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Preface

Parity-time (PT ) symmetry is nowadays an active area of research, having an
impact in both science and technology. Parity-time concepts first originated within
the framework of quantum mechanical formalisms, when Bender and Boettcher
(1998) indicated, for the first time, that if the one-dimensional Schrödinger equation
with a complex potential

i
∂

∂t
ψ (x, t) = − ∂2

∂x2
ψ (x, t)+ V (x)ψ (x, t)

is PT -symmetric, then the spectrum of the Schrödinger operator −∂xx + V(x) can
be entirely real. In other words, if this equation is invariant under the combined
action of the parity P (x → − x) and time-reversal T (t → − t, i → − i), then
the energy levels E of the eigenstates ψ(x, t) = u(x)eiEt can in principle be all-real.
In this case, one can show that a necessary (albeit not sufficient) condition for this
complex potential to be PT -symmetric is

V (x) = V ∗ (−x) .

While the ramifications of PT symmetry in actual quantum systems are still to be
assessed, the same is not true in classical settings. A decade later, this field started
to flourish in earnest, when a series of papers published in the period of 2007–
2008 indicated that optics and photonics can provide a fertile ground where PT -
symmetric ideas can be investigated. In the optical realm, the complex refractive
index function n(x) = nR(x) + inI(x) now plays the role of a complex potential V(x),
where nR(x) represents the refractive index distribution while nI(x) stands for the
gain and loss profiles within the medium. In this case, PT symmetry implies that

nR(x) = nR (−x) , nI (x) = −nI (−x) .

Hence, the refractive index function must be even, whereas the gain-loss profile
should be an odd function of position. What makes optics a natural platform for PT
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vi Preface

symmetry is the fact that all these three ingredients (refractive index, gain, and loss)
can be readily deployed in photonics. Soon after, this was followed by an explosion
of experimental works, all of which corroborating such possibilities. Symmetry
breaking was first reported in 2009, and full PT symmetry was subsequently
observed in pairs of coupled waveguides in 2010. Some very exciting applications
stemming from optical PT symmetry have also been demonstrated by a number of
groups. These include, for example, the prospect for unidirectional invisibility, ultra-
responsive sensors, unidirectional elements, single-mode micro-ring PT -symmetric
lasers, and coherent perfect absorbers/lasers, to mention a few. The impact of nonlin-
earities on optical PT -symmetric arrangements was also extensively investigated in
several settings, including topological photonics. Generalizations of PT symmetry
to accommodate more flexible gain-loss profiles have also been proposed. By now,
concepts from PT symmetry have permeated several other branches of physics
beyond optics, ranging from nuclear and quantum, to microwave, electronic and
mechanical systems. One can also include in this expanding list plasmonics, Bose-
Einstein condensates, acoustics, superconductivity, magnetics, and wireless power
transport systems.

In this book, theoretical and experimental progresses in diverse areas of PT
symmetry are reviewed by experts in the field. In Chapter “Linear and Nonlinear
Experiments in PT-Symmetric Photonic Mesh Lattices”, Peschel and collabo-
rators review linear and nonlinear experimental results on light propagation in
PT -symmetric photonic mesh lattices made of fiber components, where Bloch
oscillations and solitons are demonstrated. In Chapter “PT-symmetry on-a-Chip:
Harnessing Optical Loss for Novel Integrated Photonic Functionality”, Feng et al.
discuss experimental results associated with chip-scale PT -symmetric integrated
photonic systems designed for a number of applications. In Chapter “Parity-Time
Symmetry in Scattering Problems”, Alu and colleagues provide an overreview of
PT symmetry in scattering problems, where scattering from open PT -symmetric
systems in coupled waveguide cavity arrangements is analyzed in one and higher
dimensions. In Chapter “Scattering Theory and PT-symmetry”, Mostafazadeh intro-
duces a one-dimensional scattering theory with P, T , or PT symmetry and derives
mathematical conditions that encourage or forbid reciprocal transmission, reciprocal
reflection, and the presence of spectral singularities. In Chapter “Passive PT-sym-
metry in Laser-Written Optical Waveguide Structures”, Szameit and collaborators
discuss how PT -symmetric systems can be implemented in a passive fashion,
without using gain, by employing modulated waveguide structures. In Chapter
“Non-Hermitian Effects Due to Asymmetric Backscattering of Light in Whisper-
ing-Gallery Microcavities”, Wiersig reviews progress on non-Hermitian effects due
to asymmetric backscattering of light in whispering-gallery microcavities and their
applications in single-particle detection. In Chapter “Exact Results for a Special
PT-symmetric Optical Potential”, Jones provides exact analytical results of light
propagation in PT -symmetric sinusoidal optical potentials at the phase transition,
for both transverse and longitudinal configurations. In Chapter “Parity-time-Sym-
metric Optical Lattices in Atomic Configurations”, Xiao and colleagues provide a
roadmap for designing and experimentally implementing exact PT -symmetric opti-
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Preface vii

cal lattices with gain and loss in atomic vapors and investigate dynamic behaviors of
light propagating in such induced non-Hermitian optical lattices. In Chapter “Effects
of Exceptional Points in PT-symmetric Waveguides”, Moiseyev et al. discuss
physical effects stemming from exceptional points in PT -symmetric waveguides,
such as a slowdown of light oscillations and possible group-velocity effects. In
Chapter “Higher Order Exceptional Points in Discrete Photonics Platforms”, El-
Ganainy and collegues introduce a systematic approach based on a recursive
bosonic quantization scheme for generating discrete photonic networks that exhibit
exceptional points of any arbitrary order and discuss the spectral properties and
the extreme dynamics near these singularities. In Chapter “Non-Hermitian Optical
Waveguide Couplers”, Kivshar and collaborators review PT -symmetric effects in
non-Hermitian two-core couplers and trimers and show that their nonlinear response
can break PT symmetry. In Chapter “Parity-Time Symmetric Plasmonics”, Dionne
et al. provide an overview of nano-photonic PT devices based on plasmonics,
such as ultra-compact perfect absorber/amplifiers, multiplexers, and polarization
converters with unity-efficiency. In Chapter “PT-symmetry and Non-Hermitian
Wave Transport in Microwaves and RF Circuits”, Kottos and colleagues provide
a review of recent progress in PT symmetry and non-Hermitian wave transport
in microwaves and radio-frequency circuits, where concepts like coherent perfect
absorbers, gain-induced shut-down of lasing, and asymmetric transport naturally
emerge. In Chapter “Coupled Nonlinear Schrödinger Equations with Gain and Loss:
Modeling PT -symmetry”, Konotop considers coupled nonlinear Schrödinger equa-
tions with balanced gain and loss and explores various wave transport phenomena
in nonlinear PT -symmetric settings such as bright and dark solitons and their
interactions with defects, soliton switches, resonant wave interactions, and wave
collapse. In Chapter “Making the PT Symmetry Unbreakable”, Malomed et al.
outline approaches for extending PT symmetry to very large gain-loss strengths,
when dealing with subwavelength-scale waveguides and PT -symmetric solitons in
one- and two-dimensional models having self-defocusing nonlinearities. In Chapter
“Krein Signature in Hamiltonian and PT -symmetric Systems”, Pelinovsky and
collaborators discuss the concept of Krein signature in Hamiltonian and PT -
symmetric systems such as the one-dimensional Gross–Pitaevskii equation with
a real harmonic potential and a corresponding linear imaginary component. In
Chapter “Integrable Nonlocal PT Symmetric and Reverse Space-Time Nonlinear
Schrödinger Equations”, Musslimani and colleagues overview recent advances in
integrable nonlocal nonlinear Schrödinger equations having PT , reverse-time and
reverse space-time symmetries, both in continuum and discrete settings. In Chapter
“Construction of Non-PT –symmetric Complex Potentials with All-Real Spectra”,
Yang reviews the generalization of PT symmetry and shows that, in addition
to PT -symmetric complex potentials, there are also large classes of non-PT -
symmetric complex potentials that allow for more flexible gain-loss profiles and
all-real spectra, that can be constructed via symmetry, supersymmetry, and soliton-
theory methods. In Chapter “Constant-Intensity Waves in Non-Hermitian Media”,
Makris and colleagues systematically discuss how to suppress intensity variations
and reflections for waves propagating through a nonuniform potential landscape by
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viii Preface

judiciously incorporating gain and loss in the potential. In Chapter “Nonlinear Beam
Propagation in a Class of Complex Non-PT -symmetric Potentials”, Kevrekidis et
al. review nonlinear wave propagation in a class of complex non-PT -symmetric
potentials and show that the departure from a strict PT -symmetric form does not
allow for the numerical identification of true soliton solutions.

The material in this book provides a rather comprehensive survey of recent
progress on the theory and applications of PT symmetry. It could be useful
to scientists, engineers, and graduate students, who wish to further explore and
advance this active field.

Orlando, Florida, USA Demetrios N. Christodoulides
Burlington, Vermont, USA Jianke Yang
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Linear and Nonlinear Experiments
in PT -Symmetric Photonic Mesh
Lattices

Martin Wimmer, Demetrios Christodoulides, and Ulf Peschel

Abstract Photonic mesh lattices provide a versatile experimental platform for
studying light propagation in a discrete environment. By using standard telecom-
munication equipment it is possible to influence the evolution of light by actively
modulating its amplitude and phase. Fiber components thus offer a ready to use
solution for creating a PT -symmetric optical network. Here, we analyze two classes
of PT -symmetric networks: those with local PT symmetry fulfilling the conditions
of PT symmetry in each time step but not globally and those with global PT
symmetry providing completely real eigenvalues. We investigate light propagation
in these dissipative media in the linear and nonlinear regime and discuss nonlinear
localization as well as the formation of soliton. Furthermore, Bloch oscillations are
induced by an external phase modulation and are found to restore pseudo-Hermitian
propagation.

1 Introduction

In this chapter, we discuss light propagation through a fiber optical network, which
shares the same working principle as the Galton board [1] (see Fig. 1a). Originally
proposed as a machine, where particles fall through multiple layers of scatterers,
each deflecting the particles either to the left or to the right, it is a prime example for

M. Wimmer
Erlangen Graduate School in Advanced Optical Technologies (SAOT), Erlangen, Germany

Institute of Solid State Theory and Optics, Abbe Center of Photonics, Friedrich Schiller
University Jena, Jena, Germany

D. Christodoulides
CREOL, College of Optics and Photonics, University of Central Florida, Orlando, FL, USA

U. Peschel (�)
Institute of Solid State Theory and Optics, Abbe Center of Photonics, Friedrich Schiller
University Jena, Jena, Germany
e-mail: ulf.peschel@uni-jena.de

© Springer Nature Singapore Pte Ltd. 2018
D. Christodoulides, J. Yang (eds.), Parity-time Symmetry
and Its Applications, Springer Tracts in Modern Physics 280,
https://doi.org/10.1007/978-981-13-1247-2_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-1247-2_1&domain=pdf
mailto:ulf.peschel@uni-jena.de
https://doi.org/10.1007/978-981-13-1247-2_1


2 M. Wimmer et al.

Fig. 1 Schematics of the classical and optical Galton board. (a) In case of the classical Galton
board, a mechanical walker falls through multiple layers of scatterers, each deflecting the particle
either to the left or to the right. (b) In the optical analogue, a laser beam is inserted into a pyramid of
beam splitters. At each row of beam splitter cubes, the laser beam is divided up into one part going
to the left and another going to the right. Photodetectors record the final intensity distribution. (c)
The output of a standard 50/50 beam splitter is given by the superposition of both input fields,
where the reflected path is phase shifted

Random Walks [2]. This stochastic process applied to classical particles reveals a
diffusive motion, which is not time reversible. By replacing the mechanic particles
by photons and the scatterers by beam splitters, a so-called optical Galton board
is realized [3] (see Fig. 1b). Although the idea is the same, interestingly the
optical version features a fast ballistic spreading [4] and a reversible evolution [5],
providing an interesting ansatz for quantum mechanical search algorithms [6]. In the
following, we present an implementation of the optical Galton board, which relies
on fiber amplifiers for compensating losses. Therefore, the optical Galton board is
discussed in terms of classical optics based on the propagation of coherent wave
packets and their mutual interference [7]. At each beam splitter cube (see Fig. 1c),
the incoming field amplitudes A and B transform into the fields A

′
and B

′
at the

output according to

(
A′
B ′
)
= 1√

2

(
1 i
i 1

)(
A

B

)
, (1)

where in this notation the reflected parts acquire a phase shift of π /2. As amplifiers
and classical optical states are used in this project, the optical Galton board is called
a Light Walk in order to distinguish it from Quantum Walks based on e.g. single
photon states [8, 9] or atoms [5].

The main challenges of implementing the spatial Galton board are the growing
number of components with increasing system size and the need for an active
stabilization in order to observe a coherent propagation. A clever solution to both
problems was demonstrated in [8], where time-multiplexing schemes are adapted
to the challenge of realizing an optical Galton board. The working principle is
not limited to a single spatial dimension, but even 2D Quantum walks could be
realized based on this method [10]. In the following, we first want to discuss the
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basics behind time multiplexing of Light Walks and afterwards we explain the
experimental setup in detail. Finally, we present results on linear and nonlinear light
evolution, even in presence of PT -symmetrical potentials.

2 Light Walks via Time Multiplexing

The Galton board is a typical 1 + 1 dimensional system, the rows of which can
be interpreted as discrete time steps and the horizontal deflection of the walker as
the position, which is discretized as well. For a time-multiplexed implementation
of the optical Galton board, pulses are used instead of cw-signals. While in the
standard arrangement all beam splitters of a single row are passed at the same time,
in [8, 11] a time delay between each beam splitters is introduced by shortening
all paths going the left compared to the paths going to the right (compare red and
blue paths in Fig. 2a). The system now evolves on two time scales: firstly, each row
is separated from the next by the path length L = (L1 + L2) /2 and secondly the
length difference�L = L1 − L2, with L1 > L2, separates two adjacent beam splitters
of the same row. Instead of labelling every beam splitter by its individual row m and
column n, it is now possible to identify each beam splitter by a single parameter,
which is the arrival time

Tarrival = Tm+ �T

2
n. (2)

Fig. 2 Time multiplexing used to realize the optical Galton board. (a) Coding the spatial
distribution of light pulses (yellow circles) by their arrival time: By shortening paths to the left
(red), an artificial length difference is introduced, which attributes to each beam splitter in row m
and column n a unique arrival time given by Eq. (2). Large time steps separate different rows, while
small time steps separate pulses of the same row, but of different columns. (b) The pyramid is then
reduced to two fiber loops of different length and a 50/50 fiber coupler. Each roundtrip in the short
(long) loop equals a step to the left (right). The introduction of the length difference is not altering
the dynamics through the pyramid. (c) Equivalent mesh lattice consisting of 50/50 fiber couplers.
For a better visualization, the length difference between red and blue paths is ignored, since it does
not influence the evolution
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Here, we introduced the average propagation time T and the time difference �T
between both optical paths. By creating the length imbalance between the short
paths to the left and the long paths to the right, a dimensional reduction from
1 + 1D to a single temporal dimension is carried out, which has a crucial impact
on the experiment: Not only the coordinate system of the optical Galton board is
conflated, but instead also the experiment can be simplified to a short and a long
piece of optical fibers connecting the input and output of a 50/50 fiber coupler
(see Fig. 2b). A pulse starting in the longer loop is split up at the fiber coupler
into two smaller pulses, which propagate in the short and long loop, akin to pulses
propagating to the left or right in the pyramid of beam splitters. After each roundtrip
they reach the central coupler, where they split up again. While a path through the
spatial implementation of the optical Galton board is given by a combination of
steps to the left or right, this translates into a specific sequence of short and long
loop roundtrips in the temporal implementation. In this sense, each roundtrip of the
pulses corresponds to a time step m, and the difference in number of round trips
through the long and short loop define the position n.

Obviously, based on time multiplexing only the two fiber loops and the beam
splitter are needed, which is the first main advantage. In case of the Galton board
[1] the accessible propagation length is limited by the rapidly growing size of the
required apparatus. In contrast, the maximum number of round trips realized in the
temporal version is restricted to the ratioN = T /�T between the average roundtrip
time and the time difference. If this limit is exceeded pulses start mixing with those
of the previous round trip. In our experimental setup, an average loop length of 4 km
is chosen and a length difference of about 45 m. In this case, the spatial size of the
optical Galton board extends over approximately 90 positions.

A second advantage of the time multiplexing principle is the intrinsic stability
of the setup. Due to the reduction to only three components, the same parts are
passed again and again. As a necessary condition for interference, two pulses have
to meet at the 50/50 coupler at the same time, which is only possible, if they
propagate for the same number of roundtrips through the long and short loop, but
do not necessarily pass the loops in the same order. In practice this means, that any
fluctuations with a larger time scale than a single measurement, do not influence the
evolution as all possible paths are affected in the same way.

3 Experimental Setup

However, in reality more than three components are needed for realizing a time-
multiplexed version of the Galton board (see Fig. 3). In the supplementary material
of [11–13] detailed descriptions of the experiment are provided. For each measure-
ment, a seed pulse with a length of 25 ns is cut out of the signal of a DFB laser diode
(λsignal = 1555 nm) by a Mach-Zehnder modulator (MZM). For achieving high peak
powers, the pulse is amplified by two erbium-doped fiber amplifiers (EDFA) and
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Fig. 3 Experimental setup consisting of the signal generation and the two optical fiber loops. The
signal of a DFB laser diode is transformed into pulses by a Mach-Zehnder modulator (MZM)
and amplified twice by erbium-doped fiber amplifiers (EDFA). Afterwards, the background is
suppressed by another MZM and cleaned by a bandpass filter. The peak power is adjusted via a
variable optical screw attenuator and an acousto-optical modulator (AOM). After inserting the seed
pulse into the long loop via a 50/50 coupler, it passes a wavelength-division multiplexing coupler
(WDM), which adds a pilot signal to each loop. All losses during one roundtrip are compensated
by an EDFA followed by a tunable bandpass filter. 4 km of dispersion compensating fibers (DCF)
provide a significant nonlinear phase shift already at low power levels. A polarizing beam splitter
(PBS) and a phase modulator (PM) with an integrated polarizer in the short loop filter out a single
polarization state. This state is adjusted via polarization controllers (denoted by three circles) at
numerous positions. At the end of the loops, isolators block back reflections of the AOMs, which
are used for a dynamic gain and loss modulation

afterwards reshaped again by a MZM in order to further suppress the dark signal.
Before being injected into the long loop through a 50/50 coupler, the spectrum of
the pulse is cleaned by a tunable bandpass filter and the peak power is adjusted
by a variable optical attenuator and an acousto-optical modulator (AOM). Both
fiber loops are built up in a nearly symmetric way, starting with an amplification
stage. This consists of an EDFA in each loop, which is adjusted in such a way that
any losses during one roundtrip are compensated. For avoiding transients and for
adjusting the amplification rate, a continuous pilot signal at λpilot = 1536 nm is
added via wavelength-division-multiplexing couplers (WDM). After the amplifiers,
the pilot signal is filtered out by tunable bandpass filters before the pulses enter
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4 km of dispersion compensating fibers (DCF). A DCF has a comparable small
core size and thus a higher nonlinear coefficient compared to standard single mode
fibers (SSMF) [14]. In combination with the long propagation distance of 4 km,
this leads to nonlinear effects already at comparable low peak powers of 100 mW.
The dominant nonlinear effect, which is observed in the experiment is self-phase
modulation based on the Kerr effect. Based on fiber parameters provided in [14],
it is estimated that a nonlinear phase shift of 2π is accumulated at a power level
of about 300 mW within a single roundtrip [12]. Besides the two DCFs, a third
spool of SSMF fiber is needed for balancing the length difference up to a remaining
imbalance of 45 m. For monitoring the pulses, a 90/10 coupler is placed in the short
loop after the fiber spools. In the longer loop, the injection coupler is also used for
pulse monitoring. For adjusting the polarization in each fiber loop, the signal at the
second output port of a polarizing beam splitter in the longer loop is minimized via
manual polarization controllers. A phase modulator in the short loop determines the
polarization state in the respective loop via an integrated polarizer. Optical isolators
prevent any back reflections and the built up of stimulated Brillouin scattering.
At the end of each loop, acousto-optical modulators (AOM) in zeroth order are
used as intensity modulators. The transmission ratio of the AOM depends on the
applied voltage, which is adjusted so, that only 50% of the pulse intensity passes,
while the EDFA compensates for this additional loss. In this way, it is possible to
either attenuate pulses by lowering the transmission ratio, or amplifying them by
increasing the transmission.

4 Mathematical Description of the Evolution

As pulses are much too long to be influenced by the group velocity dispersion of the
fiber they are completely characterized by complex amplitudes umn and the pulses
vmn in the long loop and short loop, respectively [11]. Each roundtrip the time step
m of the system advances to m + 1, while the position n is either decreased for
pulses in the short loop (going to the left) or increased for pulses in the long loop
(propagating to the right). In combination with the matrix of a single 50/50 beam
splitter in Eq. (1), this leads to the evolution equations [11]

um+1
n = 1√

2

(
umn+1 + ivmn+1

)
and (3.1)

vm+1
n = 1√

2

(
vmn−1 + iumn−1

)
. (3.2)

The periodic arrangement of beam splitters in the optical Galton board reveals
a unit cell, which covers two positions and two time steps. The periodicity itself is
reflected in a band structure (see Fig. 4), which is derived by inserting a Floquet-
Bloch ansatz [15].
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Fig. 4 Unit cell of the mesh lattice and the band structure. (a) The mesh lattice consists of unit
cells covering two positions and two time steps. (b) The two-atom unit cell leads to a splitting of
the band structure into two bands [15]. Due to the spatial and temporal discretization, the band
structure is not only periodic in the Bloch momentum Q, but also in the propagation constant θ . (c)
The group velocity vanishes at the center of the Brillouin zone and has maximum absolute values
at the edges. (d) In the linear regime the second derivative of the dispersion relation determines the
dispersive spreading of the wave packets [12, 16]

(
umn
vmn

)
=
(
U

V

)
e
iQn

2 e−
iθm

2 (4)

into a double step of the evolution equations (3.1 and 3.2). The resulting dispersion
relation

cos θ = 1

2
(cosQ− 1) (5)

connects the propagation constant θ with the Bloch momentum Q. As the evolution
proceeds in discrete round trips, the band structure is not only periodic in the Bloch
momentum Q but also in the propagation constant θ .

A specific point of the dispersion relation is excited by starting with a train
of pulses with a Gaussian envelope in one of the loops. In the next round trip
when pulses have distributed over both loops amplitudes and phases are tuned
according to the desired eigenstate (U, V)t [12]. However, the task of creating a
Gaussian distribution is non-trivial, as the system loses its intrinsic stabilization,
if an externally generated pulse sequence is inserted into one of the loops. In this
case, pulses may interfere, which did not pass the same number of components. As
a consequence, the phase relation between different pulses is no longer fixed and
unpredictable fluctuations from one realization to the next may occur. However, it is
possible to create internally a Gaussian distribution by blocking every second time
step one of the two fiber loops [11]. The resulting evolution equations

um+2
n = 1

2

(
umn+2 + ivmn+2 + ivmn − umn

)
and (6.1)

vm+2
n = 1

2

(
vmn−2 + iumn−2 + iumn − vmn

)
. (6.2)
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then simplify to a discretized diffusion equation (e.g. if vmn is blocked):

um+2
n = 1

2

(
umn+2 − umn

)
and (7.1)

vm+2
n = i

2

(
umn−2 + umn

)
, (7.2)

the solution of which is known to be Gaussian for an initial single site excitation.
Additional accumulations of phases and drifts of the center-of-mass can be avoided
by blocking long and short loop in an alternating way every second time step. At the
end, a wave packet is produced in each loop with a Gaussian envelope, where in a
final step the phase and amplitude is adjusted through the modulators.

5 Creation of a PT -Symmetric Potential

In their seminal work [17] on PT -symmetric Hamiltonians, Bender and Boettcher
considered a one-dimensional Schrödinger equation

i�
∂

∂t
ψ (x, t) = − �

2∂2

2m∂x2ψ (x, t)+ V (x)ψ (x, t) , (8)

which is invariant under simultaneous time reversal T and inversion of space P ,
setting up a symmetry condition for the potential

V (x) = V ∗ (−x) . (9)

Ten years later, the criterion above in Eq. (9) was transferred to the optical
regime, where the refractive index distribution n(x) = nR(x) + inI(x) replaces the
potential V(x) [18]. Consequently, a system fulfills PT symmetry, if the refractive
index obeys the two conditions

nR(x) = nR (−x) and nI (x) = −nI (−x) (10)

simultaneously. The first successful realization of these symmetry conditions via
two coupled waveguides was reported in [19]. While the sign of nI(x) distinguishes
between an amplifying active medium (nI(x) < 0) and a lossy medium (nI(x) > 0),
it is also possible to avoid any amplification by symmetrically distributing minor
and major losses, e.g. by introducing bending losses in waveguide arrays [20, 21]
or by adding absorbing layers [19, 22]. In such systems a global loss can be scaled
out, leaving regions of amplification and attenuation [23]. However, the presence
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Fig. 5 Creation of an antisymmetric gain and loss distribution. (a) At odd time steps the long loop
is amplified and the short loop attenuated, a situation, which is reversed for even time steps. (b)
This alternating amplitude modulation corresponds to a mesh lattice with gain and loss waveguides,
which are coupled at discrete time steps. (c) Exceptional points (EP) separate the complex part of
the band structure from the real valued central part. At the EPs, the eigenvalues and eigenvectors
of the system merge. The dash-dotted lines denote the imaginary part of the band structure

of a global loss limits the applicability, since the propagation length of optical
signals is reduced. It also renders nonlinear experiments virtually impossible as
the action of optical nonlinearities soon becomes negligible. Active systems like
doped micro-ring cavities [24, 25] require a more stringent choice of materials,
which is traded in for an avoidance of unnecessary losses. In optical fiber networks,
commercially available amplifiers provide a convenient solution to this problem. We
use a combination of amplitude modulators for dynamical gain and loss regulation
and EDFAs for a static compensation of any damping [26–28]. The required
symmetric real part of the refractive index distribution is on the other side realized
by an appropriate phase modulation.

Starting with the imaginary part of the refractive index, an antisymmetric
distribution is achieved by amplifying one loop by G and attenuating the other in
a balanced way by 1/G, which results in the evolution equations

um+1
n =

√
G±1
√

2

(
umn+1 + ivmn+1

)
and (11.1)

vm+1
n =

√
G∓1
√

2

(
vmn−1 + iumn−1

)
. (11.2)

After each time step, the gain and loss distribution is inverted (denoted by ±),
corresponding to the creation of temporally discretized coupled waveguides with
gain and loss [26] as depicted in Fig. 5. A reflection of space requires at the same
time an exchange of amplification and attenuation in order to restore the original
lattice. In this sense, PT symmetry is already fulfilled by the sole imaginary part of
the potential, however the resulting dispersion relation

cos θ = 1

2
(cosQ− cosh γ ) , (12)



10 M. Wimmer et al.

Fig. 6 Symmetry operations of the PT symmetric mesh lattice including the phase modulation.
Parity symmetry leads to a reflection of space, which is equal to mirroring the lattice about
a vertical line. Time inversion flips the lattice about the horizontal axis and adds complex
conjugation, which is equal to an exchange of gain and loss. To demonstrate that those symmetries
are still present in the case of phase modulation we have assumed the operation of a phase
modulator in one of the loops. The phase modulation is denoted by blue (−ϕ0) and yellow circles
(+ϕ0)

with γ = (lnG)/2, shows complex eigenvalues at the edge of the Brillouin zone
(see Fig. 5c). These zones are separated from a completely real valued region by
exceptional points at

QEP = ± arccos (2 + cosh γ ) , (13)

where not only the eigenvalues but even the eigenstates merge [29]. The resulting
propagation is dominated by the exponential increase of power due to the complex
eigenstates (see Fig. 9 third column).

In order to establish full PT symmetry in the whole Brillouin zone, it is
mandatory to include also a phase modulation, which is equivalent to a symmetric
real part of the refractive index. Since the gain and loss alternates with each lattice
site thus realizing an antisymmetric potential, a symmetric phase modulation

ϕ(n) =
{ +ϕ0, mod (n+ 3, 4) < 2
− ϕ0, else

(14)

is needed with a periodicity of four spatial positions [26] (see Fig. 6). Eq. (14) is
experimentally implemented via a phase modulator in the short loop

um+1
n =

√
G±1
√

2

(
umn+1 + ivmn+1

)
eiϕ(n), (15.1)

vm+1
n =

√
G∓1
√

2

(
vmn−1 + iumn−1

)
. (15.2)
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Fig. 7 Band structure of the PT -symmetric lattice. In the case of a passive lattice as shown in the
first column, the band structure is completely real valued. Applying a phase modulation increases
the size of the unit cell, which leads to a splitting of the dispersion relation into four bands in total
(second column). When complex valued (imaginary part is shown in red) and features exceptional
points. In the case of a combined amplitude and phase modulation, the band structure is completely
real valued again (fourth column). Compared to Figs. 4 and 5, the Floquet-Bloch ansatz in Eq. (16)
is used, which leads to a backfolding of the band structure about the horizontal axis

For deriving the band structure (see Fig. 7) [15]

cos 2θ = −1

2
cosϕ0 cosh 2γ

± 1

2

√
cos2 ϕ0cosh22γ + 1

2

[
cos 4Q− cosh 4γ − 4cos2ϕ0 + 4

]

of this lattice, a Floquet-Bloch ansatz

(
umn
vmn

)
=
(
U

V

)
e
iQn

4 e−
iθm

2 (16)

with an increased spatial periodicity of four lattice sites is chosen. Due to the
increased size of the unit cell, the original two bands split up in four. In absence
of gain and loss (G = 1), the pulse spreads while maintaining a constant power
level. However, for gain/loss values exceeding the PT threshold, the band structure
is complex again (see Fig. 8). The increase and decrease of the phase for pairs of
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Fig. 8 PT threshold of the
mesh lattice. Even when
combining amplitude and
phase modulation, PT
symmetry does not guarantee
a real-valued dispersion
relation. Only below a critical
value of the amplification G,
the band structure is real,
while above it has complex
parts. The figure is adapted
from the supplementary
material accompanying [26]

waveguides leads to an effective decoupling to neighboring pairs and a reduced
spreading compared to the passive lattice (see Fig. 9 second column).

6 PT Bloch Oscillations

Besides the real space propagation in Fig. 9, which illustrated the effects of a
complex, but also proves the existence of a completely real valued band structure,
further details about the shape of the dispersion relation are revealed by studying
Bloch oscillations [11, 22, 28, 31]. The original idea of Bloch [32, 33] goes back
to the motion of charge carriers in a crystalline material. In contrast to electrons
in free space, charge carriers in a crystalline material cannot propagate freely, but
instead their motion is dictated by the underlying band structure [34]. Therefore, by
applying an electric field, charge carriers perform Bloch oscillations, which are a
mirror image of the periodic band structure. In our optical system, electrical fields
can be mimicked by linearly increasing phase gradients [11, 28] reminiscent to a
refractive index gradient in waveguide arrays [35, 36].

For convenience we increase the induced phase in one of the loops in each time
step

um+1
n =

√
G±1
√

2

(
umn+1 + ivmn+1

)
eiαm and (17.1)

vm+1
n =

√
G∓1
√

2

(
vmn−1 + iumn−1

)
, (17.2)

by a fixed amount α , a scheme, which is equivalent to a transverse modulation
as demonstrated in [37]. Compared with a modulation in each transverse step n
requiring a temporal resolution of �T ≈ 200 ns, the necessary band width of the
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Fig. 9 Experimental and numerical propagation dynamics through the PT lattice. In absence of
any modulation, the pulse distributions in both loops exhibit a classical Light Walk pattern [11] (see
first column). By applying the phase potential in Eq. (14), waveguides are pairwise decoupled from
each other, which reduces the spreading of a single lattice site excitation (second column). In the
presence of a pure amplitude modulation, the complex band structure is reflected in an exponential
increase in power (third column). The combination of both modulations restores PT symmetry for
the whole band structure, and as a result power stays on average constant (fourth column). In a)-p)
the intensities in the short or long loop are depicted. In q)-t) the total power is shown. This figure
is motivated by [26] and depicts results from [28]

electrical signal generator for controlling the phase modulator is much lower in case
of a modulation along the evolution direction m amounting to T ≈ 20 μs only. It is
also possible to transform the temporal gradient into a spatial gradient
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Fig. 10 Bloch oscillations in the passive lattice. By applying a phase gradient ϕ(m) = mα, the
Bloch momentum Q = Q0 + mα/2 of a spectrally narrow initial state is shifted for each time step.
When reaching the edge of the Brillouin zone, the state performs a transition from one band to
the other mediated by the Floquet-Bloch nature of the band structure. In real space, the continuous
shift of the Bloch momentum is reflected in a periodic oscillation of the wave packet. The figure is
adapted from [28] and shows experimental results

um+1
n = 1√

2

(
umn+1 + ivmn+1

)
e
iϕ0n

2 , (18.1)

vm+1
n = 1√

2

(
vmn−1 + iumn−1

)
e
iϕ0n

2 , (18.2)

by choosing the ansatz

umn = ũmn e
− iϕ

2 nme
im2ϕ

4 e−
imϕ

4 , (19.1)

vmn = ṽmn e
− iϕ

2 nme
im2ϕ

4 e−
imϕ

4 , (19.2)

which however requires a spatial phase gradient in each loop.
Starting with a Gaussian distribution and in absence of gain and loss (G = 1), the

wave packet performs classical Bloch oscillations (see Fig. 10b). This behavior can
be explained by analyzing the evolution of the Bloch wave amplitudes of the system
based on the ansatz umn = ũm exp(iQn) and vmn = ṽm exp(iQn).

If we assume that these amplitudes evolve from step m to step m + 1 by
accumulating a phase ũm+1 = ũm exp (iθ(m)) and ṽm+1 = ṽm exp (iθ(m)), the
dispersion relation

cos

(
θ

2
+ αm

2

)
= 1√

2
cos

(
Q

2
+ αm

2

)
(20)

is formally identical to that of a homogenous lattice (see Eq. 5) except for an
m-dependent shift in absolute phase, and more importantly in the position in the
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Brillouin zone. Each time step, the effective Bloch momentum Q is increased by
αm/2. When starting at the center of the Brillouin zone Q0 = 0, the edge is reached
at αm/2 = π . At this point, the Floquet-Bloch nature of the system mediates a
transition from one band to the other, since the upper left (right) and lower right (left)
points of the dispersion relation are pairwise degenerate (see Fig. 10). As a result,
the wave packet reenters the Brillouin zone from the opposite site. However, at the
same time it changes to the other band and continues there the Bloch oscillation
until it reaches again the edge of the Brillouin zone.

For sampling the Brillouin zone via Bloch oscillations we expect the most
interesting effects to occur for a band structure consisting of real and complex
valued sections being connected by exceptional points at ±QEP. This is already
realized for pure amplitude modulation (G �= 1,ϕ0=0), which we will consider
in the following. On its way through the Brillouin zone the wave packet has to
pass not only the region of complex eigenvalues but also two exceptional points.
In higher dimensions, instead of passing the EP it is also possible to encircle it,
which leads to a non-adiabatic transition of the excitation from one band to the
other as theoretically discussed in [38] and experimentally demonstrated in [39].
At each exceptional point the two bands merge and respective eigenstates are
coupled. In 1D, when crossing such pair of EPs confining a complex section of
the band structure the wave packet is not only amplified, but a part of its energy
is also transferred to the other band. In real space (see Fig. 11) this splitting is

Fig. 11 PT Bloch oscillations. In presence of PT amplitude modulation (G ≈ 1.1), the band
structure is partially complex valued and features two exceptional points. The complex propagation
constants lead to an increase in power during each Bloch oscillation, while at the exceptional
points, a secondary branch is emitted into the opposite direction. However, for a set of magic
gradients (here at α ≈ π /31.2), the propagation is pseudo-Hermitian and any emission of a second
branch is strongly suppressed. These measurements support the theoretical results from [31] and
are shown in [28]
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Fig. 12 Detailed numerical analysis of a single PT Bloch oscillation. (a) Real space propagation
of a Bloch oscillation in presence of the PT amplitude modulation (G = 1.1). During the first
half of the Bloch oscillation, the total energy shown in (b) increases, when the wave packet passes
the complex region of the band structure. During the second half, the intensity drops again to the
original value. (c) Dispersion relation with states of the wave packet (orange circles) for specific
points during the propagation. Interestingly, even when passing the EPs, not all information is lost
but instead the wave packet moves to the other band. The real part of the dispersion relation is
shown in blue and the imaginary part in red. The imaginary part is stretched by a factor of five for
better visibility

accompanied by the emission of a secondary branch, which counter propagates to
the original one. As the wavenumber shift is the same for both bands, the two wave
packets meet again at the exceptional points and power is redistributed between the
bands. In some cases one of the branches is completely cancelled by destructive
interference (see Fig. 12). By performing experimental and numerical sweeps over
different Bloch gradients α this fascinating phenomenon is further investigated (see
Fig. 11). As theoretically predicted in [31] the emission of the secondary branch is
suppressed and the amplification and attenuation during the complex regions of the
band structure is exactly balanced for some magic gradients. In simulations an even
wider interval of Bloch gradients are accessible, which show a set of such magic
gradients, for which the propagation is pseudo Hermitian (see Fig. 13).

7 Bloch Oscillations in the Local PT -Symmetric Lattice

In the previous sections, two different approaches were described for achieving
a pseudo-Hermitian propagation, where the total power is on average constant.
First a spatial phase modulation was introduced, which completes the amplitude
modulation in terms of the symmetry requirements of PT symmetry in Eq. (10).
In the previous section another method based on Bloch oscillations was discussed,
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Fig. 13 Numerical parameter sweep of the Bloch gradient. For each Bloch gradient α, a single
Bloch oscillation over ≈4π /α time steps is simulated. The initial energy at the first time step is
normalized to one, which is marked by the horizontal dashed line as a guide to the eyes. The solid
curve depicts the energy after a full Bloch oscillation, which takes the initial value for the magic
gradients (intersection points of the dashed and solid curve). By scaling the horizontal axis with the
reciprocal value π /α, reveals a nearly equidistant spacing of the magic gradients. The amplification
and attenuation rate is set to G = 1.1

where special gradients also lead to a pseudo-Hermitian propagation even in absence
of the PT phase modulation. Therefore, the question remains, whether there are
simpler ways of realizing a dissipative system with real eigenvalues. In the previous
sections, the distribution of amplification and attenuation between the two fiber
loops was alternating after each round trip for creating coupled waveguides with
gain and loss. However, with respect to experiments, a static distribution of gain
and loss is more relevant: A small maladjustment of the amplification rates of the
EDFAs either leads to an exponential increase or decrease in power. While in reality,
the EDFAs are precisely enough adjusted, so that hardly a change in the total power
is visible, in the following a provoked imbalance is discussed. In this case, the long
loop is amplified by G and the short loop is attenuated by G−1 according to

um+1
n = 1√

2G

(
umn+1 + ivmn+1

)
and (21.1)

vm+1
n =

√
G√
2

(
vmn−1 + iumn−1

)
. (21.2)

As a result, pulses moving to the right on the lattice are amplified, while pulses
to the left are attenuated.

Also this lattice formally fulfills the requirements of PT symmetry in Eq. (9) for
each time step (see Fig. 14), the dispersion relation

cos θ = 1

2
[cos (Q+ iγ )− 1] (22)
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Fig. 14 Symmetry operations of the local PT -symmetric lattice. Similar to Fig. 6, symmetries
are analyzed in the local PT -symmetric lattice: The parity operation requires a left-right flip of
the lattice and time reversal complex conjugation. However, here the lattice is not symmetric with
respect to an additional vertical flip (m → − m) as for time reversal symmetry in the global PT -
symmetric case (see Fig. 6). Therefore, the lattice preserves PT symmetry for each instantaneous
time step, but not globally

Fig. 15 Band structure of the local PT symmetric system and real space motion during a full
Bloch oscillation. (a) The band structure consists of two bands, where only for Q = 0, the
imaginary part of θ (dash-dotted lines) vanishes. The real part is shown as solid lines. (b) During
one Bloch oscillation (α = π /30), the wave packet is amplified (G = 1.1), while it propagates
along the gain direction. At the edge of the Brillouin zone, it reenters the band structure from the
opposite site and changes to the other band. Due to the symmetric imaginary part, the amplitude
decays again, when the wave packet returns to its initial position. Figure is adapted from [28]

of this lattice shows complex eigenvalues over the complete Brillouin zone except
at Q = 0 (see Fig. 15). Even by including the PT phase modulation, it is not
possible to restore real eigenvalues. This highlights the circumstance that fulfilling
PT symmetry does not guarantee completely real eigenvalues. Here, PT symmetry
is fulfilled for each time step, however not for the global lattice when performing
the combined operations for time reversal T : m → − m and G → 1/G and parity
P: n → − n. Therefore, this lattice is referred to as local PT -symmetric [27].

Although the band structure of the lattice shows complex eigenvalues, it is pos-
sible to transform the system into a Hermitian counterpart by introducing reflecting
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Fig. 16 Reconstruction of a complex band structure based on experimental results on Bloch
oscillations. The center-of-mass motion and the evolution of the peak power is extracted by fitting
a Gaussian distribution according to Eq. (23) to each row of the propagation in Fig. 15. (a) The
derivative of the center-of-mass motion follows the group velocity of the system, which is in
turn determined by the derivative of the dispersion relation (see Eq. (25)). (b) The increase of
the amplitude each time step is determined by the imaginary part of θ (see Eq. (28)). (c) By
evaluating both parameters, the real (violet) and imaginary part (red) of the dispersion relation
is reconstructed. The amplification and attenuation rate is set to G = 1.1 and the Bloch gradient to
α = π /30. Figure is adapted from [28]

boundaries. In this case, any propagation in the amplified loop is limited by the finite
system size, where at the edge the pulses are reflected from the gain direction into
the loss one. Despite an initial amplification, no path can be constructed with an
unbounded increase in power. Besides this illustrative explanation, also numerical
calculations of the finite system indicate real eigenvalues.

In combination with Bloch oscillations an interesting question arises: On the
one hand, the amplitude modulation leads to an amplification of pulses tending
always into the same direction. On the other hand, applying the Bloch gradient
forces wave packets to perform an oscillatory motion. In order to shed light on the
question, which mechanism dominates, the temporal phase gradient ϕ(m) = αm
is combined with a static amplitude modulation. The propagation of the wave
packet starts as expected: The wave propagates analogously to the passive Bloch
oscillation depicted in Fig. 15. However at the same time, the wave is amplified as
it propagates into the direction of the gain loop. After half of the Bloch period, the
Bloch oscillation forces the wave packet to propagate along the lossy direction back
to its initial position, where it arrives without a change in the amplitude.

It is even possible to analyze systematically the position n0(m) and amplitude
A(m) of the wave packet at each time step for reconstructing the dispersion relation
(see Fig. 16). For this purpose, a Gaussian curve

f (n) = Ae
− (n−n0)

2

σ2 (23)
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is fitted to the pulse distribution in each time step. In a semi-classical picture of wave
packet propagation, the center-of-mass of the wave packet estimated by n0 moves at
the group velocity

vG = ∂θ(Q)

∂Q
≈ ∂n0(m)

∂m
, (24)

where Q = Q0 + mα/2. Consequently, the real part of the dispersion relation is given
by the discrete summation over the center-of-mass motion

θR(Q) =
∫ 2π

0
dQvG(Q) ≈

∑M

m=0

n0 (m+ 2)− n0 (m− 2)

4
. (25)

within M time steps of a complete Bloch oscillation. The finite difference in Eq.
(25) is evaluated at ±2 due to the natural size of the unit cell covering two time
steps. Complementary to the center of mass motion, the imaginary part of the
propagation constant determines the evolution of the amplitude. After M time steps,
the amplitude of an eigenstate

ψ =
(
U

V

)
eiQme−iθRmeiθIm (26)

is given by

|A(m)| = |A(0)|
∏M

m=0
eθI (Q(m)) = |A(0)| exp

(∑m

m=0
θI (Q(m))

)
. (27)

In the measurement, the intensity of the wave packet is extracted by fitting the
Gaussian distribution in Eq. (23). Therefore, the finite difference of the logarithm of
the amplitude reveals the imaginary part of the propagation constant

θI = ln I (m+ 2)− ln I (m− 2)

8
. (28)

8 Nonlinear Light Propagation in the Fiber Network

On the one hand, linear light evolution through the lattice is already capable of
depicting numerous phenomena like Bloch oscillations [22, 28, 31], unidirectional
invisibility [26, 40–42] and the existence of trivial and topological PT defect states
[20, 43–45]. On the other hand, the use of dispersion compensated fibers in the
optical fiber network provides easy access to the nonlinear regime [12, 27]. For
the optical Galton board, nonlinear effects were first theoretically studied in [46].
In experiments, the dominant nonlinear effect is the self-phase modulation (SPM)
through each fiber loop. Already at comparable low peak powers of 300 mW a
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Fig. 17 Experimental observation of a Hermitian soliton in the double discrete mesh lattice. By
increasing the initial power of the seed pulse, a soliton is formed, which is discretized in space and
position. Figure is adapted from [27]

nonlinear phase shift of 2π is expected to accumulate within a single round trip, an
effect which can be easily included in the evolution equations

um+1
n =

√
G(m)√

2

(
umn+1 + ivmn+1

)
ei�

∣∣umn+1+ivmn+1

∣∣2
eiϕ(n), (29.1)

vm+1
n =

√
G(m)√

2

(
vmn−1 + iumn−1

)
ei�

∣∣vmn−1+iumn−1

∣∣2
. (29.2)

In these measurements, the initial peak amplitude is varied via a screw attenuator
and an AOM is used for an automatic parameter sweep.

We first discuss nonlinear evolution of the passive optical Galton board (G = 1)
and ϕ(n) = 0. By increasing the power level of the initial seed pulse, the formation
of a nonlinear wave is observed, which is bent towards the center of the Light Walk
distribution (see Fig. 17). Compared to the initial propagation angle, the nonlinear
wave propagates at a lower velocity as it is hindered by an increasing Peierls-
Navarro potential [47, 48]. Light, which was originally located at the center of the
Light Walk, is simultaneously repelled and shifted away from of the nonlinear wave.

This redistribution of intensities is mediated by the two band system: By
starting with a single pulse, the complete Brillouin zone including both bands is
excited. The effect of self-phase modulation now depends on the curvature of the
respective band, which either leads to self-focusing (upper band) or defocusing
(lower band) [16]. Between both bands, a diametric interaction takes place, which
leads to a simultaneous attraction and repulsion [12]. At even higher peak powers,
which correspond to a nonlinear phase shift of approximately 0.8π , the nonlinear
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Fig. 18 Numerically determined soliton solutions. (a) Comparison between experimentally
(crosses and circles) and numerically (bars) determined soliton profiles. The experimental data
are extracted from time step m = 25. (b) Phase distribution across the soliton profile for the short
and long loop. (d, e) Dependency of the soliton energy and width on the propagation constant.
Figure is adapted from [27]

wave forms a soliton, propagating stable for approximately 45 time steps in the
experiment. The soliton is not only discretized in space but even in time. As a result
of the discretization, the main soliton pulse at the center cyclically splits up and
reunites during two time steps.

Besides the experimental and simulated soliton formation and propagation, also
numerical soliton solutions are found see (Fig. 18). The soliton solver is initialized
with a Gaussian distribution for Un and Vn with a 1/e width of 5 positions and an
amplitude of 0.2. For a specific propagation constant θ0 of the soliton within the
band gap, the residual error

δf =
∥∥∥f (−→v )−−→v e−iθ

∥∥∥ (30)

after one time step is calculated. Here, −→v = (U1, V1, U2, V2, . . . , UN, VN)
t denotes

a vector, which is constructed out of the soliton profile and f denotes the nonlinear
evolution equations. The residual error is then minimized based on Newton’s
algorithm. For a propagation constant of θ = − 0.2π , the soliton solver initially
converges within numerically precision. The complete branch of solitons is then
calculated by choosing the last soliton solution as an initial guess for the soliton
with a different propagation constant θ . For each solution, the width

w2 =
∑Nmax

n=−Nmax (n− n0)
2 [|Un|2 + |Vn|2

]
∑Nmax

n=−Nmax
[|Un|2 + |Vn|2

] (31)

with

n0 =
∑Nmax

n=−Nmax n
[|Un|2 + |Vn|2

]
∑Nmax

n=−Nmax
[|Un|2 + |Vn|2

] (32)
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and energy

E =
∑Nmax

n=−Nmax

[
|Un|2 + |Vn|2

]
(33)

of the soliton are determined.
The stability of the soliton is numerically investigated by perturbing the solution

Un → Une
iδn and Vn → Vne

iδn with an equally distributed phase noise δn. Below
the center of the band gap θ0 < 0 solitons propagate stable, while above the band
gap, even in absence of an initial noise the soliton decays into a stable solution
[27]. Besides solitons with a maximum, which is maximum localized on a single
lattice site, a second class of solitons is also found with symmetrically distributed
maximum on two sites.

9 Solitons in the Local PT Symmetric Lattice

An interesting situation arises when nonlinearity is combined with a static ampli-
fication to the right and the attenuation of pulses propagating to the left, which
was discussed before in terms of local PT symmetry. When injecting a low power
pulse, an asymmetric Light Walk arises due to the gain/loss imbalance (see Fig. 19).
However, the continuous amplification of the pulses travelling through the long loop
(to the right in the optical Galton board) leads to an accumulation of nonlinear

Fig. 19 Dissipative Light Walk in the local PT -symmetric system. At low power levels, the Light
Walk shows an asymmetric distribution due to the amplification in the long loop and the attenuation
in the short loop (G = 1.1). For medium power levels, the initial amplification to the right is
sufficient to form the double discrete soliton. The soliton maintains a constant power by equally
propagating through the long and short loop. This figure is adapted from [27]
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effects even in spite of the initial linear power level. As a consequence of the
increase in power, a nonlinear wave is formed, which loses mobility due to its
increasing peak power. It bends towards the center of the light walk distribution,
where it finally forms a soliton, which manages to propagate in a balanced way
through the gain and loss loops, so that no increase or decrease in power takes place.
As this soliton on average experiences neither gain nor loss, it closely reproduces the
features of its Hermitian counterpart thus forming a one-parameter family, a finding
which could be confirmed by numerical simulations. This is different from localized
solutions in other dissipative systems, which tend to form fixed point solutions
[49], albeit exceptions like e.g. the cubic-quintic Ginzburg-Landau equation that
are known to exist (see e.g [49–52].). In fact the directional distribution of gain and
loss tends to stabilize the system, as any perturbation of the soliton is radiated away
along the gain direction (see Fig. 20).

This internal power management of the soliton also provides the possibility of
steering it through an additional global loss L in the evolution equations,

um+1
n =

√
L√

2G

(
umn+1 + ivmn+1

)
ei�

∣∣umn+1+ivmn+1

∣∣2
, (34.1)

vm+1
n =

√
LG√
2

(
vmn−1 + iumn−1

)
ei�

∣∣vmn−1+iumn−1

∣∣2
. (34.2)

In the experiment, typically small gain/loss imbalances of γ = (lnG)
2 	 1 are

investigated, where e.g. G = 1.1 and thus γ ≈ 0.05. In this case, the real and
imaginary parts of the dispersion relation (� = 0) are expanded in Taylor series

Re {θ} = θ(Q)|γ=0 +O
(
γ 2
)

and (35.1)

Im {θ} = ∂θ

∂Q

∣∣∣∣
γ=0

γ +O
(
γ 3
)
. (35.2)

For a positive imaginary part of θ , the amplitude A(m) of an eigenstate
increases by

∣∣∣∣A (m+ 1)

A(m)

∣∣∣∣ = eθim (36)

according to the Floquet-Bloch ansatz in Eq. (4). The increase in amplitude then has
to overcome the global loss L per roundtrip, which yields with Eq. (35.2) the critical
velocity

vcrit = lnL

lnG
, (37)
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Fig. 20 Numerical test of the stability of dissipative solitons. The stability of the various
solitons (different columns) of the local PT -symmetric lattice (G = 1.1) is probed by different
perturbations of the initial distribution U ′

n = Un exp (iδn) and Vn
′ = Vn exp (iδn) with a random

phase noise δn (different rows of the figure), which is equally distributed between 0 and δ. The
upper row displays the propagation constant of the soliton and its location in the band structure.
For propagation constants θ0 < 0 (left three columns) the soliton is stable. In this case, noise is
radiated into the direction of amplification, until it is absorbed at the boundary of the simulation
domain. For θ0 > 0 (two columns on the right), the soliton either decays into a stable solution or
vanishes completely. This figure is adapted from the supplementary material of [27]
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Fig. 21 Simulation of linear and nonlinear Light propagation through the local PT -symmetric
lattice with a global loss. In the linear regime, the critical velocity in Eqs. (34.1 and 34.2) separates
the attenuated from the amplified parts. In the nonlinear regime (� ≈ 0.67π ), the same velocity is
a good measurement for the soliton velocity. However, for large losses as L = 0.93 compared to
the gain and loss imbalance of G = 1.1, the decreased mobility of the soliton impedes the soliton
to propagate at the critical velocity, which is necessary to maintain a constant power

at which a wave packet is neither amplified nor attenuated. In the linear regime, this
velocity separates the attenuated parts of the Light Walk from the amplified (see
Fig. 21), while in the nonlinear regime this velocity is a good approximation of the
propagation angle of the dissipative soliton.

10 Solitons in the Global PT -Symmetric Lattice

Already before the first study on linear beam dynamics in PT -symmetrical systems
[18], the first manuscript on PT solitons was published [53]. However, as the
stringent requirements of PT symmetry on the used materials is even more
restricted when including materials with a significant nonlinear response, PT
solitons remained an exclusively theoretical topic for a long time1 [53–66]. In this
sense, the fiber network provides a versatile experimental platform for studying PT
solitons [27].

In fact we could demonstrate nonlinearly induced localization and the formation
of various solitons in the global PT -symmetric fiber network (see Figs. 22 and
23). However, for a single side excitation as demonstrated in Fig. 22 solitons show
a tendency of destabilization often resulting in a slight exponential power increase

1The list of references here does by far not provide a complete overview about the theoretical
framework of PT solitons.
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Fig. 22 Localization on the global PT -symmetric lattice. By increasing the initial power, the
spreading of a single lattice site excitation is strongly reduced until the wave packet clearly
localizes. Due to the intrinsic instability of the PT lattice (G = 2, ϕ = 0.4π ), nonlinear waves
exponentially grow during propagation. By adding a global loss of 5% per round trip, the linear
propagation is strongly damped, while only nonlinear waves survive, which acts like a saturable
absorber. This figure is adapted from [27]

during propagation [26]. This is in stark contrast to an expected stabilizing effect of a
focusing nonlinearity as predicted for continuous PT -symmetric systems [66]. This
instability seems to be an artifact of the discretization of the propagation in the mesh
lattice. In the fiber network, phase and amplitude modulation as well as nonlinear
propagation are strictly separated and thus seemingly more vulnerable with respect
to perturbations. We utilized this idiosyncrasy in order to implement a saturable
absorber. By adding global loss to the system, all linear waves are damped, but the
soliton does not only pass the lossy system, but can be even additionally amplified
during the propagation (see Fig. 22).

Besides the discrete localization, it is also possible to excite broad solitons in the
global PT -symmetric lattice with a Gaussian distribution. For these broad nonlinear
waves, no intrinsic instability is visible. When increasing the amplitude of the
Gaussian distribution, it self-focuses during the propagation and forms a soliton. As
the input field is symmetric with respect to the real valued potential a sign change
of the phase modulation ϕ0 → − ϕ0 has a considerable impact on the propagation
resulting in a transition from a single to a double hump soliton as shown in Fig. 23.
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Fig. 23 Excitation of broad PT solitons in the experiment and simulation. In presence of gain
and loss (G = 1.4) and a global phase modulation, broad solitons are excited, which show a stable
propagation over 100 time steps in the experiment. By inverting the sign of the phase modulation,
it is possible to change from a single to a double hump soliton. This figure is adapted from [27]

11 Conclusion

In the previous chapter we discussed linear and nonlinear light evolution in a
synthetic photonic mesh lattice, where phase and amplitude modulators are used
to establish PT symmetry. Based on the coupling of two fiber loops with a slight
length imbalance, we showed how a double discrete 1 + 1dimensional temporal
system is created. Fiber amplifiers compensate for any losses and even allow, in
combination with acousto-optical modulators, for dynamical variations of gain and
loss in the network. By meticulously balancing the amplification and a suitable
phase modulation, a PT -symmetric lattice is synthesized. Although gain and loss
are present, the band structure is completely real valued below the PT threshold.
Furthermore, when combining the amplitude modulation with a phase gradient,
Bloch oscillations are induced, which depict the dynamical wave propagation
close to exceptional points as well as the existence of Bloch gradients featuring
a pseudo-Hermitian propagation. In the local PT -symmetric environment, we
showed how to analyze the trajectories and amplitudes of wave packets performing
Bloch oscillations in order to reconstruct real and imaginary part of the band
structure.

In the limit of high power levels, we observe a clear localization of waves in the
mesh lattice. While in the Hermitian system, a double discrete soliton forms, which
is locked to a single lattice site, this soliton can be steered in the local PT -symmetric
environment via a global loss factor. The directionality of the gain/loss distribution
leads to an effective cleaning of the soliton from perturbations as in convectively
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stable nonlinear systems [49]. In the global PT -symmetric mesh lattice, broad
solitons are found, which propagate in a stable manner for over 100 time steps in
the experiment. However, the PT symmetric mesh lattice seems to be intrinsically
unstable with respect to nonlinear perturbations, which is demonstrated for single
side excitations. In this case, the amplitudes of nonlinear waves drastically grow,
which we in turn suppress by a global loss. In this case, a saturable absorber
is formed, where linear waves are damped due to the global attenuation, while
nonlinear waves propagate lossless or even with a net gain.

In the future, central topics in this research area will be the expansion to two
spatial dimensions, as demonstrated in [10] for Quantum Walks, in combination
with PT symmetry, as well as the merging of geometrical and topological effects
with PT symmetry. For Bloch oscillations in PT -symmetric systems precise
measurements of the band structure were demonstrated. In combination with geo-
metrical nontrivial systems [13], the same approach could provide useful insights
into a non-Hermitian expansion of the concept of geometric phases. Additionally,
higher dimensional systems provide direct access to the physics of exceptional
rings [67].

Finally, by combining the phase and amplitude modulations, which both fulfill
the requirements of PT symmetry, a pseudo-Hermitian propagation is established
(see Fig. 9 fourth column), where even in the presence of gain and loss the total
power stays constant on average. This is also highlighted by the dispersion relation,
which is real valued for the entire Brillouin zone and free of any exceptional points
[26] (see Fig. 7, fourth column). However, PT symmetry does not guarantee a real-
valued dispersion relation as shown in Fig. 8. The band structure is only real for the
gain parameter G below a critical threshold value, which depends on the amplitude
ϕ0 of the phase modulation. By either decreasing the phase potential ϕ0 or by
increasing the gain/loss imbalance above a critical value, it is possible to perform
a transition across the PT threshold [26]. While parity and time symmetry are
graphically illustrated in Fig. 6, an explicit and rigorous analysis of PT symmetry
in the fiber network is provided in [30].
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61. Zhong, W.-P., Belić, M.R., Huang, T.: Two-dimensional accessible solitons in PT-symmetric
potentials. Nonlinear Dyn. 70, 2027 (2012)

62. Konotop, V.V., Pelinovsky, D.E., Zezyulin, D.A.: Discrete solitons in PT -symmetric lattices.
EPL (Europhys. Lett.). 100, 56006 (2012)

63. Nixon, S., Ge, L., Yang, J.: Stability analysis for solitons in PT -symmetric optical lattices.
Phys. Rev. A. 85, 23822 (2012)

64. Alexeeva, N.V., Barashenkov, I.V., Sukhorukov, A.a., Kivshar, Y.S.: Optical solitons in PT -
symmetric nonlinear couplers with gain and loss. Phys. Rev. A. 85, 63837 (2012)

65. Nixon, S., Zhu, Y., Yang, J.: Nonlinear dynamics of wave packets in parity-time-symmetric
optical lattices near the phase transition point. Opt. Lett. 37, 4874 (2012)

66. Lumer, Y., Plotnik, Y., Rechtsman, M.C., Segev, M.: Nonlinearly induced PT transition in
photonic systems. Phys. Rev. Lett. 111, 263901 (2013)

67. Zhen, B., Hsu, C.W., Igarashi, Y., Lu, L., Kaminer, I., Pick, A., Chua, S.-L., Joannopoulos,
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PT-Symmetry on-a-Chip: Harnessing
Optical Loss for Novel Integrated
Photonic Functionality

Mingsen Pan, Pei Miao, Han Zhao, Zhifeng Zhang, and Liang Feng

Abstract The development of non-Hermitian parity-time (PT) symmetric quantum
mechanics has offered a powerful platform to engineer novel device functionality for
integrated photonics. In this chapter, we review the chip-scale applications of PT-
symmetry in photonic devices, including the implementation of the unidirectional
reflectionless PT metamaterial, coherent asymmetric light-light switching, and
orbital angular momentum (OAM) laser on-chip. We study the optical analogy of
non-Hermitian PT systems, manipulate the complex refractive index properties such
as gain/loss modulation, and investigate the unique wave transport characteristics
near the exceptional point (EP) to achieve these intriguing on-chip functionalities.

1 Introduction

As an extension of conventional quantum mechanics into the complex domain, the
concept of parity-time (PT) symmetric Hamiltonian has given new understanding to
the behaviors of non-Hermitian systems. A system described by the non-Hermitian
Hamiltonians can also possess real spectra if it is PT symmetric [1–3], giving rise to
discussions and debates in the quantum field theory [3] and open quantum systems
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[4]. Although re-searchers are pursuing the impacts of PT symmetry on these fields,
it has been realized that optics, due to the equivalence between the wave equation
and the Schrödinger equation in quantum mechanics, has provided an ideal platform
for studying the fundamentals of PT symmetryboth theoretically and experimentally
[5–8].

A Hamiltonian is considered to be PT symmetric when it commutes with PT
symmetry operator,PT Ĥ = ĤPT , which is the compound symmetry of parity P
and time reversal T [2, 9, 10]. For a HamiltonianĤ = p̂/2m+V (̂x), where x̂ and p̂
are position and momentum operator, and m and V are the mass and potential, parity
operator P corresponds top̂ → −p̂,̂x → −x̂, while the time reversal T corresponds
top̂ → −p̂, x̂ → x̂, and i → − i. We can get a PT symmetry Hamiltonian when its
potential is modulated in a complex way, V (̂x) = V ∗ (−x̂). In optics, the complex
refractive index in the paraxial equations of diffraction plays the role as a complex
potential. For a PT symmetry photonic system, the complex refractive index can
be n(x) = n∗ (−x), where the real part is an even function of x, and the gain/loss
modulation is odd.

