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Preface

Examining the general subject of light scattering is like examining a gemstone
having many facets. As a result, when people talk about light scattering they
can mean any one of many things. Light can be scattered by individual par-
ticles of high symmetry (Lorenz-Mie theory or LMT) ranging in size from
a small fraction of the wavelength of light (Rayleigh scattering) to many
thousands of wavelengths (semiclassical scattering and ray theory), or by
irregularly-shaped particles (e.g. Null-Field method). People can also mean
scattering of light by crystalline or amorphous aggregates of such particles
(Bragg scattering or pair-correlated scattering), or the repetitive scattering
of light through a dense cloud of particles (multiple scattering and radia-
tive transfer). People can mean scattering of light from sound waves in a gas
(Rayleigh-Brillouin scattering), from thermally generated capillary waves on
the surface of a liquid (surface scattering), or from long range density fluctu-
ations in a system undergoing a phase transition (critical opalescence). They
can mean the Doppler shift of the frequency of the light scattered by particles
entrained in a flow (quasi-elastic light scattering), or the time dependent in-
terference of light scattered by many particles undergoing Brownian motion
(dynamic light scattering and diffusing wave spectroscopy). They can also
mean the absorption of light by the molecules of a particle and re-radiation
at a lower frequency (inelastic scattering). Since light scattering is such a
large area of endeavor, one needs to clearly state which of the many facets
one will be describing when explaining it to someone else. The particular
facet that is the topic of this book is scattering by individual particles having
a high degree of symmetry (LMT) by a transversely focused beam, which is
today called generalized Lorenz-Mie theory, or GLMT for short.

There once was a time when the world of Lorenz-Mie scattering was rel-
atively simple. LMT had been developed by a number of researchers during
the time period extending from the last few decades of the 19th century to
1908. It provided an exact solution of the electromagnetic boundary value
problem of scattering of an incident plane wave, such as sunlight, by a dielec-
tric spherical particle, such as a small water droplet. The solution took the
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form of an infinite series of partial wave terms. This was the worst possible
type of exact solution to have since the individual terms were cumbersome to
calculate and the infinite series was frequently extremely slowly convergent.
Unfortunately, in spite of these limitations, it was the only form of the exact
solution to the light scattering problem that was known. Some researchers
contented themselves by studying scattering from particles that were small
compared with the wavelength of light, where the series contained only one
term. Others devised clever analytical approximations such as Airy theory,
asymptotic expansions, and stationary phase methods to describe scatter-
ing by a raindrop which was hundreds or thousands of times larger than
the wavelength of light, and where the infinite series converged only after
many hundreds or many thousands of terms. Yet others used motor-driven
mechanical calculators until they overheated to calculate the ten or twenty
terms in the series that were required for convergence when the water droplet
was only a few times larger than the wavelength of light. By the early 1960’s
the computational difficulties had improved in the sense that those who had
sufficient grant money to purchase run time on a mainframe computer could
calculate Lorenz-Mie scattering for any size particle, and produce either long
tables or large collections of graphs of the scattered intensity as a function
of angle for various types of particles.

The invention of the gas laser in the early 1960’s and the popularization
of personal computers in the 1970’s changed everything. Now anyone with a
laser, a few lenses, a photodetector, and a PC could study light scattering and
use it as a particle characterization tool. But, the nature of the laser beam
itself caused everyone to realize that the trusted and time-tested Lorenz-Mie
theory could no longer adequately describe what was now being observed in
the laboratory. The width of the laser beam could easily be focused down
to the diameter of the test particle or less, whereas Lorenz-Mie theory had
assumed that both the beam amplitude and phase were constant over the
particle diameter. In addition, people were very excited that all the things one
could only dream of calculating back in the old days of mechanical calculators
and mainframe computers could now be easily calculated if only one had the
appropriate theory. If one had a PC, then run time was now free no matter
how many hours or days the calculation took using the 2MHz clock speed
and 64K of memory available in the first generation of machines.

And so the race was on to find a new extension of Lorenz-Mie theory ap-
propriate to lasers. What theory of electromagnetic scattering by a tightly
focused laser beam could be devised that was exact but also would be prac-
tical to use? After a number of initial theoretical attempts that ranged from
somewhat unrealistic to somewhat successful, it began to become apparent
that what today is known as GLMT might well be the best bet for a theory
that was both mathematically exact and practical to implement. Practical is
now defined differently than in the past due to both continuing improvements
in memory and speed (but not price) of PCs, and their increased availability.
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Beginning in the late 1970’s, the epicenter of the development of GLMT
was located at the University of Rouen in the light scattering group of Prof.
Gérard Gouesbet who headed the theory section and Dr. Gérard Gréhan who
headed the experimental section. The continuous interplay between theory
and experiment at Rouen kept the theory honest, maintaining the theoreti-
cian’s dream of developing a theory that was mathematically exact while
conforming to the experimenter’s demand that the theory be practical to
use. This book, written by the two Gérards who were centrally involved in
the development of GLMT from the very beginning, tells the story of the the-
ory both traveling down the main road of its development as well as down a
number of side roads that discuss specific technical details. The development
of GLMT was the product of many researchers both in Rouen and elsewhere
working over a long period of time. A reasonably complete list of these partic-
ipants is given immediately before the Introduction, and their contributions
are amply referenced in Chapters 3 through 7. As one of these participants,
I can say from personal experience that all the results that seem so obvious
now, and the progressions of ideas that seem so straightforward, were not
so obvious or straightforward then. Much soul searching, serious debate, and
worry about how bold to be in print were required to develop GLMT from
where it was in those years to where it is today.

The basic idea of GLMT is that a transversely localized beam that is a so-
lution to Maxwell’s equations can be written as an infinite series of spherical
Bessel functions and spherical harmonics, each multiplied by a coefficient that
is called a beam shape coefficient. There are then two separate parts to the
derivation and application of the formulas of GLMT, (i) the way in which all
the formulas of experimental interest depend on the beam shape coefficients,
and (ii) how the beam shape coefficients are calculated for a particular beam
of interest. The first part was understood from almost the very beginning.
But, the second part turned out to be where all the complications were lurk-
ing, and it took many years to sort these complications out. The basic results
from electromagnetic theory necessary to derive the main formulas of both
LMT and GLMT are recounted in Chapters 1 and 2, and the GLMT formulas
of experimental interest are written in terms of the beam shape coefficients
in Chapter 3. This gives the overall essence of GLMT, except for the one
nagging question that turned out to be a Pandora’s box. Namely, how does
one determine the beam shape coeflicients for what people call a Gaussian
laser beam, or some other type of beam? This question required a study,
in much more detail and to a much greater depth than anyone could have
realized beforehand, of exactly what a focused beam is and what it means
for a beam to be an exact solution of Maxwell’s equations. This was a great
struggle because people knew that before one can decompose a beam into an
infinite series of spherical Bessel functions and spherical harmonics, one has
to know exactly what the beam is that one is attempting to decompose. It
turned out that what people colloquially called a Gaussian beam was not in
actuality a solution of Maxwell’s equations. By the act of determining the
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beam shape coefficients of such a beam, one remodeled it from its original
shape that was not quite a solution of Maxwell’s equations to another beam
that had not quite the original shape but that was a solution of the equa-
tions. It took a long time to understand this and to suitably control the beam
remodeling procedure, even though in retrospect it is now all clear enough.
This is why the various methods for obtaining the beam shape coefficients are
spread out over Chapters 4-7. After all this effort over many years, I would
not be surprised if the last word on obtaining and understanding the beam
shape coefficients has yet to be written. But, the current state of the art is
good. It is certainly able to be implemented in a practical and reliable way,
and it agrees nicely with the results of experiments.

Perhaps a measure of GLMT’s maturity today is the fact that although
there are still new theoretical developments related to fundamental physics
and mathematics, the subject is no longer dominated by them. GLMT has
instead become a useful and valued tool for engineers who wish to character-
ize small solid or liquid particles and use these scattering measurements to
assist in their design, testing, and calibration of a large variety of products,
devices, and instruments. Many applications of GLMT are described in detail
in Chapter 8 and are generously referenced there. As a similar measure of the
maturity of the theory, although heroic individual efforts are still being made
in code generation for various exotic extensions and uses of GLMT, both
Mie and GLMT codes have become robust and highly developed. Standard
libraries of them do exist, they have been published in books, and they are
now available on the Internet. A highly developed and greatly tested library
of computer programs is provided in the website connected to book.

I believe this book on GLMT has been written by the two Gérards to
serve a large variety of audiences. On the one hand, with its computer pro-
grams it is useful as a practical tool for those who wish to apply GLMT to
the interpretation of laboratory measurements. On the other hand, since the
derivations in the book are rather complete with only a few steps left out here
and there, the book serves as a useful archival reference for students seeking
to learn the mathematics and physics of the subject. On yet a third hand,
since most of the derivations begin in rather complete generality and many
specific theoretical fine-points are discussed in detail, the book provides a
good starting point for advanced researchers interested in either developing
new insights into GLMT or extending it to particles having a more com-
plicated response to external electric and magnetic fields. Since GLMT was
developed largely by the Rouen group headed by Prof. Gérard Gouesbet and
Dr. Gérard Gréhan, and since the two Gérards had leading roles in both the
theoretical development and experimental testing of the theory from the very
beginning, it is only natural that this book is authored by them.

Many hundreds of years ago it was believed that knowledge had reached
its peak under the ancient Greeks. When one was studying a certain natural
phenomena in those times, one would always ask what Aristotle, the greatest
authority on all of Natural Philosophy, had to say on the subject. As I was
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preparing to write this preface, I read the prefaces of a number of other
specialized books on various facets of light scattering to see what other people
had written. In doing so I came upon a quote I had never seen before. In
the book “Light Scattering by Nomnspherical Particles” edited by Michael
Mishchenko, Joachim Hovenier, and Larry Travis (Academic Press, 2000)
there is a Forward written by H. C. van de Hulst (pp.xxv-xxx). Near the end
of the Forward, van de Hulst writes

“In more recent work on Mie theory two developments please me most:

(a) The many papers, mostly by Gouesbet and his co-workers, on scattering
of a focused (laser) beam that illuminates the sphere eccentrically

(b) The glare points (in some papers wrongly called rainbows) showing
under which angles the most intense radiation exits from a sphere fully illu-
minated by a distant source”

While I do not intend to place Henk van de Hulst on the same pedestal
as Aristotle, this is a very nice tribute to GLMT nonetheless. In a similar
vein, one might also parenthetically conjecture what the G might possibly
otherwise be an abbreviation of in the acronym GLMT.

January 2010 James A. Lock
Cleveland, Ohio, USA



Preliminaries

This book is written in English, or may be in American, or more likely in some
kind of international language mixing miscellaneous influences from various
countries. Whatever the used language is, it is not the natural language of
the authors. Furthermore, because this book is written (that is to say not
spoken), the reader will miss the delicious Frenchy Maurice Chevalier accent
which is a part of our charm: nothing is perfect in this poor world!

Actually, most of our writing has been checked by our friend and colleague
Alain Souillard, from the Rouen National Institute of Applied Sciences. How-
ever, such a checking is not enough to ensure correctness because:

(i) several versions of each chapter have been written before approaching the
final asymptotic version and it would not have been friendly to ask Alain
Souillard to check again and again

(ii) scientific terminology has not been checked just because Alain Souillard is
not a scientist

At least, we believe that the reader will forgive us for the use of gallicisms
and remaining language incorrectnesses. They should not be strong enough
to prevent sufficient understanding.

We feel more concerned by the fact that misprints and incorrectnesses in
formulae are likely to occur in such a book. Indeed, even a sign error may be
a nightmare to theoreticians. As a relief, we may state that such problems
are a manifestation of a physical reality, namely the creation of entropy along
an information channel. Although this is however a very small relief indeed,
the only remaining way to escape from the shame of making errors is to state
that the blame for remaining imperfections rests on the shoulders of the other
author, or on Nature which made us.

We are also looking forward to the readers who will kindly help us to im-
prove the book by communicating to us regarding any incorrectness. Thanks
to them in anticipation.
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D. Blondel, H. Mignon, T. Girasole, C. Rozé, N. Gauchet, H. Bultynck, H.
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a long time, we also had many opportunities to enjoy local collaborations
(using an alphabetic order) : D. Allano, S. Belaid, M. Brunel, D. Lebrun,
E. Lenglart, D. Lisiecki, C. Ozkiil, F. Slimani, national collaborations : M.I.
Angelova, D. Boulaud, P. Cetier, J.P. Chevaillier, J.B. Dementon, J. Fabre,
K.I. Ichige, A. Kleitz, G. Martinot-Lagarde, B. Pouligny, F. Vannobel, J.P.
Wolf, and international collaborations : G. Brenn, X. Cai, N. Damaschke, J.
Domnick, F. Durst, L.X. Guo, Y.P. Han, P. Haugen, J.T. Hodges, R. Kleine,
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R. Petit from Aix-Marseille University who kindly accepted to check the first
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From the first equations to what we consider as the “pivot” article in 1988
[2], ten years were required. Another five years has been necessary to reach
the first genuine applications of the theory to a concrete problem in optical
particle characterization, namely concerning the issue of trajectory ambiguity
effects in phase Doppler anemometry [3], [4]. This was more than sufficient to
pile up several thousands of pages of computations, including the ones spent
in blind alleys, and the time spoiled by jumping cliffs or producing rubbish
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Introduction

For a physicist, and more generally for a scientist, one of the pleasures in
everyday life is to detect exemplifying manifestations and avatars of the topic
he is working on. Why do small tea leaves cluster to the center of the free
surface of liquid in the cup, contrasting with the fact that centrifugal forces
should drive them towards the wall? Why is liquid poured outside of a pot
usually keen to follow the pot wall onto the table, in a persistent and irritating
way, rather than flowing down, more or less vertically, to the cup? Why does
a mirror change left to right but not top to bottom?

These three examples clearly concern tiny facts but should not be looked
down upon when thinking about more challenging questions of physics and
metaphysics, for small lanes may lead to large and unknown avenues. Actu-
ally a fascinating aspect of science is that it permits the study of familiar
phenomena which are universal to some extent in so far as every human be-
ing may experience them, even if one stays away from modern cathedrals, we
mean laboratories. Furthermore, behind these familiar phenomena are hid-
den deep arcana to decipher and reveal. Behind the simple action of shaking
an ink-pen to supply ink to the pen, there is inertia and classical mechanics,
while quantum theory is written on the sky by lasers piercing the night in
some contemporary shows.

In optics, and to stick more closely to the topic of this book, in light
scattering by particles, everyday surprises and observations may be specially
appealing because they concern what could be the most privileged sense of
humankind, namely vision. This metamorphoses photons to an enchanting
world of shapes and colours that nearly everyone may enjoy, very often with a
feeling of infinity and eternity, for instance when the sun rises on the Mississipi
river or falls gently to sleep on Fuji-San.

The most striking example might be the rainbow, so marvelous that it has
become a signature at the bottom of a contract between God and humanity in
Jewish and Christian religions, or the scarf of Goddess Iris delivering messages
from heaven to earth in the Greek mythology, or a bridge to Walhalla in
‘Der Ring des Nibelungen’ by Richard Wagner, inspired by old germanic and
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nordic legends. Even questions as naive as : "Why is the sky blue at day
while it displays all shares of reds in some dawns and twilights?”, and ” Why
is it not as bright as the sun at night?”, may lead to significant research and
conclusions.

To give some qualitative clues for answering the first question, we mention
that aforementioned blue and reds are due to the scattering of solar light by
molecules and particles of terrestrial atmosphere. Moreover, scattering plays
an essential role in cloudy days (a rather common feature in our Normandy),
and also in foggy days (not so common, but still far from being exceptional).
During these days it is possible to walk and drive without any infra-red
assisting device thanks to a significant amount of solar and/or headlights
photons which are scattered by droplets and crystals and somehow succeed
to reach landscape details where they are scattered again to eventually reach
the eyes. More generally, scattering is essential to our vision of the world
since things are only visible thanks to the light they scatter from natural
or artificial sources, changing the direction of travelling photons, modifying
their amount, and generating colours through complex phenomena. As far
as the above second question is concerned, it is deeply connected with the
cosmological issue of the finiteness of Universe in space-time besides being
may be a subtle coincidence allowing our eyes to get some rest!

In astronomy, the study of the light scattered by planetary atmospheres
provides information on their composition ([5], [6]) but zodiacal light scat-
tered outside of the ecliptic plane by dust particles of the solar planetary
system limits the performances of spatial telescopes. In medicine, scattering
of light by red cells of the blood enables to determine oxygen concentration
([7]), and the detection of tooth decay can be accomplished by studying the
light scattered by tooth enamel ([8]). In surgery, there is interest in studying
scattering interactions between light and biological tissues in order to mas-
ter laser surgery as well as possible ([9]). In industry, applications of light
scattering are manifold and potentially infinite in number. We would need a
scientific and reckless Prévert to attempt to catalogue an endless inventory.
Being scientists, but neither the reckless nor Prévert’s type, we shall be con-
tent to mention some examples including the control of the transparency of
drinking glasses, and of the luminous and mechanical properties of paints and
sheets which depend strongly on the embedded scattering particles ([10], [11],
[12], [13], old classical articles indeed). Other specific examples more relevant
to the purpose of this book will be given later in a more restricted context.

This more restricted context is the electromagnetic scattering by particles.

Concerning scattering, our framework is Quasi-Elastic Scattering (QES)
which refers to the case when no change of frequency is involved in the
light /matter interaction except that one due to the Doppler effect and the
other singular one, from a finite frequency to a null frequency, when a photon
is absorbed. Also, although it may be convenient to think of light in terms
of photons and although scattering is a random quantum process at a more
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fundamental level of description, assemblies of photons will be here modelled
as electromagnetic waves.

Concerning particles, they a priori might be of arbitrary shape, arbitrary
nature, arbitrary size, and embedded in media of arbitrary geometry with
arbitrary distribution of particle concentrations.

The induced complexity is however still too big for us to handle in this
book. The reader is invited to go to famous studies which should be present
on any library shelf of a decent ”scatterist” to get extensive information
on the QES and underlying electromagnetism, such as those quoted as [14],
[15], [16], [17], [18], [19], [20], [21] and [22]. As far as we are here concerned,
attention will be focused on more restricted topics, not in an arbitrary way
but because of the overwhelming difficulties involved in attempting to handle
arbitrary situations with a single non arbitrary theory.

A first dichotomy to introduce might be between multiple and single scat-
terings. If it is temporarily accepted to describe light in terms of photons
(whatever they are), then single scattering takes place when a photon en-
tering a medium leaves it without having suffered more than one proper
scattering event or when the first interaction between the photon and one
particle leads to absorption. If more than one event (for instance two succes-
sive scatterings or one scattering followed by absorption) are involved during
the life of the photon in the medium, then we are faced with multiple scatter-
ing. When the particle concentration is high in the medium, more complex
phenomena may occur like dependent or coherent scattering (for instance,
[23]). For multiple scattering, the interested reader may refer to the beautiful
books by S. Chandrasekhar [24] and H.C. van de Hulst [18], and also by G.
Kortiim [25] who introduces simple and efficient ideas in an appealing way.
However, only single scattering will be here discussed (for most of the time)
and it will be difficult enough to be enjoyable.

A second dichotomy is between direct and inverse problems. Assume that
a particle is illuminated by a plane wave or by a laser beam and that you
need know the properties of the scattered light. This is a direct problem.
Conversely, assume that you know the properties of the scattered light but
that you need the properties of the particle. This is an inverse problem. This
dichotomy holds actually for both multiple and single scatterings. Rather
clearly, an inverse problem is more difficult to solve that a direct prob-
lem. This increase of difficulty is vividly illustrated by Bohren and Huffman
[22](pp. 9-11) who stated that a direct problem consists in describing the
tracks of a given dragon while the inverse problem is to describe the dragon
from its tracks. Most of this book will be devoted to direct problems, but
optical particle sizing and, more generally, optical particle characterization,
discussed in the last chapter, point out to genuine inverse problems.

Now, let us zoom again on a more restricted part of the landscape. Media
containing a huge number of particles are essentially outside of the scope
of this book. Suffice it to say that when particles are randomly distributed
in space, it is usually enough to forget any phase relations and interference
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phenomena and simply to sum up scattered intensities to solve the direct
problem. Therefore, we are here mostly concerned with the interaction be-
tween an electromagnetic wave and a single particle (or scatterers made out
from a small number of particles, with coherent scattering).

As far as the particle is concerned, it can be of arbitrary size (not too
small however to still own a bulk macroscopic character, and reasonably not
too large since particles of infinite dimension do not exist) but its nature and
shape are carefully chosen to make life easy, i.e. they are regular particles
allowing one to use a method of separation of variables.

Most of the book is however devoted to the case when the scatterer is
a homogeneous sphere defined by its diameter d and by its complex refrac-
tive index m. Then, when the incident wave is an usual ideal plane wave,
the problem was actually solved about one century ago. The corresponding
theory is usually granted to G. Mie [26]. However there is certainly some in-
justice in that. We must remember the work that Lorenz (often mis-written
as Lorentz) accomplished about twenty years before ([27], [28]) although, ad-
mittedly, Lorenz is not likely to worry any more about it (but who knows
actually?). The reader could refer to an article by N.A. Logan [29] to under-
stand how Lorenz work has been unfairly overlooked, and also to historical
articles from the 2nd International Congress on Optical Particle Sizing ([30]
[31] and [32]). Even if an important Lorenz memoir has been lost, it still
remains that he solved the problem of the scattering of waves by dielectric
spheres though without explicitly referring to Maxwell’s equations. Hence, it
could be recommended to speak of the Lorenz-Mie Theory (LMT) instead of
simply the Mie theory. One year after Mie, Debye ([33]) completed the theory
by discussing the radiation pressure. Some people might then recommend to
speak of Lorenz-Mie-Debye theory, but we feel that it is unnecessary. Debye
being also very well known for other contributions to physics, he has already
got his full share of fame.

Now, there is more to tell concerning the relationship between Mie and
Lorenz. While Mie indeed relied on the macroscopic version of Maxwell’s
electromagnetism, Lorenz conversely relied on a mechanical theory of aether.
Yet, both theories are empirically equivalent. The inquisitive reader might
amazingly wonder how a ”correct” theory (presumably the one based on
Maxwell’s equations) could agree with an ”erroneous” theory (presumably
the one based on mechanics). This is a very deep epistemological issue that
cannot be extensively developed in this book. It is certainly an example of
what is sometimes called the Duhem-Quine theorem telling that theories are
under-determined by experiments [34], [35], [36], [37], [38].

One of the authors (Gouesbet Gérard) would now like to come to the orig-
inal motivation which led to the theoretical developments described in this
book. During his state thesis (a kind of thesis pertaining to a previous French
university system), he studied diffusion and thermal diffusion phenomena of
neutral species in a plasma of argon and helium [39]. This study required the
measurements of plasma velocity by using laser Doppler velocimetry which,
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nowadays, is a well established technique for measuring flow velocities. In the
most current optical set-up, a set of (more or less) parallel fringes is generated
by making two laser beams (originating from the same source) interfering in
a control volume. The flow under study is supposed to transport small inertia
particles called tracers. When such a particle crosses the control volume, it
generates a scattered light which is modulated at a certain frequency depend-
ing on the fringe spacing and on the velocity of the tracer, that is to say on
the velocity of the flow (more properly, on the velocity component perpen-
dicularly to the fringes). A photodetector is used to produce an electronic
signal which is afterward processed by a processing device.

The plasma aforementioned above was a high frequency (laminar) plasma
whose atom temperature was typically equal to 5 000 K (and the electron tem-
perature to typically 10 000 K). It was seeded with alumina particles. The high
temperatures involved led to a dilemma. If the injected alumina particles were
too small, then they vaporized and could not produce any Doppler signal. If
they were too big, then they would not be tracers any more, drifting behind
the plasma flow. A compromise was necessary but there was no way at that
time to control this compromise. The validity of the velocity measurements
could only be indirectly checked (by verifying the conservation of mass), but
there was no direct available way to do it. Furthermore, to make the situation
a bit more confused, there was an erroneous dogma at that time (to become
erroneous is common for a dogma) according to which decent Doppler signals
could only be produced by particles smaller than the fringe spacing. However,
it soon became obvious that having good Doppler signals did not imply that
the particles were smaller than the fringe spacing, that is to say that they could
be assumed to genuinely behave as tracers [40], [41]

The best direct way to solve the problem would have been to possess an
instrument allowing one to measure simultaneously the size and the velocity
of individual particles in flows, not only for small particles (tracers) but also
for large particles. Similar needs and questions were put forward in different
fields, like in plasma spraying or in the study of sprays in combustion sys-
tems. Several systems were proposed and studied, like relying on the use of
the visibility or of the pedestal of Doppler signals [42], [43]. But, although
satisfactory results were published in the archival literature or announced in
conferences, there, however, were also many people becoming disappointed
up to a situation where the topic of optical sizing received a rather poor rep-
utation. In particular, the visibility and the pedestal techniques are no longer
used nowadays. It became obvious that the topic was too much based on ex-
periments, somewhat of a nearly pure empirical nature, without a sufficient
theoretical effort to master the design and functioning of instruments.

What is likely to be the most important problem is that, in optically
measuring the sizes of discrete particles in flows (possibly simultaneously
with velocities, complex refractive indices, and concentrations), a laser source
is usually required or, at least, very useful. Under some circumstances, the
laser beam is expanded and/or the particles to be studied are small enough,
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in such a way that the laser source can be safely considered as being a plane
wave. An example is provided by the diffractometry technique. To design
instruments and to interpret data, one can then rely more or less blindly on
the basic theory for plane wave scattering, namely LMT. Indeed, for a long
time, LMT has been the most powerful theoretical tool in that respect and,
even nowadays, it remains famous and is being used. However, this theory
is now a one-hundred-year-old lady, and although still very alive and waltz
dancing, it is no wonder that it might become inappropriate in a large variety
of situations, since the laser was still in the nimbus when Ludwig Lorenz and
Gustav Mie write their equations.

Very often, the situation is not ideal enough to plaster an old theory on
contemporary experiments. In LDA-based systems for instance, most data
processing, design of instruments, and theoretical principles rely on the clas-
sical LMT, although the in going laser beams are usually focused. When the
diameter of the discrete particles is not small with respect to the laser probe
diameter (usually a Gaussian beam diameter or the width of the plateau in
a top-hat beam), then we have to worry on the validity of the LMT which
could be misleading. Also, in some cases, measurements directly rely on laser
beam scattering properties ([44]). Consequently, we certainly need to rely on
a more general theory, enabling us to compute the properties of the light
scattered by an ideal sphere illuminated by a Gaussian beam or a top-hat
beam, more generally by an arbitrary-shaped beam.

We shall call this theory the generalized Lorenz-Mie theory (GLMT), or
sometimes the generalized Lorenz Mie theory in the strict sense (stricto
sensu) to which most of this book is devoted. Nevertheless, we shall also
consider other cases, when the scatterer is not a homogeneous sphere defined
by its diameter d and its complex refractive index m, but is another kind
of scatterer whose properties allow one to solve the scattering problem by
applying a method of separation of variables. The terminology ”generalized
Lorenz Mie theory” will be also used for these other cases, with the proviso
that the kind of scatterer under study has to be specified. For instance, there
will be a generalized Lorenz-Mie theory for infinite circular cylinders.

The existence of GLMTs is relevant to the understanding and to a better
design of optical measurement techniques, such as for simultaneous measure-
ments of velocities and sizes of particles embedded in flows, and therefore to
the study of multiphase flows transporting discrete particles. Two-phase and
multi-phase situations of this kind (suspensions, droplet and bubble flows)
are indeed very common in industry, laboratories and environment. Examples
involve the control, understanding and design of specific spray and particle
combustion systems, of laden flows encountered by chemical and mechani-
cal engineers in pipes and conduits, or also in standard chemical engineering
processes such as fluidization, sedimentation and pneumatic transport. Peo-
ple may also be concerned with very small particles such as soots which are
deeply inhaled into the lungs and can lead to the development of tumours,
exemplifying that environmental care is one reason to develop optical particle
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sizing techniques (more generally optical particle characterization), in order
to learn how to control the emission and the dispersion of such particles. Par-
ticularly relevant to this topic is the use of Diesel engines in individual cars,
where we have to worry about the effects of exhaust particulate emission.
In connection with energy supply and more precise control of energy conver-
sion devices, we also have to perform characterization of droplets in spray
flames and of solid particles in coal pulverized flames. Hydraulic engineers
are concerned with sand and pollutant transport in rivers, lakes, and also in
oceans where one must investigate spray droplets over the sea or deposition
and dragging away of particulates in the sea and on the ground in connection
with water motion. Industrial processes also include particulate clean-up de-
vices such as electrostatic precipitators, oil mists from pumps, the influence
of particle properties for cements and paints. These heteroclite examples are
obviously very far from providing an exhaustive list, and only aim at giving
a flavour of the richness of possible applications.

From a fundamental point of view, the knowledge of the size and the
velocity distributions (or better of the size and velocity, particle by particle)
of a dispersed phase is relevant to the understanding and to the prediction
of heat and mass transfer, and of chemical reactions in many processes such
as in combustion systems. It is also relevant to the understanding and to the
prediction of the dispersion of particles by continuous motions in turbulent
flows, a domain of research which is very active nowadays.

Therefore, the study of two-phase flows in which discrete particles are
transported in and by turbulent structures are of interest both to the re-
searcher, wishing to understand and describe the laws of nature, faced with
difficult and challenging two-phase flow problems, and to the engineer who
inevitably encounters them in a large variety of industrial situations, and has
to design and control various plants and processes involving particle heat and
mass transfer phenomena.

At first, the engineer may rely on correlations based on experimental re-
sults and adequate display of data using pertinent dimensionless groups. How-
ever, correlations are usually valid only for limited ranges of parameters, and
extension of results beyond these ranges is always a risky affair. Then, the
researcher must open the way for a second step, namely predictions through
modelling and computer programming. This is also a risky affair which re-
quires careful validations against well-designed experimental test-cases. For a
background in such problems, see [45]) [46], [47], [48] [49] [50] and references
therein.

Consequently, in any case, accurate and extensive measurements of sizes,
velocities, and concentrations (and may be also shape and refractive index
characterization) of the discrete particles in the flow under study are needed.
The ideal aim would be to provide us with space- and time-dependent particle
size spectra. Emphasis must be set on optical techniques which may be non
intrusive (in principle they do not disturb the medium under study), and
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supply us with local (in situ small control volumes), time-resolved data. A
very relevant key-word for these techniques is: versatility.

Significant advances have indeed been accomplished for years thanks to
the development of these optical techniques, combining laser at the input
and computer at the output, two requisites of numerous modern experiments
lying somewhere within light scattering theory.

The proceedings of a series of symposia, hold under the name : ”Optical
particle sizing : theory and practice” later on generalized to ” Optical particle
characterization”, would allow the interested reader to follow the development
of the field in a very comprehensive way. After the first symposium in Rouen,
France, in 1987 organized by the authors of the book, subsequent conferences
have been hold in Phoenix, Arizona, in 1990 (chaired by D. Hirleman), in
Yokohama, Japan, in 1993 (chaired by M. Maeda), in Niiremberg, Germany,
in 1995 (chaired by F. Durst), in Minneapolis, Minnesota, in 1998 (chaired
by A. Naqwi), in Brighton, England, in 2001 (chaired by A. Jones), in Kyoto,
Japan, in 2004 (chaired by M. Itoh) and in Gréz, Austria, in 2007 (chaired
by O. Glétter). Beside proceedings stricto sensu e.g. ([51], [52], [53], [54]),
selected articles have been published in ” Applied Optics” and ”Particle and
Particle Systems Characterization”.

Actually, although we had a specific motivation in mind when developing
the GLMT, as discussed above, it is now clear that the range of applications
has extended far more beyond what was originally expected and, let us tell
it frankly, toward unexpected fields. An example concerns the interpretation
of optical levitation experiments, see e.g. [55], [56], [57], [58], and references
therein. However, many other applications have to be discussed, and they
will indeed be discussed.

Discussions of scattering from shaped beams have previously been pro-
vided by several authors, with more or less extended degrees of generality.
Indeed, the development of science takes place through a filiation where noth-
ing emerges from nothing. We now briefly but fairly exhaustively discuss these
works, limiting here ourselves to the ones prior to 1989. We start with Chew
et al [59] [60] who discuss converging and diverging beams (respectively). To
approach the case of laser beams, Morita et al [61] assume a beam with a
Gaussian distribution of amplitude (which does not comply with Maxwell’s
equations however) and a scatter center smaller than the waist and located
near it. Tsai and Pogorzelski [62] consider a T EMqo beam which is described
by using an expansion of vectorial cylindrical functions in vectorial spheri-
cal functions. Then, the beam description complies with Maxwell’s equations
but exhibits two singularities where the electric fields are zero, located at v/2
times the waist radius from the beam axis. Their results concern small scatter
centers centered at the beam waist. Tam [63] and Tam and Corriveau [64]
generalize the method of Tsai and Pogorzelski to the beam mode T'EMj; and
to arbitrary location of the scatter center but do not present any numerical
results. There is also a series of articles co-authored by Yeh ([65], [66], [67])
starting from a Rayleigh-Gans approximation up to the 1982-article in which
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the T'E My beam is described by its plane wave spectrum and the location of
the scatter center is arbitrary. However, particles must be non absorbing and
a practical limitation results from the time-consuming character of numerical
computations (published results only concern particles with a size parameter
smaller than about 5, i.e. diameters smaller than about twice the wavelength
of the incoming electromagnetic wave). Kim and Lee [68] [69] describe the
incoming T E My laser beam by using a complex point-source method and
establish the corresponding theory for a spherical scatter center arbitrarily
located in the beam. However, the complex point-source method introduces
two singularities at which field amplitudes become infinite. Finally, we men-
tion a more recent study by Barton et al [70]. Barton contribution will be
given more discussion when appropriate in this book.

With the first GLMT-equations likely written in 1978, the first releases of
the existence of a GLMT are testified (urbi) in the PhD thesis of G. Gréhan,
in 1980 [71] or, the same year, in an internal report [72] and thereafter (orbi)
in an ATAA conference in Palo Alto, California, in 1981 [73]. The first archival
article, in which known precursors were acknowledged, was published in 1982,
in the French language [1]. It dealt with a (special) GLMT concerning the
case of an illuminating axisymmetric incident light beam interacting with a
sphere defined by its properties (d,m), using the Bromwich formalism. The
interaction is on-axis, that is to say the axis of propagation of the incident
beam passes through the center of the scatterer (otherwise, the interaction is
said to be off-axis). Algebraic expressions are established for scattered field
amplitudes, and for scattered intensities, and specified in the far field. They
introduced expansion coefficients associated with partial waves, denoted as
gn, and later on named beam shape coefficients. The obtained expressions are
very close to the one of the Lorenz-Mie theory such as reported by Kerker [23]
and can therefore easily be implemented in a classical Lorenz-Mie computer
program, once the beam shape coefficients are calculated. The LMT itself is
found to become a special case of the special GLMT.

The concept of axisymmetric light beam has been much later extensively
discussed by Gouesbet [74]. An axisymmetric light beam is defined as a beam
for which the component of the Poynting vector in the direction of propaga-
tion does not depend on the azimuthal angle in suitably chosen coordinates.
In such coordinates, the partial wave representation of the beam is again
found to be given by a special set {g,} of beam shape coefficients. An exam-
ple of such axisymmetric light beams is a laser beam, in the mode T'E My,
or Gaussian beam. By contrast, a laser sheet is not an axisymmetric light
beam.

In 1985, the 1982-formalism is adapted to the case of a Gaussian beam
modelled as a low-order Davis beam [75] called order L beam (L for lower)
[76]. This adaptation could be viewed as a specification since a Gaussian
beam has been said to be a special case of axisymmetric beams. However,
the axisymmetric beams used in the 1982-article were too simple to match
the description of an order L Davis beam. Actually, they could match a still
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simpler description of Gaussian beams called order L.~ of description. There-
fore, the specification to an order L Gaussian beam could also be viewed as a
generalization. In the introduction of the article, we stated that we were pro-
viding a generalization of our previous contribution by modelling the Gaus-
sian beam by field expressions more rigorous than the ones corresponding to
an axisymmetric light profile. As we can see from the above discussion, this
statement has now to be viewed as erroneous, due to the fact that, at that
time, we did not possess a full mastering of the concept of axisymmetric light
beam that became available only more than ten years later. We should have
written that we were providing a generalization to axisymmetric light beams
(order L Gaussian beams) more general than the axisymmetric light beams
considered in 1982. Another (more significant) generalization is that further
expressions are also provided for phase angles, cross-sections, efficiency fac-
tors, and radiation pressures. All these expressions involve again the special
beam shape coefficients g,,.

Due to the difficulty (that we shall recurrently encounter) in providing
a good enough description of Gaussian laser beams and, more generally, of
any kind of shaped beams, and in providing descriptions exactly satisfying
Maxwell’s equations, in particular (this was not the case for the aforemen-
tionned order L and L~ descriptions of Gaussian beams), we commented
at that time that the theory was not yet rigorous. This was may be too se-
vere. It would have been interesting and more relevant to separate in the
results what was general, and what was specific to the illuminating beam
under study, something that was done only later, in 1988. But, nevertheless,
some emphasis on Gaussian beams has been useful for future developments.
Furthermore, it was also worthwhile to carefully study the properties of and
the degrees of approximations involved in the orders L and L~ of description
of Gaussian beams. This was done in 1985 [77].

In parallel to these developments, there was a real worry concerning the
possibility of developing practical applications of the pregnant GLMT. In-
deed, when we started trying to compute the beam shape coefficients g,,, it
has been disappointingly discovered that these computations were too much
time consuming, possibly two or three hours on the most powerful mainframe
computer readily available in France at that time, for only one beam shape
coefficient. Just consider now that for any realistic light scattering compu-
tation in the GLMT-framework, hundreds or thousands of such beam shape
coeflicients have to be calculated. The original expressions for evaluating the
(special) beam shape coefficients relied on double quadratures. Eventually,
another method, valid at that time for Gaussian beams, has been discovered.
This method has been called the localized approximation, relying on a local-
ized interpretation, inspired by the famous principle of localization of Van
de Hulst [17]. The terminology ”localized approximation” is however may be
to be regretted and, certainly, is unfortunate. There is a sense in which the
result obtained is an approximation because it is indeed an approximation
to an ideal (unknown) Davis beam. However, there is a sense in which it
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is not an approximation, namely the fact that it provides field expressions
which exactly satisfy Maxwell’s equations. The examination of the literature
demonstrated that the word ”approximation” has often been interpreted in a
negative manner, some authors then proposing other beam models supposed
to be rigorous, not approximations. A better terminology would have been
to say from the beginning that the localized interpretation provided a local-
ized beam model, as will be later introduced. As far as we know, all beam
descriptions are models, whether they do not satisfy or do satisfy Maxwell’s
equations. Such issues will have to be developed more extensively in the bulk
of the book.

The first archival article on the localized approximation is dated 1986, by
Gréhan et al [78]. In this article, the localized approximation is validated by
comparing the GLMT (with the illuminating beam described with a localized
beam model) and a Rayleigh-Gans approximation for Gaussian illumination.
Other validations are discussed too, namely comparisons with theoretical re-
sults from Tsai and Pogorzelski [62] and from Yeh et al [67], and also with
an experimental scattering diagram under laser beam illumination obtained
from a sphere in optical levitation [57]. A validation is however not a rigorous
justification which will become available only nearly ten years later [79], [80].
In 1987, the first computations of beam shape coefficients by quadratures
(named ”first exact values”) became published, with computing times rang-
ing from 30 s to 2 hr CPU, and favourably compared with the results of the
localized approximation [81]. The same year, complementary computations
of beam shape coefficients g,, were published, with comparisons between ”ex-
act” values at both orders L and L.~ , and the localized approximation . Also,
a discussion of the physical interpretation of the localized approximation is
provided and the GLMT is again used to interpret, in a more extended way
than previously, an optical levitation experiment. Furthermore, a comparison
between GLMT and diffraction theory in the near forward direction is dis-
cussed [82]. A similar complementary discussion, in French, is available from
Maheu et al [83], which is the first part of a two-part article. The second part
[84] provides and discusses several GLMT-based scattering diagrams, phase
angle computations, efficiency factors, and collected powers, that is to say
the most extensive set of results hitherto obtained with the special GLMT.
It has soon be also emphasized that such computations could be successfully
carried out on a micro-computer, with a maximum of 64 Ko of variables ac-
cepted by micro-computers of the PC family running under DOS 3 [85]. Note
that, nowadays, LMT-computations (not GLMT-computations however) are
feasible on a mobile phone! [86]. Beside quadratures and localized approxi-
mation, a third technique to evaluate the beam shape coefficients, namely by
using finite series, has also been introduced. We then possessed three methods
which are compared in a 1988-article [87].

It was then clear that the special GLMT was mature and ready for ap-
plications. When approaching this result, it became obvious that it was the
right time to build a final general version of the theory. A first version, for
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arbitrary location of the scatterer, is discussed by Gouesbet et al in 1988 [88],
with a strong emphasis, including in the title, on Gaussian beams. However,
as stated in the conclusion, other beam descriptions could be used instead
of a Gaussian beam, without changing the method used. In particular, this
reference introduced new expressions and new beam shape coefficients which
do not depend on the specific illuminated beam considered. These new beam
shape coefficients, generalizing the special beam shape coefficients g, are
denoted as g7, and g;,'r . Changing the beam description just implies to
evaluate these general beam shape coefficients in a new way, adapted to the
new description (or more generally to the new beam under study, e.g. laser
sheets). A second more extended version, that we consider as the ”pivot”
article of GLMT, has also been published in 1988 [2]. Again, may be unfor-
tunately, a strong emphasis is put on Gaussian beams, including in the title
of the article, but the fact that GLMT works for arbitrary-shaped beams is
made explicit in a companion article published in the same year [89], devoted
to GLMT for arbitrary location of a scatterer in an arbitrary profile.

We may now pursue our brief history of GLMT by relying on a few review
articles published on the topic, allowing one to follow subsequent develop-
ments in a concise way. The first review article was published in 1991 and,
most essentially, presented the GLMT formalism under a single roof [90]. The
next review article was published in 1994 [91]. The general formulation was
required and it is once more pointed out that this formulation is insensitive
to the nature of the incident beam. More important, genuine applications to
optical particle characterization, in agreement with our original motivation,
could be discussed, namely phase Doppler anemometry and trajectory ambi-
guity effects. Other miscellaneous applications concerned scattering responses
and extinction cross sections, diffraction theory, optical levitation and radi-
ation pressure. The third review article, in 2000 (with about 350 references)
reported on new theoretical advances, in particular by discussing infinitely
long cylinders and other shapes, and extended applications : radiation pres-
sure, rainbows, imaging, morphology-dependent resonances, phase-Doppler
instruments, etc. It also provided recommendations for future research [92].
See also Gouesbet [93] and Gouesbet et al [94].

Now, something special happened in 2008, namely that it was the hun-
dredth anniversary of the famous Gustav Mie’s article. This has been com-
memorated in several places (GAeF conference 2008 on ”Light Scattering :
Mie and More-commemorating 100 years Mie’s 1908 publications”, 3rd-4th
July, Karlsruhe, Germany [95]; International Radiation Symposium IRS 2008,
3rd-8th August, Foz do Iguacu, Brazil [96]; Eleventh Conference on Electro-
magnetic and Light Scattering, 7th-12th September 2008, Hatfield, UK [97];
Mie theory 1908-2008, Present Developments and Interdisciplinary Aspects
of Light Scattering, 15th-17th September, Universitiat Halle-Wittenberg). It
has been an opportunity for two more review articles [98], [99]. In particular,
the second one (with again about 350 references) exhibited the fact that the
use of generalized Lorenz-Mie theories and associated ingredients was more
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and more widespread, confirming the need for a book like the present one.
Let us also mention a review of elastic light scattering theories, available from
Wriedt [100], and the existence of a scattering information portal for the light
scattering community discussed by Wriedt and Hellmers [101].

Furthermore, the series of published articles suffered from three main
shortcomings. The first one is that, as usual in research, the development
of our ideas did not follow a linear line. The reader wanting to fully exploit
our study and check our derivations would then be condemned to the bur-
den of reorganizing the published material. The second shortcoming is that
many details have been omitted, the usual (unfortunately justified) prayer
of referees and editors being to ask for drastic cuts. To go from relation n
to relation (n + 1), 20 intermediary pages of computations must sometimes
be reproduced by the reader who is therefore left with a skeleton from which
living flesh has been carefully removed to produce an article written in an ob-
jective, concise, modern scientific style. Finally, in practice, program sources
are not being published in the archival literature. Scientists playing tennis
usually ask to the authors to get the ball i.e. program sources, but the ones
playing golf and wanting to move the ball alone must also reproduce non
trivial computer programs.

These three shortcomings are essentially avoided in this book. The material
is reorganized in a linear and comprehensive way. We take the reader by the
hand and guide him in the forest, following a civilized track for berry pickers.
People just wanting to get numerical results may have a bird’s eye view
on the formulation and may directly go to the computer programs to use
them. Hopefully, this book might then be useful to and appreciated by both
tennismen and golf players.

Although this book is dedicated to electromagnetism, there has been a
few moves toward quantum mechanics, which are now briefly mentioned.
The structure of quantum arbitrary shaped beams has been examined [102],
[103]. Quantum cross-sections under quantum arbitrary shaped beam illu-
mination are discussed for both elastic [104] and inelastic [105] scattering.
Cross-sectional analogies between (vectorial) electromagnetic scattering and
(scalar) quantum scattering have also been established, again both for elastic
and inelastic cases, under plane wave and under quantum arbitrary shaped
beam illuminations [106], [107], [108]. Also, a generalized optical theorem for
non plane wave scattering in quantum mechanics has been established [109].

The book is organized as follows:

Chapter I provides a background in Maxwell ’s electromagnetism (in free
space and in matter) and discusses Maxwell’s equations. The content of this
chapter is supposed to be sufficient to attack the rest of the book, but it is
not meant to provide a detailed introduction to electromagnetism. Preferably,
the reader should already possess some kind of basic knowledge to enter this
book. Chapter I rather intends to recall what is necessary to proceed further
and to introduce notations, as well as the basic language to be used.
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Chapter II introduces the method of Bromwich scalar potentials which
has been originally used to solve Maxwell’s equations for the main case under
study, that is to say to build the GLMT. Relationships between this method
and other equivalent possible methods (such as the use of vector spherical
wave functions) are also discussed.

Chapter III uses the material introduced in the first two chapters to
describe the GLMT for arbitrary location of the scattering sphere in an ar-
bitrary incident beam, that is to say without referring to any specific kind of
illuminating beam. This theory introduces two sets of beam shape coefficients
denoted as gp'ry, and g;'7p which describe the illuminating beam and are
recurrently used in GLMT-expressions. The expressions for the quadrature
methods to evaluate these beam shape coefficients are discussed (although
they are lengthy and costly to perform). Other formulations to deal with
arbitrary shaped beam scattering are briefly considered. Other generalized
Lorenz-Mie theories (i.e. for different shapes of the scatterer) are also intro-
duced.

Chapter IV discusses specific beams, with a very strong emphasis on
Gaussian beams.

Chapter V establishes that beam shape coefficients may also be computed
by using a finite series method which is computationnally more efficient than
quadratures. The introduction of these finite series provided a first significant
step to speed-up GLMT-computations.

Chapter VI is devoted to the special case when the center of the scatter-
ing particle is located on-axis in an axisymmetric beam, such as a Gaussian
beam (or a plane wave!), leading to dramatic simplifications. In particular,
the double set { In'ras Iner E} of beam shape coeflicients reduces to a single
set {gn} of special beam shape coefficients. The similarity between LMT and
GLMT in this case is striking, and we easily recover LMT from GLMT as
another more special case. Also, a significant interest of this case is that the
formulation becomes very similar to the one of the classical LMT, with the
result that computer programs for LMT can readily be adapted to the special
GLMT, once the beam shape coefficients are evaluated.

Chapter VII discusses a very beautiful method to evaluate beam shape
coefficients (g, g,/'rs, and g;'r ), our favourite one indeed. It is actually the
fastest one and provides many physical insights on the meaning of the beam
shape coefficients. Tt has been called (may be unfortunately) the localized
approximation, relying on a localized interpretation. It generates localized
beam models which exactly satisfy Maxwell’s equations.

Chapter VIII discusses concisely but fairly exhaustively the applications
of GLMTs.
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The bulks of the chapters provide basic knowledge, ordered in, we hope, a
rather logical order. Most of these bulks are accompanied by complements.
The aim of these complements is to address the reader to more technical
or complementary matters, and to an exhaustive literature. Although they
provide valuable information, allowing the reader to deepen the topic if re-
quired, their reading can be omitted at first without provoking any havoc in
the understanding of the subsequent material dealt with. These complements
are written in a concise way. Owing to this fact, they allow the reader to gain
contact with all the material available at the present time (except for possi-
ble unfortunate omissions for which we apologize), without having to manage
with an over-sized book. Chapter VIII is written in the same style than the
complements.

To prepare the complements and Chapter VIII, we relied on ISIweb of
knowledge, and made a list by extracting the articles citing the Rouen works
on GLMTs. A significant number of them (but not all of them) are cited in
this book. Some articles have been removed from the citing list when they
are not enough relevant to the aim of this book (this should not be consid-
ered as a negative appraisal however). Conversely, some articles which do not
pertain to the list have been used when they are found to be useful for a
better understanding of the exposition and of the chronology of events. The
corresponding cited articles may be arranged in three families. A first family
corresponds to articles which explicitly use or rely on GLMTSs. In a second
family, GLMTs have not been used but could have been used. This is the
family of GLMT-izable articles. A third family concerns citing articles which
are not strictly relevant to GLMTs but are relevant to the more extended
field of light scattering as a whole. They may give the reader a flavour of
the environment in which GLMTs have to move. Furthermore, as a conse-
quence of the above strategy for complement-like issues, the corresponding
cited articles are not necessarily the first articles that were published in each
individual topic. Rather, they may be articles pertaining to the citing list
that may build on other earlier studies. These earlier studies may be reached
from the reference lists of the cited articles. This discussion defines the sense
in which the complements and Chapter VIII are exhaustive.

Appendices expose some technicalities of secondary significance. However,
one of them should attract the particular attention of many readers, namely
it contains a list of computer programs provided in a website connected to
the book. This website also contains movies showing the interaction between
some scatterers and ultra-short pulses.



I

Background in Maxwell’s
Electromagnetism and Maxwell’s
Equations

This book being devoted to an up-to-date version of electromagnetic scat-
tering theory, Maxwell’s equations constitute the unescapable starting block.
An usual attitude in textbooks dealing with scattering theory is to straight-
away introduce special Maxwell’s equations which are sufficient to develop
the theory when only local, linear, homogeneous, isotropic and stationary
media are considered. The reader wanting to adhere to such a point of view
could immediately jump to section 1.2. To build the house on firmer foun-
dations, section I.1 is nevertheless devoted to a very general setting in order
to emphasize assumptions underlying special Maxwell’s equations that we
shall have to cope with. It might appear strange to many people that writing
Maxwell’s equations in material arbitrary media is still an open problem, but
such is the case indeed. Our account of this problem relies on Petit [110] and
Dettwiller [ITT].

I.1 General Maxwell’s Equations in Cartesian
Coordinates

The purpose of this section 1.1 is to attempt to introduce a bit of general-
ity and of rigor in the exposition, from Maxwell’s equations in free space to
the macroscopic Maxwell’s equations to be used later in this book. This has
however to be done in a rather concise way since this book is not intended to
be a book on electromagnetism and, therefore, some readers, not yet famil-
iar enough with electromagnetism, might find it discouraging. Then, let us
advise that it is possible to jump directly to section 1.2 and to consider Rels
(1.56)-(1.59) as starting points, without too much havoc. Furthermore, these
relations are commonly available from the literature and the reader might
then, at least in a first step, trust them.
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I1.1.1 Maxwell’s Equations in Free Space

Electromagnetism is a major contribution of J.C. Maxwell who published in
1865 his celebrated set of equations. Elaborating on the knowledge accumu-
lated in electricity and magnetism, and invoking a principle of conservation
of electric charges to modify the equations known at that time, J. C. Maxwell
achieved the unification of electricity and magnetism, presented a model of
light as a special case of electromagnetic waves (to be later however completed
by the development of quantum mechanics and concepts), and definitely in-
troduced fields as physical entities on the foreground of the stage. Fields are
now landmarks in the landscape of what may be called modern physics. Also
this first unification is the starting point of a quest of a physical Holy Grail,
namely the great unification of all forces acting in nature to move it towards
an unknown destiny.

In vacuum, using Cartesian coordinates, the set of Maxwell’s equations
reads as:

(curlEj); = — 88? (1.1)
divB; =0 1.2
(I.2)

0E;
(curlBj); = podi + Ho€o Py (1.3)
divE; = p/eg (1.4)

These equations introduce two vectorial fields E; and B;, two constants €y and
1o, and two source terms p and J;. F; and B; will be called electric field and
magnetic induction field respectively. The constants ¢y and pg may be con-
sidered as properties of the vacuum in which the fields exist. They sometimes
receive the generic name of inductive capacities of the vacuum. They may also
be found to be called dielectric constant and magnetic permeability of the
vacuum, respectively. In this book, following a French terminology, they will
be called permittivity and permeability of the vacuum, respectively. Finally,
p represents electric charges and J; represents electric currents. Therefore,
the set (I.1)—(1.4) governs the evolution of the fields, in relation with the
existence of sources, in a vacuum characterized by two constants.

Although quantum physics definitely tells us that the vacuum is not empty,
it may appear counter-intuitive that the vacuum has to be characterized by
inductive capacities, particularly in the framework of a non-quantum theory
as electromagnetism is. Indeed, the existence of inductive capacities definitely
means that vacuum is not nothing! To avoid any conflict between the scientific
and the non-scientific meanings of the word ”vacuum”, it might be preferable
to speak of free space, as done by some authors.

Strictly speaking, free space means space without any source, i.e p = 0,
Ji = 0, leading to simplifications in the set (I.1)—(I.4). The absence of any
source does not prevent the fields E; and B; from existing. For instance, the
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propagation of light is perfectly well described by the no source version of
the set (I.1)—(L.4).

It then appears that calling this set Maxwell’s equations in free space
is, stricto sensu, an improper denomination. The denomination is only accept-
able because it is actually assumed that the geometric support of the sources
is of lower dimensionality than the free space in which the fields evolve. For
instance, electric charges are discrete charges like electrons of dimensionality
zero, or electric currents flowing on wires of dimensionality one. Therefore,
by tossing a point in the space, the probability of landing on the geometric
support of the source is strictly zero. A mathematician would state that the
Lebesgue measure of the geometric support is zero and that our free space is
free almost everywhere.

The reader may have noted that it has not been attempted above to give
precise names to p and J;. The reason for the same can be made clear now. Be-
cause the geometric support of the sources is of lower dimensionality than the
space, p and J; cannot represent volumic densities. For a rigorous formulation,
p and J; should be represented using the theory of distributions. Examples are
a discrete charge p located at a point P represented by a distribution p dp or
a surface current located on a surface S represented by a distribution J; dg,
in which §p and dg denote Dirac distributions [I12} [110]. To avoid the use of
the theory of distributions which is not compulsory in the bulk of this book,
we shall be content with the loose formulation presented in the set (I1.1)—(1.4).

1.1.2 Mazxzwell’s Equations in Matter

The set (I.1)—(I.4) in principle allows one to describe the electromagnetic
theory at a microscopic level in matter. There is however no interest for us in
such a description. Indeed, we are only interested in this book by macroscopic
fields, the only ones to be measurable. In an electromagnetic macroscopic
theory, fields E; and B; must be understood as being space and time averages
of microscopic fields E; ,, and B, ., respectively, in which the subscript m
stands for microscopic. However, for material media, we do not readily know
how to average charges and currents to obtain a macroscopic charge density p
and a current density J;. Deriving macroscopic Maxwell’s equations in matter
from microscopic Maxwell’s equations in vacuum therefore appears to be a
commitment of tremendous difficulty.

One then deals with a phenomenological approach. This approach relies
on the introduction of two new vectors P; and M; , called electric and mag-
netic polarizations, respectively. They characterize how the material reacts
to external macroscopic electric and magnetic fields. Obviously there must
be a microscopic interpretation behind these new vectors. For instance, let
us consider the special case of a dielectric material. Although there is no net
electric charges in such a material, the barycenter of positive charges in nu-
clei does not necessarily coincide with the barycenter of electronic negative
charges (even in the absence of external fields). Therefore, the material may
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be considered as an assembly of elementary electric dipoles. The electric po-
larization P; then expresses the dipole moment of an infinitesimal volume,
per unit volume. One then shows that the electric potential induced by the
polarization of the dielectric material is equal to a potential created in free
space by a fictitious distribution of charges. Comments would be fairly similar
for the magnetic polarization M;.

Therefore, once P; and M; are introduced, it is demanded to rewrite
Maxwell’s equations in matter in a way fairly similar to Maxwell’s equa-
tions in free space. With such a requirement, the set ([[1l)-([[4]) for free
space case is rewritten in the presence of matter as:

B;
(curl Ej), = — a@t (I.5)
divB; = 0 (L6)

oD;
(curl Hy), = J; + ot (I.7)
div D, = p (1.8)

in which two new fields D; (dielectric displacement) and H; (magnetic field)
have been introduced. A significant point is that the fields F; and B; in
Rels ([LH)—( LA ) are macroscopic fields in matter and do not identify with
microscopic fields described by the set ([[1l)—([[4] ). The newly introduced
effective fields D; and H; are related to the macroscopic fields E; and B; by
two relations:

D; =¢FE; + P (1.9)

Hz’ = Bi/,uo - Mz (110)

which, once that the set (L)L) is given, may be to some extent consid-
ered as definition relations for the polarizations P; and M; representing field
modifications due to the presence of matter. In free space, when P; and M;
are zero, D; and H; are proportional to E; and B; respectively, and the set
(1) (C4) may be recovered from the set (LH)—(L8]). Conversely, any attempt
to formally obtain the set (LI)—(L8) by manipulating the sets (LI)—([4) and
(L9)—(CI0) would fail due to our inability to formally express macroscopic
fields F; and B; from the corresponding microscopic ones.

Rels ([LH )—([LI0) are sometimes found to be introduced as the starting
point, for instance by Kerker [23]. They form the basis of macroscopic elec-
tromagnetism in presence of matter assumed to form a continuous medium.

Following Stratton [I5], let us summarize the assumptions of macroscopic
electromagnetism as follows:

e (i) The theory is a macroscopic one.
e (ii) All fields F;, D;, B;, H;, polarizations P;, M; and source densities
p, Ji, are continuous functions of time with continuous time derivatives.
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e (iii) These quantities are also continuous functions of space with con-
tinuous space derivatives in space domains having continuous physical
properties.

e (iv) Discontinuities in the field vectors or in their derivatives are allowed
to occur on separation surfaces between media when these surfaces ex-
hibit discontinuities in physical properties.

1.1.3 Boundary Conditions

The set ([LH)—-([L8) must be completed by boundary conditions and by the
introduction of the Lorentz force.

In the broadest sense, boundary conditions comprehend limit conditions at
the infinite (not discussed in this chapter) and jump conditions on separation
surfaces between media (assumption (iv) in the previous subsection). Let us
consider two media numbered 1 and 2 separated by a surface S equipped with
a unit vector njz; normal to S and positively oriented towards the second
medium. Jump conditions then read as:

(n12,i) A (E2; —E1) =0 (I.11)
ni2; (B2 — B1,i) =0 (1.12)
[(n12,i) A (Haj — Hyj)|k = Js .k (1.13)
ni2; (D2 — D1;) = ps (I.14)

in which F; A G; designates a vectorial product, F;G; designates an inner
product (Einstein summation rule being used) and J, 5, ps are superficial
current density and charge density on .S, respectively.

On one hand, Rels (I.11) and (I.12) express the continuity of the tangen-
tial component of the electric field F; and of the normal component of the
magnetic induction field B; when crossing the surface S, respectively.

On the other hand, Rels (I1.13) and (I.14) mean that there is a discontinuity
in the tangential component of the magnetic field H; and in the normal
component of the electric displacement D;, respectively. Therefore, when the
surface densities are zero, the tangential component of H; and the normal
component of D; are also continuous.

It is of interest to remark that, if the mathematical theory of distributions
is used to write Maxwell’s equations ([[5 )-([[§ ), then the obtained set of
equations (valid in the sense of distributions) contains both the differential
equations (LH)—(L8) and the boundary conditions (1.11)—([I4). Therefore,
it is then no more compulsory to supplement the differential equations with
boundary conditions [110].

Because the electromagnetic fields depend on the source intensities and lo-
cations and because source motion may be induced by electromagnetic fields,
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it is also necessary to supplement the set of equations with another one ex-
pressing the elementary Lorentz force dF; acting on an elementary volume
av.

This force reads as:

dF; = [pEi + (Jr A Bl)z]dV (1.15)

Then, any electromagnetic problem complying with the general assumptions
(i)—(iv) listed in subsection (I.1.2) is mathematically defined by the closed
set of Rels (LH)-(LI5). We are not done however because polarizations are
still not explicitly expressed in terms of media properties. This requires the
introduction of constitutive relationships.

1.1.4 Constitutive Relationships

In many cases, only approximate expressions for polarizations P; and M;
may reasonably be used because of the usual complex behaviour of real me-
dia. Indeed, a general approach to the constitutive relationships must intro-
duce many complicated features such as field coupling, nonlinearity, spatial
and temporal convolutions, nonisotropy and nonhomogeneity of the material
([I10], [111]). For instance, polarizations could be a priori expressed in terms
of the fields FE; and H; but the relevant expressions should involve:

(i) not only E; and H;, but also coupled terms
(ii) not only terms proportional to E; and H; but also constants (per-
manent polarizations) and higher order terms accounting for quadratic,
cubic... effects

e (iii) not only F; and H; at a considered point but also in some neigh-
borhood of it

e (iv) not only E; and H; at a considered date but also in some past
neighborhood of it and

e (v) tensor expressions may appear on the stage to possibly account
for nonisotropic electric and magnetic properties of the medium under
study.

The study of the corresponding general constitutive relationships is still an
open field of research. However, in this book, we shall be fortunate enough
to be allowed to land on more comfortable media than the most general
ones that the nature may have imagined. The landing process is illustrated
by considering the electric polarization P;. The discussion would be quite
similar for the magnetic polarization M;.

Discarding nonlinear effects and field coupling, the electric polarization
Pj(r;,t) at point r; and at time ¢ reads as:

P;(r;,1) :/ / Bi(r;, ) RE(ri tyry, ¢ )dV' dt (1.16)
rJt
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in which R;? is a Dirac response tensor characterizing electric properties of the
medium versus space and time. The discrete sum over subscript k (Einstein
rule) accounts for anisotropy. Quadratures over r; and t’ express spatial and
temporal convolutions required to describe nonlocal and nonperfect media,
i.e media whose polarizations at location r; and time ¢ depend on a spatio-
temporal neighborhood {V/,t/|r; eV t' <t,and ||r; — ;]| <ov(t— t/)}, in
which v is the speed of light in the considered medium.

Very usually, it may be safely assumed that the spatial variation of the
electric field F; is small enough to be accurately described by a low-order
Taylor expansion, leading to:

’ ’ E 2 2 2
Pj(”f'i,t):/[Ek(ri7t)R?(Ti,t;t)+grk(’f’i,t)sjkm(ri7t;t)]dt (1.17)
t’ m
in which:
k Y
Rj(ri, t;t) = /V/ R (n,t,rz,t )av’ (I.18)
km . ’ o ’
S; (ri t;t) 7/\/’ R (n,t,rl,t )( —Ty)dV (1.19)

In local media when polarizations at point r; do not depend on any space
neighborhood, both Rels ([16) and ([I7) reduce to:

Py(rist) = /t Ey(ri,t )RSy, ;1) )t (1.20)

In perfect media (which are local media with respect to time), instantaneously
following the time variations of the fields, time convolutions also disappear
leading to:

Pj(?“i7t) = Ek(Ti,t)Rf(T“t) (121)

If the medium is isotropic, then the Dirac response tensor is proportional to
the Kronecker tensor (R ~ ¢%) and Rel (I.21) may be written as:

Pj(ri,t) = €0 Xe(ri,t) Ej(ri,t) (1.22)

Under the same assumptions, the magnetic polarization takes a similar form
which is however usually written as:

M;j(ri, t) = Xm(ri,t) Hj(ri,t) (1.23)

The quantities x. and x,, are called the electric and magnetic susceptibilities
respectively.

Fields do not produce net electric charges as charges cannot be created nor
destroyed in the framework of electromagnetism. However, electric fields may
produce currents. Therefore, a last constitutive relationship relating the cur-
rent density J; in matter and the electric field F; is required. For time-varying



8 I Background in Maxwell’s Electromagnetism and Maxwell’s Equations

electromagnetic fields in conducting media, a very general constitutive rela-
tionship then takes the form of a time convolution according to:

t
J;(ri,t) = / Bi(rs,t )CF (ry, t;t )t (1.24)

in which Cj’? is a tensor reducing to a scalar if current and electric field are
colinear. For perfect media, the time convolution again disappears leading to
the general assumption that the current density linearly, locally and isotrop-
ically depends on the electric field. For perfect insulating media, the current
density is zero, a result which may be formally derived from the conductor
case by setting the tensor CJ’»C to zero.

1.1.5 The Formulation in Fourier Space

Fourier transform changes the derivative operator (g't) into an algebraic
operator reading as (iw .) with a proper definition of the transform, w being
the angular frequency of a Fourier mode. Therefore, Maxwell’s equations

(LH) (L) become in Fourier space:

(curl Ej); = —iwB; (I.25)

divB; = 0 (1.26)

(curlHj); = Ji + iwD; (1.27)

divD; = p (1.28)

in which Ej7 ..., p are the complex Fourier transforms of £}, ..., p, respectively.

Also, Fourier transform changes time convolutions (involved in constitutive
relationships) to algebraic products. For instance, Rel (L20) becomes:

Pj(ri,w) = Ey(ri, w)RE(r;,w) (1.29)

in which Pj and Rf are the complex Fourier transforms of P; and R?, re-
spectively. Therefore, the constitutive relationship (L20) for local, nonperfect
media in Fourier space formally identifies with the relationship (L21]) for local
and perfect media in physical space.
A 3 x 3 electric susceptibility Fourier tensor XI;, ; may be introduced by
the relation: R
€0 X];,j (ria w) = R;C (Ti; w) (130)

in such a way that Rel ([29) now reads as:

Pj(ri,w) = € X ;(ri,w) Ei(ri,w) (1.31)
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Similarly, the complex Fourier transform M ; of the magnetic polarization M;
may be written as:

Mj(rivw) = X]:n,j(rivw) I:Ik(rivw) (132)
while the constitutive relationship ([24)) may be given the form:

Jj(ri,w) = Uf(ri,w) Ey(r;,w) (1.33)
Physically, the imaginary parts of matrices X’; > an, ; and Uf represent the
energy dissipation (field damping) because of electric and magnetic polariza-
tions and electric conduction respectively.

