


NanoScience and Technology



NanoScience and Technology

Series Editors:
P. Avouris B. Bhushan D. Bimberg K. von Klitzing H. Sakaki R. Wiesendanger

The series NanoScience and Technology is focused on the fascinating nano-world, meso-
scopic physics, analysis with atomic resolution, nano and quantum-effect devices, nano-
mechanics and atomic-scale processes. All the basic aspects and technology-oriented de-
velopments in this emerging discipline are covered by comprehensive and timely books.
The series constitutes a survey of the relevant special topics, which are presented by lea-
ding experts in the f ield. These books will appeal to researchers, engineers, and advanced
students.

Please view available titles in NanoScience and Technology on series homepage
http://www.springer.com/series/3705/



Editor

Fundamentals

of Superconducting

Nanoelectronics

123

With 496 Figures

Anatolie Sidorenko



Academy of Science of Moldova

Academiei Street 3/3, 2028 Chisinau, Moldova
E-mail: anatoli.sidorenko@kit.edu

Series Editors:
Professor Dr. Phaedon Avouris
IBM Research Division
Nanometer Scale Science & Technology
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598, USA

Professor Dr. Bharat Bhushan
Ohio State University
Nanotribology Laboratory
for Information Storage
and MEMS/NEMS (NLIM)
Suite 255, Ackerman Road 650
Columbus, Ohio 43210, USA

Professor Dr. Dieter Bimberg
TU Berlin, Fakutät Mathematik/
Naturwissenschaften
Institut für Festkörperphyisk
Hardenbergstr. 36
10623 Berlin, Germany

Professor Dr., Dres. h.c. Klaus von Klitzing
Max-Planck-Institut
für Festkörperforschung
Heisenbergstr. 1
70569 Stuttgart, Germany

Professor Hiroyuki Sakaki
University of Tokyo
Institute of Industrial Science
4-6-1 Komaba, Meguro-ku
Tokyo 153-8505, Japan

Professor Dr. Roland Wiesendanger
Institut für Angewandte Physik
Universität Hamburg
Jungiusstr. 11
20355 Hamburg, Germany

NanoScience and Technology ISSN 1434-4904

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specif ically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microf ilm or in any other way, and storage in data banks. Duplication of this publication or
parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in
its current version, and permission for use must always be obtained from Springer. Violations are liable to
prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specif ic statement, that such names are exempt from the relevant protective laws and
regulations and therefore free for general use.

Springer Heidelberg Dordrecht London New York

Printed on acid-free paper

Cover design: eStudio Calamar Steinen

ISBN 978-3-642-20157-8 e-ISBN 978-3-642-20158-5
DOI 10.1007/978-3-642-20158-5

© Springer-Verlag Berlin Heidelberg 2011

Prof.Dr. Anatolie Sidorenko

Institute of Electronic Engineering and Nanotechnologies

Library of Congress Control Number: 2011929351

Springer is part of Springer Science+Business Media (www.springer.com)

Editor



Foreword

Over the last decade, we have witnessed a large number of novel developments and
rapid progress in superconducting electronics. This has been triggered by mainly
two facts:

• The use of novel physical phenomena, which have been theoretically predicted
already during the previous decades but detected only recently in superconduct-
ing materials.

• The astonishing advances in thin film and nanotechnology, which allows us
the reproducible fabrication of the superconducting devices and circuits with
nanometer resolution.

This pleasant development is also reflected in a considerable increase in funding
and investments related to the field of superconducting electronics. An increase by
almost a factor of three has been observed worldwide over the last decade.

The main goal of this book is to give a profound insight into the basic
phenomena occurring in superconductors and hybrid systems composed of super-
conductors and other materials such as ferromagnets on a nanometer scale (e.g.,
Fulde–Ferrell–Larkin–Ovchinikov state, triplet superconductivity, crossed Andreev
reflection, coherent dynamics of superconducting junctions). Moreover, this book
provides a comprehensive overview on the application of these phenomena in novel
nanoelectronic devices and circuits (e.g., SIS tunnel junction phase detectors, pi-
junction-based logic circuits, superconducting spintronic devices). Information on
these new developments so far has to be collected from publications in technical
journals or presentations at conferences and workshops. Therefore, the collection of
review papers presented in this book provides a valuable overview on the Frontiers
of Superconducting Electronics, ranging from the discussion of the theoretical
background and the experimental study of the phenomena to their application in
novel devices. Although it is impossible to cover all aspects of broad and complex
field of superconducting electronics, this book addresses the most interesting
phenomena and key developments of the last decade in a comprehensive way.
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vi Foreword

The book is organized as following: Chapter 1 is devoted to one of the
fundamental problems of superconductivity – fluctuations, which are also important
for numerous technical applications of superconductivity such as ultra-sensitive
detectors. Chapter 2 deals with the experimental study of superconducting fluctua-
tions in systems with reduced dimensionality – nanowires. Chapters 3 and 4 present
the results of both theoretical (Chap. 3) and experimental (Chap. 4) studies of the
crossed Andreev reflection and nonlocal transport phenomena in superconductor–
ferromagnet hybrid structures. Since there has been a particularly rapid progress
in the new research area of superconducting spintronics, this book puts special
emphasis on the advanced theoretical description (Chaps. 5–7) as well as the
experimental study of superconductor–ferromagnet hybrid structures (Chap. 8).
Chapter 9 shows how point-contact spectroscopy of superconducting materials can
be used as a powerful method for the investigation of the energy gap and the
electron–phonon interaction in superconductors. In Chaps. 10 and 11, supercon-
ducting integrated receivers and cryogenic phase-lock loop systems are presented
as prominent examples on how theoretical concepts, novel physics, and advanced
fabrication technologies can be combined to achieve smart superconducting devices.

The authors of the chapters and the editor of the book Prof. Anatolie Sidorenko
are well-known leading specialists, who have been involved in various research
programs dealing with superconducting devices and their applications. All of them
were former lecturers at NATO-ARW and NATO-ASI.

This book will be useful for a broad readership including researchers, engineers,
lecturers, Ph.D. students, and all others, who would like to gain insight into the
Frontiers of Superconductivity at nanoscale.

Garching Rudolf Gross
June 2011



Preface

The idea to write this book appeared after a series of workshops devoted to
superconductivity of low-dimensional objects, which we organized last decade. In
2004 director of Walther-Meißner-Institut Professor Rudolf Gross and I organized
an NATO Advanced Research Workshop “Nanoscale Devices, Fundamentals and
Applications” and published the book with the same title, collecting the best of
reports, presented on that workshop. As we realized a bit later, the book was
in demand by colleagues, who deal with applications of superconductivity. For
example, the group of researchers is engaged in development and fabrication of a
very sensitive superconducting sensor for infrared radiation, superconducting thin-
film bolometer, would like to achieve the highest possible sensitivity. They develop
different technological processes for improvement of the quality of the supercon-
ducting film, trying to obtain thin films with the narrowest width of superconducting
transition. In case, when a member of such group has knowledge in superconducting
fluctuations (which are rather noticeable for low-dimensional objects) that there
exists a limitation of the smallest possible width of the superconducting transition,
�Tc, given by the Ginsburg criteria, �Tc D GiTc, then such group of researchers
can save a lot of time and instead of many experimental attempts to improve the
quality of the films, just select the most suitable material with the smallest value
of the parameter Gi . This is a simple example how the knowledge of the intrinsic
phenomena in superconductivity at nanoscale can help the experimentalists to save
their resources and time to achieve the desirable result.

Recently, some very interesting effects were first predicted theoretically and then
detected experimentally in layered and low-dimensional superconductors – triplet
superconductivity, crossed Andreev reflection, and pi-shift. How one can use them
for novel devices? What kind of nanostructures should be prepared for detection
and application of those effects? In order to highlight some of the rosen questions,
well-known experts were invited to write chapters for this book.
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viii Preface

We believe that the book can attract attention of researchers, engineers, Ph.D.
students and others, who would like to gain knowledge about some intrinsic effects
of Superconductivity at nanoscale.

Kishinev, June 2011 Anatolie Sidorenko
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and
Nuclear Physics Institute, Moscow State University, 119992 Moscow, Russia,
konstantin.arutyunov@phys.jyu.fi

Y. Asano Department of Applied Physics, Hokkaido University, Sapporo
060-8628, Japan

D. Beckmann Institut für Nanotechnologie, Karlsruher Institut für Technologie,
P.O. Box 3640, 76021 Karlsruhe, Germany, detlef.beckmann@kit.edu

Manfred Birk DLR German Aerospace Centre, Remote Sensing Technology
Institute, 82234 Wessling, Germany

Dick Boersma SRON Netherlands Institute for Space Research, 9700 AV
Groningen, The Netherlands

Johannes Dercksen SRON Netherlands Institute for Space Research, 9700 AV
Groningen, The Netherlands

Pavel Dmitriev Kotel’nikov Institute of Radio Engineering and Electronics,
Russian Academy of Science, Mokhovaya st. 11/7, 125009 Moscow, Russia

Andrey B. Ermakov Kotel’nikov Institute of Radio Engineering and Electronics,
Russian Academy of Science, Mokhovaya st. 11/7, 125009 Moscow, Russia
and
SRON Netherlands Institute for Space Research, 9700 AV Groningen, The
Netherlands

Lyudmila V. Filippenko SRON Netherlands Institute for Space Research,
9700 AV Groningen, The Netherlands

xv

konstantin.arutyunov@phys.jyu.fi
detlef.beckmann@kit.edu


xvi Contributors

E. Goldobin Physikalisches Institut–Experimental physic II and Center for Collec-
tive Quantum Phenomena, Universität Tübingen, Auf der Morgenstelle 14, 72076
Tübingen, Germany, gold@uni-tuebingen.de

Hans Golstein SRON Netherlands Institute for Space Research, 9700 AV
Groningen, The Netherlands

A.A. Golubov Faculty of Science and Technology, University of Twente, 7500 AE
Enschede, The Netherlands
and
MESAC Institute of Nanotechnology, University of Twente, 7500 AE Enschede,
The Netherlands, A.A.Golubov@tnw.utwente.nl

Ruud W.M. Hoogeveen SRON Netherlands Institute for Space Research, 9700 AV
Groningen, The Netherlands

Leo de Jong SRON Netherlands Institute for Space Research, 9700 AV
Groningen, The Netherlands

K.V. Kalashnikov Kotel’nikov Institute of Radio Engineering and Electronics,
Russian Academy of Science, Mokhovaya st. 11/7, 125009 Moscow, Russia

Mikhail S. Kalenkov I.E. Tamm Department of Theoretical Physics, P.N. Lebedev
Physics Institute, 119991 Moscow, Russia

T.Yu. Karminskaya Nuclear Physics Institute, Moscow State University, 119992
Moscow, Russia

Andrey V. Khudchenko Kotel’nikov Institute of Radio Engineering and
Electronics, Russian Academy of Science, Mokhovaya st. 11/7, 125009 Moscow,
Russia
and
SRON Netherlands Institute for Space Research, 9700 AV Groningen, The
Netherlands, Khudchenko@hitech.cplire.ru

Nickolay V. Kinev Kotel’nikov Institute of Radio Engineering and Electronics,
Russian Academy of Science, Mokhovaya st. 11/7, 125009 Moscow, Russia
and
SRON Netherlands Institute for Space Research, 9700 AV Groningen, The
Netherlands

Oleg S. Kiselev Kotel’nikov Institute of Radio Engineering and Electronics,
Russian Academy of Science, Mokhovaya st. 11/7, 125009 Moscow, Russia
and
SRON Netherlands Institute for Space Research, 9700 AV Groningen, The
Netherlands

R. Kleiner Physikalisches Institut–Experimental physic II and Center for Col-
lective Quantum Phenomena, Universität Tübingen, Auf der Morgenstelle 14,
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Chapter 1
“Fluctuoscopy” of Superconductors

A.A. Varlamov

Abstract Study of fluctuation phenomena in superconductors (SCs) is the subject
of great fundamental and practical importance. Understanding of their physics
allowed to clear up the fundamental properties of SC state. Being predicted in
1968, one of the fluctuation effects, namely paraconductivity, was experimentally
observed almost simultaneously. Since this time, fluctuations became a noticeable
part of research in the field of superconductivity, and a variety of fluctuation effects
have been discovered.

The new wave of interest to fluctuations (FL) in superconductors was generated
by the discovery of cuprate oxide superconductors (high-temperature supercon-
ductors, HTS), where, due to extremely short coherence length and low effective
dimensionality of the electron system, superconductive fluctuations manifest them-
selves in a wide range of temperatures. Moreover, anomalous properties of the
normal state of HTS were attributed by many theorists to strong FL in these systems.
Being studied in the framework of the phenomenological Ginzburg–Landau theory
and, more extensively, in diagrammatic microscopic approach, SC FLs side by
side with other quantum corrections (weak localization, etc.) became a new tool
for investigation and characterization of such new systems as HTS, disordered
electron systems, granular metals, Josephson structures, artificial super-lattices, etc.
The characteristic feature of SC FL is their strong dependence on temperature and
magnetic fields in the vicinity of phase transition. This allows one to definitely
separate the fluctuation effects from other contributions and to use them as the
source of information about the microscopic parameters of a material. By their
origin, SC FLs are very sensitive to relaxation processes, which break phase
coherence. This allows using them for versatile characterization of SC. Today, one
can speak about the “fluctuoscopy” of superconductive systems.

A.A. Varlamov (�)
Institute of Superconductivity and Innovative Materials of National Research Council
(SPIN-CNR), Viale del Politecnico 1, I-00133, Rome, Italy
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2 A.A. Varlamov

In review, we present the qualitative picture both of thermodynamic fluctuations
close to critical temperature Tc0 and quantum fluctuations at zero temperature and in
vicinity of the second critical fieldHc2.0/. Then in the frameworks of the Ginzburg–
Landau theory, we discuss the characteristic crossovers in fluctuation properties of
superconductive nanoparticles and layered superconductors. We present the general
expression for fluctuation magneto-conductivity valid through all phase diagram
of superconductor and apply it to study of the quantum phase transition close to
Hc2.0/. Fluctuation analysis of this transition allows us to present the scenario of
fluctuation defragmentation of the Abrikosov lattice.

1.1 Introduction

“Happy families are all alike; every unhappy family is unhappy in its own way”,
started Leo Tolstoy his novel “Anna Karenina”. A similar statement can be made
about the electronic couples in superconductors (SCs): while stable Cooper pairs
forming below critical temperature Tc0 a sort of condensate behave all in the same
way, the behavior of the fluctuating Cooper pairs (FCPs) above the transition is
complex and involves a lot of interesting physics. Such FCPs affect thermodynamic
and transport properties of the metal both directly and through the changes which
they cause in normal quasi-particle subsystem [1], and study of superconductive
fluctuations (SF) presents the unique tool providing the information about the
character of superconductive state formation [1]. Difficulties of such “fluctuoscopy”
are caused by the quantity of these quantum corrections, necessity of their separation
from unknown background, smallness of their magnitude.

The mechanisms of fluctuations in the vicinity of the superconductive critical
temperature Tc0 were deeply understood in 1970s. SFs are commonly described
in terms of three principal contributions: Aslamazov–Larkin (AL) process, corre-
sponding to the opening of the new channel of the charge transfer [2], anomalous
Maki–Thompson (MT) process, which is a single-particle quantum interference on
impurities in presence of SF [3–5], and the change of the single-particle density of
states (DOS) due to their involvement in fluctuation pairings [6, 7]. The first two
processes (AL and MT) result in appearance of positive and singular close to the
superconductive critical temperature Tc0 contributions to conductivity, while the
third one (DOS) results in decrease of the Drude conductivity due to the lack of
single-particle excitations at the Fermi level. The latter contribution is less singular
in temperature than the first two and can compete with them only when the AL
and MT processes are suppressed by some reasons (e.g., c-axis transport in layered
superconductors) or far enough from Tc0.

The classical results obtained first in the vicinity of Tc0 later were generalized
to the temperatures far from transition [8–10] and relatively high fields [11]. More
recently, quantum fluctuations (QFs), taking place in SC at low temperatures and
fields close to the second critical fieldHc2 .0/, entered the focus. Their manifestation
strikingly differs from that one of thermal fluctuations close to Tc0: For instance,
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the direct contribution of FCPs to transport coefficients here is absent. In [12, 13]
was found that in granular SC at very low temperatures and close to Hc2 .0/, the
positive AL contribution to magneto-conductivity (MC) decays as T 2 while the
fluctuation suppression of the quasiparticle density of states (DOS) by QF results
in temperature independent negative contribution to MC logarithmically growing in
magnitude when H ! Hc2 .0/. Effects of QF on MC and magnetization of two-
dimensional (2D) SC were studied at low temperatures and fields close to Hc2 .0/

in [14]. Fluctuation renormalization of the diffusion coefficient (DCR) results in
appearance of a giant Nernst–Ettingshausen signal [15]. Moreover, as it was demon-
strated recently [16] namely this contribution governs the behavior of fluctuation
conductivity through all periphery of the phase diagram of superconductor and
especially in the region of quantum phase transition in the vicinity of Hc2 .0/.

1.2 Thermodynamic Superconductive Fluctuations Close to Tc0

1.2.1 Rather Rayleigh–Jeans Fields than Boltzmann Particles

In the BCS theory [17, 18], only the Cooper pairs forming a Bose-condensate are
considered. Fluctuation theory deals with the Cooper pairs out of the condensate.
In some phenomena, these FCPs behave similarly to quasiparticles but with one
important difference. While for the well-defined quasiparticle, the energy has to be
much larger than its inverse lifetime, for the FCPs the “binding energy” �E turns
out to be of the same order. The FCPs lifetime �GL is determined by its decay into
two free electrons. Evidently, at the transition temperature the Cooper pairs start
to condense and �GL D 1. Above Tc0 �GL can be estimated using the uncertainty
principle: �GL � „=�E, where�E is the difference kB.T � Tc0/ ensuring that �GL

should become infinite at the point of transition. The microscopic theory confirms
this hypothesis and gives the exact coefficient:

�GL D �„
8kB.T � Tc/

: (1.1)

Another important difference of the FCPs from quasiparticles lies in their large
size �.T /. This size is determined by the distance by which the electrons forming
the FCPs move apart during the pair lifetime �GL. In the case of an impure
superconductor, the electron motion is diffusive with the diffusion coefficient
D � v2F � (� is the electron scattering time [19]), and �d .T / D pD�GL � vF

p
��GL.

In the case of a clean superconductor, where kBT � � „, impurity scattering no
longer affects the electron correlations. In this case the time of electron ballistic
motion turns out to be less than the electron–impurity scattering time � and is
determined by the uncertainty principle: �bal � „=kBT . Then this time has to be
used in this case for the determination of the effective size instead of � : �c.T / �
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vF
p„�GL=kBT . In both cases, the coherence length grows with the approach to the

critical temperature as ��1=2, where

� D ln
T

Tc
� T � Tc

Tc
(1.2)

is the reduced temperature. We will write down coherence length in the unique way

�GL .�/ D .D�GL/
1=2 � �BCS=

p
�: (1.3)

Here, �BCS D �c;d is the BCS coherence length. We see that the fluctuating order
parameter�.fl/ .r; t/ varies close to Tc0 on the large scale �GL .�/ � �BCS.

Finally, it is necessary to recognize that FCPs can really be treated as classical
objects, but that these objects instead of Boltzmann particles appear as classical
fields in the sense of Rayleigh–Jeans. This means that in the general Bose–Einstein
distribution function only small energies E.p/ are involved and the exponent can be
expanded:

n.p/ D 1

exp.E.p/=kBT / � 1 D kBT

E.p/ : (1.4)

That is why the more appropriate tool to study fluctuation phenomena is not the
Boltzmann transport equation but the GL equation for classical fields. Nevertheless,
at the qualitative level the treatment of fluctuation Cooper pairs as particles with the
concentrationN.D/

s D R
n.p/dDp=.2�„/D often turns out to be useful [20].

In the framework of both the phenomenological GL theory and the microscopic
BCS theory was found that in the vicinity of the transition

E.p/ D kB.T � Tc/C p2

2m� D 1

2m�
�„2=2�2 .T /C p2

�
: (1.5)

Far from the transition temperature, the dependence n.p/ turns out to be more
sophisticated than (1.4); nevertheless, one can always write it in the form

n.p/ D m�kBT

„2 �2 .T / f

�
�.T /p

„
�
: (1.6)

The effective GL energy of the FCPs defined by (1.5) can be understood as the
sum of its kinetic energy and the binding energy �E; which is nothing else as
the chemical potential

�C.p. .T / D Tc � T (1.7)

of the FCPs taken with the opposite sign:

E.p/ D p2

2m� � � .T / :
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Let us clarify the issue related to the chemical potential of fluctuating Cooper
pairs,�C.p.. Indeed, it is known that in the thermodynamic equilibrium, the chemical
potential of a system with a variable number of particles is zero, with photon and
phonon gases being the textbook examples. A naı̈ve application of this “theorem” to
fluctuating Cooper pairs “gas” leads to a wrong conclusion that �C.p. D 0. However,
a delicate issue concerning Cooper pairs is that they do not form an isolated
system but are composed of the fermionic quasi-particles, which constitute another
subsystem under consideration. In a multicomponent system, the chemical potential
of the i ’th component, �i , is defined as the derivative of the thermodynamic
potential with respect to the number of particles of i -th sort:

�i D .@	=@Ni /P;V;Nj ; (1.8)

provided the numbers of particles of all other species are fixed, Nj¤i D const.
In deriving the condition for thermodynamic equilibrium, one should now take
into account that creation of a Cooper pair must be accompanied by removing
two electrons from the fermionic subsystem. This leads to �C.p. � 2�q:p: D 0,
where �q:p: is the chemical potential of quasi-particles. Therefore, the equilibrium
condition does not restrict �C.p.to zero, even though the number of Cooper pairs is
not conserved.

1.2.2 Manifestation of SF Close to Tc

In classical field theory, the notions of the particle distribution function n.p/ (pro-
portional to E�1.p/ in our case) and Cooper pair massm� are poorly determined. At
the same time, the characteristic value of the Cooper pair center of mass momentum
can be defined and it turns out to be of the order of p0 � „=�.T /. So for the
combination m�E.p0/ one can write m�E.p0/ � p20 � „2=�2.T /. The ratio of
the FCPs concentration to the corresponding effective mass with the logarithmic
accuracy can be expressed in terms of the coherence length:

N
.D/
s

m� D kBT

m�E.p0/
�p0

„
�D � kBT

„2 �
2�D
GL .T / (1.9)

(pD0 here estimates the result of momentum integration).
The particles’ density enters into many physical values in the combination

N=m�. For example, we can evaluate the direct FCPs contribution to conductivity
(Aslamazov–Larkin paraconductivity) by using the Drude formula and noting that
the role of scattering time for FCPs plays their lifetime �GL:

ı
AL
.D/ D N

.D/
s e2�GL.�/

m� ) kBT

„2 d
D�3�2�DGL .T /.2e/2�GL.�/ � �D=2�2: (1.10)
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This contribution to conductivity of the normal phase of superconductor corre-
sponds to opening of the new channel of charge transfer above Tc: due to forming
in it FCPs.

Analogously, a qualitative understanding of the increase in the diamagnetic
susceptibility above the critical temperature may be obtained from the – known
Langevin expression for the atomic susceptibility [21]:

ı�C.p D � e2

c2
n
.D/
s

m�
˝
R2
˛ ) �4e2

c2
kBT

„2 d
D�3�4�D.T / � ��D=2�2: (1.11)

Here, we used the ratio (1.9).
Special attention has been attracted recently by the giant Nernst–Ettingshausen

effect observed in the pseudogap state of the underdoped phases of HTSC [22],
which motivated speculations [23] about the possibility of existence of some specific
vortices and anti-vortices there or the special role of the phase fluctuations [24].
Then, very recently the giant Nernst–Ettingshausen signal (three orders of mag-
nitude more than the value of the Nernst–Ettingshausen coefficient in typical
metals) was detected also in the wide range of temperatures in a conventional
disordered superconductorNbxSi1�x [25]. All these experiments finally have been
successfully explained in the frameworks of both phenomenological and micro-
scopic fluctuation theories [15,26,27]. The proposed qualitative consideration of the
FCPs allows not only to get in a simple way the correct temperature dependence of
the fluctuation NEE coefficient but also to catch the reason of its giant magnitude.
Indeed, as it was shown in [15, 28], the Nernst–Ettingshausen coefficient can be
related to the temperature derivative of the chemical potential:

ıN C.p D 


nce2

�
d�

dT

�
: (1.12)

Applying this formula to the subsystem of FCPs close to Tc0 with �C.p. .T / defined
by (1.7) and identifying its conductivity with (1.10), one finds

ıN C.p D � 
.C.p./

N
.D/
s ce2

� �D=2�2; (1.13)

what fits well the experimental findings obtained in conventional superconductors
and optimally doped phases of HTS. The reason of so strong fluctuation effect
contains in the extremely strong dependence of the FCPs chemical potential on
temperature: d�C.p.=dT D �1, while for the free electron gas d�e=dT � �T=EF :

Besides the direct FCPs effect on properties of superconductor in its normal
phase, the other, indirect manifestations of SF and their effect on the quasi-
particle subsystem take place. These effects, being much more sophisticated, have
a purely quantum nature and, in contrast to paraconductivity, require microscopic
consideration. First of them is MT contribution [3–5]. It is generated by the coherent
scattering of the electrons forming a Cooper pair on the same elastic impurities
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and can be treated as the result of Andreev reflection of the electron by fluctuation
Cooper pairs. This contribution appears only in transport coefficients and often
turns out to be important. Its temperature singularity near Tc is similar to that of
the paraconductivity, although being extremely sensitive to electron phase-breaking
processes and to the type of orbital symmetry of pairing it can be suppressed. Let us
evaluate it.

The physical origin of the MT correction consists in the fact that the Cooper
interaction of electrons with nearly opposite momenta changes the mean free path
(diffusion coefficient) of electrons. The amplitude of the effective BCS interaction
increases drastically when T ! Tc:

geff D g

1� �g ln !D
2�T

D 1

ln T
Tc

� T

T � Tc
D 1

�
:

What is the reason for this growth? One can say that the electrons scatter one at
another in a resonant way with the virtual Cooper pair formation. Or, it is possible
to imagine that the electrons undergo Andreev reflection by fluctuation Cooper
pairs, binding in the Cooper pairs themselves. The probability of such induced pair
irradiation (let us remember that Cooper pairs are Bose particles) is proportional
to their number in the final state that is n.p/ (see (1.4)). For small momenta,
n.p/ � 1=�.

One can ask why such an interaction does not manifest itself considerably far
from the transition point? This is due to the fact that just a small number of electrons
with the total momentum q . ��1.T / interacts so intensively. In accordance with
the Heisenberg principle, the minimal distance between such electrons is of the order
of � �.T /. On the other hand, such electrons, in order to interact, have to approach
one another approximately up to a distance of the Fermi length F � 1=pF . The
probability of such event may be estimated in the spirit of the self-intersecting
trajectories contribution evaluation in the weak-localization theory [29].

In the process of diffusion motion, the distance between two electrons increases
with time according to the law: R.t/ � .Dt/1=2. Hence, the scattering probability

W �
Z tmax

tmin

D�1
F

RD.t/
vF dt:

The lower limit of the integral can be estimated from the condition R.tmin/ � �.T /

(only such electrons interact in the resonant way). The upper limit is determined
by the phase-breaking time �' since for larger time intervals the phase coherence,
necessary for the pair formation, is broken. As a result, the relative correction
to conductivity due to such processes is equal to the product of the scattering
probability on the effective interaction constant: ı
MT=
 D W geff. In the 2D case

ı

MT.an/
.2/

� e2

8�
ln

D�'
�2.T /

:
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However, positive and singular in � close to Tc AL and MT contributions do
not capture the complete effect of fluctuations on conductivity. The involvement
of quasi-particles in the fluctuation pairing results in their lack at the Fermi
level that is in the opening of the pseudo-gap in the one-electron spectrum and
consequent decrease of the one-particle Drude-like conductivity. Such an indirect
effect of FCPs formation is usually referred as the DOS one. Being proportional
to the concentration of the FCPs N.D/

s the DOS contribution formally appears

due to the order parameter Fourier-component
Dˇ
ˇ�.fl/ .q; !/

ˇ
ˇ2
E

integrated over all

long-wave-length fluctuation modes (q . ��1
BCS

p
�):

ı
DOS
.2/ � �2nc:p:e2�

me
� �e2

Z
�2BCSd2q

� C �2BCSq
2

� �e2

„ ln
1

�
: (1.14)

It is seen that DOS contribution has an opposite sign with respect to the AL and MT
contributions, but close to Tc0 does not compete with them since it turns to be less
singular as a function of temperature [1].

Finally, the renormalization of the one-electron diffusion coefficient (DCR) in
the presence of fluctuation pairing takes place. Close to Tc0 this contribution is not
singular in �

ı
DCR
xx � e2

„ ln ln
1

Tc0�
CO .�/

and was always ignored, but as was found in [15, 16] it becomes of primary
importance relatively far from Tc0, and at very low temperatures. It is the account
for ı
DCR

xx , which changes the sign of the total contribution of fluctuations to
conductivity ı
.tot/

.2/
in the wide domain of the phase diagram and especially close to

T D 0; in the region of quantum fluctuations [16] (see Fig. 1.1, where the regions
with the dominating fluctuation contributions to magnetoconductivity are shown).

Fig. 1.1 Contours of
constant fluctuation
conductivity
[ı
 D ı


.tot/
xx .t; h/ shown in

units of e2]. The dominant FC
contributions are indicated in
bold-italic labels. The dashed
line separates the domain of
quantum fluctuations (QFs)
[dark area of ı
 > 0] and
thermal fluctuations (TFs)
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1.3 Ginzburg–Landau Theory

1.3.1 GL Functional

Let us consider the model of metal being close to transition to the superconductive
state. The complete description of its thermodynamic properties can be done through
the calculation of the partition function [30]:

Z D tr

(

exp

 

�
bH
T

!)

: (1.15)

As discussed above, in the vicinity of the superconductive transition, side by side
with the fermionic electron excitations, fluctuation Cooper pairs of a bosonic nature
appear in the system. They can be described by means of classical bosonic complex
fields ‰.r/, which can be treated as “Cooper pair wave functions”. Therefore, the
calculation of the trace in (1.15) can be separated into a summation over the “fast”
electron degrees of freedom and a further functional integration carried out over all
possible configurations of the “steady flow” Cooper pairs wave functions:

Z D
Z

D2‰.r/ZŒ‰.r/�; (1.16)

where

ZŒ‰.r/� D exp

�
� F Œ‰.r/�

T

�
(1.17)

is the system partition function in a fixed bosonic field ‰.r/; already summed over
the electronic degrees of freedom.

The “steady flow” of wave functions means that they are supposed to vary
over a scale much larger than the interatomic distances. The classical part of the
Hamiltonian, dependent on bosonic fields, may be chosen in the spirit of the Landau
theory of phase transitions. However, in view of the space dependence of wave
functions, Ginzburg and Landau included in it additionally the first nonvanishing
term of the expansion over the gradient of the fluctuation field. Symmetry analysis
shows that it should be quadratic. The weakness of the field coordinate dependence
allows us to omit the high order terms of such an expansion. Therefore, the classical
part of the Hamiltonian of a metal close to superconductive transition related to
the presence of the fluctuation Cooper pairs in it (so-called GL functional) can be
written as [31]:

F Œ‰.r/� D FN C
Z

dV

�
aj‰.r/j2 C b

2
j‰.r/j4 C 1

4m
jr‰.r/j2

	
: (1.18)
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Let us discuss the coefficients of this functional. In accordance with the Landau
hypothesis, the coefficient a goes to zero at the transition point Tc0 and depends
linearly on T �Tc0. Then a D ˛Tc�; all the coefficients ˛, b, andm are supposed to
be positive and temperature independent. Concerning the magnitude of the coeffi-
cients, it is necessary to make the following comment. One of these coefficients can
always be chosen arbitrarily: this option is related to the arbitrariness of the Cooper
pair wave function normalization. Nevertheless, the product of two of them is fixed
by dimensional analysis: ma � ��2.T /. Another combination of the coefficients,
independent of the wave function normalization and temperature, is ˛2=b. One can
see that it has the dimensionality of the density of states. Since these coefficients
were obtained by a summation over the electronic degrees of freedom, the only
reasonable candidate for this value is the one electron DOS � (for one spin at the
Fermi level). One can notice that the arbitrariness of the order parameter amplitude
results in the ambiguity in the choice of the Cooper pair mass, introduced in (1.18)
as 2m. Indeed, this value enters in (1.20) as the product with the coefficient ˛, hence
one of these parameters has to be set down.

In the phenomenological GL theory, normalization of the order parameter ‰
is usually chosen in such a way that the coefficient m corresponds to the free
electron mass. At that, the coefficient ˛ for D-dimensional clean superconductor
is determined by the expression

˛.D/ D 2D�2

7�.3/

Tc0

EF
: (1.19)

Yet, the other normalization when the order parameter, denoted as �.r/,
coincides with the value of the gap in spectrum of one-particle excitations of a
homogeneous superconductor turns out to be more convenient. As it will be shown
below, in vicinity of Tc0 the microscopic theory allows to present the free energy of
superconductor in the form of the GL expansion namely over the powers of �.r/.
At that turn out to be defined also the exact values of the coefficients ˛ and b:

4m˛Tc0 D ��2I˛2=b D 8�2

7�.3/
�; (1.20)

where �.x/ is the Riemann zeta function, �.3/ D 1:202.
Let us stress that at such choice of the order parameter normalization the GL

parameter C D 1=4m turns out to be dependent on the concentration of impurities.

1.3.2 Zero Dimensionality: The Exact Solution for the Heat
Capacity Jump

In a system of finite volume, the fluctuations smear out the jump of the heat capacity.
Let us demonstrate this on the example of a small superconductive sample with the
characteristic size d � �.T /. Due to the small size of the granule with respect to the
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Fig. 1.2 Temperature dependence of the heat capacity of superconductive grains in the region of
the critical temperature

GL coherence length, the order parameter‰ does not depend on the space variables
and the free energy can be calculated exactly for all temperatures including the
critical region. It the space independent mode ‰0 D ‰

p
V , which defines here the

main contribution to the free energy:

Z.0/ D
Z

d2‰0 exp

�
�F Œ‰0�

T

�
D �

Z
dj‰0j2 exp

 

� . aj‰0j2 C b
2V

j‰0j4/
T

!

D
r
�3V T

2b
exp.x2/.1 � erf.x//j

xDa
p

V
2bT

: (1.21)

By evaluating the second derivative of this exact result [32], one can find the temper-
ature dependence of the heat capacity of the superconductive granule (see Fig. 1.2).
One can see that this function is analytic in temperature, therefore fluctuations
remove phase transition in the 0D system. The smearing of the heat capacity jump
takes place in the region of temperatures in the vicinity of Tc0 where x � 1, that is

�cr D Gi.0/ D
p
7�.3/

2�

1p
�Tc0V

� 13:3

�
Tc0

EF

�s
�3BCS

V
:

Here, Tc0 and �BCS are the mean field critical temperature and the zero temperature
coherence length of the appropriate bulk material. It is interesting that the width of
this smearing does not depend on impurities concentration. From this formula, one
can see that the smearing of the transition is very narrow (�cr � 1) when the granule
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volume V � .�Tc0/
�1. This criterion means that the average spacing between the

levels of the dimensional quantization:

ı D .�V /�1 (1.22)

still remains much less than the value of the mean field critical temperature, Tc0.
Far above the critical region, where Gi.0/ � � � 1, one can use the asymptotic

expression for the erf.x/ function and find

F.0/ D �T lnZ.0/ D �T ln
�

˛�
: (1.23)

Calculation of the second derivative gives an expression for the fluctuation part of
the heat capacity in this region:

ıC.0/ D 1

V�2
: (1.24)

The experimental study of the heat capacity of small Sn particles in the vicinity of
the transition was done in [33].

One can estimate the fluctuation contribution to heat capacity for a specimen
of an arbitrary effective dimensionality on the basis of the following observation.
The volume of the specimen may be divided into regions of size �.T /, which are
weakly correlated with each other. Then the whole free energy can be estimated
as the free energy of one such 0D specimen (1.23), multiplied by their number
N.D/ D V ��D.T /:

F.D/ D �T V ��D.T / ln
�

˛�
: (1.25)

This formula gives the correct temperature dependence of the free energy not too
close to Tc for the specimens of the even dimensionalities. As we will demonstrate
below, a more accurate treatment removes the ln � dependence from it in the case of
the odd dimensions.

In the Ginzburg–Landau region, one can omit the fourth-order term in ‰.r/ with
respect to the quadratic one and write down the GL functional, expanding the order
parameter in a Fourier series:

F Œ‰k� D FN C
X

k



aC k2

4m

�
j‰kj2 D FN C ˛Tc

X

k

�
� C �2k2

 j‰kj2: (1.26)

Here, ‰k D 1p
V

R
‰.r/e�ikrdV and the summation is carried out over the wave

vectors k (fluctuation modes). For the specimen of dimensions Lx;Ly;Lz kiLi D
2�ni . The functional integral for the partition function (1.17) can be factored out
to a product of Gaussian-type integrals over these modes:
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Z D
Y

k

Z
d2‰k exp

�
�˛

�
� C k2

4m˛Tc

�
j‰kj2

	
: (1.27)

Carrying out these integrals, one gets the fluctuation contribution to the free energy:

F.� > 0/ D �T lnZ D �T
X

k

ln
�

˛
�
� C k2

4m˛Tc

� : (1.28)

1.3.3 Zero Dimensionality: The Exact Solution
for the Fluctuation Magnetization

For quantitative analysis of the fluctuation diamagnetism, we start from the GL
functional for the free energy written down in the presence of the magnetic field.
The generalization of the functional (1.18) in the presence of magnetic field requires
first of all the gauge invariance; therefore, the momentum operator �ir must be
substituted by its gauge invariant form �ir�2eA.r/ [34]. Moreover, the presence of
a magnetic field results in the accumulation of some residual energy of the magnetic
field in the volume of superconductor. Finally, the superconductor itself interacts
with the external magnetic field H. Taking into account these three observations one
can write the generalization of the functional (1.18) in the form

F Œ‰.r/� D Fn C
Z

dV

�
aj‰.r/j2 C b

2
j‰.r/j4 C 1

4m
j .�ir�2eA.r//‰.r/j2

C Œr � A.r/�2

8�
� r � A.r/ � H

4�

)

: (1.29)

The fluctuation contribution to the diamagnetic susceptibility in the simplest
case of a “zero-dimensional” superconductor (spherical superconductive granule
of diameter d � �.�/) was considered by Shmidt [32]. As above, the smallness
d � �.T / allows us to omit in (1.29) the term �ir. Then, due to the smallness of
the granule size with respect to the magnetic field penetration depth in supercon-
ductor , one can assume the equivalence of the average magnetic field in metal B
with the external field H. This allows us to omit also the last two terms in (1.29)
since in the assumed approximation they do not depend on fluctuations. It is why
formally the effect of a magnetic field in this case is reduced to the renormalization
of the coefficient a, or, in other words, to the suppression of the critical temperature:

Tc.H/ D Tc0

�
1 � 4�2�2

ˆ20
hA2i

�
: (1.30)
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Here, ˆ0 D �=e is the magnetic flux quantum and h� � �i means the averaging over
the sample volume. That is why for the granule in a magnetic field one can use the
partition function in the same form (1.21) as in the absence of the field but with the
renormalized GL parameter a .H/ D a C e2

m

˝
A2
˛
:

Z.0/ .H/ D �

Z
dj‰0j2 exp

0

@�
h
a C e2

m

˝
A2
˛i j‰0j2 C b

2V
j‰0j4

T

1

A

D
r
�3V T

2b
exp



a2 .H/ V

2bT

� (

1 � erf

"

a .H/

r
V

2bT

#)

: (1.31)

Such a trivial dependence of the properties of 0D samples on the magnetic field
immediately allows us to understand its effect on the heat capacity of a granular
sample. Indeed, with the growth of the field the temperature dependence of the heat
capacity presented in Fig. 1.2 just moves in the direction of lower temperatures.
Equation (1.31) allows to calculate exactly the fluctuation part of the free energy
and corresponding magnetization as the function of temperature and magnetic field,
which can be used for the quantitative analysis of the experiments on nanoparticles
(see below).

In the GL regionGi.0/ . �, one can easily write the asymptotic expression (1.23)
for the free energy:

F.0/.�;H/ D �T ln
�

˛
�
� C 4�2�2

ˆ20
hA2i

� :

In the case of a spherical particle, one has to choose the gauge of the vector-
potential A D 1

2
H � r yielding hA2i D 1

40
H2d2 (calculation of this average value is

completely analogous to the calculation of the moment of inertia of a solid sphere).
In this way, an expression for the 0D fluctuation magnetization valid for all fields
H � Hc2.0/ can be found:

M.0/.�;H/ D � 1

V

@F.0/.�;H/

@H
D �6�T �

2

5ˆ20d

H
�
� C �2�2

10ˆ20
H2d2

� : (1.32)

One can see that the fluctuation magnetization turns out to be negative and linear up
to some crossover field Hup .�/ � ˆ0

d�.�/
� �

d
Hc2.0/

p
� [35] at which it reaches a

minimum (this field can be called the temperature dependent upper critical field of
the granule). At higher fields,Hup.�/ . H � Hc2.0/ the fluctuation magnetization
of the 0D granule decreases as 1=H . In the weak field region H � Hc2.0/.�/ the
diamagnetic susceptibility is:

�.0/.�;H/ D �6�T �
2
0

5ˆ20d

1

�
� �102�P

�
�

d

�
1

�
:
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Let us underline that the temperature dependence of the 0D fluctuation diamagnetic
susceptibility turns out to be less singular than the 0D heat capacity correction: ��1
instead of ��2.

The expression for the fluctuation part of free energy (1.28) is also applicable
to the cases of a wire or a film placed in a parallel field: as was already mentioned
above all its dependence on the magnetic field is manifested by the shift of the
critical temperature (1.30). In the case of a wire in a parallel field the gauge of the
vector-potential can be chosen as above what yields

˝
A2
˛
.wire;k/ D H2d2=32. For a

wire in a perpendicular field, or a film in a parallel field, the gauge has to be chosen
in the form A D.0;Hx; 0/. One can find

˝
A2
˛
.wire;?/ D H2d2=16 for a wire and

˝
A2
˛
.film;k/ D H2d2=12 for a film.

Calculating the second derivative of (1.28) with the appropriate magnetic field
dependencies of the critical temperature, one can find the following expressions for
the diamagnetic susceptibility:

�.D/.�/ D �2� �T
vF
�P

8
<̂

:̂

1p
�
; wire in parallel field,

2p
�
; wire in perpendicular field,

d
3�

ln 1
�
; film in parallel field.

(1.33)

1.3.4 Fluctuation Diamagnetism in Lead Nanoparticles

Recently, in [36] the 0D fluctuating diamagnetism was carefully studied in lead
nanoparticles with size d � � by means of high-resolution superconductive quan-
tum interference device magnetization measurements. In result, the diamagnetic
magnetization Mdia.H; T D const/ was reported as a function of the applied mag-
netic field H at constant temperatures in a wide range of temperatures around Tc0

including the critical region. The magnetization curves were analyzed in the frame-
work of the presented above exact fluctuation theory based on the Ginzburg–Landau
functional.

The representative isothermal magnetization curves in the temperature range
around Tc0 are reported in Fig. 1.3. The extraction of the diamagnetic contribution
from the magnetization requires a detailed subtraction procedure when the magnetic
field is increased to relatively strong values. In fact, in the range H >Hup jMdiaj
decreases on increasing the field (see Fig. 1.3), while the paramagnetic contributions
due to the Pauli paramagnetism and to a small amount of paramagnetic impurities
continue to increase on increasing H . Thus, from the computer-stored raw magne-
tization data around Tc0, the magnetization values measured at a higher temperature
(around 8 K) where the SFs are negligible have been subtracted. The slight variation
of the paramagnetic contribution with temperature did not prevent reliable estimates
of Mdia for magnetic field up to about 600 Oe, as indicated by the error bars in
Fig. 1.5b.
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Fig. 1.3 (a) Magnetization Mdia vs H for the sample with the characteristic diameter of grains
d3 ' 75 nm at representative temperatures above Tc0: The solid lines correspond to (1.32) in the
text for critical field of the grain 1,150 Oe . For � . �c , the curves depart from the behavior
described by (1.32). (b) Magnetization curves for sample with the characteristic size of grains
d1 ' 16 nm, all corresponding to temperature range where � . �c , namely, within the critical
region. The open circles in part (a) correspond to the data obtained from the iso-field measurements
as a function of temperature, with large experimental errors
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The first-order fluctuation correction is found to be valid only outside the critical
region � & �c , where it accurately describes the behavior Mdia for magnetic fields
H . Hup. Also, the scaling properties of dTc.H/=dH for small fields and of
the upturn field Hup in the magnetization curves are well described within that
approximation.

In the critical region, however, the role of the field and the limits of validity of the
first-order fluctuation correction have been analyzed by comparing the experimental
findings to the derivation of Mdia as a function of the magnetic field starting
from the complete form of the GL functional and with the exact expression of
the zero-dimensional partition function. The authors found that the role of the
j‰.r/j4 term in the GL functional is crucial in describing the data in the critical
region. For the sample with average grain diameter of 75 nm, the fluctuating
diamagnetism can be well described by our extended model even in the critical
region, without introducing any adjustable parameters. For the sample with the
smallest average diameter of 16 nm, the agreement of the numerically derivedMdia

with the experimental findings is again good for fields of the order of Hup. Poor
agreement between the theoretically predicted Mdia vs H and the authors data is
observed for fields above Hup, when the fluctuating diamagnetic contribution is
approaching zero and the subtraction procedure of the paramagnetic term introduces
large errors.

The temperature dependence of the upturn field and the scaling properties with
the grain size are also well described by the exact theory both outside and inside the
critical region, with the product (Hupd ) vs reduced temperature being approximately
size independent and following the predicted temperature dependence, even though
the mean field result Hup � �1=2=d evidently breaks down. The relevance of
the magnetization curves vs H and of the upturn field Hup for the study of the
fluctuating diamagnetism above the superconductive transition temperature has been
emphasized.

1.4 Fluctuation Thermodynamics of Layered Superconductor
in Magnetic Field

1.4.1 Lawrence–Doniach Model

Let us pass now to the quantitative analysis of the temperature and field dependen-
cies of the fluctuation magnetization of a layered superconductor. This system has
a great practical importance because of its direct applicability to HTS, where the
fluctuation effects are very noticeable. Moreover, the general results obtained will
allow us to analyze as limiting cases 3D and already familiar 2D situations. The
effects of a magnetic field are more pronounced for a perpendicular orientation, so
let us first consider this case.

The generalization of the GL functional for a layered superconductor (Lawrence–
Doniach (LD) functional [37]) in a perpendicular magnetic field can be written as
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FLD Œ‰� D
X

l

Z
d2r

�
a j‰l j2 C b

2
j‰l j4 C 1

4m

ˇ
ˇ�rk � 2ieAk

 j‰l
ˇ
ˇ2

C J j‰lC1 �‰l j2
�
; (1.34)

where ‰l is the order parameter of the l-th superconductive layer and the phe-
nomenological constant J is proportional to the energy of the Josephson coupling
between adjacent planes. The gauge with Az D 0 is chosen in (1.34). In the
immediate vicinity of Tc, the LD functional is reduced to the GL one with the
effective massM D .4J s2/�1 along c-direction, where s is the inter-layer spacing.
One can relate the value of J to the coherence length along the z-direction:
J D 2˛Tc�

2
z =s

2. Since we are dealing with the GL region, the fourth order term
in (1.34) can be omitted.

The Landau representation is the most appropriate for solution of the problems
related to the motion of a charged particle in a uniform magnetic field. The
fluctuation Cooper pair wave function can be written as the product of a plane wave
propagating along the magnetic field direction and a Landau state wave function
�n.r/. Let us expand the order parameter‰l.r/ on the basis of these eigenfunctions:

‰l.r/ D
X

n;kz

‰n;kz�n.r/ exp.ikzl/; (1.35)

where n is the quantum number related to the degenerate Landau state and kz is the
momentum component along the direction of the magnetic field. Substituting this
expansion into (1.34), one can find the LD free energy as a functional of the ‰n;kz

coefficients:

FLD
�
‰fn;kzg

� D
X

n;kz

�
˛Tc� C !c

�
nC 1

2

�
C J �

1 � cos.kzs/
�
	

j‰n;kz j2: (1.36)

In complete analogy with the case of an isotropic spectrum, the functional integral
over the order parameter configurations ‰n;kz in the partition function can be
reduced to a product of ordinary Gaussian integrals, and the fluctuation part of the
free energy of a layered superconductor in magnetic field takes the form:

F.�;H/ D �SH
ˆ0

T
X

n;kz

ln
�T

˛Tc� C !c
�
nC 1

2

C J �
1 � cos.kzs/

� (1.37)

(compare this expression with the (1.28)).
In the limit of weak fields, one can carry out the summation over the Landau

states by means of the Euler–Maclaurin’s transformation and obtain
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F.�;H/ D F.�; 0/C �STH2

24mˆ20

Z �=s

��=s
N sdkz

2�

�
1

˛Tc�CJ .1 � cos.kzs//

	
:

(1.38)

Here N , is the total number of layers. Carrying out the final integration over the
transversal momentum, one gets:

F.�;H/ D F.�; 0/C T V

24�s�2xy

h2
p
�.� C r/

with the anisotropy parameter defined as

r D 2J
˛T

D 4�2z .0/

s2
(1.39)

and h D 2��2H=ˆ0 as reduced magnetic field. The diamagnetic susceptibility in a
weak field turns out [38, 39] to be

�.layer;?/ D � e2T

3�s

�2xyp
�.� C r/

: (1.40)

In the 2D and 3D limits, this formula reproduces (1.33). Note that (1.40) predicts
a nontrivial increase of diamagnetic susceptibility for clean metals [39]. The usual
statement that fluctuations are most important in dirty superconductors with a short
electronic mean free path does not hold in the particular case of susceptibility
because here � turns out to be in the numerator of the fluctuation correction.

1.4.2 General Formula for the Fluctuation Free Energy
in Magnetic Field

Now we will demonstrate that, besides the crossovers in its temperature dependence,
the fluctuation-induced magnetization and heat capacity are also nonlinear functions
of magnetic field. These nonlinearities, different for various dimensionalities, take
place at relatively weak fields. This, strong in comparison with the expected scale
of Hc2.0/, manifestation of the nonlinear regime in fluctuation magnetization and
hence, field-dependent fluctuation susceptibility was the subject of the intensive
debates in early 1970s [40–49] (see also the old but excellent review of Scokpol
and Tinkham [50]) and after the discovery of HTS [51–54]. We will mainly follow
here the recent essay of Mishonov and Penev [55] and the paper of Buzdin
et al. [56], dealing with the fluctuation magnetization of a layered superconductor,
which allows observing in a unique way all variety of the crossover phenomena in
temperature and magnetic field.
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One can evaluate the general expression (1.37) without taking the magnetic field
to be small and get

FLD.�; h/ D � T V

2�s�2xy

h
h

Z 2�

0

d�

2�
ln
� .1=2Ce� .�/ =2h/p

2�

C 1

2

�
� C r

2

�
lnhC const

i
: (1.41)

This formula is valid for any anisotropy parameter.

1.4.3 Fluctuation Magnetization of Layered Superconductor
and its Crossovers

Direct derivation of (1.41) over magnetic field gives for fluctuation part of magneti-
zation:

MLD.�; hI r/ D � T

ˆ0s

Z �=2

0

d�

�=2

(
� C r sin2 �

2h

"

 

 
� C r sin2 �

2h
C 1

2

!

� 1
#

� ln�

 
� C r sin2 �

2h
C 1

2

!

C 1

2
ln.2�/

)

:

Handling with the Hurvitz zeta functions the general formula for an arbitrary
magnetic field in 3D case (� < r/ can be carried out [44, 55]:

M.3/.� � r; h/ D 3
T

ˆ0s

�
2

r

�1=2 p
h

�


�

�
�1
2
;
1

2
C �

2h

�
� �

�
1

2
;
1

2
C �

2h

�
�

6h

�
; (1.42)

while in the opposite case of extremely high anisotropy r < j�j; h � 1 one obtains
the 2D result.

Let us comment on the different crossovers in theM.�;H/ field dependence. Let
us fix the temperature � � r . In this case, the c-axis coherence length exceeds the
interlayer distance (�z � s ) and in the absence of a magnetic field the fluctuation
Cooper pairs motion has a 3D character. For weak fields .h � �/, the magnetization
grows linearly with magnetic field, justifying our preliminary qualitative results:

M.3/.� � r; h ! 0/ D �e2TH

6�
�xy .�/ : (1.43)
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Fig. 1.4 Schematic representation of the different regimes for fluctuation magnetization in the
.H; T / diagram. The line H�

c2.T / is mirror-symmetric to the Hc2.T / line with respect to a y-axis
passing through T D Tc. This line defines the crossover between linear and nonlinear behavior of
the fluctuation magnetization above Tc [56]

Nevertheless, this linear growth is changed to the nonlinear 3D high field regime
M � p

H already in the region of a relatively small fields Hc2.�/ . H .� . h/

(see Fig. 1.4). The further increase of magnetic field at h � r leads to the next
3D ! 2D crossover in the magnetization field dependence. In the limit � � h,
magnetization saturates at the value M1.

The substitution of � D 0 gives the result typical of 2D superconductors.
Therefore, at h � r we have a 3D ! 2D crossover in M.H/ behavior in spite
of the fact that all sizes of fluctuation Cooper pair exceed considerably the lattice
parameters. Let us stress that this crossover occurs in the region of already strongly
nonlinear dependence ofM.H/ and therefore for a rather strong magnetic field from
the experimental point of view in HTS.

Let us mention the particular case of strong magnetic fields � � h (1.42)
reproduces the result by Prange [42] with an anisotropy correction multiplier [55]
�xy.0/=�z.0/ W

M.3/.0; h/ D �0:32T
ˆ
3=2
0

�xy.0/

�z.0/

p
H: (1.44)

Near the line of the upper critical field .hc2.�/D � �/, the contribution of the term
with n D 0 in the sum (1.37) becomes the most important and for the magnetization
the expression

M.h/ D �0:346
�
T

ˆ0s

�
h

p
.h� hc2.�//.h � hc2.�/C r/

(1.45)
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can be obtained [56]. It contains the already familiar for us “0D” regime .r �
h�hc2 � 1/, where the magnetization decreases as �M.h/ � 1

h�hc2 (compare with
(1.32)), while for h � hc2 << r the regime becomes “1D” and the magnetization
decreases slower, as �M.h/ � 1p

h�hc2 .
Such an analogy is observed in the next orders inGi too. In the [57], the analogy

was demonstrated for the example of the first eleven terms for the 2D case and nine
for the 3D case. Summation of the series of high-order fluctuation contributions to
the heat capacity by the Pade–Borel method resulted in its temperature dependence
similar to the 0D and 1D cases without a magnetic field. Nevertheless, a consider-
able difference is not to be forgotten: in the 0D and 1D cases, no phase transition
takes place while in the 2D and 3D cases in a magnetic field a phase transition of
first order to the Abrikosov vortex lattice state occurs.

In conclusion, the fluctuation magnetization of a layered superconductor in the
vicinity of the transition temperature turns out to be a complicated function of tem-
perature and magnetic field, and it evidently cannot be factorized in these variables.
The fit of the experimental data is very sensitive to the anisotropy parameter r and
allows determination of the latter with a rather high precision [58, 59]. In Fig. 1.5,
the successful application of the described approach to fit the experimental data on
YBa2Cu3O7 is shown [60].
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Fig. 1.5 Fluctuation magnetization of a YBaCO123 normalized on
p
H as the function of

temperature in accordance with the described theory shows the crossing of the iso-field curves
at T D Tc.0/ D 92:3K. The best fit obtained for anisotropy parameter r D 0:09. In the inset, the
magnetization curves as the function of magnetic field are reported
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1.5 Fluctuation Conductivity of Layered Superconductor

The appearance of fluctuating Cooper pairs above Tc leads to the opening of a “new
channel” for charge transfer. The fluctuation Cooper pairs were treated above as
carriers with charge 2e, while their lifetime �GL was chosen to play the role of the
scattering time in the Drude formula. Such a qualitative consideration results in
the Aslamazov–Larkin (AL) pair contribution to conductivity (1.10) (the so-called
paraconductivity [61]). Below we will present the generalization of the phe-
nomenological GL functional approach to transport phenomena. Dealing with the
fluctuation order parameter, it is possible to describe correctly the paraconductivity-
type fluctuation contributions to the normal resistance and magnetoconductivity,
Hall effect, thermoelectric power, and thermal conductivity at the edge of the
transition. Unfortunately, the indirect fluctuation contributions are beyond the
possibilities of the description by time-dependent GL (TDGL) approach, and they
can be calculated only in the framework of the microscopic theory (see below).

1.5.1 Time-Dependent GL Equation

In previous sections, we have demonstrated how the GL functional formalism allows
one to accounting for fluctuation corrections to thermodynamic quantities. Let us
discuss the effect of fluctuations on the transport properties of a superconductor
above the critical temperature.

To find the value of paraconductivity, some time-dependent generalization of the
GL equations is required. Indeed, the conductivity characterizes the response of the
system to the applied electric field. It can be defined as E D �@A=@t but, in contrast
to the previous section, A has to be regarded as being time dependent. The general
nonstationary BCS equations are very complicated, even in the limit of slow time
and space variations of the field and the order parameter. For our purposes, it will be
sufficient, following [62–70], to write a model equation in the vicinity of Tc, which
in general correctly reflects the qualitative aspects of the order parameter dynamics
and in some cases is exact.

Let us revise the GL functional formalism introduced above. One can see that the
derived above stationary GL equations do not describe correctly the superconductive
properties when a deviation from equilibrium is assumed. Indeed, in the absence of
equilibrium, the order parameter ‰ becomes time dependent and this in no way
was included in the scheme. Nevertheless, the scheme can be improved. For small
deviations from the equilibrium, it is natural to assume that in the process of order
parameter relaxation its time derivative @‰=@t is proportional to the variational
derivative of the free energy ıF=ı‰�, which is equal to zero at the equilibrium.
But this is not all: side by side with the normal relaxation of the order parameter
the effect of thermodynamic fluctuations on it has to be taken into account. This
can be done by the introduction, the Langevin forces �.r; t/ in the right-hand
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side of the equation describing the order parameter dynamics. Finally, gauge
invariance requires that @‰=@t should be included in the equation in the combination
@‰=@t C 2ie'‰, where ' is the scalar potential of the electric field. By including
all these considerations, one can write the model time-dependent GL equation in the
form

� �GL

�
@

@t
C 2ie'

�
‰ D ıF

ı‰� C �.r; t/ (1.46)

with the GL functional F determined by (1.18), (1.29), (1.34) [71]. The dimen-
sionless coefficient �GL in the left-hand-side of the equation can be related to pair
lifetime �GL (1.1): �GL D ˛Tc��GL D �˛=8 by the substitution in (1.46) of the first
term of (1.18) only [72].

Neglecting the fourth-order term in the GL functional, (1.46) can be rewritten in
operator form as

ŒbL�1 � 2ie�GL'.r; t/�‰.r; t/ D �.r; t/ (1.47)

with the TDGL operatorbL and Hamiltonian bH defined as

bL D


�GL

@

@t
C bH

��1
; bH D ˛Tc

h
� �b� 2.br � 2ieA/2

i
: (1.48)

We have introduced here the formal operator of the coherence lengthb� to have the
possibility to deal with an arbitrary type of spectrum. For example, in the most
interesting case for our applications to layered superconductors, the action of this
operator is defined by (1.34).

In the absence of an electric field, one can write the formal solution of (1.47) as

‰.0/.r; t/ D bL�.r; t/: (1.49)

The correlator of the Langevin forces introduced above must satisfy the fluctuation–
dissipation theorem. This requirement is fulfilled if the Langevin forces �.r; t/ and
��.r; t/ are correlated by the Gaussian white-noise law

h��.r; t/�.r0

; t
0

/i D 2T Re �GLı.r � r
0

/ı.t � t
0

/: (1.50)

The fundamental solution L.p; 	/ can be found by making a Fourier transform of
(1.48), what gives:

L.p; 	/ D .�i�GL	C "p/
�1: (1.51)

with
"p D ˛Tc.� Cb�2p2/ (1.52)

as the fluctuation Cooper pair energy spectrum.
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1.5.2 General Expression for Paraconductivity

By means of the qualitative consideration based on the Drude formula, we obtained
in the Introduction the expression for paraconductivity, which correctly reflects its
temperature singularity in any dimension. Following this way, one could write down
some kind of master equation for fluctuation Cooper pairs and obtain indeed the
precise expression for paraconductivity (see [1]). Unfortunately, the applicability of
the derived master equation is restricted to relatively weak electric and magnetic
fields. For stronger fields Hc2.�/.H �Hc2.0/, the density matrix has to be
introduced and the master equation loses its attractive simplicity. At the same time,
as we already know, these fields, quantizing the fluctuation Cooper pair motion,
present special interest. That is why to include in the scheme the magnetic field
and frequency dependencies of the paraconductivity, we return to the analysis
of the general TDGL equation (1.46) without the objective to reduce it to a
Boltzmann-type transport equation.

Let us solve it in the case, when the applied electric field can be considered as a
perturbation. The method will much resemble an exercise from a course on quantum
mechanics. To impose the necessary generality side by side with a formal simplicity
of expressions, we will introduce a subscript of the kind fig, which includes the
complete set of quantum numbers and time. By a repeated subscript, a summation
over a discrete and integration over continuous variables (time in particular) is
implied.

We will look for the response of the order parameter to a weak electric field
applied in the form

‰kz.r;t/ D ‰
.0/

fig C‰
.1/

fig; (1.53)

where ‰.0/

fig is determined by (1.49). Substituting this expression into (1.47) and
restricting our consideration to linear terms in the electric field, we can write

.bL�1/fikg‰.1/

fkg D 2ie�GL'fi lg‰.0/

flg (1.54)

with the solution in the form

‰
.1/

fig D 2ie�GLbLfikg'fklgbLflmg�fmg: (1.55)

Let us substitute the order parameter (1.53) in the quantum mechanical expression
for current:

j D 2eRe
h
‰
.0/�
fig bvfikg‰.1/

fkg C‰
.1/�
fig bvfikg‰.0/

fkg
i
; (1.56)

where bvfikg is the velocity operator, which can be expressed by means of the
commutator of r with Hamiltonian (1.48):

bvfikg D ifbH; rgfikg (1.57)
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and average now (1.56) over the Langevin forces. Moving the operator bL�
fkig from

the beginning to the end of the trace, one finds

j D �16T e2 Re.�GL/ Imf�GLbvfi lgbLflmg'fmngbLfnpgbL�
fpigg: (1.58)

Now we choose the representation where the bLflmg operator is diagonal (it is
evidently given by the eigenfunctions of the Hamiltonian (1.48)):

Lfmg.	/ D 1

�i	�GL C "fmg
; (1.59)

where "fmg are the appropriate energy eigenvalues. Then we assume that the electric
field is coordinate independent but is a monochromatic periodic function of time:

'.r;t/ D �Eˇrˇ exp.�i!t/: (1.60)

In doing the Fourier transform in (1.58), one has to remember that the time
dependence of the matrix elements 'fmng results in a shift of the frequency variable
of integration 	 ! 	 � ! in both L-operators placed after 'fmng or, what is the
same, to a shift of the argument of the previousbLflmg for !:

j˛! D 16T e2 Re.�GL/

Z
d	

2�
<f�GLbv˛fi lgbLflg.	C !/Œ�irˇfligb�Lfig.	/bL�

fig.	/gEˇ;

(1.61)

where <f .!/ 	 Œf .!/C f �.�!/�=2.
Let us express the matrix element rflig by means ofbvflig using the commutation

relation (1.57). One can see that in the representation chosen

brˇflig D i
bvˇflig

"fig � "flg
(1.62)

and, carrying out the frequency integration in (1.61), finally write for the fluctuation
conductivity tensor .j˛! D 
˛ˇ.!/Eˇ/:


˛ˇ.�;H; !/

D 8e2T Re.�GL/

1X

fi;lgD0
<
"

�GL

bv˛fi lgbv
ˇ

flig
"fig.�GL"fig C ��

GL"flg � ij�GLj2!/."flg � "fig/

#

:

(1.63)

This is the most general expression which describes the d.c., galvanomagnetic and
high frequency paraconductivity contributions.
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The microscopic analysis of the coefficient �GL demonstrates that its imaginary
part Im �GL usually is much smaller than Re �GL. Its origin can be related to the
electron–hole asymmetry or other peculiarities of the electron spectrum. In the
case when one is interested in the diagonal effects only it is enough to accept
�GL as real: .�GL D Re �GL D �˛=8/. In this way, (1.64) can be simplified and
after symmetrization of the summation variables the d.c. contribution of fluctuation
Cooper pairs to magnetoconductivity takes the form:


˛˛.�;H/ D �

2
˛e2T

1X

fi;lgD0
<
"

bv˛fi lgbv
˛
flig

"fig"flg."fig C "flg/

#

: (1.64)

Let us demonstrate the calculation of the d.c. paraconductivity in the simplest
case of a metal with an isotropic spectrum. In this case, we choose a plane wave
representation. By using "p defined by (1.52), one has

bvfpp0 g D vpıpp0 ; vp D @"p

@p
D 2˛Tc�

2p: (1.65)

We do not need to keep here the imaginary part of �GL, which is necessary to
calculate particle-hole asymmetric effects only. As a result, one reproduces the AL
formula:



˛ˇ

.D/D2e2T Re �GL

X

p

v˛pvˇp
"3p

Dı˛ˇ

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

e2

32�

1p
�
; 3D case;

e2

16d

1

�
; 2D film; thickness W d � �;

�e2�

16S

1

�3=2
; 1D wire; cross � section W S��2:

1.5.3 Paraconductivity of a Layered Superconductor

Let us return to the discussion of our general formula (1.64) for the fluctuation
conductivity tensor. A magnetic field directed along the c-axis still allows separation
of variables even in the case of a layered superconductor. The Hamiltonian in this
case can be written as in (1.36), (1.48):

bH D ˛Tc

�
� � �2xy.rxy � 2ieAxy/

2 � r

2
.1 � cos.kzs/

�
: (1.66)

It is convenient to work in the Landau representation, where the summation over fig
is reduced to one over the ladder of Landau levels i D 0; 1; 2 : : :. (each is degenerate
with a density H=ˆ0 per unit square) and integration over the c-axis momentum in
the limits of the Brillouin zone. The eigenvalues of the Hamiltonian (1.66) can be
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written in the form

"fng D ˛Tc

h
� C r

2
.1 � cos.kzs//C h.2nC 1/

i
D "kz C ˛Tch.2nC 1/; (1.67)

where h D eH=2m˛Tc. For the velocity operators one can write

bvx;y D 1

2m
.�ir�2ieA/x;y I bvz D �˛rs

2
Tc sin.kzs/: (1.68)

1.5.4 In-Plane Conductivity

Let us start from the calculation of the in-plane components. The calculation of
the velocity operator matrix elements requires some special consideration. First of
all, let us stress that the required matrix elements have to be calculated for the
eigenstates of a quantum oscillator whose motion is equivalent to the motion of
a charged particle in a magnetic field. The commutation relation for the velocity
components follows from (1.68) (see [73]):

Œbvx;bvy� D i
eHz

2m2
D i˛Tc

m
h: (1.69)

To calculate the necessary matrix elements, let us present the velocity operator
components in the form of boson-type creation and annihilation operatorsbaC;ba:

hl jbajni D hnjbaCjli D p
nın;lC1;

which satisfy the commutation relation Œba;baC� D 1. We obtain

bvx;y D
r
˛Tch

2m

�
baC Cba
ibaC � iba

�
:

One can check that the correct commutation relation (1.69) is fulfilled and see that
the only nonzero matrix elements of the velocity operator are

hl jbvx;y jni D
r
˛Tch

2m

� p
lıl;nC1 C p

nın;lC1
i
p
lıl;nC1 � i

p
nın;lC1

�
: (1.70)

Using these relations, the necessary product of matrix elements can be calculated:

hl jbvx jnihnjbvx jli D ˛Tch

2m
.lıl;nC1 C nın;lC1/: (1.71)
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Its substitution to the expression (1.64) gives for the diagonal in-plane component
of the paraconductivity tensor


xx.�; h/ D �˛2T 2c e2

4m
h

1X

fn;lgD0
< .lıl;nC1 C nın;lC1/
"flg"fng

�
"flg C "fng

� :

Summation over the subscript flg and accounting of the degeneracy of the Landau
levelsH=ˆ0 D 2m˛Tch=� (the layer area we assume to be equal one) gives for the
diagonal component of the in-plane paraconductivity tensor:


xx.�;H/ D e2 .˛Tc/
3 h2

2

Z �
s

� �
s

dkz

2�

1X

nD0
< nC 1

"nC1"n."nC1 C "n/
: (1.72)

1.5.5 Out-of Plane Conductivity

The situation with the out-of plane component of paraconductivity turns out to be
even simpler because of the diagonal structure of the

bvz
fing D �˛rs

2
Tc sin.kzs/ � ıin � ı.kz � kz0 /:

Taking into account that the Landau state degeneracy, we write


zz.�;H/ D �e2 .˛Tc/
3

32

�
sr

�xy

�2
h

1X

nD0

Z �
s

� �
s

dkz

2�
<
"

sin2.kzs/

"2n.kz/Œ"n.kz/�

#

:

1.5.6 Analysis of the Limiting Cases

In principle, the expressions derived above give an exact solution for the d.c.
paraconductivity tensor of a layered superconductor in a perpendicular magnetic
field H � Hc2 .h � 1/ in the vicinity of the critical temperature .� � 1/. The
interplay of the parameters r; �; h, as we have seen in the example of fluctuation
magnetization yields a variety of crossover phenomena.

The simplest and most important results which can be derived are the components
of the d.c. paraconductivity of a layered superconductor in the absence of magnetic
field. Setting h ! 0 one can change the summations over Landau levels into
integration and find


xx.�; h ! 0; ! D 0/ D e2

16s

1
p
Œ�.r C �/�

; (1.73)
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zz.�; h ! 0; ! D 0/ D e2s

32�2xy

�
� C r=2

Œ�.� C r/�1=2
� 1

�
: (1.74)

For 2D case, the sum can be calculated exactly in terms of the  -functions:and
one finds the expression for the 2D magnetoconductivity:


xx
.2/.�; h/ D e2

2s

1

�
F
� �
2h

�
D e2

16s

8
<

:

1=�; h � �

2=h; � � h

4=.� C h/; � C h ! 0

; (1.75)

where

F .x/ D x2


 

�
1

2
C x

�
�  .x/ � 1

2x

�
: (1.76)

The 2D AL theory was extended [16, 74] to the high temperature region by
taking into account the short-wavelength and dynamic fluctuations. The following
universal formula for paraconductivity of a 2D superconductor as a function of the
generalized reduced temperature � D ln T=Tc and magnetic field was obtained [16]:

ı
AL
xx .t; h/ D e2

�

1X

mD0
.mC 1/

Z 1

�1
dx

sinh2 �x

�
�

Im2Em
jEmj2 C Im2EmC1

jEmC1j2
C Im2EmC1 � Im2Em

jEmj2 jEmC1j2
Re ŒEmEmC1�

	
(1.77)

with

Em 	 Em .�; h; iz/ D � C  



1C iz

2
C 2h

t

.2mC 1/

�2

�
�  

�
1

2

�
; (1.78)

and

h D �2

8�E

H

Hc2 .0/
: (1.79)

In the limit of zero fields, one can find [74]:


.fl/xx D e2

16

8
ˆ̂<

ˆ̂
:

1

�
� � 1

0:11

�3
� & 1

:

Here, it is worth making an important comment. The proportionality of the
fluctuation magnetoconductivity to h2 is valid when using the parametrization
� D .T � Tc0/=Tc0 only. Often the analysis of the experimental data is carried
out by choosing as the reduced temperature parameter �h D .T � Tc.H//=Tc.H/.
At that point, it is important to recognize that the effect of a weak magnetic field
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on the fluctuation conductivity cannot be reduced to a simple replacement of Tc0 by
Tc.H/ in the appropriate formula without the field. In this parametrization, one
can get a term in the magnetoconductivity linear in h. Point is that besides the
cases of the special specimen geometry, a weak magnetic field shifts the critical
temperature linearly. Such linear correction is exactly compensated by the change
in the functional dependence of the paraconductivity in magnetic field, and finally
it contains the negative quadratic contribution only.