Another important aspect of such photonic system modulated with absorption
and amplification is that the evolution of PT symmetry is measurable from the
periodic potential contrast [5, 11, 12]. As the energy spectrum change spontaneously
from real to complex values, a PT symmetry threshold can be clearly observed
at a certain point in the parametric space, namely the PT symmetry breaking
point, or the exceptional point (EP). At this point, the eigenstates in the PT
photonic system become degenerate, which creates counter-intuitive wave transport
characteristics and thus introduces intriguing properties to the artificial materials
(i.e., metamaterials), such as dynamic power oscillations of light propagation [13–
16] and coherent perfect absorber-lasers [17].

In our previous study, by carefully engineering the non-Hermitian photonic
system with the PT theory, we have achieved versatile functionality of the meta-
materials for the new-generation on-chip applications. In this chapter, we mainly
go through the fundamentals and technical details of three chip-scale applications
[18–20]. The first topic is the unidirectional invisibility metamaterial. We create
a non-Hermitian system with a modulated gain/loss structure and confirm that
the degenerate states at the EP support for the unidirectional wave transport
where reflecting wave from one direction disappears. When we further study this
intrinsic asymmetry of the non-Hermitian photonic metamaterials, optical modes
working near these EPs can also present coherent perfect absorption states in the
degenerate eigenstates. In the second topic, we show that, in such a photonic
system, coherent optical absorbing states exist, and a weak control beam can be
exploited to control an intense laser signal functioning as a light-light switch.
The unidirectional characteristics works not only in waveguides, but also in ring
structures where the end meets the start, which gives the idea of our third topic.
When working near the EP in a ring resonator, the degenerated eigenstates isolate
the two counter-propagating modes, drive unidirectional power flows, and scatter
out a twisted helical light beam carrying orbital angular momentum (OAM). To
accomplish these novel functionalities, we begin with the analysis using the optical
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scattering matrix (S-matrix) and transfer matrix to study the fundamentals of the
unique wave characteristics. We will explore the asymmetric wave transport in
PT symmetry photonic systems near the EP. To manifest the functionality of the
photonic devices, we fabricated on-chip microstructures and experimentally verified
the characteristics of the metamaterial.

2 Passive PT Metamaterial and Unidirectional Reflectionless
Transport

Materials characterized by unidirectional reflection, or invisibility, can be found in
various military applications, where the electromagnetic waves emitted from radar
are absorbed in order to hide from detection sources. Here we show the realization of
chip-scale unidirectional reflectionless optical metamaterials where reflection from
one side is significantly suppressed. Based on the study of the wave properties near
its EP in the optical wavelength, we theoretically propose and experimentally realize
a silicon-based optical non-Hermitian PT system with only absorptive media on the
silicon-on-insulator (SOI) platform.

2.1 EP Characterization of Passive PT Metamaterial

For ease of the fabrication and experimental implementation, the photonic systems
are usually designed to be passive, i.e., loss-dominant with only absorptive materi-
als. Here we show that the evolution of PT transition of a passive system is the same
as the balanced system in PT theory in quantum mechanics.

To study the reflection and transmission characteristics of material, we choose a
model with the optical potential modulated as a second-order Bragg reflector. The
spatial distribution of complex dielectric permittivity isΔε(z) = cos(qz) − iδsin(qz),
where q = 2k1 is the grating period, z is the distance in the wave propagation
direction, δ is the amplitude of loss modulation, and the grating region is 4nπ /q +
π /q ≤ z ≤ 4nπ /q + 2π /q. In this region, sin(qz) is a negative number to accomplish
a system without gain. To obtain the analytical model of the system, the introduced
modulation was averaged in an entire period as �ε= Cqeiqz+ C−qe−iqz+ C0 where

the coefficients are C0 = q
4π

∫ 2π
q
π
q
�ε(z)dz = i δ2π , Cq = q

4π

∫ 2π
q
π
q
�ε(z)e−iqzdz =

1−δ
8 , and C−q = q

4π

∫ 2π
q
π
q
�ε(z)eiqzdz = 1+δ

8 .

In this modulated regime, the electrical field can be written as E(x, y, z) =
A(z)E (x, y) eik1z + B(z)E (x, y) e−ik1z where A(z) and B(z) are the amplitudes
of forward and backward fundamental modes. Under adiabatic approximation, the
coupled-mode equations can be derived as
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d

dz

[
A(z)

B(z)

]
= H

[
A(z)

B(z)

]
(1)

If we consider the mode attenuation α and mode coupling strength κ between
forward and backward fundamental modes, matrix H can be determined by[

iC0α iCqκ

− iC−qκ −iC0α

]
, which is

[ − δ
2π α i 1−δ

8 κ

− i 1+δ
8 κ δ

2π α

]
for this specific modulation.

Due to the asymmetric gain/loss modulation for fields coming from different
directions, the diagonal elements of H become unequal with increasing amplitudes
of loss doping in this system. To observe the phase transition characteristics in this
passive system, we analyze the evolution solutions to the backward and forward
transporting electric fields.

The solutions to this matrix differential equation, in the form of d
dz
ψ = Hψ ,

evolves in the z direction as ψ(z) = eHzψ(0) = We�zW−1ψ(0). Here � and W are
the eigenvalue matrix and eigenvector matrix of H respectively. The transfer matrix
of the photonic system after propagating a distance of L from z = 0 through the
modulation region can be derived as

[
A(z)

B(z)

]
=
[
M11 M12

M21 M22

] [
A(0)
B(0)

]
(2)

where

M11 = cosh (γL)− δ
2πγ α sinh (γL),M12 = i 1−δ

8γ κ sinh (γL),

M21 = −i 1+δ
8γ κ sinh (γL),M22 = cosh (γL) + δ

2πγ α sinh (γL), and γ =√
(δα/2π)2 + (1 − δ2

)
(κ/8)2 is the eigenvalue of H.

The transfer matrix solutions reveal the evolution of the system for both back-
ward and forward propagating waves. To determine the transmission and reflection
of the ‘two-port’ system, we derived the scattering matrix which relates the outgoing
waves to the incoming waves of the system. The scattering matrix of the modulation
(i.e. the S-parameter) [21] is

S =
[
t rb

rf t

]
=
[

1/M22 M12/M22

−M21/M22 1/M22

]
= aS′ (3)

In equation (3), t is the transmission amplitude, rf and rb are reflection
amplitude from forward and backward directions respectively, and S

′
is an ‘intrinsic’

unimodular scattering matrix with an attenuation term a = √
1 +M12M21/M22.

The scattering matrix clearly shows that, when δ = 1 at the exceptional point,
the system can be simplified due to Cq = 0. The corresponding transmission and

reflection coefficients are t = e− iαL
π , rb = 0, and rf =

(
πκ
2α

)2sinh2 2π
αL
e−αL/π . With
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Fig. 1 Characteristics of parity-time symmetry in the proposed passive parity-time metamaterial.
(a) Schematic of the passive PT metamaterial on a SOI platform, (b, c) Forward and backward
reflectance with different values of δ and the modulation length L at the wavelength of 1550 nm.
(d) The contrast ratio of reflectivities in both directions at different values of δ. (e) Electric field
amplitude distribution of light passing through the 25-period PT modulations at its exceptional
point from forward (upper) and backward (lower) directions propagating at a wavelength of
1550 nm

these derived analytical formulas for transmission and reflection, the attenuation
coefficient and the coupling coefficient can be determined numerically by fitting
these analytical calculations into the simulation results (see the supplementary
material in [18]). The modulation in the structure of Fig. 1 and Fig. 2 determines α

= 0.61 μm−1 and κ = 0.49 μm−1.
In contrast, by the same steps of derivations, the S-matrix in the balanced PT

system is
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Fig. 2 Optical properties of the designed passive unidirectional reflectionless PT metamaterial. (a)
Periodically arranged 760-nm-wide sinusoidal shaped combo structures on the top of an 800-nm-
wide Si waveguide embedded inside SiO2 to mimic parity-time optical potentials. The imaginary
part modulations are 14-nm Ge/24-nm Cr bi-layer. The real part modulations are 51-nm Si layer.
The designed parity-time metamaterial consists of 25 sets of top-modulated combo structures with
a period of 575.5 nm and a width of 143.9 nm for each sinusoidal-shaped combo. (b, c) Index
equivalence of the combo structures (blue dots) to the proposed modulation model (red lines):
Real effective index of the dielectric modulation (b); Real and imaginary effective index of the loss
modulation (c). (d) Simulated reflection spectra of the device in forward (red) and backward (blue)
directions. (e) Spectrum of contrast ratio of reflectivities, showing high contrast ratios over the
studied wavelength range from 1520 to 1580 nm. (f) Simulated electric field amplitude distribution
of light in the device, where incidence is set at boundaries of the PT metamaterial from the forward
(upper) and backward (lower) directions

S =
⎡
⎣ 1/ cosh (γ0L) i

√
1−δ
1+δ sinh (γ0L) / cosh (γ0L)

i

√
1+δ
1−δ sinh (γ0L) / cosh (γ0L) 1/ cosh (γ0L)

⎤
⎦ (4)

where γ0 = √
1 − δ2 (κ/8). Here, the dielectric function of the balanced system is

the same as the passive system, but without a limitation of the modulation region
of 4nπ /q + π /q ≤z≤ 4nπ /q + 2π /q, so that there will be same amount of gain and
loss in the grating (i.e., gain/loss balanced).
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Table 1 Evolution of Eigen spectrum sn = asn
′

in a balanced and passive PT system

Balanced PT system Passive PT system

0 ≤ δ < 1
sn = 1±sinh(γ0L)

cosh(γ0L)
, unimodular and exact sn = a

1± iκ
8γ

sinh(γL)
√

1−δ2

√
1+M12M21

,

PT symmetric phase. unimodular; PT symmetry phase.
δ = 1 sn = 1, EP; degenerate. sn = a, with s′n = 1 EP; degenerate.

δ > 1
sn = 1±sin

(
κ
8

√
δ2−1L

)

cos
(

κ
8

√
δ2−1L

) ,

non-unimodular; broken PT phase.

sn = a
1± iκ

8γ
sinh(γL)

√
δ2−1√

1+M12M21
,

non-unimodular; broken PT phase.

The eigenvalues of the scattering matrix correspond to the evolution of the PT
symmetry of the system, which is efficiently controlled by δ in both the balanced
PT system and the passive PT system (Table. 1). It is clear to see that the EP (δ = 1)
marks the boundary between PT symmetry and PT broken phase. Apparently, the
passive PT symmetry we are studying has the same PT symmetry transition as the
balanced PT system, except for the attenuation term |a|. At the EP of the passive
system (δ = 1), the eigenvalues degenerate and become sn = a = exp (−αL/2π ).
The degenerated eigenvalues/eigenstates can be observed from the forward and
backward reflection from the Bragg modulation, Rf and Rb.

Rf = |M21/M22|2, Rb = |M12/M22|2 (5)

The underlying physics of EP characteristics in a passive PT system and a
gain/loss balanced system are the same for this modulation regime. Therefore, in
a passive PT system, the wave characteristics introduced by the EP are similar to
that in a balanced PT system. By utilizing the unique wave characteristics near the
EP of the passive PT photonic system, we can design novel integrated photonic
devices with versatile applications.

2.2 Unidirectional Reflectionless Wave Transport

To achieve the unique wave characteristics near the EP, such as unidirectional
reflectionless wave transport, we design a waveguide structure with modulation
of its dielectric permittivity using absorptive materials. As shown in Fig. 1a, the
passive PT metamaterial embedded inside silicon dioxide (SiO2) is an 800-nm-
wide and 220-nm-thick silicon waveguide with periodically modulated dielectric
permittivity (i.e., effective refractive index). The wave number of fundamental mode
of the waveguide is k1 = 2.69k0, where k0 is the wave number in free space.

Figure 1b,c show the calculated Rf and Rb as a function of modulation
length L at several different values of δ. As the material is absorptive, the
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reflection curves reach an asymptotic value after enough modulation periods.
However, Rf and Rb respond quite differently to the value of δ. Especially
when δ = 1 at the EP, the two reflection coefficients become unidirectional with
backward reflection Rb diminished, which can be clearly evaluated by the contrast
ratio C = |(Rf − Rb)/(Rf + Rb)| = 2δ/(1 + δ2), shown in Fig. 1d, which reaches 1
at the EP.

Moreover, the 3D simulation in Fig. 1e shows the unidirectional wave transport
excited by the forward and backward input respectively. The disappearance of the
interference patterns in the backward input confirms no wave reflected from the port.

To implement this interesting design of metamaterial, we need to modulate the
complex index of a silicon waveguide by attaching additional periodical silicon or
metal layer on top of the waveguide. It is important to note that additional deposition
can increase the real part index, which may break the balance of real part modulation
amplitudes. Thus, we modify the design in Fig. 1a to physically implement the index
modulation.

As can be seen in the schematic in Fig. 2a, the index modulations of the real
and imaginary part are separated in the z direction. The corresponding cosine
modulation in the real part is shifted 5π/2q in the z direction to become a positive
sinusoidal modulation (Δεreal = cos (qz) = |sin(qz − 5π /2|), while the imaginary
part modulation remains at the same location (Δεimag = i|sin(qz)|). Because the
modulation is a second-order Bragg reflector, guided light will accumulate the same
modulated phase and amplitude after passing through the modulated region.

Additionally, to achieve these sinusoidal optical potentials using microscopically
homogeneous materials, sinusoidal-shaped combo structures are deposited on top
of the Si waveguide (Fig. 2a). By doping silicon and germanium (Ge)/Chromium
(Cr) bilayer combo structures, the effective indices of fundamental modes are
consistent with the real and imaginary part modulations, as shown in Fig. 2b
and 2c respectively. FDTD simulations with single-wavelength sweeping from
1520 to 1580 nm show that the forward and backward reflections are significantly
distinguished with about 11 dB of extinction ratio (Fig. 2d) with high contrast ratio
(Fig. 2e). The electric field distribution is shown in Fig. 2f.

In the experiments, we use tapered fiber excitation and on-chip waveguide
directional couplers to measure the reflectance as shown in Fig. 3a. The sample
was fabricated using overlay electron beam lithography, followed by evaporation
and lift-off of Si and Ge/Cr as well as dry etching to form the Si waveguide. The
SEM pictures before deposition of the SiO2 cladding are shown in Fig. 3b, c. The
reflection spectra of the device are measured from both forward and backward
directions, as shown in Fig. 4a. The reflectivity in the forward direction is about
7.5 dB stronger than that in the backward direction, indicating asymmetric optical
properties near the EP. The high contrast ratio of reflections, shown in Fig. 4b,
confirms the unique characteristics of unidirectional invisibility of the material.
Similar to previously investigated balanced gain/loss systems, our experiments show
that PT phase transition in a passive system also has measurable quantities such as
the EP.
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Fig. 3 Experimental implementation of the passive unidirectional reflectionless PT metamaterial.
(a) Configuration of layout circuit on the SOI platform to measure reflection from the device,
(b) SEM picture of the whole device before deposition of SiO2 cladding. The fabricated device
consists of 25 periods of Ge/Cr and Si sinusoidal combo structures with a period of 575.5 nm on
top of the Si waveguide, (c) Zoom-in SEM picture of the device, where the boxed area indicates a
unit cell

Fig. 4 Measured optical properties of the PT metamaterial in broadband. (a) Measured reflection
spectra of the device from both directions over a broad band of telecom wavelengths from 1520
to 1580 nm. Red and blue curves are Gaussian fits of raw data in forward (black) and backward
(green) directions, respectively, (b) Spectrum of contrast ratio of the fitted reflectivities
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In this section, we implement the chip-scale PT metamaterial with unidirec-
tional reflectionless properties on the conventional complementary metal-oxide-
semiconductor platform. The simulation and experiment results clearly confirm the
expected unidirectional and asymmetric characteristics. The novel functionalities
of the PT metamaterial can be further enriched by the modulation of the complex
refractive index as well as geometric arrangement of these optical potentials. The
periodic modulation of the meta-material has created multiple desired wave charac-
teristics for on-chip applications. The general design principle of this unidirectional
reflection can be applied to the design of unidirectional invisibility metamaterials,
optical isolators [6], and non-reciprocal circuits.

3 Asymmetric Interferometric Light-Light Switching

Following the proposal and implementation of the unidirectional invisible metama-
terial, here we demonstrate that the asymmetric reflection can be further utilized to
facilitate asymmetric light-light switching in a linear regime. In this novel photonic
device, a weak control beam can interferometrically control an intense laser signal
by the asymmetric reflection at the EP of the non-Hermitian system.

An effective light-light switching circuit improves on-chip optical information
processing for high-speed and energy-efficient optical networks. In recent research,
a unique linear scheme of coherent perfect absorption (CPA) utilizing photonics
absorption is put forward for this light-light switching by mutually coherent
interaction of light beams [22–25]. However, in these works, the control beam still
has a similar amount of power as the actual source signal in these previous works. To
realize an energy-efficient and effective light-light switching circuit, here we utilize
intrinsic asymmetry of a non-Hermitian photonic metamaterials near its EP.

As shown in Fig. 5a, the device is designed on a silicon-on-insulator (SOI)
platform. The structure is an 800 nm by 220 nm silicon meta-waveguide embedded
in SiO2 with the signal and control port on each side. The waveguide supports a
fundamental mode propagating with an effective wave number of k1 = 2.69k0 at the
wavelength of 1550 nm. The optical potential is modulated along the z direction of
the meta-waveguide in the complex refractive index plane

�ε = �ε0 [cos(qz)− iδ sin(qz)] (6)

whereΔε0 = 0.317 is the modulation amplitude, and the modulation is in the region
4nπ /q + π /q ≤ z ≤ 4nπ /q + 2π /q, (n = 1, 2, 3 . . . ).

Similar with the structure in Sect. 2 in this chapter, such modulated system can
be described by equations (1) and (2). The modulation introduces the coupling
between forward and backward propagating wave by Bragg reflection, and the
meta-waveguide supports two degenerate Bragg modes with different absorption
coefficients. To maximize the extinction ratio for switching, the device consists of
38 periods of modulation (approximately 21.9 μm). With enough modulations, we
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Fig. 5 Asymmetric interferometric light-light switching. (a) Schematic of the meta-waveguide
with asymmetric reflection to implement asymmetric interferometric light-light switching of a
strong source signal (forward input) by a weak control field (backward input), (b) Electric field
distributions of the light-light switching, where the power ratio of the weak control to the strong
source signal is set to 1 : 3. The CPA mode excited with no scattering when the incident phase of
the control is π/2 (upper), and the degenerated mode of less absorption observed when the incident
phase of the control is π/2 (lower)

can find one degenerate mode satisfies the CPA condition (i.e., M11 = 0) [26] where
coherent light inputs from the left and right ports are perfectly absorbed without
output scatterings, as shown in the upper panel, Fig. 5b. The other degenerate mode
has much less absorption in the lower panel, Fig. 5b.

Because the device works as a light-light switch in the interferometric control
regime, the relative phase between the optical waves of the two ports controls the
operating mode of the system. Assuming the incident phase of the signal remains 0,
efficient switching between these two modes of operation can be achieved by tuning
the incident phase of the control field from π/2 to –π/2. A relatively small value
of δ = 2 was chosen to obtain a reasonable transmission efficiency and ensure that
fabrication imperfections do not make the system deviate strongly from the designed
CPA condition. As a result, the intensity ratio ξ, given by (δ+1)/(δ−1), is 3 between
the strong signal beam and the weak control beam.

As illustrated in Fig. 6a, an equivalent optical potential modulation is mimic to
the non-Hermitian function in equation (6). The sample was then fabricated using
overlay electron beam lithography, followed by electron beam evaporation and lift-
off of sinusoidal shaped Cr/Ge combos and dry etching to form the Si waveguide
with cosine shaped sidewall modulations, respectively. The SEM pictures of the
meta-waveguide before top cladding of SiO2 are shown in Fig. 6b, c.
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Fig. 6 Modulated structure of the meta-waveguide for asymmetric interferometric light-light
switching. (a) Schematic of the meta-waveguide to create a spatial modulation equivalent to the
periodically modulated refractive index. The real index modulations are transverse waveguide
width varying in cosine function from +71 to −48.5 nm. The imaginary index modulations are
the bilayer sinusoidal shaped combo structures of 9.8 nm chrome Cr and 8 nm germanium (Ge)
deposited on top of the Si waveguide, (b) The SEM picture of the device consisting of 38 periods
for strong signal light switching by a weak control, (c) Zoom-in picture of the modulated combo
structures

In the experiments, coherent laser beams, split from the same laser source, were
coupled into the waveguide from both ports. As shown in Fig. 7a, two on-chip
waveguide directional couplers separate the inputs and outputs and route them to
four respective grating couplers. The intensities of coupled light were imaged and
integrated for reflection evaluations by a highly sensitive charge-coupled device
(CCD) camera, using a function

QS = 10log10 [(O1 +O2) / (I1 + I2)] + C (6)

where O1 and O2 are scattered light intensity from two output grating couplers,
I1 and I2 are the intensity from two input grating couplers. The constant C is the
overall loss of the directional couplers, which can be measured in the experiments
as a background loss.

With the incident phase of the control field modified by a motorized optical
delay line and the intensity ratio ξ manipulated by different coupling efficiency, the
spectra of the output scatterings are shown in Fig. 7b. At the resonant peak (i.e. the
wavelength detuning�=0), the CPA mode was excited with little output scatterings
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Fig. 7 Characterization of asymmetric interferometric light-light switching. (a) Layout circuit to
measure the optical switching signals, (b) Spectra of maximum (red) and minimum (blue) output
scattering coefficients. Insets: microscope snapshots of the scattering (top) and CPA (bottom)
modes at the resonance. The experimental results (triangles) of asymmetric interferometric light-
light switching shows an extinction ratio of about 60 dB at the resonance

when the phase of the control was φ = π/2, as shown in the lower panel inset of Fig.
7b. On the other hand, the mode of less absorption was excited with strong scattered
outputs when φ = −π/2, upper panel inset of Fig. 7b.

As shown in Fig. 8a, the two output grating couplers manifested consistently
in-phase on-off light scatterings for O1 and O2. This unique wave characteristic
demonstrates a weak-to-intense optical switching with an extinction ratio up to
approximately 60 dB in the meta-waveguide. In the out-of-resonant wavelengths,
such light-light switch has a different phase response of output scatterings that
O1 and O2 behave out-of-phase on-off relations. Because the mismatch between the
wave numbers of the non-Hermitian modulation and the input wave, an additional
phase shift is accumulated, either positive or negative according to the sign of
detuning. Hence, output light scatterings showed opposite out-of-phase on-off
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Fig. 8 Phase responses of outputs in interferometric light-light switching. (a) At the resonant
wavelength, two reflection outputs oscillate in phase and reach their minimum (at π/2) and
the maximum (at −π/2) simultaneously. (b) At the off-resonance wavelength when detuning
is −4.2 nm, the output O2 accumulates more phase than O1. (c) At off-resonance wavelength
when detuning is � = 4.6 nm, the extra phase shift changes sign and results in a shift of output
oscillations in the opposite direction

responses with respect to interferometric control of the control at � < 0 (Fig. 8b)
and � > 0 (Fig. 8c).

In this section, we show the asymmetric interferometric light-light switching
by utilizing a non-Hermitian meta-waveguide. Operating near an EP, the meta-
waveguide can act as CPA that a weak control light strongly modulates the outputs
of a large optical source signal. Such interference-enhanced absorption shows its
promising applications to optical information processing.

4 Orbital Angular Momentum Microlaser

The asymmetric wave characteristics introduced by non-Hermitian PT photonics has
offered various functionalities to on-chip applications. Inspired by the unidirectional
power flow in the modulated waveguide structure, here we realize a microscale
orbital angular momentum (OAM) laser.

Because of the angular momentum they may carry, light beams with spatially
structured polarization and phase fronts provide additional degrees of freedom for
modern optics science and practical applications. Associated with the polarization
degree of freedom is the spin angular momentum (SAM), carrying only one
of two values ±�. In addition to the SAM, researchers also demonstrated that
a light beam could carry OAM [27]. Such beams possess helical phase fronts
so that the Poynting vector within the beam twists around the principal axis.
The OAM degree of freedom has opened a new branch of optical physics and
enabled technological advances [28–30]. In contrast to the SAM that can take
only two values, the OAM is unlimited. OAM beams are thus being considered
as potential candidates for encoding information in both quantum and classical
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Fig. 9 The formation of unidirectional power flow in a ring resonator. (a) Simulation results of
the intensity of WGM at the azimuthal order of N = 56 in a microring cavity (left panel) and the
discontinuous phase distribution observed along the azimuthal direction with phase quantized at
either 0 or π (right panel). (b) Simulation results of the intensity of WGM at the azimuthal order of
N = 56 in a microring cavity with combined index and loss/gain modulations at the EP (left panel)
and the continuous phase variation observed along the azimuthal direction (right panel), indicating
that the WGM carries an effective OAM capable of producing the OAM lasing

systems [31]. The complex OAM beams can be generated by either bulk devices
[32], or developed planar optical components [33]. Here we utilize the pronounced
changes in light propagation at the EP to realize a scalable and designable micro-
OAM source on a complementary metal-oxide-semiconductor (CMOS) compatible
platform.

At the micro scale, the whispering gallery modes (WGMs) circulating in an
optical micro-ring cavity carries large OAM. However, because of the mirror
symmetry of a ring cavity, clockwise and counterclockwise eigen-WGMs coexist,
and their carried OAMs consequently cancel each other (Fig. 9a). To isolate and
extract the OAM of an individual WGM, it is essential to introduce a mechanism of
robust selection of either clockwise or counterclockwise mode. We found that non-
Hermitian photonics might help to solve the limitations. A unidirectional power
circulation can be achieved by introducing complex refractive-index modulations to
form an EP [34, 35]. At the EP of a PT system, multiple eigenstates coalesce into
one due to the gain/loss modulations, which is essential to obtaining OAM laser
emission.
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The micro-ring laser resonator is designed with 500-nm-thick InGaAsP multiple
quantum wells on an InP substrate. The complex refractive index grating is
the modulation of the complex refractive index (n

′ + in
′ ′
) along the azimuthal

direction (θ)

�n =
⎧⎨
⎩

in′′ f or 2πp/N < θ < 2π
(
p + 1

4

)
/N

n′ f or 2π
(
p + 3

8

)
/N < θ < 2π

(
p + 5

8

)
/N

(8)

where N denotes the azimuthal number of the targeted WGM and p takes integer
values from the set {0, N – 1}. Such index modulation can be achieved by placing
on top of InGaAsP layer periodically alternate single-layer Ge and bilayer Cr/Ge
structures. An EP is obtained when the amplitudes of index and gain/loss gratings
are set equal (i.e., n

′ = n
′ ′
). At the EP, the counterclockwise WGM unidirectionally

circulates in the cavity carrying large OAM through the azimuthally continuous
phase evolution (Fig. 9b).

The OAM associated with the unidirectional power flow is extracted upward
into free space by introducing periodic sidewall modulations along the micro-
ring perimeter. For M equidistant scatters, the locations of the scatters are given
by θs = 2πs/M, where s ∈ {0, M−1}, resulting in the extracted phase θs = 2πsN/M
of OAM beam. The extracted phase ϕs increases linearly from 0 to 2π(N − M)

ϕs = 2πs (N − M) /M (9)

Under this modulated regime, Fig. 10 shows the modeling result of the vortex
laser emission, where N = 56 and M = 57. The pumping beam was shone from
the back of the sample and the emitted beam carries both the pumping and OAM
beam. The pumping component was then filtered out from the emitted laser beams
(the wavelength of the pumping beam is at 1064 nm and the OAM beam is at about
1474 nm). Circulating a full circle around the center of the vortex, the phase of the
scattered electric field changes continuously by 2π. At the center of the beam is the
topological phase singularity point. The topological charge of the OAM is l = −1,
which reveals the number of wave front twists within one wavelength.

The OAM microlaser with periodically arranged Ge and Cr/Ge modulation
(Fig. 11) was fabricated by overlay electron beam lithography. In our OAM
microlaser, unidirectional power flow forced at the EP modulation enables efficient
and stable single-mode lasing with a sideband suppression ratio of 40 dB (Fig. 12).
As shown in Fig. 12a, b, with an increasing pumping intensity, the transition from
broadband photoluminescence (PL), to amplified spontaneous emission (ASE), and
finally to lasing states demonstrates the selection of desired lasing modes. The
unidirectional power flow can destroy the interference pattern of two counter-
propagating WGMs that may cause undesired spatial hole-burning effects, such
as, a decrease in the laser slope efficiency, multi-longitudinal mode operation, and
unstable laser emission.
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Fig. 10 Design of the OAM laser. Schematic of the OAM microlaser on an InP substrate. The
diameter of the resonator is 9 mm, the width is 1.1 mm, and the height is 1.5 mm (500 nm
of InGaAsP and 1 mm of InP). The modulations on the ring are 13-nm Ge single-layer and 5-
nm Cr/11-nm Ge bilayer structures, periodically arranged in the azimuthal direction to mimic
real index and gain/loss parts of an EP modulation and support unidirectional power circulation.
The designed topological charge of the vortex beam is −1, realized by an azimuthal order is
N = 56 at the resonant wavelength of 1472 nm with equidistant sidewall scatters with a total
number of M = 57, the pumping beam was incident below the structure and the vortex beam was
generated upwards. The inset shows the simulated phase distribution of emitted light. A spiral
phase distribution of an OAM charge-one vortex

Fig. 11 SEM Pictures of OAM microlaser fabricated on the InGaAsP/InP platform. Alternating
Cr/Ge bilayer and Ge single-layer structures were periodically deposited in the azimuthal direction
on top of the micro-ring, presenting, respectively, the gain/loss and index modulations required for
unidirectional power circulation

As shown in Fig. 12c, the intensity of lasing emission spatially distributed in
a doughnut shape with a dark core in the center, formed by topological phase
singularity at the beam axis. Figure 12d shows the off-center self-interference
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Fig. 12 Characterization of the generated OMA laser beam. (a) Evolution of the light emission
spectrum from PL, to ASE, and to lasing at 1474 nm, as the peak power density of pump light was
increased from 0.63, to 0.68, to 2.19 GWm−2, respectively. (b) Input-output laser curve, showing
a lasing threshold of about 1 GWm−2. (c) Far-field intensity distribution of the laser emission
exhibiting a doughnut-shaped profile, where the central dark core is due to the phase singularity
at the center of the OAM vortex radiation. (d) Off-center self-interference of the OAM lasing
radiation, showing two inverted forks (marked with arrows) located at two phase singularities

pattern. Two inverted forks at the center of the two beam axis and parallel fringes
away from the centers evidently confirm that the radiation from the OAM laser was
an optical vortex of topological charge l = −1.

In our micro-ring cavity, the dominant oscillating mode is designed to be a
quasi-TM mode which is sensitive to sidewall modulation scatters, leading to the
radially polarized OAM lasing. As shown in Fig. 13, the doughnut profile splits into
two lobes aligned along the orientation of the polarizer, manifesting pure radially
polarized OAM lasing.

In this section, we demonstrated a novel on-chip micro-ring OAM laser produc-
ing an optical vortex beam with a designable topological charge and polarization.
This is enabled through the unidirectional power oscillation at an EP of the PT
non-Hermitian system. The OAM microlaser may have novel applications for the
next-generation on-chip optical communications in both classical and quantum
regimes.
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Fig. 13 Polarization state of the OAM field. Measured intensity distributions of the OAM lasing
radiation passing through a linear polarizer with different polarization orientations indicated by
arrows: (a) 0◦, (b) 90◦, (c) 45◦, and (d) −45◦. The two-lobe structure rotated with the rotation of
the polarizer in the same fashion, confirming radially polarized OAM lasing

5 Conclusion and Outlook

Inspired by the development of non-Hermitian theory, especially the theory of
PT symmetry, researchers on photonics has developed various interesting on-chip
functionalities. In this chapter, we focus on on-chip implementations of non-
Hermitian photonics using the state-of-the-art nanophotonics technology. We found
that the asymmetric wave characteristics induced by optical potential modulation
leads to the unidirectional reflection and power flow near the EP of the non-
Hermitian system.

By utilizing these characteristics appropriately, we achieved novel functionalities
of on-chip photonic devices. These discoveries and researches offer additional
degrees of freedom and become a driving force for the future research in the field of
integrated photonics.
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Parity-Time Symmetry in Scattering
Problems

Mohammad-Ali Miri, Robert S. Duggan, and Andrea Alù

Abstract The realization that non-Hermitian parity-time (PT) symmetric Hamilto-
nians can exhibit entirely real spectra has raised considerable interest in the physics
and engineering communities. In the context of optics and photonics, in particular,
mathematical analogies with quantum mechanical problem have enabled several
breakthrough in terms of observing and utilizing PT-symmetry in closed guided-
wave systems. On the other hand, less attention has been paid to the scattering
behavior of open PT-symmetric systems. In this chapter, we consider canonical
PT-symmetric open systems and explore some of the scattering characteristics of
coupled waveguide cavity arrangements. In this regard, we show how an open PT-
symmetric configuration can be compared to a closed system, and how the scattering
properties are related to the spectral properties of the PT-symmetric system and
the associated phase transitions. Afterwards, different scattering geometries are
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explored in one, two and three dimensions. In addition, we review recent investi-
gations on this topic and highlight opportunities for future research.

1 Introduction

Recently there has been considerable interest in hybrid active-passive optical
geometries that utilize balanced regions of gain and loss [1–8]. These activities have
been mainly inspired by recent theoretical developments in quantum mechanics,
which show that non-Hermitian Hamiltonians can exhibit entirely real spectra as
long as they respect the condition of parity-time (PT) symmetry [9–13]. For a

non-relativistic quantum mechanical Hamiltonian, H = − �
2

2m∇2 + V (r), this
condition demands that the complex potential satisfies V∗ (−r) = V(r), i.e., the
real and imaginary parts of V(r) should be even and odd functions of position,
respectively. In a similar fashion, in the context of optics the condition for PT-
symmetry requires that the real and imaginary parts of the dielectric permittivity
should be even and odd functions of position. In this case, the imaginary part of
the optical potential represents optical gain and loss processes, which should be
symmetrically distributed in space.

Figure 1 depicts several examples of PT-symmetric systems, in which gain and
loss regions are structured in a balanced manner. In general, these structures can be
divided into two main categories, closed and open systems. In the former case, the
system is isolated from the surrounding medium and in the absence of gain and loss
mechanisms the electromagnetic energy is conserved and is interchanged among a
discrete set of bound states. In the latter case, on the other hand, the system can
exchange energy with the surrounding environment and the localized states always
suffer from leakage to a continuum of radiation states. Therefore, the terminology of
modes or states in closed systems is often replaced with leaky-modes or meta-stable
states in the case of localized states in open systems. Here, we use the terminology of

Fig. 1 Examples of closed (a, b) and open (c, d) PT-symmetric optical systems: (a) coupled
optical waveguides, (b) coupled cavities, (c) waveguide-cavity geometry, (d) dielectric slabs. Here,
the red and blue colors represent gain and loss regions, respectively
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closed and open PT-symmetric systems based on their passive lossless counterparts,
i.e., when neglecting any gain or absorption loss. Examples of closed PT-symmetric
systems are two coupled optical waveguides and optical resonators with infinite
lifetime, as shown in Fig. 1a, b, respectively. Examples of open systems, on the other
hand, are waveguides coupled to optical cavities and dielectric slabs, as shown in
Fig. 1c, d.

Closed optical PT-symmetric systems, being directly analogous to Hamiltonian
systems in quantum mechanics, have been intensely investigated in the context of
optics and photonics. On the other hand, open PT-symmetric systems, which are
the subject of the present chapter, have been less explored. This is primarily due
to the mathematical difficulties of handling open PT-symmetric systems as well as
because of the challenges in the experimental realization of such systems. On the
other hand, in reality most systems are open systems given that perfect isolation
can never be achieved. In this chapter, we overview the main properties of open PT-
symmetric systems and review recent progress in the theoretical and experimental
investigation of these systems. We start with coupled waveguide-cavity geometries,
which provides a good insight into the concept of PT symmetry. We then provide
examples of PT-symmetric structures with various dimensionalities and investigate
their scattering properties.

2 Scattering in Integrated Photonic Circuits

In this section, we consider a waveguide-cavity geometry, an idealized model that
nonetheless involves all the elements of an open scattering problem. Here, we
consider single mode cavities, supporting a mode with a finite lifetime. Assuming
that the lifetime of the modes in the two optical cavities is large enough, one can
utilize a coupled mode formalism in order to describe the temporal evolution of light
in the two modes and their coupling to the waveguides, better known as temporal
coupled mode theory [14, 15]. Here, we consider a1, 2 to be the modal amplitudes
of the localized resonant states in the two cavities and s±1,2 as the amplitudes of
the incoming (+) and outgoing (−) waves at the two ports. The amplitudes of
the localized and traveling waves are assumed to be normalized such that |ai|2
represents the total energy stored in the modes while |si|2 represents the power at the
port. In this case, the temporal evolution of the modes is governed by the coupled
mode equations:

d

dt

(
a1

a2

)
= −iH

(
a1

a2

)
+DT

(
s+1
s+2

)
(1)

where, the coupling between the input/output ports and the modes is governed by

(
s−1
s−2

)
= C

(
s+1
s+2

)
+D

(
a1

a2

)
, (2)
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In these relations, H is an evolution matrix, D and its transport DT model the
coupling from modes to ports and from ports to modes, and C is a direct path
scattering matrix of the ports. The evolution matrix H can be written as a sum of real
and imaginary parts as H = � − i�, where � is a matrix involving the resonance
frequencies as well as the coupling coefficients while � represents the gain and loss
mechanisms. In general, one can write � = �e + �i, where �e is the matrix of
external losses, i.e., losses due to coupling to the channels, while �i represents the
internal gain or loss processes. Clearly even in the absence of any material gain
or loss, this system is not conservative given that energy can always leak into the
outside environment through the waveguide channels. It is important to note that
time reversal symmetry conditions demands � and �i to be symmetric matrices. In
addition, the time reversal symmetry and energy conservation considerations require
CD∗ = −D, and D†D = 2�e.

For the PT-symmetric system shown in Fig. 1c, one can write the following
evolution matrix:

H =
(
ω0 − iγe + ig −μ

− μ ω0 − iγe − ig

)
, (3)

where, ω0 is the resonance frequency of each isolated mode, μ is the coupling
rate, γ e is the rate of dissipation due to leakage to the channels, and ±g represent
the PT-symmetric gain/loss added to each resonator. The C and D matrix can be
written as:

C =
(

1 0
0 1

)
, (4)

D = i
√

2γe

(
1 0
0 1

)
. (5)

By definition, the condition of PT symmetry is satisfied when [H,PT ] = 0,
where the parity P and time T operators act on an arbitrary state (a, b)t as
P(a, b)t = (b, a)t and T (a, b)t = (a∗, b∗)t . According to relation (3), the
condition of PT symmetry can only be achieved for γ e = 0, i.e., where the two
cavities are isolated from the waveguides. On the other hand, in the presence of
waveguide leakage, the eigenvalues of the evolution matrix H are given by:

σ± = ω0 − iγe ±
√
μ2 − g2, (6)

and therefore exhibit a phase transition at the critical gain-loss contrast of gth = μ.
The two-port waveguide-cavity system is best described through its scattering
matrix S, defined as

(
s−1 , s

−
2

)t = S
(
s+1 , s

+
2

)t
, which can be written as:

S =
(
r1 t

t r2

)
. (7)
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Here, r1, 2 represents the reflection from ports 1 and 2 respectively and t shows
the transmission coefficient. These scattering parameters are found to be:

t = 2iγeμ

(ω − ω0 + iγe)
2 + g2 − μ2

, (8a)

r1 = (ω − ω0)
2 + (γe + g)2 − μ2

(ω − ω0 + iγe)
2 + g2 − μ2

, (8b)

r2 = (ω − ω0)
2 + (γe − g)2 − μ2

(ω − ω0 + iγe)
2 + g2 − μ2

, (8c)

Relations 8a, 8b and 8c clearly show an asymmetry in the reflection coefficients
induced by the gain-loss parameter g, while the transmission is identical. This is
consistent with the fact that the presence of gain-loss contrast along the propagation
direction of light breaks the left-right symmetry of the reflection coefficient, while
it does not violate the reciprocity of light. Another important observation in the
scattering coefficients is the appearance of a singularity at ω = ω0 for the gain-
loss level of g = √

γ 2
e + μ2. This point is regarded as the onset of lasing, where

the gain in the active cavity overcomes the total losses due to leakage as well as
coupling to the lossy cavity. Figure 2 depicts the frequency-dependent scattering
coefficients of the PT-symmetric coupled mode system for different values of the
gain-loss contrast. According to this figure, by increasing the gain/loss contrast, the
asymmetry in the reflection coefficients can be controlled.

Fig. 2 (a) The eigenvalues of the evolution matrix of the PT-symmetric coupled cavity as a
function of the gain-loss parameter. (b) The scattering parameters for different values of the gain-
loss parameter. In all cases we have assumed γ e = μ
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Before concluding this section, it is worth stressing that the simplified model
investigated in this section involves several interesting properties of open PT-
symmetric systems that are also encountered in the structures described in the
following sections.

• In a scattering setting, coupling to the continuum of the radiation states creates an
additional loss mechanism, but does rule out a phase transition as in a Hermition
system.

• The phase transition in the eigenfrequencies is associated with the splitting or
merging of the resonance features in the scattering parameters. The visibility of
such features depends on the strength of the radiative losses.

In the following sections, the scattering properties of different PT-symmetric
systems are investigated while different sections are separated based on the dimen-
sionality of the problem in terms of complexity.

3 Scattering in 1D

Here, we investigate one-dimensional scattering problems involving a PT-symmetric
Fabry-Perot resonator. As depicted in Fig. 1d such structure involves two dielectric
slabs with equal gain and loss. By considering propagation along the normal
direction in this Fabry-Perot, independent from the choice of polarization, one can
consider the following 1D wave equation in the frequency domain:

d2E(x)

dx2
+ k2

0ε(x)E(x) = 0, (9)

where, E represents the electric field, k0 is the free space wavenumber, and ε(x)
represents the relative permittivity of the media involved. Similar to the coupled
mode model presented in the previous section, the gain and loss dielectric slab
can be considered as individual cavities which are probed through plane waves
propagating in the background medium. It should be noted that in this case, the
Fabry-Perot cavity supports an infinite number of meta-stable states. However, as it
will be discussed in the following, the pairwise coupling and splitting of these states
can become visible for proper gain-loss contrasts.

Here, the background medium is assumed to be free space, i.e., ε = 1, while
for the gain and loss slabs we assume ε = (n ± ig)2 where n and g represent the
refractive index and gain-loss coefficients, respectively. Assuming that the electric
field in the left region is given by E1 = s+1 e−ik0x+s−1 eik0x , while in the right region

is E2 = s−2 e−ik0x + s+2 eik0x , the scattering matrix, defined through
(
s−1 , s

−
2

)t =
S
(
s+1 , s

+
2

)t
, can be written in terms of the reflection and transmission coefficients

as in relation (7). From these it is straightforward to show that the reflection and
transmission coefficients are obtained from the following relations:
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t =
g2 + n2

g2 cosh (k0Lg)− ig
2

(
1 − n2 − g2

)
sinh (k0Lg)+ n2 cos (k0Ln)− in

2

(
1 + n2 + g2

)
sin (k0Ln)

,

(10a)

r1 = −i

+gn cosh (k0Lg)− gn cos (k0Ln)+ g
2

(
1 + n2 + g2

)
sinh (k0Lg)+ n

2

(
1 − n2 − g2

)
sin (k0Ln)

g2 cosh (k0Lg)− ig
2

(
1 − n2 − g2

)
sinh (k0Lg)+ n2 cos (k0Ln)− in

2

(
1 + n2 + g2

)
sin (k0Ln)

,

(10b)

r2 = −i

−gn cosh (k0Lg)+ gn cos (k0Ln)+ g
2

(
1 + n2 + g2

)
sinh (k0Lg)+ n

2

(
1 − n2 − g2

)
sin (k0Ln)

g2 cosh (k0Lg)− ig
2

(
1 − n2 − g2

)
sinh (k0Lg)+ n2 cos (k0Ln)− in

2

(
1 + n2 + g2

)
sin (k0Ln)

,

(10c)

where, L represents the total length of the PT-symmetric slab. In this case, the reflec-
tion asymmetry is proportional to the quantity gn[cosh(k0Lg) − cos (k0Ln)], which
is related to both refractive index n and gain-loss coefficient g. The eigenvalues of
the scattering matrix can be obtained in terms of the reflection and transmission
coefficients as:

σ± = r1 + r2

2
±
√(

r1 − r2

2

)2

+ t2, (11)

while, the eigenvectors of the system are v± = (1, ρ±)t, where, the ratio ρ± is:

ρ± = r2 − r1

2t
±
√

1 +
(
r2 − r1

2

)2

. (12)

The eigenvectors are subject to the normalization condition of vTmvn = δmn, and
the scattering matrix can be expanded in terms of the eigenvalues and eigenvectors
as S = σ+v+vT+ + σ−v−vT−. One should notice, however, that this particular
representation of the S-matrix is not valid at the exceptional point, where, the
scattering matrix can no longer be diagonalized. Figure 3 depicts the eigenvalues
of the PT-symmetric Fabry-Perot as a well as the transmission and reflection
coefficients versus the incoming wave frequency. As this figure clearly indicates, at a
critical frequency the eigenvalues associated with a particular set of modes bifurcate
in direct analogy with closed systems. The bifurcation of the eigenvalues is also
associated with the merging of two resonance features in the scattering coefficients.
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Fig. 3 (a) The moduli of the
scattering matrix eigenvalues
of the PT-symmetric
Fabry-Perot. (b) The
reflection coefficient from left
and right

In the asymptotic limit of k0L → ∞, the eigenvectors evolve as v+ →
(

1
0

)
and

v− →
(

0
1

)
, thus the S-matrix can be approximated as S →

(
σ+ 0
0 σ−

)
. Therefore,

the reflection coefficients from the left and right directions asymptotically approach
the two eigenvalues. This can also be seen from relation (10) for a vanishing
transmission coefficient (Fig. 3).

The PT-symmetric Fabry-Perot was first investgated in Ref. [16] and the connec-
tion with Hamiltonian systems was explored [17]. The connection with coherent
perfect absorber was noted in [18] and demosntrated experimentally in [19].
Other examples of 1D PT-symmetric structures are PT-symmetric Bragg gratings
investigated in [20, 21]. Interestingly, it has been shown the reflection coefficients
of a PT-symmetric grating can completely vanish from one side while from the
other side a large reflection is obtained. This unidirectioanl invisibility has been
experimentally observed in gratings incorporated in silicon waveguides [22] as well
as in time-domain lattices [23]. In addition, it has been shown that PT-symmetric
gratings in the presence of optical Kerr nonlinearities behave in a similar manner
and one-way Bragg solitons have been peredicted [24].

With the introduction of additional dimensions, systems with tractable closed-
form solutions are limited, especially with the asymmetry of PT-symmetric systems.
In the following, we present two canonical examples with enlightening responses: a
2D Janus cylinder and coupled 3D spheres.

4 Scattering in 2D

As mentioned above mathematical analogy of the Schrödinger equation with the
scalar wave equation in the frequency domain allows one to treat the refractive
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index profile as an effective potential, thus defining the conditions of PT-symmetric
symmetry as

n∗ (−x,−y,−z) = n (x, y, z) . (13)

As one would expect, when considering the vectorial nature of the electromag-
netic fields the conditions of PT-symmetric symmetry for the material tensors ¯̄ε and
¯̄μ is written as [25]

¯̄ε∗ (−x,−y,−z) = ¯̄ε (x, y, z) ; ¯̄μ∗
(−x,−y,−z) = ¯̄μ (x, y, z) . (14)

Given the lack of magnetic gain, and strong magnetic response at all at optical
frequencies, we will again focus solely on dielectric properties of materials. In two
dimensions, we consider the TE polarization with three field components Hx, Hy,
Ez, obeying the wave-equation

∂2Ez

∂x2
+ ∂2Ez

∂y2
+ k2

0ε (x, y)Ez = 0, (15)

A PT-symmetric symmetric potential is formed again when ε∗ (−x,−y) = ε(x, y).
As with most scattering problems, we decompose the electric field into incident
and scattered fields. Here, we assume a plane-wave excitation and consider only the
far-field scattering such that

Ez (x, y) = E0

(
eik·ρ + f (φ)

eikρ√
kρ

)
, (16)

where (ρ,φ) represent the radial and azimuthal polar coordinates and the far-field
azimuthal pattern of the scattered field f (φ) is obtained in terms of the total field
inside the scatterer as

f (φ) = k2 (1 + i)

2
√
π

∫ (
ε
(
r ′
)− 1

)
Ez
(
r ′
)

exp
(−ik̂r · r ′) d2r ′. (17)

This integral equation can be solved numerically, such as by the method of
moments. After finding the solution, we note the asymmetry from the difference
in imaginary permittivity creates an asymmetric scattering response, more so than
an equivalent difference in the real part of permittivity. For dielectric cylinders, the
scattering peak actually is directed toward the loss cylinder. In addition, the peak
deflection is more pronounced for smaller particles, but the beam is more directive
as the particle size is increased [26].

Beyond the direct properties of any individual system, the 2D geometry is useful
for deriving a generalized optical theorem. Because the permittivity follows the PT-
symmetric condition, through the wave equation we can derive
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Ez (x, y)∇2E∗
z (−x,−y)− E∗

z (−x,−y)∇2Ez (x, y) = 0, (18)

Converting this areal integral to a flux integral over a circle with r → ∞ and
considering only the far-field terms, by using the method of steeped descent, one
can derive a modified optical theorem as follows

∫ 2π

0
f (φ) f ∗ (φ + π) dφ = −2

√
π Re [(1 + i) f (π)] . (19)

Unlike the passive optical theorem, the integrand in this case is not positive
definite, and so the total extinction energy cannot be deduced from a single
scattering angle. Instead, the backward scattering is related to the integral of a quasi-
energy related to the PT-symmetry. This relation can easily be extended to 3D, and
it is inherent to all PT-symmetric systems.

5 Scattering in 3D

In this section we focus on the response of PT-symmetric spherical particle pairs.
This simple geometry offers a number of benefits for an initial study of radiative
systems. Scattering from a sphere or collection of spheres has been extensively
studied, giving us an easy framework to model the system. This includes a number
of well-known approximations that allow us to form conclusions while also finding
results from more complete models. In general, several approaches to solving the
scattering from a collection of spheres exist. Mie theory offers the exact solution
to scattering of a plane wave by a single particle as an infinite series of spherical
harmonics [27], and is the starting point for the methods extending to multiple
particles. A truly rigorous solution should consider the spherical harmonics to
all orders. Indeed, with the T-matrix formulation developed one can include the
spherical harmonics from any number of scatterers to find the fields with desired
precision [28, 29]. In reality, a good approximation is often found by including only
a few harmonics in systems of wavelength-scale size. Subwavelength non-magnetic
particles in particular have a response dominated by the first transverse-magnetic
harmonic, corresponding to the electric dipole moment. We will start our discussion
with approximate methods, as the simpler analysis gives semi-analytic solutions
and grants more clarity into their origins. We will subsequently add in material
dispersion and higher-order harmonics in order to provide a more complete picture.

Consider two spherical dielectric particles with permittivities chosen to meet the
PT-symmetric condition (ε1 = εr + iεi = ε∗2) as recently investigated in Ref. [31],
and shown in Fig. 4. If the particles have radius a and the excitation wavenumber is
k = 2π /λ, the electric dipole mode will dominate the response in the range ka 	 1.
The total dipole moment of each particle is related to the local field through a
polarizability pi = αiEtot(ri).The field can be divided into the sum of the incident
field and the scattered field from the other particle. The total response can be written
as a system of equations
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Fig. 4 A schematic of the
geometry under consideration
with appropriate polarization
and angle definitions

[
α−1

1 −G12

− G12 α−1
2

] [
p1

p2

]
=
[

E1

E2

]
(20)

where pi is the dipole of the ith particle, ri its position, αi its polarizabil-
ity, Ei the incident electric field, and G is the Green’s function between the
dipoles [30]. The polarizability can be rigorously derived from Mie theory as

αi = j
6πεoεbCTM1

k3 , but can be simplified in the subwavelength limit as αi ≈
4πε0εba

3
(
εi+2εb
εi−εb − j

2(ka)3

3

)−1
. This is identical to the value derived for a static

field, with the addition of the lowest-order imaginary component to account for
radiation losses. Note that, similar to the systems investigated in previous sections,
balancing materials loss and gain ε1 = ε∗2 does not satisfy the true PT-symmetric
symmetry condition as the radiation loss is not “time-reversed”. The electric dipole
Green’s function is well known, and for small particle separations, it can be similarly

approximated Gt ≈ 1
4πε0εb

(
− 1
d3 + j 2k3

3

)
for a field polarization transverse to the

particle separation, and Gl ≈ 1
4πε0εb

(
2
d3 + j 2k3

3

)
for the longitudinal polarization.

Considering the scalar version of Eq. (20), and assuming E1 ≈ E2 for our closely-
spaced particles, the effective polarizability for the dimer can be expressed as

αtot = p1 + p2

E
=

1
α1

+ 1
α2

+ 2G(
1

α1α2

)
−G2

. (21)

While the above expressions contain a number of approximations, the result gives
a semi-analytic result, rather than an infinite coupled transcendental equations. The
αtot does not uniquely define the particle’s response as in a single dipolar scatterer as
there will be higher-order scattering due to the particle separation. However, it does
give a general sense of the strength and allows us to easily evaluate the absorption
and extinction cross sections, with minimal approximation errors when the particles
are illuminated with an equal amplitude and phase.

At this point, we insert the PT-symmetric values for the permittivity, and
allow the transverse polarization to exhibit a general behavior. Similar relations to
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those below can be derived for the longitudinal polarization as well. One benefit
of expressing the response as in Eq. (21) is the ability to find the scattering
minima and maxima from the zeros of the numerator and denominator, respectively.
Interestingly, the numerator is completely real for all PT-symmetric permittivities,
and is zero on the contour defined by

(
εr + (1 + 2x) εb

2 (1 − x)

)2

+ ε2
i =

9

4(1 − x)2
ε2
b, (22)

where, the dimensionless x = (a/d)3 is a measure of the ratio of the relative coupling
strength of the particles to the inverse polarizability. This contour is a circle centered
on the real axis near εr = −0.5 and passes through the trivial result of εr = 1 and
slightly below εr = −2, the single particle plasmonic resonance.

The denominator of relation (21) is in general complex, simplifying to

1

α1α2
−G2 = 1

a6

(
1 − x2 + 3εb (εb + 2εr)

ε2
i + (εr − εb)

2

)

− j
4k3

3a3

(
1 − x + 3εb (εb + 2εr)

ε2
i + (εr − εb)

2

)
.

(23)

Unlike the numerator, the denominator only is zero at one point described by
εr = − εb(2+x)

x−1 , εi = 0. This point solves Eq. (22) at the same time, and this pole-
zero overlap has some interesting behavior associated with it. For now, we return
to Eq. (23), and look for minima rather than zeros. The ratio of coefficients of the
imaginary and real parts is 4

3 (ka)
3. When a 	 1.44λ, the real part of the expression

will dominate, and the minima of the magnitude of Eq. (23) can be approximated
with the zeros of the real part. By doing so, we derive the “resonance” contour as
the curve

(
εr +

(
2 + x2

)
εb(

1 − x2
)
)2

+ ε2
i =

9x2

(1 − x)2
ε2
b. (24)

Again, the contour is a circle, this time centered near the plasmonic resonance of
εr = −2 with a radius of roughly 3x. This result is not surprising as resonance
splitting in coupled systems is a widely reported and understood phenomenon.
Note also that the inclusion of the imaginary parts in α and G, related to power
conservation for dynamic fields, prevents the denominator from going exactly to
zero, and keeps the response finite.

Numerically, we can easily restore the exact expression for the dipole polariz-
ability and the Green’s function. Figure 5 shows the magnitude of αtot under both
polarizations, where, in both cases, the two circles as predicted by the quasistatic
analysis appear. The permittivity of the plasmonic resonance shifts to more negative
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Fig. 5 The total polarizability for dipoles of radius 100 nm with center-to-center spacing of
350 nm under broadside illumination (θ inc = 0) with λ = 5μm. Longitudinal polarization is
displayed on the left and transverse on the right. Figures are obtained by numerical calculation
of the dynamic Mie theory polarizability and complete dipole Green’s function

Fig. 6 Total polarizability
for two particles, one having
permittivity ε = εr − j0.01
and the other with
ε = εr − j0.01 + jεi. Note
the anticausal Fano feature
near εr = − 2.1 is most
prominent when the
PT-symmetric symmetry
condition is met. The curves
are offset for clarity

values as ka becomes sufficiently different than zero, explaining the deviation of the
center of the resonance curve from εr = −2.

An intriguing property of this system is the merging of the scattering maxima
and minima near the real axis. This feature is linked to the PT-symmetric case,
as shown with Fig. 6. For two slightly lossy particles of ε = εr + j0.01, the
anti-causal Fano peak is not present. By adding an additional gain to one particle
(ε2 = εr + j(0.01 − εi)), this peak appears when ε1 = ε∗2 (εi = 0.02), and is barely
noticeable when more gain is added to the system.

It is worth noting that in the above discussion we have made a number of
simplifications. Generally, once the materials and geometry are chosen, the other
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degrees of freedom include the frequency, pump power, and incident direction. To
start, we account for the finite separation and therefore phase difference of the
particles with a non-broadside incident field. The individual dipole moments for
a plane wave excitation at incidence angle φinc can be expressed as

p1 (φinc) =
1
α2

+G ejkdsin(φinc)

1
α1

+ 1
α2

+ 2G
,p2 (φinc) =

1
α1
ejkdsin(φinc) +G

1
α1

+ 1
α2

+ 2G
, (25)

The usual parameters of interest are the scattering, extinction, and absorption
cross-sections, which for a dimer under transverse excitation can be simplified to

Cscat = k4

12π2ε2
0

∫ 2π

0

∣∣∣p1 + p2e
jkdsin(φinc)

∣∣∣2dφ

= k4

6π2ε2
0

(
|p1|2 + |p2|2 + 2 Re

[
p1p

∗
2

]
J0 (kd)

) (26)

Cext (φinc) = k

ε0
Im

⎡
⎣ 1

α1
+ 1

α2
+ 2Gcos (kdsin (φinc))(

1
α1α2

)
−G2

⎤
⎦ (27)

Cabs = 3kεi
4π3ε2

0

(
(εr − 1)2 + ε2

i

) (∣∣pgain∣∣2 − |ploss |2
)

(28)

where J0(z) is the cylindrical Bessel function and φinc is the angle from broadside of

the illuminating plane wave (φinc = 90
◦
) when

−→
k inc points from loss to gain). From

Eq. (27), it is clear that Cext is invariant under the transformation φinc → − φinc,
so the extinguished power will not depend on which particle the field “hits” first.
This is not true for the scattered power, and so the scattering and absorption can be
drastically altered by “switching” the positions of the particles.

A number of results can be gathered by applying these formulae to this simple
model. In Fig. 7c we see that the scattering cross section does not have a zero
that extends nearly to the antiparallel resonance. Thus, the particles may oscillate
mostly out of phase and therefore they have a small total dipole moment, but
radiation into higher order modes must be strong. Also, the calculated absorption
cross section is always negative when the incidence is broadside. Physically, the
material gain offsets the damping from radiation, and so the gain particle always
oscillates with a larger magnitude when equally excited. On the other hand, there
can be absorption when incident angle is skewed toward one particle (Fig. 8). The
directional dependence in absorption must be matched by a change in the scattering,
which is also shown in Fig. 8. Further, the extinction is negative in a region that
generally follows the scattering minima. Since a negative extinction implies lasing
(the particles supply power into their own driving field), this relationship is intuitive,
as radiation losses are low in this regime. Note that lasing only occurs in the region
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Fig. 7 (a) Extinction, (b) absorption, and (c) scattering cross section magnitudes for the dimer
under transverse broadside incidence. The extinction is positive, except for between the two curves
of low magnitude that originate at εr = 1 and terminate near the εr ≈ − 2 resonance, in the region
marked with “x”. The absorption cross section is never positive, and it has its largest magnitude
along the resonance curve. Contrary to the sharp zero-pole merging for the effective polarizability,
the scattering cross section minima change along the “zero” curve

roughly defined by −2 < εr < 1. The lasing at εr = 1 is thresholdless (the region
with negative extinction reaches the real axis), while the gain/loss lasing threshold
near εr = −2 decreases as the dimer’s electrical size shrinks.

The frequency dispersion and pump power are more closely coupled, and are best
considered in tandem. This aspect has been recently explored, which we draw from
here [32]. Conductive materials in general can be modelled as collections of free
electrons and the permittivity dispersion follows the well-known Drude model. The
dispersion of gain particles, on the other hand, is less understood. A common model
for emitters “doped” into background is to add the “gain half” of a Lorentzian, with
a coefficient to account for the population inversion produced by the pump [33, 34].
We then consider a dimer similar to two conducting oxide spheres, with one doped
to provide gain, as in Ref. [32]. The two permittivities can then be approximated
near the gain resonance as
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Fig. 8 Cross sections of particles under side incidence (θ inc = ± 90
◦
). Top half plane corresponds

to exciting the gain particle first, and bottom half plane to exciting the loss particle first. (a)
Extinction cross section is positive except in regions marked by “x” as in Fig. 3a. Also, it is
symmetric with respect to angle of incidence. The (b) absorption and (c) scattering cross sections
are in general asymmetric, and so the scattered power can depend on the orientation of the particles.
Also note that the sign of the absorption cross section (d) (red is positive, blue negative) can depend
on the direction of incidence

ε1 = ε∞ − ω2
plasmon

ω2 + jωγplasmon
, ε2 = ε1 + A

γgain

ω − ωgain + jγgain
. (29)

At the gain resonance, the emitter contribution to the permittivity is simply
a positive imaginary term, but any difference from this frequency will add a
component to the real part of the permittivity as well. As one would expect,
increasing the pump power tends to narrow the resonant linewidth of the scattering
peak, while providing a large boost to the peak scattering cross section (Fig. 9).
The absorption cross section can even become negative, as the gain overcomes the
material loss.
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Fig. 9 From [32]. (a) The extinction cross section as a function of frequency detuning and gain
coefficient. (b) The extinction, scattering, and absorption cross sections as a function of frequency
detuning and for different pump levels. As the pump reaches a critical level at the appropriate
frequency, the scattering linewidth shinks and the absorption cross section becomes negative,
cancelling out the scattering losses and mimicking the high Q response of a lossless resonantor

This analysis also gives a good intuition on the effect of gain on the scattering
anisotropy. For particles with strictly identical real parts of permittivity, the gain
particle will oscillate more strongly as there is less effective damping from material
and radiation losses. However, the particles can also experience a significant dif-
ference in phase, especially when the antiparallel resonance is significantly excited.
The scattering patterns are easily calculated with the discrete dipole approximation,
acting identically to an antenna phased array. In general, for broadside incidence,
increasing the pump power skews the scattering pattern toward the gain particle,
with the anisotropy growing with pump power as shown in Fig. 10. Extending the
analysis from merely two particles to a linear array, the scattering anisotropy grows
with the array length. In all cases, increasing the gain increases the scattered power,
but disproportionately toward the gain direction. For finite PT-symmetric chains,
large asymmetric scattering with minimal extinction has been predicted due to edge
modes [35].