Gathering Rels (L9),(C10),([L25)—-([28)) and the constitutive relationships
([C3T)-(@33), it is then found that Maxwell’s equations in Fourier space for
linear and local media read as:

(curlEj); = —iwpk Hy (1.34)
div(pFHy) =0 (1.35)
(curlHj); = iweF B, (1.36)
divD; = p (1.37)
in which: R R
Di=e(6F + xF,)Ex (1.38)
wf = 10(0F + Ximi) (1.39)
i
b = coldk +xk) — Lot (L40)

If the medium is isotropic, then all the second-order tensors become propor-
tional to the Kronecker tensor, and the whole set (L34)-([40) may readily
be rewritten in terms of scalar quantities, namely susceptibilities xe, Xm, per-
meability p, permittivity e and conductivity o, according to:

(curl E;); = —iwpH,; (L.41)
divH; =0 (1.42)
(curlHj); = iwek; (1.43)

divD; = p (1.44)
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with: . .
D; =eo(1+ xe)E; (L.45)
= po(l+ xm) (1.46)

i
e=co(l+ o) — 5 (L.47)

It may be remarked that, for the special case of media without any charge
density (p = 0), the set ([41))-(L44) displays a complete equivalence between
dielectrics and ohmic conductors. The same set may be used for both cases,
with the expression for € containing the conductivity o (Rel (L47)).

Also, it may be mentioned that susceptibilities x. and x,, satisfy the so-
called Kramers-Kroning dispersion relationships. These relationships can be
established from general symmetries and principles like assumptions of sec-
tion 1.1.2 [I10]. If media are furthermore perfect, then susceptibilities X, Xm
and conductivity o become real quantities and identify with usual real static
susceptibilities and conductivity.

1.1.6 Time Harmonic Fields and Complex
Representatives

The essence of any Fourier transform as previously discussed is that the
formulation may be reduced to the study of normal modes. In this book, a
normal mode is a time harmonic field with the time dependent term chosen
to read as exp(+iwt). The alternative convention with exp(—iwt) could have
been chosen, but also with an alternative form for the Fourier transform used
in Section (I.1.5).

However, once a convention is chosen, the whole formulation must remain
consistent with it. Examples of errors induced by mistaking about the con-
vention are discussed in [I13]. It is nevertheless easy to switch from one
convention to the other by taking complex conjugates.

Then, any real time harmonic quantity:

A(ri,t) = a(r;) coslwot + o(r;)] (1.48)

may be described by a complex representative A defined by:

A(r;) expliwg t) = a(r;) expli ¢(r;)] exp(iwg t) (1.49)

in which the tilde is used to denote complex representatives.
The Fourier transform of (1.48) then comes out to be:

A(ri,w) = ; [[l(m) d(w — wo) —&—fl*(ri)é(w + wo)] (1.50)

in which the star is used to denote complex conjugates.
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Therefore, Maxwell’s equations (I1.25)—(1.28) in Fourier space will involve
Dirac distributions. For instance, Rel (1.25) now reads as:

(curlBj); 8(w — wo) + (curlE;)i d(w + wo) =
) ) (I.51)
—iw [B; 0(w — wo) + B} d(w + wo)]

But, we have:
wo(lw — wy) =wp 6(w — wp) (1.52)

Therefore, identifying the coefficients of the Dirac distributions one obtains
the following equation: ~ ~
(curlEj); = —iwo B; (1.53)

together with its complex conjugate.

The same arguments may be applied to all equations of the set (1.25)—
(1.28). It then comes out that the complex representatives of harmonic fields
exactly comply with the same set (1.25)-(1.28) as do the Fourier transforms.
Accordingly, the complex representatives Ej, ij Dj and p also comply
with the set (I.34)—(I1.37) and also with (I.38), with notations defined by
(1.39)—(1.40), to be supplemented by boundary conditions corresponding to
(1.11)—(1.14).

It is of interest to remark that the same set can be formally obtained
without any Fourier transforming by directly rewriting the initial set ([3])-
(L8)) with exp (iwt)-harmonic complex representatives and, accordingly, with
the derivative operator gi replaced by the algebraic operator (iw .).

However, such a procedure would not emphasize the physical meaning of
the constitutive relationships summarized by Rels (I1.38)—(1.40).

Another remark is that the permittivity and permeability tensors do not
satisfy the same relationships with the electric and magnetic fields respec-
tively, i.e. we have:

B; = uf Hy, (L54)

whereas: ~ ~
D; # € Fy (1.55)

This difference results from Rels (1.38)—(1.40) in which there is no magnetic

counterpart to the electric conductivity tensor o¥.

I.2 Special Maxwell’s Equations for 1.1.Lh.i Media

This section is essentially devoted to special Maxwell’s equations, i.e. to
Maxwell’s equations specified for the special case to be treated in this book,
and to some consequences of them to be used later.

Media considered in this book are 1.1.h.i. media: linear, local, homogeneous
(with respect to space and also to time) and isotropic. There are no macro-
scopic sources, i.e. no macroscopic charge density and no macroscopic current
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density. Because complex representatives are used in all the rest of this
book, the tilde will be omitted from now on for convenience unless explicitly
stated otherwise. We furthermore deal with exp(iwt)-harmonic electromag-
netic waves, i.e. the derivative operator (J,) and the algebraic operator (iw.)

are equivalent.

1.2.1 Special Maxwell’s Equations in Cartesian
Coordinate Systems

The complex representatives comply with the same set as the Fourier trans-
forms (see section 1.1.6), thus (1.45)—(1.47) gives the constitutive relationships
for linear, local, homogeneous and isotropic media, u and € being further-
more constant quantities due to homogeneity with respect to space and time.
Hence, the set ([LH)—(L8)) reduces to special Maxwell’s equations reading as:

H;
(curlEj); = fpaat (1.56)
divH; = 0 (L57)
E;
(curlHj); = eaat (1.58)
divE; = 0 (L59)

The above equations involve only two fields F; and H; and two complex con-
stants p and €, characterizing the medium, as defined by Rels (1.46)—(1.47).

1.2.2 Special Maxwell’s Equations in Orthogonal
Curvilinear Coordinate Systems

By using the formulation of tensor calculus [114][115], it is possible to effi-
ciently transform Maxwell’s equations (I.56)—(1.59) from Cartesian coordinate
systems to any orthogonal curvilinear coordinate system. Orthogonal curvi-
linear coordinate systems are defined by a covariant metric tensor taking the
form:

gin 0 0 (e1)? 0 0
9km = 0 g2 0 = 0 (62)2 0 (160)
0 0 g33 0 0 (63)2

i.e., the metric is defined by an infinitesimal length element ds given by:
ds* = gemda®dz™ = (eydz')? + (eada?)? + (ezda®)? (I.61)

in which z* designates the coordinates (k = 1, 2, 3) and e;’s may be called
scale factors [I16].
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Maxwell’s equations are now specified for such orthogonal curvilinear co-
ordinate system, following for instance Poincelot [114].
Relation (I.56) becomes:

0 0
8x2 83E3 — 8x3 €2E2 = —He2€3 atHl (162)

0 0 0
81‘3 €1E1 — 81‘1 €3E3 = —ueser ot H2 (163)

0 0 0
8x1 BQEQ — ax2€1E1 = —Hue1€e2 atH3 (164)

Relation (I1.57) becomes:
0 0

oxl esesHy + P ese1Hy + O eresHs =0 (165)

Once these relations have been checked, it is just a rewriting exercise to find
how equations (1.58)—(1.59) are modified, taking advantage of the similarity
between (1.56)—(1.57), and (I1.58)—(1.59).

Relation (I.58) becomes:

0 0 0
axz 83H3 — 8x3 €2H2 — € €9€3 atEl (166)

0 0 0
81‘3 €1H1 — 81‘1 €3H3 — € €361 8tE2 (167)

0 0 0
Bxl BQHQ — ax2€1H1 = € €162 atEg (168)

Finally, Rel (I1.59) becomes:
0 0 0

oxl eqsesby + P ese1 By + O ereab3 =0 (169)

1.2.3 Special Mazxwell’s Equations in Spherical
Coordinate Systems

As an example relevant to the contents of this book, we may consider a
spherical coordinate system defined by (Fig. I.1):

!l =
2 =

3 =

(L.70)

€ =

From 3D-Pythagorus theorem:

ds® = (dr)? + (rdf)* + (r sinf dyp)? (I.71)
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<

ZA V(p

Fig. I.1. Spherical coordinate system. In these relations, V; designates the compo-

nents of vector V(E or H) in the local Cartesian (orthogonal) system attached at
. k

point z".

Consequently the covariant metric tensor reads as:

10 0
gkm = (072 0 (L.72)
00 r2sin?6
leading to:
ey = 1
ey = 1 (1.73)
es = r sin 6

The set (I1.62)—(1.69) can then be readily specified for this case by inserting
(I.70)—(1.73) in it. The interest of spherical coordinates is due to the fact that
most of this book is devoted to spherical particles. However, the set (1.62)—
(1.69) is of interest for other shapes in so far as they can be properly described
by orthogonal curvilinear coordinate systems, typical examples being circular
cylinders, i.e. fibers ([I17] [118] [T19] [120], for instance).

1.2.4 Boundary Conditions

Boundary conditions discussed in subsection (I.1.3) are here conveniently
rewritten for 1.Lh.i. media. Under the same assumptions as for Maxwell’s
equations (1.56)—(1.59), using again complex representatives, and remember-
ing that there is no surface current density Js, Rels (I.11) and (I1.13) may
be rewritten as:
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(n12.) A (Ezj — Ev ) =0 (1.74)

(nlg’i) AN (HQJ' — Hl’j) =0 (175)

expressing the continuity of the tangential components of both the electric
and magnetic fields.

Limit conditions at infinity must also be added to the above boundary
conditions. Assuming that the field sources remain in a bounded domain,
the limit conditions express that all local Cartesian components of propagat-
ing time harmonic waves must (i) vanish at least as rapidly as =1 and (ii)
represent a divergent travelling wave, at infinity ([I5], pp 485-486).

The relations expressing the limit conditions depend on the choice of the
coordinate system and will be written later when necessary.

1.2.5 Energy Propagation and Poynting Theorem

The Poynting theorem discussed in this subsection concerns energy balance
and propagation. Our starting point will be the definition of the Poynting
vector S; as the vectorial product of the electric and magnetic fields:

S; = (Ej A\ Hk)i (176)

in which complex representatives are not used.
The physical meaning of the Poynting vector may be investigated by first
taking its divergence, leading to:

divSy + E; (curlHy); — H; (curlEy); =0 (I.77)

By using Maxwell’s equations (I.7)—(I1.10), Rel (I.77) becomes the Poynting
identity:
8Si aBi
JE, + E; =
or; T ot
Integrating this identity over a volume (2 bounded by a closed surface S
equipped with a unit vector n; pointing normally outward, the flux of the
Poynting vector is found to satisfy:

//Ssi ni ds—///QJiEidv///Q(Eia;;)“rmagi)dv L79)

in which the volume integral of the divergence term has been converted to a
surface integral.

Rel (I.79) may be interpreted as an energy balance over the volume 2. In
vacuum in which electric and magnetic polarizations are zero and therefore
in which B; = uoH; and D; = ¢oFE; (Rels (L9)-([I0)), the interpretation of
the energy balance is best carried out by rewriting Rel (I.79) under the form:

oD

ti + H; 0 (1.78)
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_// Q%Tdv:///njiEidv-‘r//gSinidS (1.80)

in which: .
w =, (€0 B} + poH?) (1.81)
The quantity w is interpreted as the electromagnetic energy per unit volume.
Therefore, the left-hand-side of Rel (I1.80) represents the decrease of electro-
magnetic energy contained in the volume 2. This decrease is provoked by
two effects summed up in the right-hand-side, namely (i) the rate of change
of the kinetic energy of the free charges inside {2, that is to say the power
of the Lorentz forces acting on them and (ii) the energy loss inside {2 due to
electromagnetic waves propagating across the surface S.
As a special case relevant to the purpose of this book, let us consider inside
the volume 2 a scattering center surrounded by a non-absorbing medium.
Because there is no free current density inside {2, the balance (I1.80) reduces

[1f =] fsmss

and it is seen that the flux of the Poynting vector contains all the informa-
tion necessary to understand the energy balance. In particular, the decrease
of electromagnetic energy density w may have some extra-causes due to the
presence of the scattering particle, namely absorption of energy in the scat-
tering center material.

The above discussion in this subsection does not use complex representa-
tives. Let us now consider exp(-+iwt)-harmonic fields and complex represen-
tatives. Then, the Poynting vector (I.76) must be redefined by considering
time averages, say over one period, which are the quantities of interest. Fur-
thermore, because the Poynting vector is not a linear function of the fields,
some care must be taken in introducing its complex representative. In order
to preserve the interpretation of the average energy propagation as the flux
of the real part of the complex representative, the complex Poynting vector
can be defined as: )

Si= By A7) (1.83)
in which the star designates a complex conjugate.

For completeness, it is of interest to discuss a bit the case of material dissi-
pative media. In this context, the concept of electromagnetic energy density
w does not come out as easily as in vacuum and it is no more obvious to
interpret Rel (I.79) as an energy balance. However, for time harmonic fields
in linear and local media, averaging over an integer number of periods (say
one), it comes out that [I10]:

/ /S n; Re(S;) dS = / /S n; Re[;(EjAI;T;)Z-] ds (1.84)
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leading to:

//sn Re(S:) dS = ///Re{ (BB — Hy (uk Hy))}dV  (1.85)

The meaning of this relation is that the average energy flow through S ex-
pressed by the left-hand-side is minus the energy dissipation (Joule effect plus
electric and magnetic losses) within 2.

In isotropic media where the tensors ¥ and p¥ reduce to scalars, it then
comes out that:

//S"f Re(S:) dS = /// (O Bi | + Im(u)| H; P 4V (L86)

In vacuum, where ¢ = ¢y and g = po are real numbers, the right-hand-
side of (I.86) is zero. Therefore, the meaning of this relation becomes that
the absolute amount of energy flowing inside {2 through S is equal to the
absolute amount of energy flowing outside, a plain statement concerning the
conservation of energy indeed.

As a last word, let us recall that the tilde will still be omitted in next
chapters.

1.2.6 Momentum Propagation

Similar to energy propagation, momentum propagation is involved by prop-
agation of electromagnetic fields. The simplest relationship between energy
E and momentum p can be written for a photon as:

E =pc (1.87)

which results from expressions of £ and p in quantum mechanics in which ¢
is the speed of light.

In classical electromagnetism, momentum can be defined from the Poynt-
ing vector by introducing a momentum field tensor.

For the restricted scope of this book, only momentum propagation in free
space will be necessary (”free space” in the sense of section I.1.1). Then, it is
possible to avoid defining the momentum field tensor and it comes out ([I10]
p. 100-104) that the volumic density of the field momentum is proportional
to the Poynting vector:

d p;

Vv = €p [E] AN Bk]z = €p ,u,()Si (188)

in which complex representatives are not used.

Considering a propagating electromagnetic wave for which the Poynting
vector S; is along the direction of propagation, we may write the flow of mo-
mentum through an infinitesimal surface dS with angle 6 between S; and the
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normal to dS. In free space, this momentum flow during dt is the momentum
of the field contained inside an oblique cylinder with basis dS and length
cdt = (eopo) % dt. Accordingly it can be written as:

dp; = (eo,uo)é S; cos@ dS dt (1.89)

which immediately results from ([88) and is readily found to be coherent
with the quantum mechanics interpretation of Rel ([87) in the continuous
limit.

If we only consider time harmonic fields, then the real part of the complex
representatives will give the averages over an integer number n of periods T'
of the above quantities. Hence Rel (1.89) can also be written as:

1

nT
T /0 dp; = (eopo)? Re(S;) cos dS (1.90)

Rel (1.90) is vectorial: it is the time-average flow of the momentum of the
field per unit of time through the infinitesimal surface d.S. This relation will
be used later for computing pressure cross sections from momentum balance
(chapter III).

1.2.7 Wave-Vector, Refractive Index and Impedance

This section provides miscellaneous relations to be repeatedly used later. The
underlying assumptions have been given at the beginning of section (I.2) and
the relevant Maxwell’s equations are the set (I.56)—(1.59). Again, the tilde
to denote complex representatives is omitted. For exp(iwt)-harmonic fields
when the operator ( g ;) is replaced by the operator (iw.), it is an exercise to
show that the set (I1.56)—(1.59) implies that both fields E; and H; satisfy the
Helmholtz equation which, in Cartesian coordinates, reads as:
0%X;
oz +w?ueX; =0 (1.91)
in which X; stands either for E; or H;.
The most celebrated solutions of the Helmholtz equation are the spherical
wave (SW) and the plane wave (PW) reading as:

SW : exp(—ik;z;)/(z2)/? (1.92)

PW : exp(—ikiz;) (1.93)

in which irrelevant pre-factors are omitted. The wave-vector k; depends on
medium properties and is readily found to satisfy, for instance, using Rels
() and (L)

ki 2 =w?ne (I.94)
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A careful examination of the PW-solution [110] however shows that Rel (L.94)
is the single relation the complex wave vector k; is bound to comply with.
The general solution is therefore what is called a dissociated plane wave in
which Re(k;) is not proportional to Im(k;) and accordingly, isophase planes:

x; Re(k;) = cst (1.95)
do not identify with isoamplitude planes:
x; Im(k;) = cst (1.96)

Fortunately, many waves such as usual plane waves (or Gaussian laser beams)
are not dissociated. From Rels (L95)-([96)), it is observed that isophases
and isoamplitudes coincide if Re(k;) is proportional to Im(k;). Under such
an extra-assumption of colinearity between real and imaginary parts of the
vector k;, it is then possible to write:

in which k is a complex wave-number and n; a real unit vector. Then, from
Rel ([94) a wave-number k may indeed be defined according to:

k=wype (1.98)

in which the square-root must be chosen to be consistent with the convention
of an exp(+iwt)-time dependence. This requires:

Re(k) > 0, Im(k) <0 (1.99)

as it can be observed by inserting Rel (L97) in (L93) and requiring the PW
amplitude to be damped during propagation.
A complex refractive index M may then be defined as the ratio of wave-
number for the considered material over wave-number in vacuum:
1€ kc
M = \/ =c\/pe= (1.100)

Ho €0 w

in which we have used the fact that permeability and permittivity in vacuum
comply with:
€ po 2 =1 (1.101)

Rel (LI00) implies that M may be written as:
M=N—iK (1.102)

in which N>0, K > 0 as a consequence of inequalities (L.99).
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If a material defined by psp, €5 is surrounded by a nonabsorbing medium
defined by u, €, then a complex refractive index of the material relatively to
the surrounding medium may be defined according to:

S S kS
M:\/MZEPZ e (1.103)

This will be the typical meaning of M in this book. If the alternative conven-
tion for the time dependence of the fields, i.e. fields evolving as exp(—iwt), is
chosen, then & and M comply with the inequalities:

Re(k), Re(M) > 0; Im(k),Im(M)> 0 (I.104)

instead of (1.99).

Finally, it is useful to comment on the relation between electric and mag-
netic fields, i.e. on the complex impedance of the medium. For plane waves
defined by Rel (1.93), Maxwell’s equation (I1.56) leads to the general relation
between complex representatives E; and H;:

wull; = [k A B (1.105)
1

expressing the fact that the complex vectors kj, Ep ﬁj form a complex

direct orthogonal basis. For the special case of non dissociated plane waves

whose wave-vector complies with Rel (1.94), it may be rewritten as:

\/‘e‘H = [ ny A Ey; (1.106)

in which n; is a real unit vector.

Although E; and H; are orthogonal in a plane wave, it must be noted
that the real fields F; and H; in general do not possess the same property of
orthogonality in contrast with a common naive belief. This actually results
from the fact that Rel (I.105) is not linear and only linear relationships can
be automatically transferred from real quantities to their complex represen-
tatives.

Nevertheless, for a nonabsorbing medium in which p and € are real num-

bers, Rel ([I06]) implies:

u_ |E| |E| _ E
\/6 \q; | Hi| H

which defines the impedance of the nonabsorbing medium. (LI07) may also
be rewritten as:
E H

k: =
we g =wp o

(1.108)
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A similar relation holds for some other special cases such as:

e (i) real fields on the front of a propagating wave inside a nonabsorbing
medium (but not behind) ([I10], p89).

e (ii) real fields of a spherical wave propagating inside a nonabsorbing
medium

e (iii) some complicated fields, at particular locations, for instance at the
focus plane (waist plane) of a Gaussian laser beam where the wavefront
is locally plane.

However, in general, the use of Rels (LI05)—(LI08) must be kept under careful
control.

I1.2.8 Potentials

From Maxwell’s equation (L6, using the fact that the divergence of a rota-
tional is zero, it is possible to introduce a vector potential A; according to:

B; = (curlA;); (1.109)

For 1.1.h.i. media considered in the present section, the magnetic field H; may
then be expressed in terms of the vector potential A; according to:

H;, = B;/p = (curlA;);/p (I.110)

However, it comes out that Rel ([.I09) does not uniquely determine the vector
potential A; to which any gradient may be added because the rotational of
a gradient is zero. The remaining indetermination may be cancelled out by
demanding A; to satisfy an extra-condition.
If this condition writes:
divA; =0 (I.111)

then the vector potential is stated to be defined within the Coulomb gauge.
In this book however, we shall rather consider the Lorentz gauge [110] defined
as follows.
Invoking (LI10), Maxwell’s equation (I.56) may be rewritten as:
[curl(E; + )i =0 (1.112)

Because the rotational of a gradient is zero, it is then also possible to introduce
a scalar potential V such as:

0A;

E.
it ot

= —(gradV); (1.113)

Fields are not modified by changing the potential doublet (A;,V) to a new
doublet (A4;, V') such as:
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A, = A, + (grade); (1.114)
’ 8(p
=V - I.11
ViV (1.115)

Therefore, the potential doublet is not uniquely determined. In the Lorentz
gauge, an extra-relation, the Lorentz condition, is specified reading as:

divA; + € i aé)‘t/ =0 (I.116)

Let us now start from Maxwell’s equation (I.58) and insert in it the definitions
(LI10) and (LI13) of the potentials A; and V. Remembering that:

(curl curl ¢;); = (grad div ¢;); — Ay (I.117)
and invoking the Lorentz condition (LII6), it is readily found that:

0% A;
AA; —ep o2 = 0 (I.118)
With the assumption of exp(iwt)-harmonic fields, this becomes a Helmholtz

relation for the potential vector which, in view of Rel (L98), reads as:
AA; + k%A, =0 (1.119)

Similarly, the scalar potential satisfies a Helmholtz equation.

Finally, the exp(iwt)-harmonic electric field can be expressed as a function
of only the vector potential. Invoking again the definition of the potential
vector (LII0) and Maxwell’s equation (I.58), the electric field F; may be
derived from the potential vector A; as

1
E;, = iwep (curl curl Aj); (1.120)
Using again Rel (L117), the Helmholtz relation (LI19) and Rels (L98) and
(CLI00), it comes out that the electric field F; reads as:

E;, = ;Z C(grad divA;); —iwA; (I.121)

Therefore, instead of dealing with two fields E; and H;, it appears that we

may deal with a single field A; because, once A; is determined, the fields E;
and H; are determined within the Lorentz gauge by Rels ([12]) and (LI10).
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Resolution of Special Maxwell’s
Equations

In this chapter we present solutions of Maxwell’s equations for time-harmonic
waves in 1.1.h.i. media. Hence, the starting point is section 1.2. Again, one of
our recurrent choice will be to introduce special cases as late as possible in
the chain of the resolution of Maxwell’s equations. Thus, the explicit time
harmonic dependence of the waves only appears in section I1.3 and the in-
troduction of spherical coordinate systems (the one suitable for spherical
scatterers) is postponed to section I1.4.

II.1 Special Orthogonal Curvilinear Coordinate
Systems and Separability

It will be required to consider special Maxwell’s equations and to solve them.
The task is reasonably easy only if the coordinates are separable. Kerker
([23], chapter I) and Morse and Fesbach ([116], p 513) count eleven separable
systems for the wave equation, including spherical coordinates , and discuss
them. In this book, we shall use special orthogonal curvilinear systems (sec-
tion 1.2.2) in which the scale factors satisfy two-extra conditions reading as:

0 €9 -
Bt <€3> =0 (IL.2)

This is in particular true for a spherical coordinate system (section 1.2.3) in
which indeed e;= 1 and:

0 €2 0 1

= = II.
Ozl e3 Or “sin 6 (IL3)

More generally, within the set of eleven separable coordinate systems for the
wave equation, there are only six coordinate systems satisfying the above
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extra-conditions ([I16], p 1765). Instead of dealing with the wave equation,
however, we shall deal with the Bromwich scalar potential equation for which
separability too will work. The relation between the wave equation and the
Bromwich scalar potential equation is discussed in [121] as well as separability
in spherical and cylindrical coordinate systems. In the most general case
however, it must be pointed out that separability must be understood in
terms of distributions ([122], [123]) rather than in terms of functions [124].

Separability for the Bromwich scalar potential equation in spherical co-
ordinates implies that these coordinates are suitable to develop GLMT for
spheres such as considered in this book. Note that the difficulties in solv-
ing Maxwell’s equations do not only depend on the shape of the scatterer
but also on the material properties which must exhibit a spherical symmetry
too. For instance, a sphere with randomly located inclusions, even spherical,
would provide a scattering problem tremendously difficult to solve with no
possibility of invoking global spherical symmetry. Conversely, spherical coor-
dinate systems have been used for plane wave scattering by stratified spheres
in which electromagnetic properties are stratified, i.e. the complex refractive
index may vary radially. In such a case, the radial variation of the properties
matches perfectly well the symmetry properties of the coordinate system and
therefore does not kill separability, and a GLMT for multilayered spheres is
feasible as will be discussed later.

More generally, all particle shapes which have been treated for plane wave
scattering, like fibres or spheroids, can be investigated for shaped beams
by invoking separability in the coordinate system tailored to the particle
symmetry, as will also be discussed later.

I1.2 Bromwich Potentials

I1.2.1 Generalities

In the Anglo-saxon world, a favoured method to solve Maxwell’s equations
relies on the use of Hertz (or Hertz-Debye) potentials. This tradition is prob-
ably based on the success of the book by Stratton [15].

In any case, however, another method proposed by Bromwich [125], and
extensively developed by Borgnis [126], may be used. Kerker [23] comments
that Bromwich initially appears to be a late comer but that Bromwich solu-
tion actually could have been worked out as soon as 1899. In France, there is
a strong tradition in using Bromwich method rather than that of Hertz one
and, therefore, it is no wonder that our GLMT has been developed with it.
Both methods are however, equivalent and, consequently, a GLMT based on
Hertz potentials would be equivalent to our GLMT based on Bromwich scalar
potentials (BSPs from now on). In particular, the formulation provided by
Barton [70] has been shown to be equivalent to that of the authors by Lock
[127]. Also, we expect that there would exist strong similarities between the
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formulation of the authors and the one given by Kim and Lee [68, [69], al-
though Kim and Lee’s work was restricted to Gaussian beams, while we here
consider arbitrary-shaped beams.

Furthermore, the Bromwich method, based on scalar potentials, will lead
us to write field expressions in a scalar way. Such field expressions may equiva-
lently be written in a vectorial way by using vector spherical wave functions.
The vectorial formulation is more concise and may be found more elegant
while some people may prefer to work with the more expanded scalar formu-
lation. The situation is similar to the possibility of choice between dealing
either with a vector or with its components. In some cases, like for the GLMT
stricto sensu, it might be a matter of taste. However, let us consider the
GLMT for the case of a sphere containing an eccentrically located spherical
inclusion [I2§]. This GLMT requires the use of translational addition theo-
rems which are better expressed in terms of vector spherical wave functions
and, therefore, in this case, the use of a vectorial formalism may be in com-
pulsory practice. As a result, the relationship between the scalar and vectorial
formulations is discussed in [128]. It is just a matter of very easy translation.
For similar reasons, another case where the vectorial presentation is superior
to the scalar one concerns the case of a GLMT for assemblies of spheres and
aggregates [129].

The Bromwich method enables us to find special solutions to Maxwell’s
equations for special orthogonal curvilinear coordinate systems introduced in
Section I1.1. More precisely, two special solutions are obtained which are lin-
early independent, namely Transverse Magnetic (TM) and Transverse Elec-
tric (TE) solutions. They can be expressed by two BSPs, Urys and Urg,
respectively. After BSPs are known, they uniquely determine two special sets
of field components (E; rar, Hiram) and (E; rr, Hi 7E), respectively. It can
be established that BSPs comply with an unique linear differential equation.
From this linearity and also from Maxwell’s equations linearity, it follows
that any linear combination of the two special solutions is a general solution.
For a given problem, unknown coefficients in the general solution are fully
determined by boundary conditions. Unicity of Maxwell’s solutions for a com-
pletely specified problem then ensures us that the obtained general solution
is the unique and general solution of the problem.

The sequel of this section is devoted to the introduction of BSPs and to the
derivation of the relation between BSPs and field components. Our derivation
closely follows Poincelot [114].

I11.2.2 Transverse Magnetic Wave

In the special orthogonal coordinate systems defined in section I1.1, Maxwell’s
equations are given in section 1.2.2. The first special solution is the Transverse
Magnetic wave which is defined by demanding;:

Hy =0 (IL.4)



26 IT Resolution of Special Maxwell’s Equations

Rel (1.62) then simply reduces to:
0 0

81‘2 €3E3 = 81‘3 62E2 (115)

A new function P which is a potential for the quantities esFo and e3FEj3
involved in ([LH)) is introduced:

oprP
E =
2T o2
(1L6)
opP
csbs = 0x3

Then Rel ([[LH) is automatically satisfied. A first BSP, U, is now introduced
as a potential of the potential P through the relation:
oUu
P = I1.7
Ozt (IL7)
From Rels ([L6) and (L), components E; and Es5 are then determined from
U by:

1 0%U
Ea = es Oxldx? (IL8)
1 0°U
E3 = II.
3 e3 Ozl0z3 (IL9)

The definition of P (IL8]) is inserted in Maxwell’s equations (I1.67) and (1.68)
specified for obtaining the TM-wave in terms of P:

ot €311 = 562‘:1 8‘122; (IL.10)
ail eoHy = 5622 3?5231;5 (IL11)
leading to, in terms of U:
o 3115 = sez‘:l %?;UQ o (IL.12)
o1 ©2H2 = 5622 M?{;Z o (IL.13)

With conditions ([L1)) and ([L2), Rels (IL12) and ([LI3) then provide us

with the way to determine components Hs and Hs from BSP U by using:
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e 0°U
Hy= =" o ooy (IL.14)
e 0*U
Hy = II.1
2 e3 0x30t (IL.15)

We now consider Maxwell’s equations (I1.63) and (I1.64). Using previously
given relations, they readily become:

0B, U PU

r? ~ (at)2003 M 0a3(01)? (IL.16)
3 3

0E, U PU i)

dz2 ~ (9z1)2022 ~ M€ 9z2(t)2

which are satisfied if a special solution F; is expressed in terms of U by:

0%U 0%U
E, = — I1.18
I (%)
Let us now discuss Maxwell’s equation (I.66) which is rewritten as:
0F, 1 0 0
= sHs — H I1.19
ot geses (8962 3 iis Ox3 c2 ) ( )
Using (IL14) and ([L13), it becomes:
E, -1 2 2
ot ese3 02 ey 020t 0x3 e3 0x30t
which is satisfied with the following special solution for Ej :
-1 0 €3 oU 0 €9 oU
= I1.21
eses 0x2 ey Ox? 03 e3 83:3) ( )

A Comparison of ([LI8)) and (ILZI)) provides the differential equation for U:

0?U 02U 1 0 ez OU 0 e 0OU

(Ox1)? _“E(at)2 + eges 0x? ey Ox? 0x3 e3 B;US) =0 (L22)

The two Maxwell’s equations involving divergences ((1.65) and (I1.69)) have
not been used. The reader might readily check that they add nothing more
than what we have gained, being identically satisfied.

The relation div H; = 0 is identically satisfied due to H; = 0, e; = 1 and
to Rels (11.14)-(I1.15) while relation div E; = 0 is identically satisfied because
div E; is found to be equal to the derivative with respect to 2! of es e3 times
the left-hand-side of (IL22)).

It is then found that the potential U is the key quantity of Bromwich
formulation. The whole set of Maxwell’s equations is fully equivalent to a
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linear differential equation for U plus rules of derivation of field components
to be used after U is determined. Only H; is not expressed in terms of U,
but this quantity is zero from the definition of the TM-wave.

For convenience, subscripts TM have been omitted in this section. They
should be reintroduced to avoid any confusion with the TE-case: U becomes
Ury and the field components V; become V; ras. These components are
served again below to present them in a single dish:

Hirym=0 (TM-definition) (I1.23)
€ 82UTM
H = 11.24
PIMT oy Dadot ( )
€ 82UTM
H- =_ 11.2
3,TM ea 020t (11.25)

82UTM BQUTM

Evry = - 11.2
LTM = ga1y2 THE (g2 (11.26)
1 0?Urum
Esrm = ey Drl0a? (11.27)
1 8?Urum
ZX TR (I1.28)

I1.2.3 Transverse Electric Wave

The second special solution is the Transverse Electric wave which is defined
by demanding:
E,=0 (I1.29)

Analysis of this case is fully similar to the previous one and is left as an
exercise to the interested reader. It is then found that the Transverse Electric
BSP Urg complies with the same differential equation (I1.22) as does Upyy. It
is again to be emphasized here that this Bromwich scalar potential equation
is not identical with the wave equation as an expert in light propagation
theory might think and pray for from a superficial look (see discussion in
[121]). Once Urg is determined, all the corresponding field components can
be derived according to a second dish in our menu:

Eirg=0 (TE-definition) (I1.30)
Fogp—— M OUTE (I1.31)
2TE =7 o0 9a30t ’
02U
Esrp = K TE (11.32)

es 0x20t
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82UTE azUTE

H = - 11.33
LTE = (gu1)2 THE gy (IL.33)
1 82UTE
Hore = ey D102 (I1.34)
1 0%Urg
Hsrp = ey 0210z (I1.35)

Clearly, instead of reproducing the analysis similar to the one in previous
subsection, the reader if in a hurry could be content in simply checking that
the TE-expressions do satisfy the whole set of Maxwell’s equations.

11.3 Explicit Time Harmonic Dependence

Invoking Fourier Transform, arbitrary waves may be expressed as sums or
integrals of sinusoidal waves as discussed in Chapter I. Therefore, the rest of
this book is devoted to sinusoidal waves without any significant loss of gener-
ality. It is recalled that the time dependence of the complex representative is
assumed to be contained in an exp(iwt) term, in which w is the angular fre-
quency. Therefore, the derivative operator (0. /0t) becomes a multiplicative
operator (iw.).

Invoking Rel (1.98), the differential equation for BSPs (I11.22) then becomes:

0?U
(0x1)

0 es oU 0 €9 oU

KU
2t * eses | 0x2 ey O0x2  Ox3 e3 Ox3

=0 (11.36)

After Urpys and Urg are determined, the expressions to derive the field com-
ponents simplify to:

Transverse Magnetic Wave.

Hirm =0 (I1.37)

Hyry = i;ugs aaU;M (I1.38)
Hsryv = *i:; aaU;M (I1.39)
B = ?;fo(f + K2Ur (I1.40)
Eyry = 612 gi?gxﬂg (I1.41)
Eyrar = O"Uru (IL.42)

es Ozxloz3
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Transverse Electric Wave.

Eirp =0 (11.43)

Eyrp =— i:gﬂ ag;f (11.44)
Esrg = Z(:QM angQE (I1.45)
Hyrp = ?;gf)’j + K2Urg (I1.46)
Hayrp = 612 g;?g; (IL47)
Hsrp = 613 g;?g; (IL48)

In this section, and from now on, the time dependent term exp(iwt) must be
thought to be systematically omitted, as is the usual practice.

II1.4 Use of Spherical Coordinate Systems

By specifying the expressions for e, es, e3 of a spherical coordinate system
(Rels (1.70), (1.73)) which comply with conditions (II.1)—(IL.2) for using the
Bromwich formulation, the differential equation (I1.36) for BSPs becomes:

02U

1 1 2
or2 + k2U + g sinﬁaU o

= 1I.4
r2sinf 00 00 + r2sin? @ 02 0 (IL.49)

As stated in section I1.2.3, it is readily checked that this equation differs from
Helmholtz (wave) equation AU + kU = Obya 2 (%) term.

After Urpys and Urg are determined, the relations to derive the field com-
ponents now become:

Errum = o a(ifM + K2 Urn (IL50)
Eorar = 8;5;5” (I1.51)
Eorar = rsiln0 ?’927(“]?; (IL.52)
Hyrm =0 (IL.53)

Hyqay = ¢ OUTM (I1.54)

rsinf Oy
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Hyry = — i‘:E agzM (IL55)
Eprp =0 (I1.56)
Buas= i s
Eprp= W aggE (I1.58)
H.rp = 828[:27 P KU (I1.59)
Hyrp = i 8;5;: (I1.60)
Hyrp = rsiln ) 8;3; (IL.61)

We therefore now have to look for BSP-solutions.

I1.5 BSP-Solutions

I1.5.1 Reduction to Ordinary Differential Equations

Owing to coordinate separability in spherical coordinate systems, the partial
derivative equation (PDE) for BSPs, (I1.49), may be reduced to a set of three
ordinary differential equations (ODE) by the method of variable separation,
according to:

U(r,0,¢) =rR(kr) ©(0) (p) (11.62)

Indeed, inserting (I11.62) into (11.49), and multiplying by:

r

M= .63
R(kr) ©(0) 3(») (11.65)

leads to
r o d*rR(kr) 5, d . dO) 1 d*d(p)
RUr) a2 T " snolow) a0 M a0 Tene a(p) dp2 )
(I.64)

Because the members of ([I.64) depend on independent variables, both of
them must be equal to a (complex) constant which is conveniently written
as a (a+1).
Introducing:
x = kr, (I1.65)
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the LHS of (ILG4) then becomes:

d 2 dR(x)
dx dx

} +[2* —a(a+1)] R(z) =0 (I1.66)

which is called the spherical Bessel equation.
The RHS of ([L64]) then produces the spherical harmonic equation. Mul-
tiplying by sin?6, we obtain:
sinf d de(d) 1 d?®(p)

) . _
a(a+ 1)sin 9—|—@(9) dasm@ a0 "7 Bp) dp? (IL.67)

Again, both members must be equal to a (complex) constant taken as b2,
leading to the associated Legendre equation:

d*e(0) de(0) b2
2 _
(1—u”) PR 2u du + la(a+1) — . ) =0 (I1.68)
in which:
u = cosf (11.69)

and to the harmonic equation:

d*d

b = I1.
di? +b'p=0 (I1.70)

I1.5.2 Harmonic Equation

Continuity of function @ with respect to rotation around z-axis (27-periodicity)
requires the following boundary condition to be satisfied:

B(0) = & (27) (IL.71)

Hence b in the harmonic equation ([LZ0) cannot be any complex number but
must be an integer. If we choose m to be a positive integer, then the harmonic
solutions of ([LZ0) simply take the form:

D(p) = exp(£im o) (I1.72)

It is a pity that we have nothing more to say about these solutions in so
far as this subsection is certainly somewhat too short when compared to the
others. However, it may give us an opportunity to relax.
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I1.5.3 Associated Legendre Equation

Although a and b in ([L68) are mathematically allowed to be complex con-
stants, we have seen in section I1.5.2 that b must be an integer m. Similarly
a must be a non-negative integer.

Effectively, we are looking for solutions which are defined over the whole
space. Therefore, our solution for the associated Legendre equation ([LGS)

must be defined for u = 41 all in cases when b = m integer. In particular,
for b = 0, Rel (IL6]) reduces to the standard Legendre equation whose
solutions remain finite at v = =+ 1 only if constant a is a positive integer

n ([15], chap VII). The constants b and a being defined independently, the
above restriction for a applies to the other solutions of (IL6Y) whatever the
value of b. Consequently, function R is solution of the associated Legendre
equation in the case when b = m is an integer and a = n a positive integer.

Under such circumstances, the solutions of the associated Legendre equa-
tion are the associated Legendre functions P/, often missnamed by physicists
as associated Legendre polynomials, with n = (1,2, ...) and m = (—n, ..., +n).
In this book, they are defined according to the Bhagavad-Gita on Legendre
functions, namely Robin [I30]:

) d™ P, (cos )
P (cosf) = (—1)™(sin @)™ " 11.73
7 cost) = (<1 sing)™ © (11.73)
in which P, are Legendre polynomials which may be defined by:
P.(z) = PY(z) = L& (z —1)" (I1.74)
" " 27 nld ™ '

with the consequence that associated Legendre functions P? identify with
Legendre polynomials P, . Definitions (ILT3)—([L.74) follow Hobson’s notation
and can be collapsed into a single expression valid whatever be the value of
m:

(_1)m dn+m

Py (cos6) = 2n nl (sin0)™ (d cos@)ntm

(cos*> § — 1)" (I1.75)
We advise that an alternative definition for P}*’s is also used by some authors
(for instance Arfken)[I31] as

d™ P, (cos 0)

P (cosf) = (sin )™ (d cos O)™

(I11.76)

Relations involving P ’s with the same parity for m (all odd, or all even)
do not depend on the chosen definition. Otherwise, some care must be taken
to avoid sign errors.

Legendre polynomials P, and associated Legendre functions P;* comply
with many relations from which it will rapidly prove useful to extract [I32]:
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m;! P (cos 0) (IL.77)

I11.5.4 Spherical Bessel Equation

With the restriction that constant a is a positive integer (see previous sec-
tion), basic solutions of the spherical Bessel equation ([L.G6) for n given are
four spherical Bessel functions that we denote by Wéi), i=1,2, 3,4 ([130],
t3) as follows:

v (x) = \/W Jnt1/2(2) (IL78)

(2 (z \/ Nopt1/2(x (I1.79)

o) = /" 7Y 11.80
W (z) = 9 ni1/2(T) (I1.80)
4 _ ™ (2)

oW (z) = \/Qx Hnﬂ/z( x) (I1.81)

in which J, N, H®) and H® are the ordinary Bessel functions, the Neumann
function and Hankel functions of the first and second kind respectively (al-
ternative denominations are ordinary Bessel function for J, Bessel functions
of the first, second and third kind for N, H® and H® respectively).

For more details concerning these functions, the reader might refer to Strat-
ton [15] and to Watson [133] which is our Bible for Bessel functions.

The spherical Bessel equation can be specified for a = n as follows:

L;i:z + k‘z} (“pr(bj)(kr)) - n(nr+ V) (k) (IL.82)

which is therefore the basic differential equation for these functions. The
fact that the W,(f)’s are here called basic does not however imply that they
are linearly independent. Effectively, Hankel functions H") and H® comply

with:

HM () = Jp(x) + i Np(x) (IL.83)
HP () = Jp(x) — i Np(x) (IL84)
whatever be the value of p, implying:
O (z) = oM () + i TP (x) (IL.85)
v () = V(@) — i v () (I1.86)

In solving a given problem, not all of the Wr(f)’s are necessarily useful be-
cause choices may be imposed by physical constraints. More specifically, only
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x M'/,(Ll)(x) is defined (no singularity) at coordinate center (x = 0) and, for
an exp(iwt)-time dependence here chosen, only x M7,(L4)(x) produces an out-
going spherical wave at infinity (x — oc). With the alternative choice of an
exp(— iwt)-time dependence, the asymptotic spherical wave behaviour would

be conversely produced by x W7S3)(;U). The alternative exp(-+iwt)/exp(—iwt)
is reflected in Rels ([L.8H)—([L34) by the alternative (-i)/(+i). It will later be

made clear that we shall therefore only deal with %(LU and %(f). Accordingly,
it will be of interest to use Ricatti-Bessel functions ¥, (z) and &, (z) defined
by:

@, (z) = 2wV (x) (IL.87)
En(z) = 20W (2) (I1.88)

In order to prevent any misconfusion, the reader should note that the spheri-

)

cal Bessel functions can be noted as M'/,(f as we do according to Robin (Meixner

and Schifke notation) or alternatively j,, yn, h£}) and hgf). Our personal
background and preferences in this book are more strongly oriented towards
specific notations and indices than towards lower case letters that we feel
more difficult to discriminate from upper case letters and from many com-
mon quantities designated by lower case latin characters.

I1.5.5 General Expressions for BSPs

Assembling results from previous subsections (I1.5.2)—(I1.5.4), it is found that
any linear combination of functions of the kind:

)
; P (cosf) exp(E imy) (I1.89)
)

is a solution of the linear differential equation for BSPs (IL49).

In BSPs, which we shall deal with, physical constraints will reduce expres-
sion ([LRI) to a simpler form: (i) as stated in section (IL.5.4), w{s are not
allowed to appear together, only W,(Ll) and W,(L4) will be allowed to perform
on the stage, (ii) P/ and P, ™ terms can be joined into a single P since
Rel (I1.77) shows that they are directly proportional to each other, (iii) the
term with n = 0 (and accordingly m = 0) can be ignored because it is not
the potential of any non trivial electromagnetic field: the associated BSP is
independent from variables 6 and ¢ and complies with the spherical Bessel
equation ([L82) specified for n = 0. Accordingly, all the field components

defined by Rels ([L50)-(L61) vanish.



36 IT Resolution of Special Maxwell’s Equations

Therefore, BSPs will read as:

)
U(r,0,¢) Z z; Chnm T <£Z4) EZT;> PIml(cosf)  exp( imgp)

(IL.90)
i.e., in terms of Ricatti-Bessel functions (Rels (IL37)-(IL38)):

U(r,6,0) =
n=1

An equivalent notation could be introduced by using the spherical surface
harmonics Y;"* (0, ¢) defined by:

+n Cam [ Yn(kr) . .
2 k (&(m) Py (cos0) exp(imyp) (11.91)

m=—n

Y70, ) = \/ (22 ; (17)1(1 m;”! P™(cos) exp(imep) (IL.92)

With definition (IL75) for P, spherical harmonics are here defined according
to the Condon-Shortley phase convention ([I31], chap. 12).

These spherical harmonics form a landmark of quantum mechanics because
they are eigenfunctions for the angular momentum. They express a natural
separation between radial variable r appearing in Wr(f) (kr), associated with an
unique integer n, and angular variables (¢, #) associated with an unique extra
integer m. They furthermore form a complete set of orthonormal functions
over a spherical surface according to:

™ 2m
/ / Y50, @) Y0, ¢)sing df dp = Gnmdpg (I1.93)
0

We however found more practical to write the U-expansion using Rel (I1.90)
or Rel (I1.91) than by introducing both polynomials P™ and P, ™, or spheri-
cal surface harmonics in agreement with comments later given by Lock [127].
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Generalized Lorenz-Mie Theory in the
Strict Sense, and Other GLMTs

The general version of GLMT (in the strict sense, i.e. when the scaterer is
a sphere defined by its diameter d and its complex refractive index M) has
been exposed in [2] and [89]. Ref [2] discusses the case of arbitrary location
of the scatterer in a Gaussian beam. It mentions that the generalization from
Gaussian beams to arbitrary shaped beams should be rather trivial. Indeed it
is. The only thing to do was to separate the expressions valid independently of
the illuminating beam from those specific of it. This was done in [89] explicitly
discussing the case when the scatterer is arbitrarily located in an arbitrary
shaped beam. A synthesis of these two articles is available from Gouesbet
et al [90]. This chapter is essentially an extended version of this synthesis
and is therefore devoted to the generalized Lorenz-Mie theory (GLMT) for
an arbitrary location of the scatterer in an arbitrary shaped beam. Some
elements pertaining to this general framework are nevertheless postponed
to next chapters for convenience, in particular concerning the evaluation of
beam shape coefficients g;* by quadratures or finite series. Other GLMTs (for
other scatterers) are discussed in a complement.

II1.1 The Scattering Problem and Global Strategy

The scatter center is a spherical particle completely defined by its diameter
d and its complex refractive index M. This index is defined relatively to the
surrounding medium assumed to be nonabsorbing. Usually in light scattering
textbooks and pioneering articles, the particle medium is assumed to be non-
magnetic. However, the case of magnetic media will be now discussed. As far
as we understand, there is no special difficulty in accepting this extension.

The center of the scattering particle is located at the point Op of a Carte-
sian coordinate system Opxyz. The incident wave is described in another
Cartesian coordinate system Oguvw to be carefully chosen, depending on
the nature of the wave. For instance, when the incident beam is a laser beam
in its fundamental T EMyy mode (Gaussian beams, chapter IV), O¢ should
preferably be the waist center.
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Vy

Fig. III.1. The geometry under study. V means E or H.

For convenience, it is assumed that axes Ogu, Ogv, Ogw are parallel to
axes Opz, Opy, Opz respectively. It is also assumed that the incident wave
propagates from the negative w to the positive w and that we are able to
describe it in terms of Cartesian field components E,, E,, Ey,, H,, H,, Hy
from which we may derive E,., Ey, E,, H,., Hg, H, in the spherical coordinate
system (7, 8, @) associated with the particle frame of reference (Opxyz). The
coordinates of Og in the system (Opzyz) are (o, Yo, 20)-

Our aim is first to describe the properties of the scattered light observed at
any point P(r, 0, ) in terms of field components and of associated quantities
(phase angle, scattered intensities). We are also interested in integral quanti-
ties which do not depend on the point of observation P but on the scattering
pattern as a whole (cross-sections, including radiation pressure cross-sections).
We will be also concerned with the electromagnetic field inside the sphere. The
global strategy to reach our objective may be decomposed in several steps that
are outlined below in the framework of the Bromwich method.

i) The electromagnetic field in space is built up of three contributions. The
first one is the incident wave which will be designated by a superscript 4
(possibly omitted when convenient). The second one is the scattered wave
outside of the sphere. It will be designated by a superscript s when nec-
essary. When there is no risk of any ambiguity, superscript s may also be
omitted. In some of our previous studies, we also called this wave ‘exter-
nal wave’ with superscript e. This practice is given up because, strictly
speaking, the external wave should be the summation of the incident and
scattered waves. The last and third contribution is the wave inside the
sphere, which we call the internal wave or the sphere wave (superscript sp).
Two BSPs are associated with each kind of waves (chapter II). We shall
then be facing to six BSPs : UL, Uk, Uiy, Usp, Ush, and Ut
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ii) Knowing the description of the incident wave, the incident BSPs U, and
Ut may be determined. They introduce two sets of coefficients g7, and
gnrp (0 from 1 to oo and m from -n to + n) which are equivalent to the
description of the wave. They are therefore called beam shape coefficients
(BSCs).

iii) For particle sizing, we are more particularly interested in the scattered
wave defined by BSPs Uz, and Uz . These BSPs contain an infinite num-
ber of unknown coefficients which will be fully determined using boundary
conditions at the surface of the sphere. These conditions will also allow us
to fully determine the BSPs U7, and U7/}, for the internal wave.

iv) When internal BSPs U7, and U}’ are determined, the internal field com-
ponents may be derived using the set of relations (I1.50)—(I1.61). The use
of Poynting theorem afterward leads to expressions for internal intensities.

v) When scattering BSPs U%,, and U3y are determined, the scattered field
components may be similarly derived using the set of relations (I1.50)-
(I1.61). These components will simplify in the so-called far field zone as a
consequence of the assumption r > A.

vi) The formulation is then completed by deriving expressions for the phase
angle, scattered intensities (Poynting theorem), cross sections for absorp-
tion, scattering and extinction (energy balance) and radiation pressure
force components or cross-sections (momentum balance).

I11.2 BSPs for the Incident Wave

To write incident wave BSPs, UL, and UL, Rel (I1.90), or (I1.91), is invoked.

) introduced in section 11.5.4,

Among the four spherical Bessel functions M'/,(f
the relevant one is here Wél)(kr) because only r Wél)(kr) is defined at the co-
ordinate center r = 0. Then, relabelling coefficients ¢,,,, for later convenience,

we immediately obtain:

e} +n
Uk = Eo Z Z c Gnrm T (Y (kr)PI™ (cos 0) exp(imy) (II11)
n=1

m=—n

m=—n

e} +n
Uk = Hy Z Z cn’ GnTE T T D (kr)PIm (cos 0) exp(imy) (IIL.2)
n=1

in which Fy and Hj are field amplitudes which may incorporate complex
numbers. Coefficients ¢2* (pw for plane wave) are isolated because they ap-
pear in the Bromwich formulation of the pure LMT [I]. They are given by:

1 . 2n+1
pw _ Y
“n ik (=9) n(n+1)
Clearly, the reader might imagine that coeflicients ¢/ are isolated just by
fun or mischief but the development of the theory will show that it is an

(I11.3)
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adequate attitude. It allows us to disconnect the c¢Z*’s and the g;'’s. With
the former ones being specific of the plane wave case, we must think of the
latter ones as specific of the non-plane character of the wave, and hence their
name of beam shape coefficients.

Rel (ILJ) and (IL2) may also be rewritten in terms of Ricatti-Bessel
functions (sections I1.5.4 and I1.5.5), leading to :

) B o +n )
Usy = kO Z Z o Wn(k‘r)P,lbm‘(cos exp(imyp) (111.4)
n=1

m=—n

) +n

, H
Upp = ko Z Z c’ gnre Wn(k‘r)P,lbm‘(cos exp(imp)  (1IL5)
n=1

m=—n

A complete description of the incident wave in terms of BSPs now requires the
knowledge of BSCs ¢)I* which clearly must be determined from the description
of the incident wave.

III.3 Quadratures to Evaluate BSCs g

II1.3.1 The First Method to Derive Quadrature
Expressions

From the knowledge of the incident Cartesian field components F,, E, |,
Ey, Hy, H,, H, in coordinate system Oguvw, the field components F,., Fy,
E,, H,, Hp, H, in the spherical coordinate system (r, 0, ¢) may be read-
ily derived. Among these six components, the radial fields E, and H, play
a special role because of the definition of the TM- and TE-waves (sections
I1.2-11.4). Recalling that any field component is the summation of the cor-
responding special TM- and TE-wave components and that, by definition,
E,. g = Hy 7y = 0, this effectively leads to:

E.=E.tmy+E.te=FE Ty (I11.6)

H.=H,rym+ Hyre = HyTE (I11.7)

i.e. the radial electric field E, is equal to the special radial electric field of
the TM-wave and the radial magnetic field H, is equal to the special radial
magnetic field of the TE-wave. The knowledge of these fields E, and H, is
sufficient to fully determine the BSPs U, and Uk p. The procedure for the
TM-case is examined with some details hereafter and similarity will permit
to shorten the discussion of the TE-case.

From Rels ([IL6) and (I1.50) we obtain for the incident wave:

0?U%,

a2 T KUk s (IT1.8)

Er = LrTM =
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The left-hand-side E, is assumed to be known. Then, inserting Rel ([ILI]) for
Uk, in ([IL8) leads to the following relation to determine the infinite set of
coefficients g,y

" d%&,&”(k@
Ey Z Z Cp n, TM dr2 +kzry7'r(Ll) (k?"))
n=lm=-—n

(I1L.9)
PIml (cos0) exp(imy)

However, W,(Ll) complies with the spherical Bessel equation (I1.82) which leads
to:

E. = E Z Z b gn'ra (n:— 1)%21)(1@‘1“) Pl™l(cos ) exp(imep)
n=1lm=-n
(I11.10)
To isolate BSCs g;,'1), the orthogonality relation for exponentials is invoked

to get rid of angle ¢
27
/ exp(i(m —m')p)dp =27 G (II1.11)
0

Afterward the orthogonality relation for P,’L”/ s [130] is used to get rid of angle 6:

2 (n+m)!

2n+1 (n —m)! Oni (TIL.12)

/ P (cos0)P™(cosf) sinf df =
0

To take advantage of (IILI1) and ([IL12), Rel (IILI0) is successively multi-

plied by integral operators fo% . exp(—im/p) dp and [ . P,Z’,L/(cose) sinf df
to obtain:

1 2n+1  (n—|m|)! T

InIM = Bock® drn(n+1) (n+ m])! g (kr)

(II1.13)
T 27
/ / E, PI"™\(cos 0)exp(—imep) sin 0dfdp
0

The left-hand-side of ([ILI3)) must be a constant as shown by Rels (I11.90)—
(I1.91) or (ILI))-([IL2]) while, conversely, the right-hand-side still depends on

radial variable r, through ’("1) and E,.. Therefore the remaining r-dependence

must be apparent and must vanish once the incident component F, has been
developed as a function of r, at least if the beam description perfectly satisfies
Maxwell’s equations (see [79] [80] discussing this issue in the case of Gaussian
beams). In other words, any assigned value a of r should ideally work, leading
to:
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mo 1 2n+1  (n—|m|)! a
InTM = Bych dmn(n+1) (n+ |m)! g (ka)
(II1.14)
2m
/ / E,(r = a)P!™!(cos 0)exp(—imy) sin 0dOdyp

For numerical efficiency however, the value of a should not be arbitrarily
chosen (see discussion in sections IV.3 and VI1.6.3). Furthermore, when the
beam description does not perfectly satisfy Maxwell’s equations, Rel (II1.14)
generates artifacts which still depend on r, possibly leading to significant
errors if the value r = a is poorly chosen [79, [80].

Another way to get rid of variable r is to invoke the following relation for
spherical Bessel functions ¥." ([I31], p. 412):

/000 (Y (kr) Ep:;)(k’l“) d(kr) = . (21[(171)_7:;) (Z{%]r 3 for n # n
(IIL.15)
= o () D) _ _
/0 oY (kr) v (kr) d(kr) = 2 (20 +1) for n =n

As pointed out by Lock [127], we previously used an incorrect relation (for
instance in [2]):

/ T e O oD (er)d(hr) =

- 5 II1.16
0 n 202n+1)""™" ( )

However, this incorrection does not introduce any further error because, we
actually only need to use the case n = n’ and, in this special case, the incor-
rect relation ([ILI6) turns out to be an exact relation. Then, from ([IL13]),

isolating 7Y and multiplying by the integral operator fo . m(kr) d (kr),
we obtain:

. @2n+1)2%  (n—|m|)! / /2”/ E, 7‘94,0
In,TM = 2 pw
2m2n(n + 1)ch” (n+ |m|)!
(IIL.17)
r W (kr) P™(cos0) exp(—imep) sinf df dy d(kr)

Let us emphasize that, in principle, (IIL13)), (IL14]) and ([ILI7) are strictly

equivalent relations. In practice, such is not the case when the beam de-
scription does not perfectly satisfy Maxwell’s equations, as usual for shaped
beams. This issue is extensively discussed in the case of Gaussian beams by
Gouesbet et al [134].

The procedure for TE-beam shape coefficients is strictly similar. We first
use Rels (IL7) and (I1.59) to obtain:
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2

02Uk,
H, = H’I“,TE =

o2 E 4 kUL (I11.18)

The left-hand-side H, being assumed to be known, and using again (I1.82),
the relation to determine coefficients gy, similar to ([ILI0), reads as:

(oo}
1
Ho=Ho Y > gy " w0 )P cosO)eap(ime)

n=1lm=—n

Invoking again (LTI and (IIL12) leads to:

1 2n+1  (n—|m|)! T
Hodk? dmn(n+1) (n+ m)! g ()

(IT1.19)

ngTE =
™ 2m
/ H, P!™l(cosB)exp( — imyp) sinf df dp (IT1.20)
0o Jo

allowing us to suppress the apparent r-dependence of these BSCs either by
specifying r = a:

m 1 2n+1  (n—|m|)! a
IIE T Hodh® dmn(n+1) (n-+ m])! g (ka)
(II1.21)
27
/ / H, a) PI™l(cos)exp(— im @) sin® df do

or by invoking (IILI5):

m (2n +1)? (n—|m|)! / /2”/ H,( r@,(p
9In,TE = 2 w
2r2n(n + 1)ch” (n+ |m|)!
(I11.22)
r& Y (kr) PI™l (cos 0)exp(—imy) sin 6 db dy d(kr)

Quadrature relations ((ILI4)), (IL17), (IL21) and ([IL22) might also be

rewritten by using Ricatti-Bessel functions ¥,, (Rel I1.87) or by using spheri-
cal surface harmonics Y, (section I1.5.5). Owing to this last fact, it is stated
that the BSCs have been expressed by using a spherical harmonic expan-
sion technique. Later on, in chapter V, it will be established that BSCs may
also be expressed by finite series rather than by quadratures, with the aid of
a Neumann expansion technique. At the present stage however, we possess
two different quadrature formulations to evaluate the BSCs, by using either
double quadratures (IIL.14), (IL21)), or triple quadratures (ILIT), (IIT.22).
Clearly, both techniques exhibit distinct advantages and disadvantages. The
double quadrature technique is the fastest but the value of a may have to be
chosen carefully. Conversely, the triple quadrature technique does not have to
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concern with any special value of r, but it leads to much more time-consuming
runs. These problems will be discussed in sections (IV.3) and (VI.6.3). Also,
by examining the convergence of the results in the triple quadrature tech-
nique when integration over r takes place on a finite domain [0, 74,44], it will
be possible to provide direct physical insights on the so-called localized ap-
proximation (section VII.2.4). Furthermore, in many cases, even for Gaussian
beams indeed, we do not possess expressions of the field components perfectly
satisfying Maxwell’s equations. Therefore, notwithstanding numerical prob-
lems associated with the value of a, the g;'-values practically evaluated by
the double quadrature technique may become a-dependent. Such a depen-
dence should be small indeed when the departure of field components from
Maxwell’s equations is small, but it is expected that, in some cases, the de-
pendence might become significant. Conversely, the r-integration involved in
the triple quadrature technique may provide some optimization and smooth-
ing of inaccuracies involved in the beam description. For details concerning
these issues, again see [79)], [80] and [134].

It then appears that the beam shape coefficients In'x (X =TM,TE)
may be evaluated by using two kinds of quadratures, either by using two-
dimensional angular quadratures or by using three-dimensional quadratures
on the whole space. To better understand the relationship between both
formulations, Gouesbet et al [134] specify them to the case of a special GLMT
with special beam shape coefficients g, which, by using a Davis description
of Gaussian beams, can be analytically evaluated. It is shown that both
formulations may actually lead to artifacts when the beam description does
not exactly satisfy Maxwell’s equations. Recommendations for detection and
removal of these artifacts are given.

There also exist a hybrid technique, called the integral localized approxi-
mation, which simultaneously uses a quadrature and prescriptions from the
localized approximation. In the article in which this technique is introduced
[135], two preferred properties for discussing methods to evaluate beam shape
coefficients, namely speed and flexibility, are discussed. The speed property
refers to the amount of work left to the computer and is satisfied when numer-
ical computations are not time consuming in terms of CPU. The flexibility
property refers to the amount of work left to the brain and is satisfied when a
change in the description of the illuminating beam does not require a heavy
extra-analytical work. Both properties are satisfied by the integral localized
approximation. This technique is applied to Gaussian beams, laser sheets,
and laser beams in the mode T EMj;. Furthermore, the case of laser sheets
allows one to demonstrate that the integral localized approximation enjoys
another property (called stability) which is not necessarily enjoyed by the
localized approximation. Also, in certain cases (e.g. laser sheets), the integral
localized approximation may even be faster than the localized approximation.
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II1.3.2 The Second Method to Derive Quadrature
Expressions

This section is devoted to the second method to obtain quadrature expres-
sions for the BSCs ¢i*. It is again assumed that we know E,.(r, 0, ¢) and
H,.(r, 8, ¢). For a given value of r, they only depend on 6 and ¢ and take the
form g(6, ©). It is furthermore assumed that g is continuous as well as its first
and second derivatives i.e. ¢ is C2. This condition is generic for electric and
magnetic fields. Then g(f, ¢) may be expanded in spherical surface harmonics
Y (6, ¢). This theorem is quoted by Stratton [I5] and a demonstration can
be found in Courant and Hilbert [136]. Following these authors and slightly
modifying the presentation of the theorem to express it with exp(imep) func-
tions, it is found that the fields E, and H, may be expanded as :

E,. = Ey Z Z o PI™l(cos 0)exp(imp) (I11.23)
m=—n
H, = Hy Z Z CnTE (r)PIml (cos 0)exp(imp) (I11.24)
n=0m=-n
in which:
" 241 (n—fml) [T [ E H009) i
o (r) = s (n+|m))! / / Pl™l(cos6)
(I11.25)
exp(—imep) sind do dp
m 2n+1 (n—|m|)! T H,.( 7"990 m
Crrp(r) = s (n+|m])! / Pl™l(cos )

(I11.26)
exp(—imyp) sind db dy

However, the electric field E,. expanded in ([IL23) has also been previously
expanded by using the Bromwich method in (IILI0). With spherical surface

harmonics forming a complete set of orthogonal functions (section I1.5.5),
corresponding terms in ([I123) and ([ILI0) may be identified leading to:

1
) = @ gy "Dy Wy w20
’ T
(IIL.27)
CS,TM =0

gy ’s may then be obtained as in Rel ([ILI3]) by combining (IIT27) and
, leading to double finite integrals over § and ¢. Obviously Rels (IIL14])
and ([ILI7) of the BSCs can then be recovered.
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Proceeding similarly with the magnetic field component H,., Rels ([IL20)-
([IT22) are also recovered.

The fact that ¢ 7, = ) pp = 0 possesses an obvious physical meaning.
Let us consider the coefficient ¢f p,. From ([IL28), it reads as:

1 27
Saulr) = / /O E, sinf db dp (I11.28)

The surface integral represents the flux of the electric field component E,
through a sphere of radius unity. It may be converted to a volume integral
by using the Ostrogradsky theorem leading to:

chM 47TE0 /// div E; dv (II1.29)

Nullity of ¢f p5,(r) then follows from the nullity of div E; because of the

absence of any charge inside the sphere (I.59). Similarly, nullity of cg’T w(r)
follows from the nullity of div H; (I1.57).

II1.3.3 Other Approaches

On Barton et al. (1988) formulation

Tt has been stated in section (I1.2.1) that our formulation of the GLMT and
the one by Barton et al [70] are equivalent. The discussion of mechanical
effects, absent from [70], has later been exposed in [137], with numerical
results provided. This section is the right place to provide a direct check and
also some translation formulae between both formulations. It is first remarked
that Rel (7) in [89], here Rel (II1.10), concerning the expansion of the electric
field component E,., is identical with Rel (15) in [70]. It is therefore enough
for a direct check of equivalence to provide translation formulae between
gm-coefficients introduced by us and A,,,-coefficients introduced by Barton
et al. One ”"pierre de Rosette” will be the double quadrature expressions.
Indeed, Barton’s team only used such expressions in practice because they are
faster than triple quadratures. In the framework of their 1988 study devoted
to Gaussian beams, they could have also used finite series (chapter V) or
localized approximation (chapter VII) which are still faster. However, these
two last techniques require an extra-analytical work when the beam shape is
modified. Therefore, in later studies devoted to interacting particles in which
incident fields on one particle result from fields scattered by another particle
([138] [139]), the use of double quadratures was certainly the most useful.

