homology region thatmatches the yeast genome, allowing endogenous genes

to be altered by gene targeting (Schiestl and Petes 1991). In the context of controlling

transgene integration, it also allows transgenes to be inserted at specific loci, a strategy

that should allow favorable sites for transgene integration to be chosen, theoretically

abolishing position effects and reducing the complexity of locus structure.

Although widely used in microbial systems, homologous recombination occurs

with a very low efficiency in plants (illegitimate recombination occurs about 105

times more frequently than homologous recombination, making genuine targeting

events difficult to isolate). Only one plant species has been shown to undergo

efficient nuclear homologous recombination (the moss Physcomitrella patens) and
the results in higher plants have been much less impressive, with targeting efficien-

cies as low as 10�6 (Lee et al. 1990; Offringa et al. 1990; Miao and Lam 1995;

Risseeuw et al. 1995, 1997; Kempin et al. 1997; Reiss et al. 2000; Hanin et al. 2001).
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A transgene has also been repaired by homologous recombination in tobacco

(Paszkowski et al. 1988). More recently, promising results have been achieved

using a T-DNA-mediated gene-targeting strategy involving a long homology region

in combination with a strong counterselectable marker in rice (Terada et al. 2002).

Targeting frequencies of up to 1% have been achieved using this system (reviewed

by Ida and Terada 2004 and Cotsaftis and Guiderdoni 2005). Gene targeting has also

been reported recently in maize (D’Halluin et al. 2008).

There has also been interest in the use of zinc-finger endonucleases to make

targeted double-strand breaks in the plant genome, so that homologous recombina-

tion is favored at such sites (Kumar et al. 2005). The modular nature of zinc-finger

transcription factors means that recombinant DNA technology can be used to “mix

and match” these DNA-binding domains to create recombinant proteins with

unique sequence specificities. Zinc fingers are motifs approximately 30 amino

acids in length which coordinate a Zn2+ ion and bind to DNA sequences three

base pairs long. Combining different zinc fingers in series allows proteins to be

tailor made to bind longer DNA sequences. When a nonspecific DNA endonuclease

is incorporated into such a protein, it becomes a targeted DNA cutting tool (Lloyd

et al. 2005; Wright et al. 2005; Zeevi et al. 2008; Cai et al. 2009).

7.5.5 Overcoming Position and Locus Structure Effects
by Organelle Transformation

The plant cell contains not only a nuclear genome, but also organellar genomes in

the chloroplasts and mitochondria. The chloroplast is a useful target for gene

transfer because tens of thousands of chloroplasts may be present in a single plant

cell, and each chloroplast may contain multiple copies of its chromosome. Genetic

engineering of the plastid genome offers several advantages over nuclear transfor-

mation including that integration occurs by homologous recombination, the high

copy number of transgenes in a homoplasmic cell, and the absence of gene silencing

phenomena due to the lack of position and locus structure effects, and the absence

of DNA methylation in the plastid genome (Daniell et al. 2005; Daniell 2006; Bock

2007). The recombination machinery is very active in chloroplasts and can induce

rearrangements, as observed in some of the first tobacco transformants generated

with the aadA selectable marker (Svab and Maliga 1993). The stability of a plastid

transgene has been evaluated in soybean transformants over six generations. These

transformants had integrated the aadA selection cassette in the intergenic region

between the rps12/7 and trnV genes. Three independent homoplasmic T0 transfor-

mation events were selected and ten plants from each event propagated to genera-

tion T5 in the absence of selection pressure. Neither transgene rearrangement

nor wild-type plastids were detected in generation T5 by Southern blot analysis.

All tested progenies were uniformly resistant to spectinomycin. Therefore, soybean

transformants of generations T0 and T5 appear to be genetically and phenotypically

identical (Dufourmantel et al. 2006).
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7.5.6 Overcoming Position and Locus Structure Effects
by Site-specific Recombination

Site-specific recombination is a form of recombination that occurs at short, specific

recognition sites rather than DNA sequences with long regions of homology but

no particular sequence specificity, as is the case for homologous recombination.

Site-specific recombination is not ubiquitous – indeed different organisms encode

their own very specific systems that include the cis-acting recombinogenic sites

and the enzymes that recognize them and carry out the recombination event.

Therefore, the target sites for site-specific recombination can be introduced easily

and unobtrusively into transgenes, but recombination will only occur in a heterolo-

gous cell if a source of the specific recombinase enzyme is also supplied. As with

the homologous recombination strategy discussed above, position and locus struc-

ture effects can be eliminated by introducing foreign DNA at a specific, favorable

locus. A number of different site-specific recombination systems have been identi-

fied and several have been studied in detail (Sadowski 1993). The most extensively

used are Cre recombinase from bacteriophage P1 (Lewandoski and Martin 1997)

and FLP recombinase from the yeast Saccharomyces cerevisiae (Buchholz et al.

1998). These have been shown to function in many heterologous eukaryotic

systems including transgenic plants (Metzger and Feil 1999). Both recombinases

recognize 34-bp sites (loxP and FRP, respectively) comprising a pair of 13-bp

inverted repeats surrounding an 8-bp central sequence. FRP possesses an additional

copy of the 13-bp repeat sequence, although this is nonessential for recombination.

The Cre-loxP system has been used most widely in plants, often for controlled

transgene excision (particularly selectable marker genes after transformation) but

more recently for controlled transgene insertion (Gilbertson 2003; Lyznik et al.

2003; Puchta 2003; Marjanac et al. 2008). Marker genes are usually excised in the

T1 generation once transgene expression is verified, allowing the separately intro-

duced cre gene to segregate in T2 plants. This method has been used in many crops

including wheat (Srivastava and Ow 2001, 2003), maize (Kerbach et al. 2005;

Djukanovic et al. 2006; Hu et al. 2006; Vega et al. 2007, 2008), rice (Chen et al.

2004; Srivastava et al. 2004; Chawla et al. 2006; Moore and Srivastava 2006; Vega

et al. 2008), potato (Kopertekh et al. 2004a,b), and tomato (Gidoni et al. 2003;

Coppoolse et al. 2005). Controlled integration has been studied in transgenic plants

already engineered to contain recipient loxP sites (Srivastava et al. 2004). In this

study, three different recipient wheat lines were generated by bombarding plants

with the loxP sequence, and these were subsequently bombarded with a gusA
construct also containing flanking loxP sequences and a cre gene. Following

transformation, about 80% of lines contained gusA at the recipient site, many

with single-copy transgenes and others with concatemers. Both types of locus

were stably inherited. There was much less variation in expression among the

single copy lines (Srivastava et al. 2004).

Chawla et al. (2006) generated 18 different transgenic rice lines containing a

precise single copy of gusA at a designated site. In seven of these lines, additional

224 A. Kohli et al.



copies of the transgene integrated at random sites by illegitimate recombination,

while 11 showed “clean” integration by site-specific recombination only. The

single-copy lines were stable over at least four generations and showed consistent

levels of expression, which doubled in homozygous plants. In contrast, the multi-

copy lines showed variable expression and some fell victim to transgene silencing.

Interestingly, where the site-specific and illegitimate integration loci segregated in

later generations, transgene expression was reactivated in the plants carrying the

site-specific integration site alone, whereas close linkage between the site-specific

and random integration prevented segregation in other lines and the silencing

persisted.

An exciting recent development is the GENE DELETOR system, which is a

hybrid of the Cre-loxP and FLP-FRT systems. The GENE DELETOR is based on a

fusion recognition site (loxP-FRT), which is inefficient when both recombinases are

expressed but highly efficient when either one of the recombinases is expressed

alone, giving up to 100% efficiency in populations of up to 25,000 T1 transgenic

plants (Luo et al. 2007).

Another use for Cre-loxP is the simplification of locus structure by resolving

multicopy loci to a single transgene copy (Srivastava et al. 1999). A strategy was

developed in which the transformation vector contained a transgene flanked by loxP
sites in an inverted orientation. Regardless of the number of copies integrated

between the outermost transgenes, recombination between the outermost sites

resolved the integrated molecules into a single copy. The principle was proven by

resolving four multicopy loci successfully into single-copy transgenes.

7.5.7 Overcoming Position and Locus Structure Effects
Using Minichromosomes

In bacteria, plasmid vectors are maintained as episomal replicons to make cloning

and isolating recombinant DNA a simple procedure. When it comes to expressing

heterologous genes in eukaryotic cells, episomal vectors are widely used to avoid

position effects, hence the development of yeast episomal vectors, yeast artificial

chromosomes, mammalian plasmid vectors carrying virus origins of replication

(e.g., SV40-based vectors, herpesvirus-based vectors), and plant expression vectors

based on plant viruses (all of which replicate episomally). The yeast artificial

chromosome system is the most relevant in this context because it allows genes

of any size to be introduced into the yeast genome as an independent replicating

unit that is treated by the cell as an additional chromosome. YACs comprise a yeast

centromere and telomeres, the origin of replication (autonomous replicating

sequence) and selectable markers. More recently, analogous systems have been

developed to maintain genes as episomal minichromosomes in plants. These have

many advantages for plant genetic engineering including the ability to express large

transgenes or groups of transgenes, and the ability to rapidly introduce new linkage

groups into diverse germplasm.
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Carlson et al. (2007) created plant minichromosomes by combining the DsRed
and nptII marker genes with 7–190 kb of maize genomic DNA fragments contain-

ing satellites, retroelements, and other repeat sequences commonly found in cen-

tromeres. The circular constructs were introduced into embryogenic maize tissue by

particle bombardment and transformed cells were regenerated and propagated for

several generations without selection. The minichromosomes were maintained as

extrachromosomal replicons through mitosis and meiosis, and showed roughly

Mendelian segregation ratios (93% transmission as a disome with 100% expected,

39% transmission as a monosome crossed to wild type with 50% expected, and 59%

transmission in self-crosses with 75% expected). The DsRed reporter gene was

expressed over four generations, and Southern blot analysis indicated the genes

were intact.

7.6 Epigenetic Silencing Phenomena Resulting From Complex

Locus Structures and High-Level Expression

As stated earlier, the earliest plant transformation experiments showed that multiple

transgene copies could induce transgene silencing, in some cases associated with

the cosuppression of homologous endogenes. Transgene silencing can occur

through two overlapping pathways, one acting at the transcriptional level (char-

acterized by the reduction or abolition of transcription from one or more copies of

the transgene) and one acting post-transcriptionally (transcription from the silenced

locus is required to initiate silencing) (Hammond et al. 2001). Transcriptional

silencing is often correlated with increased methylation in the promoter regions

of affected loci, and both the methylation and the silencing tend to be heritable

through meiosis. Post-transcriptional silencing requires homology in the tran-

scribed regions, which may become methylated, and the silencing effect can be

reset at meiosis. Post-transcriptional silencing is also known as RNA silencing.

Transcriptional silencing occurs when transgene repeats somehow act as a

trigger for de novo DNA methylation. It has been shown that inverted repeats can

form secondary structures that are favored substrates for methylation, and thus it is

likely that cis DNA-DNA pairing may be involved in such processes. However,

transgene silencing can also occur in trans, i.e., silencing interactions may occur

between unlinked loci. This has been shown, for example, in sequential transfor-

mation events with homologous transgenes, or where two plant lines carrying

homologous transgenes have been crossed (Matzke and Matzke 1990, 1991).

In this situation, it is likely that physical interactions between transgenes may

occur to mediate silencing, and that DNA methylation may somehow be transferred

from one site to another. As discussed in Sect. 7.4.3, FISH studies in transgenic

wheat provide tantalizing evidence for such interactions in the interphase nucleus

(Abranches et al. 2000). Since the CaMV 35S promoter is frequently used for

transgene expression and can form cruciform structures that induce transgene

rearrangements (Kohli et al. 1999), it may also play a role in transcriptional
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silencing under certain circumstances. Supporting evidence for this has been

provided in studies of activation tag lines in which the CaMV 35S enhancer is

used as a random insertional mutagen to hyperactivate adjacent genes and generate

gain-of-function phenotypes. It has been noted that such screens using T-DNA

cassettes containing the enhancer elements from the CaMV 35S promoter return a

low frequency of morphological mutants (Chalfun et al. 2003). Detailed analysis

revealed a correlation between the number of T-DNA insertion sites, the methyla-

tion status of the enhancer sequence and enhancer activity. All plants containing

more than a single T-DNA insert were methylated on the enhancer and its activity

was reduced, with the amount of methylation and the reduction of enhancer activity

correlating with the number of T-DNA copies, particularly those with right border

inverted repeats (Chalfun et al. 2003). Even so, methylation was still detected at a

lower frequency in plants without right border inverted repeats suggesting other

triggers were active in these lines.

A recurring theme in post-transcriptional silencing is the presence of double-

stranded RNA. Double-stranded RNA introduced into the plant cell can trigger the

catalytic degradation of homologous RNA molecules and the methylation of

homologous DNA sequences in the genome (e.g., Tavernarakis et al. 2000).

When carried out deliberately through the expression of hairpin RNA constructs,

this process (RNA interference, RNAi) is a potent method for silencing individual

genes, generating phenocopies of mutant phenotypes (e.g., see McGinnis et al.

2005; Gordon andWaterhouse 2007). It has been suggested that complex multicopy

transgenic loci could also generate hairpin dsRNA, e.g., if two transgenes are

present as inverted repeats, or if truncation and/or rearrangements (some perhaps

undetectable by standard screening methods) generated small, aberrant dsRNA

species (Jorgensen et al. 1996; Que et al. 1997; Muskens et al. 2000). Experiments

designed to test this hypothesis specifically have shown that inverted repeat T-DNA

configurations and arrangements of tandem repeated transgenes may not be suffi-

cient in all cases to trigger transgene silencing (Lechtenberg et al. 2003), whereas

many reports show post-transcriptional silencing in plants with intact transgenes. In

such cases it has been suggested that the level of transgene expression may be an

important trigger, with “runaway expression” resulting in the most potent silencing

effects (Lindbo et al. 1993; Vaucheret et al. 1998; Schubert et al. 2004). Experi-

ments comparing the frequency and potency of cosuppression by sense chalcone

synthase transgenes driven by different promoters have shown that a strong pro-

moter is required for high-frequency cosuppression of chalcone synthase genes and

for the production of the full range of cosuppression phenotypes (Que et al. 1997).

Indeed the correlation between transgene copy number and silencing in some

systems may reflect the higher expression level in multicopy loci triggering silenc-

ing (Schubert et al. 2004) suggesting that transgenic lines escaping this effect may

fall below the threshold for triggering silencing (e.g., Stoger et al. 1998).

The expression threshold model accounts for RNA silencing in intact transgenic

loci but it is also possible that such loci are prone to silencing because their high

expression promotes the formation of more aberrant RNA products than a poorly

expressed transgene. If true, the trigger would still be aberrant dsRNA, the same as
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produced by complex, rearranged loci, and it should be possible to mitigate the

effects and generate plants with extremely high expression levels. Several studies

have shown that RNA silencing in transgenic plants is accompanied by the accu-

mulation of incorrectly processed mRNAs (often lacking polyadenylate tails) (e.g.,

van Eldik et al. 1998; Metzlaff et al. 2000; Wang and Waterhouse 2000; Han and

Grierson 2002) and in at least one case it has been shown specifically that tandem

repeats can generate small interfering RNAs (Ma and Mitra 2002). Since dsRNA is

unlikely to be generated directly from tandem repeats (as opposed to the situation

with inverted repeats), the process must involve an RNA-dependent RNA polymer-

ase. In agreement with this, Luo and Chen (2007) found that RNA silencing in

transgenic Arabidopsis could be induced by three direct repeats of the gusA open

reading frame, and this was dependent on the RNA-dependent RNA polymerase

encoded by RDR6. Normal plants transformed with either three tandem copies of

gusA or a single copy lacking a polyadenylation site were able to silence a normal

gusA transgene cassette in trans, but there was no silencing in rdr6 mutants, which

also accumulated long RNA molecules corresponding to gusA read-through tran-

scripts of various lengths. Therefore, it appears that the read-through of termination

sites leading to the production of long RNA products triggers RNA silencing in

an RDR6-dependent manner. A further transgenic line containing a gusA transgene

with two polyadenylation sites produced fewer read-through transcripts, less siRNA,

and therefore showed higher levels of GUS activity. Transgene silencing in tandem

repeat transgenes may therefore be triggered by a defense mechanism that evolved to

reduce errors caused by read-through transcription (Luo and Chen 2007).