1.5.7 Comparison with the Experiment

Although the in-plane and out-of-plane components of the fluctuation conductivity
tensor of a layered superconductor contain the same fluctuation contributions,
their temperature behavior may be qualitatively different. In fact, for 
.fl/xx , the
negative contributions are considerably less than the positive ones in the entire
experimentally accessible temperature range above the transition, and it is a positive
monotonic function of the temperature. Moreover, for HTS compounds, where
the pair-breaking is strong and the anomalous MT contribution is in the saturated
regime, it is almost always enough to take into account only the paraconductivity
to fit experimental data. Some examples of the experimental findings for in-plane
fluctuation conductivity of HTS materials can be seen in [75–82].

In Fig. 1.6, the fluctuation part of in-plane conductivity 

.fl/
xx is plotted as a

function of � D ln T=Tc on a double logarithmic scale for three HTS samples (the
solid line represents the 2D AL behavior .1=�/, the dotted line represents the 3D
one: 3:2=

p
�) [83]. One can see that paraconductivity of the less anisotropic YBCO

compound asymptotically tends to the 3D behavior (1=�1=2) for � < 0:1, showing
the LD crossover at � � 0:07; the curve for more anisotropic 2223 phase of BSCCO
starts to bend for � < 0:03 while the most anisotropic 2212 phase of BSCCO shows
a 2D behavior in the whole temperature range investigated. All three compounds
show a universal 2D temperature behavior above the LD crossover up to the limits
of the GL region. It is interesting that around � � 0:24 all the curves bend down
and in accordance to [74], follow the same asymptotic 1=�3 behavior (dashed line).
Finally at the value � � 0:45, all the curves fall down indicating the end of the
observable fluctuation regime.

In the case of the out-of-plane conductivity, the situation is quite different.
Both positive contributions (AL and anomalous MT) are suppressed here by the
necessity of the interlayer tunneling, what results in a competition between positive
and negative terms. Such concurrence can lead to formation of a maximum in
the temperature dependence of the c-axis resistivity. This nontrivial effect of
fluctuations on the transverse resistance of a layered superconductor allows a
successful fit to the data observed on optimally doped and overdoped HTS samples
(see, e.g., Fig. 1.7), where the growth of the resistance still can be treated as a
correction. The fluctuation mechanism of the growth of the transverse resistance
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Fig. 1.6 The normalized excess conductivity for samples of YBCO-123 (triangles), BSSCO-2212
(squares) and BSSCO-2223 (circles) plotted against � D lnT=Tc on a ln-ln plot as described in
[83]. The dotted and solid lines are the AL theory in 3D and 2D respectively. The dashed line is
the extended theory of [74]
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Fig. 1.7 Fit of the temperature dependence of the transverse resistance of a slightly underdoped
BSCCO c-axis oriented film with the results of the fluctuation theory [84]. The inset shows the
details of the fit in the temperature range between Tc and 110 K
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can be easily understood in a qualitative manner. Indeed, to modify the in-plane
result for the case of c-axis paraconductivity, one has to take into account the
hopping character of the electronic motion in this direction. If the probability of
one-electron interlayer hopping is P1, then the probability of coherent hopping
for two electrons during the fluctuation Cooper pair lifetime �GL is the conditional
probability of these two events: P2 D P1.P1�GL/. The transverse paraconductivity
may thus be estimated as 
AL? � P2
AL

k � P2
1
1
�2

, in complete accordance with

the result of microscopic theory. We see that the temperature singularity of 
AL
?

turns out to be stronger than that in 
AL
k , however, for a strongly anisotropic

layered superconductor 
AL
? is considerably suppressed by the square of the small

probability of interlayer electron hopping, which enters in the prefactor. It is this
suppression which leads to the necessity of taking into account the DOS contribution
to the transverse conductivity. The latter is less singular in temperature but, in
contrast to the paraconductivity, manifests itself in the first, not the second, order in
the interlayer transparency 
DOS

? � �P1 ln .1=�/. The DOS fluctuation correction
to the one-electron transverse conductivity is negative and, being proportional to the
first order of P1, can completely change the traditional picture of fluctuations just
rounding the resistivity temperature dependence around transition. The shape of the
temperature dependence of the transverse resistance mainly is determined by the
competition between the opposite sign contributions: the paraconductivity and MT
term, which are strongly temperature dependent but are suppressed by the square of
the barrier transparency and the DOS contribution, which has a weaker temperature
dependence but depends only linearly on the barrier transparency.

1.6 Quantum Superconductive Fluctuations Above Hc2.0/

1.6.1 Dynamic Clustering of FCPs

The qualitative picture for SF in the quantum region at very low temperatures and
close toHc2.0/ drastically differs from the Ginzburg–Landau one, valid close to Tc0.
As we saw above, the latter can be described in terms of the set of long-wavelength
fluctuation modes (with  & �GL .T / � �BCS) of the order parameter, with the
characteristic lifetime �GL D �„=8kB .T � Tc0/ : In the former, the order parameter
oscillates in much smaller scale, the fluctuation modes with the wave-lengths up
�BCS are excited. One can imagine that FCPs here rotate in magnetic field with
the Larmor radius � �BCS and cyclotron frequency !c � ��1

BCS: The microscopic
theory shows below that close to Hc2 .0/ these FCPs form some kind of quantum
liquid with the long coherence length �QF � �BCS=eh1=2 and slow relaxation with the
characteristic time

�QF � „
�
�BCS

eh
��1

; eh D .H �Hc2.0//=Hc2.0/ (1.80)
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One sees that the functional form of �QF is completely analogous to that of �GL:
�BCS � Tc0 and the reduced field eh plays the role of reduced temperature �.
Equation (1.80) can also be obtained also from the uncertainty principle. Indeed,
the energy, characterizing the proximity to the quantum phase transition is �E D
„!c .H/ � „!c .Hc2 .0// � �BCS

eh and namely this value should be used in the
Heisenberg relation instead of kB.T � Tc0/, as was done in the vicinity of Tc0. The

spatial coherence scale �QF

�
eh
�

can be estimated from the value of �QF analogously

to consideration near Tc0. Namely, two electrons with the coherent phase starting
from the same point after the time �QF get separated by the distance

�QF

�
eh
�

� �D�QF
1=2 � �BCS=

p
eh:

To clarify the physical meaning of �QF and �QF, note that near the quantum phase
transition at zero temperature, where H ! Hc2 .0/, the fluctuations of the order
parameter �.fl/ .r; t/ become highly inhomogeneous, contrary to the situation near
Tc0. Indeed, below Hc2 .0/, the spatial distribution of the order parameter at finite
magnetic field reflects the existence of Abrikosov vortices with average spacing
(close to Hc2 .0/ but in the region where the notion of vortices is still adequate)
equal to

a .H/ D �BCS=
p
H=Hc2 .0/ ! �BCS:

Therefore, one expects that close to and above Hc2 .0/ the fluctuation order
parameter �.fl/ .r; t/ also has “vortex-like” spatial structure and varies over the
scale of �BCS being preserved over the time scale �QF. In the language of FCPs,
one describes this situation in the following way. The FCPs at zero temperature
and in magnetic field close to Hc2 .0/ rotates with the Larmor radius rL �
vF=!c .Hc2 .0// � vF=�BCS � �BCS, which presents their effective size. During
the time �QF, two initially selected electrons participate in the multiple fluctuating

Cooper pairings maintaining their coherence. The coherence length �QF

�
eh
�

� �BCS

is thus a characteristic size of a cluster of such coherently rotating FCPs, and �QF

estimates the lifetime of such flickering cluster. One can view the whole system
as an ensemble of flickering domains of coherently rotating FCPs, precursors of
vortices (see Fig. 1.8).

In view of described qualitative picture of SF in the regime of QPT, let us resume
the scenario of Abrikosov lattice defragmentation. Approaching to Hc2 .0/ from
below, the paddles of fluctuating vortices, which are nothing else as rotating in

magnetic field FCPs, are formed. Their characteristic size is �QF

�
jehj
�
; and they

flicker with the characteristic time �QF

�
jehj
�

. At this stage, the supercurrent still can

flow through the sample until these paddles do not break the last percolating super-
conductive channel. Corresponding field determines the value of the renormalized
by QF second critical field: H�

c2 .0/ D Hc2 .0/ Œ1 � 2Gi ln .1=Gi/� (see [1]). Above
this field, no supercurrent can flow through the sample more, that is it is the normal
state. Nevertheless, as demonstrate our above estimations its properties are strongly
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Fig. 1.8 The sketch of cluster structure of fluctuation Cooper pairs above the upper critical field

affected by the QF. The fragments of Abrikosov lattice can be still observed here
by the following gedanken experiment. The clusters of rotating FCPs (ex-vortices)
of size �QF with some kind of the superconductive order should be found at the
background of normal metal when one takes the picture with the exposure time
shorter than �QF. When the exposure time is chosen longer than �QF the picture is
smeared out and no traces of Abrikosov vortex state can be found. What kind of
the order can be detected is still unclear. It would be attractive to identify these
clusters with the splinters of Abrikosov lattice, but more probably this is some kind
of quantum FCPs liquid. Indeed, presence of the structural disorder can result in
formation close toH�

c2 .0/ of the hexatic phase, where the translational invariance no
longer exists, although it still conserves the oriental order in the vortex positioning.

1.6.2 Manifestation of QF Above Hc2 .0/

At zero temperature and fields above Hc2 .0/, the systematics of the fluctuation
contributions to the conductivity considerably changes with respect to that close
to Tc0. The collisionless rotation of FCPs (they do not “feel” the presence of
elastic impurities, all information concerning electron scattering is already included
in the effective mass of the Cooper pair) results in the lack of their direct
contribution to the longitudinal (along the applied electric field) electric transport
(analogously to the suppression of one-electron conductivity in strong magnetic
fields .!c� � 1/: ı
.e/xx � .!c�/

�2, see [29]) and the AL contribution to ı
.tot/
.2/

becomes zero. The anomalous MT and DOS contributions turn zero as well but
due to different reasons. Namely, the former vanishes since magnetic fields as large
as Hc2 .0/ completely destroy the phase coherence, whereas the latter disappears
since magnetic field suppresses the fluctuation gap in the one-electron spectrum.
Therefore, the effect of fluctuations on the conductivity at zero temperature is
reduced to the renormalization of the one-electron diffusion coefficient. FCPs here
occupy the lowest Landau level, but all the dynamic fluctuations in the interval of
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frequencies from 0 to �BCS should be taken into account:

ı
DCR
xx � � e2

�BCS

Z �BCS

0

d!
QhC !

�BCS

� �e2

„ ln
1

Qh: (1.81)

In terms of introduced above QF characteristics �QF and �QF one can understand
the meaning of QF contributions to different physical values in the vicinity of
Hc2 .0/ and derive others which are required. For example, the physical meaning of
(1.86) can be understood as follows: one could estimate the FCPs conductivity by
mere replacing �GL ! �QF in the classical AL formula, which would give ıe
AL �
e2�QF: Nevertheless, as we already noticed, the FCPs at zero temperature cannot
drift along the electric field but only rotate around the fixed centers. As temperature
deviates from zero, the FCPs can change their state due to the interaction with
the thermal bath, that is their hopping to an adjacent rotation trajectory along the
applied electric field becomes possible. This means that FCPs now can participate in
longitudinal charge transfer. This process can be mapped onto the paraconductivity
of a granular superconductors [85] at temperatures above Tc0, where the FCPs
tunneling between grains occurs in two steps: first one electron jumps, then the
second follows. The probability of each hopping event is proportional to the inter-
grain tunneling rate �: To conserve the superconductive coherence between both
events, the latter should occur during the FCPs lifetime �GL: The probability of
FCPs tunneling between two grains is determined as the conditional probability
of two one-electron hopping events and is proportional to W� D� 2 �GL: Coming
back to the situation of FCPs aboveHc2 .0/, one can identify the tunneling rate with
temperature T , while �GL corresponds to �QF: Therefore, to get a final expression,
ıe
AL should be multiplied by the probability factor WQF D t2�QF of the FCPs
hopping to the neighboring trajectory:

ı
AL
xx � ıe
ALWQF � e2t2=eh2;

which corresponds to the asymptotic (1.86).
To estimate the contribution of QF to the fluctuation magnetic susceptibility of

the SC in the vicinity of Hc2 .0/, one can apply the Langevin formula to a coherent
cluster of FCPs and identifying its average size with the rotator radius to find

�AL D e2nc:p:

mc:p:c

D
�2QF

�
eh
�E

� �2BCS=c
eh

in complete agreement with the result of [14].
One further reproduces the contribution of QF to the Nernst coefficient. Close to

Hc2 .0/ the chemical potential of FCPs can be identified as�FCPs D „!c .Hc2 .0//�
„!c .H/ (as in [15], close to Tc0, �FCPs D kB .Tc0 � T /). Corresponding derivative
d�FCPs=dT � dHc2 .T / =dT � �T=�BCS: Using the relation between the latter
and the Nernst coefficient it is possible to reproduce one of the results of [15]:
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�AL � �
�QF=mc:p:

�
d�FCPs=dT � �2BCSt=

eh:

1.7 Fluctuation Conductivity of 2D Superconductor
in Magnetic Field: A Complete Picture

The complete expression for the total fluctuation correction to conductivity
ı


.tot/
xx .T;H/ of a disordered 2D SC in a perpendicular magnetic field that holds

through all T -H phase diagram above the line Hc2.T / is given by the sum [16]:

ı
.tot/
xx .t; h/ D ı
AL

xx C ı
MT
xx C ı
DOS

xx C ı
DCR
xx (1.82)

with ı
AL
xx defined by (1.77) and

ı
MT.an/
xx C ı
MT.reg2/

xx D e2

�

�
h

t

� MX

mD0

1

�� C 2h
t
.mC 1=2/

Z 1

�1
dx

sinh2 �x

Im2Em
jEmj2

ı
MT.reg1/
xx D e2

�4

�
h

t

� MX

mD0

1X

kD�1

4E 00
m .t; h; jkj/

Em .t; h; jkj/ (1.83)

ı
DOS
xx D 4e2

�3

�
h

t

� MX

mD0

Z 1

�1
dx

sinh2 �x

ImEmImE 0
m

jEmj2
(1.84)

ı
DCR
xx D 4e2

3�6

�
h

t

�2 MX

mD0

�
mC 1

2

� 1X

kD�1

8E 000
m .t; h; jkj/

Em .t; h; jkj/ : (1.85)

Here, t D T=Tc0;

h D �2

8�E

H

Hc2 .0/
D 0:69

H

Hc2 .0/
;

�E D e�e (�e is the Euler constant), M D .tTc0�/
�1; �� D �=.8Tc0��/, ��

is the phase-breaking time, Em.t; h; z/ is defined by (1.78) and its derivatives
E .p/m .t; h; z/ 	 @

p
z Em.t; h; z/. All of them, side by side with the asymptotic

expressions for ı
.tot/
xx are shown in Table 1.1.

Let us start its discussion from the first line, corresponding to the Ginzburg–
Landau region of fluctuations close to Tc0 and in zero magnetic field (domain I).
One can see our general expression naturally reproduces the well-known AL,
MT, and DOS contributions. The only news here is the written in the explicit
form contribution ı
.DCR/, which was usually ignored in view of the lack of its
divergency close to Tc0: Nevertheless, one can see that its constant contribution
� ln ln .Tc0�/

�1 is necessary for matching of the GL results with the neighbor
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domains YIII, IX. The domains II-III are still described by the GL theory in weak
magnetic fields and ı
.tot/

xx .t; h/ reproduces all available in literature asymptotic
expressions.

What is really surprising in the Table 1.1 is the domain IV, the region of quantum
fluctuations (see Fig. 1.1). Looking at the third line, one finds that the positive AL
(anomalous MT contributions here is equal to the AL one) decays with the decrease
of temperature as T 2. Moreover, it is exactly canceled by the negative contribution
of the four DOS-like diagrams 3–6:

ı
AL
xx D ı
MT.an/

xx D �ı
DOS
xx D 4e2�2Et

2

3�2 Qh2 : (1.86)

The total fluctuation contribution to conductivity ı
.tot/
xx in this important region

(t � Qh/ is completely determined by the renormalization of the diffusion coefficient.
It turns out to be negative and at zero temperature diverges logarithmically when the
magnetic field approachesHc2 .0/ : The nontrivial fact following from (1.82) is that
an increase of temperature at a fixed value of the magnetic field in this domain first
results in the further decrease of conductivity

ı
.tot/
xx D � 2e2

3�2
ln
1

Qh � 6�Ee2

�2
t

Qh CO

"�
t

Qh
�2#

: (1.87)

and only at the confine with the domain V, when t � Qh; the total fluctuation contri-
bution ı
.tot/

xx pass through the minimum and starts to grow. Such nonmonotonic
behavior of the of the conductivity close to Hc2 .0/ was multiply observed in
experiments [86, 87] (see Fig. 1.9).

The domain Y describes the transition regime between quantum and classical
fluctuations, while in the domains YI-YII, extended along the line Hc2 .T / ;

superconductive fluctuations have already classical (but non-Ginzburg–Landau)
character. In all these three regions, one observes the same exact cancellation of
the AL and DOS contributions as in the domain IY and ı
.tot/

xx is determined here by
the negative DCR contribution.

Finally, in the peripheric domains YIII-IX the direct positive contribution
of fluctuation Cooper pairs (AL) to conductivity decays faster than all other:
� ln�3 .T=Tc0/ : Let us stress that this exact result is in complete agreement with the
high temperature asymptotical expression for the paraconductivity of the clean 2D
superconductor. Such agreement seems natural: fluctuation Cooper pairs transport
is insensitive to the impurity scattering. Anomalous MT contribution in complete
accordance [8, 9] decays as � ln ��1

� = ln�2 .T=Tc0/ : Contribution of the diagrams

3–6 also decays as ln�2 .T=Tc0/ ; but without the large factor ln ��1
� : Finally, the

regular MT contribution and that one of the diagrams 7–10 decay extremely slow,
double logarithmically:
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Fig. 1.9 Temperature dependence of the FC at different fields close to Hc2.0/ and comparison
to experimental data for thin films of La2�xSrxCuO4 with Tc0 � 19K and Bc2.0/ � 15T (Data
is courtesy of B. Leridon, unpublished). Note that for the theoretical curves a fixed Tc0�� D 10

is used, which does not necessarily agree with the experimental value. Nevertheless, the overall
behavior can be captured by this rough comparison. All curves are numerically calculated with
Tc0� D 0:01

ı
.DCR/
xx D � 2e2

3�2

�
ln ln

1

Tc0�
� ln ln

T

Tc0

�
: (1.88)

Up to the numerical factor, this expression coincides with the results [8, 10].
Equation (1.82) gives the background for the “fluctuoscopy” of superconductors,

that is extraction of its microscopic parameters from the analysis of fluctuation
corrections. Indeed, one can see that ı
.tot/

xx depends on two superconductive
parameters: Tc0;Hc2 .0/, the elastic scattering time �; and magnetic field and
temperature dependent phase-breaking time �� .T;H/. The elastic scattering time
can be obtained from the normal state properties of superconductor, while (1.82)
can become the instrument of precise definition of the critical temperature Tc0

(instead of the often “half width of transition”) and Hc2 .0/ : Moreover, it can be
invaluable tool for the study of the temperature and magnetic field dependencies of
the phase-breaking time �� .T;H/ :

The characteristic example of the surface ı
.tot/
xx .T;H/ for Tc0� D 0:1 and

Tc0�� D 0:01 is presented in Fig. 1.10. The value of �� determines the behavior
of fluctuation corrections only in the region of low fields. Figure 1.10 is convenient
to analyze together with Fig. 1.1 where the lines ı
.tot/

xx .T;H/ D const through
all phase diagram are shown. One sees that FC is positive only in the domain
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Fig. 1.10 FC as the function of the reduced temperature T /Tc0 and magnetic field H=Hc2 .0/

restricted by the lines Hc2.T / and ı
.tot/
xx .T;H/ D 0 and is negative through all

other parts of the phase diagram. With the growth of the magnetic field, the width
of the domain where ı
.tot/

xx .T;H/ > 0 shrinks and turns zero close to Hc2.0/: The
behavior of FC at low temperatures, in accordance with our asymptotic analysis,
becomes nonmonotonic, the surface ı
.tot/

xx .T;H/ here has trough-shaped form. It is
interesting to note that the numerical analysis of (1.82) shows that the logarithmic
asymptotic (1.87) is valid only within the extremely narrow field range Qh . 10�6.
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Chapter 2
Experimental Study of the Fluctuation-Governed
Resistive State in Quasi-One-Dimensional
Superconductors

K.Yu. Arutyunov

Abstract Physical properties of quasi-one-dimensional superconducting channels
(nanowires) can differ significantly from those of bulk superconductors. The reason
behind is the impact of thermal and quantum fluctuations. In the particular case of
resistive measurements the fluctuations may significantly broaden the superconduct-
ing transition R.T /. Here we review the activities in the field with main emphasis
on experiment, while brief theoretical background is also presented.

2.1 Introduction

The phenomenon of superconductivity was discovered as a sudden drop of resis-
tance to immeasurably small value. With the development of the topic, it was
realized that the superconducting phase transition is frequently not at all “sudden”
and the measured dependence of the sample resistance R.T / in the vicinity of
the critical temperature TC may have a finite width. One possible reason for this
behavior – and frequently the dominating factor – is the sample inhomogeneity, that
is the sample might simply consist of regions with different local critical tempera-
tures. However, with improving fabrication technologies it became clear that even
for highly homogeneous samples the superconducting phase transition may remain
broadened. This effect is usually very small in bulk samples and becomes more
pronounced in systems with reduced dimensions. A fundamental physical reason
behind such smearing of the transition is superconducting fluctuations.
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An important role of fluctuations in superconductors with reduced dimension is
well known [1, 2]. Above TC such fluctuations yield an enhanced conductivity of
metallic systems [3–5]. For instance, the so-called Aslamazov–Larkin fluctuation
correction to conductivity ıGAL � .T � TC/

�.2�D=2/ becomes large in the vicinity
of TC, and this effect increases with decreasing dimensionality D. In the opposite
limit – at temperatures below TC – it is quite obvious that in 3D (bulk) and 2D (thin
films) systems fluctuations cannot provide any measurable resistive response as the
superconducting condensate shunts the dissipative electron current. On the contrary,
in quasi-1D systems with transverse dimensions smaller than the superconducting
coherence length �, the single supercurrent channel can be easily blocked by a
fluctuation. This limit has both the significant fundamental and practical importance.
Rapidly progressing miniaturization of nanodevices requires better understanding
of fundamental limitations for the phenomenon of superconductivity in reduced
dimension. Of particular interest are the nanowires, which can be considered as
basic elements of any superconducting nanocircuit. A detailed review of the present
status of experiments in the field is the main subject of this chapter.

2.2 Theory Background

The detailed overview of the theory of fluctuations in superconductors can be
found in specialized reviews [1, 2] and in a more compact way – in Chap. 1.
Here, we will very briefly outline the main conclusions of the theory, necessary
for understanding the interesting experimental phenomenon – finite resistivity of
very narrow superconducting wires below the critical temperature TC.

It was first pointed out by Little [6] that quasi-one-dimensional wires made
of a superconducting material can acquire a finite resistance below TC of a bulk
material due to the mechanism of thermally activated phase slips (TAPS). With
the Ginzburg–Landau theory, one can describe a superconducting wire by means
of a complex order parameter ‰.x/D j‰.x/jei'.x/. Thermal fluctuations cause
deviations of both the modulus and the phase of this order parameter from their
equilibrium values. A nontrivial fluctuation corresponds to temporal suppression
of j‰.x/j down to zero in some point (e.g., xD 0) inside the wire. As soon
as the modulus of the order parameter j‰.0/j vanishes, the phase '.0/ becomes
unrestricted and can jump by the value 2�n, where n is any integer number. After
this process, the modulus j‰.0/j gets restored, the phase again becomes single
valued and the system returns to its initial state accumulating the net phase shift
2�n. Provided such phase slip events are sufficiently rare, one can restrict n by
n D ˙1 and totally disregard fluctuations with jnj 
 2. According to the Josephson
relation V D „ P'=2e each such phase slip event causes a nonzero voltage drop
V across the wire. In the absence of any bias current, the net average numbers of
“positive” (n D C1) and “negative” (n D �1) phase slips are equal, thus the net
voltage drop remains zero. Applying the current I /j ‰ j2 r', one creates nonzero
phase gradient along the wire and makes “positive” phase slips more likely than
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“negative” ones. Hence, the net voltage drop V due to TAPS differs from zero,
that is thermal fluctuations cause nonzero resistance R D V=I of superconducting
wires even below TC. We would also like to emphasize that, in contrast to the so-
called phase slip centers [7, 8] produced by a large current above the critical one
I > IC, here we are dealing with fluctuation-induced phase slips, which can occur
at arbitrarily small values I .

A quantitative theory of the TAPS phenomenon was first proposed by Langer and
Ambegaokar [9] and then completed by McCumber and Halperin [10]. This LAMH
theory predicts that below TC the effective resistance R of a superconducting wire
with cross section 
 is determined by

R.T / D 	.T / exp.�U=kBT /; U � H2
c .T /
�.T / � IC; (2.1)

where U.T / is the effective potential barrier for TAPS determined simply as the
superconducting condensation energy for a part of the wire of a minimal statistically
independent volume 
�, and Hc.T / and IC are the critical magnetic field and
current, respectively. Prefactor 	.T / has much weaker temperature dependence
compared to the exponent. Formally, both the potential barrier U.T / and the
prefactor	.T / depend on the bias current I . In a typical experimental configuration
I � IC, this dependence is not essential and can be neglected.

Following the standard quantum mechanical arguments, one can expect that
there should exist an alternative (to TAPS) mechanism, where the order parameter
field ‰.x/ tunnels under the barrier U rather than overcomes it by thermal
activation. In this case, the corresponding probability of such tunneling should be
controlled by the exponent � exp.�U=„!0/, that is instead of the thermal energy
kBT in the activation exponent one should just substitute „!0, where !0 is an
effective attempt frequency of quantum fluctuations – quantum phase slips (QPS).
Since such tunneling process should obviously persist down to infinitely small
temperatures, one arrives at a fundamentally important conclusion that in nanowires
superconductivity can be destroyed by quantum fluctuations at any temperature
including T D 0.

There have been several attempts to develop a quantitative theory of quantum
fluctuations in quasi-1D superconducting channels (for details, see Chap. 1). The
microscopic theory of QPS processes in superconducting nanowires was developed
with the aid of the imaginary time effective action technique [11–13]. This theory
remains applicable down to T D 0 and properly accounts for nonequilibrium,
dissipative and electromagnetic effects during a QPS event. One of the main
conclusions of the theory is that in sufficiently dirty superconducting nanowires
with diameters in the �10 nm range QPS probability can already be large enough to
yield experimentally observable resistance at temperatures T � Tc :

R.T / D b
�0.T /S

2
coreL

�.T /
exp.�2Score/; Score D a

Rq

RN

L

�.T /
: (2.2)
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Here, RN is the total normal state resistance of a wire with length L, Rq D
�„=2e2 D 6:453 k	 is the “superconduting” resistance quantum, � and �0 are
the temperature-dependent superconducting coherence length and gap, respectively;
a' 1 and b' 1 are numeric prefactors. It should be noted that the above expression
is strictly valid only in the limit of relatively rare QPS events when the effective
wire resistance R.T / � RN .

2.3 Sample Fabrication

As it follows from (2.1) and (2.2), effective resistance of a quasi-1D supercon-
ducting channel exponentially depends on its cross section 
 . Hence, a reliable
experimental observation of the impact of superconducting fluctuations requires
fabrication of very narrow superconducting wires [14].

The earliest experimental activity with quasi-1D superconductors utilized, so-
called, whiskers: single crystals with characteristic cross-section �1�m and length
up to 1 mm (Fig. 2.1).

Growth and basic properties of these highly anisotropic objects have been
described in literature [15]. In particular, case of widely studied superconducting
tin whiskers “squeeze” method was typically applied for their growing [16]. Then
the crystals were literally hand picked from the ingots and positioned on substrates.
The electrodes were made either by conducting paste or epoxy [17], soldered by
Wood’s metal [7,18] or Sn-Pb alloy [19], or squeezed by a soft metal (e.g., indium)
[20]. With further development of micro- and nanotechnology hybrid whisker-
based nanostructures were fabricated [21]. The ‘body’ of the samples consisted of
a superconducting (tin) whisker embedded in a Spin-On-Glas (SOG) polymer on
the surface of Si/SiOx substrate, while the contacts were fabricated utilizing lift-off
e-beam lithography (Fig. 2.2) enabling true 4-terminal measuring configuration.

Recently an alternative method – molecular template – has been developed.
A single molecule, carbon nanotube or a DNA double helix, is placed over a

Fig. 2.1 SEM image of a
typical tin whisker. Inset
shows the magnified view of
the crystal surface [14]
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Fig. 2.2 (a) SEM image of
hybrid microstructure. Bright
horizontal line is tin whisker.
(b) Enlared SEM image of the
sample with lithographically
fabricated nanocontacts [21]

substrate with a narrow (100 nm to 1�m) trench and a thin layer of metal is
deposited on top of the molecule by sputtering (Fig. 2.3) [22–24]. The approach
enables fabrication of superconducting nanowires (MoGe and Nb) with effective
diameter down to �3 nm and the length up to �1�m. Only pseudo-four-probe
configuration is available for measurements with the deposited metal film from
both sides of the trench serving as electrodes. Similar technique has been applied
using insulating WS2 nanotube as a molecular substrate covered with disordered
superconductor: amorphous ˛ W InO [25]. Samples fabricated with molecular
template technology enable pseudo-4-terminal measurements.

With rapid progress of nanolithography, fabrication of sub-100 nm nanowires
became a routine task. In a number of experimental works, quasi-1D superconduct-
ing nanostructures of different complicity have been fabricated using conventional
e-beam lithography followed by a lift-off process [14]. The big advantage of the
method is the ability to fabricate nanostructures with complicated shape and in
a rather reproducible way. Typically, the metal is deposited through the PMMA
mask using thermal or e-beam evaporation, or sputtering. For some applications,
the minimum line width of e-beam lithographically fabricated superconducting
quasi-1D nanostructures might be an issue. Although state-of-the-art e-beam writers
should provide �15 nm resolution, reproducible fabrication in this limit is still far
from being a routine. Several ‘tricks’ were suggested to obtain �10 nm nanowires.
“Step lithography” utilizes the shadow effect produced by extremely shallow steps
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Fig. 2.3 (a) Schematics of
the molecular template
method. (b) SEM image of a
carbon nanotube-based
structure [22, 24]

in substrates and the corresponding tilted ion beam milling of the deposited material.
The method has been applied for fabrication of superconducting nanowires (In and
Pb-In) with triangular cross-section and the effective diameter down to �15 nm
[26, 27]. Yet another method utilizing non-conventional mask – suspended stencil
technique – has been developed enabling fabrication of nanowires with effective
diameter down to �15 nm from various materials including several superconduc-
tors: Pb,Sn,Pb-Bi [28,29]. A remarkable feature of this method is the ability to vary
the cross-section of the wires in situ without warming up the cryostat in between the
sessions of measurements.

An advanced method of nanowire fabrication uses MBE grown InP layer on
a cleaved InxGa1�xAs=InP substrate as a support for thermally evaporated metal.
The method allows fabrication of very long (up to 100�m) superconducting (Al)
nanowires with effective cross-section down to 7 nm [30] enabling pseudo-4-
terminal measurements of the sample.

An alternative and to some extend complementary approach to the described
methods has been proposed recently. The idea is to use low energetic ion beam
sputtering for progressive reduction of pre-fabricated nanostructures [31,32]. Gentle
erosion of a nanostructure surface by inert ions (e.g. ArC) enables �1 nm accurate
reduction of the sample dimensions. The method can be applied to a large variety of
materials and nanostructures, including superconducting nanowires (Fig. 2.4). The
advantage of the approach is the ability to trace evolution of size phenomena elim-
inating uncertainty related to artifacts of individual nanostructures by performing
measurements on a same sample between the sessions of sputtering. Evolution of
size-dependent properties of the same Al nanowire starting from 100 nm down to
8 nm has been demonstrated [33, 34].
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Fig. 2.4 (a) SPM images of the same section of Al nanowire after series of ArC sputtering.
Horizontal plane corresponds to the initial level of Si substrate. Bright color above – metal (Al),
dark under – sputtered substrate (Si). (b) Variation of the nanowire cross-section with the ion dose.
Inset: the corresponding dependence of Si substrate erosion [32]

2.4 Experiments

It follows from the theoretical analysis that the impact of fluctuations can be
observed in sufficiently thin superconducting wires. On top of that, it is highly
desirable to deal with structurally (and chemically) homogeneous samples in
order to eliminate spatial variations of TC along the wire and rule out the effect
of (possibly existing) constrictions and tunnel barriers. It has been shown that
structural imperfections of real quasi-1D structures (nonuniform cross section,
existence of probes, and finite length effects) might effectively mask the phenomena
related to thermal or quantum fluctuations [35].

Structural and geometrical homogeneity of quasi-1D samples is the central ques-
tion in interpretation of experimental data related to contribution of superconducting
fluctuations. Theoretically, one usually assumes that (a) the critical temperature TC

of quasi-1D wires under consideration remains spatially constant, that is it does not
vary along the wire, (b) the cross-section 
 does not vary along the wire either and
(c) the measuring probes are noninvasive. Unfortunately, in realistic samples none
of these conditions is usually well satisfied. To which extent can these imperfections
be neglected while interpreting the experimental data using models developed under
the assumptions (a)–(c)?

If structural imperfections (e.g., non-uniform chemical composition) can alter
the critical temperature, then the shape of the experimentally observed R.T /

dependence is determined by the sequence of transitions of various parts of the wire
with different local critical temperature TC.x/. If the degree of such inhomogeneity
is not too strong, a step-likeR.T / transition may not be observed as the variations of
the critical temperature are averaged on the scale of the coherence length � resulting
in a relatively wide “smooth-looking”R.T / dependence to some extent simulating
the impact of superconducting fluctuations.
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One might naively expect that working with superconducting samples fabricated
of initially pure material can help to eliminate the problem. Unfortunately, this is
not the case. First, properties of low-dimensional superconductors are known to
depend on the fabrication process details, such as thin film deposition rate, residual
pressure in the vacuum chamber, material of the substrate, etc. Second, even if to
make an effort to keep the fabrication parameters constant, it is hard to get rid of
size-dependent effects.

It is a well-known experimental fact that the critical temperature TC of thin
superconducting films frequently differs from the one for bulk samples. The same
tendency is observed in metallic nanostructures. In indium, aluminum, and zinc,
TC increases with decreasing characteristic dimension [26, 30, 33, 34, 36]. On the
contrary, in lead, niobium, and MoGe, an opposite tendency is observed [28, 37–
40]. No noticeable variations of TC were detected in tin nanowires. The origin of
the TC size dependence phenomenon is not clear. There exist models predicting
both suppression [41] and enhancement [42] of the mean field critical temperature
for low-dimensional superconductors. One can take the empirical fact of variation
of TC with effective diameter of a superconducting nanowire as granted. It has
been shown that size-dependent effects are extremely important for interpretation of
fluctuation phenomena in quasi-1D systems [35]. The conclusion of a quantitative
analysis [35] is rather disappointing (Fig. 2.5): even chemically pure nanostructures
cannot be considered as sufficiently homogeneous as soon as the size dependence
of the critical temperature TC comes into play. One should study atomically
homogeneous systems as single crystalline whiskers [18,19]. Unfortunately, modern
nanotechnology does not enable growth of high-quality quasi-1D single crystals
of arbitrary diameter made of all materials of interest. The lithographic processes
result in much lower quality samples. The only exception are materials, such as Al,

Fig. 2.5 Resitive transition of a typical Al nanowire. (a) Simulated R.T / dependence. Bullets (•)
correspond to simulated R.T / transition with size dependent local critical temperature [42], but
without taking into consideration finite size effects. Solid line is TAPS calculation using realistic
fitting parameters. Shaded region corresponds to TAPS simulation allowing 10% variation of the
fitting parameters. (b) Bullets (•) – same as in Diamonds (˙) represent the results of similar
calculations with contribution of the node regions. Open circles (ı) denote the experimentally
measured R.T / dependence [35]
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Zn, and In, where the critical temperature decreases with reduction of the effective
dimension (e.g., nanowire diameter). Under certain conditions, experiments on lift-
off fabricated nanowires made of these materials can be interpreted using fluctuation
models developed for perfect 1D channels. Provided broadening of the R.T /
dependencies is detected below the bulk critical temperature T bulk

C , the size effects
cannot account for the phenomenon, and presumably “real” physics is observed.

Although measuring the temperature dependence of the system resistance R.T /
in the vicinity of the transition point might seem a routine experimental task, in
the case of nanostructures more care is required. Typically, R.T / dependencies are
measured in the current-biased regime. A standard requirement is to keep the bias
current I much smaller than the critical (depairing) current IC to avoid hysteresis
effects due to overheating. Additionally, to stay within the linear response regime,
the measuring current I should remain smaller than the characteristic scale I0 D
kBTC=ˆ0 [9,10]. Employing room-temperature electronics, it is preferable to use ac
lock-in technique to increase the signal-to-noise ratio. This can be associated with
some hidden problems. One of them is that even a tiny fraction of dc component
(e.g., from the ground loop) adds a parasitic signal �dV=dI.T / to the “valuable”
one R.T / 	 V.T /=I . For this reason, it is advisable to decouple the ac current
source from the sample using a low-noise transformer.

Another problem might originate from the presence of rf filters, which are
mandatory to protect nano-sized samples from noisy electromagnetic environments.
Very often such filters are just RLC circuits shunting the rf component to the ground
through a capacitor as high as few �F . Such configuration might provide good
results with high-Ohmic systems (e.g., tunnel structures). In a superconducting
nanowire measured in 4-probe configuration, each electrode contacting the “body”
of the sample is typically made of the same material. Hence, the resistance of these
probes also drops down to zero over the same temperature range within the transi-
tion. Depending on particular configuration, at a certain T the ac sample impedance
might become comparable to that of the current leads through the ground, causing
the current re-arrangement throughout the sample. Even at rather low measuring
frequencies �10 Hz, the parasitic effect might manifest itself as a nonmonotonous
R.T / dependence with unusual “bumps” or “foot” at the bottom of the transition.
Additional complication might arise from the nonnegligible dependence of the gain
of the nanovolt pre-amplifier on the total impedance of the load.

Concluding this part, an experimentalist should be extremely cautious in design-
ing the measuring set-up and in selecting samples for unambiguous interpretation
of the data on superconducting nanowires.

2.5 Thermally Activated Phase Slips (TAPS)

Very quickly after development of the theory [9, 10], two experimental groups
reported experiments aimed at verification of the model [18, 19]. At 1970s micro-
fabrication technique was not much developed. In these early studies of 1D
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superconductivity [18, 19] metallic whiskers (Fig. 2.1) with characteristic diameter
�1�m and lengths up to 1 mm were utilized. An example of experimental R.T /
dependence measured on tin whisker is shown in Fig. 2.6. One observes a very
good quantitative agreement between the experiment and the TAPS model [9, 10].
The superconducting transition R.T / is very steep: resistance of the sample drops
five orders of magnitude within the temperature range ıT � 1mK below TC.
This is a consequence of rather large effective diameter values

p

 ' 0:5 �m

and extremely high homogeneity of single crystals. In the case of thinner single-
crystalline structures, the width of the R.T / dependence would be larger, cf. (2.1).
Unfortunately, the dimensions of natural grown whiskers made of superconducting
materials do not vary much. Manual manipulation of sub-1�m objects is extremely
time consuming and results in a low yield of suitable samples, while the dimensions
of whiskers are still too large to use scanning probe (SPM) technique well developed
for manipulation of nano-sized objects, such as carbon nanotubes.

There were several reports on experimental studies of 1D superconductivity
in lift-off-fabricated superconducting nanostructures (wires and loops) with the
linewidth much smaller than of whiskers. The quality of the structures is far from
perfect: the majority of superconducting thin-film structures fabricated at room
temperatures are polycrystalline with the grain size of about few tens of nm.
Deposition of metal (in particular low melting ones, such as tin or indium) on a
cryogenically cooled substrate might reduce the grain size. In contrast to whiskers,
the lift-off-fabricated superconducting nanostructures studied so far were all in the
dirty limit `� �. Attempts to quantitatively describe the shape of superconducting
transition of these quasi-1D systems using the TAPS model failed: Experimental
curves for R.T / were always significantly broader than theoretical predictions.
Nevertheless, it was believed that with a certain adjustment of fit parameters (e.g.,
reduction of the effective size of the phase slip center), a reasonable agreement
between the experiments and the TAPS model predictions could be achieved. Later
it was shown that inevitable inhomogeneity of lift-off-fabricated nanostructures,
the presence of node regions and finite size effects can dramatically broaden the
experimentally observed dependencies R.T / making any comparison with the
TAPS theory inconclusive or even impossible (Fig. 2.5) [35].

Even thinner quasi-1D structures, obtained with the molecular template decora-
tion method [22–24], were used to study TAPS. Transmission electron microscopy
(TEM) study of Nb nanowires, fabricated using the approach, revealed polycrys-
talline structure with an average grain size about few nm. To fit the data obtained
in these Nb structures, it has been proposed to represent the measured wire
conductance 1=R.T / as a sum of contributions from normal electrons above the
gap and from TAPS, 1=R.T / D 1=RN C 1=RTAPS. The experimental curves R.T /
could be reasonably well fitted [37, 38] to this phenomenological model (Fig. 2.7).
It is quite surprising that the inhomogeneities in granular Nb nanowires do not seem
to broaden the R.T / curves, which can be fitted by the TAPS model developed for
homogeneous quasi-1D systems.
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Fig. 2.6 Resistance vs. temperature for tin whiskers. (a) Solid line stands for LAMH model [18].
(b) Dashed line represents LAMH model, while other lines – some other models [19]
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Fig. 2.7 Temperature dependence of the resistance of superconducting Nb nanowires obtained
by template decoration method using carbon nanotube as a substrate. Solid lines show fits to the
phenomenological model 1=R.T / D 1=RN C 1=RTAPS. The dashed and dotted lines are some
theoretical curves that include QPS contributions [37]

Fig. 2.8 Resistance versus temperature plots for MoGe nanowires:solid curves indicate fits to the
LAMH-TAPS theory. The fitting parameters are the coherence lengths, 70.0, 19.0, 11.5, 9.4, 5.6,
and 6.7 nm, and the critical temperatures, 1.72, 2.28, 3.75, 3.86, 3.80, and 4.80 K, for samples 1–6,
respectively. Double-step shape of R.T / transitions comes from the superconducting transition of
the contact regions contributing to the 2-probe measurement configuration [40]

Interpretation of some experiments on MoGe nanowires remains under debates.
In earlier reports [39,43] very broadR.T / dependencies were observed and associ-
ated with QPS. However, in later works [38, 40] broadening of the superconducting
transition in similar MoGe structures was interpreted within the TAPS model with
no QPS contribution (Fig. 2.8). On the other hand, later it was argued [44,45] that the
fits were actually produced outside the applicability range of the LAMH theory. To
fit the experimental curvesR.T / for these samples using LAMH model, one should
use values for the electron mean free path ` much larger than the wire diameter
[40], which is rather unrealistic for such structures. We will return to possible
interpretation of these experiments below in connection with QPS effects.
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2.6 Quantum Phase Slips

Technological and experimental considerations for observation of QPS are even
more demanding than for TAPS. As it follows from (2.2), the effective resistance
R.T / exponentially depends on the QPS core action Score. In a typical case of dirty-
limit ` � � superconducting nanostructures Score � T

1=2
C 
=�N , where �N is the

wire resistivity in the normal state. Hence, additionally to making the structure
cross-section 
 as narrow as possible, it is desirable to select superconducting
materials with smaller values of TC and perform experiments on sufficiently dirty
nanowires with higher values of �N . The latter requirement is in line with the well-
known general observation that fluctuation effects are more pronounced in dirtier
systems.

Comparing (2.1) and (2.2) one comes to the conclusion that the crossover
between TAPS and QPS regimes can be expected at temperatures T � �.T /=kB.
For superconductors with typical material parameters and TC �1 K, this condition
implies that QPS effects may become important already at j T � TC j 
 100 mK.
To deal with experimentally measurable resistances, it is necessary to fabricate
nanowires with effective diameters in the range

p

 � 10 nm. The wires should

be sufficiently uniform and homogeneous in order not to override fluctuation
effects by trivial broadening of R.T / dependencies due to wire imperfections and
inhomogeneities [35]. Thus, proper fabrication technology is vitally important for
experimental studies of QPS in quasi-1D superconductors.

Perhaps, the first experimental indication of the effect of quantum fluctuations
was obtained in amorphous MoGe nanowires with effective diameter down top

 � 30 nm [46]. Although the paper [46] was mainly focused on the effect of

disorder in low-dimensional superconductors, it was clearly stated that for the
narrowest samples significantly broader curves R.T / were observed than it is
predicted by the TAPS model (see Fig. 2.9). The effect of quantum fluctuations was
pointed out as a possible reason for this disagreement.

Detailed experimental studies of transport properties of superconducting
nanowires have been carried out by Giordano and co-workers [26, 27, 47–49].
In these experiments, In and In � Pb wires were fabricated with effective diametersp

 in the range from 15 nm to 100 nm with the grain size from 10 to 20 nm. For

wider structures, a reasonable agreement with the TAPS model was observed, while
for thinner wires with

p

 < 50 nm clear deviations from TAPSpredictions were

demonstrated (see Fig. 2.10). The discrepancy was interpreted as a manifestation of
quantum phase slippage. To explain their observations, Giordano and co-workers
proposed phenomenological description based on the Caldeira–Leggett model
for macroscopic quantum tunneling with dissipation [50]. Although qualitative
agreement with this simple phenomenological model has been obtained (Fig. 2.10),
quantitative interpretation of the data is problematic due to poor uniformity of
the thinnest samples. It appears that strong granularity of the wires was most
likely a very important factor in the experiments by Giordano and co-workers. For
instance, estimating Score for the thinnest wires [48] with diameters 16 and 25 nm,
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Fig. 2.9 Resistive transitions for a set of MoGe wires with different width w upon a single film of
thickness 5 nm [46]

Fig. 2.10 Resistance (normalized by its normal state value) as a function of temperature for three
In wires; the sample diameters were 41 nm (•), 50.5 nm (C) and 72 nm (ı). The solid curves are
fits to the TAPS model, while the dashed curves indicate fits to the phenomenological model [26]

for the experimental parameters we obtain, respectively, Score � 300 and � 700.
For uniform wires such huge values of the QPS action would totally prohibit any
signature of quantum phase slips. Since QPS effects were very clearly observed,
it appears inevitable that these samples contained constrictions with diameters
significantly smaller than the quoted average thickness [48].
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Fig. 2.11 R.T / dependencies for the same Pb nanowire with width w D 22 nm and various
thicknesses. Solid lines at the top of the transitions are fits to the Aslamazov–Larkin theory. Dashed
lines are fits to the TAPS model, which clearly yields steeper R.T / dependencies compared to the
experimental data for the thinnest wires [28]

Another set of experiments was performed by Dynes and co-workers [28,29,51].
Suspended stencil technique has been developed enabling fabrication of quench-
condensed granular nanowires with cross-section area 
 down to 15 nm2 and length
L ranging from 1 to 2�m from various materials including several superconductors,
such as Pb; Sn;Pb � Bi. The samples edge roughness was claimed to be about
3 nm. A remarkable feature of the method is the ability to vary the wire thickness
and, hence, its cross-section 
 at a constant width w in situ inside the cryostat in-
between the sessions of truly 4-probeR.T /measurements. The experiments clearly
indicated systematic deviations of the experimental data points R.T / from the
TAPS model predictions (Fig. 2.11). This discrepancy increases as the wires become
narrower. The width of the superconducting transition was found to scale with the
normal state resistance RN . It should be noted that in lead nanowires as narrow
as 15 nm and as thin as 10 nm no low temperature resistance tails were observed.
Instead, a less dramatic but systematic broadening of the superconducting transition
beyond the TAPS limit was noted. On the other hand, long resistance tails were
always present in tin structures fabricated and measured using similar technique.
Very probably, the discrepancy comes from the difference in material parameters
exponentially strongly contributing to the fluctuation-governed R.T / dependence
(2.1) and (2.2).

It has been already mentioned in the previous section, the results of experiments
on MoGe nanowires, fabricated using molecular template method, are still under
debates. In earlier works [39, 43], it was claimed that the resistive state of these
structures is governed by quantum fluctuations, while in later experiments on similar
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Fig. 2.12 Superconducting
transitions of “long” MoGe
nanowires on top of
insulating carbon nanotube
used as the substrate [39, 43].
Symbols stand for
calculations using the QPS
mechanism (2.2)

samples it was argued that the shape of R.T / transitions can be described by
alternative mechanisms: for example, TAPS [38] or Coulomb effects [52–55]. A
bulk of recent experimental data accumulated on MoGe nanowires was recently
reviewed in detail by Bezryadin [56]. The main observations can be summarized
as follows: (a) “shorter” nanowires (L < 200 nm) demonstrate either “weakly
insulating” behavior with clear features of weak Coulomb blockade [52–55], or
relatively steep superconducting transition R.T / with virtually no samples showing
an intermediate regime, (b) “longer” samples (200 nm < L < 1�m) typically
showed the behavior which – similarly to the earlier data [43] – can reasonably
well be interpreted in terms of a crossover between the regimes of small and large
QPS rates (corresponding to respectively superconducting and normal behavior).
The R.T / curves of longer wires in the regime (b) showed a decrease of the
resistance with cooling no matter whether their normal state resistance RN was
smaller or bigger than Rq (contrary to the earlier observation [39]). The crossover
between normal and superconducting behavior of these long samples was found to
be controlled by the wire cross-section 
 or, equivalently, by the ratio RN=L with
the overall picture consistent with the QPS scenario [11–13].

Recently, the experiments on MoGe nanowires were analyzed in detail in a
comprehensive review [2]. The main conclusion of this analysis is that only
the longest MoGe nanowires, fabricated using molecular template method, are
suitable for experimental study of fluctuation-governed mechanism (Fig. 2.12). In
shorter structures, the Josephson physics or/and proximity effects might provide the
dominating contribution.

Arrays of metallic nanowires inside nanopore membranes can be fabricated using
electrochemical deposition. R.T / transitions on bundles of multiple Sn nanowires
showed clear broadening (Fig. 2.13), which was associated with QPS effects [57].
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Fig. 2.13 R.T / curves for 20, 40, 60, 70, and 100 nm wide and 6�m long Sn nanowire arrays
containing, respectively, 18, 1, 8, 15 and 53 wires in the bundle. The solid lines for 20, 40, and
60 nm wires are the results based on the TAPS model near TC and QPS model below TC [57]

Fig. 2.14 R.T / dependence for four Pb nanowires (A) – (D) with diameters 40, 55, 55, and 70 nm,
respectively. The transition is broader for narrower wires [58]

As the number of wires in the measured bundle is not known precisely, quantitative
comparison with theoretical predictions appears complicated.

Experiments with individual Pb nanowires grown using similar technique –
nanopore electrochemical deposition – show clear superconducting transitions,
which get broadened with reduction of the sample diameter (Fig. 2.14). Unfortu-
nately no theory fits was provided by the authors, while the linear scale of the
reported R.T / dependencies complicates an independent quantitative comparison
[58].
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Fig. 2.15 Experimental R.T / dependence for Al nanowires (symbols and black lines). Solid color
lines stand for fits using TAPS (blue) and QPS (red) contributions [30]

A convenient material to study the phenomena associated with QPS mechanism
is aluminum. Its bulk critical temperature T bulk

C � 1:2 K is relatively low, hence, the
QPS rate should be comparatively high (2.2) enabling pronounced manifestation of
the effect. An additional useful feature of aluminum is its peculiar size dependence
of TC. Although the origin of this effect remains unclear, an increase of TC with
reduction of the characteristic dimension of aluminum structures (wire diameter
or film thickness) is a well-known experimental fact and can be taken as granted
[42]. This peculiarity does not allow to interpret broadening ofR.T /dependencies at
temperatures T < T bulk

C in terms of sample inhomogeneities, such as constrictions.
The observed broad R.T / dependencies in long Al nanowires (up to 100�m)

were associated with QPS (Fig. 2.15) [30]. Although rather scarce experimental data
make quantitative conclusions on the QPS mechanism difficult, the experiments on
long Al nanowires [30] have a clear message: (a) the width of the experimental
R.T / transitions is much larger than predicted by TAPS model, (b) no correlations
between the total normal state wire resistance RN (compared to the quantum
resistance unit Rq D 6:45 k	) and superconductivity in such wires was found.

Aluminium was chosen for investigations of 1D superconductivity in [33, 34].
It was demonstrated that low energy ArC ion sputtering can progressively and
nondestructively reduce dimensions of various nanostructures including nanowires
[31, 32]. The penetration depth of ArC ions into Al matrix at acceleration voltages
of �500 eV is about 2 nm and is comparable to the thickness of naturally formed
oxide. The accuracy of the effective diameter determination from the normal
state resistance by SEM and SPM measurements is about ˙2 nm. Only those
samples which showed no obvious geometrical imperfections were used for further
experiments. To a large extent, the method allows one to study the evolution of the
size phenomenon, eliminating artifacts related to uniqueness of samples fabricated
in independent processing runs. The ion beam treatment polishes the surface of the
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Fig. 2.16 R.T / curves for the thinnest samples obtained by progressive diameter reduction for the
same aluminium nanowire with length L D 10�m. The TAPS model fitting is shown with dashed
lines for 11 and 15 nm samples. Fits using QPS mechanism are shown by solid color lines [34]

samples removing inevitable roughness just after fabrication (Fig. 2.4). If there were
no detectable geometrical imperfections in the original (thick) wires, they could not
be introduced in the course of diameter reduction by low energy ion sputtering.

After a sequence of sputterings (alternated with R.T / measurements), the wire
diameter was reduced from

p

 � 100 nm down to

p

 � 10 nm. Experiments were

performed on several sets of aluminum nanowires with length L equal to 1, 5, and
10�m. For larger diameters

p

 & 20 nm, the shape of the R.T / dependence is

rather “sharp” and can be qualitatively understood by the TAPS mechanism. Note
that the abovementioned size-dependent variation of TC in aluminum nanowires
results in broadening of the R.T / transition and significantly reduces applicability
of the TAPS model [35] (Fig. 2.5). When the wire diameter is further reduced,
deviations from the TAPS behavior become obvious (Fig. 2.16). Fits to the TAPS
model fail to provide any reasonable quantitative agreement with experiment for
diameter values below

p

 . 20 nm even if one hypothetically assumes the

existence of unrealistically narrow constrictions not observed by SPM. And, as we
already discussed, broadening of the R.T / dependencies in aluminum nanowires
at T < T bulk

C can hardly be ascribed to geometrical imperfections, such as
constrictions. On the contrary, the broadened R.T / curves of the thines Al samples
(Fig. 2.16) can be nicely fit with the QPS model (2.2). One can conclude that the
most natural interpretation of the results [33, 34] can be associated with quantum
fluctuations.
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Fig. 2.17 R.T / dependencies for the same Ti nanowire with progressively reduced diameter
d D p


 . Dot-dashed lines correspond to fits with TAPS model, and solid lines – to QPS model
with the realistic fitting parameters: `D 3nm, A ' 0:4˙ 0:2, and normal state resistance and the
critical temperature determined from the experiment [59]

In very recent results the same method of progressive cross-section reduction has
been applied to titanium nanowires [59], where the impact of quantum fluctuations
should be observed on relatively ”thick” samples due to the low critical temperature
TC and high normal state resistivity �N (2.2). Indeed, the experiments [59] revealed
pronounced broadening of the R.T / dependencies inconsistent with the TAPS
model, while the fits with the QPS model provide reasonable agreement (Fig. 2.17).

2.7 Conclusion

It is well established that fluctuations play an important role in structures with
reduced dimensionality. In this paper, we addressed fluctuation effects which occur
in ultrathin superconducting wires at temperatures below the mean field BCS critical
temperature. Superconducting properties of such systems have been intensively
studied both theoretically and experimentally. Various techniques were suggested
for fabrication of extremely narrow quasi-one-dimensional superconducting struc-
tures with the effective diameters down to few nanometers.

In relatively thick samples, the finite width of experimental R.T / transition
can be qualitatively understood within the formalism of thermally activated phase
slips (TAPS) [9, 10]. Various parasitic contributions impose serious limitations
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for the quantitative analysis [35]. So far only atomically pure superconducting
single crystals (whiskers) can be considered as suitable for establishment of the
quantitative agreement between the theory and experiment [18, 19].

In significantly narrower nanowires, the superconducting R.T / transition is
much wider than predicted by the TAPS mechanism. On the contrary, the model
employing quantum fluctuations (or quantum phase slips – QPS) [11–13] provides
reasonable agreement with recent experiments.

The effect of quantum fluctuations should have a universal validity, indicating
a breakdown of the zero resistance state in quasi-one-dimensional superconduc-
tors. In addition to the significant importance for the basic understanding of the
superconductivity phenomenon, quantum fluctuations set fundamental limitations
on miniaturization of nanoelectronic components designed to carry a dissipationless
supercurrent.
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Chapter 3
Crossed Andreev Reflection and Spin-Resolved
Non-local Electron Transport

Mikhail S. Kalenkov and Andrei D. Zaikin

Abstract The phenomenon of crossed Andreev reflection (CAR) is known to
play a key role in non-local electron transport across three-terminal normal-
superconducting-normal (NSN) devices. Here, we review our general theory of
non-local charge transport in three-terminal disordered ferromagnet-superconductor-
ferromagnet (FSF) structures. We demonstrate that CAR is highly sensitive to
electron spins and yields a rich variety of properties of non-local conductance,
which we describe non-perturbatively at arbitrary voltages, temperature, degree
of disorder, spin-dependent interface transmissions and their polarizations. We
demonstrate that magnetic effects have different implications: While strong
exchange field suppresses disorder-induced electron interference in ferromagnetic
electrodes, spin-sensitive electron scattering at SF interfaces can drive the total non-
local conductance negative at sufficiently low energies. At higher energies, magnetic
effects become less important and the non-local resistance behaves similarly to the
non-magnetic case. Our results can be applied to multi-terminal hybrid structures
with normal, ferromagnetic and half-metallic electrodes and can be directly tested
in future experiments.
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3.1 Introduction

In hybrid NS structures, quasiparticle current flowing in a normal metal is converted
into that of Cooper pairs inside a superconductor. For quasiparticle energies above
the superconducting gap " > �, this conversion is accompanied by electron–hole
imbalance, which relaxes deep inside a superconductor. At subgap energies " < �,
the physical picture is entirely different. In this case, quasiparticle-to-Cooper-pair
current conversion is provided by the mechanism of Andreev reflection (AR) [1]: A
quasiparticle enters the superconductor from the normal metal at a length of order
of the superconducting coherence length �S and forms a Cooper pair together with
another quasiparticle, while a hole goes back into the normal metal. As a result,
the net charge 2e is transferred through the NS interface, which acquires non-zero
subgap conductance down to T D 0 [2].

AR remains essentially a local effect provided there exists only one NS interface
in the system or, else, if the distance between different NS interfaces greatly exceeds
the superconducting coherence length �. If, however, the distance L between two
adjacent NS interfaces (i.e. the superconductor size) is smaller than (or comparable
with) �, two additional non-local processes come into play (see Fig. 3.1). One such
process corresponds to direct electron transfer between two N-metals through a
superconductor. Another process is the so-called crossed Andreev reflection [3, 4]
(CAR): An electron penetrating into the superconductor from the first N-terminal
may form a Cooper pair together with another electron from the second N-terminal.
In this case, a hole will go into the second N-metal and AR becomes a non-local
effect. This phenomenon of CAR enables direct experimental demonstration of
entanglement between electrons in spatially separated N-electrodes and can strongly
influence non-local transport of electrons in hybrid NSN systems.

Non-local electron transport in the presence of CAR was recently investigated
both experimentally [5–13] and theoretically [14–27] (see also further references
therein) demonstrating a rich variety of physical processes involved in the problem.
It was shown [14] that in the lowest order in the interface transmission and at T D 0

CAR contribution to cross-terminal conductance is exactly cancelled by that from
elastic electron cotunneling (EC), i.e. the non-local conductance vanishes in this
limit. Taking into account higher order processes in barrier transmissions eliminates
this feature and yields non-zero values of cross-conductance [15].

Fig. 3.1 Two elementary
processes contributing to
non-local conductance of an
NSN device: (1) direct
electron transfer and (2)
crossed Andreev reflection
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Another interesting issue is the effect of disorder. It is well known that disorder
enhances interference effects and, hence, can strongly modify local subgap conduc-
tance of NS interfaces in the low energy limit [28–30]. Non-local conductance of
multi-terminal hybrid NSN structures in the presence of disorder was studied in a
number of papers [16–19, 25, 26]. A general quasiclassical theory was constructed
by Golubev and the present authors [25]. It was demonstrated that an interplay
between CAR, quantum interference of electrons and non-local charge imbalance
dominates the behavior of diffusive NSN systems being essential for quantitative
interpretation of a number of experimental observations [8, 10, 11]. In particular,
strong enhancement of non-local spectral conductance was predicted at low energies
due to quantum interference of electrons in disordered N-terminals. At the same
time, non-local resistance R12 remains smooth at small energies and, furthermore,
was found to depend neither on parameters of NS interfaces nor on those of
N-terminals. At higher temperatures, R12 was shown to exhibit a peak caused by
the trade-off between charge imbalance and Andreev reflection.

Yet, another interesting subject is an interplay between CAR and Coulomb
interaction. The effect of electron–electron interactions on AR was investigated in a
number of papers [30–32]. Interactions should also affect CAR, e.g., by lifting the
exact cancellation of EC and CAR contributions [20] already in the lowest order
in tunneling. A similar effect can occur in the presence of external ac fields [24].
A general theory of non-local transport in NSN systems with disorder and electron–
electron interactions was very recently developed by Golubev and one of the present
authors [27] direct relation between Coulomb effects and non-local shot noise. In
the tunneling limit, non-local differential conductance is found to have an S-like
shape and can turn negative at non-zero bias. At high transmissions, CAR turned
out to be responsible both for positive noise cross-correlations and for Coulomb
anti-blockade of non-local electron transport.

An important property of both AR and CAR is that these processes should
be sensitive to magnetic properties of normal electrodes because these processes
essentially depend on spins of scattered electrons. One possible way to demon-
strate spin-resolved CAR is to use ferromagnets (F) instead of normal electrodes
ferromagnet-superconductor-ferromagnet (FSF) structures. First experiments on
such FSF structures [5, 6] illustrated this point by demonstrating the dependence
of non-local conductance on the polarization of ferromagnetic terminals. Hence,
for better understanding of non-local effects in multi-terminal hybrid proximity
structures, it is necessary to construct a theory of spin-resolved non-local transport.
In the case of ballistic systems in the lowest order in tunneling, this task was
accomplished in [14]. Here, we will generalize our quasiclassical approach [15, 25]
to explicitly focus on spin effects and construct a theory of non-local electron
transport in both ballistic and diffusive NSN and FSF structures with spin-active
interfaces beyond lowest order perturbation theory in their transmissions.

The structure of the paper is as follows. In Sect. 3.2, we will describe non-
local spin-resolved electron transport in ballistic NSN structures with spin-active
interfaces. In Sect. 3.3, we will further extend our formalism and evaluate both local
and non-local conductances in SFS structures in the presence of disorder. Our main
conclusions are briefly summarized in Sect. 3.4.
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Fig. 3.2 Schematics of our
NSN device

3.2 Spin-Resolved Transport in Ballistic Systems

Let us consider three-terminal NSN structure depicted in Fig. 3.2. We will assume
that all three metallic electrodes are non-magnetic and ballistic, i.e. the electron
elastic mean free path in each metal is larger than any other relevant size scale.
To resolve spin-dependent effects, we will assume that both NS interfaces are
spinactive, i.e. we will distinguish “spin-up” and “spin-down” transmissions of the
first (D1" and D1#) and the second (D2" and D2#) SN interface. All these four
transmissions may take any value from zero to one. We also introduce the angle '
between polarizations of two interfaces, which can take any value between 0 and 2� .

In what follows effective cross-sections of the two interfaces will be denoted,
respectively, as A1 and A2. The distance between these interfaces L and other
geometric parameters is assumed to be much larger than

pA1;2, i.e. effectively both
contacts are metallic constrictions. In this case, the voltage drops only across SN
interfaces and not inside large metallic electrodes.

For convenience, we will set the electric potential of the S-electrode equal to
zero, V D 0. In the presence of bias voltages, V1 and V2 applied to two normal
electrodes (see Fig. 3.2) the currents I1 and I2 will flow through SN1 and SN2

interfaces. These currents can be evaluated with the aid of the quasiclassical
formalism of nonequilibrium Green–Eilenberger–Keldysh functions [33] OgR;A;K ,
which we briefly specify below.

3.2.1 Quasiclassical Equations

In the ballistic limit, the corresponding Eilenberger equations take the form

h
" O�3 C eV.r; t/ � O�.r; t/; OgR;A;K .pF ; "; r; t/

i

C ivFr OgR;A;K.pF ; "; r; t/ D 0;

(3.1)



3 Crossed Andreev Reflection and Spin-Resolved Non-local Electron Transport 71

where Œ Oa; Ob� D Oa Ob � Ob Oa, " is the quasiparticle energy, pF D mvF is the electron
Fermi momentum vector and O�3 is the Pauli matrix in Nambu space. The functions
OgR;A;K also obey the normalization conditions . OgR/2 D . OgA/2 D 1 and OgR OgK C
OgK OgA D 0. Here and below the product of matrices is defined as time convolution.

Green functions OgR;A;K and O� are 4 � 4 matrices in Nambu and spin spaces. In
Nambu space, they can be parameterized as

OgR;A;K D
�
gR;A;K f R;A;K

Qf R;A;K QgR;A;K
�
; O� D

�
0 �i
2

��i
2 0

�
; (3.2)

where gR;A;K , f R;A;K , Qf R;A;K , QgR;A;K are 2 � 2 matrices in the spin space, � is
the BCS order parameter and 
i are Pauli matrices. For simplicity, we will only
consider the case of spin-singlet isotropic pairing in the superconducting electrode.
The current density is related to the Keldysh function OgK according to the standard
relation

j.r; t/ D eN0

8

Z
d"
˝
vF SpŒ O�3 OgK.pF ; "; r; t/�

˛
; (3.3)

whereN0 D mpF =2�
2 is the density of state at the Fermi level and angular brackets

h:::i denote averaging over the Fermi momentum.

3.2.2 Riccati Parameterization

The above matrix Green–Keldysh functions can be conveniently parameterized by
four Riccati amplitudes �R;A, Q�R;A and two “distribution functions” xK , QxK (here
and below we chose to follow the notations [34]):

OgK D 2 ONR

�
xK � �R QxK Q�A ��R QxK C xK�A

� Q�RxK C QxK Q�A QxK � Q�RxK�A
�

ONA; (3.4)

where functions �R;A and Q�R;A are Riccati amplitudes

OgR;A D ˙ ONR;A

�
1C �R;A Q�R;A 2�R;A

�2 Q�R;A �1 � Q�R;A�R;A
�

(3.5)

and ONR;A are the following matrices

ONR;A D
�
.1 � �R;A Q�R;A/�1 0

0 .1 � Q�R;A�R;A/�1
�
: (3.6)

With the aid of the above parameterization, one can identically transform the qua-
siclassical equations (3.1) into the following set of effectively decoupled equations
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for Riccati amplitudes and distribution functions [34]

ivFr�R;A C Œ"C eV.r; t/��R;A C �R;AŒ" � eV.r; t/�

D �R;A��i
2�R;A ��i
2;
(3.7)

ivFr Q�R;A � Œ" � eV.r; t/� Q�R;A � Q�R;AŒ"C eV.r; t/�

D Q�R;A�i
2 Q�R;A ���i
2;
(3.8)

ivFrxK C Œ"C eV.r; t/�xK � xKŒ"C eV.r; t/�

��R��i
2x
K � xK�i
2 Q�A D 0;

(3.9)

ivFr QxK � Œ" � eV.r; t/� QxK C QxKŒ" � eV.r; t/�

� Q�R�i
2 QxK � i
2�A D 0:
(3.10)

Depending on the particular trajectory, it is also convenient to introduce a
“replica” of both Riccati amplitudes and distribution functions which – again
following the notations [34,35] – will be denoted by capital letters � and X . These
“capital” Riccati amplitudes and distribution functions obey the same (3.7)–(3.10)
with the replacement � ! � and x ! X . The distinction between different Riccati
amplitudes and distribution functions will be made explicit below.

3.2.3 Boundary Conditions

Quasiclassical equations should be supplemented by appropriate boundary con-
ditions at metallic interfaces. In the case of specularly reflecting spin-degenerate
interfaces, these conditions were derived by Zaitsev [36] and later generalized to
spin-active interfaces [37], see also [38] for recent review on this subject.

Before specifying these conditions, it is important to emphasize that the appli-
cability of the Eilenberger quasiclassical formalism with appropriate boundary
conditions to hybrid structures with two or more barriers is, in general, a non-trivial
issue [39, 40]. Electrons scattered at different barriers interfere and form bound
states (resonances), which cannot be correctly described within the quasiclassical
formalism employing Zaitsev boundary conditions or their direct generalization.
Here, we avoid this problem by choosing the appropriate geometry of our NSN
device, see Fig. 3.2. In our system any relevant trajectory reaches each NS interface
only once whereas the probability of multiple reflections at both interfaces is small
in the parameter A1A2=L

4 � 1. Hence, resonances formed by multiply reflected
electron waves can be neglected, and our formalism remains adequate for the
problem in question.

It will be convenient for us to formulate the boundary conditions directly in
terms of Riccati amplitudes and the distribution functions. Let us consider the
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Fig. 3.3 Riccati amplitudes
for incoming and outgoing
trajectories from the both
sides of the interface

first NS interface and explicitly specify the relations between Riccati amplitudes
and distribution functions for incoming and outgoing trajectories, see Fig. 3.3. The
boundary conditions for � R

1 , Q� A
1 and XK

1 can be written in the form [35]

� R
1 D rR1l�

R
1 S

C
11 C tR1l �

R
10S

C
110 ; (3.11)

Q� A
1 D S11 Q�A1 QrA1r C S110 Q�A10

QtA1r ; (3.12)

XK
1 D rR1lx

K
1 QrA1r C tR1lx

K
10

QtA1r � aR1l QxK10 QaA1r : (3.13)

Here, we defined the transmission (t), reflection (r), and branch-conversion (a)
amplitudes as:

rR1l D CŒ.ˇR101/
�1SC

11 � .ˇR1010/
�1SC

110 �
�1.ˇR101/

�1; (3.14)

tR1l D �Œ.ˇR101/
�1SC

11 � .ˇR1010/
�1SC

110 �
�1.ˇR1010/

�1; (3.15)

QrA1r D C.ˇA101/
�1ŒS11.ˇA101/

�1 � S110.ˇA1010/
�1��1; (3.16)

QtA1r D �.ˇA1010/
�1ŒS11.ˇA101/

�1 � S110.ˇA1010/
�1��1; (3.17)

aR1l D .� R
1 S11 � S11�

R
1 /.

Q̌R
110/

�1; (3.18)

QaA1r D . Q̌A
110/

�1.SC
11

Q� A
1 � Q�A1 SC

11/; (3.19)

where

ˇRij D SC
ij � �Rj S

C
ij Q�Ri ; Q̌R

ij D S ji � Q�Rj Sji�
R
i ; (3.20)

ˇAij D Sij � �Ai S ij Q�Aj ; Q̌A
ij D SC

ji � Q�Ai SC
ji �

A
j : (3.21)

Similarly, the boundary conditions for Q� R
1 , � A

1 , and QXK
1 take the form:

Q� R
1 D QrR1l Q�R1 S11 C QtR1l Q�R10S101; (3.22)

� A
1 D SC

11�
A
1 r

A
1r C SC

101
�A10 t

A
1r ; (3.23)

QXK
1 D QrR1l QxK1 rA1r C QtR1l QxK10 t

A
1r � QaR1lxK10 a

A
1r ; (3.24)
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Fig. 3.4 Riccati amplitudes for incoming and outgoing trajectories for an NSN structure with
two barriers. The arrows define quasiparticle momentum directions. We also indicate relevant
Riccati amplitudes and distribution functions parameterizing the Green–Keldysh function for the
corresponding trajectory

where

QrR1l D CŒ. Q̌R
101/

�1S11 � . Q̌R
1010/

�1S101�
�1. Q̌R

101/
�1; (3.25)

tR1l D �Œ. Q̌R
101/

�1S11 � . Q̌R
1010/

�1S101�
�1. Q̌R

1010/
�1; (3.26)

rA1r D C. Q̌A
101/

�1ŒSC
11.