As mentioned previously, reversing the incident direction will not change the
extinguished power, but can alter the scatting and absorption. As shown in Fig. 10,
for small pumping (and therefore small anisotropies), the scattering and absorption
are roughly the same after reversing the incident field direction. For higher values
of gain, the cross sections will be heavily directionally dependent, with the total
scattering significantly higher when impinging on the gain particle first.

So far, we have examined only particles near a plasmonic resonance, and only
worked with the dipole approximation. In general, PT-symmetric systems are
noted for exceptional points and symmetry breaking thresholds, which have not
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Fig. 10 From [32]. (a), (c), (e) Scattering intensities in the direction of gain particles (0
◦
) and

loss particles (180
◦
) as a function of pump strength for various particle array sizes and broadside

incidence. As the gain is increased, the scattering is increasingly directed toward the “gain” side of
the linear array. (b), (d), (f) show the scattering patters for a highly pumped (red) and non-pumped
(dashed black) system. For each array size, the detuning from the resonance frequency is kept
constant
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been apparent in any observables so far. The symmetry breaking does become
mathematically noticeable when the analysis is performed with a scattering matrix.
For lossless systems with finite port numbers, the scattering matrix fulfils the unitary
condition, i.e., the eigenvalues all have magnitude unity and the input power equals
the output power. PT-symmetric systems can break this condition and have complex-
conjugate eigenvalues above a certain threshold [16], for which the scattered
power can be higher or lower than the incident (net emission or absorption),
depending on the incident state. A scattering system can theoretically scatter power
into an infinite number of modes (the spherical harmonics). Clusters of spherical
scatterers have been extensively studied, with the T-matrix approach mentioned
earlier. This technique decomposes the incident and scattered wave into spherical
harmonics, including the internal coupling between particles. A derivation of this
approach will not be included here, but numerous explanations already exist in the
literature. Interestingly, the connection between the scattering matrix eigenvalues
and the absorption cross section is not as straightforward as in 1D. As shown for
the scattering eigenvalues of a PT-symmetric dielectric (ε = 1.1 ± j0.1) dimer
(Fig. 11), the broken symmetry is found only for short wavelengths, when the system
is large compared to wavelength [36]. In general, although negative absorption
cross sections are found even in the unbroken regimes, the absorption is always
negative for broadside incidence, consistent with what is expected in the dipole
approximation. For the analogous 1D problem, the scattering is always amplified in
the broken phase when the two ports are excited with the same amplitude. Similarly,
when the plane wave illuminates the two particles, even with a phase difference due
to the incident angle, the absorption is negative for broken-symmetry wavelengths.

The most interesting result from this approach is the disconnection between
the matrix analysis and physical behavior. There is no abrupt change in any of
the cross sections, or general change in behavior at all when crossing from the
broken to the unbroken regimes. Because PT-symmetric systems are inherently
non-Hermitian, the eigenvectors are not orthogonal. Thus, although the individual
scattering eigenvalues may be unimodular, the actual mode of the system cannot
be decomposed onto a higher dimensional unit circle as in the case of orthogonal
bases (the dimensionality will be determined by the number of harmonics in the
S-matrix expansion). As in the 1D case [16], the unitarity of eigenvalues does not
guarantee unitary scattering for a generic excitation. Special care, therefore, must
be taken when predicting the physical behavior from mathematical solutions in non-
Hermitian systems.

6 Summary

In conclusion, we have shown how PT-symmetry manifests itself in open scat-
tering problems. By providing intuition with simple models, we show many
consistent behaviors that are common to these systems in all dimensions. The
gain-loss anisotropy can produce highly directional responses, along with scattering
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Fig. 11 From [36]. (a)–(c) Plots of the extinction, scattering and absorption cross sections as a
function of wavelength and under three illumination directions. Here, θ = π /2 corresponds to
the loss sphere being illuminated first (opposite to the angle defined in the text). All absorption
cross section values are negative except in (c) when λ > 571 nm. The dotted region indicates
the wavelengths associated with the broken symmetry regime. NPT-symmetric refers to a lossless
dimer of equal real permittivity, included for comparison. (d) Scattering matrix eigenvalue
magnitudes as a function of wavelength. Here, the scattering matrix is of dimension 16

enhancement or suppression. Even with radiation loss, a system can move into the
lasing regime with purely equal material gain and loss, especially near resonance.
However, inherently active PT-symmetric systems exhibit some differences with
typical scattering problems, and are subject to different constraints, as illustrated
by a new optical theorem.
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Scattering Theory and PT -Symmetry

Ali Mostafazadeh

Abstract We outline a global approach to scattering theory in one dimension that
allows for the description of a large class of scattering systems and their P-, T -,
and PT -symmetries. In particular, we review various relevant concepts such as
Jost solutions, transfer and scattering matrices, reciprocity principle, unidirectional
reflection and invisibility, and spectral singularities. We discuss in some detail the
mathematical conditions that imply or forbid reciprocal transmission, reciprocal
reflection, and the presence of spectral singularities and their time-reversal. We also
derive generalized unitarity relations for time-reversal-invariant and PT -symmetric
scattering systems, and explore the consequences of breaking them. The results
reported here apply to the scattering systems defined by a real or complex local
potential as well as those determined by energy-dependent potentials, nonlocal
potentials, and general point interactions.

1 Basic Setup for Elastic Scattering in One Dimension

The theory of the scattering of waves by obstacles or the interactions modelling
them rests on the assumption that the strength of the interaction diminishes at large
distances, so that in the vicinity of the source and detectors the wave can be safely
approximated by a plane wave. A consistent implementation of this assumption
requires the existence of solutions of the relevant wave equation that tend to plane
waves at spatial infinities. For a time-harmonic scalar wave, e−iωtψ(x), propagating
in one dimension, this requirement takes the form of the following asymptotic
boundary conditions:
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ψ(x)→
{
A−(k)eikx + B−(k)e−ikx for x → −∞,

A+(k)eikx + B+(k)e−ikx for x → +∞,
(1)

where A±(k) and B±(k) are complex-valued functions of the wavenumber k, which
we take to be a positive real variable unless otherwise is clear. The factors eikx and
e−ikx appearing in (1) are related to the solutions, ei(kx−ωt) and e−i(kx+ωt), of the
wave equation in the absence of the interaction. They represent the right- and left-
going waves, respectively.

As a principal example, consider the scattering phenomenon described by the
Schrödinger equation,

−ψ ′′(x)+ v(x)ψ = k2ψ(x), (2)

where v(x) is a real or complex interaction potential. The existence of the solutions
of this equation that satisfy (1) restricts the rate at which |v(x)| decays to zero as
x → ±∞. We can also consider the more general situations where the potential is
energy-dependent. For example consider the Helmholtz equation,

ψ ′′(x)+ k2ε̂(x, k)ψ(x) = 0, (3)

which describes the interaction of polarized electromagnetic waves having an
electric field of the form E0e

−iωtψ(x) pointing along the y-axis with an isotropic
nonmagnetic media represented by a real or complex relative permittivity profile
ε̂(x, k), [4]. We can express (3) in the form (2) provided that we identify v(x) with
the energy-dependent optical potential:

v(x, k) = k2[1 − ε̂(x, k)]. (4)

The scattering setup we have outlined above also applies for the scattering of
waves described by nonlocal and nonlinear Schrödinger equations [44, 53, 59, 65],

−ψ ′′(x)+
∫ ∞

−∞
V (x, x′)ψ(x′)dx′ = k2ψ(x), (5)

−ψ ′′(x)+ V (x,ψ(x))ψ(x) = k2ψ(x), (6)

if the nonlocal and nonlinear potentials, V (x, x′) and V (x,ψ(x)) decay sufficiently
rapidly as x → ±∞ so that (5) and (6) admit solutions satisfying (1). This is clearly
the case for confined nonlocal and nonlinear interactions [8, 44], where

V (x, x′) = v(x)δ(x − x′)+ F(x, x′)χ [a,b](x),

V (x, ψ(x)) = v(x)+ F(x,ψ(x))χ [a,b](x),
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δ(x) stands for the Dirac delta function, F is a complex-valued function of a pair of
real or complex variables, [a, b] is a closed interval of real numbers,

χ [a,b](x) :=
{

1 for x ∈ [a, b],
0 for x /∈ [a, b],

and we use the symbol “:=” (respectively “=:”) to state that the right-hand
(respectively left-hand) side is the definition of the left-hand (respectively right-
hand.)

Another class of scattering problems that we can treat using our general
framework for scalar-wave scattering in one dimension is that of single- or multi-
center point interactions [41]. These correspond to scalar waves ψ(x) that satisfy

− ψ ′′(x) = k2ψ(x) for x ∈ R \ {c1, c2, · · · , cn},[
ψ(c+j )
ψ ′(c+j )

]
= Bj

[
ψ(c−j )
ψ ′(c−j )

]
for j ∈ {1, 2, · · · , n},

(7)

where c1, c2, · · · , cn are distinct real numbers representing the interaction centers,
for every function φ(x) the symbols φ(c−j ) and φ(c+j ) respectively denote the left

and right limit of φ(x) as x → cj , i.e., φ(c±j ) := limx→c±j
φ(x), and Bj are possibly

k-dependent 2×2 invertible matrices. The point interactions of this type may be used
to model electromagnetic interface conditions [50].

The best known example of a single-center point interaction is the delta-function
potential v(x) = z δ(x) with a coupling constant z. It corresponds to the choice:
n = 1, c1 = 0, and

B1 =
[

1 0
z 1

]
. (8)

In a scattering experiment, the incident wave is emitted by its source which is
located at one of the spatial infinities ±∞, and the scattered wave is received by
the detectors which are placed at one or both of these infinities. If the source is
located at −∞, the incident wave travels towards the region of the space where the
interaction has a sizable strength. A part of it passes through this region and reaches
the detector at +∞. The other part gets reflected and travels towards the detector
at −∞. As a result, the incident and transmitted waves are right-going while the
reflected wave is left-going. This scenario is described by a solution ψl(x) of the
wave equation that has the following asymptotic behavior.

ψl(x)→
{
N
[
eikx + rl (k) e

−ikx] for x → −∞,

N tl (k) e
ikx for x → +∞,

(9)
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where N is the amplitude of the incident wave, and rl (k) and tl (k) are complex-
valued functions of k that are respectively called the left reflection and transmission
amplitudes. Similarly, we have the solution ψr(x) of the wave equation that
corresponds to the scattering of an incident wave that is emitted from a source
located at x = +∞. This satisfies

ψr(x)→
{

N tr (k) e
−ikx for x → −∞,

N
[
e−ikx + rr (k) e

ikx
]

for x → +∞,
(10)

where rr (k) and tr (k) are respectively the right reflection and transmission
amplitudes.

Scattering experiments involve the measurement of the reflection and trans-
mission amplitudes, rl/r (k) and tl/r (k), or their modulus square, |rl/r (k)|2 and
|tl/r (k)|2, which are respectively called the left/right reflection and transmission
coefficients.1 By solving a scattering problem we mean the determination of rl/r (k)
and tl/r (k). We sometimes call these the “scattering data”.

If rl/r (k0) = 0 for some wavenumber k0 ∈ R
+, we say that the scatterer2

is reflectionless from the left/right or simply left/right-reflectionless at k = k0.
Similarly we call it left/right transparent at k = k0, if tl/r (k0) = 1. A scatterer
is invisible from the left or right if it is both reflectionless and transparent
from that direction. In this case we call it left/right-invisible. Unidirectional
reflectionlessness (respectively unidirectional invisibility) refers to situations where
a scatterer is reflectionless (respectively invisible) only from the left or right [25].
The reflectionlessness, transparency, and invisibility of a scatterer are said to be
broadband if they hold for a finite or infinite interval of positive real values of k.

If the wave equation is linear, we can scale ψl/r and work with ψ+/− :=
ψl/r/N tl/r . These satisfy:

ψ±(x)→ e±ikx for x → ±∞,

ψ+(x)→ 1

tl (k)
eikx + rl (k)

tl (k)
e−ikx for x → −∞,

ψ−(x)→ rr (k)

tr (k)
eikx + 1

tr (k)
e−ikx for x → +∞,

(11)

and are called the Jost solutions. It turns out that the Schrödinger equation (2) admits
Jost solutions, if

∫∞
−∞

√
1 + x2 |v(x)|dx < ∞. This is equivalent to the Faddeev

condition:

1These are occasionally labelled by T l/r (k) and Rl/r (k), [44, 59]. Here we refrain from using this
notation, because some references use these symbols for the reflection and transmission amplitudes
and not their modulus squared [25].
2By a scatterer we mean the interaction causing the propagation of a wave differ from that of a
plane wave.
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∫ ∞

−∞
(1 + |x|)|v(x)|dx <∞. (12)

Under this condition the Jost solutions exist not only for real and positive values
of k, but also for complex values of k belonging to the upper-half complex plane,
i.e., k ∈ {z ∈ C | Im(z) ≥ 0}. Furthermore, in this half-plane they are continuous
functions of k, [21].

Faddeev condition clearly holds for finite-range potentials which vanish outside
a finite interval (have a compact support), and exponentially decaying potentials
which satisfy

eμ±|x||v(x)| <∞ for x → ±∞, (13)

for some μ± ∈ R
+. Notice that finite-range potentials fulfill this condition for all

μ± ∈ R
+. Therefore they share the properties of exponentially decaying potentials

that follow from (13).
In this article we use the term “scattering potential ” for real or complex-valued

potentials v(x) that satisfy the Faddeev condition (12).

2 Transfer Matrix

Consider a linear scalar wave equation that admits time-harmonic solutions
e−iωtψ(x) fulfilling the asymptotic boundary conditions (1). We can identify these
solutions by the pairs of column vectors:

[
A−(k)
B−(k)

]
and

[
A+(k)
B+(k)

]
.

The 2× 2 matrix M(k) that connects these is called the transfer matrix [63, 66]. By
definition, it satisfies

M(k)

[
A−(k)
B−(k)

]
=
[
A+(k)
B+(k)

]
. (14)

If we demand that the knowledge of the solution of the wave equation at either of
the spatial infinities, x → ±∞, determines it uniquely, M(k) must be invertible. In
what follows we assume that this is the case, i.e., det M(k) �= 0.3

We can express the entries of M(k) in terms of the reflection and transmis-
sion amplitudes by implementing (14) for the Jost solutions. This requires the

3In Sect. 4, we prove that this conditions holds for the scattering systems described by the
Schrödinger equation (2).
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identification of the coefficient functions A±(k) and B±(k) for ψ(x) = ψ±(x).
Comparing (1) and (11), we see that for ψ(x) = ψ+(x),

A− = 1

tl
, B− = rl

tl
, A+ = 1, B+ = 0. (15)

Here and in what follows we occasionally suppress the k-dependence of A±(k),
B±(k), rl/r (k), tl/r (k), M(k), and other relevant quantities for brevity. Similarly for
ψ(x) = ψ−(x), we have

A− = 0, B− = 1, A+ = rr

tr
, B+ = 1

tr
. (16)

Substituting (15) and (16) in (14) gives

1

tl
M
[

1
rl

]
=
[

1
0

]
, M

[
0
1

]
= 1

tr

[
rr
1

]
. (17)

The second of these equations implies

M12 = rr

tr
, M22 = 1

tr
. (18)

Using these relations in the first equation in (17), we find

M11 = tl − rlrr

tr
, M21 = −rl

tr
. (19)

In view of (18) and (19),

M = 1

tr

[
tltr − rlrr rr

−rl 1

]
. (20)

In particular,

det M = tl

tr
. (21)

We can also solve (18) and (19) for the reflection and transmission amplitudes in
terms of Mij . The result is

rl = −M21

M22
, tl = det M

M22
, rr = M12

M22
, tr = 1

M22
. (22)

Equations (20) and (22) show that the knowledge of the transfer matrix is equivalent
to solving the scattering problem. It is also instructive to make the k-dependence of
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the Jost solutions explicit and note that in light of (22) and (11) their asymptotic
expression takes the form

ψ±(k, x)→ e±ikx for x → ±∞,

ψ+(k, x)→ det M(k)−1
[
M22(k) e

ikx −M21(k) e
−ikx] for x → −∞,

ψ−(k, x)→M12(k) e
ikx +M22(k) e

−ikx for x → +∞.

(23)

These relations together with the assumption that det M(k) �= 0 show that as
functions of k the entries of the transfer matrix, Mij (k), have the same analytic
properties as the Jost solutions ψ±(k, x).

A simple consequence of (21) is that det M is a measure of the violation of
reciprocity in transmission; a scattering system has reciprocal transmission if and
only if det M(k) = 1 for all k ∈ R

+.
An example of a scattering system that has nonreciprocal transmission is a single-

center point interaction (7) that is defined by a matching matrix B1 with det B1 �= 1,
[41]. To see this, we set n = 1 and drop the subscript 1 in c1 and B1 in (7). Clearly
for x �= c, every solution of (7) has the form

ψ(x) = A±(k)eikx + B±(k)e−ikx for ± (x − c) > 0. (24)

We can use this expression to show that

[
ψ(c±)
ψ ′(c±)

]
= Nc

[
A±
B±

]
, (25)

where

Nc(k) :=
[
eick e−ick
ikeick −ike−ick

]
. (26)

If we substitute (26) in (7), we can relate A+(k) and B+(k) to A−(k) and B−(k).
This gives (14) with the following formula for the transfer matrix of the system.

M = N−1
c B Nc. (27)

In particular det M = det B. Therefore, single-center point interactions that satisfy
det B �= 1 violate reciprocity in transmission. These are called anomalous point
interactions in [41], because they cannot be viewed as singular limits of sequences
of scattering potentials.

Next, consider a situation that the solutions ψ(x) of our linear wave equation
have also the form of a plane wave in a closed interval, [x1, x1 + ε], where x1 ∈ R

and ε ∈ R
+, i.e., there are coefficient functions A1(k) and B1(k) such that for all

x ∈ [x1, x1 + ε],
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ψ(x) = A1(k)e
ikx + B1(k)e

−ikx . (28)

In the limit ε → 0 this is certainly true for any x1, because we can satisfy (28) for
x → x1 by setting

A1(k) = e−ikx

2

[
ψ(x1)+ ψ ′(x1)

ik

]
, B1(k) = eikx

2

[
ψ(x1)− ψ ′(x1)

ik

]
. (29)

We can use x1 to disect the original scattering problem into two pieces. First, we
consider the case where ψ(x) solves the given wave equation for all x < x1 and
takes the form (28) for x ≥ x1. Then the choice (29) for A1(k) and B1(k) ensures
the continuity and differentiability of the resulting wave function, namely

ψ1(x) :=
{

ψ(x) for x ≤ x1,

A1(k)e
ikx + B1(k)e

−ikx for x > x1,
(30)

at x = x1. We can therefore view ψ1(x) as the general solution of the wave equation
with the interaction terms missing for x > x1. Similarly, we introduce

ψ2(x) :=
{
A1(k)e

ikx + B1(k)e
−ikx for x < x1,

ψ(x) for x ≥ x1,
(31)

and identify it with the general solution of the wave equation with the interaction
terms missing for x < x1. According to (1), (30), and (31),

ψ1(x) →
{
A−(k)eikx + B−(k)e−ikx for x → −∞,

A1(k)e
ikx + B1(k)e

−ikx for x → +∞,
(32)

ψ2(x) →
{
A1(k)e

ikx + B1(k)e
−ikx for x → −∞,

A+(k)eikx + B+(k)e−ikx for x → +∞.
(33)

We can use these relations together with the definition of the transfer matrix to
introduce the transfer matrices Mj for ψj (x). These fulfil

M1

[
A−
B−

]
=
[
A1

B1

]
, M2

[
A1

B1

]
=
[
A+
B+

]
. (34)

Comparing these equations with (14), we see that the transfer matrix of the original
wave equation is given by

M = M2M1. (35)

Now, consider dividing the set of real numbers into n+ 1 intervals:
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I1 := (−∞, a1], I2 := [a1, a2], I3 := [a2, a3], · · · , In := [an−1, an],
In+1 := [an,∞),

and let Mj be the transfer matrix for the scattering of a scalar wave with interactions
confined to Ij . Then a repeated use of the argument leading to (35) shows that the
transfer matrix for the original scattering problem is given by

M = Mn+1MnMn−1 · · ·M1. (36)

This property, which is known as the composition rule for the transfer matrices,
allows for reducing the scattering problem with interactions taking place in an
arbitrary region of space to simpler scattering problems where the interaction is
confined to certain intervals.

For example, if the interaction has a finite range, i.e., it seizes to exist outside an
interval [a, b], we can set

aj := a + (j − 1)(b − a)

n
for j = 1, 2, · · · , n.

In this way, by taking large values for n we can reduce the initial scattering problem
to those whose solution requires solving the wave equation in small intervals. If the
interaction is a smooth function of space, we can approximate it by a constant in
each of these intervals. This in turn simplifies the calculation of Mj . We can use
the result of this calculation together with (36) to find an approximate expression
for M. Aside from the technical problems of multiplying a large number of 2 × 2
matrices, this provides a simple approach for the solution of the scattering problem
for finite-range linear interactions.

We can easily implement this procedure to solve the scattering problem for
a multi-center point interaction (7). To do this we label the centers of the point
interaction so that c1 < c2 < · · · < cn and compute the transfer matrix for single-
center point interactions associated with cj . As we explained above this has the form

Mj = N−1
j BjNj , (37)

where Nj is given by the right-hand side of (26) with c changed to cj . We can then
determine the transfer matrix of the multi-center point interaction by invoking the
composition rule (36). The result is

M = N−1
n BnNnN−1

n−1Bn−1Nn−1 · · ·N−1
1 B1N1. (38)

In particular, we find that

det M = det B1 det B2 · · · det Bn. (39)
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Combing this equation with (21), we infer that a multi-center point interaction
violates reciprocity in transmission if and only if it consists of an odd number of
anomalous single-center point interactions.

Next, consider a multi-delta-function potential

v(x) = ε

n∑
j=1

zj δ(x − cj ), (40)

where ε is a nonzero real parameter and zj are possibly complex coupling constants.
We can identify this with the multi-center point interaction with matching matrices

Bj =
[

1 0
ε zj 1

]
. (41)

Substituting this relation in (38) we find the transfer matrix M for (40). This has a
unit determinant, because det Bj = 1 and M satisfies (39).

It is not difficult to see that the transfer matrix M of the multi-delta-function
potential (40) and hence its entries are polynomials of degree at most n in the
parameter ε. In view of (23), and the fact that det M = 1, this implies that
the same is true of the Jost solutions of the Schrödinger equation (2) for this
potential. This observation shows that if we treat ε as a perturbation parameter and
perform an n-th order perturbative calculation of the Jost solutions, we obtain their
exact expression. In view of (11), this allows for determining the reflection and
transmission amplitudes of (40). We therefore have the following result.

Theorem 1 The n-th order perturbation theory gives the exact solution of the
scattering problem for multi-delta-function potentials with n centers.

In fact, a direct analysis shows that n-th order perturbation theory gives the
exact solution of the Schrödinger equation (2) for multi-delta-function poten-
tials (40), [54].

3 Scattering Matrix

By definition, the scattering operator, which is also known as the scattering
matrix, maps the waves traveling toward the interaction region (incoming waves)
to those traveling away from it (outgoing waves). In one dimension, the boundary
conditions (1) at spatial infinities show that the incoming waves have the asymptotic
form A−(k)eikx (respectively B−(k)e−ikx), if their source is located at x = −∞
(respectively x = +∞), and the outgoing waves tend to B+e−ikx as x → −∞
and A+(k)eikx as x → +∞. In light of these observations, we can quantify the
scattering operator by a 2× 2 matrix S(k) that connects A−(k) and B+(k) to A+(k)
and B−(k). Clearly there are four different ways of doing so, namely
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S1

[
A−
B+

]
=
[
A+
B−

]
, S2

[
A−
B+

]
=
[
B−
A+

]
,

S3

[
B+
A−

]
=
[
A+
B−

]
, S4

[
B+
A−

]
=
[
B−
A+

]
.

(42)

These correspond to various conventions for defining the S-matrix in one dimension.
It is easy to see that

S2 = σ 1S1, S3 = S1σ 1, S4 = σ 1S1σ 1, (43)

where σ 1 is the first Pauli matrix,

σ 1 :=
[

0 1
1 0

]
.

Next, let us express the entries of S1 in terms of the reflection and transmission
amplitudes. To do this, we implement the first equation in (42) for the Jost solutions
ψ±(x). For ψ(x) = ψ+(x), A± and B± are given by (15). Substituting these in the
first equation in (42) gives

S1

[
1
0

]
=
[
tl
rl

]
. (44)

Similarly for ψ(x) = ψ−(x), we use (15) to obtain

S1

[
0
1

]
=
[
rr
tr

]
. (45)

In view of Eqs. (44) and (45),

S1 =
[
tl rr
rl tr

]
. (46)

This relation together with (43) imply

S2 =
[
rl tr
tl rr

]
, S3 =

[
rr tl
tr rl

]
, S4 =

[
tr rl
rr tl

]
. (47)

According to Eqs. (46) and (47), we can use any of S1,S2,S3, and S4 to encode
the information about the scattering properties of the system. They are therefore
physically equivalent. We adopt the convention of identifying the S-matrix with S1,
i.e., set
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S :=
[
tl rr
rl tr

]
. (48)

This choice has the appealing property of reducing to the 2 × 2 identity matrix I in
the absence of interactions.

Eigenvalues of the scattering matrix turn out to contain some useful information
about the scattering properties of the system. In view of (48), they have the form:

s± = tl + tr

2
±
√(

tl − tr

2

)2

+ rlrr . (49)

In particular, whenever tl = tr =: t,

s± = t±√
rlrr . (50)

Both the transfer and the S-matrix contain complete information about the
scattering data, but in contrast to the transfer matrix the S-matrix does not obey
a useful composition rule. An advantage of the S-matrix is the simplicity of its
higher-dimensional, relativistic, and field theoretical generalizations [76].4

4 Potential Scattering, Reciprocity Theorem, and Invisibility

Consider the time-independent Schrödinger equation (2) for a scattering potential
v(x) which admits Jost solutions ψ± and defines a valid scattering problem. Being
solutions of a second order linear homogeneous differential equation, ψ± are
linearly independent if and only if their Wronskian, W(x) := ψ−(x)ψ ′+(x) −
ψ+(x)ψ ′−(x), does not vanish at some x ∈ R, [5]. In fact, because the Schrödinger
equation (2) does not involve the first derivative of ψ , W(x) is a constant.5 We can
determine this constant using the asymptotic expression (11) for the ψ±(x). Doing
this for x → −∞ and x → +∞, we respectively find W(x) = 2ik/tl (k) and
W(x) = 2ik/tr (k). This proves the following reciprocity theorem.

Theorem 2 (Reciprocity in Transmission) The left and right transmission ampli-
tudes of every real or complex scattering potential coincide, i.e.,

tl (k) = tr (k). (51)

4A genuine multidimensional generalization of the transfer matrix has been recently proposed in
[31].
5This can be easily checked by differentiating W(x) and using (2) to show that W ′(x) = 0.
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In the following we use t(k) for the common value of tl (k) and tr (k) whenever
a scattering system has reciprocal transmission.

In view of Eqs. (20), (21), (22), (48), and (51), the transfer and scattering matrices
and the scattering data associated with real or complex scattering potentials satisfy:

M = 1

t

[
t2 − rlrr rr

−rl 1

]
, det M = 1, S =

[
t rr
rl t

]
, (52)

rl = −M21

M22
, rr = M12

M22
, t = 1

M22
. (53)

Another consequence of (51) is that the Wronskian of the Jost solutions take the
form

W(x) = 2ik

t(k)
. (54)

This is a number depending on the value of k. In particular, for k ∈ R
+ it cannot

diverge. This proves the following theorem.

Theorem 3 Let v(x) be a real or complex scattering potential. Then its transmis-
sion amplitude does not vanish for any wavenumber, i.e.,

t(k) �= 0 for k ∈ R
+. (55)

This theorem shows that real and complex scattering potentials can never serve as a
perfect absorber. According to Theorem 2 they cannot even serve as an approximate
one-way filter.

Next, we examine the following simple example:

v(x) = zχ [0,L](x) =
{
z for x ∈ [0, L],
0 for x /∈ [0, L], (56)

where z andL are nonzero complex and real parameters. This is a piecewise constant
finite-range potential with support [0, L], which we can identify with a rectangular
barrier potential of a possibly complex height z.

We can easily solve the Schrödinger equation (2) for the barrier potential (56).
Its general solution has the form

ψ(x) =
⎧⎨
⎩
A−(k)eikx + B−(k)e−ikx for x < 0,
A0(k)e

iknx + B0(k)e
−iknx for x ∈ [0, L],

A+(k)eikx + B+(k)e−ikx for x ≥ L,

(57)
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where Aj(k) and Bj (k), with j = 0,±, are complex-valued coefficient functions,

n :=
√

1 − z

k2
, (58)

and for every complex number w we use
√
w to label the principal value of w1/2,

i.e.,
√
w = √|w|eiϕ with ϕ ∈ [0, π). By demanding ψ to be continuous and

differentiable at x = L and x = 0, we can respectively express A+ and B+ in
terms of A0 and B0, and A0 and B0 in terms of A− and B−. This in turn allows
us to relate A+ and B+ to A− and B−. We can write the resulting equations in the
form (14) with the transfer matrix given by

M(k) =
[ [cos(kLn)+ in+ sin(kLn)]e−ikL in− sin(kLn)e−ikL

−in− sin(kLn)eikL [cos(kLn)− in+ sin(kLn)]eikL

]
,

(59)
and n± := (n± n−1)/2.

In view of (53), we can use (59) to read off the expression for the reflection and
transmission amplitudes of the barrier potential (56). These have the form:

rl (k) = in− tan(kLn)

1 − in+ tan(kLn)
, (60)

rr (k) = in− tan(kLn)e−2ikL

1 − in+ tan(kLn)
, (61)

t(k) = e−ikL

cos(kLn)− in+ sin(kLn)
. (62)

Clearly, t(k) �= 0 for all k ∈ R
+. We can check that indeed det M(k) = 1, and

evaluate the S-matrix and its eigenvalues. In light of (50) the latter are given by

s±(k) =
[

1 ± in− tan(kLn)

1 − in+ tan(kLn)

]
e−ikL. (63)

According to (60) the barrier potential (56) is left-reflectionless if and only if n
is real and k = km := πm/Ln for a positive integer m.6 In this case it is also right-
reflectionless, but not in general transparent. It is easy to show that for these values
of the wavenumber, t(k) = e−imπ(n−1+1). This equals unity, i.e., the potential is
transparent and hence bidirectionally invisible if and only if there is an integer q
such that n = (2q/m − 1)−1. It is easy to see that this is equivalent to demanding
that

6Equation (58) implies that km = √(πm/L)2 + z. This in turn means that for z > 0, m can be any
positive integer, and for z < 0, m > L

√−z/π .
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z = 4π2q(q −m)

L2
, k = 2q −m

L
.

Because k > 0, the latter relation implies that 2q > m.
The entries of the transfer matrix for the barrier potential (56) are smooth

functions of the wavenumber k. In fact, we can analytically continue them to the
entire complex k-plane. This turns out to be a common feature of all finite-range
potentials. To see this first we note that if a potential v(x) decays exponentially as
x → ±∞, i.e., there are positive numbers μ± satisfying (13), then the Jost solutions
are holomorphic (complex analytic) functions in the strip [3]:

Sμ± := {k ∈ C | − μ− < Im(k) < μ+} . (64)

In light of (23) and the fact that det M = 1, this implies that the same holds for the
entries of the transfer matrix. We state this result as a theorem:

Theorem 4 Let v(x) be a real or complex potential satisfying (13) for some μ± >
0. Then the entries Mij (k) of its transfer matrix are holomorphic functions in the
strip (64).

A basic result of complex analysis is that a nonzero holomorphic function can
only vanish at a discrete set of isolated points. In view of Theorem 4 this applies to
the entries of the transfer matrix of exponentially decaying potentials. In particular,
for each choice of i and j in {1, 2}, either Mij (k) = 0 for all k ∈ Sμ± or there
is a (possibly empty) discrete set of isolated values of k ∈ Sμ± at which Mij (k)

vanishes. This is particularly important, because Sμ± contains the positive real axis
where the physical wavenumbers reside.

According to (53), the zeros of M12(k) (respectively M21(k)) that are located on
the positive real axis are the wavenumbers k0 at which the right (respectively left)
reflection amplitude of the potential v(x) vanishes, i.e., v(x) is right- (respectively
left-) reflectionless at k0. Similarly, if M22(k0) = 1, then t(k0) = 1, and v(x) is
transparent at k0. Therefore real and positive zeros ofM12(k),M21(k), andM22(k)−
1 are the wavenumbers at which v(x) is right-reflectionless, left-reflectionless, and
transparent. In particular, equations

M12(k) = M22(k)− 1 = 0, (65)

M21(k) = M22(k)− 1 = 0, (66)

respectively characterize the invisibility of the potential from the right and left.
These results are clearly valid for any scattering system whose scattering features
can be described using a transfer matrix.

The following no-go theorem is a simple consequence of Eqs. (53) and the above-
mentioned property of the zeros of holomorphic functions.

Theorem 5 If the entries Mij (k) of the transfer matrix for a scattering system are
nonzero functions that are holomorphic on the positive real axis in the complex k-
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plane, then the system cannot display broadband reflectionlessness, transparency,
or invisibility from either direction.

According to Theorem 4, the conclusion of this theorem applies to exponentially
decaying and finite-range potentials.

The above analysis does not exclude the existence of exponentially decaying
potentials that are unidirectionally or bidirectionally reflectionless for all k ∈ R

+
(fullband reflectionlessness). Such potentials were known to exist since the 1930s.
The principal example is the Pöschl-Teller potential:

v(x) = − ζ

cosh(αx)
,

where ζ and α are positive real parameters. It turns out that the scattering problem
for this potential admits an exact solution, and that for integer values of ζ/α2 it is
bidirectionally reflectionless for all k ∈ R

+, [10]. The Pöschl-Teller potential is a
member of an infinite class of real, attractive (negative), exponentially decaying
potentials with this property. These were initially obtained in the 1950s as an
application of the methods of inverse scattering theory [20]. Their much less-known
complex analogs were constructed in the 1990s, [74].7

The construction of scattering potentials that are unidirectionally invisible in
the entire spectral band is a much more recent development [16, 30]. Before
making specific comments about these potentials, we wish to address the problem
of the existence of exponentially decaying and finite-range potentials that are
unidirectionally reflectionless, transparent, or invisible in the whole spectral band.
To do this, first we examine the structure of the transfer matrix M(k) for negative
values of k.

Consider a solution of the Schrödinger equation (2) for a scattering potential
v(x). In order to make the k-dependence of this solution explicit, we denote it by
ψ(k, x). In particular, we write (1) as

ψ(k, x)→ A±(k)eikx + B±(k)e−ikx for x → ±∞. (67)

Because the Schrödinger equation (2) is invariant under k → −k,

ψ̆(k, x) := ψ(−k, x) (68)

is also a solution of (2). In view of the fact that v(x) is a scattering potential, ψ̆(k, x)
must satisfy the asymptotic boundary conditions:

ψ̆(k, x) → Ă±(k)e−ikx + B̆±(k)eikx for x → ±∞, (69)

7Reflectionless potentials also arise as soliton solutions of nonlinear differential equations [24].
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where Ă±(k) and B̆±(k) are some coefficient functions. We can use (67), (68),
and (69) to show that for k ∈ R

−,

Ă±(k) = B±(−k), B̆±(k) = A±(−k). (70)

Now, suppose that we can analytically continue M(k) from k ∈ R
+ to k ∈ R

−.
Then we can relate Ă+(k) and B̆+(k) to Ă−(k) and B̆−(k) using M(k) for k ∈ R

−.
This gives

[
Ă+(k)
B̆+(k)

]
= M(k)

[
Ă−(k)
B̆−(k)

]
. (71)

Substituting (70) in this equation and using (14), we arrive at

M(k) = σ 1M(−k)σ 1, (72)

where k ∈ R
−. Because this equation is invariant under k → −k, it holds for all

k ∈ R \ {0}. In terms of the components of M(k), we can write (72) in the form:

M11(−k) = M22(k), M12(−k) = M21(k), (73)

which again hold for all k ∈ R \ {0}.
Equations (72) and (73) apply to any scattering system in which the wave equa-

tion involves even powers of k and have a transfer matrix that can be analytically
continued from the positive to the negative real axis in the complex k-plane. For such
systems, we can determine the reflection and transmission amplitudes for k ∈ R

−,
by inserting (73) in (22). This gives

rl (−k) = −rr (k)

D(k)
, tl (−k) = tl (k)

D(k)
, rr (−k) = −rl (k)

D(k)
, tr (−k) = tr (k)

D(k)
,

(74)

where

D(k) := M11(k)

M22(k)
= tl (k)tr (k)− rl (k)rr (k) = det S(k). (75)

Again, because Eqs. (74) are invariant under k → −k, they hold for all k ∈ R \ {0}.
A straightforward consequence of these equations is that if rl/r (k) (respectively
tl/r (k)) vanishes for all k ∈ R

+, then it will also vanish for all k ∈ R
−. It

is important to note that this conclusion relies on the existence of the analytic
continuation of Mij (k) from k ∈ R

+ to k ∈ R
−. Certainly, this condition holds for

finite-range and exponentially decaying potentials. This together with Theorem 5
prove the following result.
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Theorem 6 Scattering potentials with a finite range or an asymptotic exponential
decay cannot display broadband unidirectional reflectionlessness, transparency, or
invisibility.

This theorem shows that as far as finite-range and exponentially decaying potentials
are concerned, unidirectional reflectionlessness, transparency, and invisibility can
only be achieved at a discrete set of isolated values of the wavenumber.

The principal example of a unidirectionally invisible finite-range potential is

v(x) =
{
z eiKx for x ∈ [−L

2 ,
L
2 ],

0 for x /∈ [−L
2 ,

L
2 ],

(76)

where z, K , and L are nonzero real parameters, and L > 0, [13, 23, 25, 61]. This
potential is unidirectionally invisible from the left for the wavenumber k = K/2,
if K = 2π/L and K2z 	 1. It belongs to the class of locally periodic finite-range
potentials of the form

v(x) =
{
f (x) for x ∈ [−L

2 ,
L
2 ],

0 for x /∈ [−L
2 ,

L
2 ],

(77)

where

f (x) :=
∞∑

n=−∞
zne

iKnx, (78)

zn are complex coefficients, and Kn := 2πn/L. The following theorem, which is
proven in Ref. [46], reveals a remarkable property of these potentials.

Theorem 7 Let v(x) be a potential of the form (77) and suppose that we are
interested in the scattering of waves of wavenumber k satisfying |zn|/k2 	 1,
so that the first Born approximation is valid. If zn = 0 for all n ≤ 0, v(x) is
unidirectionally left-invisible for all k = Kn/2 = πn/L.8

Now, consider taking L → ∞. Then (77) becomes v(x) = f (x), the Fourier
series in (78) turns into a Fourier integral, the role of zn is played by the Fourier
transform of v(x), i.e., ṽ(K) := ∫∞−∞ e−iKxv(x)dx, and Theorem 7 states that if the
first Born approximation is reliable, then v(x) is unidirectionally left-invisible for
all k ∈ R

+ provided that ṽ(K) = 0 for K ≤ 0. A highly nontrivial observation is
that the same conclusion may be reached without assuming the validity of the first
Born approximation [16, 30]. In other words the following theorem on broadband
invisibility holds.

8This means that v(x) is unidirectionally left-invisible for k = Kn/2 = πn/L provided that we can
neglect terms of order (zn/k

2)2 in the calculation of the reflection and transmission amplitudes.
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Theorem 8 A scattering potential v(x) is unidirectionally left-invisible for all
wavenumbers k ∈ R

+, if its Fourier transform ṽ(K) vanishes for all K ≤ 0.

Because the hypothesis of this theorem is equivalent to the condition that the real
and imaginary part of v(x) are connected by the spatial Kramers-Kronig relations,
these potentials are sometimes called Kramers-Kronig potentials.9 It is well-known
that they have a power-law decay at spatial infinities.10

The unidirectional invisibility of the potential (76) for k = K/2 = π/L is a
perturbative result [46]; it is violated for sufficiently large values of |z|, [18, 29]. This
potential does however support exact (nonperturbative) unidirectional invisibility
for particular values of z, [51]. Another example of a finite-range potential with
exact unidirectional invisibility is (77) with

f (x) := −2αK2(3 − 2eiKx)

e2iKx + α(1 − eiKx)2
,

where α andK are real parameters. It turns out that this potential is unidirectionally
right-invisible for k = K/2 = πn/L with n being any positive integer provided that
α > −1/4, [47]. The simplest scattering potential supporting exact unidirectional
invisibility are barrier potentials of the form v(x) = z1χ[−a1,0) + z2χ[0,a2] where zj
and aj are respectively complex and positive real parameters [43]. See also [67].

5 Spectral Singularities, Resonances, and Bound States

In Sect. 4 we show that the Wronskian of the Jost solutions ψ± of the Schrödinger
equation for a scattering potential v(x) is given by

W(x) = 2ik

t(k)
= 2ikM22(k). (79)

This in particular implies that ψ± are linearly dependent solutions of the
Schrödinger equation (2) whenever k is a real and positive zero of M22(k). This
represents a physical wavenumber k at which t(k) blows up. The corresponding
value of the energy, E := k2, which belongs to the continuous spectrum of the

Schrödinger operator, − d2

dx2 +v(x), is called a spectral singularity11 of the potential
[38].

9For a review of basic properties of these potentials, see [15].
10This explains why Theorems 6 and 8 do not conflict.
11The notion of a spectral singularity was originally introduced in [60] for Schrödinger operators
in the half-line. It was subsequently generalized to the case of full-line in [21]. The term “spectral
singularity” was originally used to refer to this notion in [69]. For a readable account of basic
mathematical facts about spectral singularities and further references, see [14].
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If k2
0 is a spectral singularity, M22(k0) = 0, but because det M(k0) = 1, neither

ofM12(k0) andM21(k0) can vanish. In light of (53), this implies that similarly to the
transmission amplitude t(k), the reflection amplitudes rl/r (k) blow up at k = k0.
Furthermore, (23) shows that whenever M22(k) = 0,

ψ+(x) = −M21(k)

M12(k)
ψ−(x)→

{−M21(k)e
−ikx for x → −∞,

eikx for x → +∞.
(80)

Application of this relation for k = k0 shows that at a spectral singularity Jost
solutions ψ±(x) are scattering solutions of the Schrödinger equation that satisfy
outgoing asymptotic boundary conditions. These are also known as the Seigert
boundary conditions [70] which provide a standard description of resonances.

Consider a solution ψ(x) of the time-independent Schrödinger equation (2) for
a general complex value of the energy k2 and suppose that it satisfies the outgoing
asymptotic boundary conditions:

ψ(x)→ N±(k) e±ikx for x → ±∞, (81)

where N±(k) are nonzero complex coefficients. ψ(x) corresponds to a solution
ψ(x, t) of the time-dependent Schrödinger equation, i∂tψ(x, t) = −∂2

xψ(x, t) +
v(x)ψ(x, t), namely

ψ(x, t) := e−ik2tψ(x) = e−Γ t e−iEtψ(x), (82)

where

E := Re(k)2 − Im(k)2, Γ := −2Re(k)Im(k). (83)

If Γ > 0, ψ(x, t) decays exponentially as t → ∞. In this case, we identify ψ(x, t)
with a resonance. The quantity Γ which determines its decay rate is called the width
of the resonance. If Γ < 0, ψ(x, t) grows exponentially as t → ∞, and we call
it an antiresonance. It is not difficult to see that resonances and antiresonances are
also zeros of M22(k). But the corresponding value of k2 lie in the lower and upper
complex energy half-planes,

Elower := {k2 ∈ C | Im(k2) < 0}, Eupper := {k2 ∈ C | Im(k2) > 0},

respectively.
The Jost solutions of the time-independent Schrödinger equation (2) that corre-

spond to a spectral singularity satisfy the above description of a resonance except
that for a spectral singularity k is real. This suggests identifying these solutions
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with certain zero-width resonances [38].12 Note that spectral singularities lie on the
positive real axis in the complex energy plane:

E+ := {k2 ∈ C | Re(k2) > 0 and Im(k2) = 0}. (84)

There is another way in which we can have a real zero ofM22(k) such that Γ = 0.
This is when k is purely imaginary; i.e., E = k2 ∈ R

−. Let us set k = i
√|E|. Then,

according to (80), ψ+ determines a solution of the time-independent Schrödinger
equation that decays exponentially at spatial infinities. This solution is clearly
square-integrable. Therefore its energy E = k2, which is real and negative, belongs

to the point spectrum of the Schrödinger operator − d2

dx2 + v(x); it is a real and
negative eigenvalue of this operator that corresponds to a bound state of the potential
v(x). If k is a zero ofM22(k) that lies in the upper-half k-plane, i.e., Im(k) > 0, then
|ψ+(x)| is again exponentially decaying as x → ±∞. Therefore ψ+(x) is a square-

integrable function and k2 is a complex eigenvalue of − d2

dx2 + v(x).
Note that the above discussion of the interpretation of the zeros of M22(k)

as spectral singularities, resonances, antiresonances, and eigenvalues of the

Schrödinger operator − d2

dx2 + v(x) applies to any scattering potential. As shown in
[21], in this case the Jost solutions ψ± and consequently the entries of the transfer
matrix are continuous functions of k for Im(k) ≥ 0. They might not however be
holomorphic in any region containing the real axis in the complex k-plane. If there
is such a region in which M22(k) is a nonzero holomorphic function, then the zeros
of M22(k) that lie in this region form a discrete isolated set of points. This in turn
implies that one cannot have spectral singularities in an extended interval of real
numbers other than the whole positive real axis. In particular we have the following
result.

Theorem 9 If v(x) is a real or complex potential with a finite range or an
asymptotic exponential decay, so that (13) holds for some μ± ∈ R

+, then either
its spectral singularities are isolated points of the positive real axis in the complex
energy plane or cover the whole positive real axis.

Next, we examine the behavior of the eigenvalues s± of the S-matrix in the
vicinity of a spectral singularity k2

0. As k → k0, ε := M22(k) tends to zero. Because
the entries of the transfer matrix are continuous functions on the upper half-plane
and Im(k0) ≥ 0, none of them blow up at k = k0. We also know that det M(k) = 1.
In view of these observations and (50), we can show that the eigenvalues of the
S-matrix for a scattering potential satisfy

12Spectral singularities must be distinguished with the solutions of the time-independent
Schrödinger equation that correspond to a bound state in the continuum [17, 72] for the following
reasons: (1) They define scattering states that do not decay at spatial infinities. (2) They may exist
for exponentially decaying and short-range potentials. (3) As we explain in Sect. 8, real potentials
cannot have spectral singularities. None of these holds for bound states in the continuum.
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s±(k)→ 1

ε
± 1

|ε| ∓
sgn(ε)M11(k0)

2
for k → k0. (85)

This implies that as k2 approaches a spectral singularity, one of the eigenvalues of
S(k) diverges while the other attains a finite limit. More specifically we have the
following result.

Theorem 10 Let k2
0 be a spectral singularity of a scattering potential v(x). Then

as k → k0 the eigenvalues (50) of the S-matrix behave as follows. Either s−(k) →
−M11(k0)/2 and |s+(k)| → ∞, or |s−(k)| → ∞ and s+(k)→ M11(k0)/2.

Now, suppose that v(x) is a scattering potential such that det S(k) is a bounded
function of k. Then Theorem 10 implies that M11(k0) = 0 whenever k2

0 is a spectral
singularities of v(k), i.e., k0 is a common zero of M11(k) and M22(k). Spectral
singularities satisfying this condition are said to be self-dual [42]. We study these in
Sect. 9.

Let us examine the spectral singularities of a couple of exactly solvable poten-
tials.

First, consider a delta-function potential with a complex coupling constant z,
[37],

v(x) = z δ(x). (86)

We can determine its transfer matrix using (8), (26), and (27) with c = 0. This gives

M(k) =
[

1 − iz/2k −iz/2k
iz/2k 1 + iz/2k

]
. (87)

In view of this relation and (53),

rl (k) = rr (k) = −iz
2k + iz

, t(k) = 2k

2k + iz
. (88)

The following are consequences of the fact thatM22(k) has a single zero, namely
k0 = −iz/2.

• The delta-function potential has a spectral singularity, if and only if z is purely
imaginary and Im(z) > 0, i.e., z = iζ for some ζ ∈ R

+. In this case, k0 = ζ/2,
the spectral singularity has the value k2

0 = ζ 2/4, and

ψ+(x) = e±ik0x for ± x ≥ 0. (89)

• It has a single resonance (respectively antiresonance) with a square-integrable
position wave function ψ(x) if and only if Im(z) > 0 (respectively < 0) and
Re(z) < 0. In this case ψ(x) is a constant multiple of the right-hand side of (89)
with k0 = [Im(z)− iRe(z)]/2.
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• It has a bound state with a real and negative energy if and only if z ∈ R
−. The

position wave function for this state is a constant multiple of the right-hand side
of (89) with k0 = i|z|/2.

Next, we consider the spectral singularities of the complex barrier potential (56).
According to (59), zeros k0 of M22(k) satisfy

cos(k0Ln0)− in0+ sin(k0Ln0) = 0, (90)

where

n0 :=
√

1 − z

k2
0

, n0+ := n2
0 + 1

2n0
. (91)

It is not difficult to express (90) in the form:

e−2ik0Ln0 =
(
n0 − 1

n0 + 1

)2

. (92)

k2
0 is a spectral singularity if and only if k0 is a positive real number satisfying this

relation. For such a k0, we can write (92) as a pair of real equations for the k0,
η0 := Re(n0), and κ0 := Im(n0). Because

n0 = η0 + iκ0, (93)

evaluating the modulus of both side of (92) we find

κ0 = 1

2k0L
ln

∣∣∣∣∣
(η0 − 1)2 + κ2

0

(η0 + 1)2 + κ2
0

∣∣∣∣∣ . (94)

Similarly, equating the phase angles of both side of (92), we obtain

k0 = 2πm− ϕ0

2Lη0
, (95)

wherem is a positive integer, and ϕ0 is the principle argument of the right-hand side
of (92), i.e.,

ϕ0 =
{

arctan(α0) for η2
0 + κ2

0 ≥ 1,
arctan(α0)− π for η2

0 + κ2
0 < 1,

α0 := 2κ0

(η2
0 + 1)2 + κ2

0

. (96)

Next, let us identify the barrier potential (56) with an optical potential (4) that
describes the scattering of normally incident polarized electromagnetic waves by an
infinite slab of homogeneous nonmagnetic material. We choose a coordinate system
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in which the slab occupies the space confined between the planes x = 0 and x = L,
and the wave is polarized along the y-direction and propagates along the x-direction.
Then the relative permittivity of the system that enters the Helmholtz equation (3)
has the form:

ε̂(x) =
{
ε̂slab for x ∈ [0, L],

1 for x /∈ [0, L], (97)

where ε̂slab is the relative permittivity of the slab. In general this takes a pos-
sibly complex constant value. We can identify the Helmholtz equation with the
Schrödinger equation (2) provided that v(x) is the barrier potential (56) with
z = k2(1 − ε̂slab). Substituting this equation in (58), we find n = √

ε̂. Therefore
n is the refractive index of the slab.

According to (94) the optical system we have described has a spectral singularity,
if the imaginary part of the refractive index of our slab is negative. This is precisely
the case where the slab is made out of gain material. To see this we note that the gain
coefficient of a homogeneous medium is related to its refractive index according to

g = −4π Im(n)

λ
= −2kIm(n), (98)

where λ = 2π/k is the wavelength [71]. If the refractive index of the slab equals
n0, it emits coherent outgoing radiation of wavelength λ0 = 2π/k0, i.e., it acts as a
laser. In view of (94), for k = k0 and n = n0, the gain coefficient (98) is given by
[40]:

g = 1

L
ln

∣∣∣∣∣
(η0 + 1)2 + κ2

0

(η0 − 1)2 + κ2
0

∣∣∣∣∣ =
2

L
ln

∣∣∣∣n0 + 1

n0 − 1

∣∣∣∣ . (99)

This relation is known as the laser threshold condition in optics [71]. It is usually
derived by balancing the energy input of the laser by the sum of its energy output
and losses. Here we obtain it using the notion of spectral singularity, i.e., demanding
the existence of purely outgoing solutions of the wave equation. Notice that this
condition also yields a formula for the available laser modes, namely (95). For
typical lasers, k0L � 1. This implies m � 1 which together with (95) give
k0 ≈ πm/LRe(n0). The latter is also a well-known result in optics.

The notion of spectral singularity can be extended to more general scattering
problems. This is done by identifying it with the values of k2 at which the left or
right reflection and transmission coefficients blow up. This corresponds to situations
where ψ(x) satisfies purely outgoing boundary conditions.13 For a linear scattering
problem, the assumption det M(k) �= 0 together with Eqs. (22) imply that spectral

13The importance of purely outgoing waves in the laser theory predates the discovery of their
connection to the mathematics of spectral singularities. See for example [73].
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singularities are given by the real and positive zeros of M22(k) and that they
are always bidirectional, i.e., both the left and right reflection and transmission
coefficients diverge at a spectral singularity.

Determination of spectral singularities of an optical system having an arbitrary
geometry is equivalent to finding its laser threshold condition. This observation has
been employed for obtaining laser threshold condition for bilayer [42], cylindrical
[57], and spherical [55, 56, 58] lasers. A brief review of the physical aspects of
spectral singularities is provided in [49]. For a discussion of the spectral singularities
of nonlinear Schrödinger equation and their applications in optics, see [9, 12, 26, 44].

6 Space Reflections and Time-Reversal Transformation

In this section we explore the space reflection and time-reversal transformations
in quantum mechanics. This requires the knowledge of unitary and Hermitian
operators acting in a Hilbert space. Because a precise definition of a Hermitian
operator involves certain notions of functional analysis that are not familiar to most
physicists, here we provide a less rigorous description. The interested reader may
consult [39, 62] for a more careful treatment of the subject.

Consider a linear operator L acting in a Hilbert space H , and let ≺ · , · � denote
the inner product of H . Then the adjoint of L is the operator L† : H → H that
satisfies

≺ ·, L · �=≺ L†· , · � .

We call L Hermitian or self-adjoint if L† = L. We call it a unitary operator if
its domain is H , it is one-to-one and onto, and L−1 = L†. These conditions are
equivalent to the requirement that

≺ Lφ1, Lφ2 �=≺ φ1, φ2 �,

i.e., L leaves the inner product invariant. Here and in what follows φ1 and φ2 are
arbitrary elements of H . It turns out that L is unitary if and only if it preserves the
norm of the vectors; ‖ Lφ1 ‖=‖ φ1 ‖ where ‖ φ1 ‖:= √≺ φ1, φ1 �.

In the standard quantum mechanical description of the nonrelativistic motion of a
particle on a straight line, we take H to be the space of square integrable functions
L2(R) endowed with the inner product: 〈φ1|φ2〉 :=

∫∞
−∞ φ1(x)

∗φ2(x)dx.
Hermitian operators play a basic role in both kinematical and dynamical aspects

of quantum mechanics. Observables of quantum systems are described by Hermitian
operators not just because they have a real spectrum, but more importantly because
their expectation values are real. Non-Hermitian operators may have a real spectrum
and even a complete set of eigenvectors forming a basis of the Hilbert space, but
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there are always states in which their expectation value is not real.14 Because the
calculation of expectation values involves the inner product of the Hilbert space, a
non-Hermitian operator can play the role of an observable of a quantum system, only
if we can modify the inner product on the space of state vectors or even the space
of state vectors itself [45], so that the operator acts in the new Hilbert space as a
Hermitian operator.15 This leads to different representations of quantum mechanics
whose structure is identical to the standard representation that we employ here [39].
The Hamiltonian operator is required to be Hermitian not only because it is usually
identified with the energy observable, but also because it ensures the unitarity
of time-evolution, i.e., the time-evolution operator defined by the Hamiltonian is
a unitary operator. A celebrated result of functional analysis, known as Stone’s
theorem [64], establishes the converse of this statement. Therefore, the unitarity
of dynamics implies the Hermiticity of the Hamiltonian. This result also disqualifies
non-Hermitian operators from serving as the Hamiltonian operator for a unitary
quantum system.

Non-Hermitian operators can nevertheless be employed in the study of open
quantum systems and a variety of problems in the areas where some of the axioms
of quantum mechanics are violated. This has actually turned out to be more fruitful
than the attempts to use non-Hermitian operators for invoking the nonstandard
representations of quantum mechanics.

Having reviewed the meaning of Hermiticity and unitarity of an operator and
their role in quantum mechanics, we return to the study of space reflections and
time-reversal transformation.

For each a ∈ R, the active transformation, x → 2a − x, corresponds to the
reflection of the real line about the point a. This transformation induces a mapping
of the wave functions φ(x) according to φ(x) → φ(2a − x). We identify this with
the action of a linear operator Pa in L2(R), namely φ → φ̃ := Paφ, where

(Paφ)(x) := φ(2a − x). (100)

It is easy to show that Pa is a Hermitian operator. It is also clear that P2
a = I , so

that P−1
a = Pa . Combining this with the Hermiticity of Pa we conclude that Pa is

also a unitary operator.
We can use Pa to transform linear operators L(t) acting in L2(R) according to

L(t)→ L̃(t) := Pa L(t)P−1
a = Pa L(t)Pa. (101)

14For a proof of this statement see [39, Appendix]. A more detailed discussion is provided in [68].
15This is obviously not always possible. A sufficient condition for the existence of such a modified
inner product is that the operator L satisfies the pseudo-Hermiticity relation L† = η Lη−1 for a
positive-definite bounded linear operator η with a bounded inverse. For further discussion of these
and related issues see [39, 45] and references therein.
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For example, let x̂, p̂, and H(t) be respectively the standard position, momentum,
and Hamiltonian operators acting in L2(R), i.e.,

x̂ φ(x) := xφ(x), p̂ φ(x) := −iφ′(x), H(t) = p̂2

2m
+ v(x̂, t). (102)

We can use (100) to show that

{x̂,Pa} = 2aI, {p̂,Pa} = 0, (103)

where { · , · } stands for the anticommutator of operators. Equations (101), (102),
and (103) imply

˜̂x = 2aI − x̂, ˜̂p = −p̂, H̃ (t) = p̂2

2m
+ v(2aI − x̂, t). (104)

The first of these relations justifies the name “space reflection” or “parity operator
with respect to a” for Pa .

IfH(t) is the Hamiltonian operator for a quantum system S , we call the quantum
system defined by H̃ the “space reflection of S with respect to a.” Equation (101)
and the unitarity of Pa imply that H̃ (t) is Hermitian if and only if so is H(t). This
means that space reflections of a unitary quantum system are unitary.

An operator L(t) is called parity-invariant with respect to a if L̃(t) = L(t). In
particular, a standard Hamiltonian operator (102) is parity-invariant with respect to
a if and only if v(2a − x, t) = v(x, t).

The parity operators Pa can be generated from P0 using the space-translation
operator Ta := e−iap̂ which satisfies:

(Ta φ)(x) = φ(x − a). (105)

To see this we use (100) and (105) to show that

(Paφ)(x) = φ(2a − x) = (P0φ)(x − 2a) = (T2aP0φ)(x).

Therefore,

Pa = T2aP0. (106)

We use the symbol P for P0 and refer to it as the parity operator in L2(R).
According to this terminology a standard Hamiltonian operator (102) is parity-
invariant or P-symmetric if and only if v(x, t) = v(−x, t). For a time-independent
potential v(x), this means that it is an even function.
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Next, consider the operation of complex-conjugation of complex-valued func-
tions, φ(x) → φ(x)∗. This defines a function T : L2(R) → L2(R) according to
(T φ)(x) := φ(x)∗. Because for any pair of complex numbers α1 and α2,

T (α1φ1 + α2φ2) = α∗1T φ1 + α∗2T φ2,

T is an antilinear operator. It is also clear that T squares to the identity operator I .
In particular, it is invertible, and T −1 = T .

Let us apply T to both sides of the time-dependent Schrödinger equation,

i
d

dt
ψ(x, t) = H(t)ψ(x, t). (107)

This gives −i d
dt
T ψ(x, t) = T H(t)ψ(x, t). We can write this equation in the form

i
d

d(−t)T ψ(x, t) = H(−t)T ψ(x, t), (108)

where for a time-dependent linear operator L(t),

L(t) := T L(−t)T −1 = T L(−t)T . (109)

If we make the change of variables:

t → t := −t, ψ(x, t)→ ψ(x, t) := ψ(x, t)∗ = (T ψ)(x, t),

Eq. (108) takes the form i d
dt
ψ(x, t) = H(t))ψ(x, t). Because t and t take arbitrary

real values, this equation is equivalent to

i
d

dt
ψ(x, t) = H(t)ψ(x, t). (110)

We can express the solutions of (107) and (110) in terms of the time-evolution
operators U(t) and U(t) for the Hamiltonians H(t) and H(t). For a given initial
state vector ψ0(x), we have

ψ(x, t) = U(t)ψ0(x), ψ(x, t) = U(t)ψ0(x)
∗. (111)

According to these relations, as we increase the value of the time label t starting
from t = 0, the evolution operators U(t) and U(t) respectively determine ψ(x, t)
and ψ(x, t) for t > 0. In view of the fact that ψ(x,−t) = ψ(x, t)∗, we can say
that U(t) determines ψ(x, t) for t < 0. For this reason, the systems described by
the Hamiltonian operators H(t) and H(t) are said to be the time-reversal of one
another. This, in particular, suggests identifying the antilinear operator T with the
time-reversal operator.
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The above argument leaves a crucial question unanswered: Suppose thatH(t) is a
Hermitian operator so that it determines a unitary quantum system. Does this imply
that the time-reversed system is also unitary? Equivalently, is H(t) Hermitian? The
answer turns out to be in the affirmative, because T satisfies

〈T φ1|T φ2〉 =
∫ ∞

−∞
[T φ1(x)]∗T φ2(x)dx =

∫ ∞

−∞
φ1(x)φ2(x)

∗dx = 〈φ2|φ1〉.
(112)

With the help of this relation and the Hermiticity of H(t), we can show that

〈φ1|H(t)φ2〉 = 〈T 2φ1|H(t)φ2〉 = 〈T 2φ1|T H(−t)T φ2〉 = 〈H(−t)T φ2|T φ1〉
= 〈T φ2|H(−t)T φ1〉 = 〈T φ2|T 2H(−t)T φ1〉 = 〈T H(−t)T φ1|φ2〉
= 〈H(t)φ1|φ2〉.