7.7 Conclusions

Transgene integration following Agrobacterium-mediated transformation and

direct DNA transfer occur by very similar mechanisms, involving illegitimate

recombination between genomic DNA and invading transgene DNA strands, and

the repair of double-stranded breaks in the host genome. There is often microho-

mology between the recombining partners, although direct blunt end ligation also

occurs. Both transformation methods induce a wound response, resulting in the

activation of nucleases, ligases, and recombinases in the host cell. The foreign DNA

is simultaneously degraded and concatemerized resulting in transgene arrays con-

taining intact and/or truncated and rearranged copies. Several integration events

may occur simultaneously at a cluster of replication forks, or a primary integration

event may stimulate further integrations in the local area. Regardless of the

mechanism, the result is a transgene cluster interspersed with genomic DNA. In

the case of particle bombardment, clusters and arrays may be widely dispersed,

generating very large transgenic loci. The position of transgene integration is

essentially random within the “gene space” of the plant species. The transgene is

thus subject to position effects which may influence its expression, resulting in

some cases in transcriptional silencing as the new DNA is sequestered into the
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surrounding chromatin. The structure of a transgenic locus may also induce silenc-

ing via a number of mechanisms. These include de novo DNA methylation in

response to DNA-DNA interactions, the expression of aberrant RNA species

(particularly small hairpin RNAs) from truncated and rearranged transgenes or

partial transgenes, and the expression of aberrant RNA products from inefficiently

terminated transcripts. Position effects can be reduced by buffering the transgene

with matrix attachment regions or controlling the site of integration through

homologous recombination or site-specific recombination. Alternatively, it may

be possible to introduce the transgene into the plastid genome, which does not

suffer from position effects. More recent developments such as minichromosomes

may provide a method to introduce entire linkage groups and maintain them stably

and episomally. Site-specific recombination can also be used to simplify locus

structure, by reducing the number of repeats, which may help to reduce the

likelihood of RNA silencing. Even so, many reports show that high-level transgene

expression is possible in plants with multiple transgene copies, suggesting that the

overall level of expression may be relevant, i.e., there may be a trigger level at

which silencing is induced. This may involve the detection of high levels of

transgene mRNA or may simply reflect the greater likelihood of aberrant RNA

products being generated as collateral damage. The recent publication of the full

draft sequence of the transgenic SUNUP papaya genome shows that the detailed

characterization of the transgene sequence and its flanking regions is not an

insurmountable obstacle. Perhaps such intensive analysis will, in the future, allow

the accurate prediction of transgene behavior and stability in transgenic plants.
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Chapter 8

Organelle Transformations

Anjanabha Bhattacharya

8.1 Introduction

The world population is increasing at a rapid pace. Agricultural production must

match population growth in the near seeable future amid fears of climate change.

However, complex traits like crop productivity are difficult to manipulate and take

time using conventional breeding (Zuker et al. 1998; Mishra and Srivastava 2004).

The availability of a limited gene pool and the failure of wide-crosses among crop

varieties in conventional breeding have led to the exploitation of genetic transfor-

mation in generating high-yielding crop varieties.

Nucleus transformation is the target of choice for the development of transgenic

varieties using one of the several techniques of transformation available today.

However, the nuclear genome is large and contains several copies of the same gene,

presence of introns, cis-elements, and as such. Therefore, unpredictable results are

obtained when transgene(s) are integrated in different parts of the nuclear genome

because of positional effect, including, but not limited to, gene silencing or lower

levels of transgene expression (Kumar et al. 2004) and off-target influence, thus

presenting unusual challenges in their commercialization and restricting consumer

acceptability. Removing this analogy required researchers to start looking for other

organelles in the plant cell, such as plastids and mitochondria, that could be targeted

for genetic transformation. The plastids may differentiate to become chloroplast

(green pigment storage plastids), chromoplast (pigment storage organs in fruits),

elaioplast (lipid storage), or amyloplast (starch storage). Immature plastids are

called pro-plastids. The evolutionary lineage suggests that these organelles were

primitively free-living prokaryotes (cyanobacteria), and with the evolution of land

plants, they began to form a permanent symbiotic relationship with the host cell and
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became a part and parcel of the plant cell (Lopez-Juez and Pyke 2005). Over time,

plastids began to lose the vital genes associated with their independent existence

and became dependent on the plant cell machinery to evolve and replicate (Pyke

2007; Provorov 2005). Thus, a sort of endosymbiosis developed between chloro-

plast and the nucleus, which involved import of many proteins from the cytoplasm

(Lopez-Juez and Pyke 2005; Bhattacharya et al. 2007). Organelles like chloroplast

and mitochondria have low copy number of genes, several origins of replication,

and divide independent of the nucleus; thus, addition of multitransgene in the open

reading frame (ORF) results in high levels of gene expression. The first reported

case of Chlamydomonas chloroplast transformation was by Boynton et al. (1988)

almost two decades ago, and subsequent reports of tobacco plastid transformation

were by Khan and Maliga (1999).

There is also the absence of epigenetic interference with the inserted transgenes

(Bock 2007). The plastid transformation increases the precision of genetic engi-

neering by targeted homologous recombination at specific sites. Specific plastid

sequences act as flanking regions for the gene of interest and selectable marker, and

are targeted to locate specifically homologous region in the plastid genome thus

making precise integration at specific location in plastids. The plastids have several

origins of replication (Scharff and Koop 2007) of prokaryotic evolution, and this is

essential because they do not depend on nuclear division for transcription. This in

turn eliminates the problem of gene silencing; plastids were, therefore, identified as

the target of choice for crop transformation. Organelle transformation can also be

used to harvest any specific trans proteins as they tend to accumulate at very high

levels, thus becoming important in pharmaceutical industries (Buhot et al. 2006).

Bohne et al. (2007) concluded that mitochondrial genes and substantial part of

plasteome are transcribed by related RNA polymerases. There are also reports of

using cross species plastids for effective transformation of the most recalcitrant

species (Kuchuk et al. 2006).

8.2 Overview of Organelle Transformation

8.2.1 Plastids

Plastids are of prokaryotic evolution and their genome size is 120–180 kb (Wakasugi

et al. 2001). They are related to cyanobacteria and now have become an inseparable

part of the plant cell. They have small genome size and their specific sequences

are targeted (sequence identified from their sequenced genome; Ruhlman et al.

2006) for construction of suitable vectors for genetic transformation aiming at

crop improvement and for therapeutic proteins. Moreover, data mining of the

plastid genome could help to identify suitable endogenous flanking sequences for

construction of plastid vectors as depicted in Fig. 8.1. A generalized organelle

transformation strategy commonly in use is explained in Fig. 8.2.
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The additional advantage of molecular pharming is that the complex enzymes

present within the chloroplast forms complex proteins with correct folding thus

reducing price incurred for any other additional processing (Koya and Daniell

2005). The plastid acts as a giant factory that produces 100 times more protein

than the conventional nuclear transformation (Ishida 2005; Nugent and Joyce

2005). Thus, the pharmaceutical industries are more interested in utilizing these

natural bioreactors in plants and reduce cost associated with drug production.

Further, the processed protein is free from contaminant, which is a major concern

with proteins purified from animal systems. Some successful examples of plastid

transformation are listed in Table 8.1. Further, Lutz and Maliga (2007) explained

the feasibility of obtaining marker-free transgenic plants with homology based

excision, excision by phage recombinase, cointegration of marker gene with the

gene of interest.

Selectable markerFlanking DNA * Flanking DNA *Promoter TerminatorGene(s) of interest

DNA backbone

Promoter:: Selectable marker (for bacterial selection):: Terminator

Fig. 8.1 Typical construction of an organelle transformation vector. *Endogenous flanking border

sequence homologous to organelle DNA sequence for precise integration and recombination. Such

sequences can be indentified by data mining organelle genome sequences

Plant cell genome source organelles

Nucleus
Plastids

Mitochondria

Construct (as shown in Fig. 1) Bulked in E. coli competent
cells and extracted by
miniprep 

Constructs / plasmids
are coated in macro
carriers such as gold or
tungsten for particle
bombardment    

(Biolistics)

Flanking sequences guide the
construct through complex
integration event and subsequent
transgene expression   

Fig. 8.2 Organelle genetic transformation
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8.2.2 Mitochondria

The mitochondrial genome is much larger than the plastid genome but considerably

smaller than the nuclear genome. The mitochondrial genome size varies from 1,500

to 2,300 kbp in cucumber to about 150 kbp in yeast (Havey et al. 2002). The

similarity between plastids and mitochondria raised the possibility that mitochon-

drial gene may function in plastids and could be included in strategies to transform

plastids (Maliga 2004) by designing suitable constructs. Further, Weber-Lotfi et al.

(2009) reported that mitochondrial DNA can accept linear DNA molecules. How-

ever, the formulation of effective techniques of transforming mitochondria unlike

plastids is still underway. There are only a few reports of genetic transformation of

mitochondria, for example, in Saccharomyces cerevisiae and Chlamydomonas
reinhardtii (Bonnefoy et al. 2007).

8.3 Achievements and Technique Used in Organelle

Transformation

8.3.1 Plastids

8.3.1.1 Biolistics Transformation

Development of Transplasteomic Plants Expressing Florescent Genes or Selectable

Antibiotic Markers

Davarpanah et al. (2009) transformed plastids of Nicotina tobacum following biolis-

tics (standard gene gun) protocol originally adopted by Jeong et al. (2004) by

subjecting leaf blades (~3 cm long) previously grown in tissue culture medium

with gfp and addA marker gene (spectinomycin resistance). Similarly, De Marchis

et al. (2009) used particle bombardment of sugar beet (Beta vulgaris) petioles (of
0.5-cm pieces’ size) placed on Petri dishes to obtain transplasteomic plants expressing

Gfp (Green Fluorescent Protein). Lee et al. (2006b) obtained transgenic plants expres-

sing gfp::addA genes thus devising a proper system for rice plastid transformation.

Okumura et al. (2006) used biolistic transformation with gold particles (0.6-mm
diameter) and 900-psi rupture disk (Bio-Rad Laboratories) to introduce gfp genes in
poplar. Skarjinskaia et al. (2003) reported plastid transformation of Lesquerella
fendleri using biolistics for gfp and aadA transgene. This was the first reported plastid

transformable species beyond Arabidopsis thaliana of the Brassicaceae family.

Development of Transplasteomic Plants Producing Proteins for Pharmaceutical

and Nutraceutical Industries

Scotti et al. (2009) bombarded [Bio-Rad (Hercules, CA, USA) PDS-1000/He]

Nicotiana tabacum leaves with 0.6-mm diameter gold particles coated with pFA1
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or pNS40 plasmid DNA to obtain plants expressing HIV Gag (Pr 55) proteins

[a Gag Pr55 protein is a derivative protein from human immunodeficiency virus

(HIV), andmyristoyl coenzyme A]. Zhou et al. (2008) obtained transplasteomic

tobacco and tomato plants expressing HIV antigen 24 by particle bombardment.

Lenzi et al. (2008) obtained transplastomic plants after biolistic transformation

using tungsten (1 mm) or gold particles (0.6 mm) as macrocarrier, and DuPont

PDS1000He biolistic device. The plasmid was carrying a chimeric gene encoding

the L1 protein, in the native viral [L1(v) gene] form or in the form of a synthetic

sequence suitable for plant plastids [L1(p) gene] under the influence of a plastid

gene. Lutz et al. (2006) used biolistic transformation to transform plastid genome

by homologous recombination. The transgene excision was achieved by plastid

targeted Cre gene expression from nucleus. Thus, they showed the feasibility of

using Cre-Lox system in plants. Lee et al. (2006a) showed the feasibility of produc-

tion of vaccine EBV (Epstein-Barr Virus antigen, which is a source of major cause

of malignancies originating from lymphoid and epithelial cells) from transplasteo-

mic tobacco cv. SR1. Moreover, transplastomic tobacco has been cited in several

research papers for the production of vaccine antigen against plague, tetanus,

anthrax, insulin like growth factors by using biolistic transformation (Daniell

et al. 2001; Watson et al. 2004).

Development of Transplasteomic Plants for Crop Improvement

Wurbs et al. (2007) developed a system to facilitate the feasibility of genetically

modifying nutritionally important biochemical pathways in nongreen plastids by

introducing b-cyclase transgene in the chloroplast genome of tomato. Leelavathi

et al. (2003) expressed xylanase enzyme in the chloroplast of tobacco plants.

Overproduction of xylanase did not affect plant growth unlike nuclear expressed

trans-xylanase enzymes. This provided an example of superior performance of

organellar transformation over nuclear transformation. Salt tolerance is another

trait, which needs immediate attention. Plant cells tend to accumulate osmoprotec-

tants like glycine betaine to overcome salt-induced stress. Overexpression of such

genes in plastids or mitochondria might help a plant to perform well in saline

conditions. Kumar et al. (2004) showed cotton plastids can be transformed by

plasteomic vectors and this technology can be used for cotton improvement.

Dufourmantel et al. (2004) reported the feasibility of transforming plastids of

soybean crop, which is an important leguminous and oilseed crop, grown exten-

sively in many parts of the world. There have been reports of development of insect

and disease resistance traits, salt- and drought-tolerance traits among important

agronomic traits (reviewed by Daniell et al. 2005). Hou et al. (2003) reported

chloroplast transformation of oilseed rape and introduction of a specific gene

(insect resistance gene cry1Aa10) between rps7 and ndhB genes of the plastid

genome, thus pioneering a new method for oilseed rape genetic improvement by

chloroplast bioengineering.
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8.3.1.2 Electroporation

There are only a few reports of using electroporation for transforming plastids in

plants. Rangasamy et al. (1997) established plastid targeted transformation of pea

using electroporation technique for the expression of ATP:citrate lyase in proto-

plasts. To et al. (1996) were able to introduce and express cat and gus genes in

isolated spinach plastids by electroporation with pHD203-GUS. Carrot cell cultures

have been effectively transformed by electroporation, carrying transplasteomic

cells. The rate of growth is very high in culture medium and thus can be used for

oral vaccine production programs (Daniell et al. 2005).

8.3.1.3 Other Systems

There are other numerous novel transformation systems, which include microabla-

tion (Kajiyama et al. 2008), electrophoresis of embryos, the pollen-tube pathway,

microinjection (Neuhaus and Spangenberg 1990; Holm et al. 2000), microbeads’

transformation, laser cell perforation (Weber et al. 1988), liposome-mediated gene

transfer (Ciboche 1990), and ultrasonification (Joersbo and Brunstedt 1992). These

techniques might play an important role in organelle transformation.

8.3.2 Mitochondria

A robust transformation strategy targeting mitochondria instead of the nucleus will

allow scientists to use reverse genetics strategy to study trans-mitochondrial gene

expression (Havey et al. 2002). This will further establish the efficacy of using

target mitochondrial gene to develop transgenic crops. Villarreal et al. (2009) indi-

cated the possibility of overexpressing mitochondria gamma carbon anhydrase-2

gene that causes male sterility in Arabidopsis. Possibility of using such genes

specifically targeted in mitochondria can help to achieve self-incompatible lines

for crop improvement programs. Almost two decades earlier, Kemble et al. (1988)

showed the possibility of transforming mitochondria of Brassica napus hybrid

plants via protoplast fusion mediated by polyethylene glycol (PEG) or electropora-

tion with recombinant vectors. Traits like cytoplasmic male sterility and nonchro-

mosomal stripe mutations of maize have their genomic basis in mitochondria

(reviewed by Havey et al. 2002).