Q̌A
101/

�1 � SC
101
. Q̌A
1010/

�1��1; (3.27)

QtA1r D �. Q̌A
1010/

�1ŒSC
11.

Q̌A
101/

�1 � SC
101
. Q̌A
1010/

�1��1; (3.28)

QaR1l D . Q� R
1 S

C
11 � SC

11 Q�R1 /.ˇR110/
�1; (3.29)

aA1r D .ˇA110/
�1.S11� A

1 � �A1 S11/: (3.30)

Boundary conditions for � R;A
10 , Q� R;A

10 , XK
10 and QXK

10 can be obtained from the above
equations simply by replacing 1 $ 10.

The matrices S11, S110 , S101 and S1010 constitute the components of the S-matrix
describing electron scattering at the first interface:

S D
�
S11 S110

S101 S1010

�
; SSC D 1 (3.31)

In our three terminal geometry non-local conductance arises only from trajec-
tories that cross both interfaces, as illustrated in Fig. 3.4. Accordingly, the above
boundary conditions should be employed at both NS interfaces.

Finally, one needs to specify the asymptotic boundary conditions far from NS
interfaces. Deep in metallic electrodes we have
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�R1 D Q�R1 D �A1 D Q�A1 D 0; (3.32)

xK1 D h0."C eV1/; QxK1 D �h0." � eV1/; (3.33)

�R2 D Q�R2 D �A2 D Q�A2 D 0; (3.34)

xK2 D h0."C eV2/; QxK2 D �h0." � eV2/; (3.35)

where h0."/ D tanh."=2T / – equilibrium distribution function. In the bulk of
superconducting electrode, we have

Q�R10 D �a."/i
2; �A10 D a�."/i
2; (3.36)

QxK10 D �Œ1 � ja."/j2�h0."/; (3.37)

�R20 D a."/i
2; Q�A20 D �a�."/i
2; (3.38)

xK20 D Œ1 � ja."/j2�h0."/; (3.39)

where we denoted a."/ D �." � p
"2 ��2/=�.

3.2.4 Green Functions

With the aid of the above equations and boundary conditions, it is straightforward to
evaluate the quasiclassical Green–Keldysh functions for our three-terminal device
along any trajectory of interest. For instance, from the boundary conditions at the
second interface, we find

� R
20 D ia."/A2
2; (3.40)

where A2 D S2020
2S
C
2020
2. Integrating (3.7) along the trajectory connecting both

interfaces and using (3.40) as the initial condition we immediately evaluate the
Riccati amplitude at the first interface:

�R10 D i
aA2 C .aA2"C�/Q

1 � .aA2�C "/Q

2; (3.41)

Q D tanh Œi˝L=vF �

˝
; ˝ D

p
"2 ��2: (3.42)

Employing the boundary conditions again we obtain

� R
1 D iS110K�1

21 ŒaA2 C .aA2"C�/Q� 
2S
C
110 ; (3.43)

Q� R
1 D �iaSC

101
2S1010K�1
21 Œ1 � .aA2�C "/Q�S�1

1010S101; (3.44)

where
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Kij D .1 � a2AiAj /� �
".1C a2AiAj /C�a.Ai C Aj /

�
Q; (3.45)

A1 D 
2S
C
1010
2S1010 : (3.46)

We also note that the relation .� R;A/C D Q� A;R and .�R;A/C D Q�A;R makes
it unnecessary (while redundant) to separately calculate the advanced Riccati
amplitudes.

Let us now evaluate the distribution functions at both interfaces. With the aid of
the boundary conditions at the second interface, we obtain

XK
20 D S2020SC

2020

�
1 � jaj2 h0."/C S202S

C
202x

K
2

� jaj2S2020
2S
C
220S220
2S

C
2020 QxK2 : (3.47)

Integrating (3.9) along the trajectory connecting both interfaces with initial condi-
tion for XK

20 , we arrive at the expression for xK10

xK10 D Œ1 � .aA2�C "/Q��1 XK
20

�.1 � tanh2 iL˝=vF / Œ1 � .aA2�C "/Q�C
�1

: (3.48)

Then we can find distribution functions at the first interface. On the normal metal
side of the interface, we find

XK
1 D rR1lx

K
1 r

RC

1l C tR1lx
K
10 t

RC

1l C aR1la
RC

1l

�
1 � jaj2h0."/ (3.49)

where

rR1l D S110K�1
21

h
.1 � .aA2�C "/Q/SC

1010S
C�1

101

� a.aA2 C .aA2"C�/Q/
2S
C
1010
2S

C�1

101

i
;

(3.50)

tR1l D S110K�1
21 .1� .aA2�C "/Q/; (3.51)

aR1l D iS110K�1
21 .aA2 C .aA2"C�/Q/
2S

C
1010 : (3.52)

The corresponding expression for QXK
1 is obtained analogously. We get

QXK
1 D QrR1l QxK1 QrRC

1l � QtR1l QtR
C

1l

�
1 � jaj2h0."/� QaR1lxK10 QaRC

1l ; (3.53)

where

QrR1l D �
h
S�1
101S1010
2.1 � .aA2�C "/Q/

�S�1
101
2S1010a.aA2 C .aA2"C�/Q/

i
K�1
12 
2S

C
110 ; (3.54)
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QtR1l D SC
101S

C�1

1010 
2.1 � .aA2�C "/Q/K�1
12 
2S

C
1010 ; (3.55)

QaR1l D iaSC
101

2S1010K�1

21 .1 � .aA2�C "/Q/: (3.56)

Combining the above results for the Riccati amplitudes and the distribution func-
tions, we can easily evaluate the Keldysh–Green function at the first interface. For
instance, for the trajectory 1out (see Fig. 3.4), we obtain

gK1out D 2.XK
1 � � R

1 QxK1 � RC

1 /; QgK1out D 2 QxK1 : (3.57)

The Keldysh–Green function for the trajectory 1in is evaluated analogously, and
we get

gK
1in D 2xK1 ; QgK

1in D 2. QXK
1 � Q� R

1 x
K
1

Q� RC

1 /: (3.58)

3.2.5 Non-local Conductance: General Results

Now we are ready to evaluate the current I1 across the first interface. This current
takes the form:

I1 D IBTK
1 .V1/ � G0

8e

Z
d" Sp. O�3 OgK1out � O�3 OgK

1in/; (3.59)

where

G0 D 8�1�2N1N2

Rqp
2
FL

2
(3.60)

is the normal state conductance of our device at fully transparent interfaces, pF �1.2/
is normal to the first (second) interface component of the Fermi momentum for
electrons propagating straight between the interfaces, N1;2 D p2FA1;2=4� define
the number of conducting channels of the corresponding interface, Rq D 2�=e2 is
the quantum resistance unit.

Here, IBTK
1 .V1/ stands for the contribution to the current through the first

interface coming from trajectories that never cross the second interface. This is just
the standard BTK contribution [2,35]. The non-trivial contribution is represented by
the last term in (3.59), which accounts for the presence of the second NS interface.
We observe that this non-local contribution to the current is small as / 1p2FL

2. This
term will be analyzed in detail below.

The functions OgK
1in and OgK

1out are the Keldysh Green functions evaluated on the
trajectories 1in and 1out, respectively. Using the above expression for the Riccati
amplitudes and the distribution functions, we find
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Sp. O�3 OgK1out � O�3 OgK
1in/ D 2 SpŒrR1l r

RC

1l � Q� R
1

Q� RC

1 � 1�.h0."C eV1/ � h0."//
� 2 SpŒQrR1l QrR

C

1l � � R
1 �

RC

1 � 1�.h0." � eV1/� h0."//
2.1� tanh2 iL˝=vF / SpŒK�1

21 fS202S
C
202.h0."C eV2/ � h0."//

C jaj2S2020
2S
C
220S220
2S

C
2020.h0." � eV2/� h0."//gKC�1

21

� .SC
110S110 � ja2jSC

1010
2S101S
C
101
2S1010/�; (3.61)

where we explicitly used the fact that in equilibrium Sp. O�3 OgK
1out � O�3 OgK

1in/ 	 0.
Substituting (3.61) into (3.59), we finally obtain

I1 D IBTK
1 .V1/C I11.V1/C I12.V2/: (3.62)

The correction to the local BTK current (arising from trajectories crossing also the
second NS interface) has the following form

I11.V1/ D �G0
4e

Z
d"
˚
SpŒrR1l r

RC

1l � Q� R
1

Q� RC

1 � 1�.h0."C eV1/ � h0."//

� SpŒQrR1l QrR
C

1l � � R
1 �

RC

1 � 1�.h0." � eV1/ � h0."//
�
; (3.63)

while for the cross-current we obtain

I12.V2/ D �G0
4e

Z
d".1� tanh2 iL˝=vF /

� SpŒK�1
21 fS202S

C
202
.h0."C eV2/ � h0."//

C jaj2S2020
2S
C
220S220
2S

C
2020.h0." � eV2/� h0."//gKC�1

21

� .SC
110S110 � ja2jSC

1010
2S101S
C
101
2S1010/�: (3.64)

Equations (3.62)–(3.64) fully determine the current across the first interface at
arbitrary voltages, temperature and spin-dependent interface transmissions.

In right-hand side of (3.64), we can distinguish four contributions with different
products of S -matrices. Each of these terms corresponds to a certain sequence
of elementary events, such as transmission, reflection, Andreev reflection and
propagation between interfaces. Diagrammatic representation of these four terms
is offered in Fig. 3.5. The amplitude of each of the processes is given by the
product of the amplitudes of the corresponding elementary events. For instance,
the amplitude of the process in Fig. 3.5c is f D �iS110 t21S2020a
2S

C
220 . In (3.64),

this process is identified by the term Sp.ff C/ with the hole distribution function
as a prefactor. It is straightforward to observe that the processes of Fig. 3.5a, b and
d correspond to the other three terms in (3.64). We also note that the processes of
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a b

c d

Fig. 3.5 Diagrams representing four different contributions to the cross-current I12 (3.64).
Solid (dotted) lines correspond to propagating electron-like (hole-like) excitations and t21 D
K�1
21 = cosh.iL˝=vF /

Fig. 3.5a, d describe direct electron (hole) transport, while the processes of Fig. 3.5b,
c correspond to the contribution of CAR.

Assuming that both interfaces possess inversion symmetry and reflection sym-
metry in the plane normal to the corresponding interface, we can choose S-matrices
in the following form

S11 D S1010 D ST11 D ST1010 D U.'/

�p
R1"ei�1=2 0

0
p
R1#e�i�1=2

�
UC.'/; (3.65)

S110 D S101 D ST110 D ST101 D U.'/i

�p
D1"ei�1=2 0

0
p
D1#e�i�1=2

�
UC.'/; (3.66)

S22 D S2020 D S22 D S2020 D
�p

R2"ei�2=2 0

0
p
R2#e�i�2=2

�
; (3.67)

S220 D S202 D S220 D S202 D i

�p
D2"ei�2=2 0

0
p
D2#e�i�2=2

�
: (3.68)

Here,R1.2/".#/ D 1�D1.2/".#/ are the spin-dependent reflection coefficients of both
NS interfaces, �1;2 are spin-mixing angles andU.'/ is the rotation matrix in the spin
space, which depends on the angle ' between polarizations of the two interfaces,

U.'/ D exp.�i'
1=2/ D
�

cos.'=2/ �i sin.'=2/
�i sin.'=2/ cos.'=2/

�
: (3.69)

In general, spin current is not conserved in heterostructures with spin-active
interfaces. However, single barrier with S -matrix (3.67)–(3.68) does not violate spin
current conservation [41]. It is easy to show that in our two barrier structure with
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interface S -matrices (3.65)–(3.68) spin current is conserved in the normal state for
arbitrary barriers polarizations and in superconducting state for collinear barriers
polarizations.

Substituting the above expressions for the S -matrices into (3.63) and (3.64), we
arrive at the final results for both I11.V1/ and I12.V2/, which will be specified further
below.

3.2.6 Cross-Current

First let us consider the cross-current I12.V2/. From the above analysis, we obtain

I12.V2/ D �G0
4e

Z
d"



tanh

"C eV2

2T
� tanh

"

2T

�
1� tanh2 iL˝=vF
W.z1; z2; "; '/

�
n�
D1#D2# � jaj2D1"D2#.R1# C R2"/C jaj4D1#R1"D2#R2"

� jK.z1; z2; "/j2 Qc
C �

D1"D2" � jaj2D1#D2".R1" C R2#/C jaj4D1"R1#D2"R2#
� jK.z�

1 ; z
�

2 ; "/j2 Qc
C �

D1"D2# � jaj2D1#D2#.R1" C R2"/C jaj4D1"R1#D2#R2"
� jK.z�

1 ; z2; "/j2Qs
C �

D1#D2" � jaj2D1"D2".R1# C R2#/C jaj4D1#R1"D2"R2#
� jK.z1; z�

2 ; "/j2Qs
o
;

(3.70)

where we define Qc D cos2.'=2/, Qs D sin2.'=2/,

K.z1; z2; "/ D .1 � a2z1z2/� �
".1C a2z1z2/C�a.z1 C z2/

�
Q; (3.71)

W.z1; z2; "; '/ D jK.z1; z2; "/K.z�
1 ; z

�
2 ; "/ cos2.'=2/

C K.z�
1 ; z2; "/K.z1; z

�
2 ; "/ sin2.'=2/j2

(3.72)

and zi D p
Ri"Ri# exp.i�i / ( i D 1; 2).

Equation (3.70) represents our central result. It fully determines the non-local
spin-dependent current in our three-terminal ballistic NSN structure at arbitrary
voltages, temperature, interface transmissions and polarizations.

Let us introduce the non-local differential conductance

G12.V2/ D � @I1
@V2

D �@I12.V2/
@V2

: (3.73)

Before specifying this quantity further it is important to observe that in general
the conductance G12.V2/ is not an even function of the applied voltage V2. This
asymmetry arises due to formation of Andreev bound states in the vicinity of a spin-
active interface [42, 43]. It disappears provided the spin-mixing angles �1 and �2
remain equal to 0 or � .
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In the normal state, we have I12.V2/ D �GN12V2, where

GN12 D G0

2

�
.D1#D2# CD1"D2"/ cos2.'=2/

C .D1"D2# CD1#D2"/ sin2.'=2/
�
: (3.74)

Turning to the superconducting state, let us consider the limit of low temperatures
and voltage T; V2 � �. In this limit, only subgap quasiparticles contribute to the
cross-current and the differential conductance becomes voltage-independent, i.e.
I12 D �G12V2, where

G12 D G0.1 � tanh2 L�=vF /

(
D1"D1#D2"D2#

jK.z1; z2; 0/j2 Qc C jK.z1; z�
2 ; 0/j2 Qs

C .D1" �D1#/.D2" �D2#/
jK.z1; z2; 0/j2 Qc � jK.z1; z�

2 ; 0/j2 Qs�jK.z1; z2; 0/j2 Qc C jK.z1; z�
2 ; 0/j2 Qs

2

)

:

(3.75)

where, as before, Qc D cos2.'=2/ and Qs D sin2.'=2/. In the case of spin-isotropic
interfaces, (3.75) and (3.70) reduce to the results [15].

Provided at least one of the interfaces is spin-isotropic, the conductance (3.75) is
proportional to the product of all four transmissions D1"D1#D2"D2#, i.e. it differs
from zero only due to processes involving scattering with both spin projections
at both NS interfaces. As in the case of spin-isotropic interfaces [15], the value
G12 (3.75) gets strongly suppressed with increasing L, and at sufficiently high
interface transmissions this dependence is in general non-exponential in L. In the
spin-degenerate case for a given L the non-local conductance reaches its maximum
for reflectionless barriersD1;2 D 1. In this case, we arrive at a simple formula

G12 D G0.1 � tanh2 L�=vF /: (3.76)

We observe that for small L � vF =� the conductance G12 identically coincides
with its normal state value GN12 	 G0 at any temperature and voltage [15]. This
result implies that CAR vanishes for fully open barriers. Actually, this conclusion is
general and applies not only to small but also to any value of L, i.e. the result (3.76)
is determined solely by the process of direct electron transfer between N-terminals
for all L.

At the first sight, this result might appear counterintuitive since the behaviour
of ordinary (local) AR is just the opposite: It reaches its maximum at full barrier
transmissions. The physics behind vanishing of CAR for perfectly transparent NS
interfaces is simple. One observes (cf. Fig. 3.1) that CAR inevitably implies the
flow of Cooper pairs out of the contact area into the superconducting terminal. This
flow is described by electron trajectories which end deep in the superconductor. On
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the contrary, it is obvious that CAR requires “mixing” of these trajectories with
those going straight between two normal terminals. Provided there exists no normal
electron reflection at both NS interfaces such mixing does not occur, CAR vanishes
and the only remaining contribution to the non-local conductance is one from direct
electron transfer between N-terminals.

This situation is illustrated by the diagrams in Fig. 3.5. It is obvious that in
the case of non-reflecting NS interfaces, only the process of Fig. 3.5a survives,
whereas all other processes (Fig. 3.5b, c and d) vanish for reflectionless barriers
with R1.2/".#/ D 0. The situation changes provided at least one of the transmissions
is smaller than one. In this case, scattering at SN interfaces mixes up trajectories
connecting N1 and N2 terminals with ones going deep into and coming from the
superconductor. As a result, all four processes depicted in Fig. 3.5 contribute to the
cross-current and CAR contribution to G12 does not vanish.

In the limit jeV2j; T � � and at zero spin-mixing angles �1;2 D 0 from (3.75),
we obtain

G12 D G0
1 � tanh2 L�=vF

jK.z1; z2; 0/j2
˚
D1"D1#D2"D2#

C .D1" �D1#/.D2" �D2#/ cos'
�
: (3.77)

In the lowest (first order) order in the transmissions of both interfaces and for
collinear interface polarizations (3.77) reduces to the result by Falci et al. [14]
provided we identify the tunneling density of states N0D1", N0D1#, N0D2", and
N0D2# with the corresponding spin-resolved densities of states in the ferromagnetic
electrodes. For zero spin-mixing angles and low voltages, the L-dependence of the
non-local conductanceG12 reduces to the exponential form G12 / exp.�2L�=vF /
either in the limit of small transmissions or large L � vF =�.

At arbitrary voltages and temperatures, the cross-current has a simple ' depen-
dence in the limit of zero spin mixing angles (�1;2 D 0)

I12.'; V2/ D I12.' D 0; V2/ cos2.'=2/C I12.' D �; V2/ sin2.'=2/; (3.78)

i.e. in this limit at any ' the non-local current is equal to a proper superposition
of the two contributions corresponding to parallel (' D 0) and antiparallel
(' D �) interface polarizations. Some typical curves for the differential non-local
conductance are presented in Fig. 3.6 at sufficiently high interface transmissions and
zero spin mixing angles �1;2 D 0.

Let us now turn to the limit of highly polarized interfaces, which is accounted
for by taking the limit of vanishing spin-up (or spin-down) transmission of each
interface. In this limit, our model describes an HSH structure, where H stands for
fully spin-polarized half-metallic electrodes. In this case, we obtain (D1" D D1,
D1# D 0, D2" D D2, and D2# D 0)
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Fig. 3.6 Zero temperature differential non-local conductance as a function of voltage at zero spin-
mixing angles �1;2 D 0.

I12.V2/ D �G0
4e

Z
d" Œh0."C eV2/� h0."/�

1 � tanh2 iL˝=vF
W.z1; z2; "; '/

D1D2

�
n�
1C jaj4� jK.z�

1 ; z
�
2 ; "/j2 Qc � 2jaj2jK.z1; z�

2 ; "/j2 Qs
o
: (3.79)

We observe that the non-local conductance has opposite signs for parallel (' D 0)
and antiparallel (' D �) interface polarizations. We also emphasize that, as it is
also clear from (3.77), the cross-conductance G12 of HSH structures – in contrast
to that for NSN structures – does not vanish already in the lowest order in barrier
transmissionsD1"D2".

In general, the non-local conductance is very sensitive to particular values of the
spin-mixing angles �1 and �2, as illustrated, e.g., in Fig. 3.7. Comparing the voltage
dependencies of the non-local conductance evaluated for the same transmissions
and presented in Figs. 3.6 and 3.7, we observe that they can differ drastically at zero
and non-zero values of �1;2.

At low voltages and temperatures and at zero-spin mixing angles, the non-local
conductance of HSH structures is determined by (3.77) with D1# D D2# D 0. For
fully open barriers (for “spin-up” electrons)D1" D D2" D 1, we obtain

G12 D G0.1 � tanh2 L�=vF / cos': (3.80)



84 M.S. Kalenkov and A.D. Zaikin

Fig. 3.7 The same as in Fig. 3.6 for �1 D �=2, �2 D �=4

Interestingly, for ' D 0 this expression exactly coincides with that for fully open
NSN structures, (3.76). At the same time for small L, the result (3.80) turns out to
be 2 times bigger than the analogous expression in the normal case, i.e. for fully
open HNH structures, cf. (3.74). This result can easily be interpreted in terms of
diagrams in Fig. 3.5. We observe that – exactly as for the spin degenerate case –
CAR diagrams of Fig. 3.5b,c vanish for reflectionless barriers, whereas diagrams
of Fig. 3.5a,d describing direct electron transfer survive and both contribute to G12.
Thus, CAR vanishes identically also for fully open HSH structures. The factor of
2 difference with the normal case is due to the fact that the diagram of Fig. 3.5d
vanishes in the normal limit.

3.2.7 Correction to BTK

Using the above formalism, one can easily generalize the BTK result to the case of
spin-polarized interfaces [35]. For the first interface, we have

IBTK
1 .V1/ D N1

Rqe

Z
d"Œh0."C eV1/ � h0."/�.1C jaj2/

�
� jvx1 j

vF

�
D1"

1 �R1#jaj2
j1� z1a2j2 CD1#

1 � R1"jaj2
j1 � z�

1 a
2j2
��
: (3.81)
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Here, transmission and reflection coefficients as well as the spin mixing angle
depend on the direction of the Fermi momentum. In the spin-degenerate case, the
above expression reduces to the standard BTK result [2].

Evaluating the non-local correction to the BTK current due to the presence of the
second interface, we arrive at a somewhat lengthy general expression

I11.V1/ D G0

2e

Z
d".h0."C eV1/� h0."//

1

W.z1; z2; "; '/

n
2W.z1; z2; "; '/

� R1"
ˇ
ˇ QcK.z1=R1"; z2; "/K.z�

1 ; z
�
2 ; "/C QsK.z1=R1"; z�

2 ; "/K.z
�
1 ; z2; "/

ˇ
ˇ2

� R1#
ˇ̌ QcK.z�

1 =R1#; z�
2 ; "/K.z1; z2; "/C QsK.z�

1 =R1#; z2; "/K.z1; z�
2 ; "/

ˇ̌2o

C G0

4e

Z
d".h0."C eV1/� h0."// D1"D1#

W.z1; z2; "; '/

�
n
jaj2ˇˇ QcK.0; z2; "/K.z�

1 ; z
�
2 ; "/C QsK.0; z�

2 ; "/K.z
�
1 ; z2; "/

ˇ
ˇ2

C jaj2ˇˇ QcK.0; z�
2 ; "/K.z1; z2; "/C QsK.0; z2; "/K.z1; z�

2 ; "/
ˇ
ˇ2

C 1

jaj2
ˇ
ˇ QcK 0.z�

2 ; "/K.z1; z2; "/C QsK 0.z2; "/K.z1; z�
2 ; "/

ˇ
ˇ2

C 1

jaj2
ˇ
ˇ QcK 0.z2; "/K.z�

1 ; z
�
2 ; "/C QsK 0.z�

2 ; "/K.z
�
1 ; z2; "/

ˇ
ˇ2
o

C G0

e
R2"R2# sin2.�2=2/Qs Qc

�
Z

d".h0."C eV1/ � h0."// .1 � tanh2 iL˝=vF /2

W.z1; z2; "; '/

�
h
jaj2.D2

1" CD2
1#/� 2jaj4D1"D1#.R1" CR1#/

C jaj6.D2
1"R

2
1# CD2

1#R
2
1"/
i
; (3.82)

whereK 0.z2; "/ D @K.z1; z2; "/=@z1. This expression gets significantly simplified in
the limit of zero spin-mixing angles �1;2 D 0 in which case we obtain

I11.V1/ D G0

2e

Z
d".h0."C eV1/ � h0."//

�
(

2 � R1"
jK.z1=R1"; z2; "/j2

jK.z1; z2; "/j2 �R1# jK.z1=R1#; z2; "/j2
jK.z1; z2; "/j2

CD1"D1#
ja."/j2jK.0; z2; "/j2 C jK 0.z2; "/j2=ja."/j2

jK.z1; z2; "/j2
)

: (3.83)
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In contrast to the expression for the cross-current I12 (cf. (3.78)), in the limit of zero
spin-mixing angles the correction I11 to the BTK current does not depend on the
angle ' between the interface polarizations. In particular, at jeV1j; T � � we have
I11 D G11V1 where

G11 D G0.D1" CD1#/
.1 � z22/.1 � tanh2 L�=vF /

Œ1C z1z2 C .z1 C z2/ tanhL�=vF �2

C G0D1"D1#
.1C z2 tanhL�=vF /2 C 3.z2 C tanhL�=vF /2

Œ1C z1z2 C .z1 C z2/ tanhL�=vF �2
: (3.84)

In the tunneling limitD1";D1#;D2";D2# � 1 we reproduce the result of Ref. [14]

G11 D G0

4
.D1" CD1#/.D2" CD2#/ exp.�2L�=vF /; (3.85)

which turns out to hold at any value '.
As compared to the BTK conductance, the CAR correction (3.82) contains

an extra small factor A2=L
2 and, hence, in many cases remains small and can

be neglected. On the contrary, since CAR involves tunneling of one electron
through each interface, for strongly asymmetric structures with D1";D1# � 1 and
D2";D2# � 1, it can actually strongly exceed the BTK conductance. Indeed, for
D1"# � 1, R2"R2# � 1 and provided the spin mixing angle �1 is not very close to
� from (3.82) we get

G11 D G0.D1" CD1#/
cosh.2L�=vF /C cos �1 sinh.2L�=vF /

; (3.86)

i.e. for
D1"D1#

.D1" CD1#/
<

A2

L2
exp.�2L�=vF /

the contribution (3.86) may well exceed the BTK term GBTK
1 / D1"D1#.

The existence of such a non-trivial regime further emphasizes the importance
of the mechanism of non-local Andreev reflection in multi-terminal hybrid NSN
structures.

3.3 Diffusive FSF Structures

Let us now turn to the effect of disorder. In what follows we will consider a three-
terminal diffusive FSF structure schematically shown in Fig. 3.8. Two ferromagnetic
terminals F1 and F2 with resistances rN1 and rN2 and electric potentials V1 and V2
are connected to a superconducting electrode of length L with normal state (Drude)
resistance rL and electric potential V D 0 via tunnel barriers. The magnitude



3 Crossed Andreev Reflection and Spin-Resolved Non-local Electron Transport 87

Fig. 3.8 FSF structure under
consideration

of the exchange field h1;2 D jh1;2j in both ferromagnets F1 and F2 is assumed
to be much bigger than the superconducting order parameter � of the S-terminal
and, on the contrary, much smaller than the Fermi energy, i.e. � � h1;2 � �F .
The latter condition allows to perform the analysis of our FSF system within
the quasiclassical formalism of Usadel equations for the Green–Keldysh matrix
functionsG formulated below.

3.3.1 Quasiclassical Equations

In each of our metallic terminals, the Usadel equations can be written in the form
[33]

iDr. LGr LG/ D Œ L̋ C eV; LG�; LG2 D 1; (3.87)

where D is the diffusion constant, V is the electric potential, LG and L̋ are 8 � 8

matrices in Keldysh-Nambu-spin space (denoted by check symbol)

LG D
� MGR MGK

0 MGA

�
; L̋ D

� M̋ R 0

0 M̋ A
�
; (3.88)

M̋ R D M̋ A D
�
" � O� h �

��� �"C O� h

�
; (3.89)

" is the quasiparticle energy, �.T / is the superconducting order parameter, which
will be considered real in a superconductor and zero in both ferromagnets, h 	 h1.2/
in the first (second) ferromagnetic terminal, h 	 0 outside these terminals and
O� D . O
1; O
2; O
3/ are Pauli matrices in spin space.

Retarded and advanced Green functions MGR and MGA have the following matrix
structure

MGR;A D
� OGR;A OF R;A

� OF R;A � OGR;A

�
: (3.90)

Here and below 2 � 2 matrices in spin space are denoted by hat symbol.
Having obtained the expressions for the Green–Keldysh functions LG, one can

easily evaluate the current density j in our system with the aid of the standard
relation
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j D � 


16e

Z
SpŒ�3. LGr LG/K�d"; (3.91)

where 
 is the Drude conductivity of the corresponding metal and �3 is the Pauli
matrix in Nambu space.

In what follows it will be convenient for us to employ the so-called Larkin–
Ovchinnikov parameterization of the Keldysh Green function

MGK D MGR Mf � Mf MGA; Mf D OfL C �3 OfT ; (3.92)

where the distribution functions OfL and OfT are 2 � 2 matrices in the spin space.
For the sake of simplicity, we will assume that magnetizations of both ferro-

magnets and the interfaces (see below) are collinear. Within this approximation,
the Green functions and the matrix L̋ are diagonal in the spin space and the
diffusion-like equations for the distribution function matrices OfL and OfT take the
form

�Dr
� ODT .r; "/r OfT .r; "/

�
C 2 Ȯ .r; "/ OfT .r; "/ D 0; (3.93)

�Dr
� ODL.r; "/r OfL.r; "/

�
D 0; (3.94)

where

Ȯ .r; "/ D �i� Im OF R; (3.95)

ODT D
�

Re OGR
�2 C

�
Im OFR

�2
; (3.96)

ODL D
�

Re OGR
�2 �

�
Re OF R

�2
: (3.97)

The function Ȯ .r; "/ differs from zero only inside the superconductor. It accounts
both for energy relaxation of quasiparticles and for their conversion to Cooper pairs
due to Andreev reflection. The functions ODT and ODL acquire space and energy
dependencies due to the presence of the superconducting wire and renormalize the
diffusion coefficientD.

The solution of (3.93)–(3.94) can be expressed in terms of the diffusion-like
functions ODT and ODL, which obey the following equations

�Dr
h ODT .r; "/r ODT .r; r0; "/

i
C 2 Ȯ .r; "/ ODT .r; r0; "/ D ı.r � r0/; (3.98)

�Dr
h ODL.r; "/r ODL.r; r0; "/

i
D ı.r � r0/: (3.99)
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3.3.2 Boundary Conditions

The solutions of Usadel equation (3.87) in each of the metals should be matched
at FS-interfaces by means of appropriate boundary conditions which account for
electron tunneling between these terminals. The form of these boundary conditions
essentially depends on the adopted model describing electron scattering at FS-
interfaces. As before, we stick to the model of the so-called spin-active interfaces,
which takes into account possibly different barrier transmissions for spin-up and
spin-down electrons. Here, we employ this model in the case of diffusive electrodes
and also restrict our analysis to the case of tunnel barriers with channel transmis-
sions much smaller than one. In this case, the corresponding boundary conditions
read [44, 45]

A
C LGC@x LGC D GT

2
Œ LG�; LGC�C Gm

4
Œf O� m�3; LG�g; LGC�C i

G'

2
Œ O� m�3; LGC�;

(3.100)

�A
� LG�@x LG� D GT

2
Œ LGC; LG��C Gm

4
Œf O� m�3; LGCg; LG��C i

G'

2
Œ O� m�3; LG��;

(3.101)

where LG� and LGC are the Green–Keldysh functions from the left (x < 0) and from
the right (x > 0) side of the interface, A is the effective contact area, m is the unit
vector in the direction of the interface magnetization, 
˙ are Drude conductivities
of the left and right terminals and GT is the spin-independent part of the interface
conductance. Along with GT there also exists the spin-sensitive contribution to
the interface conductance, which is accounted for by the Gm-term. The value Gm
equals to the difference between interface conductances for spin-up and spin-down
conduction bands in the normal state. The G'-term arises due to different phase
shifts acquired by scattered quasiparticles with opposite spin directions.

Employing the above boundary conditions we can establish the following linear
relations between the distribution functions at both sides of the interface

A
C ODTC@x OfCT D A
� ODT�@x Of�T D OgT . OfCT � Of�T /C Ogm. OfCL � Of�L/;
(3.102)

A
C ODLC@x OfCL D A
� ODL�@x Of�L D OgL. OfCL � Of�L/C Ogm. OfCT � Of�T /;
(3.103)

where OgT , OgL, and Ogm are matrix interface conductances, which depend on the
retarded and advanced Green functions at the interface

OgT D GT

h�
Re OGRC

� �
Re OGR�

�
C
�

Im OFRC
� �

Im OF R�
�i
; (3.104)
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OgL D GT

h�
Re OGRC

� �
Re OGR�

�
�
�

Re OF RC
� �

Re OFR�
�i
; (3.105)

Ogm D Gm O� m
�

Re OGRC
� �

Re OGR�
�
: (3.106)

Note that the above boundary conditions for the distribution functions do not contain
the G'-term explicitly since this term in (3.100)–(3.101) does not mix Green
functions from both sides of the interface.

The current density (3.91) can then be expressed in terms of the distribution
function OfT as

j D � 


4e

Z
SpŒ ODTr OfT �d": (3.107)

3.3.3 Spectral Conductances

Let us now employ the above formalism to evaluate electric currents in our FSF
device. The current across the first (SF1) interface can be written as

I1 D 1

e

Z
g11."/ Œf0."C eV1/ � f0."/� d"

� 1

e

Z
g12."/ Œf0."C eV2/� f0."/� d"; (3.108)

where f0."/ D tanh."=2T /, g11 and g12 are local and non-local spectral electric
conductances. Expression for the current across the second interface can be obtained
from the above equation by interchanging the indices 1 $ 2. Solving (3.93)–(3.94)
with boundary conditions (3.102)–(3.103) we express both local and non-local
conductances Ogij."/ in terms of the interface conductances and the function OD. The
corresponding results read

Og11."/ D � ORT2 OML C ORT2 ORL2 OR1m � ORL1 OR22m C ORT12 ORL12 OR2m � OR1m OR22m
 OK;

(3.109)

Og12."/ D Og21."/ D � ORT12 OML C ORT2 ORL12 OR1m C ORL12 OR1m OR2m C ORT12 ORL1 OR2m
 OK;
(3.110)

where we defined

OMT;L D ORT;L1 ORT;L2 � . ORT;L12 /2; (3.111)

OK�1 D OMT OML C OR21m OR22m � ORT2 ORL2 OR21m � 2 ORT12 ORL12 OR1m OR2m � ORT1 ORL1 OR22m
(3.112)

and introduced the auxiliary resistance matrix
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ORT1 D Og1T ."/Œ Og1T ."/ Og1L."/� Og21m."/��1

C D1
ODT
1 .r1; r1; "/

1

C DS
ODT
S .r1; r1; "/

S

; (3.113)

The resistance matrices ORT2 , ORL1 and ORL2 can be obtained by interchanging the
indices 1 $ 2 and T $ L in (3.113). The remaining resistance matrices ORT;L12
and ORjm are defined as

ORT;L12 D ORT;L21 D DS
ODT;L
S .r1; r2; "/

S

; (3.114)

ORjm D Ogjm."/Œ OgjT."/ OgjL."/� Og2jm."/��1; (3.115)

where j D 1; 2. The spectral conductance gij can be recovered from the matrix Ogij

simply by summing up over the spin states

gij."/ D 1

2
Sp
� Ogij."/

�
: (3.116)

It is worth pointing out that (3.109), (3.110) defining, respectively, local and non-
local spectral conductances are presented with excess accuracy. This is because the
boundary conditions (3.100)–(3.101) employed here remain applicable only in the
tunneling limit and for weak spin-dependent scattering jGmj; jG' j � GT . Hence,
strictly speaking only the lowest order terms in Gm1;2 and G'1;2 need to be kept in
our final results.

To proceed it is necessary to evaluate the interface conductances as well as the
matrix functions ODT;L

1;2;S . Restricting ourselves to the second order in the interface
transmissions we obtain

Og1T ."/ D GT1 O�S.r1; "/CG2
T1

�2�.�2 � "2/
�2 � "2

OU1."/; (3.117)

Og1L."/ D GT1 O�S.r1; "/ �G2
T1

�2�."2 ��2/

"2 ��2
OU1."/; (3.118)

Og1m."/ D Gm1 O�S.r1; "/ O� m1; (3.119)

and analogous expressions for the interface conductances of the second interface.
The matrix function

OU1."/ D D1

2
1

n
Re
�C1.r1; r1; 2hC

1 /C C1.r1; r1; 2h�
1 /
�

� O� m1 Re
�C1.r1; r1; 2hC

1 /� C1.r1; r1; 2h�
1 /
�o

(3.120)
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with h1̇ D h1 ˙ " defines the correction due to the proximity effect in the normal
metal.

Taking into account the first-order corrections in the interface transmissions, one
can derive the density of states inside the superconductor in the following form

O�S.r; "/ D j"j�."2 ��2/
pj"2 ��2j C DS


S

�2

�2 � "2

X

iD1;2

"

GTi Re CS .r; ri ; 2!R/

� O� miG'i Im CS .r; ri ; 2!R/
#

; (3.121)

where

!R D

8
ˆ̂
<

ˆ̂
:

p
"2 ��2; " > �;

i
p
�2 � "2; j"j < �;

�p
"2 ��2; " < �;

(3.122)

and the Cooperon Cj .r; r0; "/ represents the solution of the equation

��Dr2 � i"
 C.r; r0; "/ D ı.r � r0/ (3.123)

in the normal metal leads (j D 1; 2) and the superconductor (j D S ). In the quasi-
one-dimensional geometry, the corresponding solutions take the form

Cj .xj ; xj ; "/ D tanh
�
kjLj



SjDj kj
; j D 1; 2; (3.124)

CS.x; x0; "/ D sinhŒkS .L� x0/� sinh kSx

kSSSDS sinh.kSL/
; x0 > x; (3.125)

where SS;1;2 are the wire cross sections and k1;2;S D p�i"=D1;2;S .
Substituting (3.121) into (3.117) and (3.118) and comparing the terms / G2

T1
,

we observe that the tunneling correction to the density of states dominates over
the terms proportional to OU1 which contain an extra small factor

p
�=h � 1.

Hence, the latter terms in (3.117) and (3.118) can be safely neglected. In addition,
in (3.121), we also neglect small tunneling corrections to the superconducting
density of states at energies exceeding the superconducting gap �. Within this
approximation, the density of states inside the superconducting wire becomes
spin-independent O�S.r; "/ D O
0�S.r; "/. It can then be written as

�S.r; "/ D j"j
pj"2 ��2j�."

2 ��2/

C DS


S

�2�.�2 � "2/

�2 � "2
X

iD1;2
GTi Re CS.r; ri ; 2!R/: (3.126)
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Accordingly, the interface conductances take the form

Og1T ."/ D Og1L."/ D GT1�S .r1; "/; (3.127)

Og1m."/ D Gm1�S.r1; "/ O�m1: (3.128)

Let us emphasize again that within our approximation the G'-term does not enter
into expressions for the interface conductances (3.127)–(3.128) and, hence, does not
appear in the final expressions for the conductances gij."/.

In the limit of strong exchange fields h1;2 � � and small interface transmis-
sions considered here the proximity effect in the ferromagnets remains weak and
can be neglected. Hence, the functions ODT;L

1 .r1; r1; "/ and ODT;L
2 .r2; r2; "/ can be

approximated by their normal state values

ODT;L
1 .r1; r1; "/ D 
1rN1

O1=D1; (3.129)

ODT;L
2 .r2; r2; "/ D 
2rN2

O1=D2; (3.130)

rNj D Lj =.
jSj /; j D 1; 2; (3.131)

where rN1 and rN2 are the normal state resistances of ferromagnetic terminals. In
the superconducting region, an effective expansion parameter is GT1;2 r�S ."/, where
r�S ."/ D �S ."/=.
SSS/ is the Drude resistance of the superconducting wire segment
of length �S ."/ D p

DS=2j!Rj and !R is the function of " according to (3.122). In
the limit

GT1;2 r�S ."/ � 1; (3.132)

which is typically well satisfied for realistic system parameters, it suffices to evaluate
the function ODT

S .x; x
0; "/ for impenetrable interfaces. In this case, we find

ODT
S .x; x

0; "/ D

8
<̂

:̂

�2 � "2

�2
CS.x; x0; 2!R/; j"j < �;

"2 ��2

"2
CS.x; x0; 0/; j"j > �:

(3.133)

We note that special care should be taken while calculating DL
S .x; x

0; "/ at subgap
energies, since the coefficient DL in (3.94) tends to zero deep inside the super-
conductor. Accordingly, the function DL

S .x; x
0; "/ becomes singular in this case.

Nevertheless, the combinations ORLj .ML/�1 and ORL12.ML/�1 remain finite also in
this limit. At subgap energies, we obtain

ORL1 . OML/�1 D ORL2 . OML/�1 D ORL12. OML/�1 D 1

rN1 C rN2 C 2�ed=�S ."/

r�S ."/GT1GT2

;

(3.134)
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where � D 1 � "2=�2 and d D jx2 � x1j is the distance between two FS contacts.
Substituting the above relations into (3.110), we arrive at the final result for the
non-local spectral conductance of our device at subgap energies (j"j < �)

g12."/ D g21."/

D �r�S ."/ expŒ�d=�S."/�
2ŒrN1 C 1=gT1."/�ŒrN2 C 1=gT 2."/�

�

2

6
41C m1m2

�

Gm1

gT1."/

Gm2

gT 2."/

1

� C rN1 C rN2
2

r�S ."/GT1GT2e�d=�S ."/

3

7
5 :

(3.135)

Equation (3.135) represents the central result of this section. It consists of
two different contributions. The first of them is independent of the interface
polarizations m1;2. This term represents direct generalization of the result [25] in
two different aspects. First, the analysis [25] was carried out under the assumption
rN1;2gT1;2."/ � 1, which is abandoned here. Second (and more importantly),
sufficiently large exchange fields h1;2 � � of ferromagnetic electrodes suppress
disorder-induced electron interference in these electrodes and, hence, eliminate
the corresponding zero-bias anomaly both in local [28–30] and in non-local [25]
spectral conductances. In this case, with sufficient accuracy one can set gTi."/ D
GTi�S.xi ; "/ implying that at subgap energies gTi."/ is entirely determined by the
second term in (3.126), which yields in the case of quasi-one-dimensional electrodes

gT1."/ D �2GT1r�S ."/

2.�2 � "2/

�
GT1 CGT2e

�d=�S ."/� ; (3.136)

gT 2."/ D �2GT2r�S ."/

2.�2 � "2/

�
GT2 CGT1e

�d=�S ."/� : (3.137)

Note, that if the exchange field h1;2 in both normal electrodes is reduced well
below � and eventually is set equal to zero, the term containing OU1."/ in (3.117),
(3.118) becomes important and should be taken into account. In this case, we again
recover the zero-bias anomaly [28–30] gTi."/ / 1=

p
" and from the first term in

(3.135) we reproduce the results [25] derived in the limit h1;2 ! 0.
The second term in (3.135) is proportional to the product m1m2Gm1Gm2 and

describes non-local magnetoconductance effect in our system emerging due to spin-
sensitive electron scattering at FS interfaces. It is important that – despite the strong
inequality jGmij � GTi – both terms in (3.135) can be of the same order, i.e. the
second (magnetic) contribution can significantly modify the non-local conductance
of our device.

In the limit of large interface resistances rN1;2gT1;2."/ � 1, the formula (3.135)
reduces to a much simpler one
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g12."/ D g21."/ D r�S ."/

2
expŒ�d=�S ."/�

�


�2 � "2

�2
gT1."/gT 2."/C m1m2Gm1Gm2

�2

�2 � "2

�
: (3.138)

Interestingly, (3.138) remains applicable for arbitrary values of the angle between
interface polarizations m1 and m2 and strongly resembles the analogous result for
the non-local conductance in ballistic FSF systems (cf., e.g., (3.77) in the previous
section). The first term in the square brackets in (3.138) describes the fourth order
contribution in the interface transmissions, which remains non-zero also in the limit
of the non-ferromagnetic leads [25]. In contrast, the second term is proportional
to the product of transmissions of both interfaces, i.e. only to the second order in
barrier transmissions. This term vanishes identically provided at least one of the
interfaces is spin-isotropic.

Contrary to the non-local conductance at subgap energies, both local conduc-
tance (at all energies) and non-local spectral conductance at energies above the
superconducting gap are only weakly affected by magnetic effects. Neglecting small
corrections due to Gm term in the boundary conditions, we obtain

Og11."/ D ORT1 . OMT /�1; Og22."/ D ORT2 . OMT /�1; (3.139)

Og12."/ D g21."/ D ORT12. OMT /�1; j"j > �: (3.140)

Equations (3.139) and (3.140) together with the above expressions for the non-
local subgap conductance enable one to recover both local and non-local spectral
conductances of our system at all energies. Typical energy dependencies for both
g11."/ and g12."/ are displayed in Fig. 3.9. For instance, we observe that at subgap
energies the non-local conductance g12 changes its sign being positive for parallel
and negative for antiparallel interface polarizations.

3.3.4 I–V Curves

Having established the spectral conductance matrix gij."/, one can easily recover
the complete I � V curves for our hybrid FSF structure. In the limit of low bias
voltages, these I � V characteristics become linear, i.e.

I1 D G11.T /V1 �G12.T /V2; (3.141)

I2 D �G21.T /V1 CG22.T /V2; (3.142)

where Gij.T / represent the linear conductance matrix defined as
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Fig. 3.9 Local (long-dashed line) and non-local (short-dashed and solid lines) spectral con-
ductances normalized to its normal state values. Here, we choose rN1 D rN2 D 5r�S .0/,
x1 D L� x2 D 5�S .0/, x2 � x1 D �S .0/, GT1 D GT2 D 4Gm1 D 4Gm2 D 0:2=r�S .0/. Energy
dependence of non-local conductance is displayed for parallel (P) m1m2 D 1 and antiparallel (AP)
m1m2 D �1 interface magnetizations. Inset: The same in the limit of low energies

Gij.T / D 1

4T

Z
gij."/

d"

cosh2
"

2T

: (3.143)

It may also be convenient to invert the relations (3.141)–(3.142), thus expressing
induced voltages V1;2 in terms of injected currents I1;2:

V1 D R11.T /I1 CR12.T /I2; (3.144)

V2 D R21.T /I1 CR22.T /I2; (3.145)

where the coefficientsRij.T / define local (i D j ) and non-local (i ¤ j ) resistances

R11.T / D G22.T /

G11.T /G22.T / �G2
12.T /

; (3.146)

R12.T / D R21.T / D G12.T /

G11.T /G22.T / �G2
12.T /

(3.147)
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Fig. 3.10 Non-local resistance (normalized to its normal state value) versus temperature (normal-
ized to the superconducting critical temperature TC ) for parallel (P) and antiparallel (AP) interface
magnetizations. The parameters are the same as in Fig. 3.9

and similarly forR22.T /. In non-ferromagnetic NSN structures, the low temperature
non-local resistance R12.T ! 0/ turns out to be independent of both the
interface conductances and the parameters of the normal leads [25]. However, this
universality of R12 does not hold anymore provided non-magnetic normal metal
leads are substituted by ferromagnets. Non-local linear resistance R12 of our FSF
structure is displayed in Figs. 3.10 and 3.11 as a function of temperature for parallel
(m1m2 D 1) and antiparallel (m1m2 D �1) interface magnetizations. In Fig. 3.10,
we show typical temperature behaviour of the non-local resistance for sufficiently
transparent interfaces. For both mutual interface magnetizationsR12 first decreases
with temperature below TC similarly to the non-magnetic case. However, at lower T
important differences occur: While in the case of parallel magnetizationsR12 always
remains positive and even shows a noticeable upturn at sufficiently low T , the
non-local resistance for antiparallel magnetizations keeps monotonously decreasing
with T and may become negative in the low temperature limit. In the limit of very
low interface transmissions, the temperature dependence of the non-local resistance
exhibits a well-pronounced charge imbalance peak (see Fig. 3.11) which physics is
similar to that analyzed in the case of non-ferromagnetic NSN structures [19,23,25].
Let us point out that the above behaviour of the non-local resistance is qualitatively
consistent with available experimental observations [5,6]. More experiments would
be desirable to quantitatively verify our theoretical predictions.
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Fig. 3.11 The same as in Fig. 3.10 for the following parameter values: rN1 D rN2 D 5r�S .0/,
x1 D L� x2 D 5�S .0/, x2 � x1 D �S .0/, GT1 D GT2 D 25Gm1 D 25Gm2 D 0:025=r�S .0/

3.4 Concluding Remarks

In this paper, we developed a non-perturbative theory of non-local electron transport
in both ballistic and diffusive NSN and FSF three-terminal structures with spin-
active interfaces. Our theory is based on the quasiclassical formalism of energy-
integrated Green-Eilenberger functions supplemented by appropriate boundary
conditions describing spin-dependent scattering at NS and FS interfaces. Our
approach applies at arbitrary interface transmissions and allows to fully describe
non-trivial interplay between spin-sensitive normal scattering, local and non-local
Andreev reflection at NS and FS interfaces.

In the case of ballistic structures, our main results are the general expressions
for the non-local cross-current I12, (3.70), and for the non-local correction I11
to the BTK current, (3.82). These expressions provide complete description of
the conductance matrix of our three-terminal NSN device at arbitrary voltages,
temperature, spin-dependent transmissions of NS interfaces and their polarizations.
One of our important observations is that in the case of ballistic electrodes no
crossed Andreev reflection can occur in both NSN and HSH structures with fully
open interfaces. Beyond the tunneling limit, the dependence of the non-local
conductance on the size of the S-electrode L is in general non-exponential and
reduces toG12 / exp.�2L�=vF / only in the limit of largeL. For hybrid structures,
half-metal-superconductor-half-metal we predict that the low energy non-local
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conductance does not vanish already in the lowest order in barrier transmissions
G12 / D1"D2".

In the second part of our paper, we addressed spin-resolved non-local electron
transport in FSF structures in the presence of disorder in the electrodes. Within
our model transfer of electrons across FS interfaces is described in the tunneling
limit and magnetic properties of the system are accounted for by introducing (a)
exchange fields h1;2 in both normal metal electrodes and (b) magnetizations m1;2

of both FS interfaces. The two ingredients (a) and (b) of our model are in general
independent from each other and have different physical implications. While the role
of (comparatively large) exchange fields h1;2 � � is merely to suppress disorder-
induced interference of electrons [28–30] penetrating from a superconductor into
ferromagnetic electrodes, spin-sensitive electron scattering at FS interfaces yields
an extra contribution to the non-local conductance, which essentially depends on
relative orientations of the interface magnetizations. For anti-parallel magnetiza-
tions, the total non-local conductance g12 and resistance R12 can turn negative
at sufficiently low energies/temperatures. At higher temperatures, the difference
between the values of R12 evaluated for parallel and anti-parallel magnetizations
becomes less important. At such temperatures, the non-local resistance behaves
similarly to the non-magnetic case demonstrating, e.g., a well-pronounced charge
imbalance peak [25] in the limit of low-interface transmissions.

Our predictions can be directly used for quantitative analysis of experiments on
non-local electron transport in hybrid FSF structures.
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Chapter 4
Non-local Transport
in Superconductor–Ferromagnet Hybrid
Structures

D. Beckmann

Abstract We review recent experimental results on non-local transport in
superconductor–ferromagnet hybrid structures. We will focus mainly on crossed
Andreev reflection and its relation to competing non-local transport phenomena
such as elastic cotunneling, charge imbalance and spin diffusion.

4.1 Introduction

Non-local transport experiments have proven to be a powerful tool to investigate
non-equilibrium conditions in nanostructures, such as charge imbalance (CI) in
superconductors [1–3], or spin accumulation in normal metals [4]. In this chapter,
we review recent experimental investigations of coherent non-local transport in
multi-terminal superconductor hybrid structures [5–16]. The impetus for these
experiments comes mainly from the prediction of crossed Andreev reflection (CAR)
[17,18], a non-local transport process, where an electron entering a superconductor
from one normal-metal contact is reflected as a hole into a second nearby contact,
creating a Cooper pair in the superconductor. This process is possible at energies
below the energy gap � of the superconductor, if the distance d between the two
contacts is not much larger than the coherence length �S, as shown schematically
in Fig. 4.1a. One of the consequences of CAR is the creation of spatially separated,
entangled electron pairs in the two normal-metal wires. Building efficient super-
conducting solid-state entangler devices requires a comprehensive understanding
not only of CAR, but also of competing non-local processes, such as the transfer
of an electron from one electrode to the other at subgap energies via virtual
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a b c

Fig. 4.1 Schematic view of crossed Andreev reflection (a) and elastic cotunneling (b). Filled
symbols represent electrons and open symbols represent holes. The arrows inside the symbols
indicate spin bands. (c) Energy scheme of CAR and EC

states in the superconductor. To lowest order in transmission probabilities, i.e., in
tunnel junctions, this process is similar to cotunneling in a quantum dot, and is
therefore usually referred to as elastic cotunneling (EC). Upon increasing contact
transparency, higher order processes start to contribute, and the term cotunneling
becomes slightly misleading. However, since it has been widely used in the
literature, we will stick to it here. A schematic view of EC is shown in Fig. 4.1b.
Figure 4.1c shows a representation of CAR and EC in the semiconductor model of
superconductivity. If a bias VA is applied to one contact (A), CAR and EC lead
to the emission of a holes or electrons, respectively, into the second contact B.
Consequently, both contribute with opposite sign to the non-local conductance.

In Fig. 4.2a, a generic multi-terminal setup for non-local transport experiments
is shown. Two terminals A and B are in contact with a grounded central node C.
Bias voltages VA and VB are applied to the two terminals, and the currents IA and
IB flowing into the central node are measured. In this geometry, transport can be
described by the conductance matrix

�
IA

IB

�
D
�
GAA GAB

GBA GBB

��
VA

VB

�
; (4.1)

where the off-diagonal elements GAB and GBA describe non-local transport, while
local conductances are represented by the diagonal elements. The generalization to
differential conductances gij D dIi=dVj is straightforward. The output of theories
of coherent transport processes are typically the elements of the conductance
matrix (4.1). In actual experiments, however, often non-local resistance is measured:
current bias IA is applied to one contact, and the non-local voltage VB is measured
under the condition IB D 0, as shown in Fig. 4.2b. Therefore, it is often necessary
to convert between non-local conductance and non-local resistance by inverting the
conductance matrix. The non-local resistance RAB is given by

RAB D VB

IA
D � GAB

GAAGBB �GABGBA
� � GAB

GAAGBB
: (4.2)
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a b

Fig. 4.2 (a) Idealized view of a non-local conductance setup. Two contacts A and B are attached
to a grounded central normal-metal or superconductor node (S/N). The contacts are voltage biased,
and the resulting currents are measured. Arrows indicate current polarities. (b) Schematic view
of many actual experiments. Contact A is currentbiased, and the resulting non-local voltage is
measured at contact B

The approximate expression holds if the non-local conductances are negligible
compared to the local conductances, which is usually the case.

4.2 Experiments

In this section, we discuss in detail our recent experimental investigations of non-
local transport in superconductor/ferromagnet and superconductor/normal-metal
hybrid structures. We focus mainly on the discussion of coherent subgap transport,
and possible implications for superconducting entangler devices.

4.2.1 F/S Point Contacts

Local Andreev reflection dominates transport in high-transparency contacts, and
therefore multiterminal structures with transparent point contacts are a natural
starting point for the investigation of crossed Andreev reflection. Figure 4.3
shows a multi-terminal superconductor–ferromagnet hybrid structure with three
ferromagnetic wires forming small contacts to an aluminum bar [5]. The structure
has been fabricated by electron-beam lithography using a two-layer shadow mask.
Metal films were deposited through the mask under different angles relative to the
substrate normal in a UHV evaporation chamber. First, a 20-nm thick iron film is
evaporated to form the ferromagnetic tips. Then, an 80-nm thick aluminum film is
evaporated. The angle is chosen such that the aluminum film slightly touches the
iron tips. Thus, small contacts of about 20� 50 nm2 are formed. We will show here
results of non-local resistance measurements on two samples, T2 (shown in Fig. 4.3)
and S5, which has six rather than three contacts at varying distance.
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Fig. 4.3 SEM image of a ferromagnet–superconductor multiterminal structure (sample T2). Three
iron wires (vertical) of slightly different width form small contacts to the aluminum strip (top).
The two outer iron wires have additional lateral wires attached for use as voltage probes. The
measurement scheme for local and non-local resistance is also shown for a pair of contacts. A
current IA is injected into one contact, and the local (VA) or non-local (VB) voltage is measured

4.2.2 Spin Accumulation

We first characterize the spin-valve behaviour in the normal state, and establish con-
trol over the magnetization configuration. Figure 4.4a shows the non-local resistance
for a pair of contacts of sample T2 at T D 4:2 K, i.e. with the aluminum strip in
the normal state, as a function of magnetic field B applied along the ferromagnetic
wires. The traces exhibit sharp, well-defined jumps at two distinct coercive fields,
Bc1 D 15mT and Bc2 D 50mT. These jumps correspond to magnetization reversal
of the two ferromagnetic wires. The magnetization reversal is inferred from the
resistance measurements only indirectly. Therefore, micromagnetics simulations
have been performed to study the magnetization process of a two-dimensional iron
film with the actual shape of sample T2 taken from the SEM image (Fig. 4.3),
using the micromagnetics simulation package OOMMF.1 The results indicate that
the wires leading to the contacts indeed have single-domain configuration with
coherent magnetization reversal, compatible with the observed step-like resistance
change. From the hysteresis loops, the non-local resistance difference �RN D
R

parallel
N � R

antiparallel
N at zero applied magnetic field, i.e. the spin-valve signal, can

be obtained.
Spin injection in metallic spin valves is governed by the characteristic resistances

RF;N D �F;NF;N=AF;N, where �,  and A are the resistivities, spin-diffusion
lengths, and cross-sections of the ferromagnet (F) and normal metal (N), respec-
tively. Since F is usually only a few nanometers [19, 20], AF is actually given by
the contact cross-section. Despite the large resistivity of ferromagnets in typical

1http://math.nist.gov/oommf.
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a b

Fig. 4.4 (a) Non-local resistance Rnl for a contact pair of sample T2 at T D 4:2 K as a function
of magnetic field B applied along the direction of the ferromagnetic wires. Both major (black,
red) and minor (blue, green) hysteresis loops are shown. The sample shows well-defined switching
between parallel and antiparallel magnetization states. Magnetization states are indicated by green
arrows. (b) Non-local resistance difference �RN between parallel and antiparallel magnetization
state for different contact pairs of two samples (T2 and S5) at T D 4:2 K as a function of contact
distance d . The solid lines are fits to (4.3)

spin valves with large-area overlap junctions, one consequently finds RF � RN,
the so-called resistance mismatch [21]. In our samples, we estimate RF � 3˝ and
RN � 1˝ . Due to the small contact area, we are in the opposite limit, RF > RN.
In this case,

�RN D P2

RN exp

�
� d

N

�
(4.3)

can be obtained from the general expression given in [22]. The formula has the same
structure as for the tunnel limit, but contains the spin polarization P
 of the bulk
conductivity rather than the polarization PG of the contact conductance. In contrast
to the case of metallic overlap junctions, spin-injection by point contacts does not
depend explicitly on the spin-diffusion length F of the ferromagnet. Therefore, it
can be used to obtain P
 directly.

The spin-valve signal �RN is shown in Fig. 4.4b for two different samples T2
and S5 as a function of contact distance d at T D 4:2 K, together with fits to (4.3).
From these fits, and with the known resistivities and sample geometry, P
 and N

can be obtained (see Table 4.1).
In paramagnetic metals, the dominant spin-flip scattering process is spin-orbit

scattering via the Elliott-Yafet mechanism [23, 24]. Spin-orbit scattering introduces
a small admixture of spin-down electrons to spin-up bands, and vice-versa.
Consequently, any momentum scattering will lead to some amount of spin scattering
as well. With this assumption, the spin-flip time can be expressed as �sf D ˛� ,
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Table 4.1 Measured residual resistivity �N and elastic mean free path lel of the aluminum at T D
4:2 K, parameters P
 , N and ˛ obtained from the fits shown in Fig. 4.4b, and parameters PG and
�S obtained from the fits shown in Fig. 4.6b, as described in the text

Sample T2 S5

�N 2.85 1.41�	cm
lel 15.6 31.6 nm
P
 22 16 %
N 505 1,150 nm
˛ 3.2 2.5 �10�4

PG , fit to (4.6) 51 47 %
�S, fit to (4.6) 275 345 nm
�S, fit to exponential 160 190 nm
�S, calculated 160 230 nm

a b

Fig. 4.5 (a) Non-local resistance Rnl for a contact pair of sample S5 as a function of temperature
T with parallel magnetization aligment. The red line is a fit to (4.4). (b) Prefactor A obtained from
the fit as a function of contact distance d

where � is the momentum scattering time, and ˛ is a proportionality constant that
depends on material and momentum scattering mechanism. With sf D p

D�sf, and
D D vF�=3, we obtain sf D l

p
1=3˛, where l is the transport mean free path, i.e.

sf / ��1. The value of ˛ � 3 � 10�4 for elastic impurity scattering in aluminum
obtained from our samples agrees well with the results reported in the literature [20].

4.2.3 Charge Imbalance

Figure 4.5a shows the temperature dependence of the non-local resistance for a
contact pair of sample S5 in parallel magnetization alignment as the sample is
cooled through the superconducting transition at zero-applied magnetic field. At
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Tc � 1:2 K, a large peak due to charge imbalance is observed [1, 2]. As T is
lowered further and the gap opens, the fraction of current that is injected into the
superconductor via quasiparticle transmission decreases, and consequently charge
imbalance disappears. At temperatures below about 0:5 K, current injection is
dominated by Andreev reflection, and the non-local signal becomes independent
of temperature.

To describe our experiment, we decompose the charge-imbalance contribution
to the non-local resistance into a normalized temperature dependence Z.T /, and a
distance-dependent amplitude A.d/

Rci.T; d/ D A.d/Z.T /: (4.4)

For the amplitude, we assume that CI spreads over the length scale Q� from the
injector, which yields [25–28]

A.d/ D �NQ�

2AN
exp

�
� d

Q�

�
: (4.5)

For the temperature dependence, we must consider that a fraction of the injected
current is converted to Cooper pairs by Andreev reflection, and therefore does
not contribute to charge imbalance. We use the fraction of quasiparticle injection
F �.T / as given by the BTK model in the limit of small injector bias [29]. For high
transparency contacts, F � approaches unity near the critical temperature, and drops
rapidly to zero as temperature is lowered due to the opening of the superconducting
gap. It is practically zero below Tc=2, as observed in the experiment. Further,
the relaxation time �Q� is strongly temperature dependent, and diverges near the
critical temperatureTc. However, using an analytical approximation for �Q� for low-
bias injection close to Tc [30] did not improve fitting the temperature dependence
of our signals significantly over simply setting Z.T / D F �.T /. Therefore, this
approximation was employed for the fit shown as solid line in Fig. 4.5a.

The dependence of the signal amplitude A on contact distance is shown in
Fig. 4.5b. From the fit of the data to (4.5), we obtain Q� D 3:2 �m, and with
the known sample parameters, we can calculate �NQ�=2AN D 1:2 	, which is
compatible with the extrapolation A.d D 0/ � 1:6 	 obtained from the fit. Our
value of Q� , which is effectively an average over the temperature range 0:5Tc <

T < Tc, yields a relaxation time �Q� D 2
Q�=D D 740 ps. This is considerably

shorter than typical values of �Q� � 5 � 10 ns found for aluminum in the literature
[28, 31, 32]. A few recent experiments [8] (A. Kleine, A. Baumgartner, J. Trbovic,
D.S. Golubev, A.D. Zaikin, C. Schönenberger, unpublished) have reported similar
discrepancies, and also a non-exponential decay as a function of contact distance [8].
Since our contact distances were all much smaller than Q� , we cannot say whether
the decay is actually exponential, as assumed by (4.5). A possible explanation for
the small �Q� at least in our experiment is relaxation via the contacts. A tunnel
contact leads to charge relaxation at a rate ��1

tun D 1=2N0˝e2RN [33], where
˝ D 2Q�=AN is the effective non-equilibrium volume. Assuming a similar
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a b

Fig. 4.6 (a) Non-local resistance dVB=dIA of a contact pair of sample T2 as a function of
temperature T in both parallel (blue) and antiparallel (red) magnetization states. (b) Non-local
resistance difference �RS between parallel and antiparallel magnetization state for different
contact pairs of two samples (T2 and S5) in the superconducting state at lowest temperature as
a function of contact distance d . The solid lines are fits to (4.6), the dashed lines are fits to an
exponential decay

relaxation rate for our metallic contacts with RN � 5 	 (see below), we estimate
�tun � 3 ns. Since all six contacts are within the non-equilibrium volume, this leads
to a total relaxation time �tun=6 � 500 ps, close to the estimated �Q� . We therefore
conclude that relaxation in our samples is dominated by the contacts rather than
intrinsic mechanisms, which might also explain the findings of [8].

4.2.4 Coherent Subgap Transport

Figure 4.6a shows the non-local resistance of a contact pair of sample T2 as a
function of temperature for parallel and antiparallel magnetization alignment. The
resistance difference �RN already seen in Fig. 4.4a is clearly visible for T > Tc.
The charge-imbalance signal near T > Tc is nearly independent of magnetization
alignment. At temperatures below 0:5 K, where charge imbalance does not play a
role any more, a non-local resistance difference �RS is observed, which has the
same sign as �RN and is only slightly smaller.

Figure 4.6b shows the resistance difference �RS averaged over temperatures
below 250 mK as a function of contact distance d for the two samples T2 and S5.
The signal is slightly smaller than the normal-state spin-valve signal at the smallest
distance, and falls off rapidly as d increases. As discussed above, the probability
of non-local processes depends on the diffusion of virtual quasiparticles over the
length scale of �S. In our case, the dimensionality of the sample is not well defined,
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since �S � 150� 200 nm is of the same order as the width (200 nm) and thickness
(80 nm) of the aluminum wire. Therefore, we have attempted two different fit
functions. First, the prediction for CAR and EC for point contacts attached to a
three-dimensional superconductor, which in lowest order in the tunnel coupling is
given by [34]

�RS � P2
G

�

2
�N

exp.�d=�S/

d
(4.6)

and, second, a simple exponential decay. Fits of these functions to the data are shown
as solid lines and dashed lines in Fig. 4.6b. Parameters are given in Table 4.1. Both
fits lie within the scatter of the data. The polarisation PG � 50% obtained from
(4.6) is compatible with the expectation for an iron-aluminum contact [35], whereas
�S is a little larger than the value calculated from the residual resistivity using �S Dp„D=�. �S as obtained from the simple exponential fit agrees very well with the
calculated value. We conclude that �S is the relevant length scale for the decay of
the signal in the superconducting state, as opposed to the spin-diffusion length for
the normal state signal. It can also be noted that the dependence of the decay length
on the mean free path is much weaker than for the normal-state signal, which is
expected since �S / p

lel, while N / lel.
Before we continue the discussion of the non-local signals, we characterize

the (local) contact resistance, and the differential resistances. The temperature
dependence of the resistance of a single contact (the left-most contact of sample
T2, see Fig. 4.3) is shown in Fig. 4.7a. The resistance is measured in a four-probe

a b

Fig. 4.7 (a) Differential local resistance dVA=dIA (symbols) of one contact of sample T2 as a
function of temperature T . The solid lines is a fit to (4.7), the dash-dotted line is the contribution
R0 C RBTK.T /, excluding the charge-imbalance signal (see text). (b) Left-hand scale: differential
local resistance dVA=dIA (symbols) of the same contact. The dash-dotted line is the same model
as in (a). Right-hand scale: differential non-local resistance dVB=dIA for parallel (solid line)
and antiparallel (dashed line) magnetization alignment. Data are taken at T D 15 mK and zero
magnetic field as a function of injector bias current IA
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configuration, with two probes (I- and V-) attached to the aluminum strip, and the
other two (I+ and V+) attached to the splitting of the ferromagnetic lead. Thus, the
series resistance of the ferromagnetic strip leading up to the contact (R0), and the
contact itself, is measured. We model the data by

R.T / D R0 CRBTK.T /CRci.T /; (4.7)

where RBTK.T / is the point-contact resistance according to a spin-polarized BTK
model [36], and Rci.T / is the charge-imbalance contribution described above. The
fit to (4.7) is shown as a solid line in Fig. 4.7a. Parameters for the BTK model are
Rpc D 6:2 	, PG D 0:45, Z D 0:22 and � D 177 �eV for the normal state point-
contact resistance, the conductance spin polarization, the interface transparency, and
the gap, respectively. Since most of the BTK contribution is obscured by the charge-
imbalance peak, � and PG had to be assumed rather than fitted. � was calculated
from Tc, and PG was taken from fits to similar samples, which did not show a large
charge-imbalance peak. The remaining parameters (Rpc, Z and R0 D 63:7 	) were
fitted. From R0 and the geometry, we obtain �F D 51 �	cm, and a mean free path
of about 1 nm for the iron film. Consequently, our contacts with a cross-section
area A � 50 � 20 nm2 are in the Maxwell limit [37], and we can estimate the
Maxwell point contact resistance Rpc � �F=

p
A D 16 	. Since only half of the

contact region is made of iron, and the other half of aluminum with a much lower
resistivity, the actual value should be half of the estimate, in good agreement with
the fitted value Rpc D 6:2 	.

Figure 4.7b is a combined plot of the local and non-local differential resistance
spectra for contacts A and B of sample T2. For the local spectrum (symbols),
the data are described by the same spin-polarized BTK model as the temperature
dependence. The theoretical differential conductance spectra are calculated as a
function of injector voltage. The data, however, were measured as a function of
injector current, which means that the fits have to be rescaled with the sample
resistance. Since the resistance variation is only a few percent, we have used the
normal state resistance as a constant scaling factor. In the low-bias region jIAj �
2 �A, the local spectrum follows the theoretical BTK prediction, showing the
typical energy dependence of Andreev reflection for metallic contacts. In this energy
range, the non-local spectra do not depend on energy, and clearly show the resistance
difference �RS already observed in the temperature dependence in Fig. 4.6a. At
higher bias, both the local and non-local resistances increase concomitantly. This
can be interpreted as the onset of charge imbalance caused by quasi-particles
injected at energies beyond the gap. The onset of charge-imbalance injection appears
at a markedly lower bias than predicted by the BTK model, i.e. the minima of
the dash-dotted line. This may be attributed to self-heating in the highly resistive
ferromagnetic strip due to the large injector current.
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4.2.5 F/S Tunnel Contacts

The non-local resistance signals observed in point contacts were too small to reliably
determine the sign of the resistances. Only resistance differences could be resolved.
Also, for high-transparency contacts, EC is predicted to dominate over CAR. We
have therefore investigated F/S/F structures with tunnel contacts, where CAR and
EC should have equal probability without spin selection. The study of coherent non-
local transport in structures with tunnel contacts may seem surprising, since non-
local transport is always at least of second order in transmission probability, and
thereby strongly suppressed in the tunnel limit. However, since the product of the
conductance of injector and detector contact appears in the denominator of (4.2), the
non-local resistance can actually become quite large in low-transparency contacts,
despite the small non-local conductance. A large detector voltage is generated if the
non-locally transmitted electrons (or holes) have a low probability to return into the
superconductor via local Andreev reflection.

For positive injector bias, crossed Andreev reflection leads to a negative voltage
at the detector contact. This has the surprising consequence that the voltage of
the detector contact may lie outside the voltage window that is spanned by the
(grounded) superconductor and the injector bias [38]. This situation is different from
the negative voltage, which may occur in a non-local spin-valve structure, where
the voltage probes are attached outside the current path. In this case, the chemical
potentials at both voltage probes lie inside the source-drain voltage window, but
their difference may be either positive or negative.

Figure 4.8 shows the scheme of an experiment designed to measure the negative
four-probe voltage due to crossed Andreev reflection [6]. Voltage in this scheme is
detected inside the current path, rather than outside as shown in Fig. 4.2b. For the
interpretation of the experiment, it is crucial that the voltage of the detector contact
B is measured relative to the equilibrium chemical potential of the superconductor.
Since current injection into contact A might generate charge imbalance, the drain
voltage probe (V �

B ) is attached to the superconductor at a distance of 10 � 20 �m
from the injector contact A. This distance exceeds by far both Q� and N,
and therefore the voltage measured there is a good reference for the equilibrium
chemical potential of the superconductor. The detector voltage VB is measured
relative to the drain probe.