The double quadrature expression for the g ’ s, i.e. Rel ([IL14]), is written
by Barton et al [70], using coefficients A, ’ s, as:

2m
Anm = (n—|— 1), (ka) / / a)Y,"*(0,¢) sind df dp (I11.30)
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in which the spherical surface harmonics Y;)* (0, ¢) are given by Rel (11.92).
Because the P]* ’s are real functions, this becomes:

a? (2n+1 2
A, = E(r=a) .
n(n + 1), (ka) \/ 4T n+m / / (r=a)
(IT1.31)

. P (cos) exp(—imyp) sinf df dp

Comparing ((OIL31]) and (IITT4) and using ([(IL3), it is then found that:

k? n(n+1) (n—m)!
InTn = Epin—1(—1)" \/47r(2n—|—1)(n+m)! Anm, m 20 (II132)

For m<0, we first use (IL.77) to rewrite ([IL3]) as:

B (—1)mqa? (2n+ 1)( n+m 2m (r = a)
Anm = n(n + 1)@, (ka) \/ 4mr(n — / / o

(IIL.33)
PI™l(cosB)exp (—imy) sinf df de
leading to:
k% n(n+1) (n+m)!
mo Apm » m<0 (L34
T2 = pin=1(~1ymbm Al 4x(2n + 1)(n — m)! m<0 (II.34)

Similarly, to the g;/'rp ’s in our formulation correspond the coefficients B,
’s in Barton et al formulation. The translation formulae are found to be
identical with H and TE instead of F and TM. Again, see Lock [127] for
comments on the relationship between both formulations.

We take the opportunity of this discussion to correct an erroneous state-
ment, recurrently found in the literature, according to which GLMT is re-
stricted to the case of illuminating Gaussian beams, or even to the case of
weakened focused Gaussian beams (no reference for the sake of charity). This
erroneous statement may have been inspired by the specification of Gaussian
beams during the early developments of GLMT, from 1982 to 1988, and also
by the fact that the ”pivot” article [2] heavily exemplifies, including in the
title, the case of Gaussian beams. More credence has certainly been given
to the erroneous statement by the fact that Barton and collaborators called
their version the ”arbitrary beam theory” (ABT), e.g. in [70], [I37], [140].
However, the GLMT is a genuine ABT too as illustrated, already in 1988, by
[89] and also in the first review article on GLMT [90].



48 IIT Generalized Lorenz-Mie Theory in the Strict Sense, and Other GLMTs

Plane wave spectrum approach

Actually, there are essentially two ways to deal with arbitrary shaped beam
scattering. In the first way, the illuminating beam is described by using infinite
series of partial waves (partial-wave sum of spherical multipole waves). This is
the choice implemented in the GLMT, including Barton’s version. In the second
way, it is described by using an angular spectrum of plane waves. Each plane
wave is afterward expanded into partial waves, e.g. using vector spherical har-
monics. The connection between the two approaches is discussed by Lock [141].

For a background on plane wave spectra, the reader may refer to Good-
man [142]. The use of a plane wave spectrum was the technique already used
in 1979 by Colak et al [66] and in1982 by Yeh et al [67] to discuss focused
beam scattering. Later on, it is used also by Khaled et al [143], [I44] to discuss
the scattered and internal intensity of a sphere illuminated with a Gaussian
beam, and the internal electric energy in a spherical particle illuminated with
a plane wave or an off-axis Gaussian beam, in connection with the discus-
sion of resonances [145]. The plane wave spectrum approach is also used by
Ratowsky et al [146], [147] to study ball lens reflections, and the coupling
efficiency between a laser diode and an optical fiber through a ball lens. A
discussion of the plane wave spectrum approach to electromagnetic beams is
provided by Doicu and Wriedt [I48] in 1997. It relies on the Davis’ method
for the description of Gaussian beams. Incidentally, but significantly, as a
by-product, those authors provided a justification of the localized approxi-
mation for on-axis and off-axis beams. In 2005, Peng Li et al [149] used an
angular spectrum analysis to investigate optical scattering spectroscopy of a
single spherical scatterer illuminated with a tightly focused supercontinuum
(obtained from short laser pulses). They mention that GLMT was applied
to investigate scattering of Gaussian beams. However, they add, a paraxial
Gaussian beam is not suitable for modelling tightly focused field produced
by high numerical aperture objective lens. Although, strictly speaking, these
two sentences are correct, the next sentence in the article, telling us that an
angular spectrum representation, on the other hand (!), can be used to de-
scribe strongly focused beam, suggested that GLMT would not be able to do
it. This would however be an erroneous statement. In 2008, Lermé et al [150]
also used an angular spectrum to deal with tightly focused beams, justifying
this choice by using arguments similar to the ones of Peng Li et al above,
deserving similar comments. We take the opportunity of this paragraph to
mention that GLMT can efficiently deal with the case of beams focused by
a high numerical aperture objective as achieved by Lock and experimentally
tested, see section on mechanical effects in Chapter VIII.

The use of plane wave spectra has also been reintroduced by Albrecht et al
[151] under the name of FLMT (Fourier Lorenz-Mie theory). GLMT then pro-
vides benchmark data to assess the validity of FLMT. Under the explicit name
of FLMT, plane wave spectra have been used by Albrecht et al [152] to dis-
cuss the signals generated in the phase Doppler technique, and particularly the
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trajectory ambiguity effect, by Bech and Leder [I53] to discuss particle sizing
using ultra-short laser pulses, and also by Bakic et al [I54] dealing with time
integrated detection of femtosecond laser pulses scattered by small droplets.
FLMT is also used by Borys et al [I55] in discussing light scattering analy-
sis, and comparing an extended geometrical optics technique (EGO) with the
FLMT variant of GLMT, and by Damaschke et al [156] in dealing with op-
tical particle sizing in backscatter. The FLMT approach is comprehensively
summarized in a book by Albrecht et al on laser Doppler and phase Doppler
measurements, see section on measurement techniques in Chapter VIII.

In 1995, Lock, discussing the relationship between an expansion in an
infinite series of partial waves or in an angular spectrum of plane waves,
mentioned that no consensus has been reached as to which computational
method for beam scattering is superior to the other or on whether one method
possesses a richness of physical interpretation that is not manifest in the
other [I57]. This might still be true nowadays, and might remain true for a
long time. Also, very likely, any researcher mastering one method (whatever
the reason, possibly contingent) might be reluctant to attempt mastering the
other. However, there are a few remarks to be made which make us preferring
using an expansion in an infinite series.

The first remark concerns a problem of esthetic attractiveness. The plane
wave spectrum approach is a two-step, or say, hybrid approach. The first
step makes an expansion over a spectrum of plane waves, and the second
step makes a Lorenz-Mie expansion over partial waves. Conversely, GLMT is
an one-step approach, directly making an expansion into partial waves. Obvi-
ously, the richness of partial waves enjoyed by GLMT is far more important
than the one by LMT. In LMT, we have an index n ranging from 1 to infinity
while, in GLMT, we have another subscript m ranging from —n to = +n.
Although the notion of beauty is a bit suggestive, we are more attracted to
the more unified one-step approach than to the hybrid two-step approach.

Next, the use of a plane wave expansion is computationnally much less ef-
ficient than GLMT, particularly when the localized approximation is imple-
mented, a fact which may not be independent of the previous remark. Lock
made timing comparisons between different ways of achieving GLMT com-
putations, using a Compaq 386-33 MHz personal computer equipped with a
Weitek numerical processor [157]. For certain typical parameters, and 361 val-
ues of the scattering angle 6, GLMT-computations for Gaussian beams with
the localized approximation required 195 s. A corresponding classical Lorenz-
Mie calculation required only 3 s, that is to say the Gaussian beam program
runs almost 70 times slower than Mie theory (at least for the studied param-
eters). For this, we might already infer that a plane wave spectrum approach
requiring more than 70 plane waves will run slower than GLMT. A GLMT
program in which beam shape coefficients were evaluated by using quadra-
tures required 4.5 h which is a factor of 83 slower than for the GLMT-program
with localized calculations of the beam shape coefficients. Using a plane wave
spectrum approach, the time required to evaluate beam shape coefficients
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(which is not the total time required) was 14 h. The total run time might have
been about twice the time required to deal with the beam shape coefficients
(J.A. Lock, personal communication). Therefore, in the case under study, the
use of the plane wave spectrum approach would have been about 500 times
slower than the GLMT with the localized approximation. The computational
intensiveness of the use of a plane wave spectrum approach is also mentioned
by Moore and Alonso [158]. Let us note that these timing studies have been
published in 1995. Run times would be much shorter nowadays since compu-
tation speed has changed very fast as a function of time is also mentioned by
Moore and Alonso [15§].

Finally, there is a theoretical problem which, as far as we know, will de-
serve a specific study. Consider a beam description which does not exactly
satisfy Maxwell’s equations and build a plane wave spectrum out of it. Be-
cause each plane wave exactly satisfies Maxwell’s equations, the result will
exactly satisfy Maxwell’s equations. Some authors are possibly proud in say-
ing that they have obtained an exact solution. It might be better to say that,
in such a case, the plane wave spectrum approach provides a kind of un-
controlled remodelling of the beam, from a non-Maxwellian description to a
Maxwellian description. In other words, a plane wave representation indeed
exactly satisfies Maxwell’s equations, but the shape of the beam obtained
may be different from the intended one. To be even-handed, such beam re-
modeling is also used in GLMT but there are many papers dealing with this
remodeling and consequences. In contrast, this issue has not been discussed
for the plane wave spectrum approach. We are not able, at the present time,
to tell much more concerning this important issue.

1II.4 BSPs for Scattered and Sphere Waves

The BSPs for scattered waves are now needed. Similarly, as in the case of
(IT4)- (IILH), they can be expressed from (I1.90)-(I1.91) as:

_E o) +n
Uiy = B 0 Z Z PV A™ ¢, (kr) Pl (cosB) exp(imp)  (II1.35)
n=1m=-n
_H S] +n
Utp = f 0 Z Z v B™ ¢, (kr) PI™(cos0) exp(imyp)  (IIL.36)

n=1m=—n

Clearly, the choice for the sign minus has no physical significance but only
aims to produce better looking expressions for the coefficients A]" and B]"
(section IIL.6). Conversely, the choice of &, (kr) instead of ¥, (kr) possesses
the physical meaning of producing an outgoing spherical wave with proper
form in the limit kr — oo (section 11.5.4). Such a required behaviour will be
later evidenced when considering scattered field components in the far-field
region (section IIL.8).
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For the sphere wave BSPs, we similarly write:

E
Uby = g OZ Z PV C™ W, (kypr) PI™(cos6) exp(imyp)  (I11.37)

SP n=1m=-n

H o0
Uity = k 0 Z Z PV D™ W, (kgpr) P (cos0) exp(imp)  (I1.38)

SP n=1lm=-n

in which k,, is the wave number in the sphere material.

Prefactors in ((IL37) and ([IL38)) again do not possess a deep physical
meaning but only aim at producing better looking expressions when the for-
mulation is further developed. However, the choice of ¥,,’s is demanded by
the fact that field components of the sphere wave must be defined at r = 0
(section 11.5.4).

BSPs Us.y, Us g, Uh 1, Ul and corresponding field components are com-
pletely determined once the coefficients A, B, C™ D™ in Rels ([IL35)-
([IT38) are known. These coefficients are determlned by boundary conditions
at the surface of the sphere.

I1I1.5 Expansions of Field Components

Before invoking the boundary conditions at the surface of the sphere, it is
convenient to explicitly display the expressions for field components. The
special TM- and TE-field components of the incident wave are deduced from
BSPs ([IL4)-([IL3) by using rules of derivation (I1.50)-(I1.61):

oo

Elra =kBo 3 S e gigar |2 (k) + @(br)| P (cos6) eapimep)
n=1m=-—n

(111.39)

oo +n

E /
Ea ™= 0 Z Z e’ Inrm Y (k) TLm‘(COS 0) exp(imy) (I11.40)

n=1m=—-n

o0

. . Ey » ’ X
7 _ w . m v (k |m| 0
w, TM ? r ;m;n m ¢y gn,TM n ( 7’) Th, (COS ) exp(zmgo)

(T11.41)
H 7y =0 (I11.42)

Ti
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oo

, —H, ~ ‘
Hypar= ") > m & g U (kr) o} (cos 0) exp(imep)

n=1m=-—n

(IT1.43)

) +n

fp’TM = — HO Z Z " g Yn (k) ‘ml(COSG) exp(imyp) (111.44)

n=1m=-—n

Elpp=0 (I11.45)

o0

, E A
Eyrp = rO Z Z m g U (kr) 7™ (cos 8) exp(imp) (IT1.46)

n=1m=-—n

oo +n

o TE = Z EO Z Z B gnrr Un (kr) 7™ (cos0) exp(imep)  (I11.47)

n=1m=-—n

Hirg=hHoy. Z g [ (kr) + Wa(kr)| P (cos6) eap(imy)

n=1m=-—n

(I11.48)

o] +n

H
Ha TE = OZ Z ' oanre ¥, (k:r) 7Iml(cos 0) exp(imep)  (I11.49)

n=1m=-—n

) Hy &
H, rp = +Ho Z Z m gl (kr) ‘m|(cose) exp(imep) (I111.50)

n=1m=-—n

in which we have used Rel (I1.108) and introduced generalized Legendre func-
tions:

7% (cosl) = ddGP’,f (cos8) (II1.51)
P¥(cos )
k _*n
7, (cost) = in 0 (I11.52)

Generalized Legendre functions 7! and 7} identify with usual Legendre func-
tions of the LMT, namely 7,, and m, respectively. Mind however that, for
Legendre polynomials, the correspondence between GLMT and LMT does
not read as P! = P, but as P? = P,.

The use of Rel (I1.108) implies that Ey and Hy must be defined in agreement
with conditions of validity previously defined (see section 1.2.7). For the sake
of coherence with the LMT-expressions, it has been chosen to write Ey and
Hy explicitly outside of the summations. Thus, Ey and Hy play the role of
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reference amplitudes. What is therefore needed is that Ey and Hy must be
defined at a particular location where Rel (I.108) holds and accordingly is
considered as a reference location. In the case of plane waves, any location is a
reference location. In the case of Gaussian beams (chapter IV), the reference
location may be conveniently taken to be the waist center, in correspondence
with the fact that a Gaussian beam is locally a plane wave in the waist region.

Similarly, for the scattered wave, the special field components are obtained

from BSPs ([IL3%) and ([IL36]) with derivation rules (I1.50)-(I1.61):

TTM:—REOZ Z e AL & (kr) + &a (k)| P (cos 0)eap(imip)

m=—n

(I11.53)
Ey -
Eg oy =— Z Z v A™ ¢ (kr)rml (cos0) exp(imyp)  (IT1.54)
) EO R
ES v =— Z Z m BV AT ¢ ( ) 7wl™ (cos ) exp(ime)
- (I11.55)
HE gy =0 (ITL.56)

H oo +n
Hgry = TO Z Z m P A™ &, (kr) 7™ (cos 0) exp(imy) (IIL57)

n=1 m=-n

+n

i H,
HE rar = o Z Z v AT & (k) T,‘Lml(cos 0) exp(ime) (I11.58)
Elrp=0 (I11.59)
~F Rl
Eyrp = 0 Z Z m 2% B™ &, (kr) nl™l(cos ) exp(imy) (IIL60)

iE() [e’e] n ‘
A v B™ €, (kr) /™ (cos 6 I11.61
> TE . Z Z o By En(kr) 7" (cos ) exp(imy) (I11.61)

n=1 m=-n
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00 +n

Hipp=—kHyY > & By (&, (kr) + & (k)| P (cos0)exp(imyp)
n=1 m=—n

(I11.62)

+n
Hyrp = 7H0 Z Z v Bt € kr) 7Iml (cos 0) exp(imep) (IIL.63)

m=—n

. oo +n
HE rp = ! fo Z Z m 2 Bt &, (kr) WL’”‘(COS 0) exp(imy)
n=1 m=-n
(I11.64)
Finally, from ([IL37), (IL38), the field components for the sphere wave are
found to read as:

E}rar = kEo Z Z Y O (W, (kspr) + W (kspr)| P (cos ) exp(ime)

(I11.65)

Egry = , kspz Z EY O W, (kopr) 7 (cos 0) exp(imep) (IIL66)

m=—n

+n

E ,
ijka S m O W, (k) 7l (cos6) eap(ime)
n=1 m=-n
(IIL67)
Hpy =0 (IIL68)
- H, Rl
ngTM: o H Z Z m B C™ W, (kgpr) w™(cos0) exp(ime)
r MSP m=—n
(IIL.69)
ZH ,Lt +n
0 )
Hirm=-", fisp Z Y YO Walkgpr) T (cosb) eap(imyp)
n=1 m=-n
(IIL.70)
B, =0 (IIL.71)

S E S ~ w m m -
ng”TE 0 Hsp 2 Z Z m Y D™ W, (kgpr) 7™ (cos0) exp(imp)
31” n=1 m=-n

(I1L.72)
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s 1B )
B = S S D ) 7 (cos0) caplimg)

r ® SP n=1 m=-n

(I1L.73)

’

HYp = kHo Z Z v DM /(kspr) + W, (kgpr)| P (cos B)exp(imep)

m=—n

(ITL.74)

Hyfrp = r ke Z Z kv Dt /(kspr) 7Iml (cos 0) exp(imep)

m=—n

(I1L.75)

iHy k o '
Hirw ="y 2 S m e D ) (kugr) 7l (con) cxplimp)
n=1 m=—-n

(I11.76)
in which we have again used (I1.108), and also (1.103).

The set ([IL65)-([IL76) could also be rewritten by introducing the rel-
ative complex refractive index M of the sphere material relatively to the
surrounding medium, as given by (1.103). In the whole set giving special field
components, the ”prime” and ”double prime” indicate the first and second
derivatives with respect to the argument respectively. It is furthermore re-
called that field components are obtained by adding the corresponding special
TM- and TE-field components.

I11.6 Boundary Conditions and Generalized Scattering
Coefficients

Coefficients A", B", CI™ and D] are called generalized scattering coeffi-
cients. They are determined from the boundary conditions at the surface of
the sphere (r = d/2) which state that electric and magnetic fields are tangen-
tially continuous on this surface (section 1.2.4). It is actually an exercise to
check that the same results are obtained if these conditions are applied either
to 6- or to ¢-field components. Indeed, working with 6-fields (for example),
it is found that the boundary conditions fully determine all the generalized
scattering coeflicients. Therefore, the conditions for ¢-fields cannot contain
any more information and must identify with the conditions for the 6-fields.
We then write:

Vi + Viy = V% (11L77)

in which V stands for F or H, and X for TM or T E, providing four conditions
for four sets of coefficients. Picking up formulae from section (IT1.5) specified
for r = d/2, the boundary conditions reduce to:
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Mgy zar¥ () — ATE, ()] = Cw,(8) (IL.78)
M{g5 () = Biéa(e)) = *7 D (9) (1IL.79)
(Gnn(@) = A7) = G (9) (ITL.80)
Mgz, () = Bié, ()] = D, (8) (ITL.81)

in which we introduced the size parameter o and the optical size parameter
0 given by:

a= ”Ad (I11.82)
3= Ma (I11.83)

in which A is the wavelength in the surrounding medium. Solving the set

(OT.7R)- (LRI leads to:

A = an g'rim (111.84)

By =bn gy'rE (I11.85)

Ch' = ¢cn o' (I11.86)

DI =dy gl (II1.87)

in which: , )

ap (@)W, (5) — M, () ()

= e (T (B) — HMEL () (53) (L.88)
M, (O‘)W;L (ﬂ) - /‘SPW;L(O‘)WH (/8)

b = ME ()T (B) — paptes ()T () (L.89)
Mt lEn(@), () — £ ()0 (a)

" b (@) (5) — i ME, ()T (5) (L.90)

o Pl @) — € ()7 (o) —_—

pw Mé&p (Q)W;L (6) - Mspf;z (a)gpn (6)
The coefficients a,, by, cy,d, are the classical scattering coefficients of the
LMT. Therefore, the generalized scattering coefficients are the products of
LMT-scattering coefficients by BSCs. Furthermore, the bracketed term in IT11.90
and I11.91 can be shown to be equal to +i, by using a Wronskian relation.

If the particle is non-magnetic, then pug, = p and Rels ([IL88)-(IL9T)
simplify. This is an usual assumption indeed in light scattering theory but
it has been relaxed for the sake of more generality. Also, at the time when
the GLMT was built, people dealing with optical particle sizing were usually
not interested in the sphere wave, with coeflicients C}* and D}*. This is the
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reason why we did not gave them in our articles. A counter-example however
concerns the study of explosive interactions between laser beams and droplets
[159] [160]. Nowadays, as we shall see in Chapter VIII, internal fields became
important for many reasons.

I11.7 Scattered Field Components

Summing scattered TM- and TE-waves (Rels ([IL53)-(IIL64) supplemented
with Rels (IL84)-([ILIEH)), the whole set of scattered field components is
given by (omitting the superscript s):

oo +n
Ey=—kEoY Y P angoal€y(kr) + & (kr)]

n=1m=-—n

(I11.92)
PI™l(cos ) exp(ime)
—E ) +n
Eg = , 0 Z Z Cﬁw
n=1 m=-n
(II1.93)

[an gi'zar Eu(kr) T (cos 8) + mby gi'z &u(kr) wl" (cos 0)] exp(imep)

n=1 m=-n

(IT1.94)
[man gar & (kr) 7 (cos0) + bu g7 &n(kr) T (cos 0)] exp(imep)

:kHoZ Z Cbug el (kr) + € (kr)] P (cos 6) exp(imyp)

m=-—n
(I11.95)
+n
H
: Z 2 &
m=-n
(I11.96)

|m|

[man grar &n(kr) 7l (cos0) = by gz &, (kr) 7" (cos 0)] exp(imgp)
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. o] +n
ZHO w
Ho=""> >
P
n=1 m=—-n

(I11.97)
[an 9 En(kr) T (cos ) — mby, grp &, (k) 7™ (cos )] exp(imyp)

II1.8 Scattered Field Components in the Far Field
Region

It is fairly exceptional that people are interested in the expressions ([(IL92)-
(IIT97) for arbitrary values of r. A counter-example is however provided by
Slimani et al [I61] who discussed Gabor microholography, in the case of pure
LMT. In most cases, only the so-called far field case is classically considered,
i.e. when r > A. Whether the condition r > X is sufficient or whether it
should be r >>> X or r >>> )\ is not a trivial matter. Slimani et al [161] show
that the fields relax rather fastly to produce transverse waves (see later) but
that, even when waves are transverse, they need propagate much more to
reach an asymptotic far field behaviour. In forward direction, it has been
found that the far field condition is rather severe, namely r > 20 000 A. A
systematic study of the actual condition for arbitrary 6’s and ¢’s would be
welcome.

Mathematically, when r > A, there exists an asymptotic expression for
functions &,’s (see for instance Kerker [23]):

En(kr) — " exp(—ikr) (IT1.98)

Then, in this limit:
&, (kr) + Eu(kr) =0 (I11.99)
and ([(IL92), (IT95) become:
E.=H,=0 (I11.100)

Non-zero field components are also readily found to be:
z' "\ 2n+1
Ey = exp —ikr) Z Z n(n +1) [angn ™ (cos 0)

n=1m=

+imbnngTE7er (cos 0)} exp(imep) (II1.101)

~E = 2n+1 . "
E, = k:ro exp(—zkr)z Z [mangn,TMwL (cos 6)

+ibn g, TET‘ml (cos 9)} exp(imep) (I11.102)
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H
H, = EO Ey (IT1.103)
0
H
Hy = — Eg E, (IIL.104)

As expected, the scattered wave has become a transverse wave [. This fact is
also a posteriori justification of the choice of functions §,’s for BSPs, Uf,,

and U, (IIL35), (ILL30).

From now on, unless specified, we only deal with far field expressions.

IT1.9 Scattered Intensities

According to Poynting theorem (section 1.2.5), the scattered intensity is the
real part of the Poynting vector associated with the scattered wave. Speci-
fying Rel (I1.83) for the transverse wave of the far field, the unique non zero
component is:

1 * *
S = QRe[EGHQ(J - B, Hg] (I11.105)
Furthermore, from now on, we introduce a normalizing condition:
EocHy 1 Je 9
= Eg© =1 111
20 = ol (11L106)

for which the reader could refer to (I.107) with the proviso that the medium
is non absorbing.

With such a condition, the scattered intensity .S becomes a dimensionless
scattered intensity St. In the plane wave case, the normalizing condition
means that incident intensity is unity. For Gaussian beams (next sections),
it means that the incident intensity is unity at the waist center of the laser
beam.

Scattered field components ([ILI0T)-([[ILI04) are then introduced in Rel
(IIT105) with condition (IILI0G). Scattered intensity ST then naturally splits
into the sum of two contributions I, ;’ and [ ; , associated with #- and -field
components respectively, reading as:

I v |18
_ (I11.107)
202
I+ S ITNE

1 Asymptotic expressions of the &,’s are useful to simplify computations but they
are not compulsory to establish that the wave tends to a transverse wave at
infinity. Actually, components E, and H, behave like (f; + &n) and it can be
deduced from spherical Bessel equation (I1.82) that & (z)+&n(z) = n(Z;H) En(z).
Hence E, and H, decrease like ()~ whereas Ey, E,, Hp, H, decrease like (r)™'.
Accordingly the wave becomes transverse.
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in which &; and Ss are generalized amplitude functions defined by:

1E

Ey=" O cxp(—ikr) Sy (I11.108)
T
E
E,=— kﬁ exp(—ikr) S (II1.109)
leading to:
Z Z 2n 1 [mangn ™ (cos ) (II1.110)

+ibng," TET‘ml (cos 9)} exp(imyp)

> 2n + 1 .
S2 = Z Z ) |:a’ngn i (cos 0) (I1.111)

—|—imbnngTE7r‘nm| (cos 9)} exp(imep)

I11.10 Phase Angle

Even when the incident beam is perfectly linearly polarized, the scattered
light is in general elliptically polarized. The state of polarization is charac-
terized by a phase angle § between components E, and E,,.

Phase angle d between F, and E,, is the same as the one between & and

&, given by (see Rels (IILI08), (]IIEIEI)
Ep = 1Sy = Age’?? (I11.112)

Ep=—81 = Aye'# (I11.113)

in which we defined real amplitudes A9 and A, and phase angles ¢, and ¢,
of the waves & and &,.
It is then an exercise to establish:

Re(S1)Re(S2) + Im(S1)Im(S2)

tand = tan(pz — ¢1) = Im(S1)Re(S2) — Re(S1)Im(Sz)

(IT1.114)

Later on, it will be convenient to present another formulation of GLMT to
examine some special cases in chapter VI, sections VI.1 and VI.2. This will
provide an opportunity to add some extra discussion on Rel ([ILI14]).
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I11.11 Radiative Energy Balance and Associated
Cross-Sections

IIl1.11.1 Generalities

A radiative energy balance may be carried out in a sphere of radius r and
center Op surrounding the scatter center. For the sake of clarity, some sub-
scripts, previously omitted for convenience, have to be reintroduced.

The radiative balance relies on total fields equal to incident fields plus scat-
tered fields. Therefore, the different terms of the radiative balance equation
will involve:

(i) incident field components which will be written in expanded forms by
summing TM- and TE-contributions (Rels (IIL39)-([ILE0)).

(ii) scattered field components: taking r > A, these components may be
written by using their far-field expressions (section IIL.8).

(iii)  total field components (superscript ¢) arising from summing incident
and scattered components at a point of the surface of the sphere:

[ ) s
Ey =L + E } (IIL.115)

)
H; =H; + H;
The dimensionless radial component S;F of the total Poynting vector is per-

pendicular to the surface of the sphere and gives the energy flux per unit
area and unit of time as:

S*zl

= Re(BjHY — ELH[) (I11.116)

Integrating S;" on the surface of the sphere provides a measure of the amount
of energy which is lost inside the sphere, i.e. which is absorbed by the scatter
center. This measure is given by the absorption cross-section Cs., (homoge-
neous to an area) defined by:

—Caps = + Stds (IIL.117)
($)

From ([ILI1H) and ([ILII6), the right-hand-side of (IL117) is found to be

formed of three contributions, each one corresponding to a partial balance:
—Caps =T +T°+T" (ITL.118)

in which:

T 27
. 1 L .
T = / / 2Re(E;H;* — ELH )r* sin df do (I11.119)
0 0
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2
1
_ / / S Re(E3HZ = B3 HG) 1 sind do dy (IT1.120)

271'
/ / Re(EjHS + EgHY — ELHG* — ESH )r? sinf df dg

(I11.121)
The first integral J° represents an energy balance over the non-perturbed
incident wave. Having assumed that the medium surrounding the particle is
non-absorbing, there is no loss of energy associated with the incident wave
only. Physically, we consequently must have:

J'=0 (111.122)

as will be mathematically checked in next subsection.

The second integral [J° represents an energy balance over the scattered
wave only. Since there is no scattered energy flowing inward the sphere, [J°
measures the amount of scattered energy flowing outward. By definition, this
amount is the scattering cross-section Cjcq:

J* = Csca (I11.123)
From ([IL118), (IL122) and ([ILI23), it follows that:
jis = —Labs — Csca = —Uext (III~124)

defining the extinction cross-section Cle.¢, i.e. the amount of energy lost by
the incident wave by absorption plus scattering.

II1.11.2 Incident Field Balance

This subsection mathematically checks that the physical condition ([IL122))
is satisfied.

Summing TM- and TE-fields in Rels ([IL39)-(IL50), the 6- and -
components of the incident wave are found to be:

Eo S - .
=, g E cn (g ¥n, Tl mgm ‘rEYn 7™ exp(imep) (I11.125)
n=1m=

o] +n

Y
E, = 0 Z Z cn limgn ¥, 77‘ |—|—zgn rePnti™] exp(imep) (I11.126)

n=1m=-—n
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o] +n

,  Ho , ‘
1y =05 S e mgat 7+ g explime)
n=1m=-—n

(IT1.127)

oo +n
pr = h:O Z Z Cﬁw[*igzl,TMWnﬂlmm‘ + imgTTTEW;WleI]EXP(im@)
n=1lm=-—n
(IIL.128)
in which the arguments (kr) and (cosf) are omitted for convenience.
These relations are inserted in Rel ([ILI19) for J* and the integration over
 is readily performed using Rel (ITLIT]) for the orthogonality of exponentials,
leading to:

o0 o3} [e%e]
J'=2rReqi » > Y chvehvt (I11.129)

Pp=—00 n=|p|#0 m=|p|#0
{Il (gfL,TMgf:,TMWnWm - gfL,Tng:,TEWmW”)
+pla (Qﬁ,TEggj,TMWnWm - gZ,TMgﬁL*,TEWmWn)} }

in which I; and Iy are two integrals over 6 given by:

I = / (A + pPmPla ) sing do (ITL.130)
0
I :/O (nlPlrlel 4 mlpllPly sing dg (I1.131)

These integrals are evaluated in Appendix A:

|
= 2l ) (oDt (I11.132)
2n+1 (n—|p|)!

I =0, 0 (II1.133)
Consequently, (ITL129)) takes the form:

+oo ]
J" = Re |i Z Z Anp|cfbw|2[|gfb,TM|2 - |9£,TE|2]wan (II1.134)

p==00n=|p|#0

in which A, are real numbers. It follows that J* is zero as expected.
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II1.11.3 Scattering Cross-Section Cg.,

The scattering cross-section Cs., may be evaluated from its definition

((TI123), ([LI20)). Alternatively, comparing (IIL120) and ([ILI0H), it may

also be written as:
27
Csca = / / (I + I )r*sin 6 dfdyp (II1.135)
o Jo

which emphasizes more clearly the meaning of Cjs., besides being more effi-
cient for computations.
Scattered intensities I;” and I} are given by ([ILI07) supplemented with

(ITI10) and ([ILI1T). Integration over ¢ is readily carried out by using again
the orthogonality relation ([ILI1]), leading to:

oo

2n+1 2m+1
Coca = II1.1
MDY MDY nnt mm+1 130
P=—00 n=|p|#0 m= IplséO

[-71 (ana:ngZ,TMgf:,TM + bnb:ngZ,Tng:,TE) +
ipl, (bna’;ﬂg%Tng:,TM - anb;kngz,TMgﬁiTE)]

in which integrals over 6 are again I; and I ((II1.130) and (III.131)).
Using ([ILI32) and ([ILI33) for these integrals, and taking advantage of
a permutation over subscripts p and m, the expression for Cs., becomes:

o] +n

2n+1 n—|— |m)!
I11.137
Cisca Z Z n(n+1) (n — |m|)! ( )

n=1m=-—n

{lanf? Igl{fTMl2 +1bnl*lgr e}

II1.11.4 Extinction Cross-Section C..;

From Rels ([IL12])) and ([IL124)), the extinction cross-section may be evalu-
ated from a double integral involving both incident and scattered field com-
ponents:

27r
Cont / / e(ELH;" + ESH — EgHS — EgHZY) v sin6 dfdy
(II1.138)
Incident field components are given by Rels (ILI125)-([IL128) and scattered
field components are given in the far-field in section III.8. Using non far-

field expressions would obviously lead to the same results but with much
computational penalty. The integration over ¢ is again easily performed by

using ([ILIT), leading to:
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+oo +oo

Cozt = 27 Re Z Z Z P b (II1.139)

P=—00 n=[p|#0 m=|p|#£0
{Il [(_Z)m exp (ikr) ( ngn TMgm TMW angn TEgm o re¥n )
{4'2% exp (—ikr) (iangfb,TMgf:,TMglm + b”gfb,Tng:,TELpr/n)]
+plz {(*i)m exp (ikr) (a;kngfz,TEgzj,TMwn - ib:ngZ,TMg::,TEwrlL)
—i" exp (—ikr) (mngz,TMgf:,TEwr/n + b"gfL,Tng:,TMWm)} H

Integrals over § are again I; and I3 given by ([IL132), (IIL133), leading to:

) +n
2 1 !
Yoy 2l (nim) (I11.140)
~ n(n+1) (n—|m|)!
n=1m=—n
{(=i)" eap(ikr)(ay P lgmrar® — 63|97 s )

+i"exp(—ikr) (iannl gy rar* + baPlgmzil*)}

Cezt = Re

This expression may be further simplified. Effectively, apart from the con-
dition r > X that we used to simplify the computations (although it is not
compulsory), the radius r of the spherical surface is arbitrary. In the limit r
— 00, we may take further advantage of asymptotic expressions for Ricatti-
Bessel functions [162]:

W, (kr) — ; (=) eap(ikr) + " exp(—ikr)] (ITL.141)

leading to a final expression of C,;; which does not depend any more on r as
it should:

00 +n
2n+ 1 (n+ |m|)
n=1m=-—n

(I11.142)
In the case of plane waves, the extinction cross-section may also be obtained
by relying on the so-called optical or extinction theorem [I7]. However, ap-
plying this optical theorem to obtain the expression of C.,; in the case of
shaped beams would lead to an erroneous result, just because the usual plane
wave formulation of the optical theorem is not valid for shaped beams. The
failure of the optical theorem for Gaussian-beam scattering by a spherical
particle is discussed by Lock et al [163]. It is shown that the extinction cross
section may be written as an infinite series in powers of the reciprocal of
the beam width. The imaginary part of the forward scattering amplitude
(the one associated with the plane wave optical theorem) is shown to be the
first term in this series. Furthermore, two approximations to the extinction
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cross section are presented for the special case of Gaussian-beam scattering,
one which is accurate when the transverse width of the beam is larger than
the target particle, and the other when the transverse width of the beam is
smaller than the particle. A generalized optical theorem for on-axis Gaus-
sian beams is furthermore available from Gouesbet et al [164]. We also recall
that a similar issue has been recently investigated in a quantum mechanical
framework [109]. Related to this issue, we also have the studies of Berg et al
[165], [166] who studied, in the first part, the extinction caused by a single
particle and presented a conceptual phase-based explanation for the optical
theorem and, in the second part, dealt with the case of multiple particles.
Following Rel ([IL124), the absorption cross-section can then be readily
obtained as the substraction between Cp,; (IL142) and Cj., ((ILI3T).

I11.12 Momentum Balance and Radiation Pressure

II1.12.1 Generalities

The approach used in this section to evaluate radiation pressure forces would
be qualified as being heuristic by Bohren and Huffman ([22], p 120). A more
rigorous approach would rely on the use of the energy-momentum tensor.
Such an approach has been developed by Barton et al [137]. After a bit of
algebra, it can be checked that both approaches lead to equivalent results,
within irrelevant normation prefactors.

For a propagative, transverse wave, the reduced momentum Pi+ of the light
is equal to the ratio of the reduced Poynting vector S;' over the speed c of the
light (section I.2.6). This statement may be considered as the electromagnetic
formulation of a quantum mechanical formulation associating momentum
hv/c with energy hv of a photon (in which A is the Planck constant and v
the frequency of the wave). Then, we have:

Pt =5}/c (I11.143)

When light is absorbed by the particle, a momentum transfer is therefore
associated with energy transfer producing a radiation pressure force. The
averaged reduced radiation pressure force F’ i+ (i=x,y, z) exerted by the beam
on the scatterer is given by the averaged net momentum removed from the
incident beam (per unit of time), i.e. to the momentum given to the scatterer
due to absorption minus the momentum lost by the scatterer due to re-
emitted (scattered) light. Rather than using force components, it is preferred
to define the radiation pressure by a vector Cp,; of radiation pressure cross-
sections given by:

Cypri = cF; (T11.144)

It is an exercise to check that components C,,.; are indeed physically homo-
geneous to areas. The total fields sum up incident and scattered components
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(IT1.115). In the far field region, both incident and scattered fields are trans-
verse wavesfa. Hence, the total field is a transverse wave and its Poynting vec-
tor is radial, along the direction of propagation of the wave. Then the momen-
tum through any closed surface (5) only involves [ sRe [ELNHY) e, dS
in which e, ; = (sinf cos g, sin fsin ¢, cos 0) is the (local) radial unit vector.
Expanding the total fields into incident plus scattered waves, (I11.115) reveals
three contributions to the momentum balance associated with incident fields,
scattered fields and crossed terms. From its definition, the contribution of the
incident (unperturbed) field is zero since it goes through any closed surface
without leaving any momentum. We then have to discuss three components
Cpr,i which are examined separately.

II1.12.2 Longitudinal Radiation Pressure
(z-Direction)

Along the longitudinal direction (O, %), the radiation pressure cross-sectional
component Cp, . is then expressed by the relation:

+
1 . .
o = cFF = 7/ o Rel I A HE? 4 23 A ), dS cos
($)
1
— 2R6[E; A H¥], dScosf (II1.145)
($)

in which the symbol + on the integral reminds us of using the normalizing
condition ([ILI0G). S is a large spherical surface surrounding the scatter
center and dS its surface element.

The first term is the forward momentum removed from the beam and the
second one is minus the forward momentum given by the scatterer to the scat-
tered wave. We again choose for S a sphere of radius r > A surrounding the
scatter center. In this case, the two terms of the right-hand-side of ([IL145)
identify with Rels (IIL12]]) and ([IL120), with the only difference being that
integrands are multiplied by (- cos 6). There is no radiation pressure associ-
ated with the integral J¢ (IT1.119) since the unperturbed field does not leave
any momentum to the scatterer. This relationship between (II1.145) and J°,
J?, J% indeed emphasizes the physical meaning of (II1.145), associating the
forward momentum removed from the beam with J%°, i.e. with C.y, and the
forward momentum given to the wave with 7%, i.e. with Cscq.

2 Scattered fields have been discussed in section IT1.8. Using component expressions
(II1.39)—(II1.50) and the same argument as presented in footnote at the end of
section II1.8, it can be shown that incident fields too reduce to transverse waves.
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([IT143) then becomes:
27 1 ) ) .
Cprz = /0 / , Re(BLHG + ESH — ByH (II1.146)
27
—E§HZ )r? cos 0 sin dedap—/ / (If+13)r? cos 0 sin 0 dfdy
0 Jo

in which the second integral has been rewritten using scattered intensities
rather than scattered field components (similarly as for [ILI35).
With a short-hand notation, (IILT46) may also be written as:

C;m“,z =080 Ceyy — cos Cieq (111147)

in which cosf indicates integrations weighted by cosf.

In one of our previous articles [76] devoted to Gaussian beams, the first
term in the right-hand-side of ([IL147) has been simply set equal to Ceyt,
leading to the approximate relation:

Cpr,z = Cegt — 080 Cieq (IH.148)

an expression given by van de Hulst [17] for the plane wave case.

This is certainly a good approximation when only a waist location of the
particle is considered. It means that we assume that the wave-front on the
scatterer is (nearly) a plane, permitting us to use the same formulation as
van de Hulst. In the general case of arbitrary location of the particle in an
arbitrary beam, this approximation is no longer valid.

We now evaluate successively the two terms of the right-hand-side of
([IT141), starting with the second one:

2m
cos0Cq = / / (I + I;')rg cosf sin6 dfdy (II1.149)
o Jo

Integration over ¢ again uses ([(ILTI)), and afterwards, in a similar manner as
we have done for ([ILI36]), we readily obtain:

2 +oo +oo +oo
2n + 1 2m+1
cosl Cyeq = Z Z Z m(m +1) (I11.150)
1’**00 n=|p|#0 m= \P\#O
{13 (anangn rar Gomrar + 00 b 95 15 G 7E)

+iply (bn ap, gfl,TE gi'if,m —ay, by, QZ,TM ggj,TE)}

in which I3 and I, are new integrals over 6 given by:

13:/ (rlPlzlel 4 p2 zlPl 7lPl) cos @ sin 0d6 (II1.151)
0
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I, = / (rlPl wlPl 7Pl 2lPly cos 6 sin Odf (II1.152)
0
These integrals are evaluated in Appendix B:

2n=1)(n+1)  (n+[p])!

fo = 2n—-1)2n+1) (n—1— |p|)! m,n—1 (II1.153)
2m—1(m+1)  (m+lp)! 1
@m-—1)C2m+1) (m—1—|p] ™"

=y 2 (IIL.154)

2n+1"(n— |p|)!
Inserting expressions ([ILI53), (IIL154) for I3 and I, in ([ILI50) leads to:

goo+n

2n+1 (n+|p|)
c080C ey = — Z Z pn2 n 1) (n— [p))! (IT1.155)
n=1p=—n

1 (n+14|p|)
(n+1)2 (n—|p|)!
Re(an api1 95 rar Sr,oar + 0n Vst 90 75 91 78)

Re(i anby, gfL,TM gZTTE) -

We now consider the first term in the r.h.s. of ([ILI147):

27
1 i LSk s prix i LTS* S TTix
€08 0Ceqt = /o /o 9 Re(ELHy" + E Hy" — EgHZ" — EgH ')
r2sin@ cosf d dp (II1.156)

Rel (IILT56) is exactly the same as (IT11.138) except for the presence of cos 6.
Following the same procedure as used in section I11.11.4, we thus obtain the
analogous one to Rel (II1.139) where the f-integrals I; and I are replaced
by Is and I respectively.

We then perform the f-integrations (IILI51) and ((ILI52) and rearrange
the subscripts to obtain:

2n(n+2)  (n+1+|p|)!
= II1.1
008 0Ca =27 p_z_:oo . %,;O { 1)@ t3) - D

prcp+1{( )n+1 eXp(zkr)[LP —iW][a :+1g£,TMgf:-1,TM
+bn+1gn’TEgn+1’TE] + 4" exp(—ikr)[¥,, 11

+iW11)[angy, rardna s mar + Ondn rEIni TE)}
2p  (n+p))!

2n+ 1 (n — |p|)! Jen” i exp(—ikr) [W” ! W’J

(a”gfl,TMgn,TE - b”gz,TEgZTTM)}
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Then, assuming a very large radius of the spherical surface used for integra-
tion, we can replace the Ricatti-Bessel functions by their asymptotic expres-
sion ([IL.I41)). Using also ([IL3]) and rearranging the summations, we obtain:

2 oo +n
_ 1 (n+1+ |p|)!
cos0C .zt = g g { (1) (n— ]! (II1.158)

n=1p=—n
Re[(an + an+1)gi2 TMgfL-‘rl ra t (o + b:L-&-l)gfL,TngL:-l,TE]
2n+1  (n+|p)!

2 (n+1)? (n—|p|)!

Substracting ([ILI55) from ([(ILI5S) gives the final expression of the pressure
cross-section Cy,. ,:

oo +n
I (n+1+|p)!
_ Z Z I11.159
Cmz = { n+1)?  (n—[p|)! ( )

n=1p=—n

Refi(an + bmgz,mgzw}

Re[(an +ap 41 — 2ana2+1)gi7TMgfL:-1,TM
+(bn + by — 20 b;kLJrl)gfL,TEgZiI,TE]

2n+1 (n+ « " *
( ) E Ip:; Re[ (2anbn — Qn — bn)gfz,TMgZ,TE]}

IT1.12.3 Transverse Radiation Pressure (xr and y
Directions)

Similar to the case of Rel ([IL145)), the tranverse radiation pressure cross-
sectional components C;. . and Cy,, are given by:

+

1 )

Cprw = cFf = 7/ Re [Ez Hy' + EF A Hp'|-dSsing cose
(

T s 9
+
1
—/ 2Re[E; A H*].dSsind cosg (II1.160)
()
1 , ,
Cory = cFF = — /(S) ) RelE) A H3 4+ 5 A H)dSsing sinep
!
—/ 9 Re[E; A H']-dSsin® sinp (II1.161)
(5)

in which weighting factors are sinf cosp and sinf sing respectively, instead
of cosf.
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These relations may be rewritten, with the shorthand notation of Rel

(IL.I47):

Cpre =500 cosp Cepr —sinf cosy Cyeq (I11.162)

Cpry =sinf sin pCeqr —sinf sin pCiseq (II1.163)

We now evaluate Cp, , starting again with the second term in the r.h.s. of
([IT162). This term may be expressed by:

™ 2m
sin@ cos pCseq = / / (I + Ig)r2 sin 0 cos ¢ dfdy (II1.164)
o Jo

After replacing I, and I} by their expressions from ([ILI07), (ILII0) and
([ITI1)), we perform the integration over . This integration requires the

evaluation of a new integral which is:

2
/ cos ¢ exp(iky) exp(—ik'yp) dp = 7(0k k+1 + Ok kr+1) (II1.165)
0

leading then to:

2 +o00 +oo
2n+1 2m+1
sin 0 cos pClyeq = Z Z Z
T o ne P 0 m o 1|0 nn+ 1) m(m+ 1)
[Is Re(UE,,) + Is Re(VE )] (I11.166)
in which:
Ul = anap,gn. TMgZLJr%M + bnbr gy, TEgi'if%*E (I11.167)
Ve = ibnafngfL’Tngnf%’;w zanbmgn TMgfrj'%E (I11.168)
in which I5 and Ig are new integrals over 6:
Is = / (rIPlr P p(p + 1) 7lPl 7P+ sin? 0 df (I11.169)
0
Is = / (prlPle P+ (p 4+ 1) 2P 7Pl sin2 9 dp (II1.170)
0
I5 and Ig are evaluated in Appendix C:
I; = (2n+1)22m+1) ?}Z;B: [(n=1)(n + 1)6n,mt1 — (Mm—1)(M~+1)dm,nt1],p > 0
(2ni1) 2mi1) e (M= 1) (M + 1)dmnt1 — (0= 1)(n + 1)dn.m41],p <0

(IIL.171)
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2 (ntp+l)!s >0
I = { s ﬁ N (I11.172)
2n+1 (n+p)! "M p

Inserting ([ILI7I)) and ([ILI72) into (IILI6E]), we first obtain:

N & (m+p+1)!
i sca — III.1
sin 6 cos pC' - Z Z Z | (II1.173)

P=0 n=|p|#0 m=|p+1[#0
1 1
{Re(U'gm)[nQ On,m+1 — m2 Om 1]

2n+1
)
n?(n+1)2 nm}

— = (n—p)!
EDIED SRND SR et

p==1n=|p|#0 m=|p+1|#0

+Re(VP )

1 1
{Re(Uﬁm) [mg 6m,n+1 - n2 6n,m+1]
2n+1
_ 14
Re(V2) v+ 1)200m)]

in which the negative values of p are separated from the positive ones. Rear-

ranging by playing with subscripts, (IIL173) can be more concisely rewritten
as follows:

A2 2> oo (n+p)!
' on = 111174
sin 6 cos pC' - ZZ Z . (II1.174)

p=1n=pm=p—1#0

1 1
{[Re(Uﬁ;ll -+ Un_'rg)][mz 6m,n+1 - n2 6n,m+1]

2n+1 =1 1—p
ng(n + 1)26nm [Re(an Vnm)]}

in which summation over p now only involves p > 1.

The first term of the r.h.s. in (ILI62) is (ILI56) with cos® replaced by
sinf cosy:

T 2
. 1 i TTS* S Tyi* i TTS* s 1%
sinf cos pCeqr = /o /o 9 Re(E,Hy" + E Hy" — EgHZ" — Eg HY')
r?sin 6 cosp didy (II1.175)

The ¢-integration is carried out again using ([ILI65) and the 6-integration
with ([ILI69)-([[LI70). The resulting expression can be rearranged as:
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I 2R & > 2n+1 2m+1

i 5 ot = — [ — 111

sin 6 cos pCeyt e Re g E E Rt D) m(m £ 1) ( 76)
p=—00 n=|p|#0 m=|p+1|#0

[Is {i" exp (—ikr) [‘I’n + Z‘I’n] [amgf,:—%MQZTTM + bngfy:—’ll“ng:TE]
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— . ’ . 1 1
+ 4" ! exp (7“{5"“) {\I}n + Z\Pn] {a,,,,gﬁtTMgZTTE - b,,,,gﬁtTEgZTTM] }}

Again, we replace the Ricatti-Bessel functions by their asymptotic expression
(IL141)), assuming a very large radius of the spherical surface on which
integration is carried out. We also introduce the following notations:

* 1% * 1%
Shm = (an + a’m)gfl,TMgfrj:TM + (b + bm)gZ,Tngrj:TE (I11.177)
p+1x

5, = —ilan + bjn)gz,TMgm,TE +i(by + a:n)gfl,Tngrj}E (I11.178)

Then, Rel (IT1.176) becomes:

. P = (m+p+1)!
sin 0 cos pCleypr = in Z Z Z (m—p—1)! (I11.179)
=0 n=|p|#0 m=|p+1[#£0

1 1
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1 1
{Re (ng) |:m2 5m,n+1 - n2 5n,m+1:|
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which can again be more concisely rewritten by rearranging subscripts and
superscripts as follows:
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oo oo oo

. 22 (n+p)!
sin 0 cos pCeyzt = o Z Z Z (n—p)! (111.180)
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—
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Then, substracting ((IL174) from ([ILIR0), we obtain:

AQ o0 oo o0

DD (”“9)% (II1.181)

1 1
{ [Re (SB!+ 5,2 — 202 1 — 20U, F)] {mz Smnt1 — 2 6n,m+1}

2n+1
n?(n+1)

Cprz = ch =

L Onm [Re (Th," =Tk —2Vh t + 2V, 7)] }

The triple summation can be reduced by expressing the Kronecker deltas and
switching indices to give summations over n € [1,00[ and p € [1,n]. After
rearranging, an alternative to ([(ILIS1]) is then:

P _ B
CPT’ZL’ = o1 n+1 {(TL + 2) Re (2U2,n+1 + 2UnJ}1,n - S’?L,nJrl - Snil,n)
n=1
1 & (n+p) 1 _ 1 _
n+1 Z (n—p)! [Re (Sfﬁl’n + Sn,i+1 - 2U5+1,n - 2Un,fl+1)
p=1 '
2 1
”n;“ Re (TP, " =T, P —2VE 1 + 2V, P) (I11.182)

—(n+p+1) (2 Re (Sh 0+ 810200 0 —20, 000 )|}

Establishing the expression for Cp, , is fully similar. The evaluation of the
second term in the r.h.s. of (ILIG3), i.e.:

T 2
sin 0 sin pClseq = / / (I + I;')rg sin? 0 sin pdfdyp (TI1.183)
0 Jo
starts by integrating over ¢ using:

2m
/ sin p exp(ikp)exp(—ik'p)dp = im(0k j+1 — Ok kt1) (TI1.184)
0

The rest of the procedure is left as an exercise to the reader. We find that
sinf sinp Cgeq and sinf sing Ce,y are deduced from sinf cos¢ Cseq and
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sinf cos @ Ceyy respectively, by changing Re to Im. The final expression for
Chr,y is therefore identical to ([ILII]) but with Re replaced by Im:

Cpry = cFj = ;; i i i E” ) (I11.185)

—p)!
p=1n=p m=p—1+#0 n p)
_ _ _ _ 1 1
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2n+1
2 (ni 12 Spm [Im (TP — T 0 —2VE L 42V 7)) }

Also, an alternative expression is ([ILI182)) with Re replaced by Im.

Finally, from F;", .\, F}f we may readily derive the force components in
spherical coordinate systems (F', Fg‘ , F;’ ) or in cylindrical coordinate sys-
tems (F,f, F.f, FF) if required. In cylindrical coordinate systems, the force
components would play a special role in designing and interpreting optical
levitation experiments e.g ([167], [168], [169], [56], [170], [58], [I71], and ref-
erences therein). For vertically travelling beams, F would be involved in
the force balance between the upward radiation pressure force component
and the downward weight of the particle. F’ p+ (in which p designates a direc-
tion transverse to the beam) would determine whether the particle would be
trapped in the beam or expelled away.

I11.13 Efficiency Factors

We call £ the reduced power geometrically incident on the particle. We may
then define efficiency factors by the relation:

Ci

Qi= !

(II1.186)
in which 7 stands for sca, abs, ext or pr, @Q; are dimensionless factors.

For a plane wave, £t is simply md?/4 in which d is the particle diameter
since the reduced incident intensity per unit of area is set to 1 using the

normalizing condition ([ILI06). Then, (IILI86G]) simply becomes:

C

@i= wd?/4

(I11.187)

The more useful efficiency factors are then:

Qsca : scattering efficiency factor
Qaps : absorption efficiency factor
Qert  : extinction efficiency factor

The above factors represent the relative amounts of geometrically incident
energy which is scattered, absorbed and extinguished, respectively. It follows
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that efficiency factors are often more praised than cross-sections because they
possess a very clear physical meaning.

In non-plane wave cases, ([ILI87) may be generalized to ([ILI86G). How-
ever, £T is now a quantity more complex to evaluate although it can be done
using the Poynting theorem. It depends on the nature of the incident beam
and on the location of the scatter center in the beam. Its evaluation now
requires integrations of incident intensities. As an example, see Hodges et al
([I'72], [163]) in the case of Gaussian beams.

II1.14 Complement, Other GLMTs

In this chapter, we have examined the GLMT stricto sensu. By extension,
we propose to call GLMT any theory which solves a scattering problem by
using a method of separation of variables. Essentially, the different GLMTs
are distinguished by the kind of scatterer considered. This complement is
devoted to a concise exposition of studies associated with GLMTs other than
GLMT in a strict sense.

Multilayered spheres

The case of an electromagnetic scattering from a multilayered sphere located
in an arbitrary shaped beam has been solved by Onofri et al, by using the
Bromwich potential method [I73]. Two extreme particular cases pertain to
this framework (i) the case of coated spheres, i.e. with only two layers and
(ii) the case of a continuous radial gradient of refractive index which can
be efficiently modelled using a large enough number of layers. As a specific
result, the scattering coefficients for the present case are formally identical
with the ones of the GLMT and, in particular, involve again the beam shape
coefficients g,'7 ), and g;'7 . One consequence is that all the GLMT expres-
sions that concern external waves, i.e. scattered intensities and cross sections,
including radiation pressure cross sections, remain valid in the GLMT for
multilayered spheres. This makes rather easy the adaptation of a computer
code for GLMT to a computer code implementing the GLMT for multilayered
spheres. Numerical results are provided for scattering diagrams and radiation
pressure.

The above implementations used a technique according to Wu and Wang
[174] for the evaluations of coefficients a,, and b,, involved in the formulation.
Subsequently, improved algorithms for electromagnetic scattering of plane
waves and shaped beams by multilayered spheres have been published by Wu
et al [I75). The stability of the numerical scheme used allows one to extend
the feasible range of computations, both in size parameter and in number
of layers for a given size, by several orders of magnitude. This algorithm
therefore produces an efficient opportunity to deal with spherical particles
with a radial gradient of refractive index. In the article, accounting for some
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hardware limiting features (available memory limitations), the number of
layers used was as great as 15 000 with an outer size parameter as large as
approximately 150 000. Some results are provided and discussed, in particular
concerning the rainbow for a nonlinear profile of the refractive index.

Next, we provide a list of citing articles. Some of them are relevant indeed
to the GLMT for multilayered spheres, but others are more restrictively and
specifically relevant to the Wu et al algorithm [I75]. Wu et al [176] dealt
with the computation of Gaussian beam scattering for larger particles, in
a GLMT-framework, with computational methods claimed to be improved.
The case of coated spheres is also investigated. Rysakov and Ston [I77], [T78]
investigated light scattering by a ”soft” layered sphere. Sakurai and Kozaki
[179], [180] and Sakurai et al [181] dealt with shaped beam scattering by a
Luneberg lens (a spherically symmetric lens, with a variable-index refract-
ing structure). Experimental results obtained from microwave scattering by a
six-layer spherical lens are in good agreement with theoretical values. An ex-
tensive study of Luneberg lenses, however, under plane wave illumination, is
available from Lock [182], [183], [184]. Smith and Fuller [185] dealt with pho-
tonic bandgaps in Mie scattering by concentrically stratified spheres. Deumié
et al [186] were concerned with the production of overcoated microspheres
for specific optical powders, and with their characterization. They remarked
that a complete theory (like GLMT) would be required to predict the opti-
cal properties of the produced microspheres. Stout et al [187] discussed the
absorption in multiple-scattering systems of coated spheres. Wen Yang [188]
proposed an improved recursive algorithm for light scattering by a multi-
layered sphere. The algorithmic issue is also discussed by Hong Du [189].
Voarino et al [I90] dealt with optical properties calculated for multielectric
quarter-wave coatings on microspheres, to be complemented by Voarino et al
[191]. Chen et al [192] were concerned with Gaussian beam scattering from
arbitrarily shaped objects with rough surfaces. Wei Liang et al [193] dealt
with a Mie scattering analysis of spherical Bragg ”onion” resonators for the
simplest case when the center of the onion resonator coincides with the center
of the waist plane of a fundamental Gaussian beam, a case where the beam
shape coefficients gn'x reduce to the beam shape coefficients g,,. Wu et al
[176] computed the scattering field of homogeneous and coated spheres un-
der Gaussian beams and plane wave illumination. Combis and Robiche [194]
discussed a computational method for the scattering of an axisymmetric laser
beam by an inhomogeneous body of revolution, with a method which relies
on a domain decomposition of the scattering zone into concentric spherical
radially homogeneous subdomains. Voshchinnikov et al [195] modelled the
optical properties of composite and porous interstellar grains, using in par-
ticular a model of layered particles, and the description of the behavior of
particles with inclusions. Lock [I96] was concerned with Debye series analysis
of scattering of a plane wave by a spherical Bragg grating. Renxian Li et al
[197] dealt with Debye series of normally incident plane-wave scattering by
an infinite multilayered cylinder. Burlak and Grimalsky [198] studied high
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quality electromagnetic oscillations in inhomogeneous coated microspheres.
Dartois [199] managed with the spectroscopic evidence of grain ice growth.
Renxian Li et al again [200] discussed Debye series for light scattering by a
multilayered sphere, or [201] Debye series for Gaussian beam scattering by a
multilayered sphere. Sun et al [202] dealt with near-infrared light scattering
by ice-water mixed clouds. Sun et al [203] dealt with Monte-Carlo simula-
tion of backscattering by a melting layer of precipitation, to be completed by
Sun et al [204] providing a new melting particle model and its application
to scattering of radiowaves by a melting layer of precipitation (composed of
melting snow particles, modelled by three-layered spherical particles, made
out from air for the innermost layer, ice, and water for the outermost layer).
Hai-Ying Li and Zhen-Sen Wu [205] discussed electromagnetic scattering by
multilayered spheres in a Gaussian beam.

Rather than a GLMT, numerical methods can be used (whatever the kind
of GLMT considered) but, even so, GLMT-results can be taken as a bench-
mark or as an independent means to check numerical results. Furthermore,
conversely, problems attacked with numerical methods potentially provide
possible applications of GLMTs. These remarks being made (and not to be
repeated any more), an example of numerical methods applied to multilayered
spheres is by Burlak and Grimalsky [I98] who examined high quality elec-
tromagnetic oscillations in inhomogeneous coated microspheres. Also, Dartois
[199] used a Discrete Dipole Approximation (DDA) to the study of scattering
and absorption of light by spherical (and ellipsoidal) coated grains (motivated
by ”astronomy and astrophysics”).

Circular cylinders

Next, we consider the GLMT for the case of an arbitrary beam illuminat-
ing infinite circular cylinders (that is to say infinite cylinders with a circular
section). Let us remark that the requirement of ”infinity” is much less strin-
gent for this case than for a plane wave illumination since a finite cylinder
illuminated by a focused beam will essentially behave as an infinite cylinder.
Hence, here we have a GLMT for infinite cylinders which, under rather easy
circumstances, can be used for finite cylinders too.

The development of the GLMT for infinite circular cylinders was faster
(only five years) than for the GLMT stricto sensu. This relatively short time
was allowed thanks to the experience gained in the topic. Nevertheless, a
full understanding of the situation and of different aspects of the situation
required the use of mathematical techniques not commonly used in light
scattering, namely the theory of distributions of Laurent Schwartz. The first
article of the series of articles devoted to the problem was published in 1994
[I17]. The structure of this GLMT is at first sight very similar to the one
of the GLMT stricto sensu. Cylindrical coordinates matching the geometry
of the scatterer allow one to use again the Bromwich potential method. One
important issue is that, as for the case of the sphere, the Bromwich poten-
tials are assumed to be expressed by using coordinate separability according
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to the form Z(z)R(p)P(y) in which (z, p, ) are cylindrical coordinates. The
theory can then be developed under this assumption, with expansions ex-
pressed in terms of beam shape coefficients and basic functions. Expressions
are obtained for amplitudes and intensities of the internal and of the scat-
tered waves, and specifications are made for the case of the far field. The
special case of the plane wave is examined, and it is checked that the classi-
cal results for plane wave illumination are recovered from the more general
GLMT described in the article. In the last section of the article, however, the
case of Gaussian beams, modelled by retaining only the Maxwellian contribu-
tion of the Taylor expansion of first-order Davis beams [75], is examined and,
most surprisingly, it is found that this case cannot be solved in the frame-
work of the GLMT briefly described above. These features pointed out to an
unexpected theoretical problem, namely that the principle of separation of
variables did not allow one to build a proper GLMT, i.e. a GLMT valid what-
ever the structure of the illuminating beam. Conversely, it was found that we
could build satisfactory Bromwich potentials, but that these potentials did
not satisfy the principle of separation of variables. Hence, this first article
from 1994 ended with two problems (i) can we build a correct GLMT by
using potentials which do not satisfy the principle of separation of variables?
and (ii) why did this principle failed?

A discussion of the first question was actually published the same year
[118]. In this article, a theory of interaction between a Gaussian beam
described by a first-order Davis approximation and an infinite cylinder, intro-
ducing Bromwich scalar potentials that are not linear combination of separa-
ble potentials, was discussed. We found that the theory exhibited unexpected
difficulties, failed to construct it and, the problem being well defined, believed
that it would form a challenge that could attract the attention of other re-
searchers. To tell the truth, we believed that we would not be able to solve
this problem by ourselves. Actually, no GLMT giving up the principle of
separation of variables has never been produced, and the answer to the first
question is most likely negative, that is to say, we did not solve the aforemen-
tioned problem, and no one did it. However, we indeed find a way to build
a satisfactory GLMT by examining the second question, that is to say by
revisiting the principle of separation of variables.

The method of separation of variables, rather than being expressed by a
principle, is actually better expressed by a theorem, called the separability
theorem. This theorem states that, given a linear partial differential equation
and special coordinates allowing one to find a family of separated solutions, all
solutions of the equation can be obtained from linear combinations of the sep-
arated solutions. According to the above articles [I17], [I18], we would have
to conclude that the theorem fails. Gouesbet [121], revisiting the theorem,
provided a systematic constructive approach to find solutions which do not
satisfy the separability theorem. Nevertheless, all that has been said above
concerned usual functions. However, it has been afterwards established that
the separability theorem may be recovered if the class of admissible solutions
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is extended from functions to distributions [124]. The theory of distributions
with its application to beam parametrization in light scattering, supposed to
be easy-reading for a newcomer, is exposed by Gouesbet [206].

The use of distributions allowed one to solve the problem of interaction
between shaped beams and infinite circular cylinders in a formal satisfactory
way. First, a simple case is considered, namely that the Gaussian beam illu-
minates the infinite cylinder perpendicularly to its axis and the beam waist
center of the beam is located on this axis [I19]. Next, the case of a first-order
Gaussian beam by an infinite cylinder with arbitrary location and arbitrary
orientation has been considered [I20]. The scattering of higher-order Gaus-
sian beams, still with truncated Taylor expansions, is discussed in [207]. In
particular, in these solutions, beam shape coefficients are generalized to beam
shape distributions. Although distributions are used to build these theories,
final results are expressed in terms of usual functions, therefore allowing the
implementation of these results in computer programs.

The interaction between the infinite cylinder and an arbitrary shaped beam
(Arbitrary Beam Theory) is discussed in [208]. It is expressed by using again
the theory of distributions, providing the most general framework, allowing
one in particular to deal again with truncated Taylor series from Davis beams.
It is obviously not meant that the interaction between light and cylinders
must always be expressed in terms of distributions. The set of usual func-
tions is actually a subset of the set of distributions (which may be viewed as
generalized functions) and, for some special incident beams (like for a plane
wave) or special descriptions of arbitrary shaped beams (like for a Gaussian
beam described by a plane wave spectrum), the theory in terms of distribu-
tions may be simplified to a theory in terms of usual functions. Conversely,
any theory in terms of functions may be translated to a theory in terms of
distributions.

In 1997 [209], three years only after the initial surprise concerning the
status of the separability theorem [I17], and the compulsory requirement to
understand what was going on before proceeding further, practical numeri-
cal results became available. The cited article [209] concerned the restricted
case of an illuminating Gaussian beam, normally incident on the cylinder,
with the beam waist center located on the cylinder axis, and a convenient
orientation of the leading electric field. Three different beam descriptions are
essentially used (i) Maxwellian beams at limited order extracted from the
Davis formulation (ii) a plane wave spectrum and (iii) a localized approxi-
mation in cylindrical coordinates, similar to the one already introduced in
spherical coordinates. Let us note that our previous discussion in spherical
coordinates, comparing GLMT with multipole expansions and variants with
plane wave spectra, does not apply here to the case of cylindrical coordinates.
Indeed, due to the continuous nature of one separation constant in cylindrical
coordinates, the use of plane wave spectra is much more natural for cylinders
than for spheres, as can be seen by inspecting the reference under discussion.
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Also, the localized approximation in cylindrical coordinates (or cylindrical
localized approximation) was introduced in an empirical way, by analogy with
the procedure used for the localized approximation in spherical coordinates,
and justified by its consequences. It is only valid for the geometry under
study in the article under discussion. Numerical results compared the three
different beam descriptions mentioned above, with enlightening comments,
and displayed scattering diagrams. The localized approximation empirically
introduced in the above article has been afterwards rigorously justified, heav-
ily relying on the theory of distributions [210]. Furthermore, the relationship
between the theory in terms of distributions and the plane wave spectrum
approach is discussed.