8.4 Conclusions

Organelle transformation has opened many vista for crop improvement, production

of industrial grade enzymes, biomolecules, pharmaceuticals, and nutraceuticals.

More than 40 plastids from different species have been sequenced; thus, a vast

plethora of information is available for data mining and development of new
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vectors for plastid transformation (Maier and Schmitz-Linneweber 2004). It over-

comes the limitations imposed by the nuclear transformation techniques by intro-

ducing site-specific genes into plastid genome. Organelle transformation has the

advantage as genetic information are maternally inherited against biparental inher-

itance of the nuclear genome (Daniell 2007). Besides the cre-lox system (for

preventing transgene escape) can be used as an additional safeguard (Corneille

et al. 2003) that can eliminate the risk of transgene escape by pollen release (pollen

do not carry plastids or mitochondria). In addition, increasing biosafety of trans-

plasteomic crops (Ruf et al. 2007) should result in more acceptable technology for

developing transgenic crops. Organelle transformation is more predictable, can

insert many (trans)genes at the same time, is not constrained by gene silencing,

and facilitates accumulation of transgene-induced metabolites at high concentra-

tion. However, only a limited number of crop species have been exploited for

plastid transformation, viz., tobacco (Scotti et al. 2009), petunia (Zubko et al.

2004), tomato (Wurbs et al. 2007) , poplar (Okumura et al. 2006), lettuce, rice,

soybean (Dufourmantel et al. 2004), cotton (Kumar et al. 2004). Among them,

tobacco has been by far the most successful as compared to other plant species. The

flanking sequences used for designing vector for plastid transformation should have

100% homology between plastid genome of different species. Less homology

between flanking regions has shown to result in lower transformation efficiency

(Zubko et al. 2004). Therefore, emphasis should be paid on species-specific flank-

ing sequences for plastid transformation particularly for field crop species to avoid

any complications (Daniell et al. 2005). Thus, the need of the hour is to look at

various techniques of transformation as these still remain a bottle neck in the

development of transgenic variety using organelle transformation particularly for

cultivated crop species.
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Chapter 9

Biosynthesis and Biotransformation

Hajiem Mizukami and Hiroaki Hayashi

9.1 Introduction

Plant secondary metabolites, the so-called natural products, are used as flavors,

food additives, and pharmaceuticals. Since complex natural products are not eco-

nomically produced by total chemical synthesis except for some small molecules,

most of the useful metabolites are still obtained from wild or cultivated plant

resources. Alternatively, plant cell culture technique would be a potential method

to produce these useful secondary metabolites, and commercial production of some

useful secondary metabolites has been achieved (Kolewe et al. 2008; Smetanska

2008). Furthermore, biotransformation by plant cell cultures could be a useful

method to convert natural products or unnatural synthetic products into chemically

different products of economical importance. This chapter will focus on biosynthe-

sis and biotransformation of useful chemical compounds using plant cell culture

technology.

9.2 Biosynthesis of Useful Secondary Metabolites by Plant

Cell Cultures

Higher plants produce small organic molecules of diverse structures, such as

alkaloids, terpenoids, and flavonoids, which are localized in the specific organs of

intact plants. Extensive studies showed that some of the useful metabolites are

produced by plant cell suspension cultures, while others are not produced by the

undifferentiated cells. Some of them are produced by organ culture, especially root

cultures and hairy root cultures. However, some useful metabolites are produced
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neither by undifferentiated cells nor by hairy root cultures. In this section, useful

secondary metabolites will be discussed under three groups, based on the strategies

of production by plant cell cultures: (1) metabolites produced by cell suspension

cultures, (2) metabolites produced by hairy root cultures, (3) metabolites that are

hardly produced by plant cell/organ cultures. These three classes of metabolites will

be discussed using seven selected metabolites as examples in the following sub-

sections, with a focus on the secondary metabolites used for pharmaceuticals.

9.2.1 Useful Secondary Metabolites Produced by Cell
Suspension Cultures

Table 9.1 shows some examples of useful secondary metabolites produced by cell

suspension cultures. Two outstanding examples of the metabolites are shikonin and

paclitaxel, both of which are commercially produced by undifferentiated plant

cells. Thus, in this subsection, production of shikonin by Lithospermum erythror-
hizon cells and paclitaxel by Taxus cells will be discussed.

9.2.1.1 Shikonin

Shikonin derivatives, fatty acid esters of shikonin, are red pigments isolated from

the roots of L. erythrorhizon (Family Boraginaceae) that have been used as a tra-

ditional medicine in Japan and China in the form of an ointment to treat wound,

burn, and anal hemorrhage (Tabata 1996). Shikonin derivatives have also been used

as a dyestuff from ancient times. These red pigments exhibit various pharmacolog-

ical activities including wound healing, anti-inflammatory, antitumor, and antimi-

crobial activities (Papageorgiou et al. 1999).

Callus cultures established from seedlings of L. erythrorhizon successfully

produced shikonin derivatives when the callus was incubated in the dark (Tabata

et al. 1974), and repeated cell selection resulted in the establishment of a high

shikonin producing culture strain, M18, whose shikonin content was higher than

that of the intact roots (Mizukami et al. 1978). Production of shikonin derivatives

Table 9.1 Examples of useful secondary metabolites produced by cell suspension cultures

Metabolite Plant species Application Reference

Shikonin (quinone) Lithospermum
erythrorhizon

Dyes, cosmetic Tabata et al. (1974)

Paclitaxel (diterpenoid) Taxus spp. Antitumor Yukimune et al (1996)

Berberine (alkaloid) Coptis japonica Antibacterial Sato and Yamada (1984)

Thalictrum minus Nakagawa et al. (1984)

Sanguinarin (alkaloid) Papaver somniferum Antibacterial Eilert et al. (1985)

Ginseonoside (saponin) Panax ginseng Tonic Furuya et al. (1983)

Soyasaponin (saponin) Glycyrrhiza glabra Hepatoprotective Hayashi et al. (1990)
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was completely inhibited by light and a synthetic plant hormone, 2,4-dichlorophe-

noxyacetic acid (2,4-D). These dramatic regulations of shikonin biosynthesis

prompted further experiments to identify many positive-regulating factors such as

agar, copper ion, oligogalacturonide, and methyl jasmonate, as well as many

negative-regulating factors including light, 2,4-D, ammonium ion, and glutamine

(Tabata 1996; Yazaki et al. 1997). Furthermore, establishment of the production

medium M9 containing no ammonium ion but nitrate ion for pigment formation

(Fujita et al. 1981) led to the commercial production of shikonin by the Mitsui

Petrochemical Company (Tabata and Fujita 1985). Thus L. erythrorhizon cell

culture system provides us with a model system suitable to elucidate the regulatory

mechanism of secondary metabolism in higher plants.

Biosynthesis pathway of shikonin and its related compounds has been exten-

sively studied, whereas the subsequent steps of shikonin biosynthesis are still

unknown (Tabata 1996). Figure 9.1 depicts the biosynthetic pathways of shikonin

and the related constituents in L. erythrorhizon cultures. Shikonin is biosynthesized
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from m-geranyl-p-hydroxybenzoic acid, a coupling product of p-hydroxybenzoic
acid derived from the shikmate pathway with geranyl diphosphate derived from

isoprene units. This coupling step is catalyzed by p-hydroxybenzoate geranyltrans-
ferase (PGT), which plays a crucial role in the regulation of shikonin biosynthesis

(Heide et al. 1989). Two PGT cDNAs have been isolated and characterized from

L. erythrorhizon, and the regulation of their expression by various physical and

biochemical factors coincides with that of shikonin biosynthesis (Yazaki et al.

2002). It is also noteworthy that geranyl moiety of shikonin was shown to be

formed via the mevalonate pathway (Li et al. 1998), whereas most of monoterpenes

are produced via the MEP pathway, the so-called non-mevalonate pathway (Rohmer

1999).

Not only shikonin derivatives but also dihydroechinofuran, p-hydroxybenzoate
(PHB) glucoside, and caffeic acid oligomers are accumulated in the cultured

L. erythrorhizon cells (Tabata 1996; Yamamoto et al. 2002). Production of both

shikonin and dihydroechinofuran, an unusual metabolite derived fromm-geranyl-p-
hydroxybenzoic acid, is induced by addition of oligogalacturonides or methyl

jasmonate to the cultures (Tani et al. 1993; Yazaki et al. 1997), although the

accumulation of dihydroechinofuran precedes that of shikonin during the induction

by the elicitors. PHB glucoside is regarded as a storage form of PHB, a biosynthetic

intermediate of the shikonin biosynthesis, and the accumulation of PHB glucoside

is induced by light irradiation, which inhibits the shikonin biosynthesis (Tabata

1996). In addition, the cultured Lithospermum cells produce large amounts of

caffeic acid oligomers, such as rosmarinic acid, lithospermic acid B, and (+)-

rabdosiin derived from phenylpropanoid pathway, whose biosynthesis is regulated

differently from that of shikonin derivatives (Yamamoto et al. 2002).

9.2.1.2 Paclitaxel

Paclitaxel isolated from the bark of pacific yew, Taxus brevifolia (Family Taxa-

ceae), is an antimitotic drug used in chemotherapy of breast, ovarian, and lung

cancers. Since the supply of paclitaxel by isolation from the bark of the slow-

growing yew tree is limited, alternative source of paclitaxel was indispensable for

its clinical application (Frense 2007). However, the economic production of pacli-

taxel by total chemical synthesis has not yet been achieved. Alternatively, pacli-

taxel was produced by semi-synthesis from 10-deacetylbaccatin III, which is a

biosynthetic intermediate of paclitaxel and could be obtained from the needle of

European yew, Taxus baccata, in relatively large amounts. As a more economical

source to supply paclitaxel, Taxus cell suspension cultures is promising (Frense

2007). Production of paclitaxel by plant cell suspension cultures has been inten-

sively studied, and production of paclitaxel in cell suspension cultures was shown to

be significantly up-regulated by methyl jasmonate (Yukimune et al. 1996). Now,

paclitaxel is commercially produced by plant cell culture technique using the

undifferentiated cells of Taxus plants (Frense 2007; Kolewe et al. 2008).
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Since paclitaxel and its analogs are important anticancer drugs, biosynthesis of

paclitaxel has been extensively studied to characterize various genes encoding the

enzymes involved in the paclitaxel biosynthesis (Jennewein and Croteau 2001;

Frense 2007). Figure 9.2 describes the biosynthetic pathway of paclitaxel. Gera-

nylgeranyl diphosphate derived from the MEP pathway was cyclized by a terpene

synthase, taxa-4(5),11(12)-diene synthase, into a cyclic diterpene, taxa-4(5),11

(12)-diene. The cDNA encoding taxa-4(5),11(12)-diene synthase has been cloned

and characterized (Wildung and Croteau 1996). Taxa-4(5),11(12)-diene is further

hydroxylated and acylated by several complex steps to produce paclitaxel. Many of

genes involved in the later steps have also been characterized (Jennewein and

Croteau 2001; Frense 2007).

9.2.1.3 Other Useful Metabolites Produced in the Undifferentiated Cells

Besides shikonin and paclitaxel, many useful secondary metabolites are produced

by plant cell suspension cultures as shown in Fig. 9.3. Regarding alkaloids, an

antimicrobial isoquinoline alkaloid berberine is produced in the undifferentiated

cells of Coptis japonica (Sato and Yamada 1984) and Thalictrum minus (Nakagawa
et al. 1984). Berberine is one of the few secondary metabolites whose biosynthetic
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pathway has been completely characterized (Hashimoto and Yamada 1994).

Another antimicrobial alkaloid sanguinarin is produced in the fungal elicitor treated

cell suspension cultures of the opium poppy, Papaver somniferum, whereas the

narcotic alkaloid morphine is not produced in the undifferentiated opium cells

(Eilert et al. 1985). Biosynthesis of morphine will be discussed under Sect. 9.2.2.3.

Certain triterpene saponins are also produced by undifferentiated cells of plant

cell cultures. Cell suspension cultures of Panax ginseng produce ginsenosides,

which are active constituents of ginseng, a famous tonic used in the Far East Asia

(Furuya et al. 1983). The content and the composition of ginsenosides in cell

suspension cultures are almost the same as those in the roots of the cultivated

ginseng. Cell suspension cultures of Glycyrrhiza glabra (licorice) produce soyasa-

ponins, common triterpene saponins in legumes. However, they do not produce the

sweet tritepene saponin, glycyrrhizin, which is localized in the thickened roots of

the intact plants (Hayashi et al. 1990). Triterpenoid biosynthesis in licorice will be

further discussed under Sect. 9.2.3.2.

9.2.2 Useful Secondary Metabolites Produced by Hairy
Root Cultures

Many plant cell suspension cultures have failed to produce useful secondary

metabolites that are produced in the respective intact plants. Alternatively, some

of these metabolites are produced by organ cultures, such as root cultures and shoot

cultures (Kolewe et al. 2008; Smetanska 2008). In particular, hairy root cultures

obtained by transforming plant cells with Agrobacterium rhizogenes have been

used to produce useful secondary metabolites that are not produced in cell sus-

pension cultures (Georgiev et al. 2007). Table 9.2 includes some examples of

useful secondary metabolites that are not produced by the undifferentiated cells
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but produced by the hairy root cultures. In this subsection, production of tropane

alkaloids and camptothecin will be discussed.

9.2.2.1 Tropane Alkaloids

Tropane alkaloids, hyoscyamine and scopolamine, are isolated from certain Sola-

naceaus plants including Atropa belladonna, Datura innoxia, Duboisia leichhard-
tii, Hyoscyamus niger, and Scopolia japonica. They are muscarinic antagonists

used for treatment of various gastrointestinal disorders. Callus cultures of Scopolia
parviflora produce only trace amounts of tropane alkaloids, whereas the root-

differentiated tissue accumulates higher content of tropane alkaloids (Tabata

et al. 1972). Similar results were observed in other tropane alkaloid producing

plants, such as A. belladonna, Datura stramonium, and D. leichhardtii. In contrast,

undifferentiated cell suspension cultures of H. niger produced small amount of

tropane alkaloids (Yamada and Hashimoto 1982; Yamada and Endo 1984). In the

intact plants, tropane alkaloids are produced mainly in the root and are translocated

into the aerial parts, which have the storage organs of these alkaloids (Waller and

Nowacki 1978). Thus, hairy root cultures of these tropane alkaloid producing

plants were established to produce alkaloids. As expected, hairy root cultures of

S. japonica (Mano et al. 1986), A. belladonna (Kamada et al. 1986), Datura
stramonium (Payne et al. 1987), and D. leichhardtii (Mano et al. 1989) were

shown to produce high levels of tropane alkaloids.

Biosynthetic pathway of tropane alkaloids is extensively studied using the root

cultures as shown in Fig. 9.4 (Hashimoto and Yamada 1994). Tropane alkaloids are

esters of tropine and tropic acid, which are derived from arginine and phenylala-

nine, respectively. The most characterized enzyme in the biosynthetic pathway of

tropane alkaloids is hyoscyamine-6-hydroxylase (H6H), a 2-oxoglutarate-depen-

dent dioxygenase, involved in the conversion of hyoscyamine into scopolamine.