The samples for these experiments were made of an aluminum wire of 25 nm
thickness, which was exposed to an atmosphere of 60 Pa of pure oxygen for 1 min
to form tunnel barriers. Subsequently, ferromagnetic wires of 15 nm thick iron were
evaporated to form overlap tunnel junctions. The experiments were performed using
a battery-powered DC current source and a nanovoltmeter.

Figure 4.9a shows the non-local resistance RAB D VB=IA at fixed injector bias
current IA D 11 nA as a function of temperature. Above the critical temperature, the
signal is always positive. In the normal state, the voltage drop mainly comes from
the resistance of the aluminum wire between contact B and the drain voltage probe,
with a small spin-accumulation signal superimposed. At Tc � 1:3 K, the signal
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Fig. 4.8 Experimental scheme for measuring the negative four-probe voltage due to crossed
Andreev reflection

a b

Fig. 4.9 (a) Non-local resistance RAB at fixed injector bias current IA D 11 nA as a function
of temperature for both parallel (diamonds) and antiparallel (circles) magnetization alignment at
B D 0. (b) Non-local resistance RAB at fixed injector bias current IA D 15 nA as a function of
magnetic field at T D 50 mK. Arrows indicate sweep directions

decreases abruptly mainly because the aluminum wire becomes superconducting,
and the Ohmic voltage drop is eliminated. At low temperature, the detector
voltage becomes negative. There is a positive difference�RS between parallel and
antiparallel alignment, as in the case of high-transparency contacts. Figure 4.9b
shows the non-local resistance at lowest temperature as a function of magnetic field
B applied along the ferromagnetic wires for two sweeps in different directions.
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As in the normal state, two well-defined jumps associated with the magnetization
reversals of the two ferromagnetic electrodes are observed at jBj < 0:1 T. Above
jBj � 0:1 T, both electrodes are magnetized parallel, and the traces coincide. The
signal becomes positive around 0:3 T, and a jump at B D 0:63 T indicates the
critical field Bc. The critical field is largely enhanced over the bulk value due to the
thin-film geometry.

As expected, in the normal state the resistance is always positive for our
four-probe geometry with voltage detection inside the current path. In the super-
conducting state, however, the voltage becomes negative, which is an unambigous
sign of crossed Andreev reflection. The negative signal is larger in magnitude in
the anti-parallel alignment, as demonstrated both in the temperature and in the
magnetic-field dependent measurements, and expected for singlet Cooper pairs. We
can therefore conclude that subgap transport at low temperature and magnetic field
is dominated by crossed Andreev reflection rather than elastic cotunneling. While
this is expected for antiparallel magnetization, it is surprising that the signal remains
negative even for parallel alignment. In the tunneling limit, the “bare” probabilities
for CAR and EC are expected to be equal, and spin selection should lead to a positive
(parallel) and negative (antiparallel) signal of equal magnitude. We will discuss the
possible origin of this discrepancy below.

Figure 4.10a shows the non-local voltage VB as a function of injector bias current
IA at low temperature for the antiparallel magnetization alignment. In the low-bias
region IA � 30 nA, a steep negative slope is observed, corresponding to the negative
signal seen in Fig. 4.9. With increasing bias, the slope becomes positive. The steep
positive slope occurs at a bias which corresponds to the superconducting energy

a b

Fig. 4.10 (a) Non-local voltage VB as a function of injector bias current IA at T D 23 mK in the
antiparallel magnetization alignment. The arrow indicates the bias current that corresponds to the
superconducting gap. (b) Local differential conductances gAA and gBB (left scale), and non-local
differential conductance �gAB (right scale) as a function of injector voltage. gAA is multiplied by
2 for clarity. The line is a fit as described in the text
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gap. The change from negative to positive slope near the gap can be interpreted as a
crossover from supgap transport dominated by crossed Andreev reflection to charge
imbalance above the gap.

In Fig. 4.10b, a combined view of local and non-local differential conductance
spectra is shown. The local conductances gAA and gBB are the numerical derivatives
of the raw data. The local conductance of the detector contact B shows coherence
peaks at the gap, and a reduced subgap conductance, in qualitative agreement
with the expectation for tunnel contacts. The subgap conductance is, however,
much larger than expected, and shows a downward curvature towards the gap.
The spectrum of the injector contact is almost Ohmic. The enhanced subgap
conductance cannot be due to thermal smearing or pair-breaking, since both would
only broaden the coherence peaks, leading to an upward curvature below the gap.
An enhanced subgap conductance due to reflectionless tunneling [39] would explain
the downward curvature, but is not expected in ferromagnetic junctions due to the
lack of time-reversal symmetry. A possible explanation are pin-holes in conjunction
with finite spin-mixing angles, which would lead to the formation of Andreev bound
states at subgap energies. The solid line in Fig. 4.10b is a fit of gBB to a model with
two contributions from a large-area tunnel contact and high-transparency pin holes,
the latter including a finite spin-mixing angle [40]. The model is purely ballistic,
while our junctions are diffusive, but similar spectra were predicted for diffusive
systems [41]. Also, the number of parameters is too large for a quantitative analysis,
and we can only conclude that our model gives a qualitative explanation of the
observed spectra.

The the non-local conductance spectrum in Fig. 4.10b is calculated from the
non-local voltage shown in Fig. 4.10a using (4.2). As discussed, the non-local con-
ductance has the opposite sign of non-local resistance. To facilitate the comparison
of conductance and resistance data, we plot �gAB. With this convention, CAR
corresponds to a negative and EC to a positive sign for both non-local conductance
and resistance. The non-local conductance observed in the sample is about a factor
100 smaller than the local conductances. This is consistent with estimates from a
model of two-dimensional diffusive propagation in the superconductor [34, 42] for
our sample parameters. The negative signal at low bias corresponds to a dominant
contribution of CAR. Near the gap, positive peaks are observed, which may be
attributed to charge imbalance.

4.3 Discussion

From the data obtained in hybrid structures with both highlytransparent point
contacts and tunnel junctions, the following conclusions can be drawn: At low bias
and temperature, non-local transport is governed by coherent subgap processes, i.e.,
crossed Andreev reflection and elastic cotunneling. At higher bias or temperature,
charge imbalance dominates the signal. We have established a hierarchy of length
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scales, �S � N � Q� , which serves as an additional criterion to distinguish
CAR/EC, spin accumulation, and charge imbalance. Spin-selection by ferromag-
netic electrodes works as expected, favoring CAR for antiparallel alignment and
EC for parallel alignment, respectively. For point contacts, the magnitude of the
non-local signals agrees well with theory. EC dominates over CAR, as predicted
theoretically [43, 44], and also observed in hybrid structures with normal-metal
contacts [8]. For tunnel junctions, the situation appears to be more complicated.
Dominating CAR has been observed not only for antiparallel but also for parallel
magnetization alignment, which is not expected theoretically. Similar results have
been obtained with normal-metal contacts [13], and a complex bias-dependent
competition between CAR and EC may occur [7, 16]. Different attempts have been
made to explain these results, including a non-local version of dynamical Coulomb
blockade [45] and interference [44, 46]. In addition, for ferromagnetic contacts
Andreev bound states induced by spin mixing may have an impact on non-local
transport [47, 48]. At present, neither theory yields a comprehensive explanation of
all experimental results on tunnel junctions, and further work is needed to clarify
these issues.
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(2010)
29. G.E. Blonder, M. Tinkham, T.M. Klapwijk, Phys. Rev. B 25, 4515 (1982)
30. C.C. Chi, J. Clarke, Phys. Rev. B 21, 333 (1980)
31. C.C. Chi, J. Clarke, Phys. Rev. B 19, 4495 (1979)
32. M. Stuivinga, C.L.G. Ham, T.M. Klapwijk, J.E. Mooij, J. Low Temp. Phys. 53, 633 (1983)
33. T.R. Lemberger, Phys. Rev. Lett. 52, 1029 (1984)
34. D. Feinberg, Eur. Phys. J. B 36, 419 (2003)
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Chapter 5
Odd-Frequency Pairing in Superconducting
Heterostructures

A.A. Golubov, Y. Tanaka, Y. Asano, and Y. Tanuma

Abstract We review the theory of odd-frequency pairing in superconducting het-
erostructures, where an odd-frequency pairing component is induced near interfaces.
General description of superconducting proximity effect in a normal metal or
a ferromagnet attached to an unconventional superconductor (S) is given within
quasiclassical kinetic theory for various types of symmetry state in S. Various
possible symmetry classes in a superconductor are considered, which are consistent
with the Pauli principle: even-frequency spin-singlet even-parity (ESE) state, even-
frequency spin-triplet odd-parity (ETO) state, odd-frequency spin-triplet even-parity
(OTE) state and odd-frequency spin-singlet odd-parity (OSO) state. As an example,
we consider junction between a diffusive normal metal (DN) and a p-wave super-
conductor (even-frequency spin-triplet odd-parity symmetry), where the pairing
amplitude in DN belongs to an odd-frequency spin-triplet even-parity symmetry
class. We also discuss the manifestation of odd-frequency pairing in conventional
superconductor/normal (S/N) proximity systems and its relation to the classical
McMillan-Rowell oscillations.
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5.1 Introduction

It is well established that superconductivity is realized due to the formation of
Cooper pairs consisting of two electrons. In accordance with the Pauli principle, it is
customary to distinguish spin-singlet even-parity and spin-triplet odd-parity pairing
states in superconductors, where odd (even) refer to the orbital part of the pair wave
function. For example, s -wave and d -wave pairing states belong to the former case,
while p-wave state belongs to the latter one [1]. In both cases, the pair amplitude is
an even function of energy. However, the so-called odd-frequency pairing states
when the pair amplitude is an odd function of energy can also exist. Then, the
spin-singlet odd-parity and the spin-triplet even-parity pairing states are possible.

The possibility of realizing the odd-frequency pairing state was first proposed
by Berezinskii in the context of 3He, where the odd-frequency spin-triplet pairing
was discussed [2]. The odd-frequency superconductivity was then discussed in the
context of various mechanisms of superconductivity involving strong correlations
[3–6]. The odd-frequency pairing state was recently proposed in ferromagnet/
superconductor heterostructures with inhomogeneous magnetization or spin-mixing
due to spin-dependent interface potential [7–16]. Manifestations of triplet pairs were
recently observed experimentally as a long-range Josephson coupling across ferro-
magnets [17–20]. At the same time, the very important issue of the manifestation of
the odd-frequency pairing in proximity systems without magnetic ordering received
no attention yet. This question is addressed in this paper.

Note that the proximity effect involving spin-singlet even-frequency pairing
state is realized in ferromagnet/superconductor heterostructures with homogeneous
magnetization. Such effects are well understood in terms of oscillatory behavior of
the order parameter [21,22] (Fulde-Ferrel-Larkin-Ovchinnikov state). This behavior
manifests itself in oscillatory coupling in SFS Josephson junctions with transitions
from 0- to �-state observed experimentally by Ryazanov et al. [23]. The physics of
�-junctions is discussed in Chap. 9 of this book.

Coherent charge transport in structures involving diffusive normal metals (DN)
and superconductors (S) was extensively studied during the past decade both
experimentally and theoretically. However, almost all previous work was restricted
to junctions based on conventional s-wave superconductors [24, 25]. Recently,
new theoretical approach to study charge transport in junctions based on p-wave
and d -wave superconductors was developed and applied to the even-frequency
pairing state [26–31]. It is known that in the anisotropic paring state, due to
the sign change of the pair potential on the Fermi surface, a so-called midgap
Andreev resonant state (MARS) is formed at the interface [32–38]. As was found
in [26–31], MARS competes with the proximity effect in contacts with spin-singlet
superconductors, while it coexists with the proximity effect in junctions with spin-
triplet superconductors. In the latter case, it was predicted that the induced pair
amplitude in the DN has a peculiar energy dependence and the resulting local
density of states (LDOS) has a zero energy peak (ZEP) [28–31]. Here we review a
general theory of the proximity effect in the N/S junctions, both in the clean and in
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the dirty limit [39–42], applicable to any type of symmetry state in a superconductor
forming the junction in the absence of spin-dependent electronic scattering at the
N/S interface.

5.2 Junctions in the Dirty Limit

Let us first discuss the case of a diffusive normal metal attached to a supercon-
ductor (DN/S junction). Before proceeding with formal discussion, let us present
qualitative arguments illustrating the main conclusions of the paper. Two constrains
should be satisfied in the considered system: (1) only the s-wave even-parity state is
possible in the DN due to isotropization by impurity scattering, (2) the spin structure
of induced Cooper pairs in the DN is the same as in an attached superconductor.
Then the Pauli principle provides the unique relations between the pairing symmetry
in a superconductor and the resulting symmetry of the induced pairing state in the
DN. Namely, for even-parity superconductors, even-frequency spin-singlet even-
parity (ESE) and odd-frequency spin-triplet even-parity (OTE) states, the pairing
symmetry in the DN should remain ESE and OTE. On the contrary, for odd-parity
superconductors, even-frequency spin-triplet odd-parity (ETO) and odd-frequency
spin-singlet odd-parity (OSO) states, the pairing symmetry in the DN should be
OTE and ESE, respectively. The generation of the OTE state in the DN attached
to the ETO p-wave superconductor is of particular interest. Similar OTE state can
be generated in superconducting junctions with diffusive ferromagnets [7–12, 17]
but due to different physical mechanism. Although the symmetry properties can
be derived from the basic arguments given above, the quantitative model has to be
considered to prove the existence of nontrivial solutions for the pairing amplitude in
the DN in each of the above cases. These solutions and their main features will be
discussed below.

Let us start with the general symmetry properties of the quasiclassical Green’s
functions in the considered system. The elements of retarded and advanced Nambu
matricesbgR;A

bgR;A D
 
gR;A f R;A

f
R;A

gR;A

!

(5.1)

are composed of the normal gR˛;ˇ.r; "; p/ and anomalous f R
˛;ˇ.r; "; p/ components

with spin indices ˛ and ˇ. Here, p D pF = j pF j, pF is the Fermi momentum, r and
" denote coordinate and energy of a quasiparticle measured from the Fermi level.

The function f R and the conjugated function Nf R satisfy the following relation
[43, 44]

Nf R
˛;ˇ.r; "; p/ D �Œf R

˛;ˇ.r;�";�p/��: (5.2)

The Pauli principle is formulated in terms of the retarded and the advanced
Green’s functions in the following way [43]



120 A.A. Golubov et al.

f A
˛;ˇ.r; "; p/ D �f R

ˇ;˛.r;�";�p/: (5.3)

By combining the two above equations, we obtain Nf R
ˇ;˛.r; "; p/D Œf A

˛;ˇ.r; "; p/�
�.

Further, the definitions of the even-frequency and the odd-frequency pairing
are f A

˛;ˇ.r; "; p/Df R
˛;ˇ.r;�"; p/ and f A

˛;ˇ.r; "; p/D � f R
˛;ˇ.r;�"; p/, respectively.

Finally, we get

Nf R
ˇ;˛.r; "; p/ D Œf R

˛;ˇ.r;�"; p/�� (5.4)

for the even-frequency pairing and

Nf R
ˇ;˛.r; "; p/ D �Œf R

˛;ˇ.r;�"; p/�� (5.5)

for the odd-frequency pairing. In the following, we focus on Cooper pairs with Sz D
0, remove the external phase of the pair potential in the superconductor and will
concentrate on the retarded part of the Green’s function.

We consider a junction consisting of a normal (N) and a superconducting
reservoirs connected by a quasi-one-dimensional diffusive conductor (DN) with
a length L much larger than the mean free path. The Green’s function in the
superconductor can be parameterized as g˙."/ O�3 C f˙."/ O�2 using Pauli matrices,
where the suffix C.�/ denotes the right (left) going quasiparticles. g˙."/ and f˙."/
are given by gC."/DgR˛;ˇ.r; "; p/ g�."/DgR˛;ˇ.r; "; Np/ fC."/Df R

˛;ˇ.r; "; p/, and

f�."/Df R
˛;ˇ.r; "; Np/, respectively, with Np D NpF = j pF j and NpF D .�pFx; pFy/. Using

the relations (5.4), (5.5), we obtain that f˙."/D Œf˙."/�� for the even-frequency
pairing and f˙."/D � Œf˙.�"/�� for the odd-frequency pairing, respectively, while
g˙."/D Œg˙.�"/�� in both cases.

In the DN region only, the s-wave even-parity pairing state is allowed due to
isotropization by impurity scattering. The resulting pair amplitude in the DN can be
parameterized by cos � O�3Csin � O�2 in a junction with an even-parity superconductor
and by cos � O�3 C sin � O�1 in a junction with an odd-parity superconductor. The
function � satisfies the Usadel equation [45] with the corresponding boundary
condition at the DN/S interface and at the N/DN interface [26, 27].

In the following, we will consider four possible symmetry classes of supercon-
ductor forming the junction and consistent with the Pauli principle: ESE, ETO, OTE,
and OSO pairing states. We will use the fact that only the even-parity s-wave pairing
is possible in the DN due to the impurity scattering and that the spin structure of pair
amplitude in the DN is the same as in an attached superconductor.

1. Junction with ESE superconductor
In this case, f˙."/ D f �

˙.�"/ and g˙."/ D g�
˙.�"/ are satisfied. Then, the

Usadel equations and the boundary conditions are consistent with each other
only when sin ��.�"/ D sin �."/ and cos ��.�"/ D cos �."/. Thus, the ESE
state is formed in the DN, in accordance with the Pauli principle.

2. Junction with ETO superconductor
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Now we have f˙."/ D f �̇.�"/ and g˙."/ D g�̇ .�"/. Then fS.�"/ D
�f �

S ."/ D �f �
S and gS.�"/ D g�

S ."/ D g�
S . As a result, the boundary value

problem is consistent if sin ��.�"/ D � sin �."/ and cos ��.�"/ D cos �."/.
Thus, the OTE state is formed in the DN. Remarkably, the appearance of
the OTE state is the only possibility to satisfy the Pauli principle, as we
argued above. Interestingly, the OTE pairing state can also be realized in
superconductor/ferromagnet junctions [7–12, 17], but the physical mechanism
differs from the one considered here.

3. Junction with OTE superconductor
In this case, f˙."/ D �f �̇.�"/ and g˙."/ D g�̇ .�"/. Then fS.�"/ D

�f �
S ."/ and gS.�"/ D g�

S ."/ and we obtain sin ��.�"/ D � sin �."/ and
cos ��.�"/ D cos �."/. Due to the absence of the spin flip scattering, these
relations mean that the OTE pairing state is induced in the DN.

4. Junction with OSO superconductor
We have f˙."/ D �f �̇.�"/, g˙."/ D g�̇ .�"/ and fS.�"/ D f �

S ."/,
gS.�"/ D g�

S ."/. One can show that sin ��.�"/ D sin �."/ and cos ��.�"/ D
cos �."/. Following the same lines as in case (1), we conclude that the ESE
pairing state is induced in the DN.

The central conclusions are summarized in the table below.

Symmetry of the pairing in
superconductors

Symmetry of the pairing in
the DN

(1) Even-frequency spin-singlet even-parity
(ESE)

ESE

(2) Even-frequency spin-triplet odd-parity
(ETO)

OTE

(3) Odd-frequency spin-triplet even-parity
(OTE)

OTE

(4) Odd-frequency spin-singlet odd-parity
(OSO)

ESE

Note that for even-parity superconductors the resulting symmetry of the induced
pairing state in the DN is the same as that of a superconductor (the cases (1), (3)).
On the contrary, for odd-parity superconductors, the induced pairing state in the DN
has symmetry different from that of a superconductor (the cases (2), (4)).

To illustrate the main features of the proximity effect in all the above cases, we
calculate the LDOS �."/ D RealŒcos �� in the middle of the DN layer.

We start from junctions with ESE superconductors and choose the s-wave pair
potential with �˙ D 1. The LDOS has a gap (Fig. 5.1a) and the Real(Imaginary)
part of f ."/ is an even(odd) function of " consistent with the formation of the even-
frequency pairing.

In junctions with ETO superconductors, we choose px-wave pair potential with
�C D ��� D cos� as a typical example. In this case, an unusual proximity
effect is induced where the resulting LDOS has a zero energy peak (ZEP) [28–31]
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Fig. 5.1 Local density of states in the diffusive normal metal DN in a contact with s-wave
superconductor (a), px-wave superconductor (b) and dxy-wave superconductor (c)

as illustrated in Fig.5.1b. The resulting LDOS has a ZEP [28–31] since f ." D 0/

becomes a purely imaginary number. This is consistent with f ."/ D �f �.�"/ and
the formation of the OTE pairing in the DN.

It is instructive to compare the ETO state with px-wave pair potential and the
ESE state with dxy-wave pairing. In the latter case, as seen from Fig. 5.1c, there is
no subgap structure at all in the LDOS in DN. This feature can be used to distinguish
px-wave state from dxy-wave one in tunneling experiments.

In summary, we considered four symmetry classes in a superconductor allowed
by Pauli principle: (1) even-frequency spin-singlet even-parity (ESE), (2) even-
frequency spin-triplet odd-parity (ETO), (3) odd-frequency spin-triplet even-parity
(OTE) and (4) odd-frequency spin-singlet odd-parity (OSO). We have found that
the resulting symmetry of the induced pairing state in the DN is (1) ESE (2) OTE
(3) OTE and (4) ESE corresponding to the above four classes. When the even (odd)
frequency pairing is induced in the DN, the resulting LDOS has a gap (peak) at zero
energy.

5.3 Junctions in the Clean Limit

In this Section, we present the results of the theoretical study of the induced odd-
frequency pairing state in ballistic normal metal/superconductor (N/S) junctions
where a superconductor has even-frequency symmetry in the bulk and a normal
metal layer has an arbitrary length.

We show that if a superconductor has even-parity pair potential (spin-singlet
s-wave state), the odd-frequency pairing component with odd-parity is induced near
the N/S interface, while in the case of odd-parity pair potential (spin-triplet px-
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wave or spin-singlet dxy-wave) the odd-frequency component with even-parity is
generated. In conventional s-wave junctions, the amplitude of the odd-frequency
pairing state is strongest in the case of fully transparent N/S interface and is
enhanced at energies corresponding to the peaks in the local density of states
(LDOS). In px- and dxy-wave junctions, the amplitude of the odd-frequency
component on the S side of the N/S interface is enhanced at zero energy, where the
midgap Andreev resonant state (MARS) appears due to the sign change of the pair
potential. The odd-frequency component extends into the N region and exceeds the
even-frequency component at energies corresponding to the LDOS peak positions,
including the MARS. At the edge of the N region, the odd-frequency component is
non-zero while the even-frequency one vanishes.

In the following, we consider a N/S junction as the simplest example of
non-uniform superconducting system without impurity scattering. Both cases of
spin-triplet odd-parity and spin-singlet even-parity symmetries are considered in
the superconductor. We assume a thin insulating barrier located at the N/S interface
(x D 0) with N (�L < x < 0/ and S (x > 0). The length of the normal region is L.

The quasiclassical Green’s functions in a normal metal (N) and a superconductor
(S) in the Matsubara frequency representation are parameterized as

Og.i/˙ D f
.i/

1˙ O�1 C f
.i/

2˙ O�2 C g
.i/

˙ O�3; . Og.i/˙ /
2 D O1; (5.6)

where the subscript i.D N;S/ refer to N and S, respectively. Here, O�j (j D 1; 2; 3)
are Pauli matrices and O1 is a unit matrix. The subscript C.�/ denotes the left (right)
going quasiparticles [43]. Functions Og.i/˙ satisfy the Eilenberger equation [46]

ivFx Og.i/˙ D �Œ OH˙; Og.i/˙ � (5.7)

with
OH˙ D i!n�3 C i N�˙.x/�2: (5.8)

Here, vFx is the x component of the Fermi velocity, !n D 2�T .n C 1=2/ is the
Matsubara frequency, n is an integer number and T is temperature. N�C.x/ ( N��.x/)
is the effective pair potential for left (right) going quasiparticles. In the N region,
N�˙.x/ is set to zero due to the absence of a pairing interaction in the N metal. The

above Green’s functions can be expressed as

f
.i/

1˙ D ˙i.F .i/

˙ CD
.i/

˙ /=.1�D
.i/

˙ F
.i/

˙ /; (5.9)

f
.i/

2˙ D �.F .i/

˙ �D
.i/

˙ /=.1 �D.i/

˙ F
.i/

˙ /; (5.10)

g
.i/

˙ D .1CD
.i/

˙ F
.i/

˙ /=.1�D
.i/

˙ F
.i/

˙ /:

FunctionsD.i/

˙ .x/ and F .i/

˙ .x/ satisfy the Ricatti equations [47–49] in the N and
S regions, supplemented by the proper boundary conditions [39–42].
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Here, we consider the situation without mixing of different symmetry channels
for the pair potential. Then the pair potential N�˙.x/ is expressed by

N�˙.x/ D �.x/˚˙.�/�.x/ (5.11)

with the form factor ˚˙.�/ given by ˚˙.�/ D 1, ˙ sin 2� , and ˙ cos � for s-wave,
dxy-wave, and px-wave superconductors, respectively. The pair potential �.x/ is
determined by the self-consistent equation

�.x/ D 2T

log T
TC

C
X

n�1

1

n� 1
2

X

n�0

Z �=2

��=2
d�G.�/f2C (5.12)

with G.�/ D 1 for s-wave case and G.�/ D 2˚.�/ for other cases, respectively
[50]. TC is the transition temperature of the superconductor. The condition in the
bulk is �.1/ D �0. Since the pair potential N�.x/ is a real quantity, the resulting
f1˙ is an imaginary quantity and f2˙ is a real one.

Before performing actual numerical calculations, we now discuss general proper-
ties of the pair amplitude. In the following, we explicitly write f .i/

1˙ D f
.i/

1˙ .!n; �/,
f
.i/

2˙ D f
.i/

2˙.!n; �/, F
.i/

˙ D F
.i/

˙ .!n; �/ and D.i/

˙ D D
.i/

˙ .!n; �/. For the limit
x D 1, we obtain

f
.S/

1˙ .!n; �/ D 0; f
.S/

2˙ .!n; �/ D �0˚˙.�/q
!2n C�2

0˚
2˙.�˙/

: (5.13)

Note that f .i/

1˙.!n; �/ becomes finite due to the spatial variation of the pair potential

and it does not exist in the bulk. One can show that D.i/

˙ .�!n; �/ D 1=D
.i/

˙ .!n; �/
and F .i/

˙ .�!n; �/ D 1=F
.i/

˙ .!n; �/. After simple manipulation, we obtain

f
.i/

1˙.!n; �/ D �f .i/

1˙.�!n; �/; f
.i/

2˙.!n; �/ D f
.i/

2˙.�!n; �/; (5.14)

for any x. It is remarkable that functions f .i/

1˙ .!n; �/ and f .i/

2˙.!n; �/ correspond to
odd-frequency and even-frequency components of the pair amplitude, respectively.
Function f .1/

1˙ .!n; �/ describes the odd-frequency component of the pair amplitude
penetrating from the superconductor.

Next, we discuss the parity of these pair amplitudes. The even-parity (odd-parity)
pair amplitude should satisfy the following relation f .i/

j˙.!n; �/ D f
.i/
j�.!n;��/

[f .i/

j˙.!n; �/ D �f .i/
j�.!n;��/], with j D 1; 2. For an even-parity (odd-parity)

superconductor,˚˙.��/ D ˚�.�/ [˚˙.��/ D �˚�.�/]. Then we can show that
for the even-parity case
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D
.i/

˙ .��/ D D
.i/
� .�/; F

.i/

˙ .��/ D F
.i/
� .�/ (5.15)

and for the odd-parity case

D
.i/

˙ .��/ D �D.i/
� .�/; F

.i/

˙ .��/ D �F .i/
� .�/; (5.16)

respectively.
The resulting f .i/

1˙.!n; �/ and f .i/

2˙.!n; �/ satisfy

f
.i/

1˙.!n; �/ D �f .i/
1�.!n;��/;

f
.i/

2˙.!n; �/ D f
.i/
2�.!n;��/;

(5.17)

for an even-parity superconductor and

f
.i/

1˙.!n; �/ D f
.i/
1�.!n;��/;

f
.i/

2˙.!n; �/ D �f .i/
2�.!n;��/;

(5.18)

for an odd-parity superconductor, respectively. Note that the parity of the odd-
frequency component f .i/

1˙.!n; �/ is always different from that in the bulk super-
conductor.

As shown above, the odd-frequency component f .i/

1˙.!n; �/ is a purely imaginary
quantity. The underlying physics behind this formal property is follows. Due to the
breakdown of translational invariance near the N/S interface, the pair potential N�.x/
acquires a spatial dependence, which leads to the coupling between even-parity and
odd-parity states. Since the bulk pair potential has an even-frequency symmetry,
the Fermi-Dirac statistics requires that the order parameter component induced near
the interface should be odd in frequency. The phase of the induced pair amplitude
undergoes a �=2 shift from that in the bulk S, thus removing internal phase shift
between the even- and odd-frequency components and making the interface-induced
state compatible with the time reversal invariance. As a result, function f .i/

1˙.!n; �/
becomes a purely imaginary quantity.

Let us now focus on the values of the pair amplitudes at the edge of N region
(at x D �L). We concentrate on two extreme cases with (I) ˚C.�/ D ˚�.�/ and
(II) ˚C.�/ D �˚�.�/. In the case (I), the MARS is absent since there is no sign
change of the pair potential felt by the quasiparticle at the interface. Then the relation
D
.N/
C D D.N/� holds. However, in the case (II), the MARS is generated near the

interface due to the sign change of the pair potential and the relationD.N/
C D �D.N/�

is satisfied [32–34]. At the edge x D �L, it is easy to show that F .N/

˙ D �D.N/

˙
for the former case and F .N/

˙ D D
.N/

˙ for the latter one. As a result, f .N/

1˙ D 0 for

the case (I) and f .N/

2˙ D 0 for the case (II), respectively. Thus, we can conclude that
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in the absence of the MARS only the even-frequency pairing component exists at
x D �L, while in the presence of the MARS only the odd-frequency one.

To understand the angular dependence of the pair amplitude in a more detail, we
define Of .i/

1 and Of .i/
2 for ��=2 < � < 3�=2 with Of .i/

1.2/ D f
.i/

1.2/C.�/ for ��=2 <
� < �=2 and Of .i/

1.2/ D f
.i/

1.2/�.� � �/ for �=2 < � < 3�=2. We decompose Of .i/

1.2/ into
various angular momentum component as follows,

Of .i/

1.2/ D
X

m

S.1.2//m sin.m�/C
X

m

C .1.2//
m cos.m�/ (5.19)

with m D 2l C 1 for odd-parity case and m D 2l for even-parity case with integer
l 
 0, where l is the quantum number of the angular momentum. Here, C .1.2//

m

and S.1.2//m are defined for all x. It is straightforward to show that the only nonzero
components are (1) C .2/

2l and C .1/

2lC1 for even-parity superconductor without sign

change at the interface (i.e., s-wave or dx2�y2 -wave), (2) S.2/2lC2 and S.1/2lC1 for dxy-

wave, (3)C .2/

2lC1 andC .1/

2l for px-wave, and (4) S.2/2lC1 and S.1/2l for py-wave junctions,
respectively. The allowed angular momenta for odd-frequency components are 2lC
1, 2l C 1, 2l , and 2l C 2 corresponding to each of the above four cases.

To get better insight into the spectral property of the odd-frequency pair ampli-
tude, we perform an analytical continuation from the Matsubara frequency!n to the
quasiparticle energy " measured from the chemical potential. The retarded Green’s
function corresponding to (5.1) is defined as Og.i/R˙ D f

.i/R

1˙ O�1 C f
.i/R

2˙ O�2 C g
.i/R

˙ O�3.
One can show that f .i/R

1˙ .�"/ D �Œf .i/R

1˙ ."/��, f .i/R

2˙ .�"/ D Œf
.i/R

2˙ ."/��, and

g
.i/R

˙ .�"/ D Œg
.i/R

˙ ."/��. The LDOS �."/ at the N/S interface at x D 0 normalized
to its value in the normal state is given by

�."/ D
Z �=2

��=2
d�Real

 
g
.i/R
C ."/C g.i/R� ."/

2�

!

: (5.20)

Let us discuss the case of s-wave superconductor junctions as shown in Fig. 5.2.
By changing the length L of the N region and the transparency at the interface,
we calculate the spatial dependence of the pair potential and the pair amplitudes
in the Matsubara frequency representation. We only concentrate on the lowest
angular momentum of the even-frequency pair amplitude C .2/

0 . As regards the odd-

frequency pair amplitudes, we focus on the C .1/
1 , C .1/

3 and C .1/
5 components which

all have odd-parity and depend on � as cos � , cos 3� and cos 5� , respectively, and
correspond to px-wave, f1-wave and h1-wave components shown in Fig. 5.1. In
all cases, even-frequency component is constant in the S region far away from the
interface and the corresponding odd-frequency components are absent. The s-wave
pair potential is suppressed for the fully transparent case (Z D 0), while it is
almost constant for low transparent case (Z D 5). It does not penetrate into the
N region due to the absence of the attractive interaction in the N metal. On the
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Fig. 5.2 Spatial dependence of the normalized pair potential, even-frequency pair amplitude and
odd-frequency components of the pair amplitude for s-wave superconductor junctions. Here, we
choose � D vF =�0 in the S region .x > 0/ and � D L0 D vF =2�TC in the N region. The pair
amplitudes C.2/

0 , C.1/
1 , C.1/

3 , and C.1/
5 are denoted as even s-wave, odd px-wave, odd f1-wave, and

odd h1-wave pair amplitudes. (a) Z D 0, L D L0, (b) Z D 5, L D L0, (c) Z D 0, L D 5L0,
and (d) Z D 5, L D 5L0 , respectively

contrary, in all considered cases the spatial variation of the even-frequency s-wave
pair amplitude is rather weak in the S region, while in the N region it is strong for
Z D 0 and is reduced for Z D 5 since the proximity effect is weaker in the latter
case. The odd-frequency component always vanishes at x D �L and does not have
a jump at the N/S interface even for nonzero Z. Its amplitude is strongly enhanced
near the N/S interface especially for fully transparent junctions. Note that not only
the px-wave but also f1-wave and h1-wave have sufficiently large magnitudes as
shown in Fig. 5.2a, c. With the decrease in the transparency of the N/S interface, the
odd-frequency components are suppressed as shown in Fig. 5.2b, d.

It is instructive to discuss the spectral properties of the induced pairing state in
the N region. Here, we concentrate on the situation when the N/S/ interface is fully
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Fig. 5.3 Ratio of the pair
amplitudes f .N/

1C ."; �/=

f
.N/

2C ."; �/ on the N-side of
the N/S interface in s-wave
junction as a function of
energy " for � D 0 and
L D 5L0

transparent (Z D 0) and L D 5L0. In this case, the LDOS in the N region and at
the N/S interface coincide with each other. The LDOS has multiple peaks due to the
existence of the multi-sub gap structures due to electron-hole interference effects in
the N region [52, 53].

The amplitudes of the corresponding even-frequency and odd-frequency compo-
nents are enhanced at energies " corresponding to the LDOS peak positions, while
the ratio of this components depends on energy and location in the N region. To
clarify this point much more clearly, we concentrate on the ratio of the odd- and
even-frequency components in the N region. The ratio of the magnitude of the
odd-frequency component f .N/

1C ."; �/ to the even-frequency one f .N/
2C ."; �/ is

ˇ
ˇ
ˇf .N/
1C ."; �/

ˇ
ˇ
ˇ

ˇ
ˇ
ˇf .N/
2C ."; �/

ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇtan

�
2"

vFx
.LC x/

�ˇˇ
ˇ
ˇ : (5.21)

At the edge of the N region, x D �L, the odd-frequency component vanishes at all
energies. On the other hand, very interesting situation occurs at the N/S interface,
x D 0 as will be shown below. In Fig. 5.3, we plot this ratio for � D 0 and x D 0.

It is remarkable that at some energies the amplitude of the odd-frequency pair
amplitude exceeds that of the even-frequency one.

Let us clarify the relation between the positions of the bound states and the above
ratio of the odd-to-even pair amplitude. In the limit L >> L0, the bound states are
determined by simple relation [52, 53]

"n D �vFx

2L
.nC 1=2/; n D 0; 1; 2; : : : (5.22)

That means that at the subgap peak energies the odd-frequency component
dominates over the even-frequency one at the N/S interface. This is a remarkable
property of the odd-frequency pairing, which makes it relevant to the classical
McMillan-Rowell oscillations in the N/S geometry [52,53]. To summarize, we have
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shown that the odd-frequency component is present even in the standard case of a
ballistic N/S system, and it dominates at energies when the LDOS has subgap peaks.

5.4 Summary

Using the quasiclassical Green’s function formalism, we have shown that
the odd-frequency pairing state is ubiquitously generated in the normal
metal/superconductor (N/S) ballistic junction system, where the length of the
normal region is finite. It is shown that the even-parity (odd-parity) pair potential in
the superconductor induces the odd-frequency pairing component with spin-singlet
odd-parity (spin-triplet even-parity). Even for conventional s-wave junctions, the
amplitude of the odd-frequency pairing state is enhanced at the N/S interface with
fully transparent barrier. By analyzing the spectral properties of the pair amplitudes,
we found that the magnitude of the resulting odd-frequency component at the
interface can exceed that of the even-frequency one. For the case of px-wave and
dxy-wave junctions, the magnitude of the odd-frequency component at the S side
of the N/S interface is significantly enhanced. The magnitude of the induced odd-
frequency component is enhanced in the presence of the midgap Andreev resonant
state due to the sign change of the anisotropic pair potential at the interface. The
LDOS has a zero energy peak (ZEP) both at the interface and in the N region. At
the edge of the N region, only the odd-frequency component is non-zero.

The underlying physics behind these phenomena is related to the breakdown
of translational invariance near the N/S interface, where the pair potential N�.x/
acquires a spatial dependence. As a result, an odd-frequency component is quite
generally induced near the interface. The breakdown of translational invariance is
the strongest when the pair potential changes sign upon reflection like in the case of
px-wave and dxy-wave junctions, then the magnitude of odd-frequency component
is the largest. Moreover, the phase of the interface-induced odd-frequency compo-
nent has a �=2 shift from that in the bulk of S. Therefore, as shown above, the
odd-frequency component f .i/

1˙.!n; �/ becomes purely imaginary quantity and the
peak structure in the LDOS naturally follows from the normalization condition.

We have also shown that in the N/S junctions with s-wave superconductors the
classical McMillan-Rowell oscillations [51–53] can also be reinterpreted in terms
of odd-frequency pairing. At the energies corresponding to the subgap peaks in the
N/S junction, the odd-frequency component dominates over the even-frequency one.
This is remarkable application of the odd-frequency pairing concept.
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Chapter 6
Ferromagnetic Josephson Junctions
with Critical Current Density Artificially
Modulated on a “Short” Scale

N.G. Pugach, M.Yu. Kupriyanov, E. Goldobin, D. Koelle, R. Kleiner,
A.S. Sidorenko, and C. Lacroix

Abstract We study the Josephson effect in junctions with a ferromagnetic (F)
barrier having its properties (interface transparency or the F-layer thickness)
artificially modulated on a scale less than the Josephson penetration length. Within
the framework of the quasiclassical Usadel equations, we describe SIFS and SIFNS
(S is a superconductor, I is an insulator, N is a normal metal) structures with a step-
like transparency of the FS or NS interface. The step-like change in parameters
may lead to oscillations (including sign change) of the critical current density
JC .y/ along the junction in the vicinity of the step, resulting in the formation of
a 0–� nano-junction near the step. Such structures exhibit an unusual behaviour
in an external magnetic field H . The properties of arrays of nano-junctions with
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Universität Tübingen, Auf der Morgenstelle 14, D-72076 Tübingen, Germany
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several transparency steps are also investigated. We propose a method to realize a
' Josephson junction by combining alternating 0 and � parts made of “clean” SFS
sub junctions with different F-layer thickness and an intrinsically non-sinusoidal
current–phase relation (CPR). The latter can significantly enlarge the parameter
range of the ' ground state and make the practical realization of ' Josephson
junctions feasible. Such junctions may also have two different stable solutions, such
as 0 and � , 0 and ', or ' and � .

6.1 Introduction

The interest in Josephson junction (JJ) devices with a ferromagnetic barrier has
been continuously increasing during the last years [1, 2]. Such a junction consists
of two superconducting electrodes (S) separated by a ferromagnetic layer (F). It
may include also a thin insulating tunnel barrier (I) and/or a normal metal layer
(N), i.e. SFS, SIFS, or SIFNS multilayers may be considered. The critical current
density Jc of an SFS junction exhibits damped oscillations as a function of the
F-layer thickness dF so that the Josephson phase � can be 0 or � in the ground state
[1,2]. � junctions can be used as (non-dischargeable) on-chip �-phase batteries for
self-biasing various electronic circuits in the classical and quantum domains, for
example self-biased RSFQ logic [3] or flux qubits [4, 5]. In addition, for quantum
circuits self-biasing also decouples the circuit from the environment and improves
decoherence figures, for example in the quiet qubit. [4, 6, 7] In classical circuits,
a phase battery may also substitute the conventional inductance and substantially
reduce the size of an elementary cell [8]. Some of these proposals were already
realized practically [3, 9].

Modern technology allows to manufacture not only 0 or � JJs, but also so-called
0–� Josephson junctions (see Fig. 6.1), i.e. junctions some parts of which behave
as 0 junctions and other parts as � junctions [10]. In these structures, intensively
studied experimentally, the different sign of JC can be achieved by introducing a
step-like change of the thickness of the F layer [11–15].

The interest in these 0–� junctions has been stimulated by the existence of
unusual topological vortex solutions. A spontaneous Josephson vortex carrying a
fraction of the magnetic flux quantum ˚0 � 2:07 � 10�15 Wb may appear at the
0–� boundary [10, 16, 17]. In the region where the phase � changes from 0 to
� there is a non-zero gradient @�=@y of the Josephson phase along the junction
that is proportional to the local magnetic field. In essence, this field is created by
supercurrents � sin.�/ circulating in this region. These currents are localized in
a J -vicinity of the 0–� boundary (J is the Josephson penetration depth) and
create a vortex of supercurrent with total magnetic flux equal to ˙˚0=2, whereas
a usual Josephson vortex carries ˙˚0, provided that the junction length L � J .
In the case of L . J the spontaneous flux [10, 16, 18–20] j˚ j < ˚0=2. It was
shown theoretically [20,21] and indicated in experiments [11,14,22] that for certain
conditions the existence of a fractional Josephson vortex at the 0–� boundary is
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Fig. 6.1 Sketch of the 0–�
ferromagnetic Josephson
junction

energetically favorable in the ground state. The fractional vortex is pinned at the
0–� boundary and has two polarities that may be used for information storage and
processing in the classical and quantum domains, for example to build JJ-based
qubits [23]. We note that the fractional vortex described above is always pinned
and is different from fractional Josephson vortices that are the solutions of a double
sine-Gordon equation [24–26].

Not only single Josephson junctions, but also superconducting loops intersected
by two JJs (dc SQUIDs) and JJ arrays may be used in applications. Such arrays
consist of N Josephson junctions connected as a one-dimensional parallel chain in
such a way that N � 1 individual superconducting loops are formed. Such an array
exhibits an unusual dependence of its mean voltage on the magnetic field H for
an overcritical applied bias current. If the loops are identical, the voltage response
V.H/ is ˚0-periodic. For JJ arrays with incommensurate loop areas the voltage
response V.H/ is non-periodic, and can have a rather sharp dip at H D 0. This
property may be used to create a sensitive absolute field magnetometer that is called
superconducting quantum interference filter (SQIF) [27–31]. So far, these SQIFs are
based on usual JJs. However, recently it was also suggested to realize 0–� SQUIFs,
using constriction junctions in d-wave superconductors [32]. In the presented work
we suggest SQIF-like structures of a new type based on 0–� s-wave JJs with a
ferromagnetic barrier.

Recently, a set of SIFS JJs having a variety of different shapes was demonstrated
experimentally: rectangular 0–� , 0–�–0, 20 � .0-�-/; annular 0–� JJ and disk-
shaped 0–� JJ, where the 0–� boundary forms a loop [33]. The Josephson
supercurrent transport in all such structures was visualized [33] using Low Temper-
ature Scanning Electron Microscopy (LTSEM) and current counterflow between 0
and � regions was confirmed. We note that among all 0–� JJ technologies available
nowadays, only SIFS or SFS technology allows to fabricate JJs with a topology
where the 0–� boundary forms a loop. Furthermore, the demonstration of a JJ
consisting of 20 � .0-�-/ periods was motivated by the possibility to produce a
so-called ' JJ [24, 34], but this aim was not reached yet. Instead, in such structures
(not only on SIFS, but also in Nb/cuprate ramp zigzag JJs [35, 36]) one observes
experimentally an Ic.H/ dependence which is noticeably different from predicted
theoretically [35]. It was recently found that such structures are extremely sensitive
to non-uniformities of magnetic field (that arise as a result of field focusing by
electrodes) and also to the misalignment angle [37].



136 N.G. Pugach et al.

In many investigations of 0–� JJs, it is assumed that the length of the junction
L � J and that the critical current density is uniform along every part of the
junction. The peculiarities arising on the nano-scale in the vicinity of the 0–�
boundaries are usually neglected. In this work, we show in the framework of a
microscopic theory of superconductivity that if some property of the JJ changes
in a step-wise manner, its critical current density JC may have a peculiar oscillatory
dependence in the vicinity of the step. This leads to an unusual dependence of
the maximum supercurrent Imax.H/ vs. the external magnetic field. Instead of the
Fraunhofer pattern usually observed for a uniform JJ, Imax grows linearly withH on
a comparatively large interval. This behaviour can be realized for certain junction
parameters, for example for specific values of the ferromagnetic layer thickness dF .
We have obtained this result for SIFS JJs assuming the existence of a step-like non-
uniformity in the transparency of the FS boundary, which should be sharp on the
scale of the ferromagnetic coherence length �F [38]. The Josephson junction with a
ferromagnetic barrier has a complex coherence length

��1 D ��1
1 C i��1

2 (6.1)

In the “dirty” limit (electron mean free path l � �1;2) if we neglect additional pair-
breaking mechanisms one can obtain �1 D �2 	 �F [2]. The practical realization of
the structure with a sharp SF boundary step on the scale �F may be difficult as the
typical value of �F � 1 nm. One of the possible solutions is to introduce a normal
metal (N) into the junction, i.e. to use an SIFNS structure. Then, the relevant length
is �N � 100 nm � �F , as a consequence of the proximity effect between F and N
layers [39]. Fabrication of such steps should not pose technological problems. The
next step would be to make an array of these junctions for example as in SQIFs.

It was shown that SFS JJs with periodically changing F-layer thickness at certain
conditions can have not only 0 or � , but also an arbitrary Josephson phase '
(0 < j'j < �) in the ground state – such a junction is called a ' JJ [26, 32, 40].
However, these conditions [26] are practically not achievable using contemporary
technology. In addition to providing an arbitrary phase bias, such ' junctions have
rather interesting physical properties such as two critical currents, non-Fraunhofer
Josephson current dependence on an external magnetic field, half-integer Shapiro
steps and an unusual behaviour when embedded in a SQUID loop. In long '

junctions, two types of mobile Josephson vortices carrying fractional magnetic flux
˚1 < ˚0 and ˚2 D ˚0 �˚1 may exist, resulting in half integer zero field steps, two
critical values of magnetic field penetration and other unusual properties [41].

The idea to realize a ' JJ was pushed forward by considering some practical
aspects [42]. Following the original idea [24, 34] to achieve a ' ground state,
one needs to control the size and critical current densities in 0 and � regions
with unprecedented precision. It was shown that by using SFS JJs with a clean
F-layer, one can obtain a substantial contribution from the intrinsic negative second
harmonic in the CPR and substantially extend the regions of the ' ground state [42].

This article is organized as follows. In Sect. 6.2, we investigate ferromag-
netic Josephson junctions with step-like interface transparency and its arrays.
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Section 6.2.1 describes the model based on the linearized Usadel equation for an
SIFS junction with a step-like transparency of the FS boundary. Its behaviour in
an external magnetic field is investigated. Section 6.2.2 describes SIFNS structures
with a step-like transparency of the NS boundary. The properties of asymmetric
SIFNS junctions with few different steps of the boundary transparency are presented
in Sect. 6.2.3. In Sect. 6.2.4, the magnetic properties of symmetric and asymmetric
periodic arrays of these junctions are described. In Sect. 6.3, we propose a method
for the reliable realization of a ' Josephson junction. In Sect. 6.3.1, we describe the
model and derive the equations for the effective phase using an averaging procedure
over the rapid oscillations of the phase. Section 6.3.2 contains the discussion and
results of calculations done for a “clean” SFS junction. Section 6.4 concludes this
work. The calculation details for SIFS and SIFNS Josephson junctions can be found
in the appendices.

6.2 Ferromagnetic Josephson Junctions with Step-Like
Interface Transparency

6.2.1 Model for SIFS Junction

6.2.1.1 Critical Current Density Distribution

We consider a Josephson junction of length L consisting of two semi-infinite
superconducting electrodes, separated by a ferromagnetic layer of thickness dF and
a thin insulating film of thickness dI , dI � dF (see Fig. 6.2).

The IF interface coincides with the yz plane, and it is assumed that the structure
is homogeneous in z-direction but not in y-direction. The suppression parameters
�B1 and �B2 for the parts of the FS interface located at 0 � y � L=2 and L=2 �
y � L, respectively, are supposed to be large enough to neglect the suppression of
superconductivity in the S part of the SF proximity system in the structure. �B1.2/ D
RB1.2/S=2�F �F ; where RB1.2/ is the resistance of the corresponding part of the FS
interface, S is the area of the junction , and �F is the F metal resistivity. We assume
that the dirty limit condition l � �F;N;S is fulfilled in the F and S layers and that the
effective electron–phonon coupling constant is zero in the F metal.

Let either be the temperature T close to the critical temperature Tc of the
superconducting electrodes or the suppression parameters at the FS interface large
enough (�B1; �B2 � 1) to permit the use of the linearized Usadel equations in the F
film. Under the above restrictions, the problem of calculation of the critical current
density in the structure reduces to the solution of the two-dimensional linearized
Usadel equation:

�2F

�
@2

@x2
C @2

@y2

	
�F � e!

�Tc
�F D 0; (6.2)
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Fig. 6.2 Schematic view of
the SIFS Josephson junction
with a step-like change of the
FS interface transparency
(�B1 ¤ �B2)

where ! is the Matsubara frequency, e! D j!j C iEsign.!/, E is the exchange
magnetic energy of the ferromagnetic material, its coherence length �F D
.DF =2�Tc/

1=2, and DF is the electron diffusion coefficient. �F D �F .x; y; !/ is
the parameterized Usadel function, introduced by the expression �F D e!FF =GF ,
where FF and GF are Usadel functions for the ferromagnetic region. We use the
units where the Plank and Boltzmann constants are „ D 1 and kB D 1.

Under the assumption j�B1 � �B2j =�B1�B2 � 1 the boundary conditions at the
FS interfaces located at x D dF can be written in the form [43]:

�B1
�F

e!
@

@x
�F D

� exp
n
i�
2

o

p
!2 C�2

; 0 � y � L

2
;

�B2
�F

e!
@

@x
�F D

� exp
n
i�
2

o

p
!2 C�2

;
L

2
� y � L: (6.3)

Here,� is the modulus of the order parameter of the superconducting electrodes,
and the phase of the order parameter takes the values ˙�=2 on the two junction
sides respectively. These conditions directly follow from Kupriyanov–Lukichev
boundary conditions (see [43]) in the case of small interface transparency and had
been intensively used for the analysis of a wide scope of problems in SF multilayers
with small interface transparency [1, 2, 44].

The boundary condition at the interface covered by the insulating film (x D 0)
is [43]:

@

@x
�F D 0 (6.4)

At the free ends of the junction located at y D 0;L the boundary conditions
correspond to zero current through these surfaces and have the form:

@

@y
�F D 0: (6.5)
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Fig. 6.3 Critical current
density distribution (in units
of �T=eRS) along the
non-uniform SIFS Josephson
junction. The temperature is
T D 0:1Tc , the exchange
magnetic energy is
E D 35�Tc , �B1 D 2,
�B2 D 10, dF D 0:956�F
corresponds to the point of
the 0–� transition; for
dF D 1:2�F the junction is
far from this transition

The final expressions for the solution of this two-dimensional boundary problem
�F .x; y; !/ are given by (6.10) of Appendix 1. The Usadel function�F .x; y; !/ is
substituted into the expression for the superconducting tunnel current density [45],
that gives the sinusoidal current–phase relation

J.�/ D JC .y/ sin.�/; (6.6)

with the critical current density distribution of the following form:

JC .y/ D 2�T

eRS

1X

!D0

�p
�2 C !2

Re



�F .0; y; !/

e!

�
; (6.7)

where R is the normal resistance of the tunnel SIFS junction. The calculation
of JC .y/ yields the following unexpected result: at some parameters (e.g., the
ferromagnet thickness dF [46]) when the uniform junction is close to a 0–�
transition (JC D 0), JC .y/ (6.7) exhibits damped oscillations in the vicinity of
the transparency step (Fig. 6.3). JC .y/ changes sign so that the junction properties
change from the 0 state to the � state on the scale of �F . This means that a 0–� nano-
junction with zero total critical current is formed inside the structure. Previously,
a similar effect was predicted for an SFIFS-SNINS non-uniform junction [47].
Note that we call “0–� transition” the conditions when the uniform junction has
zero critical current, and “0–� nano-junction” the region where the critical current
density JC .y/ is non-uniform and changes its sign near the junction non-uniformity
under these conditions.

6.2.1.2 Maximum Josephson Current in an External Magnetic Field

The non-uniform distribution of the critical current density must lead to some
peculiarities in the junction behaviour in an external magnetic field.
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We start from the Ferrell–Prange type equation for an inhomogeneous Josephson
junction

2J0
@2

@y2
�.y/� JC .y/

JC0
sin�.y/ D J

JC0:
(6.8)

Here, J0 D J .JC0/, and

J .JC / D
s

˚0

2�0�d 0 jJC j (6.9)

is the Josephson penetration depth, where JC0 is the maximum of the critical current
density along the junction, J is the bias current density, �0d 0 is the effective
inductance per square of the junction electrodes, d 0 � 2L and L is the London
penetration depth of S regions. We assume that the ferromagnetic layer is thin
enough to neglect its influence on L.

Since the typical scale of the critical current oscillations is �F � J0, it is more
interesting to examine a Josephson junction of intermediate lengthL in y-direction:
�F ; L � L � J0. It is also assumed that the width of the junction in z direction
exceeds the value L. Under these conditions, it is possible to use the local equation
(6.8) [48]. In this case, the solution of (6.8) can be found in the linear form
�.y/ D �0 C hy=�F , where h D H=H0 is the normalized applied magnetic field in
z-direction, and H0 D ˚0=2��F d

0.
The total current through the junction is calculated and the phase difference �0

providing the maximum of the total current at each value of h is determined. This
yields the dependence of the maximum Josephson current through the junction on
the external magnetic field Imax.H/, that is given by (6.11) in Appendix 1.

If the ferromagnet thickness dF has a value such that the JJ is either in the
0 or � state, then Imax.H/ is mainly defined by the first term under the square
root in the expression (6.11). This term describes the contribution of the average
critical current density along the junction. The corresponding dependence Imax.H/

resembles a Fraunhofer pattern, that is typical for uniform Josephson junctions with
L � J0. With increasing non-uniformity �B2=�B1 ¤ 1, the oscillation period of
the Fraunhofer-like pattern is doubled (compare the dash-dot and the dash-dot-dot
lines in Fig. 6.4a). From calculation of the current distribution, we find that this is
due to the fact that only one half of the junction actually conducts the current in this
situation.

If the junction approaches the point of the 0–� transition, the 0–� nano-junction
forms inside the structure (see JC .y/ profile in Fig. 6.3) and the picture changes
by the following way: The maximum Josephson current goes up if the magnetic
flux through the JJ ˚ D HS increases first keeping its oscillations (Fig. 6.4a). This
increase continues up to a very large magnetic flux, much larger than ˚0, while
the Fraunhofer oscillations have a period of ˚0. (Fig. 6.4b). Imax.˚/ achieves its
maximum value when the magnetic flux through the nano-junction ˚ 0=˚0 D 1.
˚ 0 depends on the length of the nano-junction that is defined by the critical current
non-uniformity region � �F and does not depend on L. The magnetic flux ˚
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Fig. 6.4 Maximum total
supercurrent (in units of
2�T=eR) of an SIFS JJ as a
function of the magnetic flux
through the junction (in units
of ˚0) for different
ferromagnetic layer
thicknesses dF (the 0–�
transition is at
dF D 0:9559�F ). The
junction length is L D 50�F ,
the temperature is
T D 0:1Tc , the exchange
magnetic energy is
E D 35�Tc , �B1 D 2,
�B2 D 10. (a) also includes
the Fraunhofer pattern
(dash-dot line) for the
homogeneous JJ
(�B1 D �B2 D 6). (b) shows
the same dependencies on a
larger magnetic field scale

b

through the whole junction giving the maximum of Imax.˚/ depends on the ratio
L=�F . The physics of this effect is rather transparent. The external field destroys
the initial antisymmetric distribution of the supercurrent inside the nano-junction
(Fig. 6.3). Since the external field increases, the antisymmetry vanishes, and the full
current across the junction grows. A similar Imax.˚/ dependence with a minimum
current at zero field was obtained experimentally and described theoretically for
0–� JJs with a step in the F layer thickness [11,15,22]. In our case the extraordinary
high value of the field is related to the very small size of the nano-junction � �F .

To fabricate such structures one needs the junction to be close to the 0-�
transition (dF close to d0-�

F ) with high precision. Since d0-�
F depends on T this

could be realized by changing T , as temperature induced 0–� transitions in SFS JJs
were already observed [11, 13, 49].

To enhance this effect, one can create a periodic array of 0–� nano-junctions.
The influence of the nano-junctions would be most significant if the length of every
facet is comparable with the size � �F of JC .y/ oscillations. This is difficult to
realize technologically because the value of �F is rather small � 1nm. Moreover, it
seems to be necessary to keep the layer thicknesses with very high precision along
the entire array.
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Appendix 1

The parameterized Usadel function�F .x; y; !/ found as a solution of the boundary
problem (6.2)–(6.5) at the left part of the junction 0 � y � L=2 can be written as:

�F D �e!p
�2 C !2

exp
n
i�
2

o

�B1
�
8
<

:

cosh
�p

e!x=�F
�

p
e! sinh

�p
e!dF =�F

� (6.10)

� �B2 � �B1

�B2
dF �F

1X

kD0
0 .�1/

k cos.�kx=dF /

d2Fe! C .�k�F /2

� exp



�jy � L=2j

�F

p
e! C .�k�F =dF /2

�
9
=

;
;

where
P0 means that at k D 0 only half of the term is taken. The order parameter

and the Matsubara frequencies in (6.10) and below are normalized on �Tc . The
solution of the boundary problem (6.2)–(6.5) at L=2 � y � L can be reconstructed
from (6.10) by replacing �B1 by �B2. The second term in (6.10) describes the
perturbation of the Usadel functions due to changing the FS interface transparency
at x D dF , y D L=2. Substitution of (6.10) into the standard expression for the
Josephson current yields the JC .y/ (6.7). To find out the maximum Josephson
current through the whole junction as a function of an external magnetic field,
Imax.H/, we start from the Ferrell–Prange type equation for the non-uniform
Josephson junction (6.8). In the practically interesting limit �F � L � J0, its
solution �.y/ can be found in the linear form. To calculate the maximum value of the
supercurrent �.y/ is substituted into (6.8) and (6.7) is integrated over y. Thus, the
obtained total supercurrent through the junction is further maximized with respect
to the phase difference �0. This procedure finally leads to

Imax.h/ D 2�F

hL

q
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Fig. 6.5 Schematic view of a
SIFNS Josephson junction
with a step-like change of the
NS interface transparency

The first term under the square root in the expression (6.11) corresponds to the
contribution of uniform regions jy �L=2j > �F and has the Fraunhofer form,
while the second term with ˙2 contains a more complicated dependence on h

and describes the non-uniformity of JC .y/ and it is connected to peculiarities of
Imax.h/. It exceeds the first term in the vicinity of the 0–� transition. It is clearly
seen from (6.11) that in the absence of the non-uniformity (�B1 D �B2, thus˙2 D 0)
the dependence of Imax.h/ reduces to the well known Fraunhofer pattern.

6.2.2 SIFNS and SINFS Structures

6.2.2.1 The Boundary Problem

To overcome the difficulties mentioned above, we have considered a junction
with an additional normal metal layer, i.e. non-magnetic (E D 0) and non-
superconducting (� D 0), with a thickness dN (Fig. 6.5). The NS boundary has
a step-like change in transparency. Now a non-uniform NS boundary is described
by the suppression parameters �B1 for 0 � y � L=2 and �B2 for L=2 � y � L,
respectively, which are supposed to be large enough to neglect the suppression of
superconductivity in the S electrode.

The corresponding boundary problem for the linearized Usadel equation differs
from the previous one by the existence of the additional normal layer. Now the set
of linearized Usadel equations includes also the equation for the N region that is
written similarly to (6.2) as

�2N

�
@2

@x2
C @2

@y2

	
�N � !

�Tc
�N D 0; (6.12)
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where the normal metal coherence length �N D .DN=2�Tc/
1=2, and DN is the

diffusion coefficient. The boundary conditions for the non-uniform NS interface
(x D dF C dN ) have the form:

�B1�N
@

@x
�N D

!� exp
n
i�
2

o

p
!2 C�2

; 0 � y � L

2
; (6.13)

�B2�N
@

@x
�N D

!� exp
n
i�
2

o

p
!2 C�2

;
L

2
� y � L: (6.14)

The boundary conditions at the FN interface located at x D dF can be written as

�N

j!j
@

@x
�N D �

�F

e!
@

@x
�F ; (6.15)

�F C �B�F
@

@x
�F D e!

j!j�N ; (6.16)

�B D RBF2S=�F �F ; � D �N �N =�F �F ;

whereRBF is the resistance of the FN interface; �N.F / is the resistivity of the N or F
layer, respectively.

There are also additional conditions at the free ends of the N layer located at
y D 0 and y D L:

@

@y
�N D 0: (6.17)

This boundary problem (6.2), (6.3), (6.5), (6.12)–(6.17) was solved analytically.
The solution is presented in Appendix 2 [(6.21), (6.22)]. Inserting (6.22) into the
expression (6.7), it follows that JC .y/ has changed in comparison with the SIFS
junction, as can be seen in Fig. 6.6.

The current distribution keeps its form, but stretches along the y-axis proportion-
ally to �N . The reason is an interplay of the ferromagnetic and the normal coherence
lengths due to the proximity effect. The Usadel function in the N region noticeably
changes on the distance of the order of �N from the step at y D L=2. Subsequently,
the ferromagnet “feels” this change also on the distance � �N from the step and
conducts this information to the other superconducting electrode. The FN interface
parameters � , �B and the ratio s D �N =�F define the strength of this influence. This
effect holds also when dN � �N . A thicker N layer slightly extends the length scale
of the JC .y/ oscillation, but also decreases the absolute value of JC . The JC .y/
distribution is shown in Fig. 6.6 for various values of dN and s. While the dN=s
ratio stays constant, the 0–� transition occurs at the same conditions (dF ; T; �; �B
and so on).

Thus, the scale of the JC .y/ changes in y-direction is / �N and can be hundred
times larger than �F . It is a very interesting manifestation of the FN proximity effect
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Fig. 6.6 Critical current density distribution (in units of 2�T=eRS) along the non-uniform SIFNS
Josephson junction of length L D 2;000�F at different N-layer thicknesses dN and �N so that
dN =�N D 5. The temperature is T D 0:1Tc , the exchange magnetic energy is E D 35�Tc , the
non-uniform NS boundary damping parameter is �B1 D 2, �B2 D 10, the FN boundary parameters
are � D 0:1, �B D 0:2, the ferromagnetic layer thickness dF D 0:987�F corresponds to the point
of the 0–� transition

that was already described for other geometries [50]. The critical current oscillation
arises due to the presence of the ferromagnet in the structure, but the normal metal
determines the period of JC oscillations in y-direction. Thus, we have constructed
a 0–� nano-junction on the scale �N � �F .

6.2.2.2 SIFNS Junction in an External Magnetic Field

It is clear that the size of the critical current non-uniformity influences the junction
behaviour in an external magnetic field. The dependence Imax.H/ for the junction
near the 0–� transition and Imax.H/ for the uniform JJ with an average interface
transparency are shown in Fig. 6.7. Here, the 0–� nano-junction is wider than
the one inside the SIFS junction, so that one needs much lower magnetic fields
to destroy its asymmetry. Therefore, the width of the peaks becomes smaller and
comparable to the Fraunhofer oscillation period when the junction length L � �N .
The details of these calculations are presented in the Appendix 2.

It is also interesting to investigate a tunnel JJ with reversed order of the F and N
layers, namely a SINFS structure. The solution of the boundary problem is similar
to (6.2), (6.3), (6.5), (6.12)–(6.17) for such a SINFS junction, and with the same NF
boundary parameters �; �B , and the same resistances RB1;RB2 of the FS interface
yields exactly the same expression (6.23) for JC .y/. This means that the Josephson
effect and the magnetic properties of these non-uniform tunnel structures do not
depend on the order of the F and N layers. The length-scale of JC .y/ oscillations is
defined by the layer with the largest coherence length. This statement remains valid
as long as one may use the linearized equations.
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Fig. 6.7 Imax.˚/ (in units of 2�T=eR) of a SIFNS JJ and its Fraunhofer part given by the first
term under the square root of (6.24) (dashed line). The conducting layer thicknesses are dF D
0:987�F , and dN D 5�N ; �N D 50�F , the junction length is L D 2;000�F , the temperature is
T D 0:1Tc , the exchange magnetic energy isE D 35�Tc , the non-uniform NS boundary damping
parameter is �B1 D 2, �B2 D 10, the FN boundary parameters are � D 0:1, �B D 0:2

6.2.2.3 Micro-Vortex Forming

One can also consider the opposite problem, i.e. the influence of a direct current on
the magnetic field distribution inside the SIFNS structure. An interesting question
is: can the 0–� nano-junction include some fractional Josephson vortex as in long
0–� Josephson junctions? Naturally in the ground state when the current through the
JJ is equal to zero, I D 0, the equilibrium phase distribution �.y/ remains constant
along the junction due to the small size of this nano-junction � �N � J , as J is
the typical length-scale for phase changes.

Let us consider the case when the supercurrent through the junction is finite,
but does not exceed its maximum value, i.e. 0 < I � Imax. Qualitatively, since
one part of the non-uniform junction conducts the Josephson current much better
than the other one (due to the difference in the NS boundary transparency and
consequently in the value of JC ), the supercurrent redistributes within the junction
area. This redistribution can be interpreted as a vortex of supercurrent. This vortex
produces a magnetic field in z-direction, and is pinned around y D L=2, where
the transparency changes step-wise. The distribution of the magnetic field and the
corresponding magnetic flux have been calculated under the assumption that the
local phase variation is much smaller than its average value.

The largest magnetic flux ˚ is induced when the Josephson current takes its
maximum value I D Imax. Far from the 0–� transition, the magnetic field H.y/
increases almost linearly up to the non-uniformity point y D L=2 with a smooth
extremum at y D L=2, as shown by the dashed line in Fig. 6.8. At the same time
at dF D d0-�

F , the field distribution has a typical width (Fig. 6.8) comparable to the
length of critical current non-uniformity (see Fig. 6.6). The corresponding magnetic
flux ˚0-� in this case does not depend on the junction length L contrary to the case
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Fig. 6.8 Magnetic field distribution along a SIFNS junction at bias current I D Imax.0/ for
different thicknesses of the F-layer: dF D 0:987�F corresponds to the point of the 0–� transition,
with magnetic flux through the junction ˚0-� D 0:135�0dLT=eR; far from the 0–� transition
at dF D 1:2�N , ˚ D 15:8�0dLT=eR. The N-layer thickness is dN D 5�N , �N D 50�F , the
junction length is L D 2;000�F , the temperature is T D 0:1Tc , the exchange magnetic energy is
E D 35�Tc , the non-uniform NS boundary damping parameter is �B1 D 2, �B2 D 10, the FN
boundary parameters are � D 0:1, �B D 0:2

of the junction far from the 0–� transition. The value of ˚0-� is smaller than ˚ due
to the small length of the nano-junction and small value of the critical current, i.e.

˚

˚0
� L2

2J0

j�B1 � �B2j
�B1 C �B2

;

˚0-�

˚0
� �2N

2J0

j�B1 � �B2j
�B1 C �B2

(6.18)

Here, J0 is defined by (6.9).

6.2.3 SIFNS Junction with Few Steps
of Boundary Transparency

Technology does not allow fabricating ferromagnetic JJs with ideally smooth
interfaces. Moreover, one often uses a thin normal layer below the ferromagnet
to improve the JJ properties [13, 51, 52]. The interlayer boundary non-uniformity
may create peculiarities in the JC .y/ distribution that have an effect on the junction
behaviour in an external magnetic field. To describe this behaviour, as a first attempt
it would be reasonable to consider a SIFNS Josephson junction having a few steps
of the boundary transparency. At first, we take three steps with different lengths
and FS boundary damping parameters �B1; �B2 and �B3 respectively. The length
Li of every step is assumed to be Li 
 �N , but the length of the whole junction



148 N.G. Pugach et al.

Fig. 6.9 Asymmetric SIFNS
Josephson junction having
three regions with NS
boundary damping
parameters
�B1 D 2; �B2 D 10 and
�B3 D 5 and lengths L1 D
1;000�F ; L2 D 3;500�F , and
L3 D 2;500�F , respectively.
(a) JC .y/ and (b) Imax.˚/ in
the vicinity of the 0–�
transition (dF D 0:987�F )
and far from this transition
(dF D 1:2�F ). (b) also
includes the Fraunhofer
pattern (dash-dot line) for the
homogeneous JJ
(�B1 D �B2 D �B3 D 6 and
dF D 1:2�F ). The N-layer
thickness is dN D 5�N ,
�N D 50�F , the temperature
is T D 0:1Tc , the exchange
magnetic energy is
E D 35�Tc , the FN
boundary parameters are
� D 0:1, �B D 0:2

b

remains L � J . Under these assumptions, the function JC .y/ D JCi becomes a
constant far enough from the non-uniformities (JCi is the critical current density
of the uniform JJ with the damping parameter �i ). In this region, the condition
@JC .y/=@y D 0 is fulfilled as on a free end of the junction. Therefore, the solution
of the corresponding boundary problem may be constructed from the solutions
presented above:

JC .y/ D JC .y; �B1; �B2/; if 0 � y � 2L1

JC .y/ D JC .y; �B2; �B3/; if 2L1 � y � 2L1 C 2L3;

where L2 D L1 CL3.
JC .y/ at dF D d0-�

F is neither symmetric, nor antisymmetric in y-direction,
see Fig. 6.9a. Such a distribution JC .y/ results in a rather complicated Jmax.H/

dependence, which remains non-Fraunhofer-like far from the 0–� transition, see
Fig. 6.9b.

If the junction is symmetric �B1 D �B3 and L1 D L2=2 D L3, there are two dif-
ferent situations �B1 D �B3 < �B2 and �B1 D �B3 > �B2. The first one corresponds
to one junction with a large JC in the centre of the structure, and the second one
corresponds to two junctions with a large JC at the ends, which length is twice
less than the length of the central section. Thus, in the second case and far from
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Fig. 6.10 Imax.˚/ of the
symmetric SIFNS Josephson
junction having three regions
of the NS boundary
transparency (a) far from the
0–� transition dF D 1:2�F ,
and (b) in the vicinity of this
transition dF D 0:987�F . NS
interface damping parameters
�B1 D �B3 and �B2 take the
values 2 and 10, as it is shown
on the inset.
L1 D L3 D L2=2,
L1 CL2 C L3 D L D
3;500�F . The N-layer
thickness is dN D 5�N ,
�N D 50�F , the temperature
is T D 0:1Tc , the exchange
magnetic energy is
E D 35�Tc , the FN
boundary parameters are
� D 0:1, �B D 0:2

b

the 0–� transition, the period of the Imax.H/ dependence will be twice smaller than
in the first case, see Fig. 6.10a. In the vicinity of the 0–� transition, the picture
is practically the same for both cases, see Fig. 6.10b. The reason is that in this
situation the Josephson current is defined mainly by two 0–� nano-junctions related
to oscillations of JC .y/ in the non-uniform areas.

Such a consideration may help to understand how the interlayer roughness or
non-uniformity of the interfaces (of length � �N ) lead to deviations in Imax.H/

from the Fraunhofer pattern obtained for the uniform structure with the averaged
parameters. This deviation would depend not only on the value of the roughness but
also on its distribution in the junction plane.