There is an interesting comment, concerning contingency in the develop-
ment of science, which needs to be made now. When starting to develop
the GLMT for cylinders, it could have been decided to deal straight away
with a plane wave spectrum approach, and not to worry with the behav-
ior of truncated Taylor series which revealed an apparent flaw concerning
the separability theorem. Had this happened, then mastering the theory of
distributions, or even using it, would have been unnecessary. However, this
did not happen and there was then a problem with the separability theorem
which had to be solved. As a result, thanks to the knowledge gained, the
GLMT for cylinders could receive its most general formulation in terms of
distributions [208] and the relationship between this general framework and
easier frameworks in terms of functions could be understood.

However, may be more important, it is likely that, without the theory of
distributions, the rigorous justification of the cylindrical localized approxima-
tion would have been impossible or, at least, more difficult. Furthermore, the
cylindrical localized approximation has afterwards been generalized to the
case of arbitrary location and orientation of the scatterer, and the rigorous
justification heavily relied on the use of distributions too, although the final
result no longer requires the use of distributions [211].

More numerical results are provided by Mées et al [212], in the general
case of arbitrary location and arbitrary orientation of the scatterer, with a
localized approximation (therefore avoiding the use of distributions) to de-
scribe the illuminating Gaussian beam in cylindrical coordinates, and the use
of a plane wave spectrum approach to evaluate the beam shape coefficients.
Comparisons between GLMT and geometrical optics, GLMT and plane wave
scattering, are provided. A particular emphasis concerned a wave-guiding
effect and the shift of the rainbow generated by the nature of the shaped
beam.

Precursors might be Yokota et al [213] dealing with the scattering of a
Hermite-Gaussian beam mode by parallel dielectric cylinders. Erez and Levi-
atan [214] considered the problem of wave scattering by a large 2D circular
cylinder excited by a beam whose axis does not intersect the cylinder axis,
with a theoretical analysis which is likely not akin to a GLMT. A GLMT for
cylinders however, in which an illuminating Gaussian beam is parameterized
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by using an angular spectrum of plane waves, is also discussed by Lock [215],
and is applied to the study of morphology-dependent resonances of an in-
finitely long circular cylinder illuminated by a diagonally incident plane wave
or a focused Gaussian beam [216]. Later on, internal and near-surface elec-
tromagnetic fields for an infinite cylinder illuminated by an arbitrary focused
beam are discussed by Barton [217]. Exterior caustics produced in such a
situation (but for plane wave illumination) are studied by Lock et al [218].
The caustic theme is also discussed by Marston et al [219] in connection with
the observation of enhanced backscattering by a tilted cylinder. Plane wave
and Gaussian beam scattering by an infinite cylinder perpendicularly illumi-
nated are compared by Mroczka and Wysoczanski, relying on the GLMT for
cylinders [220)]. Venkatapathi et al [221] dealt with measurement and analysis
of angle-resolved scattering from small particles in a cylindrical microchan-
nel, using a GLMT-approach. The channel is represented as a homogeneous
dielectric cylinder perpendicularly illuminated. Beam shape coefficients are
determined by using an angular spectrum of plane waves. In a subsequent
article, Venkatapathi and Hirleman [222] dealt with the effect of beam size
parameters on internal fields in an infinite cylinder irradiated by an elliptical
Gaussian beam (or laser sheet). Plane wave and Gaussian beam scattering by
long dielectric cylinders are available from Van den Bulcke et al who used an
extended scattering simulator, with experiments comparing favorably with
simulations, excepted when deviations occurred because of the finiteness of
the cylinder and of the incident field in the experiment [223]. Scattering
of shaped beam by an infinite cylinder of arbitrary orientation is discussed
by Zhang and Han [224]. By relying on the use of an addition theorem for
spherical vector wave functions under coordinate rotations, and relations be-
tween the spherical and cylindrical vector wave functions, cylindrical beam
shape coefficients are expressed in terms of spherical beam shape coefficients.
Resnick and Hopfer [225] are concerned with the mechanical simulation of
primary cilia. A cilium can be modelled as a cylindrical rod capped by a
hemisphere, and therefore offers some relevance to GLMT-computations or
GLMT-ingredients such as the issue of beam description for laser trapping.
We now provide more but concerning non-homogeneous cylinders. Rain-
bow scattering by an inhomogeneous cylinder with an off-axis Gaussian beam
at normal incidence is discussed by Guo and Wu [226]. Adler et al [227] dealt
with the experimental observation of rainbow scattering by a coated cylinder.
They mentioned that the theory of rainbow scattering for a coated cylinder
has not been worked out in wave theory. Starting from the GLMT for cylin-
ders, this could be done by using a generalization to the case of multilayered
cylinders, including the case of arbitrary shaped beam illumination. The case
when the cross-section of the cylinder is not exactly circular is mentioned.
This points out to another GLMT soon to be discussed, the one for infinite
elliptical cylinders. It is then obvious that GLMTSs for cylinders, including
for multilayered cylinders, pave the way to further studies concerning rain-
bow scattering in wave theory. An improved algorithm for electromagnetic
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scattering (of plane wave however) by a radially stratified cylinder is discussed
by Jiang et al [228]. Light scattering by bianisotropic particles is discussed
by Novitsky, with also a section on light scattering by multilayered cylinders
[229]. Finally, Wu and Li introduced Debye series for the scattering by a
multilayered cylinder in an off-axis Gaussian beam [230]. Results with De-
bye series reach an agreement with those of GLMT. Some emphasis on the
rainbow is pointed out.

Elliptical cylinders

Next, we consider the GLMT for infinite elliptical cylinders (that is to say
with an elliptical section rather than with a circular section). This GLMT
is more technical than the previous one because the loss of symmetry when
deforming a circular section to an elliptical section implies specific new dif-
ficulties. Also, Mathieu functions appearing on the stage are not specially
simple to manage with. Nevertheless, the experience gained when dealing
with circular cylinders has been much helpful before dealing with elliptical
cylinders. In particular, the use of the theory of distributions is again an
invaluable tool.

A general framework, in terms of distributions, for describing an arbitrary
electromagnetic shaped beam in elliptical-cylinder coordinates, is described
by Gouesbet et al [231]. This framework is illustrated by investigating the
case of a first-order Davis Gaussian beam, more precisely the case of the
Maxwellian contribution to a first-order Davis beam. More generally, higher-
order Gaussian beams (more precisely Maxwellian contributions to higher-
order Gaussian beams) are considered in [232]. The conclusion of the article
stated that these studies on partial waves formed a required ingredient to the
design of an elliptical localized approximation. Next, Gouesbet et al [233]
provided a description of arbitrary shaped beams in elliptical cylinder coor-
dinates, first in terms of distributions, and afterwards using an equivalent
plane wave spectrum approach. However, the plane wave spectrum approach
used is an extended one, in which some meaningless integrals must be thought
of as being the expressions of a symbolic calculus whose rigorous justifica-
tion is to be found in the theory of distributions. The lack of mathematical
rigor (but not of exactness) associated with this calculus is compensated
by the fact that, at the present time, most physicists will find it intuitively
more appealing than a complete rigorous formulation. This way of viewing
the plane wave spectrum approach in elliptical-cylinder coordinates is a bit
rather different than the one used in circular-cylinder coordinates where it
was restricted to the use of usual functions. The GLMT for infinitely long
elliptical cylinders illuminated by arbitrary shaped beams is afterwards pre-
sented by Gouesbet and Mées [234]. This GLMT may most conveniently be
used when it is accompanied by a speeding-up localized approximation. Such
a localized approximation is introduced and rigorously justified by Gouesbet
et al [235] for the case of illuminating Gaussian beams, relying on the partial
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wave description of Maxwellian contributions to Davis beams, and on the
theory of distributions, with however the configuration restriction that the
cylinder is perpendicularly illuminated by the Gaussian beam. Nevertheless,
the validity of the elliptical cylinder localized approximation for arbitrary
shaped beams in GLMT for elliptical cylinders has been demonstrated too
[236]. The structure of GLMT for elliptical infinite cylinders is discussed by
Gouesbet et al [237]. Rather than insisting on technicalities, this cited article
provided a guide allowing one to gain a bird’s eye view over the structure of
the theory. As a by-product, the structure of the GLMT for circular cylin-
ders is revisited. In particular, for circular cylinders, it was not immediately
recognized that the use of distributions was compulsory in the most general
case so that the historical development of the GLMT for circular cylinders
did not evolve as easily as for elliptical cylinders. It was therefore useful to
provide also a renewed bird’s eye view of the story of the GLMT for circular
cylinders. An introduction to the use of distributions for light scattering in
elliptical cylinder coordinates is provided by Gouesbet et al [238], and a list
of errata is provided by Gouesbet and Mées [239].

The GLMT for elliptical cylinders should have many applications. For in-
stance, it could allow one to study the sensitivity of some measurement tech-
niques, or of some phenomena, with respect to the deformation of a circular
cylinder, or to investigate rainbow and morphology-dependent resonances in
an elliptical cylinder within the framework of a rigorous electromagnetic ap-
proach. As a matter of fact, it could be relevant to the issue of rainbow scat-
tering by a cylinder with an elliptical cross section, if not of a nearly elliptical
cross section [240)], or to the study of caustics [2I8]. Also, an investigation
of the torque exerted on dielectric elliptical cylinders by highly focused laser
beams has been performed by means of a diffraction theory [241]. Such a
study could be revisited in a GLMT-framework, with the condition that this
GLMT (for elliptical cylinders) should have to be extended to become able
to deal with mechanical effects of light (which is not the case at the present
time).

Applications of the GLMT for elliptical cylinders require efficient computer
programs. Such programs do exist and numerical results have been obtained,
but they have not been released in the archival literature, waiting for in-
dependent confirmations. Therefore, although the situation for the present
GLMT is satisfactory from the theoretical point of view, it is fair to say that
the state of the art concerning the GLMT for elliptical cylinders is severely
under-developed.

Sphere with an eccentrically located spherical inclusion

Another GLMT is the one concerning the case of a sphere with an eccentri-
cally located spherical inclusion, which has been published in [I2§]. Its study
would provide a step towards the study of a class of non-homogeneous parti-
cles but the associated configuration also presents a particular fundamental
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interest because, to the electromagnetic problem which received a rigorous
GLMT-solution, may be associated a Hamiltonian mechanical problem, in
terms of trajectories, which is not integrable, as already discussed in a re-
view article, in 2000 [92]. This non-integrability generates Hamiltonian chaos
(in terms of trajectories) or equivalently optical chaos (in terms of rays).
The sphere with an eccentrically located spherical inclusion then represents
a particularly interesting topic for one of the authors of the book who de-
voted much time to the study of dissipative chaos, both experimentally and
theoretically [242], [243]. For a recent numerical implementation concerning
far-field scattering, see Han et al [244].

The 2D-Hamiltonian-optical configuration associated with the 3D-
electromagnetic problem is known under the name of ”annular billiard”, ex-
tensively studied by Gouesbet et al [245], [246], [247]. An interesting feature
of the annular billiard is that the terminologies "morphology-dependent res-
onances” and ”whispering-gallery modes” cannot any more be considered as
equivalent : there are morphology-dependent resonances which are no more
whispering-gallery modes.

The annular billiard may also be investigated for its own interest or due to
its connection with various other topics. Hentschel and Richter [248] used the
annular billiard as a way to study quantum chaos in optical systems, a topic
which may be of interest for future optical communication devices, or for the
construction of microlasers with designed properties. They evidence that the
simple ray picture provides a good qualitative description of certain system
classes, but that only the wave description reveals the quantitative details.
Or, in other words, they made computations showing the predictive power
of the simple ray model when only the qualitative character of resonances is
of interest. However, it proves to be essential to consult wave methods when
one is interested in details. It has been argued (private communications)
that the chaotic phenomena exhibited by the annular billiard are artefacts
produced by the involved trajectory/ray approximation, and that nothing of
that sort would appear in the complete electromagnetic problem. This is to
be strongly disagreed, as certainly supported by the results of Hentschel and
Richter showing that the trajectory/ray approach provides a kind of skeleton,
to which flesh is attached by the wave approach.

The annular billiard is also discussed by Egydio de Carvalho et al [249]
under two different situations (i) static boundaries and (ii) periodic time-
dependent boundaries. In the second case, particles may exhibit a phe-
nomenon called Fermi acceleration, associated with an unlimited energy
growth. Chattaraj et al [250], [251] were also concerned with quantum chaos.
However, they discussed the topic in the framework of what is called the quan-
tum theory of motion, as developed by Louis de Broglie and David Bohm.
In this theory, or better said in this interpretation, of quantum mechanics,
there exists an underlying level of deterministic pseudo-classical trajectories.
Determinism in quantum mechanics is then restored, the price to be paid



86 IIT Generalized Lorenz-Mie Theory in the Strict Sense, and Other GLMTs

being the existence of hidden variables. A rather extensive discussion of hid-
den variables theories in quantum mechanics is available from Gouesbet [252].

Assemblies of spheres and aggregates

The case of assemblies of spheres and aggregates is connected, as in the pre-
vious case, with chaotic phenomena, more specifically with what is called
irregular or chaotic scattering, as summarized by Gouesbet and Gréhan [92].
The associated GLMT has been published by Gouesbet and Gréhan [129]
but has not yet been implemented in its general form. It is again the case
of a severely under-developed GLMT. Nevertheless, the case of electromag-
netic field for a beam incident on two adjacent spherical particles is discussed
by Barton et al [253]. A discussion of on-axis cluster spheres, rather unin-
teresting from the point of view of chaotic scattering, but relevant to the
electromagnetic topic, is discussed by Bai et al [254], [255]. Also, Lecler et
al [256] considered light scattering by a bisphere (a pair of spherical par-
ticles) in the far field. The basic algorithm relies on the generalization of
the Lorenz-Mie theory to an aggregate of spheres. The method of separa-
tion of variables is used, in conjunction with translational addition theorems
for spherical vector wave functions. In both cases (the host sphere with an
eccentrically located spherical inclusion, and the assemblies of spheres and ag-
gregates), the trajectory/ray approximations provide chaotic features which
should form skeletons for more complex chaotic electromagnetic phenomena,
worth to be examined.

Also, Xu and Gustafson [257], [258] compared light scattering calculations
(by using a rigorous solution, and the discrete-dipole approximation, DDA)
and experimental results, for two-spheres aggregates. It is found that the
DDA solution, under certain circumstances, deviates significantly from the
rigorous solution and from experimental results. Khlebtsov et al [259] dealt
with clusters of colloidal gold and silver particles formed during slow and
fast aggregation and, for calculating the optical properties of aggregates, also
used a coupled dipole method (CDM or DDA) as well as an exact method of
multipole expansion.

Spheroids

We now deal with the GLMT for spheroids initiated by Barton [260], a case
when the Bromwich method cannot be applied because the necessary condi-
tions for scale factors are not satisfied. Later on, Barton also dealt with the
case of a layered spheroid with arbitrary illumination [261]. The GLMT for
spheroids has also been vigorously developed by Chinese people (and collab-
orators) originating from Xidian and Shanghai universities.

Regarding Xidian university, the expansion coefficients of a spheroidal par-
ticle illuminated by a Gaussian beam are discussed by Han and Wu [262] who
also dealt with the scattering of a spheroidal particle illuminated by a Gaus-
sian beam [263]. An important focus concerned the evaluation of spheroidal
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beam shape coefficients for on-axis Gaussian beams. It is found that they can
be expressed in terms of the spherical beam shape coefficients. An emphasis
on the far field case is available from Han et al [264]. In this article, the size of
the spheroid is large enough (up to 40 pm, size parameter equal to about 200)
to be of practical interest for various applications. The article also provides
a discussion on the sensitivity of the rainbow to the particle shape and the
validity of a formula, named the Mobius formula, is examined. Absorption
and scattering by an oblate particle is discussed by Han and Wu [265]. A
subsequent study by Han et al [266] is devoted to the description of off-axis
arbitrary shaped beam in spheroidal coordinates. In this general off-axis case,
spheroidal beam shape coefficients are expressed in terms of spherical beam
shape coefficients. Numerical results are provided for Gaussian beam scatter-
ing properties, such as angular distributions of the intensity for various radii
of the illuminating beam, locations of the beam focal point, eccentricities and
complex refractive indices. Computations of scattered fields can be achieved
for large size parameters, exceeding 700. Thereafter, the case of ultra-short
pulse illumination is discussed by Han et al [267]. Time-dependent scatter-
ing intensities are presented as intensities versus time, at different scattering
angles, and results are compared with the case of a perfect sphere with the
aspect ratio as the main parameter. Zhang and Han presented a GLMT for
the scattering by a confocal multilayered spheroidal particle illuminated by
an axial Gaussian beam [268]. Resonant spectra of a deformed spherical mi-
crocavity (under plane wave illumination however) are discussed by Han et
al [269]. The scattering of shaped beam by an arbitrarily oriented spheroid
having layers with non-confocal boundaries is discussed by Han et al [270].

Leaving Xidian, we now fly to Shanghai. On-axis Gaussian beam scat-
tering, in a geometrical optics approximation, for spherical and spheroidal
particles, is examined by Xu et al [271], [272], something which does not
yet provide a GLMT. A genuine GLMT for spheroids, devoted to the case
of an arbitrarily oriented, and located spheroid, illuminated by an arbitrary
shaped beam, is however thereafter available from Xu et al [273], following
a previous discussion of the expansions with beam shape coefficients for this
problem [274]. As for Han et al [266], spheroidal beam shape coefficients
are expressed versus spherical beam shape coefficients. Expressions are also
given for the extinction and scattering cross sections. Special cases (plane
wave scattering by a spheroid, and shaped beam scattering by a sphere) can
be recovered from the general case, as they should. Numerous numerical re-
sults are displayed, including scattering by laser sheets. In a fully completed
GLMT, mechanical effects have to be studied. Accordingly, theoretical pre-
dictions of radiation pressure forces exerted on a spheroid by an arbitrary
shaped beam are carried out by Xu et al [275]. One application concerns the
behavior of an optical stretcher used for red blood cell deformation. An ana-
lytical solution for the radiation torque exerted on a spheroid, accompanied
by many numerical results and physical discussions, are furthermore available
from Xu et al [270].
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Miscellaneous shapes

We now consider other interesting scatterer shapes and configurations (al-
though they are not all of them GLMT-izable). Barton considered electro-
magnetic field calculations for irregularly shaped, axisymmetric layered par-
ticles with focused illumination [277]. Kushta et al [278] dealt with extinction
and scattering of a guided beam in a hollow dielectric waveguide or, in other
words, with mode scattering by a spherical object that is placed inside a circu-
lar dielectric waveguide. The solution to the theoretical problem relies on the
fact that each sub-system (the spherical inclusion, and the circular dielectric
waveguide) can be treated using the method of separation of variables (they
would correspond to the GLMT stricto sensu and to a GLMT for cylinders
respectively). Neukammer et al [279] reported on 2D angular-resolved light
scattering of various kinds of single blood cells, namely sphered red blood
cells (erythrocytes), native erythrocytes elongated by hydrodynamic forces,
and on white blood cells (lymphocytes), and also of oriented agglomerates
consisting of two identical polystyrene microspheres. A theoretical approach
used to deal with these particles was the discrete dipole approximation, but
the generalized Lorenz-Mie theory has been used too to evaluate some ma-
trix elements and some differential cross sections. Linear chains of as many
as six identical polystyrene spheres in water were also considered. Kant [280]
dealt with a generalized Lorenz-Mie theory for focused radiation interact-
ing with finite solids of revolution, more specifically with spherical and finite
cylindrical homogeneous particles. Thin, long cylinders may be approximated
by prolate spheroids. Wang et al [281] dealt with the electromagnetic scat-
tering from two parallel 2D targets arbitrarily located in a Gaussian beam,
producing an approximate solution employing the reciprocity theorem and
an equivalence principle. An application is done for the case of two parallel
adjacent plasma-coated conducting cylinders. The same topic is considered
again in an extended way by Wang et al [282]. Electromagnetic scattering
of plane wave and Gaussian beams by parallel cylinders are discussed by
Wang et al [283]. Guo et al [284] also used the reciprocity theorem and an
equivalence principle to deal with electromagnetic scattering from two adja-
cent spherical objects. Clusters of spheres with a point source which can be
located anywhere are examined by Moneda and Chrissoulidis [285]. The angu-
lar distribution of non-linear optical emission from spheroidal microparticles
is discussed by Kasparian et al [286]. They used a geometrical optics tech-
nique but it is worth noting that GLMT (in the present case for spheroids)
allows one to evaluate internal fields viewed as excitation fields, for instance
to initiate fluorescence or other phenomena.
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Gaussian Beams and Other Beams

The GLMT-framework previously introduced concerns arbitrary shaped
beams. In practice however, one is often concerned with well defined spe-
cial kinds of beams and, when the nature of the beam is known, much more
can be said about GLMT. In this chapter, we discuss the special case of
Gaussian beams, with a complement providing more information on Gaus-
sian beams and discussing other beams as well. Gaussian beams (laser beams
in their fundamental mode TEMqg) are widely employed in the field of op-
tical particle sizing, corresponding to our original motivation in developing
the GLMT ([51], [52], [53], [54] for gaining a fairly complete background).
Examples of applications of GLMT to the technique of phase-Doppler for
simultaneous measurements of sizes and velocities of particles in flows may
be found in [287], [288], [289], [290], among others. Another kind of special
beams which is becoming more and more important for optical particle sizing
is laser sheets also called cylindrical waves (see for instance [291], [292], [293],
[294], [295]). It is of interest to remark that the description of a Gaussian
beam is a limit case of the description of a cylindrical wave. See also discus-
sions of top-hat beams in [296], [297]. Laser sheets and top-hat beams will be
more extensively discussed in the complement. For phase-Doppler techniques,
see chapter VIII.

Once the kind of beam to study is defined, the central problem to solve
concerns the mathematical description of the beam, in particular, in the case
of the GLMT stricto sensu, the knowledge of expressions for the field compo-
nents F, and H, which are required to compute the BSCs. Several descrip-
tions of Gaussian beams which are not necessarily equivalent are available
from the literature. The GLMT-framework is obviously not dependent on any
particular choice but result accuracy may be. We would like to possess a de-
scription which does not produce any singularity, contrary to what happens
in Kim and Lee [69], and also which would provide a systematic procedure to
possibly make the description arbitrarily close to perfection. The best candi-
date we found is Davis formulation [75] which is therefore now going to be
discussed. The special case of arbitrary location of the scatterer in Gaussian
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beams described according to Davis formulation has been discussed in Goues-
bet et al ([298] and [2]), among others.

IV.1 Gaussian Beam Description

IV.1.1 The Solving Paradox

We consider a Gaussian beam propagating in a linear, isotropic, non absorb-
ing medium defined by real permittivity € and permeability p. The discussion
is carried out by referring to Fig. IV.1 which isolates a part of Fig. III.1.

.“.W

A Vw

Vy
Fig. IV.1. The geometry

Ogw is the beam axis, with O¢ located at the beam waist center. The beam
propagates towards positive w and the electric field component is essentially
vibrating in the plane (uOgw). The exact meaning of the word ”essentially”
will be clarified later. Let us however straight away state that it means that
the electric field is exactly polarized along the direction u at the beam waist
center (see Rels (IV.24)-(IV.25)).
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Fig. IV.2. The geometrical meaning of wo and I.

To describe a Gaussian beam, the simplest model we may imagine is to
consider a linearly polarized plane wave propagating along w towards positive
w and to introduce a spatial dependence of the field components. For instance,
the electric field components for the plane wave (E,,0,0), in which E, is a
constant, then become (E, (u, v, w),0,0) in which F, is now space dependent.
Maxwell’s equation (I1.59) then implies:

oE,

o =0 (IV.1)

which is not compatible with electric field components of the form -
(Ey(u,v,w),0,0). Because E, should not depend on u, it cannot characterize
a Gaussian beam.

Furthermore, for a plane wave with electric field components (E, =
¢st,0,0), magnetic field components should write (0, H, = c¢st,0) which
would be extended for a Gaussian beam to (0, H, (u, v, w), 0). Maxwell’s equa-
tion (I1.57) then implies:

oH,
v

which similarly again shows that our simple model is basically flawed.

Lax et al [299] remarked that such facts are the source of a paradox,
known as the solving paradox. This paradox arises when, studying Gaussian
beams, people assume electric field components of the form (F,,0,0), who

=0 (IV.2)
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then forget that Rel (IV.1) must be satisfied and, nevertheless, at the end of
the work succeed in obtaining a F,-Gaussian wave solution both in u and v
at the lowest order, in strong contradiction with Maxwell’s equations.

We shall then have to develop a different approach which leads to some-
what unavoidable ironical result. Namely, a Gaussian beam, stricto sensu, i.e.,
exhibiting exact Gaussian profiles for F, and H, is not Maxwellian, i.e., does
not exactly satisfy Maxwell’s equations. Conversely, if we want our Gaussian
beam to be Maxwellian, it will not exhibit perfect Gaussian profiles, i.e., a
Gaussian beam (in one sense) is not Gaussian (in another sense). See figures
in [79] exemplifying this statement.

I1V.1.2 FElementary Description

The paradox is solved by Lax et al [299] who examined a paraxial approx-
imation and provided a perturbation procedure to systematically introduce
higher order corrections.

Solutions of Maxwell’s equations describing Gaussian beams are then ex-
pressed using expansions over successive powers of a small dimensionless pa-
rameter s defined by:

S:U/O/lzl/(kwo):]./bo (IV3)

in which wg is the waist radius at amplitude equal to (1/e), [ is known as
the diffraction length, and k is the wave-number. By definition, the waist is
the plane (uOgv), i.e., the plane at which the width of the laser beam is
the smallest. The waist radius wq is, therefore, a characteristic length scale
defining the radial extension of the beam. Before and after the waist, the beam
converges and diverges, respectively. The rate of convergence (divergence)
is measured by the diffraction length [ which, therefore, is also called the
divergence length or the spreading length. It is equal to twice the distance
from the waist plane along the propagating axis Ogw at which the beam
expands by a factor v/2 (Fig. IV.2). The diffraction length [ is, therefore, a
characteristic length scale defining the beam in the longitudinal direction.
Radial and longitudinal length scales are related by (see Rel IV.3):

I = kw} (IV.4)

and, therefore, are not independent. When wqg decreases, i.e., the more the
beam is efficiently focused at the waist, the more the spreading length de-
creases, meaning that the beam (converges) diverges more strongly.
Because the dimensionless parameter s appears as the ratio of two charac-
teristic length scales defining the overall aspect of the beam, it is suggested
to name it the beam aspect ratio or the beam shape factor. It has also been
given the name of beam confinement factor and, furthermore, the word factor
is sometimes replaced by the word parameter. For a plane wave (wy — 00),
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the beam shape factor is 0, and it is therefore no surprise that plane waves
may be exactly described without using any s-expansions. Because a Gaus-
sian beam is much longer than large, i.e., it slowly converges (or diverges),
the beam shape factor is different from 0 but still exhibits small values. A
typical figure is s ~ 1072 for A = 0.5 um and wg = 50um. Even for
wo = 10 pm, that is in practice a very focused beam, s is about 10~2. The
theoretical largest bound is for wy &= A, i.e. s = 1/(27) ~ 0.16. It may be con-
venient to round this value to 0.25. For discussions concerning the behaviour
of Gaussian beams which approach this limit, see [79], [80].

The inverse of s, i.e., b, (Rel IV.3) is equal to 2 mwy/A. By analogy with
the size parameter « = wd/\, by can be named the beam waist parameter.

IV.1.3 Hzistorical

Following [299], expansions of solutions in terms of successive powers of s
lead to arbitrarily refined descriptions of the beam. Because s is small, only
a few terms are sufficient in practice in most situations. In the lowest-order,
the structure of the field corresponds to electric field components of the form
(Ew,0,0) in which E, is not a constant. Field components then do not satisfy
Maxwell’s equations but only comply with their paraxial approximation. The
next approximation of the field solutions is obtained by adding some compo-
nents F,, and H,,. Maxwell’s equations are still not satisfied but introduced
inconsistencies are small, if the beam shape factor is small.

Other studies on the same topic agreed with the general method proposed
by [299] in particular with the expressions of the paraxial approximation.
The beam can then be described by Gauss, Gauss-Hermite or Gauss-Laguerre
functions ([300], [301], [302], [303]). Because the description provided by Ko-
gelnik is very famous and widespread, later we have to discuss the relation
between Kogelnik formulation and the one used in this book (section IV.1.7).

After Lax et al [299], Davis [75] also presented a general procedure in
terms of s-expansions. Although formulations by Lax et al and by Davis are
equivalent, we shall rather favour Davis study because the introduction of a
transversely polarized vector potential allowed him to present the theory in
a simpler and more appealing way.

To mention later studies, Agrawal and Pattanayak [304] describe the elec-
tric field in terms of a plane wave spectrum and obtain the first-order cor-
rection to the Gaussian paraxial approximation, in agreement with Davis
results. The similar use of a plane wave spectrum in the case of laser sheets
is available from Ren et al [294]. Couture and Belanger [305] then show
that the whole set of corrections at all orders of the paraxial approximation
may be understood as representing a spherical wave from a complex point
source. However, Agrawal and Lax [306] emphasize the fact that introduced
boundary conditions are different in Agrawal and Pattanayak [304], where
corrections to the paraxial approximation are zero in the plane w = 0, and in
Couture and Belanger [305], where corrections are zero on the axis u = v = 0,
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leading to results which do not agree together. Finally a more recent arti-
cle by Takenaka and Fukumitsu [307] provides corrections at all orders for
Gauss-Hermite and Gauss-Laguerre paraxial approximations with the same
boundary conditions as in Agrawal and Pattanayak [304].

1V.1.4 Davis Formulation

This formulation has been explicitly used by the authors group for the first
time (in a GLMT-framework) in Gouesbet et al [308]. It, however, appears
that Gaussian beam descriptions we used in previous studies still pertain to
Davis framework.

The laser beam is described by a transversely polarized vector potential
A; (section 1.2.8) which is written similarly as for a plane wave:

A; = (A4,0,0) (IV.5)
in which the component A, reads as:
Ay =V (u,v,w) exp(—ikw) (IV.6)

in which the exp(iwt)-time dependent term is again omitted, as usual. ¥ (u,
v, w) is a slowly varying unknown function and must be determined. Such
a determination will involve spatial derivatives. However, both u and v scale
with the (small) radial characteristic length wo while conversely w scales
with the (large) longitudinal characteristic length I. Rescaled dimensionless
coordinates (&, 1, ¢) are therefore introduced according to:

(IV.7)

in such a way that rescaled spatial derivatives 0¥ /9¢, 0¥ /0n and 0¥ /0¢
now exhibit the same order of magnitude and are assumed to remain small
with respect to ¥ since ¥ is a slowly varying function.

Within Lorentz gauge, vector potential A, must satisfy the Helmholtz
equation (Rel (I.119)):

AA, + K2 A, =0 (IV.8)

which, by using (IV.6) and (IV.7), provides a partial derivative equation for
. 02 02 ov 0w

Uo— 2 2 =0 V.9

(852 + 3772> ZBC + s ac? ( )

The solution for ¥ is searched by a perturbation procedure in which ¥ is
expressed through a series expansion in terms of powers of s2:

Vo= + s + sty 4 (IV.10)
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Note that powers of s2, not powers of s, are involved in (IV.10), this being
a direct consequence of the structure of Rel (IV.9) which exhibits s°- and
s2-terms.

The lowest-order term ¥ represents the fundamental mode of a Gaussian
beam. Using Rel (IV.9), the reader may directly check that it is given by:

Ty = iQ exp(—iQh?) (IV.11)

in which: .
Q= Y (IV.12)
hY =& +7° (IV.13)

in which h4 is therefore the rescaled distance to the beam axis.

Once ¥y is known, Rel (IV.9) shows that higher order functions ¥s, (n
> 1), i.e., corrections to the fundamental mode, may be recursively deduced
from:

0? 02 0 0?

(352 + 8772 - 27:84)@2”-"-2 = _3C2 Yo, n>0 (IV14)

Therefore the fundamental mode ¥, completely determines the vector poten-
tial A; from which electric and magnetic fields are derived using Rels (1.121),
(L.110):

E; = —©(grad divA;); —i w A;

7 k 3 )i %

H; = (curlA;);/u (IV.15)

Rel (IV.15) has been written with the refractive index of vacuum (M=1)
because the fields inside the scatterer are written using the refractive index
of the scatter center relatively to the surrounding medium (see Rel (I1.103)
and section I11.5).

The field components are then found to be:

2
E,=F, [Wo + 52 (Wg + 88;0) + } exp(—ikw) (IV.16)
E, = FE |s* 0o st O + exp(—ikw) (IvV.17)
B LWy g (0% 0% ‘
E, = Ey { is o is ( o€ +Z8§8C> +} exp(—ikw)  (IV.18)

H, =0 (IV.19)

oY,

H, = H, {%H? (WngiaC

) + } exp(—ikw) (IV.20)
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oY, ov.
H, = Hy|—is 8770 —is® 3772 +...| exp(—ikw) (Iv.21)
Let us consider the special case of a plane wave for which s — 0. Then, Rels
(IV.16), (IV.20), and (1.107) show that we must have:

EO/HO = Eu, plane wave/Hv, plane wave = \/M/G (IV~22)

IV.1.5 The Order L of Approximation

Relations (IV.16)—(IV.21) offer the possibility of obtaining a Gaussian beam
description with arbitrary increasing accuracy. Since the beam shape factor s
is small, and even usually very small, it is in practice sufficient in most cases
to retain only a few terms in the expansions. In particular, neglecting all
terms with powers greater than 1, Rels (IV.16)—(IV.21) supplemented with
Rels (IV.11)—(IV.13) become:

E,=H,=0 (IV.23)

E, = Ey ¥y exp(—ikw) (IV.24)
By = fQ?UEu (IV.25)

H, = Hy ¥ exp(—ikw) (IV.26)
g, = 29y (IV.27)

l v
These relations define what we have called the order L of approximation
to the Gaussian beam description in which L stands for the lowest-order of
approximation (see also the alternative form of Rels (IV.32)—(IV.36)). Strictly
speaking, however, the order L is not the lowest-order but it does provide the
lowest-order which remains valid with the same relative degree of accuracy
in the whole space in a sense to be precised in section IV.1.8. Conversely, it
may still be useful to consider the case when the beam shape factor is not
small enough to allow the use of the lowest-order description. Discussions of
higher-order Gaussian beams are then available from Barton and Alexander
[309], Schaub et al, [310], Lock and Gouesbet [79], [80], Gouesbet et al [297],
Gouesbet [311].

IV.1.6 The Order L~ of Approximation

At the order L of approximation, the non-zero field components are the trans-
verse components F, and H, as for a plane wave, plus extra longitudinal
components E,, and H,. To determine whether the influence of the extra
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components is significant, we may consider the ratios of longitudinal and
transverse components reading as:

(Ew/Euan/Hv) =-2Qs (fa 77) (IVQS)

The modulus of @ depends only on ¢ (see IV.12), but is always smaller than 1
except at the waist plane (¢ = 0) where it is just equal to one. Furthermore s is
a small parameter. It follows that longitudinal components may be neglected
with respect to transverse ones as long as ¢ and n are not too high, i.e.,
in a domain of space around the beam axis. Even when the longitudinal
components may not be neglected relatively to transverse components, they
may, however, become absolutely neglected due to the exponential decrease
involved in the fundamental function ¥, i.e., the amount of incident energy
associated with both transverse and longitudinal components tend to vanish
very fast when we depart from the beam axis.

Let us for instance consider the ratio |E,,/E,| for a point located in the
waist plane ¢ = 0 at which = 1/i. This ratio is then equal to 2s|¢|. The
relative significance of F,,, therefore, increases linearly with [¢| . With a
typical value s ~ 1073, the ratio, however, becomes equal to 1 % only for
|€] = 5, i.e., for planes cutting the u-axis at values of |u| equal to five times
the beam radius. However, in the considered waist plane, the ratio |E,/Ey|
simply reads as:

|Ew/Eo| = exp{—(&* +n°)} (IV.29)

which takes over its largest values exp (—¢2) for n = 0. This quantity is equal
to e72% ~ 107! in planes |¢| = 5 while the ratio |E,,/Ep| is then ~ 1073,
corresponding to very small fields which are not expected to significantly
affect scattering phenomena.

It is then concluded that an approximation lower than the lowest-order L,
designated by L~ (a fairly pejorative terminology indeed), in which longitu-
dinal field components are neglected, may be safely introduced. Therefore,
field components at order L~ read as:

E,=H,=E,=H,=0 (IV.30)
E, E ‘
<Hv) = (HZ) ¥y exp(—ikw) (IV.31)

In the framework of Davis formulation, the order L~ is obtained by neglecting
all terms with powers higher than 0, i.e. the small parameter s does not appear
any more at that order. This approximation has been used by [I] in which
the corresponding modelled laser beam was called an axisymmetric profile
beam. Such a name has been afterwards given up because it is confusing (but
see section VI.1).

Formulae at order L are clearly obtained from formulae at order L~
by adding extra-terms which are specific of the order L. To identify them
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precisely, we shall use a double-valued symbol €; which is equal to 0 or 1
depending on whether the beam is modelled at order L~ or L, respectively.
With this notation (particularly convenient in Fortran programs to deter-
mine the influence of the quality of the beam model), field components at
both orders may be rewritten as:

E,=H,=0 (IV.32)

E, = Ey ¥y exp(—ikw) (IV.33)
Jo—— 2?“ E. (IV.34)
H, = Hy ¥ exp(—ikw) (IV.35)
Hy=—e, 29 g (IV.36)

l v
IV.1.7 Kogelnik’s Model

In this subsection, the relationship between the celebrated Kogelnik’s formu-
lation ([300], [301], [302], [303]) and the Davis formulation is investigated.
Such a subsection is certainly compulsory due to the widespread use of Ko-
gelnik’s formulae. Our discussion focuses on the examination of electric field
components. A discussion of magnetic field components would be fully similar
and would not modify the conclusions of this subsection.

The expression for the E,-component is the same at both orders L and L~
(Rel (IV.33) in which the symbol ¢;, does not appear). We start by modifying
this expression, introducing the dimensional distance h to the beam axis, and
two special lengths W and R according to:

h? =u? + 0% = wi b3 (IV.37)
w2 1?2

W:w() (1+4<2)1/2 = Wy |:1+4k‘2w4:| (IV38)

0

1 k2w
R=w <1+442>w[1+ 4w2} (IV.39)

Then (i @) can be re-expressed from (IV.12), (IV.7) and (IV.4) as:
1 ik
. 2

iQ = wg {WQ + QR} (IV.40)
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Inserting these expressions into (IV.11) for ¥y, component E, (IV.33) be-
comes:

1 ik 1 ik )
B, = Ey w} {WQ + QR} erp [—hg <W2 + 2R>} exp(—ikw) (IV.41)
This expression shows that W is the beam radius (or spot-size parameter)
at longitudinal location w at amplitude 1/e. R is the radius of curvature of
the wavefront at location w. It is of interest to remark from (IV.38)—(IV.39)

that at the waist location (w = 0), we have W = wy and the wavefront is
plane (R — o0), agreeing with previous statements, in particular in section
(IV.1.2).

After some algebra, (IV.41) may be rewritten as:

E, w 1 )
=0 exp [—hQ <W2 + oR

Eo W k)} exp(id) exp(—ikw) (IV.42)

in which we introduced a phase term A given by:

1 2w

w A
A=tan"! , = tan

V.43
Tws kw? ( )

This agrees with classical Kogelnik’s expressions except for the fact that
the term (i A) in (IV.42) is written as (- ¢ A) in [303]. This is likely to
be a misprint. Furthermore, in Kogelnik’s study, Fy is explicitly assigned
the value (-ik). However, no value is assigned to Ej in Davis formulation
and, in any case, it actually disappears from the GLMT-formulation due to
the introduction of the normalizing condition (II1.106). The conclusion is,
therefore, that Kogelnik formulation is equivalent to the description of the
beam in Davis framework at order L~. The order L may then been afterwards
obtained by adding longitudinal components F,, and H,,.

IV.1.8 Inaccuracies at Orders L and L~

Maxwell’s equations can only be perfectly satisfied by the field components
in the limit of an infinite expansion of function ¥ in Rel (IV.10) when we
strictly work in the framework of Davis formulation (see [311], showing how
we may both rely on and escape from this formulation). Therefore, at orders
L and L™, inconsistencies are inevitably introduced in the theory because
Rels (IV.32)—(IV.36) do not satisfy Maxwell’s equations. It may then be of
interest to examine by a direct checking the amount of relative errors which
is anchored in the theory due to this fact. This problem has been discussed
by Gouesbet et al [308] in the framework of GLMT. Computations in this
reference are difficult, lengthy and very involved, and therefore not repro-
duced in this book. In this subsection, we shall serve a simpler version which
is sufficient to meet our purpose. The description of the beam is carried
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out in the beam coordinate system (Oguvw). The beam existing, however,
in Newtonian space independently of the chosen space parametrization, our
conclusions will still remain valid for any other parametrization, in partic-
ular, in the particle coordinate system (Opxyz). The discussion starts by
considering the order L of approximation (e;, = 1).

The first Maxwell’s equation (I1.56) for exp (iwt)-sinusoidal waves, i.e.:

(curlE;); = —i pw H; (IV.44)
reads as:
H, . aésw _ aaEv
Hy=|H, =— ~ |0 _ 3 (IV.45)
H LW 659}% . a%ﬁ
w ou v

From Rels (IV.33) and (IV.34), the first component H,, of H; is then found
to be:

1 0E,
H,=—. V.46
ipw Ov ( )
which becomes: Ey 2Qu 0%
H,= 0 T 0 ik V.47
o RO cap—it) (1v.47)
In terms of dimensionless quantities, (IV.47) is found to be:
H,= — 4 Hy s*> Q% n & Wy exp(—ikw) (IV.48)
while it should be zero according to Rel (IV.32), i.e. the error is:
€w = H, = — 4 Hys* Q% n & W exp(—ikw) (IV.49)

Similarly, from (IV.45), the second component H, is found to be:

H, = ,EO [ik% -
e,

oV 2Q 0% ‘
Sw " <WO +u 5 >} exp(—ikw) (IV.50)
instead of (IV.35). The error is:

By [0 | 2Q o, _
€y = i [aw + ; (y'/o +u o )} exp(—ikw) (IV.51)

which becomes, with dimensionless variables:
€o =2 Hy s> Q* W [— 28% + h3]exp(—ikw) (IV.52)
For the third component H,,, we find from (IV.45), (IV.32) and (IV.33):

2
_ Qv

H,=— """ H, (IV.53)
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which is identical to (IV.36), leading to an error:
€w=0 (IV.54)

In summary, the error implied using the order L of approximation is zero for
the third component of (IV.45). For the second component, it is €, ~ O(s?).
Using the expression (IV.35) for H,, it is possible to define a relative error:

€y

0y =
H,

=2s% Q% (262 — h3) (IV.55)

which is also O(s?). For ¢,, we again find O(s?). It is, however, not possible
to define a relative error §, = ¢€,/H, because H, = 0 according to Rel
(IV.32). Nevertheless, using the leading component H,, we may consider:

€y

6y = H = 452Q%n¢ (IV.56)

which is again O(s?). As a whole, the most significant relative errors are,
therefore, O(s?). Similar conclusions are obtained when discussing the three
other Maxwell’s equations (I1.57)—(1.59). Working out details is left as an
exercise to the reader. It is found that Rel (I1.58) is similarly satisfied with
maximal relative errors which are O(s?). For Rels (1.57) and (1.59) involving
divergences, absolute errors are O(s?®), that is to say they are still smaller.
Relative errors may be defined with respect to H, and E, respectively. They
are also found to be O(s?).

In the limit s — 0, it is, therefore, directly checked that field components
satisfy all Maxwell’s equations at order L (actually also at all higher orders).
In the theoretical limit s ~ 0.25 (section IV.1.2), s? is ~ 5.1072. Therefore,
the order L of approximation provides a very good description of the incident
beam with uniform relative errors in the whole space which are at worst
O(s?). With a typical value s ~ 1073, relative errors concerning divergence
terms even go down to ~ 10~?. These remarks justify that we are content
in the most of this book to insist on the GLMT for Gaussian beams at
the order L of approximation (and at the order L~ as a special case of the
order L). Let us remark however that, when we depart from the beam waist
center location, errors grow due to the existence of prefactors depending
on rescaled coordinates. It is also recalled that, by adding further terms to
Davis expansions, the description may be arbitrarily refined. We, however,
insist again on the fact that this would not modify the GLMT-framework.

For more information concerning inaccuracies at order L, the reader could
refer to Gouesbet et al [308 in which the discussion relies on a somewhat
different principle. More specifically, Gouesbet et al [308] consider the special
case when the beam and the particle coordinate systems coincide (O, =
O¢). There is no loss of generality in choosing such a special case to discuss
inaccuracies but there is a formal interest because the GLMT-formulation
then dramatically simplifies (see chapter VI). Contrary to what has been
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done in this subsection, errors involved in the theory were also discussed by
examining field components E,., Eg, E,, H,, Hg, H, in a spherical coordinate
system. For each field component ¢;, a comparison was carried out between a
value ¢} obtained from projections using the original set (IV.32)—(IV.36) and
another one ¢? obtained in the GLMT-framework from BSPs. Because the set
(IV.32)—(IV.36) does not perfectly satisfy Maxwell’s equations, it is expected
that, in general, ¢} # ¢7. For radial components E, and H, however, the
errors are found to be exactly zero. This is a direct consequence of the fact
that these field components play a special role in the GLMT because they
are the only ones to be used to evaluate the BSCs (section II1.3). For #- and
-components, relative errors are again found to be O(s?) uniformly in space,
confirming that introduced inconsistencies have no practical significance in
most cases.

The case of order L~ is also discussed in [308]. The conclusion is that
the order L™ is also very good. This fact is emphasized in our discussion of
section (IV.1.6). As done above at order L, it may also be examined as to
how Maxwell’s equations behave with respect to the order L. This is left as
another exercise to the reader. For Maxwell’s equations involving divergences,
it is found that relative errors are O(s) instead of O(s?) at order L. For the
two other Maxwell’s equations, the worst relative errors are also found to be
O(s) instead of O(s?) at order L. As numerical computations will later show
differences between orders L and L~ are usually not significant. Even when
the order L provides a refinement, this confirms that working with higher
orders than L is very often (but not always) unnecessary. For higher order
descriptions of Gaussian beams, see again, however, the previously quoted
references, and section IV.4.

IV.2 GLMT at Orders L and L~

IV.2.1 Radzial Field Components E, and H,

To specify the GLMT to the case of Gaussian beams at orders L and L,
it is only needed to specify the values of the BSCs g;'r), and gp'rp for
this case. This in turn only requires to know the expressions for the radial
field components E, and H, (Rels (III.14), (II1.17), (II1.21), (II1.22)) which
must, however, be expressed in a spherical coordinate system attached to the
particle Cartesian coordinate system (Opzyz). The aim of this subsection is
to derive the required expressions for E, and H,.

Starting from Cartesian field components (IV.32)—(IV.36) in the Cartesian
coordinate system (Oguvw) attached to the beam, Cartesian field compo-
nents in the particle system (Opxyz) are found to be:
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E,=H,=0 (IV.57)

E, = Ey ¥y exp|—ik(z — 2p)] (IV.58)
B. = —e1 QZQ (x — 20) Ea (IV.59)
H, = Hy ¥ exp[—ik(z — 2p)] (IV.60)
H, = —eL 29 (y —yo)H, (IV.61)

l
in which ¥y is again given by Rel (IV.11), but now:

1

1 = alle =20+ (= )’ (1v.62)
= ! V.63
- )

(= j,Co = Zlo (IV.64)

The relations between Cartesian and spherical components of the electric and
magnetic fields read as:

E,. = E, cosp sinf + E, cosf (IV.65)
Ey = E, cosy cosl — E, sind (IV.66)
E,=—FE, siny (IV.67)

H, = H, sing sind + H, cos (IV.68)
Hy = Hy sing cost — H, sin (IV.69)
H, = Hycosyp (IV.70)

leading to:

E, = Ey¥, [cosgo sind <1 —€r, QZQTCOSG) + €r, QZQ o 0059} exp(K)
(IV.71)
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2 2
Ey = Eyy [cosg@ (0059 + €L lQ r sin29> —€r ZQ T sin@} exp(K)
(IV.72)

E, = —Ey ¥y sing exp(K) (IV.73)

2 2
H, = Hy¥, [simp sinb (1 — €, ZQ T cosH) +e€r, ZQ Y0 cosﬁ} exp(K)
(IV.74)

Hy = HoW, {simp (0050 + € 2?7"51’7120) —€r, 2leosin0} exp(K)

(IV.75)
H, = Hy ¥ cosp exp(K) (IV.76)

in which:
K = —ik(rcosf — zp) (Iv.77)

The E, and H, expressions (IV.71) and (IV.74) could then be inserted in
Rels (I11.14), (I11.17), (I11.21), and (I11.22). However, it is in practice useful
to elaborate a bit more on Rels (IV.71), (IV.74), in particular because variable
 may be easily isolated, and, therefore, ¢-integrations may be readily carried
out analytically.

In Rels (IV.71), (IV.74), variable ¢ explicitly appears in cosy and sing,
but it is also involved in function ¥y which may be rewritten as:

Wy = V¢ (IV.78)
‘ _r?sin?0 X3+ yR
70 = iQexp(—iQ °, exp(—iQ " ° ,7?) (IV.79)
wh w§
o 2Q . .
vy = exp| 2 rsinf(zocose + yosing)] (IV.80)

0

in which % does not depend on ¢. The ¢-dependent term ¥{ is then modi-
fied by replacing the functions sin and cos by exponentials of imaginary ar-
guments, expanding the resulting exponentials, and finally expanding again
terms of the form (a + b)? to directly obtain a Fourier expansion:

Jjp

o =Y Weapliv(j — 2p)] (Iv.81)
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with the notations:

J

d = i XJ: (IV.82)

7=0 p=0
; ; J — )P i \P
v, — (ers;nG) (zo zyO.) (zo + iyo) (1V.83)
Wy U —p)'p

In Gouesbet et al [298], another procedure was used to expand ¥, leading to
the appearance of quadruple summations Zj P instead of double summations
S>>’ in (IV.81). Both formulations are actually equivalent but the one in
Gouesbet et al [298] is more complicated than necessary. As a matter of fact,
the reader may also consult [298] to find a pedagogic method for expressing
BSPs Uk, and Uk . This method has not been repeated in this book.

From Rels (IV.71), (IV.74), and (IV.78)—(IV.83), the radial components
E, and H, may be rewritten as:

F Jp

E, =E, Z Tipexp(ij+e) + Z Tipeap(ij— o))+ EoroG Y Wipexp(ijop)
(IV.84)
F Jp jp

H, = Ho 9% [Z Tipexp(ijtp) Z Wjpexp(ij- 4?)]+HOZUOGZ Uipeap(ijop)
(IV.85)

in which: 5
F=Wsinf(1 — e, lQrcosﬁ)exp(K) (IV.86)

2

G=e ¥ chosHexp(K) (IvV.87)
Jy=J+1-2p=jo+1 (IV.88)
J-=j—1=2p=jo—1 (IV.89)

I1V.2.2 Beam Shape Coefficients
Gaussian Beam Shape Coefficients

Insertion of (IV.84) and (IV.85) into double quadrature expressions (I11.14)
and (IT1.21), and integration over @, simplify the expressions of the BSCs to
single quadratures over 6 according to:
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1 2n+1) (n—|m|)! a

nTM = Iv.
In,TM B 2n(n + 1) (n + |ml|)! M'/T(Ll)(k‘a) (IV.90)
T)F(r=a L iv
/ ( 9 ) S Wpr=a)+ Y T(r=a)| +
0 Jy=m j_=m
oG (r = a) Z @, (r = a) p P™(cosf)sinddf
jo=m
m 1 2n+1) (n—|m|)! a
Inre = ( ) (= |ml) (IV.91)

A 2n(n+ 1) (4 m])! g (ka)

g zFrfa i
/0 Z%pr—a Zu'/jp(r:a) +

jy=m jo=m

YoG(r Z @, (r = a) p Pi™l(cosh)sinddf

Jo=m

Similarly, BSCs may be evaluated by double quadratures over § and r by in-
serting (IV.84) and (IV.85) into triple quadrature expressions (II1.17), (I11.22)
and integrating over (:

1 (2n+1)% (n—|m])! / / Ly
m @. >,
In,TM = B rn(n + (n+ |m])! 2 j+ ip + i_=m in)

Jjp
+x0G = wj,,} oV (kr) Pl (cosh) sinf df d(kr) — (IV.92)
Jo=m

1 2n+1)2 (n—|m|)! / / p ir
" ; N7
In,TE = cpw 7T’n,(’l’7, + n + |m| - m ip + j_=m JP)
v
-l-yoGjO E m%p r@ (Y (kr) P (cosh) sind db d(kr) (IV.93)

In the whole set (IV.90)—(IV.93), the symbol > 7" designates sum > 7" re-
stricted to condition ¢. Such double summations Y ?” may be reduced to
single summations (see chapter V).

In Gouesbet and Gréhan [I] devoted to a special case, special BSCs g,
were introduced (with only one subscript, see chapter VI). These coefficients
were expressed in terms of a matrix K, (Rel (34), in [I]) which, in the limit
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of the classical Lorenz-Mie theory, identifies with the Kronecker matrix d,.,.
Such a smart correspondence between GLMT and LMT is also likely to exist
for the BSCs g)*. After having read chapter VI, the interested reader might
try to design it. We never did.

Remodelling of Gaussian beams

At both orders L and L~, Gaussian beams may be described by the set
(IV.57)—(IV.61) in Cartesian coordinates or by the set (IV.71)-(IV.76) in
spherical coordinates. As we know (section IV.1.8), these sets of field com-
ponents do not satisfy Maxwell’s equations.

BSCs may afterward be evaluated, producing non-constant contributions
due to the inaccuracy of the original description. The origin of these non-
constant artefacts being well understood, they may safely be dismissed to
generate BSCs which are constants, as they should. Then, once these constant
BSCs and therefore the BSPs U, and Ul are determined, the GLMT-
framework provides a new set of field components in spherical coordinates by
adding TM- and TE-contributions ([see Rels (I11.39)—(II1.50)]) from which we
may readily also derive a new set of field components in Cartesian coordinates.
The beams so generated are shaped beams in their own right, however now
exactly satisfying Maxwell’s equations. Therefore, they are not equivalent to
the original ones. Because they satisfy Maxwell’s equations while the original
fields do not, it is possible to claim that the GLMT framework produces a
remodelling (or reshaping) of the beam description. See Lock and Gouesbet
[79], Gouesbet and Lock [80] and Gouesbet et al [297] for more details on
this issue.

Symmetries

Relying on the remodelled description of the beam, we now discuss some
symmetries which appear in the GLMT for Gaussian beams. We consider
two particle locations, symmetrical with respect to the beam axis (Fig. ITI.1).
These two locations are connected by the following change in the (zg, yo, 20)-
values:

(0, Y0, 20) o (=20, —Yo, 20) (IV.94)
From (IV.83), we find:

WJ‘ (*xm *yo,Zo) = (*ijjp(fmymzo) (IV~95)

From (IV.92) and (IV.93), accounting for (IV.95), we then establish:

(%TM) (=20, =y, 20) = (—1)™" (%TM) (20.50,20)  (IV.96)
In,TE In,TE
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From (IV.96) and the expressions for the various cross sections established
in section III, we finally show that:

Csca Csea
Cel‘ exr
C bt (_x07 —Y0,20) = C bt (l‘o,yo,Zo) (IV.97)
Cpr,z Cpr,z
but:
C T, T C, T
(&) comomm == (G ) woma avan

An extensive discussion of symmetry properties in GLMT is available from
Ren et ol [312].

IV.3 Numerical Computations of Beam Shape
Coefficients by Using Quadratures

To avoid to the GLMT of remaining an object of pure spiritual contemplation,
computer programs are also provided in this book. Numerical computations
of BSCs using quadratures are considered. Although the computer programs
are specified for Gaussian beams, at orders L and L™, they are actually
written to easily handle arbitrary beams by modifying a subroutine devoted
to the evaluation of quadrature kernels, and could, therefore, have been also
included in chapter IIT (Nobody’s perfect !).

We provide routines to evaluate the BSCs gy, or g,'rp using triple
quadratures of Rel (III.17) or Rel (II1.22). They may be used for arbitrary
beams once the expressions for the radial electric or magnetic components E,.
or H, are known. The expressions for E, or H, are written in the function
FUNC. It is here specified for the case of Gaussian beams, but it is a child
game to change it to any other case.

We recall that quadrature techniques (F1- and F2- formulations) are dis-
cussed by Gouesbet et al [134].

IV.4 Other Beams

In the bulk of this chapter, we provided details on the orders L and L~ of
approximations to the description of Gaussian beams, and also alluded to
other descriptions and to other beams. In this complement, we provide more
information concerning other beams, including higher-order Gaussian beams.
This issue pertains to the problem concerning the description of illuminating
beams. However, there are actually two issues to be considered concerning
the beam description (i) the coordinate system in which the beam is de-
scribed, associated with the kind of scatterer under study and (ii) the kind
of beam illuminating the scatterer, independently of the kind of scatterer.
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In this complement, we rather focus on the second issue, but both issues are
actually strongly coupled together. For instance, a Gaussian beam (indepen-
dently of the scatterer) may have to be described in spherical, cylindrical or
spheroidal... coordinates (depending on the scatterer).

Higher-order Gaussian beams

The order L of approximation is explicitly described by Davis [75] and is
now called a first-order description. Explicit higher-order descriptions (third-
and fifth-order descriptions), in the framework of the Davis scheme, have
afterwards been explicitly developed by Barton and Alexander [309]. These
higher-order beams have been used by Lock and Gouesbet [79] to provide a
rigorous justification of the localized approximation to the beam shape coef-
ficients, in the case of on-axis Gaussian beams. A way to assess the accuracy
of the various description orders is to examine to which order with respect
to the beam shape factor s they are accurate i.e. to which order with re-
spect to s they satisfy Maxwell’s equations. This depends on the processes
used to handle the higher-order Davis-Barton beams. Lock and Gouesbet in-
troduced three variants (i) the mathematically conservative version (ii) the
L-type, and (iii) the symmetrized variant, and examined the accuracy of
the Davis-Barton description for each variant. Without giving here details
which would be too technical for a complement, let us mention that (see Ta-
ble 1, in [79]), in a precise sense, the symmetrized version is accurate up to
0(s?), O(s%), and O(s'?) included for first-order, third-order, and fifth-order
beams, respectively. The case of off-axis Gaussian beams is discussed in a
companion article [80]. As a sequel of these studies, standard representations
of Gaussian beams (standard beams) are discussed by Gouesbet et al [297]
in which it is claimed that standard beams should be taken as the ideal de-
scription of Gaussian beams. Higher-order descriptions of Gaussian beams
are also discussed by Gouesbet [3TT]. In this article, it is recalled that the
first-, third- and fifth-order beams of the standard description identify with
the corresponding beams in the Davis framework, or more specifically with
those contributions in the Davis framework that exactly satisfy Maxwell’s
equations. However, furthermore, the standard description is known at all
s-orders. Converting this standard description from spherical coordinates to
Cartesian coordinates provides a new way to describe higher-order Gaussian
beams. Converting afterwards from Cartesian to cylindrical coordinates then
provide higher-order descriptions which may be used to discuss the GLMT for
cylinders. Also, in the process, field expressions which can be easily obtained
up to any desired s-order using simple differential operators are provided.
Next, an exact description of arbitrary shaped beams for use in light scat-
tering theories is provided by Gouesbet [313], with, however, some emphasis
on Gaussian beams, in particular on standard beams. An improved standard
beam representation is available from Polaert et al [314], exhibiting an infi-
nite radius of convergence in contrast with what has been eventually observed
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with standard beams [315]. Furthermore, Barton considered electromagnetic
field calculations for a sphere illuminated by a higher-order Gaussian beam,
namely Hermite-Gaussian beams and doughnut beams [316], [317]. A fifth-
order beam (and the localized approximation) is invoked by Evers et al [318]
to discuss the extension of a computer program.

Laser sheets

A laser sheet (or elliptical Gaussian beam) may be realized by focusing a
Gaussian beam with a cylindrical lens. Loosely speaking, laser sheets are
Gaussian in two orthogonal directions. Instead of possessing one single beam
waist radius wg, they possess two beam waist radii, say wg, along O, and
woy along Oy. The simpler case of Gaussian beam is recovered from a laser
sheet under the condition wg; = wg,. Laser sheets have been used in various
configurations, in particular in the field of optical particle characterization,
hence a motivation to study them.

Laser sheet scattering by spherical particles has, therefore, been studied
by Ren et al, in a GLMT framework [292]. To evaluate the beam shape co-
efficients, the localized approximation procedure valid for Gaussian beams
has been empirically transferred to the case of laser sheets, and the valid-
ity of this transfer has been checked against computations carried out using
quadratures. Scattering diagrams are exhibited for the case of a particle at
the beam waist center, and also for off-axis particle location. Scatterings by
plane waves, Gaussian beams, and laser sheets are compared. Complementary
results concerned extinction cross sections and radiation pressure forces. The
evaluation of a particle sizing technique (dual-cylindrical wave system) based
on laser sheets is thereafter carried out by Gréhan et al [293)], following previ-
ous proposals for the use of laser sheets in optical particle sizing by Naqwi et
al [291], and by Naqwi and Durst [319]. The evaluation of laser sheet beam
shape coefficients by use of a localized approximation is discussed by Ren
et al [294]. The order of approximation involved in the electromagnetic field
expression of a laser sheet is examined [320], generalizing a previous similar
study carried out for the case of Gaussian beams [77]. Symmetry relations in
laser sheets are discussed by Ren et al [312]. Laser sheets have also been dis-
cussed with respect to the use of the integral localized approximation [135],
and have been implemented in a GLMT-based imaging mathematical model
[321], [322], [323]. They are used by Zhang et al [324] to simulate the behavior
of a particle passing in a laser gradient field. The interaction between laser
sheets and spheroids is discussed by Xu et al in a GLMT-framework [273],
while Venkatapathi and Hirleman [222] dealt with the interaction between
laser sheets and infinite cylinders, in a GLMT-framework too.

Top-hat beams

A Gaussian beam can be corrected to a top-hat profile beam, called a top-hat
beam. Top-hat beams have been studied and used for optical particle sizing
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[325], [320], [296], motivating an interest to examine how such beams could
be handled by a GLMT. Of course, the problem is to know how to accurately
enough describe a top-hat beam. Corbin et al [296] introduced a localized
approximation for top-hat beams by analogy to the one used for Gaussian
beams and provided numerical results such as concerning scattering diagrams.
This approach is refined by Gouesbet et al [297] in which the validity of the
localized approximation for top-hat beams is assessed.

Actual beams

Theoretical discussions and refinements concerning the description of laser
beams, including higher-order laser beams, have been and still can be of
interest, if only to examine theoretical issues. However, the more refined a
theoretical discussion, the more likely it may become inappropriate to deal
with actual beams in the laboratory. Indeed, an actual beam in the labo-
ratory may depart significantly from any a priori ideal description. For in-
stance, Hodges et al [172] (with a comment by Pogorzelski [327]) provided
experimental results concerning the forward scattering of a Gaussian beam
by electrodynamically levitated droplets. Experimental results could not be
fitted by theoretical calculations with a GLMT relying on a single Gaussian
beam. Actually, the measured intensity profile of the incident laser beam did
not closely follow a Gaussian distribution over the entire dynamic range of
the camera used. However, the measured profile could be compared with two
theoretical Gaussian profiles, one for a waist radius equal to 18 pym and the
other for a waist radius equal to 24 ym. The upper beam-waist radius (24
pum) described the measured beam very well for the central part of the profile,
while the lower beam-waist radius (18m) was well adapted to describe the
outer edges of the beam. Many other results are available from Hodges et al
[172], but the one reported above is may be the most significant to under-
stand the situation created when the intensity profile of an actual laser beam
in the laboratory deviates from an ideal Gaussian shape.

These experiments from Hodges et al [I72] are soon after revisited by Lock
and Hodges [328] discussing the far-field scattering of an axisymmetric laser
beam of arbitrary profile by an on-axis spherical particle. In their article,
Lock and Hodges performed an approximate partial wave analysis of the
experimental laser beam profile and thereafter used this analysis to compute
the scattering of the beam by a spherical particle placed on the beam axis.
A check of the method used is that, when it is applied to a beam with a
Gaussian profile, the partial wave coefficients obtained are nearly identical
to the localized model Gaussian beam shape coefficients. In the approximate
approach used, the beam phase is separately modelled. In a companion article,
the same topic is examined in the case of off-axis location of the particle [329].

With the same motivation in mind, namely, dealing with actual beams
in the laboratory, Gouesbet introduced a reformulation of the GLMT [330],
[331] with the aim to solve an inverse problem, namely, determining the
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beam shape coefficients from field measurements, or more conveniently from
intensity measurements (on the beam axis), and this to be done for modulus
and for phase as well (!). Both on-axis and off-axis locations are considered. To
be specific, let us consider, as an example, the component S, of the Poynting
vector which, for an arbitrary shaped beam, is expressed in terms of beam
shape coefficients 9n'x, X = TM,TE. It is shown that actually the beam
shape coefficients may be replaced by three 4D arrays called density matrices.
Tt is afterwards demonstrated that measuring S, (r) for angular variables fixed
in principle allows one to evaluate the density matrix components by solving
a linear inversion problem. Furthermore, when the beam is axisymmetric, the
three 4D density matrices degenerate to twelve 2x2 sub-matrices which, with
an extra trick, can degenerate further to a single density matrix. Interest
in the use of density matrices is only warranted if a significant amount of
the GLMT can be rewritten in terms of them, rather than in terms of beam
shape coefficients. This issue is investigated in [331] with a positive answer,
leading to what can be called the density-matrix approach to GLMT. The
use of the terminology ”density-matrix” is justified in an appendix.