This enzyme is localized in the pericycle of the root (Hashimoto et al. 1991). This

Table 9.2 Examples of useful secondary products produced by hairy root cultures

Metabolite Plant species Application Reference

Camptothecin (alkaloid) Camptotheca
acuminata

Antitumor Lorence et al. (2004)

Ophiorrhiza pumila Saito et al. (2001)

Hypscyamine (alkaloid) Atropa belladonna Anticholinergic Kamada et al. (1986)

Datura stramonium Payne et al. (1987)

Scopolamine (alkaloid) Scopolia japonica Anticholinergic Mano et al. (1986)

Duboisia leichhardtii Mano et al. (1989)

Morphine (alkaloid) Papaver somniferum Narcotic

analgesic

Park and Facchini

(2000)

Artemisinin

(sesquiterpene)

Artemisia annua Antimalarial Weathers et al. (1994)

Saikosaponin (saponin) Bupleurum falcatum Anti-

inflammatory

Kim et al. (2006)
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enzyme is involved not only in the hydroxylation of hyoscyamine to 6-hydroxy-

hyoscyamine but also in the epoxidation of 6-hydroxyhyoscyamine to scopolamine.

H6H cDNA has been isolated from H. niger (Matsuda et al. 1991), and metabolic

engineering using the H6H gene resulted in transgenic A. belladonna with the

preferential accumulation of scopolamine, which has a higher commercial demand

than hyoscyamine (Yun et al. 1992).

9.2.2.2 Camptothecin

Camptothecin is an anticancer compound isolated from Camptotheca acuminata
(Family Nyssaceae). Although camptothecin itself is not used for cancer chemo-

therapy due to its toxicity, the semisynthetic compounds derived from camptothe-

cin, such as irinotecan and topotecan, are clinically important antitumor drugs in the

world (Fig. 9.5). Since economical total synthesis of camptothecin has not been

achieved, plant cell cultures can be an alternative method to produce camptothecin

(Lorence and Nessler 2004).

Cell suspension cultures of C. acuminata were established, but they produced

only trace amounts of camptothecin (Sakato et al. 1974). Later, hairy root cultures of

C. acuminata were found to produce significant amount of camptothecin (Lorence

et al. 2004). Camptothecin is produced not only by C. acuminata but also by many

other species of taxonomically unrelated families including Nothapodytes foetida
(Family Icacinaceae) and Ophiorrhiza pumila (Family Rubiaceae) (Lorence and

Nessler 2004). Although undifferentiated callus cultures of O. pumila produced no

camptothecin (Kitajima et al. 1998), hairy root cultures of O. pumila produced high
levels of camptothecin (Saito et al 2001). Furthermore, a part of camptothecin

produced byO. pumila hairy roots was excreted into culture media, and the excreted
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camptothecin in the medium was efficiently recovered by resin. This system is

feasible to supply camptothecin from plant cell cultures.

Camptothecin is a monoterpene indole alkaloid biosynthesized from a key

intermediate strictosidine. Strictosidine is the condensation product of tryptamine,

a monoamine alkaloid derived from shikimate pathway, with secologanin, an

iridiod glycoside (for the biosynthetic pathway see Fig. 9.8). It has been shown

that the secologanin moiety in the structure of comptothecin is derived from

monoterpene formed via MEP pathway (Yamazaki et al. 2004). cDNAs encoding

tryptamine decarboxylase and strictosidine synthase, two key enzymes in the

monoterpene indole alkaloid biosynthesis, have already been isolated and charac-

terized (Yamazaki et al. 2003). However, later steps of camptothecin biosynthesis

are so far unknown.

9.2.2.3 Morphine

Morphine, an important narcotic analgesic, is a benzylisoquinoline alkaloid produced

by opium poppy, Papaver sominiferum (Family Papaveraceae), which is one of the

most thoroughly investigated model plants to elucidate the regulation of alkaloid

biosynthesis in higher plants (Facchini and De Luca 2008). Although cell suspension

cultures of P. somniferum produce no detectable amount of morphine and codeine,

the undifferentiated cells treated with fungal elicitors accumulate sanguinarine,

another antimicrobial alkaloid distributed in some plants of the family Papaveraceae

(Eilert et al. 1985). In contrast, hairy root culture of P. somniferum was shown to

produce small amount of morphine (Park and Facchini 2000).

Biosynthetic pathways of morphine and sanguinarine have been almost

completely characterized (Facchini et al. 2007). Figure 9.6 illustrates the biosyn-

thetic pathways of morphine and related alkaloids. These benzylisoquinoline alka-

loids share the central intermediate (S)-norcoclaurine, which is produced by

norcoclaurine synthase from dopamine and 4-hydroxyphenylacetaldehyde. (S)-

Norcoclaurine is converted into the branching intermediate (S)-reticuline. The
first committed step in the morphine biosynthesis involves the conversion of (S)-
reticuline into its (R)-epimer. On the other hand, the conversion of (S)-reticuline to
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(S)-scoulerine by berberine bridge enzyme leads to sanguinarine in P. somniferum
as well as to berberine in C. japonica (Hashimoto and Yamada 1994; Facchini et al.

2007). Many genes involved in the alkaloid biosynthesis have been so far identified

from opium poppy. Extensive studies including the biosynthesis pathway, gene

regulation, and metabolic engineering of morphine and related alkaloids are

reviewed elsewhere (Facchini et al. 2007; Facchini and De Luca 2008).

9.2.2.4 Other Useful Metabolites Produced by Hairy Root Cultures

In addition to the metabolites mentioned earlier, many other useful secondary

products are produced by hairy root cultures, whereas they are not produced by

cell suspension cultures. Saikosaponins (Fig. 9.7) are oleanane-type triterpene

saponins with antiallergic and anti-inflammatory activities, and are isolated from
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the root of Bupleurum falcatum. Although callus cultures of B. falcatum produce no

detectable amounts of saikosaponins, adventitious roots differentiated from the

callus (Uomori et al. 1974) as well as hairy root cultures (Kim et al. 2006) of

B. falcatum are capable of producing large amount of saikosaponins. Artemisinin

(Fig. 9.7), an endoperoxide sesquiterpene lactone isolated from Artemisia annua,
has a potent antimalarial activity against the chloroquin-resistant malarial parasite

Plasmodium falciparum; thus, this compound is one of the targets for plant cell

cultures (Liu et al. 2006). No artemisinin was produced in the cell suspension

cultures of A. annua, whereas only trace amount of artemisinin was found in

multiple shoot cultures (Paniego and Giuletti 1994). Artemisinin was produced

by hairy root cultures of A. annua, suggesting that the commercial production of

artemisinin by hairy root culture is feasible (Weathers et al. 1994).

9.2.3 Useful Secondary Products That Are Hardly Produced
by Plant Cell Cultures

Despite the extensive efforts to produce useful secondary products by the plant cell

cultures, some target metabolites are hardly produced by the cell suspension

cultures as well as by the hairy root cultures. Examples of these useful products

are listed in Table 9.3. In this subsection, dimeric monoterpene indole alkaloids,

vincristine and vinblastine in Catharanthus roseus and glycyrhrizin in G. glabra,
are described.

9.2.3.1 Vinca Alkaloids

Madagascar periwinkle, C. roseus (syn. Vinca; Family Apocynaceae), produces the

Vinca alkaloids vincristine and vinblastine, which are mitotic inhibitors used for

clinical treatment of cancer. Both vincristine and vinblastine are dimeric
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monoterpene indole alkaloids with complex chemical structures (Facchini and De

Luca 2008). The content of Vinca alkaloids is low in the field-grown plants, which

are the actual sources to supply these alkaloids at the present. Thus, an alternative

method to produce these alkaloids is necessary, and plant cell culture technique

would be an attractive method. However, despite the enormous efforts, the dimeric

alkaloids are not produced sufficiently by cell suspension culture (Eilert et al. 1987)

or by hairy root cultures of C. roseus (Parr et al. 1988; Toivonen et al. 1989). To

overcome this difficulty, extensive studies including chemistry, biochemistry, and

molecular biology have been carried out. In fact, C. roseus is one of the most

thoroughly investigated medicinal plants. This subject has been well reviewed

elsewhere (Facchini and De Luca 2008).

Table 9.3 Examples of useful secondary metabolites that are hardly produced by plant cell

cultures

Metabolite Plant species Application Culture method Reference

Vinblastine

(alkaloid)

Catharanthus
roseus

Antitumor Cell suspension Eilert et al. (1987)

Hairy root Parr et al. (1988)

Glycyrrhizin

(saponin)

Glycyrrhiza
glabra

Sweetener Cell suspension Hayashi et al. (1988)

Hairy root Toivonen and

Rosenqvit (1995)

R=CH3  Vinblastine
R=CHO Vincristine
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Figure 9.8 depicts the biosynthetic pathways of Vinca alkaloids. Monoterpene

indole alkaloids are biosynthesized from a key intermediate, strictosidine, which is

the condensation product of tryptamine, a monoamine derived from shikimate

pathway, and secologanin, an iridiod glycoside derived from nonmevalonate path-

way. Although hairy root cultures of C. roseus produce only trace amounts of

dimeric monoterpene indole alkaloids, they produce monomeric alkaloids, such as

ajmalicine and catharanthine. However, the hairy roots produce no detectable

amount of vindoline, which is one of the building blocks of the dimeric indole

alkaloids (Toivonen et al. 1989).

9.2.3.2 Glycyrrhizin

Glycyrrhizin is a sweet oleanane type triterpene saponin isolated from the roots and

stolons of G. glabra (licorice) of the family Fabaceae. Dried roots and stolons of

licorice have been used as an important crude drug from ancient times (Shibata

2000). Glycyrrhizin is also used as an anti-inflammatory drug for treatment of

hepatitis. Cell suspension cultures of G. glabra produced no detectable amount of

glycyrrhizin (Hayashi et al. 1988). Glycyrrhizin also was not produced by hairy root

cultures of G. glabra (Toivonen and Rosenqvit 1995). In the intact plant of G.
glabra, the accumulation of glycyrrhizin is localized in the thickened roots and

stolons, and glycyrrhizin is not contained in the rootlets, leaves, stems, and seeds

(Hayashi et al. 1993). Instead of glycyrrhizin, cultured licorice cells produced two

triterpenoid constituents, viz. soyasaponins and betulinic acid. Soyasaponins are

also oleanane-type triterpene saponin, and are localized mainly in the seed and

rootlet of G. glabra. Betulinic acid, a lupane-type triterpene distributed widely in

higher plants, is mainly localized in the cork layer of the thickened licorice roots.

Figure 9.9 shows the biosynthetic pathways of glycyrrhizin and the related

triterpenoids. These triterpenoids and sterols share a common key intermediate,

2,3-oxidosqualene, which is formed via the mevalonate pathway (Rohmer 1999).

2,3-Oxidosqualene is further converted by three oxidosqualene cyclases, b-amyrin

synthase (bAS), lupeol synthase (LUS), and cycloartenol synthase (CAS) into the

three cyclization products, respectively, leading to the end-products. cDNAs of

these three oxidosqualene cyclases are characterized from G. glabra, and mRNA

levels of the oxidosqualene cyclases were differently regulated in the intact plants

and cultured cells of G. glabra. The levels of their mRNAs correlate with the

accumulation of respective end products indicating that the transcription of oxi-

dosqualene cyclase genes is an important regulatory step for triterpenoid biosyn-

thesis (Hayashi et al. 2003, 2004). The following steps of the saponin biosynthesis

pathway are oxidations and glycosylations of triterpenes. Recently, b-amyrin

11-oxidase, a cytochrome P450 involved in glycyrrhizin biosynthesis, has been

characterized (Seki et al. 2008). Metabolic engineering of a saponin-producing

plant or microorganism is an attractive approach to produce unique and useful

saponins in the future.
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9.3 Biotransformation

In addition to synthesizing secondary metabolites de novo from carbon sources

supplemented in the culture medium, plant cells are able to carry out biotransfor-

mation reactions on substrates exogenously added to the culture medium. Not only

secondary metabolites but also xenobiotic compounds can be used as substrates

of biotransformation. Such biotransformation reactions have been investigated as

one of the major targets for biotechnological application of plant cell culture

systems because plant cells can catalyze the stereospecific- and/or region-specific

modification of organic compounds that are not easily carried out by chemical

synthesis or by microorganisms (Rao and Ravishankar 1999). Biotransformation

reactions include oxido-reduction, hydroxylation, glycosyl conjugation, acylation,

methylation, etc. (Suga and Hirata 1990). This chapter describes biotransformations

catalyzed by cultured plant cells, focusing on examples with potential importance

for industrial application.

9.3.1 Glycosylation

Higher plants synthesize a wide range of glycosides as secondary metabolites, and

are capable of conjugating sugar residues not only to endogenous metabolic
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intermediates but also xenobiotics. Glycosyl conjugation of lipophilic low molecu-

lar weight compounds is an efficient tool to enhance water solubility, to improve

stability, and thereby to increase bioavailability and to modify biological activity.

Chemical synthesis of glycosides is usually difficult because it involves multiple

blocking/deblocking steps before any product can be obtained. Thus, glycosylation

of various organic compounds has attracted attention as one of the targets in

biotechnological application of plant cell culture systems. Here we describe some

examples of practical interests.

9.3.1.1 Arbutin

Arbutin is a monoglucoside of hydroquinone and a main bioactive compound

contained in Arctostaphylos uva-ursi that has been traditionally used as a urethral

disinfect. Arbutin also inhibits the melanin formation in human (Akiu et al. 1988)

and is used as an ingredient of cosmetics. Glucosylation of hydroquinone to arbutin

was first shown using Datura innoxia cell suspension cultures (Tabata et al. 1976).

Later, it was shown that C. roseus cells in culture can efficiently convert hydroqui-

none to arbutin, particularly when medium concentration of sucrose is increased

(Yokoyama et al. 1990). A large-scale production system up to 20-L jar fermenter

was established by culturing C. roseus cells at high density followed by continuous
supply of hydroquinone to the medium (Fig. 9.10). The arbutin yield could be

increased as high as 9.2 g/L (corresponding to 45% of cell dry weight) and the

conversion rate from hydroquinone was 98% (Inomata et al. 1991).

9.3.1.2 Curcumin

Curcumin (diferuloylmethane) is a yellow pigment of turmeric (dried rhizome of

Curcuma longa). It has been primarily used as a food colorant but has attracted

increased attention because of its potent pharmacological activities (Maheshwari

et al. 2006). However, its low water solubility limits further pharmacological

exploration and practical application. Screening of cell cultures from ten different

OH
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OO

OH

OH

HO
HO

Catharanthus rosues

Hydroquinone Arbutin

Fig. 9.10 Glucosylation of

hydroquinone in

Catharanthus roseus cell
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plant species revealed that C. roseus cells converted exogenously supplied curcu-

min to a series of curcumin glucosides as shown in Fig. 9.11 (Kaminaga et al. 2003).

Although the water solubility of curcumin monoglucoside was increased by only

230-fold, the solubility was increased about two million-fold and about 20 million-

fold in the case of curcumin monogentiobioside and curcumin digentiobioside,

respectively, compared to the solubility of curcumin. The result indicated that

conjugation of at least two glucose residues to curcumin enhanced dramatically

the water solubility. An effective chemoenzymatic system for glucosylation of

curcumin was established using a recombinant glucosyltransferase from C. roseus
(Masada et al. 2007). However, high cost of UDP-glucose, a donor substrate for the

enzymatic glucosylation, still makes the biotransformation using cultured cells a

method of choice although the product yield should be improved.