6.2.4 SIFNS Junctions Array

6.2.4.1 JJ Arrays in a Magnetic Field

The relatively long range of JC .y/ non-uniformity in the SIFNS structure makes
it possible to fabricate an array of nano-junctions with periodic step-like changes
of the transparency of the NS interface. The transparency step must be sharp in
comparison with �N and it is assumed that the length Li of every uniform part
satisfies the conditions: �N < Li � J .
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Obviously, the periodic oscillation of the transparency leads to variations of the
Usadel functions�N and�F and the critical current density along the junction with
the same period. The expression (6.21), (6.22) for�N;F has a form of a series of 2Li
periodic functions. So, the expression for the function of the periodic array, where
the NS boundary damping parameter takes the alternating values �B1 and �B2, may
be constructed again as a simple continuation of the function �N;F (6.21), (6.22)
along the whole array. We have proven that this boundary problem does not have
any other solution.

The JC .y/ calculated from (6.7 and 6.23) for the periodic structure far from and
near to the 0–� transition is presented in Fig. 6.11a.

The periodic array could be symmetric (contains an integer number of trans-
parency periods) or not symmetric (contains semi-integer number of transparency
periods), but its length is assumed to be much shorter than J0. In the symmetric
case, the expression for the maximum Josephson current Imax.H/ has only the
term with sin.�˚=˚0/ (˚ is the magnetic flux through the whole junction). The
simple sin-dependence (6.25) leads to the value �0 D ˙�=2 at which the maximum
super-current Imax is realized. This value does not depend on H and on the array
length as in the case of a uniform junction having the well-known Fraunhofer
Imax.H/ dependence. However, the coefficient in front of sin.�˚=˚0/ depends on
the magnetic field due to the non-uniformity of the structure. It leads to deviations
from the Fraunhofer pattern both far and near the 0–� transition, as shown in
Fig. 6.11b,c.

If the structure is not symmetric, the expression Imax.H/ (6.26) looks like a
non-Fraunhofer function for a one-step structure. Both the symmetric and the non-
symmetric arrays give similar complicated curves Imax.H/. The applied magnetic
field together with non-uniform current distribution along the junction yield the
appearance of additional oscillations and sharp peaks in the dependence Imax.H/

(Fig. 6.11b,c).
The short oscillation period is defined by the magnetic flux through the whole

array. The long period of the additional oscillations depends on the length of every
step (i.e. the semi-period of the structure non-uniformity), namely on the value of the
magnetic flux through this step. Near the 0–� transition the appearing sharp maxima
lay under the envelope curve which is nothing else but Imax.H/ for a one step JJ of
the same length. The distribution of the peak heights (the third oscillation period)
depends on the JC .y/ non-uniformity scale, that is defined by the ratio �N =�F and
the value of dN .

The sharp peaks in Imax.H/ arise not only in the vicinity of the 0–� transition,
but also for an arbitrary ferromagnetic layer thickness. This means that it is not
necessary to keep high precision of the parameters along the whole structure. These
sharp peaks have obviously a similar origin as the periodic peaks on the voltage-
field dependence of the periodic array of usual SIS JJs described in [27, 29]. The JJ
with periodically changing interface transparency also can be considered as an array
of large JC junctions inserted between junctions with small JC .

Now, there are three scales: the length of the array L, the length of each region
with constant transparency Li and the width of the critical current non-uniformity
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Fig. 6.11 SIFNS JJ with
periodically changing
damping parameter of the NS
boundary between �B1 D 2

and �B2 D 10. (a) JC .y/ and
(b,c) Jmax.H/ for a JJ far
from the 0–� transition
(dF D 1:2�F ) (b), and in the
vicinity of the 0–� transition
(dF D 0:987�F ) (c). The
N-layer thickness is
dN D 5�N , �N D 50�F , the
temperature is T D 0:1Tc ,
the exchange magnetic
energy is E D 35�Tc , the FN
boundary parameters are
� D 0:1, �B D 0:2,
Li D 2;000�F . The length of
the symmetric junction
L D 6Li is indicated on the
plot (a) by the dashed line.
The dependence Imax.H/ for
the junction with only one NS
boundary transparency step is
shown on (b) and (c) for
comparison

a

b

c

� �N . All of them are assumed to be much smaller than J0. Their interplay defines
the behaviour of the structure in the external magnetic field and yields various
unusual forms of the Imax.H/ dependence. This allows to design JJ arrays with
peculiar magnetic properties.

6.2.4.2 Averaging Over Short-Range Oscillations

Up to now it has been assumed that L � J0. If the junction length becomes
comparable to J0 [13, 15, 51], the linear phase ansatz cannot be used anymore.
However, if the conditions �F ; �N � Li � J0 remain valid for each transparency



152 N.G. Pugach et al.

Fig. 6.12 Effectively generated second harmonic in the current–phase relation in comparison with
the first harmonic for a JJ with periodically changing boundary transparency as a function of F-
layer thickness. Inset shows the ratio JC2=JC1 in a small region 0:986�F < dF < 0:988�F near
the 0–� transition. The NS boundary damping parameter takes the values �B1 D 2 and �B2 D 10,
the N-layer thickness is dN D 5�N , �N D 50�F , the temperature is T D 0:1Tc , the exchange
magnetic energy is E D 35�Tc , the FN boundary parameters are � D 0:1, �B D 0:2, the length
of every homogeneous area is Li D 2;000�F

region, one can select long-range (� J0) and short range (� Li ) phase variations,
and suppose that the short range variations are much smaller than the long range
variations. Then the problem of calculating the phase distribution along the non-
uniform structure can be reduced to the well-known problem of a non-linear
oscillator [24, 26]. It was shown that the oscillating JC .y/ leads to an effective
second harmonic J2 in the current–phase relation for the long-range (averaged)
phase  , that is

J. / D J1 sin. /C J2 sin.2 /: (6.19)

We have calculated the second harmonics J2 for the SIFNS array with peri-
odically changing transparency of the NS interface. The expression obtained by
averaging out the short-range oscillations is given by (6.27) in the Appendix 2. The
second harmonic obtained in this way always has a negative value.

The dependence of the first and the second harmonics vs. dF is presented in
Fig. 6.12. The absolute value of J2 is not large in comparison with J1. When the
junction has dF far from the 0–� transition, J2 increases and achieves its saturation
as the length Li increases. JC .y/ does not change its sign along the junction, and
the relation jJ2=J1j � L2=2�2J is satisfied.

At dF � d0-�
F where the junction is close to the 0–� transition and its first

harmonic J1 vanishes, the effective second harmonic J2 is generated by the JC .y/
non-uniformity. JC .y/ changes its sign, but the regions where this occurs are very
small (of the order of �N , that defines the size of the JC .y/ non-uniformity area),
so that jJ2=J1j � �2N =2�

2
J0 � 1. The ratio jJ2=J1j formally diverges at the 0–�

transition point, where J1 ! 0, see inset in Fig. 6.12. Thus, the question about the
possibility of a '-junction (0 < ' < �) realization arises here.
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When in the JJ with current–phase relation (6.19), the conditions

ˇ
ˇ
ˇ̌2J2
J1

ˇ
ˇ
ˇ̌ > 1; and J2 < 0 (6.20)

are satisfied, the '-junction appears [26, 41].
To arrive to the vicinity of the 0–� transition, one can prepare a high quality

JJ with periodically changing interlayer boundary transparency and change the
temperature during experiment. However, the conditions (6.20) are difficult to
achieve due to the very small range of parameter values where they are satisfied.

A possibility to enlarge the domain of parameters where conditions (6.20) are
satisfied is discussed in the next section.

Appendix 2

The boundary problem (6.2), (6.3), (6.5), (6.12)–(6.17) for the SIFNS junction has
been solved analytically both for N and F layers. The derivatives on the free ends of
the junction @�N;F =@y D 0 at y D 0;L (6.5), (6.17); therefore, the solution in the
normal metal layer is found in the form:
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where the parameters corresponding to the ferromagnet:

� D �Fp
e!
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�F
L
�.2nC 1/

i2 Ce!

; n D 0; 1; 2 : : :

Taking into account the boundary conditions (6.4), (6.5), the solution for the
ferromagnetic layer can be written as:

�F .x; y; !/ D
e!� exp

�
i
�

2

	

j!j p
!2 C�2

(6.22)
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v D ��=2
2

6
6
4

��N sinh

�
dN

�

�
cosh

�
dF

�

�
C ���F sinh

�
dF

�

�

� cosh

�
dN

�

�
C �B�N �F sinh

�
dN

�

�
sinh

�
dF

�

�

3

7
7
5

vn D 2.�1/n
�.2nC 1/

� �n�n2

6
6
4

�n�N sinh

�
dN

�n

�
cosh

�
dF

�n

�
C ��n�F cosh

�
dN

�n

�

� sinh

�
dF

�n

�
�B�F �N C sinh

�
dN

�n

�
sinh

�
dF

�n

�

3

7
7
5

The critical current density given by the expression (6.7) turns out as follows:

JC .y/ D 2�T

eRS

1X

!D0

�2

.�2 C !2/ j!j

�
"
�B1 C �B2

�B1�B2
Re v � �B1 � �B2

�B1�B2
Re

1X

nD0
vn cos

�
�.2nC 1/

y

L

�#

: (6.23)

Substituting the solution �.y/ in the linear form into the Ferrell-Prange equation
(6.8), calculating the total current through the junction and maximizing it over �0,
we arrive at the following Imax.h/ dependence:

Imax .h/ D 2�F

hL

s

B2
0 sin2

�
hL

2�F

�
C B2

1 .h/ cos2
�
hL

2�F

�
; (6.24)

where

B0 D �B1 C �B2

�B1�B2

2�T

eR

1X

!D0

�2

�2 C !2
Re

p
e!

sinh. d
�F

p
e!/

v

B1.h/ D �B2 � �B1
�B1�B2

2�T

eR

1X

!D0

�2

�2 C !2

1X

nD0

Re vn
h
�.2nC1/�F

hL

i2 � 1

Here, B0 describes the Fraunhofer contribution of the average JC .y/, and B1
responds to a non-Fraunhofer deviation due to the junction non-uniformity. The
value hL=2�F D �˚=˚0 corresponds to the value of the magnetic flux ˚ through
the junction expressed in units of the magnetic flux quantum ˚0.
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Let us consider an array with a periodic variation of the boundary resistivity.
The junction contains M resistivity steps and, therefore, M C 1 areas of constant
resistivity, alternating between R1 and R2. The uniform areas have the lengths Li
each, and Li=2 on the ends. The boundary problem has the same periodic solution
described by the expressions (6.21), (6.22). The corresponding JC .y/ is presented
in Fig. 6.11a. It yields the dependence Imax.H/ for a symmetric arrayM D 2N , (N
is integer):

Imax .h/ D 1

fs
sin.fs/ jB0 C B2.h/j (6.25)

here fs D M jhjLi=2�F D N jhjLi=�F D �˚=˚0 and

B2.h/ D �B2 � �B1
�B1�B2

2�T

eR

1X

!D0

�2

�2 C !2

1X

nD0

.�1/NC1 Re vn
h
�.2nC1/�F

hLi

i2 � 1
:

The term sin.fs/=fs coincides with the Fraunhofer dependence, but the function
B2.h/ makes Imax.H/ more complicated.

For a non-symmetric array containing M D 2N C 1 non-uniformities (see
the corresponding JC .y/ in Fig. 6.11a, the non-symmetric JC .y/ yields the
non-Fraunhofer pattern:

Imax .h/ D 1

fas

q
B2
0 sin2 fas C B2

2 .h/ cos2 fas; (6.26)

where fas D .2N C 1/ jhjLi=2�F D �˚=˚0:

The dependencies (6.25) and (6.26) have a similar form with an additional
oscillation period connected to the magnetic flux through every uniform part of
the structure jhjLi=�F , while the main (the shorter) period depends on the value
fs;as D �˚=˚0. When jhj D .2nC 1/��F =Li , one of the terms of the sum B2.h/

goes to infinity. It is not a real divergence but uncertainty of the type sin.x/=x at
x ! 0. It gives a sharp maximum on the curve Imax.H/, see Fig. 6.11b,c.

If the structure becomes long enough, its length compares to the Josephson
penetration depth J0 but the length of each part remains Li � J0, and the linear
approximation for the phase �.y/ is impossible to use. Then it is necessary to solve
the sine-Gordon equation (6.8) [41]. It was shown [24, 26] that a second harmonic
in the current–phase relation (6.19) for the long-range phase effectively generates in
this situation. The first harmonic in the SIFNS array is the average critical current
J1 D B0=S . The expression for the effective second harmonic obtained by the
averaging procedure described in [24, 26] has the form

J2 D � L2i

4�22J0 jJC0j
1X

nD0

B2
n

.2nC 1/
; (6.27)

where
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Bn D �B2 � �B1

�B1�B2

2�T

eRS

1X

!D0

�2

�2 C !2
Re vn:

It is necessary to note that the product 2J0 jJC0j does not depend on the value
JC0: 2J jJC0j D ˚0=2��0.2L/ in accordance with the definition of J0 (6.9).
The dependence of the effective first and second harmonic of dF is presented in
Fig. 6.12.

6.3 Method for the Reliable Realization of a ' Josephson
Junction

6.3.1 Phase Averaging of Rapid Oscillations
with a Non-Sinusoidal CPR

The ' junction is a JJ, where the Josephson energy density

EJ D ˚0

2�

�Z

0

J.�0/d�0 (6.28)

has a local minimum at � D ' (0 < j'j < �). To achieve this, the current–phase
relation should be different from the usual sinusoidal one (6.6). It has been shown
that a ' junction can be realized when the CPR has a second harmonic (6.19) and
the conditions (6.20) are satisfied.

An intrinsic non-sinusoidal CPR j.�/ D j1 sin.�/ C j2 sin.2�/ C ::: is not so
exotic for Josephson junctions with a ferromagnetic barrier [2], as demonstrated
recently in several experiments [53, 54]. Note that j1 is not anymore the critical
current density, but just the amplitude of the first harmonic and j2 is the amplitude
of the second harmonic. The critical current density JC is then determined by
local maxima of j.�/ as shown below. For example, in the simplest case of SFS
junctions consisting of pure S and F metals, the CPR is strongly non-sinusoidal at a
temperature T � Tc , where Tc is the critical temperature of the S metal. Different
scattering mechanisms in the F-layer also influence the CPR: usual (non-pair
breaking) scattering (“dirty” limit) [55–57]; spin-flip scattering [58] and scattering
of electrons from the s to the d -band [5, 59]. In addition, the transparency of
the interfaces or the presence of an extra insulating layer, like in SIFS or SIFIS
junctions, influences the CPR as well [60–64]. However, the theoretical models
[2, 5, 57–61] that take into account different scattering mechanisms give similar
results: The amplitude of the second harmonic oscillates and decreases with dF
twice faster than the first one. To satisfy (6.20), one is tempted to choose dF in
the vicinity of the 0–� transition, where jj1j � jj2j. Unfortunately, there j2 > 0

[5, 57–59], which excludes a ' ground state.
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Fig. 6.13 Sketch of the 0–�
multifacet ferromagnetic
Josephson junction

A technique to create a negative second harmonics artificially was proposed
recently [26, 65]. By using one of the available 0–� junction technologies [22, 35],
one fabricates a Josephson junction with alternating short 0 (j1 > 0) and � (j1 < 0)
regions (see Fig. 6.13), which all have the simple CPR like (6.6). Here, an effective
second harmonic with negative amplitude is generated for the averaged phase, which
is slowly varying on the scale of the facet length [26, 65]. Let the alternating 0
and � regions have the facet lengths La and Lb , respectively, so that La � Lb .
It is assumed that La;b < aJ ; 

b
J , where aJ D J .j1a/ and bJ D J .j1b/ are the

Josephson penetration depth (6.9) in the corresponding parts.
The effective second harmonic has a maximum amplitude ifLa D Lb � J , and

if the values of the critical current densities in corresponding regions j1a � �j1b ,
see [26, 41]. The effective second harmonic amplitude is large enough only if j1a
and j1b are very close by absolute values, demanding to choose thicknesses dF;a
and dF;b with very high precision less than 1 Å for usual “dirty” SFS junctions. This
precision is not achievable technologically. Therefore, a controllable '-junction is
quite hard to realize in this way.

However, ferromagnetic Josephson junctions already have some intrinsic second
harmonic. Thus, the question is what will be the effective CPR in multifacet
junctions if one takes into account such an intrinsic second harmonic. Usually,
j2 < 0 in the range of dF where j1 is rather large. The idea of the method used
here is the following. We use two thicknesses dF;a and dF;b where j2.dF;a/ < 0 and
j1.dF;a/ � �j1.dF;b/. By making a step-like F-layer changing between dF;a and
dF;b , we effectively cancel the large first harmonic and create an effective negative
second harmonic, which adds up with the intrinsic second harmonic.

Mints and coauthors [65–67] considered 1D junctions (along y direction in our
notations) with a critical current density j1.y/, which is a random or periodic func-
tion changing on a length-scale La; Lb � 

a;b
J D J .j1a;b/. Buzdin and Koshelev

[26, 41] have found an exact solution of this problem if JC .y/ in (6.6) alternates
between the constant values j1a and j1b . Both groups assumed that j2 D 0 within
each region. Instead, here we assume that the CPR j.dF .y/; �/ is non-sinusoidal as
a function of � within each region, and alternates between j.dF;a; �/ and j.dF;b; �/
as a function of y. Then the problem of calculating the phase distribution along such
a non-uniform structure can be reduced to the well-known problem of a non-linear
oscillator [68].
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The Josephson current in every region, as an odd function of the phase, can be
expanded in a series of harmonics

j.dF .y/; �/ D
1X

nD1
jn.dF .y// sin n�; (6.29)

and the problem is solved in a general form. Here, jn denotes the amplitude of the
intrinsic n-th harmonic of the current density.

We assume �F � La;b � 
a;b
J , were, �F is the ferromagnetic coherence length,

i.e. the characteristic length for the critical current density non-uniformity at the
region of the step-like change of junction properties [38]. Let us consider one period
of the structure Œ�LaILb/ with F-layer thickness

dF .y/ D
�
dF;a; y 2 Œ�La; 0/
dF;b; y 2 Œ0; Lb/ :

(6.30)

We rewrite (6.29) to separate the average and the oscillating parts of the Josephson
current, that is,

j.y; �/ D
1X

nD1
hjni Œ1C gn.y/� sin n�; (6.31)

where j.y; �/ D j.dF .y/; �/. The average value of any function f .y/ is defined as

hf i D 1

La CLb

LbZ

�La
f .y/dy: (6.32)

Then the averaged supercurrent of the n-th harmonic is

hjni D Lajn.dF;a/C Lbjn.dF;b/

La C Lb
; (6.33)

and the corresponding oscillating part is

gn.y/ D .jn.y/ � hjni/= hjni ; (6.34)

so that hgni D 0 by definition. Here jn.y; �/ D jn.dF .y/; �/.
One can represent the Josephson phase �.y/ as a sum of a slow component .y/,

changing on a distance � �J D J .hj1i/, see (6.9), and a rapid component �.y/,
changing on a distance � La;Lb , i.e.,

�.y/ D  C �.y/: (6.35)
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Here, we assume that the junction is short (l � �J ) and do not write the y
dependence for  . We also assume that the average of fast phase oscillations is
vanishing, that is,

h�i D 0; (6.36)

and their amplitude is small
hj�ji � 1: (6.37)

The ground state of the Josephson junction is determined by the Ferrel–Prange
equation (6.8), in this case

�2
J

@2�

@y2
D j.y; �/

jhj1ij : (6.38)

Substituting (6.31) and (6.35) into (6.38) and keeping the terms up to first order in
�.y/, we can obtain equations for the rapid phase �:

�2
J

@2�

@y2
�

1X

nD1
ˇngn.y/ sin n D 0: (6.39)

To obtain the equation for the slow phase  , we average (6.38) over the length
.La C Lb/ � �J and get

�2
J

@2 

@y2
�

NX

nD1
Œˇn sin n C nˇn hgn�i cosn � D 0; (6.40)

where ˇn D hjni=jhj1ij. The number of harmonicsN , that is reasonable to take into
account within the given approximation, follows from the condition N j�.y/j � 1.
We have to find the function �.y/ from (6.39), calculate average values hgn�i, and
substitute them into (6.40). Since for a step-like dF .y/ the Josephson current (6.29)
is a step-like function of y, (6.39) has the form @2�=@y2 D const on every interval
Œ�LaI 0/ and Œ0ILb/. Its solution is a parabolic segment. The function �.y/must be
continuous at y D 0, and at the edges, that is it must satisfy the boundary condition
�.�La/ D �.Lb/. Moreover, it should satisfy (6.36).

It is convenient to expand the rapid phase �.y/, as a solution of (6.39), into a
series

�.y/ D
1X

nD1
�n.y/ sin n : (6.41)

From this, the average values are calculated as

ˇn hgn�ki D �2˛ıjnıjkjhj1ij I n; k D 1; 2::: (6.42)

where ıjn 	 jn.dF;a/� jn.dF;b/ and
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˛ 	 L2aL
2
b

24�2
J .La C Lb/2 jhj1ij : (6.43)

By definition (6.9), �2
J jhj1ij D 2J jj1aj, where for brevity j1a 	 j1.dF;a/; J 	

J .j1a/.
The dependence of the Josephson current on the slow phase, which changes on a

large distance of the order of �J , follows from (6.40) as

J. / D jhj1ij
hX

n

ˇn sin n C
X

n;k

nˇn hgn�ki cosn sin k 
i

(6.44)

The CPR (6.44) contains contributions of two types: intrinsic harmonics, that are
given by the first term of (6.44) and the effectively generated ones, that are given by
the second term. Intrinsic contributions are defined by the CPR (6.29) of the junction
regions, while generated contributions effectively appear as a result of averaging
over fast oscillations.

The amplitudes of the effectively generated harmonics, which are proportional
to average values (6.42), are largest by absolute value if ˛ and jıjnj reach their
maximum. This happens if the lengths of a and b facets have the largest possible
size, which still allows averaging, i.e,

La D Lb � J (6.45)

and
jn.dF;a/ � �jn.dF;b/ (6.46)

Condition (6.46) ensures jhj1ij � jj1aj and consequently�J � J . It was shown
[26] that even if the equality (6.45) holds exactly, condition (6.37) is satisfied. In
this case, ˛ D 1=96 jj1aj [c.f. (6.43)].

In all theoretical models developed up to now [2,5,57–61], the second harmonic
was usually considered to be much smaller than the first one (except for the points
of the 0–� transition, where j1 ! 0), with an even smaller third harmonic. So, the
expression (6.29) can be considered as a Tailor expansion in some small parameter.
Then, keeping terms of the same order of this small parameter, we obtain nC k D
N C 1 effective harmonics in the CPR of the multifacet 0–� junction.

The numberN of harmonics that is reasonable to take into account follows from
the estimate of the short-range phase N max j�.y/j � 1. As �.y/ has a parabolic
form, it takes its maximum absolute value at the center of every interval �La=2 and
Lb=2. With the estimate

1X

nD1
ˇngn.y/ sin n � g1 (6.47)

one obtains
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j�.�La=2/j � LaLb.La C 2Lb/jıj1j
24�2

J .La C Lb/jhj1ij : (6.48)

This is maximized if La D Lb D J . Since max jıj1j � 2 jj1aj, we estimate
max j�.y/j � 1=8. Thus, as a reasonable choice one can takeN D 3. So, within the
above approximations, it is reasonable to consider three intrinsic harmonics with
amplitudes j1::3 and four generated harmonics, i.e.

J. / D
4X

nD1
Jn sin n (6.49)

with

J1 D hj1i C ˛ıj1ıj2

J2 D hj2i � ˛ıj 21 C 2˛ıj1ıj3

J3 D hj3i � 3˛ıj1ıj2 (6.50)

J4 D �2˛ıj 22 � 4˛ıj1ıj3 :

Here, Jn denotes the total amplitude of the n-th harmonic in the CPR for the
averaged phase. These expressions reduce to the earlier results [26, 41] if one takes
into account only the intrinsic first harmonic. The expression for every harmonic
is a simple sum of the corresponding average intrinsic harmonic and the generated
part.

6.3.2 Discussion of the ' Junction Conditions

We first address the question which type of ferromagnetic junction with 0–� facets
can satisfy the conditions for a ' junction in the best way. The decay length �1
(6.1) depends on l as well as on a pair-breaking scattering length in the ferromagnet
(spin-flip scattering [58] or scattering into the d -band [69]; both influence the CPR).
Pair-breaking scattering leads to [59, 70] �1 < �2 and the Josephson current decays
so rapidly in the “dirty” limit that there are only very tiny regions of dF;a and dF;b
on the dependence j1.dF /, where j1.dF;a/ � �j1.dF;b/. In the “clean” limit the
Josephson current decays slower with increasing dF than in dirty limit. The cleaner
is the ferromagnet, the larger is l , and the slower is the decay; c.f. (23) and (24)
with (7) from [57], or see the discussion in [69]. In the limit l � .dF ; �1;2/, the
critical current density decreases as [55,56] 1=dF . Moreover, a “clean” SFS junction
has a non-sinusoidal CPR, and its second harmonics j2 < 0 in some regions of
dF far from 0–� transitions that can effectively help to satisfy the conditions for
the realization of a ' junction. It was shown in different models that the second
harmonic j2.dF / decays and oscillates with dF twice faster than j1.dF /. Therefore,
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it is reasonable to take an F-layer with dF;a and dF;b of the order of a few �2. Usually,
�2 D vF =2E, where vF is the Fermi velocity and E is the exchange magnetic
energy in the ferromagnet [57, 69, 71]. It was established experimentally, that for
pure ferromagnetic metals �2 is largest for Ni [72–75]. Higher harmonics also decay
rapidly with increasing temperature [57, 76]. We have also checked this statement
for models described in [55,56,59]. It is clear that by approaching Tc from below the
superconducting gap� ! 0, equations become linear and their simple exponential
solutions yield only a sinusoidal CPR. Therefore, the most promising strategy for
realizing a ' junction is to use a pure SFS junction with a thin Ni layer at low
temperature (. 0:1Tc). The model describing the Josephson effect in such junctions
was established long ago [55, 56]. It is based on the solution of the Eilenberger
equations.

If the ferromagnetic film has a perpendicular magnetic anisotropy (i.e. if the
ferromagnetic film has no in-plane magnetization in the ground state due to an
easy axis of magnetization perpendicular to the junction plane), we can ignore the
influence of the magnetization of the barrier on the phase difference, because the
phase gradient is a consequence of the in-plane component of the magnetic field. We
can neglect this effect also in the case, when the size ld of magnetic domains in the
F-layer �1;2 � ld � J . The corresponding phase variations would be much shorter
in space than for the considered short-range phase, and their contribution would be
of the order of l2

d =
2
J � LaLb=

2
J , by our assumption La � Lb � J . Andreev

bound states (in the “clean” limit) or a triplet pairing may arise in the area of
domain walls and produce a long-range triplet component of the Josephson current
[44, 77]. These triplet components have usually not a significant value for small
values of dF � �1;2, where the usual singlet current is essential. The experiment
[70] with Nb/Cu-Ni/Nb junctions demonstrated an absence of a significant influence
of a domain structure on the CPR for multi-domain samples [78] (see the classical
Fraunhofer dependence in Fig. 3 of [70]).

What is the measurable critical current density JC (maximum supercurrent) of a
Josephson junction with a non-sinusoidal CPR? It is not anymore jj1j D jj.�=2/j
as follows from (6.6), but the local maximum of the expression (6.29) with respect
to �. Note that (6.29) may allow several local extrema in the interval Œ0; 2�/.

Figure 6.14a shows the three first harmonics vs F-layer thickness and Fig. 6.14b
shows the corresponding JC .dF / for the model of an SFS junction as described in
[55, 56] (see also [57]). It is interesting to note, that near a 0–� transition, when
the first harmonic is small, j.�/ may have two different local maxima, and the
measurable JC .dF / has two different values JC1; jJC2j depending on the initial
state of the junction [41] (see Fig. 6.14b). An example of a CPR j.�/ with two
different maxima and the corresponding Josephson energy EJ .�/ (6.28) near a 0–
� transition are presented in Fig. 6.14b(inset). Thus, even for a uniform Josephson
junction (where the '-ground state is impossible) close to a 0–� transition, two
different values of critical current density could be realized if its CPR differs enough
from the sinusoidal one.

In the framework of the clean SFS junction model [55, 56], we investigate
a multifacet junction with La D Lb D J � �J . For J , we take the value
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a

b

Fig. 6.14 Properties of a uniform SFS Josephson junction in the ”clean“ limit at T D 0:1Tc :
(a) amplitudes of the first three harmonics j1; j2; j3 of (6.29) as a function of the ferromagnet
thickness dF . (b) measurable critical current densities JC1 and jJC2j vs dF , which are realized at
the phase 0 < � < � and � < � < 2� , respectively. Inset shows for dF D 0:5�2 the CPR j.�/

from (3) in [55,56] (dashed line) and from the approximation by the first 3 harmonics (dotted line),
with the corresponding EJ .�/ dependence (solid line). For comparison, in (b) the critical current
jj1.dF /j of a junction with only the first harmonic in the CPR is also shown. Here, pairs of points
(connected by arcs), where j1.dF;a/ D �j1.dF;b/ correspond to a ' ground state of a multifacet
SFS junction with alternating thicknesses dF;a; dF;b (see areas 1,2,3 in Fig. 6.15a)

corresponding to the first minimum of j1 at dF � �2, see Fig. 6.14a. For clean SFS
junctions, this value is [74] � 10 kA=cm2, which corresponds to J � 3�m and
which allows to realize La � Lb with reasonable precision. Below we investigate
the ground states in a Josephson junction with alternating regions of length La, Lb
and F-layer thicknesses dF;a and dF;b varying from 0 to a few �2.

The ground state corresponds to a local minimum of the energy (6.28) with the
CPR (6.44). The junction has a stable static solution  D 0 (0-phase) if

NX

nD1

"

n hjni � ˛

NC1�nX

kD1
nkıjnıjk

#

> 0; (6.51)

and the solution  D � (�-phase) if
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NX

nD1

"

n hjni � ˛

NC1�nX

kD1
.�1/nCknkıjnıjk

#

> 0: (6.52)

For the CPR (6.49), these conditions have the following form: For the 0-phase

J1 C 2J2 C 3J3 C 4J4 > 0; (6.53)

and for the �-phase
J1 � 2J2 C 3J3 � 4J4 < 0: (6.54)

Both solutions  D 0 and  D � coexist when these conditions are satisfied
simultaneously, i.e.

2J2 C 4J4 > jJ1 C 3J3j : (6.55)

If both conditions (6.53) and (6.54) are not satisfied, that is

2J2 C 4J4 < � jJ1 C 3J3j ; (6.56)

only the ' ground state is possible. The conditions (6.53)–(6.56) coincide with
the conditions (6.20) if J3 D J4 D 0. Generally, the ' junction is realized if the
Josephson energy EJ . / (6.28) has a local minimum, i.e., if the CPR J. / (6.49)
crosses J D 0 from a negative to a positive value at some point  D ' ¤ 0; � .
This is the case if the equation (obtained from J. / D 0 in (6.49) and excluding
sin as it gives  D 0; � not interesting now)

8J4t
3 C 4J3t

2 C .2J2 � 4J4/t C J1 � J3 D 0 (6.57)

has at least one real solution t D cos , satisfying the conditions jt j < 1 (which
gives 0 < j j < �), and

@J

@ 
� 32J4t

4 C 12J3t
3 C .4J2 � 32J4/t2

C .J1 � 9J3/t � 2J2 C 4J4 > 0; (6.58)

(also obtained from (6.49)) that ensures the local minimum ofEJ . /. Starting from
a pair of dF;a; dF;b we calculate J1:::4. Then from (6.53) to (6.58), the possible
ground states are identified. The resulting phase diagram is shown in Fig. 6.15,
where different ground states for each pair of dF;a; dF;b are shown by different
colors.

Figure 6.15a shows the results obtained if only the first intrinsic harmonic is
taken into account. Here, the areas of 0 and � ground state phase are separated
by slim regions of ' phase. It is clear that the phase diagram is symmetric with
respect to the line dF;a D dF;b . Therefore, below, without losing generality, we
focus on the case dF;a > dF;b . In the chosen interval of thicknesses, there are
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a b

Fig. 6.15 Ground states scheme for the multifacet SFS junction with F-layer thickness periodi-
cally changing between dF;a and dF;b plotted on the (dF;a , dF;b) plane. The values of the ground
state phase corresponding to each region are shown, and the areas S' for some of the different '
ground state regions are also indicated. In (a), the calculation includes only the first harmonics in
every uniform part, that is, two generated harmonics. The ' – regions 1,2 and 3 in (a) correspond
to the pairs of dF;a and dF;b that are shown by arcs in Fig. 6.14b. In (b), the first 3 harmonics
and the corresponding 4 generated harmonics are taken into account, see (6.49) and (6.50). The
dependence EJ . / for points A,B,C,D is shown in Fig. 6.16

3 areas of ' phase, marked as 1, 2 and 3. In these areas j1.dF;a/ � �j1.dF;b/,
which corresponds to the pairs of dF;a and dF;b shown in Fig. 6.14b as 1, 2 and 3.
If dF;a and dF;b are not well controllable, the area S' of ' regions is proportional
to the probability of the ' junction realization. For all three different cases shown
in Fig. 6.15a S' is rather small (�0:025�22 ). Hence, one has to control dF;a and dF;b
extremely precisely to realize a ' junction. In the case of a “dirty” SFS junction,
when j1.dF / decays exponentially, the area S' is even smaller, and the probability
to fabricate a '-junction is vanishing.

However, if we take into account a non-sinusoidal CPR for the “clean” SFS
junction, the areas of the ' ground state become much larger, as can be seen in
Fig. 6.15b. This is a consequence of the fact that the intrinsic second harmonic
j2.dF / < 0 in the corresponding regions, which efficiently helps to make the
absolute value of the generated second harmonic large enough.

In particular, the areas 2 and 3 from Fig. 6.15a merge and form a compact '
ground state region with area S' � 0:6�22 around dF;a � 2:8�2 and dF;b � 1:4�2.
This region seems to be very well suited for the experimental realization of a
' junction, as it does not demand to produce an extremely thin F-layer and at
the same time allows for reasonably large tolerances in sample fabrication. Taking
the ferromagnetic coherence length �2 � 1:2 nm from experiments [73, 74], the
linear size of the ' region in Fig. 6.15b is �dF;a � �dF;b � 0:5 : : : 1 nm. Modern
technology allows the control of dF with such precision [11, 79, 80].
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Fig. 6.16 Josephson energy
EJ . / of multifacet SFS
junctions for different
combinations of F-layer
thicknesses dF;a and dF;b as
indicated by points A,B,C
and D in Fig. 6.15b. A and D
correspond to the ' ground
state; B corresponds to two
stable states � and '; and C
corresponds to two stable
states 0 and '

Finally, we note that the structure considered here may have simultaneously two
different stable static solutions: 0 and � , 0 and ', or � and ', as can be seen in
Fig. 6.15b. The corresponding EJ . / curves are presented in Fig. 6.16, where one
can see several local minima of the Josephson energy as a function of the phase.
Probably, taking into account the next harmonics, it is also possible to find two
different ' ground states. However, we expect the corresponding regions within the
dF;a; dF;b plane to be so small that it will be quite hard to fabricate such a structure.

6.4 Conclusion

In the framework of the microscopic model based on the linearized Usadel
equations, we have found that a step-like interface transparency inside SIFS and
SIFNS JJs leads to oscillations of the critical current density JC .y/ along the
junction for dF close to the 0–� transition value d0-�

F . This, in turn, results in
the formation of a non-uniform 0–� nano-junction with characteristic length of the
order of the ferromagnet coherence length �F for the SIFS JJ. For the SIFNS or
SINFS structures, the nano-junction size is �N � �F .

The existence of this 0–� nano-junction inside the structure leads to an unusual
dependence of the maximum supercurrent Imax on the external magnetic field H .
If the junction is close to the 0–� transition, i.e. dF � d0-�

F , so that JC .y/ ! 0,
jy � L=2j 
 maxf�F ; �N g, then the Imax.H/ dependence is very different from the
usual Fraunhofer pattern. Imax increases withH up to a certain value which may be
very large. This value depends on the size of the nano-junction (�N or �F ).

The reasonably large size (� �N ) of the 0–� nano-junction in the SIFNS structure
makes it possible to fabricate a JJ with periodic step-like changes of the NS interface
transparency. Imax.H/ in such a JJ may have additional oscillations and sharp peaks.
Three relevant scales (the length of the array, the length of every region with constant
transparency, and the length of the JC .y/ non-uniformity) define three oscillation
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periods on Imax.H/. These peculiarities are still present also far from the 0–�
transition and allow to fabricate SQIF-like structures containing a ferromagnetic
layer.

We propose a feasible method to realize a ' junction, that is with the Josephson
phase ' ¤ 0 or � in the ground state, based on SFS junctions. In a uniform SFS
Josephson junction near a 0–� transition (with appropriate F-layer thickness dF ),
the first harmonic j1 ! 0, while the second harmonic j2 dominates, however
usually with positive sign (j2 > 0), which excludes the formation of a ' ground
state. Instead, the main idea of the method used here to make a ' junction is
the following. We choose a thickness dF where the second harmonic is large and
negative. To cancel the first harmonic, we use a periodic step-like modulation of
the F-layer thickness between dF;a and dF;b . Here, dF;a and dF;b are chosen such
that for both of them the second harmonic is negative, while the first harmonic is
j1.dF;a/ � �j1.dF;b/. Periodic modulation not only cancels the first harmonic but
also generates an additional negative second harmonic for the average phase. This
effect can be made stronger if one works with a “clean” ferromagnetic barrier (with
intrinsic negative second harmonic in the CPR) and uses alternating regions of equal
length La � Lb � J .

Different mechanisms, leading to a significantly non-sinusoidal current–phase
relation of SFS junctions are analyzed. A CPR mostly different from the sinusoidal
one is obtained for a “clean” SFS junction at low temperature. In this case, there
are reasonably large regions of thicknesses dF;a and dF;b (in comparison with
the description taking into account only the first harmonic), where the multifacet
Josephson junction has a '-ground state. Moreover, for some values of dF;a and
dF;b such structures may have two different ground states (two local minima of the
Josephson energy as a function of the phase): 0 and � , 0 and ', or � and '. Our
analysis gives some practical recommendations for the fabrication of SFS junctions
with arbitrary phase shifts ' in the ground state.
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Chapter 7
Josephson Effect in SFNS Josephson Junctions

T.Yu. Karminskaya, M.Yu. Kupriyanov, A.A. Golubov, and A.S. Sidorenko

Abstract The critical current, IC, of Josephson junctions both in ramp-type
(S-FN-S) and in overlap (SNF-FN-FNS, SN-FN-NS, SNF-N-FNS) geometries has
been calculated in the frame of linearized Usadel equations (S–superconductor,
F–ferromagnetic, N–normal metal). For the ramp-type structures, in which S elec-
trodes contact directly the end walls of FN bilayer, it is shown that IC may exhibit
damping oscillations as a function of both the distance L between superconductors
and thicknesses dF;N of ferromagnetic and normal layers. The conditions have been
determined under which the decay length and period of oscillation of IC.L/ at fixed
dF are of the order of decay length of superconducting correlations in the N metal,
�N, that is much larger than in F film. In overlap configurations, in which S films are
placed on the top of NF bilayer, the studied junctions have complex SNF or SN elec-
trodes (N or NF bilayer are situated under a superconductor). We demonstrate that in
these geometries the critical current can exceed that in ramp-type junctions. Based
on these results, the choice of the most practically applicable geometry is discussed.

7.1 Introduction

The existence of the oscillatory dependence of the critical current on the distance
between superconducting electrodes reliably confirmed in a number of experiments
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using a variety of ferromagnetic materials and the types of Josephson junctions
[1–16]. Promising use of � transitions, for which the critical current has a negative
value, has been discussed in [17–21] for the implementation of qubits and for
superconducting electronics. However, all these structures have some significant
drawbacks, limiting their application.

The first of them is the smallness of the characteristic scale penetration of
superconductivity in a ferromagnet. Indeed, analysis existing experimental data
[1–16] shows that the value of exchange energy, H in ferromagnetic materials
scales in between 850 and 2,300 K. Such large values of H lead to effective decay
length, �F1 � 1:2–4.6 nm, and period of oscillations, �F 2 � 0:3–2 nm, of thickness
dependence of an SFS junction critical current, IC . These values turned out to be
much smaller compared to the decay length, �N � 10–100 nm, in similar SNS
structures. This fact makes it difficult to fabricate SFS junctions with reproducible
parameters. It also leads to suppression of ICRN product, thus limiting the cutoff
frequency of the junctions. Since a search of exotic ferromagnetic materials with
smaller value of H is challenging problem [16], one has to seek for another
solutions.

Possible way to increase the decay length in a ferromagnetic barrier is the use of
long-range proximity effect due to induced spin-triplet superconductivity [26–53]
in structures with nonuniform magnetization. If magnetization of a ferromagnetic
barrier is homogeneous, then only singlet component and triplet component with
projection Sz D 0 of the total Cooper-pair spin are induced in the F region. These
superconducting correlations are short-ranged, that is they extend into the F layer
over a short distance of the order of �F1 D p

DF=H in the diffusive case.
However, in the case of inhomogeneous magnetization, for example in the presence
of magnetic domain walls or in SF multilayer with noncollinear directions of
magnetization of different F layers, a long-range triplet component (LRTC) with
Sz D ˙1 may appear. It decays into F region over distance �F D p

DF=2�TC

(here TC is the critical temperature of S layer), which is by the factor
p
H=2�Tc

larger than �F1: The latter property might lead to the long-range effects observed in
some experiments [27, 28].

The transformation of decay length from �F1 to �F might also take place in a
vicinity of a domain wall even without generation of an odd triplet component
[29–37]. This enhancement depends on an effective exchange field, which is
determined by thicknesses and exchange fields of the neighboring domains. If a
sharp domain wall is parallel [33, 36] or perpendicular to SF interface [37] and
the thickness of ferromagnetic layers, df . �F1; then for antiparallel direction of
magnetization the exchange field effectively averages out, and the decay length of
superconducting correlations becomes close to that of a single nonmagnetic N metal
�F D p

DF=2�TC : It should be mentioned that for typical ferromagnetic materials
�F is still small compared to decay length �N & 100 nm of high conductivity metals
such as Au, Cu, or Ag. This difference can be understood if one takes into account
at least two factors. The first of them is that typical values of Fermi velocities in
ferromagnetic materials (see, e.g., the analysis of experimental data done in [13,14])
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are of the order of 2 � 105 m/s, about an order of magnitude smaller than in high
conductivity metals. The second factor is rather small electron mean free path in
ferromagnets, especially in alloys such as CuNi, PtNi, etc.

In this work, research has focused on finding solutions to eliminate the above-
stated deficiencies in SFS Josephson junctions with traditional geometry. To this
end, new types of SFS Josephson junctions were suggested in which the weak
links composed from NF multilayer structure. This work was aimed at carrying out
theoretical studies of processes in these structures and the proof of the fundamental
features such as extending the period of oscillation and the scale of the decay of the
critical current to values of about �N .

7.2 Effective Decrease in the Exchange Energy in S-(FN)S
Josephson Structures

7.2.1 Structure of S-FN-S Junction and its Mathematical
Description

We consider S-FN-S Josephson junction (Fig. 7.1) that consists of two massive
superconducting electrodes connected to end-walls of a bilayer NF structure. The
width of F layer is dF and of N layer is dN . It is suggested that the dirty limit
conditions are satisfied in the N and F materials, and exchange energyH D 0 in the
normal metal. We will consider that NF interface has finite transparency and that
N and F metals have different transport parameters. The origin of the coordinate
system is in the middle of the structure and the x- and y-axes are perpendicular and
parallel to the NF interface, respectively (Fig. 7.1).

It is suggested that the structure is completely symmetric and the suppression
parameters �BN D RBNABN=�N �N and �BF D RBFABF=�F �F , characterizing the
NS and FS interfaces, respectively, are large:

�BN � max

�
1;
�S�S

�N �N

	
; �BF � max

�
1;
�S�S

�F �F

	
;

so that the suppression of superconductivity in S electrodes can be disregarded.
Here, RBN; RBF and ABN;ABF are the resistance and area of the SN (SF) inter-
face, respectively, �S ; �F ; �N and �S D .DS=2�TC /

1=2, �F D .DF =2�TC /
1=2,

�N D .DN =2�TC /
1=2 are the resistivities and coherence lengths of the materials,

Fig. 7.1 Structure of S-FN-S
Josephson junction
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respectively; DS;N;F are the diffusion coefficients of the respective materials; and
TC is the critical temperature of the superconducting electrodes.

Under the above assumptions, it can be suggested that the Green’s functions GS
and ˚S in superconducting electrodes are equal to their equilibrium values GS D
!=

p
!2 C�2, ˚S D � exp f˙i'=2g, where � and ' are the absolute value and

phase difference of the order parameters of the superconducting electrodes. The
properties of the weak-link region can be described by using the linearized Usadel
equation [38]. In the ˚ – parameterization, they are represented in the form:

�2N

�
@2

@x2
C @2

@y2

	
˚N � j!j

�Tc
˚N D 0; (7.1)

�2F

�
@2

@x2
C @2

@y2

	
˚F � e!

�Tc
˚F D 0; (7.2)

where ! D T�.2n C 1/ are the Matsubara frequencies and (n D 0;˙1;˙2:::),
e! D j!j C iH sgn!.

The boundary conditions at the SN and SF interfaces (for y D ˙L=2/ have the
form cite [39, 40]

�BN�N
@

@y
˚N D ˙GS� exp f˙i'=2g ; (7.3)

�BF�F
@

@y
˚F D ˙ e!

j!jGS� exp f˙i'=2g : (7.4)

The boundary conditions at the FN interface (for x D 0) have the form [39, 40]:

�N

j!j
@

@x
˚N D �

�F

e!
@

@x
˚F ; (7.5)

�B�F
@

@x
˚F C˚F D e!

j!j˚N ; (7.6)

�B D RBAB=�F �F ; � D �N �N =�F �F ;

where RB and AB are the resistance and area of the NF interface, respectively. The
conditions at the free boundaries of the weak-link region at x D dN and x D �dF
reduce to the equations

@˚F

@x
D 0;

@˚N

@x
D 0; (7.7)

which ensure the absence of the current through these boundaries.
For further simplification of the problem, the thicknesses of the F and N films are

assumed to be sufficiently small:

dN � �N ; dF � �F (7.8)
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and the solution of the boundary value problem given by (7.1)–(7.7) is sought in the
form of the expansion in small parameters .dN =�N / and .dF =�F /. This assumption
allows one to simplify the problem and to reduce two-dimensional problem to one
dimensional. In the first approximation, the functions ˚N and ˚F

˚N .x; y/ D A.y/; ˚F .x; y/ D B.y/ (7.9)

are independent of the coordinate x. In the next approximation, taking into account
(7.7) we arrive at the expressions

˚N D A.y/C
� j!j
�Tc�

2
N

A.y/ � @2

@y2
A.y/

	
.x � dN /

2

2
; (7.10)

˚F D B.y/C
�

e!
�Tc�

2
F

B.y/ � @2

@y2
B.y/

	
.x C dF /

2

2
: (7.11)

The substitution of (7.10), (7.11) into boundary conditions (7.5), (7.6) yields the
following system of two equations for the functions A.y/ and B.y/:



�2F

@2

@y2
�
�
�F

e!
�Tc

C 1

��
B.y/C e!

j!jA.y/ D 0; (7.12)

B.y/
j!j
e!

C


�2N

@2

@y2
�
�
�N

j!j
�Tc

C 1

��
A.y/ D 0; (7.13)

where
�F D p

�F �F ; �N D p
�N �N ; (7.14)

�F D �B
dF

�F
; �N D �B

�

dN

�N
: (7.15)

The solution of this system of equations is represented in the form

A.y/ D A1 cosh q1y CA2 sinh q1y CA3 cosh q2y C A4 sinh q2y;

B.y/ D B1 cosh q1y C B2 sinh q1y C B3 cosh q2y CB4 sinh q2y;

where coefficients are related as follows :

B1 D � 1

�2F
ˇ
e!
j!jA1; B2 D � 1

�2F
ˇ
e!
j!jA2; (7.16)

B3 D �2N
1

ˇ

e!
j!jA3; B4 D �2N

1

ˇ

e!
j!jA4:

Here, the inverse coherence lengths q1 and q2 are the roots of the characteristic
equation
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q21;2 D 1

2



u2 C v2 ˙

q
.u2 � v2/2 C 4��2

F ��2
N

�
; (7.17)

u2 D 1

�2N
C ˝

�2N
; v2 D 1

�2F
C ˝

�2F
C i

h

�2F
; (7.18)

and parameter ˇ is:

ˇ D 2



u2 � v2 C
q
.u2 � v2/2 C 4��2

F ��2
N

� ; (7.19)

and˝ D j!j n�TC ; e̋ D e!n�TC ; h D H=�TC sgn.!/:
The integration constants A1;A2; A3; A4 are determined from boundary condi-

tions (7.3), (7.4):

A1 D
1 � sˇ �N

�F
��2
N

�BN.1C �2/

GS� sin.'=2/

�N q1 cosh q1 L2
; (7.20)

A2 D i
1 � sˇ �N

�F
��2
N

�BN.1C �2/

GS� cos.'=2/

�N q1 sinh q1 L2
; (7.21)

A3 D
1C ˇ

�F

�N �
2
F s

�BF.1C �2/

GS� cos.'=2/

�F q2 sinh q2 L2
; (7.22)

A2 D i
1C ˇ

�F

�N �
2
F s

�BF.1C �2/

GS� sin.'=2/

�F q2 cosh q2 L2
; (7.23)

here s D �BN=�BF, � D ˇ.�F �N /
�1.

The substitution of the solution obtained in the form of into the expression JS
for the superconducting current

JS D i�TABF

2e�F

1X

!D�1

1

e!2



B!

@

@y
B��! � B��!

@

@y
B!

�

C i�TABN

2e�N

1X

!D�1

1

!2



A!

@

@y
A��! � A��!

@

@y
A!

�
(7.24)

yields the sinusoidal dependence JS D IC sin '. It is convenient to represent the
critical current IC D IC1 C IC2 as the sum of two terms:

IC2 D 2�T

eRBF�BF
Re

1X

!>0

G2
S�

2!�2.1C ˇs�1 �F

�N �
2
F

/2

.1C �2/ �F q2 sinhLq2
; (7.25)
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IC1 D 2�T

eRBN�BN
Re

1X

!>0

G2
S�

2!�2.1� ˇs
�N

�F �
2
N

/2

.1C �2/ �N q1 sinhLq1
: (7.26)

Expressions (7.25), (7.26) specify a general expression for the critical current of
the S(FN)S Josephson junctions under investigation. According to these relations,
by complete analogy with oscillatory systems with two degrees of freedom, the
S–(FN)–S structure under consideration can be characterized in terms of the partial
inverse coherence lengths u; v and the proper inverse coherence lengths q1; q2.

The parameters ��1
F and ��1

N are the coupling constants. It is easy to see that
the amplitude distribution coefficients at the proper coherence lengths, which are
proportional to ˇ are determined only by the material constants of the structure and
are independent of the boundary conditions at the SN and SF interfaces, respectively.
The way of current injection in the weak- link region (through the ratio �BN=�BF/

is taken into account by the coefficient s, and the subsequent redistribution of the
injected current between the F and N films is determined by the ratio �F =�N .

7.2.2 Analysis of Inverse Coherence Lengths
and Critical Current

Analysis of expressions (7.25), (7.26) for the critical current components and inverse
coherence lengths are simplified for a number of limiting cases.

In the limit of a high resistance of the FN weak-link interface

�N � �N ; �F � �F (7.27)

the coupling constants between the F and N films are small. In the first approxima-
tion in ��1

N and ��1
F , the supercurrent in the structure flows through two independent

channels and formulas for IC1 and IC2 are transformed to the expressions for the
critical currents [39,41,42] that were previously obtained for two-barrier SIFIS and
SINIS junctions:

eRBFIC2

2�TC
D T

�BFTC

1X

!>0

Re

�
G2
S�

2

!2�F q2 sinhLq2

	
; (7.28)

eRBNIC1

2�TC
D T

�BNTC

1X

!>0

G2
S�

2

!2�N q1 sinhLq1
; (7.29)

where

q22 D q220 D ˝

�2F
C i

h

�2F
; q21 D q210 D ˝

�2N
: (7.30)
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In the next approximation, the proper inverse coherence lengths are easily
expressed as

q21 D q210 C 1

�2N
C �2F .˝ C ih/

�2F �
2
N .h

2 C˝2/
; (7.31)

q22 D q220 C 1

�2F
� �2F .˝ C ih/

�2F �
2
N .h

2 C˝2/
: (7.32)

According to (7.31), (7.32) the proximity effect between the N and F films leads
to a small decrease in the effective exchange energy in the F film. The physical
meaning of these changes is obvious. An electron for a certain time can be in the N
part of the FN film of the structure. This is equivalent to the subjection of electrons
to the effective exchange energy averaged over the thickness of the FN film, which is
obviously lower than the exchange energy in the ferromagnetic part of the structure.
Changes in the damping of the superconductivity in the N film are more significant.
In this case, the exponential decrease law changes to damping oscillations. However,
their period in this approximation is much larger than �N

� D 4��N

p
˝�2F �

2
N

�
h2 C˝2



�2N �
2
F h

� �N : (7.33)

It increases infinitely for h ! 0 and is proportional to h for h � ˝: This
means that the term IC2 in this case in the expression for the critical current is
negligibly small and IC � IC1: In contrast to similar SNS junctions without F
films, the dependence IC1.L/ has the form of damping oscillations. This effect is
a consequence of the double proximity effect because the superposition between
the superconducting correlations induced from superconductors and spin ordering
from the ferromagnet occurs in the N film. However, the oscillation period is very
large; for this reason, the experimental observation of the transition to the �-state is
complicated in the case considered above.

In the opposite limiting case �F � �F and �N � �N , strong coupling between
the F and N films occurs in the weak-link region. In this case, the inverse proper
coherence lengths are easily obtained in the form

q1C�.�N��F / D
q
�2N C �2F

�N �F
C ˝�N�F

2.�2F C �2N /
3=2

�
�2F
�2N

C �2N
�2F

C ih
�2N
�2F

�
; (7.34)

q2��.�N��F / D 1
q
�2N C �2F

s�
�2F
�2F

C �2N
�2N

�
˝ C ih

�2F
�2F
; (7.35)

where � – Hevecide function. From (7.34), (7.35) it follows that the ferromagnetic
film in the limit �F � �N additionally suppresses superconductivity induced in the
N region, so that
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q1 D 1

�N
C ˝�N

2�2F

�
�2F
�2N

C �2N
�2F

�
C ih

˝�3N
2�2F �

2
F

; (7.36)

q2 D
s
˝ C ih

�2F
C �2N˝

�2F �
2
N

: (7.37)

It is seen that the coherence length and oscillation period of the term IC2 in this
case coincides in the first approximation with the respective quantities for the SFS
junctions, whereas the term IC in IC1 damps at lengths .Re.q1//�1 � �N � �N :

In the limit �N � �F , the processes in the N film are determining, so that

q2 D 1

�F
C ˝�F

2�2F
C ih

˝�F

2�2F
; (7.38)

q1 D
s
˝

�2N

�
1C �2F �

2
N

�2N �
2
F

�
C i

h

�2F

�2F
�2N
: (7.39)

Therefore, the term IC2 in the critical current decreases more sharply than
IC1: In particular, the typical damping scale for superconducting correlations is
approximately equal to �N˝ D �N =

p
˝, whereas the effective exchange energy

decreases by a factor of �2F =�
2
N � 1:

Thus, when �F � �N � �N both the damping scale and oscillation period
of IC .L/ in the S–(FN)–S structures under consideration are much larger than the
respective values in similar SFS junctions, where the normal film is absent. This
statement is illustrated by the numerical calculation results shown in Figs. 7.2–7.6.

Fig. 7.2 Real and imaginary parts of inverse coherence length q2 versus the parameter z D
.�N =�F /

2 at �N =�N D 4, �N =�F D 10, T D 0:5TC , and h D 20; 30; 40
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50

40

20

Fig. 7.3 Real and imaginary parts of inverse coherence length q1 versus the parameter z D
.�N =�F /

2 at �N =�N D 4, �N =�F D 10, T D 0:5TC , and h D 20; 40; 50

Fig. 7.4 Real and imaginary parts of inverse coherence lengths q1 at H=�TC , �N =�N D 4,
�N =�F D 10, T D 0:5TC , and z D .�N =�F /

2 D 50; 300

Figures 7.2 and 7.3 show the real and imaginary parts of q2 and q1, respec-
tively, as functions of .�N =�F /2, for T D 0:5TC , h D 20; 30; 40 and �N D
10�F and �N D 4�N : it is seen that for h D 30 Im.q2�N / has maximum at
.�N =�F /

2 � 300. The oscillation period of the critical current near this maximum
is � D 2�.Im.q2/�1 � 1:5��N , and its damping length is .Re.q2//�1 � 0:4�N .
The damping scale of the second term in the expression for the critical current is
.Re.q2//�1 � 0:014�N , which is two orders of magnitude smaller. Such strong
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Fig. 7.5 Normalized value of part of critical current IC1 versus the distance L=�N between the
superconducting electrodes for h D 30, �N =�N D 4, �N =�F D 10, T D 0:5TC , s D 1, and
z D .�N =�F /

2 D 100; 300; 1;000; 10;000

Fig. 7.6 Normalized value of part of critical current IC2 of the critical current versus the distance
L=�N between the superconducting electrodes for h D 30, �N =�N D 4, �N =�F D 10, T D 0:5TC ,
s D 1, and z D .�N =�F /

2 D 1; 10; 100; 1;000

difference between the damping lengths allows observation of the transition to the
� state in the structures, where the distance between the electrodes is an order of
magnitude larger than that in the available structures.

Figure 7.4 shows dependences of real and imaginary parts of q1 on exchange
energy for parameter z D 50; 300. At small H critical current decrease without
oscillations. With H increase, the period of oscillations is decreased. It is seen
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that the imaginary part of q1 has a maximum as function exchange energy and,
with increase of z this maximum moves toward large values of H . The value of
this maximum increases with growth of z, and at z � 50 leaves on saturation.
Simultaneously, the damping length decreases with increase of H .

Figures 7.5 and 7.6 show the critical current components IC1 and IC2 as functions
of the distance L between electrodes for T D 0:5TC and various values of the
parameter z D .�N =�F /

2.
It is easy to see that the component IC2 at the given parameters decreases sharply

with an increase in L and, in agreement with expectations, its contribution to IC is
negligibly small already at L � 0:5, that is, long before the appearance of the
first minimum in IC2. It is interesting that the oscillation period in IC � IC2 is a
nonmonotonic function of the parameter z. It has the minimum at z � 300.

7.3 Josephson Effect in S-FN-S Structures with Arbitrary
Thickness of Ferromagnetic and Normal Layers

The results obtained in previous section are essentially based on the assumption
that the thicknesses, dN , dF ; are small compared to their decay lengths. In real
structures, the requirement dN � �N can be easily fulfilled, while the inequality
dF � �F is difficult to achieve due to the smallness of �F and finite roughness of
NF interfaces. Therefore, the solution of two-dimensional problem is needed. The
structures with two-dimensional geometry were examined in [37] for two-domain
junction, in [43, 44] for multidomain SF structures, and in [45] for junction with
helicoidal spin modulation.

It is worth to note that the solution of two-dimensional problem arising in the “in
plane” geometry, when the domain wall is perpendicular to SF interface [32, 37],
is simplified by a natural for this problem suggestion that domain walls consist of
materials differing only by the direction of their magnetization. In this section, we
will discuss properties of an S-FN-S junction beyond the limits of small F and N
film thicknesses for two dimensional geometry.

We will solve system of 2-dimensional linearized Usadel equations (7.1), (7.2)
with boundary conditions (7.3)–(7.6). In this section, we consider that the origin of
coordinate axis y is on left interface between S electrode and F and N film. It is
convenient to write the general solution of the boundary value problem in the form:

˚N .x; y/ D ˚N .y/C
1X

nD�1
An.x/ cos

�n.y � L/

L
; (7.40)

˚F .x; y/ D ˚F .y/C
1X

nD�1
Bn.x/ cos

�n.y �L/
L

; (7.41)

where ˚N .y/ and ˚F .y/ are asymptotic solutions of (7.40), (7.41) at the distance
far from FN interface
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˚N .y/ D GS�p
˝�BN

 
cos '

2
cosh L�2y

2�N˝

sinh L
2�N˝

�
i sin '

2
sinh L�2y

2�N˝

cosh L
2�N˝

!

; (7.42)

˚F .y/ D
p
e̋GS�
˝�BF

 
cos '

2
cosh L�2y

2�F˝

sinh L
2�F˝

�
i sin '

2
sinh L�2y

2�F˝

cosh L
2�F˝

!

; (7.43)

where �N˝ D �N =
p
˝; �F˝ D �F =

p
e̋ ; while functions An.x/ and Bn.x/ are

solutions of appropriate one-dimensional boundary problem. The details of An.x/
and Bn.x/ determination are given in Appendix.

Substitution of the expressions (7.40), (7.41) into formula for the supercurrent,
IS ; after routine calculations and several simplifications presented in Appendix in
the most interesting from the practical point of view situation is when

H � �TC ; �F � �N ; (7.44)

results in sinusoidal dependence IS D IC sin '; where

IC D 2�T

e

dN

�N

W

�2BN�N
Re

1X

!>0

G2
S�

2

!2q�N sinh.qL/
; (7.45)

and inverse coherence length is given by

q D 1

�N

vu
uu
t
�N

dN

�
p
e̋

�B

p
e̋ C coth

n
dF
�F

p
e̋
o C˝: (7.46)

It is necessary to note that in general the expression for the critical current
except summation over ! contains also summation over infinite number of inverse
coherence length, which are the eigenvalues of boundary problem. As it is followed
from estimations given in Appendix under the restrictions on the distanceL between
superconductors

L >> Re

�
1

q
arctanh

1

�BNq�N

�
(7.47)

and on thickness of the N layer

�2F
#h�2N

<<
dN

�N
<< #; (7.48)

where

# D
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<̂

:̂

1
�

q
�2B C �B

p
2h�1 C h�1; dF

�F
>> 1=

p
h;

1
�

r
�2B C 2�B

�F
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˝
h2

C �2F
d2F h

2 ;
dF
�F
<< 1=

p
h

(7.49)
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and h D H=�TC the main contribution to IC comes from the item corresponding
to the first eigenvalue, q; which is given by expression (7.46) and for IC one can get
formula (7.45).

It is necessary to point out that the experimentally studied parameters such as
decay length of IC as a function of L and period of IC oscillations should be mainly
controlled by the real and imaginary parts of inverse coherence length q calculated
at ! D �T:

Below here will be detailed examination of behavior of inverse coherence
length q as a functions of geometrical and transport parameters of weak link. The
calculated dependencies do not only provide the knowledge, which is necessary to
take into account for design of S-FNF-S structures with input properties, but also
will be useful for understanding the features of IC .L; dF / dependencies.

7.3.1 Properties of Inverse Coherence Length q

In the limit of thin F film dF =�F << 1=
p
h expression (7.46) for q transforms into

result obtained in previous Section in the limit �N >> �F :

q2 D ˝

�2N
C .h2 C˝2/�2F C˝�2F C ih�2F

�2N �
2
F .h

2 C .�2F �
�2
F C˝/2/

; (7.50)

where �2F D �BdF =�F ; �
2
N D �BdN=.�N �/.

In the opposite case dF =�F >> 1=
p
h from (7.46), we get

q D 1

�N

s

˝ C �N

dN
�

r
h

2

i C 1C p
2�B

p
hp

h�B.
p
2C �B

p
h/C 1

: (7.51)

At temperature T D 0:5TC , the main contribution into the critical current is
provided by the term corresponding to the first Matsubara frequency .n D 0/: For
this reason here, we will study the properties of inverse coherence lengths q for
˝ D 0:5 that is the value of ˝ for .n D 0/ and T=TC D 0:5:

In Figs. 7.7 and 7.8, solid curves show the real and imaginary parts of inverse
coherence lengths q as a function of dF =�F calculated from (7.46) for two ratios of
normal film thickness dN=�N D 0:01 and dN=�N D 0:1.

The dotted lines in these figures are the same dependencies, which are followed
from asymptotic formula (7.50). All calculations were done for a set of parameters
�N =�F D 10; � D 0:03; �B D 0:2; h D 30, which provide the maximum value for
imaginary part of q at dF =�F D 0:1; dN =�N D 0:01 and dN=�N D 0:1:

It is clearly seen that the solid and dotted curves are in close agreement for
dF =�F . 0:1: At dF =�F & 0:4, the inverse coherence length starts to be
practically independent of dF reaching the value determined by (7.51). This fact
is very important from practical point of view. It says that the parameters of
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Fig. 7.7 Real part of q versus the thickness of F film dF =�F for two values of dN =�N D 0:1; 0:01

(solid lines for q calculated from (7.46), dotted lines for q calculated from formula for thin films,
dashed lines correspond to the limit oh thick F film (7.51) ) at �N =�F D 10; ˝ D 0:5; h D 30;

�B D 0:2; � D 0:03

Fig. 7.8 Imaginary part of q versus the thickness of F film dF =�F for two values of dN =�N D
0:1; 0:01 (solid lines for q calculated from (7.46), dotted lines for q calculated from formula for
thin films, dashed lines correspond to the limit oh thick F film (7.51)) at �N =�F D 10; ˝ D 0:5;

h D 30;�B D 0:2; � D 0:03

S-FN-S junctions do not deteriorate with increase of dF (see the dashed lines in
Figs. 7.7, 7.8). Moreover, imaginary parts of q become very robust against the
fluctuation of ferromagnetic film thickness in the practically important interval
dF =�F & 0:4: From Figs. 7.7, 7.8, one can also see that taking into account finite
value of thicknesses of films leads to some increase of decay length.

In Fig. 7.9, solid and dotted lines show the real and imaginary parts of inverse
coherence length q as function of dN=�N calculated from (7.46) and (7.50),
respectively, for two ratio of ferromagnetic film thickness dF =�F D 0:1 and
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Fig. 7.9 Imaginary part of q versus the thickness of N film dN =�N for two values of dF =�F D
0:1; 1 (solid lines for q calculated from (7.46) and dotted lines for q calculated from formula for
thin films [48]) at �N =�F D 10; ˝ D 0:5; h D 30; �B D 0:2; � D 0:03. Inset shows real part of
q versus the thickness of N film dN =�N at the same parameters

Fig. 7.10 Real and imaginary parts of q versus the parameter � (solid lines for q calculated from
(7.46) and dotted lines for q calculated from formula for thin films [48]) at �N =�F D 10; ˝ D 0:5;

h D 30; dF =�F D 0:5, dN =�N D 0:05 and �B D 0:1. Inset shows the same dependence at
�B D 0:01 and the same other parameters

dF =�F D 1 and at the same set of other parameters .�N =�F D 10; � D 0:03; �B D
0:2;˝ D 0:5; h D 30/:

From the data, it follows that an increase of thickness of normal film leads to
an increase of period of oscillations, which tends to infinity at large dN : The decay
length also increases with dN and for dF =�F D 0:1 it practically approaches the
value �N =

p
˝ , that is the decay length of the single normal film.

Figures 7.10 and 7.11 show the real and imaginary parts of inverse coherence
lengths q as a function of � and �B calculated at dN=�N D 0:05 for �N =�F D 10,
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Fig. 7.11 Real and imaginary parts of q versus the parameter �B (solid lines for q calculated from
(7.46) and dotted lines for q calculated from formula for thin films) at �N =�F D 10; ˝ D 0:5;

h D 30; dF =�F D 0:5, dN =�N D 0:05 and two values of � D 0:1; 0:03

Fig. 7.12 Real and imaginary parts of q versus the thickness of F film dF =�F for �B D
0:2; 0:1; 0:01 (solid, dashed, and dotted lines) at �N =�F D 10; ˝ D 0:5; h D 30; � D 0:03;

dN =�N D 0:05. Inset shows the same dependence for h D 5

˝ D 0:5; h D 30. In Fig. 7.10, �B D 0:1 and inset shows the same dependencies
calculated for �B D 0:01. In Fig. 7.11, � D 0:1; 0:03.

There is significant discrepancy between the curves calculated from the general
expression (7.46) for q and from asymptotic dependence (7.50) for q. This
discrepancy the larger the smaller is the suppression parameter �B: This result is
obvious since the expression (7.50) is not valid at small �B: From direct comparison
of the curves, we can conclude that in practically important range of � & 0:1 within
the accuracy of 20% we may use the results of previous Section.

Figure 7.12 shows the dependencies of real and imaginary parts of q upon
thickness of F film calculated for �N =�F D 10; ˝ D 0:5; h D 30; � D 0:03;

dN =�N D 0:05 and the set of parameters �B D 0:2; 0:1; 0:01 (solid lines, dashed
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lines, dotted lines, respectively). Inset in this figure shows the same dependencies
obtained for smaller value of exchange energy h D 5. It is clearly seen that Im.q/
has a maximum as a function of dF =�F : The position of the maximum shifts to
larger F layer thickness with �B decrease. At �B D 0:2, the maximum of imaginary
part has the value max.Im.q// � 0:5�N ; which is achieved at dF =�F � 0:1. For
smaller suppression parameters �B D 0:1 (�B D 0:01), the maximum of imaginary
part equals to Im.q/ � 2=3�F (max.Im.q// � �F ) and is achieved at dF =�F � 0:13

and dF =�F � 0:2; respectively. Inset in Fig. 7.12 also demonstrates that both
position of the maximum of Im.q/ and its absolute value depend on exchange
energy h. Decrease of h shifts max.Im.q// to larger ratio dF =�F and simultaneously
suppresses the value of this maximum. From the structure of expression (7.46) for
q, it follows that its imaginary part Im.q/ has a maximum as a function of exchange
energy h. Indeed, at h ! 0 the period of IC .L/ oscillation tends to infinity, which
is equivalent to Im.q/ ! 0: At large h, the imaginary part Im.q/ / h�1=2, that is
also goes to zero with h increase. At dF =�F & 0:4 both Im.q/ and Re.q/ saturate
and practically become independent on F layer thickness.

Figure 7.13 shows the dependence of Im.q/=Re.q/ as a function of dF =�F .
The calculations have been done for �B D 0:01; �N =�F D 10; ˝ D 0:5; and for
two values of suppression parameter � D 0:03 (solid line), � D 0:1 (dotted
line). The values of exchange energy h have been equal to 10 and 30, as it is
marked in Fig. 7.13 by arrows. The curves presented in Fig. 7.13 can be also
used for minimization of period of IC oscillations. Actually, the maximum of ratio
Im.q/=Re.q/ corresponds to the minimum decay per one period. It is obvious that
this maximum is located near maximum of Im q: Therefore, the position of this
maximum shifts to smaller dF with increase of exchange energy or suppression
parameter �:

If we want to fix the value of max.Im q/ in the vicinity of �N and to shift
this maximum to the largest dF , we should choose suppression parameter �B in
the range of 0:01 (for large dF ) and perform the fitting procedure to estimate
suppression parameter � and exchange energy h. For instance, we may find that

Fig. 7.13 Ratio of imaginary
part of q to its real part versus
the thickness of F film dF =�F
for two values of
� D 0:03; 0:1 (solid and
dotted lines) at
�N =�F D 10; �B D 0:01;

dN =�N D 0:05, ˝ D 0:5;

and h D 30; 10
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for h D 30 maximum of Im.q/ is of the order of �N and it is achieved for
� D 0:03 at dF =�F � 0:18; while for h D 10, � D 0:03 the maximum is shifted to
dF =�F � 0:3: The smaller the exchange energy the thicker should be the thickness
of F film to get Im.q/ in the range of �N : Thus for h D 5, � D 0:09, the maximum
is achieved at dF =�F D 0:45: From the data presented in

Figures 7.12 and 7.13, it follows that for all mentioned above sets of parameters
the ratio Im.q/=Re.q/ � 0:6 and does not exceed this value.

For thick F film dF =�F >> 1=
p
h, the maximum of Im.q/=Re.q/ is achieved at

small �B ! 0, h >> ˝ and ��N =dN
p
h=2 >> ˝ and this maximum relation is

Im.q/=Re.q/ � 0:4.

7.3.2 Thickness Dependence of the Critical Current

The critical current (7.45) of the studied S-FN-S Josephson junction (see Fig. 7.14)
is a function of two arguments. They are the distance between superconducting
electrodesL=�N and the thickness of ferromagnetic film dF =�F : The dependence of
IC .L=�N ; dF =�F / has shown in Fig. 7.14. It has been calculated from (7.45), (7.46)
for h D 10; dN =�N D 0:05; �B D 0:01; � D 0:03; �BF=�BN D 1 and T D 0:5TC .