Relying on the previous studies, in their two previous articles, Polaert et
al [332] dealt with the measurements of beam shape coefficients in GLMT
for the on-axis case. As demonstrated by Gouesbet [330], [331], the use of a
linear analysis from intensity measurements on the beam axis, as mentioned
above, could allow the evaluation of the density matrices depending on the
beam shape coefficients, but not of the beam shape coefficients themselves.
This also means that the information on the phases of the beam shape coeffi-
cients are lost in the process. Although phases are very often unimportant, as
in the framework of the density-matrix approach to the GLMT, they may be
important in some cases, typically when fields have to be combined, leading
to interference phenomena. Such is for instance the case when dealing with
phase Doppler instruments, in which the scatterer is illuminated by two laser
beams instead of by only one. The situation is a bit similar to the one encoun-
tered in quantum mechanics, when global phase terms are irrelevant, while
relative phases are essential. In this article under discussion, it is then shown
that beam shape coefficients can be retrieved from intensity measurements,
both in amplitude and phase, if the linear analysis is replaced by a nonlinear
analysis. The use of numerical experiments allows one to have better flexibil-
ity, and more extensive investigations of the efficiency of the algorithms, than
experiments, including tests of robustness with respect to added noise. These
theoretical results are thereafter implemented with success in the laboratory
by Polaert et al [333]. The case of off-axis beams has not been studied.

Miscellaneous beams
In this subsection, we discuss various kinds of beams which are or may be

of interest for GLMTSs, but whose studies in this framework, or in a related
framework, are rather scarce. To begin with, lasers in the mode TEMg; (or
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doughnut beams) are discussed in connection with a study of the integral
localized approximation [I35]. Mathieu beams, which are non-diffracting so-
lutions of the wave equation in elliptical cylinder coordinates, are experimen-
tally demonstrated by Guttierez-Vega et al [334]. Non-diffracting beams are
reviewed (theoretical, experimental, and applied aspects) by Bouchal [335].
Beam properties in the neighborhood of a double-heterostructure laser source
are discussed by Wu et al [336]. Chen et al [337] designed a bottle beam for
single beam trapping. Hollow (ring-shaped beams), optical bottles, Bessel
beams, non-diffracting Bessel beams, Gaussian modes (Gaussian, Laguerre-
Gaussian, Hermite-Gaussian, etc.) are discussed by Soifer et al [338] in con-
nection with the topic of optical microparticle manipulation. See also Marston
[339] who discussed the scattering of a Bessel beam by a sphere, while Yin et
al [340] extensively discussed the generation of dark hollow beams and their
applications. Tryka [341] dealt with a beam representing a paraxial approxi-
mate solution of the scalar Helmholtz wave equation to derive an analytical
formula for calculating the flux of radiation from a Gaussian source irradi-
ating a spherical object. Van de Nes and Torok discussed the scattering of
Gauss-Laguerre beams [342]. They derived an expression for the field dis-
tribution of such beams, possibly focused, in terms of Mie modes and they
studied the light scattered by an aluminium sphere, illuminated by such inci-
dent fields. Evanescent fields may also be viewed as a special class of beams. In
particular, Quinten et al [343] discussed scattering and extinction of evanes-
cent waves by small particles. They show that, owing to the inhomogeneity
of the evanescent field, higher multipole contributions are strongly enhanced
as compared to plane wave excitation. We shall have other opportunities to
mention evanescent fields. Nonparaxial generalizations of Gaussian beams are
discussed by Moore and Alonso [I5§].

Laser pulses

Up to now, we have been dealing with c.w. (continuous wave) lasers, but
the use of laser pulses opens the way to new possibilities that are worthy to
explore. Consider for instance a spherical particle of diameter equal to 100 pm
illuminated by a laser pulse having a duration equal to 50 femtoseconds, that
is to say to 50x10~ 1 second. In vacuum (or air), the light propagates over 0.3
pm during one femtosecond. Therefore, the length of the pulse is about 15
pm, i.e., significantly smaller than the size of the particle. If the particle were
illuminated by c.w. lasers, then all scattering modes (diffraction, reflection,
different refracted rays, surface waves, etc.) would be continuously emitted,
overlapping in time, and therefore producing many interference effects which
actually generate the complicated structure of typical scattering diagrams.
However, with ultra-short laser pulses as above, owing to the small length
of the pulse compared with the size of the particle, the different scattering
modes will produce different scattering pulses, each one probing different
aspects of the particle. This only should allow one to propose refined optical
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characterization. It is, therefore, expected that laser pulse scattering, and
particularly ultra-short laser pulse scattering, should open the way to new
opportunities.

A generic formulation of a GLMT for a particle illuminated by laser pulses
has been published by Gouesbet and Gréhan [344] and further discussed
by Gouesbet et al [345], in which precursors are acknowledged. The word
”generic” refers to the fact that the scatter center may be arbitrary, with the
proviso that we know how to evaluate its continuous wave response (Using a
continuous wave GLMT, numerical techniques, or approximations). The for-
mulation is illustrated by examining a Rayleigh dipole (under circumstances
allowing one to provide analytical derivations). The basic idea is very sim-
ple, and simply relies on Fourier transforming. The first direct Fast Fourier
Transform (FFT) is used to decompose the illuminating laser pulse into a
decomposition of elementary continuous waves. A GLMT (or more gener-
ally any kind of light scattering theory) is used to compute the response for
each elementary wave and, afterwards, summation of elementary responses
followed by an inverse FF'T provides the total response to the incident pulse.

Under adequate circumstances, it is then observed that, indeed, a single
incident pulse may generate a response made out from a train of pulses.
For example, time-resolved diagrams for a sphere (diameter equal to 100
pm) illuminated by plane wave and focused short pulses (duration equal to
100 fs) are discussed by Mées et al [346]. Diagrams are compared for plane
wave, on-axis, and off-axis illuminations. The sequence of events exhibits the
light diffracted by the particle in forward directions, refracted light through
the particle in forward directions, then refracted light with scattering angles
increasingly departing from forward directions, and higher-order scattering
modes such as for light having undergone one or several internal reflections
before leaving the particle... Diagrams are smooth since they do not involve
interferences between the scattering modes which are temporarily separated,
excepted for the rainbow. Interferences at the rainbow location persist under
pulsed illumination because they are due to rays with closed optical paths,
at and near the minimum of deviation of the rainbow. If we limit ourselves
with the scattering mode for two internal reflections, then the response of the
scatterer to a 100 fs pulse extends over 15 times the incident pulse duration.
Still higher-order modes would come later. The case of time-integrated detec-
tion is also discussed. A somewhat similar study concerning the scattering of
laser pulses by spheres is available from Mées et al [347]. In the article cited,
surface wave modes are evidenced, and the influence of the duration of the
pulse is examined.

An emphasis on internal fields is stressed by Mées et al [348]. Time-resolved
diagrams allow one to observe the refractive penetration of the pulse in the
particle, the travelling of the pulse inside the particle, pulse deformation due
to the limit angle of refraction, first internal reflection and the emergence
of modes coupled by diffraction, ..., and so on. Eventually, we only observe
wave packets orbiting below the surface of the sphere when lower order modes
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have vanished. These wave packets are trapped and also diffractively (but
very slowly) leak. They would generate morphology-dependent resonances in
the case of continuous illumination. To illustrate the weakness of the energy
leakage, let us mention that, for a 70 fs pulse, the decrease of energy in the
final wave packets is estimated to be by a factor 10 in 20 ps. The same topic
is considered by Mées et al [349] with a particular attention paid to the resid-
ual wave packets, and an examination of the influence of the refractive index
(differences between water and glass particles). Furthermore, when examin-
ing the internal fields developing versus time during the interaction between
a large enough sphere and a small enough duration short pulse, the occur-
rence of a high intensity spot with a speed faster than the one of light has
been observed. This suggested the possibility, under certain circumstances,
of Cerenkov-based radiation from supra-luminic excitation in micro-droplets
by ultra-short pulses [350].

Complementary studies concerned the interaction of ultra-short pulses
with multilayered particles by Mées et al [351], or with spheroids by Han et
al [267). Movies showing the interaction between various kinds of scatterers
(homogeneous and coated spheres) and femtosecond pulses are available from
the website connected to this book. Non-linear effects may also be studied.
For instance, Mées et al [352] provided numerical simulations for two-photon
absorption and fluorescence in a spherical micro-cavity illuminated using two
laser pulses.

Furthermore, Brevik and Kulge [353] reported on the oscillations of a water
droplet illuminated by a linearly polarized laser pulse, a variant of the radi-
ation pressure problem. Favre et al [354] reported the observation of white-
light emission from femtosecond laser-induced plasma in a water droplet, an
observation which is not completely independent of the proposal for the ob-
servation of Cerenkov-based radiation previously mentioned. In both cases,
we depart from quasi-elastic light scattering, in the first case due to quan-
tum mechanical effects (e.g. multiphoton ionization), in the second case due
to relativistic effects. Lindinger et al [355] provided a series of time-resolved
images of the explosion dynamics of micrometer-sized water droplets after
femtosecond laser-pulse irradiation, for different laser intensities. The results
of Mées et al [348] are used for the interpretation of the features observed.
Bech and Leder [356] carried out numerical simulations to discuss the possi-
bilities of particle sizing by ultrashort laser pulses, and pointed out that the
temporal sequence of the scattered light events opens new methods of optical
particle characterization. A discussion of surface waves is available. In par-
ticular, the evaluation of time-resolved surface wave signals can be of special
importance for size measurements of particles for which, because of reduced
transparence or high optical absorption, no refracted light is detected. This
article is later completed by Bech and Leder [153] providing complementary
results. Méjean et al [357] dealt with the remote detection and identification
of biological aerosols using a femtosecond terawatt lidar system, inducing
in-situ two-photon-excited fluorescence, a process simulated by Mées et al
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[352]. For complementary related studies, see Méjean [358], Kasparian and
Wolf [359], and Courvoisier et al [360], the latter aiming to the identifica-
tion of biological microparticles using ultrafast depletion spectroscopy. Opti-
cal scattering spectroscopy using tightly focused supercontinuum, generated
from short laser pulses, is discussed by Li et al [I49] in the framework of
an angular spectrum decomposition. Some calculations on the scattering ef-
ficiencies of a sphere illuminated by an optical pulse are discussed by Jones
[361], using a trigonometric (cosine) pulse envelope (allowing more analytical
algebraic manipulations than Gaussian envelopes). Lee et al [362] considered
the determination of particle sizes and density distributions using ultra-short
pulses in strongly scattering media, with a simplified random walk, ray trac-
ing approach. Bakic et al [154] made measurements, compared with predic-
tions, concerning the scattering of femtosecond laser pulses by small droplets,
confirming the interest of ultra-short pulse approaches for optical character-
ization. They used time integrated detection (not time-resolved detection).
One seemingly interesting feature is that a fine structure, called the ripple
structure, no longer appears in the region rainbow of scattering, something
which is claimed as being an advantage simplifying rainbow refractometry
significantly. Let us, however, note that the ripple structure in rainbow re-
fractometry contains additional information which may be worth to be used.
For instance, van Beeck and Riethmuller [363] performed a sphericity test in
rainbow refractometry by comparing the Airy and the ripple droplet diame-
ters. See also Saengkaew et al [364], [365]. Furthermore, let us remark that
optical trapping with pulses are feasible [I149], [366].
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Finite Series

As previously discussed, evaluations of BSCs g, may be carried out by using
quadratures. Historically, the quadrature techniques have been the first to be
developed in so far as they quite naturally arise in the development of the
GLMT. Because they are flexible, i.e. only kernels in the quadratures have to
be modified when the incident beam is changed, they are well adapted to some
specific problems, such as the study of shaped beam scattering by adjacent
spherical particles [I38]. However, when the nature of the incident beam is
well defined, quadratures constitute the worst methods because they are very
time-consuming in terms of CPU. An effort has been therefore performed to
develop other techniques to evaluate BSCs. In this chapter, a technique using
finite series is presented. The technique is rigorous and indeed mathematically
equivalent to quadrature techniques when the incident beam description ex-
actly satisfies Maxwell’s equations. However, it is much faster running. There
is nevertheless a price to pay for such an advantage. Indeed, when using the
quadrature techniques, only quadrature integrands have to be changed when
the incident beam description is modified. Conversely, when using the finite
series technique, an extra analytical work and significant program modifi-
cations are required when the beam description is modified. Performing by
hand these modifications may typically take one month. Fortunately, the pro-
cedure is quite general and the whole process may be in principle carried out
in an automatic way by using a formal computation procedure which would
furthermore generate FORTRAN sources. For details about published work
on finite series, the reader may refer to Gouesbet et al [87,[367] and references
therein.

V.1 The General Procedure

The BSCs ¢ are determined by Rels (III1.10) and (III.19) which are here
recalled as:
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+ m
E. _ Ey i i v In, T M n(n + 1)
H’r‘ HO T lm——n " g;n;TE r

(V.1)
oY (kr) PIm(cost) exp(imep)

Any method to determine BSCs must deal with these basic relations. In the
quadrature techniques, Rel (V.1) has been processed by using what has been
called spherical harmonic expansions (section I11.3.1). Finite series are con-
versely obtained by using so-called Neumann expansions (or Bessel function
expansions). The method relies on a beautiful theorem which may be found
in Watson ([I33], p. 524-525).

According to this theorem, let us consider an equation having the form:

2'2g(x) =Y endns1ye(@) (V.2)
n=0

in which J,,11/2’s are classical half-order Bessel functions. The Maclaurin
expansion of the function g(z) reads as:

g(z) = Z bnx" (V.3)
n=0

Then the theorem states that coefficients ¢, are given by:

< n/2
) - 2§+n72m F(é+n_m)

m brn—2m (V.4)

(+1
chp = (n
2

m=0

From now on, this theorem will be called the Neumann Expansion Theorem
(NET). To take advantage of it, one starts from Rel (V.1) and first discards
the p-dependence by acting with the integral operator fozw . exp(—im/p) dy
and by using the orthogonality relation (III.11) to obtain (not forgetting that
P =0ifn < |m|):

27 o0
ET . _ EO w gg:TM
/0 (Hr > exp(—imp)dp = 2w (Ho > nzl;n P (ngE >
(V.5)
1
n(nr—&— )y'/fll)(kr) P,llm‘(cosﬂ)

The next step is to also discard #-dependence. This may be done in two ways.
The first way is just to specify 8 = 7/2 in Rel (V.5), to invoke the following
relations for associated Legendre polynomials [I30]:
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m) = (—1)" %" (n+m =1l n —m) even
o =0T R e
(V.6)
P"™(0)=0 (n —m) odd
n which: n!l =1.3.5..n
(—) =1 } (V.7)

and also a relation expressing spherical Bessel functions in terms of half-order
Bessel functions (see Rel (IL1.78)):

s
U ) = | g T2 v

to obtain, after some algebra:

27 = i
o (B Yoot = < (3) B, e

n=|m|,(n—m)even

< Inirr >Py\bm|(0)J,L+1/2(kT)

QZL,TE
(V.9)

For convenience, the expression (V.6) for P"(0) has not been fully introduced
in Rel (V.9) but it nevertheless appears explicitly through the fact that the
summation in the r.h.s is restricted to even values of (n—m). This shows that
all BSCs cannot be determined by using Rel (V.9) alone. It is then required
to use a second way to discard variable #. This is carried out by deriving
Rel (V.5) with respect to (cosf), specifying again § = 7/2 in the obtained
relation, invoking other relations for associated Legendre polynomials [130]:

APy’ (cosf) =0 ,(n—m) even
dcost |, .0—0
(V.10)
P ntm—1 1"
oty 0EY ) edd
dcos cosf=0 2 ( 2 )'



120 V Finite Series

and also again Rel (V.8) to obtain, after some algebra:

2m
0 E
1/2 T
(kr) /0 " dcosh <Hr >

o0

Z cﬁwn(n—&- 1) (gn,TM ) dPn (COSG)

InTE dcost

exp(—im)de = T/2n <EO )
Hy

(V.11)

cosf=0

Jn+1/2 (k"l“)
cosf=0

n=|m/|,(n—m)odd

in which the expression (V.10) has not been fully introduced in Rel (V.11) for
convenience, but nevertheless appears through the fact that the summation
in the r.h.s. is restricted to odd values of (n — m).

The set of Rels (V.9) for (n —m) even and (V.11) for (n —m) odd provides
a new way to determine all BSCs. When the beam is specified, the radial
field components E,. and H, may be expanded in Fourier series over . Then,
the integration over ¢ in the Lh.s. of Rels (V.9), (V.11) may be performed.
Setting © = kr, we therefore obtain relations which have the proper form
(V.2) to apply the NET | leading eventually to the evaluation of the BSCs,
as now exemplified in the case of Gaussian beams.

V.2 The NET Procedure for Gaussian Beams

V.2.1 Bastic Relations

In the case of Gaussian beams, F, and H, are given in Rels (IV.84)-(IV.85).
Expressing explicitly the coefficients 2% (Rel (I11.3)), Rels (V.9) and (V.11)
then becomd!l:

e F Jp Jp Jp
kr - 9 Z ij + Z ij +xz0 G Z ij =
jy=m j—=m Jo=m =1

(V.12)

o}

> " (=1 20+ 1) gitgar PYM(0) Jp (k)

n=|m/|,(n—m) even

! F and G are €, dependent.
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e F Jjp Jjp Jjp
kr - % ijp_ ijp +y0GZij =

J+=m j—=m Jo=m o=
2
(V.13)
o0
oo (D" @) gies PI(0) Ty (k)
n=|m|,(n—m) even
2kr b P
kr\/ T 280050 Z Vipt Z ijp | +o Ocosl G Z Zip =
Jj+=m j—=m Jo=m 9=7
(V.14)
0 |m|
‘n— n m APy, (cosh)
> (=1 (2n41) gl eosd Ty 1 (k7)
n=|m|,(n—m) odd 0=T

\/2kr 1 i 9 P
/8 /8 '/ =
kr T 2 80050 Z » Z ip | Y0 Ocosf sz;n o
-

jo—=m

o=1
(V.15)
- o n m ap)™ (cosf)
S ey et g C )
n=|m|,(n—m) odd 0=T

From Rels (V.12) and (V.14), we obtain four relations to evaluate the BSCs
9T

(i) n and m even:

2%
kr\/ Wr Z v, + Z v, | + a0 G Z v, —

j1=2q Jj-=2q Jo=2q o="1

(V.16)
St (20 +1) g2%5, PPA(0) Jupapo(kr)
n=[2q|

in which z:e designates a summation restricted to even values of the integer

n
n.
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(ii) n and m odd:

ooy 1 Jjp Jjp Jjp
ey TL VoF | 2 Wt D Wl tmG Y W =

J+=2q+1 j-=2q+1 Jo=2q+1 o-1
(V.17)
Zo i " (2n+1) g2l PRI Jyppa(kr)
n=|2q+1|

in which zjo designates a summation restricted to odd values of the integer

n
n.

(iii) » odd and m even:

2%r |1 3 Jp
kr\/ T 280050 Z i+ Z ip | +2o0 COSHG Z i N

J-=2q Jo=2q o=T
(V.18)
2 ap! (cos®)
Za i " (2n+1) g, deosd Tng1/2(kr)
n=|2q| =1

(iv) n even and m odd:

2kr 0 L
kr T {280059 [ Z Yip + Z \Ij“}] + %o Ocosl ¢ Z \Iljp} -
)

=2q+1 Jj—=2q+1 Jo=2q+1

—_x
-2

2ge1 AP (cosh)

n—1
Ze ; D" 2n+1) g, deost
=|2¢+1|

Jn+1/2(k7‘)

0=%

(V.19)
Similarly, from Rels (V.13) and (V.15), we obtain four relations to evaluate
the BSCs gp'rp:
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(i) n and m even:

ooy 1 Jp Jp Jp
kr QZF Z ij— Z gjjp +y0G Z gjjp =

0 . , ,
J+=2q J-=2q Jo=2q =T
2
(V.20)
Ze i " (2n+1) 6ol PU(0) Jug1ya(kr)
n=|2q|
(ii) » and m odd
e 1 Jp Jp Jp
kr\/ o 9o F Soow— Y Tl G Y W, =
J+=2gq+1 J-=2q+1 Jo=2q+1 0=1
(V.21)
Zo i " (2n 4 1) g2 p PR (0) 40 0 (k)
n=|2q+1|
(iii) n odd and m even
2kr | 1 &L L
k v, v, v, =
r\/ m 2i 80080 Z w Z v | TY0 80080G Z ®
+=2q Jj-=2q Jo=2q o=7
(V.22)

dP‘2q|(0059)
o2n +1) g* "
ZO ‘ "2t In,TE dcost

n=|2q|

Tng1/2(kr)

(iv) n even and m odd

2k
by = {2130059 [ Z Yjp = Z W7P1+y0 G Z \PJP} =
o=

s
=2g+1 Jj—=2¢+1 Jjo=2q+1 =
-2

2¢+1 dPJLzﬁll (cost)

1
X:e i _ (2n+1) g,k dcos
=|2¢+1]

Jn+1/2 (k")

NG

(V.23)
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The NET is afterward successively applied to each of the relations (V.16)-
(V.23). Although no fundamental difficulty is involved, the amount of algebra
is however rather tedious to handle. Only the case of the BSCs g;'r),, for n
and m even, will be here worked out in a detailed way.

V.2.2 BSCs Gnirar: ™ and m Even

Considering the basic relation (V.16), it is first established, by using Rels
(IV.77), (IV.79), (IV.86) and (IV.87), that:

FO=7/2) = 2 A exp[—Zos*k*r?] (V.24)
GO=mr/2) =0 (V.25)
in which:
1 2 2
A = _ Zy exp|—Zp %o Jrzyo] exp(ikzo) (V.26)
2 wj
Zo=iQO=1/2) = (v.27)
=1 =T = . .
0 14280

Furthermore, from (IV.83), the following relation holds:
Uip(0 = m/2) = (kr)! A(j, p) (V.28)

in which: .

o { Zo\ (w0 —iyo) TP (zo + iyo)P
Alie) = <kw3> pl(j —p)!

Setting « = kr, and invoking Rel (V.6), Rel (V.16) takes the standard form
(V.2) of the NET , with:

(V.29)

g(x) = A Z + Z A(j,p) #7T exp(—Zos®z?) (V.30)

J+=2q j-=2q

cn =0, n odd
(V.31)
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VT e 2 2 (n+2|Q| R
cn=€(n;0 —D)" (2n+1) g2, (—1)2 4 n even
( ) \/2 ( ) ( ) gn,TM( ) ‘q‘( |Q|)
(V.32)
in which:
€ (n;a;) =0if nis egual to one of the a; s (V.33)
€ (n;a;) =1 otherwise

In Rel (V.32), there is only one a; = 0, but the notation introduced in Rel
(V.33) is more general for further use.

Rel (V.32) expresses the BSCs gi?T v (noeven) in terms of coefficients
¢n. By using the NET | these coefficients ¢, may also be obtained from the
Maclaurin expansion of the function g(x) given by Rel (V.30). However, the
function g(z) is not in right form for further processing because Rel (V.3)
exhibits a single summation over z-expansions while, conversely, Rel (V.30)
is expressed in terms of double summations over j and p. However, double
summations may be reduced to single summations by using (Appendix D):

oo
Z Ajp = D Asjirjrig q>0 (V.34)
J+=2q Jj=q—1
Z Ajp = Z Azji1,j+1-q q<0 (V.35)
j=lal
DT A= Asjiig q>0 (V.36)
Jj—=2q j=
oo
Z Ajp = Z A2jt1,j—q qg<0 (V.37)
J-=2q j=lgl-1

showing that the cases ¢ = 0, ¢ > 0 and ¢ < 0 must be separately investigated.

(i) gTQfTM, neven, g =0
By using Rels (V.30), (V.35), and (V.36), the function g(z) becomes:

(oo}
g(x) = A exp(—Zps*2?) Z (25 + 1,5+ 1)+ A(2) +1,5)] 2 +2 (V.38)
7=0
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Expanding the exponential, Rel (V.38) may be rewritten as:

ZS) n n "
Z Z 4 520" [(n7172m,§7m)+A(n7172m,5717m)]x

m=0n=2m+2

(V.39)
It may however be shown that (Appendix E):
oo 51
Z Ze = de ) €m0 (V.40)
n=2m+42 n=0 m=0
leading to:
o 51 (_Zosg)m
x)zz:eZAe(n;O) ml
n=0 m=0
(V.41)

[A(nflme,nf

5 m)+A(n7172m7Zflfm) x"

This exactly takes the form of the Maclaurin expansion (V.3) that we were
looking for. The coefficients b,, are then readily obtained as:

by, =0, n odd (V.42)

(V.43)
n n
{A(n—1—2t,2 —t)+A(n—1—2t,2—1—t) , n even

Coefficients ¢,, are now available either from Rel (V.32) or from the NET-
result (Rel (V.4)) leading to the following equation for n even, ¢ = 0:
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cn = €(n;0) :7; i (—1)” (2n+1) g?z,TM (_1)3 (;:_(r};:'
2
(V.44)
<n/2 5 —m—1
n—2m ( +n_m) ~Zos?)"
ZQer 2 o Z AeanmO)( tO! )

t=0

[A(n—?m—?t—LQ —m—t)+A(n—2m—2t—1,Z—m—t—l)

This relation is only an intermediary result which is provided to help the
reader. Actually, a better-looking expression may be obtained by showing

that:
g 220 " +1 V.45
nll = A (2 +1) (V.45)

in which the celebrated Gamma function complies with:

I(n) = (n—1)! (V.46)

I'(z+1)=2I(2) (V.47)

Inserting Rel (V.45) in Rel (V.44), setting n = 2p, p # 0, and rearranging
then leads to:

P p—m— 1
) I'2p—m+1/2) Zos
0 2
= 2 P
92p,TM i A p+ 1/2 X:O 922mym| Z

t=0
(V.48)
e(p—m;0) [A2p—2m —2t—1,p—m —1t)
+A2p—-2m —-2t—1,p—m—1t—1)]
(ii) gi?TM, n even, ¢ > 0
For this case, g(x) becomes:
glz) =A 61’p(—20821'2) Z A2j+1,54+1— q)x2j+2
J=q—1
+3 AQRj+ 1,5 — q)a (V.49)

Jj=aq
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Expanding the exponential leads to:

oo [eS) . 2\m.
SU):Z E:e A( Zos") A(n—?m—l,g—m—q)x”

m)!
m=0n=2m+42q

(V.50)
) oo . 2\m
—|—Z Ze A( Zo5”) A(n—2m—1,g—m—q—1)x”

m!
m=0 n=2m+42q+2

But, generalizing Rel (V.40), we have (Appendix E):

(n—2q)

Yoo De = z:e > e(n;0,2,...,2¢ - 2) (V.51)

m=0 n=2m+42q n=0 m=0
leading to the Maclaurin expansion of g(z):

%(n 2q)

- ( ZOS) . n
nZe Z A [e(n,0,27...,2q72)A(n72mf1,5fqu)
+ e(m; %(n —2q)) €(n;0,2,...,2q9) A(n —2m —1, % -m—-q—1)|x
(V.52)
from which coefficients b,, are determined:
b, =0, n odd (V.53)
3 (n—2q) ot
—7,
Z 4 tO,S ) {e(n;0,27...,2q—2) Aln —2t—1, Z —t—q)
(V.54)
1
+ e(t; 2(n —2q)) €(n;0,2,...,29)A(n — 2t — 1, Z —t—q-— 1)} ,T even

Coefficients ¢, are now again available from two different sources, either from
Rel (V.32) or from the NET-result (Rel (V.4)). Proceeding as for the previous
case finally leads to:
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2q _ A g (»—q)!

P

2ma |
= 22mm)
p—m—gq 2\t
—ZQS
Z ( 1 ) [6 (p—m;O,L...,q—l)
t=0 ’

A@2p—2m—-2t—1,p—m—t—q)+e (;p—m—q)

(iii) gZ?TM, n even, ¢ <0

Proceeding as before, it is found that the function g(z) reads as:

g(x) = A exp(—Zys®z?) Z A2+ 1,7+ 1 —q)z*™?
J=lql
+ > A@Zj+ 1,5 — )2 (V.56)

Jj=lq|-1

and the corresponding BSCs are given by:

2 _ A gy (P al)!
= 2
Yop (2 < 0) (—1)ll I'(p+lql +1/2)
zp: r'(2p—m+1/2) pilql (—Zps?)t
2m
— 22mym| e 2
[e(p —m;0,1, ... [q| = 1) (V-57)

A2p—2m—2t—1,p—m—t—q—1)
+e(t;p—m—lq|) e(p —m;0,1,....]q|)
A2p—2m—2t—1,p—m—t—q)]

In this finite series technique, angle ¢ disappears by using a quadrature and
angle 0 by using special values. The variable r naturally disappears by us-
ing the NET theorem, without having to use quadratures nor special values.
This is to be compared with the quadrature techniques in section IIT in which
angles 6 and ¢ disappear by using quadratures and variable r disappears by
using either a quadrature or a special value. Therefore, if the beam descrip-
tion does not exactly satisfy Maxwell’s equations, the finite series give BSCs
which are constant complex numbers, automatically providing a remodelling
of the beam description, without any artifact, in contrast with the quadra-
ture techniques (see again Gouesbet et al [134]). From that point of view,
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the quadrature and the finite series techniques are not strictly equivalent
when the beam description does not exactly satisfy Maxwell’s equations. Un-
der such circumstances, the relationship between the finite series technique,
without any apparent artifact, and the quadrature techniques remains to be
investigated.

V.2.3 Other BSCs G

The procedure for the other BSCs being similar, this section essentially pro-
vides general indications to help the reader with only a few intermediary
results.

(1) 95’7 ar m and m odd.

In this case, the starting point is Rel (V.17). This relation is given the
standard form (V.2) in which the function g(z) reads as:

g(x) = A exp(—Zys*z?) Z + Z A(j,p) it (V.58)

J+=2gq+1 j_=2q+1
and the coefficients ¢,, are found to be:

cn =0, n even
(V.59)

n I2q 2 1| —1!
=V it (S0 @ne1) g2k, (-yp P (PRI N g

V2 95 = 5" (n ekl
(V.60)

Double summations in Rel (V.58) are reduced to single summations by using
(Appendix D):

Jjp o
Y A=) A Vg (V.61)

J+=2q+1 j=lal

Jp o]

Yo A=Y Ayg1,420 (V.62)
J-=2q+1 Jj=q+1

Jp o]

Yoo Ap= Y Agjg1,a <0 (V.63)
j-=2q+1 i=lal-1

showing that only two cases are to be considered: ¢ > 0 and ¢ < 0.
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Using the same procedure as before and also invoking (Appendix E):

(n—2g—1)

o Do Z e(n;1,3,...,2¢ — 1) (V.64)

m=0n=2q+2m-+1 m=0

the BSCs g;'rps, n and m odd, are found to be:

A - (r—0q)
2q+1 — 2(p—q)
92p+1, (@ >0) = (_1)q2 Ilp+q+3/2) (V.65)
z”: I'(2p—m+3/2)
2m
= 22mm]!
P
—Z
Z 08 [e(p —m;0,1,...,g— 1)
t=0
A(?p—?m—?t,p—m—t—q)+e(t;p—m—q)
e(p—m;0,1,..,9)A2p —2m —2t,p—m —t —q — 1)]
2g+1 _ A 2pti—lg) @ —lal+1)!
9api1,70 (0 < 0) = (71)‘q‘+12 Tlp+ gl +1/2) (V.66)
zp: I'(2p—m+3/2)
2m
— 22mm!
p—m—|g|+1 ot
— 2708
> | | " lettp—m 1l + 1)
t=0 :

e(p—m;0,1,..., )¢ —1)A2p—2m —2t,p—m —t —q) +
e(p —m;0,1,...,|¢[—2)A(2p—2m—2t, p—m—t—q—1)]

(ii) gp'rar> 7 odd and m even.

The starting point is now Rel (V.18). New notations must however be
introduced for this case. It is first established, starting again from (IV.87),
(IV.86), (IV.79) and (IV.77) that:

OF
= [Bz + C2® —Zys%a? V.67
Ocosb 0=n/2 [ et :U} exp(~Zosc) ( )
in which:
2 2
B=iexp(~Zy ty‘)) exp(ikzo) [ZOZO 7 + s + 2e182° 72 — Zy — Z,
0 0

(V.68)
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2 2
C =1 exp(—2Z xou;yo) exp(ikzo) Zo Zy s* (V.69)
0
, 1 0Q 2
7 — = V.70
O kr 00 o=ny2  Klli— 22012 ( )
We also need:
i = 0Q(j,p) 2t (V.71)
dcost |g_, 5 ’ ‘
in which:
—ij (w0 — iyo)? P(xo +iY0)? ,Zo.\: 1.,
N =tz 72
(.] p) kiwg P'(]*p)' (wg) o (V7 )

It is also needed to evaluate the derivative 0G/dcosf. The expression is rather
involved and not given here. However, in doing this exercise, the reader will

set:

2 2 2
D= ;L Zzexp(—Zy xou‘;yo ) exp(ikzo) (V.73)
0

Rel (V.18) is then given the standard form (V.2) with the function g(z) given
by:

g(x) = exp(—Zos?z?) { A Z + Z Q2(3j,p) 27t? (V.74)

J+=2q j-=2q

0 $ 3| au oy $ 4 30| ag e

J+=2q j-=2q J+=2q Jj-=2q
Jp
+ 20D > AQ,p) o't
Jo=2q

and the coefficients ¢, reading as:

cn =0, n even
\/7r n 2 ntl2q/—1
Cn = \/2 “L=1D)™(2n + Dglrp(=1) 2 (V.75)
(n+ |2¢)!

, n odd
9} (n—|2q|-1) (n—\?;l—l);



V.2 The NET Procedure for Gaussian Beams 133

After having reduced double summations in Rel (V.74) to single summations
by using expressions given in the Appendix D, it is found that the cases ¢ = 0,
q > 0 and g < 0 must be treated separately. Each of these cases is processed
similarly as before, leading to:

p p—m
o —p! 5 I'(2p—m+3/2) Zos
= 2 p
S =y Ly 2 2

{zoDA(2p — 2m — 2t,p — m — t)+

—|—€(p—m;O)e(t;p—m)i[A(?p—Qm—Qt—1,p—m—t)+
+A@2p—2m—2t—1,p—m—t—1)]+e(p—m;0)e(t; p—m) x (V.76)
xA[R202p—2m —2t—1,p—m —1t)
+022p—-2m—-2t—1,p—m—t—1)]+

+€(p —my 03 1)€(t7p —m,p—m— 1)

C
2[A(2p—2m—2t—3,p—m—t—1)—|—

+A2p—-2m—-2t—-3,p—m—1t—2)]}

—22(r—9) " r(2p—m+3/2)
2q _ p
Ioprrrar(@>0) =y, Fp+q+3/2 ZO 92m |

t=

{(p m;0,1,...,g—1)

A 22p—2m—2t—1,p—m—t—q)+

B

+2 ARp—2m —2t—1,p—m—t—q)+
+20D A(2p—2m —2t,p—m —t—q)] + (V.77)

+e(t;p—m —qe(p —m;0,1, ..., q) ¥
x[A Q2p—2m—-2t—1,p—m—t—q—1)+

B

—|—2 A2p—2m—-2t—1,p—m—t—q—1)+

C

2A(2p 2m—2t—3,p—m—t—q—1)]+
+e(t;zp—m—qg,p—m—q—1e(p—m;0,1,...,q+ 1) X

X A2p—-2m—-2t-3,p—m—t—q—2)}

[NCI QN
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2
Gopi1. (@ <0) =

V Finite Series
_92(p—1al) — gDt f: I'(2p—m+3/2)

(—1)ldl F(p+|q|+3/2 - 2""ml

p—m—|q| (—ZOSQ)t
— t!
{6(]9 m; 0713' L) |q| - 1)
A 2@2p—-2m—-2t—1,p—m—-t—q—1)+
B
—|—2 A2p—2m—-2t—1,p—m—t—q—1)+
+20D A(2p—2m —2t,p—m —t—q)] +
+e(tip —m —[gq|)e(p — m; 0,1, ..., [q]) % (V.78)
xX[A 22p—2m—2t—1,p—m—t—q)+

B

+2 ARp—2m —2t—1,p—m —t—q)+

C

2A(2p 2m—2t—-3,p—m—t—q—2)]+
+e(t;p—m—|q|,p—m—|q|—1e(p—m;0,1,..., |g| + 1) X

Q

><2 A2p—2m—2t—3,p—m—t—q—1)}

(iil) g;'7prs m even and m odd.

Starting from Rel (V.19), the reader is now sufficiently well trained to

readily establish:

2q+1
Yop TM

(¢g>0) =

i g (p—q—1)! zp:FQp—erl/Q)

(—=1)2 I'(p+q+3/2) - 22mm)
P (= Zps2)
|
= t!

B
x{e(p—m;O,1,...,q)[2A(2p—2m—2t—2,p—m—t—q—l)—|—
+zoD A2p—-2m—-2t—1,p—m—t—q—1)+

+A 2@2p—-2m—-2t—2,p—m—t—q—1)]+
1
+26(t;p—m—q—1)e(p—m;071,...,q+1) X (V.79)
xX[B A2p—2m —2t—2,p—m—t—q—2)+
+2A 202p—-2m—-2t—2,p—m—t—q—2)+
+C A@2p—-2m—2t—4,p—m—t—q—2)]+

C
+, e(t;p—m—q—1,p—m—q—2)e(p—m;0,1,...,q+2) x

xA2p—2m—2t—4,p—m—t—q—3)}
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. p
2g+1 Tt 52(p—q) — lql)! I'(2p—m+1/2)
= 2
prn(@< 0=y <p+|q|+1/2 Z 22mm!
p—m—|q| (—ZOSQ)t
|
Pt t!

X{G(p_m7071aa|q|_l) X
x[zgD A(2p—2m—2t—1,p—m—t—q—1)+

—|—123 Ap—2m —2t—2,p—m—t—q—2)+

+A 22p—-2m—-2t—2,p—m—t—q—2)|+ (V.80)
+e(t;p—m — |q)e(p —m; 0,1, ..., |q]) x

x[ls A2p—2m—2t—2p—m—t—q—1)+

+A 202p—-2m—-2t—2,p—m—t—q—1)+

+g A2p—2m —2t—4,p—m—t—q—3)] +

C
+,e(tsp—m—lgl,p—m—|g|=1)e(p—m;0,1,..., Ja| +-1) x
XA2p—2m—2t—4,p—m—t—q—2)}

V.2.4 BSCs g 'rg

BSCs g,;'7 may be similarly obtained from the set (V.20)-(V.23). However,
notwithstanding the fact that deriving the required expressions by using again
the NET -procedure would be an enjoyable task, it appears that detailed
computations are no more necessary. Indeed, it is readily observed that the
set (V.20)-(V.23) may be deduced from the set (V.16)-(V.19) by applying to
the latter a transformation T' defined as follows:

> - 1 > (V.81)

J+= J+=

Z — = Z (V.82)

jf,

Zo — Yo (V.83)

in which Rel (V.83) must be used only when z( explicitly appears in the
set (V.16)-(V.19), i.e. in terms associated with G. BSCs g,,';- may therefore
readily be obtained from BSCs g;'7), by applying to them the transforma-
tion T, the unique difficulty being possibly to correctly identify the terms
corresponding to j2= or to j_zz. For the careful worker having kept the de-

tails of his computations for the BSCs g1/, it would take only about one
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hour to establish the corresponding expressions for the BSCs g7 . It has
not been found useful to serve them in this book. They are available from
Gouesbet et al [368].

V.3 Numerical Computations of BSCs by Using Finite
Series

Twenty different expressions are required to compute all the BSCs g;*. These
expressions look awkward but may actually be rather easily and efficiently
programmed, leading to fast running routines. However, if expressions in
section V.2 have been given to help the reader to make the connection with
Gouesbet et al [368], they are not in the more appropriate form for numerical
computations. Some rewriting is indeed necessary for the sake of efficiency.

V.3.1 Dimensionless Formulation

The dimensionless formulation is expressed in terms of dimensionless coor-
dinates specifying the location of the beam waist center with respect to the
particle center (see section III-1, and section IV.2.1):

:Ug = x0/wp, yo+ = yo/wo, ZO+ =2/l (V.84)

and in terms of the beam shape factor s. The reader may need to recall Rels
(IV.3) and (IV.4) to check our derivations. The eight quantities Zo, Z,, A, B,
C,D,A(j,p) and 2(j,p) from Rels (V.27), (V.70), (V.26), (V.68), (V.69),
(V.73), (V.29) and (V.72) respectively may then be rewritten according to:

1

Zy = V.85
O 1420z (V-85)
» 252
7 = V.86
O (i—2z0)2 (V-86)
_ 1 _ +2 +2 2
A = 5 Zy expl—Zo(zg* +yg ")) exp(i 52) (V.87)
: +2 +2 z0+
B =i expl—Zo(z]* +yg~)] exp(i 2 )
(V.88)

{Zo Zy (x* 4 yd®) + 2e15%22 — Zo — Zy}
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C = iexp[—Zo(zd® +yd?)] exp(iz(-i_) Zy Z, s* (V.89)
()0 =2 (51) s 28 el Zatal? i) enpli) (V0
A(j,p) = (Zos)! (@ - iyi!)(;p(;i i) (V.91)

D0ip) = —i § 5 (Zosy—t 7,38 ~WIPTEC WOy g

pi(j —p)!

showing that all introduced quantities were indeed dimensionless, excepted
D. However, D never appears alone but in groups (z¢D) and (yoD) for BSCs
g and g'rp respectively. Rel (V.90) shows that these groups are indeed
dimensionless.

V.3.2 Formulae Modifications for Programming

Finite series expressions for BSCs are modified by using the dimensionless
formulation of section V.3.1 and invoking (Abramowitz and Stegun [369], pp
255):

1, 135.(2n—1)

r = /2 .
(n+,) Yy (v.93)
leading to, for n even and m = 0:
m—1
, 8Pp! P 1.3...2(2p—m)) P
0 _
ng,TM =i A 13(2]7_ 1) mzz:o 22p—m92mp | ;

-7 2\t

( tO'S ) e(p—m;0)[A2p—2m —2t—1,p—m —1t)

+A2p—-2m—-2t—1,p—m—1t—1)] (V.94)

Such modifications being easy to carry out, it has not been felt useful to
rewrite the full set of expressions in this book. Computer programs are avail-
able from the website connected to this book.
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Special Cases of Axisymmetric and
Gaussian Beams

VI.1 Axisymmetric Beams

We define an axisymmetric beam [74] to be a beam for which the z-component
S, of the Poynting vector, in which z is the direction of propagation of the
beam, does not depend on the azimuthal angle ¢, in suitably chosen coordi-
nate systems.

In such a (spherical) coordinate system (r, 0, ¢), when the beam is generic,
i.e. when the energy flowing on the beam axis is not zero, the BSCs g;* are
found to satisfy (after much algebra)[74]:

mo__
1 In :Oi -1 _ i1 |_Tn|ze¢711 } (VL1)
InoM = KInoTM = "9 TE = KInTE
in which the parameter ¢ is £1 while the parameter K is a real number. The
sign € is not a property of the beam in the strict sense but depends on the
coordinate system in which it is described. More specifically, we have e = —1
(4+1) when the energy flux flows toward positive z’s (negative z’s). From now
on, we consider beams propagating in the positive z-direction and therefore
take ¢ = —1. As far as K is concerned, it defines the polarization state of
the beam as a linear combination of a state for which the radial electric field
component FE, is proportional to cos¢ and of another state for which E,. is
proportional to sin . Nonmixed states of polarization correspond to K = +1.
Conversely, it can be demonstrated that, if the BSCs satisfy Rel (VI.1),
with g}L’T o 7 0, then the beam is a generic axisymmetric beam.
It is then seen that, for a generic axisymmetric beam, the double set of
BSCs {ngTM,ngTE} reduces to a single set of special BSCs {g,} that we
conveniently define as (with e = —1):

gn __ T 5 .1 =i
9 = 9711,TM = Kgn,TM =9n,TE = Kgn,TE #0 (VL.2)
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in which the prefactor 1/2 is actually not essential but later produces better
looking expressions.
Let us select a nonmixed state of polarization for which K = +1, i.e. we

now have: .
y =0 mlA L } (VL3)
2 =9n17M = In1rM T YWYnTE = “UWnTE
Chapters IV and V were mostly devoted to a special case of the GLMT
when the incident beam is a laser beam in its fundamental (Gaussian) mode
T EMyo, with however an arbitrary location of the particle. The axis Opz
of the particle Cartesian coordinate system (Opxyz), see Fig (II1.1), then in
general does not coincide with the axis Ogw of the beam Cartesian coordinate

system. This is called the off-axis case.

Let us now consider the case when the center of the scatter center is
located on the beam axis, i.e. axis Opz coincides with axis Ogw. This is
called the on-axis case. Clearly, a Gaussian beam is a generic axisymmetric
beam and, in the on-axis case, the coordinate system is suitably chosen.
Therefore, the BSCs of an on-axis Gaussian beam reduce to Rel (VI.1), i.e.
an on-axis Gaussian beam may be described by a single set {g,} of special
BSCs. We shall later check that such is indeed the case. More particularly, for
an on-axis Gaussian beam flowing toward the positive z-direction, with the
electric field polarized in the z-direction at its focal waist (as is assumed to
be the case in chapter III), we shall find that Rel (VI.3) is valid. The validity
of Rel (VIL.3) alone however does not ensure that we are facing a Gaussian
beam. Gaussianity requires specific behaviours of the functions g, = g,(n) on
which Rel (VI.3) tells us nothing. Nevertheless, due to the strong relationship
between Rel (VI.3) and Gaussianity, we shall say that a beam defined by Rel
(VL3) is (structurally) Gaussian-like.

A still more special case when the particle center is located at the beam
waist center (Op = O¢) of a Gaussian beam will be considered too. Finally,
starting from this last case and letting the Gaussian beam radius increase
toward infinity, the Gaussian beam tends to a plane wave and the classical
LMT will be recovered as a special case of GLMT, as it should. Clearly, LMT
could also be recovered from infinitely many other cases such as from off-axis
Gaussian beams or from laser sheets. But it is particularly convenient to use
on-axis Gaussian beams, with beam waist center location, as the starting
point to recover LMT.

Historically, the GLMT has been developed by starting with the special
case of beam waist center location [I] before considering successively the
axis location case [7€], then arbitrary location and arbitrary beam [298], [2],
[89]. In the present book, instead of proceeding from special cases toward
generality, we proceed in the reverse way, from generality toward special
cases. Starting from the general case, this section makes us landing on the
restricted case of axisymmetric beams. However, due to the big amount of
algebra required for this landing process, the reader is kindly invited to refer
to Gouesbet [74] for details.
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V1.2 The LSC-Decomposition and Gaussian-Like
Beams

We now consider Gaussian-like beams for which the set of BSCs satisfies Rel
(VL.3). The incident BSPs (Rels (I11.1)-(II1.2)) then read as:

Uiy = Eorcos Z & g, WD (kr) P (cos ) (VI4)
n=1
) oo
Urp = Horsing Z & g, WD (kr) P (cos 6) (VL5)
n=1

In view of Rels (I1.50), (I1.56), the electric field component E, is therefore
proportional to cos ¢, indeed corresponding to a nonmixed state of polariza-
tion as announced in section VI.1. We then see that the double summations
over n and m reduce to single summations over n only. Therefore we straight
away observe that GLMT for Gaussian-like beams (or also more generally for
axisymmetric beams) will dramatically simplify.

In particular, let us consider the generalized amplitude functions Sy and
&1 of Rels (ITI1.111) and (II1.110). For Gaussian-like beams, they reduce to:

So = cos ¢ Sy (VL6)

S1=1isin ¢ 5 (VL7)

then defining two amplitude functions Sy and S7, which do not depend on
o, and read as:

= 2n+41
Sy = nz::l n(n + 1)gn [@nTn (cos ) + by, (cosB)] (VL8)
Z 2n+1 gn [an 7y (cosf) 4 by, Ty, (cos 6)] (VIL9)

again only involving single summations.

The amplitude functions Sy and S are exactly the ones which appear in
the classical LMT but for the appearance of the set {g,} of special BSCs.
They also are exactly the ones which were introduced in the case of Gaussian
beams [1] [76], coherently with the fact that Gaussian beams are Gaussian-
like.

Let us now consider a class of beams for which BSCs ¢! are defined versus
gn as shown in Rel (VI.3), without however assuming the nullity of the BSCs
g, Im| # 1. Rels (VI.6)-(VL.7) then generalize to:

So = cos ¢ S+ 3; (VI.10)
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S1 =i sin ¢ 5 —|—Si (VI.11)

in which the complementary generalized amplitude functions Sé and Si in-
corporate the contributions of the BSCs ¢, [m| # 1. Rels (III.111), (II1.110)
for the generalized amplitude functions Sy and S; and Rels (VI.8)-(VI1.9) for
the amplitude functions Sy and S; then imply:

, - 2n + 1
S = Z :Z l n(?zj— 0 [an Inrar 7™l (cos 6) + i m b, InTE 7 (cos 9)] exp(imyp)

— 2n+1
+ Z nt [an Ta(cosO)(cos o G ppp+i sing G ppy) (VI.12)

+b, mn(cost) (i cosp G, pp —sing G:;TE)]

o] +n
/ 2n 41 . .
S = Z Z Py {m An o' m 7™ (cos 0) +1i by InTE 7™l (cos 9)] exp(imep)
—1m=—
n m n
|m|#1

[e%S)

2n+1 _ L.
+ Z m [a,,,, Tp(cos ) (cosw G, oy T sing G:’TM) (VIL.13)

n=1

+bp T (cos0) (Z cosp G pp —sing G;TE) ]

in which:
G:,TM = Q:ZITM + g;,lTM —9n (VI.14)
G:_L,TE = gﬁfE + g;}FE (VL.15)
G;,TM = grtlTM - g;é“M (VIL.16)
Gorp = g:flTE - 9;,1TE +1ign (VI.17)

By using Rels (VI.10) and (VI.11), the Rel (II1.107) for the scattered inten-

sities becomes:
IJ) (I;_L> <I+S> <I+C>
= + (9 + (9 (VI.18)
L s c
(IJ g If If

I;'L _ A2 ip cos?
(I;FL T 4n2r2 iy sin® g (VL.19)

in which:
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with intensity functions i; (j = 1,2) given by:

ij =|S;[? (V1.20)

L% _ A (IS,
<Igs) A2 |8 (Vizl)

[(jc DS cos ¢ Re(528,%)
<I$C> " 27272 \sin ¢ Re(iS18;*) (V1.22)

and:

The first term (VLIO) with superscript L possesses exactly the same struc-
ture as in LMT. The only difference is that the amplitude functions S; and So
defining the intensity functions 4; contain special BSCs which do not appear
in LMT. This term may be called Leader or LMT-term, justifying the use
of a superscript L. The second term (VL2I]) contains complementary ampli-
tude functions Sé and Si which must be added to LMT-terms (cos ¢ S2) and
(i sinp S1) in Rels (VL6), (VL) to produce generalized amplitude functions
S and S;. This second term is therefore called the secondary term (super-
script S). Finally, the last term (VIL22]) involves a coupling between leader
and secondary terms and will therefore be named a Cross or Coupling term
(superscript C). Hence, Rel (VIIR) tells us that the scattered intensities in
GLMT are the summation of Leader-, Secondary- and Coupling-terms. This
is called a LSC-decomposition.
Let us now consider the Rel (III1.114) for the phase angle and introduce:

Re(Sl) Im(Sg) — Re(Sg) Im(Sl)

B 00 = b (1) Re(S) -+ Tm(Sy) Tm(Ss)

(VL.23)

which is formally identical to the expression in the LMT-framework but again
for the appearance of special BSCs involved in the amplitude functions S;.
The angle dp may then be thought as a leader angle. Inserting Rels (VL6)
and (VL) in (II1.114), it is then found that the phase angle § and the leader
angle g are linked by the relation:

tan 6 = tan (dp + 01) + tan d (VI.24)

in which: btan

—otan oOqp
tan &p = VI.25
an o 1+ b+ tan? ( )

a
tan dp = 1.2
an dp=, . (VI.26)
in which: ,

a= N (VI.27)

Dy
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b= VI.28
Do ( )
in which:

Dy = Re(Sl) RE(SQ) -+ Im(Sl) Im(Sg) (VIQQ)

N = 1¢[Re(51) Tm(S}) — m(Sy) Re(Sy)]

+Sii¢[Re(Sg) Re(S,) + Im(S2) Im(S))] (VI.30)

1
sing cos @

[Re(S;) Re(S) +Im(S)) Im(S,)]

D = 1¢[Re(51) Re(Sy) + Im(S)) Im(S,)]

+Sir11<p [Re(S2) Im(S)) — Im(S2) Re(S))] (V1.31)
1

siny cosp

Im(S;) Re(Sy) — Re(S;) Im(S,)]

Tt is then observed that Rel (VI.24) involves complementary angles §; and
02 which depend in a rather complex way on leader, secondary and cross
terms, that is no nice LSC-decomposition appears in an obvious way for this
quantity.

For the cross-sections (Rels (II1.137), (II1.142), (II1.159), (I11.182),
(IT1.185)), the procedure consists first in isolating in the summations the

terms containing BSCs ¢ , |m| = 1, by using (from Rels (VLI4)-(VLI7)):

Inrm = ;[G;TM + G+ 90l (VL.32)
9;,1TM = ;[G:;TM =Gy + 9nl (VL33)
InrE = ;[G;TE + G, g — 19l (VI1.34)
g;é“E = ;[G:,TE =G, rp tign] (VI.35)

The cross-section expressions may afterward be split into three contributions
(i) the leading term involving only special BSCs g, (ii) the secondary term in-
volving BSCs ¢g*, |m| # 1, and quantities G:’TM7 G G;TE, G, rp and
(iii) the cross-term involving multiplicative coupling of all these quantities,
according to:
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C;=CF+cCf+0f (VL.36)

in which the subscript i designates any cross-section.
The leader terms are found to be:

A&
Ciea =52 @n+1) |gu* [(an)® + (bn)’] (VL37)
n=1
L )‘2 = 2
Chi=,_ Red  @n+1) |gal* (an +bn) (VL38)
n=1
ch.=¢Ck, =0 (V1.39)

PR T |
k.= Y |gn|? Re(an + b% — 2a,b%)

pr,z
2 = n(n+1)
(VI.40)
+ S”Hrl ) Re [gngnﬂ(an—&—bn—kanﬂ + by 1 —2anan — anbnﬂ)]

which again formally identify with the corresponding expressions in the LMT-
framework but for the appearance of special BSCs. It is interesting to re-
mark that the leading terms C;r’m and Crfr,y of the transverse radiation
pressure cross-sections are zero as it would be for a plane wave. The ex-
pressions for the secondary and cross terms are not given. They are in-
deed too awkward and unpleasant to contemplate. For further use however,
it must be noted that they are zero when the coefficients g%, |m| # 1
and G:’TM,G;’TM,G;TE,G;TE are zero. Finally, we mention that LSC-
decompositions were first introduced in Gouesbet et al [298]. The discussion
of LSC-decompositions is here refined thanks to the prior introduction of
axisymmetric beams.

VI.3 Axis Location in a Gaussian Beam

The above formulation is now specified to the case when the center of the
scatterer is located on the axis of the Gaussian beam (Op on axis Ogw):

o = Yo = 0 (VI41)
Rel (IV.83) then implies:

Tjp(z0 = yo = 0) = &} (V1.42)
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Le. all ¥, " s are zero excepted:
Woo(l’o = 1Yo = 0) =1 (VI43)

This leads to a dramatic simplification of the GLMT because, inserting
Rel (VI.42) in the expressions for the BSCs g (for instance Rels (IV.92),
(IV.93)), it is found that all BSCs g become equal to 0, excepted for

|m| = 1. Furthermore, the nonzero BSCs satisfy:
_ E(2n+1
grlL,TM = gn}f]\/[ = 2in-1(—1 ”7m / / (10 = yo = 0)
(V1.44)
r@ Y (kr) Pl (cos @) sinf df d(kr)
k(2n+1)
1 _ -1 _
gn,TE - gn,TE - 2Z‘n72(71)" 17TTL + 1 / / F Z‘o = Yo = 0)
(VI.45)

1@V (kr) Pl (cos0) sin 0 df d(kr)
Rels (VI.44) and (VI1.45) together with Rels (VI.15) and (VI.16) show that:
G:,TE =Gorm =0 (VL.46)
Rels (VI.44) and (VI.45) also imply:

g}L,TM =1 g'}L,TE (V1.47)

G = — P 0nrm (VL.48)
Therefore, the knowledge of one set of coefficients such as { g}L’T a } is sufficient

to determine all the other sets {g;lTM}, {g}L7TE}, {g;%E} More specifically,
BSCs for axis location in a Gaussian beam satisfy Rel (V1.3), i.e. as previously
announced, Gaussian beams are Gaussian-like.
The definition of special BSCs g¢,,’s in Rel (VI.3) and Rels (VL.14), (VI.17)
then also imply that:
G;TM =Gorp=0 (V1.49)

The special BSCs g,, are then readily found to read as:

kE(2n+1)
n — = = W(l)
I = et (“1)n ) (1) / / (zo = yo = 0)r &, (kr)

(VL50)
Pl(cosf) sin® do d(kr)
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which involves a double quadrature over 6 and r. If the BSCs g are ex-
pressed by using Rels (IV.90), (IV.91), (II1.3), then the special BSCs may be
expressed in terms of a single quadrature over 6, according to:

k a T
n = 3 F = a, = = O
I = gin=1 (1) n (0 +1) 7Y (ka) /0 (r=axo=10=0)

Pl(cos @) sin6 do

The validity of the Gaussian-like Rel (VI.3) induces dramatic simplifications
in the expressions for the BSPs (Rels (IIL.1), (II1.2), (IIT.4), (IIL.5), (I11.35),
(I11.36), (IIL1.37), (II1.38)), for the incident beam field components (Rels
(IT1.39)—(II1.50)), for the scattered wave field components (Rels (III1.53)-
(I11.64)), for the sphere field components (Rels (I11.65)—(II1.76)) and also
in Rels (111.92)—(I11.97) and (II1.101)—(II1.104), which may now be expressed
by using the set of special BSCs. In particular, the expressions (IT1.101)—
(I11.104) for the scattered field components in the far field now simplify to:

iEo _ — 2n+1
FEy = -
6= 1, exp(—ikr) cos¢e ;:1 n(n+1) Gn [anTn(cos0) + by (cos0)]
(VL52)
—iE; — 2n+1

n(n+1) 9" [an T (cos 0) + b, 7, (cos )]

E, = kro exp(—ikr) sing nz:l
(VI.53)

together with Rels (IT11.103)—(111.104) which remain unchanged.
Because the complementary amplitude functions Si and Sé are zero (as
a direct consequence of Rel (VI.3)), the secondary and cross terms in Rel
(VI.18) become also identical to zero and the scattered intensities reduce to

leader terms according to:

I(j(xo =10 =0) A2 ia(wo = yo = 0) cos? ¢
= . . 1.54
<I+(xo =1yo=0) 47202 \ iy (zo = yo = 0) sin’ @ (VL54)

in which the intensity functions are defined by Rel (VI.20).
The complementary phase angles §; and 2 are also readily found to be 0.
Therefore the phase angle § becomes equal to the leader angle dg:

tan § = tan &g (VL.55)

leading to:
Re(S1) Im(S2) — Re(S2) Im(S1)

b 0 = o(S1) Re(Sa) + Im(S1) Tm(S5)

(VL56)
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which is strictly identical with the expression in the LMT-framework, but
again for the appearance of the g,’ s in the amplitude functions S;.
Similarly, all secondary and cross-terms are zero in the expressions for the
cross-sections as a result of the nullity of the ¢g/’s, |/m| # 1 and of Rels
(VI.46), (VI.49).
The cross-section expressions then identify with the expressions for the
leader terms:

>‘2 — 2 2 2

Coca = ;(QnJrl) l9nl® [lan]® + [bn]?] (VL.57)
A2 )
Celt = o1t Renz::l(Qn + 1) |gn| (an + bn) (VI58)
Cprw = Cpry =0 (VL.59)
N 2n+1 9 n(n + 2)
Tz n n n—2 n ,
Crre = e 2 g 1) 90l Bellon 400 =200+ )

(VL.60)

Re [gngps1(an 4+ bn +ay g + b0y — 2ana), ) — 20,05 1)

In particular Rel (VI.59) shows that there is no transverse radiation pressure
force when the scatter center is located on the axis of a Gaussian beam.
Considering the way used to establish this result, it appears to be more
generally valid for Gaussian-like beams.

The set of formulae obtained in the GLMT-framework for axis location in
Gaussian beams is strikingly similar to the set of corresponding formulae in
classical LMT. More precisely, the relations for field components, scattered
intensities, phase angle, scattering and extinction cross-sections (and hence
for absorption cross-section), and transverse radiation pressure cross-sections
are formally identical in the present special case of GLMT and in the LMT,
but for the appearance of special BSCs.

This may be understood as a consequence of the fact that all secondary
and cross terms have disappeared from the formulation. A practical conse-
quence is that any owner of computer programs handling LMT-formulae may
readily adapt them by modifying a few statements, essentially incorporating
multiplications by special BSCs, and implementing a subroutine to evaluate
these coeflicients.

Such a formal identification however does not hold for the longitudinal
radiation pressure cross-section, a fact which is attributed to wave-front cur-
vature. Indeed, for a plane wave, Rel (I11.147) would read as [17]:

CPT,Z = C&”L’t —cos? Csca (VIGl)
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which is formally different of Rel (II1.147). The expressions obtained in this
section are in agreement with those given by Gouesbet et al [76] excepted for
the cross-section C, , which was derived by using Rel (VI.61) instead of Rel
(T11.147).

This section will be ended by elaborating a bit more on the expressions
for the special BSCs g,,. For the case under study, Rel (IV.86) expressing the
function F' is specified for xg = yo = 0.

Rels (VI.50) and (VI.51) become:

k(2n+1) / / i0 exp |:ZQT sin 9} (1*6[12?7’0080)

In = in~H=1)"mn(n + 1

(V1.62)
exp[—ik(rcos 0 — z0)] 7 W (kr) P}(cos @) sin® 6 do(kr)
k a a’®sin? 0
In = 2in=1(—=1)"n(n + 1) W,S”(/m)/ iQ) exp [—ZQ }
(VL63)

2
(1—ep lQa cosh) exp[—ik(a cos® — z)] Pl(cosf) sin® 6@ df

in which @ reads as:
1

i+ 7 (rcosf — z)
in Rel (VI.62) with 7 = @ in Rel (VI.63).
The next special case is to assume that the scatter center is located at the

beam waist center, i.e. the condition zp = 0 also holds. Rels (VI.62)-(VI.64)
simplify accordingly. For instance, Rel (VI.62) becomes:

Q= (VL.64)

kE(2n+1) T .
= — w1
g in=1(—1)rrn(n + 1) /0 /0 fexp(—ikrcos@) r&," (kr)
(VIL.65)
Pl(cos®) sin? 0 db d(kr)
in which the function f reads as:
2 g2 9 _
f=1Q(z=0) exp {—iQ(zO =0) " 11)121 6} (1—e€g Q(Z(; O)rcosﬁ)
0
(VL.66)
If the beam is described at the order L, the function f simplifies to:
2 2
f=iQz0=0) exp {—z‘@(zO =0) " >, 9} (VL.67)
0

This was essentially the case investigated in Gouesbet and Gréhan [I].
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V1.4 Lorenz-Mie Theory

The LMT must be a special case of the GLMT. Such a special case may
be recovered from an arbitrary location in an arbitrary beam by letting the
transverse characteristic length scales of the beam tending to the infinite.
The simplest procedure available to us in this book is however to consider
the case of axis location in a Gaussian beam. Letting the beam waist radius
wp going to infinity which means that the beam locally becomes a plane wave
leads to (Rel (IV.4)):

I — o0 (VL.68)

and therefore to (Rel (VI.64)):
Q—1/i (VI.69)

The expression (VI.62) for the special BSCs g, becomes:

zkzo
gn = . ITEQnJrl // exp(—ikr cos 0) r&(V (kr)
"

ran(n + 1
(VI.70)
P(cos) sin® 6 db d(kr)

It now happens that the term exp(—ikrcosf) may be expanded in terms
of spherical Bessel functions and of Legendre polynomials ([130], t3, p313)
according to:

exp(—ikr cosf) = i i"(—=1)"(2n + 1) ¥V (kr) P,(cos ) (VL.71)

n=0

Deriving Rel (VI.71) with respect to cos 6 and recalling the definition of
associated Legendre functions P} (cos) in Rel (I1.73) leads to:

1 & Pl(cos0)
— — 1\ (1) n

exp(—ikr cosf) ikr ;z (=D)"(2n+ 1), " (kr) <im0 (VL.72)

which may be inserted in Rel (VI.70) to provide:

, = 2n 41 (—D)™im™(2m+1)
n — k

g eXp(Z ZO) mzz:l 7T’n,(’l’7, + 1) (—1)”7,”

(VL73)

/ W,(,})(kr)w,sl)(kr)d(kr)/ P! (cos @) P}(cos®) sinf df
0 0
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Invoking orthogonality properties for associated Legendre functions
(Rel (IT1.12)), and the Rel (II1.15) for the spherical Bessel functions, then
readily leads to:

gn = exp(ikzo), n (VI.74)

Therefore the special BSCs for a plane wave reduce to a phase term which
is actually irrelevant. Such a phase term would appear in the expressions for
the field components but would disappear in the expressions for the scattered
intensities and cross-sections (Rels (VI.54), (VI.57)-(VI.60)) which involve
lgn|? and gng} . It also disappears in the expression (VI.56) for the phase
angle. Without any loss of generality, it is then possible to set:

gn =1, Vn (VL.75)

which is just actually Rel (VI.74) in the case of a beam waist center location.
Clearly, the same results must be obtained if arbitrary location is consid-
ered instead of an axis location. Indeed, in the limit wy — oo, Rel (IV.83)
for the ¥;,” s and Rels (IV.90)-(IV.91) or (IV.92)-(IV.93) for the BSCs g

imply:
W, — 0 but for P9 = 1 (VL.76)

g™ — 0, |m| # 1 (VL77)

which are exactly the relations which have been obtained in the axis location
case, i.e. Rels (VI.76)-(VL.77) are valid both in the axis location case of a
Gaussian beam and for a plane wave. This is not very surprising in so far
as any line parallel to the direction of propagation of a plane wave may be
considered as a degenerate axis of a Gaussian beam of infinite beam radius.