9.3.1.3 Capsaicin

Capsaicin is a major pungent compound in hot red peppers (fruits of Capsicum
annum). It exhibits analgesic activity through stimulation of vanilloid 1 receptor

and has been used as a topical analgesic as well as a therapeutic drug against

allergic rhinitis (Bley 2004). However, incomplete solubility of capsaicin some-

times leads to variable results of capsaicin activity (Kopec et al. 2008) and limits

pharmacological exploitation. Capsaicin was first shown to be glucosylated to the

monoglucoside by Coffea arabica cultured cells (Kometani et al. 1993). Recently,

C. roseus suspension cultures was shown to convert capsaicin and 8-nordihydro-

capsaicin to their monoglucosides (main products) together with b-primeveroside
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(xylopyronosylglucopyranoside) and b-vicianoside (arabinopyranosylglucopyra-

noside), as shown in Fig. 9.12. The glycosylation rate was slightly higher for

8-nordihydrocapsaicin than for capsaicin (Shimoda et al. 2007). Since capsaicin

monoglucoside was reported to be 1/100 times pungent as compared to capsaicin

(Mihara et al. 1992), while exhibiting higher activity for reducing serum and liver

lipid levels in vivo (Tani et al. 2003), it may be interesting to clarify the physio-

chemical and pharmacological characteristics of these capsaicinoid glycosides.

9.3.1.4 Monoterpene Alcohols

Higher plants produce a variety of flavors. These compounds are likely to sublime

and have usually low solubility in water. Glucosylation of these volatile compounds

has been one of the targets for biotransformation in plant cell cultures.

Menthol is a monoterpene compound contained in the essential oils fromMentha
plants and has been used as a refreshing flavor for foods, medicines, and cosmetics.

However, practical use of menthol is limited because of its low water solubility.

Eucalyptus perririana cells glucosylated either (+)- or (�)-menthol mainly to their

gentiobisosides (Orihara et al. 1991). Although glucosylation yield was much lower

for (+)-menthol than that for (�)-menthol, a triglucoside, 2,6-di-O-(b-D-glucopyr-
anosyl)-b-D-glucopyranoside, was produced only from (+)-menthol as a minor

product. Monoterpene alcohols such as thymol, carvacrol, and eugenol were also

efficiently converted to their genitiobiosides presumably via the corresponding

monoglucosides by E. perriniana cell suspension cultures, and the conversion

rate reached as high as about 90% in case of thymol (Shimoda et al. 2006), as

shown in Fig. 9.13.
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9.3.2 Hydroxylation

Regio- and stereo-selective introduction of oxygenated functions at various posi-

tions of exogenously supplied molecules by plant cell cultures has been widely

investigated because this may lead to modification in biochemical and pharmaco-

logical activities of the particular compound.

9.3.2.1 Digitoxin

Digitoxin and digoxin (12b-hydroxydigitoxin) are cardenolides accumulated in

Digitalis purpurea and D. lanata. Although both compounds have been used for

treatment of chronic heart diseases, digoxin has superior pharmacological and

pharmacodynamic properties compared to digitoxin. In contrast, the amount of
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each compound recovered is by far in excess in favor of digitoxin. This led to the

investigation of regio- and stereo-specific hydroxylation of digitoxin to produce

digoxin by plant cell cultures (Alfermann et al. 1980). D. lanata cells were found to
hydroxylate digitoxin at 12-position to produce 12b-hydroxydigitoxin (digoxin)

(Fig. 9.14). b-Methyldigitoxin was a more suitable substrate than digitoxin because

the former compound was efficiently converted to b-methyldigoxin with few by-

products. Methyldigoxin yield reached 800 mg/L when D. lanata cells were

cultured in a 20-L stirred tank reactor (Spieler et al. 1985).

The biocatalytic ability of 12b-hydroxylation seems to be specific to D. lanata
cells because digitoxingenin was hydroxylated at 1b- or 5b-position by Strao-
phanthus gratus, S. intermedius, and Daucus carota cells (Furuya et al. 1988;

Kawaguchi et al. 1989) and at 16b-position by D. purpurea cells (Hirotani and

Furuya 1980). It may be interesting to investigate the pharmacological activities of

these hydroxylated digitoxins at 1b-, 5b-, or 16b-position because they have not

been found in nature.

9.3.3 Miscellaneous

9.3.3.1 Podophyllotoxin

Podophyllotoxin in an antineoplasmic lignan isolated from Podophyllum peltatum.
Etoposide is an important anticancer drug chemically derived from podophyllo-

toxin and clinically used for treatment of small cell lung carcinoma. Etoposide is

synthesized through chemical conversion of podophylltoxin to 40-demethylepipo-

dophyllotoxin, which is then attached with the carbohydrate unit leading to etopo-

side. Because the present route requires isolation of podophyllotoxin from P.
peltatum, an alternative route to 40-demethylepipodophyllotoxin was exploited

using synthetic dibenzylbutanolide as a substrate. P. peltatum cells in culture

converted exogenously added dibenzylbutanolide to a podophyllotoxin analog

with a 50% conversion rate (Kutney et al. 1993). Later, it was found that the

cyclization of dibenzylbutanolide was performed with peroxidase excreted into

culture broth from cells of different species such as Nicotiana sylvestris (Botta

et al. 2001) and shoot cultures of Halplophyllum patavinum (Puricelli et al. 2003).

Although a chemical process in removing the isopropyl group in the biotransfor-

mation product and regeneration of the methylenedioxy function was completed,

the final product is still a C1-isomer of 40-demethylepipodophyllotoxin (Fig. 9.15).

9.3.3.2 Scopolamine

Hyoscyamine-6-hydroxylase (H6H) catalyzes conversion of hyoscyamine to its

epoxide scopolamine which has higher pharmacological values. Transgenic

tobacco cell cultures expressing an H6H transgene derived from Hyoscyamus
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muticus efficiently converted exogenously supplied hyoscyamine to scopolamine.

The productivity of scopolamine reached to 36 mg/L when 200 mg/L hyoscyamine

was added to the cells cultured in a 5-L turbine stirred bioreactor, corresponding to

18% conversion (Moyano et al. 2007).
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Chapter 10

Metabolic Engineering of Pathways and Gene

Discovery

Miloslav Juřı́ček, Chandrakanth Emani, Sunee Kertbundit,

and Timothy C. Hall

10.1 Introduction

Humans have been manipulating the genetic information of plants throughout the

history of agriculture. In this respect, every new plant variety or animal race is a

result of the introduction of novel metabolic changes. This process has been slowly

advancing for millennia. However, with the discovery of biochemical pathways and

later with the introduction of gene manipulation techniques in 1970s, the pace

greatly speeded up. Already in the mid-1980s, many of the compounds and

enzymes participating in metabolic pathways were linked to their cloned genes,

which can then be used for engineering the plant metabolism. Soon, novel products

from plants appeared including, vaccines and other pharmaceuticals, plastics, and

proteins that may render certain plants as effective tools for environmental decon-

tamination. These products were a result of the manipulation of plant endogenous

biochemical pathways and thus the novel field of science-metabolic engineering

was born. Metabolic engineering can be defined as the targeted and purposeful

modification of metabolic pathways in an organism for the improved use of cellular

pathways for chemical transformation, energy transduction, and macromolecular

synthesis or breakdown, potentially benefiting the society by producing biological

substitutes for toxic chemicals, increasing agricultural production, improving

industrial fermentation processes, producing completely new compounds, or by

understanding the molecular mechanism underlying medical conditions in order to

develop new cures (Kurnaz 2005).

Among several organisms, plants have rapidly become the main object of

metabolic engineering. This may be attributed to the higher interest in plants over
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bacteria or other organisms considered which was stimulated by potential commer-

cial applications resulting from engineering the resistance against pests and dis-

eases and later also improving the contents of metabolites already used in medicine

or developing novel medicines. Engineering of secondary metabolites seemed the

easiest way to obtain this goal. However, more than hundred thousand metabolites

have already been identified and this may be only a fraction of the total amount in

plant kingdom. Clearly, detailed mapping of metabolic pathways and their engi-

neering will be an enormous task. Moreover, even detailed understanding of the

biochemical processes may not be sufficient because an interaction between various

pathways in the total metabolic network, enzyme complexes, compartmentation,

feedback inhibition, and/or gene expression regulation may completely change the

story. Despite these obstacles, a number of successful cases were reported during

the last 30 years, some of them are summarized later.

10.2 The Beginnings and Early Years of Metabolic Engineering

Historical archives of plant sciences related to exploiting plants as natural chemical

factories are replete with examples of utilizing plants as sources of medicinal

compounds. One of the earliest examples is the medicinally valuable St. John’s

wort discovered by the Greek physician, Hippocrates, in the fifth century BC. In the

present times, St. John’s wort is part of the medical research and clinical trials

aimed at determining its efficacy for a wide variety of ailments such as depression,

cancer, inflammation, and viral infections. The ancient Indian medical discipline of

Ayurveda effectively illustrates the use of plants as derivatives of medicines in

combating various ailments. In modern medicine, one-quarter of prescription drugs

are of plant origin (Fischer and Emans 2000).

The technology of extracting useful compounds from plants evolved into what

we now know as “plant molecular pharming.” In 1983, Murai et al. (1983) demon-

strated that a part of bean phaseolin seed protein gene was transcribed in sunflower

cells transformed by the tumor-inducing plant vector Agrobacterium tumefaciens,
the first unequivocal demonstration of the transfer of a developmentally regulated

plant gene from one plant species to another. In a similar development, bacterial

genes were expressed in higher plants (Fraley et al. 1983), followed by the novel

leaf disk Agrobacterium-mediated transformation method of Horsch et al. (1985)

that combined gene transfer, plant regeneration, and an effective kanamycin-based

selection to generate transgenic petunia, tobacco, and tomato. The most commonly

used reporter gene to monitor transgene expression, the b-glucuronidase gene (gusA
or uidA) (Jefferson et al. 1987), is one of the earliest examples of a successful

molecular pharming product as its commercial production served as a model system

for the production of proteins in transgenic corn plants (Kusnadi et al. 1998;

Witcher et al. 1998). Prior to this, During (1988) demonstrated the wound-inducible

expression and secretion of the T4 lysozyme and monoclonal antibodies in tobacco,

the first report of human antibody expression in a transgenic plant. This was
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followed by the expression of secretory antibodies in transgenic plants (Hiatt et al.

1989), the secretion of biologically active blood substitutes, namely, human inter-

leukin-2 and interleukin-4 in transgenic tobacco suspension cultures (Magnuson et al.

1998), the expression of nopaline synthase-human growth hormone chimeric gene

in transgenic calli of tobacco and sunflower (Barta et al. 1986), human interferon

(De Zoeten et al. 1989), and human serum albumin (Sijmons et al. 1990). The

successes of molecular farming (extensively reviewed by Kumar et al. 2007) that

involved the transfer of the desirable gene to an appropriate host system, optimiza-

tion of the desirable pattern of gene expression, and optimal recovery of the

recombinant protein in the form of a pharmaceutical product peaked with the

achievement of oral immunization with a recombinant bacterial antigen produced

in transgenic plants (Haq et al. 1995).

10.3 The Basic Goals and Strategies of Metabolic Engineering

10.3.1 Biochemical Pathways

The progress of metabolic engineering is closely related with the discovery and

understanding of biochemical pathways. The more detailed and well-documented

knowledge on the pathway of interest is known, the better chance exists that the

engineering of such a pathway will be predictable and successful. Unfortunately,

despite decades of elucidating pathways in various organisms, our knowledge is

still far from being complete. The main problem is to identify all enzymes that

catalyze individual reactions within the pathway. The analysis is still difficult due to

their instability, low amount, and/or low activity among others. On the other hand,

the isolation and identification of secondary metabolites is easier by using labeling

techniques although many experimentally unconfirmed intermediates still exist.

With the progress of molecular biology, other approaches were involved to help

with the determination of involved enzymes. Most of them are based on “knocking

out” the gene by various techniques such as transposon tagging, TILLING, RNAi

(for details see Chap. 1-6 of this volume) or amiRNA, and then identify which

enzyme was affected. This is usually easy when the knockout gene is manifested

phenotypically, but it may be a daunting task if otherwise.

10.3.2 Functional Genomics

Using functional genomics is just another way of elucidating biochemical pathways

starting from genes down to the proteins. Functional genomics is the usage of

statistical methods and bioinformatics to determine the function of the genes (as the

name suggests). It is obvious that the genomic sequence must be known in order to

use this method. For time being there are not many sequenced plant genomes
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available but this will change in the near future; a number of nonmodel plant

species are now being sequenced and more are planned in the near future. Func-

tional genomics utilizes the “–omics” family tools, e.g., transcriptomics, proteo-

mics, and metabolomics. The tool of metabolomics is particularly important

because it qualitatively and quantitatively analyzes all metabolites in the organism.

When this is combined with the transcriptomics and proteomics, the complete

picture can be seen, e.g., involvement of regulatory and structural genes in the

organism (for details see Chaps 2–10 of Volume 2 of this series).

10.3.3 Compartmentalization, Transport, and Storage

Engineering a metabolic pathway in plants needs to be calculated with intra- and/or

intercellular compartments. The genes need to be expressed in the correct compart-

ment and in the correct type of cell. If not, the expression system may not work, or

only with low yield, or the product may even have a toxic effect. Thus production of

metabolites occurs in intracellular compartments such as vacuoles, endoplasmic

reticulum, cytosol, plastids, etc., whereas intercellular compartments cover various

plant tissues. The existence of compartments requires the existence of various

transport systems as the intermediate metabolite must be quickly moved between

different intra- and intercellular compartments. A number of transport mechanisms

were described in the literature. It is a rather complex process, and thus the

biochemical reaction rate may be also limited on the level of transport. Intermediate

metabolites are usually stored in vacuoles and thus transport mechanisms are

required for an import.

10.3.4 Basic Strategies

Early experiments to increase the yield and productivity of secondary metabolite

production relied on enzyme modification. These qualitative principles are based

mainly on the view that control of pathways must reside in relatively few enzymes

whose in vitro properties suggest that they could be controlling flux in vivo.

However, manipulating enzymes considered to be “rate limiting” has rarely had

the expected outcome. Metabolic pathways have evolved to exhibit control archi-

tectures that resist flux alterations at branch points. Stephanopoulos and Vallino

(1991) therefore introduced the concept of flexible and rigid nodes. The rigidity of

the biochemical network or its resistance to variations in metabolic change is due to

control mechanisms established to ensure balanced growth. The more rigid the

branch point, the harder it is to increase the flux through one of its branches. For an

engineering strategy to be successful, a sound understanding of the host cell is

necessary to determine the types of genetic modifications needed to achieve the

final goal. Some of the physiological considerations that should be examined
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include the effects of genetic manipulation on growth and possible effects on

unrelated systems. Traditional metabolic biochemistry did not provide the under-

standing needed to do this because it dealt with metabolic regulation in terms of a

few qualitative principles and was thus sometimes called “reductionist approach.”

Recently, a fast-growing field was introduced in the biological research referred as

“systems biology.” As the name suggests systems biology aims at systems-level

understanding, as distinct from understanding individual system components such

as particular genes or enzymes (Kitano 2002). At the very core of systems biology is

the goal of being able to model a living organism. The systems range from

metabolic pathways and gene-regulatory networks all the way up to whole cells

and organisms. Thus it offers the –omics integration together with phenotypic data

for studying plant organisms and even their interaction within their ecosystems. As

for metabolic engineering, the ultimate aim is to use the comprehensive experimen-

tal data sets describing changes in transcripts, proteins, metabolites, and flux to

generate a complete mathematical description of the metabolism of a model plant

species. It is envisaged that such a model would allow a truly predictive engineering

of plant metabolism. This is an ambitious aim that will require a sustained commit-

ment of resources and unprecedented technological developments to be achieved

(Sweetlove et al. 2003). Within system biology it is possible to establish theoretical

basis for determining which enzymes should be manipulated to achieve a desired

outcome. One such theoretical basis is metabolic control analysis (MCA) which

plays a central role in metabolic engineering.