This concludes the proof of the Hermiticity of H(t).
An antilinear operator S, which by definition satisfies

S(α1φ1 + α2φ2) = α∗1Sφ1 + α∗2Sφ2,

is said to be unitary, if

〈Sφ1|Sφ2〉 = 〈φ2|φ1〉. (113)

Unitary antilinear operators are also called “antiunitary operators” [76]. Similarly
to unitary linear operators they preserve the norm of state vectors.

Equation (112) means that T is an antiunitary operator. There are other antiuni-
tary operators that square to identity and share the time-reversal property of T .16

This implies that in general T is not the only possible choice for a time-reversal
operator [35]. In what follows, however, we take T to implement the time-reversal
transformation in L2(R) and refer to it as the time-reversal operator.

A possibly time-dependent linear operator L(t) is said to be time-reversal-
invariat or real if L(t) = L(t). It is called an imaginary operator if L(t) = −L(t).
For example, the standard position operator x̂ is real, because

x̂ φ(x) = T x̂T φ(x) = [xφ(x)∗]∗ = xφ(x) = x̂ φ(x),

while the standard momentum operator p̂ is imaginary, because

p̂ φ(x)=T p̂T φ(x)=T
[
−i d
dx
φ(x)∗

]
=iT

[
d

dx
φ(x)∗

]
=i d
dx
φ(x)=− p̂φ(x).

16A simple examples is Tτ := eiτT where τ ∈ R.
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Clearly L(t) is an imaginary operator if and only if iL(x) is real. In particular, iI
is imaginary, because I is a real operator. Note also that time-independent linear
operators LR and LI are respectively real and imaginary if and only if

[LR, T ] = 0, {LI , T } = 0.

We can easily show that the real multiples, sums, and products of real operators
are real. This for instance implies that p̂2 = −(ip̂)2 is a real operator. In light of
this observation, the time-reversal of a standard Hamiltonian operator (102) is given

by H(t) = p̂2

2m + v(x̂, t), where

v(x̂, t)φ(x) = T v(x̂,−t)T φ(x) = T [v(x,−t)φ(x)∗] = v(x,−t)∗φ(x).

This shows that v(x̂, t) is a real operator provided that v(x,−t) = v(x, t)∗. In
particular, for a time-independent standard Hamiltonian,

H = p̂2

2m
+ v(x̂), (114)

we have

H = p̂2

2m
+ v(x̂)∗, (115)

where v(x̂)∗φ(x) := v(x)φ(x) = v(x)∗φ(x). The Hamiltonian (114) is therefore
real if and only if v(x) is a real-valued potential.

Next, we explore the consequences of the combined action of parity and time-
reversal transformations. This is realized in L2(R) by PT whose effect on the wave
functions φ(x) and time-dependent linear operators L(t) are give by

φ(x) −→ φ̃(x) := (PT φ)(x) = φ(−x, t)∗,
L(t) −→ L̃(t) := P

[
T L(−t)T −1

]
P−1 = PT L(−t)(PT )−1 = PT L(−t)PT .

Here, in the last equality we have used the fact that P and T commute and square
to identity;

[P, T ] = 0, P2 = T 2 = I. (116)

Because P and T are respectively unitary and antiunitary operators,

PT (α1φ1 + α1φ2) = P(α∗T φ1 + α∗2T φ2) = α∗PT φ1 + α∗2PT φ2,

〈PT φ1|PT φ2〉 = 〈T φ1|T φ2〉 = 〈φ2|φ1〉.

These show that PT is an antiunitary operator. The same is true about PaT .
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We can use (116) and

x̂ = T x̂ T −1 = x̂, p̂ = T p̂ T −1 = −p̂,
˜̂x = P x̂ P−1 = −x̂, ˜̂p = P p̂P−1 = −p̂, (117)

to show that

˜̂
x = PT x̂ (PT )−1 = −x̂, ˜̂

p = PT p̂ (PT )−1 = p̂. (118)

In other words,

{x̂,PT } = 0, [ p̂,PT ] = 0. (119)

Another consequence of (118) and the antilinearity of PT is that it transforms a
standard Hamiltonian operator of the form (114) to

H̃ = p̂2

2m
+ v(−x̂)∗. (120)

A linear operator L(t) is said to be PT -symmetric if it is invariant under the

combined action of P and T , i.e., L(t) → L̃(t) = L(t). For a time-independent
operator L, this means

[L,PT ] = 0.

In particular, p̂ is PT -symmetric, and a time-independent standard Hamiltonian H
is PT -symmetric if and only if its potential is PT -symmetric, i.e., v(−x)∗ = v(x).
In terms of the real and imaginary parts of v(x), which we denote by vr(x) and
vi(x), this condition takes the form

vr(−x) = vr(x), vi(−x) = −vi(x). (121)

Therefore, the real and imaginary parts of a PT -symmetric potential are respec-
tively even and odd functions. Similarly, it follows that H is PaT -symmetric if and
only if v(2a − x)∗ = v(x). This is equivalent to

vr(2a − x) = vr(x), vi(2a − x) = −vi(x). (122)

7 P-, T -, and PT -Transformation of the Scattering Data

Consider the scattering problem for a wave equation in one dimension that admits
solutions ψ(x) satisfying the asymptotic boundary conditions (1). Suppose that for
x → ±∞ the parity, time-reversal, and space translations respectively transform
ψ(x) according to:
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ψ(x)
P−→ ψ̃(x) := ψ(−x), ψ(x)

T−→ ψ(x) := ψ(x)∗,

ψ(x)
Ta−→ ψa(x) := ψ(x − a).

(123)

It is easy to see that these transformations leave the asymptotic boundary condi-
tions (1) form-invariant. This shows that the transformed wave functions, ψ̃(x),
ψ(x), and ψa(x) also define consistent scattering problems. We wish to explore the
behaviour of the corresponding reflection and transmission amplitudes. To do this,
we confine our attention to situations where we can define a transfer matrix M(k)

and examine the effect of the transformations (123) on M(k).
Let M̃(k), M(k), and Ma(k) respectively denote the transfer matrix for ψ̃(x),

ψ(x), and ψa(x). We can use (1), (14), and (123) to relate them to M(k). This
requires expressing the asymptotic expression for ψ̃(x), ψ(x), and ψa(x) in
the form (1) with (A±, B±) respectively replaced by (Ã±, B̃±), (A±, B±), and
(Aa±, Ba±). In this way we find asymptotic formulas for ψ̃(x), ψ(x) and ψa(x)
that together with (123) imply:

Ã± = B∓, B̃± = A∓, (124)

A± = B∗±, B± = A∗±, (125)

Aa± = e−iakA±, Ba± = eiakB±. (126)

Recalling that the transfer matrices M̃, M, and Ma satisfy

[
Ã+
B̃+

]
= M̃

[
Ã−
B̃−

]
,

[
A+
B+

]
= M

[
A−
B−

]
,

[
Aa+
Ba+

]
= Ma

[
Aa−
Ba−

]
, (127)

we can use (14), (124), (125), and (126) to infer:

M̃ = σ 1M−1σ 1, M = σ 1M∗σ 1, Ma = e−iakσ 3 M eiakσ 3 , (128)

where

σ 1 :=
[

0 1
1 0

]
, σ 3 :=

[
1 0
0 −1

]
, eiaσ 3 =

[
eia 0
0 e−ia

]
.

It is instructive to examine the explicit expression for the entries of M̃, M, and
Ma . According to (128), they have the form:

M̃11 = M11

det M
, M̃12 = − M21

det M
, M̃21 = − M12

det M
, M̃22 = M22

det M
,

(129)

M11 = M∗
22, M12 = M∗

21, M21 = M∗
12, M22 = M∗

11, (130)
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Ma11 = M11, Ma12 = e−2iakM12, Ma21 = e2iakM21, Ma22 = M22. (131)

We can use these relations together with (22) to compute the reflection and
transmission amplitudes for the reflected, time-reversed, and translated waves,
ψ̃(x), ψ(x), and ψa(x). These are respectively given by

r̃l = rr , t̃l = tr , r̃r = rl , t̃r = tl , (132)

rl = − r∗r
D∗ , tl = t∗l

D∗ , rr = − r∗l
D∗ , tr = t∗r

D∗ , (133)

ral = e2iak rl , tal = tl rar = e−2iak rr , tar = tr , (134)

where we recall that D := M11/M22 = tltr − rlrr = det S.
Next, we examine the effect of Pa on the scattering data. Because in view of (106)

we have Pa = T2aP , Pa transforms the transfer matrix M according to

M
Pa−→ M̃ 2a = e−i2akσ 3σ 1M−1σ 1e

i2akσ 3 = 1

det M

[
M11 −e−4iakM21

−e4aikM12 M22

]
.

(135)

Here we have made use of (128) and the identity

e−iϕσ 3σ 1 = σ 1e
iϕσ 3 =

[
0 e−iϕ
eiϕ 0

]
.

Using (22) and (135), we obtain

rl
Pa−→ e4iakrr = e4iak̃rl , tl

Pa−→ tr = t̃r , (136)

rr
Pa−→ e−4iakrl = e−4iak̃rr , tr

Pa−→ tl = t̃r . (137)

These equations show that the effect of a space reflection about a point a �= 0
introduces the extra phase factors e±4iak in the expression for the P-transformed
reflection amplitudes. In particular, it does not affect the zeros and singularities of
the reflection and transmission amplitudes of the system.

We now study the implication of PT on the scattering data. According to (128),
the PT -transformation of the transfer matrix M(t) yields

M
PT−→ M̃ = σ 1[σ 1M∗σ 1]−1σ 1 = M−1∗

= 1

det M∗
[
M∗

22 −M∗
12

−M∗
21 M∗

11

]
. (138)
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In particular,

det M
PT−→ det M̃ = 1

det M∗ , (139)

M11
PT−→ M̃11 := M∗

22

det M∗ , M12
PT−→ M̃12 := − M∗

12

det M∗ , (140)

M21
PT−→ M̃21 := − M∗

21

det M∗ , M22
PT−→ M̃22 := M∗

11

det M∗ . (141)

With the help of these relations and (22) or alternatively (132) and (133),
we can derive the following expressions for the PT -transformed reflection and
transmission amplitudes.

r̃l = − r∗l
D∗ , t̃l = t∗r

D∗ , r̃r = − r∗r
D∗ , t̃r = t∗l

D∗ . (142)

8 P-, T -, and PT -Symmetric Scattering Systems

A physical system that involves the scattering of a scalar wave in one dimension is
said to be P-, T -, and PT -symmetric if its reflection and transmission amplitudes
are respectively invariant under space reflection, time-reversal, and the combined
action of space reflection and time-reversal transformation, i.e.,

P-symmetry := r̃l/r = rl/r and t̃l/r = tl/r , (143)

T -symmetry := rl/r = rl/r and tl/r = tl/r , (144)

PT -symmetry := r̃l/r = rl/r and t̃l/r = tl/r . (145)

We can alternatively state the definition of these symmetries in terms of the
invariance of the transfer matrix M or the scattering matrix S of the system under
the action of P , T , and PT . In this section we explore the consequences of these
symmetries.

According to (132), the P-symmetry of a scattering system implies

rl = rr , tl = tr . (146)

Substituting the latter equation in (21), we find det M = 1. Let us also mention
that in view of (49) and (146), the eigenvalues of the S-matrix for P-symmetric
systems take the simple form: s± = t ± r where t := tl = tr and r := rl = rr .
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Another obvious consequence of (146) is that P-symmetric systems cannot support
unidirectional reflection or unidirectional invisibility.

The delta-function potential (86) provides a simple example of a P-symmetric
potential that may not be time-reversal-invariant. As demonstrated by (88), it
complies with (146).

We can similarly derive the consequences of Pa-symmetry. This symmetry also
implies transmission reciprocity and det M = 1, but breaks the reciprocity in
reflection amplitudes as it yields the following generalization of the first relation
in (146).

e−2iakrl (k) = e2aikrr (k). (147)

Notice however that reciprocity in reflection coefficients, |rl |2 = |rr |2, persists.
A simple example of Pa-symmetric scattering system is that of the barrier poten-
tial (56) with L = 2a. Clearly in this case the expressions (60) and (61) for the
reflection amplitudes agree with (147).

The consequences of the T -symmetry are more interesting. Imposing (144), we
can use (133) to deduce

r∗r = −D∗rl , r∗l = −D∗rr , t∗l/r = D∗tl/r . (148)

The first two of these relations indicate that either both rl/r vanish or |D| = 1. This
means that there is some real number σ ∈ R such that D = eiσ . Substituting this
in (148), we can show that

rr = −eiσ r∗l , tl/r = εl/r |tl/r |eiσ/2, (149)

where εl/r are some unspecified signs; εl/r ∈ {−1, 1}. In particular,

|rl | = |rr |. (150)

This equation proves the following result.

Theorem 11 Time-reversal-invariant systems in one dimension cannot support
unidirectional reflection or unidirectional invisibility.

If we insert (149) in the definition of D, namely (75), and impose D = eiσ , we
find

|rl |2 + εlεr |tltr | = 1. (151)

The following theorem summarizes the content of Eqs. (150) and (151).

Theorem 12 The reflection and transmission amplitudes of a time-reversal-
invariant scattering system in one-dimension satisfy
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|rl (k)|2 = |rr (k)|2 = 1 ± |tl (k)tr (k)|, (152)

where k ∈ R
+ and the unspecified sign on the right-hand side is to be taken negative

whenever the system has reciprocal transmission, i.e., tl (k) = tr (k).

If tr = tl , which is for example the case for systems that are both T - and P-
symmetric or described by a real scattering potential, εl = εr and we can write (151)
as

|rl/r |2 + |t|2 = 1, (153)

where again t := tl = tr . Equation (153) is usually derived for real scattering
potentials using the unitarity of the time-evolution generated by the corresponding
standard Hamiltonian (114). It is therefore often called the unitarity relation. The
derivation we have offered here is more general, for it relies on the transmission
reciprocity and time-reversal-invariance. Removing the first of these conditions,
we arrive at (152) which is a mild generalization of the unitarity relation (153).
Equation (152) apply, for example, to the scattering problem defined by the time-
independent Schrödinger equation for the Hamiltonian operator:

H = (I + e−μx̂2
)

[
p̂2

2m
+ v(x̂)

]
,

where μ is a positive real parameter, and v(x) is a real and even scattering potential.
Note that this Hamiltonian is both P- and T -symmetric but not Hermitian.17

The unitarity relation (153), which holds for time-reversal-invariant systems
with reciprocal transmission, in general, and real scattering potentials in particular,
implies that the reflection and transmission coefficients of the system cannot exceed
1; |r(k)|2 ≤ 1 and |t(k)|2 ≤ 1 for all k ∈ R

+. This means that these systems do not
amplify the transmitted or reflected waves. In particular, we have:

Theorem 13 If a time-reversal-invariant scattering system in one dimension has
reciprocal transmission, it cannot have spectral singularities.

It is for this reason that spectral singularities do not appear in the study of unitary
quantum systems described by standard Hamiltonian operators.

Time-reversal-invariant systems violating reciprocity in transmission can have
spectral singularities. A simple example is a single-center point interaction (7) with
n = 1, c1 = 0, and

17The scattering problem for this Hamiltonian operator is equivalent to that of the energy-
dependent scattering potential v(x, k) := 2mv(x) + k2/(1 + eμx

2
). This is because we can write

Hψ(x) = Eψ(x) in the form −ψ ′′(x)+ v(x, k)ψ(x) = k2ψ(x) where k := √
E.
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B =
[
α β

γ −α
]
, α, β, γ ∈ R, βγ > 0. (154)

It is easy to see that the system described by this point interaction is time-reversal-
invariant, because B is a real matrix [41]. Furthermore, we can compute its transfer
matrix using (27) and find out that for this system M22(k) = βk2 − γ . Therefore,
it has a spectral singular k2

0 = γ /β. Note also that because det M = det B =
−α2 − βγ < 0, det M �= 1 which shows that it has nonreciprocal transmission.

We can also characterize time-reversal symmetry in terms of the restrictions it
imposes on the transfer and scattering matrices. These have the following simple
form.

M∗ = σ 1Mσ 1, S∗ = σ 1S−1σ 1. (155)

Because det σ 1 = −1, the first of these equations implies that det M must be real
while the second reproduces the result that det S is unimodular; | det S| = 1.

Let us examine the eigenvalues of S for time-reversal-invariant systems. In view
of (49), (149), and (151), these are given by

s+ = (τ +
√
τ 2 − 1)eiσ/2, s− = (τ −

√
τ 2 − 1)eiσ/2 = eiσ/2

τ +√
τ 2 − 1

, (156)

where

τ(k) := εl |tl (k)| + εr |tr (k)|
2

. (157)

It is not difficult to see that |s±| = 1 if and only if

|τ | ≤ 1. (158)

If |τ(k)| ≤ 1 for all k ∈ R
+, we say that the time-reversal symmetry of the system is

exact or unbroken. If |τ | > 1 for some k ∈ R
+, we say that the system has a broken

time-reversal symmetry.
To examine the physical meaning of exact time-reversal symmetry, we examine

the consequences of (158). First we use (157) to write it in the form

|tl |2 + |tr |2 + 2εlεr |tltr | ≤ 4. (159)

With the help of (151), we can express this equation as

|tl |2 + |tr |2
2

≤ 1 + |rl |2. (160)
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If εlεr = 1, (151), (150), and (160) imply

|rl/r |2 ≤ 1, |tl |2 + |tr |2 ≤ 4. (161)

Therefore similarly to the unitary systems the reflection and transmission amplitudes
are bounded functions, and the system cannot involve spectral singularities.

If a system has a broken time-reversal symmetry, there is some k ∈ R
+ such that

|τ(k)| > 1. In this case, (151) implies

|tl (k)|2 + |tr (k)|2
2

| > 1 + |rl |2 ≥ 1. (162)

Furthermore because
√
τ 2 − 1 is real and nonzero, (156) implies |s±| �= 1 and

s− = 1/s∗+.
Equation (151) which reveals various properties of the time-reversal-invariant

scattering systems has a rather interesting equivalent that does not involve the
unspecified signs εl/r . To derive this, first we use (74) and the fact that D(k) = eiσ(k)

to show that

rl/r (−k) = −e−iσ (k)rr/ l(k), tl/r (−k) = e−iσ (k)tl/r (k). (163)

These relations have the following straightforward implications:

|rl/r (−k)| = |rr/ l(k)|, |tl/r (−k)| = |tl/r (k)|, (164)

rl/r (−k)rl/r + tl/r (−k)tr/ l(k) = 1, (165)

where we have made use of the definition of D(k), i.e., (75), and the fact that D(k) =
eiσ(k).

It is important to notice that our derivation of Equations (163), (164), and (165)
only uses the fact that |D(k)| = 1, which is much less restrictive than the time-
reversal symmetry of the system. We state this result as a theorem:

Theorem 14 Equations (164) and (165) hold for any scattering system whose
reflection and transmission amplitudes satisfy |tl (k)tr (k) − rl (k)rr (k)| = 1, i.e.,
|D(k)| = 1.18

Next, we examine the implications of PT -symmetry. In view of (142) and (145),
the reflection and transmission amplitudes of PT -symmetric scattering systems
satisfy

r∗l/r = −D∗rl/r , t∗l/r = D∗tl/r . (166)

18An extension of this theorem to more general scattering systems is given in [52].
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If we complex-conjugate both sides of (75) and use (166) in the right-hand side
of the resulting equation, we find D∗ = D∗2D, which means |D| = 1. In view
of Theorem 14, this shows that, similarly to time-reversal-invariant systems, PT -
symmetric systems satisfy the identities (164) and (165).19

Because |D| = 1, D = eiσ for some σ ∈ R. Using this relation in (166), we can
show that

rl/r = iηl/re
iσ/2|rl/r |, tl/r = εl/re

iσ/2|tl/r |, (167)

where ηl/r , εl/r ∈ {−1, 1}. Now, we substitute these relations in (75) and make use
of D = eiσ to conclude that

εlεr |tltr | + ηlηr |rlrr | = 1. (168)

According to this equation, εlεr = −1 implies ηlηr = 1 and ηlηr = −1 implies
εlεr = 1. These observations prove the following theorem.

Theorem 15 For all k ∈ R
+, the reflection and transmission amplitudes of a PT -

symmetric scattering system in one-dimension satisfy either

|tl (k)tr (k)| = −1 + |rl (k)rr (k)|, (169)

or

|tl (k)tr (k)| = 1 ± |rl (k)rr (k)|. (170)

If the system has reciprocal transmission, i.e., tl (k) = tr (k), only the second of
these relations holds. In this case, we have

|t(k)|2 ± |rl (k)rr (k)| = 1. (171)

If the system has reciprocal reflection, i.e., rl (k) = rr (k), (169) is not excluded but
the unspecified sign on the right-hand side of (170) is to be taken negative, i.e., it
reads

|tl (k)tr (k)| + |r(k)|2 = 1. (172)

19Equations (164) was originally conjectures in [1] for PT -symmetric scattering potentials based
on evidence provided by the study of a complexified Scarf II potential. It was subsequently proven
in [48] for general PT -symmetric scattering potentials which respect transmission reciprocity.
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For a scattering system defined by a PT -symmetric scattering potential, Theorem 2
ensures the reciprocity in transmission. Therefore, PT -symmetric scattering poten-
tials satisfy (171), [11].

Next, we examine the effect of PT -symmetry on the transfer and scattering
matrices. It is easy to show that for PT -symmetric systems,

M∗ = M−1, S† = σ 1S−1σ 1, (173)

where S† is the conjugate-transpose or Hermitian-conjugate of S. The first of these
relations follows from (138) and implies that det M is unimodular;

| det M| = 1. (174)

The second is a consequence of (48) and (166). Because σ−1
1 = σ 1, we can write

it in the form S† = σ 1S−1σ−1
1 . This indicates that S is a σ 1-pseudo-unitary matrix

[36], i.e., if we identify the elements of C2 with 2 × 1 matrices and view σ 1 and S
as linear operators acting on them, then S preserves the indefinite inner product:

〈a,b〉σ 1 := 〈a|σ 1b〉 = a†σ 1b = a∗1b2 + a∗2b1,

where a = [a1 a2]T and b = [b1 b2]T are arbitrary 2 × 1 complex matrices, and a
superscript “T” on a matrix labels its transpose.20 Because the S-matrix of every
PT -symmetric scattering potential is σ 1-pseudo-unitary, Eq. (171) is sometimes
called the pseudo-unitarity relation.

In general, an invertible square matrix U is said to be pseudo-unitary, if there
is an invertible Hermitian matrix η such that U† = ηU−1η−1. Pseudo-unitary
matrices have the property that the inverse of the complex-conjugate of their
eigenvalues are also eigenvalues, i.e., if s is an eigenvalue of a pseudo-unitary
matrix, either |s| = 1 or 1/s∗ is also an eigenvalue [36]. As we show above this
condition applies also for the eigenvalues of the S-matrix for time-reversal-invariant
systems. We can check its validity for the S-matrix of PT -symmetric systems by a
direct calculation of its eigenvalues. Inserting (167) in (49) and making use of (168),
we find that the expression for s± coincides with the one we obtain for the time-
reversal-invariant systems, namely (156). Therefore, again either |τ | ≤ 1 in which
case |s±| = 1, or |τ | > 1 in which case |s±| �= 1 and s− = 1/s∗+.

Following the terminology we employed in our discussion of time-reversal
symmetry, we use the sign of 1 − |τ | to introduce the notions of exact and broken
PT -symmetry. If for all k ∈ R

+, 1 − τ(k)| ≥ 0 so that |s±(k)| = 1, we say that
the system has an exact or unbroken PT -symmetry. If this is not the case we say
that its PT -symmetry is broken. This terminology should not be confused with the

20For a 2 × 2 matrix A, the condition of being σ 1-pseudo-unitary is equivalent to the requirement
that eiπσ 2/4Ae−iπσ 2/4 belong to the pseudo-unitary group U(1, 1), where σ 2 is the second Pauli
matrix.
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one employed in the study of PT -symmetric Hamiltonian operators H that have a
discrete spectrum. For these systems unbroken PT -symmetry means the existence
of a complete set of eigenvectors ofH that are also eigenvectors of PT . This in turn
implies the reality of the spectrum of H , [2]. Scattering theory for a PT -symmetric
Hamiltonian is sensible only if its spectrum contains a real continuous part that
covers the positive real axis in the complex plane. In particular it may or may not
have nonreal eigenvalues.21

If for some k ∈ R
+, a PT -symmetric system has reciprocal transmission,

τ(k) = |t(k)|. Therefore the condition |τ | ≤ 1 puts an upper bound of 1 on
the transmission coefficient |t(k)|2. This in turn implies that the unspecified sign
in (171) must be taken positive and |rl (k)rr (k)| ≤ 1. As a result, the system
cannot amplify reflected or transmitted waves having wavenumber k. In particular
k2 cannot be a spectral singularity. In summary, for a system with reciprocal
transmission, such as those described by a scattering potential, exactness of PT -
symmetry forbids amplification of the reflected and transmitted waves and spectral
singularities.

An important advantage of PT -symmetry over P- and T -symmetries, is that it
does not imply the equality of the left and right reflection amplitudes. Therefore
unidirectional reflection and unidirectional invisibility are not forbidden by PT -
symmetry. In fact, it turns out that it is easier to achieve unidirectional reflection-
lessness and invisibility in the presence of PT -symmetry than in its absence. This
has to do with the following result that is a straightforward consequence of (142).

Theorem 16 The equations characterizing unidirectional invisibility, namely

rl/r (k) = 0 �= rr/ l, tl/r (k) = 1, (175)

are invariant under the PT -transformation.

For a PT -symmetric system the equations of unidirectional invisibility enjoy
the same symmetry as that of the underlying wave equation. This leads to enormous
practical simplifications in constructing specific unidirectionally invisible models.
It does not however imply that PT -symmetry is a necessary condition for unidirec-
tional reflection or invisibility [43].

9 Time-Reversed and Self-Dual Spectral Singularities

Consider a linear scattering system S with an invertible transfer matrix M(k). Then
spectral singularities of this system are determined by the real and positive zeros
of M22(k). According to (130), M11(k) = 0 if and only if M22(k) = 0. This in

21We use the term “eigenvalue” to mean an element of the point spectrum ofH which has a square-
integrable eigenfunction.
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turn means that the real and positive zeros of M11(k) give the spectral singularities
of the time-reversed system S . We will refer to these as the time-reversed spectral
singularities of S .

At a time-reversed spectral singularity the Jost solutions of the time-reversed
system become linearly dependent and satisfy purely outgoing boundary conditions
at x = ±∞. This suggests the presence of solutions of the wave equation for
the system S that satisfy purely incoming asymptotic boundary conditions. To see
this, first we note that according to Eq. (14) whenever M11(k) = 0, we can have a
solution ψ(x) of the wave equation satisfying (1) with A+(k) = B−(k) = 0, i.e.,

ψ(x)→ N±(k)e∓ikx for x → ±∞, (176)

where N±(k) are nonzero complex coefficients satisfying

N+(k) = M21(k)N−(k). (177)

In other words, ψ(x) satisfies the asymptotic boundary conditions (1) with

A−(k) = N−(k), B−(k) = 0, A+(k) = 0, B+(k) = N+(k).

If we substitute these in the first equation in (42) and recall that S1 = S, we find that

S(k)
[
N−(k)
N+(k)

]
=
[

0
0

]
.

This shows that [N−(k) N+(k)]T is an eigenvector of S(k) with eigenvalue zero. In
particular, one of the eigenvalues of S(k) vanishes.

The existence of a solution of the wave equation having the asymptotic expres-
sion (176) means that the scatterer will absorb any pair of incident left- and
right-going waves whose complex amplitude N±(k) are related by (177). This
phenomenon is called coherent perfect absorption [6, 27, 75]. In the study of
effectively one-dimensional optical systems, spectral singularities correspond to the
initiation of laser oscillations in a medium with gain, i.e., a laser, while their time-
reversal give rise to perfect absorption of finely tuned coherent incident beams by a
medium with loss. The latter is sometimes called an antilaser.

It may happen that a particular wavenumber k0 is a common zero of bothM11(k)

and M22(k). In this case, we call k2
0 a self-dual spectral singularity [42]. At a self-

dual spectral singularity the wave equation admits both purely outgoing and purely
incoming solutions. This means that if the system is not subject to any incident
wave, it will amplify the background noise and begin emitting outgoing waves
of wavenumber k0. But if it is subject to a pair of left- and right-going incident
waves with wavenumber k0 and complex amplitudes satisfying (177) for k = k0,
then it will absorb them completely. In its optical realizations this corresponds to a
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special laser that becomes a coherent perfect absorber (CPA) once it is subject to an
appropriate pair of incoming waves. Such a device is called a CPA-laser.

For a time-reversal-invariant system we have M11(k) = M22(k)
∗. Therefore

every spectral singularity is self-dual. But according to Theorem 13 spectral singu-
larities are forbidden for time-reversal-invariant systems with reciprocal transmis-
sion. This excludes real scattering potentials. There are however nonreal potentials
that admit self-dual spectral singularities. Principal examples are PT -symmetric
scattering potentials [7, 28, 77]. According to (140), for every PT -symmetric
scattering system,

M11(k) = det M(k)M22(k)
∗.

This proves the following theorem.

Theorem 17 Spectral singularities of every PT -symmetric scattering system are
self-dual.

This does not however exclude the possibility of having non-PT -symmetric
systems with self-dual spectral singularities. Simple examples of the latter are
examined in [19, 22, 42].

10 Summary and Concluding Remarks

Scattering of waves can be studied using a general framework where the asymptotic
solutions of the relevant wave equation are plane waves. This point of view
is analogous to the general philosophy leading to the S-matrix formulation of
scattering in the late 1930s. In one dimension, the transfer matrix proves to
be a much more powerful tool than the S-matrix. We have therefore offered a
detailed discussion of the transfer matrix and used it to introduce and explore the
implications of P-, T -, and PT -symmetry. This is actually quite remarkable, for
we could derive a number of interesting and useful quantitative results regarding
the consequences of such symmetries without actually imposing them on the wave
equation. These results apply to scattering phenomena modeled using local as well
as nonlocal potentials and point interactions. The general setup we offer in Sect. 1
can also be used in the study of the scattering of a large class of nonlinear waves
that are asymptotically linear. The results we derived using the transfer matrix may
not however extend to such waves.

The recent surge of interest in the properties of PT -symmetric scattering poten-
tials has led to the study of remarkable effects such as unidirectional invisibility,
optical spectral singularities, and coherent perfect absorption. The global approach
to scattering that we have outlined here allows for a precise description of these
concepts for a general class of scattering systems that cannot be described using a
local scattering potential. In particular, we have derived specific conditions imposed
by P-, T -, and PT -symmetry on the presence of nonreciprocal transmission
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and reflection, spectral singularities and their time-reversal, and unidirectional
reflectionlessness and invisibility.

A recent development that we have not covered in the present text is the
construction of a transfer matrix for potential scattering in two and three dimensions
[31]. This has led to the discovery of a large class of exactly solvable multidimen-
sional scattering potentials [33], and allowed for the extension of the notions of
spectral singularity and unidirectional invisibility to higher dimensions [31, 32].
A particularly remarkable application of the multidimensional transfer matrix is
the construction of scattering potentials in two dimensions that display perfect
broadband invisibility below a tunable critical frequency [34].
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Passive PT -Symmetry in Laser-Written
Optical Waveguide Structures

T. Eichelkraut, S. Weimann, M. Kremer, M. Ornigotti, and A. Szameit

Abstract In this chapter we describe how PT -symmetric systems can be imple-
mented in a passive fashion, that is, without using gain, by employing modulated
waveguide structures. To this end, we present the underlying theoretical ideas
as well as the details of the implementation of such passive structures. As an
application, we experimentally demonstrate the transition from ballistic to diffusive
transport in passive PT -symmetric waveguide arrays.

1 Introduction

Since PT symmetric systems entered optics [1, 2], it became evident that loss is
not only an unwanted side effect of an optical system, but can introduce a variety of
new and exciting physical phenomena, such as unusual beam dynamics [3, 4], PT
symmetric solitons [5, 6], Bloch Oscillations and dynamic localization in complex
crystals [7, 8], and even optical tachyons [9]. All this is possible, provided that losses
can be introduced in a controllable manner. PT symmetric optical structures, in
fact, are based on platforms, where one is able to introduce well-defined gain and
loss, in order to account for an appropriate complex optical potential. As the most
natural way of implementing PT symmetry is by means of systems of evanescently
coupled waveguides, loss and gain management in the individual waveguides is
therefore a crucial step in the fabrication process. The fact that implementing
gain and losses in optical systems requires careful, and sometimes challenging,
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engineering, represents nowadays a bottleneck for the realisation of more complex
structures than simple waveguide couplers or arrays.

To overcome this problem, however, it has been recently proposed to use entirely
passive structures, whose dynamics are fully equivalent to PT symmetric systems
[10–12]. The advantage of these passive structures relies on the fact that they
only present losses and no gain, a feature that makes them simpler to design
and experimentally realise. The correspondence between PT symmetric systems
and such passive systems, however, holds only if the passive structure is “quasi”-
PT symmetric around the mean loss of the structure, as it has been formally
demonstrated in Ref. [13].

From an experimental point of view, therefore, the problem of realising PT
symmetric structures corresponds to the problem of controlling the losses in a
waveguiding system. To be able to realise complex optical structures with passive
PT symmetry, therefore, one needs to achieve a high degree of control over the
losses of an optical system. Currently, controlling the losses in a waveguiding
system can be done by employing three different techniques. The first one concerns
waveguides implemented in an AlGaAs heterostructures (the most popular fabri-
cation technique of waveguides these days); in this system, additional losses can
be introduced by adding a thin chromium layer on top of the target waveguides
[10]. For the case of waveguides obtained by Ti-indiffusion into LiNb wafers,
instead, additional losses can be inserted by optical excitation of electrons from
Fe2+ color centers to the conduction band [14]. A third possibility to control the
losses in an optical waveguide consists in the use of PT synthetic lattices with time
as the “transverse” coordinate. In such a system, losses are obtained by acousto-
optical modulation [15]. The first two approaches, however, are inherently planar,
and therefore offer no possibility of involving a second transverse dimension.
The third approach is instead limited to 1D systems due to practical reasons,
and additionally the evolution equations in these systems do not perfectly match
the set of coupled Schrödinger-like equations as required in the original proposal
of optical PT symmetry. A fourth, more efficient and controllable, solution for
realising controllable losses in optical waveguides consists in introducing radiation
losses by sinusoidally bending the longitudinal waveguide profile. This approach,
in particular, will be discussed in detail in this chapter, as it represents the core
technology to realise passive PT symmetric and non-Hermitian lattices [12].

This chapter is organised as follows: in Sect. 2, we demonstrate the equivalence
ofPT and “quasi”-PT symmetry, using a simple directional coupler as prototypical
example of waveguiding structure. The technique used to fabricate laser-written
waveguide structures, together with the one used to characterise the flow of light
in such structures, are briefly discussed in Sect. 3.1, and in Sect. 4 it is discussed
in detail how to realise controlled losses in such structures. Finally, in Sect. 5
some examples of transport properties of passivePT -symmetric and non-Hermitian
systems are discussed.
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2 Passive PT -Symmetry

We begin our analysis by considering a monochromatic scalar electric field ψ(x, z)
characterized by a frequency ω0 and a wavelength λ = 2π/k propagating inside
a directional coupler. We assume that the mode field inside the coupler is strongly
confined along the y-direction, so that the beam dynamics in such a system can
be taken to be one-dimensional in the transverse plane. The evolution of the light
field ψ(x, z) inside such a structure can be described by the following adimensional
paraxial equation:

i
∂ψ

∂z
= −∂

2ψ

∂x2 + V (x)ψ ≡ Ĥψ, (1)

where z and x are suitably chosen adimensional coordinates and V (x) = VR(x) +
iVI (x) is the complex optical potential that implementsPT -symmetry in the system
[16]. By expanding the scalar electric field ψ(x, z) onto the orthogonal eigenmodes
un(x) of the coupler as ψ(x, z) = [a1(z)u1(x) + a2(z)u2(x)]eiβz, where β is the
real (due to PT -symmetry) propagation constant, and an(z) is the complex field
amplitude in the waveguide n of the coupler, the above equation can be rewritten in
the following coupled mode form:

i
d

dz

(
a1

a2

)
=
(
iγ κ

κ −iγ
)(

a1

a2

)
, (2)

where κ is the usual coupling constant, and γ is the shift in the propagation constant
due to the presence of gain (+γ ) in the first waveguide, and an equal amount
of losses (−γ ) in the second one. According to Ref. [10], as long as κ/γ > 1
the PT -symmetry is unbroken and light is periodically exchanged between the
two waveguides. On the other hand, PT -symmetry is said to be broken when
κ/γ < 1 and the light dynamics become exponentially growing in one waveguide
and exponentially damping in the other one [10]. The directional coupler described
by Eq. (2) fully implements a PT -symmetric system, and it is realized according to
the rule described in Ref. [17], namely to insert gain in one waveguide and losses in
the other one in equal measure.

The same physical problem, however, can be obtained by exploiting only passive
systems, and create a loss unbalance between the two waveguides instead of a gain
and loss structure. To prove this, let us consider a directional coupler in which each
waveguide experiences a different level of losses, and no gain is inserted in the
system. The coupled mode equations governing this lossy coupler can be derived
straightforwardly from Eq. (2) as follows:

i
d

dz

(
a1

a2

)
=
(−iγ1 κ

κ −iγ2

)(
a1

a2

)
, (3)
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where γ1,2 account for the losses in the first and second waveguide, respectively,
and κ has been defined before as the coupling constant. Notice, that while in Eq. (2)
the diagonal elements are equal in modulus but differ in sign, here γ1 �= γ2 but the
sign is the same. The sign discrepancy is due to the fact that while Eq. (2) describes
a gain/loss system, Eq. (3) describes a system with losses only. Note, moreover, that
since the diagonal elements of the matrix in Eq. (3) are purely imaginary, they cannot
be removed via a simple phase transformation. To remove these diagonal terms, a
suitable transformation of coordinates must be found, that brings Eq. (3) in a form
which allows to apply a phase transformation to remove the diagonal terms, as it is
done in standard Hermitian couple mode theory [18]. To do that, we can apply the
so-called Wick rotation [19] to the system, namely we rotate the propagation axis
by π/2 in the complex plane, thus switching from a real to a complex propagation
direction.1 We then define ζ = iz and substitute this Ansatz into Eq. (3), to obtain

− d

dζ

(
a1

a2

)
=
(−iγ1 κ

κ −iγ2

)(
a1

a2

)
. (4)

We can now make the phase transformation (a1 a2)
T = (ã1 ã2)

T eiγ1ζ , and then
transform back to the real propagation axis z to obtain

i
d

dz

(
ã1

ã2

)
=
(

0 κ

κ −i(γ2 − γ1)

)(
ã1

ã2

)
. (5)

Before proceeding with the analysis of Eq. (5), it is worth spending some words to
describe the procedure that lead to Eq. (5). First, to restore the initial amplitudes
ã1,2(z) from the amplitudes in a1,2(ζ ) in the Wick frame, one needs to multiply the
solutions of Eq. (5) by an exponentially damping factor exp (−γ1z). While theoret-
ically this only accounts to a gauge transformation in Wick space, experimentally
the presence of this extra damping term is not a problem, since once the amount
of losses γ1 is known, this term can be easily eliminated via post processing of the
acquired image.

To study the dynamical properties of the system described by Eq. (5), let us
calculate the eigenvalues of the Hamiltonian appearing in Eq. (5) and compare them
with the ones from Eq. (2). If we call μ1,2 the eigenvalues of the PT -symmetric
system (Eq. (2)) and λ1,2 the ones for the passive system (Eq. (5)), we have the
following result:

μ1,2 = ±
√
κ2 − γ 2, (6a)

1This operation is quite common in quantum field theory (especially in lattice quantum field
theory), where it is used to transform the Minkowski metric to an Euclidean one, allowing methods
of statistical mechanics to be used for evaluating path integrals on a lattice [20].
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λ1,2 = − i

(
γ2 − γ1

2

)
±
√
κ2 −

(
γ2 − γ1

2

)2

. (6b)

If we now choose γ2 − γ1 = 2γ , where γ is the same value of gain/loss that
appears in the PT -symmetric case, then, apart from a common imaginary part
(that will result in an exponential damping factor), the dynamics of the passive
system is the same of the one of the PT -symmetric case, as λ1,2 = iγ + μ1,2.
This holds, provided that the losses of the system are chosen in such a way that
γ2−γ1 = 2γ . A comparison between the dynamics of a passive system as described
by Eq. (5) and the correspondent PT -case is depicted in Fig. 1 for unbroken PT -
symmetry, and in Fig. 2 for the broken PT -symmetry case. It is worth noticing,
that while below threshold (Fig. 1b) the presence of the exponential damping factor
only affects the intensity of the light propagating in the quasi-PT system, above
threshold (Fig. 2b), where the PT -symmetry is broken, the behaviour of the quasi-
PT and the PT system are profoundly different, and one needs to compensate for
the overall damping factor dynamically by performing a z-dependent normalisation
of the power evolution inside the system in order to restore the real PT dynamics.

Last, but not least, let us consider the dynamics in the passive system, for
different values of the ratio κ/γ below threshold. As can be seen in Fig. 3, the
equivalence between the dynamics is only trivial when κ/γ � 1 or, equivalently,
γ 	 1. In this case, a compensation of the losses in the system is not needed, as the
amount of losses is small enough not to disturb the underlying PT -like dynamics. If
the losses increase, however, these dynamics start to get obscured by the high losses
of the system, and an immediate correspondence between the two cases cannot be
established anymore. This is also consistent with the fact that in systems with high
losses the light trapped in the waveguides gets quickly absorbed or scattered away,
and the characteristic length upon which the dynamics takes place is too small to
allow any interesting dynamics to be seen.
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Fig. 1 (a) Evolution of the fractional powers |ã1(z)|2 (blue line) and |ã2(z)|2 (red line) for the
unbroken quasi-PT -symmetry with κ/γ = 15. (b) Comparison between the evolution in the
unbroken PT -symmetry regime (κ/γ = 15) of the fractional power for the quasi-PT -symmetric
system |ã1(z)|2 (blue line) and the corespondent PT -symmetric system (red line). As can be seen,
apart from an exponential damping factor that progressively reduces the intensity along z, the
dynamics in the two cases is identical
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Fig. 2 (a) Evolution of the fractional powers |ã1(z)|2 (blue line) and |ã2(z)|2 (red line) for the
broken quasi-PT -symmetry with κ/γ = 1/3. (b) Comparison between the evolution in the broken
PT -symmetry regime (κ/γ = 1/3) of the fractional power for the quasi-PT -symmetric system
|ã1(z)|2 (blue line) and the corespondent PT -symmetric system (red line). As can be seen, above
thePT -threshold, the presence of the overall damping exponential term makes the dynamics of the
quasi-PT system very different from its PT -counterpart. However, if the exponentially damping
term is compensated by a z-dependent power normalization, the two dynamics perfectly coincide

Fig. 3 Comparison of the dynamics of the evolution of the fractional power contained in the first
waveguide for the quasi-PT system |ã1(z)|2 (blue line) and its PT -counterpart (red line) for
different values of the losses in the system. For all these graphs, the value of the coupling coefficient
is κ = 1.5. (a) γ = 0.1, (b) γ = 0.3, (c) γ = 0.5 and (d) γ = 1. As can be seen, as the
losses increase, the discrepancy between the two curves also increases, and the main effect on the
dynamics is that the quasi-PT system is no longer able to faithfully reproduce the dynamics of
its PT -counterpart. This is in particular visible in panels (c) and (d) where the period of the two
curves is not matched
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3 Fabrication and Characterisation Technology

3.1 Fabrication Technology

To realise experimentally passive PT structures in an efficient and controllable
way, one can employ a commercially available Coherent Mira/RegA laser system,
characterised by a wavelength of 800 nm, a pulse length of 150 fs (full width at half
maximum), a repetition rate of 100 kHz, and an energy of approximately 300 nJ.
These pulses are tightly focused into fused silica (Corning HPFS 7980) using a
20× microscope objective (NA= 0.35). As the focal spot has a diameter of a
few microns, light intensity in the focal region is very high and field ionisation, as
well as multiphoton absorption processes, occur. Together with onsetting avalanche
ionization, recombination, and restructuring processes, this leads to a permanent
modification of the material [21, 22]. In order to fabricate optical waveguides, the
silica wafer is moved with respect to the focal spot using a Computer controlled
positioning system (Aerotech).

A sketch of the femtosecond laser direct writing (FLDW) technique is shown
in Fig. 4a. To tune the propagation constants of the modes of the individual

Fig. 4 (a) Scheme of the FLDW process. The laser is focused inside the glass sample which
is continuously moved in order to fabricate elongated waveguides. (b) Transverse cross-section
of a fs-LASER-written waveguide. (c) Transverse cross-section of the mode supported by the
waveguide shown in (b)
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waveguides, moreover, one can act on the writing speed, i.e., the velocity with
which the glass wafer is moved with respect to the laser pulse. This is possible
since the writing velocity determines the amount of energy deposited in the
glass, and consequentially the refractive index increase. As the writing speed
increases, in fact, less energy is deposited in the glass, and the refractive index
contrast of the modified region is therefore reduced. A typical writing velocity of
100 mm/min, for example, results in a refractive index increase on the order of
δn = 5 × 10−4.

Figure 4b displays that the cross section of the resulting waveguides is oval
with dimensions of approximately 10 × 4 μm. A comparison with the numerical
simulation of the refractive index profile, obtained by numerical inversion of the
Helmholtz Equation from the mode profile, is shown in Fig. 4c [23]. As a conse-
quence of the oval cross section, the waveguides are not polarisation degenerate but
rather support two linearly polarised eigenmodes. The coupling of these polarisation
modes, however, are usually very small and can be therefore neglected.

3.2 Characterisation Technology

To characterise light dynamics in laser written waveguides, it is possible to use a flu-
orescence measurement technique [24–27], based on the fact that during the writing
process, non-bridging oxygen hole color centers are created inside the waveguide
region. For this to occur, fused silica with a high content of hydroxide needs to be
used. Illuminating the waveguides with a HeNe laser at a wavelength of 633 nm
results in an excitation of these color centers, which emit a fluorescence signal
at a wavelength of 650 nm. While the excitation light is being guided along the
waveguides the fluorescence is being emitted isotropically and can be observed with
a CCD-camera from above the glass sample, as depicted in Fig. 5a. The fluorescence
measurement technique therefore provides an image of the light evolution inside
a waveguide array. An example of a recorded fluorescence image is depicted in
Fig. 5b. In order to extract data from fluorescence images, all measured images are
post processed numerically, using a dedicated algorithm, whose functioning can be
better explained with an example. To do this, let us consider the situation depicted
in Fig. 6a, which represents a raw fluorescence image. First, the two main sources
of errors in this image, namely the misalignment of the sample and noise, must be
individuated and minimised. To compensate for a misalignment of the sample, the
figure is first rotated by an angle α.
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Fig. 5 (a) Fluorescence measurement setup. Glass chip with waveguides is being illuminated with
a HeNe-laser and a 10×microscope objective. The CCD-camera mounted on a translation stage
scans along the sample. The single images are stitched together at the PC after the scanning process.
(b) Example of fluorescence image retrieved with the setup depicted in panel (a). The image refers
to the propagation of light in a ballistic array in the single waveguide excitation scheme

The optimal value of the rotation angle is found by calculating max
α

[
max
j

∑
l

Ij l(α)

]
,

where Ijl is the intensity at row j and column l of the fluorescence image, and α is
the rotation angle. Figure 6b shows the maximum column sum of (a) as a function
of α. Here, the maximum is found at α0 = −0.104, showing that the raw data was
rotated by a slight angle. The original image is therefore rotated by α0 to compensate
this error, and the new image is depicted in Fig. 6c. At this point, the image is ready
for the noise reducing part of the algorithm. The image is then filtered in both its
transverse and longitudinal dimensions. In the transverse direction, the shape of the
transverse mode of the waveguide is used as a filter. To approximate this shape,
the aligned image is averaged over all columns. From this, the normalised mode
profile can be retrieved, as shown in Fig. 6d. Moreover, the averaging procedure
yields the central position of the waveguide as well – corresponding to row j0 in
Fig. 6c. Figure 6e shows the filtered image, when the profile depicted in Fig. 6d was
used as a transverse filter. The mode amplitude, shown in Fig. 6f, is finally retrieved
from (e) by extracting the row j0. To estimate the noise level in (e), the average
signal outside of the waveguide region is calculated. This value is finally subtracted
from (f).
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Fig. 6 (a) Raw fluorescence image. (b) Maximum row sum as a function of rotation angle. (c)
Rotated image, where the rotation angle is obtained from (b). (d) Approximated mode profile.
Obtained by summing over the rows of (c). (e) Filtered image, where fig. (c) Was horizontally
averaged and vertically filtered using the normalised profile given by fig. (d). (f) Mode amplitude
extracted from (e)

4 Realising Controllable Losses in Laser-Written Waveguide
Structures

In this section, we concentrate our attention on the problem of introducing con-
trollable losses in an optical system. Here, we discuss in detail the case of a
sinusoidally modulated single mode waveguide, which we take as prototype model
of controllable losses in a waveguiding system. At the end of the section, a suitable
generalisation to the of an array of lossy waveguides will also be presented. This will
serve as introduction for the study of transport properties in non-Hermitian lattices,
which will be the subject of the next session.
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4.1 Theoretical Modelling of a Sinusoidally Modulated
Waveguide

We consider a single, one-dimensional waveguide with a sinusoidally modulated
propagation direction, which can be represented by the following 1D, adimensional,
Schrödinger equation with a sinusoidally oscillating step-index potential

i
∂ψ

∂z
= −∂

2ψ

∂x2
−Δn(x − x0(z))ψ, (7)

where

x0 = d

[
1 − cos

(
2π

p
z

)]
, (8)

is the sinusoidal bending profile of the waveguide, characterised by an amplitude d
and a period p (or, equivalently, by a bending frequency ν = 2π/p). For the sake of
simplicity, and to guarantee the existence of a simple analytical solution to Eq. (7),
we choose Δn(x) to be a step-index potential, namely

Δn =
{
δnmax , |x − x0(z)| < a

0 , elsewhere
(9)

where δnmax is the maximum refractive index change, and a is the width of the
waveguide.2 If we now apply a Kramers-Henneberger transformation [28, 29] X =
x−x0(z) to switch to a reference frame co-moving with the waveguide bending, we
can write Eq. (7) in the following, modified, form3:

i
∂ψ

∂z
= −∂

2ψ

∂X2 −
[
Δn(X)+ iνd sin(νz)

∂

∂X

]
ψ. (10)

The above equation can be solved perturbatively, assuming the amplitude d of the
sinusoidal bending to be a small perturbation parameter and expanding the solution
ψ in terms of the modes of the unperturbed (straight) waveguide, obtained from the
equation above in the limit where d = 0. Under these assumptions, we write the
field amplitude ψ as superposition of bound and radiation modes as follows

ψ(X, z) = cb(z)ub(X)e
iβbz +

∑
k={a,s}

∫ ∞

0
dβk ck(z)uk(X)e

iβkz, (11)

2The results presented in this section, although specific to the case of a step-index potential, are
valid for any arbitrary (but well defined) refractive index distribution, as it will be discussed at the
end of this paragraph.
3Notice, that Eq. (10) differs slightly from the one obtained by applying the Kramers-Henneberger
transformation, since the extra term appearing in Eq. (10) should be of the form ν2d cos(νZ)ψ
instead of iνd sin(νz)∂ψ/∂X. Here, we choose this second form, since it offers a better way to
calculate the losses of the system analytically. However, it is not difficult to prove that both versions
of the transformed equation lead to equivalent results.
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where uk(X) are the eigenmodes of the straight waveguide (for which the orthog-
onality relation

∫
dX u∗k(X)uj (X) = δkj holds), and we assumed, without loss of

generality, that the waveguide sustains a single bound mode, with amplitude cb(z),
and we have divided the radiation modes into the symmetric (with amplitude cs(z))
and anti-symmetric (with amplitude ca(z)) ones for later convenience. Inserting the
above equation into Eq. (10) and projecting onto each single eigenmode then gives
the following set of coupled mode equations:

ċb(z) = νd sin(νz)
∫ ∞

0
dβaca(z)ξab(βab)e

iβabz, (12a)

ċs (z) = νd sin(νz)
∫ ∞

0
dβaca(z)ξsa(βas)e

iβasz, (12b)

ċa(z) = νd sin(νz)

[
cbξabe

iβabz +
∫ ∞

0
dβscs(z)ξas(βas)e

iβsaz

]
, (12c)

where the dot denotes derivative with respect to z, βmn = βm−βn is the propagation
constant mismatch between modes n and m, and the quantity ξmn(βmn) =
〈um|∂/∂X|un〉/〈un|um〉 corresponds to the (normalised) expectation value of the
differential operator ∂/∂X over the modes of the straight coupler. In the remaining
part of this section, we will prove that the evolution of light inside a sinusoidally
bent waveguide follows an exponentially decaying law, i.e., cb(z) ∝ exp [−Γ z]. To
do so, we first notice that the equations for ca,s(z) can be formally solved using as
initial conditions the fact that all light is initially confined in the bound state of the
waveguide, namely cb(0) = 1, and ca(0) = cs(0) = 0. This gives

cs(z) = νd

∫ z

0
dζ sin(νζ )

∫ ∞

0
dβa ξsa(βsa)e

iβasζ , (13)

ca(z) = νd

∫ z

0
dζ sin(νζ )

[
cb(ζ )ξab(βab)e

iβabζ +
∫ ∞

0
dβs cs(ζ )ξas(βas)e

iβsaζ

]
.

(14)

Substituting these results into the first of Eqs. (12) allows us to write an integro-
differential equation for the amplitude cb(z) of the waveguide bound mode, namely

ċb(z) = ν2d2 sin(νz)
∫ ∞

0
dβa

∫ z

0
dζ sin(νζ )

[
cb(ζ )ξab(βab)ξba(βba)e

iβabζ

+
∫ ∞

0
dβs cs(ζ )ξas(βas)ξba(βba)e

i(βsa+βab)ζ
]
. (15)

A closer inspection on the above equation reveals that the first term on its right-
hand-side is quadratic in νd and depends only on the amplitude cb(z) of the bound
mode, while the second term contains also a dependence on the symmetric part
of the radiation mode cs(z). We can eliminate the dependence on cs(z) by using
Eq. (13) again. If we do so, the second term in the above equation will result in a
term proportional to ν4d4, which will contain only cb(z), plus some other terms that
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will still depend on cs(z). Repeating this process ad libitum will result in a power
series expansion (with respect to νd) of the right-hand-side of Eq. (15), namely

ċb(z) = sin(νz)
∞∑
k=1

[
ν2d2

∫ z

0
dζ

∫ ∞

0
dβa sin(νζ ) cb(ζ )K ab(βa)e

i(βbaζ+βabz)
]k
,

(16)

where K ab(βa) = ξab(βab)ξba(βba). Notice, that the above result is, in the
framework of coupled mode theory, exact. However, without loss of generality, and
since we want to obtain a perturbative solution, we can assume that νd 	 1 and
neglect terms O (ν4d4) in the above equation.

From an experimental point of view, the assumption νd 	 1 means, that both
the amplitude and the frequency of the sinusoidal modulation needs to be small.
While choosing a small amplitude d is not a big problem experimentally, realising
modulated waveguides with small frequency (i.e., large period of the oscillations)
can be a challenging task. In the simple case of a directional coupler, in fact, the
coupling strength defines the longitudinal dimension. To implement homogeneous
losses in such a system, therefore, one should choose an oscillation period of the
modulation, which is smaller than the coupling length. This, ultimately, constitutes
a limitation in the choice of “small frequency” of the modulation, in order to
satisfy the constraint νd 	 1. The validity of this approximation can be tested
by comparing the evolution of cb(z) as given by Eq. (16) with the exact solution
obtained by numerically integrating Eqs. (12). As can be seen from Fig. 7, the
approximation that we used to arrive at Eq. (16) holds very well. The fact that
this approximation holds, moreover, represents the fact that the contribution of the
symmetric radiation modes can be neglected.

To find an explicit analytical solution to Eq. (16), we first have to calculate
the kernel K ab(βa). Since we have assumed a step-index waveguide, we can
analytically calculate the mode ub(X) [18] and therefore write the kernel as
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Fig. 7 Amplitude of the bound mode, as calculated by numerically integrating Eqs. (12) (blue
line) and calculated using Eq. (16) with only first order terms in ν2d2 (red line). As can be seen,
the approximation made to obtain Eq. (16) holds very good. To realise this figure, an oscillation
period of 1 mm was assumed
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K ab(βa) = αS(βa), where

α =
[

2δn2(βb + δn)

π

]
k2 cos2(k1a)

δn cos2(k1a)+ (βb + δn)k2a
, (17)

and

S(βa) =
[

1

(βa − βb)2

]
k2 sin2(k1a)

βa + δn cos2(k1a)
, (18)

where k1,2 = k1,2(β) are the propagation constants inside the waveguide (k1 =√
β + δnmax) and outside the waveguide (k2 = √

β), respectively. With this at hand,
we can rewrite the leading term of Eq. (16) as follows:

ċb(z) = −αν2d2 sin(νz)
∫ z

0
dζ sin[ν(z− ζ )]cb(z− ζ )

∫ ∞

0
dβaS(βa)e

iβabζ ,

(19)

where we have used the fact that βab = −βba and employed the change of variables
ζ ′ = z− ζ (and renamed ζ ′ → ζ afterwards for the sake of clarity). The βa-integral
can be calculated numerically as a function of ζ . By doing so, one realises that this
integral is nonzero only in a small interval 0 < ζ < ζc, and that in this interval,
the amplitude of the bound mode cb(ζ ) is slowly varying, and can then be regarded
as constant, i.e., cb(z − ζ ) � cb(z). Under this approximation (which is known
in literature as Markovian approximation [30]), we can then extend the integration
domain of the ζ -integral from [0, z] to [0,∞] and solve it explicitly using Cauchy
theorem [31], thus obtaining

ċb(z) = −αν2d2
[

sin2(νz)T (βb, ν)+ 1

2
sin(2νz)U (βb, ν)

]
cb(z), (20)

where T (βb, ν) andU (βb, ν) are z-independent quantities, whose explicit expres-
sion is given as follows4:

T (βb, ν) = π

2
S̃(βb + ν)− i P

∫ ∞

0
dβa

βab

β2
ab − ν2

S(βa), (21a)

U (βb, ν) = i
π

2
S̃(βb + ν)+ P

∫ ∞

0
dβa

ν

β2
ab − ν2

S(βa), (21b)

where S̃(βb + ν) = S(βb + ν) for ν ≥ |βb|, and S̃(βb + ν) = 0 elsewhere,
and P stands for the Cauchy principal value. One last integration with respect to

4Notice that, in defining the functions T (βb, ν) and U (βb, ν), we have neglected a term
proportional to δ(βa − βb + ν), since it accounts for an off-resonance term.
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z yields then the final solution for the amplitude of the bound mode of an oscillating
waveguide, which reads

cb(z) = e−(Γ+i�)ze−
[
χ cos2(νz)−νΓ sin(2νz)

]−i[η cos2(νz)−ν� sin(2νz)
]
, (22)

where we have defined

� =
(
αν2d2

2

)
Im{T (βb, ν)} = −

(
αν2d2

2

)
P
∫ ∞

0
dβa

βab

β2
ab − ν2

, (23a)

Γ =
(
αν2d2

2

)
Re{T (βb, ν)} =

(
παν2d2

4

)
S̃(βb + ν), (23b)

χ =
(
ανd2

2

)
Im{U (βb, ν)} =

(
πανd2

4

)
S̃(βb + ν), (23c)

η =
(
ανd2

2

)
Re{U (βb, ν)} =

(
ανd2

2

)
P
∫ ∞

0
dβa

ν

β2
ab − ν2

S(βa). (23d)

A closer inspection of the above equation reveals that the second exponential only
accounts for an amplitude modulation, proportional to χ and Γ , and a complex
oscillating z-dependent term, which accounts for a phase modulation proportional to
η and�. These oscillations, however, are very small and can be therefore neglected,
especially in the long term evolutions, as Fig. 8 shows. If we neglect the contribution
of the second exponential, we can then write the solution as follows:

cb(z) � e−Γ ze−i�z � e−Γ z. (24)

We have then proved, that the amplitude of the bound mode of a sinusoidally
modulated waveguide decays exponentially along the propagation direction, with
a decay rate, for the case of a step-index waveguide, given by

Γ =
(
παa2

4

)
k2 sin2(k1a)

βb + ν + δn cos2(k1a)
, (25)

for ν ≥ |βb|, and Γ = 0 otherwise. As can be seen in Fig. 9, this result is
in very good agreement with the rigorous result obtained by fully simulating the
propagation of light in a bent waveguide using Eq. (10). In particular, one can
see how both approaches predict a zero decay rate for large bending periods, i.e.,
for modulation frequencies smaller than βb. This behavior can be well understood
using the following simple argument: to transfer energy from a bound state of the
waveguide (with propagation constant βb) to a mode in the continuum, one need a
perturbation with a modulation frequency ν ≥ |βb|. If such perturbation has less
energy than �|βb|, therefore, the bound mode cannot couple with any mode in the
continuum, and it therefore does not decay.
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Fig. 8 (a) Bottom: Light evolution (amplitude) for sinusoidally bent waveguide with an oscillation
period of 1 mm. Top: Amplitude of the light field at the center of the waveguide as a function of
propagation distance (blue solid line). The red dashed line corresponds to an exponential decay
with a decay rate of 1.16 × 10−1 mm−1. (b) Bottom: Phase evolution corresponding to (a). Top:
Phase at the center of the waveguide. The period length is pphase = 2.05 mm. For these simulations,
a refractive index profile corresponding to a super-Gaussian function of order 16, rather than a box
function, was employed, to better represent the actual physical refractive index profile generated
by the laser-writing technique. The parameters used for this simulations are λ = 633 nm, δnmax =
6 × 10−4, and w0 = 3/x0 = 50.71, where x0 = 0.0592 μm has been assumed. Simulations with
the same parameters for the case of a straight waveguide (i.e., x0(z) = 0) leads to a beating period
� = 1.98 mm, which corresponds to a propagation constant β = 3.17 mm−1
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Fig. 9 Exponential decay rate Γ as a function of the waveguide bending period p = ν−1. The
solid, red line is the analytical solution as given by Eq. (25), while the dotted, blue line represents
the rigorous solution obtained by direct numerical simulation of Eq. (10)

Before proceeding any further, it is worth spending some words on the physical
meaning of Eq. (25). Let us firstly recall, that the function S̃(βa) appearing in the
definition of Γ represents the overlap integral between the perturbed bound mode
and a given antisymmetric radiation mode. The fact that S̃(βb+ν) = 0 for ν < |βb|,
moreover, represents the fact that only one of the antisymmetric radiation modes is
relevant for the dynamics. This means that the coupling takes place only if a certain
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Fig. 10 Schematic illustration of light being radiated away from sinusoidally bent waveguides. In
regions 1 and 2 (dashed boxes) light is being emitted and reabsorbed. Light cones from subsequent
emission regions overlap and interfere

phase matching condition is met. Even though the bound mode of the waveguide
couples with the entire spectrum of antisymmetric radiation modes, there is only
one propagation constant βa = βb + ν for which the light scattered into this
mode accumulates constructively during a series of oscillation cycles with period
2π/ν. To understand this from a qualitative perspective, let us consider the situation
depicted in Fig. 10. Light is radiated away from the waveguide at those points, where
the curvature of the waveguide is maximal (dashed areas in Fig. 10). The angle
θ = √

βb + ν/k under which this happens, however, is very small, and therefore
part of the light radiated away from region 1 in Fig. 10 can re-enter the waveguide at
a later position along the propagation axis, say, for example, in region 2. Moreover,
the light cones corresponding to radiated light at the maximum bending strongly
overlap, thus allowing interference. Depending on the relative phase difference
between the light that is been scattered away and the one that is being re-coupled in
the waveguide, the net power scattered away from the waveguide can be then either
amplified or suppressed.