In the limit dF ! 0 period of critical current oscillations tends to infinity (see
Fig. 7.14) and IC decays monotonically with L, as it must be for SNS Josephson
junctions. With dF ; increase (see Fig. 7.15) the dependence of critical current as
a function of L=�N has the form of damped oscillations. The decay length of

Fig. 7.14 Normalized absolute value of critical current versus the thickness of F film dF =�F and
distance between the superconducting electrodes L=�N for � D 0:03; �B D 0:01, �N =�F D
10; dN =�N D 0:05, h D 10, �BN=�BF D 1; T D 0:5TC
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Fig. 7.15 Normalized absolute value of critical current versus the distance between electrodes
L=�N for � D 0:03; �B D 0:01, �N =�F D 10; dN =�N D 0:05, h D 10, �BN=�BF D 1, T D 0:5TC
for several thicknesses of F film dF =�F D 0:05; 0:3; 0:6; 1. Insert shows the same dependence for
dF =�F D 1:5; 1:8; 2; 2:2:

these oscillations is different for different thickness of F film. The most intensive
suppression is localized in the vicinity of dF =�F � 0:6 since Re.q/ has maximum
at this thickness of F layer. It is seen that the suppression of IC is smaller for
thicker (dF > 0:6�F ) and thinner (dF < 0:6�F ) F films. Period of IC oscillations
decreases with dF achieving the smallest value at dF =�F � 0:3: Further increase of
dF results in increase of this period. Finally in the range of thickness dF =�F > 0:5
both period of IC oscillations and decay length are nearly constant. In the interval
of F layer thickness dF =�F & 1, the position of zeros of IC .L; dF / undergoes
oscillations as a function of dF (see insert in Fig. 7.15). They take place around
values L D Ln; under which IC .Ln; dF / D 0 at dF � �F : The amplitude of these
oscillations decays with increase of dF : It is interesting to mention that the larger
is Ln; the more intensive are the amplitudes of the oscillations. This behavior can
be easily understood from the form of q.dF / dependence (7.46). In the vicinity
of L D Ln, the critical current is small due to the 0-� transition of IC as a
function of L. Under this condition, any small variations of q, which occur due to

factor coth
�
dF

p
e̋=�F

�
in (7.46) start to be important giving rise to the discussed

IC .L; dF / behavior.
Figure 7.16 shows the IC .L; dF / dependencies calculated at fixed values of L

under hD 10; dN =�N D 0:05; �B D 0:01; � D 0:03; �BF=�BN D 1, and T D 0:5TC .
In the small L domain, the properties of the S-FN-S junction do not depend on

the structure of weak link region. The critical current IC is practically independent
on dF ; so that there is no transition from zero to � state on IC .dF /. With the
increase of L the IC .dF / dependence becomes apparent (see Fig. 7.14) resulting
in suppression of IC : This suppression is different for different thicknesses of F
film. The strongest suppression is realized in the vicinity of dF =�F � 0:3: This
fact is illustrated in Fig. 7.16a by the line corresponding to the ratio L=�N D 1:3:
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a

b

c

Fig. 7.16 Normalized absolute value of critical current versus the thickness of F film dF =�F
for � D 0:03; �B D 0:01; �N =�F D 10; dN =�N D 0:05; hD 10; �BN=�BF D 1; T D 0:5TC for sev-
eral distances between the superconducting electrodes L=�N D 1:3; 1:67; 1:8; 2:6; 2:8702; 2:8705;

2:8729; 2:95; 2:95; 3:5
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Fig. 7.17 .L; dF / phase diagram for S-FN-S junction at � D 0:03; �B D 0:01, �N =�F D 10;

dN =�N D 0:05, hD 10, �BN=�BF D 1; T D 0:5TC

It is seen that at this value of L=�N the suppression of IC is smaller for thicker
(dF > 0:3�F ) and thinner (dF < 0:3�F ) F films. At L=�N � 1:67 and dF � 0:3�F ,
the magnitude of critical current for the first time reaches zero, while the sign of IC
does not change.

With further increase of L the L=�N ; dF =�F plane starts to be subdivided
into two regions separated by the line along which the junction critical current is
equal to zero. The boundary between the regions has two branches (see Fig. 7.17).
The first one is located at dF < 0:3�F . It starts from the first critical point
(Lc1=�N ; dF;c1=�F / � .1:67; 0:3/ and dF;c1 the smaller the larger is L. The second
branch located at dF > 0:3�F : It starts from the same critical point and for large
dF asymptotically verge toward the line L D L1 exhibiting damped oscillation
around it. As a result, any cross-section presented in Fig. 7.14 dependence of
IC .L=�N ; dF =�F / by a perpendicular to L axis plane in the region 1:67 < L=�N <
2:87 should give a dependence of IC .dF / having the typical shape shown by solid
line .L=�N D 1:8/ in Fig. 7.16a. It demonstrates that in this range of distances
between S electrodes .1:67 < L=�N < 2:87/ for any given L there is a nucleation
of only one � state in between of two zero states in IC .dF / dependence. The interval
of dF in which the � state exists, becomes wider the larger the L. Note also that for
1:67 < L=�N < 2:87 only 0-state can be realized for large dF =�F & 0:8:

The number of transitions between zero and � states in IC .dF / increases by
asymptotically approaching the line L D L1: This is illustrated in Fig. 7.16b. At
.L=�N D 2:6/, there are still only two transitions, namely, from 0-state to �-state
and from � to zero state. At .L=�N � 2:8702/ in the zero state domain, there is
nucleation of the next critical point at dF =�F � 1:7. In it IC D 0, while the sign of
IC is kept positive for all dF =�F & 0:8: Further increase of L leads to generation
of additional � state in the vicinity of dF =�F � 1:7 as it is shown in Fig. 7.16b
by solid line. The closer L to L1 the larger is the amount of zero to � transitions.
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As it was already pointed above, this behavior of critical current at L=�N � L1 is a
result of small oscillations of Im.q/, which occur at large dF . Note that in the region
L D L1 � 0 S-FN-S junction always is in the zero state at dF ! 1:

Contrary to that, forL D L1C0 it is �-state that is finally established in the limit
of large dF (see the dotted line for L=�N D 2:8729 in Fig. 7.16c). Further increase
of L leads to the reduction of thickness intervals in which the zero states exist. They
collapse one by one with L. The last stage of this process is shown in Fig. 7.16c. It
is seen that transition from .L=�N D 2:8729/ to .L=�N D 2:92/ leads to reduction
of the zero state located in vicinity of dF =�F D 1: At .L=�N � 2:95/ it completely
shrinks, so that IC becomes always negative at dF =�F & 0:2: As a result in the
distance interval 3:5 . L=�N . 6:5 the typical shape of IC .dF / dependence for a
fixed L has the form of the curve presented in Fig. 7.16c by the line calculated for
L=�N � 3:5: There is only one 0-� transition, which occurs at dF =�F � 0:2. It is
the first branch of the locus of point at which IC D 0 on L=�N ; dF =�F plane.

It is seen from Figs. 7.14, 7.17 that at L=�N � 6:5 and dF =�F � 0:32 there is a
nucleation of the next critical point. Again, the two branches start to propagate from
it. They produce the next boundary on L=�N ; dF =�F plane, thus subdividing this
plane into three regions.

The first branch is located at dF =�F . 0:32: It propagates along L nearly
parallel to the already existing in this domain branch generated at critical point
Lc1=�N ; dF;c1=�F / � .1:67; 0:3/. In the narrow zone between these branches, the
junction is in the � state. The second branch is located at dF > 0:32�F : Starting
from the second critical point for large dF it asymptotically verges toward the line
L D L2 D 10:089 exhibiting damped oscillations around it. Quantitatively, the
behavior of IC .L; dF / in the vicinity of L D L2 and at slightly largerL is the same
as we discuss above. There is increasing number of zero to � transitions as soon as
L ! L2�0 and the collapses of � states in the L D L2C0 region with L increase.
Finally in the interval 10:32 . L=�N . 11:5, there are only two transitions of
IC .dF / and at dF =�F & 0:012 there is only zero state of the critical current.

Appendix

7.3.3 Solution of Linearized Usadel Equations

It is convenient to write the general solution of the boundary value problem in the
form

˚N .x; y/ D ˚N .y/C
1X

nD�1
An.x/ cos

�n.y � L/

L
; (7.52)

˚F .x; y/ D ˚F .y/C
1X

nD�1
Bn.x/ cos

�n.y �L/
L

; (7.53)
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where ˚N .y/ and ˚F .y/ are asymptotic solutions of (7.1), (7.2) at the distance far
from FN interface

˚N .y/ D GS�p
˝�BN

 
cos '

2
cosh L�2y

2�N˝

sinh L
2�N˝

�
i sin '

2
sinh L�2y

2�N˝

cosh L
2�N˝

!

; (7.54)

˚F .y/ D
p
e̋GS�
˝�BF

 
cos '

2
cosh L�2y

2�F˝

sinh L
2�F˝

�
i sin '

2
sinh L�2y

2�F˝

cosh L
2�F˝

!

; (7.55)

where �N˝ D �N =
p
˝; �F˝ D �F =

p
e̋ ; while functions An.x/ and Bn.x/ satisfy

the following boundary problem

�2N
@2

@x2
An.x/ � u2nAn.x/ D 0; (7.56)

�2F
@2

@x2
Bn.x/ � v2nBn.x/ D 0; (7.57)

�B

�
�N
e̋

˝

@

@x
An.0/�

e̋

˝
An.0/C Bn.0/ D Rn; (7.58)

�B�F
@

@x
Bn.0/CBn.0/�

e̋

˝
An.0/ D Rn; (7.59)

Rn D
e̋

˝

GS�

L
�n

�
e

i'
2 C .�1/ne

�i'
2

�
; (7.60)

@

@x
An.dN / D 0;

@

@x
Bn.�dF / D 0: (7.61)

Here ˝ D j!j=�TC ; e̋ D e!=�TC and

�n D 1

�BN

�N

u2n
� 1

�BF

�F

v2n
; (7.62)

un D
s�

�n�N

L

�2
C˝; vn D

s�
�n�F

L

�2
C e̋: (7.63)

Solution of (7.56)–(7.61) has the form

An.x/ D �
Rn�vn˝ cosh

n
x�dN
�N

un
o

e̋ın sinh undN
�N

; (7.64)

Bn.x/ D
Rnun cosh

n
xCdF
�F

vn
o

ın sinh vndF
�F

; (7.65)
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where ın is defined as:

ın D �Bvnun C un coth
vndF
�F

C �vn coth
undN
�N

(7.66)

7.3.4 Calculation of Critical Current

To calculate the supercurrent across the S-FN-S junction we substitute of the
expressions (7.52)–(7.53), (7.64)–(7.66) into formula for the general formula for
supercurrent

IS.x; y/ D �i�T W

e�F

1X

!D�1

1

e!2

Z 0

�df



˚��!;F

@

@y
˚!;F

�

� i�T W

e�N

1X

!D�1

1

!2

Z dn

0



˚��!;N

@

@y
˚!;N

�
:

The calculations gives IS D IC sin '; where

IC D �2�T W �

e�N

1X

!D�1

G2
S

!2

2

4
6X

jD1
kj Sj (7.67)

C dFp
e̋�N �2BF sinh L

�F˝

C dN=�p
˝�N �

2
BN sinh L

�N˝

3

5

and W is a width of junction in the direction perpendicular to axes 0y and 0x. The
last two items in (7.67) determine the critical current of the structures with ether
ferromagnetic (SFS) or normal (SNS) interlayers. By Sj we define the ordinary and
double sums:

S1 D
1X

nD�1

n�nun sin �n
2

vnın
; S2 D

1X

nD�1

n�nvn sin �n
2

unın
;

S3 D
1X

nD�1

�nun cos �n
2

vnın
; S4 D

1X

nD�1

�nvn cos �n
2

unın
;

S5 D
1X

n;mD�1

Cnmunum

sinh vndF
�F

sinh vmdF
�F

Iv;

S6 D
1X

n;mD�1

Cnmvnvm

sinh umdN
�N

sinh undN
�N

Iu; (7.68)
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Iv D
sinh .vnCvm/dF

�F

vn C vm
C

sinh .vn�vm/dF
�F

vn � vm
;

Iu D
sinh .unCum/dN

�N

un C um
C

sinh .un�um/dN
�N

un � um
;

Cnm D n sin �n
2

cos �m
2
�m�n

ımın
;

and coefficients kj are

k1 D
p
e̋�2F˝�

�BFL2 sinh L
2�F˝

; k2 D �p
˝�2N˝�

�BNL2 sinh L
2�N˝

;

k3 D
p
˝�2N˝�

�BNL2 sinh L
2�N˝

; k4 D ��N
�BNL cosh L

2�N˝

; (7.69)

k5 D ��N �
2
F

L3
; k6 D �

��3N
L3

:

To calculate the sums (7.68) we may use the procedure known from the theory
of functions of complex variables

1X

nD�1
f .n/ sin.�n=2/ D �

2

X

k

res.f .zk//

cos.�=2zk/
; (7.70)

1X

nD�1
f .n/ cos.�n=2/ D ��

2

X

k

res.f .zk//

sin.�=2zk/
; (7.71)

where res.f .zk// is residue of function f .z/ at the critical point zk: From
(7.68) it follows that there are critical points zu D ˙ iL

p
˝=.�N�/ and

zv D ˙ iL
p
e̋=.�F �/; which are the roots of equations u.z/D 0; and v.z/D 0;

respectively. In addition there is also an infinite number of zk; which are the roots
of equation:

ı.z/ D 0: (7.72)

Applying the procedure (7.70)–(7.71) to calculation of (7.68) it is possible to show
that the last two terms in expression for IC (7.67) are exactly compensated by the
parts of these sums, which are calculated from the residue at critical points z D zu

and z D zv: Therefore critical current (7.67) can be expressed as the sum of terms
resulting from the application of the rule (7.70)–(7.71) to (7.68) at z D zk:

Our analysis have shown that the value part of zk consists of a root having the
lowest real part, z D zmin; and the two systems of roots. In the first system, zk;N ;
there is an item in the real part of zk;N ; which at large k increase with the number
k of the root as k�N =dN ; while in the second, zk;F ; this increase is proportional to
k�F =dF : Below we will restrict ourselves to the consideration of the limit at which
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zmin makes the major contribution to the junction critical current, i.e. jzminj << jzkj.
It can be shown that the lowest value among the roots of zk;F group is achieved at

the limit of large dF and is bounded by
p
e̋L=.��F /: The lowest value of second

group of the roots, zk;N ; is bounded by
q
�2N =d

2
N �˝.L=.��N //; the value at which

zk;N are approached to in the limit of small � . Thus under the condition

jzminj << j
q
e̋L=.��F /j; (7.73)

jzminj << j
q
�2N =d

2
N �˝.L=.��N //j (7.74)

we can rewrite (7.72) in the form

u2 D � �N
dN

�
p
e̋

�B

p
e̋ C coth

n
dF
�F

p
e̋
o (7.75)

and for zmin finally get

zmin D i
L

��N

vu
u
ut

�
p
e̋

�B

p
e̋ C coth

n
dF
�F

p
e̋
o
�N

dN
C˝: (7.76)

Note, that the imaginary parts of the roots of both groups .zk;F ; zk;N / do not exceed
their real parts. It means that inequality (7.74) guarantees the smallness of Re zmin

compared to Re.zk;F ; zk;N /:
Assuming further that the total contribution to IC from the all the residues at

critical points zk�1 is small compared to that at z D zmin

ˇ
ˇ
ˇ
ˇRe

1

zmin sinh�zmin

ˇ
ˇ
ˇ
ˇ >> ˙F C˙N ; (7.77)

˙F.N/ D
ˇ̌
ˇ
ˇ
ˇ
Re
X

k

1

zk;F .N/ sinh�zk;F .N/

ˇ̌
ˇ
ˇ
ˇ

(7.78)

we arrive at the following expression for IC :

IC D 4�T

e

W

�2BN�N
� Re

1X

!>0

G2
S�

2k2 .SF C SN /

D2!2q�N sinh.qL/
; (7.79)

SF D �2F
�2N



1C 2vdF

�F
sinh�1 2vdF

�F

�
u2

v
coth

vdF
�F

;

SN D �



1C 2udN

�N
sinh�1 2udN

�N

�
v2

u
coth

udN
�N

;
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where u D
q
˝ � q2�2N ; v D

q
e̋ � q2�2F ; and inverse coherence lengths q is

given by

q D 1

�N

vu
u
u
t
�N

dN

�
p
e̋

�B

p
e̋ C coth

n
dF
�F

p
e̋
o C˝: (7.80)

The coefficients k and D in (7.79) have the form

k D 1

u2
� �BN

�BF

�F

�N

1

v2
;

D D
�
dN

�N
C �

�2F
�2N

dF

�F

�
coth

udN
�N

coth
vdF
�F

C
�
�Bv

dN

�N
C �2F

�2N

�

v

�
coth

udN
�N

C
�
�Bu

dF

�F

�2F
�2N

C 1

u

�
coth

vdF
�F

C v

u

�
�B C �

dN

�N

�
C �2F
�2N

u

v

�
�B C dF

�F

�
: (7.81)

From (7.74) and (7.76) it follows that the approximation (7.80) for q is valid if

�2F

#h�2N
<<

dN

�N
<< #; (7.82)

where

# D

8
<̂

:̂

1
�

q
�2B C �B

p
2h�1 C h�1; dF

�F
>> 1=

p
h;

1
�

r
�2B C 2�B

�F
dF

˝
h2

C �2F
d2F h

2
; dF
�F
<< 1=

p
h:

(7.83)

where h D H=�TC sgn!. To get (7.82) we additionally restricted ourselves by
considering the most interesting from practical point of view situation when

h >> T=TC ; �F << �N : (7.84)

It follows from inequalities (7.82) and (7.83) that the range of validity of expression
(7.76) is the larger, the smaller is the parameter � and thickness of F film dF or the
larger is �B: At � D 0 or �B ! 1 rigid boundary conditions take place at NF
interface and expression (7.76) is valid for arbitrary thickness of the normal film.
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From (7.77) to (7.78) it follows that in the limit of thin F and N films, dF =�F <<
1=

p
h and dN =�N << 1=

p
˝; the result (7.79)–(7.81) is valid if the conditions

(7.82) are fulfilled.
The inequality (7.77) provides also the restriction on the thickness dF and dN

of F and N films. Physically, it comes from the fact that with dF .dN / increase the
full supercurrent flowing across F (N) film is enlarged proportionally to dF .dN /.
Therefore the smallness of this current component compared to contribution to IC ,
which is accumulated in vicinity of FN interface, results in

dF Re.q/ << exp

�
L

�F

p
h

	
: (7.85)

dN Re.q/ << exp

(

L

 p
˝

�N
� q

!)

: (7.86)

Finally we should take into account that the form of the boundary conditions is
valid for relatively large �BN thus providing additional restriction for application of
(7.79), which sets the limit on the distance between superconducting electrodes

L >> Re

�
1

q
arctanh

1

�BNq�N

�
: (7.87)

From (7.80), (7.84), (7.87) it follows that inequality (7.85) is always fulfilled
for experimentally reasonable thickness of F layer and does not apply a serious
restriction on the use of (7.79).

Taking into account the inequality (7.82) we can further simplify the expression
for the critical current (7.79) and transform it into the formula

IC D 2�T

e

dN

�N

W

�2BN�N
Re

1X

!>0

G2
S�

2

!2q�N sinh.qL/
; (7.88)

in which the dependence of IC .dF / enters only via functional dependence q.dF /
determined by (7.80). It is important to note that to use expression (7.88) it is enough
to be in the range of parameters, which guarantees the implementation of (7.82).

7.4 New Geometry of SFNS Junctions

The choice of junction geometry considered in previous sections was based on
existing concept [46,47], that in such ramp-type configuration the critical current IC
is larger than in overlap geometry, when S electrodes are located on top of the weak
link multilayer. In this section, this statement is reconsidered and it is demonstrated
that its valid only for the fully transparent interfaces between S electrodes and a
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Fig. 7.18 (a) SN �N �NS

junction, (b) the SNS
junction

S SN

N

S

a

b

S

d

L

dN

Fig. 7.19 (a)
SNF � NF � FNS junction,
(b) the SN � NF � NS
junction, (c) the
SNF � N � FNS junction, (d)
the S � NF � S junction

N
S S

F

N
S

a

b

c

d

S

F
N

S S

F F

S SN
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weak link region. Three different geometries of Josephson junctions: (1) SN-NF-NS
devices, which consist of two SN complex electrodes connected by NF weak region;
(2) SNF-N-FNS structures, in which N film connects two SNF complex electrodes
and (3) SNF-NF-FNS junctions with S electrodes located on top of the FN bilayer
are studied. Critical currents of these Josephson structures in the framework of
linearized Usadel equations for arbitrary length of complex electrodes will be
discussed and then it will be compared with the results for the above three cases and
those obtained in previous sections to determine the geometry, which provides the
largest magnitude of the critical current. Also in this section, we will demonstrate
that 0-� transition in the considered structures can be driven not only by variation
of distance L between S electrodes, as predicted by known models, but also by
changing the length d of the SNF overlap region.

We consider multilayered structures presented in Figs. 7.18 and 7.19. They
consist of superconducting electrodes with the length d deposited on the top either
a single N film or on NF bilayer. The bilayer consists of ferromagnetic (F) and
normal metal (N) films having a thickness dF , and dN , respectively (see Fig. 7.19).
The junctions shown in Figs. 7.18b and 7.19d are the structures having ramp-type
geometry intensively studied previously (see [46, 48–54]).

The x- and y-axes have been chosen in the directions perpendicular and parallel
to the plane of N film and put the origin in the middle of structure at FN interface
(Fig. 7.19a,b,d) or at the lower free interface of N film (Figs. 7.18, 7.19c).

We will solve linearized Usadel equations (7.1), (7.2) for these cases in the limit
of small thicknesses of N and F films
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dN � �N ; dF � �F (7.89)

as in Sect. 7.2. The details of calculations are summarized in appendices.

7.4.1 Critical Current of SN-N-NS Josephson Junction

The expressions for the critical currents, I SNS
C ; I SN�N�NS

C ; of SNS junction shown
in Fig. 7.18 are well known in the considered model [52]. They have the form

I
SNS

C D K
dN

�N

1X

nD0

�

q sinh.qL/
; (7.90)

I
SN�N�NS

C D K

�NdN

1X

nD0

� sinh2.qd/

q3 sinh.q.LC 2d//
; (7.91)

where coefficient K D .2�T W /=.RBNABN�BNe/; q D ��1
N

p
˝ is inverse decay

length and � D �2=.!2 C�2/:

As it is shown in Appendices expression, (7.91) is also followed from the more
general formula for critical current of SNF-NF-SNF devices shown in Fig. 7.19a in
the limit of small thickness of F film (dF ! 0).

The ratio of these two critical currents, I
SN�N�NS

C =I
SNS

C ; is visualized in Fig. 7.20
as a function of thickness of normal layer, dN ; for several lengths of complex
electrode d=�N D 0:5; 1; 10. It is clearly seen that there are intervals of parameters

Fig. 7.20 I
SN�N�NS

C =I
SNS

C versus thickness of N film dN =�N for d=�N D 0:5; 1; 10,L=�N D 2,
T=TC D 0:5
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under which critical current of SN-N-NS junction can essentially exceed of I SNS
C :

The physics of this effect is evident.
In the considered limit of small SN interfaces transparency for ramp-type

geometry (Fig. 7.18a) under condition L>>1=q the magnitude of induced into N
metal ˚N functions at SN interfaces is close to

˚N .dN / D GS�

�BN�N q
; �BN�N q >> 1; (7.92)

while in the case of overlap geometry (Fig. 7.18b) for dN << 1=q magnitude of˚N
functions induced into N metal is in the first approximation on dN=�N independent
on coordinate x and is equal to

˚N .dN / D GS�

�BN�N q2dN
; �BN�N q

2dN >> 1: (7.93)

From (7.92), (7.93), it immediately follows that the large factor �BN in (7.93) can
be renormalized by a small ratio of dN=�N , thus leading to effective increase of
superconductivity at the interface between the N film and SN composite electrode
compare to the strength of superconducting correlations at SN boundary of SNS
ramp-type devices.

7.4.2 Critical Current of Devices with F Film
in Weal Link Region

To calculate the critical current of the junctions shown in Fig. 7.19, one has to solve
the boundary problem and substitute the obtained solution into general formula for
supercurrent:

IS D �i�T W

e�F

1X

!D�1

1

e!2

Z 0

�dF



˚��!;F

@

@y
˚!;F

�

� i�T W

e�N

1X

!D�1

1

!2

Z dN

0



˚��!;N

@

@y
˚!;N

�
: (7.94)

The details of this procedure are allocated in appendix.
It is shown there that in the practically interesting limit of strong N film

�N >> �F ; �N >> �F (7.95)

the critical current of SNF-NF-FNS (Fig. 7.19a), SN-NF-NS (Fig. 7.19b), and SNF-
N-FNS (Fig. 7.19c) structures
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I
SNF�NF�FNS

C D K

�NdN
Re

1X

nD0

� Uq1 sinh2.q1d/

sinh.q1.LC 2d//
; (7.96)

I
SN�NF�NS

C D K

�NdN
Re

1X

nD0

� q1

q4.Qq;q1 C Pq;q1 /
; (7.97)

I
SNF�N�FNS

C D K

�NdN
Re

1X

nD0

� Uq

Qq1;q C Pq1;q
(7.98)

can be expressed by formulas (7.96), (7.97), and (7.98), respectively. Here, functions
Q.˛; ˇ/; P.˛; ˇ/; and U are defined as

Qa;b D 2 coth .ad/ cosh .bL/ b

a
; (7.99)

Pa;b D sinh .bL/

 

1C b2 coth2 .ad/

a2

!

; (7.100)

U D
�

v2�2F �
2
N

1 � v2u2�2F �
2
N

�2
; (7.101)

where q1 is fundamental inverse coherence length of the problem:

q21 D 1

2



u2 C v2 �

q
.u2 � v2/2 C 4��2

F �
�2
N

�
; (7.102)

while u and v

u2 D
�
1

�2N
C ˝

�2N

�
; v2 D

�
1

�2F
C ˝

�2F
C i

h

�2F

�
; (7.103)

are partial inverse coherence lengths. The parameters �F and �N are the coupling
constants �2F D �BdF �F ; �

2
N D �BdN �N =� , which describe the mutual influence of

N and F films on superconducting correlations in the junction.
Strictly speaking, the formulas (7.96), (7.97), and (7.98) are valid in the limit of

thin N and F films (7.89). However, making use of the formalism developed in [51]
it is possible to prove that all of them can be also valid for arbitrary thickness of F
film if one simply use in (7.96), (7.97), and (7.98) the more general expression for
inverse coherence length q1, namely 7.46.

Expressions (7.96), (7.97), and (7.98) can be simplified in several practically
interesting cases.

In the limit of large d (d >> 1=q; 1=q1) both coth.qd/ ! 1 and coth.q1d/ ! 1:

As a result for SN-NF-NS and SNF-N-NFS junctions, one may use the same
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formulas (7.97), (7.98) with more simple forms of functionsQ.˛; ˇ/ and P.˛; ˇ/

Qa;b D 2 cosh .bL/ b

a
; (7.104)

Pa;b D sinh .bL/

�
1C b2

a2

�
; (7.105)

while for SNF-NF-FNS junction

I
SNF�NF�FNS

C D 1

2

K

�NdN
Re

1X

nD0
� Uq1 exp.�q1L/: (7.106)

In the limit of large distance L between S electrodes, L >> 1=q; 1=q1 the main
contribution to the sums in (7.96), (7.97), and (7.98) comes from the first item and
for the critical current of SNF-NF-FNS, SN-NF-NS, and SNF-N-NFS one can get,
respectively:

I
SNF�NF�FNS

C D 2K

�NdN
Re

1X

nD0

� Uq1 exp.�q1L/
.1C coth.qd//2

(7.107)

I
SN�NF�NS

C D 2K

�NdN
Re

1X

nD0

� q1 exp.�q1L/
q2 .q C q1 coth.qd//2

; (7.108)

I
SNF�N�FNS

C D 2K

�NdN
Re

1X

nD0

� Uqq21 exp .�qL/
.q1 C q coth .q1d//

2
: (7.109)

Below the obtained results (7.96), (7.97), and (7.98) will be compared with the
value of the critical current calculated in [48] for ramp-type SFNS junction

I
SFNS

C D K
dN

�N
Re

1X

nD0
�

�
1 � 1

q21�v2
�BN
�BF

�N

�F �
2
N

�2

q1 sinh.q1L/
: (7.110)

It is necessary to mention that in the limit of decoupled F and N films (�B !
1) expressions for the critical currents (7.96)–(7.98) reduce to the formula for
SN-N-NS devices (7.91), while the critical current of SFNS ramp-type structure
(7.110) transforms to that (7.90) valid for SNS junctions.

Figures 7.21–7.26 show the phase diagrams for critical current, which in
(L=�N ,d=�N ) plane gives the information about the sign of Ic . In the areas marked
in Figs. 7.21–7.26 by 0 and � , the critical current is positive (0-state) and negative
(�-state), correspondingly, while the lines give the point curves at which Ic D
0: The position of these curves in (L=�N ,d=�N ) plane also depends on relative
thickness (dF =�F and dN=�N ) of both F and N films.

The phase diagrams for SNF-N-FNS structures are given in Figs. 7.21 and 7.22.
In this geometry, there is the only N film in the region between SNF multilayers.
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Fig. 7.21 .L=�N ,d=�N )
phase diagram for
SNF-N-FNS structure for
dF =�F D 0:04; 0:1; 0:2

(solid, dashed, dotted lines) at
� D 0:1, �B D 0:1,
dN =�N D 0:1, �N =�F D 10,
T=TC D 0:5, H=�TC D 30
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Fig. 7.22 .L=�N ,d=�N )
phase diagram for
SNF-N-FNS structure for
dN =�N D 0:05; 0:1; 0:2

(solid, dashed, dotted lines) at
� D 0:1, �B D 0:1,
dF =�F D 0:1, �N =�F D 10,
T=TC D 0:5, H=�TC D 30
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Fig. 7.23 .L=�N ,d=�N )
phase diagram for SN-FN-NS
structure for
dF =�F D 0:08; 0:1; 0:2

(solid, dashed, dotted lines) at
� D 0:1, �B D 0:1,
dN =�N D 0:1, �N =�F D 10,
T=TC D 0:5, H=�TC D 30

0 2 4 6 8
0.0

0.5

1.0

0 0
1.5

2.0

2.5

3.0

d
/ξ

N

L /ξN

dF/xF 
= 0.2

dF/xF 
= 0.1

dF/xF 
= 0.08

π



206 T.Yu. Karminskaya et al.

Fig. 7.24 .L=�N ,d=�N )
phase diagram for SN-FN-NS
structure for
dN =�N D 0:08; 0:1; 0:15

(solid, dashed, dotted lines) at
� D 0:1, �B D 0:1,
dF =�F D 0:1, �N =�F D 10,
T=TC D 0:5, H=�TC D 30
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Fig. 7.25 .L=�N ,d=�N )
phase diagram for
SNF-FN-FNS structure for
dF =�F D 0:07; 0:08; 0:1

(solid, dashed, and dotted
lines) at � D 0:1, �B D 0:1,
dN =�N D 0:1, �N =�F D 10,
T=TC D 0:5, H=�TC D 30
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The inverse coherence length q D ��1
N

p
˝ in N film is real; therefore, there are no

oscillations of critical current in the structure.
The calculations show that in this case there can be only one curve on the (L=�N ,

d=�N ) plane, at which Ic D 0 for fixed other parameters. The existence of only
one point curve for SNF-N-FNS structure can be understood from the following
argumentations. Contrary to well-studied SFS junctions, the coherence length in the
part of weak link region of SNF-N-FNS devices located between SNF electrodes is
real, thus preventing the oscillations of function˚N in that region of the N film. The
oscillations of condensate function exist only in the NF part of weak link located
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Fig. 7.26 .L=�N ,d=�N )
phase diagram for
SNF-FN-FNS structure for
dN =�N D 0:04; 0:05; 0:07

(solid, dashed, and dotted
lines) at � D 0:1, �B D 0:1,
dF =�F D 0:1, �N =�F D 10,
T=TC D 0:5, H=�TC D 30
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under the S electrodes. Obviously, under these circumstances the sign of Ic must
be only controlled by value of condensate function at the boundary between the
SNF electrodes and the N film connecting them. This value of condensate function
determines two complex coefficients, A1; and, A2; (see (7.137) and (7.138)). In
combination with nonoscillatory decay of ˚N function into the N film from the
SNF electrodes, these coefficients provide only two choices for the sign of Ic and
only one curve at which Ic D 0: This is in contrast to SFS devices with F film in
between of S-electrodes. In the latter case, the sign of Ic depends also on relation
between the geometrical size of a junction and the imaginary part of the coherence
length (the period of oscillations of the order parameter). It is combination of these
two factors that provides the opportunity to have multiple changes of Ic sign and
infinite number of curves at (L=�N ,d=�N ) plane at which Ic D 0:

Therefore in the considered SNF-N-FNS structures there is only one of these two
factors and only one opportunity for Ic to change its sign, which can be realized or
not depending on the parameters of the structure.

The position of the transition curve calculated for fixed ratio dN=�N D 0:1 and
several values of dF =�F D 0:04; 0:1; 0:2 is shown in Fig. 7.21. The location of the
curve depends on dF by nonmonotonic way. At dF D 0, there is only 0-state in the
structure. With the increase of dF , the curve first shifts to the left bottom corner of
the phase diagram, then it turns back and at some critical value of dF it tends to
infinity, thus providing only 0-state in the structure with further dF increase. Such
nonmonotonic behavior is due to nonmonotonic behavior of q1 from (7.46).

Figure 7.22 shows (L=�N ,d=�N ) phase diagram calculated for fixed ratio
dF =�F D 0:1 and several values of dN=�N D 0:05; 0:1; 0:2: It is seen that with dN
increase the point curves at which Ic D 0 shifts in the direction to the right corner
of diagram providing the increase of area for 0 state. This fact can be understood
if one takes into account that under fixed dF the larger is N layer thickness the
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smaller is the influence of the F layer on the junction properties. It is obvious that at
dN & �N the critical current of SNF-N-FNS junction will tend to that of SN-N-NS
since the current will flow in the areas located closer to S electrodes thus decreasing
the probability to have SNF-N-FNS structure in the �-state. Also, it is important
to mention that at some fixed parameters only 0-state or �-state can be realized for
any L, and at some fixed parameters only 0-state can be realized for any d .

The phase diagrams for SN-FN-NS structures are given in Figs. 7.23 and 7.24.
Figure 7.23 presents the data calculated under fixed value of dN=�N D 0:1 for a
set of ratio dF =�F D 0:08; 0:1; 0:2; while Fig. 7.24 gives diagram obtained under
fixed value of dF =�F D 0:1 for a set of parameters dN=�N D 0:08; 0:1; 0:15: In
this geometry, there is the only N film in the complex SN electrodes. The inverse
coherence length q in N film is real value. Consequently, both 0 and �-states in
SN-FN-NS junctions can be realized due to oscillatory behavior of superconducting
correlations in NF region inside the weak link area, which connects SN electrodes.
So there are infinite number of point curves. The point curves at which Ic D 0 looks
like practically vertical lines, thus demonstrating weak influence of overlap distance
d on alternation of 0 and � states in the junction.

Finally, Figs. 7.25, 7.26 give (L=�N ,d=�N ) phase diagrams for SNF-FN-FNS
junctions. In these structures, coherence lengths are complex both under super-
conductor in complex SNF electrodes and in NF part of weak link region. The
appearance of 0 or � state in this case depends also on matching these oscillations at
SNF/NF boundary. As a result, the point curves at which Ic D 0 are not as vertical
as them one can see in Figs. 7.23, 7.24, thus demonstrating their strong dependence
on both lengths L=�N and d , and the 0 � � transition with d increase is not so
sensitive to L variations as for SN-FN-NS structure.

Figure 7.27 shows dependence of absolute value of normalized critical currents
of SNF-NF-FNS, SNF-N-FNS, SN-NF-NS, and SFNS junctions as a function of
L=�N for infinite length of SN interface d . It is seen that at given magnitude ofL=�N
critical current of SN-N-NS junction, I

SN�N�NS

C ; has the maximum value among all
others. This fact is obvious since in this structure there is no additional suppression
of superconductivity provided by the F film. If we compare the value of IC far from
the 0 - � transition points for all other considered structures, then we may have
I

SN�FN�NS

C > I
SNF�N�FNS

C > I
SNF�FN�FNS

C > I
S�FN�S

C : This sequence of values are due
to consecutive increase of suppression of superconductivity provided by F film.

In SN-FN-NS junctions in the considered region of parameters, the super-
conducting correlations are suppressed by F film only in weak link region, thus
providing the large value of IC . In SNF-N-FNS junctions, the critical current is
smaller than in SN-FN-NS devices due to suppression of superconductivity in SNF
part of the structure. Due to it, the decay of superconducting correlations into N part
of weak link starts from the values, which are smaller than in SN-FN-NS devices.
In SNF-FN-FNS devices, there is suppression of superconductivity in all parts of
structure by F film. Finally in SNFS ramp-type structures, the critical current has the
smallest value. In SN-N-NS and SNF-N-FNS junctions, IC decays with L without
oscillations. However as it follows from the phase diagram presented in Fig. 7.21,
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Fig. 7.27 IC for SN-N-NS, SFNS, SNF-N-FNS, SN-FN-NS, SNF-FN-FNS structures versus
L=�N calculated for �N =�F D 10, T=TC D 0:5, H=�TC D 30, dN =�N D 0:1, dF =�F D 0:1

under the chosen set of parameters the SNF-N-FNS structure is the � state, so that
its critical current is negative, while SN-N-NS is always in 0-state.

The decay length in NF part of SN-FN-NS, SNF-FN-FNS, and SNFS devices
is complex providing damping oscillations of IC as a function of L: The period
of these oscillations and their decay length are the same for all the junctions and
controlled by bulk properties of NF part of weak link. The initial conditions for
these oscillations at SN/NF, SNF/FN, and S/NF interfaces are different resulting in
shift of the oscillations along L axis.

Figure 7.28 shows the amplitude of critical current of SNF-FN-FNS, SN-FN-NS,
SNF-N-FNS structures versus the length of SN interface in complex electrodes
calculated under fixed ratio of L=�N D 2:

From the presented curves, it follows that critical currents have a tendency to
increase with d as tanh2.d=�N /; while at large d they arrive at independent on d
values.

The continuous support of superconductivity from the S electrodes along all
the SN interfaces results in considerable difference between IC .L/ and IC .d/

dependencies. The last may have only one change sign of IC as a function of d:
It is also necessary to note that maximum of IC in IC .d/ dependence maybe not

necessarily achieved in the limit of d ! 1: For instance, at dN=�N D 0:2 and
d=�N D 0:5 (see Fig. 7.28c) the magnitude of IC fifty times larger compare to the
value, which is reached at d ! 1: This strong enhancement may be important for
some practical applications of these structures.
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a

b

c

Fig. 7.28 IC for (a) SNF-FN-FNS, (b) SN-FN-NS, (c) SNF-N-FNS structures versus d=�N
calculated at �N =�F D 10, T=TC D 0:5, H=�TC D 30, dF =�F D 0:1, L=�N D 2
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7.4.3 Calculation of Supercurrent for SNF-NF-FNS Junction

To calculate critical current of SNF-NF-FNS Josephson junction it is enough to
solve linearized Usedel equations for condensate functions of normal (˚N ) and
ferromagnetic (˚F ) films in weak link region, as well as for condensate functions
in N films under left (˚N1) and right (˚N2) superconducting electrodes. These
equations have the form

�2N

�
@2

@x2
C @2

@y2

	
˚N;N1;N2 �˝˚N;N1;N2 D 0;

�2F

�
@2

@x2
C @2

@y2

	
˚F;F1;F 2 � Q̋˚F;F1;F 2 D 0: (7.111)

They should be supplemented by the boundary conditions on SN interfaces at
xDdN

�BN�N
@

@x
˚N1;N2 D GS� exp�i'=2; (7.112)

where sign minus (plus) should be chosen for left (right) S electrode. At FN interface
located at x D 0 the boundary conditions have the form:

�N

˝

@

@x
˚N;N1;N2 D �

�F
e̋

@

@x
˚F;F1;F 2; (7.113)

�B�F
@

@x
˚F;F1;F 2 C ˚F1 D

e̋

˝
˚N;N1;N2; (7.114)

while at free interfaces

@

@y
˚N1;N2 D 0; y D �.L=2C d/ (7.115)

@

@y
˚F1;F 2 D 0; y D �.L=2C d/

@

@x
˚F;F1;F 2 D 0; x D �dF (7.116)

@

@x
˚N D 0; x D dN (7.117)

they are followed from the demand of preventing a current flow across them.
Finally at the interfaces between complex electrodes and weak link region (at y D
�L=2) all the functions and their first derivatives should be uninterrupted:

@

@y
˚N1;N2 D @

@y
˚N ; (7.118)

˚N1;N2 D ˚N ; (7.119)
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@

@y
˚F1;F 2 D @

@y
˚F ; (7.120)

˚F1;F 2 D ˚F : (7.121)

In the considered limit of thin F and N films

dN � �N ; dF � �F ;

the two-dimensional boundary problem (7.111)–(7.121) can be reduced to a one-
dimensional. To do this we can suppose that in the main approximation condensate
functions do not depend on coordinate x,

˚N;N1;N2 D AN;N1;N2.y/; ˚F;F1;F 2 D BF;F1;F 2.y/; (7.122)

and that their derivatives with respect to x can be expressed as follows:

@˚N;N1;N2

@x
D
�
˝

�2N
AN;N1;N2 � @2AN;N1;N2

@y2

	
.x � dN /;

@˚F;F1;F 2

@x
D
(
e̋

�2F
BF;F1;F 2 � @2BF;F1;F 2

@y2

)

.x C dF /: (7.123)

After substitution of (7.122) and (7.123) into the boundary conditions (7.113),
(7.114) we arrive at one-dimensional differential equations in respect to functions
AN;N1;N2.y/ and BF;F1;F 2.y/: Solution of thus obtained one-dimensional boundary
problem for the weak link region can be expressed in the form:

AN D A1 cosh .q1y/CA2 sinh .q1y/

C ˇ

�2N

˝

e̋ .B1 cosh .q2y/C B2 sinh .q2y// (7.124)

F D B1 cosh .q2y/C B2 sinh .q2y/

� ˇ

�2F

e̋

˝
.A1 cosh .q1y/C A2 sinh .q1y// (7.125)

where inverse coherence lengths of the problem:

q21;2 D 1

2



u2 C v2 �

q
.u2 � v2/2 C 4��2

F ��2
N

�
; (7.126)

u2 D
�
1

�2N
C ˝

�2N

�
; v2 D

 
1

�2F
C
e̋

�2F

!

; (7.127)

and �2F D �BdF �F ; �2N D �BdN �N =� , ˇ D .q21 � v2/�1.
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The appropriate solutions for F and N films located under S electrodes are

AN1;N2 D A11;12 cosh.q1y/C A12;22 sinh.q1y/

C ˇ

�2N

˝

e̋ .B11;12 cosh.q2y/C B12;22 sinh.q2y// �N e�i'=2 (7.128)

BF1;F 2 D B11;12 cosh.q2y/C B12;22 sinh.q2y/

� ˇ

�2F

e̋

˝
.A11;12 cosh.q1y/CA12;22 sinh.q1y// � F e�i'=2 (7.129)

The integration coefficients in (7.124), (7.125), (7.128), and (7.129) can be found
by substituting these expressions into the boundary conditions. This procedure
leads to

A1 D cos.'=2/ sinh.q1d/

sinh.q1.L=2C d//

Fˇ��2
N �N

� C 1
; (7.130)

A2 D i sin.'=2/ sinh.q1d/

cosh.q1.L=2C d//

Fˇ��2
N �N

� C 1
;

B1 D �cos.'=2/ sinh.q2d/

sinh.q2.L=2C d//

Nˇ��2
F C F

� C 1
;

B2 D � i sin.'=2/ sinh.q2d/

cosh.q2.L=2C d//

Nˇ��2
F C F

� C 1
;

where

N D 1

�N dN

2v2�2N �
2
F

1 � 4v2u2�2N �
2
F

GS�

�BN
;

F D
e̋

˝

1

�NdN

�2N
1 � 4v2u2�2N �

2
F

GS�;

�BN
;

and � D ˇ2��2
N ��2

F :

By substituting of the solution (7.124), (7.125), (7.130) into general formula for
supercurrent (7.94) we obtain the expression for supercurrent in the SNF-NF-FNS
structure:

IS D .IC1 C IC2/ sin.'/; (7.131)

where

IC2 D K�2F �
2
N

�N dN
Re

1X

!D0

q2�
�
1C v2ˇ

2
.� C 1/�1 sinh.q2d/2

.1� v2u2�2F �
2
N /

2 sinh.q2.LC 2d//
;

IC1 D K

�NdN
Re

1X

!D0

q1�
�
v2�2F �

2
N � ˇ

2
.� C 1/�1 sinh.q1d/2

.1 � v2u2�2F �
2
N /

2 sinh.q1.LC 2d//
;

and � D �2=.˝2 C�2/:
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In the limit �N >>�F ; �N >>�F ; the part of the full critical current,IC2; is small,
so that the magnetidute of IC of SNF-NF-FNS structure is reduced to

I
SNF�NF�FNS

C D K

�NdN

1X

!D0
Re

� Uq1 sinh.q1d/2

sinh.q1.LC 2d//
:

7.4.4 Calculation of Supercurrent for SNF-N-FNS Junction

To calculate supercurrent across SNF-N-FNS junction we should slightly change the
procedure described in Appedix A taking into account the appearance of additional
three interfaces in the structure. Since the current can not flow across them instead
of (7.121) we should use

@

@y
˚F1;F 2 D 0; y D �L=2; �dF � z � 0; (7.132)

@

@x
˚N D 0; x D 0; �L

2
� y � L

2
: (7.133)

In the limit of thin F and N films dN � �N ; dF � �F ; the of solution of Usadel
equations in the N film of weak link has more simple form compare to (7.124):

AN D A1 cosh .qy/C A2 sinh .qy/ ; (7.134)

while in FN bilayer under S electrodes it closes to that of (7.128), and (7.129)

AN1;N2 D A11;12 cosh.q1y/C A12;22 sinh.q1y/

C ˇ

�2N

˝

e̋ .B11;12 cosh.q2y/CB12;22 sinh.q2y// �N e�i'=2; (7.135)

BF1;F 2 D B11;12 cosh.q2y/C B12;22 sinh.q2y/

� ˇ

�2F

e̋

˝
.A11;12 cosh.q1y/CA12;22 sinh.q1y// � F e�i'=2: (7.136)

The integration constants in (7.134), (7.135), (7.136) can be found from the
boundary conditions. In particular for A1 and A2 one can get

A1 D �N cos f'=2g
�
Qq1;

q
2

C �Qq2;
q
2

�
= .� C 1/ tanh qL

2
C cosh qL

2

; (7.137)

A2 D �iN sin f'=2g
�
Qq1;

q
2

C �Qq2;
q
2

�
= .� C 1/C sinh qL

2

: (7.138)
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Substitution of (7.134), (7.137), (7.138) into general formula for supercurrent:

IS D � i�T W

e�N

1X

nD�1

1

!2

Z dN

0



˚��!;N

@

@y
˚!;N

�

in the limit �N >> �F ; �N >> �F leads to

I
SNF�N�FNS

C D K

�NdN
Re

1X

nD0

� Uq

Qq1;q C Pq1;q
; (7.139)

where functionsQq1;q and Pq1;q are determined by (7.99) and (7.100), respectively.

7.4.5 Calculation of Supercurrent for SN-NF-NS Junction

To calculate of supercurrent across SN-FN-NS junction we should change the
procedure described in Appedix A by taking into account the absence of F film
in complex SN electrode. To do this the boundary conditions (7.121) in appropriate
regions should be replaced by

@

@y
˚F D 0; y D �L=2; :� dF � x � 0; (7.140)

@

@x
˚N1;N2 D 0; x D 0; :

L

2
� jyj � L

2
C d (7.141)

In the limit of thin F and N films dN � �N ; dF � �F ; solution of the boundary
problem in the weal link can be found in the form

AN D A1 cosh .q1y/C A2 sinh .q1y/

C ˇ

�2N

˝

e̋ .B1 cosh .q2y/C B2 sinh .q2y// ; (7.142)

BF D B1 cosh .q2y/C B2 sinh .q2y/

� ˇ

�2F

e̋

˝
.A1 cosh .q1y/C A2 sinh .q1y// ; (7.143)

while for it in the N films located under S electrodes they are

AN1;N2 D A11;12 cosh.q1y/C A12;22 sinh.q1y/ �N e�i'=2: (7.144)

Integration constants A1;A2; B1; B2 in (7.142)–(7.144) can be found from the
boundary conditions resulting in
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A1 D cos f'=2gq�2GS�=.�NdN�BN/

cosh q1L

2
C
�
�Qq2

2 ;
q1
2
=2CQq;

q1
2
.� C 1/

�
tanh q1L

2

;

A2 D i sin f'=2gq�2GS�=.�NdN�BN/

sinh q1L

2
C � tanh2

�
q2L

2

�
Qq2

2 ;
q1
2
=2CQq;

q1
2
.� C 1/

; (7.145)

B1 D A1
1

�2F
ˇ
e!
j!j

q1 sinh .q1L=2/

q2 sinh .q2L=2/
; (7.146)

B2 D A2
1

�2F
ˇ
e!
j!j

q1 cosh .q1L=2/

q2 cosh .q2L=2/
: (7.147)

Substituting this result into general formula for supercurrent (7.94) in the limit
�N >> �F ; �N >> �F we arrived at the following formula for critical current of the
SN-FN-NS junction

I
SN�NF�NS

C D K

�NdN
Re

1X

nD0

� q1

q4.Qq;q1 C Pq;q1 /
:

7.5 Conclusion

In this chapter, Josephson effect in S-FN-S structures under condition of relatively
large suppression parameters �BN and �BF at SN and SF interfaces was discussed.
Thus, it has been shown that the use of a bilayer thin-film FN structure as a weak-
link material can lead to the effective decrease in H and to a significant increase
in both the damping length and oscillation period of the dependence IC .L/ of
the S-(FN)-S junctions as compared to the respective values for similar structures
containing only the ferromagnetic film.

Also the effect of finite thickness of the ferromagnetic films and normal S-FN-S
transition in the critical current was analyzed. It was shown that for arbitrary film
thickness qualitatively preserved oscillatory behavior of the critical current with
changing the distance between superconducting electrodes, but the characteristic
scale of the damping and period of oscillations depend strongly on the thickness of
the films. Thus, for arbitrary thickness of the films all the earlier results for the limit
of thin films are qualitatively correct. At the thickness of the ferromagnet, which
is comparable with the coherence length, the characteristic scale of the damping
and period of oscillations cease to depend on the thickness of the F film. Also
very important is the fact that near the critical distance between superconducting
electrodes, that is those in which the critical current is zero for an infinitely thick
ferromagnetic film, there is rapid change as a sign, and value of the critical current
with small changes in distance between the superconducting electrodes. Off from
such narrow critical areas as a sign, and the value of critical current do not depend
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on the thickness of the F film. These results are very important from a practical
point of view, because one can create junctions with parameters that do not depend
on the spread of both geometric and transport parameters of material structures that
are inherent in any technological process.

A second major technological constraints on the practical production of proposed
S-FN-S and S-FNF-S structures was that they are ramp-type junctions. From a
technological point of view, it is much more convenient to work with structures that
have only parallel boundaries between layers. Therefore the geometry in which the
S electrodes are placed on top FN structure was studied. Three different geometries
were considered. The advantages given by for the practical realization of the
geometry, in which the S electrodes are located on the FN structure, to the geometry
of the ramp-type SFNS junctions were analyzed. It was proved that amplitude
of the critical current for SN-FN-NS-type structure reaches the highest values
compared with other geometries because of the absence of additional suppression
of superconductivity under electrodes from ferromagnetic film. The effect of finite
area of SN interface of SFNS junctions in which the electrodes are located on the
top of FN structure on realization of states with negative and positive sign of the
critical current was studied. It was proved that besides multiple 0 � � transition
for ramp-type structures with increase of distance between the electrodes in the
structures with the new geometry a single 0�� transition with increase of length of
the SN boundary is realized. This 0�� transition can exist even in the SFN-N-FNS
structures with nonferromagnetic region of weak link.
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Chapter 8
Physics and Applications of Superconducting
Phase Inverters Based on Superconductor–
Ferromagnet–Superconductor Josephson
Junctions

V.V. Ryazanov

Abstract Coexistence of superconductivity and magnetism is one of the most
actively progressing fields in the condensed matter physics. Undoubtedly the most
impressive phenomena observed in this field recently are related to spatial nonuni-
form superconductivity in a ferromagnet close to superconductor/ferromagnet
interface. One of them is phase difference inversion in Josephson junctions with
ferromagnetic weak links, SFS �-junctions. This review is devoted to physics and
applications of these novel Josephson structures.

8.1 Introduction

Josephson “�-junctions” [1] are weakly coupled superconducting structures with
the ground state phase difference of the macroscopic superconducting wave function
' D � . They are characterized by the inverted Josephson current-phase relation
(CPR): Is D Ic sin.'C�/ D �Ic sin ', negative critical current �Ic, and negative
Josephson coupling energy E� D �EJ cos', where EJ D Ic˚0=.2�/; ˚0 D h=2e
is the quantum of magnetic flux. The inverse CPR and a total �-junction coupling
energyE D EJ.1C cos'/ are shown on the right side in Fig. 8.1.

The origin of the �-state in a superconductor/ferromagnet/superconductor (SFS)
junction is an oscillating and sign-reversing superconducting order parameter in
the ferromagnet close to a superconductor/ferromagnet interface [2, 3] (see [4] as
a review). Owing to these oscillations, different signs of the order parameter can
occur at the two banks of the SFS sandwich when the ferromagnetic layer thickness
is of the order of half an oscillation period (see Fig. 8.2), which corresponds to a
sign change of the supercurrent and a negative Josephson coupling energy. Spatial
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Fig. 8.1 The supercurrent and the coupling energy vs. junction phase difference for Josephson
junctions in conventional (0-) and �-states

Fig. 8.2 Sign-reversing superconducting wave function � (superconducting order parameter) in a
SF-bilayer close to SF-interface (left panel) and in SFS �-junction (right panel)

oscillations of the superconducting order parameter in a ferromagnet close to an
SF interface were predicted in [2, 3]. The physical origin of the oscillations is the
exchange splitting of spin-up and spin-down electron subbands in ferromagnets [5].
Conventional superconductors used in the SFS �-junctions contain Cooper pairs,
two electrons with opposite spin and momentum .Ck "; �k #/. Such a system is
described by an isotropic excitation gap or a superconducting order parameter. It was
predicted long ago by Larkin and Ovchinnikov [6] and by Fulde and Ferrel [7] that
pairing still can occur when the electron energies and momenta at the Fermi energy
are different for the two spin directions, for instance as the result of an exchange
field in magnetic superconductors. The “LOFF” state is qualitatively different from
the zero-momentum state: it is spatially inhomogeneous and the order parameter
contains nodes, where the phase changes by � . It was not observed reliably in bulk
materials still, but it can be induced in a weak ferromagnet sandwiched between
two superconductors. The spatial variation of the superconducting order parameter
in the ferromagnet arises as a response of the Cooper pair to the energy difference
between the two spin directions [8]. The electron with the energetically favorable
spin increases its momentum byQ � Eex=vF, whereEex is the exchange energy and
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vF is the Fermi velocity, while the other electron decreases its momentum by Q.
Since the original momentum of each electron can be positive or negative, the total
pair momentum inside the ferromagnet is 2Q or �2Q. Combination of the two
possibilities leads to the oscillating order parameter �.x/ in the junction along the
direction normal to the SF interfaces: �.x/ � cos.2Qx) [8, 9]. The same picture
applies in the diffusive limit [3]. Now, the oscillations are superimposed on the
decay of the order parameter due to pair breaking by impurities in the presence
of the exchange field. In [2, 3], it was predicted that an SFS junction can yield a
phase shift of � between the superconducting banks. The �-state offers new ways
for studying the coexistence of superconductivity and magnetism and may also be
important for superconducting electronics.

A review of experimental works concerned with investigations of Josephson
structures and carried out with the author participation is presented below.

8.2 SFS Junctions: Thickness and Temperature Dependences
of Josephson Ground States

To observe the manifestations of the transition into the �-state, one should fabricate
SFS sandwiches with the F -layer thicknesses dF close to integer numbers of half
periods of the order parameter spatial oscillations ex=2. The period is ex D 2��F2,
where the oscillation (or “imaginary”) length �F2 can be extracted from the complex
coherence length �F in a ferromagnet: 1=�F D 1=�F1 C i=�F2. In the case of
large exchange energy and negligible magnetic scattering in a diffusive F -layer,
the imaginary length �F2 and the order parameter decay length �F1 are equal [3]:
�F1 D �F2 D .„D=Eex/

1=2, where D is the diffusion coefficient for electrons
in a ferromagnet and Eex is the exchange energy responsible for sign-reversal
superconductivity in a ferromagnet. However, antagonism of superconductivity and
ferromagnetism differing in spin ordering is a cause of the strong suppression of
superconductivity in the contact area of the S - andF -materials. The order parameter
decay length �F1 is as small as 1 nm if typical strong ferromagnets such as Fe, Co,
and Ni are used like F -interlayers in SFS junctions. Our approach is to fabricate
Josephson SFS junctions with weak ferromagnets. The experimental studies of the
�-state were carried out by us on thin-film sandwiches Nb-Cu1�xNix-Nb, with x in
the range 0.52–0.57 and the Curie temperature, TCurie, of the copper-nickel layers
in the range 30–150 K. The onset of ferromagnetism is around x D 0:44; above
this concentration, the Ni magnetic moment increases with about 0:01 �B/at%Ni
[10], which allows precise tuning of the magnetism. The weak ferromagnetism of
the CuNi-alloy made possible flowing of supercurrents through the F -layers up to
30 nm in thickness, prepared with the roughness of 1–2 nm. The first observation
of the supercurrent through a ferromagnet was carried out in [11] and the first
experimental evidence for the �-state in the SFS junction was obtained in [12, 13].
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Fig. 8.3 The F -layer
thickness dependence of the
critical current density for
Nb–Cu0:47Ni0:53–Nb
junctions at temperature 4.2 K
[14]. Open circles represent
experimental results; solid
and dashed lines show model
calculations. The inset shows
a schematic cross-section of
our SFS junctions

An insulating SiO layer is used between the top S-electrode of SFS junction
and the bottom SF sandwich. The window in this layer determines the junction
area (of 10 � 10�m2, typically). A schematic sandwich cross section is given in
Fig. 8.3 (inset). First, the bottom Nb electrode (110 nm) of the SFS junction is
sputtered by dc-magnetron and structured by lift-off process. Then Cu1�xNix=Cu
bilayer with 50 nm Cu is sputtered on top of the Nb electrode by RF-diode sputtering
system. Topology of the ferromagnet bilayer is formed by physical argon plasma
etching process. The next technological step is a thermal evaporation of isolating
SiO (150 nm) film followed by lift-off process. Final technological step consists of
two in-situ operations: the physical argon plasma etching process helping to clean
the ferromagnet bilayer surface (30 nm of Cu film is removed) and the dc-magnetron
sputtering of the Nb (240 nm) film. Pattering of the Nb film is done by lift-off
process. The junction normal resistanceR did not exceed 5�10�4 	, so the transport
characteristics of the junctions were measured by the picovoltmeter based on
SQUID with sensitivity better than 10�11 V . I–V and Ic.H/ characteristics for Nb-
Cu0:47Ni0:53-Nb junctions have shown in Fig. 8.4 (insets). The I–V characteristics

are well described by the expression V D R
�
I 2–I 2c

1=2
, with R values presented in

the main panel in Fig. 8.4. The linear approximation of theR.dF/ dependence yields
the interface resistance rB D 30�	 for junctions with the area of 10 � 10�m2

and F -layer resistivity �F D 62�	 cm. It allows us to estimate the following
parameters in our ferromagnet: the electron elastic mean free path l D 1 nm, the
diffusion coefficientD D 5 cm2=s.

Figure 8.4 (lower inset) shows that the magnetic field dependence Ic.H/ for
SFS junctions yields the classical “Fraunhofer” pattern. The oscillation period is in
reasonable agreement with the cross-section of the junction. Note that the central
peak is at zero field, even though the alloy is ferromagnetic. This signifies that
on average there is no change in the phase difference over the junction along the
different directions in the plane of the junction, presumably due to a small-scale
magnetic domain structure of the magnetic layer with zero net magnetization. The
central peaks were found shifted when SFS junctions were heated above Tc (but
below the ferromagnetic transition temperature, TCurie) and a small field briefly
applied, leading to a finite magnetization [11]. Sometimes the peak was found
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Fig. 8.4 Resistance of Nb–Cu0:47Ni0:53–Nb sandwiches normalized to the junction area of
10 � 10 �m2 vs. the F -layer thickness [14]. Insets show typical I–V and Fraunhofer .Ic.H//

dependences of SFS junctions fitted to the conventional Josephson expressions

shifted in zero applied field, probably due to flux trapping in the superconducting
banks during cooling down. This could be remedied by reheating and recooling.
The starting point for all experiments was a central peak at zero field. The
small-scale magnetic domain structure of thin (20 nm) magnetic Cu0:47Ni0:53-layer
was visualized by means of a decoration technique in Ref. [15] at temperature close
to 6 K. The results of the work show that the magnetic domains have perpendicular
magnetic anisotropy and the domain structure period is about 0:1 �m (see Fig. 8.5).

In [14], we have investigated the thickness dependence of the SFS junction
critical current density in a wide F -layer thickness range for more than twenty sand-
wiches. All junctions were prepared with lateral sizes smaller than the Josephson
penetration depth to ensure uniform supercurrent distribution. Weakly ferromag-
netic Cu0:47Ni0:53 interlayers had the Curie temperature of about 60 K. In the barrier
thickness interval of 8–28 nm, the critical current density varied by 6 orders of
magnitude and had nodes at two dF values as presented in Fig. 8.3.

One can see that the curve in Fig. 8.3 demonstrates both direct 0 � � transition
and reverse transition from �- to conventional (0-) state. At transition points, dc1;c2,
the critical current is equal to zero and then should formally change its sign. Since
in our transport experiments, we could measure only the magnitude of the critical
current, the negative region of Ic.dF/ between the two sharp cusps (that corresponds
to the �-state) is reflected into the positive region.
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Fig. 8.5 Small-scale magnetic domain structure of thin (20 nm) Cu0:47Ni0:53-layer visualized by
means of a decoration technique in [15] at temperature close to 6 K

Fig. 8.6 Temperature dependences of the SFS junction critical current density at several F -layer
thicknesses close to the critical ones [14]. The dashed lines show calculation results

Because of a slight temperature dependence of the order parameter oscillation
period and other temperature dependent processes discussed below, we could pass
through the transition points using samples with critical F -layer thicknesses dc1 D
11 nm and dc2 D 22 nm by changing temperature. Temperature-driven 0 � � and
� � 0 transitions are presented in the middle panels of Fig. 8.6. The upper and
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lower panels show the temperature dependences of the critical current for samples
with F -layer thicknesses around dc1;c2. For barrier thicknesses over 1–2 nm from
dc1;c2 0�� transitions are not observed in the experimental temperature range. This
implies that the temperature decrease from 9 K down to 1 K is accompanied by the
decrease of 1–2 nm in the spatial oscillation period and by the decrease of about
0.3 nm in the imaginary length. In this temperature range, the change of �F1 is about
0.2 nm as it has been estimated from Ic.dF/ curves at different temperatures. The
possibility of manipulating the coherence length by temperature was demonstrated
in [13], in which the temperature-driven 0 � � transition was observed for the first
time. We supposed that the condition for having the temperature as a parameter is
kBT � Eex in this first our work. The exchange field and the temperature then
are equally important, and the complex coherence length �F in a ferromagnet is
described by the following expression:

�F D
s

„D
2.�kBT C iEex/

; (8.1)

which yields for �F1 and �F2:

�F1;2 D
s „D
�
E2

ex C .�kBT /2
�1=2 ˙ �kBT

: (8.2)

However already for Cu0:47Ni0:53 exchange energy Eex=kBT estimated from data
presented in Fig. 8.3 is about 850 K. The lowest reentrant curve in Fig. 8.7
demonstrates temperature-driven��0 transition for even larger Ni content in CuNi-
alloy [16]. For the case Eex >> kBT , the expressions (8.2) for �F1.T / and �F2.T /

are given by:

�F1;2 D
s

„D
Eex

�
1� �kBT

2Eex

�
: (8.3)

A correction kBT=.2Eex/ in (8.3) is smaller than 10�2 for Eex=kBT D 850K.
However, values of �F1 D 1:3 nm and �F2 D 3:5 nm obtained from the slope of
the Ic.dF/ data (Fig. 8.3) and from the interval between the two minima of Ic.dF/

correspondingly differ by almost a factor of 3, which cannot be explained simply by
thermal terms in (8.3).

We have described the data shown in Figs. 8.3 and 8.6 by A. Buzdin’s theoretical
model [4, 14] that includes additional depairing processes, which increase �F2 and
decrease �F1. Because our F layer is an alloy, the role of magnetic scattering in
the junction barrier is important [16]. Magnetic inhomogeneities due to Ni-rich
clusters [17,18] are known to exist in Cu1�xNix films for x close to 0.5. For such Ni
concentrations, the Curie temperature is small, and we may expect that the inverse
spin-flip scattering time „��1

s could be of the order of the average exchange field
Eex or even larger. Spin-flip scattering due to ferromagnetic domain walls may
contribute too [19]. This circumstance strongly modifies the proximity effect in
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Fig. 8.7 Anomalous temperature dependences of the SFS junction critical current density at
various Ni content (x D 0:52, 0.53 and 0.57) in Cu1�xNix-interlayers of Nb–Cu1�xNix–Nb
sandwiches with thickness dF close to value corresponding to the reverse transition from the �-
to 0-state. The inset in the upper panel shows a schematic picture of the cross-section of the SFS
junction. The inset in the middle panel is an example of Curie temperature detection by means of
the anomalous Hall effect measurements of saturation magnetization

SF systems. The role of spin-orbit scattering should be neglected for the Cu1�xNix
alloys since it is only substantial in ferromagnets with large atomic numbers Z. To
take into account the magnetic scattering in the framework of the Usadel equations,
it is necessary to add the term G„=�s together with temperature (the Matsubara
frequencies !) and exchange energy [20], where G is the normal Green’s function.
Then the Usadel equation for sufficiently high interface transparency is written as

�
! C iEex C „ cos�

�s

�
sin� � „D

2

@2�

@x2
D 0; (8.4)

where cos� and sin� appear due to usual parameterization of the Green’s
functions: G D cos�.x/ and F D sin�.x/. The normal Green’s function
is temperature dependent and so the spin-flip term G„=�s has also temperature
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dependence. An exact expression for the thickness and temperature dependence
of the critical current in SFS junctions can be found in [14]. Calculated curves
based on this exact expression shown by dashed lines in Fig. 8.6 and by solid line
in Fig. 8.3. The dashed line in Fig. 8.3 shows a fitting by the following simple
expression obtained from the linearized Usadel equation:

jc D exp

�
� dF

�F1

�

cos

�
dF

�F2

�
C
�
�F1

�F2

�
sin

�
dF

�F2

��
: (8.5)

One can see that (8.5) satisfactorily describes the thickness dependence of the
SFS junction critical current. However, it cannot describe significant temperature
dependence close to dc1;c2 and temperature-driven 0 � � transitions. Really,
expressions for coherence lengths obtained from the linearized Usadel equation have
not significant temperature dependence:

1

�F1;2
D
r
Eex

„D

vu
ut
s

1C
�
!

Eex
C „
Eex�s

�2
˙
�
!

Eex
C „
Eex�s

�
: (8.6)

For the case Eex >> kBT , the expressions (9.6) can be written as

1

�F1;2
D
r
Eex

„D

vu
ut
s

1C
� „
Eex�s

�2
˙ „
Eex�s

: (8.7)

The values of �F1 D 1:3 nm and �F2 D 3:5 nm estimated above can be obtained for
„=�s D 1:33Eex andEex=kB D 850K. These parameters also yield good agreement
in the case of fitting of the experimental data on base of the exact expression (shown
by dashed lines in Fig. 8.6 and by solid line in Fig. 8.3).

8.3 Phase-Sensitive Experiments: Phase Inversion
and Spontaneous Magnetic Flux

We have suggested and applied several experimental phase-sensitive methods for
direct observations of the transition to the �-state. The most direct and simple
way to detect the phase difference shift introduced by the SFS �-junctions is to
study the magnetic field dependences of �-junction interferometer characteristics.
Figure 8.8 shows real and schematic pictures of the network of SFS sandwiches
(Nb-Cu0:46Ni0:54-Nb) that was used in the first our phase-sensitive experiment [21].
We have proposed this multiply-connected structure consisting of five identical SFS
junctions arranged into two loops like a simplest symmetric intrinsically frustrated
interferometer. The total phase change along the each interferometer loop should be
a multiple of 2� .
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Fig. 8.8 Real (left panel) and schematic (right panel) pictures of the network of five SFS
sandwiches, which was used in the phase-sensitive experiment [21]

Therefore, additional (to an intrinsic 3�-shift provided by the �-junctions) phase
change should appear across the junctions, resulting in the circulating supercurrent
of two possible directions. The SFS junctions in the fabricated structure demonstrate
transition to the �-state at T� D 2:2K. Above this temperature (0-state), the
magnetic field dependence of the interferometer critical current, Im.H/, was
practically the same like one for dc-SQUID (see Fig. 8.9a). Periodical maximal
peaks were observed at external fields corresponding to an integer number of the
magnetic flux quanta ˚0 per cell, i.e., integer frustration parameters f D ˚=˚0.
Also small peaks can be seen at half-integer values of the frustration parameter f .
These secondary peaks result from the phase interference over the outer loop of the
net structure, which is twice the unit cell [22, 23]. At temperatures below T� , i.e.
in the �-state, the Im.H/ pattern was found to be shifted by exactly half a period
(Fig. 8.9b).

A physical picture of the effect observed in the �-state is the following. At
f D 0 and other integer values of f , there is a circulating spontaneous current
close to the SFS junctions critical current, Ic, which flows in the outer double
loop of the interferometer. The current induces the extra phase shift 2 � �=2 in
each interferometer cell and compensates the odd number of �-shifts in them.
Because initially the interferometer is in the spontaneous fully frustrated state, the
maximal interferometer transport supercurrent, Im, is close to zero at H D 0.
The external magnetic flux equal to half-integer quanta ˚0 per cell produces the
necessary phase shift of � in each cell without any circulating currents in the
structure, so Im reaches maxima at half-integer frustration parameters. The Im.T /

dependence at H D 0, shown in Fig. 8.10a, mimics the Ic.T / dependence for
single junctions (see Fig. 8.6) and demonstrates a sharp cusp at the temperature T�
of the transition into the �-state. However, one should keep in mind that the left
and right branches of the Im.H D 0; T / dependence are intrinsically asymmetric:
while the high-temperature branch corresponds to the temperature dependence of
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Fig. 8.9 Magnetic field dependences of the critical transport current for the structure depicted in
Fig. 8.8 at temperature above (a) and below (b) T� [21]
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Fig. 8.10 (a) Temperature dependence of the interferometer critical transport current in the
absence of applied magnetic field; (b) temperature dependence and jump of the maximal peak
position on the Im.˚/-dependences [21]

the doubled junction critical current, the low-temperature branch corresponds to the
temperature dependence of the small peak amplitude only. Figure 8.10b shows the
maximal peaks positions before and after the 0 � � transition and demonstrates
the sharpness of this transition.