Unlike traditional biochemistry, MCA is based upon the fact that a single rate-

limiting step may not exist and several steps may share control of the metabolic

network. Three commonly used normalized sensitivity measures, referred as

Control Coefficients that quantify how the control of steady-state fluxes and con-

centrations is distributed between different reactions in a metabolic network, have

been defined. Control Coefficients refer to the whole metabolic pathway (i.e., they

are systemic or global properties). A Control Coefficient is a relative measure of

how much a perturbation to, for example enzyme activity, affects a system variable,

e.g., a flux or metabolite concentration. Flux Control Coefficient is the heart of the

theory. It is a measure of how a change in the concentration of the enzyme affects

the steady-state flux through that particular enzyme. That is, it is the measure of the

degree of control exerted by enzyme on this steady-state flux. The Concentration

Control Coefficient is a measure of the extent of control exerted by the enzyme on

the steady-state concentration, while the Elasticity Coefficient is a measure of the

response of the reaction rate upon changes in the concentration. Thus it refers to

properties of individual enzymes in the pathway (they are local not systemic

properties, and are related to classical enzyme kinetics).

Three main types of metabolic engineering based on MCA can be considered

(Bailey 1991):

1. Extending an existing pathway to obtain a new product

2. Amplifying a flux-controlling step

3. Diverting flux at branch points (“nodes”) to a desired product by:
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(a) Circumventing a (feedback) control mechanism

(b) Amplifying the step initiating the desired branch (or the converse)

(c) Removing reaction products

(d) Manipulating levels of signal metabolites

These strategies have one major disadvantage: detailed knowledge of the net-

work pathways and enzyme kinetics must be available. In contrast, the concept of

inverse metabolic engineering does not require such knowledge. It is based on first

obtaining the desired phenotype and later to determine environmental or genetic

conditions that confer this phenotype, and finally to alter the phenotype of the

selected host by genetic manipulation (Bailey et al. 1996; Delgado and Liao 1997).

10.4 Engineering Primary Metabolic Pathways

10.4.1 Carbohydrate Metabolism

In plants, the process of photosynthesis results in the production of sugars as direct

products that undergo reversible conversion into storage carbohydrates such as

starch and fructans, and the structural carbohydrate, cellulose (Fig. 10.1).

Starch as a storage carbohydrate accumulates transiently in leaves and stably in

seeds, tubers, and roots. The importance of starch as a stable dietary carbohydrate

and its many industrial uses render it as a favorite target for metabolic engineering

in attempts to increase starch yields by changing the relative proportions of its

structural components, amylose and amylopectin. Modulating the enzymes con-

trolling starch synthesis and branching in potatoes resulted in the production of

high-amylose starches that have important domestic uses such as improved frying

and industrial uses as gelling agents and thickeners, and high-amylopectin starches

notable in their use for improved freeze thaw characteristics, improved paper

quality or adhesive manufacture (Capell and Christou 2004). Antisense expression

of theWaxy gene in transgenic rice resulted in low-amylose rice grains of improved

Fig. 10.1 Targets of

carbohydrate metabolism
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quality (Liu et al. 2003). Fujita et al. (2003) developed transgenic rice with

modified amylopectin by antisense expression of the gene encoding isoamylase.

Vincken et al. (2003) used a starch-binding domain from potato-granule bound

starch synthase I to target luciferase to the inside of a starch granule, a promising

method for directing recombinant enzymes into the starch granule for starch

metabolic engineering. Novel starches were produced by changing the nature and

frequency of branching directed toward a more versatile a-glucan synthesis by

using bacterial enzymes (Kok-Jacon et al. 2003). Seed-specific overexpression of

the potato sucrose transporter in transgenic pea was shown to increase sucrose

uptake and growth rates of developing cotyledons (Rosche et al. 2002). Regierer

et al. (2002) demonstrated that by increasing the activity of plasticidal adenylate

kinase in transgenic potato, a larger pool of adenylates become available to fuel

several metabolic pathways. This resulted in a 60% increase in overall starch levels,

a two- to four-fold increase in amino acid levels combined with an increased tuber

yield. Transgenic wheat and rice transformed with modified maize ADP-glucose

pyrophosphorylase (shrunken2) targeting the enhancement of the enzyme activity

in wheat endosperm and deregulation of the enzyme in rice endosperm resulted in a

40% and 20% increase in seed biomass, respectively, compared to wild-type

controls (Smidansky et al. 2002, 2003).

The ability of fructans to substitute as low-calorie alternatives to fats due to their

similar texture as fats attracted their attention in metabolic engineering. Inulin from

chicory is a commercially available fructan. Bacterial and plant enzymes for fructan

biosynthesis have been introduced into several crops to facilitate the large-scale

extraction of fructans (reviewed in Ritsema and Smeekens 2003). The importance

of fructans in protection of plants from abiotic stresses prompted their use in

producing improved transgenic plant varieties by metabolic engineering (reviewed

in Chen and Murata 2002).

The importance of the structural carbohydrate, cellulose, as pulp and fiber, and

its role as a starting material for commercially important polymers make it an

attractive target for metabolic engineering. Though the complete biosynthetic

pathway of cellulose is not worked out, certain important enzymes involved in

the process have been identified and exploited in metabolic engineering. Suppres-

sion of sucrose synthase gene expression was found to repress cotton fiber cell

initiation, elongation, and seed development (Ruan et al. 2003). In Arabidopsis, the
functional analysis of the cellulose synthase genes CesA1, CesA2, and CesA3
revealed their role in primary and secondary cell wall formation (Burn et al.

2002), and the expression of a mutant form of cellulose synthase AtCes47 caused

a dominant negative effect on cellulose biosynthesis (Zhong et al. 2003).

10.4.2 Amino Acid Metabolism

Metabolic engineering specifically targeted toward increasing the content of

essential amino acids such as lysine, threonine, methionine, and tryptophan in
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food crops remains an exciting proposition (Galili and Hofgen 2002). More

recently, metabolic engineering complemented by RNA interference (RNAi)

resulted in effective protocols for multiple point intervention in well worked out

amino acid pathways. A good illustration of this strategy can be seen in generating a

novel opaque variant of maize by a single dominant RNAi-inducing transgene

targeting the zein genes (Segal et al. 2003). This novel version of opaque2 has

increased lysine content. Increasing lysine content was also demonstrated in trans-

genic Arabidopsis, where multipoint engineering of lysine metabolism was

achieved by combining the overexpression of a bacterial enzyme, dihydrodipicoli-

nate synthase (DHPS) that is resistant to lysine inhibition together with knockout of

lysine catabolism pathway (Zhu and Galili 2003). Whether either strategy was used

alone, a 12-fold or five-fold increase in lysine content was observed, and when

transgene expression and knockout were in combination, an 80-fold increase was

observed. Yet another valuable amino acid for metabolic engineering is proline as

its role in plant stress responses makes it an important target for modulation to

generate transgenic stress tolerant plants (Chen and Murata 2002).

10.4.3 Polyamine Metabolism

Polyamines are low molecular weight polycationic molecules that are known to

play an important role in plant defense and in the regulation of plant growth and

development (Rajam 1997; Kumar et al. 2006). These small aliphatic amines are

derived from the amino acids, ornithine and arginine, by a decarboxylation pathway

(Bhattacharya and Rajam 2007). Three major polyamines found in plants are

putrescine, spermidine, and spermine. Putrescine is produced by the decarboxyl-

ation of arginine catalyzed by the enzyme arginine decarboxylase (ADC) or as in

fungi by the decarboxylation of ornithine catalyzed by ornithine decarboxylase

(ODC). Putrescine then acts as a precursor for the higher polyamines, spermidine

and spermine, the conversion catalyzed by spermidine and spermine synthases,

respectively. The reactions proceed by the addition of propyl amino groups to the

decarboxylated S-adenosylmethionine (SAM) that is generated from SAM by SAM

decarboxylase (SAMDC). A diamine cadaverine that is a penta homolog of putres-

cine is mainly found in legumes and is produced by the decarboxylation of lysine

catalyzed by lysine decarboxylase (LDC) (Rajam 1997). The polyamine biosyn-

thetic pathway is thus very well worked out and offers an array of possibilities for

metabolite manipulation (Fig. 10.2). The corresponding genes for all the enzymes

have been cloned in plants, namely the adc gene for tomato (Rastogi et al. 1993),

pea (Perez-Amadour and Carbonell 1995), Arabidopsis (Watson and Malmberg

1996), and rice (Chattopadhyay et al. 1997); the odc gene from Datura (Micheal

et al. 1996), tobacco (Mallik et al. 1996), and tomato (Alabadi and Carbonell

1998); the samdc gene from Arabidopsis, Datura, potato (Taylor et al. 1992),

Catharanthus (Schroeder and Schroeder 1995), tomato, tobacco (Kumar et al.
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1997; Park et al. 1998), and rice (Li and Chen 2000); and the spd synthase from

tobacco, Arabidopsis, and Hyoscyamus niger (Hashimoto et al. 1998).

Metabolic engineering of polyamines has mainly utilized overexpression and

antisense techniques. Overexpression of carrot samdc in rice showed increased

levels of spermine and spermidine in seeds, and only spermine in leaves (Thu-Hang

et al. 2002). The expression of yeast samdc in tomato under the control of a

ripening-inducible E8 promoter increased spermidine and spermine levels in the

fruit, and resulted in enhanced production of lycopene, a longer vine life, and

nutritionally improved tomato juice (Mehta et al. 2002). The antisense suppression

by an oat adc gene in rice reduced the putrescine and spermine levels, but no

concomitant changes were observed in the downstream genes in the polyamine

pathway (Trung-Nghia et al. 2003). Polyamines also act as precursors to many

secondary metabolites and are thus important sources for engineering of secondary

metabolic pathways.

Arginine Ornithine

ADC

ODC

AI

Putrescine

SPDS

SPMS

SAMDC
dcSAM

Spermidine

Spermine

SAM

CO2

Agmatine

N-Carbomylputrescine

Fig. 10.2 Polyamine biosynthetic pathway in plants. ADC, Arginine decarboxylase; AI, Agmatine

iminohydrolase; ODC, Ornithine decarboxylase; SAM, S-adenosyl methionine, SAMDC, SAM

decarboxylase; dcSAM, decarboxylated SAM; SPDS, Spermidine synthase; SPMS, Spermine

synthase. Reproduced from Bhattacharya and Rajam (2007)

10 Metabolic Engineering of Pathways and Gene Discovery 283



10.4.4 Lipid Metabolism

The manipulation of oils and lipids in plants to change the quantity and nutritional

quality of the plant fatty acids has far-reaching applications in food industry and

human health as oils and fats are an important source of energy for the human body

and form a vital component of many cell constituents. Since the main sources of fat

in the human diet are vegetable oils, mostly soy, canola (oilseed rape), palm, peanut

and sunflower, an attractive area of research has been the production of oilseed

plants engineered to produce omega-3 long chain polyunsaturated fatty acids

(LC-PUFAs) that have multiple health benefits in terms of cardiovascular and

mental health. Attempts in this direction were deemed important in a quest to

provide a successful alternative to that of the LC- PUFA-rich fish oils that proved

to be undesirable food ingredients due to the increase in the vegetarian movement,

the associated objectionable flavors, and more recently the rise in chemical and

environmental contaminants in marine life that are difficult and cost prohibitive to

remove from the fish oils. Improving the fatty acid content of plants has important

industrial applications in production of detergents, fuels, lubricants, paints, and

plastics. Our review touches on some of the important examples. For a more

detailed exploration, the reader is directed to the many extensive reviews in this

area published in recent years (Murphy 2002; Drexler et al. 2003; Singh et al. 2005;

Damude and Kinney 2007).

Metabolic engineering of fatty acids is of great interest both at the laboratory and

industrial research levels as even the most extensive modifications have no notable

effect on the normal growth and development of the modified plant (Thelen

and Ohlrogge 2002). Most higher plants have the ability to synthesize the main

C18-PUFA, linoleic acid (LA), and a-linolenic acid (ALA), and to a lesser extent,

g-linolenic acid (GLA) and stearidonic acid (SDA). The inability of plants to

elongate and desaturate these C18-PUFA acids into the beneficial LC-PUFA

therefore makes it imperative to genetically engineer the genes that encode the

required biosynthetic enzymes to convert the LA into an o6 LC-PUFA like

arachidonic acid (AA) or the ALA into an o3 LC-PUFA like eicosapentaenoic

acid (EPA) and docosahexaenoic acid (DHA) (for details of the steps in this

pathways, see Singh et al. 2005 and Fig. 10.3).

Initial attempts to engineer plant fatty acid profiles focused on the redirection of

fatty acid biosynthesis in the developing seed by blocking fatty acid desaturation

resulting in a high oleic soybean (Kinney et al. 1998), and the introduction of

enzymes that redirected fatty acid synthesis to new end products, such as medium

chain fatty acid oils resulting in high laurate canola (Del Vecchio 1996). These

technically successful experiments involving the introduction of one or two

transgenes were aimed at improving the oxidative stability of the oil without

hydrogenation. Liu et al. (2001) transformed the oilseed rape, Brassica napus with
cDNAs encoding desaturation enzymes, 18:1 D12 desaturase alone or in combina-

tion with 18:2 D6 desaturase resulting in seeds producing 46% ALA and 43% GLA,

respectively. Han et al. (2001) engineered a 60% erucic acid producing oilseed rape
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by the combined expression of b-ketoacyl-CoA synthase and 22:1 acyl-CoA:

lysophosphatidic acid acyltransferase. Anai et al. (2003) engineered rice with a

soybean FAD3 to increase the seed oil quality with a ten-fold increase of GLA. Sato
et al. (2004) engineered marker-free soybean with levels of GLA as high as 50% by

seed-specific expression of borage D6 desaturase gene.

With the advent of knowledge in gene discovery and corresponding genomic

technologies, coupled with the spurt in elucidating gene expression pathways, the

field of metabolic engineering forayed into technologies involving more complex

manipulations of plant cell lipid metabolism involving engineering entire pathways

in a single experiment. The first report of LC-PUFA production in higher plants as a

“proof of concept” was by Qi et al. (2004) who demonstrated the increased

synthesis of AA (6.6%) and EPA (3%) in Arabidopsis leaves by the transgenic

expression of the individual genes in the D8 LC-PUFA pathway. The first success-

ful reconstitution of D6 pathway for LC-PUFA production in plants and the first

demonstration of LC-PUFA accumulation in seed oils were achieved in linseed

(Abaddi et al. 2004). The most impressive demonstration of commercially signifi-

cant concentrations of LC-PUFAs (19.5% of EPA) in plant seeds was achieved by

placing the D6 pathway under the control of strong, seed-specific promoters in

Linoleic Acid

18:2

a-Linolenic Acid

18:3

Eicosapentaenoic Acid

20:5

Docosahexaenoic Acid

22:6

g-Linoleic Acid

18:3

Arachidonic Acid

20:4

D6 desaturase

D5 desaturase

D5 desaturase

D4 desaturase

Fig. 10.3 Crucial steps in lipid metabolism of particular interest to plant metabolic engineers
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soybean (Kinney et al. 2004) where, apart from the minimal set of genes, coding the

D6 pathway was engineered in combination with the Arabidopsis Fad3 (Yadav

et al. 1993) and the Saprolegnia diclina D17 desaturase (Pereira et al. 2004). In a

further improvement of this technique, Damude and Yadav (2005) utilized the D15
desaturase from Fusarium moniliforme (Damude et al. 2004) instead of the Fad3 to
generate soybean plants with an overall 57% increase of o3 LC-PUFA content.

10.4.5 Metabolic Engineering in Chloroplast Genome

The genetic engineering of plastids started in 1990, when Pal Maliga’s lab demon-

strated the first successful and stable transformation of plastids in higher plants

(Svab et al. 1990). At that time, few scientists envisaged the use of plastids in

metabolic engineering. However, 5 years later Maliga’s lab published another paper

describing the expression of Bacillus thuringiensis cry toxin in chloroplasts.