4.1.1 High Frequency Regime

The result obtained in the previous section is limited to the case of small modulation
frequencies ν, such that νd 	 1 is fulfilled. In this section, we investigate what
happens in the regime of high modulation frequencies, when the approximation
νd 	 1 does not hold anymore. To do so, we consider again Eq. (7), and we
decompose the field amplitude ψ(x, z) in Fourier-components with respect to z as

ψ(z) =
∫
dβ Ψ (β)eiβz (26)

If we assume that the spectral width of Ψ (β) is band-limited and there exists a
maximum frequency βmax, for which one has that A (β) ≈ 0 when |β| > |βmax|,
then one can find a small longitudinal interval Z with Z 	 2/βmax , such that
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〈ψ (z)〉z =
1

Z

z+Z
2∫

z−Z
2

ψ
(
z′
)
dz′ ≡ ψ (z) . (27)

To achieve this result, one can exchange the β-integration coming from the Fourier
transform and the z-averaging and then calculate the average for each Fourier
component separately. If we apply this averaging process to Eq. (7), we then get

i
∂

∂z
ψ = −∂2

z ψ + 〈Δn 〉z (z) ψ (28)

where 〈∂zψ〉z = ∂z 〈ψ〉z, and 〈δnψ〉z = 〈δn〉z ψ has been used. If the frequency
ν with which the potential Δn is oscillating is much larger than 2π/Z, then the
mean potential 〈Δn〉z is constant along the longitudinal axis. As a consequence, in
this high frequency limit the field amplitude ψ only feels a constant potential along
the z-direction. In general, however, the shape of the potential changes due to the
averaging procedure. Moreover, in general one has that 〈Δn〉z �= Δn

(
x − 〈x0(z)〉z

)
.

If such an averaged potential is excited with its own bound mode, then, in the high
frequency limit the evolution is stationary and ψ (x, z) = �(x, z) exp [iβbz]. In this
case, βmax can be identified with βb, and the condition βb 	 2/Z < 2π/Z 	 ν

determines the validity of the high frequency approximation, for which the loss of
the bound mode is identically zero, as correctly predicted by numerical simulations
shown in Fig. 9.

4.2 Experimental Realisation of Well-Controllable Loss

In this section, we present some experimental results on the realisation of waveg-
uides with well-controllable losses. The main experimental interest resides in
obtaining a loss profile Γ (ν) as a function of the bending period, as the one
depicted in Fig. 9, which can be then experimentally used, once the geometry of
the waveguide (namely, the waveguide width a and the refractive index contrast
δnmax) is fixed, to engineer the amount of losses in the waveguide. To this aim,
let us consider as an explicit example, the case of a single 50 mm-long waveguide,
fabricated with the laser-writing technique described in Sect. 3.1, whose propagation
direction has been bent sinusoidally, with amplitude d = 1.45 μm and bending
period p = 3.9 mm. The fluorescence image acquired from this waveguide sample
is reported in Fig. 11a. The extracted evolution of light amplitude as a function
of the (logarithmically scaled) propagation distance is shown in Fig. 11b. After a
propagation distance of 12 mm, the graph clearly shows a linear slope, indicating
the exponential decay of the light intensity. In this particular example, a measure
of the slope gives Γ = −0.42 cm−1 as value for the losses experienced by
the bound mode of the waveguide. Initially, for propagation distances smaller
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Fig. 11 (a) Fluorescence image of a sinusoidally bent waveguide with an oscillation period of
p = 3.9 mm. (b) Light intensity extracted from a sinusoidally bent waveguide with a period of
p = 3.9 mm

than 12 mm, the behaviour strongly deviates from an exponential decay. This can
be attributed to coupling the free-space laser beam into the glass chip using a
microscope objective. As a consequence, therefore, the region z < 12 mm can be
neglected when evaluating the evolution of light in such a waveguide. Theory and
simulations, moreover, not only predict an exponential decay, which is corroborated
by the experimental measurements shown in Fig. 11, but also periodic amplitude
oscillations. In the measurement data shown in Fig. 11b, however, these oscillations
are in the same order of magnitude as the noise level, and therefore not observable.

To obtain experimentally the dependence of the losses Γ (ν) from the bending
frequency, one needs to fabricate samples with different period lengths. To each
point in Fig. 9, in fact, it corresponds a different waveguide structure.
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Fig. 12 Experimentally measured intensity decay rate (blue crosses) and decay rate extracted from
2D simulations (red line)

Figure 12 contains the extracted decay rates for different realisations of a
sinusoidally bent waveguide, with periods ranging from 100 μm to 50 mm. For large
periods, e.g. 50 mm, the experimentally measured decay rate Γ = 0.08 cm−1 differs
only minimally from the intrinsic decay of straight waveguides. This behaviour
continues for period lengths down to 10 mm, for which the decay only increases
by 20% with respect to the intrinsic losses. However, as one moves to smaller
periods, a pronounced frequency dependence of the bending-induced decay can
be observed (period lengths between 200 μm and 10 mm). The maximum loss
Γmax = 1.0 cm−1, is achieved at a period length of pmax = 1.2 mm. Here, the
decay exceeds the intrinsic loss by over an order of magnitude. As it can be seen,
the experimentally measured decay rates Γ (ν) agree very well with the theoretical
prediction illustrated in Fig. 9. In particular, both graphs show negligible decay for
small and large periods, respectively, and exhibit a single pronounced maximum in
the range of a few mm of period length.

The sudden drop of Γ (ν) to zero, predicted theoretically to occur around period
lengths of the order of 2 mm, however, cannot be confirmed by the measurements.
This can be attributed to the dimensionality of the problem; the experimentally
realised waveguides, in fact, possesses a two dimensional cross section, whereas
the theoretical model is based on a single transverse dimension. If we include these
effects in the simulations (red, solid line in Fig. 12), in fact, we are able to predict
the same, gradual drop of Γ (ν) shown by the experimental data. This gradual drop,
as opposed to the sudden one seen in Fig. 9, originates from the fact that in a 2D
environment, the condition of perfect phase matching between the bound mode and
a single radiation mode is relaxed, as phase matching can be fulfilled by a collection
of radiation modes with different transverse momenta.



Passive PT -Symmetry in Laser-Written Optical Waveguide Structures 143

4.3 Extension to Lossy Waveguide Arrays

In the previous sections, we have considered only the dynamics of a single lossy
waveguide. With the same line of reasoning, however, one could also extend the
validity of the results given above for the case of an array of lossy waveguides.
To do so, let us consider again Eq. (7), where now we use as refractive index
profile a discrete superposition of individual lossy waveguides, i.e., Δn(x) =∑

k Δnk(x) (with Δnk ∈ C, since each single waveguide experiences losses), such
that each waveguide supports, when isolated, a single bound mode with ψk =
�k(x) exp [iβkz], where uk(x) is the mode profile of the k-th waveguide, and βk its
corresponding propagation constant. According to the results obtained in the previ-
ous section, the light amplitude decays exponentially in each waveguide. This allows
us to write the field in each waveguide as ψ(x, z) =∑k ak(z) exp [−γkz]ψk(x, z).
Substituting this Ansatz into Eq. (7) and using the orthogonality of the transverse
modes, i.e., 〈uk|u!〉 = δk!, yields the following set of coupled equations for
dissipative media

iȧk = iγkak + Ck+ak+1 + Ck−ak−1, (29)

where γk are the total loss of each waveguide, and Ck± are the coupling constants
relating the amplitude of the mode in waveguide k, with its two left (−) and right
(+) neighbours. For a homogeneous, non-dissipative array, it is not difficult to show
that from the conservation of energy, it follows that the coupling constants must
all be equal and represented by real numbers [18]. In the case of a homogeneous,
dissipative array, on the other hand, although the homogeneity of the array still
forces all coupling constants to be equal, these are no longer limited to be real
numbers, as no energy conservation condition needs to be applied. Therefore,
the coupling constants are, in this case, complex-valued. Hence, the phase of the
coupling terms depends on the separation between neighbouring waveguides. This
peculiar behaviour, ultimately, is due to the curved, rather than flat, phase front
of the lossy waveguide mode. Moreover, as expected from the Hermitian case,
the amplitude of the coupling decreases exponentially, whereas its phase increases
linearly with the waveguide separation d. As a direct consequence of this, there
exists a particular distance for which the coupling constant is purely imaginary.
Equivalently, there exists a larger distance at which the coupling is real again,
but negative. A rigorous calculation of the coupling constant leads in fact to the
following result [32]:

C = 〈uk±1|Δnk|uk〉
〈uk|uk〉 ≈ e−ρ′′de−iρ′d , (30)

where ρ′ and ρ′′ are suitable constants, that depend on the particular problem. From
the above result, moreover, we conclude that the dissipative nature of a waveguide
does not only manifest itself in a pure amplitude decay rate, as it is the case for
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an isolated waveguide discussed in the previous sections, but it also influences the
coupling between different waveguides, as they are brought together in an array.

5 Transport in Non-Hermitian Lattices

5.1 Theoretical Modelling of Transport Properties in
Non-Hermitian Lattices

In this section, we apply the theory developed in Sects. 2 and 4, to study transport
properties in non-Hermitian lattices. The model system that we will study here
consists of a biatomic lattice, as the one depicted in Fig. 13. The evolution of the on-
site amplitudes an(z) and bn(z) can be described by the following, two component,
coupled mode equations

iȧn = (ωa + iΓa) an + Cibn + C0bn−1, (31a)

iḃn = (ωb + iΓb) bn + Cian + C0an+1, (31b)

where the dot indicates derivation with respect to the adimensional propagation
distance ζ , ωk and Γk are the eigenfrequency and decay rate of the two lattice sites,
Ci is the intra-site coupling, and C0 is the inter-site coupling. Introducing the Bloch-
Ansatz (an+1 bn+1)

T = einϕ(an bn)
T into the above equation leads to

i
d

dζ

(
a

b

)
=
(
ωa + iΓa Ci + C0e

−iϕ
Ci + C0e

iϕ ωb + iΓb

)(
a

b

)
, (32)

Γb

Γa

a

b

Ci Co

a0 b0 a1 b1b−1a−1

unit cell

Fig. 13 Schematic illustration of a biatomic lattice. Each unit cell consists of two sites, which
couple to each other with strength Ci . The inter-cell coupling is instead given by C0. Each lattice
site is characterised by an eigenfrequency ω, and a decay rate Γ
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which reduces the complexity of the problem to study the evolution of a single unit
cell. The eigenvalues of the above Hamiltonian give the band structure of the lattice,
i.e.,

β± = −β̄ ±
√
δβ2 + C2

i + C2
0 + 2CiC0 cosϕ, (33)

where β̄ = ω̄ + iΓ̄ is the mean propagation constant (written as a function of
the mean energy ω̄ = (ωa + ωb)/2 and the mean losses Γ̄ = (Γa + Γb)/2), and
δβ = δω + iδΓ , where δω = (ωa − ωb)/2, and δΓ = (Γa − Γb)/2. The above
equation, moreover, defines two bands for the system, centered around the mean
propagation constant β̄. Without any loss of generality, one can assume β̄ = 0, (i.e.,
ωb = −ωa and Γb = −Γa).5 Moreover, we could also assume that Γb < Γa , which
leads to δΓ > 0. With these assumptions, Eq. (33) can be rewritten in the following
form:

β± = ±
√
ω2
a + 2iωaΓa − Γ 2

a + C2
i + C2

0 + 2CiC0 cosϕ. (34)

In the Hermitian case, which is recovered in the limit Γa = 0, the spectrum is
entirely real, regardless of the specific choice of parameters. Equivalently, the above
spectrum is PT -invariant only if ωa = 0, for which the above band structure
reduces to

β± = ±
√
−Γ 2

a + C2
i + C2

0 + 2CiC0 cosϕ. (35)

In this case, the spectrum is entirely real, as long as |Ci − C0| > Γa , and it
becomes purely imaginary if Ci + C0 > Γa . The band structure for the case of
PT -invariance is depicted in Fig. 14. Although the above model is well known and
has been extensively studied in the framework of PT -symmetry, little is known of
its dynamical properties in the regime where PT -symmetry is broken. This regime
is controlled only by the ratio |Ci −C0|/Γa . As it can be seen from Fig. 14c, in fact,
Eq. (35) admits purely real solutions for |ϕ| < 0.45π , whereas for |ϕ| > 0.45π the
eigenvalues are purely imaginary. These features, however, are not limited to a PT -
invariant spectrum, but they also appear in the more general case, when ωa �= 0,
as Fig. 15 shows. There, in fact, one can see how the spectrum looks qualitatively
similar, but smeared, to the one in Fig. 14. Moreover, the sharp transition between
purely real and purely imaginary that we observe in Fig. 14 is smoothed out because
of the presence of a nonzero ωa . Moreover, it appears clear from Fig. 15, that the
losses that each mode experiences are not constant, but they rather depend on the
transverse momentum ϕ. Hence, eigenmodes in different regions of the Brillouin
zone of this diatomic lattice experience different losses. As a direct consequence of
this, at the center of the Brillouin zone, each mode experiences intermediate losses

5β̄ can be anyway eliminated by means of a suitable gauge transformation.
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Fig. 15 Normalised band structure of a general dissipative biatomic lattice. The parameter chosen
for this figure are almost equivalent to the broken PT case shown in Fig. 14c, with ωa = 1.3, and
Ci = C0 = 1. In addition, a frequency detuning of ωa = 0.1 is introduced

(whose value is close to the average losses in the system, i.e., Γ̄ ), while at the edges
of the Brillouin zone (i.e., around ϕ = ±π ), the modes in the lower band suffer from
much larger losses, than the ones in the upper band. Because of this difference,
therefore, the modes in the lower band at the edge will disappear relatively fast,
whereas the modes sitting in the upper band will survive longer. For this reason,
only a part of the spectrum will contribute to define the transport properties of this
system.
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To better understand this selective participation of spectral mode to transport
properties, let us consider the situation depicted in Fig. 16: panels (a) and (b) depict
the evolution of the spectrum in the lower and upper band, respectively, whereas
the spatial evolution is plotted in panel (c), for the case of a single-site excitation.
Initially, all transverse modes in both bands are excited equally. In this regime,
which holds up to ζ < 20 in Fig. 16, the dynamics in real space follows the
one of a normal homogeneous lattice, i.e., the evolution dynamics shows strong
ballistic lobes, and amplitude oscillations inside each individual waveguide. For
longer propagation distances, i.e., when the modes around the edges of the Brillouin
zone are predominant, the evolution dynamics deviates significantly from the case
of a homogeneous lattice. In fact, as it appears clear from Fig. 16, the intensity is
mostly confined within the sub-lattice an, and central waveguides possess a larger
amplitude than outer ones. Moreover, the amplitude oscillations in the individual
waveguides are no longer present. To corroborate these observations, the variance
of the wave packet propagating along this structure (i.e., the evolution of its width
as a function of ζ ) is plotted in Fig. 16d. As it can be seen, two distinct transport
regimes are present in this structure. For small distances (ζ < 16, in Fig. 16), the
evolution is ballistic, and the variance σ 2 of the wave packet grows quadratically,
as expected in a Hermitian homogeneous lattice. For longer distances, however, the
evolution is diffusive, i.e., σ 2 grows linearly with ζ . To show this rigorously, one
needs to find the solutions to Eq. (31) in terms of superpositions of the eigenstates
of the correspondent Hamiltonian as follows

An = N
2π

∫ π

−π
dϕ
(
α+A+e−iβ+ζ + α−A−e−iβ−ζ

)
einϕ, (36)

where An = (an bn)
T (with A± being the two eigenvectors of the Hamiltonian

appearing in Eq. (32), and corresponding to the two eigenvalues β±, respectively),
N being a suitable normalisation constant, and α± are the coefficients for the two
band modes, namely α+ = C[1 + exp (iϕ)] and α− = β+ + β̄ + δβ (Ci = C0 ≡ C

has been assumed).
If we limit our analysis to large propagation distances and we consider the

contribution of the modes in a narrow region around the band edges ϕ = ±π ,
we can Taylor expand the band structure around such points and take the limit of
the correspondent eigenvectors as, say, ϕ → π . By doing that we then obtain the
following result:

α−
N

A−
ϕ→π→

(
1
0

)
. (37)

This result is consistent with the initial assumption, that the waveguides bn were
lossier than the an. As a consequence of this fact, if the mode is confined within
the an sub-lattice, it only experiences the loss for the an waveguides. Moreover, this
result is also in agreement with Fig. 16c, where it can be seen, that after a certain
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propagation distance, only the an waveguides carry nonzero intensity. This argument
allows us to simplify Eq. (36), by setting bn = 0 and expanding β around ϕ − π ,
thus obtaining

an = einπ

2
√
πwζ

ei(β̄−δβ)ζ ei
n2

4wζ , (38)

where w = C2δβ∗/(2|δβ|2). It is worth noticing, that the result above is only valid
if δΓ �= 0, i.e., when there is a nonzero loss detuning between the two lattice
sites an and bn. When δΓ > 0, in fact, there always exist propagation distance ζc,
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for which the approximations leading to Eq. (38) hold. This particular propagation
distance can be estimated by requiring that, given a certain spectral region ε, all
the modes outside this region are damped by a quantity δ, i.e., by imposing that
| exp (−iwε2ζc)| < e−2, which leads to ζc = (4|δβ|2)/(ε2C2δΓ ). The spectral
range ε, however, cannot be chosen arbitrarily, but it has to be chosen in such a
way that Eq. (37) holds, i.e., ε2 < 2|δβ|2/C2. Substituting this condition in the
expression for ζc leads to the following result:

ζc = 2

δΓ
, (39)

which represents the propagation distance, after which Eq. (38) is valid. Notice, that
ζc depends only on the loss imbalance between the two lattice sites an and bn, and
in the limit δΓ = 0, ζc → ∞, which is consistent with the fact that in such limit,
Eq. (38) cannot be used to approximate the dynamics of the system. We can now
calculate the variance of a wave packet described by Eq. (38), i.e.,

σ 2 =
∑∞

n=1 n
2 |an|2∑∞

n=1 |an|2 = C2

2δΓ
ζ. (40)

The above result, indeed, proves that for propagation distances ζ > ζc, the variance
grows linearly with the distance, i.e., the wave packet spreads diffusively. For ζ <
ζc, instead, the spreading is ballistic, as in the usual case of a lossless homogeneous
array.

5.2 Experimental Observation of Diffusive Transport in
Non-Hermitian Lattices

To implement experimentally a system, whose evolution is described by Eq. (31),
we can, once more, employ the laser-writing technique described in Sect. 3.1 to
realise a non-Hermitian waveguide array. According to the model developed in
the section above, the key feature of this array must be to possess controllable
losses. To implement this, according to the results presented in Sect. 4, we apply
a sinusoidal bend to the waveguides, to insert controllable losses in the system.
In particular, as Fig. 17 shows, each second waveguide composing the array is
sinusoidally bent, in order to implement intrinsic losses, whereas the straight
waveguides exhibit no losses (Γa = 0). The bending plane, moreover, is chosen
as the plane perpendicular to the lattice plane, in order to prevent light which is
radiated away from a lossy waveguide, to be reabsorbed by a different waveguide
of the lattice. In the experimental setup shown in Fig. 17, the waveguides are
separated by a distance a = 17 μm, which corresponds to a coupling con-
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Fig. 17 Schematic illustration of a biatomic waveguide lattice, which models Eq. (31). In order to
implement tunable losses, every second waveguide is bent sinusoidally, in the transverse direction,
with respect to the lattice plane

stant C = 1.1 cm−1. Moreover, the amplitude of the sinusoidal modulation is
d = 3 μm.6 To facilitate different intrinsic decay rates, the modulation frequency
serves as tuning parameter. The experimental measurements for a range of different
loss parameters, i.e., from Γb = 0 for the ballistic case, to a maximum of
Γb = −2 cm−1 for the lossiest configuration, are shown in Fig. 18. In addition to
the evolution of light in such waveguide lattice, Fig. 18 also shows the extracted
variance of the wave packet, together with the corresponding numerical simulation.
From the measurements presented in Fig. 18, one can then conclude, that the
experiments are in agreement with the theoretical prediction given in the previous
section. The fluorescence images show that the ballistic characteristics vanish with
increasing losses. In the lossless, ballistic case (Fig. 18a), the characteristic lobes of
ballistic transport are clearly visible. These lobes, however, already start to vanish in
panel (c), and they vanish completely in panel (k), which corresponds to the largest
losses. From the measurements presented in Fig. 18, we can also extract the critical
distance ζc, around which the transition from ballistic to diffusive transport occurs.
The correspondent behaviour of the critical distance as a function of the losses Γb
is shown in Fig. 19, which reveal that, indeed as predicted by Eq. 39, ζc is inversely
proportional to the loss detuning.

6The amplitude of the modulation has chosen to be small, in order to avoid the onset of a z-
modulated coupling constant.
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Fig. 19 The red cross
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Non-Hermitian Effects Due to
Asymmetric Backscattering of Light
in Whispering-Gallery Microcavities

Jan Wiersig

Abstract A whispering-gallery microcavity is an open optical system which
supports well confined counterpropagating electromagnetic waves. Deforming the
boundary of the cavity or perturbing it by other means, e.g. by placing small
scatterers near the boundary, leads to coherent backscattering of these waves
inside the cavity. In general, this backscattering is asymmetric, i.e. the strength
of scattering from the clockwise to the counterclockwise propagation direction is
different from the other way around. This asymmetry is intrinsically tied to the
non-Hermiticity of the system including the nonorthogonality of mode pairs and
the coalescence of modes at exceptional points. We review and present new results
on asymmetric backscattering with emphasis on its non-Hermitian effects. Several
types of perturbed whispering-gallery cavities are considered. Different applica-
tions, such as single-particle detection with enhanced sensitivity, are discussed.

1 Introduction

Every real physical system is an open system in the sense that it is coupled
to its environment or to a measurement apparatus. Therefore, the study of open
wave or quantum systems is an important topic in physics for many decades.
With the beginning of this century a new focus has emerged: “non-Hermitian
physics”. The main reason is the observation of interesting and unconventional
physics at and near special degeneracies, so-called exceptional points (EPs), of
effective non-Hermitian Hamiltonians. In contrast to conventional degeneracies,
so-called diabolic points [3] (DPs), at an EP not only eigenvalues but also the
corresponding eigenstates coalesce [2, 29, 30, 39]. As in most of the studies in
the literature, we here mainly consider EPs of order two, where exactly two
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eigenstates coalesce. Such EPs are square-root branch points of energy surfaces
in their parameter space. A number of experiments have undoubtedly proven the
existence of EPs in physical systems, e.g., in microwave cavities [12, 14, 16], optical
microcavities [52, 69, 113], coupled atom-cavity systems [9], photonic lattices [68],
nonuniformly pumped lasers [4], ultrasonic cavities [79], and exciton-polariton
billiards [23]. Furthermore, theoretical investigations revealed that EPs also appear
in other systems, such as hydrogen atoms in crossed magnetic and electric fields [6]
and coupled-resonator optical waveguides [78]. Finally, EPs are related to symmetry
breaking in PT-symmetric non-Hermitian systems [1, 68, 71] which are invariant
under a combination of parity (P) and time reversal (T) operations.

Optical microcavities represent an interesting class of open systems which have
attracted considerable interest in the recent decades [93]. Important examples of
such cavities are microdisks [44, 62, 64, 92], microspheres [11], and microto-
roids [34]. Such whispering-gallery mode (WGM) resonators trap light for a long
time τ by total internal reflection at the boundary of the resonator. An optical mode
in such a resonator therefore has a high quality factor Q = ωτ , where ω is the
resonant frequency of the mode.

All WGM resonators underlie unwanted or wanted perturbations. An unwanted
source of perturbation is, for example, surface roughness [105]. A wanted per-
turbation occurs, for instance, by local scattering at viruses, nanoparticles, or
nanofiber tips approaching the outer surface of the resonator, see e.g. Fig. 1a,
allowing for single-particle detection by a frequency shift or splitting [94, 95, 114].
Yet another type of wanted perturbation is given by deforming the microcavity’s
boundary, see Fig. 1b. Suitable deformations result in directional free-space light
emission [36, 65, 74, 104], efficient free-space excitation [50], efficient and broad-
band cavity-waveguide coupling [37], and mode discrimination [22, 76]. Moreover,
deformed microcavities serve as model systems for wave chaos and non-Hermitian
physics [5]. Another way to perturb a WGM resonator can be realized by introduc-
ing a modulation of the (effective) refractive index [63], see e.g. Fig. 1c.

Fig. 1 Microcavities with asymmetric backscattering of light. (a) Microtoroid with major and
minor diameters of 82 and 8 μm perturbed by two nanofiber tips, (b) spiral-shaped microdisk, (c)
microring with periodic modulation of the effective index of refraction. (Figures in (a) and (c)
are adapted from [66] and [63]. Figure in (b) is reproduced from [45] with the permission of AIP
Publishing)
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The aforementioned perturbations produce coherent backscattering of clockwise
(CW) and counterclockwise (CCW) propagating waves inside the resonator. It
has been shown that the backscattering is in general asymmetric leading to
counterintuitive non-Hermitian effects [106]. The resulting modes do not form
standing-wave modes, but partially traveling-wave modes. The fact that a mode has
a preferred sense of rotation is called chirality (this effect is not related to optical
activity). It was first observed in numerical calculations on the spiral cavity (Fig. 1b)
without relating it to asymmetric backscattering and non-Hermitian effects [8].
This link was established later by showing the appearance of nearly degenerate
pairs of copropagating modes [99] which exhibit a strong nonorthogonality [106].
The asymmetric backscattering and the resulting copropagation, chirality, and
nonorthogonality of mode pairs is a general effect in deformed and perturbed
WGM microcavities [41, 66, 100, 106, 107] and in open quantum systems with
weakly coupled CW and CCW traveling waves [101]. The chirality has been
demonstrated recently in experiments on a microdisk with two small bumps [41],
a microtoroid perturbed by two nanofiber tips [66], a microring with periodic index
of refraction modulation [63], and in coupled microcavities [112]. The experiment
on the microtoroid also confirms directly the asymmetric backscattering [66].

There are a number of potential applications of asymmetric backscattering:
microcavity sensors for single- or few particle detection with enhanced sensitiv-
ity [7], rotation sensing via output directionality [73], unidirectional lasing operation
in (micro)lasers e.g. [88], and orbital angular momentum microlasers [63].

The aim of this chapter is to review and to present new results on asymmetric
backscattering in WGM cavities and to explain in detail the resulting non-Hermitian
effects including the appearance of EPs. In Sect. 2 we discuss the two-mode model
for the isolated and the waveguide-coupled WGM cavity. Sections 3, 4, and 5
deal with deformed microdisk cavities, microdisks which are locally perturbed, and
microrings with a modulation of the effective index of refraction. Coupled cavities
are the topic of Sect. 6. Applications are overviewed in Sect. 7. Finally, a summary
is provided in Sect. 8.

2 The Two-Mode Model for Asymmetric Backscattering

In this section we report on the two-mode model for backscattered light in WGM
cavities with broken symmetry. This helps the reader to understand the basic
relationship between asymmetric backscattering of counterpropagating waves and
the resulting chirality, copropagation, and nonorthogonality of mode pairs.
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2.1 The Isolated WGM Cavity

The model discussed here was first phenomenologically introduced for deformed
microdisk cavities [106, 107]. The key idea is to model the dynamics in the
slowly-varying envelope approximation in the time domain with a Schrödinger-like
equation

i
d

dt
ψ = Hψ . (1)

Here, ψ is the two-component column vector (ψCCW, ψCW)
T , where the super-

script T indicates the matrix transpose. The complex-valued entry ψCCW (ψCW)
stands for all the field amplitudes of the CCW (CW) propagating waves. This strong
simplification was later justified for open systems in a rather general setting [101].

In the presence of optical losses (radiation/absorption) and/or gain the effective
Hamiltonian H is non-Hermitian. In the entire review we restrict ourselves to
systems which fulfill Lorentz reciprocity. For such systems there is an orthogonal
basis in which H is a complex-symmetric matrix [17, 86]. This basis consists
of standing waves (which are invariant under time reversal). Transformed into a
basis of traveling waves (which are exchanged under time reversal) the effective
Hamiltonian is a 2 × 2 non-Hermitian matrix

H =
(
Ω A

B Ω

)
(2)

where reciprocity requires the diagonal elements to be equal [103]. The real parts
of the diagonal elements Ω are the frequencies and the (negative) imaginary parts
are the decay rates of the uncoupled traveling waves. The complex-valued off-
diagonal elements A and B are the backscattering coupling coefficients. A (B)
describes the scattering from the CW (CCW) to the CCW (CW) traveling wave.
The backscattering is said to be asymmetric if

|A| �= |B| . (3)

This is permitted since the Hamiltonian is non-Hermitian and reciprocity does not
constrain the coefficients A and B. The possibility of asymmetric backscattering
had been excluded for a long time in the microcavity communities, e.g. [43], as it
was believed that there must be a detailed balance for the cross-coupling between
CW and CCW propagating waves owing to the conservation of energy [42]. This
argument is, however, not valid in an open system. Of course, in special cases the
backscattering can be symmetric, |A| = |B|. For instance, this happens for a closed
cavity (A∗ = B) or a cavity with at least one mirror-reflection symmetry (A =
B) [107]. For passive (no gain) cavities the inequality
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2|ImΩ| ≥ |A− B∗| (4)

holds [75, 103]. The asterisk stands for complex conjugation.
A short calculation shows that the complex eigenvalues of H are

Ω± = Ω ±√
AB (5)

and the complex (not normalized) right eigenvectors are

ψ± =
( √

A

±√
B

)
. (6)

The ± structure in the eigenvectors is a consequence of reciprocity. Clearly, in the
case of asymmetric backscattering (3) one component of a given eigenvector (6)
is larger than the other component. Physically, it means that the eigenvectors show
an imbalance of CCW and CW components if the backscattering is asymmetric.
According to [41, 78] we quantify this imbalance of CCW and CW components in
a vector ψ by the chirality

α = |ψCCW|2 − |ψCW|2
|ψCCW|2 + |ψCW|2 ∈ [−1, 1] . (7)

Obviously, both eigenvectors (6) exhibit the same chirality

α = |A| − |B|
|A| + |B| , (8)

i.e. they share the main propagation direction in real space. We call this effect
copropagation of mode pairs. In contrast to the original definition of the chiral-
ity [100, 101, 106, 107], the chirality in Eq. (7) provides information on the sense
of rotation. In the case where the CCW (CW) component dominates, |A| > |B|
(|A| < |B|), the chirality is positive (negative). A balanced contribution of CW and
CCW components gives a vanishing chirality.

As a consequence of the non-Hermitian character of the Hamiltonian the eigen-
vectors (6) can be nonorthogonal. This happens if the backscattering is asymmetric
as ψ∗+ · ψ− = |A| − |B| �= 0, where the inner product · is defined in the usual
manner of multiplying the matching components. A natural way to quantify the
nonorthogonality of two vectors ψ1 and ψ2 is to calculate the normalized overlap

S = |ψ∗
1 · ψ2|

|ψ1||ψ2| ∈ [0, 1] . (9)

Straightforwardly, one can show that for the two eigenvectors (6) the overlap (9) and
the chirality (7) are connected by the simple formula

S = |α| . (10)
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Nonorthogonality of modes is of particular importance for optical microcavities as
it implies excess quantum noise in lasers [51, 77, 81, 82].

It is possible to create fully asymmetry backscattering, i.e. A = 0 while B �= 0
or vice versa [100]. This is an EP, as the eigenvalues (5) and eigenvectors (6)
coalesce, i.e. the eigenvectors become collinear with the overlap S approaching
unity. The eigenvectors of the effective Hamiltonian H no longer form a basis.
Note, however, that the set of two ordinary differential equations (1) always has
two linearly independent solutions. The time evolution of the two-mode model
at an EP is discussed in [107]. It is worth mentioning that fully asymmetric
backscattering is related to “unidirectional invisibility” induced by PT-symmetric
periodic structures [20, 21, 55]. However, in the latter case, one considers a
scattering matrix and focuses on the scattering properties.

At the EP the chirality in Eq. (8) approaches ±1. In this limit the chirality defined
above coincides with the more abstract chirality associated with an EP [13, 31]. It is
here useful to define the strength of the EP to be the absolute value of the nonzero
off-diagonal element. For an EP with A = 0 and B �= 0 the strength of the EP is
|B|, for the opposite case it is |A|. The limiting case of zero strength characterizes a
DP.

2.2 Coupling to Waveguides

The extension of the two-mode model to waveguide-cavity systems has been
introduced and tested in [46, 66]. Let us consider the situation in Fig. 2 with
incoming waves from the upper left with amplitude a1,in(t) and the upper right with
amplitude a2,in(t). According to coupled mode theory, Eq. (1) is modified such that

i
d

dt
ψ = Hψ + κ

(
a2,in

a1,in

)
, (11)

where the cavity-waveguide coupling coefficient κ is equal for both propagation
directions due to reciprocity. The losses due to the coupling of the cavity to the
waveguides are included in the diagonal elements Ω of the Hamiltonian (2). The
backscattering coupling coefficients A and B do not have to be modified assuming
that there is no backscattering of light between the microcavity and the waveguides
which is justified when the distances between cavity and waveguides are sufficiently
large. By exploiting this assumption, one determines the outgoing amplitudes in the
lower waveguide as

a3,out = −κ∗ψCW , (12)

a4,out = −κ∗ψCCW . (13)
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Fig. 2 Sketch of the geometry consisting of two parallel waveguides with two incoming channels
with amplitudes a1,in, a2,in and the two outgoing channels with amplitudes a3,out, a4,out, and
an asymmetric WGM microcavity (here realized by a disk locally perturbed by two dissimilar
scatterers). κ is the cavity-waveguide coupling coefficient which is here for simplicity assumed to
be equal for both waveguides

We can choose κ to be real as we are only interested in the absolute values of a3,out
and a4,out.

For an harmonic CW excitation of amplitude a1,in and real-valued frequency ωe
one finds from Eqs. (11), (12), and (13)

a3,out = iκ2(Ω − ωe)

(Ω − ωe)2 − AB
a1,in , (14)

a4,out = −iκ2A

(Ω − ωe)2 − AB
a1,in . (15)

Analogously, for a CCW excitation of amplitude a2,in one finds

a3,out = −iκ2B

(Ω − ωe)2 − AB
a2,in , (16)

a4,out = iκ2(Ω − ωe)

(Ω − ωe)2 − AB
a2,in . (17)

The asymmetric backscattering expresses itself here by the fact that the numerator
in Eq. (15) is proportional to A, whereas the numerator in Eq. (16) is proportional
to B.

Of particular interest is the extreme case of fully asymmetric backscattering
where the Hamiltonian (2) is at an EP. Let us consider the case with B = 0
and A �= 0. The transmission from port 2–3 is zero as there is no backscattering
into the CW direction. However, the transmission von port 1–4 is nonzero since
there is backscattering into the CCW direction. The strength of the transmission
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is determined by the strength of the EP, |A|. It is important to note that even at
the EP one can couple into both propagation directions (CW and CCW) as can
be seen from Eqs. (14) and (17). This is not in contradiction with the fact that the
Hamiltonian possesses only one eigenvector. It merely discloses that at an EP of the
Hamiltonian H its eigenvectors do not constitute a basis.

3 Deformed WGM Microcavities

In this section we discuss optical modes in deformed microcavities (Fig. 1b). We
treat the two-dimensional geometry within the effective index approximation. The
solutions of Maxwell’s equations with harmonic time dependence ψ(x, y, t) =
ψ(x, y) exp (−iωt) are the optical modes. They fulfill the scalar Helmholtz equa-
tions [35]

[
∇2 + ω2

c2
n2(x, y)

]
ψ(x, y) = 0 , (18)

where ψ is the z-component of either the electric (transverse magnetic
polarization—TM) or the magnetic (transverse electric polarization—TE) field,
ω is the resonant frequency, c the velocity of light in vacuum and n is the
effective refractive index. For TM polarization the wave function ψ and its
normal derivative ∂νψ are continuous across the cavity’s boundary. In the case
of TE polarization, ψ and n−2∂νψ are continuous across the boundary. With
Sommerfeld’s outgoing-wave condition at infinity the solutions of the mode
equation (18) are quasibound states with decay rate 1/τ = −2 Imω > 0. The
quality factor of the given mode is Q = −Reω/(2 Imω). For convenience, we use
in the following the dimensionless frequency Ω = ωR/c.

Here we focus on the cavity whose boundary is given in polar coordinates by

#(φ) = R[1 + ε2 cos 2φ + ε3 cos (3φ + δ)] (19)

with δ ∈ [0, 2π). We call it the asymmetric (2, 3)-cavity as only the second and
third Fourier-components of the periodic function #(φ) are nonzero. The symmetric
case δ = 0 has been studied in [24]. The even more special case ε3 = 0 is the
well-known quadrupolar shape [65]. For generic ε2, ε3, and δ the system does not
possess any mirror-reflection symmetry. Note that this shape is different from the
asymmetric limaçon [107], which in our nomenclature is a (1, 2)-cavity. We choose,
rather arbitrarily, ε2 = 0.025, ε3 = 0.02, and δ = 0.9. The effective index of
refraction is set to n = 3.3 (e.g. GaAs) and we only consider TM polarization.
The optical modes and their complex frequencies are computed with the boundary
element method (BEM) [98]. If not stated otherwise 8,000 discretization points are
distributed along the entire boundary.
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Fig. 3 Intensity |ψ |2 of a nearly degenerate pair of modes in the cavity (19) with parameters
specified in the text. Sixteen thousand discretization points have been used for the BEM. (a)
Dimensionless frequency Ω+ = 12.06033899 − i3.855 × 10−5 and (b) Ω− = 12.06033885 −
i3.866 × 10−5

Figure 3 depicts an example of a pair of nearly degenerate WGMs in the (2, 3)-
cavity. The frequency splitting in the real and the imaginary part is of order 10−7.
This indicates a rather weak coupling of CW and CCW propagating waves in the
cavity.

A deeper understanding of the mode structure can be gained by expanding the
modes inside the cavity in cylindrical harmonics [8, 99],

ψ(#, φ) =
∞∑

m=−∞
αmJm(nk#) exp (imφ) , (20)

where Jm is the mth order Bessel function of the first kind. Positive (negative)
values of the angular momentum index m correspond to CCW (CW) traveling-
wave components. Figure 4a shows that for both modes the angular momentum
distribution |αm|2 is dominated by the CCW component. Hence, the two modes
are not standing waves but copropagating traveling waves. This is consistent with
the eigenvectors (6) of the two-mode model for |A| �= |B|, i.e. for asymmetric
backscattering. The definition of the chirality in the two-mode model (7) can be
naturally extended to the angular momentum decomposition (20) by

α =
∑∞

m=1 |αm|2 −
∑−1

m=−∞ |αm|2∑∞
m=1 |αm|2 +

∑−1
m=−∞ |αm|2

. (21)

For the modes in Fig. 3 we find in both cases α ≈ 0.423.
The ± sign in the eigenvectors (6) appears when we look at the real and

imaginary parts of αm in Fig. 4b, c. For negative angular momentum index both
the real and the imaginary part of αm have a different sign for the two modes.
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Fig. 4 Angular momentum distributions αm of the modes in Fig. 3a (circles) and b (crosses). The
real part is normalized to 1 at maximum: (a) absolute value squared, (b) real and (c) imaginary part
of αm. The region m > 0 (m < 0) corresponds to CCW (CW) traveling-wave components. The
lines connecting the symbols serve as a guide to the eye

We quantify the nonorthogonality of the modes in analogy to the normalized
overlap in the two-mode model (9) by the normalized overlap integral of two modes
ψ1(x, y) and ψ2(x, y) over the interior of the cavity

S = | ∫ dxdy ψ∗
1ψ2|√∫

dxdy ψ∗
1ψ1

√∫
dxdy ψ∗

2ψ2

. (22)

For the pair of modes in Fig. 3 we find S ≈ 0.422 reflecting a significant
nonorthogonality. This value together with the values of α reported above is fully
consistent with the prediction of the two-mode model in Eq. (10).

Figure 5a shows a region of the complex plane of dimensionless frequencies Ω .
It can be clearly seen that modes here always appear in nearly degenerate pairs.
As already mentioned, this is due to the rather weak coupling of CW and CCW
propagating waves in these open disk-like cavities. Figure 5b compares the chirality
and the pairwise nonorthogonality of the modes. It can be seen that most of the
modes in this region of the frequency plane have a negative chirality, i.e. they
predominantly travel clockwise. Moreover, it also can be observed that the chirality
and the overlap are strongly correlated. This correlation is in very good agreement
with the result of the effective Hamiltonian of the two-mode model in Eq. (10).
The deviations at S ≈ 0.12 and S ≈ 0.39 are probably due to coupling of the
corresponding mode pairs to other mode pairs. It was shown that mode pair coupling
can influence the relation between chirality and nonorthogonality [84].
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Fig. 5 (a) Subset of the complex frequency plane corresponding to the cavity in Eq. (19). Open
circles (crosses) mark the slightly higher-Q (lower-Q) mode of a given pair of almost degenerate
modes. (b) Chirality α versus spatial overlap S of mode pairs in (a) calculated from Eqs. (21)
and (22). The solid lines show the prediction of the two-mode model in Eq. (10). The arrows mark
the mode pair in Fig. 3

The asymmetric backscattering of light in deformed microdisk cavities is a
general phenomenon leading to chirality, copropagation, and nonorthogonality. It
has been numerically observed in a number of geometries: spiral-shaped cavi-
ties [48, 99, 106] (see Fig. 1b), the asymmetric limaçon and cavities of constant
width [107], Fourier-truncated spirals [47], double-notched circles [48], rolled-
up microcavities [19], and Reuleaux triangular-shaped cavities [72]. It is worth
mentioning that surface roughness does not necessarily reduce the asymmetric
backscattering. In the case of circular cavities surface roughness even introduces
asymmetric backscattering [105].

3.1 Justification of the Two-Mode Model

The fact that the 2 × 2 Hamiltonian (2) works so well even for strongly deformed
microdisk cavities like the one shown in Fig. 3 is surprising because in general
many angular momentum components are involved as can be seen in Fig. 4. For
other geometries, such as the spiral cavity, even many more angular momentum
components contribute [106]. The explanation for this numerical observation is
given by the perturbation theory for open quantum/wave systems in [101]. It
assumes non-Hermiticity, reciprocity, and weak coupling between CW and CCW
propagating waves. The latter reflects the fact that a smooth transition from CW
to CCW propagation direction involves waves which do not fulfill the condition
for total internal reflection. The coupling within the CW (CCW) propagation
direction, however, is allowed to be large, thereby taking into account a possibly
strong boundary deformation. In zeroth order the coupling between CW and CCW
propagating waves is ignored. The eigenstates of the zeroth-order Hamiltonian come
in degenerate pairs with one eigenstate lying in the CW subspace and the other one
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lying in the CCW subspace. In the next order the weak coupling between CW and
CCW propagating waves couples only the two eigenstates within these pairs. For
each such pair the perturbation theory results in the 2 × 2 Hamiltonian of the form
of Eq. (2).

3.2 Perturbation Theory for Weak Deformations

A second-order perturbation theory for TM/TE polarized modes in weakly deformed
microcavities had been introduced in [18, 24]. The theory presupposes a boundary
shape with at least one mirror-reflection symmetry. In this special case, the
modes can be separated into two symmetry classes, leading to two nondegenerate
perturbation theories. The generalization to deformations without mirror-reflection
symmetry has been developed in [48] for TM polarization. This degenerate per-
turbation theory is able to determine the complex frequencies, the spatial mode
structure including the far-field pattern and the chirality in generic cavities. The
theory has been successfully applied to spirals and double-notched circles [48],
as well as circles with surface roughness [105]. As expected, deviations between
perturbation theory and full numerical calculations appear in close vicinity to EPs.

3.3 Ray Dynamics

The asymmetric backscattering of light waves in deformed microdisks leads to
the mode-pair properties such as chirality, copropagation, and nonorthogonality.
While the backscattering of light rays should be also asymmetric, obviously in
cavities such as the spiral [106], it seems that the above properties, in particular
the nonorthogonality, are not possible as they demand the concept of a mode which
does not exists for ray dynamics. It was, however, shown that this line of reasoning
is untenable. Also for the ray dynamics modes can be defined as the eigenstates
of the Frobenius-Perron operator, which is the (discrete) time-evolution operator of
densities in phase space. It turns out that for deformed microcavities with chaotic
ray dynamics the long-time behavior of such phase-space densities is typically
determined by the eigenstates corresponding to two leading, nearly degenerate, real
eigenvalues of the Frobenius-Perron operator. This pair of eigenstates also shows
chirality, copropagation, and nonorthogonality [47].

4 WGM Cavities with Local Perturbations

In this section we consider cavities with local perturbations. These can be local
deformations, such as for the double-notched circle [48] or the disk with two small
bumps [41]. It can also be external scatterers, such as small particles [100] (Fig. 6a)



Non-Hermitian Effects Due to Asymmetric Backscattering of Light in. . . 167

Fig. 6 (a) Microdisk with two nanoparticles at distance dj from the disk’s boundary. The
azimuthal position of the second nanoparticle is specified by the angle β. (b) and (c) show intensity
patterns of a nearly degenerate mode pair in the perturbed microdisk. (b) Dimensionless frequency
Ω+ = 9.8781 − i0.0024 and (c) Ω− = 9.8780 − i0.0025

or nanofiber tips [66] (Fig. 1a), or internal scatterers such as holes in the disks [103].
In the following we refer to such a local perturbation simply as scatterer.

For a WGM cavity perturbed weakly by two scatterers the two-mode model
appears naturally within a two-mode approximation with fixed angular momentum
number m (and −m). The matrix elements of H can be analytically deter-
mined [100]

Ω = Ω0 + V1 + U1 + V2 + U2 , (23)

A = (V1 − U1)+ (V2 − U2)e
−2imβ , (24)

B = (V1 − U1)+ (V2 − U2)e
2imβ . (25)

β is the angular position of the second scatterer. The polar coordinate system is
chosen such that the first scatterer is located at the angular position φ = 0. The
Eqs. (23), (24), and (25) are not only valid for point scatterers (Uj = 0), which
is a good approximation in the limit of Rayleigh scattering, but also for finite-
size scatterers provided that each scatterer j alone leads to a configuration with
a mirror-reflection symmetry. The quantities 2Vj and 2Uj are given by the complex
frequency shifts for positive- and negative-parity modes introduced by scatterer j .
These numbers can be calculated for the single-scatterer-microdisk system either
numerically, using, e.g., the finite-difference time-domain method [91], the BEM,
or approximately using the Green’s function approach for point scatterers [15].

In the absence of gain the imaginary parts of Ω0, Vj , and Uj are nonpositive.
A short calculation confirms that the inequality (4) holds. The effective Hamilto-
nian (2) with matrix elements (23), (24), and (25) is in general non-Hermitian with
A �= B∗ if Vj and Uj have a nonzero imaginary part. Interestingly, even though
each scatterer alone leads to symmetric backscattering of light, the presence of both
scatterers with different Vj −Uj can lead to asymmetric backscattering, |A| �= |B|.
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4.1 Microdisk with Two External Scatterers

A microdisk with two nanoparticles as external scatterers (Fig. 6a) has been studied
in [100]. Here, we review the main results. If not stated otherwise we fix the
parameter as follows. The refractive index of the disk of radius R is set to n = 2,
the same for the two scatterers. The distances of the scatterers from the cavity’s
boundary are d1/R = 0.01 and d2/R = 0.02. The scatterers are small circles
with radii r1/R = 0.043 and r2/R = 0.048325. The angular position of the
second scatterer relative to the first one is β = 1.08468125 in radian. The mode
equation (18) is solved for TM polarization by using the BEM. Figure 6b, c shows
the pair of modes corresponding to unperturbed WGMs with azimuthal mode
number m = 16 and the lowest radial mode number. The traveling-wave character
can be already seen in the real-space plot by the lack of a clear nodal line structure.
The modes show a strong chirality, α = −0.976 and α = −0.975, and a strong
nonorthogonality, S = 0.987, consistent with the prediction of the two-mode model
in Eq. (10).

Figure 7 proves that both modes are indeed copropagating traveling waves.
The angular momentum distribution |αm|2 is in both cases dominated by the
CW component. Moreover, we can see that just two angular momenta contribute
significantly, m = ±16. We can therefore, in very good approximation, identify
these two contributions with the two components in the two-mode model from
Sect. 2. Note that in the case of internal scatterers such a direct identification can fail
since a significant amount of lower angular momentum components is excited [103].
The results of Fig. 7 are again fully consistent with the eigenvectors (6) of the two-
mode model.

By varying the azimuthal position of the second nanoparticle β and its radius r2
the frequency splitting and the decay rate splitting can be reduced simultaneously
to zero, see Fig. 8. This happens at r2/R ≈ 0.04833 and β ≈ 1.084681 close to
the parameters of the mode pair shown in Fig. 6b, c. Figure 8 clearly demonstrates
the complex-square-root topology of a branch point singularity which is usually
considered as a proof of the existence of an EP [12, 52]. The coloring in Fig. 8
reveals that near the EP the absolute value of the chirality (21) goes close to unity,
consistent with Eq. (10) from the two-mode model. As discussed above the modes
of this pair are almost collinear, i.e. effectively one mode is lost.

4.2 Microtoroid with Two Nanofiber Tips

The asymmetric backscattering in perturbed WGM cavities has been experimentally
confirmed for a silica microtoroid perturbed by two nanofiber tips [66] as depicted in
Fig. 1a. Two waveguides are used to excite and probe the CW and CCW propagation
direction independently as illustrated in Fig. 2. When there is no scatterer near
the cavity, light coupled into the cavity through the upper waveguide in the CW
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(Fig. 9a, i) (or CCW in Fig. 9b, i) propagation direction couples out into the lower
waveguide in the CW (or CCW) propagation direction. There is a resonant peak
in the transmission and no signal in the reflection. When a first scatterer is placed
close to the cavity’s boundary (Fig. 9a, ii and b, ii), resonant peaks are observed in
both the transmission and the reflection regardless of whether the light is input in
the CW or in the CCW direction. When a second scatterer is suitably placed close
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Fig. 9 Experimental confirmation of asymmetric backscattering in a perturbed WGM cavity. (a)
CW input via port 1 and (b) CCW input via port 2; cf. Fig. 2. CW output |a3,out|2 is shown in blue
and CCW output |a4,out|2 is shown in red. Inset in (b, iii) compares the two backscattering peaks
in (a, iii) and (b, iii). (Adapted from [66])

to the boundary of the cavity such that an EP is established (Fig. 9a, iii and b, iii),
for the CW input there is no signal in the reflection output port (Fig. 9a, iii), whereas
for the CCW input there is a resonant peak in the reflection (Fig. 9b, iii), revealing
asymmetric backscattering for the two input directions, cf. Eqs. (15) and (16) with
A = 0 and B �= 0.

A slightly modified version of the experiment demonstrated the chirality in
asymmetric WGM cavities [66]. Again a silica microtoroid is perturbed by two
nanofiber tips but now the cavity is doped with erbium ions and is coupled to a single
waveguide. Pumping the cavity leads to lasing which, depending on the position of
the nanofiber tips, can be directional as demonstrated in Fig. 10. The directionality
reveals the underlying chirality of the modes. By moving the nanofiber tips one
can go from an EP with chirality α = +1 to an EP with α = −1. This approach
allows to dynamically control the directionality of the light emission. The alternative
experiments on a microdisk with two small bumps [41], on a microring with
periodic index of refraction modulation [63], and on coupled microcavities [112]
also confirm the chirality but do not allow to dynamically control it.
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Fig. 10 Experimental confirmation of chirality in a perturbed WGM microlaser coupled to a
waveguide. (a) Intensity of light outcoupled into a waveguide in the CW and CCW propagation
directions as a function of β, the angle between the two nanofiber tips. Regions of bidirectional
emission and unidirectional emission can be observed. (b) Chirality α as a function of β.
Transitions from nonchiral states to states with strong chirality close to EPs are clearly seen.
Regions with α ≈ ±1 correspond to unidirectional emission regions in (a). The solid curve is
the result of the two-mode model with Eqs. (8) and (23), (24), and (25). (Adapted from [66])

5 WGM Cavities with Modulation of the Effective Index of
Refraction

Yet another way to render the backscattering in a WGM cavity to be asymmetric is
by introducing an asymmetric modulation of the effective index of refraction in
the azimuthal direction. This can be achieved by introducing layers of different
materials or simply by modulating the height of the cavity, see Fig. 1c. Non-
Hermiticity comes in by the coupling to a lossy channel [80] (e.g. the continuum)
or by introducing directly loss and gain into the materials [63, 96, 97]. The matrix
elements of the Hamiltonian (2) in the two-mode model have not been determined
for the case of refractive index modulation but an explicit transfer-matrix approach
can be found in [59].

6 Coupled Cavities with Internal Asymmetric Backscattering

This section deals with coupled WGM cavities where at least in one of the
cavities the backscattering of light is asymmetric as illustrated in Fig. 11. Song and
coworkers [83] suggested to place a circular cavity next to a circular cavity with
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CCW CW
W

A B

Fig. 11 Sketch of coupled cavities with asymmetric internal backscattering. The coefficient
A describes the backscattering of CW traveling waves to CCW traveling waves, while the
backscattering from CCW to CW traveling waves is described by B. The parameter W is the
inter-cavity coupling coefficient

a spiral-shaped inner boundary. Numerical simulations demonstrated that in such
an arrangement a very high Q-factor can be combined with a strong chirality in
a robust way. The same setup has been applied for single-nanoparticle detection
taking advantage of the sensitivity of the far-field pattern in the presence of strong
chirality [111, 112].

Coupled-resonator optical waveguides (CROWs) are waveguides formed by
a serial chain of microcavities, which are weakly coupled by their evanescent
fields [56, 85, 110]. These exotic waveguides have attracted considerable attention
since there is a variety of potential applications such as optical filtering [57], optical
buffering [67], nonlinear components [109], and group velocity compensation [40].
Figure 11 illustrates a CROW made of open resonators lacking mirror-reflection
symmetry, i.e. each individual resonator can exhibit asymmetric internal backscat-
tering. It has been shown that the asymmetric backscattering in such a periodic
system can lead to EPs in the complex band structure Ω(k), where k is the real-
valued Bloch wavenumber [78]. Near an EP of order p, one gets

Ω(k)−ΩEP ∼ (k − kEP)
1/p . (26)

As a result, the group velocity diverges when the EP is approached,

vg(k) ≡ d

dk
ReΩ(k) ∼ (k − kEP)

(1/p−1) . (27)

This is, however, not in contradiction with special relativity. Using a non-Hermitian
correction to the Hellmann-Feynman theorem it has been proven in [78] that the
intensity transport velocity vI near an EP remains finite,

vI (k)− vI,EP ∼ (k − kEP)
1/p . (28)

CROWs made of cavities with asymmetric internal backscattering have been
used to create topologically protected defect states in a system that is topologically
trivial in the closed limit [61].
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7 Applications of Asymmetric Backscattering

7.1 EP-Based Sensors

An essential difference between EPs and conventional Hermitian degeneracies,
DPs, is the sensitivity to perturbations [39]. Perturbing a DP by a perturbation of
strength ε leads to a frequency splitting of order ε. This is in strong contrast to an EP
of second order which results in a frequency splitting of order

√
ε which is larger for

sufficiently small perturbations. In [102] it was suggested to exploit this sensitivity
for sensor applications which are based on the detection of frequency (energy
level) splittings. Examples are weak magnetic field sensors [70], nanomechanical
mass sensors [26], bending curvature sensors [58], optical gyroscopes [10, 90],
microcavity sensors for single or few particle detection [27, 94, 114]. For the latter
class of systems we explain the scheme of [102] which is based on a two-mode
model with fixed azimuthal mode number; a more general approach is provided
in [103]. The unperturbed sensor is a WGM sensor described by H0 as in Eq. (2). It
has zero frequency splitting which can be achieved either by using a DP or an EP. A
DP is here given by B = 0 and A = 0, i.e. without any backscattering between CW
and CCW traveling waves. An EP results for B = 0 or A = 0; see Fig. 12a. The
EP can be installed by using two scatterers as discussed in Sect. 4. The microcavity
sensor together with the target particle are described by

H = H0 +H1 . (29)

The perturbation due to the small target particle at angular position β (Fig. 12a) is
in the same spirit as in Eqs. (23), (24), and (25) given by

H1 =
(

V + U (V − U)e−i2mβ

(V − U)ei2mβ V + U

)
. (30)

The disturbance due to the target particle, H1, induces for the DP the complex
frequency splitting

ΔΩDP = 2(V − U) . (31)

The real part is the conventional frequency splitting observed for instance in [114].
The imaginary part corresponds to a linewidth splitting. In contrast, for the EP (B =
0 and A �= 0) one gets

ΔΩEP = ΔΩDP

√
1 + Aei2mβ

V − U
. (32)
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Fig. 12 (a) Sketch of a WGM microcavity with fully asymmetric backscattering (indicated by the
large single-headed arrow for A �= 0 and B = 0) acting as EP-based sensor. The target particle
introduces a weak symmetric backscattering (small double-headed arrow) leading to an enlarged
frequency splitting. (b) Experimental confirmation of the enhanced sensitivity of a microcavity
sensor for nanoparticle detection at an EP. Shown is the enhancement factor |ΔΩEP/ΔΩDP| as a
function of the perturbation strength ε. The solid curve is a fit using Eq. (32). Inset: logarithmic plot
of |ΔΩ| versus ε. The DP-based sensor shows a slope of 1, whereas the EP-based sensor shows a
slope of 1/2 for sufficiently small perturbations. ((b) is adapted from [7])

If the square root in Eq. (32) is larger than unity then the frequency splitting at
the EP is larger than the one at the DP even though in both cases the perturbation
H1 is exactly the same. The intuitive explanation is that the intrinsic (and fully
asymmetric) backscattering of strength |A| does not lead to a splitting as long as
there is no target particle, but in the presence of a target particle it is able to give a
significant contribution to the splitting. It might be helpful for the reader to associate
the strength of the EP, |A|, with the tension of a crossbow. The larger the tension the
larger the amplification of the effect of the perturbation (the pulling of the trigger).
In this crude analogy, the DP corresponds to an untensioned crossbow.

If the intrinsic backscattering is much larger than the backscattering at the target
particle, |A| � |V − U |, or in other words if the strength of the EP is much larger
than the perturbation induced by the target particle, Eq. (32) simplifies to

ΔΩEP = ΔΩDP e
imβ

√
A

V − U
. (33)

Here, the absolute value of the complex frequency splitting |ΔΩEP| � |ΔΩDP|
is independent from the azimuthal position of the target particle, β. But the
corresponding real and imaginary parts do depend on β. It is therefore necessary
to measure both the frequency splitting Re(ΔΩ) and the linewidth splitting
−2 Im(ΔΩ). Note that for passive systems, where the inequality (4) applies, it
is experimentally difficult to separate the two peaks in the spectrum [103]. This
problem can be solved by linewidth reduction due to optical gain in an active
microcavity [28].
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The presented theory has been confirmed in a recent experiment [7]. As in [66]
the WGM cavity is a silica microtoroid coupled to two waveguides. The EP is
installed using two nanofiber tips as shown in Fig. 1a. As target particle a third
nanofiber or a single polystyrene nanoparticle is used. Figure 12b shows that the
enhancement factor is about 2.5 for small perturbations and decays for increasing
perturbation. In the logarithmic plot a slope of 1/2 can be seen which originates
from the square-root behavior at the EP. For the DP-based sensor a slope of 1 is
present due to the linear behavior at the DP.

The sensitivity enhancement at an EP is not restricted to the discussed scenario
of particle detection and asymmetric backscattering [103]. It has also been observed
for coupled cavities at an EP [32]. An alternative single-particle detection scheme
using asymmetric backscattering has been presented in [112] (see Sect. 6). It is based
on the sensitivity of the far-field pattern in the presence of strong chirality. The
same effect has been exploited before for rotation sensing as is discussed in the next
subsection.

7.2 Rotation Sensing via Output Directionality

The well-known Sagnac effect is the frequency splitting of optical modes in a
rotating cavity, see e.g. [89]. It has become the operation principle for ring laser
gyroscopes. In the context of this book chapter we focus on cavities without mirror-
reflection symmetry. It had been shown in [73] that the quasidegenerate pairs
of copropagating modes are transformed by rotation to counterpropagating ones,
leading to a striking change of emission directions. This can be understood through
the two-mode model Hamiltonian (2). In the case of backscattering with strong
asymmetry, e.g. |A| 	 |B|, the eigenvectors (6) are very similar, both are dominated
by the CW component. This implies that the corresponding two modes have similar
properties including the far-field patterns. Figure 13a, b show such a situation for
a mode pair in the asymmetric limaçon. Importantly, the small but finite CCW
components exhibit very different far-field behavior as shown in Fig. 13c.

The rotation can be modeled as a perturbation with Hamiltonian

H1 =
(
Δ 0
0 −Δ

)
. (34)

If the rotation speed is slow enough Δ is proportional to the rotation speed. The
Hamiltonian H1 describes the frequency change of CCW and CW propagating
waves induced by the rotation alone. Note that the perturbation (34) is special: in
contrast to the perturbation (30) it does not give rise to a square-root behavior when
applied to the Hamiltonian (2) at the EP.