Structures including exclusively SFS-junctions hardly could find practical appli-
cations due to their low normal-state resistance. In [24], a Josephson junction
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inverter was suggested as a superconducting analog of the complementary metal-
oxide-semiconductor (CMOS) logic. It relies on using two-junction interferometers
(dc-SQUIDs) of conventional (0-junctions) and �-types and requires that 0- and
�-junctions have similar Ic and normal-state resistance. These technologically strin-
gent requirements can be softened by using an alternative “asymmetric” approach,
which employs �-junctions as passive phase shifters (phase inverters) in basic
cells of the modified single-flux-quantum (SFQ) logic [25]. Here, the �-junction
critical current Ic is chosen to be much larger than that of conventional tunnel 0-
junctions employed in the very same SFQ cell, so the phase difference across the
�-junction is always close to � even at zero magnetic field. As the total change of
the order parameter’s phase over the closed path must become a multiple of 2� , the
“missing” phase difference of � or �� is induced on the remaining part of the cell
by a spontaneously generated superconducting current. To verify the operation of
�-junction phase shifters in an analog regime [26], we fabricated two geometrically
identical superconducting loops (see schematic in Fig. 8.11a, b) on a single Si
substrate (see Fig. 8.11c). The circuit Fig. 8.11b is a two-junction interferometer
(dc-SQUID). The configuration of the circuit in Fig. 8.11a is nominally identical
to that in Fig. 8.11b, except that an SFS �-junction has been inserted in the left
branch of the loop, seen in the lower left corner of the circuit image in Fig. 8.11c.
The on-chip distance between the centers of the two loops is 140�m, so both
interferometers are exposed to the same magnetic field during the experiment.
The �-junction critical current is much larger than those of the tunnel junctions.
Therefore, during the dynamic switchings in the rest of the circuit, �-junctions do
not introduce any noticeable phase shifts deviating from � .

The dependencies of the critical currents Ic.H/ of the two devices shown in
Fig. 8.11a, b are presented in Fig. 8.11e. Whereas both curves have the same
shape, they are shifted by a half-period. A small offset of the symmetry axes for
both curves from the zero-field value is due to a residual magnetic field in the
cryostat. The minimum of the red Ic.H/ curve at zero field is due to inclusion
of the �-junction in the superconducting loop. In the conventional SQUID, the
same frustrated state exists at an external magnetic field corresponding to half-
integer numbers of magnetic flux quanta per cell. Thus, embedding an SFS �-phase
shifter into a superconducting loop indeed leads to self-biasing of the loop by a
spontaneously induced supercurrent.

The next phase-sensitive experiment was related to measurements of the current-
phase relation (CPR) of an SFS Josephson junction [27] that demonstrated directly
the sign change in the critical current when the junction undergoes a transition
into the �-state below a temperature T� at which the critical current vanishes. The
CPR was measured in the rf-SQUID configuration [28] shown in Fig. 8.12a. A dc-
SQUID galvanometer was used to measure the current IL that flows through the
superconducting loop as a function of the current I applied across the junction. The
CPR function IJ.'/ is related to I and IL by

I D IJ.'/C IL D IJ

�
2�˚

˚0

�
C ˚

L
; (8.8)
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Fig. 8.11 Complementary dc-SQUIDs. (a) Schematic of a complementary dc-SQUID employing
two conventional Josephson junctions (red crosses) and a �-junction (orange star). (b) Schematic
of a conventional dc-SQUID used as a reference device. (c) An SEM micrograph of the fabricated
dc-SQUIDs. The ferromagnetic layer is shown in orange. (d) Schematic cross-section through an
SFS �-junction. (e) Dependencies of the critical currents of the devices shown in (c) vs. the applied
magnetic flux. The red curve related to the �-SQUID is shifted by half a period. Modulation
amplitude is limited, as the factor 2LIc � 0:85 ˚0. [26]
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Fig. 8.12 (a) Circuit for
measuring the current-phase
relations of an SFS junction.
(b) Magnetic flux ˚ in the
rf-SQUID loop vs. applied
current I showing a transition
from hysteretic to
nonhysteretic curves as jIcj
drops. Curves offset for
clarity [27]

where ˚ , the total magnetic flux in the loop, is related to the junction phase ' D
2�˚=˚0 by the phase constraint around the rf-SQUID loop, and to IL D ˚=L

provided that there is no external flux linking the SQUID loop.
For this phase-sensitive measurement [27], the SFS �-junction was incorporated

into an rf-SQUID loop with inductance L � 1 nH. This loop was fabricated in the
shape of a planar washer, which was coupled to a commercial dc SQUID sensor.
As current I is applied across the SFS junction, the magnetic flux in the loop is
modulated due to the winding of the phase of the Josephson junction according
to (8.8). The curves are strongly hysteretic at T D 4:2K and at low temperatures
(Fig. 8.12b) were the junction critical current Ic is large and SQUID parameterˇL D
2�LIc=˚0 is larger than unity. They become nonhysteretic in the temperature range
from 3.7 to 3.5 K. Figure 8.13 shows in detail this temperature range for which �1<
ˇL < 1. At T D 3:59K, there is no discernible modulation in ˚ indicating that
Ic D 0, and we identify this as the 0 � � junction transition temperature T� . The
most striking feature of the data in Figs. 8.12 and 8.13 is that the relative phase of
the modulation abruptly changes by � as the temperature is varied from above to
below T� . Due to the presence of stray residual magnetic fields .�10mG/ in the
cryostat, the phase of the modulation (and hence the junction phase difference) is
not in general zero for zero-applied current and varies slightly with temperature.

As can be seen in (8.8), the current-phase relation can be directly extracted from
the data in Fig. 8.13 by subtracting the linear flux term and taking account of any
phase shifts arising from background fields. The CPR for several temperatures near
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Fig. 8.13 Modulation of the magnetic flux in the rf SQUID loop as a function of current applied
across the SFS junction for a series of temperatures. As the temperature is lowered, the critical
current vanishes at T D 3:59K, below which the modulation shifts phase by � . Curves offset for
clarity [27]

T� is shown in Fig. 8.14. The CPR has a sinusoidal form. At T� D 3:59K, only
aperiodic fluctuations of the current are observed, which limit the resolution of our
critical current measurements to �10 nA. The CPR curves for temperatures above
and below T� are out of phase by � , verifying that the critical current of the SFS
Josephson junction changes sign at T� .

One more Josephson interferometer in form of distributed 0 � �-junction was
realized in [29]. The SFS junction had variations in the effective barrier thickness
(as it is shown schematically in Fig. 8.15a), and the ferromagnetic layer thickness
was chosen near the first 0��–transition thickness dc1 (see Fig. 8.3). Measurements
of the critical current Ic vs. the applied magnetic flux ˚ threading the junction
barrier reveal that the critical current distribution is not uniform across the junction.
Figure 8.15b shows a series of Ic.˚/ curves in the temperature range 1.4–4.2 K for
a 10 � 10�m2 junction. At T D 4:2K; Ic.˚/ has a Fraunhofer-like shape but
with nonvanishing supercurrents at the side minima. This can occur in a junction
with a localized region of high critical current density. In the temperature interval
1.4–1.9 K, a minimum in the critical current is observed at zero field, indicating that
regions of opposite-polarity critical current density exist in the junction.

The temperature evolution of the Ic.˚/ patterns indicates that some fraction
of the junction width makes a transition from the 0 state to the �-state as
the temperature is lowered, while the remaining part stays in the 0 state. The
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Fig. 8.14 Current-phase relation derived from the rf-SQUID modulation curves of Fig. 8.13
showing the transition to a �-state as the temperature is lowered [27]

critical current nonuniformity likely arises from spatial variations in the barrier
thickness across the junction but could also be caused by inhomogeneities in the
ferromagnet exchange energy or by variations in the S–F interface transparency
[30]. Figure 8.15a shows the step barrier geometry deduced by fitting the measured
diffraction patterns in Fig. 8.15b within the short junction approximation in which
magnetic fields from the junction current are neglected. We obtain good agreement
as demonstrated in Fig. 8.1c. It is not surprising that the small 6 Å step has such
a dramatic effect on the diffraction patterns since close to the 0 � � transition the
critical current density in our junctions changes by 1;000A=cm2 per 1 nm change in
the barrier thickness. For the barrier profile in Fig. 8.15a and the experimental data
(Fig. 8.3) for jc.dF/, we use (8.5) and (8.2) to calculate the temperature dependences
of the zero-field critical currents Ic1 of the thin narrow region, Ic2 of the wide
thick region, and Ic, the total junction critical current. We have obtained that Ic1

is relatively constant while Ic2 decreases and changes sign at T � 2:1K, causing
the Ic to vanish at T�0 � 1:55K. However, measurements plotted in Fig. 8.15b show
that Ic.˚ D 0/ does not go fully to zero at T�0, instead reaching a minimum value
of � 10�A, suggesting that the short-junction approximation is not fully valid. This
phenomenon can be explained by self-field effects that must be taken into account
in finite-width 0 � �-junctions. At temperatures close to T�0, spontaneous currents
circulate around interfaces between 0- and �-regions to lower the total energy of the
system. These circulating currents generate magnetic flux through the junction that
prevents the total critical current from vanishing at any applied magnetic field. For
long 0 � �-junctions, this magnetic flux should be equal to ˚0=2 [31, 32].

All previous experiments described in this chapter show undoubtedly that the �-
junction is a source of spontaneous currents and magnetic flux in superconducting
networks. In [33], a scanning SQUID-microscope (SSM) was used to image
the spontaneous zero-field currents in superconducting networks of temperature-
controlled SFS �-junctions.
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Fig. 8.15 (a) Stepped ferromagnetic barrier deduced from critical current vs. applied magnetic
flux measurements. (b) Diffraction patterns at a series of temperatures showing deviations from
Fraunhofer behavior at low temperatures. (c) Simulated diffraction patterns using the deduced
ferromagnetic barrier profile [29]

As we have shown in [21] (see Figs. 8.8 and 8.9), a remarkable manifestation
of the �-state of Josephson junctions is the generation of spontaneous persistent
currents in superconducting loops incorporating odd numbers of �-junctions. Such
currents are called spontaneous because no applied magnetic fields or power sources
are required to create or sustain them. These currents arise to satisfy the fluxoid
quantization conditions in the loops in response to the �-shifts across the junctions
[1, 31].

We fabricated two-dimensional square arrays of SFS Josephson junctions with
various geometries. The periodicity of the arrays was 30�m, with each cell having
an open area of 15� 15�m2, corresponding to a geometric inductance of � 25 pH.
In each array, some of the cells were frustrated with three �-junctions (Fig. 8.16a,
right diagram in Fig. 8.16b and red cells in Fig. 8.17), whereas other cells had
four �-junctions (left diagram in Fig. 8.16b and white cells in Fig. 8.17) and
were therefore unfrustrated (Fig. 8.16b). In the unfrustrated cells, the ground-state
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Fig. 8.16 �-junction arrays. (a) Schematic diagram of a single frustrated array cell. Ferromag-
netic CuNi layers windowed by a SiO layer (not shown) are sandwiched between cross-shaped
superconducting Nb electrodes to form SFS junctions. (b) In an unfrustrated cell with an even
number of �-junctions, the spontaneous flux is zero in the lowest-energy state; in a frustrated cell
with an odd number of �-junctions, spontaneous currents generate magnetic flux of order ˙˚0=2.
(c) Optical image of a 6� 6 fully frustrated array. (d) SSM image of an unfrustrated array in small
applied magnetic flux (<< ˚0=2 per cell) showing contrast from superconducting niobium. (e)
SSM image of a fully frustrated 6 � 6 array in the �-state with zero-applied field. The vertical
magnetic-field scale is not accurately calibrated but is approximately in units of m˚0 detected by
the SQUID [33]

configuration corresponds to each junction being in its lowest energy state with no
circulating current. In contrast, frustrated cells (with sufficient inductance) require
a spontaneous current to maintain fluxoid quantization and minimize their energy.
Therefore, although screening currents may circulate in all cells in the presence of
applied magnetic fields, spontaneous currents appear only in frustrated cells.

The scanning SQUID-microscope (SSM) measured the average vertical magnetic
field in a superconductor pickup loop scanned over the surface of a planar
sample. The pickup loop, which was coupled to a dc-SQUID detector through a
superconducting flux transformer, was fabricated on a Si wafer that was beveled
to form a tip. The sensor assembly was hinged so that it rested at a small angle
.� 5 ı/ from the substrate with the tip in contact with the surface, maintaining
the pickup coil at a distance of 2–3�m from the surface. The SSM had a spatial
resolution of 5–10�m, determined by the size of the pickup loop, and a magnetic
flux sensitivity of 10�5 ˚0. After the residual magnetic field in the cryostat was
compensated with the magnetic field applied from a Helmholtz coil to yield net zero
magnetic field, images of unfrustrated arrays showed no contrast at all temperatures.
However, in a magnetic field of 1–5 mG, below the threshold field at which magnetic
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Fig. 8.17 SSM images of various 2�2 arrays in the �-state at T D 1:5K with diagrams indicating
the frustration patterns. In zero-applied magnetic field, spontaneous currents are detected only in
frustrated (dark) cells. Different colors show opposite signs of spontaneous magnetic flux [33]

field-induced vortices enter the array, the array structure became visible because the
superconducting islands screen the inductance of the SQUID pickup coil, as shown
in Fig. 8.16d for a 6 � 6 cell array. In contrast, all �-junction arrays with frustrated
cells showed spontaneous circulating currents. As an example, Fig. 8.16e shows an
SSM image of a uniformly frustrated 6�6 array cooled below the �-state transition
temperature in zero magnetic field. Over most of the array, the arrangement of
spontaneous currents was antiferromagnetic, with the direction of the spontaneous
currents alternating in adjacent array cells to produce a checkerboard magnetic
flux pattern, as expected for the ground state configuration (Fig. 8.17). However,
deviations from antiferromagnetic patterns were often observed because arrays
could cool into metastable excited states in which one or more spontaneous currents
are flipped.

We could monitor the onset of spontaneous currents in an array by taking images
at a series of different temperatures. We expected such currents to onset only below
the �-state transition temperature T� of the individual junctions in the array. To
estimate T� , we measured the temperature dependence of the critical current of
a single isolated SFS junction fabricated on the same chip. The critical current,
obtained from the current–voltage characteristics as shown in Fig. 8.18 (upper
panel), vanished at T � 2:8 � 2:9K, which we identify as T� . The temperature
evolution of spontaneous currents in a 6� 6 checkerboard-frustrated array is shown
in Fig. 8.18 (lower panel). No spontaneous currents were observed at temperatures
well above T� . The nucleation of spontaneous currents in multiply connected
circuits incorporating �-junctions depends on the energy balance between the
Josephson coupling energies of the junctions EJ D Ic˚0=.2�/ and the magnetic
field energy in the loopsEL D LI2=2 associated with the circulating current I . After
we cooled to T D 2:8K, just below the expected transition into the �-state, flux
from spontaneous currents could be discerned but individual vortices could not be
resolved. The reason is that the critical currents of SFS junctions become very small
close to T� so the ratio EL=EJ << 1, making the characteristic size of the vortices
much larger than a single cell. In this regime, the spontaneous flux generated by
each frustrated cell is much smaller than 0:5˚0 (by roughly a factor of EJ=EL).
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Fig. 8.18
Temperature-driven onset of
spontaneous currents. Upper
panel: temperature
dependence of the critical
current of a single SFS
junction showing a
�-junction state below
T� D 2:8K. The sign of the
critical current is indicated
but cannot be determined
from current–voltage
characteristics alone. Lower
panel: variance of the
magnetic flux generated in the
array at different temperatures
(solid dots) superimposed on
the calculated
spontaneous-flux-onset curve
for a loop of inductance
L D 25 pH with a single SFS
junction (solid line). The
dashed line indicates the
baseline set by SQUID
detector noise [33]

Because in the vicinity of T� temperature variations of order 0.1–1.0 K result in
two to three orders of magnitude change in EJ; �-junction arrays are suitable
for tunable vortex dynamics experiments, which were previously possible only at
temperatures close to the superconducting critical temperature Tc. At temperatures
well below T� , the spontaneous currents are bigger, and the checkerboard frustration
can be resolved. In Fig. 8.18 (lower panel), we plotted the r.m.s. SQUID voltage
obtained by averaging the SSM signal over the array at different temperatures. There
is an onset of spontaneous current that occurs at T � 3K. For comparison, on
the same graph we show the calculated temperature dependence for the onset of
spontaneous magnetization in an isolated cell frustrated by a single �-junction [1].
The parameters of the junction were chosen to give an onset of flux near that
observed in the array. We found that the onset of flux in the array is substantially
broader than that for a single loop owing to variations in the SFS junction barrier
thicknesses and corresponding spread in T� values of individual junctions. The ratio
of the Josephson coupling energyEJ to the inductive energyEL required to generate
a magnetic flux of 0:5˚0 is EJ=EL D .Ic˚0=2�/=

�
˚0

2=8�2L
 � 5 at our lowest

achievable temperature T D 1:5K, from which we estimate that the spontaneous
magnetic flux in each frustrated cell reaches 0:4 ˚0.
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8.4 Applications of Superconducting Phase Inverters

High operation speed and low energy consumption may allow the superconducting
digital single flux quantum (SFQ-) circuits to outperform traditional semiconductor
CMOS logic. The remaining major obstacle to high density of elements on chip is
a relatively large cell size necessary to hold a magnetic flux quantum ˚0. Inserting
a Josephson �-junction in the cell is equivalent to applying flux ˚0=2, and thus
makes it possible to solve this problem [25]. Moreover, using �-junctions in super-
conducting qubits may help to protect them from noise [34, 35]. In this section we
demonstrate the operation of both classical (digital) and quantum superconducting
circuits, which utilized �-phase inverters realized using SFS junctions.

In superconducting circuits, currents can flow without applying any electric
field. The role of the electrostatic potential difference required to drive a current
in conventional circuits is played here by a difference ' between the phases of
the superconducting order parameters of the electrodes. For conventional supercon-
ducting junctions, ' is zero in the absence of current. Thus, the �-junction is a
unique element, which can be applied like an intrinsic bias source and a passive
phase inverter in superconducting electronics. Several ideas for the realization
of a well-defined phase shift have recently been considered [36–38]. The SFQ-
circuits with complementary active elements, i.e. �-junctions, were first realized
using high-Tc superconductor (HTS) junctions with unconventional d -wave pairing
symmetry ensuring the phase shift of � [37]. Operation of a circuit with another
(passive) type of the phase shifting element based on a superconducting loop with
trapped magnetic flux [36] has been demonstrated in [38]. In contrast to HTS
�-junctions, the phase-shifters based on the SFS �-junctions are highly compatible
with conventional low-Tc Nb fabrication technology. Moreover, in comparison with
the phase-shifting loops with trapped magnetic flux [38], the circuits with the
integrated SFS �-junctions do not require setting of the well-defined number of
flux quanta in the loop and have more compact and simple design. The main
problem of potential integration of the SFQ and quantum (qubit) circuits with
the goal of efficient control and readout of the qubit is the reduction of noise,
which is generated by SFQ modules [39,40]. This noise may significantly decohere
the Josephson qubits, so the problem of the noise reduction requires a profound
modification of the schemes and its parameter values, in order to preserve the
qubit coherence and reduce the power dissipation. The noise reduction and the
safe transfer of rather weak signals between different parts of integrated circuit
require the implementation of Josephson junctions with relatively small values of
their critical currents IC. To ensure the Josephson phase drop necessary for the SFQ
data storing, the corresponding values of the inductances should be proportionally
increased .L / I�1

C / and, as a consequence, the circuit area is significantly
expanded, which make circuits noise sensitive. In this case, the compact circuit
design can be realized by replacing the geometrically large storing inductances
with relatively compact phase shifting elements. This makes the integrated circuits
potentially less sensitive to external electromagnetic noise.
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Fig. 8.19 Microphotographs of the dc-interferometers: (a) dc-interferometer of conventional type
and (b) dc-interferometer with integrated SFS �-junction. The insets show the electric diagrams of
these circuits [41]

The first realization of the SFQ circuits with integrated �-phase shifters based
on the SFS Josephson junctions was carried out by us as one can see in [26, 41].
The SFQ logic circuits enable processing of information in the form of single
flux quanta ˚0, which can be stored in elementary superconducting cells including
inductors and Josephson junctions. Dynamically, this information is represented by
SFQ voltage pulses [42] having a quantized area

R
V.t/dt D ˚0 and corresponding

to the transfer of one flux quantum across a Josephson junction. The large storing
inductance which is fed by dc current ensuring bistable operation in the conventional
SFQ Toggle Flip Flop (TFF) circuit was replaced by the SFS �-junction adding to
the TFF loop the well defined phase shift equal to � .

First, to prove the correct functioning of SFS �-junctions themselves, the
standalone dc-interferometers were realized on the same chip. Microphotographs
of these dc-interferometers with/without integrated �-junction are shown in the
Fig. 8.19. Layout and circuit parameters of the dc-interferometer with integrated
�-junction were identical to the layout and parameters of the elements forming
quantizing interferometer in the TFF circuit. Josephson junctions in the interfer-
ometer were designed to be about Ic D 20�A. The critical current of the SFS
�-junction exceeded approximately 20 times the critical current of each SIS tunnel
junction used in the dc-interferometer.

Small value of a dimensionless SQUID parameter ˇL < 1 provided sufficiently
large modulation depth of the interferometer’s critical current versus externally
applied magnetic field.

Figure 8.20 presents two traces of the measured voltage-flux characteristics of
the dc-interferometer without and with integrated �-junction. In this experiment,
we fed through the interferometer inductance a ramp current Isweep, which served
as an external flux source. The interferometer junctions were biased by additional
dc current source. We measured the voltage peaks across the interferometer,
which correspond to maximum suppression of the interferometer critical current
at ˚ D .2m C 1/ ˚0=2, where m is integer number. The shape of the voltage-flux
characteristic shown in the Fig. 8.20a is close to the theoretically predicted relation
for the two-junctions dc-interferometer. The dc-interferometer with integrated
�-junction has the maximum suppression of its critical current at integer-valued
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Fig. 8.20 Voltage-flux
characteristics of the
dc-interferometers: (a) of
conventional interferometer
and (b) of the
dc-interferometer with SFS
�-junction integrated in the
interferometer loop [41]

flux, ˚ D m˚0. The voltage-flux characteristic in Fig. 8.20b is modified due to
the presence of correctly functioning �-phase shifter and the resulting curve is the
complementary to the previous one, i.e. ˚ ! ˚ C ˚0=2.

Fabrication of the integrated TFF circuits has started with preparation of
conventional SFQ-part [43]. The SFS junctions were placed between Nb-wiring
nodes and they were co-fabricated directly after the wiring layer definition. The
SFS fabrication process includes the standard technological steps described above.
The thickness of the ferromagnetic layer was chosen so that the critical current
of the SFS �-junction was sufficiently larger than the critical current of the
conventional SIS junctions in the circuit. Only upon this condition does the SFS
junction operate as a static phase inverter, and the phase difference across it
does not change during the phase evolution in the SFQ cell. The critical current
density of the Nb–CuNi–Nb �-junction has a sharp maximum �1;000A cm�2 at
dF D 12–13 nm (see Fig. 8.3). This F-layer thickness is very close to the critical
thickness dc1 D 11 nm of the transition from the conventional to the �-state. To
realize SFS junctions, which have remained reliably in the �-state in the temperature
range 3K < T < 5K, we have chosen a CuNi layer thickness of 13–15 nm to
obtain a critical current density jc larger than 100A cm�2. The cross section of
an externally shunted Josephson tunnel junction integrated with an SFS junction is
shown in Fig. 8.21.

The toggle flip-flop circuit is a one of the key modules of any digital circuit based
on the SFQ logic [42, 44]. We have designed and fabricated the TFF circuit, where
the large quantizing inductance has been replaced by SFS �-junction (see schematic
and image of the TFF core cell in Fig. 8.22a, b).

Our TFF consists of two interferometer loops, one acting as a signal splitter
(junctions J1 and J2), while the other acting as a memory cell for the TFF states
(junctions J3 and J4 and �-junction). The TFF has two stable equivalent states,
which are differ by direction of currents circulating in the interferometers loops. In
the conventional TFF circuit, the equivalence of its states is set up by dc current
through the storing inductance providing phase drop equal to � . The TFF with
integrated �-junction does not require such additional asymmetric bias and due to
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Fig. 8.21 Cross-section (not in scale) of externally shunted Josephson tunnel junction and
integrated SFS �-junction [41]

Fig. 8.22 (a) Schematic of the TFF circuit with the integrated SFS �-junction junction and (b)
optical microphotograph of the circuit core [41]

inherent symmetry can stably operate in a wider parameter range. The functionality
of the TFF can be considered as a simultaneous switching of the junctions of two
decision elements compound by pair of Josephson junctions (junctions J1; J3 and
J2; J4). If the direction of the circulating current in the storing interferometer is
anticlockwise and in the interferometer with the junctions J1 and J2 and �-junction
is clockwise, the junction J3 in the first .J1; J3/ decision element and the junction J2
in the second .J2; J4/ decision element are forced to switch then SFQ pulse applied.
As a result, the directions of the circulating currents in the interferometer loops
change and the junctions J1 and J4 are forced to switch by the next incoming SFQ
pulse. So, in case of the correct circuit functionality, the junctions J1 – J4 switches at
twice lower frequency in comparison with the input frequency, thus the TFF acts as
a frequency divider.
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Fig. 8.23 Time traces of the TFF complementary output signals .Vout1; Vout2/. Each of the output
traces Vout1 and Vout2 has a period four times longer than that of the input signal Iin. The mutual
time shift of the output signals Vout1 and Vout2 corresponds to exactly one period of the input signal
Iin [41]

The entire integrated circuit consists of 36 Josephson junctions. The input of
the TFF circuit is connected to the dc/SFQ converter circuit and the TFF outputs to
the SFQ/dc converter circuits [44]. The TFF toggles between its two states under the
application of an SFQ pulse. This SFQ pulse is generated by a dc/SFQ converter and
is transferred to TFF through a Josephson transmission line (JTL) [42]. Figure 8.23
shows the time traces of the input and output signals confirming correct operation
of the TFF circuit. The drive signal applied to dc/SFQ converter (trace Iin) creates
one SFQ pulse per period of the drive signal, time referenced to its rising ramps. If
the first SFQ pulse coming from dc/SFQ converter switches the junctions J3 and J2,
the second one switches J4 and J1. The SFQ pulses generated by J3 and J4 are
transferred via individual JTLs to SFQ/dc converter circuits and converted into the
voltage signals (traces Vout1; Vout2). Each of the output signal traces Vout1 and Vout2

has a period four times longer than that of the input drive signal Iin. This behavior
originates from the pulse rate division by two sequentially connected TFFs. The
first one is the TFF of the novel design with integrated SFS �-junction and the
second one is the TFF of conventional design included in the respective SFQ/dc
converter. As expected, the mutual time shift of the output signals Vout1 and Vout2

corresponds to exactly one period of the input signal Iin. The tested circuit including
TFF cell and dc/SFQ and SFQ/dc converters demonstrated correct functionality
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with the bias currents margins of about ˙20%. The obtained operation margin is in
the good agreement with simulated value for the SFQ/dc converter and yet smaller
than one can expect for the TFF with integrated SFS �-junction. Our circuit has a
common bias supply line, so the operation range of the TFF cell with integrated SFS
�-junction cannot be characterized separately. As was shown in simulations [37],
the operation range of such integrated SFQ circuits can be significantly extended
and their stability improved.

Another attractive application of SFS �-junctions is their use as phase shifters in
coherent quantum circuits realizing superconducting quantum bits. The answer to
the question of whether or not �-junctions can become useful in superconducting
circuits designed for quantum computing applications depends on their impact on
the coherence properties of the qubits. Potential sources of decoherence introduced
by the SFS �-junctions can, for instance, be spin-flips in the ferromagnetic barrier
[45], either occurring randomly or being driven by high-frequency currents and
fields, as well as the dynamic response of the magnetic domain structure [46]. We
address these important coherence issues in the following experiment, in which
we use an SFS �-junction to self-bias a superconducting phase qubit. We have
chosen a phase qubit [47] rather than a flux qubit [48] due to the simpler fabrication
procedure for the former. The results reported below would, nevertheless, remain
fully applicable to flux qubits.

A phase qubit [47] consists of a single Josephson junction embedded in a
superconducting loop. It is magnetically biased close to an integer number of flux
quanta in the loop. At such a bias, the potential energy of the qubit exhibits an
asymmetric double-well potential, whereas two quantized energy eigenvalues of
the phase localized inside the shallow well are used as the logical qubit states j0i
and j1i. Figure 8.24a shows a circuit schematic and Fig. 8.24b a micrograph of
the tested sample. Here, the �-junction is connected in series to the phase qubit’s
tunnel junction. Coherent qubit operation is demonstrated by the data reported in
Fig. 8.25a, showing Rabi oscillation of the excited qubit state population probability

Fig. 8.24 Self-biased phase qubit. (a) Schematic of a phase qubit circuit used to test the
decoherence properties of the SFS �-junction. The qubit is realized by the central loop with
embedded conventional and �-Josephson junctions. The larger loop to its left is a dc-SQUID for
qubit readout. To the right of the qubit is a weakly coupled flux bias coil. (b) Scanning electron
microscope picture of the realized phase qubit employing a �-junction in the qubit loop. The flux
bias coil is not shown [26]
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in dependence on the duration of a resonant microwave pulse. The oscillations
exhibit a decay time of about 4 ns, which is a typical value reachable in samples
fabricated using similar fabrication processes [49].

To find out whether the �-junction does introduce additional decoherence,
a conventional phase qubit without a �-junction was fabricated on the same
wafer. As shown in Fig. 8.25b, this reference qubit shows a nearly identical

Fig. 8.25 Rabi oscillations between the ground and the excited qubit states resulted from
resonant microwave driving: (a) observed in the phase qubit with embedded �-junction and (b) a
conventional phase qubit made on the same wafer as a reference. Each data set was taken using the
indicated microwave power as delivered by the generator, giving rise to a change in the coherent
oscillation frequency as expected for Rabi oscillation [26]
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decay time for Rabi oscillations. Thus, we obtained experimentally that the decay
time limited by �-junction is significantly larger than 4 ns. We compared the
measured decoherence time with the theoretical predictions [50]. We assume here
an overdamped SFS �-junction having a normal resistance of R� 500�	 and a
critical current IC � 50�A. In our case, the qubit level splitting�>>2eICR, where
��h�13:5GHz; h is the Plank’s constant and e is the elementary charge. Here, the
energy 2eICR �h�12MHz is associated with characteristic Josephson frequency of
our SFS �-junction. Simplifying the expression for the relaxation time [50] in this
limit, we could theoretically estimate the relaxation time �relax as

�relax D �

2IC;tunR
� 2 ns: (8.9)

Here, IC;tun � 2�A is the critical current of the small tunnel qubit junction.
However, the estimated value of the energy relaxation time is of the same order
as the measured decoherence time of reference qubit without an SFS �-junction, so
we can suppose that the decoherence is limited by some other mechanism in both
qubits. We note that the expected relaxation time (8.9) can be enhanced by using
SFS junctions with a smaller resistance R.

As an outlook, a significant reduction in the size of the demonstrated SFS
�-phase shifters for digital circuits is readily possible, opening the way to scaling
superconducting logic circuits down to submicrometer dimensions [25]. The visual-
ization of the magnetic structure of our F-layer material shows domain sizes smaller
than 100 nm (Fig. 8.5). Therefore, we believe that a reduction of the junction planar
dimensions down to 300–500 nm is feasible. Furthermore, combining the high-jC �-
junction technology with in-situ-grown tunnel barriers [51, 52] may open the way
toward active inverter elements, which are in great demand for superconducting
electronics.
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Chapter 9
Point-Contact Study of the Rare-Earth
Nickel-Borocarbide RNi2B2C
(R D Y, Dy, Ho, Er, Tm, Lu) Superconductors

Yu.G. Naidyuk and I.K. Yanson

Abstract A brief overview of the achievements in point-contact (PC) study of the
superconducting (SC) gap and electron–phonon (boson) interaction (EP(B)I) in the
rare-earth nickel-borocarbide compoundsRNi2B2C (R D Y, Dy, Ho, Er, Tm, Lu) is
presented. Compounds with R D Y, Lu are non-magnetic with the highest critical
temperature Tc � 16K, while the remaining are magnetic. For the latter, the energy
scales of antiferromagnetic (AF) and SC order, measured by the Neel temperature
TN, and Tc, vary againstR over a wide range between � 1 and 10 K. The SC gap, its
temperature and magnetic field dependence were studied by PC Andreev reflection
(AR) spectroscopy corroborating a multiband structure of the title compounds. For
R D Er .TN � 6K < Tc � 11K/ directional PC AR study gives evidence for the
two-band (two-gap) nature of SC-ty with a distinct anisotropic decrease of the SC
gaps below TN. The SC gap in R D Ho .TN � 5:2K < Tc � 8:5K/ exhibits below
T � � 5:6K a standard single-band BCS-like dependence vanishing above T �,
where a specific magnetic ordering starts to play a role. ForR D Tm .TN � 1:5K <

Tc � 10:5K/, a decrease in the SC gap is observed by approaching TN, while for
R D Dy .TN � 10:5K > Tc � 6:5K/ the SC gap has a BCS-like dependence in
the AF state. PC spectroscopy of EP(B)I spectral function displays both phonon and
crystalline-electric-field (CEF) excitation maxima (the latter between 3 and 10 meV)
for R D Dy, Ho, Er and Tm, while a dominant phonon maximum around 12 meV
and 8.5 meV, correspondingly, is characteristic for R D Y and Lu. Additionally,
non-phonon and non-CEF maxima are observed near 3 meV in R D Ho and 6 meV
in R D Dy. Specific features of the SC gap behaviour and details of the PC EP(B)I
spectra in the mentioned superconductors are discussed.
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9.1 Introduction

The RNi2B2C (RD Y, Dy, Ho, Er, Tm, Lu) family of rare-earth nickel-borocarbide
compounds is extremely interesting from a perspective of research of fundamental
aspects superconductivity and its interplay with magnetic order [1]. These com-
pounds have been attracting much attention since mid 1990s due to their relatively
high critical temperature Tc. Superconducting (SC) properties of RNi2B2C often
exhibit unconventional behaviour. Superconductivity and magnetic order are found
to be competing against each other in some of these materials. Thus, these
compounds have been described as “a toy box for solid-state physicists” [2]. As
it was reported in [3], a multiband scenario is required to properly describe the
anomalous temperature dependence of the upper critical field of RD Y and Lu.
This concept of strongly coupled two-band superconductivity has been widely used
to describe properties of tremendous MgB2 and nowadays of iron-oxypnictides
superconductors. The extend of manifestation of mentioned extraordinary properties
of RNi2B2C strongly depends on stoichiometric composition or atomic disorder
in the samples. Thus, continuous progress in the synthesis of high-quality single
crystals was observed and has given a deeper understanding of their fundamental
physics during the last decade. This applies also to studying of the nature of Cooper
pairing and attractive interaction along with competition of superconducting and
magnetic ordered states. In spite of numerous experiments undertaken to study these
compounds, however, there is still a room for more detailed investigation.

The study of directional behaviour, temperature and magnetic field dependence
of the SC gap can provide an insight into the SC ground state of RNi2B2C. This
work can be done in the most direct way by point-contact (PC) [4], scanning
tunneling or photoemission spectroscopy. The last method has still a low resolution.
The tunneling spectroscopy, however, is too sensitive to the surface or even upper
layers condition. Therefore, nickel borocarbides are mostly studied using, the
remaining one, namely PC spectroscopy. There are more than 20 papers in this field
[5–28]. Besides, PC spectroscopy provides a straightforward information as to the
PC electron–phonon(boson) interaction (EP(B)I) function ˛2PC F."/ [4], which can
be a test for the phonon-mediated superconductivity. In this work, we provide a brief
overview of the efforts in PC studies of the SC gap and EP(B)I spectral function in
rare-earth nickel-borocarbide superconductors RNi2B2C (R D Y, Dy, Ho, Er, Tm,
Lu) focusing most attention on the recent papers [17–28].

9.2 Experimental

Mostly, we review in this article data obtained by studying single crystals. For R D
Y and Lu c-axis oriented films were also measured [17, 28]. PC preparation and
details of the measurement technique are given in the corresponding papers [5–28].
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The SC gap was studied by measuring dV=dI.V / dependences of PCs between a
normal metal and the superconducting borocarbides, showing Andreev reflection
(AR) features. The SC gap magnitude was calculated from dV=dI.V / using in
most cases the standard 1-D BTK theory [29] and a similar theory (in the case
of Er and Lu), which includes the pair breaking effect of magnetic impurities [30].
This is important for the mentioned borocarbides due to the presence of magnetic
moments in rare-earth ions. Comprehensive analysis of the cases beyond simple
1-D BTK model is given in the very recent review on PC spectroscopy of multiband
superconductors [31].

According to the PC spectroscopy theory (see [4], Sect. 3.2), the second
derivative of the I–V curve of R�1dR=dV type is directly proportional to the EPI
spectral function:

1

R

dR

dV
.eV/ D 8ed

3„vF
˛2PCF."/ j"DeV ; (9.1)

where e is the electron charge, d is the PC diameter and vF is the Fermi velocity.
This equation provides an opportunity to study EPI and other bosonic collective
excitations simultaneously in the title compounds with the same PCs. It also allows
estimate the EPI coupling parameter :

 D 2

!maxZ

0

˛2PCF."/"
�1d": (9.2)

9.3 Point-Contact Andreev-Reflection Spectroscopy
of the Superconducting Gap

The SC gap gives rise to the appearance of minima on the dV=dI.V / characteristic
of a normal metal–superconductor contact at T <<Tc symmetrically placed at
V � ˙�=e (see inset in Fig. 9.1). Measured dV=dI curves of SC nickel boro-
carbides exhibit a pair of minima as in the case of a single gap. Therefore, single
gap approach is usually used (mainly in the more recent papers) to fit experimental
data (see, e.g., [5–11]). As shown in inset in Fig. 9.1, the one-gap fit describes
experimental dV=dI.V / curve for R D Lu insufficiently, and the correspondence
between the curves is much better by applying a two-gap fit. The same was found by
fitting of dV=dI.V / characteristic measured for R D Lu, Er and Tm single crystals
[18, 19, 23, 26, 28]. Moreover, for R D Lu [18, 19] and Er [23, 26] a two-gap fit was
applied for dV=dI.V / of PCs established along two main crystallographic directions
demonstrating applicability of two band(gap) model in both cases (Fig. 9.2).

It turned out that the critical temperature Tc, corresponding to the small gap
in LuNi2B2C in the BCS extrapolation is 10 K in the ab-plane and 14.5 K in the
c-direction (see Fig. 9.2). This unusual temperature dependence of this gap by
approaching bulk Tc suggests a weak interband coupling. For the large gap, Tc
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Fig. 9.1 SC gaps behaviour in LuNi2B2C established by two gaps BTK fit of PC dV=dI curves
for c-axis-oriented film [28]. The fit is done with Z � 0:5, weight factor w � 0:5 and � D 0.
Stars denote minimum position in dV=dI . Two dashed lines demonstrate the BCS-like behaviour.
Inset shows one and two-gap fit for the dV=dI curve at the lowest temperature 2.4 K

coincides with the bulk Tc D 16:8K and absolute gap values extrapolated to T D 0

are about 3 meV in both orientations. In the c-direction, the contributions to the
conductivity from small and large gaps remain almost identical up to 10–11 K, while
the contribution w from the small gap is insignificant and decreases rapidly with
increasing of T in the ab-plane [18, 19]. In Figs. 9.1 and 9.2b, it is shown that the
gap value and its behaviour are similar for both c-axis oriented film and c-direction
in the single crystal, what proves the obtained data.

Noteworthy, at least five parameters (two gaps, “barrier strength” Z, “broad-
ening” � and weight factor w showing a relative contribution, e.g., of the small
gap to dV=dI ) are used by two-gap approach for the fitting procedure, which
gives room for its variation. Therefore, to get reasonable data, dV=dI.V / curves
should demonstrate clear AR structure with expressed minima (see, e.g., the inset of
Fig. 9.1) as well as the absence of non-AR features such as spikes, bumps and other
irregularities usually accompanying measured dV=dI.V /.

The one-gap fit reasonably describes dV=dI.V / for R D Ho [5, 22] as well as
for R D Dy [11]. The obtained �.T / has a BCS-like temperature dependence in
both cases, but �.T / vanishes at T � � 5:6K for R D Ho, well below the bulk
critical temperature of Tc � 8:5K. The AR minimum in dV=dI.V / is drastically
weakened between T � and Tc, what makes impossible any BTK fit to obtain the
SC gap value. It was suggested in [22] that superconductivity in the commensurate
antiferromagnetic (AF) phase in the R D Ho compound survived at the special
nearly isotropic Fermi surface sheet. The SC gap suppression above T � may be
caused by a peculiar magnetic order, which is developed in this compound between
T � and Tc � 8:5K. It looks like SC state in this region is very delicate and sensitive
to the (local) disturbing.
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Fig. 9.2 SC gap behaviour in
LuNi2B2C obtained in
[18, 19] by fitting dV=dI
curves in the two-gap
approximation for two main
crystallographic directions.
The solid curves show the
BCS-like behaviour
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Recently, an interesting peculiar behaviour of �.T / in TmNi2B2C has been
found [21, 27]. The SC gap has a maximum around 5 K and decreases below
5 K with the decreasing of temperature. This is in line with the behaviour of the
upper critical field along the c-axis. Apparently, AF fluctuations occurring above
the magnetically ordered state at TN D 1:5K are responsible for the decrease of
the SC gap observed by approaching TN. Additional interesting behaviour on some
AR spectra was observed for this compound in magnetic field [27], which is very
similar to the reentrant transition in �.T / appearing in magnetic field by lowering
the temperature. For this compound, a two-gap fit is also applicable as it is shown
in [27], when � 10% admixture of the small gap (of about 1 meV) is added to the
larger gap (of about 2.6 meV).

As it was shown in [23, 26], the “one-gap” approach to fit the measured high
quality dV=dI.V / curves for ErNi2B2C results in a visible discrepancy between the
fit and dV=dI.V / at the minima position and at zero bias. At the same time, a “two-
gap” approach fits better the experimental curves for ErNi2B2C. As was mentioned
already, the upper critical field Hc2.T/ of non-magnetic borocarbides R D Y and
Lu [3] can only be properly described by a two-band model. The finding of two
SC gaps in AF state for ErNi2B2C testifies to similarities in the electronic band
structure in both magnetic and non-magnetic borocarbides, and points to the fact
that superconductivity and magnetism develop in ErNi2B2C in different bands.
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Fig. 9.3 Anisotropic suppression of the larger gap for the c-direction (open circles) in comparison
with the ab-direction (solid circles) for ErNi2B2C by transition to the AF state below 6 K according
to [26]. Dashed line demonstrates BCS-like behaviour

The temperature dependence of the larger gap in ErNi2B2C is shown in Fig. 9.3.
This gap starts to decrease below the Neel temperature. A detailed analysis shows
that this decrease is much more expressed for the c-direction testifying to the
anisotropic suppression of the SC gap in this compound. This phenomenon is
explained by the pair-breaking exchange field generated by spin-density waves,
which reduces the gap for the electrons with wave vectors perpendicular to the
propagation spin-density wave vector in the ab-plane. STM measurements in [32]
and recent laser-photoemission spectroscopy [33] show also a deviation from the
BCS predicted below TN in ErNi2B2C. The SC gap decrease in the AF state is also
in line with the Machida theory [34] in which a spin-density wave ordering below
TN competes with superconductivity.

It should be noted that the AF structure in R D Er and Tm nickel borocarbides is
an incommensurate spin-density wave. As it is mentioned in [21,27],�.T / deviates
from the BCS behaviour for R D Tm showing visible decrease below 5 K by
approaching TN � 1:5K. On the contrary, R D Ho and Dy compounds with
commensurate AF order display a BCS-like gap [11, 22]. Indeed, measurements
below TN � 1:5K in case of R D Tm are very desirable to observe the similarity
to the Er compound.

Figure 9.4 and Table 9.1 summarize the measurements of the SC gap by PCs
in the title compounds. In average, the SC gap values are placed close to the BCS
value � D 1:76 kBTc taking into account the vanishing of the SC gap in the Ho
borocarbide at T � � 5:6K. A two-gap state is established for R D Lu [18, 19, 28],
Er [23, 26] and Tm [27] and a strong anisotropy of the SC gap (probably due to
multiband SC state) is observed for R D Y [20].
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Fig. 9.4 The SC gap (solid symbols) established by a PC AR study (see also Table 9.1) as a
function of the critical temperature Tc in RNi2B2C. For R D Y, the extremes of the SC gap
distribution are presented, while for R D Lu, Tm and Er the small and large gaps within two-gap
fit are shown. For R D Ho; Tc is shifted to T � D 5:6K (see text for explanation). Open symbols
show the SC gap determined by the tunneling spectroscopy [35, 36]. A dashed straight line shows
the BCS ratio

Table 9.1 The SC gap(s) value (in meV) extrapolated to T D 0 for RNi2B2C compounds
measured by PCAR spectroscopy. Data for films are also given for R D Y and Lu
One-gap approach

R D Y Dy Ho Er Tm Lu

1:04˙ 0:06 2.6 [110] and 2.4
2:42˙ 0:07 [5] 1.0 [11] [5] 1:7˙ 0:2 [5] 1.1–1.7 [27] [001] [24, 25]

1.95 (ab-plane)
2.36 (c-dir)

0.42 (ab-plane) 0.95 [22] [26]
1.8 (c-dir) [14]
1.5 (ab-plane)
2.3 (c-dir) [20]
1.5–2.4 (film) [17] 2.6 (film) [28]

Two-gap approach
R D Er Tm Lu
2.1 and 1.1 2.6 and 2.16 and

(ab-plane) 1.0 [27] 3.0 (ab-plane)
2.3 and 1.0 1.94 and 3.0

(c-axis) [26] (c-axis) [18, 19]
2:14˙ 0:36 and
3˙ 0:3 (film) [28]
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Fig. 9.5 (a) PC spectra of
YNi2B2C homocontacts with
R D 18	 at T D 4:2K
averaged for two polarities of
bias voltage [20]. The
superconductivity is
suppressed by a magnetic
field of 7 T. (b) PC spectra of
LuNi2B2C (film) – Cu
contact with R D 6:3	 at
T D 2:4K and B D 7T [28].
Huge increase in PC spectra
intensity below 5 meV is due
to not fully suppressed
superconductivity in the PC
core. In both panels, the
phonon DoS (open circles)
for the corresponding
compound is depicted from
[37]. Vertical arrows show
main maxima in the PC
spectra corresponding to the
first maxima in the
phonon DoS
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9.4 PC Spectroscopy of Electron–Phonon (BOSON) Interaction

Nonmagnetic compounds. The spectra of the nonmagnetic YNi2B2C show a dom-
inant maximum at about 12 mV and a broad shallow hump or a kink positioned
close to 50 mV (Fig. 9.5a). These features have a counterpart in the phonon
density of states (DoS) of YNi2B2C [37]. The PC spectra are similar both for
single crystals [20] and films [17]. YNi2B2C homocontacts also demonstrate similar
spectra (Fig. 9.5a). Very recently [28], the PC spectra of LuNi2B2C were measured
in the c-axis oriented films (Fig. 9.5b). The most expressed feature is the maximum
at about 8.5 meV, which perfectly coincides with the position of the first maximum
in the phonon DoS for LuNi2B2C [37]. At the same time, a high energy part of
PC spectra obtained contains no visible features (except broad maximum around
15 meV). It is unlikely that electron interaction with phonons of higher energy above
20 meV is so weak, so the reason of featureless spectra in this region is probable
shortening of inelastic electron mean free path l with increasing energy due to strong
EPI, which leads to violation of the spectral regime condition d << l in PC [4].

Compounds with magnetic ordering. PC EP(B)I spectra in magnetic RNi2B2C
are presented in Fig. 9.6. The most detailed spectra are measured for R D Ho.
Here, the maxima (with the exception of maximum at 3 meV) correspond to those
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Fig. 9.6 PC spectra of
magnetic RNi2B2C
compounds from
[12, 13, 22, 27]. The
superconductivity is
suppressed by a magnetic
field. The bottom curve shows
the phonon DOS for
LuNi2B2C [37]. Vertical
arrows show expected
position of the first CEF
excitations according to [38]
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in the phonon DoS of the isostructural compound LuNi2B2C [37]. The majority
of the PC spectra in HoNi2B2C demonstrate a prominent 10-mV peak [22], while
the other phonon maxima do not become apparent. The unique spectrum for this
compound (see Fig. 9.3 in [22]) displays also pronounced highenergy maxima
around 50 and 100 mV, which were not so clearly resolved in the PC spectra of other
nickel borocarbides so far. The low energy maximum around 3 mV in R D Ho and
6 mV in R D Dy (Fig. 9.6) has not any respective reference in the phonon DoS
nor in the crystal-electric-field (CEF) energy scheme [38]; therefore, it has non-
phonon and non-CEF origin. The 3-mV maximum in R D Ho can be suppressed
anisotropically by a magnetic field [22] and temperature above 10 K pointing to
its “magnetic” origin as discussed in [22]. The 6-mV peak in R D Dy vanishing
with increasing of T above 15 K [12] has probably a similar “magnetic” origin.
Twice as large 6-mV peak position in R D Dy in comparison with 3-mV peak
in R D Ho correlates with two times higher Neel temperature TN � 10:4K in
this compound compared to TN � 5:2K in R D Ho. This testifies that 3 mV and
6 mV peculiarities are connected with AF state in some way. It was assumed in
[22] that this phenomenon is connected with destruction of the AF order due to
“heating” by non-equilibrium phonons in PC. In [39], it was suggested that the long
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range magnetic order can be destroyed isothermally by current, by analogy with the
destruction of superconductivity by critical current.

The first maximum in R D Tm (3 mV) and the shoulder in R D Er (6 mV)
corresponds in the position to the first exited CEF level [38]. CEF contributes
apparently also to the 10-mV peak in R D Ho and Dy compounds. In the former
case, this is seen from the modification of the 10-mV peak in a magnetic field (see
Fig. 9.4 in [22]). Interesting phenomena was observed in the PC spectra ofR D Tm,
where an additional peak at about 1 mV for some PCs is seen (see Fig. 9.7). The
authors [27] explained this feature as splitting of the original magnetic Tm-ion
ground state doublet into two singlet states due to non-stoichiometry caused by
boron/carbon vacancies or as a result of the quadrupolar ordering [1]. Both effects
lower CEF symmetry resulting in the splitting of the doublet ground state.

The strength of EP(B)I in the investigated compounds can be estimated by
calculation of  (see (10.2)) from the measured PC spectra. The value of  for
all mentioned compounds lies between 0.1 and 0.25 [8, 12, 20, 22, 27, 28], which is
sufficiently smaller than expected for the superconductors. For instance in [40, 41],
by comparison of the effective masses obtained by dHvA measurements with
calculated bare masses, the coupling strength has been estimated in R D Lu
between 0.23 and 2.7 on different Fermi surfaces and for different crystallographic
directions. As mentioned by the same authors, specific heat data on polycrystalline
samples point to  D 0:75–1:2 and resistivity measurements allow to estimate
the transport coupling constant as tr D 0:55–1:1:  D 0:848 is calculated for
R D Y in [42] with numerical accuracy about 10%. The value of  is almost order
of magnitude lower from PC measurements and can be explained in the following
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manner: (1) using in the PC theory a single band free electron model, (2) short
elastic mean free path of electrons li << d , what results in decreasing of PC
intensity by factor li=d , 3) shunting conductivity of multiple PCs containing non-
ballistic constrictions. Noteworthy, that discussed parameter PC can be considered
to be a kind of the transport EPI constant (see Table 9.1 in [4]) and in general its
value can be different from the Eliashberg EPI constant , whereas in PC spectra
backscattering processes of electrons play the main role [43]. Therefore, it would be
very desirable to compute PC EPI function, though it is a difficult task taking into
account the complicated band structure of title compounds.

The measurements of PC EP(B)I spectra point to the importance of the CEF
excitations in the charge transport as well as to the SC properties of “magnetic”
R D Dy, Ho, Er and Tm borocarbides. For example, the relative contribution of
the 10-mV peak in the EP(B)I constant  for R D Ho is evaluated as 20–30% [22],
while the contribution to  of the high frequency modes at 50 and 100 meV amounts
up to 10% for each maximum.

9.5 Conclusion

The SC gap has been studied using PC AR spectroscopy for a series of the rare-earth
nickel borocarbide superconductors [5–28]. The existence of two SC gaps both in
non-magnetic R D Y, Lu [17–20] and in the magnetic compounds R D Tm [27],
Er [23, 26] has been shown. A distinct anisotropic decrease of the both gaps in
R D Er [26] is observed as the temperature is lowered below TN. For the R D Ho
[22] and Dy [11] compounds with commensurate AF order, the SC gap has a BCS-
like behaviour in the AF state, while for R D Tm the gap starts to decrease by
approaching a magnetic state with incommensurate AF order. The Er compound has
an incommensurate AF order and the gap starts to decrease at lowering temperature
slightly above TN as well [23]. The discrepancy in the magnetically ordered state
between R D Ho, Dy (commensurate state) and R D Er, Tm (incommensurate
state) results in a different SC gap behaviour. More extensive directional PC
measurements for R D Dy and Ho are desirable to check the presence of multi-
gap superconductivity in these compounds as well. The measurements of PC AR
spectra in R D Tm well below the Neel temperature (1.5 K) are challenging to
study interplay of superconductivity and an AF order.

Using PC spectroscopy, a clear coupling of electrons to the low energy phonon
and CEF excitations has been shown in the title compounds [12,20,22,27,28]. To our
knowledge up to now this is the only experimental technique able to yield energy-
resolved information on the EP(B)I in these compounds. In magnetic R D Dy,
Ho, Er and Tm compounds, the CEF excitations contribute to the EP(B)I function
heavily [22, 27]. For R D Ho, the contribution of two high energy modes (50 and
100 meV) is also notable [22]. The 50-mV mode can be also resolved for other
compounds, but it looks to much smeared (usually like a knee) as shown in Fig. 9.5a
for R D Y. In this context, we note that the electronic mean free path is shortened
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with increase of the bias voltage due to the EP(B)I. In this case if the EP(B)I is strong
enough, it results in a violation of the ballistic condition (with voltage increase)
necessary for energy resolved spectroscopy by PCs. On the contrary, the high energy
modes involve vibration of light B and C ions. Since the disorder in the position
of B and C light atoms is especially difficult to avoid and control, samples with
improved quality are very desirable for further in-depth investigations of SC gap(s)
and details of EP(B)I. It should be stressed also that from the theoretical point of
view calculation of PC EPI function in the title compounds remains a challenge.
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Abstract A superconducting integrated receiver (SIR) comprises in a single chip
a planar antenna combined with a superconductor-insulator-superconductor (SIS)
mixer, a superconducting Flux Flow Oscillator (FFO) acting as a Local Oscillator
(LO) and a second SIS harmonic mixer (HM) for the FFO phase locking. In
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this report, an overview of the SIR and FFO developments and optimizations is
presented. Improving on the fully Nb-based SIR we have developed and studied
Nb–AlN–NbN circuits, which exhibit an extended operation frequency range. Con-
tinuous tuning of the phase locked frequency has been experimentally demonstrated
at any frequency in the range 350–750 GHz. The FFO free-running linewidth has
been measured between 1 and 5 MHz, which allows to phase lock up to 97% of
the emitted FFO power. The output power of the FFO is sufficient to pump the
matched SIS mixer. Therefore, it is concluded that the Nb–AlN–NbN FFOs are
mature enough for practical applications.

These achievements enabled the development of a 480–650 GHz integrated
receiver for the atmospheric-research instrument TErahertz and submillimeter LImb
Sounder (TELIS). This balloon-borne instrument is a three-channel supercon-
ducting heterodyne spectrometer for the detection of spectral emission lines of
stratospheric trace gases that have their rotational transitions at THz frequencies.
One of the channels is based on the SIR technology. We demonstrate for the
first time the capabilities of the SIR technology for heterodyne spectroscopy in
general, and atmospheric limb sounding in particular. We also show that the
application of SIR technology is not limited to laboratory environments, but that
it is well suited for remote operation under harsh environmental conditions. Light
weight and low power consumption combined with broadband operation and nearly
quantum limited sensitivity make the SIR a perfect candidate for future airborne
and space-borne missions. The noise temperature of the SIR was measured to be
as low as 120 K in double sideband operation, with an intermediate frequency
band of 4–8 GHz. The spectral resolution is well below 1 MHz, confirmed by
our measurements. Remote control of the SIR under flight conditions has been
demonstrated in a successful balloon flight in Kiruna, Sweden.

Capability of the SIR for high-resolution spectroscopy has been successfully
proven also in a laboratory environment by gas cell measurements. The possibility
to use SIR devices for the medical analysis of exhaled air will be discussed. Many
medically relevant gases have spectral lines in the sub-terahertz range and can be
detected by an SIR-based spectrometer. The SIR can be considered as an operational
device, ready for many applications.

10.1 Introduction

A Superconducting Integrated Receiver (SIR) [1, 2] was proposed more than
10 years ago and has since then been developed up to the point of practical
applications [3–5]. Our approach consists in developing a single chip heterodyne
receiver, which is smaller and less complex than traditional devices. Typically, such
a receiver consists of a number of main components (local oscillator (LO), mixer,
antenna structure, phase lock circuit, etc.), which are usually built as separate units
and are complex (and thus costly). According to our concept (see Fig. 10.1), we
have integrated all these components onto one single chip reducing overall system
complexity in change for increased on-chip and lithographic fabrication complexity.
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Fig. 10.1 Block-diagram of the superconducting integrated receiver

An SIR comprises on one chip all key elements needed for heterodyne detection: a
low-noise superconductor-insulator-superconductor (SIS) mixer with quasi-optical
antenna, a flux-flow oscillator (FFO) [6] acting as an LO and a second SIS harmonic
mixer (HM) for the FFO phase locking. The concept of the SIR is very attractive for
many practical applications because of the compactness and the wide tuning range
of the FFO [7]. Presently, the frequency range of most practical heterodyne receivers
is limited by the tuning range of the LO, typically 10%–15% for a solid-state
multiplier chain [8]. In the SIR, the bandwidth is determined by the SIS mixer tuning
structure and the matching circuitry between the SIS and the FFO. A bandwidth
up to 30%–40% may be achieved with a twin-junction SIS mixer design. Another
potential advantage is the use of arrays of SIR channels within a single cryostat that
could operate at the same or different LO frequencies.

One of the important practical application of the SIR is TErahertz and sub-
millimeter LImb Sounder (TELIS) [5, 9, 10] – a three-channel balloon-borne
heterodyne spectrometer for atmospheric research developed in a collaboration
of four institutes: Deutsches Zentrum für Luft- und Raumfahrt (DLR), Germany,
Rutherford Appleton Laboratories (RAL), United Kingdom, and SRON – Nether-
lands Institute for Space Research, the Netherlands (in tight collaboration with
Kotel’nikov Institute of Radio Engineering and Electronics, IREE, Moscow). All
three receivers utilize state-of-the-art superconducting heterodyne technology and
operate at 500 GHz (by RAL), at 480–650 GHz (by SRON C IREE), and at 1.8 THz
(by DLR). TELIS is a compact, lightweight instrument capable of providing broad
spectral coverage, high spectral resolution and long flight duration. The TELIS
instrument serves also as a test bed for many novel cryogenic technologies and as a
pathfinder for satellite-based instrumentation.

TELIS is mounted on the same balloon platform as the Fourier transform
spectrometer MIPAS-B [11], developed by IMK (Institute of Meteorology and
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Climate research of the University of Karlsruhe, Germany) and is operated in the
mid-infrared .680–2;400 cm�1/. Both instruments observe simultaneously the same
air mass, and together they yield an extensive set of stratospheric constituents that
can be used for detailed analysis of atmospheric chemical models, such as ozone
destruction cycles. In particular, the 480–650 GHz TELIS channel is able to measure
vertical profiles of ClO, BrO, O3 and its rare isotopologues, O2, HCl, HOCl, H2O
and three rare isotopologues, HO2; NO; N2O; NO2; HNO3; CH3Cl, and HCN. In
this paper, the design and technology for the 480–650 GHz channel as used in
the flight configuration are presented in conjunction with test results and the first
preliminary scientific results.

10.2 Flux Flow Oscillators

A Josephson Flux Flow Oscillator (FFO) [6] has proven [4, 5, 7] to be the most
developed superconducting LO for integration with an SIS mixer in a single-chip
submm-wave SIR [1–5]. The FFO is a long Josephson tunnel junction of the overlap
geometry (see Fig. 10.2) in which an applied dc magnetic field and a dc bias
current, IB, drive a unidirectional flow of fluxons, each containing one magnetic
flux quantum, ˚0 D h=2e � 2 � 10�15 Wb. Symbol h is Planck’s constant and e is
the elementary charge. An integrated control line with current ICL is used to generate
the dc magnetic field applied to the FFO. According to the Josephson relation, the
junction oscillates with a frequency f D (1=˚0)V (about 483.6 GHz/mV) if it is
biased at voltage V . The fluxons repel each other and form a chain that moves
along the junction. The velocity and density of the fluxon chain and thus the power
and frequency of the submm-wave signal emitted from the exit end of the junction
due to the collision with the boundary may be adjusted independently by proper
settings of IB and ICL. The FFO differs from the other members of the Josephson
oscillator family by the need for these two control currents, which in turn provides
the possibility of independent frequency and power tuning.

We experimentally investigated a large number of the FFO designs. The length,
L, and the width, W , of the FFO used in our study are 300–400�m and 4–28�m,

Fig. 10.2 Schematic view of a flux-flow oscillator
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respectively. The value of the critical current density, JC, is in the range 4–8 kA=cm2

giving a Josephson penetration depth, J � 6–4�m. The corresponding value of
the specific resistance is Rn � L � W is � 50–25 	 �m2. For the numerical
calculations, we use a typical value of the London penetration depth, L � 90 nm
for all-Nb junctions, and a junction specific capacitance, Cs � 0:08 pF=�m2. The
active area of the FFO (i.e. the AlOx or the AlN tunnel barrier) is usually formed as a
long window in the relatively thick .200–250 nm/ SiO2 insulation layer sandwiched
between the two superconducting films (base and wiring electrodes). The so-called
“idle” region consists of the thick SiO2 layer adjacent to the junction (on both sides
of the tunnel region) between the overlapping electrodes. It forms a transmission
line parallel to the FFO (not shown in Fig. 10.2). The width of the idle region .WI D
2–14�m/ is comparable to the junction width. The idle region must be taken into
account when designing an FFO with the desired properties. In our design, it is
practical to use the flat bottom electrode of the FFO as a control line in which the
current ICL produces the magnetic field, which mainly is applied perpendicular to
the long side of the junction.

There are a number of important requirements on the FFO properties to make it
suitable for application in the phase locked SIR. Obviously, the FFO should emit
enough power to pump an SIS mixer, taking into account a specially designed
mismatch of about 5–7 dB between the FFO and the SIS mixer, introduced to avoid
leakage of the input signal to the LO path. It is a challenge to realize the ultimate
performance of the separate superconducting elements after their integration in
a single-chip device. Implementation of the improved matching circuits and the
submicron junctions for both the SIS and the HM allows delivering optimal FFO
power for their operation.

Even for ultra wideband room-temperature PLL systems the effective regulation
bandwidth is limited by the length of the cables in the loop (about 10 MHz for
typical loop length of two meters). It means that the free-running FFO linewidth
(LW) has to be well below 10 MHz to ensure stable FFO phase locking with a
reasonably good spectral ratio (SR) – the ratio between the carrier and total power
emitted by the FFO [7]. For example, only about 50% of the FFO power can be
phase locked by the present PLL system at a free-running FFO LW of 5 MHz. A
low spectral ratio results in a considerable error at resolving the complicated spectral
line shape [12]. Thus, a sufficiently small free-running FFO LW is vitally important
for the realization of the phase locked SIR for the TELIS.

10.2.1 Nb–AlN–NbN FFO

Earlier the Nb–AlOx–Nb or Nb–AlN–Nb trilayers were successfully used for the
FFO fabrication. Traditional all-Nb circuits are being constantly optimized but there
seems to be a limit for LW optimizations at certain boundary frequencies due
to Josephson self-coupling (JSC) effect [13] as well as a high frequency limit,
imposed by Nb gap frequency .�700GHz/. That is the reason for novel types
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Fig. 10.3 The dependencies of Rj/Rn ratio on critical current density Jc for SIS junctions of
different types fabricated at IREE

of junctions based on materials other than Nb to be developed. We reported on
development of the high quality Nb–AlN–NbN junction production technology
[14]. The implementation of an AlN tunnel barrier in combination with an NbN
top superconducting electrode provides a significant improvement in SIS junction
quality. The gap voltage of the junction Vg D 3:7mV. From this value, and the gap
voltage of the Nb film �Nb=e D 1:4mV, we have estimated the gap voltage of our
NbN film as�NbN=e D 2:3mV [15].

The dependency of the ratio of subgap to normal state resistance (Rj/Rn) vs.
critical current density .Jc/ for different types of the Nb-based junctions fabricated
at IREE is presented in Fig. 10.3. One can see that the Nb–AlN–NbN junctions are
of very good quality at high current densities, important for implementation in THz
mixers. The same technique was further used to produce complicated integrated
circuits comprising SIS and FFO in one chip.

The use of Nb for top “wiring” layer is preferable due to lower losses of Nb
compared to NbN below 720 GHz; furthermore, the matching structures developed
for the all-Nb SIRs can be used directly for the fabrication of receivers with
Nb–AlN–NbN junctions. The general behavior of the new devices is similar to the
all-Nb ones; even the control currents, necessary to provide magnetic bias for FFO,
were nearly the same for the FFOs of similar design.

A family of the Nb–AlN–NbN FFO IVCs measured at different magnetic fields
produced by the integrated control line is presented in Fig. 10.4 .L D 300�m;
W D 14�m; WI D 10�m/. A single SIS junction with an inductive tuning circuit
is employed as a HM for the LW measurements. The tuning and matching circuits
were designed to provide “uniform” coupling in the frequency range 400–700 GHz.
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Fig. 10.4 IVCs of the Nb–AlN–NbN FFO measured at different magnetic fields produced by the
integrated control line. The color scale shows the level of the DC current rise at the HM induced by
the FFO. Red area marks the region of the FFO parameters where the induced by FFO HM current
exceeds 25% of the Ig. This level is well above the optimal value for an SIS-mixer operation

Measured values of the HM current induced by the FFO oscillations (HM pumping)
are shown in Fig. 10.4 by the color scale. The HM pumping for each FFO bias point
was measured at constant HM bias voltage of 3 mV (pumping is normalized on the
current jump at the gap voltage, Ig D 140�A). From Fig. 10.4, one can see that
an FFO can provide large enough power over the wide frequency range: limited
at higher frequencies only by the Nb superconducting gap in transmission line
electrodes (base and wiring layers) and below 400 GHz by design of the matching
circuits.

The Nb–AlN–NbN FFOs behave very similar to all-Nb ones. The feature at
about 600 GHz where the curves get denser is a Josephson Self-Coupling (JSC)
boundary voltage. It was first observed for all-Nb FFOs [13]. The JSC effect is
the absorption of the FFO-emitted radiation by the quasi-particles in the cavity
of the long junction. It considerably modifies the FFO properties at the voltages
V � VJSC D 1=3Vg (VJSC corresponds to 620 GHz for the Nb–AlN–NbN FFO).
Just above this voltage, the differential resistance increases considerably; that results
in an FFO-LW broadening just above this point. This, in turn, makes it difficult
or impossible to phase lock the FFO in that region. For a Nb–AlOx–Nb FFO, the
transition corresponding to VJSC D Vg=3 occurs around 450 GHz. So, by using the
Nb–AlN–NbN FFOs we can cover the frequency gap from 450 to 550 GHz imposed
by the gap value of all-Nb junctions. The feature in Fig. 10.4 around 1 mV is very
likely due to a singularity at the difference of the superconducting gaps�NbN ��Nb.
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Continuous frequency tuning at frequencies below 600 GHz for the Nb�AlN�
NbN FFOs of moderate length is possible, although the damping is not sufficient
to completely suppress the Fiske resonant structure at frequencies below Vg=3.
For short junctions with a small ’ (wave attenuation factor), the distance between
the steps in this resonant regime can be as large, that it is only possible to tune
the FFO at the certain set of frequencies. For a 300–400�m long Nb–AlN–NbN
junction, this is not the case – the quality factor of the resonator formed by a
long Nb–AlN–NbN Josephson junction is not so high at frequencies >350GHz.
Therefore, the resonance steps are slanting and the distance between them is not so
big (see Fig. 10.4). This allows us to set any voltage (and any frequency) below
VJSC, but for each voltage only a certain set of currents should be used. So, in
this case we have the regions of forbidden bias-current values, specific for each
voltage below VJSC, instead of the forbidden voltage regions for the Fiske regime
in Nb–AlOx–Nb FFO [15]. Special algorithms have been developed for automatic
working point selection in flight.

In Fig. 10.5, the typical current-voltage characteristics (IVCs) of a Nb–AlN–NbN
SIS junction of an area of about 1�m2 is given, both the unpumped IVC (solid line)
and the IVC when pumped by a Nb–AlN–NbN FFO at different frequencies (dotted
lines). One can see that the FFO provides more than enough power for the mixer
pumping. In this experiment, we use the test circuits with low-loss matching circuits
tuned between 400 and 700 GHz. Even with the specially introduced 5 dB FFO/SIS
mismatch (required for the SIR operation) the FFO delivers enough power for the
SIS mixer operation in the TELIS frequency range of 480–650 GHz [7].

Fig. 10.5 The IVCs of the SIS mixer: unpumped – solid curve, pumped at different frequencies –
dashed and dotted lines
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Fig. 10.6 The IVCs of the SIS mixer: unpumped – black solid curve, pumped at different FFO
bias currents (different powers) – lines with symbols; FFO frequency D 500GHz

Fig. 10.7 The pump current of the SIS mixer biased at 3 mV as a function of the FFO bias current
at the fixed frequency 500 GHz (see Figs. 10.4 and 10.6)

An important issue for the SIR operation is a possibility to tune the FFO power,
while keeping the FFO frequency constant. This is demonstrated in Fig. 10.6, where
the IVCs of an SIS mixer are shown, while being pumped at different FFO bias
currents (different powers). The dependence of the SIS pump current on the FFO
bias current is presented in Fig. 10.7, showing that the FFO power can be tuned
more than 15 dB, while keeping the same frequency by proper adjustment of the
control line current.



272 V.P. Koshelets et al.

10.2.2 Spectral Properties of the FFO

10.2.2.1 LW Measurements

The FFO LW has been measured in a wide frequency range from 300 GHz
up to 750 GHz using a well-developed experimental technique [16]. A specially
designed integrated circuit incorporates the FFO junction, the SIS HM and the
microwave matching circuits. Generally, both junctions are fabricated from the
same Nb/AlN/NbN or Nb/AlOx/Nb trilayer. The FFO signal is fed to the SIS
HM together with a 17–20 GHz reference signal from a stable synthesizer. The
required power level depends on the parameters of the HM; it is about of 1�W
for a typical junction area of 1�m2. The intermediate frequency (IF) mixer product
.fIF D ˙(fFFO�n�fSYN) at � 400 MHz is first boosted by a cooled HEMT amplifier
.Tn � 5K; gain D 30 dB/ and then by a high-gain room-temperature amplifier.

To accurately measure the FFO line shape, the IF signal must be time-averaged
by the spectrum analyzer. To remove low-frequency drift and interference from
the bias supplies, temperature drift, etc., we use a narrow bandwidth .<10 kHz/
Frequency Discriminator (FD) system with relatively low loop gain for frequency
locking of the FFO. With the FD narrow-band feedback system that stabilizes the
mean frequency of the FFO (but does not affect FFO line shape), we can accurately
measure the free-running FFO LW, which is determined by the much faster internal
(“natural”) fluctuations (see Fig. 10.8).

Fig. 10.8 Spectra of the Nb–AlN–NbN FFO operating at 515.2605 GHz (blue dashed line –
frequency locked by FD; red solid line – phase-locked). Linewidth D 1:7MHz; spectral ratio D
92%
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The resulting IF signal is supplied also to the Phase Locking Loop (PLL)
system. The phase-difference signal of the PLL is fed to the FFO control line
current. Wideband operation of the PLL (10–15 MHz full width) is obtained by
minimizing the cable loop length. A part of the IF signal is delivered to the spectrum
analyzer through a power splitter (see Fig. 10.8). All instruments are synchronized
to harmonics of a common 10 MHz reference oscillator.

The integrated HM may operate in two different regimes, either as a quasi-
particle mixer (SIS) or as a Josephson mixer. To exclude the noise from the
Josephson super-current fluctuations and thereby realize a pure quasi-particle
regime, the super current has to be suppressed by a relatively large magnetic field.
This requires a special control line placed near the SIS mixer. The quasi-particle
regime of the HM operation can also be realized with sufficient synthesizer power.
It has been shown [17] that the FFO LW and signal-to-noise ratio are almost the
same for these two regimes, although the phase noise might be somewhat lower in
the quasi-particle mode.