Although this toxin was very difficult to express in a plant’s nucleolar genome,

expression in chloroplasts was shown to be at extraordinary levels (McBride et al.

1995). This article generated great interest among biotechnologists. Together with

other advantages, such as lack of epigenetic processes and gene silencing, the

possibility to use precise homologous recombination for transgene integration and

lack of pollen transmission, plastids promise to become great tools in metabolic

engineering. Moreover, plastids integrate and express foreign sequences as operons

(Ruhlman et al. 2007) and the ability of plastid expression system to transcribe

operons from a single promoter, and thus enabling the expression of multiple genes

in a single recombination event, makes possible the expression of multienzyme

pathways in the first transformed generation eliminating the need to cross lines

recombinant for individual genes (Quesada-Vargas et al. 2005). These important

properties make them an attractive alternative to nuclear genomic manipulations.

As mentioned earlier, the first use of plastids was in resistance engineering.

Chloroplasts proved to be very suitable for expression of B. thuringiensis cry genes.
Because of their different (prokaryotic) codon usage, expression from nuclear

genome proved to be severely hampered. There is no need to adjust codon usage

when expressed in chloroplasts (McBride et al. 1995; Kota et al. 1999). The

expression efficiency was so high that cry protein crystals could be seen within

chloroplasts (Daniell et al. 2001). Recently, the first insect-resistant soybean plants

were generated, thus demonstrating that this technology works not only in tobacco

model plant but also in important crops (Dufourmantel et al. 2005). Another

example of resistance engineering is generation of glyphosate-tolerant plants.

Glyphosate is a broad-spectrum herbicide, which blocks plant aromatic amino

acids synthesis by competitively inhibiting the key enzyme 5-enol-pyruvyl shiki-

mate-3-phosphate synthase (EPSPS). Thus, overexpression of EPSPS in plastids

could block the inhibition effect of glyphosate. This presumption proved to be

valid, as Ye et al. (2001) showed that chloroplast expression of an EPSPS gene

yielded plants resistant to high doses of glyphosate.
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Unlike resistance engineering, metabolic engineering does not require massive

overexpression of the intermediate; to the contrary, this may even be disadvanta-

geous. In plastids, therefore, expression mechanisms must be optimized by adjust-

ing plastid expression signals. Unfortunately, this is likely to be a tedious process

because the sequence of the coding region of the foreign gene itself often influences

the accumulation of the expressed foreign protein and adjustment therefore relies

on trial and error. On the other hand, the ability to engineer multiple genes (Daniell

et al. 2005b), high levels of recombinant protein accumulation (Daniell et al. 1997),

and the security of transgene containment due to maternal inheritance of plastid

genomes in most crop species (Daniell 2002) are among the features that make the

chloroplast system an efficient platform for metabolic engineering.

The first demonstration of the feasibility for engineering nutritionally important

biochemical pathways in nongreen plastids was plastid expression of a bacterial

lycopene b-cyclase gene in tomato chloroplasts (Wurbs et al. 2007). This resulted in

herbicide resistance and triggered conversion of lycopene, the main storage carot-

enoid of tomatoes, to b-carotene (pro-vitamin A), an essential antioxidant. This

yielded a four-fold enhancement in provitamin A content of the fruit. Thus far, the

most complex and novel metabolic pathway introduced into tobacco plastids was

that for the synthesis of the bioplastic polyhydroxybutyrate (PHB) from Ralstonia
eutropha (Arai et al. 2001). Various techniques were used, of which the most

promising appears to be plastid transgene expression using a nuclear-encoded and

plastid-targeted ethanol-inducible T7 RNA polymerase promoter as this circum-

vents the toxic effect of constitutively expressed bacterial phb operon (Nakashita

et al. 2001; Lossl et al. 2003).

Undoubtedly, the greatest importance for plastid metabolic engineering is the

photosynthetic pathway where the Rubisco gene is their primary target. The work

carried out in this field greatly exceeds the scope of this chapter; more than 5,000

manuscripts exist on this subject. Several extensive review articles were recently

published covering this topic (Whitney and Andrews 2003; Bock and Khan 2004;

Portis and Parry 2007).

Molecular pharming is the third category of plastid engineering. Extraordinary

expression levels achieved in chloroplasts are undoubtedly the main reason for the

high interest in the production of pharmaceuticals in plastids. For example, the

tetanus toxin fragment was produced in tobacco chloroplasts with expression levels

exceeding 25% of the total soluble protein (TSP) (Tregoning et al. 2003). Similarly,

chloroplast expression of human serum albumin reached 11% of TSP (Fernandez-

San Millan et al. 2003) and that for xylanase was 6% TSP (Leelavathi et al. 2004).

Tobacco chloroplasts are able to correctly fold complex proteins with disulfide

bridges, such as human somatotropin (Staub et al. 2000) and even full-size anti-

bodies (Daniell et al. 2001). However, a significant increase in overall cost may

arise if solubilization from inclusion bodies and refolding of these therapeutic

proteins is necessary.

A disadvantage of using tobacco chloroplasts for protein production is that

they are generally deficient in the capacity to glycosylate proteins since N- or

O-glycosylation has a strong impact on the activity of several therapeutic proteins.

10 Metabolic Engineering of Pathways and Gene Discovery 287



However, a recent discovery in Arabidopsis may remedy this situation. Villarejo

et al. (2005) showed that a chloroplast-located protein in higher plants takes an

alternative route through the secretory pathway and becomes N-glycosylated before

entering the chloroplast. The other disadvantage of using tobacco plastids (and

tobacco itself) is the high content of nicotine and other alkaloids that must be

removed from the final product, increasing the overall cost. The choice of organism

may therefore shift to edible plants since human proinsulin was shown to be

produced in transgenic lettuce plastids (Ruhlman et al. 2007), and Daniell et al.

(2005a) suggested that carrot appears to be ideal for oral delivery of therapeutic

proteins. Commercialization of the expression of pharmaceutical proteins in chlor-

oplasts is evidenced by an agreement made between Chlorogen (who has patented

technology) and Sigma-Aldrich Fine Chemicals to produce four different proteins

in tobacco plants.

10.5 Engineering Secondary Metabolic Pathways

Plant secondary metabolite pathways are the major target for metabolic engineer-

ing. Plant produces an enormous amount of secondary metabolites which play

important roles in plant physiology. Some of plant secondary metabolites confer

resistance against pests and diseases while some are the constituents of flower color,

food flavor, and polymeric lignin for structural support and assorted medical agents

such as phytoalexins, phytoestrogens (e.g., isoflavones and coumestrols) or chemo-

preventive anticancer agents (e.g., resveratrol), or regulate the development of

fat cells (e.g., catechins), antimitotic, antimalarial, antioxidant, and antiasthmatic

activities.

10.5.1 Transcription Factors as Tools for Metabolic Engineering

Transcription factors are regulatory proteins that can act as activators or repressors

of gene expression through sequence-specific DNA binding and protein-protein

interactions, mediating changes in the levels of mRNA accumulation. The molecu-

lar entities that are involved in such interactions are chromatin remodeling proteins

other than the general transcription machinery (Latchman 2003). In recent years, a

flurry in the knowledge of elucidating the functions of an array of transcription

factors showed that many impact the flux through metabolic pathways and, since

they tend to control multiple pathway steps, they are fast emerging as powerful

tools to control complex metabolic pathways in plants (Broun 2004).

The potential of transcription factors as tools for manipulating metabolic path-

ways was recognized in the pioneering work of Goff et al. (1990) involving the

maize flavonoid pathway regulators COLORLESS 1 and RED that were shown to

induce flavonoid gene expression and anthocyanin accumulation in transgenic
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maize. Bovy et al. (2002) generated high-flavanol tomatoes by the heterologous

expression of maize transcription factor genes LC and C1 that resulted in an

increased flux of flavonoid pathway throughout the fruit as opposed to expressing

a chalcone isomerase gene that resulted in enhanced flavanol production only in the

peel. This result proves that activating a pathway regulator as opposed to a pathway

gene can induce metabolite accumulation in a tissue where most relevant enzymatic

activities are insufficient. Transcription factors can also be valuable as discovery

tools to identify enzymes and accessory proteins associated with complex path-

ways. This was effectively demonstrated by Broun et al. (2004) when they over-

expressed an ETHYLENE RESPONSE FACTOR (ERF)-like transcription factor

WAX INDUCER 1 (WIN1), that singly causes wax accumulation in Arabidopsis.
When WIN1 plants were examined by Northern and microarray analyses, an array

of genes involved in wax biosynthesis, such as CER1, KCS1 were seen to be

up-regulated as were also other lipid biosynthetic genes and proteins involved

in cellular trafficking. This shows that WIN1 can be a useful tool to dissect

molecular mechanisms underlying poorly understood, complex metabolic path-

ways. Transcription factors can also be utilized to downregulate pathway flux as

shown by Kawaoka et al. (2000) who silenced a DNA-binding protein, NTLIM1,
in transgenic tobacco that resulted in a dramatic reduction in lignin production

due to a significant decrease in the expression of early phenylpropanoid pathway

genes.

10.5.2 Flavonoids

Flavonoids are a large family of plant secondary metabolites synthesized from the

phenylpropanoid pathway (Dixon and Steele 1999; Winkel-Shirley 2001). The

biosynthetic pathway of flavonoids is the best characterized of plant secondary

metabolites in terms of chemistry, biochemistry, genetics, and molecular biology

(Harborne 1988, 1994; Stafford 1990; Winkel-Shirley 2001; Grotewold 2006). The

knowledge of flavonoid biosynthesis and the important functions of flavonoid

compounds in plants and in human nutrition have made flavonoids and isoflavo-

noids excellent targets for metabolic engineering.

In the phenylpropanoid pathway, phenylalanine ammonia lyase (PAL) catalyzes

the conversion of phenylalanine to cinnamate. The cinnamate 4-hydroxylase (C4H)

catalyzes the hydroxylation of cinnamate to p-coumarate that is converted by

4-coumarate: coenzyme A (CoA) ligase (4CL) to p-coumaroyl-CoA. The flavonoid

biosynthesis starts with the condensation of one molecule of p-coumaroyl-CoA and

three molecules of malonyl-CoA to produce tetrahydroxychalcone. This reaction is

carried out by the enzyme chalcone synthase (CHS). Chalcone is isomerized to a

flavanone by the enzyme chalcone isomerase (CHI) (Fig. 10.4).

Flavanones (e.g., naringenin) provide a central branch point in flavonoid bio-

synthesis. From these central intermediates, the pathway diverges into several side

branches, each resulting in a different class of flavonoids as flavones, flavonols,

10 Metabolic Engineering of Pathways and Gene Discovery 289



DelphinidinPelargonidinCyanidin

LeucodelphinidinLeucopelargonidinLeucocyanidin

+

5 3

ANSANSANS

Cyanidin-based anthocyanins Delphinidin-based anthocyanins

UFGTUFGTUFGT

5 3

Cyanidin-based anthocyanins Pelargonidin-based anthocynins

3-malonyl-Co A+

CHS

PentahydroxyflavanoneEriodictyol Naringenin

3’

5’ F3’5’HF3’H

CHI

Tetrahydroxychalcone

Dihydrokaempferol DihydromyricetinDihydroquercetin

5’

3’

F3’5’HF3’H

F3HF3H F3H

DFRDFRDFR

R

Trihydroxychalcone

Liquiritigenin

CHS, CHR

IFS

CHI

Daidzein

IFS

p-Coumaroyl-CoA

Genistein

4CL

Phenylalanine

Cinnamate

p-Coumarate

PAL

C4H

p
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isoflavones, anthocyanidins, and anthocyanins. Among these subclasses, isofla-

vones and anthocyanins are the main targets for metabolic engineering.

10.5.2.1 Isoflavone Biosynthesis and Metabolic Engineering

Isoflavones are mostly produced in the Papilionoideae subfamily of Leguminosae

(Dewick 1994) such as soybean (Glycine max), green beans (Phaseolus vulgaris),
and alfalfa (Medicago sativa). They are involved in plant defense mechanisms

(Ebel et al. 1986; Rivera-Vargas et al. 1993; Graham and Graham 1996; Dixon

and Sumner 2003) and symbiosis between the roots of leguminous plants and

Rhizobium bacteria leading to the formation of nitrogen-fixing root nodules

(Pueppke 1996; Spaink 2000; Ferguson and Mathesius 2003). Isoflavones have

molecular structures similar to the human hormone estrogen and act as phytoestro-

gens. There are several reports of isoflavone activities important to human nutrition

and medicine as anticancer and antioxidant compounds (for a review, see Ososki

and Kennelly 2003; Cornwell et al. 2004).

The isoflavone phytoestrogens daidzein and genistein are synthesized from the

phenylpropanoid pathway and stored in the vacuole as glucosyl- and malonyl-

glucose conjugates (Graham and Graham 1996). The pathway to synthesize daid-

zein branches from the flavonoid biosynthesis catalyzed by chalcone synthase and

a legume-specific enzyme, chalcone reductase (CHR) to generate trihydroxychal-

cone which is consequently converted to daidzein through reactions catalyzed by

chalcone isomerase (CHI) and isoflavone synthase (IFS) (Fig. 10.4). Genistein

synthesis from naringenin is mediated by IFS (Fig. 10.4). The soybean IFS is

encoded by two genes, IFS-1 and IFS-2, that have been cloned and examined in

some detail by several groups (Akashi et al. 1999; Steele et al. 1999; Jung et al.

2000; Yu et al. 2000).

Metabolic engineering of isoflavones by increasing isoflavone levels in soybean

and the introduction of isoflavone biosynthesis in nonlegume crops such as maize,

wheat, or rice that do not naturally produce isoflavones has been a focus of research

in recent years due to their significant roles in plant defense and in human medicine

and nutrition. It has been shown that the level of genistein produced and accumu-

lated in leaf and stem tissues of Arabidopsis transformed with soybean IFS (Jung

et al. 2000) is enhanced when the phenylpropanoid pathway is activated by high

UV-light (Yu et al. 2000). Genistein in IFS-transformed tobacco accumulates to

higher levels in anthocyanin-producing flowers than in leaves. The production of

genistein in maize black mexican sweet (BMS) cells required maize transcription

factors C1 and R in addition to IFS. Further, BMS cells cotransformed with IFS,
CRC (a chimeric transcription factor containing maize C1 and R coding regions),

and soybean CHR can produce the novel compound daidzein (Yu et al. 2000).

These results show that isoflavones can be synthesized in nonlegume plants,

albeit at low levels compared to those in soybean. There are factors that limit the

flow of intermediates toward isoflavone biosynthesis. These include flavanone
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3b-hydroxylase (F3H), the major flavonoid enzyme that competes with IFS for the

common substrate naringenin. Silencing of F3H reduced flavonoid biosynthesis and

increased isoflavone accumulation. This was demonstrated in soybean lines trans-

genic for CRC as they accumulated isoflavones to much higher levels than in wild-

type seed (Yu et al. 2003). Whereas the expression of CRC alone in soybean seeds

gave only a small increase in isoflavone and flavonol levels, the coexpression of

CRC together with a silencing construct targeting flavanone 3b-hydroxylase (F3H)

resulted in increased total isoflavone content up four-fold higher than in wild-type

seed. These high isoflavone soybeans would be useful for the production of soy

foods providing potentially greater health benefits to consumers.

Another possibility for increasing the isoflavonoid content of nonlegume plants

is by protein engineering. The expression of an IFS-CHI fusion protein in trans-

genic tobacco plants produced higher levels of the isoflavone genistein and genis-

tein glycosides than plants transformed with IFS alone (Tian and Dixon 2006).