In the case A = 0 we find for the (not normalized) right eigenvectors of the full
Hamiltonian H +H1
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Fig. 13 Near- and far-field intensity patterns of modes in the nonrotating asymmetric limaçon
#(φ) = R[1 + ε1 cosφ + ε2 cos (2φ + δ)] with R = 591 nm, ε1 = 0.1, ε2 = 0.075, and δ = 1.94.
The refractive index is n = 3 and the wavelength is λ = 598 nm. The TM polarized modes are
calculated by the finite-difference frequency-domain method. (a) Near-field pattern of one of the
quasidegenerate modes. The other mode looks similar. The intensity outside the cavity is enhanced
to illustrate the chirality. (b) Far-field patterns of both modes, which have similar output directions.
(c) Far-field patterns of CW (solid curve) and CCW (dashed curve) components of the modes,
exhibiting distinct output directions. (Adapted from [73])

ψ1 =
(

0
1

)
, ψ2 =

(
2Δ/B

1

)
. (35)

When the rotation speed is increased the eigenvector ψ1 stays the same, whereas
ψ2 starts to be dominated by the CCW component for |Δ| > |B|/2. If the CCW
and CW components have a significantly different far-field pattern, as in the case of
the asymmetric limaçon in Fig. 13, the far-field pattern dramatically changes when
the rotation speed is increased. Measuring the rotation with the conventional Sagnac
effect requires that the frequency splitting has to overcome the line broadening, i.e.
|Δ| > 2|Im(Ω)|. Because of the inequality (4) one can expect that the scheme with
the far-field pattern performs better. Indeed, numerical simulations have shown a
three orders of magnitude stronger effect in comparison to the Sagnac frequency
splitting [73].

7.3 Directional Lasing

As discussed in Sect. 4.2 the chirality can be exploited for directional lasing in
WGM cavities. The general mechanism is that already below laser threshold there
is a preferred propagation direction due to the asymmetric backscattering. There
have been several attempts to achieve directional lasing operation in ring lasers, the
macroscopic version of WGM cavities, because it offers the advantages of enhanced
mode purity and higher single beam power. The first experiment taking advantage of
asymmetry was on an “S-shaped” AlGaAs/GaAs ring laser [33]. The unidirectional
ratio, defined as the minor directional output to the major directional output, was
around 0.05. Another experiment was on triangular AlGaAs/GaAs waveguide lasers
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with an asymmetrically modified section, which was termed “optical diode” [54].
The unidirectional ratio was here as small as 0.03. An even better suppression of
the minor direction output had been achieved by using a rectangular geometry with
“optical diode” [53].

It should be emphasized that the authors of Refs. [33, 53, 54] did not relate their
findings to asymmetric backscattering nor to non-Hermitian effects. They believed
that the suppression of one propagation direction in the laser dynamics is related to
an unequal transmission (as in a diode) coming from unequal losses for the different
propagation directions. This interpretation is, however, wrong because it violates
reciprocity. Kalagara and coworkers tried to rescue the concept of unequal losses by
numerical simulations [38]. But from their simulations of the short-time evolution
of many modes no conclusion about individual losses can be drawn. Yet another
misinterpretation is that the modes of a given mode pair resulting from asymmetric
backscattering have identical quality factors but different spatial mode patterns [49].
This claim was disproved in [99] for the spiral cavity where it was shown that the
quality factors are slightly different and the spatial mode patterns are very similar.
The latter fact just reflects the strong nonorthogonality [106].

Another approach to achieve unidirectional operation in ring lasers is to introduce
an external optical reflector which provides feedback only for one of the propagation
directions. In [25] this was modeled by an asymmetric backscattering showing that
a strong asymmetry enhances the probability of one propagation mode to lase alone.
However, a link to non-Hermitian effects has not been established.

Sui et al. fabricated InP-based spiral-shaped microlasers vertically coupled to a
silicon waveguide and demonstrated stable directed light emission [87]. The authors
introduced an improved cavity shape, a locally deformed ring, with unidirectional
ratio of 0.053 [88].

An analysis based on semiconductor laser rate equations at the EP in ring-like
cavities with asymmetric backscattering revealed stable unidirectional operation for
not too high current levels [60]. Deviating from the EP can break the unidirectional
operation, but for higher currents the unidirectional operation is restored.

7.4 Orbital Angular Momentum Lasers

Once unidirectional lasing operation has been achieved in a WGM microcavity
it can be exploited for the effective generation of light with nonzero orbital
angular momentum [63, 96, 108]. This has been achieved experimentally in an
InGaAsP/InP-microring with periodically modulated complex refractive index to
install an EP based on asymmetric backscattering [63] as discussed in Sect. 5. With
sidewall modulations periodically arranged along the microring outer boundary
laser radiation with an optical vortex of topological charge l = −1 was emitted
upwards. The topological charge of the vertically emitted light of a mode with
azimuthal mode numberm depends on the angular momentum contributions αl with
|l| < |m| (Eq. (20)) corresponding to leaky components, see [96]. Another exper-
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iment on a silicon microring with asymmetrically deformed inner boundary has
shown vertical emission of orbital angular momentum superposition states [108].

8 Summary

This chapter provides a comprehensive overview on the non-Hermitian effects due
to asymmetric backscattering of counterpropagating waves in whispering-gallery
microcavities. To shed light on the simplicity and the beauty of the physics, the
two-mode model for the isolated cavity and the waveguide-coupled cavity has
been elaborated first. The non-Hermitian phenomena chirality, copropagation, and
nonorthogonality of mode pairs have been discussed. It has been demonstrated that
if the backscattering is fully asymmetric an exceptional point in the spectrum is
reached; see illustration in Fig. 14.

The non-Hermitian physics of deformed microdisk cavities due to asymmetric
backscattering has been demonstrated for the novel (2, 3)-cavity. The chirality,
copropagation, and nonorthogonality could be clearly seen in full agreement
with the two-mode model. The justification of the latter has been addressed. A
perturbation theory for deformed microdisk cavities has been touched. The non-

fully
backscattering

chirality
copropagation

nonorthogonality 

cirtemmysacirtemmys

EP

Fig. 14 Asymmetric backscattering of counterpropagating waves in perturbed whispering-gallery
microcavities. In the symmetric case on the left-hand side, the optical modes are pairwise
orthogonal standing waves. Asymmetric backscattering leads to chirality, copropagation, and
nonorthogonality of mode pairs. Raising the asymmetry from left to right increases chirality and
nonorthogonality. Fully asymmetric backscattering results in an exceptional point (EP) where the
modes coalesce
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Hermitian effects can also appear in the ray dynamics when the eigenstates of the
time-evolution operator of the phase-space densities are investigated.

Whispering-gallery cavities with local perturbations are another interesting class
of systems where asymmetric backscattering is relevant. Here, the dependence of the
matrix elements of the two-mode model with respect to the relative angular positions
of the local scatterers can be written down explicitly. With proper adjustments of
parameters an exceptional point can be installed. The experimental confirmation
of the asymmetric backscattering and chirality in a microtoroid perturbed by two
nanofiber tips was explained. Microcavities with a modulation of the effective index
of refraction were briefly discussed.

Coupled cavities with asymmetric internal backscattering were also considered.
Of particular interest are waveguides formed of such cavities as they can exhibit
exceptional points in the complex bandstructure. At these points the group velocity
diverges but the intensity transport velocity stays finite.

Finally, applications of asymmetric backscattering were outlined. The excep-
tional point for fully asymmetric backscattering shows a much larger sensitivity
with respect to external perturbations if compared to a conventional degeneracy.
This can be exploited for sensing of nanoparticles with greatly enhanced sensitivity.
Moreover, cavities without mirror-reflection symmetry allow for an alternative
scheme of sensing rotations. In contrast to the conventional Sagnac effect which
leads to a small frequency splitting, the new approach leads to a dramatic change in
the far-field pattern. As another important application, asymmetric backscattering
can be exploited to achieve unidirectional laser operation in whispering-gallery and
ring-like cavities. Finally, a whispering-gallery or ring-like cavity operating unidi-
rectionally can be utilized as a vertically emitting orbital angular momentum laser.

It would be interesting to extend the study of asymmetric backscattering to
deformed microspheres. Because of the higher degeneracy of whispering-gallery
modes in the unperturbed sphere it is to be expected that such systems unveil even
richer non-Hermitian physics.
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Exact Results for a Special
PT-Symmetric Optical Potential

H. F. Jones

Abstract We present exact analytical results for the sinusoidal optical potentials
υ(x) ∝ cosKx + iλ sinKx, particularly for the special case λ = 1. This is at the
borderline between broken and unbroken PT symmetry, and propagation through
such an optical lattice exhibits many remarkable properties. There are two main
configurations for light largely propagating in the longitudinal (z) direction: (a)
where the modulation of the refractive index is in the transverse (x) direction and (b)
where the modulation is in the longitudinal direction. In the first case one encounters
such properties as non-reciprocity, power oscillations, beam splitting and phase
dislocations, while the second case is characterized by unidirectional invisibility,
that is, almost total transparency and zero reflection from one side, but with a large,
highly peaked, reflection from the other side. The latter property can be exploited in
lasing cavities.

1 Introduction

The explosion of interest in the use and exploitation of PT -symmetry in optics
arguably began with the pioneering paper of Makris et al. [1], who showed the
remarkable properties of light propagation in a periodic structure whose refractive
index varied sinusoidally, with loss and gain balanced according to the PT -
symmetric condition n∗(x) = n(−x). This paper was concerned with transverse
modulation, i.e. propagation primarily in the z-direction, in the context of the
paraxial approximation. The parameter λ governing the magnitude of the gain-
loss modulation relative to that of the real index modulation was kept in the region
λ < 1 of unbroken PT -symmetry, where, in spite of the presence of gain and loss,
the propagation constant remains real and there is no exponential growth or decay.
Later the special case λ = 1 was considered, particularly in the case of longitudinal
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modulation; that is, in the direction of propagation, z. Again, remarkable properties
were found, in particular the phenomenon of unidirectional invisibility [2, 3].

Many of these calculations involved approximations, among which are the
paraxial approximation and the coupled-wave approximation. However, in many
cases an analytic solution is possible, particularly for the case λ = 1, so it is of
interest to present those analytic results and compare them, where possible, with the
approximate calculations.

In Sect. 2 we discuss transverse modulation, where for λ < 1 (Sect. 2.1) the
Bloch functions relevant for the calculation of wave-packet propagation within the
paraxial approximation are given by Mathieu functions. For λ = 1 (Sect. 2.2)
the relevant functions are modified Bessel functions, but because λ = 1 is an
exceptional point, where eigenfunctions and eigenvalues merge, one also has to
consider their associated Jordan functions. These can also be expressed in terms of
modified Bessel functions, and may have a significant effect on beam propagation.
In order to consider Fresnel reflection at boundaries we need to go beyond the
paraxial approximation (Sect. 2.3). Because of the special nature of the λ = 1
optical potential the coupled-mode (Bragg) series gives exact results for successive
diffraction orders.

In Sect. 3 we discuss longitudinal modulation, n = n(z), for the case λ = 1,
where an analytic solution for normal incidence exists, again in terms of modified
Bessel functions (Sect. 3.1). Within a certain range of parameters the original results
obtained by the coupled-mode approximation prove to be remarkably accurate. In
Sect. 3.2 we extend the analytic solution to deal with non-normal incidence and
Fresnel reflection at the boundaries of the grating. These results can be used to
display angular distributions and to consider the use of such a grating in optical
cavities leading to lasing. In the latter context the highly-peaked reflectivity of the
grating for right incidence can be exploited to eliminate competing longitudinal
modes.

Finally, in Sect. 4 we summarize the physical properties and the various mathe-
matical analyses of this special optical potential.

2 Transverse Modulation

In this section we consider propagation predominantly in the z direction through
a medium whose refractive index depends on the transverse distance x in a PT -
symmetric fashion. For the first two subsections the calculations are formulated in
terms of the paraxial approximation. In the third subsection we take account of
Fresnel refraction at boundaries.

The set-up is shown schematically in Fig. 1, where a beam is incident in the
z-direction on a slab of material (volume grating) whose refractive index varies
periodically in the x direction. The incident beam can be a plane wave or a wave
packet and may or may not be at normal incidence. Propagation of the wave is, of
course, governed in the first instance by Maxwell’s equations. ForH -polarization, in
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x

z

Fig. 1 Schematic of a beam of light incident on a volume grating in which the refractive index is
modulated in a PT -symmetric way in the transverse x direction. Among other exotic phenomena
the beam will be diffracted asymmetrically, because the grating is not symmetric under P (x →
−x) but rather under P combined with T (complex conjugation)

which the electric field is in the y direction, the equation for this tangential electric
field is the scalar Helmholtz equation

(
∂2

∂z2 + ∂2

∂x2 + k2
)
Ey(x, z) = 0, (1)

where k = n(x)ω/c for a wave of angular frequency ω. Most treatments of
this problem have been in the framework of the paraxial, or slowly-varying,
approximation. This is derived under the assumption that the main z-dependence
of the wave, of angular frequency ω, is eik0z, where k0 = n0ω/c and n0 is the
background index, on which there are small grating modulations, that is

n(x) = n0(1 + υ(x)) (2)

where υ(x) is small. Then, writing Ey(x, z) as Ey(x, z) = eik0zψ(x, z), the
resulting equation for the envelope ψ is

(
∂2

∂z2 + 2ik0
∂

∂z
+ ∂2

∂x2 + (k2 − k2
0)

)
ψ(x, z) = 0, (3)

in which, because of the assumed smallness of υ(x), we can approximate k2 −k2
0 as

k2 − k2
0 ≈ 2υ(x)k2

0. The paraxial approximation is based on the assumption that the
main z-dependence of E(x, z) is given by eik0z so that the second-derivative term
∂2ψ/∂z2 is small compared with the first-derivative term and may be dropped. The
resulting paraxial equation for ψ is

(
i
∂

∂z
+ 1

2k0

∂2

∂x2
+ k0 υ(x)

)
ψ(x, z) = 0, (4)



188 H. F. Jones

which by a suitable rescaling of x and z can be recast as

(
i
∂

∂z
+ ∂2

∂x2 + υ(x)

)
ψ(x, z) = 0. (5)

We have chosen the terminologyψ for the envelope function for a reason, namely
that this paraxial equation has the same form as the time-dependent Schrödinger
equation in quantum mechanics, but with the longitudinal distance z taking the role
of time and υ(x), which we recall measures the additional refractive index due to
the grating, taking the role of (minus) the quantum-mechanical potential V (x).

The importance of this observation [4, 5] is that all the ideas, techniques and
results developed in the context of PT -symmetry in quantum mechanics [6–9]
can be taken over to classical optics. Most importantly, the central idea of PT -
symmetry, that the potential V (x) does not have to be real in order to ensure
real energy eigenvalues, is extremely relevant to optics. In that context a complex
refractive index is entirely natural, with the imaginary part corresponding to either
gain or loss. The lesson of PT -symmetry is that when gain and loss are balanced in a
PT -symmetric way, wave propagation may still proceed without exponential decay
or growth. The phenomenon of PT symmetry-breaking, whereby eigenvalues cease
to be real when the imaginary part of V becomes too large, is of potential importance
in switching applications.

2.1 Unbroken PT Symmetry: λ < 1

The first paper to analyze the set-up of Fig. 1 in detail was that of Makris et al. [1],
with the PT -symmetric (n∗(x) = n(−x)) optical potential

υ(x) = 1

2
ξ(cosKx + iλ sinKx), (6)

up to an additive constant, and with K = 2, ξ = 4. To calculate the electric
field distribution starting from an initial distribution at z = 0 one can, of course,
integrate Eq. (4) numerically, the most efficient method being the split-operator
method appropriate for a Hamiltonian of the standard form H = p2 + V (x), but
a semi-analytical method is to use the method of stationary states, borrowed from
quantum mechanics.

In quantum mechanics the time-dependent Schrödinger equation

i
dψ(x, t)

dt
= Hψ(x, t) (7)

can be solved in principle by expanding ψ(x, 0) in a complete set {ψm(x)} of
eigenstates of H , with eigenvalues Em:



Exact Results for a Special PT-Symmetric Optical Potential 189

ψ(x, 0) =
∑
m

cmψm(x). (8)

Then at a later time ψ(x, t) is given by the sum

ψ(x, t) =
∑
m

cmψm(x, t)

=
∑
m

cme
−iEmtψm(x), (9)

which in practice will have to be truncated at some large value of m.
The crux of this method is to find the eigenstates. Since we have a periodic

potential with periodicity a = 2π/K , the boundary conditions are that ψ(x) should
also be periodic up to a phase, i.e. ψm(x + a) = eikmaψm(x), where the km are
the Bloch momenta. The band structure of the lattice gives the relation between the
Bloch momentum km and the energy Em, or in this case the coefficient βm in the
z-dependence eiβmz of each eigenstate.1

In standard Hermitian situationsE is guaranteed to be real, and the band structure
(E versus k) consists of bands, where k is real, and gaps, where it is not. A typical
figure would look like that in Fig. 2a. In PT symmetry the eigenvalues are either
all real, when the symmetry is unbroken, or some may become complex conjugate
pairs, when the symmetry is broken. When the symmetry is unbroken the band
structure is of the standard form, shown in Fig. 2a. However, when the symmetry

(a)

–1 –0.5 0.3 1
ka/p

E

(b)

–1 –0.5 0.3 1

E

ka/p

Fig. 2 Schematic band structure (E versus k) for the potential of Eq. (6): (a) in the regime of
unbroken symmetry λ < 1 and (b) in the broken-symmetry regime λ > 1. In panel (b) only real
values of E are shown

1Here we have considered the system in a large interval in x with periodic boundary conditions so
that the km are discrete.
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Fig. 3 Schematic band
structure for the potential of
Eq. (6) precisely at the
symmetry-breaking point
λ = 1. The gaps of Fig. 2a
have now closed. At the
Brillouin-zone boundaries
k = ±π/a two eigenvalues
and their associated
eigenfunctions coalesce

–1 –0.5 0.3 1

E

ka/p

is broken, which for the potential of Eq. (6) occurs when λ > 1, the bands where
E is real close in on themselves and do not reach the Brillouin zone boundaries
at k = ±π/a, as shown in Fig. 2b. The most interesting situation occurs right
at the symmetry-breaking point λ = 1, when the bands of Fig. 3 come together
at k = 0 and k = ±π/a, so that the gaps disappear. At the Brillouin-zone
boundaries two eigenvalues and their associated eigenfunctions coalesce, which
requires special treatment and has interesting consequences. Two of the unexpected
intensity patterns of the kind first observed in [1] by the optical potential (6) are
shown in Fig. 4 for values of λ < 1 and differing initial conditions. In Fig. 4a it is
clearly seen that a secondary beam develops to the right and in Fig. 4b the power
oscillations, which are also present in Fig. 4a, are extremely marked. As previously
remarked, the handedness of the beam intensity is not altogether surprising, as
the potential itself is not left-right symmetric. PT -symmetry implies that a beam
incident from the other direction would instead bifurcate to the left. With the benefit
of hindsight the power oscillations are again not surprising. In the first place the
medium is an active one with both gain and loss, and secondly, in PT symmetry
the quantity that is conserved is not the total intensity

∫
dx|ψ(x, z)|2 but rather the

non-local quantity
∫
dxψ∗(x, z)ψ(−x, z).

One of the insights gained in PT -symmetric quantum mechanics [8] was that an
unbroken PT -symmetric Hamiltonian H = p2 + V (x) could be mapped onto a
Hermitian one h by a similarity transformation, i.e.

h = e−
1
2QHe

1
2Q (10)

In particular just such a mapping can transform the potential (6) into the equivalent
Hermitian potential [10]

υ ′(x) = 1

2
ξ
√

1 − λ2 cosKx. (11)
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Fig. 4 Intensity patterns, |ψ(x, z)|2, produced by the optical potential (6) in the unbroken regime
λ < 1 for differing wave-packet inputs, exhibiting beam bifurcation and power oscillations

The particular mapping is Q = −iθd/dx, which effects the shift x → x + 1
2 iθ ,

where θ = arctanhλ. Note that υ ′ ceases to be a real function of x for λ > 1, and that
the transformation becomes singular (θ → ∞) as λ→ 1. The resultant equation for
the transformed function ϕk(x) = ψk(x − 1

2 iθ) is the Mathieu equation (K = 2):

[
d2/dx2 + (a − 2q cos 2x)

]
ϕk(x) = 0, (12)

where a = −β and q = 1
4ξ

√
1 − λ2.

Reference [10] was primarily concerned with the band structure associated with
υ(x). In particular, using the correspondence with the Mathieu equation, the authors
were able to show that there is a second critical point in λ beyond which all of the
eigenvalues become complex. However, the correspondence can also be used [11]
to calculate the Bloch eigenfunctions for λ ≤ 1.

The standard Floquet procedure for determining the Bloch functions requires
two independent solutions u1(x), u2(x) satisfying u1(0) = u′2(0) = 1 and u′1(0) =
u2(0) = 0. In fact these can be identified, up to normalization factors, with the
even and odd Mathieu functions ce(a, q, x) and se(a, q, x) respectively. Then for
a given value of β the Bloch functions are appropriate linear combinations of u1
and u2 with Bloch momentum k given by k = (1/π) cos−1D, where D is the
discriminant2 D(β) = 1

2 (u1(π)+ u′2(π)). This discriminant is what determines the
band structure: a real value of k requires |D| < 1.

In this way we can calculate the intensity pattern for the Hermitian problem
of Eq. (12). Using the same parameters as those in Fig. 4a we obtain Fig. 5, in

2Recall that we are now dealing with K = 2, as in Ref. [1], so the Brillouin-zone boundaries are
at x = ±π .



192 H. F. Jones

z

−80 −60 −40 −20 0 20 40 60 80
0

5

10

15

Fig. 5 Intensity patterns, |ϕ(x, z)|2, produced by the equivalent Hermitian optical potential (11)

which the initial Gaussian input for ϕ(x, 0) produces power oscillations, but no
bifurcation. We can use this equivalent Hermitian formulation to solve the original
PT -symmetric problem. However, in that case we need to give the initial conditions
for ψ(x, 0) ≡ ϕ(x − 1

2 iθ, 0) rather than for ϕ(x, 0), and the intensity pattern is
governed by |ψ(x, z)|2 rather than |ϕ(x, z)|2, reproducing Fig. 4a. The details are
given in [11].

2.2 Symmetry-Breaking Threshold: λ = 1

The most interesting features of the potential (6), both physical and mathematical,
occur for the special value λ = 1, when the potential becomes the pure imaginary
exponential υ(x) = 1

2ξe
iKx . For λ < 1, when PT -symmetry is conserved, we

obtain oscillatory behaviour, while for λ > 1, when the symmetry is broken, we
obtain exponential behaviour. At the boundary between the two we may expect
secular growth, ψ(x, z) ∝ z; however, careful analysis [12, 13] shows that the
situation is rather subtle.

As already mentioned, the special feature of the case λ = 1 is that the gaps in
the band structure disappear, and there are degenerate eigenvalues, together with
their associated eigenfunctions where the bands come together. The stationary-state
method requires the initial wavefunction or envelope function to be expanded in a
complete set of eigenfunctions. However, in such a situation, which can only occur
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for a non-Hermitian Hamiltonian, the set of eigenfunctions is no longer complete,
and needs to be supplemented in some way.

Very generally, if a particular eigenfunction ψn satisfying (H − En)ψn = 0 is
degenerate, it needs to be supplemented by the associated Jordan function χn, which
satisfies (H −En)χn = ψn. In the 2×2 subspace spanned by ψn and χn, the matrix
H − En would be represented by the Jordan-block form

H − En ↔
(

0 1
0 0

)
, (13)

while ψn would be represented by the column vector (1, 0) and χn by the missing
column vector (0, 1), satisfying indeed (H − En)χn = φn. This equation does not
specify χn uniquely; it is satisfied by χn+cψn, where c is any constant. A particular
solution for χn is obtained by differentiation of the eigenvalue equation. Thus

0 = d

dE
[(H − E)ψn] = (H − E)

dψn

dE
− ψn, (14)

showing that χn = dψn/dE up to a multiple of ψn. The expansion (9) now has
to be supplemented by terms involving the χn(x, t), whose time-dependence (z-
dependence in optics) is not just the simple phase e−iEnt . Instead

χ(x, t) = e−iH tχ(x, t)

= e−iEt
(
e−i(H−E)tχ(x, t)

)

= e−iEt (1 − i(H − E)t + . . . ) χ(x, t)

= e−iEt (χ(x, t)− itψ(x, t)) , (15)

which has an additional linear3 growth in t . Thus in the optical context we would
expect to see a linear z-dependence of the amplitude, or a quadratic growth of the
intensity, provided that the initial input is such that one or more associated Jordan
functions are excited.

For λ = 1 we actually have explicit expressions for the ψn and χn. In that case
the paraxial equation takes the form (recall that K = 2π/a)

(
d2

dx2 + 1

2
ξe2iπx/a

)
ψ = −βψ, (16)

3There are no higher-order terms for this 2 × 2 Jordan block because (H − E)2χ(x, t) = 0.
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which can be transformed into the modified Bessel equation

y2 d
2ψ

dy2 + y
dψ

dy
− (y2 + q2)ψ = 0 (17)

by the substitutions y = y0e
iπx/a , y2

0 = (ξ/2)(a/π)2, q2 = β(a/π)2. For
q ≡ ka/π not an integer, the equation has the two linearly-independent solutions
ψk(x) = Iq(y) and ψ−k = I−q(y), which are directly the Bloch functions, as they
have the correct periodicity ψk(x + a) = eikaψk(x). However, at the Brillouin-
zone boundaries, where q ≡ ka/π = n is an integer, the two solutions become
degenerate: In(y) = I−n(y), and we are in precisely the situation outlined above.
The Jordan function associated with the eigenfunction In is most easily found by
differentiation of the eigenvalue equation (16), remembering that for λ = 1 the
dispersion relation is β = k2. Thus

χk = 1

2k

dψk

dk
=
( a
π

)2 1

2q

dIq

dq

∣∣∣∣q=n , (18)

modulo solutions of the homogeneous equation (16). Derivatives of the modified
Bessel function with respect to the order are given by the formula (9.6.44) of
Ref. [14]:

(−1)n
∂

∂ν
Iν(y)

∣∣∣∣∣ν=n = −Kn(y)+ 1

2
n!(2

y
)n
n−1∑
k=0

(−1)k
( 1

2y)
kIk(y)

(n− k)k! , (19)

from which, for the purposes of calculating χn(y), we should subtract the term
−Kn(y), which does not have the correct periodicity.

Whether or not we get secular behaviour in the beam intensity as a function of z
depends on whether any associated Jordan functions are excited, i.e. whether in the
expansion (8) of the initial distribution ψ(x, 0), which should now be written out
more fully as

ψ(x, 0) ≡ f (x) =
∑

k �=nπ/a
ckψk(x)+ c0I0(y)+

∑
n>0

[αnIn(y)+ βnχn(y)], (20)

at least one of the coefficients βn is non-zero. This in turn is governed by the overlap
integral:

βn ∝
∫ a

0
dx In(y)Fn(x), (21)
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where

Fn(x) =
N−1∑
m=−N

e−iπmnf (x +ma), (22)

where we have discretized the system by putting it in a large interval |x| < Na with
periodic boundary conditions, so that k → kr = rπ/(aN).

In common with Refs. [1] and [12] we consider the initial beam to be a Gaussian
wave-packet of width w � a and a possible offset k0, corresponding to incidence
at an angle. That is,

f (x) = e−(x/w)2+ik0x. (23)

In order to obtain a non-zero value of Fn it is easily seen [13] that the scaled offset
momentum q0 ≡ k0a/π must be an integer m, with m ≡ n (mod 2). Then, because
of the expansion

In(y) =
(

1

2
y

)n ∞∑
s=0

( 1
2y)

2s

s!�(n+ s + 1)
, (24)

the integral (21) vanishes unless m is negative and |m| ≥ n.
So for q0 = 0, i.e. normal incidence, no Jordan function is excited. However,

χ1(y) is excited for q0 = −1, which was the parameter chosen in [12], and the
distribution of |ψ(x, z)| for this case is shown in Fig. 6a. What is surprising from this
figure is that, although |ψ(x, z)| shows the initial linear increase expected from our
previous analysis, in particular Eq. (15), it subsequently flattens off. This saturation
is shown more clearly in Fig. 6b, where the maximum value of |ψ(x, z)| is plotted
as a function of z.
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Fig. 6 (a) Colour map of amplitude |ψ(x, z)| for λ = 1 when a Jordan mode is excited. (b) Graph
of the maximum value of |ψ(x, z)| versus z, showing an initial linear growth, which is subsequently
saturated
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Fig. 7 An example of
temporary cancellation
between a linear and an
oscillatory function,
providing a plateau-like
behaviour in a limited range
of z
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How can we understand this phenomenon? The contribution of the Jordan
function to |ψ(x, z)| is definitely linear, so what must be happening is some sort
of cancellation between that contribution and those of the nearby Bloch functions.
It is understandable that their coefficients may be closely related to that of χ1(y),
but nonetheless their contribution is oscillatory, and it is far from clear how such
oscillatory contributions can cancel a linear term. The details of how this comes
about are given in [13] and depend on the properties of the Jacobi ϑ function,
but a simple example serves to illustrate how such a cancellation is possible
mathematically. That is, if we consider the function z + sin z, a combination of
a linear and an oscillatory term, it exhibits an initial linear rise, followed by a
plateau-like behaviour, as shown in Fig. 7. However, it eventually rises again, as it
must: the cancellation is temporary, and the linear term eventually dominates. In the
context of our optical problem, firstly the plateau is much wider, and secondly the
eventual rise is unphysical, since at such values of z the beam has spread beyond the
confines of the finite grating |x| < Na. Nonetheless, although |ψ(x, z)| itself does
not exhibit the expected linear dependence on z, the total power

∫
dx|ψ(x, z)|2

does rise linearly, because of the linear spread of the beam in x.

2.3 Reflection and Diffraction

In this subsection we continue to treat the special case λ = 1, but go beyond the
paraxial approximation. The paraxial approximation deals with propagation within
a medium with small, smooth variations in the refractive index and results in a
linear differential equation in the longitudinal variable z. It cannot deal with an
abrupt change in the refractive index such as occurs at a boundary, which produces
both reflection and transmission. To deal with that situation we need to use the
full Helmholtz equation. Assuming a plane-wave input, the solution of the equation
is expanded in a Bragg series, a series of plane waves with different periodic x-
dependence. The special feature of the optical potential υ = 1

2ξe
iKx is that the

coupled equations linking the different modes have a one-sided nature, meaning that
they can be solved iteratively to give exact results for successive orders of reflection
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Fig. 8 Schematic of
reflection and diffraction
from a slab of material of
thickness d with the optical
potential υ = 1

2 ξe
iKx . We

show only the zeroth and first
Bragg orders. Note that there
are no negative orders, so that
the deflections from the
zeroth order are one-sided
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and diffraction. This one-sided nature of the coupled equations, albeit within the
framework of the paraxial approximation, i.e. neglecting reflections, was first noted
by Berry [4].

In general we consider an incident wave with angle of incidence θ1 in a material
with refractive index n1, giving a wave vector of magnitude k1 = n1k0, where
k0 = ω/c is the vacuum value. Within the slab the background refractive index
is n2, giving a wave-vector of magnitude k2 = n2k0, and finally the transmitted
beams emerge in a material of refractive index n3, corresponding to a wave-vector of
magnitude k3 = n3k0. In the absence of the grating we would just have geometrical
refraction, with the Snell’s law relation k1 sin θ1 = k2 sin θ2, so that the transverse
dependence is the same along the boundary. However, with the periodic modulation
of the refractive index the transverse dependences need only match up to an integer
multiple of K , the reciprocal lattice vector.

This gives rise to the Bragg series for the incident and reflected waves:

E1(x, z) = exp [−ik1(x sin θ1 + z cos θ1)] (25)

+
∞∑

m=−∞
rm exp [−ik2((sin θ2 − 2m sin θB)x − αmz)] ,

in which the first line represents the incident wave, while the second line represents
the reflected waves of order m. Here we have written K in terms of the (first) Bragg
angle θB as K = 2k2 sin θB , while the quantity αm is given by αm = [n2

1/n
2
2 −

(sin θ2 − 2m sin θB)2] 1
2 .

The transmitted waves are similarly given by

E3(x, z) =
∞∑

m=−∞
tm exp [−ik2((sin θ2 − 2m sin θB)x − βm(z− d))] , (26)
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where βm = [n2
3/n

2
2−(sin θ2−2m sin θB)2] 1

2 . Finally, the electric field in the interior
takes the form

E2(x, z) =
∞∑

m=−∞
Sm(z) exp [−ik2(sin θ2 − 2m sin θB)x] . (27)

The Helmholtz equation is automatically satisfied by E1 and E3, but imposing it on
E2 results in the system of coupled equations

1

k2
2

d2Sm(z)

dz2 + η2
m Sm(z)+

1

2
ξ Sm−1(z) = 0, (28)

where η2
m = 1 − (sin θ2 − 2m sin θB)2. In particular η0 = cos θ2.

The special feature of the optical potential υ(x) ∝ eiKx is that the inhomoge-
neous term in the equation for Sm(z) involves Sm−1 but not Sm+1. Then there is a
consistent solution to the coupled equations in which Sm(z) = 0 for m < 0 and the
Sm(z) for positive m can be generated exactly by successive iteration, starting from
S0(z). Each successive order brings in an additional power of ξ , so higher orders are
progressively suppressed.

In conjunction with (28) the various orders have to satisfy the boundary
conditions at the two interfaces, namely continuity of the tangential electric and
magnetic fields. As already mentioned, we are consideringH -polarization, in which
the electric field is in the y-direction, and so purely tangential. The tangential
component of the magnetic field is in the x direction, and is given by the Maxwell
equation iμ0ωHx = ∂Ey/∂z.

The zeroth-order mode function S0(z) satisfies the homogeneous equation

1

k2
2

d2S0(z)

dz2
+ η2

0 S0(z) = 0, (29)

with solution S0 = A0e
iη0u+B0e

−iη0u, where we have introduced the dimensionless
variable u ≡ k2z. The four boundary conditions, which we take at z = 0 and z = d,
then determine the unknown constants A0, B0, and the amplitudes for reflection and
transmission r0 and t0. The precise expressions are

t0 = 4α0η0

(α0 + η0)(β0 + η0)eiη0ud − (α0 − η0)(β0 − η0)e−iη0ud
(30)

r0 = (α0 − η0)(β0 + η0)e
iη0ud + (α0 + η0)(β0 − η0)e

−iη0ud

(α0 + η0)(β0 + η0)eiη0ud − (α0 − η0)(β0 − η0)e−iη0ud
(31)

A0 = T0

2

(
η0 − β0

η0

)
e−iη0ud B0 = T0

2

(
η0 + β0

η0

)
eiη0ud , (32)
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where ud = k2d, and we recall that η0 = cos θ2.
The differential equation for S1(z) is the inhomogeneous equation

1

k2
2

d2S1(z)

dz2 + η2
1S1(z)+ 1

2
ξS0(z) = 0, (33)

in which the inhomogeneous term is the already-determined S0(z). The solution has
the form

S1(z) = C1e
iη1u +D1e

−iη1u + A1e
iη0u + B1e

−iη0u, (34)

in which the first two terms constitute the general solution of the homogeneous
equation and the remaining terms a particular solution of the inhomogeneous
equation. The coefficients of these latter terms are determined in terms of A0 and
B0 as A1 = x1A0 and B1 = x1B0, where

x1 =
1
2ξ

4 sin θB(sin θB − sin θ2)
. (35)

The remaining parameters, C1, D1, r1 and t1 are then fixed by the four boundary
conditions. The rather lengthy expressions are given in [15]. The process can
obviously be continued, each order building on the expressions already obtained for
the previous orders. In this way explicit analytic expressions were obtained in [15]
for the second-order reflection and transmission amplitudes r2 and t2. We emphasize
again that these are exact results for the different orders, which occur at different
angles of reflection and transmission.

Although these calculations have been designed to accommodate differing values
of the background refractive indices n1, n2 and n3, it is instructive to consider the
simple case where all three are equal, when we might expect the result to correspond
closely to those of the paraxial equation. In this α0 = β0 = η0, and the expressions
for t0 and r0 in (30) become simply t0 = e−iη0ud and r0 = 0, while those for t1 and
r1 simplify to

t1 = x1
η1 + η0

2η1
(e−iη1ud − e−iη0ud )

r1 = x1
η1 − η0

2η1
(1 − e−i(η1+η0)ud ). (36)

These quantities are sharply peaked, but finite, at θ2 = θB . The pole in x1 (see
Eq. (35)) is cancelled by a zero in the numerator, since θ2 → θB implies that η1 →
η0. Their values at the peak are given by

t1|θ2=θB = −i ξud
4η0

e−iη0ud
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Fig. 9 Transmission coefficients T1 = |t1|2 and T2 ≡ |t2|2 for the first and second Bragg orders in
the case when the background refractive indices n1, n2 and n3 are all equal (ε1 = ε2 = ε3 = 2.4).
The other parameters are the free-space wavelength λ0 = 0.633 μm, the lattice spacing Λ =
0.5 μm and the width of the grating d = 8 μm

r1|θ2=θB = −i ξ sin(η0ud)

4η0
e−iη0ud (37)

r1 is typically very small, but t1 can become appreciable because of its linear
dependence on ud characteristic of a PT -symmetric structure at the symmetry-
breaking threshold.

In Fig. 9a, b we show plots of T1 ≡ |t1|2 and T2 ≡ |t2|2 versus θ2. The
second-order transmission coefficient, T2, which peaks at θ2 = arcsin(2 sin θB),
is much smaller than T1 for reasonable parameters. When the refractive indices
differ, for example when the volume grating is inscribed in a slab of refractive
index of relative permeability ε2 = 2.4, while ε1 = ε3 = 1, the principal change
is in the zeroth-order (i.e. non-diffracted) waves. T0 differs significantly from 1,
and R0 from 0, because of Fresnel reflections at the boundaries. There is now
also significant reflection in first and second orders. This configuration and other
asymmetric configurations are considered in detail in Ref. [15].

3 Longitudinal Modulation

In this section we consider the situation in which the index modulation is in the
longitudinal (z) direction rather than the transverse (x) direction. Initially we will
take the beam to be incident normally, so that it is always in the z-direction, but will
later generalize the set-up to incidence at an angle. With the special optical potential
υ(z) = 1

2ξe
iKz the most striking property is that of (approximate) unidirectional

invisibility, or unidirectional transparency, whereby light incident from one side is
transmitted perfectly, with no reflection. The potential has a left-right sense, so the
situation is different for incidence from the right, where there is a strong, highly-
peaked reflection. These properties were first noticed by Kulishov et al. [2] and later
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linked to PT -symmetry and popularized by Lin et al. [3]. In what follows we will set
K = 2β to conform with the notation of those papers. Thus the optical potential is
υ(z) = 1

2ξe
2iβz. Additionally we initially consider the background refractive index

to be 1 inside and outside the grating and write k for k0.

3.1 Normal Incidence

When the index modulation is in the direction of propagation the scalar Helmholtz
equation becomes the ordinary differential equation

(
d2

dz2 + k2(1 + 2υ(z))

)
Ey(z) = 0, (38)

which now corresponds to the one-dimensional time-independent Schrödinger equa-
tion in quantum mechanics. Note that we no longer need the paraxial approximation,
but the optical potential υ(z), and correspondingly ξ , must still be considered small,
in order to neglect the υ(z)2 term in the expansion of (1 + υ(z))2. Even this
restriction could be dropped if we were to consider a modification of the permittivity
rather than the refractive index according to ε(z) = ε0(1 + 2υ(z)) .

The quantities of interest are the reflection and transmission amplitudes for a
wave incident on the grating. Because the grating has a directionality we must
consider left and right incidence separately. The general form of the equation
ensures that the transmission coefficients are the same from either side, but the
respective reflection coefficients are expected to be different, and can indeed be
very different. The set-up for incidence from the left is shown in Fig. 10. In both [2]
and [3] the scattering coefficients were calculated keeping only the zeroth and first
Bragg orders within the slowly-varying envelope approximation, so that the problem
is reduced to a pair of coupled linear differential equations. The results are that for
left incidence, illustrated in Fig. 10,

tL = 1, rL = 0 (39)

Fig. 10 Schematic of a beam of light incident normally from the left on a volume grating of
length L in which the refractive index is modulated in a PT -symmetric way in the longitudinal z
direction. The transmission amplitude is tL = 1/AL and the reflection amplitude is rL = BL/AL
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Fig. 11 Schematic of a beam of light incident normally from the right on a volume grating of
length L in which the refractive index is modulated in a PT -symmetric way in the longitudinal z
direction. The transmission amplitude is tR = 1/AR and the reflection amplitude is rR = BR/AR

for k near the Bragg wave-vector β. This is the invisibility or transparency
mentioned above.

On the other hand, for right incidence, illustrated in Fig. 11, it was found that4

tR = tL, rR = 1

2
iξkL

sin(δL)

δL
, (40)

where δ is the detuning, defined by δ = β − k. The reflection coefficient rR has
the form of a sinc function, with peak value 1

2 iξkL. The linear dependence of this
peak value on L is again a signal of the exceptional point λ = 1. The right reflection
coefficient RR = |rR|2 is illustrated as a function of δ in Fig. 13 below. The original
equation can be transformed into the modified Bessel equation, so this problem
can be solved exactly in terms of the modified Bessel functions Iν and Kν , and it
is of great interest to see how accurately the approximate results of (39) and (40)
compare with the exact results. This has been done in Refs. [16] and [17] by slightly
different methods. Reference [16] used the transfer-matrix method and expressed
the results in terms of the independent functions Iν and I−ν with real arguments.
Reference [17] treated left and right incidence separately, expressing the coefficients
AL, BL, AR and BR in terms of Iν and Kν with complex arguments. It should be
noted that Ref. [16] did not treat precisely the same problem as [3], since the factor
k2 in Eq. (38) was replaced by the constant value β2. This amounts to taking y0
below as α rather than kα/β. Since all the interesting structure occurs in the close
vicinity of k = β this is a very small change.

The transformation to the modified Bessel equation is effected by changing the
independent variable z to y ≡ y0e

iβz, where y0 = kα/β and α is defined as α = √
ξ .

Writing Ey(z) = ψ(y), the equation then becomes

y2 d
2ψ

dy2 + y
dψ

dy
− (y2 + k2/β2)ψ = 0. (41)

4The phase of rR depends on the origin of the grating. The phase in (40) is for the explicitly
PT -symmetric situation where the grating extends from z = −L/2 to z = L/2.
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This is indeed the modified Bessel equation, with index ν = k/β. The general
solution is ψ(y) = CIν(y) + DKν(y), and tuning (k = β, or δ = 0) corresponds
to ν = 1. In accordance with [17] we take the grating from z = −L/2 to z = L/2.
Changing the range to z = 0 to z = L, for example, would affect only the phases of
the reflection amplitudes, but not their absolute magnitudes.

Applying the continuity conditions on ψ and dψ/dz at z = −L/2 and z = L/2,
we obtain the amplitudes AL, BL, AR = AL and BR:

e−ikLAL = y+y−
2ν

[Kν+1(y+)Iν−1(y−)− Iν+1(y+)Kν−1(y−)]

BL = y+y−
2ν

[−Kν+1(y+)Iν+1(y−)+ Iν+1(y+)Kν+1(y−)] (42)

BR = y+y−
2ν

[−Kν−1(y+)Iν−1(y−)+ Iν−1(y+)Kν−1(y−)],

where y± = y0e
±iβL/2. Care is needed in the evaluation of the modified Bessel

functions at y± because they are defined with a cut along the negative real axis, and
in going from y− to y+ the complex argument y(z) = y0e

iβz encircles the origin
and crosses the cut N times. How the functions continue onto subsequent sheets is
given by the continuation formulas[14]:

Iν(y0e
imπ ) = eimπνIν

Kν(y0e
imπ ) = e−imπνKν − iπ

sin(mπν)

sin(πν)
Iν. (43)

With the expressions in (42) we can now plot the exact transmission and reflection
coefficients. First we plot T ≡ |1/AL|2 and RL ≡ |BL/AL|2 in Fig. 12. As can
be seen, the simple results T = 1 and RL = 0 resulting from the coupled-wave
approximation are remarkably good. T is very close to 1 and RL is very small,
of the order of 10−7. It is worth noting that these two features are closely related
because PT -symmetry implies the pseudo-unitarity relation [18].

(a)

–1.0 –0.5 0.5 1.0
d

1

1.0015
T RL(b)

–1.0 –0.5 0.0 0.5 1.0
d

2.8´ 10–7

Fig. 12 Exact transmission and reflection coefficients T ≡ |1/AL|2 and RL ≡ |BL/AL|2 as
functions of the detuning, δ = β − k. The parameters are those of Ref. [3]
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Fig. 13 Exact reflection
coefficient RR ≡ |BR/AL|2
as functions of the detuning,
δ = β − k. The parameters
are those of Ref. [3]

RR
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d
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15

T ±√RLRR = 1 (44)

Thus RL 	 1 implies T ≈ 1.
The plot of RR, given in Fig. 13, is essentially indistinguishable from that of |rR|2

as given by the simple formula of Eq. (40). It is interesting to note that in the case of
a wave-packet input the very large value of the reflectivity near δ = 0 arises not from
the height of the reflected pulse, but rather from its increased length [17]. This is a
similar phenomenon to the saturation observed in Sect. 2.2. While the expressions
given above forAL,BL andBR are rather simple and compact it is by no means clear
how they give rise to the phenomenon of (approximate) unidirectional invisibility.
In particular, we may ask how the sinc function in the approximate expression for rR
in Eq. (40) arises. The answer lies in the continuation formulas (43), which we can
use to reduce all the arguments of the Bessel functions in (42) to the real quantity y0.
This was essentially done in Ref. [19], where there are, however, some misprints,
and the expressions were not fully simplified. If that is done the expressions for the
scattering amplitudes become

e−ikLAL = cos(Nπν) (45)

− 1

2
iξν

sin(Nπν)

sin(πν)

[
(Kν+1Iν−1 + Iν+1Kν−1) sin(πν)− πIν+1Iν−1

]

and

BL = 1

2
iξν

sin(Nπν)

sin(πν)
Iν+1 [2Kν+1 sin(πν)− πIν+1]

BR = 1

2
iξν

sin(Nπν)

sin(πν)
Iν−1 [2Kν−1 sin(πν)− πIν−1] , (46)

where now all the Bessel functions have argument y0 = αν, and N is the number
of grating periods, which we take to be even: N = L/Λ = βL/π . Given that y0 is
very small we can now use the small-argument approximations [14] to Iμ and Kμ,
namely
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Iμ(z) ∼ ( 1
2z)

μ

�(μ+ 1)
, Kμ(z) ∼

1
2�(μ)

( 1
2z)

μ
. (47)

We are concerned with ν very close to 1, so in the expression for AL the dominant
term in the square bracket is Kν+1Iν−1 sin(πν) ≈ (2/ξ) sin(πν), finally resulting
in AL ≈ 1. In the expression for BL the dominant term in the square bracket is
2Kν+1 sin(πν), which means that BL remains small.5 Finally, in the expression for
BR the dominant term is −πIν−1, so that the prefactor sin(Nπν)/ sin(πν) mimics
the sinc function in (40).

It should be mentioned that the formulas (45) and (46) are essentially those of
Ref. [16]. Indeed the combinations 2Kν+1 sin(πν) − πIν+1 and 2Kν−1 sin(πν) −
πIν−1 can be written as −πI−ν−1 and −πI1−ν respectively. Finally, the transfer
matrix, constructed as M22 = e−ikLAL, M11 = M∗

22, M12 = BR and M21 = −BL,
conforms to the iteration formula

M = mN = cosNθ + (sinNθ/ sin θ)(m− cos θ) (48)

where the unimodular matrixm = cos θ+iσ.n sin θ is the single-cell transfer matrix.

3.2 Extended Analytic Solution

The analytic results given above were limited to normal incidence and a uniform
background refractive index, but they can be extended [19] to deal with incidence at
an angle and different background indices to the left and right of the grating and in
the grating itself. This allows one to explore to what extent the invisibility property is
affected by Fresnel reflection and to consider the use of this special PT -symmetric
grating in lasing cavities.

Fig. 14 Set-up for light incident at an angle from the left on the PT -symmetric volume grating,
whose background refractive index is n2. The refractive indices to the left and right of the grating
are n1 and n3 respectively. All the waves have a common x-dependence exp(ikxx)

5As Longhi has pointed out [16], this is no longer true if N becomes sufficiently large, because of
the neglected last term −πIν+1.
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The set-up of Fig. 10 for left incidence is now generalized as shown in Fig. 14.
For incidence at an angle, there is an overall x-dependence component of the wave,
of the form eikxx . So in Eq. (38) we can write Ey as Ey(x, z) = eikxxψ(z), and the
equation for ψ(z) becomes

d2ψ

dz2 +
[
k2

2(1 + ξe2iβz)− k2
x

]
ψ = 0. (49)

Here k2 = n2k0, where k0 is the free-space wave-vector. In order to transform this
to the modified Bessel equation the appropriate definition of y is y = (k2α/β)e

iβz,
which gives

y2 d
2ψ

dy2 + y
dψ

dy
− (y2 + ν2)ψ = 0, (50)

where ν is now defined by

ν2 = k2
2 − k2

x

β2 (51)

That is, ν = k2z/β = (k2 cos θ2)/β, where θ2 is the internal angle of refraction.
Thus we can write y as

y =
(

να

cos θ2

)
eiβz. (52)

The boundary conditions are that ψ and ψ ′ are continuous, as before. However,
when n2 �= n1 and/or n2 �= n3 the longitudinal wave-vectors in the three regions
are unequal. Thus, given that k1 sin θ1 = k2 sin θ2, it is straightforward to show
that k1z = γ1νβ and k3z = γ3νβ, where γr = √ (

n2
r /n

2
2 − sin2 θ

)
/ cos θ . In the

previous case of equal background refractive indices these reduce to γ1 = γ3 = 1.
After some algebra we obtain the following expressions for AL and BL:

e−i(k1z+k3z)L/2AL =
(
y+y−
2γ1ν

)
[Iν−1(y−)Kν+1(y+)− Iν+1(y+)Kν−1(y−)]

+
(
δ1y+
2γ1

)
[Iν(y−)Kν+1(y+)+ Iν+1(y+)Kν(y−)]

+
(
δ3y−
2γ1

)
[Iν−1(y−)Kν(y+)+ Iν(y+)Kν−1(y−)]

+
(
δ1δ3ν

2γ1

)
[Iν(y−)Kν(y+)− Iν(y+)Kν(y−)]

(53)

ei(k1z−k3z)L/2BL = −
(
y+y−
2γ1ν

)
[Iν+1(y−)Kν+1(y+)− Iν+1(y+)Kν+1(y−)]



Exact Results for a Special PT-Symmetric Optical Potential 207

+
(
δ1y+
2γ1

)
[Iν(y−)Kν+1(y+)+ Iν+1(y+)Kν(y−)]

−
(
δ3y−
2γ1

)
[Iν+1(y−)Kν(y+)+ Iν(y+)Kν+1(y−)]

+
(
δ1δ3ν

2γ1

)
[Iν(y−)Kν(y+)− Iν(y+)Kν(y−)]

where δr = γr − 1. In the general case δr �= 0, so that each expression now has
potentially three additional terms. Similar expressions for AR and BR are given in
[19], but will not be listed here.

3.2.1 Angular Distributions

Up to now we have plotted reflection and transition coefficients as functions of
frequency for normal incidence. But we are now in a position to explore how
unidirectional invisibility manifests itself as a function of the incident angle for a
fixed frequency. We can also explore how these features are degraded by Fresnel
reflections in the case of unequal background refractive indices. Such calculations
were previously done [20] in the framework of the Bragg series analogous to
Eqs. (25), (26), and (27). The difference here is that the different orders add
coherently, as they occur at the same angle. So in this case the series is a perturbation
series in ξ , in which only the first three orders were calculated. However, for the
small value considered (ξ = 0.02) the truncated series agrees very well with the
exact results presented here (from Ref. [19]).

In Fig. 15 we show the transmission coefficient T and the left reflection
coefficient RL as functions of the internal angle of refraction θ2 (degrees) for fixed
k in the case when all three regions have the same background permittivity. The
distributions are even in θ2, and show the same general features as those of Fig. 12,

T
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Fig. 15 Transmission coefficient T and left reflection coefficient RL as functions of the internal
angle of refraction θ2 for fixed k and equal background refractive indices. The parameters are
ε1 = ε2 = ε3 = 2.4, ξ = 0.02, L = 8.4 μm, Λ = 0.42 μm and λ0 = 0.633 μm. Left invisibility
is well satisfied for θ2 � 50o. For larger values of θ2 the violations, while still small, are greater
than in the case of normal incidence and varying λ0 (Fig. 12)
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Fig. 16 Right reflection
coefficient RR as functions of
the internal angle of
refraction θ2 for fixed k and
equal background refractive
indices. The parameters are
the same as in Fig. 15. As can
be seen, RR is very highly
peaked at ±θB ,
corresponding to ν = 1
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Fig. 17 Contrast
ΔT ≡ T − T0 as a function
of the internal angle of
refraction θ2 for fixed k and
ε1 = ε3 = 1, ε2 = 2.4. The
effect of the grating is small
for θ2 � 20o, but becomes
considerable for larger values
of θ2, particularly near
θB ≈ 27o
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where k varied for fixed θ2 = 0. For θ2 � 50o the invisibility property holds
well, but for larger values of θ2 the violations are considerably larger than those
in Fig. 12. The transition from T < 1 to T > 1 occurs very close to the Bragg
angle θB = cos−1(β/k2) ≈ 60o, the value at which ν = 1. The corresponding right
reflection coefficient is shown in Fig. 16. It exhibits a very sharp peak at θ2 = ±θB .
Details of many more configurations are given in [20]. We show here just one case,
showing the extent to which the invisibility is degraded by Fresnel reflections when
the background refractive indices are not all equal. What is shown in Fig. 17 is
the contrast ΔT , that is, the transmission coefficient T minus the corresponding
quantity T0 in the absence of the grating. This is small for small angles, but shows
large deviation for larger angles, particularly near the Bragg angle, which in this
case is θB ≈ 27o. The graph of ΔRL is similar but the maximum is approximately
an order of magnitude smaller. In Fig. 17 the range of θ2 is restricted to |θ2| ≤ 40o,
since total internal reflection occurs shortly thereafter.

3.2.2 Lasing Cavities

While much attention has focussed on the left invisibility property of the special
grating with index profile e2iβz, the concomitant property, namely the highly-peaked
reflectivity on the other side, can potentially be put to use in the context of optical
cavities. When such a grating is inserted into a standard cavity, which has many
competing longitudinal lasing modes, it can select a single longitudinal mode while
eliminating the others. It can also act as a lasing cavity itself if a mirror is placed at
the reflective right side.
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Fig. 18 Sketch of a resonant cavity formed by two standard Bragg gratings at either end, into
which the PT -symmetric grating with index profile e2iβz is inserted. The highly-selective right
reflectivity of the PT -grating can serve to eliminate competing modes of the original cavity

Fig. 19 Left panel: left reflection coefficient RL of the pumped cavity of Fig. 18 in the absence of
the PT -symmetric grating as a function of wavelength λ0 (μm). Right panel: RL with insertion of
the PT -symmetric grating with parameters adjusted appropriately (see Eq. (54) and Ref. [21] for
details)

The first of these configurations, illustrated in Fig. 18, was considered in detail
in Ref. [21], using the transfer-matrix approach and the simple form of the transfer
matrix of the grating given by the coupled-mode approximation. As we have seen,
this is a very good approximation provided that the length of the grating is not too
large. In the left panel of Fig. 19 we show the left reflection coefficient of the pumped
cavity in the absence of the PT -symmetric grating. The sharp peaks indicate the
several competing modes, which would lase once the pumping reaches a threshold
value. However, with the PT grating in place it is possible to tune the various
parameters, namely the length L and strength κ of the standard Bragg gratings,
the length LPT and strength κPT ≡ 1

2ξ of the PT -grating, and the separations d1,
d2. Among various possibilities for the lengths the simplest is that d1 is an integral
multiple ofΛ, while d2 is a half-integral multiple.LPT is always taken as an integral
multiple of Λ, which we recall is π/β. The condition for the onset of lasing, which
occurs when the element M22 of the transfer matrix of the entire cavity equals zero,
is then

κPT L = coth(κL)− tanh(κL). (54)

In the right panel of Fig. 19 we show an example of how, when this condition is
satisfied, the left reflection coefficient has a single sharp peak. Thus the insertion
of the PT -grating has resulted in the elimination of competing longitudinal modes.
This result can be attributed to the highly-selective reflectivity of the PT -grating,
which singles out one wavelength.
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Fig. 20 Resonant cavity
obtained by terminating the
ideal PT grating with a
highly-reflective mirror at its
reflective end

Fig. 21 Modulus of the left
reflection amplitude rL of the
mirror cavity of Fig. 20,
showing that the value of ξ is
close to the threshold for
lasing. The parameters are
ε1 = 1, ε2 = 2.4, ξ = 0.02,
Λ = 0.23 and L = 36Λ

rL

6 8 10 12
k

5

10

15

20

The desired property of lasing in a single longitudinal mode can be achieved
by a much simpler set-up, obtained by terminating the PT grating with a highly-
reflective mirror at its reflective end, as illustrated in Fig. 20. We can obtain the
relevant formulas for AL and BL from (53) for normal incidence by taking the limit
n3 → ∞. In that case both AL and BL go to infinity like δ3. The precise formulas
are

e−i(k1+k3)L/2AL ∼ δ3

2γ1

{
y−[Iν−1(y−)Kν(y+)+ Iν(y+)Kν−1(y−)]

+ δ1ν[Iν(y−)Kν(y+)− Iν(y+)Kν(y−)]
}

(55)

ei(k1−k3)L/2BL ∼ δ3

2γ1

{
− y−[Iν+1(y−)Kν(y+)+ Iν(y+)Kν+1(y−)]

+ δ1ν[Iν(y−)Kν(y+)− Iν(y+)Kν(y−)]
}

The overall factors of δ3 cancel out when considering rL ≡ BL/AL, so we define
ÂL ≡ AL/δ3 and B̂L ≡ BL/δ3. Then rL = B̂L/ÂL. The onset of lasing is marked by
a pole of rL, or equivalently a zero of ÂL, for real k. In Fig. 21 we give an example
of a very sharp peak in |rL|, which would become a pole by fine-tuning the grating
strength ξ .

The situation can be most transparently analyzed by using the continuation
formulas of Eq. (43) to express ÂL in terms of Bessel functions of argument y0, as
was done for AL in (45), and then using the small-argument approximations of (47).
The resulting expression is
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2γ1e
−i(k1+k3)L/2ÂL ∼ cos(k2L)− iγ1 sin(k2L)+ 1

4
(1 + γ1)ik2ξ

sin(Lδ)

δ
. (56)

This was obtained independently in [22] using the transfer-matrix approach. It turns
out that the real part of the expression on the RHS of (56), namely cos(k2L), is
exact.

Assuming that ξ is real, as we have always done till now, the real part of the
lasing condition ÂL = 0 is just cos(k2L) = 0, which gives the possible values of k2
as k2 = (n + 1/2)π/L. For any given value of L, the imaginary part of the lasing
condition then gives the threshold value of ξ . However, there are many possible
modes, and when we are above threshold, the lasing action can hop from one mode
to another, something we would like to avoid.

A simple way of obtaining single-mode lasing is to shift the phase of the potential
by π/2. This is equivalent to shifting the origin of the potential byΛ/4, and amounts
to taking ξ to be pure imaginary: ξ = i|ξ |. In that case k2 is now fixed by the
imaginary part of the lasing condition, namely sin(k2L) = 0, giving k2 = nπ/L,
while the real part becomes

cos(k2L) = k2|ξ |1
4
(1 + γ1)

sin(Lδ)

δ
. (57)

The important thing is that this equation now only has a solution if δ = 0,
corresponding to n = L/Λ, irrespective of the value of |ξ |. The other possible
modes are excluded because of the zeros of sinLδ.

4 Summary and Conclusions

As we have seen, the optical potential υ(x) = 1
2ξe

iKx is special both physically and
mathematically. We have discussed two main set-ups: one where the modulation
of the refractive index is perpendicular to the surface of the grating, commonly
known as a transmission grating, and the other where the modulation is parallel to
the surface of the grating, usually referred to as a reflection grating.

The first case was the subject of Sect. 2. Physically the novel features, first
observed in [1], include non-reciprocity, beam splitting and power oscillations.
Diffraction of a plane wave from such a grating [15] is one-sided, with negative
Bragg orders missing. Mathematically this set-up has many interesting features.

In the context of the paraxial approximation (Sect. 2.2) the equation of propaga-
tion is equivalent to a time-dependent Schrödinger equation, whose eigenfunctions,
the Bloch waves, are modified Bessel functions [13]. However, because λ = 1
is an exceptional point for the potential (6), at the boundary for PT -symmetry
breaking, a complete set of functions must include associated Jordan functions,
which physically give rise to secular behaviour in z, albeit with the subtleties
discussed in that section, and in more detail in [13].
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The analysis in terms of the Bragg series for diffraction of plane waves for
λ = 1, discussed in Sect. 2.3, has the special feature that the equations coupling
the different orders are one-sided, with the result that successive orders can be
calculated exactly, although the explicit expressions become very unwieldy beyond
second order. In that section we gave explicit expressions for the zeroth and first
orders: those for second order can be found in [15].

The second case was dealt with in Sect. 3. There there is an exact solution in
terms of modified Bessel functions, both for normal incidence and for incidence at
an angle.

In the case of normal incidence (Sect. 3.1), the previous analysis [2, 3] using
the coupled-wave approximation turns out to be extremely accurate, at least for the
parameters chosen. However, as previously pointed out in [16], the approximation,
and indeed the phenomenon of unidirectional invisibility, breaks down if the length
of the grating becomes too large.

The analysis was extended in Sect. 3.2 to cover both non-normal incidence and
different diffractive indices on either side of the grating. The solutions are still in
terms of modified Bessel functions. The distributions in k for normal incidence are
mirrored in the angular distributions (Sect. 3.2.1). Finally, in Sect. 3.2.2 we showed
how the enhanced reflection from the right-hand side, which comes hand in hand
with the left invisibility, could be used to eliminate all but one longitudinal mode in
a lasing cavity.