Following a procedure quite similar to the one used to establish Rel (VI.74),
one then shows that the BSCs g, |m| = 1 satisfy:

_ 1 .
gi,TM:gn,lTM =, exp(ikzo) (VL.78)

_ 1 .
g}L’TE: — gn’lTE -, exp(ikzo) (VL.79)

which, together with Rel (V1.3), implies again Rel (VI.74).
By using Rel (VI.74) or Rel (VI.75), it is then readily found that:

It

+ = 22
1] 42y

io cos?

i sin (V1.80)

in which intensity functions ¢; are

ij = |S;[? (VL81)
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in which the amplitude functions S; may be written as:

S1= ; nQ(Zi 1) [anmn (cos 0) + b7y (cos 0)] (VL.82)
Sy = i 2 (cos 6) + b (cos 6) (VL83)
27n=1n(n_~_1) nin nitn .
and also: Re(S1) Im(Ss) — Re(S2) Im(Sy)
_ e(o1)Im(o2) — hel(o2) lm(o7
tan 0 = Re(S1) Re(Ss) + Im(Sh) Trn(Ss) (V1.84)
Csea = Z (2n+1) [lan]* + bal?] (VL.85)
A2
Ceat = Renz::l(%z +1) (an + by) (VIL.86)
Cpra = Cpry =0 (VL8T)

which are exactly the classical formulae of the LMT.
For the cross-section Cp, . , the story is just a bit more complicated. Start-
ing from Rel (VI.60), one first obtains:

N 2+l n(n + 2)
n + 05 — 2a,b’
27rzn(n+1)Re(a b = 2anbn) + n+1

n=1

Cpr,z =

(VL88)
Re (an + by +ajq + by — 2ana  — 2b,b )

which is not the usual expression for LMT. However, one just remark that:
(oo} oo
n(n +2) . . (n—1)(
E Re (a1 +b41) = § +1) Re (a, + by) (VI.89)

which, inserted into (VI.88), readily leads to the usual expression for LMT:

A2 N (an +b,)  2n+1
rz 2 1 - n ;
Chor, - Re nE:1( n+1) 5 n(n+1) anb,
(VI.90)
_n(n+2)

nt 1 (ana;"LJr1 + bnb;"LH)

It follows from this section that LMT is indeed a special case of GLMT, as
it should.
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V1.5 A Theorem for the Special BSCs

The theorem states that the special BSCs are real numbers for the beam
waist center location case. The result in Rel (VL.75) is just a special case
of this theorem. Due to Rel (VI.3), the theorem carries over to the BSCS
9z Im| = 1 which are also real numbers and implies that the BSCs
In'TE |m| = 1 are pure imaginary numbers. These results provide easy
tests for computer programming.The proof is as follows.

With zp = 0, Rel (VI.65) may be rewritten as:

k(2n+1) ) 2 sin” 0
gn= wn(n 4 1)(=1)rin—1 / / Q(z0=0) exp |—iQ(zo =0) B
<1 —€q 2Q(Z? =0) T COS 0) exp(—ikrcosf) (VI.91)

@, (kr) Pl(cos@) sin®0 do d(kr)

in which Q(z¢ = 0) is, from Rel (VI.64):

1
=0) = VI.92
@z ) i+ %7’ cosf ( )
complying with the relation:
0
iQ(z0=0)=1 — 2 rc;’s Q2 = 0) (VL.93)
Denoting a real prefactor by a, Rel (VI.91) may be rewritten as:
=0 / / K W, (kr) PMcos8) sin®0 df d(kr) (V1.94)
in which the partial kernel K reads as:
1 ’ ir? sin” 0 /w3
= — —ik 0 VI.95
i+2m?se exp{ i+2rcos€/l} exp(—ikr cos0) ( )

For the case under study, coordinates (x, y, z) and (u, v, w) identify and,
conveniently reintroducing the variables A" and ¢ (Rels (IV.13) and (IV.7)),
the partial kernel reads as:

k= ( ! Qex _ MY (—ikl) (V1.96)
“igac) TP\ a0 )P :

which may be rewritten as:

A -1 44 h% 2h3
T oueey1e P <_4C2 i 1> exp [ i <4C2 ‘1 +k‘l>} (V1.97)
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from which it is found that:

W 212
Re(K) = (4¢2 1+ 1)2 exp(—4C2 L 1) {(4¢* - 1) cos [C(4C2 1 —&-k‘l)}
(VL98)
2h2
— 4C sin [4(4@11 +kl)”
-1 h% 9 _ 2h2.
Im(K) = (4¢2 1+ 1) exp(f4C2+1) {(4¢*> = 1) sin [C (4C2 1 —|—kl)}
(VI.99)

2
+ 4 ¢ cos [C (452]111 —|—kl>}}

Integration over 6 in Rel (VI.94) may be arranged by splitting the interval
(0, 7) into two intervals (0, 7/2) and (7/2, ) and by introducing the change
of variables § — ¢ =7 —6:

™ w/2 w/2
/ .sin? 0d6 = / .sin% 0d0 + / .sin? @dyp (VI.100)
0 0 0

Furthermore, it is readily found that:

¢0) = — <p) (VI.101)
he(0) = halp) (VL102)
leading to:
Re(K)(0) = Re(K)(p) (VI.103)
Im(K)(#) = —Im(K)(p) (VI.104)

Therefore, Rel (VI.94) becomes:

o /2 poo
gn = int1 /0 /0 {Re(K)(@) [Pﬁ(cos 0) + P} (- cos@)] +i Im(K)(0)
(VI.105)
[P)(cos) — Py (—cos0)]} W,(kr) sin®6 df d(kr)

Associated Legendre functions however comply with the symmetry relation
([130], t1):
P (cos) = (=1)"""P™ (—cos¥) (VI.106)
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leading us to separately consider the cases n even and n odd. Still using the
notation « for any real prefactor, one finds:

w/2 poo
o = i / / I (K)(60) @, (kr) P (cos ) sin20 do d(kr) (VI.107)
0 0

w/2 oo
o = i1 / / Re(K)(6) W, (kr) P (cos0) sin0 do d(kr)
0 0

(VI.108)
We are done i.e. special BSCs for beam waist center location are indeed real
numbers (at the order L of approximation). This result is a special case of

BSCs symmetry relations such as discussed more extensively by Ren et al
[312].

VI.6 Numerical Computations of Special BSCs by
Using Quadratures

VI1.6.1 Computer Programs

From Rel (VI.3) expressing the special BSCs g,, in terms of BSCs ¢, |m| = 1,
in the axis location case, and from Rels (IT1.17) and (III.14) expressing the
BSCs g, (BSCs gt could be similarly used) in the most general case in
terms of triple and double quadratures respectively, it is found that special
BSCs g, may also be expressed in terms of triple and double quadratures
respectively. These quadratures involve the expression of the radial electric
field component E,.(r, 0, ). In the case of Gaussian beams, with axis location,
the component E,.(r, 0, ¢) reads as, from Rel (IV.71):

2 (12

0 2
E, = {Eo iQ exp {,iQ%} sin @ (1 - eLTQr cos 6) exp [—ik(r cos — zo)}} cos
10 L

(VI.109)
This relation is a special case of a more general relation, valid for Gaussian
beams and also for a broader class of beams (see section VI.1), in which the
component E,.(r, 0, ) takes the form:

E.(r,0,¢) = E.(r,0) cosp (VI.110)

Then the integration over ¢ may be readily carried out leading to two new
expressions for the special BSCs:

n+1 > " B (r,0) .

= w() / 9) p1
g mn(n + 1)in=1(=1)" /0 kr@y (kr) ; Eo ) (cos 8) sin@ df d(kr)
(VL111)



156 VI Special Cases of Axisymmetric and Gaussian Beams

ka

gn =
2n(n + 1)in—1(—

/ Ey(a,0) Pl(cosf) sinf do (VI1.112)
1w (ka) Jo - Eo

in which triple and double quadratures have been reduced to double and
single quadratures respectively.

Computer programs are available from the website connected to this book.
This first routine evaluates the special BSCs according to Rel (VI.111). The
field E,(r, ) is specified for Gaussian beams. The second routine evaluates
the special BSCs according to Rel (VI-112). The field E,(r, ) is specified for
Gaussian beams too.

VI1.6.2 More on the Plane Wave Case

Rel (VI.112) provides a new opportunity to discuss the plane wave case for
which it has been found that the special BSCs are just phase terms (section
V1.4, Rel (VI.74)). The same dish is again served here accompanied however
with a somewhat different kind of wine.

For a plane wave, the field F, (r, 0) is readily found to read as:

E.(r,0) = Ey sinf exp|[—ik(rcosf — z)] (VI.113)

Omitting the constant phase term exp (ikzo) for convenience, Rel (VI.112)
becomes:
ka

In = / Pl(cos @) sin?6 exp(—ikacosb) df
2n(n + 1)in=1(=1)»@ (ka) Jo

(VI.114)
By using a recurrence relation between associated Legendre functions P} and
Legendre polynomials P, ([132], p239):

(2n 4 1) sinf Pl(cosf) = n(n+1) [Poyi(cosf) — P,_1(cosf)] (VL115)

and also the expansion relation (VI.71), and finally invoking the orthogonality
relation of associated Legendre functions (Rel (II1.12)), the integral in Rel
(VI.114) is found to be:

n(n+1)

=gy OO Wy )y (ka) + Wﬁlfl(ka)} (VL116)

This relation may be modified by using a recurrence relation for the spherical
Bessel functions ([I32], p377):

o) (@) + oY, (2) = 7 (z) (VL117)

Rel (VI.75) stating that the special BSCs are unity for the beam waist center
location is then readily recovered, as it should (phase term omitted).
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VI.6.3 Numerical Behaviour of Quadratures

The evaluation of BSCs ¢g7* (section IV.3) and g, by quadratures exhibits
particular difficulties because the spherical Bessel functions and associated
Legendre functions involved in the integrands possess complex oscillatory
behaviours. It consequently requires significant CPU-time and the accuracy
of the results may be limited if numerical integration routines are not efficient
enough. This problem is strongly connected with the choice of the value r = a
in the methods where the value of r is specified. A poorly chosen value may
lead to quite inaccurate results. It has been chosen in this book to discuss
these issues in the simpler case of special BSCs g,. Conclusions would be
similar for BSCs g,".

The expression E, (a, #) involved in Rel (VI.112) is given here for Gaussian
beams by the bracket term of Rel (VI.109) as:

a?sin® 0

E.(r =a) = EyiQ exp {—iQ — tkacos 0] sinf (1—eg, ?a cos B) exp(ikzp)

wg
(VI.118)
Therefore, on the one hand, the integrand in Rel (VI.112) contains an expo-

M 0

nential contribution depending on ”a” reading as:

22
A =exp {—iQ @ ZI;I 0 —i1ka COSG:| (VI.119)
0

On the other hand, the prefactor contains an a-dependent term 1/t,(ka) in

which:

2n(n + 1)V (ka)
ka

If a big value of r = a is chosen, then A is very oscillatory, making the
integration difficult. Conversely, let us choose a very small value of r = a
such as ka < n. Then an asymptotic expression for the spherical Bessel
functions when the argument is much smaller than the order [369] allows us
to approximate Rel (VI.120) by:

tn(ka) = (VL.120)

(n+1)!

polke) = 270 g 1)

ka (VI.121)

Rel (VI.121) leads to very small values indeed, implying numerical difficulties.
For example, for 2 = ka = 0.01, we have tig ~ 10747, tgq ~ 107232, tiog =
107251, Therefore, the chosen value of r should not be neither too big, nor
too small.

Let us now consider Fig (VI.1) which exhibits t,(z) versus z for several
values of n, evaluated using Rel (VI.120). The function displays a maximum
for £ ~ n and afterward an oscillatory behaviour. This fact suggests that a
good choice should be to take x = ka = n. Of course, this particular choice
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Fig. VI.1. Behaviour of ¢,(z), Rel (VI.120), with n as the parameter.

is not compulsory. It would still be reasonable to choose x at or near other
extrema of the function without significantly influencing the accuracy of the
results. However, it should definitely not be chosen near zeros of the function,
nor too small or too large with respect to n.
Figs (VI.2) to (VI.4) display some examples of the behaviour of the inte-
grand involved in Rel (VI.112), i.e.:
_ B (x/k,0)

J(xz,n) = £, Pl(cosf)sin (VI.122)

versus 6 for various values of x = ka, and n.

Fig (VI.2) shows Re(J(z,1)) for three values of z, with wy = 10pm, A
= 0.5145 pum, zp = 0 and ¢;, = 1. The maximum of ¢;(x) is at © = 0, i.e.
a = 0. The integration becomes the greatest (in modulus) when this value
a = 0 is approached, compensating for the fact that the prefactor 1/¢,(x)
takes on its smallest value. If x is increased, the integrand exhibits oscillatory
behaviours which are inconvenient for numerical integration. The proposed
choice # ~ n would here lead to a =~ 0.08 (z = .48849) which indeed
appears also to be a good choice in Fig VI.2. In this case, it may be shown
that the imaginary part of the integrand is an odd function and therefore
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Fig. VI.2. Behaviour of real part J(z,n), Rel (VI.122), for n = 1.

does not contribute to g;. The result that g; must be here a real number is
therefore recovered.

Fig V1.3 similarly displays I'm(J(«,10)). The maximum of ¢, (10) is here
for n ~ 10. The criterion x =~ n here implies to take a ~ 0.8, say 1 pm
(x = 4.8849). For such a value, the imaginary part of the integrand is nearly
always positive. Although oscillations are present, they will therefore not
affect significantly the accuracy of the result. Conversely, for smaller values
of x, oscillations develop between positive and negative values, spoiling the
accuracy. Such spoiling oscillations also develop when z is increased above
the criterion value as illustrated in Fig V1.4 for a = 10um (z = 122).

Many observations of this kind and numerical experiments lead us to the
conclusion that the value of a should indeed be chosen according to the
criterion z &~ n, i.e. a ~ n/k. With such a criterion, it is simultaneously
observed that both the function ¢,(z) and the integral take on maximal
values, and that the oscillations of the integrand do not significantly spoil
the accuracy of the results.

No damage would be done if the criterion was rewritten as:

(n+1/2)A

a ~ o (V1.123)
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Fig. VI.3. Behaviour of the imaginary part of J(z,n), Rel (V1.122), for n = 1.
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Fig. VI.4. Imaginary part of J(z,n), Rel (VI1.122), for n = 10 and a too large
value of x.
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Such an expression will reappear in the next chapter when developing the
localized approximation to the BSCs. Therefore, the above discussion may
be considered as a first introduction to the localized approximation technique
which plays an important role for an efficient implementation of GLMT. The
criterion of Rel (VI.123) also appears when studying quadratures to the BSCs
by using a stationary point (or stationary phase) derivation (Appendix A of
Lock, [127]), pointing out that it indeed possesses a deep signification to be
revealed later.

When using Rel (VI.111) involving an extra integration over r, the inner
integration is the same than for Rel (VI.112). Our previous discussion implies
that the inner integration contributes most to the final result for values of
r complying with the criterion kr =~ n. For example, when n = 30, the
integration between x = 0 and z = 25 provides a very small contribution. In
practice therefore, the integration over r between 0 and oo can be replaced
by an integration between well chosen values 7, and rp,4,. This issue will
be more extensively discussed in chapter VII to vividly illustrate localized
properties of the BSCs. Also, the use of a ryax-value as an upper bound for
this quadrature technique prevents us to observe divergence effects when the
beam description does not exactly satisfy Maxwell’s equations [134].

VI.7 Computations of Special BSCs by Using Finite
Series

V1.7.1 The Formulation

The procedure of Neuman expansion to express BSCs ¢; in terms of finite
series (chapter V) may be similarly used to express the special BSCs. This
actually corresponds to the historical development in which the finite series
for g, ’ s have been obtained (Gouesbet et al [87]) before generalizing to the
g 7 s. In this book, it is more convenient to specify the formulae obtained
in chapter V to the axis location case (g = yo = 0).

It is then known that all ¥;, ’ s are zero but for Yoo = 1 (Rels (VI1.42)-
(VI.43)). From Rel (V.28) linking ¥;, " s and A (4, p) ’ s, or directly from
Rel (V.29), it is also found that:

A(j,p) = & 5 (VI.124)

Furthermore, Rel (V.71) implies that all §2 (4, p)’s are zero, even for j = 0.
These results lead to dramatic simplifications for the expressions giving the
BSCs g,

As an example, let us consider Rel (V.80) for BSCs g%’;#M (k > 0). All
the terms involving £2(j, p) become equal to zero. The term containing D is
also zero due to xg = 0. Then Rel (V.80) reduces to:



162 VI Special Cases of Axisymmetric and Gaussian Beams

ke —k—=1)! I'2p—m+1/2)
2kl (L5 gy = U 92p—k—1) (p
2p. (K 2 0) (—1)k I'p+k+3/2) g::o 22mm!
p—m—k—1 2\t
—Zys
Z ( tO' ){e(p—m;O,l,...,k)
t=0 ’
B
2A(2p—2m—2t—2,p—m—t—k—1) (VI.125)
1
+26(t;p—m—k‘—1)e(p—m;0,17...,k+1).

[BA2p—2m —2t—2,p—m—t—k —2)
+CA2p—2m—2t—4,p—m—t—k—2)]+
C

26(t;p—m—k—1,p—m—k—2).
e(p—m;0,1,.. k+2) A2p—2m —2t—4,p—m—t—k—3)}

Subscript couples in A-terms of Rel (VI.125) are now listed:

2p—2m—2t—2,p—m—t—k—1) (VI.126)
2p—2m—2t—2,p—m—t—k—2) (VI.127)
2p—2m—2t—4,p—m—t—k—2) (VI.128)
2p—2m—-2t—4,p—m—t—k—3) (VI.129)

We now remember that only A (0, 0) is not zero. Therefore, A-terms with
subscripts of Rel (VI.126) are not zero if there exist values of p, m, t and k
such as:

2p—-m—-t—-1)=(p-m—-t—-1)—-k=0 (VI.130)
which is possible only if k£ = 0, that is:
m=2k+1=1 (VL.131)

From Rel (VI.127), it is similarly found that nonzero A-terms may only
appear if:

2p—m—t—1)=p-m—t—1)—(k+1)=0 (VI.132)

which is possible only if k = —1, that is:
m=2k+1=-1 (VI.133)
From Rels (VI.128) and (VI.129), it is similarly found that characteristic

equations may only be satisfied if k =0 (m = 1) and k = —1 (m = 1),
respectively. It has therefore been demonstrated that:
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9oy rar(m odd, [m| # 1) =0 (VL.134)

Examining all finite series relations for BSCs g,* given in chapter V, it is
more generally established that:

9§§,TM = 9§§+1,TM = g3p(m odd, [m| # 1) = g3, 1 (m odd, |m| # 1) =0
(VI.135)
and similarly for TE-BSCs.

Therefore, we recover a known result, namely that all BSCs g/ become
zero, but for |m| = 1. Next step is to evaluate successively all coefficients g/
with |m| = 1. For instance, starting from Rel (VI.125) and specifying & = 0
(m = 1) yields:

. P p—m—1 Nt
1 i oo I'2p—m+1/2) (—Zos?)
= 2°P E E
92107TM 4 p + 3/2 — 22mm| — t!

(V1.136)

{e(p—m;O)SA(Zp—2m—2t—2,p—m—t—1)
1
+ 26(t;pfmf1)6(]97m;O,l)CA(pr2m72t747p7m7t72) }

Separating the r.h.s of Rel (VI.136) in two terms, taking advantage of the
properties of the symbol €(n; o;) defined by Rel (V.32) and using A(0,0) =1,
it is then found that:

gk _ [ 92p (p—1)! g:l B I'(2p—m+1/2) (—Zys?)p~m—1
2p,TM = 4 I'(p+3/2) 2 92m | (p—m —1)!
(VI.137)

m=0

LN C T —m+1/2) (Zes?
— 22mn) (p—m—2)!
With j = (p—m —1) in the first term of the r.h.s. and j = (p — m — 2) in the
second term, and rearranging the obtained second term, Rel (VI.137) finally
may take the form:
zp: ipl I(p+j+5/2)

1
g _
W i p =) T(p+5/2)

| B C
_ 2yJ — e
( 4Z05 ) |:2 .] 6(]’0) 22()82

(VI.138)
in which B and C must be specified for the case (zo = yo = 0) leading to
(from Rels (V.67)-(V.68)):

B = —i exp(ikzo) [Zo+ Zy — 2€1,5°Z¢] (VI.139)
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C=1i2ZyZy s* exp (ikzp) (V1.140)

Having now understood the procedure of reduction of the BSCs g3, 1/, the
reader could undertake the task of evaluating similarly all other relevant
coefficients, with |m| = 1, to find:

1 _ o1 1 I |
Gop+2,7M = 9oprorm =V 92p+2,TE = — Y Yopio2TE (VI.141)

which are therefore all given by Rel (VI.138) and:

9%p+1,TM = 92_191-1-1,TM =1 9%p+1,TE =—1 gQ_pl-|—1,TE (V1.142)
in which g3, | 7y is given by a relation rather similar to Rel (VI.138):

. 1 : ~ p! Tlp+j+3/2) N
92p+1,TM = 9 ZO EXp(ZkZ()) ;]'(P—J)' F(p+3/2) (74Z0 $ )J
(V1.143)
Both Rels (VI.141) and (VI.142) may be rewritten by replacing subscripts
(2p+ 2) and (2p+ 1) by a single subscript n (odd or even). Comparing with
Rel (VL.3) expressing special BSCs g, in terms of g}L7TM, . g;}E , it is
therefore found that the g,’s are given by two formulae, depending on the
parity of n:

P

; ' I'(p+j+3/2
gop1 = Zo explikzo) > 7 (p+7+3/2)

A=) Tz CHZs) (VL)

=0
1 . - pl I(p+j+5/2) { jB} o
= exp(ikz A— —4 Zy s7)
G2 =, xPlihz0) ; M=)t Tp+5/2) z,) CHA
(VI.145)
in which new notations have been introduced:
» 2
A=k(Zy+ Zy) — leng (V1.146)
B = —kZyZ, (VI.147)

Zy (Rel (V.27)) does not depend on ey, Therefore the BSCs ¢, s (n odd,
Rel (VI.144)) are insensitive to the order of approximation L~ or L of the
description of the laser beam. BSCs g,, (n even, Rel (VI.145)) conversely are
different for orders L and L~ due to ey, involved in Rel (VI.146).
Let us now consider the more special case of a beam waist center location.
Then, Zy and Z, (Rels (V.27), (V.70)) simplify to:
—2

Zo=1, Z,= o 2 52 (V1.148)
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and Rels (VI.144)-(VI.145) reduce to:

P ! I(p+j+3/2 ,
92p+1 = Z P (p+j+3/2) (— 4 8% (VI.149)

= =) Ilp+3/2)

- p! I'(p+j+5/2) 2 /. 247
g2p+2*;j!(p_j)! I(p+5/2) [(1-28* (j+14er)] (—45%
(VI.150)

The fact that the special BSCs g,, are real numbers for the beam waist center
location case as demonstrated in section (VI.5) by using quadratures is here
recovered by using finite series. The statement holds at both orders L and L.
At order L—, Rel (VI.149) is unchanged and Rel (VI.150) simplifies a bit.

If O(s?) is furthermore neglected with respect to 1, one obtains:

_ - p! Flp+ji+3/2) | 2y

92p+1 = jgzo Mp—i) Tp+3/2) (— 4 5% (VI.151)
_ - p! Flp+ji+5/2) | 2

92p+2 = jgzo M- Tp+5/2) (— 4 5% (VI1.152)

These two last relations have been obtained for the first time by Ferguson
and Currie [370]. The work by Ferguson and Currie actually made us aware
of the existence of Neuman expansions.

Let us finally assume the LMT-limit, i.e. wy — oo, s — 0. Then only the
first term j = 0 is preserved in Rels (VI.151)-(VI.152) leading to g, = 1,
¥ n, as it should. The LMT-limit may similarly be studied in Rels (VI.144)-
(VI.145) to recover g, = exp(ikzp).

VI1.7.2 Routines

One first considers the simplest relations (VI.151) and (VI.152). For program-
ming efficiency, elementary modifications of the formulae are introduced, in-
cluding the use of Rel (V.94). A single routine has been constructed for both
n odd or even.

When n becomes big (n greater than about 4 7 wg/A), this routine pro-
duces |gn|’s increasing steadily, creating two alternating series, one for n odd
and the other for n even. Using the language of localized approximation (next
chapter), this unpleasant behaviour appears when the order n of the coef-
ficients corresponds to rays passing at a distance from the axis bigger than
about twice the beam waist radius. The energy associated with such rays is
very small and should be very insignificant in practical situations. It is how-
ever interesting to check whether this behaviour is a real one or results from
numerical artefacts.
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A first checking may be carried out by evaluating the special BSCs of Rels
(VI.151)-(VI.152) by using recurrence formulae. For instance, Rel (VI.151)
may be formulated as:

P
gop+1 = Z 92p+1,j (VI.153)
j=0
p! I'(p+j+3/2) N
92p+1,5 = . . —4s°) VI.154
2p+1,5 j!(p*j)! F(p+3/2) ( ) ( )
One then introduces a ratio r; given by:
j (p—7)! r i +5/2
pp= Pt Ep ) , PHTH+5/2) 42y (vLiss)
915 G+DUp—j -1 Ilp+j+3/2)
which may be rewritten by using Rel (V.94) as:
(p - .7) . 2
=, . +j+3/2)(—4 VI.156
j (jH)(p J+3/2)(—4s%) ( )
One then readily establishes the following recurrence expression:
p—1
g2p+1 =1+ Z ri 92p+1,j (VI.157)
j=0
Similarly, one obtains:
p—1
gopt2 =1+ Z T 92p+2,j (VI.158)
j=0
in which: )
= (? —J) (p+j+5/2)(—4s?) (VL.159)
U+

Rels (VI.149)-(VI.150) may be treated similarly as Rels (VI.151)-(VI.152).
Because Rels (VI.149) and (VI.151) are identical, there is no modification
for the BSCs g2p+1. The recurrence expression for the BSCs g2,42 however
becomes:

p—1
Gaprz = [1 =28 (L+er)] + D7) gopiay (VI.160)
j=0
in which:
G P 12821+ ep) =2+ 1)s%]
a 2 —4 1161
K (p+j)(p+‘7+5/) [1—252(1+ 1) — 2js?] (—4s7)  (VL161)

All these recurrence formulae have been implemented in a routine
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Results obtained by using this last program (when specified for Rels
(VI.151)-(VI.152)) are identical to the previous ones, confirming the increase
of |gn| when n increases. Because truncation errors might be suspected to be
the cause of the observed behaviour, another checking may be carried out by
programming the expressions with symbolic computations yielding infinite
accuracy. The routines use the MAPLE softward].

A first routine evaluates Rels (VI.151)—(VI.152) using recurrence expres-
sions. A second routine similarly evaluates Rels (VI-149) and (VI-150) at the
orders L™ or L.

Results obtained by symbolic computation agree with those obtained by
FORTRAN routines. Whether the divergence effect of |g,| is consistent with
physics, requires examining.

One then examines the description of the incident electromagnetic field
incorporating the special BSCs. The incident radial electric field component
for the axis location case reads as, from Rel (IV.71):

r2sin? 0

2
E,. = Ey iQQ exp |:—ZQ } cos sinf {1—@ ?TCOS@:l

O
(V1.162)

exp(—ikrcosf) exp(ikzg)
But this field component may also be obtained from Rels (I11.39), (I11.45),

which after specification for the case under study and using Rel (II1.3) may
be rewritten as:

E, = COS(pZz” Y=1)"(2n + 1)g, ¥V (kr) P} (cos ) (VI.163)

leading to:
2
2
kr i@ exp[— Qr Zl;l 9] sinf[1 — e, ZQTCOSG] exp(—ikrcosf) exp(ikzy) =
0
(VI.164)
Z (2n + 1)g, @Y (kr) PL (cos 0)

Let us now examine the more special case of beam waist center location
(z0 = 0,Q = 1/i) and specify § = 90°. By using Rel (V.6) specified for
m =1, Rel (VI.164) becomes:

kr exp(— 2) " "2n + 1) g o) (kr)(=1)"2
2

! The programs have been written in MAPLE V release 3.
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For n odd: .

TN (=1) 2 =1 (VI.166)
Furthermore, a direct evaluation shows that g; = 1. Therefore, Rel (VI.166)
is rewritten as:

2 0 1
T n::
kr exp(_wg) = SLPT(LI) (kr) + E (2n + 1)ganT(L1) (kr) 2n;1 (n—l)]
n=3 2 /7

(VL167)

A MAPLE routine FIELD evaluates the r.h.s. of Rel (VI.167).

Results obtained from FIELD agree perfectly well with the Lh.s. of Rel
(VI.167), even if the |g,|” s become very great, alternating in sign when the
order n of the coefficient increases. Such a behaviour, historically first ob-
served by using finite series, is actually also observed by using quadratures,
as it should have been expected in so far as finite series and quadratures
are rigorous mathematically equivalent formulations (in the limit of a beam
description exactly satisfying Maxwell’s equations). Conversely, such a be-
haviour is not observed if the BSCs are computed using a localized interpre-
tation to which the next chapter is devoted. Numerical results are available
from Gouesbet et al [87].



VII

The Localized Approximation and
Localized Beam Models

VII.1 Generalities

Beside more or less classical mathematical functions, numerical computations
for GLMT require accurate enough computations of BSCs g,* or g,, describ-
ing the incident beam. These BSCs may be in fact, at least in some cases,
experimentally evaluated on an actual beam in a laboratory [328], [329], [330],
[331], [332], [333] but, in this book, we mostly discuss the evaluation of BSCs
from a priori, or better said assumed, known mathematical descriptions of
the incident beam. Then, because a huge amount of BSCs must be evaluated
before assembling GLMT-series, much effort has been devoted to the devel-
opment of efficient schemes and algorithms. This chapter is devoted to the
most efficient technique available up to now, namely the localized approxi-
mation relying on a localized interpretation of the BSCs, and leading to the
construction of localized beam models exactly satisfying Maxwell’s equations.

In previous chapters, two methods have been considered. The quadrature
technique (with integration over variable r or not) historically appears as the
first one. It is the most natural method in so far as, when developing the
theory, it possesses an obvious character to the researcher. There is a strong
interest in this method because it is the most flexible one. Indeed, only the
kernel of the quadratures is to be modified when the nature of the incident
beam is changed.

However, even when integration over variable r is not carried out, it is the
most time-consuming technique in terms of CPU requirements, numerical
difficulties being enhanced by the oscillatory behaviour of the integrands. In
the early times of the GLMT, one hour CPU was a typical time required to
evaluate only one special BSC g, with enough accuracy by using available
mainframe computers. There was thus a danger that GLMT could remain for
a long time a pure subject of spiritual contemplation. A relief about this issue
was obtained by the breakthrough of introducing the finite series technique.

Finite series are numerically much more efficient than quadratures and
opened the way to fast GLMT-computations. There is however a price to pay
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for this advantage. While quadrature expressions are immediately adaptable
to any kind of incident beams as soon as the expressions for the incident radial
electromagnetic field components E, and H, are available, extra algebra is
required with finite series to derive new finite series expressions when the
nature of the beam is changed. Nevertheless, because there exists a general
procedure for finite series derivations as discussed in chapter V, it is very likely
that a full automatic process might be designed by concatenating symbolic
computation procedures and numerical routines. It is also recalled that both
techniques, quadratures and finite series, are rigorous and strictly equivalent
at least when beam descriptions exactly satisfy Maxwell’s equations.

This chapter is devoted to a third method to compute the BSCs, namely
the localized approximation relying on a localized interpretation. It is the
fastest method leading to very simple formulae. In some cases, simple ex-
ponential evaluations which may be handled using pocket calculators are
sufficient to compute BSCs. It is likely that there is no way to be more effi-
cient. Indeed, because the evaluation of the BSCs then becomes an easy task,
GLMT may be more routinely usable for various applications.

The formulation of the localized approximation (for Gaussian beams) has
been discussed in a series of articles from the case of the special BSCs g, [78]
to the final generalization for all BSCs ¢ [371]. The reader might expect
that, as usually done in this book, we would proceed from the most general
case to the more specific one. This would however be unreasonable because
the method, as developed in the above articles, is neither physically nor math-
ematically firmly based. The most convincing and pedagogic way (in the bulk
of this book) is then to proceed from special cases toward generalization as
it has historically been carried out.

Indeed, the original method of derivation of the localized approximation
formulae relies on a bit of physics, a tiny amount of mathematics and much
intuition. It has often been like a guess game. It is hoped that the reader will
forgive us if we state that we are fascinated by the success of this game which
will eventually lead to simple, numerically efficient and accurate expressions
with what is found to be a remarkable economy of physical and mathematical
tools. We find that there is some kind of formal beauty in the game that we
propose to the reader to play with us.

Later on, the localized approximation was the subject of more develop-
ments and, in particular, received a rigorous justification. These later works
however involve many technicalities that we better have not to incorporate in
this book excepted, at the end of this chapter, as a complement. Therefore,
the body of this chapter is to be considered as an introduction to the topic
of localization, wandering on an easy trail, starting from a fresh valley and
climbing, step by step, up to the top of an easy hill. For climbing mountains
rather than a hill, see articles quoted in the complement.
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VII.2 The Waist Center Location Case

VII.2.1 The Principle of Localization

The localized approximation historically relies on a principle of localization
stated by van de Hulst [I7] in the case of the LMT devoted to plane wave
scattering. One of the interests in starting with the waist center location case
of a Gaussian beam is that, for such a location, the wave is indeed (locally)
plane. Therefore the extension of the principle of localization from plane
waves to Gaussian beams might a priori appear as a rather trivial exercise.
The principle of localization is a hybrid concept in which LMT series char-
acterizing waves are interpreted in a local way in terms of geometrical optics
rays. According to this principle, each term of order n in plane wave am-
plitude functions (Rels (VI.82)-(VI.83)) is associated with a ray (actually
an annular bundle of rays) located at a distance p,, of the propagation axis
passing through the center of the scatterer. The value of p,, is given by:
. (n+1/2)A (VIL1)
27
A formal justification of the principle of localization is deduced from the
asymptotic behaviour of Bessel functions of order (n+1/2) which are involved
in the expressions for the scattering coefficients a,, and b,, (see Rels (I11.88)-
(I11.89) and (IL.87), (I1.88), (II.78), (II.81)). In particular, it is found that
contributions of Bessel functions to series become negligible when (n + 1/2)
is larger than the size parameter « = m d/A. Conversely, significant con-
tributions are produced by terms such as (n + 1/2) < «, associated with
light rays passing in the neighborhood of the scatter center. Such behaviours
have been briefly discussed in section (VI.6.3) and are echoed in Rel (VI.123)
to compare with Rel (VIL.1). A somewhat more formal justification may be
found by using a method known as a stationary-phase technique on which
we shall return in the complement. Soon, we shall also directly evidence the
localized character of the special BSCs.

VII.2.2 Special BSCs

It is recalled that, in the beam waist center location case under study, the
special BSCs are given by Rel (VI.62) which also reads as:

2n+1 r sin? 6
gn= . 4 " zQ exp[— 5 |
in~H(—=1)"mn(n w§

7 cos ) exp(—ikr cos 0) W, (kr) Pl(cos6)sin? 6 df d(kr)

(VIL2)

(]. —GLQZQ

in which @ is Q(zo = 0).
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In Cartesian coordinate components, the description of the incident beam
may be written from Rels (IV.57)-(IV.61) specified for the case under study
(xo = yo =20 =0) as:

E,=H,=0 (VIL3)
E.=H, =0 (VIL4)
2 4,2
B, = {Eo exp(—ikz)} exp(—" w+2y ) (VIL5)
0
. 2 + y2
H, ={Hy exp(—ikz)} exp(— w2 ) (VIL6)

0

in which the order L~ of approximation (e = 0) has been assumed. The
bracket { }- terms are plane wave contributions multiplied by Gaussian con-
tributions specific to the Gaussian beam under study.

Inspired by the principle of localization, it is conjectured that the special
BSCs are also localized and that they actually correspond to the Gaussian
contributions in Rels (VIL.5)-(VIL.6) at discrete distances p, from the beam
axis, leading to:

gn = €Xp [ — = exp
Wo

in which the symbol ”tilde” designates the localized approximation. Rel
(VIL.7) is the localized formulation of Rel (VIL.2), exhibiting indeed a dra-
matic simplification if we are lucky enough for our conjecture to work.

In the limit of a plane wave (wg — o0), Rel (VIL.7) becomes:

2mwg

- <(" + 1/2»)2] (VILT)

G — 1 (VIL8)

i.e. rigorous g,,’s and approximated g,,’s have the same limit in the plane wave
case. The underlying idea may then be easily illustrated as in Fig VII.1.

VII.2.3 Numerical Evidence of Validity

Numerical evidence of validity of Rel (VIL.7) may best be obtained by com-
paring g,-values from the localized approximation and g,-values evaluated
either by quadratures or finite series. Such comparisons appear in several
places in the literature such as in Maheu et al [81] and Gouesbet et al [87].
It will be here sufficient to provide Table VII.1 extracted from Gouesbet
et al [87).

For data in this table, the wavelength is A = 0.5 um and the beam waist
radius is wy = 10\, corresponding to a beam shape factor s = 0,015915,
that is to say to a strongly focused beam. As known for a beam waist center
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Fig. VIIL.1. The localized interpretation of the BSCs g,. (a) for a plane wave, (b)
for a Gaussian profile.

Table VII.1. Comparison of the values of special BSCs for a beam waist center
location case.

A B C D E
g1 0.995 0995 1 1 0.99943
g2 0.996 0.995 0.99898  0.99949  0.99841
g3 - - 0.99746  0.99746  0.99690
ga - - 0.99544  0.99595  0.99488

gs 0.993  0.992  0.99292  0.99292  0.99236
g6 0.989  0.989  0.98991  0.99041  0.98935
930 0.788 0.787  0.79030  0.79070  0.79006
gas 0.585 0.589  0.59191  0.59191  0.59191
g0 0.394 0.394 0.39555  0.39575  0.39567
gso 0.192  0.193 0.19358  0.19368  0.19369
goo  0.077  0.077  0.07739 0.07743  0.07742

location, the special BSCs are real numbers (sections VI.5). They here have
been evaluated by using quadratures at order L (column A) and at order L~
(column B), finite series at order L (column C) and at order L™ (column D),
and localized approximation (column E), showing that the approximation is
very good indeed.

! Note that we still keep on with the word ”approximation” as in the historical
process, but this is a point of view to be later revised and refined.
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Table VII.2. kr-localization domains

coefficient  kr~ kr+

gi 0.6 2.5

g2 1.5

ge 6 9
930 30 50
gas 45 75
geo 60 90
gso 80 120
g100 100 150

VII.2.4 Physical FEvidence of Validity

This subsection complements section (VI.6.3) devoted to numerical be-
haviours of quadratures in which some clues for localization were observed,
in particular Rel (VI.123). Numerical computations of special BSCs are car-
ried out using the GNF2 code mentioned in section (VI.6.1). BSCs g, are
evaluated according to Rel (VI.62) at the order L, for a beam waist diameter
2wy = 20\, and A = 0.5 pm. Results are plotted in Fig (VIL.2) versus
10g10(kTmaz ), the integral over (kr) in Rel (VI.62) being carried out from 0
up to (kTmaz)-

For each BSC g¢,, displayed in the figure, one observes that the contribution
to the integral is located (localized) in a narrow interval of (kr). To quan-
tify this statement, let us introduce fairly arbitrarily a localization domain
(kr~,krt) such as integrations from 0 to (kr~), and 0 to (kr™), contribute
2% and 50 % respectively to the total value of the coefficient. Table (VIL.2)
clearly exhibits that the localization domain is strongly correlated with the
order n of the coefficient. Localized values of (kr) are found to be such that
(kr) = (n), leading to r =~ (n+1/2)A/(27). Of course, this discussion pos-
sesses a strong heuristic character but it physically illustrates in a very clear
way why special BSCs may be locally interpreted.

Of course, because the principle of localization is expressed in terms of
distances to the axis pp, the presentation in Fig (VIL.2) in terms of radial
values (kr) is not the most appropriate. A better discussion would require g,,-
integrations using cylindrical coordinates and studying contributions of shells
(p, p+Ap). Such a study is available from Maheu et al [372] from which Table
VII.3 is extracted. For each g, there exists a cylindrical shell limited by two
distances (kp~) and (kp™) to the beam axis such as integrations up to (kp™)
and (kpT) in cylindrical coordinates contribute to 10 % and 90 % of the
coefficient values respectively. The 50 %-contribution corresponds to a shell
radius (kpso). It is observed that values of (n + 1/2) are always included in
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Fig. VII.2. Integral VI.62 versus the limit of integration. The parameters are:
description order L, 2wy = 20\, A = 0.5 um, and the order n of the coefficients
(from 1 to 100).

Table VIIL.3. p-localization domains

coefficient  kp~  kpt  kpso (n+1/2)

7 1.0 55 26 1.5
g4 32 92 57 4.5
gs 42 105 6.8 5.5
g6 48 12 80 6.5
960 53 70 60 60.5

the shell radii (kp~, kp™) and correlate well with (kpso) particularly when
the order n increases.

VII.2.5 Difference of Behaviour between Rigorous
Methods and Localized Approximation

The quality of the localized approximation may be assessed by displaying
comparisons such as in Table VII.1 (and others to come). Quality and valid-
ity may therefore be numerically checked leading to the conclusion that the
approximation appears to be very good, with an insignificant loss of accuracy
in most situations. Nevertheless, it has been observed and carefully checked in
section VI.7.2 by using finite series that |g,| becomes big, increasing steadily,
when the order n increases beyond a value corresponding to rays passing at a



176 VII The Localized Approximation and Localized Beam Models

distance from the axis bigger than about twice the beam waist radius. Such
a behaviour is not observed for localized values (Rel (VIL.7)) which quickly
decrease with the order. Such a decrease physically makes sense because the
electromagnetic density of energy decreases very fast when departure from
the beam axis is increased. In section (VI.7.2), it has also been shown that
increase of |g,| with rigorous methods is compatible with physics, due to the
fact that the g,’s actually create two alternating series, one for n odd and
the other for n even. The difference of behaviour between rigorous methods
and localized approximation appears only for big n’s, i.e. far away from the
beam axis where the electromagnetic density becomes very small indeed, and
therefore is not expected to spoil results when the localized approximation is
used rather than a rigorous technique.

Let us note that a word of caution is necessary here concerning the above
heading. When using the terminology ”rigorous methods”, we referred to
quadratures and finite series. But these methods are rigorous only if the
beam description used exactly satisfies Maxwell’s equations. Otherwise, they
may introduce artifacts [134] and, even when they produce constant values,
like when using finite series, we have to say that the beam has been "remod-
elled”. Therefore, in most cases (when the beam description does not exactly
satisfy Maxwell’s equations), the so-called rigorous methods are not rigorous
at all. Now, let us consider the localized approximation. It has indeed been
introduced as an approximation (from Van de Hulst’ principle of localiza-
tion) but it produces beams which exactly satisfy Maxwell’s equations, and
well anticipate higher-order beams, up to the point where standard beams
are introduced with the claim that they could provide a genuine definition of
Gaussian beams [297], [311], [313], [314], washing out the limitations of the
Davis scheme of description. At this stage, we may wonder to what the local-
ized approximation is an approximation, since the so-called rigorous methods
do not provide rigorous solutions. Independently of the historical justifica-
tion of the word ”approximation”, we might conversely very well decide that
localized beams, exactly satisfying Maxwell’s equations, obtained by using
a so-called localized approximation, are not approximations any more, but
genuine beams in their own right.

VII.3 Axis Location Case

The beam waist center location case has been treated using a rather triv-
ial generalization of the principle of localization as stated by van de Hulst
(1957)[17], and therefore possesses a rather firm foundation based on the
properties of mathematical functions involved in the formulation. The quality
of the localized approximation at this stage, as exemplified by Table (VII.1)
is however somewhat unexpected, surprising and even looks a bit magic.
Encouraged by these results, we are now going to proceed to a next gen-
eralization to the axis location case. Clearly, more difficulties become now



VII.3 Axis Location Case 177

involved in the problem. For example, special BSCs become complex num-
bers and therefore do not fit any more the simple mental image depicted in
Fig (VIL.1). Also, the wave-front is no more plane. Another difficulty is that
coordinate z now explicitly appears in the field component expressions but
must disappear in the expressions for the localized g, ’ s. The reader who
would study chronologically our articles on localized approximation, all of
them available from the bibliography, would remark that we had hesitations
about the best way to proceed further, and that several equivalent proce-
dures, more or less elegant, have been designed and discussed. In this book,
we shall settle down to our favorite presentation (although this might be a
point of subjective personal taste).

Indeed, a mere generalization of the principle of localization as stated by
van de Hulst, successful for the beam waist center location case, is no more
sufficient to solve the axis location case. It will be required to be more inven-
tive and, even if we do not like it (but we actually like it), more audacious.
The game is now to guess an extended procedure to design g,-expressions
for the axis location case with the proviso that the expression (VIIL.7) for the
beam waist center location case must be recovered as a special case.

Cartesian field components as for Rels (VII.3)-(VIIL.6) are no more consid-
ered because they are not easily tractable if it is wanted to investigate not
only the order L~ of approximation, but also the order L. In particular, us-
ing Cartesian field components, we do not exactly know how to manage with
longitudinal field components F,, H, which are not zero at order L. Actually,
Cartesian components are certainly unessential when compared with radial
field components F,. and H,. Because only these radial field components are
required to determine incident BSPs, they are without any doubt the essence
and they deserve a due privilege. Furthermore, they incorporate relevant in-
formation from all Cartesian components. For the axis location case under
study, they are found to read as, from Rels (IV-71), (IV-74):

( f[:) = { ( EI%Z?EE) sin 6 ezp(fikz)} [1 —€r 2lQ z] iQ exp {71’62 r? 3%2 9} exp(tkzo)
(VIL9)
in which it is recalled that according to Rel (IV.63):
o= | (VIL10)
i+ 2F '

In Rel (VIL.9), the brace term {} is the only one which would appear if the
incident beam were a plane wave. The multiplicand factor in (VIIL.9) is then
specific to the Gaussian beam under examination.

Although it is known (chapter VI) that we must not distinguish between a
set of BSCs g, associated with TM-waves and another set of BSCs g,, associ-
ated with TE-waves (¢n, 7 = gn,TE = gn), the distinction will be maintained
for convenience at the beginning of the present procedure. Since the field
component F, must be related to BSCs g, 73 and the field component H,
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must be related to BSCs g, rg, a procedure starting from Rel (VIL.9) will
provide separate expressions for g, ra (starting from E,) and g, rg (start-
ing from H,.) with the necessary condition that the following expression must
be recovered:

gn,TM = gn,TE = Gn (VIIll)

Indeed, any attempt to design a localized approximation leading to §n 7 #
gn,7E should be immediately given up. Let us call A the Gaussian contribu-
tion in Rel (VIL.9) and first consider the TM-BSCs g, rar. When the Gaus-
sian contribution is 1, it is known (section VIL.2.2) that gnrm = Gnrm = 1
(plane wave case). Since BSCs g, contain all the information on the incident
wave, our first obvious Ansatz must be:

Gnrnt = fras(A) (VIL12)

in which fTM is an operator acting on A to produce the g, ras’s. The BSCs
gn,7M being constant numbers, the operator fTM must comply with three
simple properties (i) eliminate variable z in A, (ii) eliminate variable r siné
in A, (iii) introduce a subscript n. We are now going to guess the operator
fTM in view of these properties. For this guess, two guides are invoked (i)
use physics when convincing arguments may be found (ii) be as simple as
possible, assuming that nature likes simplicity. The quality of the guess will
be afterward checked by direct comparisons between guess results and so-
called rigorous computations. Remarkably enough, our first trial in designing
a localized approximation for special BSCs g, in the axis location case has
been immediately successful.

Our first guess concerns the way to eliminate the variable z. This could
be produced by integrating over z, the range of integration being from (- co)
to (+ o0) since no reason appears to choose any specific finite range. Then,
the special case wy — oo should be considered, leading also to I — oo (Rel
(IV.4)), namely to the plane wave case obtained as a limit of the Gaussian
beam case. For the plane wave case, A is a constant and the integration over
z leads to the introduction of an infinite quantity in conflict with the finite
character of the BSCs g, 7.

The simplest way to proceed is then alternatively to set z to a special
value, namely z = 0 since this value is the only one playing a special role (it
defines the center of the coordinate system Opxyz). We may also consider
a small test scatter center located at point Op. The interaction between
the incident beam and the test particle possesses a local character via the
boundary conditions to be written at the surface of the scatter center. The
choice z = 0 reflects this local character. This last argument is not fully
convincing since actually we do not consider a scattering problem here, but
only the description of the Gaussian beam irrespective of the presence of
any scatter center. However, it gives some further intuitive support to our
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choice. This guess may seem rather brutal, and it is indeed, but it will work
efficiently.

To eliminate (r sinf), the principle of localization is again invoked. The
quantity (r sin ) must then be replaced by p, (Rel (VIL.1)), simultaneously
eliminating (r sin#) and introducing a subscript n as required.

To sum up, from such very simple considerations, it is tentatively assumed
that the action of the operator frp is (i) to replace z by 0 (ii) to replace
(r sinf) by (n+1/2) (A/27). Consequently, a localized approximation to the
BSCs gy, 7 is obtained according to:

Gnrar =i Qexp [z Q (Z’; )2} expl(ikzo) (VIL13)
in which: 1
Q=Q:=0=_ ", (VIL14)

L

Since the Gaussian contribution A in Rel (VIL.9) is the same for F, and H,,
it is immediately concluded that:

gnrE = fre(A) (VIL.15)
in which: R R R
frv = fre=f (VIL16)
to ensure:
Gn,TM = gn,TE = Gn (VIL.17)

a relation also satisfied by the exact special BSCs.

For the waist center location case, adding the assumption zy = 0, Rels
(VIL.13) and (VIL.17) reduce to Rel (VIL.7) as it should. Furthermore, when
wp — 00, g, s reduce to exp(ikzp), a result which is known to be also true
for the exact BSCs g, (section VI.4).

It must be noted that the double-valued quantity €7, does not appear any
more in the expression for the localized special BSCs (VII.13). This state-
ment will remain true in the case of arbitrary location when we have to
design a localized approximation to the BSCs g;*. Therefore, the results of
the localized approximation are identical irrespectively of the order L or L~
of approximation to the description of the Gaussian beam. This is indeed an
interesting remark because it is recurrently observed that BSCs are usually
very close, whatever the order of approximation (L or L™) to the descrip-
tion of the beam. The mathematical reason why our localized approximation
exhibits such a behaviour is that the variable z has been set equal to 0, there-
fore eliminating the er-term (2Qz/1) in Rel (VIL.9). Because descriptions at
orders L and L~ are usually very close, this discussion a posteriori justifies
once more the action z — 0 of the operator f
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Table VII.4. Comparison of BSCs g, for a location along the beam axis under
severe values of the parameters

C D E
9 (0.908000,-0.289025) (0.711599,-0.453018) (0.866610,-0.260209)
g2 (0.832928,-0.235844) (0.696343,-0.420356) (0.797050,-0.214093)
gs (0.720320,-0.156074) (0.635318,-0.289705) (0.701829,-0.155877)
9 (0.598260,-0.869411 10™") (0.586754,-0.213104) (0.590465,-0.952384 10™")
g5 (0.466748,-0.284455 10~") (0.485435,-0.919815 10™") (0.473422,-0.411516 10")
g6 (0.347808,-0.115944 10™1) (0.407329,-0.236618 10™") (0.360594, 0.413758 10™")
g7 (0.245946, 0.325540 10~") (0.294773, 0.401488 10™") (0.259920, 0.270357 10")
gs (0.164718, 0.405967 10~") (0.216080, 0.673214 10") (0.176476, 0.396080 10")
9 (0.104385, 0.389802 10") (0.133797, 0.756275 10™") (0.112199, 0.412818 10™")

g0 (0.623670 107", 0.324501 10~")  (0.827317 107", 0.702225 10~")  (0.662695 10", 0.361157 10~ ")
gin (0366894 107*, 0.236073 107!)  (0.405030 10!, 0.562417 10~")  (0.359451 10—, 0.278998 10~ ')
g1z (0.202714 107*, 0.168525 107')  (0.181172 107, 0.419980 10~*)  (0.175703 10~ %, 0.194352 10~ 1)

Table VII.5. Comparison of BCSs g, for a location along the beam axis under
reasonable values of the parameters

C D B

g1 (0.240798 107 %, - 0.153297 (0.240798 107, - 0.153297 (0.253834 1071, - 0.152871)
g2 (0.264021 1071, - 0.152549 (0.252410 1071, - 0.152923 (0.276870 107, - 0.152086)

(0.298856 1071, - 0.151427 (0.298856 1071, - 0.151427 (0.311085 1071, - 0.150847)
gi1s  (0.128509, - 0.101413 107! (0.128575, - 0.111656 10+ (0.125475, - 0.108190 1071)
gro  (0.125886, + 0.908621 1072)  (0.125886, + 0.908621 10~2)  (0.122822, + 0.756862 10~ 2)
goo  (0.120158, + 0.281921 10~')  (0.120158, + 0.272750 10~')  (0.117261, + 0.258397 10~ 1)
ga1  (0.111131, + 0.466865 10~')  (0.111131, + 0.466865 10~')  (0.108703, + 0.434121 10~ 1)

—_— ==
—_—

Again, many validations of Rel (VII.13) are available from the literature,
for instance in Gouesbet et al [367], the most convincing ones being obtained
by comparing localized values §,, and so-called exact values g,,. Table (VIL.4)
below, extracted from Gouesbet et al [367], provides such comparisons.

For this table, the wavelength is 0.5 pm. The laser is strongly focused with
wo = A and the waist ordinate is zg = 1 um very close to the waist, in a
region of the beam where the curvature evolves very fastly (I = = pm).
Columns C, D, E possess the same meaning as in Table (VIL1), i.e. they
correspond to finite series at orders L and L~, and localized approximation
respectively. As expected, the special BSCs are now complex numbers. The
case under study is here a very difficult one because of the strong focus of the
beam and of the chosen value of zg. The beam shape factor s is 1/27, i.e. its
theoretical largest bound (see section IV.1.2). It is indeed one of the worst
situations which can be encountered. In particular, finite series at orders L
and L~ provide significantly different results. Accounting for this remark,
results of the localized approximation in column E compare very favourably
with results in columns C and D.

A more reasonable case is exhibited in Table VIL.5. The wavelength is still
0.5 pm and we still have wg = A as before. But the waist ordinate is now
zo = 10 pm, i.e. a test particle would not be located in a (locally) strongly
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focused beam. Column labels have the same meaning as previously. Finite
series at orders L and L~ provide very similar results, both for the real and
imaginary parts. The agreement with localized approximation is furthermore
very satisfactory indeed. As the reader may now expect from such results,
the agreement between localized approximation and rigorous techniques may
indeed become very good, up to many digits (typically 1 part per 10%), when
easier cases (smaller values of the beam shape factor s) are considered. Indeed,
in this section, it has been chosen to provide difficult examples in order to
exemplify the capabilities of the localized approximation.

It is not useful to extensively discuss here the gain in CPU produced by
using localized approximation formulae. Most clearly, evaluations by using
Rel (VIL.13) are nearly instantaneous and, from that point of view, cannot
decently be compared with quadratures or even with finite series. It has been
mentioned in section VI.3 that any owner of a LMT-routine could trivially
adapt it for GLMT in the case of a Gaussian beam with axis location. The
reader may now realize how much this is true when the localized approxima-
tion Rel (VIL.13) is used to compute the special BSCs, adding a negligible
amount of computational time.

Finally, an axis location case may be defined for any kind of beam exhibit-
ing an axis of symmetry. If the expressions for the radial field components E,.
and H, are not known, the above procedure cannot be applied in a strict way
to express a localized approximation to the BSCs g,,. However, the simple
basic idea displayed in Fig VII.1 may still tentatively be used to approach a
solution to this problem. An example is provided by the top-hat beams which
may be used for optical particle sizing ([326], [296], and references therein).
The intensity repartition inside such a beam is illustrated in Fig VIL.3. It is
constant inside a circle of radius L on a plateau and falls down to 0 outside
of it. In the axis location case, such a beam may be modelled by using the
localized approximation, taking constant values of the g, ’s, different from 0,
for n up to a critical value n. given by p,, < L < pn.+1 (see Rel (VIL1)),
and setting g, = 0 forn > n.. Top-hat beam scattering with localized ap-
proximation according to the above idea has been discussed in Corbin et al
[296] and fully analyzed in Gouesbet et al [297], this latter article vividly
illustrating the validity of the localized interpretation behind the localized
approximation in the case of on-axis beams.

VII.4 Arbitrary Location

VII.j.1 A Well Posed Problem

Having designed a localized approximation to the special BSCs g,,, the ques-
tion now arises to know whether it is possible to design a generalization to
localized BSCs g"*. The answer is necessarily positive meaning that we are
faced to a well-posed problem. Effectively, both sets {g,} and {g;"7xs, 977}
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Fig. VIIL.3. Sketch of a top-hat beam.

fully describe the incident beam and are therefore equivalent, the only differ-
ence between these sets being due to the choice of the location of the particle
coordinate system with respect to the beam coordinate system. Consequently,
there must exist relations reading as:

g::fTM = f;:LTM(gn) (VH.18)
!JZfTE = f;,'?TE(gn) (VIL.19)

and also:
gn = hn (ngTM7 ngE) (VH.QO)

In particular, these relations show that we potentially possess a new method
to evaluate BSCs ¢ once the special BSCs g, are known (whatever the
method used for these special BSCs). The key to solve the problem of finding
the functions f!™ is the use of translational theorems (famous in the context of
quantum mechanics) for spherical Bessel functions and associated Legendre
functions such as discussed by Danos and Maximon [373], Liang and Lo
[374], Ronchi [375] or Dalmas and Deleuil [376]. Actually such a method
has been designed by Doicu [377]. The existence of the functions f,TT o and
[n'rr however ensures us anyway that we must be able to design a localized

n

approximation to the BSCs g;".

VII.4.2 BSCs gt' and g;' for Azis Location

New difficulties however arise for BSCs g;* that have not been encountered
for the special BSCs g,,. The first one is that we are now facing two sets of
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BSCs, one for TM-waves and the other for TE-waves. A second difficulty is
that we must now deal with a subscript n and a superscript m.

As far as the subscript n is concerned, it may be tentatively assumed that
the reduction procedure previously used remains essentially valid. Through
the localization principle, this procedure induces a discretization of space in
the directions perpendicular to z (p-directions) conveyed by the introduction
of discrete radial locations p,,. Due to this discretization, the wave character
of the beam in p-directions is lost, permitting us to discuss the problem in
terms of geometry, that is to say in terms of rays, or more exactly in terms
of annular bundles of rays, each bundle of rays associated with subscript n
passing at about a distance p,, from axis z.

Similarly, we might think that the superscript m is associated with an
angular @-discretization in space. Associated with a bundle of rays at distance
Pn, We might then introduce a further discretization ¢,,. Since m ranges
from (-n) to (+n), we would then be faced with (2n+1) bundles of rays for
each n-bundle of rays. From rather intuitive and/or heuristic arguments, it
has been claimed in Gouesbet et al [371] that this should not be a correct
representation and that a wave character must remain associated with the
superscript m. This statement may be formally evidenced by considering
again the axis location case. This case is a nice ”pierre de Rosette” indeed
because the formulation of the GLMT may then be expressed in terms of
special BSCs g,, for which the localization problem is solved, or in terms of
BSCs gt and g, !, all the other BSCs g™, |m| # 1, being equal to 0 (section
VI.1). Furthermore, in this case, we may write (from Rel (VI1.3)):

grlL,TM = g;é“M = 0n/2 = gnrM/2 (VIL.21)

grlb,TE = - g;}FE = —ign/2= — ignTE/2 (VIL.22)

Let us first discuss TM-BSCs involved in the first of these relations. It is
known that they are associated with the radial electric field component FE,.
expressed in Rel (VIL.9) as:

E,. ={Ey cosy sinf exp(—ikz)} A (VIL.23)

Expressing cos ¢ in terms of complex exponentials, Rel (VII.23) for F, may
be rewritten as a two-terms expansion:

E, =B +E= Y E (VIL.24)
m=1, —1
+1 EO Qo .
ET = 5 € sinf exp(—ikz) A (VIL.25)
-1 _ EO — i . .
E ' = e~ " sinf exp(—ikz)A (VIIL.26)

" 2
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in which superscripts m = +1 and m = —1 are associated with exp (ip) and
exp (-i¢) modes, respectively. From Rels (VII.21), (VII.12) and (VIL.16), we
must therefore have:

- 1. 1. 1. 1.
Gurn = n = Gy = Hfrar(A) = f(A) (VIL27)

In other words, gng 27 18 obtained from the mode E;! by removing a plane
wave contribution Ey sin @ exp(—ikz) and the exponential term e*?, and ap-
plying the operator f to the remaining term .4/2. Similarly, g;lT A is obtained
from the mode E, ! by removing a plane wave contribution Ey sin 6 exp(—ikz)
and the exponential term e~*?, and again applying the operator f to the re-
maining term A/2.

The same procedure may be used for TE-BSCs. Expressing sin ¢ in terms
of complex exponentials, Rel (VIIL.9) for the radial magnetic component H,
may be rewritten as a two-terms expansion:

H.=H'+H'= > H" (VIL.28)
m=1, —1
Ht! = Ho e sinf exp(—ikz)A (VIL.29)
r 2i '
H ,
H'= 2;) (—e = %) sinf exp(—ikz)A (VIL.30)
in which superscripts m = +1 and m = —1 are again associated with exp(ip)

and exp(—iy) modes, respectively.
Then Rels (VII.22), (VII.15) and (VIIL.16), yield:

T P 1

grlz,TE = —2§n,TE = _;fTE(A) = 22,f(.A) (VIL31)
1 1. i 4 -1 -
In1E = Yn.TE = +2fTE(-A) = o f(A) (VIL.32)

In other words, Q:Lrlf  is obtained from the mode H,' by removing a plane
wave contribution Hy sinf exp(—ikz) and the exponential term e, and
applying the operator f to the remaining term .A/(2i). Similarly, g;}E
is obtained from the mode H, ! by removing a plane wave contribution
Hy sinf exp(—ikz) and the exponential term e~%, and again applying the
operator f to the remaining term A/(-2i). From now on, the operator fis
called the localization operator.

As announced before, this new procedure shows that m must not be associ-
ated with any discretization but with m-waves e?¥ and e =% (generally e™%),
associated with angle ¢. Besides, as another support to this conclusion, it is
of interest to remark that the circumference at a distance p,, from the axis
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is 27p, = (2n + 1)’2\, i.e. an integer times the half wave-length, which is a
classical (and also a quantum) result for stationary waves. The mental pic-
ture which is emerging from these results is as follows. The incident beam is
a superposition of annular bundles of rays localized at distances p,, from the
axis associated with the subscript n, and for each n-bundle, of (2n+1) sta-
tionary waves associated with the superscript m. The principle of localization

therefore now induces a particle/wave complementarity.

VII.4.3 BSCs g for Arbitrary Location: First
Attempt

The previous subsection immediately suggests us a tentative procedure for
generalizing the localized approximation to all the BSCs g, for arbitrary lo-
cation, namely (i) expand the radial electric and magnetic field components
E, and H, into m-modes EM™ and H]™ respectively, containing exp(imeyp),
(ii) isolate in these modes the plane wave contributions Ey sin exp(—ikz),
Hj sin@ exp(—ikz) and the exponential term exp(imp) and (iii) apply the lo-
calization operator f to the remaining parts of the expressions. This program
is now carried out below.

In the case of Gaussian beams at orders L and L™, it is conveniently
recalled that the radial field components F, and H, are given by (section
IV.2.1):

F Jp N Jp N
E,. =E, ) Z W, exp(ij+) + Z W, exp(ij—¢)
(VIL33)
Jp
+FEy 29 G Z U,p exp(ijop)
F Jp Jp
Hr=Ho . > ipexplijie) — Y Ty eXp(ij—w)]
(VIL34)
Jp
+Ho yo G Y Wjpexp(ijop)
in which:
0 . 2Q ) .
F=y) sinf (1- ;| €L? exp(—ikz) exp(ikzo) (VIL35)

2
G=e, W lQ cosf exp(—ikz) exp(ikzo) (VIL.36)
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. ~ r2sin®0 xE+yd
T =iQ exp(—iQ 5 ) exp(—iQ 0 ) 9) (VIL37)
Wy Wy
. . 7 o j—p . P
jp = (ZQT S§n9> (w0 — o)’ (z0 +igo) (VIL38)
wg (J —p)'p!
Jp 00 J
do=> > (VIL.39)
j=0 p=0
jr=j+1-2p=jo+1 (VIL.40)
jo=j—1-2p=jo—1 (VIL41)
Expanding into m-wave modes according to:
“+oo
E.| E™
{ H} = ; { Hm} (VIL.42)
one readily obtains:
E" = {Ey exp(—tikz) exp(imep) sinf} exp(ikzp) iQ
2 6in2 0 24,2
exp (—iQT SH; > exp (—iQ 0 —zy()) (VIL.43)
Wy Wo
1 20 Jp Jp 20 2 Jp
2(1 o ) Z Yip Z ip | + 2oce [ rsinf Z i
j+=m j-=m jo=m
H™ = {Hy exp(—ikz) exp(imyp) sinf} exp(ikzp) iQ
2 6in2 ¢ 24,2
exp (—iQT o ) exp (—iQ 0 Ey‘)) (VIL44)
Wy Wo

1 20 Jjp Jjp 20 2 Jjp
5 (1= Cer) W= > Ty | +woes l rsinajz;nq/jp
-

J+=m Jj-=m

The brace terms {} in Rels (VIL.43)-(VII.44) are the ones to dismiss according
to our proposal. Then, applying the localization operator f to the rest of the
expressions, one finds:
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§ZLTO§\C4l = exp(ikzo) i Q exp [—z’Q (5}73)2}

(VIL45)
2 Ty 1 Jjp Jjp
exp( QO O) 9 ijerzwjp
J+=m Jj—=m
QZLTO? = exp(ik20)i Q exp [—z‘Q (Z}’;)Q}
(VIL46)
:U0+y0 1 Jp Jjp
S REAA IV DL ST

in which ¥, stands for f(%;,) that is Rel (VIL.38) with Q replaced by Q =
f (Q) as given by Rel (VIL14), and (rsin6) replaced by p,. Superscript
‘old’ has been introduced for further convenience. It is again observed that
the double-valued symbol €, has disappeared, meaning that our procedure
does not distinguish between orders L and L™. Let us also recall that double

summations JZC? may be replaced by single summations (Appendix D).

To check the coherence of these results against the exact theory, let us
consider again the special case of axis location. The condition xg = yg = 0
readily implies ¥, = 0 but for %o = 1. From Rels (VIL.45)-(VIL.46), one
then obtains:

~m,old _ ~m,old
QTFM ngLnI?E:()7|m|7£1

~1,0ld —1,0ld -
9nrrt = Gn it = 29n (VILAT)
~l,0old _  ~—lyold _ 4

gnTE gnTE __QQTL

~m,old ;

which relates the approximate BSCs g in the present state of the localized
approximation for arbitrary location and the special approximate BSCs g,
successfully designed for axis location. It was compulsory that Rel (VII1.47)
holds because such a relation is satisfied for the exact BSCs (see Rel (V1.3)).