10.5.2.2 Anthocyanin Biosynthesis and Metabolic Engineering

Anthocyanins belong to the most important flavonoid class. They are major com-

ponents of flower and fruit colors. The key enzymes to regulate the anthocyanin

synthesis are flavonoid 30-hydroxylase (F30H) and flavonoid 30, 50-hydroxylase
(F3050H) that catalyze hydroxylation at the 30- or 3050-positions of the B-ring of

flavonoid compounds. F30H has a wide substrate range and can convert the nar-

ingenin to eriodictyol, the dihydrokaempferol (DHK) to dihydroquercetin (DHQ),

and the flavonol kaempferol to quercetin. F3050H catalyzes the hydroxylation of both

30 and 50 positions of the B-ring leading to the conversion of naringenin and DHK to

pentahydroxyflavanone and dihydromyricetin (DHM), respectively (Fig. 10.4). These

compounds are catalyzed by flavanone 3-hydroxylase (F3H) to colorless dihydrofla-

vonols, either DHK,DHQ, or DHM that will be reduced by dihydroflavonol reductase

(DFR) to leucoanthocyanins. These compounds are converted to the corresponding

leucoanthocyanidins by anthocyanidin synthase (ANS). Anthocyanidins serve as

substrates for anthocyanin. They are unstable and will couple to sugar molecules by

enzymes such as UDP-glucose:flavonoid 3-O- glucosyltransferase (UFGT) to yield

the final relatively stable anthocyanins (Bohm 1998; Harborne 1994).

Cyanidin-, pelargonidin-, and delphinidin-based anthocyanins are responsible

for flower colors. Cyanidin-based anthocyanin is the source of red and magenta

colors, whereas pelargonidin-based anthocyanin is responsible for orange, pink, and

bright red colors, and delphinidin-based anthocyanin for violet and blue colors.

Limited ranges of flower color for individual plant species reflect the absence,

mutation, or abundance of genes involved in anthocyanin biosynthesis, substrate-

specificity of key enzymes, and/or the temporal and spatial regulation of the

anthocyanin biosynthesis.

Some plants such as roses (Rosa hybrida), chrysanthemums (Chrysanthemum
morifolium), and carnations (Dianthus caryophyllus) do not produce purple

delphinidin-based anthocyanins because they lack the activity of F3050H (Elomaa
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and Holton 1994; Holton and Tanaka 1994; Tanaka et al. 1998; Mol et al. 1999).

Petunia (Petunia hybrida), cymbidium (Cymbidium hybrida), tomato (Solanum
lycopersicum), and cranberry (Vaccinium macrocarpon) do not produce brick red/

orange pelargonidin-based anthocyanins because their dihydroflavonol 4-reductases

(DFRs) have strict substrate specificities and cannot utilize DHK as a substrate

(Forkmann et al. 1980; Meyer et al. 1987; Johnson et al. 1999; Polashock et al. 2002).

Transformation of the maize A gene coding for the dihydroquercetin-4 reductase

(DQR) into the petunia mutant, which shows no flower pigmentation (Meyer et al.

1987), demonstrated that the DQR in transgenic petunia can reduce the petunia

DHK to leucopelargonidin, which leads to the production of red color pigmenta-

tion. This indicated that it is possible to generate a novel flower color in plants by

introducing the gene involved in anthocyanin biosynthesis pathway.

However in some plants, the introduction of a foreign gene may not be sufficient

to convert the metabolic flux of anthocyanin biosynthesis to obtain a plant with the

desired flower color. It is necessary to select the suitable plant cultivars that have

the appropriate genetic background and flavonoid composition and/or the artificial

down-regulation of a competing endogenous pathway (Tanaka 2006; Tanaka and

Brugliera 2006). Florigene Ltd. (Melbourne, Australia) generated violet carnations

by transforming the petunia F3050H gene in combination with the dfr genes into

white carnation cultivars that specifically lacked the dfr gene (Mol et al. 1999;

Fukui et al. 2003).

Metabolic engineering of rose flower color is more complicated than in carnation

as in nature there is no white rose lacking the dfr gene. To solve this problem,

Florigene Ltd. (Melbourne, Australia) and Suntory Ltd. (Osaka, Japan) employed

the gene-silencing technique to switch off the dfr gene that produces the red

pigment in rose. The F3050H gene from iris was then inserted into dfr-silenced
rose to produce the blue pigment of delphinidin-based anthocyanins (Katsumoto

et al. 2007). However, the blue rose generated by Florigene and Suntory is not a

“true” blue, but it is in fact of a pale violet color. In addition to anthocyanins that

determine the flower color, other factors such as vacuolar pH, copigments, metal

ions, and anthocyanin modifications (acylation, glycosylation, and methylation)

that influence the shade and intensity of flower color must be taken into account

(Yoshida, et al. 1995; Yabuya et al. 1997; Mol et al. 1998; Tanaka et al. 1998).

Anthocyanins are bluer in weakly acidic and neutral pH and they are redder in

acidic pH. Rose petals are moderately acidic with a pH around 4.0, which inhibits

the blue pigment, while the carnation petals are less acidic with a pH of 5.5. Several

genes such as ph1-ph7 and Pr, encoding the proteins that control the vacuolar pH,

have been identified from petunia by transposon tagging and transposon display (Mol

et al. 1998; Fukada-Tanaka et al. 2000; Quattrocchio et al. 2006; Verweij et al. 2008).

It may be feasible to engineer true blue roses by manipulation of the anthocyanin

genes and the transcription factors regulating their spatial and temporal expression.

The intra- or intermolecular stacking of copigments such as flavones, flavonols,

phenylpropanoids, organic acids, and aromatic acylated groups also leads to a

shift in the visible absorption maximum of the complex toward longer wave-

length (bathochromic shift) (Goto and Kondo 1991). Inhibition of DFR in torenia
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(Torenia fournieri) by antisense silencing of DFR increases the level of flavones,

which made wild-type violet flower color more intensely blue (Aida et al. 2000).

Cosuppression of flavone synthase II (FNSII) in torenia decreased the amount of

flavones and increased the amount of flavanones, and yielded paler flower color and

increased that of flavanones, generating transgenic flowers paler than wild-type

ones (Ueyama et al. 2002).

Extensively studied copigments of flavonoids are in blue-flowered plants (Har-

borne and Williams 2000; Grotewold 2006) and the effect of metal ions associated

with anthocyanins in flower (Kondo et al. 1992; Yoshida et al. 2003; Shiono et al.

2005; Shoji et al. 2007).

Anthocyanins form complexes with copigments such as flavones and flavanols

by aggregation, resulting in shift of the visible absorption maximum of the complex

toward longer wavelength (bathochromic shift). This usually leads to darker flower

colors (Forkmann 1991). Flavones are common copigments that form complexes

with anthocyanins. Mixtures of various molar ratios of anthocyanin fraction and

flavone fraction from flower extracts of torenia (T. fournieri) were prepared in a pH
5.4 buffer and their visible absorbance was monitored. Mixtures with molar ratios

corresponding to the endogenous concentrations in the petal had absorbance values

corresponding to the color of the petals (Aida et al. 2000). In addition, antisense

silencing of DFR in Torenia caused a marked increase in flavones, resulting in

transgenic plants with bluer flower color than CHS-silenced plants (Aida et al.

2000). FNS genes that are responsible for the biosynthesis of flavones have been

isolated from Torenia hybrida and other species.

Inhibition of DFR in torenia (T. fournieri) by antisense silencing of DFR

increases the level of flavones, yielding a more intense blue flower color than that

of the wild type (Aida et al. 2000). Cosuppression of FNSII in torenia reduced the

amount of flavones and increased that of flavanones, generating transgenic flowers

paler than wild-type ones (Ueyama et al. 2002).

Many metal ions including Cu2+, Ca2+, Al3+, Fe3+, Mg2+, and Mo2+ were found

to coexist with anthocyanins (Ellestad 2006). Such associations usually have a

significant impact on flower color. For instance, addition of metal ions (Mo2+)

in vitro to purified anthocyanins from Brassica rapa can result in a color change

from pink to blue (Hale et al. 2001). Energy-dispersive X-ray analysis showed that

metal ions accumulated predominantly in the vacuoles of the epidermal cells. In

Brassica juncea, the X-ray absorption spectrum of plant-accumulated Mo2+ was

different than that for molybdate, and correlated with the cellular and subcellular

distribution of water soluble, pH-dependent anthocyanins (Hale et al. 2001).

10.6 Future Roadmap

The increased interest in plant metabolic engineering in recent years can be

attributed to four main factors: plants as a major source for medicinal products;

plants containing health-promoting secondary metabolites; plants resistant to pests
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and diseases; and plants with flowers of novel colors, patterns, scents. The rapid

progress seen in successful and robust methods of plant genetic transformation (for

details see Chaps 1-1, 1-2, 1-3, 1-4, 1-5, 1-7, 1-8 and 1-9 of this Volume) has

revived the early promises of plant genetic engineering to provide many novel

attributes to the world’s flora.

10.6.1 Food for the World

The primary need of mankind for plants is to provide food security. As defined by

Wikipedia, food security refers to the availability of food and its accessibility.

A household is considered food secure when its occupants do not live in hunger or

fear of starvation. It is hard for those of us living in well-developed nations that over

850 million of the world’s 6.6 billion population people are chronically hungry and

up to two billion people lack food security intermittently due to varying degrees of

poverty (FAO 2003).

10.6.2 Biofortification of Plant-Based Foods

The requirement of a minimal daily intake of essential micronutrients, vitamins,

and minerals for the maintenance of optimal human health has long driven the focus

of plant science research toward combating micronutrient malnutrition by develop-

ing superior plant varieties with improved nutritional value. The approach evolved

into what is now known as biofortification where efforts are on to deliver the daily

micronutrients directly into the staple crops consumed by mankind. This approach

was intended to alleviate the increased industrial costs incurred by the fortification

of processed foods with the micronutrients. The dissection of plant metabolic

pathways involved in synthesis of essential dietary micronutrients showed that all

plants have the biochemical activities necessary to synthesize and accumulate a

near full complement of essential dietary micronutrients with the exception of

vitamins D and B12 (Dellapenna 2007). If we observe the dietary habits of popula-

tions with the maximum risk of micronutrient malnutrition, they consume foods

like rice, wheat, cassava, and maize that contain insufficient daily intake levels of

essential dietary micronutrients. These specific staple crops are being targeted by

plant metabolic researchers for biofortification so that the levels of the limiting

micronutrients in these crops can be increased by an effective combination of

breeding and genetic engineering. The first successful and also the most popular

example in this area included the biofortification of provitamin A in rice that

resulted in the nutritionally enhanced “golden rice” that will help toward combating

malnutrition-induced eye defects (Ye et al. 2000; Datta et al. 2003). The historical

and scientific details of the steps involved in the golden rice technology are given in
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Emani et al. (2008). Biofortification of the vitamin E family of lipophilic antiox-

idants called tocochromanols that protect against effects of free radicals, reactive

oxidation species, and lipid oxidation was achieved in barley (Cahoon et al. 2003),

soybean (Van Eenennaam et al. 2003), and oilseeds (Karunanandaa et al. 2005).

Biofortification of another important B-vitamin, folate, was achieved in tomato fruit

(Diaz de la Garza et al. 2007).

Initially, plant metabolic engineering involving manipulating nutritional levels

relied on expression or silencing of a single gene in well-studied metabolic path-

ways that proved effective when the engineered step was at a potential metabolic

branch point. Future research especially in the area of biofortification should

consider expressing heterologous enzymes at such steps that can potentially create

novel substrates for already existing enzymes that may lead to the creation of an

entirely new branch in the pathway and formation of novel products (Kinney 2006).

10.6.3 Biofuel From Plants

Biofuels have come of age as attractive sources of energy around the world as finite

petroleum reserves, increasing demands of energy in both industrially developed

and rapidly industrializing countries combined with negative environmental effects

of petroleum undermines both economic strength and threatens national security

(Bordetsky et al. 2005). The biofuel that has the potential for extensive usage

around the globe is ethanol due to its environmentally friendly nature owing to

low toxicity and ready biodegradability, and the ability to be produced from the

abundant biomass of land plants. Ethanol production from biomass also reduces the

levels of greenhouse gasses. The usage of plants for cellulosic ethanol production as

compared to other sources like starch and sugar-derived ethanol is because of the

lower costs and abundance of biomass as compared to the limited supplies and the

food supply competition related to starch and sugar. Food crops such as corn, rice,

sugarcane, perennial grasses such as switchgrass and giant miscanthus and woody

crops such as polar and shrub willow are potential sources for ethanol production

(Sticklen 2008). Plant cell wall is the source for the lignocellulosic biomass, and the

secondary cell wall contains cellulose, hemicellulose, and lignin (Sticklen 2008).

Enzymatic hydrolysis utilizing cellulases and hemicellulases can convert the cell

wall polysaccharides to fermentable sugars, the main barrier to overcome being the

lignin that prevents accessibility of the enzymes to the polysaccharides. Lignin

breakdown by chemical and heat treatments combined with microbial production of

cellulases was the starting point in developing efficient processes to produce

fermentable sugars for biofuels. Metabolic engineers can play a vital role in

research aimed at characterizing the cell-wall deconstruction enzymes, especially

in isolating enzymes that can resist higher conversion temperatures and a range of

pHs during the pretreatments aimed at lignin hydrolysis that is one of the important

challenges in cellulosic ethanol production (Sticklen 2008). Presently, the successes
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seen in plant genetic transformation can be exploited to design strategies to express

plant cell wall deconstructing enzymes in transgenic plants to enable cheaper

processes for producing cellulosic hydrolysis enzymes (Sticklen et al. 2006). A

comprehensive characterization of all the steps in cellulose biosynthesis (Kawagoe

and Delmer 1997) has been the focus of plant molecular biologists (Arioli et al.

1998) now being complemented by the latest advances of genomics and microarray

technology to identify the relevant useful genes (Persson et al. 2005; Andersson-

Gunneras et al. 2006). This would enable the efforts to increase the plant cellulosic

biomass in terms of increased cell-wall polysaccharide content by genetic manip-

ulations. The increase seen in the overall plant biomass in rice by the elevated

expression of ADP-glucose pyrophosphorylase by an endosperm-specific promoter

(Smidansky et al. 2003) throws open the doors for metabolic engineers to explore

manipulations of other enzymes of the starch biosynthetic pathway to aid in a shift

to increasing biomass for biofuel production. A better understanding of the lignin

biosynthesis aimed at down-regulation of the involved enzymes to modify struc-

tural components of lignin or reduce the lignin content itself is the need of the hour

to avoid the need for the expensive pretreatments (Sticklen 2008). For a more

exhaustive review of transgenic technology related to biofuels, refer to Chaps 2–6

of the Volume 2 of this series.

10.7 Conclusion: Factories of the Future

Plant metabolic engineering has had a fairly successful run in the academic and

industrial circles, but a fact that cannot be ignored is that it was punctuated by

several failures and limitations. Several “proof of concept” experiments successful

in model plants failed to live up to expectations in the cultivars. The key to

successfully overcoming such challenges is to fully exploit the advent of applied

genomics, proteomics, and metabolomics to comprehensively understand poorly

characterized metabolic pathways. The newly emerging discipline of systems

biology should be used to see beyond the boundaries of metabolic pathways that

are subject to engineering to create and understand the complete metabolite

profiles in the plant world. The acquired knowledge will enable researchers

worldwide to successfully dissect and understand metabolic pathways, and suc-

cessfully increase their ability to both model and implement multipoint metabolic

manipulations. This would in turn result in an avalanche of desirable products in

transgenic plants that would be rightly called the “factories of the future.” The

advent of “molecular pharming” has readily identifiable benefits for mankind

in a cost-effective, nutritionally wholesome, and environmentally sustainable

manner. Together with enhancing the esthetic nature of the world through the

development of novel ornamental plants, it can supplement the development of

the still irreplaceable traditional agriculture to meet the rising food security in the

centuries to come.
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