In conclusion, this particular optical potential shows a variety of unusual physical
phenomena, which inspired the current intense research on the application of
the ideas of PT symmetry to optics. Mathematically it is also unusual in being
amenable to exact analytic solutions, which can be used in their own right or to
check the validity of the simpler expressions arising from various approximations.
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Abstract In this chapter, we show how to theoretically design and experimentally
construct exact parity-time (PT) symmetric optical lattices with gain and loss in
atomic configurations. By making use of the advantages of light-induced atomic
coherence in multi-level atomic systems, spatially extended gain and loss arrays
with real-time reconfigurability and multiple-parameter tunability can be effectively
obtained in hot atomic vapors. We have constructed periodically alternative gain-
loss structures with two very different schemes based on spatially-arranged optical
induction techniques. With the required symmetric/antisymmetric spatial distribu-
tions for the real/imaginary parts of the refraction index satisfied, PT-symmetric
optical lattices can be achieved with easy controllability. The dynamic behaviors of
light propagating inside the induced non-Hermitian optical lattices are investigated
by measuring the relative phase difference between two adjacent gain and loss
channels.
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1 Introduction

Artificial optical lattices provide a fertile ground for molding the flow of optical
waves, which is a fundamental issue with scientific and practical importance for
optical information processing. When lights travel in such a periodic environment,
the propagating behaviors can be modulated due to the induced spatially periodic
refractive index of the media [1, 2]. Generally, photonic lattices are composed of
equally spaced identical coupled waveguides, which can effectively discretize the
incident fields. The presented discrete optical dynamics, which are not possible in
homogeneous bulk media, include discrete diffraction [3], discrete solitons [4], and
optical Bloch oscillation [5], to name a few.

In the past few years, PT symmetry has been implemented in the frameworks of
electronics [6, 7], acoustics [8, 9] and, particularly, optics [10]. In the optical field,
the experimental observations of exact parity-time (PT) symmetry have been mainly
achieved in pairs of coupled optical elements (such as waveguides and micro-
resonators) with elaborated gain and loss [11] in solid-state materials. Considering
that many unconventional optical features were demonstrated in single PT cells
(one pair of coupled gain-loss elements) [12–16], interesting exotic behaviors are
expected in the extended non-Hermitian optical lattices [17–39]. The proposed
effects for light propagation through such lattices include non-Hermitian optical
solitons [19–22], non-Hermitian Bloch oscillation [23, 24], unidirectional invisibil-
ity [25, 26], PT-symmetric Talbot effect [32], double refraction, and nonreciprocal
characteristics [35], etc. Studying these novel effects may provide new routes for
exploring useful applications in non-Hermitian synthetic materials, and enlighten
novel ideas in producing on-chip optical integrated devices.

Even though various fascinating theoretical proposals have been reported, the
experimental generation of PT-symmetric lattice with gain and loss is not easy to
realize due to various restrictions in material properties, including the limitation on
engineering required gain (one of the most important parameters for implementing
exact PT symmetry) in certain solid-state materials as well as the relationship
between the real and imaginary parts of the index as imposed by Kramers-
Kronig relations [40]. Different from solid-state systems, atomic media provide
an ideal ground for easily and efficiently constructing desired refractive index
profiles [41]. By making use of the laser-induced atomic coherence, particularly
with the electromagnetically induced transparency (EIT) [42–44] technique, one
can easily construct controllable and desired linear (dispersion, gain/loss) and
nonlinear properties are easily acquirable in multi-level atomic media [45]. As a
result, the schemes based on multi-level coherent atomic gases have been recently
proposed to synthesize periodical non-Hermitian optical potentials [37–39, 46].
The constructed non-Hermitian optical lattices in atomic media can possess certain
distinguished features. First, with due to the various tunable parameters, the non-
Hermitian system in atomic configurations allows real-time reconfigurability and
easy tunability (especially for the periodicity and structure of the established lattice)
without the requirement of specific fabrication technologies and making large
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number of samples. This advantage provides a new platform to demonstrate non-
Hermitian Hamiltonians under different parametric mechanisms. Second, many
interesting effects, including nonlinear non-Hermitian defect modes [47], solitons
in non-Hermitian nonlinear lattices [22] and unidirectional light transmission [48],
have been predicted recently by taking advantage of the interactions between the
PT-symmetric potential and Kerr nonlinearity. Such phenomena might be relatively
easy to be realized in EIT-modulated atomic systems with enhanced/controllable
nonlinearity, which opens the door for future experimental studies of non-Hermitian
properties in nonlinear optics. Third, the investigations of PT-symmetric optics in
multi-level EIT atomic configurations can be potentially extended to atomic-like
solid materials [49], such as prototypical NV-center diamond and Pr3+:Y2SiO5
crystal where the EIT-related effects are already effectively generated. In the
following, we will demonstrate how to effectively construct PT-symmetric lattices
both theoretically and experimentally based on atomic coherence in detail.

The organization of this Chapter is as following. In Sect. 2, we show the
experimental setup for constructing PT-symmetric lattices in a four-level atomic
medium. According to this experimental setup, the corresponding theoretical model
is established in Sect. 3. In the theoretical section, we begin from the density-matrix
equations to solve for the susceptibility, and then we derivate the coupled mode
equations. In Sect. 4, we show the experimental results and corresponding analysis
in detail. In Sect. 5, PT symmetry based on alternating three- and four-level atomic
configurations is proposed, and some basic experimental results are displayed. We
conclude the chapter in Sect. 6.

2 Experimental Setup

Figure 1(a) schematically depicts the experimental setup for constructing a PT-
symmetric lattices with a four-level atomic configuration. The signal field and two
sets of standing-wave fields are injecting into the medium along the same direction
to drive the N-type four-level 85Rb atomic configuration [see Fig. 1(b)], which
involves two hyperfine states F = 2 (level |1〉) and F=3 (|2〉) of the ground state
5S1/2, and two excited states 5P1/2 (|3〉) and 5P3/2 (|4〉). Two coupling beams Ec
and Ec

′ (of wavelength λc=794.97 nm, frequency ωc, Rabi frequencies�c and�c
′,

respectively) from the same external cavity diode laser (ECDL2) are symmetrically
arranged with respect to the z direction and intersect at the center of the vapor cell
with an angle of 2θ ≈ 0.4◦ to form a standing-wave field. The coupling beams with
vertical polarization are coupled by two polarization beam splitters (PBSs). The
half-wave plates placed in front of the corresponding PBSs can adjust the powers
of Ec and Ec

′. As a result, an optical lattice can be established along the transverse
direction x inside the vapor cell. The 7 cm long atomic vapor cell is wrapped with
μ-metal sheets to shield outside magnetic field and heated by a heat tape to provide
an atomic density of 2.0 × 1012 cm−3 at 75 ◦C. Similarly, two pump beams Ep
and Ep

′ (λp=780.24 nm, ωp, �p and �p
′), partially overlapped with Ec and Ec

′,
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Fig. 1 (a) Experimental setup. Three external cavity diode lasers (ECDLs), which are not shown
in the diagram, are applied to establish the experimental system. Pump beams Ep

′ and Ep are from
the third laser ECDL3, while the coupling beams Ec

′ and Ec come from the second laser ECDL2.
The reference beam intersects with ES (from the first laser ECDL1) to generate the reference
interference (along the y direction) at the position of the CCD camera. (b) The energy-level diagram
of the four-level N-type configuration in 85Rb atoms. (c) The spatial arrangements of the signal
field, coupling-field lattice, and pump-field lattice. x and z represent the transverse and longitudinal
directions of beam propagation, respectively. �d marks the displacement between the two lattices

respectively, enter the cell at the almost same angle 2θ to form a pump-field optical
lattice. The two pump beams Ep and Ep

′ (with horizontal polarization) from the
same ECDL3 are coupled into the vapor cell by two reflective mirrors and build the
standing-wave pump field. The four laser beams (Ec&Ec

′ and Ep&Ep
′) are shaped

as ellipses with approximate axial diameters of 1.5 mm and 4.5 mm, respectively,
by two pairs of anamorphic prisms. The Gaussian signal beam Es (λs=794.97 nm,
ωs, �s) propagating along the z direction travels through the two sets of induced
optical lattices, as shown in Fig. 1c. The size of the signal beam is large enough to
cover the two induced lattices and its diffraction pattern is monitored at the output
surface of the cell.

By properly adjusting the experimental parameters, the required active Raman
gain for implementing exact PT symmetry can be generated on the signal field
[50–53]. As a consequence, desired periodic gain and loss profiles (along the x
direction) are generated after the near-parallel signal beam passing through the
two sets of partially-overlapping optical lattices. The discretized signal beam with
a periodic gain-loss profile then interferes with a reference beam (from the same
ECDL as Es and injected long the y direction) to exhibit the induced phase
difference between two adjacent gain and loss waveguides/channels. The Gaussian-
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shaped reference beam is introduced into the optical path via a 50/50 beam splitter to
intersect with the Es beam at the position of a charge coupled device (CCD) camera
[see Fig. 1a], which is used to monitor both the output signal beam and the relative
phase difference. Figure 1c shows the spatial arrangement for the two sets of optical
lattices and the signal beam inside the cell. The spatial periodicity of the coupling
lattice is dc = λc/2sinθ ≈ 114 μm, and the spatial-shift distance �d between the
two sets of lattices can be modified to effectively control the real and imaginary
parts of the susceptibility experienced by the signal field.

3 Theoretical Model

Under the rotating-wave approximation, the density-matrix equations for theoreti-
cally describing the four-level N-type atomic system are given as [38].

ρ̇22 = �42ρ44 + �32ρ33 − �21ρ22 + i
2 (ρ32 − ρ23)�c,

ρ̇33 = �43ρ44 − �32ρ33 − �31ρ33 + i
2 [(ρ23 − ρ32)�c + (ρ13 − ρ31)�s] ,

ρ̇44 = − (�43 + �42 + �41) ρ44 + i
2 (ρ14 − ρ41)�p,

ρ̇21 = −γ̃21ρ21 + i
2

(
ρ31�c − ρ24�p − ρ23�s

)
,

ρ̇31 = −γ̃31ρ31 + i
2

[
ρ21�c − ρ34�p + (ρ11 − ρ33)�s

]
,

ρ̇41 = −γ̃41ρ41 + i
2

[−ρ43�s + (ρ11 − ρ44)�p
]
,

ρ̇32 = −γ̃32ρ32 + i
2 [ρ12�s + (ρ22 − ρ33)�c] ,

ρ̇42 = −γ̃42ρ42 + i
2

(
ρ12�p − ρ43�c

)
,

ρ̇43 = −γ̃43ρ43 + i
2

(
ρ13�p − ρ42�c − ρ41�s

)
,

ρ11 + ρ22 + ρ33 + ρ44 = 1.

(1)

Here, �s = d13Es/-h, �c=d23Ec/-h and �p=d14Ec/-h represent the Rabi frequen-
cies corresponding to the signal, coupling and pump fields, respectively, and dij is
the dipole momentum between levels |i〉 and |j〉. �ij is the decaying rate between |i〉
and |j〉, and γ ij = (�i+�j)/2 is the decoherence rate. γ̃21 = γ21 − i (�s −�c),
γ̃31 = γ31 − i�s , γ̃41 = γ41 − i�p, γ̃32 = γ32 − i�c, γ̃32 = γ32 − i�c,
γ̃32 = γ32 − i�c, γ̃42 = γ42 − i

(
�c +�p −�s

)
, γ̃43 = γ43 − i

(
�p −�s

)
.

�s=ωs−ω31, �c = ωc−ω32 and �p = ωp−ω41 are the frequency detunings of the
signal, coupling and pump fields, respectively. The corresponding susceptibility can
be obtained by numerically solving ρ31 in Eq. (1) under steady-state approximation
by considering the relation 2Nμ13ρ31 = ε0χEs. As a consequence, the real and
imaginary parts of the refractive index can be written as nR ≈ 1

2χ ' = Nμ13
ε0Es

Re (ρ31)

and nI ≈ 1
2χ '' = Nμ13

ε0Es
Im (ρ31), according to n = √

1 + χ ≈ 1 + χ/2,
χ = χ ' + iχ '', and n = n0 + nR + inI . Here n0 = 1 is the background index of the
atomic vapor. The initially calculated susceptibility versus the signal-field detuning
�s at different coupling intensity �c is shown in Fig. 2. By looking through Fig. 2b
and d, one can conclude that the pump field can surely give rise to both gain and



220 Z. Zhang et al.

Fig. 2 Theoretical susceptibilityχ versus �s. (a) Real part and (b) imaginary part of the χ versus
�s with�p = 0. (c) The real and (d) imaginary parts of χ versus�s with�p = 2π × 6 MHz. The
presence of the pump field can result in positive and negative imaginary susceptibility at different
�s. Other parameters are �s = 2π × 0.1 MHz and �p = �c = 0. Adapted from Ref. [52]

loss in the system, and the zero point of the imaginary part keeps constant at these
�c values.

In another view, we show the calculated real and imaginary parts of the suscep-
tibility versus the transverse x coordinate in Fig. 3. In principle, when the values of
the real part versus �s at �p = 0 and �p �=0 are the same and the corresponding
imaginary parts have equivalent absolute value but opposite signs, the periodic PT-
symmetric conditions can be achieved in this periodic environment. According to
the results in Fig. 3a and b, with the parameters set as �s ≈ 2π × 15 MHz,
�c = −100 MHz, �p ≈ 40 MHz, �s = 2π × 0.2[1 + cos(πx/2)] MHz and
�c=2π×0.2 MHz, the real and imaginary parts of the susceptibility can meet
the requirements for periodic PT-symmetric potential, i.e. the real part χ ′ has a
symmetric profile while the corresponding imaginary part χ becomes antisymmetric
along the x direction [see Fig. 3c and d], which shows that an exact PT-symmetric
structure with alternating gain and loss can indeed be established in such an N-type
atomic configuration.

According to the Maxwell’s equations and considering the paraxial approxi-
mation, the above calculated complex spatial index refraction (susceptibility) that
represents the potential V(x) can be described by the Schrödinger-like equation [11,
28, 35, 54]
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Fig. 3 (a) Real (dispersion) and (b) imaginary parts of the susceptibility versus �s under the
conditions of turning the pump field (a) off and (b) on, respectively. (c) Real and (d) imaginary
(gain or absorption) parts of the refractive index (experienced by the signal field) as a function of
position x with the coupling intensities spatially modified. Adapted from Ref. [52]

i
∂E

∂z
+ ∂2E

∂x2
+ V (x)E = 0. (2)

Considering that the potential is uniform along the propagation direction, the
PT-symmetric potential describes a periodic coupled-waveguide structure. In the
potential, the electric field can be written as [54]

E (x, z, t) = exp (iβz)
[
A1(x)E1(z)+ A2(x)E2(z)+ A3(x)E3(z)+ A4(x)E4(z)

+ A5(x)E5(z)+ A6(x)E6(z)+ A7(x)E7(z)+ A8(x)E8(z)

+ A9(x)E9(z)+ A10(x)E10(z)
]
,

(3)

where Am(x) is the eigenmode of each waveguide and Em(z) is the amplitude of
the mode, m = 1, 2, . . . ,10 represents the number of the coupled waveguides. As a
consequence, a coupled-mode (tight-binding) set of equations with 10 waveguides
involved are given as [12, 27]
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i dE1
dz

− i
γG
2 E1 + κE2 = 0,

i dE2
dz

+ i
γL
2 E2 + κ (E1 + E3) = 0,

i
dE3
dz

− i
γG
2 E3 + κ (E2 + E4) = 0,

i dE4
dz

+ i
γL
2 E4 + κ (E3 + E5) = 0,

i
dE5
dz

− i
γG
2 E5 + κ (E4 + E6) = 0,

i
dE6
dz

+ i
γL
2 E6 + κ (E5 + E7) = 0,

i
dE7
dz

− i
γG
2 E7 + κ (E6 + E8) = 0,

i
dE8
dz

+ i
γL
2 E8 + κ (E7 + E9) = 0,

i
dE9
dz

− i
γG
2 E9 + κ (E8 + E10) = 0,

i
dE10
dz

+ i
γL
2 E10 + κE9 = 0,

(4)

where γG and γ L are the gain and loss coefficients experienced by two adjacent
waveguides [for example, the fifth (A5(x)) and sixth (A6(x)) waveguides] and κ is
the coupling coefficient. The three coefficients in Eq. (4) can be explicitly given as:

γG =
∫
V6(x)A5(x)A

∗
6(−x)dx∫

A5(x)A
∗
6(−x)dx ,

γL =
∫
V5(x)A6(x)A

∗
5(−x)dx∫

A6(x)A
∗
5(−x)dx ,

κ =
∫
V5(x)A6(x)A

∗
6(−x)dx∫

A5(x)A
∗
6(−x)dx .

(5)

Also, the eigenmodes obey the following relations:

A1(x) = A∗
10 (−x) ,A2(x) = A∗

9 (−x) ,
A3(x) = A∗

8 (−x) ,A4(x) = A∗
7 (−x) ,

A5(x) = A∗
6 (−x) ,

(6)

and

A1 (x − 4x0) = A3 (x − 2x0) = A5(x) = A7 (x + 2x0) = A9 (x + 4x0) ,

A2 (x − 4x0) = A4 (x − 2x0) = A6(x) = A8 (x + 2x0) = A10 (x + 4x0) .
(7)

Here, x0 is the space between two adjacent waveguides. According to the
coupling equations in Eq. (4), we can obtain the corresponding band structures
(under balanced gain/loss case γG=γ L=γ ) as shown Fig. 4.

The band structure of this lattice reveals an interesting property which has not
been observed in other periodic lattices, i.e., by increasing the gain/loss contrast,
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Fig. 4 Band structures for the cases (a) below and (b) above PT-symmetric threshold, respectively.
The blue circles are the real parts of the first five bands and the red diamonds are for the imaginary
parts

the first band [curve i in Fig. 4a] remains intact from symmetry breaking, as shown
in Fig. 4. When the imaginary part nI of the refractive index is zero, the bands
(i)&(ii) and (ii)&(iii) have already touched each other. With nI gradually increased
to operate the system above the threshold, the first band keeps unchanged and the
third (iii) and fourth (iv) bands start to merge obviously. This is due to the fact that
the gain and loss regions are mostly confined to the two sides of each waveguide
channel and thus have a minimum overlap with the lowest-order Floquet-Bloch
mode of the first band (that is mostly confined to the center of each channel). On the
other hand, the second-band Floquet-Bloch wave functions overlap more effectively
with these gain and loss regions and therefore this band is the first one to break the
PT symmetry. The major difference between the cases below [Fig. 4a] and the above
[Fig. 4b] PT-symmetric threshold can be seen from the corresponding imaginary
parts. In Fig. 4a, the imaginary parts are always zero for all the eigenvalues, while
in Fig. 4b, non-zero values appear in the imaginary parts.

The relation between the coupling efficiency and the separation of adjacent
channels was studied in Ref. [54] for coupled waveguide systems. One can reduce
the separation between the two coupled waveguides to get a stronger coupling
efficiency. In such a case, the imaginary part displays a discontinuity between the
induced gain and absorption regions [55], as shown in Fig. 5.

By setting different numbers of coupled waveguides, we can obtain the corre-
sponding band structures (under the balanced gain/loss case) as shown in Fig. 6,
which clearly gives the exception point as about γ L/2κ≈0.284 if Nwaveguide=10
waveguides are involved. Also, according to Fig. 6, the exception point value
decreases with increasing the number of coupled waveguides.
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Fig. 5 Real (solid black curves) and imaginary (dashed blue curves) refractive indices as a
function of position x for (a) passive waveguide, (b) PT-symmetric waveguide operating below
symmetry breaking threshold, (c) PT-symmetric waveguide above threshold. (d)–(f) Beam dynam-
ics for each case

4 Experimental Results

In the experiment, we first explore proper parameters (mainly including the
frequency detuning and intensities of corresponding laser fields, and the atomic
density) to generate the required Raman gain based on EIT in the N-type four-level
system in the frequency domain. The observed EIT (generated by the signal and
coupling fields) and gain spectra, corresponding to the transition 85Rb, F=3→F′,
are demonstrated in Fig. 7a. Next, we periodically modulate the refractive index
distribution based on the EIT scheme [56] and then establish the periodic gain-loss
profiles (by adding the standing-wave pump field) along the x direction. With the
Gaussian signal beam [as shown in Fig. 7b] launched into the coupling lattice (with
the pump fields blocked), we observed the discrete diffraction pattern, which can
manifest the periodic modification of the signal-field refractive index. Such discrete
diffraction patterns appear within a frequency detuning window of about 50 MHz
near the two-photon resonance that satisfies �s −�c = 0 [57, 58]. With the signal-
field detuning set as �s = −100 MHz, the diffraction image shown in Fig. 7c is



Parity-Time-Symmetric Optical Lattices in Atomic Configurations 225

Fig. 6 Band structures of the (a) real and (b) imaginary parts with Nwaveguide(=2, 4, 6, 8, 10,
12) gain-loss waveguides coupled in an array. The PT-symmetry breaking threshold decreases as
Nwaveguide increases

obtained by carefully adjusting the coupling-field period dc to match the maximum
refractive index contrast at �s − �c = 10 MHz.

The pump-field lattice can lead to an amplification on Es. With the two sets
of lattices turned on concurrently, the gain and loss regions with a high and
controllable contrast on Es can be simultaneously obtained by carefully modifying
the displacement �d between the two established optical lattices [see Fig. 1c]
and other experimental controlling parameters, e.g., the field intensities, frequency
detunings, and the temperature of atoms, etc. As shown in Fig. 7d, two adjacent
channels in the probe lattice experience alternative gain and loss, which can be
determined by comparing the intensity profile of the modulated signal beam with
its original Gaussian intensity profile [Fig. 7b].

By taking the advantages of atomic media, the intensity ratio of the gen-
erated gain and loss can be effectively manipulated. Figure 8a demonstrates
the evolution of the gain/loss ratio as a function of the detuning �p of the
pump field. Figure 8b and c present the observed gain-loss modulated probe
intensity profiles at �p = 20 MHz and 40 MHz, respectively. In the current
atomic configuration, the intensity for the detected signal field can be written as
I = I0−I0e−aL≈I0−I0(1−aL), where a=(2π /λs)χ ′′ and I0 is defined as the initial
intensity of the signal field and L as the cell length. The loss or gain is determined
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Fig. 7 (a) Observed Raman gain signal in the frequency domain. The upper, middle and lower
curves are the generated gain, EIT signal and the absorption spectrum corresponding to the
transition of 85Rb, F=3→F′, respectively, versus the detuning of the signal field. (b) Image and
intensity profile of Es without interacting with atoms. (c) Diffraction patterns of the signal beam
after propagating through the coupling lattice. (d) Simultaneous gain and loss profiles on Es with
both lattices turned on

by the sign of χ ′′, namely, the negative (positive) nI represents the gain (loss).
Consequently, we have I∝χ ′′ = 2nI, which means that the ratio of gain and loss
intensity profiles in current atomic setting can be equivalent to the coefficient
ratioγG/γ L.

In a PT-symmetric system, the evolution of eigenvalues is the most reliable
criterion to determine whether the system is below or above the symmetry-
breaking threshold. For such an induced non-Hermitian gain/loss-modulated array,
the behaviors of its eigenvectors can be unveiled by the changes in the relative phase
difference ν (which represents the internal phase difference of the eigenvectors)
between the adjacent gain and loss channels [10]. The phase difference is experi-
mentally measured with the assistance of the reference interference (generated by
the signal beam and the reference beam) along the y direction, as shown in Fig. 9.
To quantitatively determine the phase difference, we define the distance (along the y
direction) between the adjacent interference fringes as 2π (the length of the double-
sided arrow between the two solid lines), as shown in Fig. 9a. The black dotted
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Fig. 8 (a) Dependence of the gain/loss ratio on the frequency detuning �p of the pump field. The
squares are experimental observations and the solid curve is the guide for eyes to demonstrate the
evolution of gain/loss. The observed gain-loss profiles are presented at (b) �p = 10 MHz and (c)
�p = 40 MHz

Fig. 9 Schematic diagram for measuring the relative phase difference between the gain/loss
channels. (a) Interference between the signal field ES and a reference beam (both of which are
from the same laser) in the y direction. The phase difference between the two solid lines is defined
as 2π. The phase difference between the black dotted line (located at the center of the two solid
lines) and one of the two solid lines is π. (b) Interference pattern between the intensity modulated
ES field (after diffraction) and the reference beam, so that the square-like lattice is obtained and
the phase difference can then be measured
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line gives the center of the two solid lines, so phase π can be described by distance
(marked by a pair of one-way arrows) between one of the two solid lines and the
dotted line. With the ES spatially discretized by the induced lattices, the interference
pattern divides the “bright” gain regions and “dark” loss regions into a net-like
square lattice, as shown in Fig. 9b.

Figure 10 shows the measured phase difference between two adjacent gain and
loss waveguides. By carefully tuning the experimental parameters to generate the
gain and loss with high contrast (the loss should be more than 60% of the original
signal-field intensity), we can observe a clear relative distance/shift (along the y
direction) between the bright square and dark square (corresponding to the gain
and loss channels, respectively) through the reference interference. The values of
the distance/shift can be proportionally referred to as the relative phase difference.
Figure 10a is the observed reference interference, in which the phase 2π and π are
marked by corresponding arrows. A red dotted line is drawn along the center of a
“dark” square in one row of the lattice to label its position. The relative distance
[marked by a pair of one-way arrows in Fig. 10c–e] between the red dotted line and
black dotted line represents the relative phase difference between two neighboring
gain and loss channels [10]. Figure 10b shows the case that no phase difference (the
black dotted line and red dotted line overlap) is detected between the gain and loss
channels when the gain is zero. Several relative phase differences (ν) are measured
in Fig. 10c–e as the gain/loss ratio γG/γ L increases but still below the PT-symmetry
breaking threshold. Considering that the measured ν is consistently zero under low
and no gain conditions, there are no error bars for the first two data points. Figure
10f illustrates the situation above the symmetry breaking point, in which the phase
difference is constantly ν = π /2 even the ratio γG/γ L continuously increases from
1 to 1.2. The measured phase-difference dependence on γG/γ L, as shown in Fig.
10g, can be qualitatively explained by the theoretical predictions given in Fig. 10h,
which illustrates that the value of γ L/2κ can indeed affect the dynamics behaviors
of a coupled waveguide array system with a certain γG/γ L. The vertical axis γ L/2κ
represents the evolution of nI/nR since the coupling coefficient κ directly relates to
the real part nR of the index.

Actually, for the established non-Hermitian optical lattice, most of the demon-
strated cases possess an unbalanced gain/loss ratio. In principle, these unbalanced
cases can be still mathematically transformed into a PT-symmetry-like configuration
[10]. This then establishes a “quasi-PT symmetry” system [59], in which the
characteristic eigenvalue pattern is simply offset with respect to the original zero
line [60]. Note that the dynamical behaviors of the exact PT-symmetry system and
its quasi-PT-symmetry counterparts are essentially identical if the PT symmetry is
unbroken, while their dynamics are different when the PT symmetry is broken [59].

For the experimental point at γG = γ L, the phase difference can vary from 0 to
π below PT-symmetry breaking threshold and jumps to a fixed value of π /2 above
threshold by increasing γ L/2κ [10]. Actually, Fig. 10f shows the exact PT-symmetry
breaking point with γG/γ L = 1 and γ L/2κ > 0.284 simultaneously realized. Here the
threshold γ L/2κ = 0.284 is theoretically obtained with 10 waveguides coupled. In
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Fig. 10 Selected gain and loss channels for measurements are marked with G and L, respectively.
(a) Reference interference fringes generated by the reference beam and the Gaussian signal beam.
The two solid lines mark the centers of two adjacent fringes. (b−f) Observed phase differences
(marked by the pair of one-way arrows) between the neighboring gain and loss channels with
γG/γ L setting as 0, 0.4, 0.6, 0.8, and 1.0, respectively. (g) Measured dependence of phase
difference on γG/γ L. (h) Theoretical simulations of phase difference according to the coupled
equations for 10 waveguides at a propagation distance of z=10, and the breaking threshold (the
dotted curve) decreases with the increase of gain/loss ratio. The dimensionless z is scaled by the
Rayleigh range kx0

2 (k = 2π/λ, and x0 is the waveguide width). Adapted from Ref. [52]

principle, infinite number of coupled waveguides can be considered. However, due
to the limited beam size and the periodicity of the waveguide, we use 10 effective
waveguides in theory to mimic the experiment.

For the cases of γG �=γ L, the coupled gain and loss waveguides can still have
phase differences in the same way as the case of γG = γ L. It is worth mentioning
that the PT-symmetry breaking threshold value for γ L/2κ can change with the value
of gain/loss ratio as indicated by the dotted curve shown in Fig. 10h. Giving the
experimental parameters at certain gain-loss ratio in Fig. 10g, we can calculate the
γ L/2κ value and determine whether the system operates below or above the PT-
symmetry breaking threshold according to the coupling equations Eq. (4).
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5 PT-Symmetric Optical Lattice with Alternating Three-
and Four-Level Atomic Configurations

The establishment of such PT-symmetric optical lattice with gain and loss based on
discrete diffractions and EIT can be an exciting progress in the fields of both non-
Hermitian optics and AOM physics. As an improvement of the current work, we
further construct a PT-symmetric lattice based on alternating three- and four-level
atomic configurations, which can also provide respective gain and loss with easy
accessibility and better tunability [61]. The four-level system providing Raman gain
is driven by a signal field, a coupling field and a pump field, as shown in Fig. 11a,
which is the same as the energy-level structure in Fig. 1b. With the intensity of
the pump field set to be zero, the four-level system reduces down to a three-level
system [with only subsystem |1〉→|2〉→|3〉 in Fig. 11a involved], which provides a
modifiable loss under the EIT condition.

To be specific, we inject two elliptically-shaped signal beams Es and Es
′

(wavelength of λs=794.97 nm, horizontal polarization) from a same ECDL into
the rubidium cell symmetrically with respect to the z axis. They intersect at the
center of the rubidium cell with an angle of 2θ≈0.4◦ to establish a periodical
signal field in the x direction. The small-angle arrangement can make the signal
beam be a standing-wave field for a relatively long distance (over 20 cm) along
the z direction. Considering the requirement of loss in a PT-symmetric system,
the intensities of fields Es and Es

′ are different, and the minimum intensity of
the established standing wave is non-zero. The strong Gaussian coupling beam
(λc=794.97 nm, vertical polarization) is introduced into the medium at the same
propagation direction of Es. With the frequency of the coupling beam Ec tuned to be
near resonant with the transition |2〉↔|3〉, a�-type EIT configuration is achieved in
this |1〉↔|2〉↔|3〉 subsystem. Considering that the coupling beam is large enough,
the spatially periodical EIT (along the x direction) can be observed on the output
signal field. Furthermore, the two pump beams Ep and Ep

′ (λp=780.24 nm, vertical

Fig. 11 (a) Four-level N-type energy-level configuration for introducing gain. The subsystem
|1〉→|2〉→|3〉 is responsible for adjustable loss. (b) Spatial arrangement of the laser fields inside
the medium. The symbol z represents the propagation direction of light. The intensity of the pump
field at the points near the interference valley is zero while the signal field at the valley is non-zero
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polarization) partially overlapped with Es and Es
′, respectively, are incident into the

cell with almost the same angle of 2θ to build the periodical pump field. The angle
between the two pump beams should be carefully adjusted to make the pump-field
lattice fully overlaps with the signal-field lattice. The presence of the pump field
can introduce an alternating Raman gain on the signal field under the four-level
N-type configuration [51, 53]. The schematic diagram for the spatial arrangement
of the three fields inside the cell is shown as Fig. 11b, where the signal array
completely overlaps with the pump array. Such standing-wave structure can realize
the alternative on/off of pump field. The pump field intensity has its maximum
and minimum (basically zero) at the interference peak and valley, respectively.
As a result, the detected signal profile exhibits interference pattern with peak
experiencing gain due to the four-level Raman process and valley experiencing
loss due to three-level EIT (without the pump field). Since the signal field has
orthogonal polarization from the pump and coupling fields, we reject the pump and
coupling fields with a polarization beam splitter and monitor the signal field on a
CCD camera.

Such periodic gain-loss pairs can be exploited to construct a spatially distributed
PT-symmetric refractive index by appropriately tuning the gain/loss ratio, which can
be easily manipulated by adjusting the pertinent parameters including the atomic
density, the periodicity of the standing waves, and the frequency detunings and
Rabi frequencies of the corresponding fields. One of the key advantages of the
current system is that the gain and loss channels can be adjusted more independently,
which will be easier to balance the gain and loss to realize PT-symmetric condition
and study some related effects. With the gain-loss modulated periodic signal field
obtained, we similarly introduce a reference beam (from the same ECDL as Es)
to interfere with the signal beam and demonstrate non-Hermitian properties of
the system by measuring the relative phase difference between the gain and loss
channels.

Figure 12 depicts the detected signal field on the CCD camera under different
conditions. First, with the frequency detuning of the signal field Es set away from
the atomic resonance, one sees the simple interference fringe in Fig. 12a. As the
signal frequency tuned to be near resonant with the transition |1〉↔|3〉, it can be
dramatically absorbed [Fig. 12b]. When the large-size Gaussian coupling field Ec
is turned on, it induces EIT on the signal field and reduces its absorption [Fig. 12c]
under the two-photon resonance satisfying�s−�c=0. Here the detuning�s and�c
are same as the definition in Sect. 3. The amount of residual absorption is controlled
by the coupling beam parameters. Then, by injecting the pump field into the cell,
we can obtain simultaneous gain and loss channels with a controllable contrast on
the signal field by carefully arranging the coupling- and pumping-field parameters.
For the bright fringe regions (maximum intensity), the presence of the pump field
can couple a four-level N-type system and therefore can lead to an amplification
on the signal field without population inversion (ρ11>ρ33) [51]. As shown in Fig.
12d, one can clearly find the alternative gain and loss in the middle region of the
periodical field by comparing it with the original intensity profile of the signal
field shown in Fig. 12a. The dark fringes (minimum intensity) represent the loss
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Fig. 12 Detected signal field under various conditions. (a) Observed image and intensity profiles
of the signal field Es without interacting with atoms. (b) Signal field after propagating through the
atomic medium under the resonant condition (simple atomic absorption). (c) Reduced absorption
with generated EIT when the Gaussian coupling field Ec turned on. (d) Simultaneous alternative
gain and loss profiles on Es with both Ec and pump field Ep turned on

region with only EIT, where the intensity of the pump filed is nearly zero. By taking
advantages of the atomic coherence, the ratio between the induced gain and loss
can be easily manipulated by controlling the experimental parameters. Actually, the
ratio γG/γ L can be in the range of 0 to 1.5 by adjusting the coupling detuning �c
over approximately 40 MHz.

With the periodical gain-loss region effectively generated, the dynamics behav-
iors of the system below and above the threshold are demonstrated by the relative
phase difference ν between two neighboring gain and loss channels. The measuring
method is the same as the one we adopted in Sect. 4. As a result, the relative phase
difference can increase from 0.16π to π with the gain/loss ratio adjusted from
0.1 to 1, which advocates again that the relative phase difference ν, for the case
below the phase-transition point, can increase (from the initial values 0) with the
gain/loss ratio. When the ratio γG/γ L is increased to 1.2, the phase difference jumps
to ν = π /2. With the ratio further increased to γG/γ L = 1.5, the measured phase
difference can still be π /2. This also supports the previous conclusion that, for the
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cases at and above the phase-transition point, the phase differences can constantly
be π /2 even increasing the gain.

6 Summary and Outlook

In summary, we have experimentally demonstrated the PT-symmetric optical lattices
with controllable gain/loss ratio by utilizing two different coherently-prepared
multi-level atomic configurations. The required index modulation and the anti-
symmetric gain/loss profiles are introduced by exploiting the modified absorption
(or EIT) and induced active Raman gain, which is fully reconfigurable and all-
optically controllable with various experimental parameters. The presence of a
well-defined breaking-phase threshold was experimentally verified by observing the
abrupt change of relative phase difference between the gain and loss channels.

The constructed PT-symmetric atomic lattices can be used to study a variety of
effects related to PT symmetry and other non-Hermitian Hamiltonians, including
anti-PT-symmetric lattice and PT-symmetric Talbot effect [32] as well as intriguing
beam dynamical features [35] such as double refraction, power oscillation, and
nonreciprocal diffraction patterns. Further, owning to the versatile nature of the
coherently prepared multi-level atomic media in easily synthesizing desired linear
dispersion/absorption, Raman gain, and nonlinearities, the demonstrated work can
provide an ideal platform for exploiting novel effects in gain/loss modulated optical
lattice systems, such as non-Hermitian nonlinear optics (PT-symmetric solitons,
vortices, etc.) and condensed-matter physics effects (defect states, surface states,
etc.), to bridge a connection between non-Hermitian physics and atomic physics.
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oscillation and zener tunneling in an atomic system. Optica. 4, 571–575 (2017)

6. Schindler, J., Li, A., Zheng, M.C., Ellis, F.M., Kottos, T.: Experimental study of active LRC
circuits with PT symmetries. Phys. Rev. A. 84, 040101R (2011)

7. Bender, N., Factor, S., Bodyfelt, J.D., Ramezani, H., Christodoulides, D.N., Ellis, F.M., Kottos,
T.: Observation of asymmetric transport in structures with active nonlinearities. Phys. Rev. Lett.
110, 234101 (2013)

8. Zhu, X., Ramezani, H., Shi, C., Zhu, J., Zhang, X.: PT-Symmetric acoustics. Phys. Rev. X. 4,
031042 (2014)

9. Fleury, R., Sounas, D., Alù, A.: An invisible acoustic sensor based on parity-time symmetry.
Nat. Commun. 6, 5905 (2015)

10. Ruter, C.E., Makris, K.G., EI-Ganainy, R., Christodoulides, D.N., Segev, M., Kip, D.:
Observation of parity-time symmetry in optics. Nat. Phys. 6, 192–195 (2010)

11. Christodoulides, D.N., Miri, M.A.: PT symmetry in optics and photonics. Proc. SPIE. 9162,
91621P (2014)

12. Guo, A., Salamo, G.J., Duchesne, D., Morandotti, R., Volatier-Ravat, M., Aimez, V.,
Siviloglou, G.A., Christodoulides, D.N.: Observation of PT-symmetry breaking in complex
optical potentials. Phys. Rev. Lett. 103, 093902 (2009)

13. Chong, Y.D., Ge, L., Cao, H., Stone, A.D.: Coherent perfect absorbers: time-reversed lasers.
Phys. Rev. Lett. 105, 053901 (2010)

14. Longhi, S., Feng, L.: PT-symmetric microring laser-absorber. Opt. Lett. 39, 5026–5029 (2014)
15. Peng, B., Özdemir, S.K., Lei, F., Monifi, F., Gianfreda, M., Long, G.L., Fan, S., Nori, F.,

Bender, C.M., Yang, L.: Parity-time-symmetric whispering-gallery microcavities. Nat. Phys.
10, 394–398 (2014)

16. Chang, L., Jiang, X., Hua, S., Yang, C., Wen, J., Jiang, L., Li, G., Wang, G., Xiao, M.: Parity-
time symmetry and variable optical isolation in active-passive-coupled microresonators. Nat.
Photon. 8, 524–529 (2014)

17. Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Musslimani, Z.H.: PT-symmetric optical
lattices. Phys. Rev. A. 81, 063807 (2010)

18. Dmitriev, S.V., Sukhorukov, A.A., Kivshar, Y.S.: Binary parity-time-symmetric nonlinear
lattices with balanced gain and loss. Opt. Lett. 35, 2976–2978 (2010)

19. Musslimani, Z.H., Makris, K.G., El-Ganainy, R., Christodoulides, D.N.: Optical solitons in PT
periodic potentials. Phys. Rev. Lett. 100, 030402 (2008)

20. He, Y., Zhu, X., Mihalache, D., Liu, J., Chen, Z.: Lattice solitons in PT-symmetric mixed
linear-nonlinear optical lattices. Phys. Rev. A. 85, 013831 (2012)

21. Wimmer, M., Regensburger, A., Miri, M.A., Bersch, C., Christodoulides, D.N., Peschel, U.:
Observation of optical solitons in PT-symmetric lattices. Nat. Commun. 6, 7782 (2015)

22. Abdullaev, F.K., Kartashov, Y.V., Konotop, V.V., Zezyulinm, D.A.: Solitons in PT-symmetric
nonlinear lattices. Phys. Rev. A. 83, 041805R (2011)

23. Longhi, S.: Bloch oscillations in complex crystals with PT symmetry. Phys. Rev. Lett. 103,
123601 (2009)

24. Wimmer, M., Miri, M.A., Christodoulides, D.N., Peschel, U.: Observation of Bloch oscillations
in complex PT-symmetric photonic lattices. Sci. Rep. 5, 17760 (2015)

25. Yin, X.B., Zhang, X.: Unidirectional light propagation at exceptional points. Nat. Mater. 12,
175–177 (2013)

26. Lin, Z., Ramezani, H., Eichelkraut, T., Kottos, T., Cao, H., Christodoulides, D.N.: Unidirec-
tional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett. 106, 213901
(2011)

27. Feng, L., Xu, Y.L., Fegadolli, W.S., Lu, M.H., Oliveira, J.E.B., Almeida, V.R., Chen,
Y.F., Scherer, A.: Experimental demonstration of a unidirectional reflectionless parity-time
metamaterial at optical frequencies. Nat. Mater. 12, 108–113 (2013)

28. Regensburger, A., Bersch, C., Miri, M.A., Onishchukov, G., Christodoulides, D.N., Peschel,
U.: Parity-time synthetic photonic lattices. Nature. 488, 167–171 (2012)



Parity-Time-Symmetric Optical Lattices in Atomic Configurations 235

29. Eichelkraut, T., Heilmann, R., Weimann, S., Stützer, S., Dreisow, F., Christodoulides, D.N.,
Nolte, S., Szameit, A.: Mobility transition from ballistic to diffusive transport in non-Hermitian
lattices. Nat. Commun. 4, 2533 (2013)

30. Wu, J.H., Artoni, M., La Rocca, G.C.: Parity-time-antisymmetric atomic lattices without gain.
Phys. Rev. A. 91, 033811 (2015)

31. Miri, M.A., Regensburger, A., Peschel, U., Christodoulides, D.N.: Optical mesh lattices with
PT symmetry. Phys. Rev. A. 86, 023807 (2012)

32. Ramezani, H., Christodoulides, D.N., Kovanis, V., Vitebskiy, I., Kottos, T.: PT-symmetric
Talbot effects. Phys. Rev. Lett. 109, 033902 (2012)

33. Bendix, O., Fleischmann, R., Kottos, T., Shapiro, B.: Exponentially fragile PT symmetry in
lattices with localized eigenmodes. Phys. Rev. Lett. 103, 30402 (2009)

34. Regensburger, A., Miri, M.A., Bersch, C., Näger, J., Onishchukov, G., Christodoulides, D.N.,
Peschel, U.: Observation of defect states in PT-symmetric optical lattices. Phys. Rev. Lett. 110,
223902 (2013)

35. Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Musslimani, Z.H.: Beam dynamics in
PT-symmetric optical lattices. Phys. Rev. Lett. 100, 103904 (2008)

36. Zheng, M.C., Christodoulides, D.N., Fleischmann, R., Kottos, T.P.T.: Optical lattices and
universality in beam dynamics. Phys . Rev. A. 82, 010103R (2010)

37. Wu, J.H., Artoni, M., La Rocca, G.C.: Non-Hermitian degeneracies and unidirectional
reflectionless atomic lattices. Phys. Rev. Lett. 113, 123004 (2014)

38. Sheng, J.T., Miri, M.A., Christodoulides, D.N., Xiao, M.: PT-symmetric optical potentials in a
coherent atomic medium. Phys. Rev. A. 88, 041803R (2013)

39. Hang, C., Kartashov, Y.V., Huang, G., Konotop, V.V.: Localization of light in a parity-time-
symmetric quasi-periodic lattice. Opt. Lett. 40, 2758–2761 (2015)

40. Horsley, S.A.R., Artoni, M., La Rocca, G.C.: Spatial Kramers–Kronig relations and the
reflection of waves. Nat. Photon. 9, 436–439 (2015)

41. Scully, M.O.: Enhancement of the index of refraction via quantum coherence. Phys. Rev. Lett.
67, 1855–1858 (1991)

42. Li, H.J., Dou, J.P., Huang, G.: PT symmetry via electromagnetically induced transparency. Opt.
Express. 21, 32053–32062 (2013)

43. Harris, S.E.: Electromagnetically induced transparency. Phys. Today. 50, 36–42 (1997)
44. Gea-Banacloche, J., Li, Y.Q., Jin, S.Z., Xiao, M.: Electromagnetically induced transparency

in ladder-type inhomogeneously broadened media: theory and experiment. Phys. Rev. A. 51,
576–584 (1995)

45. Xiao, M., Li, Y., Jin, S., Gea-Banacloche, J.: Measurement of dispersive properties of
electromagnetically induced transparency in rubidium atoms. Phys. Rev. Lett. 74, 666–669
(1995)

46. Wu, J., Artoni, M., La Rocca, G.C.: Parity-time-antisymmetric atomic lattices without gain.
Phys. Rev. A. 91, 033811 (2015)

47. Hang, C., Zezyulin, D.A., Konotop, V.V., Huang, G.: Tunable nonlinear parity–time-symmetric
defect modes with an atomic cell. Opt. Lett. 38, 4033–4036 (2013)

48. Ramezani, H., Kottos, T., El-Ganainy, R., Christodoulides, D.N.: Unidirectional nonlinear PT-
symmetric optical structures. Phys. Rev. A. 82, 043803 (2010)

49. Childress, L., Walsworth, R., Lukin, M.: Atom-like crystal defects: from quantum computers
to biological sensors. Phys. Today. 67, 38–43 (2014)

50. Pei, L., Lu, X., Bai, J., Miao, X., Wang, R., Wu, L., Ren, S., Jiao, Z., Zhu, H., Fu, P., andZuo,
Z.: Resonant stimulated Raman gain and loss spectroscopy in Rb atomic vapor. Phys. Rev. A.
87, 063822 (2013)

51. Kang, H.S., Wen, L.L., Zhu, Y.F.: Normal or anomalous dispersion and gain in a resonant
coherent medium. Phys. Rev. A. 68, 063806 (2003)

52. Zhang, Z., Zhang, Y., Sheng, J., Yang, L., Miri, M.-A., Christodoulides, D.N., He, B., Zhang,
Y., Xiao, M.: Observation of parity-time symmetry in optically induced atomic lattices. Phys.
Rev. Lett. 117, 123601 (2016)



236 Z. Zhang et al.

53. Zhang, Z., Feng, J., Liu, X., Sheng, J., Zhang, Y., Zhang, Y., Xiao, M.: Controllable photonic
crystal with periodic Raman gain in a coherent atomic medium. Opt. Lett. 4, 919–922 (2018)

54. El-Ganainy, R., Makris, K.G., Christodoulides, D.N., Musslimani, Z.H.: Theory of coupled
optical PT-symmetric structures. Opt. Lett. 32, 2632–2634 (2007)

55. Sheng, J.T., Miri, M.A., Christodoulides, D.N., Xiao, M.: PT symmetry in coherent atomic
media. CLEO: 2013 Technical Digest. QTu1E. 5,

56. Ling, H.Y., Li, Y.Q., Xiao, M.: Electromagnetically induced grating: homogeneously broad-
ened medium. Phys. Rev. A. 57, 1338–1344 (1998)

57. Sheng, J., Wang, J., Miri, M.A., Christodoulides, D.N., Xiao, M.: Observation of discrete
diffraction patterns in an optically induced lattice. Opt. Express. 23, 19777–19782 (2015)

58. Zhang, Z.Y., Liu, X., Zhang, D., Sheng, J.T., Zhang, Y.Q., Zhang, Y.P., Xiao, M.: Observation
of electromagnetically induced Talbot effect in an atomic system. Phys. Rev. A. 97, 013603
(2018)

59. Marco, O., Alexander, S.: Quasi PT-symmetry in passive photonic lattices. J. Opt. 16, 065501
(2014)

60. Lupu, A., Benisty, H., Degiron, A.: Switching using PT symmetry in plasmonic systems:
positive role of the losses. Opt. Express. 21, 21651–21668 (2013)

61. Zhang, Z., Yang, L., Feng, J., Sheng, J., Zhang, Y., Zhang, Y., Xiao, M.: Parity-Time-
Symmetric Optical Lattice with Alternating Gain and Loss Atomic Configurations. Laser
Photon. Rev. 12, 1800155 (2018)



Effects of Exceptional Points
in PT-Symmetric Waveguides

Nimrod Moiseyev and Alexei A. Mailybaev

Abstract We start with a general theoretical introduction to PT -symmetric
systems. Quantum systems with gain and loss can be modeled by non-Hermitian
Hamiltonians, and PT -symmetry is a property that can be achieved, e.g. by a
coupling with the laser field. The resulting PT -symmetric Hamiltonians possess
a real spectrum (when the gain and loss are not too strong) and can be considered
as a special case of pseudo-Hermitian Hamiltonians. The transition from a real to
a complex spectrum occurs at the exceptional point (EP), where two eigenmodes
coalesce both in eigenvalue and eigenvector. The PT -symmetric Hamiltonian can
be realized experimentally in a system of two coupled waveguides with loss and
gain. We describe in detail two physical effects related to the EPs in such a system.
First, we show that light oscillations between two waveguides are suppressed by
approaching the EP condition. Second, we prove that the group velocity of a light
pulse decreases to zero as the system is tuned to be at the EP.

1 Introduction

Recently there has been an explosion of interest to PT -symmetric properties of
non-Hermitian Hamiltonians, as first introduced by Bender and Boettcher [6]; see
also [5, 14] and references therein. This symmetry is achieved when the parity trans-
formation, P , interchanges the system elements experiencing gain and loss, such
that the system returns to its original form after the subsequent time reversal, T .
Under certain conditions PT -symmetric Hamiltonians can have a completely real
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spectrum and, thus, can serve, under the appropriate inner product, as Hamiltonians
of unitary quantum systems [28]. We should stress that although we focus on PT -
symmetric systems, PT symmetry is neither a necessary nor a sufficient condition
for a non-Hermitian Hamiltonian to have a real spectrum [27, 28].

Why are the PT properties of non-Hermitian Hamiltonians relevant to realistic
physical systems? The realization of PT -symmetric “Hamiltonians” has been
studied most recently for optical waveguides with complex refractive indices [13,
21, 22, 30]. The equivalence of the Maxwell and Schrödinger equations in certain
regimes provides a physical system in which the properties of PT -symmetric
operators can be studied and exemplified. In this chapter we will focus on the special
effects of exceptional points (EPs) on the dynamical properties of PT -symmetric
waveguides with complex index of refraction. The EP is a special type of a non-
Hermitian degeneracy between two (or more) eigenstates formed by the coalescence
of both eigenvalues and eigenvectors.

Quantum mechanics deals with matter waves and the effects of EPs in atomic
and molecular systems have not been observed until now in experiments. Consider
two atomic or molecular resonances, which are coupled by a CW-laser field (i.e.,
AC-electromagnetic field) to have the structure of the non-Hermitian Hamiltonian

ĤNH =
(
Eres1 + �ωL d

d Eres2

)
, (1)

where Eres1 and Eres2 are two complex autoionization or predissociation decay res-
onances; ωL is fundamental frequency of the laser field; the off-diagonal elements
d are proportional to the maximum amplitude of the laser field and describe the
dipole transitions between the two metastable states. The imaginary parts of the
complex eigenvalues Eres1 and Eres2 determine the decay rates, which are inversely
proportional to the lifetimes of the corresponding metastable states [25]. In a special
case, when the laser frequency is at the exact resonance

�ωL = Re
(
Eres2 − Eres1

)
, (2)

a simple rewrite of the Hamiltonian (1) brings it to the form

ĤNH = ĤPT − i
Γ0

2
Î , (3)

where Î is a identity operator and

ĤPT =
(
E0 + iΓ /2 d

d E0 − iΓ /2

)
(4)

with E0 = ReEres2 , Γ = Im
(
Eres1 − Eres2

)
and Γ0 = −Im

(
Eres1 + Eres2

)
. Here Γ0

features the mean decay rate of both states. Due to Eq. (2), the diagonal elements
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of ĤPT have equal real parts and opposite imaginary parts. In this case the
contribution ĤPT to the full non-Hermitian Hamiltonian (3) is PT -symmetric;
see Sect. 2 below. This observation provides a constructive way to design the PT
symmetry and EPs in realistic quantum systems.

In Sect. 2, we discuss basic features of PT -symmetric and pseudo-Hermitian
Hamiltonians. These Hamiltonians possess real spectrum for the interval of param-
eters bounded by the EPs described in Sect. 3. Section 4 studies light propagation
in a PT -symmetric system of coupled waveguides. Section 5 investigates the
propagation of light pulses in the same system showing that light stops (the group
velocity vanishes) exactly at the EP.

2 PT Symmetry and Pseudo-Hermitian Hamiltonians

A quantum system is described by a Hermitian Hamiltonian Ĥ0. In the absence of
magnetic field, this Hamiltonian is real and symmetric. Evolution of open quantum
systems, when particles can be injected into or removed from the system, can be
modeled by introducing a non-Hermitian part into the Hamiltonian, which describes
the respective gain and loss. This non-Hermitian Hamiltonian part is given by iV̂ ,
where V̂ is a real symmetric operator and i is the imaginary unit. In general, the
resulting non-Hermitian Hamiltonian Ĥ = Ĥ0 + iV̂ has complex eigenvalues, E =
E0 − iΓ /2, where the real part is the energy and the imaginary part describes the
rate of decay (Γ > 0) or growth (Γ < 0) of the respective metastable quantum
state.

The spectrum of a non-Hermitian Hamiltonian may become real in a robust way
when the system possesses an extra symmetry that accurately balances the gain and
loss [6, 7, 21]. This can be understood using the example of a two-level system,
where the first state |1〉 has energy E0 and experiences gain, while the second state
|2〉 has the same energy E0 but decays; the gain and loss having exactly the same
rates. The corresponding Hamiltonian, analogous to (4), can be written as

Ĥ =
(
E0 + iΓ /2 d

d E0 − iΓ /2

)
, (5)

where the real parameter d denotes coupling between the two states. Such Hamilto-
nians are called PT -symmetric, because they remain invariant under the combined
action of parity interchanging the two states, |1〉 ↔ |2〉, and of time reversal
interchanging the gain with loss, Γ ↔ −Γ .

Computing eigenvalues and eigenvectors of the matrix (5), we obtain

E± = E0 ±
√
d2 − Γ 2/4, |ψ±〉 =

(
1

±√1 − (Γ /2d)2 − iΓ /2d

)
. (6)
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We see that both eigenvalues are real if the intensity of gain and loss is not large,
namely, |Γ | < 2d. In this case | ± √1 − (Γ /2d)2 − iΓ /2d| = 1 and, hence, the
eigenvector is equally distributed between the gain |1〉 and loss |2〉 states. As a result,
the loss balances gain and the mode amplitude stays constant. Otherwise, if |Γ | >
2d, both eigenvalues in (6) are complex: One of the eigenmodes decays and the
other grows with time, because the eigenvectors are not distributed equally between
the gain and loss states. At |Γ | = 2d, a non-Hermitian degeneracy is obtained,
the so-called exceptional point, which will be described in the next section in more
detail.

The fact that PT -symmetric Hamiltonians have a real spectrum follows from a
more general concept of pseudo-Hermitian Hamiltonians [27]. The Hamiltonian Ĥ
is called pseudo-Hermitian if there is an invertible Hermitian operator η̂ such that

Ĥ †η̂ = η̂Ĥ . (7)

Such Hamiltonians are in general non-Hermitian, but they conserve the quantity

〈η̂〉 = 〈'(t)|η̂|'(t)〉, (8)

where '(t) satisfies the Schrödinger equation i'̇ = Ĥ'. This conservation
property follows from (7) after differentiating 〈η̂〉 with respect to time.

It is not difficult to see that the property of having a real spectrum is robust under
small perturbations, as long as the Hamiltonian satisfies condition (7) and all its
eigenvalues are non-degenerate. Indeed, let E be a non-degenerate real eigenvalue
with the right eigenvector |ψR〉 and left eigenvector 〈ψL|:

Ĥ |ψR〉 = E|ψR〉, 〈ψL|Ĥ = E〈ψL|. (9)

Note that, for non-Hermitian Hamiltonians, right and left eigenvectors are generally
different, |ψR〉 �= |ψL〉; here we use the Dirac bra-ket notation and the definition of
bra-states includes the conjugation |ψL〉 = 〈ψL|†. In the case of a non-degenerate
eigenvalue, the scalar product of left-right eigenvectors is nonzero, 〈ψL|ψR〉 �= 0,
see e.g. [25, 33]. Using the properties η̂† = η̂, relation (7) written as η̂−1Ĥ † =
Ĥ η̂−1 and the second equation in (9), we derive:

Ĥ η̂−1|ψL〉 =
(
〈ψL|η̂−1Ĥ †

)†
. =

(
〈ψL|Ĥ η̂−1

)† =
(
E〈ψL|η̂−1

)† = E∗η̂−1|ψL〉.
(10)

We just have shown that, for any eigenvalue E, the complex conjugate E∗ is the
eigenvalue with the right eigenvector

|ψ ′
R〉 = η̂−1|ψL〉. (11)

For a non-degenerate real eigenvalue, we have E = E∗, which implies the relation
between the right and left eigenvectors as |ψR〉 ∝ η̂−1|ψL〉 (equality up to a
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complex factor). Now we can see that a non-degenerate real eigenvalue cannot
become complex under a small perturbation of the Hamiltonian, because otherwise
a real eigenvalue E would split into a complex conjugate pair E and E∗; this is
clearly in the contradiction to the assumption that E is non-degenerate. We see that
the spectrum of the pseudo-Hermitian Hamiltonian remains real with a change of
parameters until the point with a spectral degeneracy. As we will see in the next
section, a typical degeneracy appearing in this case is the EP.

Let us define the parity operator as

P̂ =
(

0 1
1 0

)
, (12)

which interchanges the states |1〉 and |2〉 and, thus, its square P̂ 2 = Î is the
identity matrix. For the 2 × 2 matrix (5), condition (7) holds for η̂ = P̂ as
one can easily verify. In this case the conserved quantity (8) becomes 〈η̂〉 =
ϕ∗1ϕ2 + ϕ∗2ϕ1, where |'(t)〉 = ϕ1(t)|1〉 + ϕ2(t)|2〉. Note that 〈η̂〉 is not positive
definite, thus, its conservation does not necessarily imply that the solution is
bounded. In fact, exponential growing or decaying solutions appear when Γ > 2d.
Since the Hamiltonian (5) is complex and symmetric, Eqs. (9) for the right and
left eigenvectors are transposed to each other and, hence, the eigenvectors are
complex conjugate, |ψL〉 = |ψ∗

R〉. From relation (11) we see that the eigenvector
|ψ ′
R〉 = P̂ |ψL〉 = P̂ |ψ∗

R〉 with the eigenvalue E∗ describe the mode that is PT -
symmetric to |ψR〉 and E.

For a complex symmetric Hamiltonian, let us introduce the c-product of two
vectors ψ1 and ψ2 denoted by (ψ1|ψ2) as [25, Ch. 6 and 9]

(ψ1|ψ2) = 〈ψ∗
1 |ψ2〉. (13)

Here the complex conjugation in the first vector implies that 〈ψ∗
1 | = |ψ∗

1 〉† = |ψ1〉T
is only transposed, instead of Hermitian transposed. It is convenient to normalize the
eigenvector of a non-degenerate eigenmode with this c-product as (ψR|ψR) = 1,
which yields the eigenvector |ψR〉 defined up to a sign; note that this normalization
is not possible for a degenerate eigenvalue, see Sect. 3. From the results of the
previous paragraph it follows that the mode with a non-degenerate real eigenvalue
E = E∗ is PT -symmetric, with the eigenvector satisfying the relation |ψR〉 =
±P̂ |ψ∗

R〉, where the sign distinguishes symmetric and anti-symmetric modes. In
such a case (when the spectrum of the Hamiltonian is real), PT -symmetry is
called exact. When eigenvalues of the Hamiltonian are complex, PT -symmetry
is broken: each eigenmode with complex E is PT -symmetric to the complex
conjugate mode with E∗.

Expression (5) provides a subset of all pseudo-Hermitian Hamiltonians for the
choice η̂ = P̂ . This is, of course, not the only type of Hamiltonians that possess a
real spectrum. For example, the Hamiltonian
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Ĥ ′ =
(−E0 id

id E0

)
, d, E0 ∈ R, (14)

is pseudo-Hermitian with η̂ = P̂ ′, where

P̂ ′ =
(

1 0
0 −1

)
, (P̂ ′)2 = Î . (15)

This Hamiltonian is PT -symmetric with respect to the parity defined by P̂ ′
(changing sign of the second state |2〉) and the time reversal interchanging the
gain and loss, ig  → −ig. At the same time, this Hamiltonian is anti-PT -
symmetric with the parity operator (12) interchanging the states |1〉 and |2〉. We
refer to [15, 29, 42] for physical applications of anti-PT -symmetric systems.

Furthermore, the relation between PT -symmetric and pseudo-Hermitian
Hamiltonians extends in exactly the same form to multiple-state systems. The
respective Hamiltonians are defined as Ĥ = Ĥ0 + iV̂ with the real symmetric
matrices (or operators) Ĥ0 and V̂ , where Ĥ0 describes the Hermitian system and
V̂ provides the contribution due to gain and loss. The PT -symmetry imposes the
additional conditions that Ĥ0 is symmetric and V̂ is anti-symmetric under the parity
transformation P̂ , i.e.,

P̂ Ĥ0 = Ĥ0P̂ , P̂ V̂ = −V̂ P̂ . (16)

Such PT -symmetric Hamiltonians are also pseudo-Hermitian with η̂ = P̂ , since
condition (7) with the complex symmetric operator Ĥ = Ĥ0 + iV̂ and real operator
P̂ reduces to the (anti-)commutation relations (16).

We stress again that PT -symmetry is only one of many ways to impose a real
spectrum in a structurally stable way. For example, consider Ĥ = Ĥ0 + iV̂ with
real symmetric operators Ĥ0 and V̂ . If Ĥ0 is invertible, one can take η̂ = Ĥ0.
Then, condition (7) for the operator Ĥ to be pseudo-Hermitian reduces to the
anticommutation relation Ĥ0V̂ + V̂ Ĥ0 = 0.

3 Exceptional Point at the Transition from a Real to a
Complex Spectrum

Let us analyze the transition from a real to a complex spectrum for a simple PT -
symmetric Hamiltonian (5). Its eigenvalues and eigenvectors are found explicitly in
Eq. (6). Let us denote ΓEP = 2d. For Γ < ΓEP the spectrum is real, while for Γ >

ΓEP the spectrum is complex. At the transition point Γ = ΓEP , the two eigenvalues
and two eigenvectors coalesce at E+ = E− = EEP and |ψ+〉 = |ψ−〉 = |ψEP 〉,
where
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EEP = E0, |ψEP 〉 =
(

1
−i
)
. (17)

The point with such properties (full coalescence of two eigenmodes both in their
eigenvalues and eigenvectors) is called the exceptional point (EP). At the EP, the
spectrum is incomplete in the sense that the eigenvectors do not constitute a full
basis for the wave function. It is easy to see that the unique eigenvector at the EP is
self-orthogonal with respect to the c-product (13):

(ψEP |ψEP ) = 0. (18)

In the language of linear algebra, the EP implies that the canonical Jordal
form of the Hamiltonian contains a Jordan block [33]. The well-known property
of the Jordan block is that its right and left eigenvectors (9) are orthogonal. For
a symmetric Hamiltonian Ĥ , this property is equivalent to the c-product self-
orthogonality condition (13) because, at the EP, one has |ψR〉 = |ψEP 〉 and
〈ψL| = |ψEP 〉T .