Extensive numerical computations in the arbitrary location case have been
carried out, comparing the results of the localized approximation of Rels
(VIIL.45)-(VII.46) and so-called rigorous values. Examples of comparisons are
given below in Table VII.6 extracted from Gouesbet et al [378]. Note that,
although zg = 10 pwm, we are here still faced with a rather unfavourable case,
in so far as wg ~ .

When |m| = 1, the agreement between localized approximation and so-
called exact values is very satisfactory. Therefore, we are done as far as co-
efficients gl and g, ! are concerned. Unfortunately, strong discrepancies are
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Table VII.6. Comparison between rigorous and approximate values for BSCs g,
n from 1to 3. wo = 0.5 pm, A = 0.5 um, z0 = 10 pm, x9p = yo = 2 pm.

Finite series (order L and L™) Localized approximation
L (0.36247 10°, —0.15700 1071)
—1
91
L™ (0.36247 10°, —0.15700107 %) (0.36233 10°, —0.73704 107 1)
L (0.98342 1073, 0.91676 1072)
0
g1
L~ (0.00000 10°, 0.00000 10°) (0.68724 1072, —0.15710 107 1)
L (0.36247 10°, — 15700 1071)
1
91
L~ (0.36247 10°, —0.157000 10~%) (0.36226 10°, —0.15710 1071)
L (0.20460 1072, —0.25378 107 2)
—2
P
L~ (0.20460 1072, —0.25378 107 2) (0.63335 1072, 0.51083 1072)
L (0.36216 10°, —0.15671 107 1)
—1
)
L~ (0.36234 10°, —0.15690 10—1) (0.36210 10°, — 0.15580 1071)
L (0.29503 1072, 0.27503 10~ ")
0
92
L~ (0.29503 1072, 0.27503 10~ 1) (0.11444 1071, —0.12269 10™?%)
L (0.36221 10°, —0.15738 1071)
1
92
L~ (0.36234 10°, 0.15690 10~2) (0.36188 10°, — 0.15802 10~1)
L (—0.25738 1072, — 0.20460 10™2)
2
92

L~ (-0.25738 1072, —0.20460 10~2) (0.51071 1072, — 0.63342 1072)
L (—0.24841 107°, —0.14433 107%)

L™ (—0.24841 107, —0.14433 107*) (0.30303 10~*, 0.17632 10~3)
L (—0.20438 10—2, — 0.25343 10™2)

L~ (—0.204444 1072, —0.25343 1072)  (0.89950 1072, 0.69581 10~2)
L (0.36187 10°, —0.15507 1071)

g3
L= (0.36187 10°, —0.15507 10~!) (0.36174 10°, —0.15465 107%)
L (0.58896 1072, 0.54928 10~ 1)
0

93
L~ (0.49109 1072, 0.45799 10~1) (0.16002 107!, —0.17144 1072)
L (0.36182 10°, —0.15796 1071)
1

93
L~ (0.36182 10°, —0.15796 10~ ') (0.36150 10°, —0.15764 1071)
L (—0.25345 1072, —0.20434 107 2)
2

g3

L™ (—0.25355 1072, —0.20444 107%)  (0.71392 1072, —0.88543 1072)
L (0.24840 107°, 0.14433 10~%)

L™ (0.24840 107°, 0.14433 10™%) (—0.30300 107, —0.17626 107%)
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observed when |m| # 1. Another step is therefore required to achieve our
goal.

VII1.4.4 Final Generalization

We are now going to proceed to the final generalization in the context of
this book (for more elaborated developments, see the related complement at
the end of this chapter). Clues to achieve the goal are as follows. Although
the discrepancy between so-called rigorous and approximate values can be
dramatic at the present stage when |m| # 1, the first relation in (VII1.47)
is satisfied, i.e. BSCs ‘E]Zfl‘,?ﬁ and g::f’;ifl, |m| # 1 tend to 0 when the axis
location case is approached, as they should. Furthermore, when symmetries
are observed for the exact BSCs g;*, they are also observed for the approxi-
mations of Rels (VIL.45)-(VIL46), as extensively discussed in Gouesbet et al
[378]. These facts suggest that the localized approximation in section VII.4.3
is not in deep error. Very likely, normation prefactors are simply lacking. We
may therefore tentatively conjecture:

_ ~m,old
Gn'rar Zy' QZ;M

- (VIL.48)
~ ~m,old
In'TE ZyrE QZLJ?E

Then, we may determine the normation prefactors Z; as empirical coeffi-
cients, relying on numerical experiments. Because the normation prefactors
are expected to be complex numbers, we set:

Z™ = R (VIL49)

in which subscripts TM and TE have been omitted, R]"" s are real numbers
and @]'’s are phase terms reading as:

P = explipy] (VIL50)

It is also conjectured that the normation prefactors Z," only depend on n
and m, i.e. Z" = Z(n,m), at least within a good accuracy. The conjecture
has been numerically checked in an extensive way in Gouesbet et al [371]
which also provides expressions for the normation prefactors according to:

2n(n+1)

v =Ry rp =Ry = 1151

R'rL,TM Rn,TE Rn (2TL+1) (V 5 )
2 |m|—1

g = P = B =i (i)™, vm (VIL53)
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For |m| = 1, these expressions yield:

1 -1 1 -1
Znom =Zprr = Zngre =Zprp =1 (VIL54)
as they should since the 'old’ localized approximation worked perfectly well
for the BSCs ¢, |m| = 1. Extensive numerical results and discussions in
Gouesbet et al [371] show that the localized approximation so obtained is
very satisfactory.

VII.4.5 Improved Formulation and Routines

After Gouesbet et al [371], it has been shown that the formulation given in
the previous subsection could be improved for the sake of numerical efficiency.
The improvements do not involve any physics, but only mathematical manip-
ulations. Therefore, we shall be content in providing the obtained expressions
as established in Ren et al [379]. We have:

G _ 1 iz et
I = L exp| 5 — g (VIL55)
In,TE 2(1 + 2izy) s 1+ 2izg
2.2 s m
exp |~ Y] gy [ i
14 2iz n,TE

in which z{,ys, 25 are dimensionless o, Yo, 20 (Rel (V.85)), s is the beam

shape factor, R are given by Rels (VIL.51)-(VIL.52) and the F]"’ s read as:

FSTM:| [2% } 2g+1 XJ XJ
; — VIIL.56
|:F7?,TE 2290 z_(:) (G +1)! ( )

(G —m)! | X+

X X_
m xm-t X Xj XJ m T4
|: n,TM :amfl +§ 2] m—+1 j—m+1 &l»—l 7m>0
j—m+1  j+1

(VIL57)

_ [m|—1 j—|m| J X_ X
poiml B X x-Iml x7
{ ”j;T]‘fn}—aml ! + E g~ Iml+1 B}"'“ i ,m<0

~n,TE j= ‘ml .]_|m|) J—Im|+1 ;(‘:1
(VIL.58)
in which: 1/2
o= (PH1/2s (VIL59)
1+ 222:0+

X_=af —iy} (VIL60)



VIL.5 Complement on the Localized Approximation 191

Xi =ad +iyg (VIL61)

These expressions are implemented in the routine GNMF given in the website
connected to this book. Let us also note that, although the above algorithm
is very efficient, it is possible to be still more efficient [I57].

VII./.6 FExamples of Results

We now present exemplifying numerical results for the BSCs ¢)' computed
by four different methods:

(i) approach by a double quadrature, GNM, section IV.3,

(ii) approach by a triple quadrature, GNMG4R, section IV.3,
(iii) finite series (programs GNMSF), sections V.4.1 and V.4.2,
(iv) localized approximation (program GNMF).

All the programs are written in FORTRAN and run on a Sun station 4/60
(Sparcstation). The Gauss-Legendre quadrature method is used because it is
easily available from numerical recipes. More efficient integration codes could
however be used. We consider a beam with wavelength A = 0.5145 pm, and
a waist radius wog = 10pm.

Results are given in Tables VIL.7 and VIL.8. We use zg = 5pum and
Yo = 2o = 0. The number of integration points for ¢ is 100 while the number
of integration points in @ is of 100 for n = 1, 200 for n = 5, 300 for n = 10,
and in kr of 500 points by interval of 200. Table VII.9 presents the com-
putation times corresponding to Tables VII.7 and VII.8. The computational
advantage of the localized approximation and of the finite series with respect
to quadratures is obvious. As previously mentioned, the fastest method is
the localized approximation. Other comparisons may be found in the quoted
literature, all of them confirming this statement. The computation time com-
parisons between localized approximation and finite series may be found to
be not impressive, but it is significant. Because the advantage of the localized
approximation with respect to the finite series increases when n increases, the
reader might correctly infer that the comparisons would become much more
impressive if computation times were compared for the computation of series
such as those required for scattering diagrams.

VII.5 Complement on the Localized Approximation

The bulk of the chapter introduced the localized approximation in a heuristic
way, and a validation by comparing localized approximation values and other
values obtained from so-called rigorous methods. This is certainly the best
way to introduce the localized approximation to a newcomer and, further-
more, it corresponds indeed to the chronological development of the story.
Let us recall briefly the beginning of this story before proceeding further. The
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Table VII.7. Comparison between BSCs g, computed by double and triple
quadratures

Method triple quadratures double quadratures

code name GNMF2 GNMF1

heq MW=0 (2.2 1078, 6.377 1079%)

7 m=1 (3.894 1071, 4.3 10717) (3.875 1071, 4.2107'%)

m=0 (7.2107%,9.552 1072)
m=1 (3.889 107", 4.8 107'7)

n=>5, —18 -3
m=2 (4.7 10718 -1.592 10~?)
m=>5 (4.559 10712, 2.4 10720)
m=0 (5.9 10717, 3.486 1071)

n=10, m=1 (3.876 1071, 9.3 107'7) (3.747 1071, -2.3 107'7)
m=5 (4.536 10712, 2.0 1072")

Table VII.8. Comparison between BSCs g;;' computed by finite series and by
using the localized approximation

Method finite series localized approximation
code name GNMSF GNML

neq W=0 (0, 6.376 1073) (0, 6.377 1073)
" m=1 (3.894 1071,0) (3.894 1071,0)
m=0 (0, 9.549 1072) (0, 9.552 10™2)
m=1 (3.889 1071, 0) (3.889 1074, 0)
n=>y, -3 -3
m=2 (0, -1.592 1072) (0, -1.592 1073)
m=>5 (4.550 10712, 0) (4.559 1072, 0)
m=0 (0, 3.485 1071) (0, 3.486 1071)
n=10, m=1 (3.876 1071, 0) (3.876 1071, 0)
m=>5 (4.527 10712, 0) (4.536 1072, 0)

Table VII.9. Computation time in seconds for the BSCs by four different methods.

localized interpretation finite series quadratures

F1 F2
ONMF CNMSF ONMF1  GNMF?2

oy m=0 ) ) 2.7 -
" m=1 3.0 3131

m=0 0.1 0.1 3 -

5 m=1 0.1 0.1 3 -

079 =2 0.1 0.1 3 .

m=>5 0.1 0.1 3 .

m=0 0.3 0.5 6.7 -
n=10, m=1 0.3 0.5 7.1 6487

m=>5 0.3 0.5 6.7 -
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localized approximation was introduced in 1986 by Gréhan et al [78], betting
on the validity of a generalization of the principle of localization of Van de
Hulst, in an on-axis case. Validations were provided by comparing scattering
diagrams obtained from the on-axis localized GLMT and those obtained using
a Rayleigh-Gans approximation for Gaussian illumination, by invoking com-
parisons with other theoretical results (from Tsai and Pogorzelski [62], and
from Yeh et al [67]), and by discussing an experimental scattering diagram
obtained from a spherical particle optically levitated [57]. In 1987, evalua-
tions of beam shape coefficients by quadratures were available and favorable
comparisons between quadrature values (so-called exact values) and localized
values could be published [81]. Similar results are reported in [82], with fur-
thermore a complementary interpretation of optical levitation experiments in
forward direction relying on diffraction theory. The on-axis localized approx-
imation was at this time developed enough to allow systematic computations
in the framework of the localized on-axis GLMT [83], [84]. In parallel, finite
series became available for the on-axis case [87] and for the off-axis case [367].
In Gouesbet et al [87], beam shape coefficients for the on-axis case (Gaus-
sian beams) could then be evaluated by using three methods (quadratures,
finite series, localized approximation). The three methods (two of them were
so-called rigorous methods) are compared and discussed. This article was the
first one in which we introduced finite series. Comparisons between the results
obtained permitted a new confirmation of the validity of the localized approx-
imation, with a degree of accuracy that had not been reached up before. The
previous articles are dated 1988, the year when the pivot article [2] and his
companion article [89] appeared. But the localized approximation was not
yet ready to handle arbitrary location of the scatterer in a Gaussian beam
(and a fortiori in an arbitrary beam). Notwithstanding an article physically
discussing the concept of ray localization in Gaussian beams [372], a first at-
tempt to design a localized approximation to the computation of the general
beam shape coefficients g;'y, X = T'M,TE, appeared in 1989 [378], com-
pleted one year later by publishing a localized approximation allowing one to
evaluate all beam shape coefficients g;" v [371]. A faster algorithm to imple-
ment the localized approximation has been afterward introduced by Ren et
al [379]. An alternative compact formulation of the localized approximation,
optimal for numerical computations, in terms of either Bessel functions or
modified Bessel functions, is introduced by Lock [I57]. The localization pro-
cess (localized approximation or integral localized approximation) has also
been applied for other kinds of beams, namely laser sheets [292], [294], [135],
top-hat beams [296], [297], and doughnut beams [135]. The localized approxi-
mation for laser sheets has been used for the evaluation of a laser-sheet based
optical technique [293].

Up to now, the localized approximation had been heuristically and/or em-
pirically introduced, with various kinds of validations to assess its quality,
but no rigorous justification for it was available. In an appendix to an article
devoted to higher-order rainbows and to the computer implementation of the
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GLMT [127], Lock, in 1993, proposed a rigorous justification of the localized
approximation for an on-axis Gaussian beam, by using a stationary-phase ar-
gument, analogous to the one used by Van de Hulst to derive its localization
principle, associating a geometrical light ray with the small group of partial
waves for which the phase is stationary. However, this technique failed in the
case of off-axis illumination, for a reason which has not been satisfactorily
clarified since then. Nevertheless, a rigorous justification, relying on the use
of Davis beams, and Taylor series, has been afterward uncovered, for both
on-axis and off-axis Gaussian beams [79], [80]. These articles also introduced
a declension of Davis beams into various types (mathematically conservative
version, L-type radial fields, Barton symmetrized version of the Davis fields),
the terminology of localized beam model, a replacement of the localized ap-
proximation by a modified localized approximation (very close however to
the original localized approximation), and introduced the concept of stan-
dard beams which received more developments thereafter. Indeed, Gouesbet
[311], discussing higher-order descriptions of Gaussian beams, considered the
standard beams, as well as the localized beams generated by the localized ap-
proximation, and by the modified localized approximation. These three beam
descriptions (standard, localized and modified localized approximations) are
also discussed by Gouesbet [3T3] dealing with an exact description of arbi-
trary shaped beams for use in light scattering theories. Improved standard
beams with application to reverse radiation pressure are discussed by Polaert
et al [314]. A complementary justification of the localized approximation to
on-axis and off-axis Gaussian beams is available from Doicu and Wriedt [377].

All the works above were essentially dealing with the case of Gaussian
beams in spherical coordinates. Next, concerning circular cylindrical coordi-
nates, in connection with the GLMT for infinitely long circular cylinders, see
[209], [210], [211]. For elliptical cylindrical coordinates, in connection with the
GLMT for infinitely long elliptical cylinders, see [231], [232], [233], [235]. Let
us recall that the design of these localized approximations (localized beam
models) for cylinders (circular or elliptical) heavily relies on the theory of
distributions.

Up to now, we have been mostly dealing with Gaussian beams. However,
let us recall that a localized approximation has been efficiently used for other
kinds of beams, namely laser sheets, top-hat beams and doughnut beams,
hence the conjecture that the localized approximation could be actually valid
for any kind of beams. Indeed, a most important result has been afterward
obtained, namely that the localized approximation is valid for spheres illu-
minated by arbitrary shaped beams (or, let us say, in spherical coordinates)
[380], although the quality of the approximation may depend on the beam
under consideration. This article introduced another slight modification of
the modified localized approximation which is actually a minor correction.

A similar procedure also allowed one to assess the validity of the localized
approximations previously developed in circular cylindrical and in elliptical
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cylindrical coordinates to the case of arbitrary shaped beams [381], [236].
Again, for these cylindrical cases (circular or elliptical), the use of the the-
ory of distributions is close to compulsory. Furthermore, when developing his
GLMT for circular cylinders [215], [216], Lock introduced his own localized
approximation for this case. It is not yet known whether this localized ap-
proximation identifies with the one developed in Rouen but, in any case, in
the worst case, both of them should certainly generate again quite decent
localized beam models.

VII.6 Complement on the Evaluation of Beam Shape
Coefficients

As we have seen, for a given GLMT (a given shape or configuration), many
variants are still possible, depending on the kind of beam illuminating the
scatterer. The issue of beam description is an essential ingredient of any
GLMT and, in any GLMT, it has been found to be the most difficult sub-
topic to deal with, the one which always required the most significant efforts.
However, not only is the examination of this issue quite necessary for any
GLMT, but it is also an issue which can be considered and useful in its own
right, independently of any GLMT, each time people have to deal with the
description of laser beams, beyond the classical approach of Kogelnik, or of
Kogelnik and Li [300], [301], [302], as discussed in [77]. This complement
provides additional information and insights concerning the issue of beam
descriptions.

Basically, a beam description correctly formatted to produce a GLMT
takes the form of expansions of fields over an appropriate basis of functions.
The expansion coefficients have been named beam shape coefficients and
having an adequate description of the illuminating beam is equivalent to
knowing the values of the beam shape coefficients. As we now know, beam
shape coefficients can be evaluated by using quadratures, finite series, lo-
calized approximations, or by a hybrid method called the integral localized
approximation.

But other techniques may be used. Let us for instance consider the GLMT
for spheroids for which we need a beam description in spheroidal coordi-
nates. Han and Wu [262], [263] examined the beam shape coefficients for a
spheroidal particle illuminated by Gaussian beams. A main result of much in-
terest is that the beam shape coefficients of the Gaussian beam in spheroidal
coordinates can be computed in terms of beam shape coefficients in spherical
coordinates. Beam shape coefficients for arbitrary shaped beams in spheroidal
coordinates are also discussed by Han [382]. Xu et al [274] claimed that the
localization principle is inapplicable to the case of spheroidal coordinates.
What is actually inapplicable is the use of the first ”classical” version of the
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localized approximation. But there is no specific reason, as far as we can see,
why a specific localized approximation could not be designed in spheroidal
coordinates. Let us furthermore mention that the possibility of expressing
spheroidal beam shape coefficients versus spherical beam shape coefficients
provides at least one way, although a bit indirect, to obtain a spheroidal local-
ized approximation versus the spherical localized approximation. The design
of a genuine spheroidal localized approximation would however possibly pro-
vide closed forms fast-running expressions.

Furthermore, addition theorems may be used to evaluate beam shape co-
efficients. For instance, an interesting application of a (translational) addi-
tion theorem for spherical vector wave functions is to provide relationships
between on-axis and off-axis beam shape coefficients, more specifically to
express off-axis coefficients versus on-axis coefficients [377], although these
on-axis and off-axis coefficients can also be independently evaluated, even
in a very economical way, when the localized approximation is used. Han
et al [383] provided an approach for expansions of incident arbitrary shaped
beams, both in spherical and spheroidal coordinates, using addition theorems
for spherical vector wave functions under coordinate rotations. Also, relations
between spheroidal and spherical vector wave functions are used. In an arti-
cle devoted to the expansion of electromagnetic fields of a shaped beam in
terms of cylindrical vector wave functions, Zhang et al [384] dealt with beam
shape coefficients for the GLMT for cylinders, by using the addition theorem
for spherical vector wave functions under coordinate rotations and relations
between spherical vector wave functions and cylindrical ones. Soon after,
Zhang and Han [385] examined a translational addition theorem for spher-
ical wave functions using relations between cylindrical and spherical vector
wave functions. They expressed a translational addition theorem for spherical
vector wave functions in an integral form, providing a theoretical procedure
for the calculation of beam shape coefficients in GLMT. From these results,
the beam shape coefficients in cylindrical or spheroidal coordinates can also
be obtained. Relations between cylindrical and spherical vector wave func-
tions are discussed by Han et al [386]. They also discussed the expansion and
scattering of cylindrical waves in spherical coordinates using the expansion
of cylindrical vector wave functions in terms of spherical ones. This work is
typical of a theme aiming to solve the general problem of establishing bridges
between descriptions in different coordinate systems.

A last issue to be now discussed again, and refined, concerns the use of ter-
minologies like "rigorous values”, ”rigorous solutions”, ” exact values”, ” exact
solutions”, and so on, concerning beam shape coefficients, or more generally
any GLMT under discussion. The origin of the problem is that we only ex-
ceptionally possess beam descriptions which exactly satisfy Maxwell’s equa-
tions. In other words, the ones of Nieminen et al [387], [388], laser beams
in their standard descriptions, are not radiation fields, but only approxima-
tions to radiation fields. Then, typically, beam shape coefficients evaluated
for such beams will not be constant coefficients, as they should if the original
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beam under expansion exactly satisfied Maxwell’s equations. Let us recall the
existence of artifacts produced in such cases when using quadratures. Under
such circumstances, it is (and it has been, starting with some of our origi-
nal works) an abuse of language to tell that the values of the beam shape
coefficients obtained by quadratures provided rigorous or exact values. Any
appearance of words like "rigorous” and ”exact” should be therefore care-
fully examined in order to evaluate its significance, such as, to give another
example, by Neves et al [389], [390], [391], [392].

Several cases (actually two) may happen, that we are now going to sum-
marize. In the first case, we are really facing an abuse of language like when
using quadratures to evaluate beam shape coefficients of a beam which does
not satisfy Maxwell’s equations. Although this process may provide (usually
it did) quite decent values to handle a GLMT, it is basically flawed in utmost
rigor. In the second case, there is indeed a sense in which obtained values are
rigorous or exact, namely the beam shape coefficients obtained are constant,
defining beams which exactly satisfy Maxwell’s equations, although the orig-
inal beams under study did not exactly satisfy Maxwell’s equations. In these
cases, we have to be well aware of the fact that the process used to evaluate
beam shape coefficients actually generates a remodelling of the beam, from
a non-Maxwellian structure to a Maxwellian structure. This happens with fi-
nite series or plane wave spectra, leading to finite series models or plane wave
spectrum models of the beam. A fundamental question to be investigated is
then to know whether the beam model obtained possesses properties close
enough to the ones which were intended, an issue particularly relevant when
we want to deal with very tightly focused beams. This also happens with the
localized approximations, leading to localized beam models. But these mod-
els have been extensively studied and it has been observed that, at least for
Gaussian beams, they anticipate the behavior of higher-order Davis beams.



VIII
Applications, and Miscellaneous Issues

Some allusions or brief discussions concerning applications of GLMTs have
already been provided (and will not be necessarily repeated here). This chap-
ter, to be viewed as, and written as, a complement, is devoted to a more
systematic and exhaustive exposition of such applications. Complementary
miscellaneous issues will also be discussed.

VIII.0.1 Measurement Techniques

The field of optical particle sizing, and more generally, of optical particle char-
acterization of particles in flows constituted the original motivation for the
development of GLMTs. The relevance of GLMTs to this field is confirmed
in various textbooks such as by Gouesbet and Gréhan [51], [393], Xu [394],
Albrecht et al [395], Doicu et al [396], and in review articles such as by Barth
and Sun [397] reviewing the issue of particle size analysis, by Bachalo [39§]
dealing with experimental methods in multiphase flows, by Black et al [399]
reviewing laser-based techniques for particle size measurements, including a
discussion of industrial applications, and also of the Gaussian nature of the
laser beams used, without forgetting a discussion of GLMT, or a discussion of
top-hat beam techniques, by Jones [400], telling us that light scattering has
proved to be one of the most powerful techniques for probing the properties of
particulate systems, or by Durst [401] who concentrated on the many optical
techniques developed for particulate systems and fluid mechanics. Another
relevant article is by Ren et al [402]. Several measurement techniques are ac-
tually concerned, but the most significant ones are likely to be phase-Doppler
techniques.

Phase-Doppler instruments

Phase-Doppler Instruments (PDI, or Phase-Doppler Anemometers, PDA)
originally allowed one to simultaneously measure velocities and sizes of
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individual spherical particles in flows. They result from an extension of Laser
Doppler Velocimetry (LDV), introduced by Yeh and Cummins [403], de-
scribed in many places such as by Drain [404] or by Durst et al [405]. The
basic idea of the extension from LDV to PDA is due to Durst and Zaré [400].
A review on experimental methods in multiphase flows takes a bit of time
discussing phase-Doppler instruments [398], to be complemented by a more
restricted specific review devoted to the phase Doppler method [407]. Another
account of phase Doppler configurations, including a discussion on ambiguity
trajectory effects, is available from Buchhave and von Benzon [408]. Some
calculations in this article are carried out by using GLMT. A history of the
development of the phase-Doppler technique is available from Hirleman [409].
A review of the development and characteristics of planar PDA (a particular
variant of the original standard set-up) is given by Durst et al [410]. A the-
oretical model for the method of phase-Doppler sizing is discussed by Zhang
Song et al [411].

A (hopefully) pedagogic basic presentation of phase-Doppler instruments
is available from Gouesbet and Gréhan [92], here summarized as follows. A
control volume is produced by the intersection of two laser beams (originating
from the same laser). This control volume contains a set of (ideally) parallel
interference fringes. When a particle crosses these fringes, it will produce
a signal modulated at a certain frequency depending on the fringe spacing
and on the transverse velocity of the particle (i.e. perpendicularly to the
fringe system). Then, measuring the modulation frequency using one detector
and knowing the value of the fringe spacing, we have a measurement of the
transverse velocity component. This is the velocimetry part of the instrument.
Next, let us add a second detector. Each detector will receive a modulated
signal but, due to the different locations of the detectors, one signal is delayed
with respect to the other. The phase difference (usually simply called the
phase) between the two signals allows one to measure the diameter of the
particle, assumed to be spherical. This is the sizing part of the instrument.
The set-up configuration so described corresponds to what is often called the
standard instrument.

In earlier works, theories predicting the relationship ¢(d) between the
phase ¢ and the diameter d assumed uniform illumination of the particle,
and a dominant scattering mode (reflection or refraction) in the collecting
direction. These assumptions lead to linear functions ¢(d), easy to inter-
pret (within 27 phase ambiguities), which furthermore do not depend on
the amount of light illumination. This was however too simple and the story
became more complicated after 1988 [412] because of the discovery of the
Trajectory Ambiguity Effect, TAE, (also named trajectory ambiguity defect,
Gaussian beam effect, Gaussian beam defect and other variants).

In phase-Doppler instruments, the transverse characteristic dimension of
the illuminating (Gaussian) beam is finite, of the order of the beam waist
radius wq. If the size of the scatterer is not small with respect to wq, then the
aforementioned assumption of uniform illumination fails, and extra-effects
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have to be forecast. Indeed, it then happens that the phase (difference) ¢ be-
comes dependent on the location of the scatterer within the control volume :
this is the TAE. The existence of the TAE was first recognized by Bachalo
and Sankar [412], relying on a geometric optics approach.

With the TAE, it was a dogma which crashed down and the announce-
ment was poorly received. Nevertheless, eventually, the existence of TAE was
confirmed in the rigorous electromagnetic framework of GLMT by Gréhan
et al [3]. Computations were performed for a commercial phase Doppler sys-
tem and various schemes for elimination of the TAE were examined. It was
put forward that the errors due to particle trajectories could be eliminated
satisfactorily by employing an additional receiving unit, which allows one to
detect the asymmetry of the scattered light pattern due to displacement of
the particle trajectory from the centre of the measuring volume. A prelim-
inary experimental evaluation of this extended technique is presented and
discussed. GLMT is thereafter used again to examine trajectory ambiguities
in phase-Doppler systems, for a near-forward and a near-backward geome-
tries [4]. Remedies to the disease are discussed, and the extended technique
previously introduced is revisited. TAE is discussed by Durst et al [410],
with many GLMT simulations used to illustrate TAE and other issues. A
very comprehensive article dealing with the implications of the Gaussian in-
tensity distribution of laser beams on the performance of the phase Doppler
technique, particularly with sizing uncertainties, is available from Hardalupas
and Liu [413]. Lehmann and Schombacher [414] discussed the features of a
combined FFT and Hilbert transform for phase Doppler signal processing,
including validation strategies to reduce the influence of maltriggered bursts
and Gaussian beam effects on measurement results. Also, a device using su-
perimposed noninterfering probes to extend the capabilities of phase Doppler
anemometry, relevant to the issue of trajectory effects, is proposed by Onofri
et al [A15].

Although the TAE is a defect, it has been turned to an useful effect when
a technique named the dual burst technique has been introduced by Onofri
et al [416]. In this technique, the set-up is designed (by reducing the beam
waist diameter when compared with typical values of the standard set-up) in
such a way that two Doppler bursts generated by the same particle crossing
the control volume are emitted toward the detectors, one associated with re-
flection, and the other with refraction, each of these bursts probing different
properties. Indeed, only the refracted light is influenced by the material prop-
erties of the particle. The phase of the refracted light from a particle depends
on the optical set-up, the particle size and the particle refractive index. The
phase of the reflected light however depends only on the optical set-up and on
the particle size, but does not depend on the particle refractive index. From
the reflected burst, the particle diameter can be deduced. Then, knowing the
diameter and the optical parameters of the phase-Doppler set-up, the parti-
cle refractive index can be determined from the phase of the refracted burst.
Furthermore, the intensity ratio of the two bursts can be used for absorption
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measurements. Simulations based on GLMT and experimental tests using
monodispersed droplets of different refractive indices and absorption coeffi-
cients have validated this technique. The dual-burst technique is also used
by Onofri et al [417] for simultaneous velocity, size, and concentration in
suspension measurements of spherical droplets and cylindrical jets. Further-
more, three ways to eliminate particle trajectory effects on the concentration
measurements of spherical particles are proposed.

Phase-Doppler instruments were originally designed for spherical particles.
However, relying on the GLMT for multilayered spheres [I73], the applica-
tion of phase-Doppler anemometry to multilayered spheres is discussed by
Onofri et al [4T8]. In particular, its specification to phase-Doppler anemome-
try for the case of water-coated carbon spheres has been considered by using
focused laser beams, therefore extending the principle of the dual burst tech-
nique. Information on the core and outer particle diameters are shown to be
retrievable by carefully analyzing the temporal structure of individual phase-
Doppler signals. Also, the influence of refractive index profiles inside droplets,
induced by temperature and pressure stresses, on PDA phase-diameter rela-
tionships, was investigated. The measurement of cylindrical particles with
phase Doppler anemometry is considered by Mignon et al [419]. Although
the formalism of the GLMT for cylinders was already well developed, it was
not yet computationnally implemented, so that this study by Mignon et al re-
lied on geometrical optics. A first application of GLMT for cylinders, however
restricted to the use of O(s?) Gaussian beams, is available from Gauchet et al
[420]. GLMT for non-spherical particles with applications to phase-Doppler
anemometry is discussed by Doicu et al [421], although the correctness of
the used terminology of GLMT may be problematic, in so far as there is no
GLMT able to deal with arbitrary shapes of particles. Nevertheless many
GLMT ingredients are used in the article, and the applications to PDA con-
cerned spheroidal particles. The response of PDA systems to nonspherical
droplets is investigated by Damaschke et al [422]. A discussion concerning
optical techniques for the characterization of nonspherical and nonhomoge-
neous particles is available from Damaschke et al [423]. Size measurements of
moving glass fibers using phase Doppler anemometry with theoretical mod-
elling for a tilted cylinder interacting with focused laser beams are discussed
by Mignon et al [424]. The feasibility to build an interferometric optical in-
strument for in-situ measurement of fiber diameter has been demonstrated
theoretically and the results have been validated experimentally. On-line siz-
ing of small diameter glass fibers by interferometric phase-Doppler sizing is
discussed by Onofri et al [425].

One of the difficulties in using phase-Doppler instruments may be the
limitation of the optical access to the system under study, with an illumi-
nating unit and a receiving unit spreading more or less over 180°, requiring
configurations which are not always feasible under industrial and/or hos-
tile conditions. Therefore, there must be an interest devoted to other op-
tical configurations with a backward collection. As a consequence of such
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requirements, Bultynck et al [426] examined the use of a miniature monoblock
backward phase-Doppler unit, relying on numerical situations carried out by
using the GLMT, a concept validated by experimental tests. A similar com-
mitment is achieved by Blondel et al who dealt with compact monoblock
configurations too [427]. Optical particle sizing in backscatter is examined
by Damaschke et al [156], with theoretical calculations carried out by using
FLMT, plus a discussion on trajectory ambiguity effects. Later on, Wu et al
[428] dealt with the sizing of irregular particles using a near backscattered
laser Doppler system.

The issue of phase errors in phase-Doppler anemometry, and in particular
of TAE, has also been examined by Albrecht et al [429], [430] in a two-part
article. As a theoretical tool, they used a method of extended geometrical
optics which is based on geometrical optics by including the amplitude and
the phase distribution in the laser beam. Phase errors caused by Gaussian-
beam intensity distribution and the curvature of the wave fronts beyond the
beam waist can be calculated. The influence of the particle trajectories on
measured phase and mass concentration is simulated for both reflective and
refractive modes of operation. The same issue is treated again by Albrecht
et al [152], using both the Fourier LMT (FLMT) and the extended geomet-
rical optics. Yokoi et al [431] provided an estimation of particle trajectory
effects and discussed their reduction using polarization, both theoretically
(relying on geometrical optics and on GLMT) and experimentally. They in-
vestigated a method for reducing the trajectory effect using the separation
of reflected and refracted rays on the basis of polarization properties. Later
on, the same authors proposed an unidirectional phase-Doppler method for
sizing moving spherical particles on the basis of the phase difference between
two polarized Doppler beat signals in a single scattering direction [432]. They
again performed an analysis based both on geometrical optics and GLMT,
and carried out experiments. Complementary studies concerning trajectory-
dependent scattering errors are also available from Strakey et al [433], [434].

Qiu and Hsu [435] introduced a new PDA-like concept to improve the accu-
racy of sizing large particles in two-phase flows. This method uses a photode-
tector array to measure directly the spatial frequency of the light intensity
scattered from a spherical particle in the measurement volume. The effect
of both the reflected and refracted rays are considered. GLMT-simulations
are used. Qiu and Jia [436] introduced an optimized optical orientation an-
gle by taking two scattering mechanisms into consideration, providing high
accuracy and avoiding the measurement-volume effect (trajectory ambiguity
effect and a slit effect) in sizing large particles (as large as 1200 pm). The
performance of the method was simulated by using the GLMT and validated
by experiments. The effect of refractive index in optical particle sizing using
a PDA-like system with a spatial frequency method is examined by Qiu and
Jia [437]. GLMT was again used for simulations. Qiu [438] discussed the elim-
ination of high-order scattering effects in optical microbubble sizing, with a
model which relaxes the assumption of a single-scattering mechanism used in
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a conventional (standard) PDA-system. Simulations relied on GLMT. Next,
the impact of high order refraction on optical microbubble sizing in mul-
tiphase flows, by using phase Doppler anemometry, is further investigated,
both theoretically (with GLMT) and experimentally, by Qiu and Hsu [439).
As a result, an optimization method for accurately sizing air bubbles in water
is suggested. The measurement-volume effect (including both the trajectory
ambiguity effect and a slit effect) is effectively eliminated using a four-detector
PDA system.

Other works are as follows. Von Benzon and Buchhave [440] were concerned
with phase-Doppler measurements of very small particles, essentially using
LMT but using also GLMT for verification of LMT results. Sankar et al
[441] dealt with coherent scattering by multiple particles in phase Doppler
interferometry. In this article, like in other articles by the same team, it is
stated that, with the geometrical optics, the Gaussian beam illumination
of the incident laser beam can be accounted for more efficiently than with
the GLMT. It is certainly true that main features of PDA can be examined
with geometrical optics. But, for many well known reasons and limitations of
geometrical optics (rainbow, glory, extinction paradox, MDRs...) a rigorous
theory, when available, is in our mind to be preferred. The invoked lack
of efficiency of the GLMT is a subjective statement. It may refer to the
mathematical complexity of the theory, but at least one of us finds geometrical
optics more complicated than GLMT and, in any case, boring. It may refer
to computer programming difficulties but, as soon as well tested computer
programs are available, such difficulties vanish in the blue. For a comparison
between geometrical optics and wave theory, see Ungut et al [442)].

Schaub et al [443] produced a theoretical analysis of the effects of particle
trajectory and structural resonances on the performance of a phase-Doppler
analyzer. The phase-Doppler model is based on the so-called arbitrary beam
theory (actually equivalent to GLMT). Particle trajectory effects are exam-
ined. Gupta and Avedisian [444] used phase-Doppler anemometry to investi-
gate the role of combustion on droplet transport in pressure atomized spray
flames, taking care of the TAE. Willman et al [445] examined the possibility
of phase-Doppler sizing with off-axis angles in Alexander’s darkband. They
found that an Alexander’s darkband configuration is extremely insensitive to
Gaussian beam defects. They used a geometrical optics computer program
which is however validated by GLMT-computations. Saumweber et al [446)
dealt with simultaneous droplet size and gas-phase turbulence measurements
in a spray flow using phase-Doppler interferometry. Dahl and Wriedt [447]
dealt with the simulation of PDA using the multiple multipole method. Jiang
[448] used phase maps to optimize phase Doppler particle-sizing systems.
Schaub et al [449] dealt with the development of a generalized theoretical
model for the response of a phase/Doppler measurement system to arbitrarily
oriented fibers illuminated by Gaussian beams. Schaub et al [450] discussed a
design of a phase/Doppler light-scattering system for measurement of small-
diameter glass fibers during manufacturing. Yu and Rasmuson [451] discussed
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the projected area of measurement volume in phase-Doppler anemometry and
application for velocity bias correction and particle concentration estimation.
Wigley et al [452] achieved an experimental analysis of the response of a
phase Doppler anemometer to a partially atomized spray, in particular dis-
cussing the issues of Gaussian beam effects and sphericity checks. Widman et
al [453] are concerned with the identification of burst splitting events in phase
Doppler interferometry measurements. Like trajectory-dependent errors due
to the Gaussian intensity profile of the laser beam, a burst splitting event, in
which noisy environments results in a single droplet being counted as multiple
droplets, can spoil the accuracy of recorded data. Widman et al [454] dealt
with the improvement of phase Doppler volume flux measurements in low
data rate applications. This is a significant issue in PDA because accurate
volume flux measurements are more difficult to obtain than size or veloc-
ity measurements. Widmann [455] dealt with phase Doppler interferometry
measurements in water sprays produced by residential fire sprinklers.

Bergenblock et al [456] dealt with the experimental estimation of parti-
cle flow fluctuations in dense unsteady two-phase flow using phase Doppler
anemometry, with a discussion of trajectory, slit, burst splitting, perturba-
tion of fringes effects. Hespel et al [457] provided a geometrical optics- and
GLMT-based numerical study of the use of glare spots in phase Doppler
anemometry. In this system, two large laser beams are used, and the images
of the particle formed by the reflected and refracted lights are separated in
space. Each detector generates a signal composed of two separate parts, one
due to reflection and the other to refraction. The configuration is designed in
such a way as to avoid the sensitivity of the instrument to the wave front cur-
vature of the laser beam. The GLMT-based approach incorporates GLMT as
an ingredient but, more generally, is constituted by an electromagnetic model
allowing one to calculate images. This introduces us to the theme of imaging
to which we are going to turn presently.

But, before that, let us just mention the existence of an alternative to
PDA, named the dual-cylindrical wave laser technique, discussed by Naqwi
et al [291], by Naqwi and Durst [319], and GLMT-analyzed by Gréhan et al
[293].

Imaging

Imaging is a much interesting field in which the relevance of GLMTs may
be significant : how images are formed? Which kind of information can be
retrieved from the images, and how? This issue has been attacked, in a GLMT
framework, by Ren et al [458] dealing with the measurements of particles by
imaging methods. A basic theoretical and simulation scheme is established as
follows (i) the light scattering and propagation from the particle to the input
plane of a lens is computed by using a light scattering theory (e.g. LMT or
GLMT), in a general situation where the incident beam is not necessarily
aligned with the beam axis (ii) the propagation of the light from the input
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plane to the output plane of the lens (assumed to be a perfect phase lens)
is described by a lens transform, introducing only a phase shift and (iii) the
propagation of the light from the output plane of the lens to the image plane
is computed using a Huygens-Fresnel integral. Many exemplifying results
are provided and discussed, including the case of stereoscopic geometries as
used in Particle Image Velocimetry (PIV, more to come on this technique).
An effective experimental set-up implementing theoretical features previously
simulated, and leading to satisfactory results, is discussed. A further study of
the same scheme is available from Girasole et al [459], with two exemplifying
cases (i) interferometric sizing at large off-axis angles and (ii) imaging in near
forward directions, relevant to Shadow Doppler Velocimetry (SDV).

SDV is a technique, based on coherent near-forward off-axis imaging of
particles, allowing one to measure the velocity and size of non-spherical and
optically non-homogeneous particles, also providing shape information, e.g.
Hardalupas et al [460] Maeda et al [461], or Morikita and Taylor [462]. A
theoretical evaluation of a shadow Doppler velocimeter, relying on a near
forward off-axis imaging of particles, is achieved by Ren et al [463]. In this
case, the spherical particle is illuminated by two continuous laser beams and
the imaging process previously discussed [458] (with only one beam) has to
be (slightly) extended. Independently of SDV, Zinin et al [464] dealt with
Fourier optics analysis of spherical particles image formation in reflection
acoustic microscopy.

For imaging techniques relevant to PIV, we start with Moreno et al [321]
who discussed particle positioning from charge-coupled device (CCD) im-
ages by GLMT and carried out comparisons with experiments. In this study,
real-time CCD cameras are used to extract 3D position and velocity infor-
mation by direct analysis of the diffraction patterns of seeding particles in
imaging velocimetry. The particle is assumed to be illuminated by Gaussian
light beams, light sheets, or a plane light wave, and aberration effects are
included. The particular interest of the light sheet is that it corresponds to
the usual kind of illumination in conventional PIV. Micrometer-sized particle
diffraction images have been quantitatively (and favorably) compared with
experimental data. The same topic (particle positioning from CCD images,
experiments and comparison with the GLMT) is considered by Guerrero et
al [322] and Guerrero-Viramontes [465]. See also Funes-Gallanzi et al [466)
dealing with the same topic too, but using LMT rather than GLMT. They
observed however that the experimental results using classical LMT treat-
ment proved insufficient to provide high accuracy 3D particle positioning so
that the algorithm used had to be extended to use a GLMT approach (as
reported elsewhere, see above). Relevant to the topic of positioning is also a
work by Guerrero et al [467] discussing the case of a spherical wave front in-
cluding a comparison to experimental data. Scattering light from a spherical
particle located on-axis to an electromagnetic spherical wave is numerically
predicted using GLMT. Comparisons are made with LMT, and with exper-
imental in-line Fraunhofer holograms of spherical particles, showing good
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agreement. Another study relevant to PIV is by Ilic et al [323] who carried
out GLMT-based simulations of laser sheet scattering by microparticles for
the case of numerous random spatial distributions of scattering particles.

Rainbow and rainbow refractometry

GLMT may be used to study the properties of the rainbow in the case of non-
plane-wave illumination. Already cited relevant articles are by Lock [127], Wu
et al [I75], Adler et al [240], Mées et al [212], Guo and Wu [226], Adler et
al [227], Mées et al [346], Han et al [264], Wu and Li [230] and Bakic et al
[154]. Also, rainbow scattering by a coated sphere is discussed by Lock et
al [468]. A further article is by Han et al [469] reporting on the study of the
behavior of interferences between geometrical rays and surface waves. Such
interferences are studied in a GLMT framework, supplemented with a De-
bye series analysis. Scattering diagrams in the rainbow region and associated
FFT spectra (exhibiting Airy frequency, ripple structure, and surface waves,
interferences...) are calculated and discussed. A complementary experimental
study shows very good agreement between calculated and recorded scattering
diagrams and spectra. It is concluded that it is possible to measure the contri-
butions of surface waves associated with rainbow FFT spectra. A proposal is
made, according to which the contribution of surface waves in rainbow FFT
spectra could allow one to quantify very small variations of the surface of a
liquid jet. As a matter of fact, at that time, Han et al [470] already succeeded
to characterize initial disturbances (and their exponential growth) in liquid
jet by rainbow sizing.

Concerning rainbow refractometry, the use of GLMT is usually not re-
quired, or not useful, due to the fact that the size of the illuminating beam
is large enough so that LMT is sufficient. Nevertheless, van Beeck and Rieth-
muller [47T], discussing the rainbow phenomena applied to the measurement
of droplet size and velocity and to the detection of nonsphericity, used GLMT
to emphasize the fact that the optical interference structures of the rainbow
can be influenced by the Gaussian intensity distribution of the laser beam
that illuminates the droplet under study. They concluded that Gaussian illu-
mination influences the rainbow spectrum considerably and has to be taken
into account when identifying peaks in the spectrum of the rainbow. Also,
van Beeck and Riethmuller [363], discussing rainbow interferometry with wire
diffraction for simultaneous measurement of droplet temperature, size and ve-
locity, used GLMT to simulate a photomultiplier signal. Wilms and Weigand
[472] dealt with composition measurements of binary mixture droplets by
rainbow refractometry, referring to previous works by Han et al [264], and by
Saengkaew et al [473]. Another article by Wilms et al [474] dealt with global
rainbow refractometry with a selective imaging method, aiming to minimize
measurement errors due to non-sphericity.
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Miscellaneous measurement techniques

Bemer et al [475] dealt with the calculation of the theoretical response of
an optical particle counter. Hesselbacher et al [476] considered a droplet siz-
ing method relying on the evaluation of a fringe spacing of scattered light
in the forward direction. They carried out an experimental investigation of
Gaussian beam effects associated with this method. Glare points and prac-
tical use of glare points are discussed by van de Hulst and Wang [477]. Li et
al [478] discussed Fizeau digital interferometry with a diffraction-generated
spherical wave for testing focusing optics. In this study, they dealt with the
diffraction from a spherical particle with a size of several wavelengths or
more, using the diffraction theory to describe the far-field distribution of the
diffracted light, a theory also discussed in connection with GLMT validations
[44]. Doornbos et al [479] found that flow cytometric measurements of light
scattering of polystyrene calibration beads revealed remarkable Lissajous-
like loops in two-parameter scatter plots. Theoretical simulations relied on
the implementation of the GLMT. Another complementary article devoted
to the Lissajous-like patterns, still using GLMT, is available from Hoekstra
et al [480]. Doornbos et al [481] dealt with elastic light-scattering measure-
ments of single biological cells in an optical trap. They however used small
enough particles (one twentieth of the beam diameter) to avoid the use of
GLMT. Anders et al [482] introduced a new technique for investigating phase
transition processes of optically levitated supercooled droplets consisting of
water and sulfuric acid, with theoretical computations relying on GLMT.
Concerning phase transition, we also have to cite Trunk et al [483] who in-
vestigated a phase transition in a single optically levitated microdroplet by
Raman-Mie scattering. Min and Gomez [484] discussed high-resolution size
measurement of single spherical particles with a fast Fourier transform of
the angular scattering intensity. This technique entails imaging the angu-
lar scattering intensity onto a photodiode array and applying a fast Fourier
transform to the array output to obtain a frequency and phase corresponding
to the number and angular position of the scattering lobes. GLMT is used
for theoretical analysis. Wang et al [485] discussed measurements of fluid-
flow-velocity profiles in turbid media by the use of optical Doppler tomogra-
phy, indicating that the implementation of GLMT into the analysis should
give a more realistic and accurate understanding of the technique. Rambert
et al [486] dealt with a laboratory study of fungal spore movement using
laser Doppler velocimetry, and pointed out the interest of phase Doppler in-
struments to cylindrical particles (relevant to GLMT for cylinders), for the
study of a number of fungal spores. Ovod et al [487] discussed a modified
conventional plane-wave scattering approach to be used for the rapid engi-
neering simulation of the influence of the main instrumental parameters of
a laser particle-size analyzer on its response function and other main per-
formance characteristics. The correctness of this modified technique is con-
firmed experimentally and theoretically by comparison with the exact GLMT.
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Steiner et al [488] discussed a fast in situ sizing technique for single levi-
tated liquid aerosols, making use of the analysis of fast-Fourier-transformed
vertically polarized Mie scattering patterns from single liquid aerosols levi-
tated in a Paul-trap-type electrodynamic balance. Allersma et al [489] dealt
with a technique to detect the displacement of micron-sized optically trapped
particles, relying on a simple theoretical model capturing essential features,
although GLMT could be used instead. Godefroy and Adjouadi [490] dealt
with particle sizing, under focused Gaussian beam illumination, in a flow
environment, using light scattering patterns.

In the same mood, we may refer to flow cytometry which is a technique
for counting, characterizing, and sorting microscopic particles in a flow. The
characterization of particles in a cytometer under laser illumination may rely
on the use of GLMT, e.g. Neukammer et al [279], Doornbos et al [479]. See
also Ost, Neukammer and Rinneberg [491] dealing with cytometry investi-
gations under circumstances where LMT and GLMT essentially agree. More
precisely, taking into account for experimental error limits, the data presented
did not unambiguously show the influence of a finite beam waist on calcu-
lated quantities (integrated differential scattering cross-sections). Sloot et al
[492] discussed the scattering matrices of monodisperse biological cells in a
flow cytometer and provided evidences that quantitative measurements of the
elements of these scattering matrices is possible. Experimental data are in-
terpreted with the aid of GLMT. Soini et al [493] introduced a new design for
the optical cuvette and a new optical lay-out for the scanning flow cytometer
that permits measurement of the angular dependency of the scattered light
from individual moving particles. Other articles relevant to cytometry are
by Watson et al [494], Venkatapathi et al [221], and by Venkatapathi and
Hirleman [222]. The topic of flow cytometry is reviewed by Maltsev [495].

Shen and Riebel [496], motivated by particle size analysis using optical
counters or transmission fluctuation spectroscopy, investigated the extinction
by a large spherical particle located in a narrow Gaussian beam. They present
experimental results on the extinction by an absorbent or transparent spher-
ical particle passing through a Gaussian beam. Theoretical predictions are
carried out using geometrical optics. They found that the theoretical model
agrees approximately with the experimental results except for the near-waist
location of the transparent particle. Castagner and Jones [497] discussed a
double Gaussian beam method for the determination of particle size, direction
and velocity, in which the particle size is measured using the light scattered
from Gaussian laser beams. A well-known problem for such measurements,
based on scattered intensities, results from the non-uniform profile of the
illuminating beam. In the present work however, the uncertainties in illumi-
nation due to the beam shape are avoided by determination of the direction
and velocity. Particles are assumed to be small compared with the width of
the incident beam, so that LMT-calculations are valid. But there would not
be any serious difficulty to extend the technique to the case of larger parti-
cles and/or of more focused beams and to analyze the system with the aid
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of GLMT. Castagner et al [498] dealt with particle sizing using a fast polar
nephelometer, using LMT, but planning to implement GLMT to increase the
correlation between experimental data and theoretical prediction.

Castanet et al [499] devoted themselves to the evaluation of temperature
gradients within combusting droplets in linear stream using two colors laser-
induced fluorescence. At a certain step, a temperature field is reconstructed,
involving the use of GLMT (or of a geometrical optics model). More specifi-
cally, a light scattering approach is required for the calculation of the inter-
nal excitation field. One of the advantages of the GLMT approach is that
the calculation is possible even if the beam’s axis intersection point is geo-
metrically located outside of the droplet under study. Let us remember here
that GLMT can indeed provide excitation fields inside particles and therefore
may be helpful to the study of many phenomena, another example being the
two-photon fluorescence study, already mentioned, by Mées et al [352], the
study of nonlinear effects generating the disruption of droplets [500], [501], or
stimulated Raman scattering in cavities [502]. Related articles are by Maqua
et al [503], [504]. Stimulated Raman scattering is further discussed by Zhang
et al [505)], dealing with the pumping of stimulated Raman scattering by
stimulated Brillouin scattering within a single liquid droplet. Also, Yakovlev
and Luk’yanchuk [506] proposed a novel microscopic arrangement that al-
lows highly multiplexed nanoscopic imaging. A microsphere may focus light
radiation into a small (100 nm)? volume. By arranging such microspheres in
a close-packed 2D-array, parallel multiplexing can be achieved both for light
excitation and signal collection. The authors anticipated that the proposed
system can be used for a large variety of optical spectroscopy techniques, in
particular concerning enhancement in the efficiency of multiphoton processes.

Wiggins et al [507] discussed the case of a collection of dielectric parti-
cles pumped by a laser radiation field. They then may form a strong density
grating on the scale of the radiation wavelength, and coherently scatter the
incident radiation. Depending on the size of the particles, such a configura-
tion may be relevant to nonlinear optics, optical particle characterization and
optical particle discrimination. The authors outlined the theoretical frame-
work and provided the first observations from experiments using a standing-
wave gradient force trap. Onofri [508] introduced a system based on three
interfering beams in laser Doppler velocimetry for particle position and mi-
croflow velocity profile measurements, with a GLMT analysis. Onofri et al
[509] discussed the critical angle refractometry and sizing technique, and its
extension to characterize the size distribution and the mean refractive index
of clouds of bubbles. Rigorous simulations are carried out using GLMT. The
investigation of a measurement technique to estimate concentration and size
of inclusions in droplets is available from Riefler et al [510]. The proposed
technique is experimentally studied in an extensive way. This is a case where
an implementation of a GLMT with one inclusion [I128] (and the develop-
ment of a GLMT with many inclusions) would be likely welcome. Georgescu
et al [511] examined the design of a system to measure light scattering from
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individual cells excited by an acoustic wave, with tests carried out on live cells.
FFT of the scattered light signal was used to extract information about the
highly-damped resonant frequencies of the cells, and the detected frequencies
are consistent with theoretical predictions. You et al [512] introduced a new
micro-bulk defect measurement method in semiconductive materials, which
scales the defects by analyzing scattering, based on GLMT. The optical re-
sponse of a single spherical particle in a tightly focused light beam, relevant to
the use of a spatial modulation spectroscopy technique, is discussed by Lermé
et al [I50]. These authors however used an angular spectrum approach, ap-
parently motivated by the erroneous fact that GLMT would be limited to
rather weakly convergent light beams (although generalized Mie equations
are also provided). Sigel and Erbe [513] dealt with ellipsometric light scat-
tering (an experimental technique allowing one to characterize interfaces of
spherical colloidal particles embedded in a medium) which is shown to selec-
tively extract the coherent scattering contribution representing the average
properties of a particle ensemble. Illumination by a Gaussian beam implies a
loss of coherence which is discussed in the article. The Gaussian beam pro-
file used for the experiments is presented in the framework of GLMT. Smith
and Berger [514] discussed a microscopic system that has been constructed
to simultaneously acquire traditional Raman spectra and also angle-resolved
elastic scattering patterns, using a single focused laser spot. The elastic scat-
tering signal was analyzed using GLMT, representing what the authors be-
lieve (and we believe they are right) to be the first experimental validation of
the theory prediction of angular backscatter from single spheres. This obvi-
ously does not mean the absence of previous experimental validations of the
GLMT.

VIII.0.2 Internal Fields and
Morphology-Dependent- Resonances

In most cases, optical particle characterization techniques (laser Doppler ve-
locimetry, phase Doppler anemometry, imaging...) rely on the analysis of
scattered fields. It is a kind of inverse problems : you have the tracks of
the dragon and you would like to know how the dragon looks like [517].
We are now going to enter the entrails of the dragon, that is to say to deal
with internal fields. Obviously, scattered fields and internal fields are not
physically independent (remember the boundary conditions at the surface of
the scatterer), but it is convenient to pretend that they are independent for
the sake of convenience to the exposition. The most interesting topic when
dealing with internal fields is likely to be the one of morphology-dependent-
resonances (MDRs), or whispering-gallery-modes (WGMs). Recall however
that both terminologies are not necessarily equivalent [247].

Let us consider a spherical microcavity and discuss the behavior of rays
circulating below its surface, and trapped due to the limit angle of refraction.
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When these rays possess closed orbits, with a constructive phase relationship,
they build up resonances. Because they depend on the shape of the particle
(not necessarily spherical), and on its refractive index, these resonances are
called morphology-dependent-resonances (MDRs). They may also be called
whispering-gallery-modes (WGMs) in reference to a similar phenomenon
encountered in acoustics, which may be experienced under the dome of
St. Paul’s Cathedral in London, or in the temple of Heaven in Beijing.
Whatever the terminology used, the ray picture used above allows one to
understand that MDRs generate high intensity fields below the surface of the
scatterers, high enough to possibly facilitate the generation of quantum and
of non-linear effects, including lasing.

Focal point positioning effects at resonance, associated with the study of
internal fields in a spherical particle illuminated by a tightly focused laser
beam, are discussed by Barton et al [140]. Cantrell studied a theory rele-
vant to the understanding of pumped stimulated Brillouin scattering with
resonances [516], [517]. Lai et al [518] examined the effect of perturbations
on the widths of narrow MDRs in Mie scattering. Lai et al [519], dealing
with nonlinear elastic scattering of light from a microdroplet, also discussed
MDRs perturbations. Eversole et al [520] discussed input/output resonance
correlation in laser-induced emission from microdroplets. The phenomenon
of morphology-dependent stimulated Raman scattering (MDSRS) is outlined
by Aker et al [521]. Trunk et al [483] observed a phase transition from the
liquid to the solid state of ammonium sulfate inside a microdroplet by means
of MDRs and Raman scattering.

An important issue is that a MDR can be excited, even though the light is
not directly incident on the particle. This somewhat counter-intuitive result
is explained by Van de Hulst by invoking the localization principle [I7], or
can be understood under the name of tunneling [522]. Partitioning of en-
ergy between different modes is determined by using the GLMT. The large
enhancement in the excitation rate of MDRs by an off-axis Gaussian beam fo-
cused somewhat beyond the edge of a dielectric spherical particle is discussed
by Lock, using GLMT [I57], to be complemented by Lock [523] dealing with
the excitation efficiency of a MDR by a focused Gaussian beam, both for a
spherical particle and for a cylindrical particle. Relevant to this issue is also
an article by Serpengiizel et al [524] dealing with the excitation of resonances
of microspheres on an optical fiber. For the first time, to the knowledge of
the authors of this article, the coupling of light between an OFC (optical
fiber coupler) and MDRs of an individual microsphere placed on the OFC
surface is reported. An interesting aspect of the coupling is its association
with off-axis beam excitation. The intensity of various resonance orders is
understood using the GLMT associated with the localization principle. Elas-
tic scattering intensities are measured and compared with the results of LMT
and GLMT computations. These comparisons show that GLMT is indeed su-
perior to LMT to explain the experimental data. Serpengiizel et al [525] later
dealt again with the issue of enhanced coupling to microsphere resonances
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with optical fibers. In this work, MDRs of polystyrene microspheres were ex-
cited by an OFC, with the microsphere being immersed in an index matching
oil. The observed MDR-spectra are found to be in good agreement with the
GLMT and the localization principle. Furthermore, the scattering efficiency
into each MDR is estimated as a function of the impact parameter by means
of GLMT. Further related work (concerning microsphere resonators, MDRs of
microspheres, focused Gaussian beam excitation in relation with GLMT and
the localization principle...) has been published by Serpengiizel and Demir
[526].

MDRs in circular cylinders are further discussed by Lock [216]. Roll et
al [527] presented a caustic model of MDRs based on geometrical optics,
which describes the electromagnetic field in cylinders or spheres. As stated
by the authors, a limit of the approach concerns the transition of a ray into
a sphere, when it is not geometrically incident, in relation to the principle
of localization. Aker et al [628], experimentally dealing with MDSRS, could
detect nitrate ion concentration as small as 5.107° M in aerosols. Such a
low concentration could be detected by allowing the droplet size to be tuned
during an experiment. The authors put forward the fact that it should be pos-
sible to detect concentrations a factor of ten lower. Arias-Gonzalez et al [529)
dealt with MDRs in the scattering of electromagnetic waves from an object
buried beneath a plane or a random rough surface. The topic is relevant to
the detection of hidden objects which is an important issue in biology or geo-
physics. In this article, the interest is more specifically focused on resonances
from a cylinder when the cylinder is placed in a dielectric medium that is
separated from air by a flat or rough interface. Lock [530] discussed the ex-
citation of MDRs in connection with van de Hulst’s localization principle (a
principle which, let us recall, is at the origin of the localized approximation).
He emphasized the result that, for microparticles whose shape deviates from
that of a sphere, partial-wave coupling caused by small surface irregulari-
ties leads to the excitation of low-radial-orders MDRs. Pastel and Struthers
[531] measured evaporation rates of laser-trapped droplets by use of fluo-
rescent MDRs. Leung et al [532] discussed MDRs in dielectric spheres with
many tiny inclusions. They found that MDRs in the sphere may split into
multiplets because of the loss of spherical symmetry and manifest themselves
as broadened spectral lines in the scattering cross-section. Such features could
be put in correspondence with some of the Hamiltonian features observed in
the annulard billiard as discussed in [247], and references therein.

A comprehensive review on the theory of eigenmodes in a dielectric sphere,
with a particular attention paid to WGMs/MDRs is given by Oraevsky [533].
Next, under certain circumstances, absorption cross sections of particles may
have to be integrated over frequency, for instance when dealing with laser
pulses, or over droplet size, an integration task which can be made difficult
due to the existence of MDRs which can contribute significantly even when
their linewidths are extremely narrow. This issue is discussed by Hill [534].
The existence of MDRs can be used to use microspheres as compact optical
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filtering elements, as demonstrated by Bilici et al [535] who analyzed this con-
cept using the localization principle and the GLMT. A somewhat subsequent
complementary study is available from Isci et al [536]. Normal modes and
quality factors of spherical dielectric resonators are studied by Yadav and
Singh [637]. Liang et al [I93] discussed resonances in the case of spherical
Bragg ”onion” resonators. Rao and Gupta [538] considered a system of two
eccentric spheres, wherein an inclusion sphere is embedded in a larger sphere
with a different refractive index, and discussed broken azimuthal degeneracy.
They used a well known code due to Ngo et al with minor modifications,
for plane wave illumination. This is a configuration where the GLMT for
a sphere with an eccentrically located spherical inclusion [I28] would be of
much interest. The significance of MDRs in optical tweezing is pointed out
by Fontes et al [539]. Basic properties of dielectric WGM-resonators that are
important for applications in optics and photonics are reviewed by Matsko
and Ilchenko [540]. The issue of deformed cavities, and the induced modifi-
cations of MDRs, is discussed by Han et al [269]. Also, Qiu et al [541] dealt
with mode frequency shifts and Q-factor changes in 2D microflower cavity
and its deformed cavity. Resonances are also discussed by Kiraz et al [542]
in the framework of a study devoted to the volume stabilization of single,
dye-doped water microdroplets with femtoliter resolution, including GLMT
computations for a tightly focused Gaussian beam. See also Kiraz et al [543]
dealing with a large spectral tuning of a water-glycerol microdroplet by a
focused laser, a study involving the use of a localized GLMT for calculat-
ing the absorption of the laser by the droplet, and laser-induced heating.
Mojarad et al [644] considered the interaction between metal nanoparticles
and a high-numerical-aperture incident beam. A particular interest of these
nanoparticles is that they are able to sustain an electromagnetic resonance
while being much smaller than the incident wavelength. The interaction is
described using a GLMT. Modifications of the cross sections and the near-
field enhancement for gold and silver nanospheres illuminated by the tightly
focused beam are discussed. Xu et al [545] discussed second order parametric
processes in nonlinear silica microspheres, a topic connected with the possi-
bility of using high-quality factor WGMs in microspheres to generate strong
second order nonlinear responses. The proposed nonlinear microsphere can
also lead to symmetry-enforced quantum entanglement. In this context, a
Gaussian beam may be expressed as a ket |®) which may be expanded as a
superposition of basic kets representing spherical waves.

VIII.0.3 Mechanical Effects

A very important field of applications of GLMT-approaches concerns the
evaluation of radiation pressure forces and torques, something which was not
actually expected when we only had applications to optical sizing in mind, a
long time ago. Such radiation mechanical effects are relevant to the trapping,
manipulation, deformation... of particles in optical traps, optical tweezers,
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optical stretchers ... A history of single aerosol particle levitation (electro-
static, magnetic, acoustic, aerodynamic forces, and others, including optical
forces) is provided by Davis [546]. An early work concerned a discussion of
forward far-field pattern of a laser beam scattered by a water-suspended ho-
mogeneous sphere trapped by a focused laser beam, available from Park and
Lee [547], with a theoretical analysis relying on the GLMT-like scattering
theory of Kim and Lee [68], [69], more or less in the same spirit that other
similar experiments used (see later) to validate GLMT results, available from
Gréhan and Gouesbet [57], Gréhan et al [78], [548], and Guilloteau et al [58].

In Rouen, after the above articles with publication dates ranging from 1980
to 1992, a further interest, theoretically oriented, for the applications of me-
chanical effects, is testified since 1994 when, relying on previously published
GLMT-formulations such that in 1988 [88], [2], [89], radiation pressure forces
exerted on a particle arbitrarily located in a Gaussian beam were calculated
by Ren et al [549], with a particular attention paid to the structure of the
resonances. Beam shape coefficients are computed using the localized approx-
imation. Emphasis is also stressed on the differences between plane waves and
Gaussian waves. Afterward, Ren et al dealt with the prediction of reverse ra-
diation pressure by GLMT [315]. The existence of reverse radiation pressure
is important for optical trapping processes because it allows particles to be
trapped in a single extremely focused beam without having to take grav-
ity into account. GLMT predictions for different descriptions of the incident
beam are compared with electrostriction predictions when the particle size
is smaller than the wavelength and with geometrical optics predictions when
the particle size is larger than the wavelength. The evaluation of the beam
shape coeflicients is achieved by using the localized approximation and stan-
dard beams. Reverse radiation pressure has also been considered by Polaert
et al [314] using improved standard beams, under severe focusing conditions
(wg = A/2). Forces and torques exerted on a multilayered spherical parti-
cle by a focused Gaussian beam are discussed by Polaert et al [550], with a
particular attention paid to the comparison between torque resonances and
absorption resonances. Linear and circular polarizations are considered. Sev-
eral kinds of multilayered spheres are compared. Theoretical predictions of
radiation pressure forces exerted on a spheroid by an arbitrary shaped beam
are carried out by Xu et al [275]. Among other results, this article numer-
ically simulates the behavior of an optical stretcher allowing one to deform
red blood cells. This work has been complemented by a GLMT-analysis of
torques by Xu et al [276].