10.2.2.2 Dependence of the FFO Linewidth on FFO’ Parameters

Detailed measurements of the FFO LW [18, 19] demonstrate a Lorentzian shape
of the free-running FFO line in a wide frequency range up to 750 GHz, both at
higher voltages on the flux flow step (FFS) and at lower voltages in the resonant
regime on the Fiske steps (FSs). This implies that the free-running (“natural”) FFO
LW in all operational regimes is determined by the wideband thermal fluctuations
and the shot noise. This is different from many traditional microwave oscillators,
where the “natural” LW is very small and the observed LW can be attributed mainly
to external fluctuations. It was found [18, 19] that the free-running FFO LW, ıf ,
exceeds theoretical estimations made for lumped tunnel Josephson junction. The
expression for the LW dependency on voltage and differential resistances found for
all-Nb FFOs [18, 20] is valid for Nb–AlN–NbN junctions as well:
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where Si0 is the power density of low frequency current fluctuations,Rd
B andRd
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are differential resistances on bias and control line currents, respectively. Note that
ratio Rd

CL=Rd
B is constant for fixed FFO bias, so ıf D A(IB) (Rd

B)2 Si0.
Earlier, a so-called Super Fine Resonance Structure (SFRS) [21] was observed

on the FFO IVCs, resulting in the jumps of the FFO between tiny steps (frequency
spacing is of about 10 MHz, see Fig. 10.9). The presence of the SFRS prohibits
phase locking at frequencies between the steps. This is unacceptable for practical
applications. Recently, we found that the SFRS is related to interference of the
acoustic waves created by the FFO (generation of the phonons by Josephson
junction, see [22]). A special technological procedure allows us to eliminate this
interference and to realize continuous FFO-frequency tuning in the SIR, being
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Fig. 10.9 Down-converted spectra of the FFO: (a) free-running FFO; (b), (c) – the lines show the
maximum FFO signal level recorded in the MaxHold regime of the Spectrum Analyzer (the top
point of curve “a”) on the FFO frequency, measured before (b) and after (c) special Si substrate
treatment

Fig. 10.10 Linewidth dependency on frequency for two types of the FFO

vitally important for TELIS project (see Fig. 10.9). Details of this study will be
published elsewhere.

In Fig. 10.10, we present a comparative graph of the free-running FFO LW for
two types of the tri-layer. One can see that the LW of Nb–AlN–NbN FFO is twice
as small up to 600 GHz. It should be emphasized that due to overlapping FSs
continuous tuning is possible and any desirable frequency can be realized. Several
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“stacked” stars at certain frequencies for the NbN FFO mean that the best LW value
can be selected by adjusting FFO bias. Note that the spread in the LW values at
a selected frequency is small and all can actually be applied for measurements.
Each star corresponds to an “allowed” bias current at an FS (as described above in
Sect. 2.1). Although the FFO tuning on an FS is complicated, the benefit in LW (and
consequently the spectral ratio) is worth the effort. Linewidths below 3 MHz can
be achieved in the whole range between 350 and 610 GHz. An abrupt increase of
the FFO LW at some frequencies is caused by the Josephson self-coupling effect.
The JSC (absorption of the FFO-emitted radiation by the quasi-particles in the
cavity of the long junction, see above) considerably modifies the FFO properties
at the voltages V � VJSC D 1=3 Vg [13] (VJSC corresponds to 620 GHz for the
Nb–AlN–NbN FFO).

Previous LW measurements have demonstrated [7,23] the essential dependences
of the free-running FFO LW on the FFO voltage, its current density and geometry
of the biasing electrodes. In this report, we summarize the results of the FFO study
and optimization of the FFO layout for both types of FFOs. Recently, it was shown
[4, 7] that the LW decreases considerably with increasing width, W , of the FFO
junction. This is valid for all frequencies of interest, and consequently, the spectral
ratio of the phase locked FFO for wide junctions is better. We have increased the
FFO width up to 28�m, which is more than five times the Josephson penetration
depth J. A number of FFOs with the same electrode layout, but different widths
of the FFO junction (W D 4, 8, 12, 16, 20 and 28�m) are fabricated using the
same technological procedure yielding the same junction parameters (normal state
resistance � area, RnS D 30	�m2). The results of the LW measurements of these
circuits at three frequencies are presented in Fig. 10.11.

Fig. 10.11 Linewidth of free-running FFOs (left axis) and corresponding spectral ratio for the
phase-locked FFO (right axis) measured at different FFO frequencies as a function of FFO width.
All circuits are fabricated by the same technological procedure .RnS D 30	�m2/



276 V.P. Koshelets et al.

Even for the largest tested width .W D 28�m/, there is no evidence of deteri-
oration in the FFO behaviour. Furthermore, the power delivered to the SIS mixer
is getting higher and the LW lower at all frequencies. The decrease of the FFO LW
with increasing FFO width is in accordance with existing theoretical models and our
expectations. The bias current differential resistance, Rd, decreases approximately
inversely proportional to the bias current IB. Since the FFO LW is proportional
to Rd

2�IB, it scales down linearly with the junction width. Of course, one can
expect that the LW decrease will saturate and the FFO performance will deteriorate
with further increase of the width (e.g., due to appearance of transversal modes).
Without a reliable theory, the optimal value of the FFO width has to be determined
experimentally. Note that for a wider FFO the center line of the junction is shifted
away from the edge of the control line (the Rd

CL goes down). This may result
in a considerable reduction of extraneous noise from external magnetic fields.
Furthermore, a wider FFO presumably will have a more uniform bias current
distribution [4]. At the present state, the width of the FFO for TELIS is chosen
to be 16�m. This is a tradeoff between LW requirements and technical limitation
on the maximum bias and control line currents (both should not exceed 70 mA).

In contrast to variation of the FFO LW on the FFO width, previous measurements
[7] have demonstrated a considerable increase of the FFO LW with the FFO current
density. This contradicts the simplified consideration: the increase of the FFO
current density (as it is for increase of the FFO width) should result in the increase
of the total FFO bias current, IB, and reduce the FFO differential resistance on the
bias currentRd. Since the FFO LW is proportional to Rd

2�Ib, one should expect the
decrease of the measured FFO free-running LW for larger FFO current density. In
reality, Rd does not decrease as much as this simple consideration predicts and the
LW increases. On the contrary, a high value of the current density .Jc 
 8 kA=cm2/

is important for wide-band operation of the SIS-mixer at the submm wave range.
The increase of the FFO LW with current density (as discussed above) creates a
serious problem in the design and development of SIR chips. Implementation of two
separate tri-layers with different current densities – one for the SIS mixer (high Jc)
and the other one for the FFO/HM (lower Jc) seems to be a solution. We have
successfully tested and verified this approach for the SIR microcircuits for TELIS.

Improvement of the FFO performance was obtained by enlarging the electrodes
overlapping area, the so-called “idle region”. Larger overlapping presumably
provides a more uniform bias-current distribution, due to reduced inductance of the
overlapping electrodes. Larger overlapping of the FFO electrodes also implies that
the FFO of the same width is shifted from the edge of the bottom electrode, resulting
in a considerable decrease of the Rd

CL value. Note that for a wide FFO also some
shift of the FFO center line appears due to increasing of the width. Experimentally,
we found that an idle region WI D 10�m is the optimal value for the present FFO
design. Up to now, there is no adequate model that can quantitatively describe
both the processes in the FFO and a self-consistent distribution of the bias current.
Nevertheless, the presented results are very encouraging and these modifications of
the FFO were implemented in the TELIS SIRs.
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To further explore this approach, we have developed different designs of the
“self-shielded” FFO with a large ground plane in the base electrode. Such FFOs
are expected to be less sensitive for variations in the external magnetic field and
have to provide more uniform bias current distribution (since all bias leads are
laying over superconducting shield and have low inductance). Actually, the low-
inductive bias leads provide a possibility of optimal (rather than uniform) current
distribution, “regulated” by the FFO itself. The last feature optimizes the emitted
FFO power. Indeed, the IVCs of all shielded FFOs are much more reproducible; the
power delivered to HM is higher compared to a traditional design. Unfortunately,
the free-running LW for all variants of shielded FFOs with separate bias leads is
much larger than for FFOs of traditional design. It seems that injection of the bias
via separate leads results in some spatial modulation of bias current [23] despite
the additional triangular elements added for more uniform current injection. On
the contrary, designs that employed three superconducting electrodes provide both
perfect pumping and improved LW, details will be published elsewhere.

10.2.2.3 Spectral Ratio, Phase Noise

As it was mentioned above, the free-running FFO LW has to be well below 10 MHz
to ensure stable FFO phase locking with a reasonably good spectral ratio (SR, the
ratio between the carrier and total FFO power). For example, only about 50% of
the FFO power can be phase locked by the present TELIS PLL system at free-
running FFO LW of 5 MHz. A low spectral ratio results in a considerable error
at resolving of the complicated atmospheric line shapes [12]. For the given PLL
system, the value of the SR is fully determined by the free-running FFO LW: these
two quantities are unambiguously related (see Fig. 10.12, where data for FFOs of
different designs and types are presented). The theoretical curve, calculated in [24],
coincides reasonably well with the experimental data. A possibility to considerably
increase the SR by application of the ultra-wideband cryogenic PLL system has
been recently demonstrated [25].

An important issue for TELIS operations is the possibility to tune the FFO
frequency and power independently, while providing the same spectral ratio of PL
FFO. The TELIS HM is pumped by a tunable reference frequency in the range
of 19–21 GHz from the LO Source Unit (LSU), phase locked to the internal ultra
stable 10 MHz Master Oscillator. The HM mixes the FFO signal with the n-th
harmonic of the 19–21 GHz reference. The LW and SR of the TELIS FFO are
almost constant over a wide range of FFO bias current at fixed FFO frequency (see
Fig. 10.13). From this figure, one can see that the SR is about 50% over the range
of bias current, Ib, 14–30 mA, while the pumping level varies from 3:5 �A at Ib D
14mA up to 81�A at Ib D 30mA. Furthermore, the SR D 34% can be realized
at Ib D 12mA, where the HM pumping is below 0:5 �A. It means that at proper
choice of the HM voltage and LSU power even moderate HM pumping by the FFO
is enough for efficient PLL operation (providing sufficient signal-to-noise ratio).
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Fig. 10.12 Spectral ratio for the phase-locked FFO of different types and designs as a function
of free-running FFO linewidth. Solid line – calculated dependence of the SR on FFO LW for PLL
bandwidth D 10MHz

Fig. 10.13 Dependence of the HM current induced by FFO (HM pumping) and spectral ratio after
FFO phase-locking as a function of FFO bias current. All the data measured at FFO frequency of
670 GHz

To prove the capabilities for high-resolution spectroscopy, line profiles around
625 GHz of OCS gas have been successfully measured by the SIR operating in the
DSB regime [3]. The tests were done in a laboratory gas cell setup at a gas pressure
down to 0.2 mBar, corresponding to the FWHM LW < 5MHz. It was demonstrated
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that the spectrum recorded by the Digital Auto Correlator (DAC) is a convolution
product of the signal (gas emission lines) with the FFO line spectrum; resolution in
this experiment is limited by DAC back-end. More detailed spectral measurements
data will be presented in the next section.

To investigate the ultimate frequency resolution of the receiver, we have mea-
sured the signal of the synthesizer multiplied by a super-lattice structure [26]. The
signal recorded in these measurements is a convolution of the narrow-bandwidth
(delta-function-like) spectrum of the synthesizer with phase locked spectrum of the
FFO with an accuracy of the used resolution bandwidth of the spectrum analyzer
(30 kHz). It was confirmed that the frequency resolution of the receiver is better
than 100 kHz.

The residual phase noise of the phase locked FFO – measured relative to the
reference synthesizer – as a function of the offset from the carrier is plotted in
Fig. 10.14. To get the absolute FFO phase noise, one should add the synthesizer
noise multiplied by n2 to the residual phase noise of the FFO. Data for the
Rohde&Schwarz R�SMF100A Microwave Signal Generator with improved phase
noise [27] are also presented in Fig. 10.14, for the case where the FFO, operating
at 450 GHz, is locked to the 20th harmonic of the synthesizer, n2 D 400. The total
(absolute) FFO phase noise (solid line in Fig. 10.14) is dominated by the synthesizer

Fig. 10.14 Experimental phase noise of a phase locked FFO at 450 GHz. Since the phase noise
of the FFO is measured relative to the 20th harmonic of the synthesizer, the synthesizer noise
[27], multiplied by a factor 202 D 400, should be added to the residual FFO noise to get the total
(absolute) FFO phase noise – solid line
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noise for offsets< 10 kHz. The noise at larger frequency offset is mainly due to PLL
system. Note that the FFO phase noise is overestimated since no subtraction of the
noise added by the IF amplifier chain was performed; actually at offsets much larger
than the PLL regulation bandwidth .>20MHz/ the measured phase noise is mainly
determined by the IF chain.

This section can be summarized as follows. Continuous tuning of the frequency is
possible for Nb–AlN–NbN FFOs due to bending and overlapping of the FSs, so that
any desirable frequency can be realized. A possibility to phase lock the Nb–AlN–
NbN FFO at any frequency in the range 350–750 GHz has been experimentally
demonstrated. An optimized design of the FFO for TELIS has been developed
and tested. A free-running LW value from 5 to 1 MHz has been measured in the
frequency range 300–750 GHz for a “wide” FFO. As a result, the spectral ratio of
the phased locked FFO varies from 50% to 97% correspondingly. The “unlocked”
rest of the total FFO power increases the phase noise and the calibration error. To
ensure remote operation of the phase locked SIR several procedures for its automatic
computer control have been developed and tested. New designs of the FFO intended
for further improvement of its parameters are under development, but even at the
present state the Nb–AlN–NbN FFOs are mature enough for practical applications.

10.3 TELIS

10.3.1 TELIS Instrument Design

The front-end of the ballon-borne TELIS instrument for atmospheric research is
common for the three channels on board. It consists of the pointing telescope, a
calibration blackbody, relay and band-separating optics (see Fig. 10.15). Details of

Fig. 10.15 Optical lay-out of the TELIS SIR channel
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the optical design can be found in [28–30]. The three mirrors of the dual offset
Cassegrain telescope are mounted on a common frame, rotatable around the optical
axis of the output beam. Limb scanning is performed between the upper troposphere
(8–10 km in the Arctic) to flight altitude (typically 32 km) in 1–2 km steps. At
the tangent point of the line of sight, the vertical (elevation) resolution is about
2 km for an observational frequency of 500 GHz, scaling inversely proportional
with frequency. In horizontal (azimuth) direction, the spatial resolution is about a
factor of 2 less due to the anamorphicity of the telescope. This is allowed as the
atmospheric properties within the beam hardly depend on the azimuth.

The radiometric gain of the spectrometers is calibrated once or twice in
every Limb scan using a conical blackbody reference source and a measurement
of the cold sky. For this, a small flip mirror is included between the telescope and
the beam-separating optics. By measuring at two up-looking telescope positions, the
impact of the remaining air above the gondola can be assessed.

Simultaneous observation by the receivers is achieved by quasi-optical beam
splitting. First, a wire-grid-based polarizing beam splitter is employed to reflect one
linear polarization to the 500 GHz channel, the other linear polarization is split by
a dichroic filter between the SIR channel and the THz channel. Subsequently, off-
set mirrors shape and direct the three beams to the cryogenic channels. Inside the
custom designed liquid-helium cooled cryostat, each receiver has dedicated cold
optics, a superconducting mixing element and IF amplifiers.

The very compact 500 GHz receiver channel consists of a fixed-tuned waveguide
SIS mixer, a cryogenic solid-state LO chain and a low-noise IF chain operating
at a relatively high IF .IF D 15–19GHz/ [31]. The 1.8 THz channel employs a
cryogenic solid-state LO that is loss-less coupled into the mixer via a Martin–Puplett
type optical interferometer. The mixer is based on a phonon-cooled NbN HEB (Hot
Electron Bolometer) [32]. The 480–650 GHz SIR receiver channel is based on a
single-chip SIR, as described in the next section.

The warm optics couples to the SIR channel with a beam that has a waist radius
ranging from 2 to 3 mm, located at the cryostat window. The system-pupil is imaged
by two additional mirrors on the silicon elliptical lens; on the back surface of
this lens, the SIR chip is located. The SIR-channel cold-optics is also frequency
independent to fully exploit the wide-band operation of the SIR device.

The amplitude-phase distribution of the near field beam of the SIR cold channel
at 600 GHz as measured at the dewar window is shown in Fig. 10.16. The beam
waist is measured to be 2.25 mm, which is within 1% of the designed value. The
measured Gaussisity of the beam is 92.4%.

The IF processor (located on the main frame of TELIS) converts the amplified
IF output signals of the three receivers to the input frequency range of the digital
autocorrelator. The digital autocorrelator has a bandwidth of 2 � 2GHz with 2,048
spectral channels. Both the IF processor and the digital autocorrelator are developed
by Omnisys Instruments AB [33].

The SIR channel is controlled with a battery-operated ultra low-noise biasing
system. Since noise on the bias lines of the FFO translates in a wider FFO
LW, several precautions, such as decoupling of digital control lines and extensive
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Fig. 10.16 The amplitude (top figure) and phase (lower figure) distribution of the near field beam
of the SIR channel. The amplitude is given in units of dB. The distance from the beam waist is
110 mm and the frequency is 600 GHz

filtering and shielding, are implemented. The SIR bias unit is digitally controlled by
the on-board DLR PC-104 computer, that also interfaces with the other channels, the
digital autocorrelator, and with the host instrument MIPAS. A radio link provides
real-time two-way contact with the ground segment consisting of a server computer
with three dedicated client computers, coupled through TCP/IP socket connections.
The complete system is dimensioned to have sufficient cooling liquids and battery
power for a 24 h flight.
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Fig. 10.17 Photo of the SIR microcircuit with double-slot antenna

10.3.2 SIR Channel Design

A key element of the 480–650 GHz channel is the SIR [1–5] that comprises in
one chip (size of 4 � 4 � 0:5mm, see Fig. 10.17) a low-noise SIS mixer with
quasioptical antenna, a superconducting FFO [6] acting as an LO and a second SIS
HM for FFO phase locking. Since the free-running LW of the FFO can be up to
10 MHz, for spectral applications the FFO has to be locked to an external reference
oscillator employing a phase lock loop(PLL) system. The concept of the SIR looks
very attractive for TELIS due to a wide tuning range of the FFO. In the SIR, the
bandwidth is basically determined by the SIS mixer tuning structure and matching
circuitry between the SIS and FFO; bandwidth up to 30–40% may be achieved with
a twin-junction SIS mixer design (both for double-slot and double-dipole antennas).
To achieve the required instantaneous bandwidth of 480–650 GHz, a twin-SIS mixer
with 0:8 �m2 junctions and new design of the FFO/SIS matching circuitry were
implemented. A microscope photograph of the central part of the SIR chip with
double-dipole antenna is presented in Fig. 10.18.

The resolution of the TELIS back-end spectrometer is 2.160 MHz, sufficient
to resolve the exact shape of atmospheric lines. The FFO line shape and spectral
stability should ideally be much better than this. However, the free-running LW of
the FFO can be up to 10 MHz and therefore a PLL has been developed to phase lock
the FFO to an external reference oscillator [6, 14]. For this, a small fraction of the
FFO power is first directed to a so-called HM, placed on the SIR chip. The HM is
pumped by an off-chip LSU, which is a tunable reference frequency in the range of
19–21 GHz. The frequency of the LSU is chosen such that the difference frequency
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Fig. 10.18 Central part of the SIR chip with double-dipole antenna, twin SIS-mixer, and harmonic
mixer for FFO phase-locking

of the nth harmonic of the LSU, generated by the HM, and the FFO is about 4 GHz.
This difference signal is then amplified by a cryogenic low-noise HEMT amplifier
and down-converted to 400 MHz by using a second reference at 3.6 GHz. Finally,
the frequency and phase of this 400 MHz signal is compared against yet another
reference frequency of 400 MHz and the resulting error signal is fed back to the
FFO. The LSU and the reference signals at 3.6 GHz and at 400 MHz are all phase
locked to an internal ultra stable 10 MHz Master Oscillator.

All components of the SIR microcircuits are fabricated in a high quality
Nb–AlN/NbN tri-layer on a Si substrate [13]. The receiver chip is placed on the
flat back surface of the elliptical silicon lens (forming an integrated lens-antenna)
with accuracy 10�m, determined by the tolerance analysis of the optical system.
As the FFO is very sensitive for external electromagnetic interferences, the SIR
chip is shielded by two concentric cylinders: the outer cylinder is made of cryo-
perm and the inner one of copper with a 100�m coating of superconducting lead.
All SIR channel components (including input optical elements) are mounted on a
single plate inside a 240 � 180 � 80mm box cooled by the thermo-straps to the
temperature of about 4.2 K.

10.3.3 TELIS-SIR Channel Performance

The TELIS-SIR channel has been characterized in eight micro-windows that have
been selected for the flight in (Sweden). These micro-windows have the following
LO frequencies:

• 495.04 GHz for H2
18O

• 496.88 GHz for HDO
• 505.60 GHz for BrO
• 507.27 GHz for ClO
• 515.25 GHz for O2, pointing, and temperature
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Fig. 10.19 Measured DSB receiver noise temperature of the SIR device selected for flight at
8 GHz IF (solid line) and integrated in the 4–8 GHz IF range (dashed line)

• 519.25 GHz for BrO and NO2

• 607.70 GHz for ozone isotopes
• 619.10 GHz for HCl, ClO and HOCl

Initial flight values for the parameters for the FFO, SIS, and HM mixers have
been determined for each micro-window. Dedicated algorithms allowing for fast
switching between LO frequencies and for in-flight optimization of the SIR have
been developed (see below). It takes about 1 min of stabilization and optimization
to switch between two LO settings. All experimental results discussed here have
been obtained with the SIR flight device.

The measured double sideband (DSB) receiver noise temperature TR, uncor-
rected for any loss, is presented in Fig. 10.19 as a function of LO frequency. As
can be seen, the noise is well below 200 K at all frequencies of interest, with a
minimum of 120 K at 500 and 600 GHz. The noise peak around 540–575 GHz
is partially spurious, caused by absorption of water vapor in the path between
calibration sources and the cryostat, and partially real – due to properties of the
SIS-mixer tuning circuitry. The relatively high noise in this band is of no concern
for science observations, since this part of the atmospheric spectrum is obscured
by a highly saturated water-vapor line rendering it virtually useless for atmospheric
science. The noise as a function of IF is fairly flat in the frequency range 4–8 GHz,
as can be seen in Fig. 10.20, where (DSB) receiver noise temperature is plotted as
a function of IF. The dependence of the receiver noise temperature on the SIS bias
voltage is shown in Fig. 10.21; one can see that for Nb–AlN/NbN circuits there is
very wide range of SIS bias voltages where TR is almost constant.
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Fig. 10.20 DSB receiver noise temperature as a function of the IF, taken at two FFO frequencies:
497 and 601 GHz

Fig. 10.21 DSB receiver noise temperature as a function of the SIS bias voltage measured at the
FFO frequency 497 GHz
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Fig. 10.22 Spectra of the FFO operating at 515.2 GHz (blue dashed line – frequency locked; red
solid line – phase-locked). Linewidth .LW/ D 1:5MHz; signal-to-noise ratio .SNR/ D 36 dB;
spectral ration .SR/ D 93:5%. Spectra measured with RBW D 1MHz; span D 100MHz

After optimization of the FFO design, the free-running LW between 7 and
0.5 MHz has been measured in the frequency range 350–750 GHz (see Fig. 10.10),
which allows to phase lock from 35% to 95% of the emitted FFO. Example of the
free-running (frequency-locked) and phase locked spectra of the FFO measured for
flight SIR at one of the frequencies selected for first TELIS flight are presented in
Fig. 10.22.

Data for five important TELIS frequencies are summarized in Table 10.1. It
should be mentioned that the noise of the digital electronics at frequencies of about
1 MHz slightly increases the measured LW value, while the PLL is able to suppress
the interference (that results in larger SR than can be expected from measured LW).
Note also the dependence of the SR and LW on the FFO bias current related to
variation of the differential resistance along FS.

For the TELIS measurement strategy, it is important to know whether the timing
of limb sounding should depend on the stability of the complete receiver chain.
The stability determines the optimum achievable measurement time for a single
integration, and thus the required frequency of the calibration cycle. The stability
of the complete TELIS-SIR system has been determined with a noise-fluctuation
bandwidth of 17 MHz, and the results [10] are presented in Fig. 10.23. For the two
IF channels that are used to determine the Allan variance, it is found that the Allan
stability time is about 13.5 s. When the difference of the two channels is taken to
determine the Allan variance (this is the so-called spectroscopic, or differential,
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Table 10.1 Data for the flight SIR at selected TELIS frequencies

FFO frequency (GHz) LW (MHz) SNR (dB) SR (%) FFO Ib (mA)

495.04 1.5 32 90 30.7
496.88 1.5 37 93 31.3
515.25 1.5 36 93.5 29.2
607.7 2.1 32 87.7 30
607.7 1.8 32.6 88.6 34
619.1 5.4 25 63.3 30
619.1 4.6 26.8 70.3 34

Fig. 10.23 System stability of the SIR channel. FFO is phase locked at 600 GHz. The two lines
at the top (red and green) represent individual channel variances, the blue line is representative of
the spectroscopic variance and the straight black line corresponds to the radiometer equation

mode), the Allan stability time of 20 s is found. This is comparable to stabilities
measured for astronomical receivers.

Within TELIS, a 1.5 s integration time per tangent height is used. This is mainly
driven by the required integrated signal levels at the autocorrelator input. The
stability of the SIR channel therefore poses no constraints on the observing strategy.

The SIR is a complicated device as it contains multiple interactive supercon-
ducting elements: an SIS mixer, an FFO, and an HM for the FFO phase locking.
Special algorithms and procedures have been developed and tested to facilitate
characterization of the SIR at reasonable timescales and for the SIR control during
the flight. These routines include:

• Fast definition of the FFO operational conditions (both on the FS and in the
flux-flow regimes).

• Measurements of the free-running FFO LW.
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• Optimization of the LSU and HM parameters.
• Optimization of the PLL operation.
• Minimization of the SIR noise temperature.
• Setting all predefined SIR parameters in the exact sequence for control during

the flight.
• Continuous monitoring of the main SIR parameters.
• Adjustment (or recovering) of the SIR operational state.

10.3.4 Kiruna Campaigns and Preliminary Science Results

TELIS had two successful scientific campaigns from Kiruna, North-Sweden, in
March 2009 and in January 2010. The instrument was launched together with the
MIPAS instrument on the MIPAS-B2 gondola (see Fig. 10.24). The launch of both
flights took place around midnight. During the ascents, the SIR channel behaved
nominally and already after 30 min the first spectra were recorded. In the 2009
flight, the first flight ceiling of 35 km was reached after 3 h and 1 h later the flight
continued at 28 km altitude. In the 2010 flight, the ascent took more than 4 h to
reach a flight ceiling of 34 km where the balloon stayed for the remainder of the
flight. Several night recordings were taken, necessary for background measurements
for species with a diurnal cycle and for instrument calibration. The instrument
proved to be stable against the strong temperature variations of the atmosphere
during ascent (with ambient temperatures as low as �90 ıC) and during sunrise. The
south eastern wind allowed for long flights of about 12 h over Finland during both

Fig. 10.24 TELIS-MIPAS launch at Esrange, Sweden; March 2009. Balloon size: 400;000m3;
payload weight: 1,200 kg
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campaigns. After sunrise, the diurnal cycle of various species was monitored and in
total several hundred limb sequences have been recorded in each flight. The MIPAS-
TELIS balloon system performed nominally during the flight and after the parachute
landing and recovery, the instruments were found to be undamaged, allowing for
post-flight checks and calibration measurements.

The science goals of the campaign from Kiruna, North Sweden, were threefold:
investigation of the stratospheric hydrological cycle by measurements of isotopic
water, catalytic ozone destruction by chlorine chemistry, and the bromine content
of the stratosphere. In addition, measurements were performed for space-borne
instruments (ENVISAT satellite and in 2010 also SMILES aboard the International
Space Station). Data presented in Fig. 10.25 prove the capabilities of the TELIS-SIR
channel for high-resolution spectroscopy. In this case, the FFO frequency is tuned
to 505.600 GHz, the telescope is 6 degrees up-looking, and the gondola altitude is
35.780 km. The width of the ozone lines are almost fully determined by atmospheric
conditions (Doppler and pressure broadening) and are about 10 MHz, as expected.

Chlorine ozone destruction peaks in the arctic winter and/or spring when the so-
called polar vortex breaks up. During this event, the ClO radical, responsible for
catalytic ozone destruction, becomes available in huge amounts. However, chlorine
is also stored in nonreactive reservoir species of which HCl is an important member.
The amount of HCl in the stratosphere is a measure of the total nonactive Cl content
and is as such an important species to monitor in ozone chemistry studies.

In Fig. 10.26 measured spectra are shown in which the HCl line at IF D 6:81GHz
is well pronounced for line of sights. A line of sight is determined by the flight
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Fig. 10.25 Ozone spectrum recorded during the 2009 campaign with the SIR channel (FFO
frequency D 505:6GHz) from an altitude of 35.780 km and with the telescope pointing 6ı upward.
The width of the lines is ca. 10 MHz and is fully determined by atmospheric conditions. The
intensity of the received signal in Kelvin is plotted as ordinate of the graphs
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Fig. 10.26 HCl spectra
recorded during the 2009
campaign with the SIR
channel (FFO
frequency D 619:1GHz)
from an altitude of ca. 28 km.
The spectra correspond to
line of sights with tangent
heights in the range of 10.5
(top) to 25.5 km (bottom),
which is also the altitude for
which a particular spectrum is
most sensitive. The intensity
of the received signal in
Kelvin is plotted as ordinate
of the graphs
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altitude of the balloon platform and the tilt of the telescope. Each line of sight
results in different altitude sensitivities and effectively probes different parts of
the atmosphere. The altitudes mentioned in Fig. 10.26 refer to the lowest probed
altitude, the tangent height, for a certain line of sight and generally corresponds to
the altitude for which the measurement is mostly sensitive.

Bromine depletes ozone even more aggressively than chlorine on a per molecule
basis, but its abundances are much lower. In fact, the total amount of stratospheric
bromine is still not settled and is currently one of the main uncertainties in the
importance of bromine in ozone depletion.

In 2009, the flight took place in nonvortex conditions whereas in 2010 the flight
was in the polar vortex. The diurnal cycle of ClO has been observed in both flights,
albeit with a much higher time resolution in the 2010 flight (ca. 1 min). In 2009,
BrO has been detected, although barely as the line was superimposed on another
spectral feature. However, in 2010 the BrO line, with a level of only ca. 0.3 K, was
isolated and clearly detected. The data reduction is on-going but the first spectra for
HCl, ClO, and BrO are presented in Figs. 10.26, 10.27, and 10.28, respectively.

10.3.5 SIR for Noninvasive Medical Diagnostics

High sensitivity and spectral resolution of the integrated spectrometer enables the
analysis of multicomponent gas mixtures. Exhaled air of human includes about
400 gases, of which some can be indicators of various diseases and pathology. For
example, nitric oxide, NO, was detected in the exhaled air of patients suffering from
bronchial asthma, pneumonia, and other chronic inflammatory diseases of upper
airways. Besides, nitric oxide may have an effect on the reaction of tumors and
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Fig. 10.27 ClO spectra
recorded during the 2010
campaign with the SIR
channel (FFO
frequency D 507:3GHz)
from an altitude of ca. 34 km.
The two sets of spectra
correspond, respectively, to
25 and 19 km tangent heights,
i.e. the altitudes for which
these spectra are most
sensitive. The increase of ClO
over time is clearly visible.
The intensity of the received
signal in Kelvin is plotted as
ordinate of the graphs
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Fig. 10.28 BrO spectra
recorded during the 2010
campaign with the SIR
channel (FFO
frequency D 519:3GHz)
from an altitude of ca. 34 km.
In the daytime measurement
(orange), the BrO line is
visible at 5.6 GHz. During the
nighttime measurement
(black), BrO is absent, as
expected. The shown tangent
heights are from top to
bottom 26, 28, 30, and 32 km,
i.e. the altitudes for which
these spectra are most
sensitive. The intensity of the
received signal in Kelvin is
plotted as ordinate of the
graphs
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healthy tissues on radiation therapy. Another example may concern the opportunity
of noninvasive diagnostics of gastritis or peptic ulcer of the stomach by measuring
the concentration of ammonia in exhaled air. Nowadays urease respiratory tests
(application of urea with C13) are mainly used to detect the diseases. However, the
method is quite expensive and its sensitivity is restricted by natural variations of
C13 in exhaled air during the procedure. Natural concentrations of ammonia instead
are quite low, so the measurement of the ammonia concentration could be a good
alternative. Another important application concerns the noninvasive diagnostics of
diabetes, where exhaled acetone is an indicator.

A laboratory setup for spectral analysis of the exhalted air has been developed at
IREE (input frequency range 480–630 GHz, noise temperature below 200 K over the
range, spectral resolution below 1 MHz), based on the integrated spectrometer for
atmosphere monitoring. The instrument parameters allow us to measure the spectral
lines of the rotational transitions for most of the substances in the exhalted air. The
laboratory setup has been developed and demonstrated using the gases OCS and
NH3 in the laboratory gas cell. Clear and well-defined response has been measured
at the expected frequencies of spectral lines for pressures down to 10�3 mBar.
Examples of the NH3 spectra recorded by the SIR with the Fast Fourier Transform
Spectrometer (FFTS) as a back-end, and by the novel technique based on application
of the additional oscillator are presented in Fig. 10.29 and 10.30, respectively. The
possibility to measure the spectral response in a few seconds has been demonstrated
experimentally. This allows to carry on the real-time medical survey. First spectral
measurements by the integrated receiver of exhalted air in the sub-THz range have
demonstrated good selectivity and speed of the analysis as well as high sensitivity.

Fig. 10.29 NH3 spectra measured by the SIR with FFTS back-end at different pressures
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Fig. 10.30 Response (derivative of the spectral line), measured for NH3 gas by the integrated
receiver with implementation of novel technique (details will be published elsewhere)

For example, we have measured ammonia concentration with sensitivity on the
order of 10�9 (1 ppb).

10.4 Summary

The capability of the SIR for highresolution atmospheric spectroscopy has been suc-
cessfully proven with scientific balloon flights from Kiruna, North Sweden. During
the two 12-h missions, phase locked SIR operation and frequency switching in the
480–650 GHz frequency range has been realized. An intrinsic spectral resolution
of the SIR well below 1 MHz has been confirmed by CW signal measurements
in the laboratory. An uncorrected DSB noise temperature below 120 K has been
measured for the SIR when operated with a phase locked FFO at an IF bandwidth
of 4–8 GHz. To ensure remote operation of the phase locked SIR several software
procedures for automatic control have been developed and tested. The first tentative
HCl profile has been presented and its quality looks promising for future data
reduction. Diurnal cycles of ClO and BrO have been observed at different viewing
configurations (altitude), with BrO line level of only about 0.5 K. Possibilities to
use the SIR devices for analysis of the breathed out air at medical survey have been
demonstrated. The SIR can be considered as an operational device, ready for many
applications.
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Chapter 11
Cryogenic Phase-Locking Loop System Based
on SIS Tunnel Junction

A.V. Khudchenko, V.P. Koshelets, and K.V. Kalashnikov

Abstract An ultra-wideband cryogenic phase-locking loop (CPLL) system is a
new cryogenic device. The CPLL is intended for phase-locking of a Flux-Flow
Oscillator (FFO) in a Superconducting Integrated Receiver (SIR) but can be used
for any cryogenic terahertz oscillator. The key element of the CPLL is Cryogenic
Phase Detector (CPD), a recently proposed new superconducting element. The CPD
is an innovative implementation of superconductor–insulator–superconductor (SIS)
tunnel junction. All components of the CPLL reside inside a cryostat at 4.2 K, with
the loop length of about 50 cm and the total loop delay 5.5 ns. Such a small delay
results in CPLL synchronization bandwidth as wide as 40 MHz and allows phase-
locking of more than 60% of the power emitted by the FFO even for FFO linewidth
of about 10 MHz. This percentage of phase-locked power three times exceeds that
achieved with conventional room-temperature PLLs. Such an improvement enables
reducing the FFO phase noise and extending the SIR operation range.

Another new approach to the FFO phase-locking has been proposed and experi-
mentally verified. The FFO has been synchronized by a cryogenic harmonic phase
detector (CHPD) based on the SIS junction. The CHPD operates simultaneously as
the harmonic mixer (HM) and phase detector. We have studied the HM based on the
SIS junction theoretically; in particular we calculated 3D dependences of the HM
output signal power versus the bias voltage and the LO power. Results of the cal-
culations have been compared with experimental measurements. Good qualitative
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and quantitative correspondence has been achieved. The FFO phase-locking by the
CHPD has been demonstrated. Such a PLL system is expected to be extra wideband.
This concept is very promising for building of the multi-pixel SIR array.

11.1 Introduction

A cryogenic phase-locking loop (CPLL) system is primarily intended for phase sta-
bilization of a Local Oscillator (LO) of a Superconducting Integrated Receiver (SIR)
[1, 2]. The SIR circuit embodied on a chip (size of 4 � 4 � 0:5mm) comprises a
low-noise superconductor–insulator–superconductor (SIS) mixer with quasioptical
planar antenna, a superconducting Flux-Flow Oscillator (FFO) acting as a tunable
LO in the frequency range 400–700 GHz and a second SIS harmonic mixer (HM) to
phase-lock the FFO.

The FFO emission spectrum was found to be the Lorentz line [3,4] at frequencies
up to 750 GHz. Such line shape indicates that the free-running (“natural”) FFO
linewidth is determined by the wideband noise, that is thermal fluctuations and
the shot noise. This is contrary to many traditional microwave oscillators (e.g.,
backward-wave and Gunn oscillators), where the “natural” linewidth is rather
narrow and is broadened primarily by external fluctuations. In fact, the FFO
linewidth may be up to 10 MHz. Therefore, for higher spectral resolution, FFO
frequency should be stabilized with a wideband phase-locking loop (PLL) system.
The wider is PLL synchronization bandwidth (BW), the larger part of the FFO
power can be phase-locked (PL), resulting in lower phase noise.

The ratio of the phase-locked power to the total power emitted by the oscillator is
called a “spectral ratio” (SR). Actually, the SR is determined from a measured LO
spectrum as a ratio of the phase-locked power of the carrier to the total emitted
power comprising the carrier and the intrinsic phase noise power generated by
LO [4]. So, the SR would be 100% for an ideal LO with a delta-shaped spectrum
and zero phase noise level. Usually, the noise power is embedded in the bandwidth
100 MHz. It should be noted that measured phase noise includes a contribution of
the IF amplifier, and we do not subtract this level in SR calculations (so the actual
SR is even a little higher). The error introduced due to IF amplifier noise is about
1–3%. A specially designed semiconductor room temperature PLL (RT PLL) with
the BW of about 12 MHz is used for the FFO phase locking. The RT PLL provides
SR value of about 50% for the 5 MHz-wide FFO emission line.

There are several reasons to extend BW of the PLL system much beyond
the present 12 MHz. The first one is that the FFO linewidth exceeds 10 MHz at
the voltages exceeding one-third of the FFO gap voltage, where the Josephson
self-coupling effect drastically modifies FFO I–V curves increasing differential
resistance and internal damping [5, 6]. In case of such a wide line, an essential part
of the emitted FFO power cannot be phase-locked with the RT PLL (the SR is as
low as 20–25%). The second reason is that FFOs based on NbN or NbTiN films
are the most attractive for future SIR applications at frequencies of about 1 THz.
The linewidth of such FFOs can considerably exceed 10 MHz due to higher surface
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losses. In this situation, the PLL’s bandwidth has to be as large as 50 MHz (to reach
at least 50% of the SR value required for most applications). The third reason is
that using SIR for interferometery applications requires an LO with extremely high
phase stability. For example, for the ALMA project (interferometer in Chile with
baseline up to 15 km) the LO rms phase noise should be considerably less than 75 fs
(the value of rms atmospheric fluctuation at interferometer site) [7]. The required
value of the SR for this rms phase noise level at frequency of about 600 GHz is
more than 95%. To provide such a high SR value even for the FFO with relatively
narrow linewidth of 2 MHz, the PLL should have BW of about 50 MHz.

The BW is determined by the group delay £ in the loop [8, 9]. It should be
emphasized that the noise of RT PLL elements is low enough as compared to
the noise of IF amplifier, and it does not affect phase-locking efficiency. For RT
PLL, the BW is limited to 12 MHz due to the total delay of about 15 ns (including
5 ns contribution from the PLL filters and semiconductor electronics and 10 ns
from the 2 m-long cables connecting the RT PLL electronics with cryogenic FFO).
The minimal cabling length is restricted by the size of a cryostat and cannot be
essentially reduced without increasing the heat flux into the cryogenic space. Note
that the traditional PLL is a semiconductor-based device designed for 300 K, and it
cannot be placed directly into the cryostat.

To improve spectral characteristics of the FFO and to overcome the limitation
of the RT PLL, we propose the CPLL system based on a Cryogenic Phase Detector
(CPD) [8–10]. All elements of the CPLL can be located very close to the FFO inside
the cryostat to avoid any temperature gradients between FFO and phase detector and
to minimize the loop length. Negligible CPD delay and small group delays in the
short loop enable an ultra-wide BW.

11.2 CPD Properties

The CPD is a key element of the CPLL. It is new cryo-electronic device based
on micron-sized SIS tunnel junction with a tunnel barrier of about 1–2 nm. The
junction has current density 5–10 kA=cm2, and the gap voltage Vg is 2.8 MV for
Nb–AlOx–Nb circuits.

Synchronization systems theory shows that any mixer can operate as a phase
detector [11]. The SIS junction is a well-known mixer element due to its nonlinear
properties [12, 13] and can be utilized as a CPD for the CPLL.

There are several advantages of the SIS implementation for the FFO phase-
locking. First of all, the SIS junction has a power consumption of about 10�6 W
that is much smaller than 10�3 W for semiconductor diode phase detectors, and
second, both the SIS and the FFO operate at temperature 4.2 K. These peculiarities
allow place the CPD and the FFO close to each other, and even integrate them on
the same chip. Such a PLL system will be very compact and extra wideband.

The output signal of the phase detector with a sinusoidal response is:

".t/ D mA1A2 sin '.t/ D KPD sin '.t/;
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Fig. 11.1 I–V curves of the SIS junction measured at various settings of the microwave signals
(frequency 5 GHz): curve “1” – autonomous; “2” – pumped by one microwave signal; “3” –
pumped by two in-phase microwave signals; “4” – pumped by two anti-phase microwave signals;
PSynth1 D 0:3�W; PSynt2 D 0:1�W. Inset shows a sinusoidal dependence of the SIS current
vs phase difference between the signals. Junction aria is about 2�2 with RnS product about 30	�2

where '.t/ is a phase difference between input signals,KPD – a phase detector gain
factor, which is equal to the maximum amplitude of the output signal; m – a mixer
efficiency,A1 andA2 – input signals amplitudes. The phase characteristic of an SIS-
mixer (it can be nonsinusoidal), frequency and amplitude properties of output signal
and optimal amplitudes and frequencies of input signals must be determined. In this
case, such a junction will be specified as a phase detector.

A principle of CPD operation can be demonstrated by the tunnel junction I–V
curves. A typical autonomous I–V curve of the SIS junction is shown in Fig. 11.1
(curve 1); the curve 2 corresponds to the I–V curves of the SIS pumped by a
microwave signal [8]. Two microwave signals applied in phase give a higher power
and a higher pumping level (curve 3), while antiphase results in the lower pumping
level (curve 4). The difference between curve 3 and curve 4 corresponds to the
phase response amplitude. It is important that this difference is rather large in the
wide range of the CPD bias voltages.

The CPD is a unique phase detector due to nonlinearity of the SIS junction
[12]. Although the frequency of the synthesizer for curves 2–4 is a few gighertz
(corresponding voltage is rather low compared to the smearing of the junction
superconducting gap), the shape of the pumped CPD I–V curve looks like a
result of irradiation by a high frequency signal. Apparently, a certain number of
higher order harmonics of the applied signal are excited in the SIS junction due
to its nonlinearity; these harmonics effectively pump the tunnel junction. We have
compared experimental I–V curves and dependence of the CPD pump current as a
function of power of the applied signal with the simulated ones. The calculations
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were performed on the basis of the Tien–Gordon formula for photon-assisted
tunneling (see, e.g. [12]). The best fit to the experimental results was found for
frequency of applied signal in the range of 80–100 GHz; at that point, the shape
of experimental curves qualitatively resembles the theoretical ones for synthesizer
frequency in the range of 0.2–20 GHz [9].

11.2.1 Phase Characteristics

It was shown [8] that dependence of the CPD output versus phase difference
between the two input signals can be sinusoidal for the CPD under the proper
experimental conditions (see inset in Fig. 11.1). The phase response shape is close to
sinusoidal if its amplitude is less than 0.1 Ig (Ig is a current jump at the gap voltage).
If the amplitude becomes larger, the response shape changes. Small shape deviations
are not critical for operation of the PLL system because it works on the slope part
of the phase characteristic, i.e. at '.t/ << 1. For the nonsinusoidal response, the
main parameters are the derivative d".t/=d'.t/ (that gives the slope KPD) and the
amplitude of the linear section of the phase response (these two parameters are equal
to the KPD for sinusoidal signal). However when the phase response amplitude is
very high and even approaches to Ig, the response shape is usually deformed so
strongly that the PLL system works unstable.

11.2.2 Frequency Characteristics

The capacitance of the used SIS junctions is about 0.1 pF. Due to such a small
capacitance, the imaginary part of the junction impedance is very large at low
frequencies until the value of order 1 GHz. Therefore, the CPD response amplitude
remains flat in this range that was confirmed experimentally for frequencies up to
750 MHz [8]. This magnitude essentially exceeds 100 MHz required for the CPLL
operation.

The CPD input signal frequency can be ranged from 0.2 MHz to 20 GHz due to
nonlinear SIS properties described above. In this range, the operation frequency of
the CPLL can be chosen. Actually, the CPLL operation frequency has the upper limit
that is restricted only by working frequency of cryogenic HEMT amplifier (value of
order 10 GHz). And the lower limit about 0.4 GHz is determined as a magnitude that
should be considerably larger than the CPLL output bandwidth BW D 30–50MHz.

11.2.3 Amplitude Properties

The CPD amplitude properties can be described by the dependence of the output
signal versus input signal amplitudes and bias voltage of the SIS junction. From
such a dependence, the maximum output signal and optimal input signal amplitudes
can be found.
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Fig. 11.2 Diagram of the CPD – FFO connection through the resistor R (left figure). Part of the
CPD I–V curves (right figure) in large scale at the voltage V0 < Vg

The CPD of the CPLL is connected to the FFO control line (CL FFO) to tune
the FFO frequency [4]. The simplified diagram of the CPD–FFO interface is shown
in Fig. 11.2 (left). This equivalent circuit is certainly valid at frequencies of interest
0–100 MHz. The current source generates I0 and a part of it I splits to the CPD.
The CPD voltage V0 can be expressed in terms of load R and current I by Ohm’s
law I0 D I C V0=R.

The tunneling current of the junction changes with increasing of the applied
microwave power P (Fig. 11.2 right curves 1 and 2). For the power variation dP ,
the CPD biasing point goes along the load line .1=R/ from point A to point B. The
changing of the CPD voltage dV0 is given by the relation:

dV0 D � rdR

rd CR

@I

@P
dP;

where rd is a CPD differential resistance, @I=@P is a partial derivative (can be
calculated from the dependence I(P) measured at the fixed CPD voltage). The
maximal available value of the derivative @I=@P rises with enhancing of the current
jump at gap voltage Ig, that is with increasing of the tunnel junction area.

The combined power of two microwave signals of power P1 and P2 applied to
the junction with a phase difference ' is: P.'/ D P1CP2C2pP1P2 cos'. In PLL
system, one of these two signals is generated by local oscillator (LO) and the second
one by a reference oscillator. Then the LO is phase-locked the phase difference ' is
close to  =2 and the deviation is small .'.t/ � �=2/ << 1, for the CPD we have:

dV0 D �2 rdR

rd CR

@I

@P

p
P1P2d';

here P D P1 C P2. The rd and @I=@P are experimentally measured; the optimal
R is of about 10	. The derivative @I=@P is a function of powers P1 and P2 and
bias voltage V0. The detailed analysis of this formula and experimental results show
that output signal amplitude can achieve the value of about 0:2 Vg at the bias voltage
0:55 Vg. For the Nb–AlOx–Nb SIS junction, which I–V curves are shown in the
Fig. 11.1, the maximum output signal riches �50 dBm. The dependence of the CPD
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maximum output versus Vg is rather flat and stay in 3 dB range at the interval
0:25–0:8 Vg. For the optimal value of the input signals, the induced pumping current
of the SIS junction is of about 0.3 Ig.

The contribution to the current ICL from the CPD is determined by the dV0=R
value. Thereby, the phase deviation d' leads to the variation of the FFO frequency
dfFFO:

dfFFO D kdVFFO D k
dV0
R
RdCLFFO D �kRdCL FFO

rd

rd CR

@I

@P

p
P1P2d';

here k D 483:6MHz=�V is the Josephson constant and RdCL FFO D dVFFO=ICL is
the FFO differential resistance by ICL (typically, about 0:01	).

This formula describes the efficiency of the CPD–FFO coupling; it has been
experimentally verified with a good accuracy [9, 14], and used for design of the
CPLL. An important result is that the value of dfFFO is found to be linearly
proportional to the derivative @I=@P , magnitude RdCL FFO, amplitudes of the
microwave signals, and is determined by the rd and the R.

The coefficientK D dfFFO=d' is the open loop gain in the CPLL system [11,15].
It can be adjusted by variation of the powers P1 and P2 to achieve the optimal
feedback in the loop providing the maximum SR in the FFO spectra. For the Nb–
AlOx–Nb SIS junction presented in Fig. 11.1, the coefficient K achieves the value
250 MHz/rad at R D 10	 and RdCL FFO D 0:01	.

The K also shows the maximum frequency deviation of the FFO, which can be
tuned by CPD, that is the holding range of the CPLL system that is an upper limit
of the BW. It means that the BW of the PLL system based on the CPD connected
directly to the FFO (without any DC amplifier between) can reach the value of about
250 MHz.

11.3 CPLL System: Description and Experimental Results

Several experimental embodiments of the CPLL systems with various operation
frequencies and various loop lengths have been developed and tested [8–10, 16].
A flowchart of the latest design is shown in Fig. 11.3. The FFO emission at the
frequency of the order of 600 GHz is downconverted by the HM to the frequency
4 GHz and amplified by two HEMT-amplifiers, HEMT 1 and HEMT 2. This signal
is compared with the external reference signal by the CPD and the resulting output
error signal (proportional to the phase difference) is applied to the FFO to control its
frequency. A certain fraction of the microwave power after HEMT 1 is tapped by the
directional coupler to the spectrum analyzer. A filter between the CPD and the FFO
comprises a rejecter filter to suppress signals close to the reference frequency and an
integrating loop filter for locking and holding of the FFO frequency. The integrating
loop filter significantly increases stability of the CPLL system. It also considerable
decreases a phase noise of the phase-locked FFO near the carrier at frequencies
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Fig. 11.3 Flow chart of the CPLL for FFO phase locking
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Fig. 11.4 Downconverted spectra of the FFO operating at 600 GHz: curve “1” – Free running,
linewidth 2 MHz; “2” – phase-locked with CPLL, BW 40 MHz .SR D 93:5%/; “3” – phase-
locked with CPLL, BW 25 MHz .SR D 90:5%/; “4” – phase-locked with RT PLL, BW 12 MHz
.SR D 82%/

offset less 100 kHz. The essential moment is that the filters are based on a passive
elements operating at 4.2 K and can be placed close to the FFO and the CPD [16].

In the latest design, the loop length has been reduced down to 50 cm, which corre-
sponds to delay 2.5 ns. The operating frequency for this system was chosen 4 GHz.
For such a frequency, a band-stop filter (between CPD and FFO) with delay less
than 0.5 ns has been developed. The reduction of the loop delay due to the described
modifications results in increasing of the BW up to 40 MHz (see Fig. 11.4, curve 2).

In Fig. 11.4, downconverted spectra of the FFO phase-locked by different
PLL systems are presented (spectrum of the free-running FFO is also shown for
comparison). It should be noted that all phase-locked spectra have typical shape
consisting of a central peak containing locked power, and phase noise shoulders on
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Fig. 11.5 SR vs FFO linewidth for PLL systems with various synchronization bandwidths

sides of the peak. For example, the tops of shoulders for the CPLL with BW 40 MHz
are located at offsets 35–40 MHz from the carrier (curve 2 on the Fig. 11.4). At these
frequencies, phase of the return signal is shifted by   due to the delay in the loop.
So instead of noise suppression, the increasing of the phase noise occurs in the PLL
system; position of these shoulders allows estimation of the PLL synchronization
BW. These shoulders rise and become sharp with increasing of the PLL loop gain.
The optimal PLL gain for any given PLL system is achieved for the shoulders about
3dB higher than phase noise near the carrier. In this case, the maximum SR and
signal-to-noise ratio is reached.

From Fig. 11.4 one can see that increasing of the PLL BW leads to expansion
of the frequency range, where the phase noise of the PL FFO is lower than the
level for the free-running FFO. The reason is that the wider BW of the CPLL
enables us using higher loop gain bringing essential reduction of phase noise in the
entire regulation bandwidth (frequency of unity gain is shifted to the right) without
considerable increase of the phase noise in the shoulders. For the FFO linewidth
of 2 MHz, the CPLL is capable of phase-locking of 93.5% power, as compared to
82% for the RT PLL (Fig. 11.4). For the FFO linewidth of 7 MHz, the new CPLL
yields SR D 81% instead of 41% for the RT PLL. Even higher gain was obtained at
a broader linewidth of 11 MHz for a free-running FFO: SR D 63% in case of CPLL
against 23% for RT PLL.

Summary of the obtained results is presented in Fig. 11.5. Experimental data for
the RT PLL with the BW of 12 MHz are shown by asterisks, for the CPLL with
BW 25 MHz – by squares, and triangles show results for the described above CPLL
with BW of 40 MHz. Lines show results of numerical simulations [17] to fit the
experiment. The “regulation BW” of 10 MHz in simulations roughly corresponds
to the synchronization bandwidth “BW” D 12 MHz in experiment. Data for the
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described CPLL are shown as a solid line (effective regulation BW of 30 MHz in
simulations); these data show the advantage of BW broadening and prospects for
future improvement. There is an easy way to estimate the effect form PLL BW
widening: the SR for an FFO with a specific free-running line phase-locked by
PLL with a specific BW is the same as SR for a double-width FFO free-running
line phase-locked by the PLL with double-width BW (it works like a scale effect).
Experimental data analysis demonstrates also that the relative fraction of the phase
noise (1 – SR) falls linearly with BW increasing at SR > 50%.

It should be noted that the overall group delay for the described CPLL is
estimated as 3 ns, but both BW and SR measurements indicate the delay of about
5.5 ns. It means that the additional delay of about 2.5 ns is still present in some
elements of the loop; the origin for this delay is under investigation.

11.4 FFO Phase-Locking Directly by HM

The radical improvement of the described above CPLL system may be achieved
by implementation of a single SIS junction as the HM and the phase detector
simultaneously. This cryogenic harmonic phase detector (CHPD) substitutes the
HM, the HEMT-amplifier, and the CPD in the CPLL (Fig. 11.3). The CHPD and all
loop elements can be placed on the same chip with the FFO, which leads to further
loop group delay reduction. Such a PLL system will be ultra-wideband. A block
diagram of the new PLL system is shown in Fig. 11.6. The signals from the FFO and
the LO#1 are applied to the CHPD. The frequency of harmonic of the LO#1 signal
is equal to the FFO frequency (of the order of 600 GHz). The CHPD generates
an output signal proportional to the phase difference between the FFO and the
appropriate harmonic of the LO#1. This error signal is applied directly to the FFO
control line through a low-pass filter. For demonstration of the CHPD operation,
the additional SIS Mixer is used. This mixer operates as a HM (see Fig. 11.6). It
is utilized for observation of the FFO radiation line spectrum and monitoring of
the phase-locking effect. The LO#2 frequency is chosen to obtain the intermediate
frequency (IF) of this mixer of about 6 GHz. Such an IF is determined by the
operating range 4–8 GHz of the HEMT-amplifiers in IF chain of the SIS mixer.

11.4.1 On the Theory of HM

It is crucial to achieve a high-power output signal of the HM based on SIS to
reach the effective FFO synchronization. The experimental data shows that power
of the IF signal depends in a complicated way on the HM bias voltage, frequencies
and powers of the LO and FFO signals. To study the HM properties, it has been
theoretically analyzed and the 3D dependences of its output signal power versus
the bias voltage of SIS junction and the LO power have been calculated. The
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Fig. 11.6 Block diagram of the system for the FFO synchronization by the CHPD

detailed theoretical description of the SIS junction under action of microwave
frequency signals is given in [12, 18, 19]. In [12], a simplifying assumption about
the small amplitude of the input signal and shunting of the highest harmonics of
the LO by junction capacitance was used. Papers [18, 19] involved the method
of the SIS junction description in general case, that is for any powers of input
signals. Nowadays the theory [18, 19] is the most complete; it takes into account
existence of the harmonics generated by SIS junction and influence of the external
electromagnetic environment. The calculations of some HM characteristics on the
SIS based on this theory are given in [19].

We present the simplified model, which gives us the opportunity to reduce
the time of HM characteristics calculation, but good qualitative and quantitative
agreement with the experimental data still can be obtained. Let us consider the
model of the weakly interacting quasi-particles under the influence of the periodic
electric field without taking into account spin effects as in [20].

Wave function of a quasi-particle with energy E without applying high-
frequency electric field is � D f .x; y; z/ exp.�iEt=„/, where f .x; y; z/ – certain
function of coordinates, i – imaginary unit, t – time, „ – Planck’s constant. This
wave function is the eigen function of a nonexcited system Hamiltonian H0. The
voltage across the junction is V!1 cos.!1t/CV!2 cos.!2t/ then two periodic signals
of frequencies!1; !2 and of amplitudes V!1; V!2 are applied to junction electrodes.
The Hamiltonian of quasi-particles system is then:

H D H0 C eV!1 cos.!1t/C eV!2 cos.!1t/;

whereH0 – nonexcited system Hamiltonian,H – Hamiltonian of system influenced
by two harmonic signals, e – charge of electron. The new wave function is:

� D f .x; y; z/ exp.�iEt=„/
 
X

n

Bn exp.�in!1t/

! 
X

m

Cm exp.�im!2t/

!

;

where Bn and Cm – unknown functions.
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Applying this wave function to Schrödinger’s equation

i„@ 
@t

D bH ;

we obtain equations for Bn and Cm.
Solution of this Schrödinger’s equation is:

�Df .x/ exp.�iEt=„/
 
X

n

X

m

Jn

�
eV!1

„!1
�
Jm

�
eV!2

„!2
�

exp Œ�i.n!1Cm!2/t�
!

;

where Jn.˛/ Bessel function nth order
One can see that quasiparticles energy levels are split into levels described by

wave functions �nm with energies E C n„!1 C m„!2I n;m D 0;˙1;˙2 : : :.
Probability of occupation of such levels is proportional to Jn

�
eV!1„!1

�
Jm

�
eV!2„!2

�
.

Quasi-particle tunnel current is provided by quasiparticles transport between
SIS junction electrodes. This current is described as complex function of current
response j (V), here V is a DC voltage applied to junction. The function j (V) is
calculated in [21]: j.V / D iIdc.V /CIKK.V /. Here, Idc.V / is unpumped I–V curve
of the SIS, and the IKK.V / relates to the Idc.V / as Kramers–Kronig transform.

It should be noted that the experimentally measured j (V) function was used in
the calculations. The I–V curve of the HM contains all the information about the gap
voltage, its smearing, the gap current (current step at the gap voltage), and leakage
current below the gap.

The quasiparticle increases its energy by „! when the radiation quantum is
absorbed. One can describe this process by application of the voltage „!=e to
the junction. Therefore, the tunnel current is defined by function j.V C „!=e/.
As far as the quasiparticle is able to absorb several photons of the energy „!1
and „!2, in order to find the total tunnel current we should sum the current

response functions jnm D j
�
V C n„!1

e
C m„!2

e

�
subject to the probability of the

quasiparticle tunneling. The quasiparticle transmission probability of state �nm to
state �lk is defined by the matrix element h�lkj�nmi, where

j�nmi D f .x/ exp.�iEt=„/
�
Jn

�
eV!1„!1

�
Jm

�
eV!2„!2

�
exp Œ�i.n!1 Cm!2/t�

�
;

h�lkj D g.x/ exp.�iEt=„/
�
Jl

�
eV!1„!1

�
Jk

�
eV!2„!2

�
exp Œi.l!1 C k!2/t�

�
:

The changing of the summation variable leads to:

I.V; t/ D Im
P

n;m;l;k

Jn.˛1/JnCl .˛1/Jm.˛2/JmCk.˛2/�

 exp Œ�i.l!1 C k!2/t� j
�
V C n„!1

e
C m„!2

e

� ;

where ˛i D eV!i„!i .
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It should be noted that we can overwrite the current function in the form:

I.V; t/ D a0 C
1X

lD1

1X

kD1
.2alk cos ..l!1 C k!2/t/C 2blk sin ..l!1 C k!2/t//:

This formula shows that the signals of the frequencies described as l!1Ck!2 (l and
k are integers) are generated on the SIS junction. For the practical application of the
HM, the first signal frequency is close to the frequency of second signal harmonic
k, i.e. l D 1 and !1 � k!2 << !2. Let us put that frequency of RF signal is
!1 	 2�fRF, and for LO signal is !2 	 2�fLO. Then current amplitude of IF
fIF D fRF � nf LO is given by

IIF D
p
a1k2 C b1k

2, here

a1k.V / D
X

n;m

Jn.˛1/Jm.˛2/ ŒJnC1.˛1/Jm�k.˛2/C Jn�1.˛1/JmCk.˛2/�

� Idc

�
V C n„!1

e
C m„!2

e

�
;

b1k.V / D
X

n;m

Jn.˛1/Jm.˛2/ ŒJnC1.˛1/Jm�k.˛2/� Jn�1.˛1/JmCk.˛2/�

� Ikk

�
V C n„!1

e
C m„!2

e

�
:

The dependences of the IF signal power versus the input signals parameters and the
junction bias voltage have been calculated by the presented formula. The result of
such calculations is shown in Fig. 11.7 (top part).

The experimental study of such dependences is also performed. In Fig. 11.7
(bottom part), there is a dependence of the IF power versus LO power and bias
voltage for the RF signal frequency 636 GHz and the LO frequency 18 GHz.
Good qualitative and quantitative correspondence between theory and experiment is
achieved (Fig. 11.7). The Nb–AlOx–Nb SIS junction with area of 1�2 and gap cur-
rent 90�A was used in the experiment. The maximum output signal power of about
�90 dBm has been obtained for described frequencies. However, the calculations
show that 5 dB larger value would be achieved at more careful adjustment.

11.4.2 Experimental Demonstration

A test circuit presented by the diagram in Fig. 11.6 has been experimentally realized.
The feedback loop between the HM and the FFO was implemented in two ways: by
lumped elements on a contact plate and by the microstrip lines directly on the chip.
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Fig. 11.7 Experimental (up) and theoretical (bottom) dependence of IF signal’s power versus LO
signal’s power and bias voltage across the HM. The operating point with the maximum power of
IF signal .�85 dBm/ is shown on the theoretical dependence. The FFO frequency is 636 GHz, LO
frequency – 18 GHz (the 35th harmonic of LO is used) as result frequency of IF signal is equal
6 GHz. The critical current of the SIS junction was suppressed by the magnetic field

In the experiment, the FFO signal is split into two channels to pump both mixers.
Each part of the signal is downconverted, so that output signals frequencies are
400 MHz for the CHPD and of about 6 GHz for the SIS (Fig. 11.6). At the first
stage of the experiment, the CHPD output signal is observed at 400 MHz by the
spectrum analyzer and is maximized by determining of the optimal operating point
(see Fig. 11.7). After the optimum is found, the LO#1 frequency is tuned so that
the IF of the CHPD becomes “0” instead of 400 MHz and the FFO becomes phase-
locked. At the same time, the IF of the HM #2 is also changed but the FFO radiation
line is still presented on spectrum analyzer screen and synchronization effect is
observed.

The result of the FFO synchronization by the CHPD is shown in the Fig. 11.8.
This spectrum demonstrates the validity and the potential of the concept. The group
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Fig. 11.8 Downconverted spectrum of the FFO: curve “1” – free running line, LW about 20 MHz;
curve “2” – FFO is phase-locked by the CHPD

delay of the loop is less than 2 ns, and the bandwidth of such a PLL system is
expected to be about 100 MHz. For the data presented in Fig. 11.8 (curve “1”), free
running FFO linewidth is about 20 MHz and the PLL system based on CHPD can
phase-lock as much as 70% of the emitted FFO power (curve “2”). According to
the scale effect, described for Fig. 11.5, the BW of such a PLL system should be
also about 100 MHz. However, the HM output signal is limited and the open loop
gain is not large enough to for the optimal synchronization. As a result, the phase
noise shoulders like in the Fig. 11.4 demonstrating BW are not observed and the
maximum SR is not achieved.

11.5 Conclusions

The concept of the ultra-wideband CPLL system based on the CPD has been
developed and experimentally proven. The CPD based on the SIS junction has been
studied in detail. Synchronization bandwidth as large as 40 MHz has been realized
for cryogenic PL; that considerably exceeds the value of about 12 MHz obtained for
regular room-temperature PLL. The innovative CPLL system can phase-lock more
than 50% of the FFO spectral line if the free-running FFO is about 12 MHz. Practical
implementation of the CPLL looks especially promising for phase-locking of new
superconducting LOs utilizing NbN/NbTiN films, as well as for SIR applications in
the interferometry where the extremely low LO phase noise is required.

The novel application of the SIS junction – the CHPD has been proposed. The
theoretical and experimental studies of the HM are performed. Comparison of the
theoretical and experimental data demonstrates a good qualitative and quantitative
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agreement. The concept of the CHPD is experimentally realized and the FFO
phase-locking has been obtained. The part of the phase-locked FFO power is not
ultimate because output signal of HM was not large enough. This problem would be
overcome by utilizing the HM with larger area.
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Conclusion

As already mentioned in preface, it is impossible in one book to highlight all
the aspects of a rapid developing Superconducting Electronics. To extend the
knowledge about the problems, presented in 11 chapters of the book, the reader
will be helped with some relevant publications that we can recommend in the last
chapter, Bibliography.
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Magnetic flux, 150, 155, 232, 234, 237
Magnetic state, 259
Magnetizations, 16, 182, 222

alignment, 108, 109
states, 105

Magneto-conductivity (MC), 3, 30, 31
Matrices, 74

elements, 26, 308
functions, 87, 91

Matsubara frequencies, 138, 142, 174
Measured spectra, 290
Microwave signals, 300
Mixing element, 281
Multiband superconductors, 251
Multigap superconductivity, 259

Nambu space, 71
Nano-junctions, 141
Nanocontacts, 49
Nanoelectronic components, 65
Nanostructures, 48, 49, 52, 57
Nanowires, 49, 51, 56, 59–63
Narrow-bandwidth, 279
Neel temperature, 257
Nernst coefficient, 36
Nickel-borocarbide, 250
Night time measurement, 292
Noise temperature, 285, 286, 294
Non-local

conductance, 68, 74, 83, 94, 103
electron transport, 98
resistance, 97, 104–106, 108, 111, 112
transport, 101, 102

Noninvasive diagnostics, 293
Nonuniform superconductivity, 219
Normal metal, 153
Normal state conductance, 77
Normal-state resistance, 93, 229

Odd-frequency
component, 129
pairing, 117
pairing state, 123

Odd-parity superconductors, 121, 125

One-gap, 252
Open loop gain, 303
Order parameters, 10, 12, 23, 87, 142, 174

oscillation, 224
Oscillations, 188, 206

decays, 190
period, 182, 216, 222

Out-of-plane components, 31
Ozone

destruction, 290
spectrum, 290

Pair amplitudes, 124, 125, 128, 129
Pair potential, 124
Pairing concept, 129
Pairing symmetry, 119
Paraconductivity, 6, 23, 25, 27, 31, 33, 36

tensor, 29
Pauli matrices, 120
Period of oscillations, 181, 186
Phase, 282

detector, 299
diagram, 40, 192, 205–207
distribution, 152
lock, 280
locking, 283
noise, 298, 299, 305, 311
response, 300, 301
response amplitude, 301
shifters, 244
shifting elements, 239
shifts, 230, 232
slip centers, 47
transitions, 9

Phase locking loop (PLL) system, 298
Phonon, 257
Phonon maxima, 257
Point-contact (PC), 249

resistance, 110
Polar vortex, 291
Proximity effect, 92, 144, 178
Pump current, 271, 303

Quantum
corrections, 2
fluctuations, 2, 45, 57, 59
phase slips, 47, 58

Quasi-1D superconductors, 48
Quasi-particles, 5, 307, 308

energy, 71
Qubit junction, 246
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Rabi oscillation, 245
Ramp type junctions, 217
Ramp type structures, 217
Ratio of imaginary part, 188
Re-entrant superconductivity, 320
Real and imaginary parts, 187
Receiver chain, 287
Reduced dimensionality, 64
Reentrant curve, 225
Reentrant transition, 253
Reflection coefficients, 79, 85
Relevant publications, 315
Resistance, 55, 58

matrix, 90
Resistive transitions, 58
Reverse transition, 226
Riccati amplitudes, 72–75
Rotator radius, 36

S-matrix, 79
Scattering mechanism, 106
Self-coupling effect, 275, 298
Sine-Gordon equation, 135, 156
Single chip heterodyne receiver, 264
Single-chip device, 267
SIR channel, 289, 292
SIS junction, 302
SIS mixer, 271, 283, 285
Size phenomenon, 62
Small gap, 251
Spectra, 292, 293
Spectral

conductances, 91, 94, 96
feature, 291
properties, 127
resolution, 291, 294

Spectral ratio (SR), 278, 280, 298
Spectroscopy, 249, 255, 260
Spectrum analyzer, 310
Spin polarization, 110
Spin-active interfaces, 69, 98
Spin flip scattering, 121
Spin-flip time, 105
Spin-injection, 105
Spin-mixing angles, 82, 85
Spin-polarized interfaces, 84
Spin-singlet, 118, 122
Spin-triplet

even-parity, 119, 122
superconductivity, 172

Spin-valve
behavior, 104
structure, 111

Spintriplet pairing, 118
Spontaneous currents, 228, 234, 236, 237
Stratosphere, 290
Strong fluctuation effect, 6
Subgap conductance, 95
Supeconductivity, 65
Super Fine Resonance Structure (SFRS), 273
Superconducting

borocarbides, 251
correlations, 171, 172, 178, 179, 203, 208
current, 176
electrodes, 181, 189, 191, 277
electronics, 315
fluctuations, 48, 51
gap, 92
heterodyne, 265
heterodyne spectrometer, 264
logic circuits, 246
loop, 230
nanowires, 53
networks, 234
pairing, 245
phase qubit, 244
state, 81, 113
transitions, 54, 56, 59, 60, 106
wave function, 219
wires, 51, 64

Superconducting Integrated Receiver (SIR),
263, 264, 294

Superconductive fluctuations (SF), 2
Superconductive transition, 9
Superconductivity, 1, 62, 102, 118, 137, 173,

208, 209, 221, 250, 252, 253, 256,
257, 320

Superconductor - insulator - superconductor
(SIS), 298

Superconductors, 6, 49, 68, 101, 114, 117, 120,
123, 183, 258

junctions, 126
Supercurrent, 141, 159, 202
Suppression of superconductivity, 217, 221
Suppression parameter, 187, 188
Synchronization, 307

bandwidth, 298, 305
effect, 310

Tailor expansion, 161
Telescope, 281, 290
Thermal fluctuations, 2
Thermodynamic equilibrium, 5
Thermodynamic fluctuations, 23
Total current, 155
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Transition, 53, 61, 63
temperature, 3, 4, 17, 124

Transparent interfaces, 97, 199
Transverse resistance, 32
Trapped magnetic flux, 239
Triplet pairing, 163
Tunnel

current, 308
junctions, 115, 230
structures, 145

Tunneling
current, 302
experiments, 122

Two-dimensional square arrays, 235
Two-gap state, 254

Upper critical field, 21, 253
Usadel equations, 87, 89, 137, 143, 171, 182,

200
Usadel function, 142

Value problem in the form, 182, 193
Velocity operator, 28

Wave functions, 9
Weak-localization, 7
Whiskers, 54, 55
Wide junctions, 275

Zaitsev boundary conditions, 72
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