In collaboration with Bernard Pouligny and collaborators, GLMT-like
situations and calculations have been discussed for stressing phospholipid
membranes using mechanical effects of light [551], trapping and levitating a
dielectric sphere with off-centred Gaussian beams, and for dynamometrical
applications [552], [653], [654]. In [551], experiments involved giant phos-
pholipid vesicles, focused laser beams, and latex-microparticles. Mechanical
effects of light can then be used to tweeze and distort membranes, or to hold
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and move solid particles in contact with membranes. Various phenomena
can be explored : sphere-membrane adhesion, particle endocytosis, Brown-
ian motion and interactions between solid particles bound to membranes.
In the two-part article by Angelova and Pouligny [552], and by Martinot-
Lagarde et al [553], the basic problem of measuring the forces exerted by a
Gaussian laser beam illuminating a micrometre-sized transparent dielectric
sphere is addressed. In the first-part, the authors experimentally used a lev-
itation configuration with vertical parallel beams, investigated the example
of polystyrene latex spheres in water, and experimentally measured radia-
tion forces. In the second-part, the experimental results are compared with
GLMT-computations. Previous comparisons available from the prior liter-
ature were restricted to particles located on beam axis, or to particle large
enough for the ray optics approximation to hold. In the present case, compar-
isons are made under general conditions, requiring the use of off-axis-GLMT.
It is found that GLMT-results quantitatively fit the experimental results. In
the same filiation, the adhesion of latex sphere to giant phospholipid vesicles
(statics and dynamics) is studied by Dietrich et al [555]. In this work, latex
beads are manipulated using a long-working-distance optical trap. Measured
stiffness values of the optical trap were in fairly good agreement (within 20%)
with those computed using GLMT. Furthermore, an optical dynamometric
study is carried out by Dimova et al [556] in which micron-sized latex spheres
are used to probe the phase state and the viscoelastic properties of bilayers
vesicle membrane. In this study, one or two particles were manipulated and
stuck to a (giant) vesicle by means of an optical trap. Radiation pressure for
the beam geometry used was computed using GLMT.

We now consider a series of articles by Gauthier and collaborators. Gau-
thier and Ashman [557] dealt with simulated dynamic behavior of single and
multiple spheres in the trap region of focused laser beams. More specifically,
an enhanced propagation method (or enhanced ray optics theoretical ap-
proach) is used to calculate the forces and torques present on each sphere of
a system of particles located in the vicinity of focused laser-trapping beams.
When a particle configuration is given, the next particle configuration, a small
increment of time later, can be determined by applying the laws of classical
mechanics using the forces and torques just calculated. Repetition of the
process enables the full dynamic behavior of the system to be determined.
Gauthier et al [558] experimentally confirmed optical-trapping properties of
cylindrical objects, evaluated by using a sophisticated model (enhanced ray
optics approach) to predict the trapping and the manipulation properties
of elongated cylindrical objects in the focal region of a high-intensity laser
beam. Gauthier et al [559] theoretically (again with the enhanced ray-optics
approach) and experimentally explored the optical processes involved in laser
trapping and optical manipulation, as a means of activating a micrometer-size
gear structure. Gauthier [560] investigated the optical levitation and trapping
of a micro-optic inclined end-surface cylindrical spinner. Enhanced ray op-
tics is used again for simulations. Afterward, Gauthier [561] dealt with the
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laser-trapping properties of dual-component spheres consisting of a co-
centered outer transparent dielectric spherical shell and an internal solid
sphere (still with the enhanced ray optics model). We also mention the study
of the self-centering of a ball lens by laser trapping due to Gauthier et al [562)
and the computation of the optical trapping force using a numerical grid tech-
nique (FDTD : Finite Difference Time Domain) by Gauthier [563]. Some of
these works could be completed by comparisons with GLMT-approaches, for
instance the aforementioned dual-component spheres are multilayered spheres
for which GLMT-approaches can be readily used, e.g. [550].

GLMT computations are carried out by Anders et al [482] to calculate
radiation pressure forces, in connection with the design of a new technique
to investigate phase transition processes of optically levitated droplets.
Wohland et al [564] theoretically determined the influence of polarization
on forces exerted by optical tweezers, relying on a combination of ray and
wave optics. Cai et al [565] carried out optical levitation measurements with
intensity-modulated light beams. More specifically, they pointed out that the
illumination of an optically levitated particle with an intensity-modulated
transverse beam induces a transverse vibration of a particle in an optical
trap. This phenomenon may be used to measure trapping forces. Omori et al
[566] discussed the observation of a single-beam gradient-force optical trap
for dielectric particles in air. Nemoto and Togo [567] dealt with the axial
force acting on a dielectric sphere in a focused laser beam. They relied on ray
optics, with a comparison versus GLMT results. Comparisons between theo-
retical and experimental results are satisfactory, although a matching scaling
factor is required. Trunk et ol [483] used optical levitation of three-component
droplets to study a phase transition. Omori and Suzuki [568] dealt with the
collection of UQO4 particles floating in air using radiation pressure of a laser
light, for removal and confinement of UO4 particles being transported by air
current or dispersed in a cell box. They performed a GLMT-based analysis
of radiation forces. Pastel et al [569] dealt with laser trapping of microscopic
particles for undergraduate experiments. Laser trapping is used by Pastel and
Struthers [531] to measure evaporation rates. Hoekstra et al [570] used an
extended discrete dipole approximation (DDA) to evaluate radiation forces
on each dipole of the DDA-model, and obtained the total radiation pressure
on a particle by summation of the individual forces. The theory is tested on
spherical particles, and compared with LMT (the accuracy is found to be
within a few percent). Such a work could possibly be extended to a GLMT-
configuration.

A numerical modelling of optical trapping for spheroidal and cylindri-
cal particles is developed by Nieminen et al [571]. They used the T-matrix
method with the beam shape coefficients evaluated by using a localized ap-
proximation. This work is completed by Nieminen et al [572] dealing with the
calculation and optical measurement of laser trapping forces on non-spherical
particles. The authors insist on the fact that a major problem is the represen-
tation of the beam (as we know), due to the fact that usual representations of
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Gaussian beams do not exactly satisfy Maxwell’s equations. They used the T-
matrix method with a decomposition of the trapping beam into a plane wave
spectrum (consisting of 97 components). Multipole expansion of strongly fo-
cused laser beams is investigated by Nieminen et al [387]. T-matrix method
and GLMT are discussed. Bayoudh, Nieminen et al [573] dealt with the use
of optical torques to manipulate the orientation of biological cells, with non-
spherical shape, using plane-polarized Gaussian beam optical tweezers, and
similar theoretical tools. Bishop, Nieminen et al [574] considered the optical
application and measurement of torque on microparticles of isotropic non-
absorbing material, dealing with the use of optical torques to controllably
rotate or align microscopic particles. The physics of optical tweezers is thor-
oughly reviewed by Nieminen et al [575]. A computational toolbox for optical
tweezers is furthermore provided by Nieminen et al [576].

Resnick discussed the development of a compact optical tweezer package
for use on a microscope to be flown on the International Space Station as part
of a series of experiments in colloid cristallization [577]. Rohrbach and Stelzer
[578] calculated trapping forces of dielectric particles in arbitrary fields. In
these computations, they determined separately two ”classical” components
of the optical force, namely the gradient force and the scattering force. This
is a welcomed opportunity to remark that these components, although they
may be viewed as physically appealing, do not occur (do not exist) in GLMT
which provides a more fundamental unified description of optical forces and
torques. An interesting prospect would be to derive the two components as
approximations arising from the unified description. In any case, the authors
dealt with a comparison of the ”two-component approach” with GLMT (Bar-
ton’s version). Rohrback and Stelzer [579] presented a theory together with
simulation results describing three-dimensional position detection of a sphere
located in a highly focused beam by back-focal plane interferometry. Calcu-
lations are carried by using Fourier theory and angular momentum represen-
tation. Trapping forces, force constants, and potential depths for dielectric
spheres in the presence of spherical aberrations are predicted by Rohrback
and Stelzer [580], using a two-component approach that determines the gra-
dient and the scattering force separately. They claimed that, for the first
time to their knowledge, it was possible to consider focus distorsion (caused
by spherical aberrations or aperture filters) in forces calculations. To the best
of our knowledge, the claim is correct. Rohrback et al [581] introduced an
improved type of scanning probe microscope system able to measure soft in-
teractions between an optically trapped probe and local environment. They
measured trap stiffnesses which are found to coincide well with the calculated
stiffnesses obtained from electromagnetic theory.

Harada and Asakura [582] dealt with photon correlation spectroscopy, a
quasi-elastic light scattering technique to measure sizes and number-densities
of small particles in suspension, or even in flows like soots in flames, illu-
minated by laser beams [683]. They studied the effects of laser radiation
pressure which might disturb measurements carried out by this technique.
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Computations of radiation pressure scattering efficiencies are carried out with
a plane wave computer program, with the implementation of some modi-
fications due to the Gaussian nature of the laser profile. A related work
by Harada and Asakura [584] dealt with the dynamics and dynamic light-
scattering properties of Brownian particles under laser radiation pressure.
Theoretical calculations relied on the use of the GLMT. Radiation forces on
a dielectric sphere in the Rayleigh scattering regime, under Gaussian laser
beam illumination, have been studied by Harada and Asakura [585]. Correct-
ness of the derived expressions and validity of the size range of the Rayleigh
approximation for the radiation forces as a sum of the scattering force and
the gradient force are investigated by a graphical comparison of the calcu-
lated forces in longitudinal and transverse components with those obtained
from GLMT.

Roth et al [586] dealt with the determination of size, evaporation rate and
freezing of water droplets using light scattering and radiation pressure. Dur-
ing the experiments, oscillations of the droplet position along the axes of the
laser beam are observed, which are caused by fluctuations of the radiation
pressure. This behavior is examined using GLMT. Roll et al [587] discussed
an optical trap sedimentation cell, for the sizing of microparticles. This (new)
technique is based upon the analysis of the dynamical behavior of the inves-
tigated (levitated) particle during a transient interruption of the supporting
laser beam. In 1997, Grier [588] provided a review on optical tweezers in
colloid and interface science. He stated that despite more than a decade of
intense activity, the agreement between theories of optical trapping and ex-
perimental force measurements has been considered generally unsatisfactory,
a statement which was about correct in 1997 (see however [552], [553]), but
which is certainly not valid any more nowadays, e.g. [689]. Note that the
difficulty is not in the fact of having or not a correct theory (we indeed have
one, GLMT) but in the fact of having a correct description of laser beams
used. Dufresne and Grier [590] introduced optical tweezer arrays and optical
substrates created with diffractive optics. To illustrate the concept, they im-
plemented a 4x4 square array of optical tweezers, called the hexadeca tweezer.
Gahagan and Swartzlander [591]], experimentally and theoretically (using ray
optics) investigated the trapping of low-index microparticles in an optical vor-
tex. Gensch et al [592] dealt with optical trapping combined with transmis-
sion microscopy, confocal and nonconfocal fluorescence scanning microscopy,
and confocal and noncofocal time-resolved fluorescence spectroscopy, to study
latex particles and block copolymer micelles. Shima et al [593] dealt with the
forces of a single-beam gradient-force optical trap on dielectric spheroidal
particles in the geometric-optics regime. Gittes and Schmidt [594] provided
an interference model for back-focal-plane displacement detection in optical
tweezers. Although the model is simple, he captured the physical mechanisms
of lateral trapping and detection for small particles.

Song et al [595] theoretically analyzed the forces acting on a ” Mie particle”
by surface plasmon-coupled evanescent fields. GLMT-like ingredients are used
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for the theoretical analysis. Concerning plasmon, let us also cite Miao and Lin
[596] dealing with trapping and manipulation of biological particles through a
plasmonic platform, and stating that, in this context, rigorous calculations of
optical forces can be carried out using the GLMT. A significant result is that
force components are increased by one or two orders of magnitude at metal
boundaries with respect to the case of dielectric boundaries. Next, Benabid et
al [597] used optical radiation forces to achieve the guidance of dry micron-
sized dielectric particles, originally levitated in air, in hollow core photonic
crystal fiber. They used a numerical model based on ray optics. Malagnino et
al [598] dealt with measurements of trapping efficiency and stiffness in optical
tweezers. They reported on an experimental study concerning the radial forces
of an optical tweezer acting on spherical polystyrene particles diluted in water
solution. A parametric study of the transverse trapping forces was made
versus sizes and laser powers for two different objective lenses. Measured
forces compared favorably with GLMT-results. Wiggins et al [507] dealt with
a discussion of a standing-wave gradient trap, a configuration allowing one
to optically confining, for a time long enough, a large number of particles.
Afanas’ev et al [599] examined the spatial redistribution of microparticles in
a suspension on exposure to an interference laser field, under the effect of
optical forces, and theoretically analyzed the influence of the characteristics
of the particles and of the characteristics of the field. Associated experiments
are carried out.

Nahmias and Odde [589] dealt with radiation forces for laser optical trap-
ping (using a strongly convergent beam) and laser optical guidance (using
a weakly convergent beam), and established that GLMT is able to accu-
rately predict experimental results for both schemes (trapping and guidance)
without any assumption regarding the size of the particle relative to the wave-
length of the radiation. Numerous very satisfactory comparisons between the-
ory and experiments (concerning escape forces, force profiles, radial forces,
axial forces) are provided. Also, the authors pointed out one of the advantages
of GLMT with respect to ray optics, namely that GLMT can predict the pres-
ence of resonances, signifying the creation of electric and magnetic multipoles
in the particle. This is a significant advantage indeed because resonance ef-
fects cause fluctuations in the trapping forces as a function of the wavelength
and particle size. Given the positive assessment of the validity of GLMT for
both strongly and weakly convergent beams, the authors concluded that they
were in situation to conduct a general analysis of radiation forces for engi-
neering design purpose and that, to use GLMT more effectively in practice,
it would be helpful to create dimensionless combinations that can be used to
correlate and simplify results. The production of dimensionless parameters
is indeed afterward reported by Nahmias et al [600]. They then obtained a
set of two simple correlations for the practical design of radiation-force-based
systems. Furthermore, in this article, more GLMT simulations (for optical
trap stiffness, detector response of an optical trap ”back-focal-plane”, optical
levitation force profile, axial profile in laser guidance) are compared favorably
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with experiments. It is noticed that both Rayleigh theory and ray theory fail
to predict the maximal trap stiffness, whereas the GLMT succeeds. More
generally, several comparisons between ray optics, GLMT and experiments
prove the superiority of GLMT with respect to ray optics. The authors also
addressed the question of the practical usefulness of GLMT due to the fact
that it is computationnally demanding. Our reply is that, with the increase
of quality of algorithms and more important with the increase in speed of
computers, we do not consider any more that GLMT (nowadays, and a for-
tiori in the future) is computationnally demanding. But, anyway, Nahmias
et al pointed out that they have been able to present GLMT predictions
as simple graphical representations using dimensionless parameters, so that
forces can be estimated directly without the need for extensive computations
for a particular set-up.

Zemanek et al [601] provided a simplified description of optical forces act-
ing on a nanoparticle in the Gaussian standing wave, in which GLMT is used
to analyze a Gaussian standing wave trap and a single beam trap as a function
of particle size, refractive index, and beam waist size. Differences between the
electrostatic approximation and GLMT are studied. GLMT is further used
by Zemanek et al [602] to compare submicron-sized particle optical trapping
in a single focused beam and a standing wave. Jakl et al, including Zemanek
[603] discussed the behavior of an optically trapped probe approaching a
dielectric interface. On-axis GLMT is used for calculations. The agreement
between the predicted and measured behaviors of the trapped sphere while
the beam waist approached the surface was very good in terms of location
and size of discrete jumps of the trapped sphere between neighboring stable
trapping positions. Also, Zemanek et al [604] calculated optical forces acting
on Rayleigh particle placed into interference field. The interference field is
made out from three interfering laser beams arranged in one plane, forming
an optical trap. Furst [605] reviewed the theory and practice of using optical
traps in complex fluids. Such optical traps offer the ability to probe nano- and
microscopic interactions, structures, and responses that govern the rheology
of complex fluids. Applications of laser tweezers in complex fluid rheology are
further reviewed by the same author [606]. It is shown that optical micro-
manipulation has expanded to enable control of tens to hundreds of particles
in small ensembles using techniques such as holographic tweezers. Mazzoli
et al [607] discussed the theory of trapping forces in optical tweezers, start-
ing from a Debye-type integral representation valid for a focused laser beam,
and deriving an explicit partial-wave representation for the force exerted on
a dielectric sphere of arbitrary radius, position, and refractive index. In their
introduction, they however state that theoretical treatments based on near-
paraxial approximations (with cited references pointing to GLMT) are not
valid descriptions of optical tweezers. It is true that theoretical treatments
based on near-paraxial approximations are not valid description of optical
tweezers, using tightly focused beams, but recall that GLMT is not limited to
near-paraxial approximations. Mund and Zellner [608] dealt with the optical
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levitation of single microspheres at temperatures down to 180 K, allowing one
to examine processes of atmospheric interest with the combination of optical
levitation and Raman spectroscopy. The operation of the levitation technique
is reviewed on the basis of GLMT. Rubinov et al [609] devoted themselves to
the interaction of interference laser field with an ensemble of particles in lig-
uid, leading to a spatial redistribution of microparticles in a suspension, and
to the occurrence of regular crystal-like structures of particles. Buosciolo et
al [610] examined a calibration method for position detector for simultaneous
measurements of force constants and local viscosity in optical tweezers.

We are now going to discuss an extensive theoretical study for the calcu-
lation of the radiation trapping force for laser tweezers by use of the GLMT,
available from a two-part article by Lock [611], [612]. These papers show
that GLMT can efficiently deal with the case of beams focused by a high nu-
merical aperture objective, with successful tests against experiments. Part 1
focused on the issue of beam description, more specifically on the exposition
of a localized beam model (related to the so-called localized approximation)
to describe an on-axis tightly focused laser beam with spherical aberration,
allowing the evaluation of localized beam shape coefficients. Two issues have
here to be emphasized. The first one concerns the consideration of spheri-
cal aberration. In some simple optical levitation experiments like those by
Gréhan and Gouesbet [57], Gréhan et al [548], Guilloteau et al [58] which
have been used for experimental validations of the GLMT, in which a vertical
laser beam is focused in air, and used both for the levitation of the particle,
and as the scattering source, the issue of aberration is not very important.
It is conversely important in some more complicated levitation trapping set-
ups. The second issue concerns the possibility of modelling tightly focused
laser beams. Both issues are considered by Lock, in his Part I-article. Lock in-
deed examined an extension of the localized model to a beam tightly focused
and truncated by a high-numerical-aperture lens, aberrated by its transmis-
sion through the wall of a sample cell, and incident upon a spherical particle
(whose center is on the beam axis). This is typically the kind of beam used
in laser tweezer experiments. It implies a symmetry breaking so that, for the
on-axis case, instead of dealing with a single set {g,,} of special beam shape
coefficients, it is required to deal with two sets {g,} and {h,}. A localized
beam model is found to be appropriate to deal with tightly focused beams.
Once an adequate beam description is obtained in Part I, Part II can deal
with the study of the efficiency of trapping an on-axis spherical particle for
a particle size ranging from the Rayleigh limit to the ray optics limit. The
radiation trapping force is calculated for two different beam profiles and com-
pared with experimental data. One of the beam profiles is theoretically simple
but experimentally unrealistic. The other is theoretically more complicated
but is a more realistic model of the experimental beam. Concerning the un-
realistic beam (a freely propagating focused Gaussian beam), for the studied
parameters, the calculated Gaussian beam GLMT trapping efficiency is ap-
proximately a factor of 2-3 below the experimental efficiency. Similar results
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are (surprisingly) obtained for the realistic beam. These facts, and the pos-
sible origins of the observed discrepancies between theory and experiments,
are discussed. Later on, with the same spirit and in the same filiation, Lock
et al [613] studied the scattering of a tightly focused beam by an optically
trapped particle, examining near-forward scattering, both theoretically and
experimentally. A discussion of beam shape coefficients of tightly focused
beams is provided. Experimental results confirm theoretical predictions and
provide further evidence that Mie theory, augmented by a realistic model for
the beam shape coeflicients, is capable of accurately predicting both the trap-
ping and scattering properties of tightly focused, as well as paraxial, beams.

The topic of optical trapping is reviewed by Neuman and Block [614].
Advances in the development of optical trapping apparatus, including in-
strument design considerations, position detection schemes and calibration
techniques, are discussed. The authors remarked that the optical force has
traditionnally been decomposed into two components (i) a scattering force
in the direction of propagation and (ii) a gradient force in the direction of
the spatial light gradient. They stated that this decomposition is merely a
convenient and intuitive means of discussing the overall optical force, but
stressed that both components arise from the very same underlying physics.
Indeed, let us recall, GLMT provided an unified description of the optical
forces, all associated with momentum exchanges. They mention that trap-
ping forces and efficiencies predicted by GLMT-approaches are found to be
in reasonable agreement with experimental values (with citations of Nahmias
and Odde, and of Wright et al). They also mention good agreement between
theory and experiments, concerning computed forces and trapping efficien-
cies, referring to Rohrback and Stelzer, and the exploration of the effects of
spherical aberration, again by Rohrbach and Stelzer. Later on, Neuman et
al [615] dealt with the measurement of the effective focal shift in an optical
trap. The focus (of an oil-immersion microscope objective, used for the op-
tical trap) is shifted because of the refractive-index mismatch between the
cover glass and the aqueous sample of the set-up. The analysis of the exper-
iments involved the use of an ingredient of the GLMT, namely the focused
laser beam was modeled with beam shape coefficients derived from the local-
ized approximation to an on-axis Davis first-order beam. Neuman et al [616]
furthermore reviewed single-molecule micromanipulation techniques, with an
emphasis on optical and magnetic tweezers.

Soifer et al [338] provided another review devoted to optical microparticle
manipulation. GLMT is discussed in relation with experiments by Malagnino
et al [598], and expressions derived by Harada and Asakura [585]. Rockstuhl
and Herzig [241] used a rigorous diffraction theory, to calculate the force on
elliptical shaped dielectric cylinders in three different regimes. Later on [617],
they also dealt with the calculation of the torque exerted on dielectric ellip-
tical cylinders by highly focused laser beams, with a decomposition of the
illuminating beam into 41 plane waves. Experimental observations of light-
scattering diagrams from single living cells and beads suspended in an optical
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trap were recorded by Watson et al [494]. Experimental results concerning
light scattering from beads, aiming to the validation of the experimental
set-up, were compared with GLMT predictions, leading to fairly good agree-
ments. Zhang et al [324] dealt with optophoresis which is a non-invasive cell
analysis technique that is based on the interaction of live cells with opti-
cal gradient fields and provided interesting results, such as detecting signif-
icant differences between the behavior of normal skin cells and melanoma
cells, which indicate a potential biological interest of optophoresis for cel-
lular analysis and cancer diagnostic applications. GLMT is used to provide
a better understanding of the behavior of a cell when it passes through a
laser gradient. The laser beam is approximated by an elliptical Gaussian in-
tensity shape (laser sheet) with semimajor axis and semiminor axis equal
to 24 and to 5.5 pm respectively. GLMT is also used to calculate optical
forces on a cell. In a work by Fontes et al [539] in which a double tweezers
set-up is used to perform ultrasensitive force spectroscopy and observe the
forces due to light scattering on a single isolated particle, the influence of
MDRs, which can change the force values by more than 30-50%, is pointed
out. A Gaussian-shaped beam partial wave decomposition theory (translate :
GLMT) was able to explain experimental results for the force magnitude and
mode coupling as a function of the perturbing laser wavelength. Also, good
agreement was obtained between calculated and experimental positions of the
resonance peaks. In a complementary article from the same team, Neves et al
[391] proposed an analytical solution for optical trapping force on a spherical
dielectric particle for an arbitrary positioned focused beam in a generalized
Lorenz-Mie diffraction theory. Theoretical predictions agree well with experi-
mental results. Jaising and Helleso [618] theoretically studied radiation forces
on, and guiding velocities experienced by, a ”Mie particle” in the evanescent
field of an optical waveguide using a GLMT (Barton’s version). They stated
that the order of magnitude of the calculated guiding velocities agrees with
the observed guiding velocities reported so far. Moine and Stout [619] dealt
with optical forces in arbitrary beams by use of the vector addition theorem
and rotation matrices. They discussed the partial wave decomposition of fo-
cused laser beams, and specifically deal with some simple models based on
Davis-type corrections to Gaussian-type focused beams.

Chang and Lee [620] dealt with first-order calculations of radiation forces
for rotating spheres illuminated by circular polarized Gaussian beams. The
beam is actually a focused Hermite-Gaussian mode beam, and the formulas
of radiation force used include terms due to the sphere rotation. Chang et al
[621] provided theoretical calculations of optical forces exerted on a dielectric
sphere in the evanescent field generated with a totally-reflected focused Gaus-
sian beam. The issue of optical force on a sphere caused by an evanescent
field is further discussed by Chang et al [622], with the consideration of mul-
tiple scattering effects between the sphere experiencing the optical forces and
a prism substrate. Later on, Chang et al [623] provided a model for optical
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tweezers upon cells in the ray optics regime. The cell is modeled as a spheri-
cally symmetric multilayer sphere.

Size and refractive index of microparticles in a two beam optical trapping
system are measured, relying on a ray optics model, by Flynn et al [624] The
accuracy of applying the ray optics model to the analysis of their system was
justified by comparison with GLMT. In the case studied, the ray optics model
is found to be a reasonable approximation to GLMT. Han et al [625] carried
out GLMT-computations of radiation trapping forces acting on a two-layered
spherical particle in a Gaussian beam. Kotlyar and Nalimov [626], [627] dealt
with analytical expressions for, and the calculation of, radiation forces ex-
erted on a dielectric cylinder illuminated by a cylindrical Gaussian beam.
Kraikivski et al [628] considered the implementation of both short- and long-
working distance optical trappings into a commercial microscope. Merenda
et al [629] considered escape trajectories of single-beam optically trapped
micro-particles in a transverse fluid flow, and studied the transverse and ax-
ial equilibrium positions of dielectric micro-spheres trapped in a single-beam
gradient optical trap and exposed to an increasing fluid flow transverse to the
trapping beam axis. The theoretical model used is a hybrid model combining
rigorous vectorial electromagnetic field considerations and ray optics ingre-
dients. Observed oscillatory behaviors however, likely to be the consequence
of resonances, could not be predicted by the model, not refined enough to
take account of the existence of MDRs. Simpson and Hanna [630] carried out
numerical calculations of interparticle forces related to holographic assembly,
using the localized approximation to represent incident Gaussian beams. The
same authors also dealt with the optical trapping of spheroidal particles in
Gaussian beams, modelled by using a fifth order Davis beam [631]. Buajar-
ern et al [632] characterized multiphase organic/inorganic/aqueous aerosol
droplets, using optical tweezers, relying on brightfield microscopy, and on
(spontaneous and stimulated) Raman scattering. They have to discuss the
spectroscopy of deformed and layered droplets, or the influence of a thin shell
on the spacing between adjacent TM and TE resonant modes. Chaumet et
al [633] theoretically studied the possibility of transferring a particle held in
a classical far-field optical tweezer to a near-field trap, called an apertureless
probe. They rely on a vectorial nonparaxial representation of the Gaussian
laser beam in the waist region. An angular spectrum representation of Gaus-
sian beams is used. Gerlach et al [634] dealt with WGMs and, using radiation
pressure, induced mode splitting in a spherical microcavity with an elastic
shell. Theoretical calculations are carried out using GLMT. Grzegorczyk and
Kong [635] provided an analytical expression of the force due to multiple TM
plane-wave incidences (in particular a Gaussian beam) on an infinite lossless
dielectric circular cylinder of arbitrary size. Mao et al [366] dealt with the
calculation of axial optical forces exerted on medium-sized particles in opti-
cal traps, using both a ray optics model and GLMT, invoking an improved
localized approximation for beam shape coefficients. By comparing the nu-
merical results of these two approaches, the applicability of the GLMT to
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particles of arbitrary size and the limit of the ray optics model in the region
of small particles are analyzed. Results from GLMT are found to be closer to
the experimental data than ray optics predictions. The authors concluded
that the validity of the GLMT to describe the optical forces on arbitrary
sized particles is proved. They also pointed out on an advantage of GLMT
with respect to ray optics approaches, that GLMT can predict resonance ef-
fects. Furthermore, the authors demonstrated the feasibility of femtosecond
laser tweezers. Neves et al [392] dealt with axial optical trapping efficiency
through a dielectric interface, using both an angular spectrum representation
and GLMT. Yan and Yao [630] discussed transverse forces of focused Gaus-
sian beams on ellipsoidal particles. Viana et al [637] dealt with the possibility
of absolute calibration of optical tweezers. They noticed that the laser beam
may be represented by an attempted improvement of the paraxial Gaussian
TEMjo model, including fifth-order corrections in powers of the ratio between
wavelength and beam waist (i.e. by a fifth-order Davis beam), but that such
an approximation does not correctly represent the field near a focus of a
high numerical aperture objective. Although this may be so, it is an issue
which concerns the beam description, but not at all the GLMT which, let us
say it again, is an arbitrary beam theory. Kartashov et al [638] dealt with
the measurements of the force parameters of a gradient-force optical trap
for dielectric microobjects. This work combines theoretical analytical calcu-
lations in relation with experiments on filiform objects (cotton filaments).
Ma et al [639] dealt with laser-guidance based detection of cells with single-
gene modifications. They demonstrated an impressive result, namely that
a laser guidance-based speed-measurement method can precisely distinguish
cells that differ by only one gene. The authors of the article discussed ray
optics and GLMT. They stated that GLMT is the most complicated one (a
matter of taste : at least one of the authors of this book is comfortable with
wave theory, but bored by ray optics), but it can be used to explore several
phenomena that ray optics cannot, and eventually decided to use GLMT to
estimate guidance forces. Hu et al [640] discussed the use of an antireflection
coating for improved optical trapping. GLMT is put forward as an efficient
theory to deal with the theoretical aspects of the issue. Li et al [641] studied
optical forces on interacting plasmonic nanoparticles in a focused Gaussian
beam, using a GLMT-approach. For plasmons, see also Cole et al [642].

We would like to end this section by mentioning two fantastic and fascinat-
ing applications of GLMT-like theories for optical trapping and manipulation.
The first one concerns a new concept of earth-based satellites, as discussed
in a NASA report, explicitly referring to GLMT, due to La Pointe [643]. A
shepherd satellite is proposed, based on the use of electromagnetic radiation
forces to position and hold a large number of small, specialized spacecrafts
in a precise array. The concept derives from well-known optical scattering
and gradient force techniques which have been used to trap and manipulate
microscopic objects using laser radiation. Although the presumed physical
dimensions of the satellites will exclude the use of optical wavelengths, it is
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proposed that a technique similar to laser optical trapping can be used at mil-
limeter or microwave frequencies more appropriate to larger object sizes. A
somewhat similar idea is pointed out by Nahmias and Odde [589] who noted
that forces on the order of several newtons are achievable using gigawatts
of power. Microwave beams of this size can be used for space applications
such as tractor beams, eliminating the need for direct contact and dangerous
space walks. Space solar power technology offers power of this magnitude in
the foreseable future.

The second application originates from a dream of Labeyrie who would
like to photograph exo-planet details, such as possibly mountains, forests,
oceans, deserts... many light years away from Earth. This would be achieved
using hypertelescopes (made out from small telescopes) ranging over hun-
dreds of kilometers across, with elementary telescopes positioned and held
using radiation forces produced by a laser operating in space, e.g. [644]. The
relevance of GLMT-like approaches to such a project is known to us via a
personal communication.

VIII.0.4 Multiple Scattering

We have up to now dealt with single scattering, but another important issue
is the one of multiple scattering. There has been a long-lasting tradition to
study multiple scattering in Rouen, either using four-flux models (see Maheu
et al [645], Maheu and Gouesbet [646], Tonon et al [647], Rozé et al [648],
[649]), or Monte-Carlo techniques (see [650], [651], [652]), under c.w. plane
wave illumination.

Rozé et al [653], [654] dealt with the more complex situation of Monte-
Carlo simulations to simulate the interaction between ultra short pulses and
a dense scattering medium. In this study, time-dependent scattering charac-
teristics of particles are taken into account, as well as scatterer to scatterer
propagation delays. For particles small enough, a centre to centre model is
accurate enough and simulations of propagation through a monodisperse slab
show the predominance of ballistic photons in a thin time window. For larger
particles, multiple scattering is always predominant and scrambles the trans-
mitted signal. Calba et al [655] dealt with the same topic but specialized the
simulations to the case of large particles. Single scattering processes (phase
function) are pre-computed in a LMT-framework or using Debye series. Later
on, Calba et al [656] could compare simulations carried out in the same spirit
as above (exhibiting the temporal separation between ballistic light and scat-
tered light) and experimental results, showing a good agreement. The early
scattered light contains information on particle size, opening the way to par-
ticle sizing in strongly scattering media. With Ovod [657], we come to the
much interesting problem of multiple scattering from an ensemble of spheres
in a laser beam, a problem which involves the consideration of a GLMT (Bar-
ton’s version to be specific), the evaluation of beam shape coefficients and
the use of a localized approximation.
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In the multiple scattering context, it may also be of interest to mention
the works of Xu concerning the electromagnetic scattering by an aggregate
of spheres [658], [659], [660], and taking the point of view that light incident
on a given particle after having been scattered by other particles represents
a type of arbitrary beam incident on the given particle which is appropriate
for a GLMT analysis. Also, relevant Monte-Carlo simulations are carried out
by Berrocal et al [661].

VIII.0.5 M:ziscellaneous Topics

In this section, we gather various ingredients which are not sufficiently de-
veloped to furnish enough material for an independent section but which,
however, are of interest for this chapter.

Earlier validations for GLMT

If you believe to Maxwell’s equations, then GLMT should be correct. Never-
theless, it is always useful to provide validations, not only to possibly detect
computational mistakes but also to check computer programs. In 1980, two
years before the first archival article on GLMT, an optical levitation tech-
nique of a single particle to study quasi-elastic scattering of light was reported
by Gréhan and Gouesbet [57] and a scattering diagram was recorded in the
forward direction between typically 15° and 40°. It was impossible to match
this experimental diagram with a calculated scattering diagram obtained us-
ing the classical LMT. It was expected, at this time, that the discrepancy
between theory and experiments was due to the fact that LMT should not
be applied to the actual experimental circumstances in which the diameter
of the levitated spherical particle was of the same order of magnitude of the
laser beam diameter (used simultaneously as the source for levitation and the
source for scattering). Indeed, later on, this experimental scattering diagram
was satisfactorily reproduced by calculations carried out in a GLMT frame-
work [78]. More extensive experimental validations of GLMT were afterward
published by Gréhan et al [548] and Guilloteau et al [58], using both an one-
beam and a two-beams set-up (in which the source for levitation is different
from the source for scattering). It was concluded that good and most often
extremely good agreement between theory and experiments provide a new
experimental validation of the GLMT. Conversely, experimental data could
not be properly reproduced within the restricted framework of the classi-
cal LMT. Significant differences between LMT and GLMT were reported
even when the particle diameter is approximately one third of the local beam
diameter. Similar experiments have been reported by Misconi et al [662].
Other earlier validations were of a theoretical nature. Chevaillier et al
[44] dealt with a comparison of diffraction theory and GLMT for a sphere
located on the axis of a laser beam. The diffraction theory (near forward
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scattering) used was an extension of usual diffraction theory to waves of
nonuniform intensity distribution. Beam shape coefficients for GLMT were
evaluated using a localized approximation. This work has been completed
by another similar work published by Gréhan et al [663]. It was concluded
from these studies that a new validation of GLMT was obtained. See also
the related work by Chevaillier et al [664]. Another relevant article is by
Lock and Hovenac [665] dealing with the diffraction of a Gaussian beam by
a spherical obstacle, in which the Kirchhoff integral for diffraction in the
near-forward direction is derived from an exact GLMT-approach. Of course,
many other validations of GLMT have been obtained, and reported in this
book, although they did not originate any more from the ancient times. For
example, let us recall the works by Angelova and Pouligny [552], Martinot-
Lagarde et al [553], or Nahmias and Odde [589).

Debye series

A very useful complementary tool to discuss fields, specifically scattered and
internal fields, providing many physical insights, is the use of Debye series.
Relying on a previous work by Hovenac and Lock [666], Gouesbet provided a
Debye series formulation for the GLMT stricto sensu [667]. Let us recall that
a Debye series analysis of scattering of a plane wave by a spherical Bragg
grating is available from Lock [196]. Also, Li et al provided Debye series
for light scattering by a multilayered sphere, including the case of Gaussian
beams [200], [201] or for normally incident plane-wave scattering by an infinite
multilayered cylinder [197], without forgetting Wu and Li [230] dealing with
Debye series for a multilayered cylinder in an off-axis Gaussian beam.

Interactions with atoms

Van Enk and Kimble [668] calculated exact 3D solutions of Maxwell’s equa-
tions corresponding to strongly focused light beams, and studied their inter-
action with a single atom in free space. A complementary work is by van Enk
and Kimble [669] dealing with the same topic, but putting the results ob-
tained in the context of quantum information processing with single atoms.
According to these authors, one question that arises is whether strong fo-
cusing has an undesired side effect, namely, that the scattered light contains
information about the state of the qubit. The fear would be that the laser
intensity would have to be turned down so much, that the absence of a pho-
ton from the laser beam becomes in principle detectable. In these works, an
ingredient of GLMT (not GLMT itself since the atom is very small com-
pared with the dimensions of the beam) is relevant, namely the problem of
description of a strongly focused beam.
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Extinction paradox

The extinction paradox is studied by Lai et al [670] by applying a partial-wave
analysis to a 2D-light beam interaction with a long transverse cylinder with-
out absorption. We recall that the extinction paradox refers to the extinction
efficiency becoming twice as much as the value associated with the geomet-
rical interaction between the particle and the incoming wave, in the limit of
zero wavelength (or of infinite diameter in the case of spherical particles).
The interpretation of extinction in Gaussian-beam scattering was previously
discussed by Lock [671], in the framework of an on-axis GLMT.

Symmetries

There exist symmetry relations in GLMT as studied by Ren et ol [312)]. It
happens that symmetry relations in the description of the electromagnetic
beams are converted into symmetry relations satisfied by the beam shape
coefficients, and also by other quantities computed by the GLMT, such as
scattered electromagnetic fields or cross sections. The symmetry relations
may then be used to simplify some analytical work and to check the formulas
and the associated numerical results such as those encountered in developing
a localized approximation. Being aware of them may also speed up numerical
calculations by the elimination of useless repetitive calculations, e.g. see Lock
[157]. Some of these relations had been earlier obtained in the case of Gaussian
beams [379], [127]. Ren et al [312] however established symmetry relations
for a large class of electromagnetic beams including Gaussian beams and
laser sheets. The symmetry issue is also discussed by Berg et al [672] dealing
with reflection symmetry of internal fields in a sphere and its consequences
on scattering, using a microphysical approach. A connection between the
internal wave, and the scattered wave in the far-field, induced by symmetry
considerations, is discussed.



IX
Conclusion

The aim of the present book has been to provide a background in GLMT,
allowing presumably a rather easy access to archival literature in journals
and conference proceedings.

When the writing of this book started in 1989 (twenty years ago!), taking
the opportunity of a summer vacation in the romantic atmosphere of Weis-
sensee, near the king castles of Ludwig der Zweite, in south of Germany, many
fundamentals now incorporated in the book were not yet available and, may
be more important, no applications of GLMT were produced. The comple-
tion of the book required many more years and, during this time, many new
fundamental problems have been solved and applications developed much.
We therefore had to recurrently up-to-date the contents until it has eventu-
ally become necessary to freeze it. The freezing has been made in 2008, one
hundred years after the pioneering article of Gustav Mie.

Therefore, clearly, this book is not fully completed in so far as the situa-
tion still evolves, i.e. to some extent the story of GLMTs is just beginning.
But much of the message (at least the basic message) is now in the hands
of the reader, ready to produce new blossoms, in particular a long, endless,
and ramified caravan of new fundamental developments and of new applica-
tions. This blossoming process is expected to become an asymptotic process
requiring the effort of many researchers and engineers, but, very likely, the
asymptote itself is certainly located far beyond our Riemanian horizon.

One of the referees of one of our articles stated that he was genuinely
convinced that GLMT should be a wave of the future in light scattering. Let
us hope so and let us then observe the propagation of this wave at a speed
which, unfortunately, cannot exceed the speed of light. For this propagation,
the main burden is now charged on the shoulders of the readers, although
they could now prefer to take a rest for a while. Actually, this is exactly what
the authors want to do: resting a bit.
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The bibliography is presented in two parts. The first part (B1) concerns
articles explicitly quoted in the bulk of the book, essentially focusing on jour-
nal articles which are of easy access. The second part (B2) concerns articles
of less easy access (i.e. from conference proceedings) but which may contain
useful information and, more important, many examples of applications.



Appendix A

Evaluation of Quadratures, Rels
(IT1.130) and (II1.131)

The aim of this Appendix is to evaluate quadratures (IILT30)-((ILT31]) which
are rewritten as:

L = / (tFrk 4 k2rkrk ) sing do (A.1)
0
I, = / (k7% + 7krk ) sing do (A.2)
0

From the definition of generalized Legendre functions 7%, 7% (Rels (IL5I)-
([IT52)), integrals I; and I may be expressed in terms of associated Legendre
functions as follows:

4 de de ™ Pk pE
I = n m 3 2 n m . A
! /0 ( do db )s1n6d9—|—/0 k sin@sinﬂsmeda (A-3)

I = / (PEdPk + PraPE) (A.4)
6=0

A direct integration readily gives Is:
I = P (-1)P;(~1) = Py (1)P; (1) (A.5)

But associated Legendre functions satisfy the following relation ([130], t1, p.
87):
PF(£1) =0, k#0 (A.6)

leading to:
I, =0, kE#0 (A.7)

For I3, let us first split the r.h.s of (A3):

7f de de 7r Pk Pk
T :[1 12: n m . 2 n mo o : A,
1= +1; /0 (d0 20 )81n9d9+/0 k sin@sinﬂsme do  (A.8)
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We then integrate I partially and use the associated Legendre equation
(I1.68):

d . o dPk(cos®) k2 &
6" 1) — P, ) = A.
d(cosf) S d(cos ) + e+ 1) sin?0] " (cos6) =0 (A4.9)
to obtain:
Il =m(m+1) / P¥(cos ) PF (cos ) sin 6 df (A.10)
0
T pk k
ka/ Py (.cos 0) Pm(.cos 0) sin 00
0 sin 6 sin 6
leading to:
L =m(m+1) / PF(cos§)PF (cos ) sin 6§ db (A.11)
0
(A-11)) is a standard integral ([130], t1, p.105):
2 (n+k)

5 (A.12)

WPk Pk i = nm
/0 " (cos ) P (cos 0) sin 6 df on+1 (n — k).

Hence we obtain:
_2m(m+1) (m+k)

To@em+1) (m— /g)!‘s’”” (A-13)
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Evaluation of Quadradures, Rels
(IT1.151) and (II1.152)

The aim of this Appendix is to evaluate quadratures (IILI51)-((ILI52) which
are rewritten as:

I3 :/ (tFrk 4 K27k k) cos @ sin0dl (B.1)
0

I, = / (tFak + 78 7%) cos O sin Hdb (B.2)
0

For Iy, we use the definitions of 7%, 7% (Rels (IIL51)), (ITL52)) and obtain:

T dpk T de
ILi=—[ pF ™ i - P i B.
4 /o " cos 0 cosf sinf df /0 ™ eos cosf sinf df (B.3)

Integrating partially the first integral in (B.3) and rearranging with (A.6),
we find that I is exactly the standard integral (A.12):

2 (n+k)!

I, = nm
T o4l (n—k)

(B.4)

For I3, using again the definition of the generalized Legendre functions 7*
and 7% it becomes:

i Pk ™ dPk dPF .
I3 :/0 kQPfSinecose d9+/0 g do cosf sinf df = I + 13 (B.5)

We integrate partially I3 and rearrange to obtain a new expression for I3.
Then we use the associated Legendre equation (A.9) under the form:

1 d dPk k2 Pk
ing ™ Pk =""m B.6
sinfdo " de +m(m+ 1B, sin® 6 (B.6)
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leading to:
" k pk o i ka2 dpr]fz .
Is = m(m+1) PP} sinf cosfdf— [ P; |sin“6 sinfdf (B.7)
0 0 dcosf

Then we need the following relations between the associated Legendre func-
tions ([I30], t1, p.101-102):

dPk

sin’0 dcoZH = —kcosOP% —singpPrt! (B.8)
sinP* = (m — k) cosOPF — (m + k)PF_, (B.9)

We note that, in Robin, there is a misprint to correct for Rel (B.9). We
obtain:

I35 = m(m+2)/ PF Pk cos6 sin0d97(m+k)/ PF PF . sinfdf (B.10)
0 0

The second integral in the r.h.s. is again the standard integral (A.12). For

the first integral, we integrate partially and rearrange. We use (B.8), then

(B.9), to make again appearing the standard form, leading to:

n+k 2 (m+k) m+k 2 (n+k)
24+n+m2m+1(m—k)! ot 24n+m2n+1(n—k)! et
(B.11)
We consequently obtain:
n+k 2 (m+k)
I3 = 2 Omon— B.12
3=m(m+2) 24n+m 2m+1 (m—k)I ™" 1 ( )
m+k 2 (n+k)! _ 2(m+k) (n+k)!6
24n+m 2n+1 (n—k)! et 2n+1 (n—k)! et
which may be rearranged to a more symmetrical form:
2(n—1)(n+1 n+k)!
o DD R B3

(2n—1)2n+1) (n—1—k)!
2m—1)(m+1) (m+k)!
(mel)(2m+]_) (m*]-*k)' n,m—1
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Evaluation of Quadratures, Rels
(IT1.169) and (II1.170)

The aim of this Appendix is to evaluate quadratures ((ILI69)-(IILI70):

I :/ (PP L p(p + 1)alPlz P+ sin? 6 df (C.1)
0

16:/ (prptYzlPl 1 (p 4 1)7Plze+) sin? 6 df (C.2)
0

For Iy, we first consider the case when p > 0.
Is(p>0) = / (TPrPFL 4 p(p + 1) 7P aP ) sin? 6 df (C.3)
0

We replace 7%, 7% by their definitions ([IL51)-([IL52) and integrate partially
the first integral. Then, we use twice Rel (C.4) and also once Rel (C.5) below
(5], p. 402):

m

dp,
(20 +1)sin@ dé =l(l-m+ 1P}, —(+1)(1+m)P™ (C.4)

(2l +1)cosOP™ = (I +m)P™ + (I —m+1)P}, (C.5)
to obtain:

(m—p)(m+1)(m+2)

p+1_ pp+l

15<pzo>=/ Prip(pr1) P+ "
0

mp(m — p)
(2m+1)(2m + 3)
m(m —1)(m+1)(m +p+1)

2m —1)(2m + 1)

om0 28 D et (1) P2 s

[(m + 1)P2F 4 (m + 2) PEEL]

[Py — PR
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This equation is rearranged in order to take advantage of the following rela-
tion ([I30], t1, p. 101):

(204 1)sin6P"™ = P71 — P (C.7)

In the term {} of (C.6) we manage to produce only terms of the kind of the
one in the r.h.s. of (C.7). Having done that, we observe that the integral in
(C.6) only contains integrals in the standard form (A.12). Therefore, we have:

2 (m+p+1)
2m+1)2n+1) (m—1-—p)!
—(m —1)(m + 1)0m,n41]

Is(p =2 0) = [(n =) (n +1)dnmi1 (C.8)

The case p < 0 may be reduced to the case p > 0 by changes in the
subscript labels:

p——(p+1)
n—m (C.9)
m—"n
leading to:
2 —p)!
Is(p < 0) = (=)~ )+ 1)onss (C.10)

@2m+1)2n+1) (n+p)!
—(n—1)(n+ 1)0pn,m+1]

For Ig, we first consider the case p > 0:

™
Is(p>0) = / (pr2rP*t 4+ (p+ 1)7P7rk ) sin? 0 do (C.11)
0
We replace 7%, 7% by their expressions in terms of P¥ and we integrate par-

tially the second integral to obtain:

T gppt .
Is(p > 0) = 7/ PPlsin 6 d”‘; + (p+1)cosOPE]dO (C.12)
0

By using Rels (C.4) and (C.5), (C.12) becomes:
_(P*m)(m+]9+1)/7T o pp+1 p+1
The integral in (C.13) is reduced to the standard form (A.12) by using (C.7):

Ts(p > 0) = (m — p)(m+p+ 1)/ PPPP sin 00 (C.14)
0
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leading to:
2 (m+p+1)!
) C.15
2m 41 (m—p—1)""" ( )

The case p = 0 is readily treated independently. We find that the result takes
the same form as (C.15) which is therefore valid for p > 0. With the same
change of subscripts (C.9) as for I5, the case p <0 is reduced to the case
p=>0.

We finally obtain:

Is(p > 0) =

2 (n+p+1)!
I _ 2n+1 H—Z—l)!anm pZO C 16
6= -2 gn—p)!(g 0 (C.16)
2n+1 (n+4p)! " nm P <



Appendix D

To Reduce the Double Summations of
Chapter IV to Single Summations

Jp
The following relations are to be used to reduce double summations Z to

single summations E .
J

Jjp o0
Yoo A=) Avjrrgrig ¢ >0 (D.1)
J+=2q Jj=q—1
Jp ee}
Yo A= Asrigiig q<0 (D.2)
J+=2q Jj=lql
Jp [e%e)
A= Asjiijg >0 (D.3)
J-=2q Jj=q
Jjp o
Z Ajp = Z Azjt1,5-q q<0 (D.4)
J-=2q Jj=lq|-1
Jp ee}
S A= Agjjig Vq (D.5)
J+=2q+1 Jj=lql
Jjp fe%s)
S A=Y Agjga q=0  (D.6)
Jj-=2¢+1 Jj=q+1
Jp [e%e}
Z Ajp = Z AQjJ'_q_l q<0 (D?)
J-=2q+1 i=lal-1
Jjp ee}
Do Ajp=> Ay Vg (D8)

Jo=2q Jj=lql
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Jp [o'e)
Z Ajp = ZA2j+1,j—q g>0 (D.9)
Jo=2q+1 j=q
oo
Z Ajp = Z A2jt1,j—q ¢g<0 (D.10)
Jo=2q+1 j=lal-1

As an example, the demonstration is only provided for the first of them.
One has (from (IV.82) and (IV.88)):

00 J
A= 2 Aip= YD 4, (D.11)

J+=2q j=0 p=0
N~ 7 ~ 4
q>0 j+1—-2p=2¢>0

The condition (5 + 1 — 2p = 2¢) implies that j is greater than 0 and odd
and may therefore be written as (j = 20+ 1), [ = 0, 1..., leading to:

oo 21+1
=> > Aoy (D.12)
=0 =v -

p=Il+1

Because ¢ is given, the condition (p = 1 4+ 1 — ¢) implies that p is deter-
mined for a given [. Therefore, double summations are unnecessary. Now, this
condition also reads as (I = p+ ¢ — 1), showing that the smallest value of [
for p=01is (¢ — 1) in the first summation. Consequently, (A.12) becomes:

oo
A= Z A21+1’l+1,q q>0 (Dl?))
l=q—1
which identifies with (A.1).
The set (A.1)-(A.10) may be rewritten under another form which, although
not used in this book, can be worthwhile as in Gouesbet and Lock [80]. This
set gathers the cases when j, jo, j— are odd and even, and reads as:

Z Aj = ZAm 1424, m>0  (D.14)
J+=m
Z Ajp = ZAm+1+2j j m >0 (D15)
j—=m
Z Ajy = ZAmHJ ; m>0  (D.16)

Jo=m
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Jjp 00
D Ajp = Asjiin (D.17)
J4+=0 3=0
Jp [o'e)
Yo A= Az (D.18)
Jj-=0 j=0
Jjp e}
D A=) Agyy (D.19)
Jo=0 3=0
Jjp 00
Z Ajp = ZA|m\+1+2j,|m\+1+j m <0 (D.20)
J+=m 3=0
Jjp o
Z Ajp = ZAlm\—1+2j,\m|—1+j m <0 (D.21)
jo=m =0

M

Jjp
Z Ajp

Jo=m

Ap|+2,Im|+j m <0 (D.22)

<.
I
o



Appendix E

Useful Relations to Derive the BSCs of
Chapter 1V

The following relations are required to derive the expressions of the BSCs in
terms of finite series:

o] é(”—QQ)

Y DYe = e > en0,2,..,2¢-2) (E.1)

m=0 n=2m+2q m=0
oo oo oo 3(n—2¢-1)
> Do =Y o0 e(n;1,3,...,2¢ — 1) (E.2)
m=0n=2q+2m-+1 n=1 m=0

As an example, the demonstration is provided for the first of them, with

q=1,ie.
n_1

Z Ze = Ze Z €(n;0) (E.3)

m=0n=2m-+2 n=0 m=0

The double summation in the L.h.s. may be visualized by using an index table:

mmn
0 2,4, 6, 8, ...
1 4,6, 8, 10, .....
2 6,8, 10,12, ..... (E4)
3 8,10,12, 14, .....
which may be directly translated to another equivalent index table:
nm
0 no subscript m
20
101 (E.5)
60,1,2

which may be directly converted to the r.h.s. of (B.3). General demonstrations
of Rels (B.1) and (B.2) proceed quite similarly.



Appendix F
Computer Programs

This appendix refers to the computer programs contained in the website
connected to this book. The list of computer programs, with some comments,
is given below. On the website each code is in a directory where are:

e an excecutable version of the code, under Windows,
e the code sources (DELPHI and FORTRAN)
e a notice on how to use with some examples

Originally, codes have been developed on a PC using Lahey 77, and then La-
hey 90 compilers. Also, the codes have been tested on various workstations
(Sun Sparkstation, HP, Stardent,...). Nevertheless, some difficulties due to
the use of specific compilers could possibly still happen. In such a case, please,
inform us. However, to be more easy to use, the versions available at the web-
site have been developed with a DELPHI interface while the computations
are carried out by a FORTRAN dll.

(i) Supermidi.

Supermidi [673], [674], [675] is a computer program for classical LMT
based on Lentz algorithm [676]. This algorithm deals with the computa-
tions of Bessel functions by using a continuous fraction representation. In
1979, Supermidi could deal with very large particles, up to size parameters
typically equal to 10, and with complex refractive index having imaginary
parts as high as 10°, thus corresponding to the case of perfectly conduct-
ing scatter centers. The Lentz algorithm has not been implemented in the
GLMT-programs presented below in order to speed up computations, but
this could be done if required for specific applications.

(ii) Computer programs for finite series (Chapter V) are also available
from the website. Two routines, named GNMTM and GNMTE, to compute
the beam shape coefficients In'rar and gy’ respectively, are provided. Each
one contains ten subroutines handling separately the ten different expressions
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depending on n and m. These subroutines are named G1234 if m # 0, in
which : 1 is E or 0 if n is even or odd respectively; 2 is E or 0 if m is even
or odd respectively; 3 is P or N if m is positive or negative respectively; 4 is
TM or TE for BSCs g,'r), and g1, respectively. If m = 0, the subroutines
are named G104, with the same conventions are above for 1 and 4. Programs
are provided with many comments. Exemplifying results obtained with the
programs are also available from the website.

(iii) The program GNMF computes the beam shape coefficients g’y by
using the localized approximation in the improved formulation of section
VII1.4.5. The code is organized as follows. The left part of the window is
devoted to input parameters i.e.: the wavelength, the beam waist radius, the
location Xy, Yy and Zy and the number of terms to be computed. When the
computations are finished, it is possible to directly vizualize the behaviour of
the ¢, coeflicient by selecting the T'E or T M by using the radiobox and m
value by moving the scrollbar. Figures[F.1land [F.2] exemplify such behaviours.
Figure [E1] plots the behaviour of g}L,TMversus n (1 < n < 300) for a plane
wave while figure[[.2] plots the behaviour of g%T o versus n (1 < n < 300) at
location Xy = 3um, Yy = 1.5 and Zy = 5pm in a Gaussian beam (wg = 10um
and A = 0.5145um).

We now deal with a series of more elaborated computer programs, dealing
with full GLMT-computations. The routines are specified for Gaussian beams
and the BSCs are evaluated by using the localized approximation. Arbitrary
location is considered. Instead of the basic localized approximation, the user
may implement other techniques, such as finite series, quadratures, or what-
soever. This would be a fairly trivial task. Also, if the reader wants to study
other kinds of beams than Gaussian ones, the only essential task to carry out
is to modify the subroutines devoted to the computation of the BSCs. There
exist also routines for specific applications of GLMTSs, for instance devoted to
phase-Doppler systems. Such routines are not included in this book which is
aiming to a presentation of the basic GLMT (accompanied by complements),
not to the details of all meanders which may be generated by these theories.

We then now consider four programs dealing with the GLMT stricto sensu.

(iv) DIAGAUS given below is devoted to the computation of scattering
diagrams for a scatterer arbitrarily located in a Gaussian beam. The geometry
of the problem is defined in Fig ITI-1. All geometrical inputs are defined with
respect to the particle coordinate system, which is the standard case used in
developing the theory. The observation point is located at a distance R from
the particle center.

The scattering angle 6 is in the range (0pmin , Omin +10pqs). It must be noted
that intensity values at € = 0° cannot be numerically evaluated, although
they are well defined indeed, because the Legendre functions 70 (cos ) tend

n
to infinity when® — 0° (or & — 180°). The values of cos 6 in the routine
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7' Computation and plating f gnm coedliciests,

Fig. F.1. The interface to compute and display the Beam Shape Coefficient in the
Localized Approximation. Example of result for g}l,T v for a plane wave.

7' Computasion and platng of gaes cootlichents

Fig. F.2. Example of result for g,OL,T » and an off-center, off-axis location in a
Gaussian beam.

are bounded to remain located in the interval [—0.99999,0.99999]. The far
field computation can be carried out for two complementary configurations:
3D or 2D computations.

e Computation of 3D scattering diagrams: Figures [F.3], [.4] and dis-
play some 3D views. The screen is organized in three parts: the input
data (wavelength, beam waist, position X, Y, Z, the complex refractive
index of the particle, external refractive index, and particle diameter
as well as the number of computation points in 6 and ¢ directions and
the visualization distance), a representation of the scattering geometry
where by convention the converging part of the beam is in pink while the
diverging part is in green, a representation of the scattered light where
the color (red or blue) codes the polarisation of the scattered light. By
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clicking left with the mouse in any part of the figure and moving it, it
is possible to observe the scattering diagrams from different locations.
Such 3D views are displayed in figures [E.3HE.5]

7 GLMT in 30, Junary 2010
Tile 30 visuskzation | |
6.1 FPS fmTriangles)
Ve 05T T @ Lot
Beamwsit[t o s ¥ IPtiVisible
Poston%[3
Poston¥ [2
PoskonzZ[6
Reft IndexA[133
Relindesl [0
EaeralRel [T
Puticke Dian [
rePiea 5
P10

distance Z visu |30

Start visusleatons
Start compulstions

Fig. F.3. Example of a 3D diagram.

K GLMT iin 30, Junary 2010, E|@EJ

Tile 30 visuakzaton |
3083 FPS [mnTrangies)
Wavelngh [05132 1;‘ 7 1_tela viske:
Someaalt to | chose | | o | TPV
PoionX[3 — St -
[
Postonz[E
Reft. Indew R [1.32
Rellndet [0
EvemalRel [|
Paticle Diam[20
Pl
wpPtli®0

ditance Z visu [30

Start visuakzations.
Start compatafions

Fig. F.4. Example of a 3D diagram.

e Computation of 2D scattering diagrams. Examples of 2D diagrams are
displayed in figures [F.6HE.8

(v) NFORWARD computes properties of the near-forward scattering, tak-
ing into account the interference between the incident beam and the scattered
light. Examples of forward diagrams, including the interferences between the
Gaussian beam and the scattered light are displayed in figures
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" GLMT in 3D, Junary 2010 E@E

Tile 30 visuskzation |
86,95 FPS [menTriangies)
Wavelength [05132 I 1 _tela visbie
Boomwaist[t ] | . “ hase ¥ 1_PhaVasble
Pomcnxfs | T :
PosiionY[2
Postonz[E

Peir. Index A [1.33

Ref. Index | |0

EvemalRel [T

Particts Diam 10 i
Peals0

rbp PH[100
distance Z vieu [30

Stat visuakzations

Stan computaiions

Fig. F.5. Example of input and output screens for 3D computation.

7 GLMT in 3D, Junary 2010

Tile | 3D visualzetion 2D Seattering diagrams

ety W

Wavekngh [151 = &

1.0E+03

Beam waist

Pasition %
1.0E+08
Position v

1171

Position Z 1.0E+07

Refr. Index R |1-32

Ret. Indes| |9 LEx
Evtermal Fet |1

Patticiz Diam |20

Tetamin |0 1.0E+04 -

1.0E+05 4

Tetamar 190
rbplets  [512 ety
Phi [0 106402
Fils rime | monfichier bt

1.0E+01 o

Start computation T T T
50 100 150

Fig. F.6. Example of a 2D diagram

(vi) Next, CROSS SEC computes the cross-sections of extinction, scatter-
ing, and absorption, for a spherical particle arbitrarily located in a Gaussian
beam. Figure [F.12]is an example of input and output.

(vii) The program PRESSION computes the radiation pressure versus the
particle location in the Gaussian beam or the particle diameter.

Figure [F. 13 displays the screen for computations of the pressure versus the
particle location. The screen is organized in two parts: input parameters and
result vizualization. The input parameters are : beam waist radius, incident
wavelength, particle refractive index, laser power, light velocity, particle den-
sity, surrounding medium density and particle radius. Then the user must
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7 GLMT in 3D, Junary 2010 [==1[E3

Title | 30 visualization 2D Sealtering diagrams ]

[~ iteta

Pt 5 file 1 ¥ lngarithmic
: R iphi

Wevelerdth [05132

Beamwaist |40 0B
Postion®  [5 1.0e+084
Postiony |5

Fosiionz | 0BT
Reft. Indes R |133 106408
Ref. Index | |7

EwemaRell 106405 -]

Patticle Diam|2C e

Tetamin |0
Tetsmas 180 1.0E+03

wEce | HH 1.0E+02-
I T

File name | monfichier b

1.0E+00
Start computation T T T
50 100 150

1.0E+014

Fig. F.7. Example of a 2D diagram

select if the study will be along the X, Y or Z direction. If the X-direction is
selected, the user will specify the Yy, Zy positions, the range of X to study as
well as the step in Xg. The user will also give a name for the results file. The
extension (.txt) will be automatically added by the software. For this option,
the result file is made of 11 columns. The first column is the ordinate along
the axis under study. The columns 2 to 4 correspond to the radiation pressure
cross-sections Cpr z, Cpr.y, and Cp, .. The columns 5, 6, and 7 are the force
components F, Fy, and F}, corresponding to the laser power defined by the
user in the input parameters. The column 8 is the force towards the beam
axis, as a combination of the forces F, and Fj. The column 9 corresponds
to the laser power to be used to exactly balance the particle weight, for this
particle location. The columns 10 and 11 give the force components F, and
F, for the laser power given in column 9.

The relation between the force components and the radiation pressure
cross-sections is given by ([I7], p. 14):

IO Cpr,i
c

F;, = (F.1)
where c is the velocity of light in the surrounding medium, and 4 stands for
x, y, or z. Furthermore, for a Gaussian beam, the relation between the total
intensity and the intensity on the axis is given by:

2 Io,total
IO,am’s = . Z}o;a (FQ)
0
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n 3D, Junary 2010

Tille | 3D visualization 2D Scatiering diagrams

¥ lgaittmiz | o
wavelengh 05132 ¥ iphi
Beam waist |20

Posiion |5 LS
Positiony |5
1.0£+07
PosiionZ |7
Reh. Index i |13 S
064
Rel lndes! 7
Exteinal Fef |1 —_—
Particle Dizm| ™0
Tetamin  |? zad
Tetama  |180
nbpleta (512 1.0E+03
I
- 1.0£+02-
File name morfichier
Start compulalion 1.0E+01 4 .
50 100 150

3D, Junary 2010

Tite | 3D visuglization 2D Scatiering diagrams

o e WED
wavekngh [0512 [ iphi
Poson  [5 Loty
Posiion 5 1006
PosionZ |3
Refr Index R |1-33 T0E051)
Ref. Index| |7 it
EvemaRef ]l
Particle Diam| ™0 1.0E+03
Tetamn [0
B 1.0E+02
ows  [5z i
I F—
1.0E+004
1.0E-01 -
50 100 150

Fig. F.8. Examples of far field scattering diagrams computed for the same particle.

The parameter is the beam waist size.
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7 Form1 CER
T Conusaion et |
Inputs . y
Wawelength (um) 15145 I™ logaitmic scale

Beamwaist (um) 1150
Particle dia (um) |30.0

ResRec 15
Imsgnayrefiae 00 0150
wgm 00
vogm oo
Zogm o | o
Racus detectr 7
nmeter
tetamax ’57

rbteta 280

Phi 50
output fle name [mestesulats.tat

0080

Fig. F.9. Interaction between a Gaussian beam and the light scattered in forward
direction: linear scale, axis particle location.

7 Form1 EEX
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Fig. F.10. Interaction between a Gaussian beam and the light scattered in forward
direction: logarithmic scale, axis particle location.

Then the relation between the radiation pressure cross-sections and the forces
used in the program is:

Fi _ 2 IO,tota; C;m“,i (F3)

T WG ¢

When the computations are finished, the results can be plotted. A radiobox
permits to select the quantities to be plotted: cross-sections, forces, combined
forces or laser power.
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Fig. F.11. Interaction between a Gaussian beam and the light scattered in forward
direction: logarithmic scale, off-axis particle location.
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Fig. F.12. Example of input and output for scattering cross-section.

Figure [F14] displays the screen for computations of the pressure versus
the particle location. The screen is organized in two parts: input parameters
and result vizualization. The input parameters are : beam waist radius, inci-
dent wavelength, surrounding refractive index, particle refractive index, laser
power, light velocity, particle density, surrounding medium density, gravity
constant and the X, Yy and Zj particle location. The range of particle ra-
dius as well as the radius step will also be given by the user. Therefore, the
program asks for an output file name. The two output files then take, as
before, names reading as .par and .dat. The first file with the .par extension
contains the input parameters, while the second one with the .dat extention
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n pressure computations, Februar, 2010
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Fig. F.13. Example of a screen when computing the pressure versus the particle
location.

7 Radiation pressure computations, Februar 2010
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Fig. F.14. Example of a screen when computing the pressure versus the particle
diameter.

contains the results, under the form of 7 columns. The first column is the
particle diameter, the columns 2, 3 and 4 correspond to Cp,, Cpr, and

Cpr,-, and the last columns 5, 6, and 7 correspond to the force components
F,, F, and F.
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We also provide:
(viii) a commented subroutine to compute the scattering coefficients a,
and b,,.

Finally, the website contains some examples of movies showing the de-
velopment of the interaction between ultra-short pulses and some scatterers
(homogeneous and coated spheres).
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