The EP plays important role for the representation of spectrum in the form of
Taylor series. Let us rewrite the Hamiltonian (5) in the form

Ĥ (λ) = Ĥ0 + iλV̂ , (19)

where Ĥ0 = E0Î + dσ̂x and V̂ = σ̂z with the Pauli matrices σ̂x and σ̂z. The
factor λ = Γ/2 describing the gain and loss will be considered as a perturbation
parameter, with λ = 0 corresponding to the Hermitian Hamiltonian Ĥ (0) = Ĥ0.
Eigenvalues (6) of the Hamiltonian (19) can be written as

E±(λ) = EEP ±
√
λ2
EP − λ2, λEP = ΓEP /2 = d. (20)

They are analytic functions of λ with the branch point singularities at λ = ±λEP .
These functions can be expanded in the Taylor series

Ej(λ) =
∞∑
n=0

C
(n)
j λn, (21)

where j = ±. The branch point λEP defines the radius of a circle in the complex
parameter plane, |λ| < λEP , where the Taylor series (21) converges.

In the neighborhood of the EP, dependence of the eigenvalues on a parameter λ is
shown in Fig. 1. According to expressions (20), the leading term of this dependence
near λEP can be written as

E±(λ) ≈ EEP ± a
√
λ− λEP , (22)
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Fig. 1 (a) Real and imaginary parts of eigenvaluesE± from (20) as functions of the real parameter
λ; the numerical values are taken as EEP = 1/2 and λEP = 1. Same graphs but as functions of
the complex parameter λ are shown for (b) ReE± with the intersection corresponding to Re λ >
λEP , Im λ = 0 and (c) ImE± with the intersection corresponding to Re λ < λEP , Im λ = 0. In
horizontal projection, the black line describes the change of λ along a cycle around the EP. The
corresponding change of two eigenvalues leading to the switch between two states is shown by the
red and green curves. In one cycle of λ, the state E− (green ball) is transported to the state E+ (red
ball), and vice versa

with the purely imaginary prefactor a = i
√

2λEP . Thus, the eigenvalues as
functions of the real parameter λ have the square root singularity for both real and
imaginary parts at λEP , see Fig. 1a. When extended to the complex values of λ,
the local dependence is described by the two-sheet Riemann surface (branch point
singularity) as shown in Fig. 1b, c.

One of the implications of the branch point singularity in Eq. (22) is that the
two eigenmodes are interchanged when λ is changed continuously in the complex
plane around the EP, see Fig. 1b, c. After the second cycle around the EP, the
eigenvalues and eigenvectors return to their original values. This effect is known
as the switch of eigenmodes for the parametric encircling of the EP, and it was
observed experimentally in a microwave system [11]. In this experiment, the switch
characterizes the eigenstates at different time-independent values of λ rather than the
evolution of a wavefunction with λ changing in time. In fact, this switch mechanism
does not work if the parameter λ is changed in time, i.e. for the dynamic encircling
of the EP, because one of the transitions is always broken due to non-adiabatic
effects. Although the adiabatic theorem does not hold, the topological property
of the EP is manifested. When encircling the EP, the transitions acquire a chiral
property: the final state depends on the direction in which the EP is encircled. We
refer to [16, 17, 37] for the theory and physical applications, and to [12, 43] for
the experimental observations of this effect. We stress that the system is not PT -
symmetric for complex values of λ. In general, a second-order degeneracy requires
two real parameters in order to satisfy the single complex constraint, E1 = E2, at
the EP. However, in PT -symmetric systems, the EP can be found conveniently by
tuning a single parameter, due to the reality of the spectrum below the symmetry-
breaking point.
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The described local properties of the EP extend similarly to systems with more
than two states, when the PT -symmetric Hamiltonian has the form (19) with real
symmetric operators Ĥ0 and V̂ satisfying the (anti-)symmetry relations (16). In this
case a large variety of spectral singularities may appear, including EPs (branch
points) of higher order and eigenvalue crossings with distinct eigenvectors (so-
called diabolic points); see e.g. [8, 25, 34]. For the higher-order EP, expansions
for eigenvalues and eigenvectors of non-Hermitian Hamiltonians contain fractional
powers like (λ − λEP )

1/p (the so-called Puiseux series), where p is the number of
eigenvalues and eigenvectors that coalesce at the EP [25, Sections 7.7 and 9.1.1]; see
also [24, 33] for the general perturbation theory and numerical methods. It should be
stressed, however, that singularities in the spectrum of the generic (typical) PT -
symmetric Hamiltonian with a single real parameter λ appear at discrete values,
λ = λEPj (j = 1, 2, . . .), and have the form of the EPs with only two coalescent
eigenvalues and eigenvectors [2]. In this case, the local behavior of eigenvalues and
eigenvectors near the EP is equivalent (and in fact can be reduced) to the case of 2×2
Hamiltonian studied above. Note that such EPs must exist whenever the matrices Ĥ0
and V̂ do not commute [26].

Finally, let us describe some properties of the Taylor expansions (21) for the
eigenvalue Ej (j = 1, . . . , n) in the general case of PT -symmetric Hamiltonian
operator (19). This expansion can be written as

Ej(λ) =
∞∑
n=0

c
(n)
j Λn, c

(n)
j = (−i)nC(n)j , (23)

where Λ = iλ, Ĥ = Ĥ0 + ΛV̂ , and we redefined the coefficients of (21) to
include powers of the imaginary unit. Let us show that in PT -symmetric systems,
all the odd coefficients vanish and all the even coefficients are real; therefore,
the spectrum is real as long as the series converges. Since Ĥ0 and V̂ are real
symmetric matrices, one can use the Hermitian perturbation theory for realΛ, which
is extended analytically to PT -symmetric Hamiltonians for purely imaginary Λ.
From this argument, we immediately conclude that all the perturbational coefficients
c
(n)
j are real. Furthermore, from the Wigner (2n+ 1)-rule [40] we express the odd-

order coefficients as

c
(2n+1)
j = 〈ψ(n)j |V̂ |ψ(n)j 〉, (24)

where the real vector |ψ(n)j 〉 is the nth-order correction in the expansion for the
eigenvector

|ψj 〉 =
∞∑
n=0

Λn|ψ(n)j 〉. (25)

Applying the parity operator to the equality E|ψj 〉 = (Ĥ0 +ΛV̂ )|ψj 〉, we obtain
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E P̂ |ψj 〉 = P̂ (Ĥ0 +ΛV̂ )|ψj 〉 = (Ĥ0 −ΛV̂ )P̂ |ψj 〉, (26)

where we used the (anti-)symmetry assumptions (16). We see that P̂ |ψj 〉 is
the eigenvector corresponding to the parameter value −Λ. This means that the
coefficients in the expansion (25) for Λ and −Λ should match such that

P |ψ(n)j 〉 = ±(−1)n|ψ(n)j 〉, (27)

where the first sign depends whether the unperturbed real state |ψ(0)j 〉 (at Λ = 0)

is P-symmetric or anti-symmetric (even or odd). Using the relations P̂ 2 = Î , (16)
and (27) in (24), we obtain

c
(2n+1)
j = 〈ψ(n)j |V̂ |ψ(n)j 〉 = 〈ψ(n)j |P̂ 2V̂ P̂ 2|ψ(n)j 〉 = −c(2n+1)

j , (28)

i.e., all odd-order coefficients c
(2n+1)
j vanish. With this property, we showed

explicitly that the spectrum of the PT -symmetric Hamiltonian Ĥ is real as long
as the series (23) is convergent, i.e.

|λ| < min
j

|λEPj | (29)

for the minimum among all EPs.

4 PT −Symmetric System of Coupled Waveguides Near the
EP

We will show in this section that a system of two coupled waveguides (WGs) can
be made PT -symmetric if the gain in one WG is accurately balanced by the loss
in the second WG. In this setup, the EP appears for a specific value of the gain-loss
parameter. In our description we follow the theoretical work of one of us together
with Shachar Klaiman and Uwe Günter [21]. The effects we describe were first
observed in the experiments conducted in the Laboratory of Detlef Kip together with
Mordechai Segev and members of the group of Demetrios N. Christodoulides [31].

A PT -symmetric optical system can be easily realized with a symmetric index
guiding profile and an antisymmetric gain and loss profile, i.e., n(x) = n∗(−x) [13].
We consider two coupled planar WGs depicted in Fig. 2 for which the refractive
index varies only in the x-direction. The direction of propagation in the WGs is
taken to be the z-axis. The wave equation for the transverse-electric (TE) modes
(derived from the full Maxwell equations) reads [20]:
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Fig. 2 Coupling between the gain guided mode and the loss guided mode provides a PT -
symmetric system with the refractive index profile such that n(x) = n∗(−x). A control parameter
α defines the gain and loss strength in the WGs as Im n = ±α/k. The refractive index only varies
in the x direction

∂2ψ

∂x2
+
(
n(x)2ω2

c2
− β2

)
ψ = 0, (30)

where the y-component of the electric field is given by

Ey(x, z, t) = ψ(x)ei(ωt−βz). (31)

Here β is the propagation constant and ω is the frequency. The vacuum wavelength
is equal to 2π/k with k = ω/c. Clearly, the wave equation (30) for the y-component
of the electric field is analogous to the one-dimensional Schrödinger equation:

(
−1

2

∂2

∂x2 + V (x)

)
ψ(x) = Eψ(x), (32)

identifying V (x) = −k2n2(x)/2 as the potential, E = −β2/2 as the energy, and
ψ(x) as the wave function.

As shown in Fig. 2, we couple between one gain-guiding WG (negative imagi-
nary part of the refractive index) and one loss-guiding WG (positive imaginary part
of the refractive index) in order to create the PT -symmetric structure [35]. For
simplicity we take the separation between the two coupled WGs to be the same
as the their width, i.e., 2a. Note that in our case the imaginary part of refractive
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index (the complex part of potential) vanishes as x → ±∞. For propagating modes
(bound states), we impose the boundary conditions ψ(x)→ 0 as x → ±∞.

For the numerical illustration, we choose the following parameters for the WG
structure shown in Fig. 2. The background index is taken to be n0 = 3.3, the vacuum
wavelength 2π/k = 1.55 μm, the real index difference between the WGs and the
background material �n = 10−3, and the separation between the WGs, which
equals the WGs width, 2a = 5μm. The imaginary part of the refractive index in the
WGs is chosen as Im n = ±α/k, where α is a parameter. The parameters are chosen
such that each WG contains only a single guided mode before we couple them. The
coupled guided modes are calculated by diagonalizing the matrix representation of
Eq. (30) in a sine basis. The resulting “Hamiltonian” matrix is non-Hermitian and
one needs to take care when normalizing the eigenvectors. We choose to normalize
our eigenvectors according to the c-product (13), i.e., (ψn|ψm) = 〈ψ∗

n |ψm〉 = δn,m.
The coupled waveguides support two guided modes. The propagation constants

of the two modes are plotted in Fig. 3 as functions of the gain-loss parameter α.
Increasing α causes the propagation constants of the two modes to move towards
each other and coalesce at αEP ≈ 8.4 cm−1. As long as PT symmetry remains
exact, i.e. α < αEP , the power of each guided mode is distributed equally between
the two WGs. The critical value αEP is the EP, where the two modes coalesce:
both the propagation constants and the corresponding electric fields become equal.
Therefore, one can study the EP in a PT -symmetric WG system by varying only
a single gain-loss parameter α. Past the critical value, α > αEP , the propagation

Fig. 3 Two trapped modes of the WGs of Fig. 2 as functions of the gain-loss parameter α. The
eigenmodes approach each other on the real axis as α increases until a critical value of αEP ≈
8.4 cm−1. The critical value is the EP (branch point), where the two modes coalesce. Beyond the
EP, the directional coupler sustains one gain guiding mode and one loss guiding mode
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Fig. 4 The power distribution for a propagating sum field consisting of the two guided modes,
see Eq. (33) for three values of α. As can be readily observed, the beat length (analogous to the
beat time period in quantum mechanics) increases as the value of α approaches the critical value
αEP ≈ 8.4 cm−1

constants become complex conjugate to each other. Then the WGs support one gain-
guiding mode and one loss-guiding mode. The corresponding transverse field no
longer retains the symmetry properties of the PT operator, but rather each of the
two modes becomes localized in one of the waveguides.

The advance of two real propagation constants towards the EP can be visualized
by observing the beat length of the sum field for two equally populated modes:

Ey(x, z, t) = 1√
2

(
ψ1(x)e

−iβ1z + ψ2(x)e
−iβ2z

)
eiωt . (33)

Figures 4 and 5 display the power distribution |Ey(x, z, t)|2 for three values of α.
One can see that the beat length, which is equal to L = 2π/|β2 − β1|, increases as
α approaches the EP. At the EP, the sum field no longer oscillates between the two
waveguides but rather travels in both waveguides simultaneously. This fact can be
used for a direct observation of the EP: the propagation constants approach when
the gain-loss parameter α is increased to the value at the EP. Recall that the critical
value αEP characterizes the maximum antisymmetric index profile, which can still
be treated within perturbation theory; see Sect. 3.

Although propagation constants of the studied PT -symmetric WGs are real,
the system is non-Hermitian. This can be most readily observed by looking at the
integrated intensity,

∫∞
−∞ |Ey(x, z)|2dx. This intensity is not conserved as one can
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Fig. 5 3D representation of the power distribution for a propagating sum field (33). (a) The
exact PT symmetry with α = 8 cm−1 < αEP . The light power oscillates, with the beat length
increasing as the system approaches the EP at αEP ≈ 8.4 cm−1. (b) The broken PT symmetry
with α = 9 cm−1 > αEP . The light power increases along the propagation axis, because the signal
occupies primarily the WG with a gain-guiding mode

easily see from Figs. 4 and 5a: the intensity drops almost to zero between oscillations
for α = 8 cm−1. In the case of PT -symmetric system, one can find a different
conserved quantity instead of the integrated intensity; see Eq. (8) in Sect. 2. In our
system, this conserved quantity takes the form of the c-product as

∫ ∞

−∞
E∗
y (−x, z)Ey(x, z)dx = const. (34)

Yet another effect can be observed in the suggested experiment: the maximum
intensity reached by the initially normalized sum field (33) increases as the EP
is approached. This can be understood by observing that as one approaches the
self-orthogonal state the overlap between the two functions comprising the sum
field increases. Finally, Fig. 5b gives an insight on the dramatic change of light
propagation when the gain-loss parameter exceeds the EP and the propagation
constant gets a nonzero imaginary part.

It is important to note that the manifestation of PT symmetry and its resulting
properties is not (theoretically) restricted to optical systems. To date, however,
optical systems seem to be the most readily applicable and PT symmetry in
optics was quoted among top 10 physics discoveries of the last 10 years by Nature
Physics [10]. One could easily envision a setting using matter waves in which a
condensate is placed in a double well potential, where in one well particles are
injected into the condensate whereas in the second well particles are removed from
the condensate. Here attention should be given to the non-linearity of the Gross-
Pitaevskii equation. In order to keep the dynamics similar to that described in the
optics experiment, the non-linearity should be made small. This can be achieved
either by tuning the interaction between the atoms to zero or by using a very dilute
sample. The experiment would also require accurate and independent control over
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the rates of particles injected or removed from the system. Hopefully, experimental
methods will improve to allow such experiments to be done.

5 Vanishing Group Velocity at the Exceptional Point

In this section, following our work with Tamar Goldzak [18], we extend the study
of PT -symmetric WGs to the case of isolated wave pulses. We consider two-
dimensional WGs with the propagation axis z described in the previous section. In
a PT -symmetric system, the gain and loss are balanced and satisfy the condition
n(x) = n∗(−x), where the complex conjugation corresponds to the time reversal
that interchanges the gain and loss. Equation (30) for transverse electric modes (31)
is equivalent to the one-dimensional stationary Schrödinger equation (32) for the
complex (non-Hermitian) potential, and the propagating modes correspond to bound
states [25].

As long as the strength of gain and loss is below a problem dependent critical
value (see Sect. 2), non-decaying modes exist with real propagation constants β. The
corresponding complex eigenfunctions (by selecting a proper complex pre-factor)
can be taken PT -symmetric, ψ(x) = ψ∗(−x). Thus, the phase speed of each
mode is defined as vp = ω/β, while the group speed is vg = (dβ/dω)−1. For a
nondegenerate bound-state solution, differentiating equation (30) with respect to ω
yields

(
∂2

∂x2 + n2ω2

c2 − β2
)
∂ψ

∂ω
+
(
∂(n2ω2/c2)

∂ω
− ∂β2

∂ω

)
ψ = 0. (35)

Following the classical perturbation theory [23, 25], one multiplies this expression
by ψ(x) and integrates with respect to x. The terms with ∂ψ/∂ω cancel in the
resulting expression after integrating by parts and using (30). The remaining terms
yield expression for the group speed as

vg = (dβ/dω)−1 = 2c2β
∫
ψ2dx∫ [∂(n2ω2)/∂ω]ψ2dx

. (36)

By the derivation, this formula takes into account that the index of refraction may
be frequency dependent in general.

The numerator in (36) represents the c-product (13) of the right eigenfunction
|ψR〉 = ψ(x) with itself. Due to the PT -symmetry, ψ(x) = ψ∗(−x), the
full integral

∫
ψ2dx is real but not necessarily positive. For the same reason, the

denominator is real too. It follows from Eq. (36) that the group speed vanishes if and
only if

∫
ψ2dx = 0, provided that the integral in the denominator is nonzero. The

latter condition is generic and can be easily verified in each specific problem. The c-
product self-orthogonality of the propagating mode is the well-known condition for
the exceptional point (EP); see Eq. (18). At the EP, two propagating modes coalesce
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both in propagation constants β and corresponding functions ψ(x). This proves that
the group speed in a PT -symmetric WG vanishes at (and only at) an exceptional
point. Such a simple and universal condition provides a link from PT -symmetric
systems to the rapidly developing field of slow light; see [3, 4, 9, 19] for other ways
to stop/slow light such as the electromagnetically induced transparency (EIT).

According to Sect. 3, expansion of eigenvalues near the EP starts with a square
root term

β − βEP ∝ √
ω − ωEP , (37)

which implies that dβ/dω = ∞ and vg = (dβ/dω)−1 = 0 at the EP. This provides
a simple explanation of our phenomenon, because a steep slope in the dispersion
curve (large derivative dβ/dω) corresponds to a small group velocity. This argument
relies exclusively on the presence of the EP, with no reference of PT -symmetry.
The problem is that in conventional systems this effect will also lead to losses. The
balance between gain and loss in a PT symmetric system eliminates this problem:
the light intensity remains constant because the spectrum is real (before reaching the
EP). Also, the real spectrum of the PT symmetric system simplifies a definition
of the group speed, which is a nontrivial issue for a general system with gain and
loss. The direct link between the EP and zero group speed makes the proposed
effect robust to various imperfections, as the proximity to the EP can be effectively
controlled by tuning two arbitrarily chosen parameters of the system [25, 33]. The
stopping condition is limited to a very well defined EP frequency ωEP . Its value can
be effectively controlled by changing the parameters of the index of refraction.

We mention also that the EPs may appear in a different context: at the coalescing
frequencies of Bloch modes for the (time-periodic) Schrödinger equation. Such
EPs can be associated with the infinite group speed in corresponding optical
systems [32]; see [38, 41] for physical interpretation of the superluminal effect.

A specific device with desired properties can be constructed by attaching
layers of materials with different indices of refraction. The refractive index can
be engineered, e.g., via the photorefractive nonlinearity or effective index as in
metamaterials, while the spectrum of gain/loss can be engineered by using quantum
well structures. The PT -symmetry is achieved if one gain guided mode (negative
Im n) couples with an exactly balanced loss guided mode (positive Imn) [21, 35],
with a profile of the refractive index shown in Fig. 2. Note that the standard gain
media are dispersive, i.e., the index of refraction is frequency dependent. This
frequency dependence may break the PT symmetry due to a finite gain bandwidth.

Let us describe the effective light intensities of the two (gain and loss) modes
by two complex variables (ϕ1, ϕ2). Then one obtains a simple model in the form of
2 × 2PT -symmetric non-Hermitian system

(
β2
w − iα̃k δ

δ β2
w + iα̃k

)(
ϕ1

ϕ2

)
= β2

(
ϕ1

ϕ2

)
, (38)
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where the Hamiltonian has the same structure, up to notation, as in Eq. (5). Here
βw = nwk is the real propagation constant of each separate WG with the effective
index of refraction nw and k = ω/c, δ describes the coupling, and α̃ = 2nwα
determines the gain in one WG and the loss in the other. The system with no
gain/loss (̃α = 0) has one symmetric and one antisymmetric mode, with β2 = β2

w±δ
and (ϕ1, ϕ2) = (±1, 1). When gain and loss are taken into account, one finds
β2 = β2

w ± √
δ2 − α̃2k2. With increasing α̃, the real propagation constants come

closer and coalesce at the EP given by α̃EP = δ/k. The corresponding two
eigenvectors coalesce too, with the resulting vector (ϕ1, ϕ2) = (1, i) satisfying the
c-product self-orthogonality condition ϕ2

1 + ϕ2
2 = 0.

The full-stop of a Gaussian pulse can be accomplished by an adiabatic increase
of the gain-loss parameter to the value α̃EP , as was also proposed in the context
of photonic-crystal waveguides [36, 44]. Varying the gain-loss parameter in our
non-Hermitian system would be best done via parametric nonlinear gain, which
separates the variation in the gain from affecting the real part of refractive
index, avoiding restrictions imposed by the Kramers–Kronig relations. Nonlinear
parametric interactions operating at ultrafast rates [39] can be engineered using
synchronously-pumped optical parametric oscillators, where the nonlinear medium
is in a cavity and pumped with a pulse at repetition rate matched to cavity, or optical
parametric amplifiers pumped without a cavity by femtosecond pulse. Usually these
utilize χ(2) crystals, which are commercial technologies. Another choice is χ(3)

materials, through non-degenerate four-wave-mixing interactions, where the pumps
serve as gain for the signal beams [1].

Time-dependent solutions for the simplified model (38) can be found using the
system of coupled wave equations

n2
w

c2

∂2�1

∂t2
− α̃

c

∂�1

∂t
− δ �2 − ∂2�1

∂z2 = 0,

n2
w

c2

∂2�2

∂t2
+ α̃

c

∂�2

∂t
− δ �1 − ∂2�2

∂z2 = 0.

(39)

It is straightforward to check that this system is equivalent to Eq. (38) for a single-
mode solution

(�1,�2) = (ϕ1, ϕ2) e
iβz−iωt . (40)

Furthermore, it is easy to see that the model is PT -symmetric under the transfor-
mation:

�1(z, t)→ �2(−z,−t), �2(z, t)→ �1(−z,−t). (41)

System (39) was simulated numerically using the pseudo-spectral method in a large
periodic domain. Initial condition at t = 0 was taken in the form of a Gaussian pulse
corresponding to the antisymmetric mode of the system with no gain and loss,
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(�1,�2) = (−1, 1) A
∫

exp

(
− (β − β0)

2

2σ 2
+ iβz

)
dβ, (42)

with mean propagation constant β0 = 0.8, standard deviation σ = 0.01 and
arbitrary prefactor A. This value β0 = 0.8 corresponds to the EP at the final
time when α̃EP = 1, see Fig. 6a. In simulations, we used a finite window 0.75 ≤
β ≤ 0.85 to avoid instabilities, which occur for some propagation constants outside
this interval. In practical applications, such instabilities (if they appear) must be
suppressed for efficient operation of the system.

Numerical simulation of such time-dependent dynamics with the model (39) is
presented in Fig. 6, where a Gaussian pulse is prepared initially in the antisymmetric
mode of the system with no gain and loss. In full agreement with our theoretical pre-
diction, with the increase of the gain-loss parameter in time, the pulse slows down
and stops at the EP (graphs at latest times collapsed to a single curve). A backward
change of the gain-loss parameter brings the signal to its original mobile form.
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Fig. 6 (a) Adiabatic change of the gain-loss parameter from α̃ = 0 at t = 0 to α̃EP = 1 at final
time t = 2000/c in a system with representative parameters k = 0.5, nw = 1.6, and δ = 0.5 (arb.
unit). (b) Temporal evolution of the center zc of the Gaussian pulse, stopping when α̃ reaches the
value α̃EP = 1 at EP. The pulse is prepared initially in anti-symmetric mode of the system with
no gain and loss with the mean propagation number β = 0.8 and standard deviation σ = 0.01. (c)
Pulse envelope |�1| in the first WG at times ct = 0, 250, . . . , 2000, which correspond to circles
in the upper figures. At the three latest times, the group speed vanishes and the corresponding
graphs collapse to a single curve demonstrating the full-stop of a pulse. A backward change of the
gain-loss parameter brings the optical signal to its original mobile form
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Conclusions based on the effective model (38) are further confirmed by numer-
ical computation for the full Eq. (30). Here the propagation constants β and
eigenfunctions ψ(x) are calculated numerically for given frequency ω by diago-
nalizing the non-Hermitian Hamiltonian in a matrix representation using a particle
in a box basis set. We use specific values of the WG width a = 1.25 μm and the
same distance between them. The two modes coalesce at the EP for specific values
of k and β in the presence of gain and loss, and one can see from Fig. 7a that the
derivative dβ/dk becomes infinite at the EP giving the vanishing group velocity
vg = c (dβ/dk)−1. The corresponding self-orthogonal eigenfunction is given in
panel (b).

Finally, Fig. 8 shows the propagation of Gaussian wave packets, comparing the
power spectrum |Ey(x, z, t)|2 at the initial time t = 0 vs. the final time of 10
picoseconds. Here the Gaussian solution for a constant gain-loss parameter α is
written as

Ey(x, z, t) = A

∫
exp

(
− (β − β0)

2

2σ 2
+ iβz− iωt

)
ψ(x)dβ, (43)
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Fig. 7 (a) The propagation constant β as a function of k = ω/c for two different values of the
gain-loss parameter: Hermitian system with α = 0 (dashed black lines: upper symmetric and
lower antisymmetric modes) and non-Hermitian PT -symmetric system with α = 0.15 μm−1

(solid blue line). Two modes of the PT -symmetric system coalesce at the EP marked with a red
circle. Inset shows enlarged vicinity of the EP at kEP = 0.6414 μm−1 and βEP = 0.851 μm−1.
The infinite derivative dβ/dk at the EP yields the vanishing group velocity vg = c (dβ/dk)−1. (b)
Real and imaginary parts of the complex eigenfunction for the PT -symmetric system at the EP.
This mode satisfies the self-orthogonality condition

∫
ψ2dx = 0. Colored vertical regions in the

background show positions of the two coupled WGs
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Fig. 8 Contour plot of the light power |Ey(x, z, t)|2 for the Gaussian wave packets at the initial
time t = 0 and the final time t = 10 ps. In both plots the pulse has the mean propagation constant
β = 0.851 μm−1 with standard deviation σ = 0.002 μm−1. Grey regions in the background show
positions of the two coupled WGs. (a) Fully stopped pulse centered exactly at the EP in the PT -
symmetric system for α = 0.15 μm−1. (b) The antisymmetric mode in the Hermitian case with no
gain and loss (α = 0). One can see that the pulse is displaced by about 1.4 mm in the Hermitian
case, while it does not move at all when prepared at the EP in the PT -symmetric system. (a)
PT -symmetric system at EP. (b) Hermitian system: no gain and loss
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where both ω and ψ(x) should be expressed as functions of β. Note that the
Gaussian pulse at the EP contains the contributions from both sides of βEP , which
correspond to two different modes coalescing at the EP in Fig. 7a. In numerical
computations, we used β0 = 0.851 μm−1, σ = 0.002 μm−1 and the overall interval
0.845 ≤ β ≤ 0.857 μm−1. In Fig. 8a, the pulse parameters are chosen exactly at the
EP, while figure (b) corresponds to a similar pulse but for the system far from the EP
(no gain and loss, α = 0). The latter pulse has the large group speed vg/c = 0.47
and the phase speed vp/c = 0.82, demonstrating a considerable displacement of
about 1.4 mm in 10 ps, while the full-stop is confirmed for the pulse designed at the
EP. We used illustrative values of physical parameters in these simulations, which
provide a larger frequency window near the EP than those studied experimentally
in [31]. Note that the dispersion curve in Fig. 7a exhibits a round shape including
also a point with infinite group velocity [38, 41], where dβ/dk = 0. This point is
outside the operation window for our protocol.

The stopped signal in our system has the phase velocity vp/c = 0.75, which
is only weakly affected as the group velocity is reduced to zero under the EP
mechanism. Furthermore, the phase speed demonstrates a slight decrease compared
to the system with no gain and loss, contrary, e.g., to the well-known relation
vp ∝ 1/vg in special relativity or in optics at the mode-opening.

The major advantages of the proposed protocol is its non-resonant nature, in
which the EP can be adjusted to any frequency by tuning the coupling or gain-
loss parameters. There is also a benefit of using the time-dependent variation of
parameters. In this case an optical pulse is expanded in spatial Fourier modes with
the frequency evolving adiabatically along the real dispersion curve in Fig. 7a. In
this way our protocol avoids the instability related to complex modes at frequencies
above the EP, as confirmed by our numerical tests in Fig. 6.

We see that the full-stop of a light pulse is possible at the exceptional point
in PT -symmetric coupled waveguides by varying the gain-loss parameter in
time. This allows to “freeze” and then release the light pulse preserving the
carried coherent information. The use of PT -symmetry has practical advantages
of keeping a constant intensity of propagating modes and providing a robust
protocol that brings the system to the EP. The non-resonant mechanism of the
proposed phenomenon, due to large flexibility of controlling the EP position, is
an important technological advantage, with potential applications for short optical
pulses. Specifically, one can engineer this effect in a PT -symmetric system of two
waveguide channels. This approach is not limited only to light but can be extended,
e.g., to acoustic waves or other fields in physics related to the PT -symmetry.

6 Conclusion

The transition from a real to a complex spectrum of non-Hermitian PT -symmetric
Hamiltonians occurs at the exceptional point (EP), where two eigenmodes coalesce
both in eigenvalue and eigenvector. In spite of the fact that EPs are accidental non-
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Hermitian degeneracies they are not rare and not mathematical objects but physical
ones. We have described in detail how light oscillations between two waveguides
are suppressed by approaching the EP condition. We also prove that the group
velocity of a light pulse decreases to zero as the system is tuned to be at the EP and
propose a way how to observe it experimentally. Last but not least, the findings and
conclusions presented in this Chapter are relevant to any two atomic or molecular
metastable states, which are resonantly coupled by a laser field, because their non-
Hermitian Hamiltonian can be simply transformed to have the PT -symmetric
structure.
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These include for example, spontaneous symmetry breaking, bandgap merging,
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1 Introduction

Branch points (BPs) are peculiar singularities that arise in dealing with multi-valued
complex functions [1]. The singular behavior of these points is manifested by the
failure of the Taylor series expansion of the associated function at their locations.
Another seemingly different context where branch points appear is non-Hermitian
physics [2, 3]. The spectra of non-Hermitian Hamiltonians are in general complex,
and for certain sets of parameters, they may contain a special type of degeneracy
where not only the eigenvalues but also their corresponding eigenvectors become
identical. The points at which this occur are known as exceptional points (EPs).
From the mathematical point of view EPs are a special type of BPs associated with
solutions of complex polynomials.

While EPs have been studied previously in the context of complex-valued
Hamiltonians [4–6], the discovery by Bender et al. that parity-time- (PT-) symmetric
Hamiltonian might contain real spectra [7, 8] has rekindled the interest of these
peculiar degeneracies. As it turned out, in PT-symmetric systems, EPs mark
the transition between two different phases: (1) PT phase with real eigenvalues
and PT-symmetric eigenstates; and (2) broken PT phase with complex conjugate
eigenvalues and eigenstates that do not respect PT symmetry.

Later on, the introduction of PT symmetry in optics [9–14] has opened a host of
new opportunities for engineering new optical structures having novel functionali-
ties and offering unprecedented control over light generation, transport and trapping
[2, 3]. Some of the exotic effects observed in PT photonics structures are bandgap
merging [10], laser self-termination [15–18], unidirectional invisibility [19–21].
On the practical front, optical isolation [22–24], single mode microlasers [25, 26],
ultra-responsive sensors [27, 28], supersymmetric laser arrays [29, 30] and light
sources based on non-Hermitian wave-mixing [31, 32] are some of the emerging
applications of non-Hermitian photonics. Interestingly, all these phenomena are
linked to the unusual features of EPs. Particularly, as a non-Hermitian Hamiltonian
is parametrically steered along a trajectory to bring the system towards an EP, two
or more eigenstates approach each other until they coalesce exactly at the location
of the EP. This means that the relevant eigenvalues become the same and their
corresponding eigenvectors become “parallel”, thus signaling a reduction in the
eigenstate space dimensionality. The order of the EP can be defined as the number
of coalescing modes. While the mathematical construction of EPs of order two
(see [2, 3] for several theoretical and experimental examples) and three [33–37] is
relatively straightforward, the situation is different for higher order EPs. Few years
ago, our group introduced a systematic mathematical approach based on bosonic
algebra, known as the recursive bosonic quantization (RBQ), that can achieve this
task [38].

In this chapter, we review the essential ingredients of the RBQ method, discuss
the extreme power oscillations near higher order EPs and present possible strategies
for implementing them in various photonic platforms.
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2 Recursive Bosonic Quantization

The starting point for the RBQ method is a non-interacting (i.e. without nonlinear
terms) PT-symmetric two-site Bose-Hubbard Hamiltonian:

Ĥ
(1)
2 = −i�γ

2
(â

†
1 â1 − â

†
2 â2)+ �κ(â

†
1 â2 + â1â

†
2) (1)

where â†
1,2 and â1,2 are the bosonic creation and annihilation operators of site 1 and

2, respectively and they obey [âi , âj ] = [â†
i , â

†
j ] = 0, [âi , â†

j ] = δij with δij being
the Kronecker delta function. The parameter γ represents the gain/loss factor while
κ is the hopping constant between the two sites. The superscript in Ĥ (1)

2 refers to the
fact that this is the first iteration as obtained by quantizing the classical PT coupled
waveguide/cavity structures, while the subscript denotes the number of sites. Before
we proceed, we emphasize that the Bose-Hubbrard model of Eq. (1) is used to
generate classical configurations with higher order EPs rather than representing
actual quantum systems. A closed form expression for the eigenvalue spectrum of
Eq. (1) can be obtained by diagonalizing Ĥ (1)

2 (see Appendix). This diagonalization
process gives two eigenstates having even-like and odd-like symmetries. If now
assume that the former is populated bym bosons and the latter byM−m bosons, the
resultant expression for the eigenvalues λM,m (as defined by the time dependency
exp(−iλM,mt/�)) is:

λM,m = (M − 2m)�
√
κ2 − (γ /2)2, m = 0, 1, 2, . . . ,M. (2)

The spectrum λM,m has an exceptional point of order M + 1 at γ = 2κ . Note
that, despite the higher order of the EP, the eigenvalues of Eq. (2) are expressed in
terms of a square root. This peculiar observation will be discussed in more details
later. This non-Hermitian degeneracy of Hamiltonian Ĥ

(1)
2 was noted before in

[39] and independently studied in details later in [40] using the angular momentum
algebra. Here we take a different route by using the bosonic algebra combined with
Fock space representation of Ĥ (1)

2 . While these two approaches are mathematically
equivalent, the latter has two advantages: (1) It lends itself naturally to photonic
implementations; (2) It can be applied iteratively to generate complex PT-symmetric
networks with higher order EPs of arbitrary order.

Essentially, one can construct a non-Hermitian photonic network having an
identical spectrum as that given in Eq. (2) by employing the Fock space rep-
resentation of the Hamiltonian Ĥ

(1)
2 . To demonstrate this and without any loss

of generality, we will consider the case of M = 2N and use the symmetrized

bases |n2N 〉 = (â
†
1)
N−n(â†

2)
N+n

√
(N − n)!(N + n)! |vac〉 = |N − n,N + n〉, with N ∓ n being

the number of bosons in sites 1 and 2, respectively and |vac〉 is the vacuum
state. In contrast to quantum systems, these bases are used here only to generate
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PT-symmetric arrays and thus both integers and half integers are valid choices
for N . The dynamical evolution of any arbitrary wavefunction inside this subspace

is given by |ψ(t)〉 =
N∑

n=−N
cn(t) |n2N 〉 where the time dependent amplitudes cn(t)

are completely determined by their initial conditions cn(0) and the coupled ordinary
differential equations (ODEs):

i
dc
dt

= Ωc, Ω =

⎡
⎢⎢⎢⎢⎢⎣

−iγN κg−N+1

. . . . . . . . . . . . . . .

κgn iγ n κgn+1

. . . . . . . . . . . . . . .

κgN iγN

⎤
⎥⎥⎥⎥⎥⎦
, (3)

where c = (c−N, . . . , cN−1, cN)
T with the superscript T indicating matrix

transpose. Note that the coupling coefficients gn = √
(N + n)(N − n+ 1) are

symmetric around n = 0 while the gain/loss profile (determined by the diagonal
elements of Ω) is antisymmetric. In other words, the system exhibits PT symmetry.
Importantly, in the bases |n2N 〉, the eigenvalue spectrum of Eq. (3) is given by
μ2N,n = 2n

√
κ2 − (γ /2)2, |n| ≤ N , featuring time dependency of the form

exp(−iμN,nt). Here again, a square root expression is associated with higher order
EPs. As it turned out, this occurs because of the correlation between the matrix
elements (i.e. all the diagonal elements vary with γ and the off-diagonals depend
on κ). If the elements of the matrix Ω are allowed to change independently, one
recovers the more common higher (M + 1)th root. More detailed analysis about
perturbations around EPs can be found in [41].

The advantage of our approach for optics applications is evident from the form of
Eq. (3): a system of first order coupled differential equations that can be emulated by
using coupled photonic structures. For example, Fig. 1a, b depict a schematic of an
arrays that can be used to emulate Eq. (3) whenN = 1 andN = 3/2, featuring third
and fourth order EPs respectively. The waveguides/cavities are represented by the
nodes and the network connectivity (diagonal/off diagonal values ofΩ) is indicated
in the figure. These structures can be realized using current photonic technology as
we will discuss shortly.

Interestingly, more complicated PT-symmetric networks having nonlinear topol-
ogy (i.e. with quasi-two dimensional network connectivity as shown in Fig. 2) can be
generated by successive application of the bosonic quantization method. Moreover,
as we will show, these structures exhibit degenerate spectral features that do not
exist in the spectrum of Ĥ (1)

2 . To do so, we simply replace the c-numbers cn in
Eq. (3) by a bosonic annihilation operators ân:

i
dâ
dt

= Ω â, (4)
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Fig. 1 (a) and (b) depict a
schematic of discrete
networks (made of waveguide
or cavity elements) that can
be used to emulate Eq. (3)
when N = 1 and N = 3/2,
respectively. The diagonal
and off-diagonal values of Ω
corresponding to these
structures are indicated in the
figure

+−

− − + +

(a)

(b)

++−−

++ +−− −

(a)

(b)

Fig. 2 A schematic of discrete network structures that correspond to 2 and 3-boson representations
of Ĥ (2)

3 are shown (a) and (b), respectively. The diagonal and off diagonal elements are also
indicated in the figure

where â = (â−N, . . . , ân, . . . , âN )T and the formal solution of Eq. (4) is given
by â(t) = exp(−iΩt)â(0). Viewed from a different perspective, Eq. (4) is the
Heisenberg equation of motion associated with the Hamiltonian:
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Ĥ
(2)
2N+1 = i�γ

N∑
n=−N

nâ†
nân + �κ

(
N∑

n=−N+1

gnâ
†
nân−1 +

N−1∑
n=−N

gn+1â
†
nân+1

)
. (5)

Expanding Ĥ (2)
2N+1 in its Fock space generates higher hierarchy PT-symmetric

structures. This recursive second quantization can be applied indefinitely to generate
higher hierarchy of complex PT-symmetric networks.

As an example, the second quantization of the PT-symmetric configuration of
Fig. 1a is given by Ĥ (2)

3 = −i�γ (â†
1 â1− â†

3 â3)+
√

2�κ(â†
1 â2+ â1â

†
2 + â†

2 â3+ â2â
†
3).

The Hamiltonian Ĥ (2)
3 can be diagonalized by means of linear transformations and

its eigenvalue spectrum is given by λM,m1,m2 = 2(M − 2m1 −m2)�
√
κ2 − (γ /2)2,

m1,2 = 0, 1, 2, . . .M with the condition m1 + m2 ≤ M . Here m1,2 are the
occupation numbers of the two lowest supermodes of Ĥ (2)

3 while M − m1 − m2
represents the population of the third mode. Figure 2a, b depict the 2 and 3-boson
representations of Ĥ 2

3 , featuring PT-symmetric networks with nonlinear topology
and multiple degeneracies. For instance, the PT-symmetric array of Fig. 2a has
two degenerate eigenmodes associated with the stationary states |1, 0, 1〉D and
|0, 2, 0〉D , where the subscript D indicates a representation in the diagonal bases
(where the numbers represent the occupation of the system’s supermodes) as
opposed to those defined by the site numbers. These degenerate modes have null
eigenvalue and never undergo PT phase transition regardless of the values of γ .
The network depicted in Fig. 2b exhibits even a larger set of degenerate eigenstates.
Here the supermodes corresponding to the states |1, 1, 1〉D and |0, 3, 0〉D have
zero eigenvalue and they never experience PT phase transition, while each of the
two sets of eigenstates {|0, 2, 1〉D , |1, 0, 2〉D} and {|1, 2, 0〉D , |2, 0, 1〉D} is doubly
degenerate and their eigenvalues are complex conjugate. Higher order symmetries
can be also found in higher hierarchy networks.

These degeneracies do not arise from the network invariance under geometric
transformations (rotation, reflection, etc.) nor are they related to the EPs but are
rather an outcome of hidden symmetries which can be characterized by a set of
operators {Âi} where [Ĥ , Âi] = 0 and [Âi , Âj ] �= 0 [42]. In our system, these
operators can be easily identified in the diagonal bases. For example, the diagonal
form of Ĥ (2)

3 can be written as Ĥ (2)
D,3 = −�

√
4κ2 − γ 2(b̂+1 b̂1 − b̂+3 b̂3), where b̂+i

and b̂i are the creation and annihilation operators associated with the supermodes
and as before, the subscript D denotes a diagonal representation. Note that we
use the symbol b̂+i instead of b̂†

i to emphasize that b̂+i are not the Hermitian

conjugates of b̂i (see Appendix). It is now straightforward to show that the operators
Â1 = b̂+1 b̂2b̂2b̂

+
3 and Â2 = b̂1b̂

+
2 b̂

+
2 b̂3 satisfy the above relations and thus give

rise to degeneracy in the spectrum. For example, Â1 |0, 3, 0〉D = |1, 1, 1〉D and
Â2 |1, 1, 1〉D = |0, 3, 0〉D while Â1 |0, 2, 1〉D = |1, 0, 2〉D and Â2 |1, 0, 2〉D =
|0, 2, 1〉D . In order to better understand the origin of these degeneracies from a
more intuitive perspective, we consider Fig. 3 which depicts the bosons occupation
numbers for three pairs of degenerate states associated with the Hamiltonian Ĥ (2)

D,3.
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Fig. 3 Depicts bosons occupation numbers for some degenerate eigenstates (each degenerate pair
is schematically shown in one row) associated with the Hamiltonian Ĥ (2)

D,3 = −ε(b̂+1 b̂1 − b̂+3 b̂3),

where ε = �

√
4κ2 − γ 2. The eigenvalue levels (analogous to energy levels in atoms) are shown by

black lines while individual bosons are represented using red spheres. For instance, it is clear that
bosonic occupation configurations shown in the first row have null eigenvalue. The action of hidden
symmetry operators Â1,2 is also indicated in the figure. Evidently even higher order degeneracies
will arise for Hamiltonians associated with more than three sites

Here the eigenvalue levels (analogous to energy levels in atoms) are shown by
double lines while individual bosons are represented using red spheres. Evidently,
these degeneracies arise from the existence of different possible boson distribution
profiles that share the same eigenvalue. Clearly, higher order Hamiltonians will
even have more bosonic distribution configurations that share the same eigenvalues
and thus more degeneracies are expected for networks generated by using higher
iterations.

3 Conservation Laws

In this section, we briefly present a systematic approach for deriving the conser-
vation laws associated with light transport in linear PT-invariant networks having
higher order EPs. The simple case of two coupled PT-symmetric waveguides
were previously treated using Stokes parameters [22]. However, these calculations
become cumbersome for complicated configurations. Here we present an alternative
route for obtaining the system’s constants of motion using standard matrix algebra.
In quantum mechanics, conservation laws arise from symmetry operators that
commute with the Hermitian Hamiltonian. For a more general non-Hermitian
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Hamiltonian Ĥ , the conserved quantities Qi are associated with operators Ŝi that
satisfy the relation Ŝi Ĥ − Ĥ †Ŝi = 0 [43]; and are given by Qi = 〈Ŝi〉. For discrete
systems, the above operators reduce to matrices and the conserved quantities can
be obtained by solving the above modified commutation relation for the unknown
elements of the matrix Si . To better illustrate the advantage of this approach, we
consider the PT-symmetric network described by Eq. (3) when γ �= 0 and we treat
the case of N = 1 (Fig. 1a). Applying the above procedure leads to the following
condition s11 = s33, where sij represents that elements of matrix S. In addition,
we find that the linear system of equations is of rank five and we choose s12, s22
and s32 as free parameters. We then obtain the independent solutions by identifying
three different vectors that span the parameter space (s12, s22, s32). One particular

choice of these bases gives: S1 =
⎡
⎣0 0 1

0 1 0
1 0 0

⎤
⎦, S2 =

⎡
⎣ 0 1 iγ /

√
2κ

1 0 1
−iγ /√2κ 1 0

⎤
⎦,

S3 =
⎡
⎣ 1 iγ /

√
2κ −(γ 2/2κ2 + 1)

−iγ /√2κ 0 iγ /
√

2κ
−(γ 2/2κ2 + 1) −iγ /√2κ 1

⎤
⎦, and the associated conserved

quantitiesQ1,2,3 = c†S1,2,3c areQ1 = (c∗1c3+c1c
∗
3)+|c2|2,Q2 = (c∗1c2+c1c

∗
2)+

(c∗3c2 + c3c
∗
2)+

iγ√
2κ
(c∗1c3 − c1c

∗
3) and Q3 = |c1|2 + |c3|2 + iγ√

2κ
(c∗1c2 − c1c

∗
2)−

iγ√
2κ
(c∗3c2 − c3c

∗
2) − (

γ 2

2κ2 + 1)(c∗1c3 + c1c
∗
3). Evidently, the above calculation

is straightforward and can be generalized to any PT-symmetric network of any
complexity and dimensionality.

4 Extreme Dynamics Near Higher Order Exceptional Points

So far we have discussed how new topologies for photonic networks having higher
order exceptional points can be generated using the RBQ scheme along with the
conservation laws associated with these systems and their optical implementation
strategies. Another interesting feature of these systems is their dynamical evolution
when the system parameters approach the exceptional point from the PT phase. As
it turned out [44], the system experiences oscillatory dynamics which, for certain
inputs, undergoes extreme amplification cycles.

To illustrate this behavior, let us consider the system described by the discrete
Hamiltonian Ω which is generated from Ĥ

(1)
2 by populating the latter with M

bosons (corresponding to a discrete system having an exceptional point of order
M + 1). We now focus on the Ĥ (1)

2 and consider the following normalized input

state (as expressed in the two-sites bases) at t = 0: |I (q1, q2)〉 = 1√
M! (q1â

†
1 +

q2â
†
2)
M |0, 0〉 with |q1|2 + |q2|2 = 1. This state can be also cast in the form

|I (q1, q2)〉 = ∑M
m=0 cm |M −m,m〉 with the expansion coefficients given by
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cm =
√

M!
(M −m)!m!q

M−m
1 qm2 . Although this particular construction of |I (q1, q2)〉

does not span all the vector space when M > 1, we will see later that it suffices for
our calculations.

The output state at time t can be written as [44]:

|O〉 = e−iĤ
(1)
2 t/� |I 〉

= 1√
M! [q1(t)â

†
1 + q2(t)â

†
2]M |0, 0〉

=
M∑
m=0

cm(t) |M −m,m〉 ,

(6)

where cm(t) =
√

M!
(M −m)!m! [q1(t)]M−m[q2(t)]m with the t dependent quantities

q1(t) = q1U11(t)+ q2U21(t) and q2(t) = q1U12(t)+ q2U22(t) and the elements of
U(t) are:

U(t) =
[

cos(μt)− γ
2μ sin(μt) − iκ

μ
sin(μt)

− iκ
μ

sin(μt) cos(μt)+ γ
2μ sin(μt)

]
, (7)

where μ = √κ2 − (γ /2)2.
Note that within the coupled mode formalism of waveguides (or cavities) arrays,

the states |M −m,m〉 represents waveguide number m while the coefficients cm(t)
describe the associated field amplitudes (see [38] for more details). Therefore, the
total power is given by P(t) =∑M

m=0 |cm(t)|2. When the input power is taken to be
unity, the expression for the amplification thus becomes G = max[P(t)].

For the case of M = 1 (second order EP), it is easy to show that, apart from
a phase factor, the initial optimal vector leading to the maximum amplification is
copt
I = (q1, q2)

T = 1√
2
(1,−i)T . Under these condition, the power oscillations

dynamics are given by:

P
opt
2 (t) = 1 + 2g̃

1 − g̃
sin2(μt), (8)

where g̃ = γ
2κ , and this initial condition letG2 = 1+g̃

1−g̃ , where the subscript in P and
G indicates the order of EPs.

The general case for M > 1 is more subtle. In principle, one has to choose the
optimal initial vector that results in the maximum amplification from the set of all
initial conditions |I ′〉 =∑M

m=0 qm(â
†
1)
M−m(â†

2)
m |0, 0〉. The input state |I 〉 however

describes only a subset of all initial states. Within this subspace, it is straightforward
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to show that even when M > 1, the optimal vector still corresponds to |I (q1, q2)〉
with (q1, q2) = 1√

2
(1,−i). In that case, the power dynamics and the maximum

GM+1 are given by:

P
opt
M+1(t) = [1 + 2g̃

1 − g̃
sin2(μt)]M, (9)

and

GM+1(g̃) = max[P opt
M+1(t)] = (

1 + g̃

1 − g̃
)M. (10)

Note that here also copt
I is perpendicular to the exceptional vector ve which

in higher dimensions can be generated from the expression for |I (q1, q2)〉 by
substituting (q1, q2) = 1√

2
(1, i).

Equation (10) shows that when the system operates in the PT phase in vicinity
of an EP of order M + 1 (i.e., when g̃ approaches unity from below) certain initial
conditions will undergo extreme amplification that scales with the power of M .
Thus, systems having higher order EPs can exhibit extreme dynamics and violent
events even in the PT phase.

5 Photonic Implementation

In this section, we discuss several possible implementations of the PT-symmetric
networks of Figs. 1 and 2. We note that the structure in Fig. 1 is one dimensional
and can be implemented using planar waveguide technology in different material
systems. For instance, a possible realization of the fourth-order exceptional point of
Fig. 1b is shown in Fig. 4a.

In these arrangements, silicate ridge waveguides are fabricated on top of an
Er/Yb layer that provides the gain under proper pumping. Recently, the optical
properties of 2.4 μm wide and 7.8 mm long Er/Yb silicate strip loaded waveguides
have been investigated and experimentally measured [45]. It was shown that these
structures can provide of up to 5.5 dB of signal amplification at 1530 nm. The
coupling constants between waveguides can be controlled by adjusting the distances
d1,2 and the gradient loss can be achieved by several methods. For example, similar
to the work in [13], loss can be introduced through periodic thin metal film stripes
(not shown in Fig. 4a) with varying duty cycles on top of each waveguides. Another
possibility is to imprint diffraction grating on top of the waveguides to provide
loss through the coupling to the continuum. The grating parameters will be then
designed to provide exactly the desired loss for each guiding channel. We note that
introducing losses by either one of the aforementioned techniques can perturb the
effective index of the guided modes. This effect can be offset by varying the ridge
width and/or high.
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Fig. 4 Schematics of
possible implementation of
PT networks using (a) Er/Yr
planar waveguide technology,
(b) Two dimensional Er/Yr
laser written waveguide
channels. Details about
material systems and
principle of operations are
presented in the text

The implementation of the two dimensional topologies of Fig. 2 in waveguide
systems is more challenging but is still possible through laser writing technology.
For example, Taccho et al. have fabricated Er/Yb doped waveguide in a host bulk
glass by using femtosecond laser pulses [46]. In these systems, the substrate was
made of phosphate glass doped with Er2O3 and Yr2O3. The operating wavelength
was 1533.5 nm and the optical gain was 4 dB. The gradient optical losses in these
geometries can be achieved by introducing small curvature in each waveguide
channel [47]. Figure 4b shows a schematic of such arrangements where again the
distances between waveguides can be engineered to produce the desired coupling
coefficients.

Another attractive alternative for implementing higher order exceptional points
is by using coupled resonators. This option was recently employed to build photonic
networks having a third order exceptional point [27] (see Fig. 5) and demonstrating
their ultrasensitivity for external perturbation [48, 49]. While in principle, the same
strategy can be utilized to implement the PT network of Fig. 2b, due to its more
complexity, undesirable cross coupling might present a real obstacle. Under these
circumstances, long distance coupling such as demonstrated by Sato et al. [50] can
provide a solution. In all these mircoring implementations, gradient loss can be
introduced by a judicious deformation of the ring structure to tune the quality factor.
Alternatively, one can keep the radiation loss constant and instead vary the optical
gain by controlling the intensity gradient of the pump beam [50]. Finally we note
that other platforms such as electric circuits [51] for instance can be also used to
implement and experimentally investigate the PT-symmetric networks presented in
this work.
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Fig. 5 (a) A PT-symmetric ternary microring system with equidistantly spaced cavities. The two
edge resonators experience equal gain and loss while the central one is neutral. Each ring (radius,
10 μm; width, 500 nm; height, 210 nm) consists of six quantum wells and the whole structure is
fabricated on an InP wafer. The ability to fine-tune the resonant frequency of each cavity is achieved
via three gold microheaters (thickness, approximately 150 nm). Additionally, the microheaters are
also used to introduce thermal perturbations. (b) An SEM image of the structure at an intermediate
fabrication step. (c) The splitting between two neighbouring lasing lines as a function of the
perturbation applied to the mircoheaters though the current I 2. Inset shows a line with a slope of
1/3 on a logarithmic scale. The solid lines are the simulated cube-root behaviour, the filled circles
denote experimental data, and the error bars indicate the uncertainty in frequency measurements
due to the spectrometer

6 Conclusion

In conclusion, we reviewed the recursive bosonic quantization scheme and how it
can be used to construct discrete networks having higher order exceptional points.
We have also examined the conservation laws associated with these structures as
well as their extreme oscillatory dynamics when operating in the PT phase near
a higher order EP. Finally we have discussed possible implementations for higher
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order EPs using waveguide arrays and the recent experimental demonstration of
an optical sensor based on an EP of order three using microcavity arrays. Future
experiments achieving more control over the design parameters can open the door
for building even more responsive sensors for applications in industry and health
care.

Acknowledgements R. El-Ganainy acknowledges support from Henes Center for Quantum
Phenomena at Michigan Technological University.

Appendix

Here we present more details on the diagonalization of the Bose-Hubbard Hamilto-
nian in Eq. (1). Essentially, this can be done by using the following two transforma-
tions:

(
b̂e

b̂o

)
= R

(
â1

â2

)
,

(
b̂+e
b̂+o

)
= R

(
â

†
1
â

†
2

)
, R =

[
cos(α/2) sin(α/2)
− sin(α/2) cos(α/2)

]
, (11)

where tanα = − 2κ
iγ

. It is important here to note that since α is a complex

number, the operators b̂+e,o and b̂e,o are not Hermitian conjugate (hence the use of
the superscript ‘+’ instead of ‘†’). As will see, this however does not affect the
diagonlization scheme which relies mainly on the commutation algebra.

In terms of the new operators, the Hamiltonian Ĥ (1)
2 in Eq. (1) takes the form

Ĥ
(1)
2 = −ε(b̂+e b̂e− b̂+o b̂o), with ε = �

√
κ2 − (γ /2)2. Additionally, from Eqs. (11) ,

it is straightforward to show that [b̂i , b̂j ] = [b̂+i , b̂+j ] = 0, [b̂i , b̂+j ] = δij . Thus, b̂+e,o
and b̂e,o can be still interpreted as the creation and annihilation operators for the non-
orthogonal supermodes of the non-Hermitian system. The eigenvalues can be then
obtained by populating these supermodes by certain boson numbers as explained in
details in the main text.
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Non-Hermitian Optical Waveguide
Couplers

Sergey V. Suchkov, Andrey A. Sukhorukov, and Yuri S. Kivshar

Abstract We discuss the PT symmetry effects in non-Hermitian waveguiding
geometries starting from a classical example of a two-core coupler with gain and
loss. We demonstrate that a nonlinear response can break the PT symmetry in
a coupler, and discuss the regimes of parametric amplification and nonlocality
associated with such systems. Then, we analyse non-Hermitical trimers and also
a PT-symmetric system embedded into an array of waveguides. Finally, we demon-
strate the existence of nontrivial modes in non-Hermitian waveguiding structures
with asymmetric layers of gain and loss.

1 Introduction

As demonstarated by Bender and Boettcher [1], there exists a class of parity-time
(PT) invariant non-Hermitian Hamiltonians that can possess a real eigenspectrum.
Due to a similarity between the Schrödinger equation in quantum mechanics and
the equation for the slowly varying mode amplitude in optics, it was revealed that
the PT effects can be realized and have significant importance on the dynamics
of non-conservative optical structures with symmetrically distributed gain and loss
regions [2–4]. In particular, optical systems can feature a transition between a PT-
symmetric phase, when all eigenvalues are real and there is no net amplification,
and a broken phase, when some of the eigenvalues become complex and some
of the associated modes get amplified. This transition enables, in particular, the
development of new types of single-mode lasers [5, 6]. The phase transitions are
associated with exceptional points [7, 8] in the parameter space where eigenvalues
and eigenvectors merge, and which also appear under more general conditions in
non-PT-symmetric systems [9–11]. Furthermore, it was shown that PT-symmetry is
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neither sufficient nor necessary condition to have a real spectrum [12], which can
also occur in a more general class of pseudo-Hermitian systems.

In this chapter we consider different non-Hermition structures composed of
several optical waveguides, determine necessary conditions for their spectrum to
be real, and outline the potential of these systems for light control. In Sect. 2,
we discuss the specific features of nonlinear interactions and nonlocal effects
associated with non-conservative coupled waveguides. We firstly showcase rich
physics and phenomena due to the interplay of nonlinearity and PT-symmetry in
Sect. 2.1. Next, in Sect. 2.2 we analyse nonlinear parametric amplification and the
emergence of anti-PT symmetry in spectral domain. Then, in Sect. 2.3 we show
that a PT-symmetric coupler incorporated into a chain of conservative waveguides
exhibits nonlocal sensitivity to the type of boundaries. And in Sect. 2.4, we outline
the features of light dynamics in the PT-symmetric dimer modulated along the
propagation direction. In Sect. 3 we consider trimer structures and compare the
PT-symmetric and pseudo-Hermitian configurations. We describe general properties
of pseudo-Hermitian trimer configuration, formulate a necessary condition for the
spectrum to be real, and analyze wave scattering by a pseudo-Hermitian trimer in the
chain of conservative waveguides. In the following Sect. 4, we study guided modes
in a three-layer non-Hermitian optical coupler with gain and loss regions which
are not necessarily distributed symmetrically. We show that this structure possesses
greater functionality than conventional PT-symmetric optical waveguides. Finally,
we present conclusions and outlook in Sect. 5.

2 Nonlinear Coupled Waveguides

A pair of coupled waveguides with gain and loss represents the simplest config-
uration of a PT-symmetric optical system, as sketched in Fig. 1a. However, such
a system can already showcase rich physics and phenomena associated with the
interplay of nonlinearity and PT-symmetry. In the following, we first discuss the
effect of nonlinearity on the optical modes and the phenomenon of nonlinearly-
induced PT symmetry breaking, and then outline the effects of nonlocality and
modulation which have a potential to lead to new nonlinear interaction regimes.

2.1 Nonlinear Coupler and Symmetry Breaking

The effect of nonlinearity on the beam dynamics in directional couplers composed
of waveguides with gain and loss was originally described theoretically already two
decades ago [13, 14]. It was predicted that such structures can offer benefits for
all-optical switching in the nonlinear regime, lowering the switching power and
attaining a sharper switching transition. In the last decade, the renewed interest in
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such structures as realizations of PT symmetric optical systems has led to a series
of extensive theoretical and more recently experimental studies.

We consider the effect of Kerr-type nonlinearity, which can modify the refractive
index in each of the waveguides, depending on the optical intensity [13–18]. This
effect can be modeled by including nonlinear terms in the coupled-mode equations
as follows [16],

i
da1

dz
+ iρa1 + Ca2 +G(|a1|2)a1 = 0,

i
da2

dz
− iρa2 + Ca1 +G(|a2|2)a2 = 0,

(1)

where z is the propagation distance, a1 and a2 are the mode amplitudes in the
first and second waveguide, respectively, the function G characterizes the nonlinear
response (we assume it to be real-valued), C is the coupling coefficient between
the modes of two waveguides, and ρ > 0 is the loss/gain coefficient in the first
and second waveguides. We consider here the regime below the linear PT-symmetry
breaking threshold, when ρ < C.

It was found that nonlinear solutions belong to two classes [16]: (i) periodic
solutions, where the intensities and relative phases in two waveguides are exactly
restored after each period (z → z + zp) (Fig. 1b), or (ii) solutions where the
total intensity grows without bound due to nonlinearly-induced symmetry breaking
(Fig. 1c). This classification is valid for arbitrary Kerr-type nonlinearities with
smooth response functions G(I). Quite remarkably, in case of cubic nonlinear
response with G(I) = γ I , Eqs. (1) were shown to be integrable and their solutions
can be formulated analytically [15, 17–21]. The dependence of the minimal input
intensity Icr, required for nonlinear switching, on gain/loss coefficient is shown in
Fig. 1d, which illustrates that the threshold for nonlinear switching is drastically
reduced for larger gain/loss coefficients.

It is convenient to represent the mode amplitudes in the following form,

a1 = √I (z) cos[θ(z)] exp[+iϕ(z)/2] exp[iβ(z)],
a2 = √I (z) sin[θ(z)] exp[−iϕ(z)/2] exp[iβ(z)],

(2)

where I is the total intensity, θ and ϕ define the relative intensities and phases
between the two input waveguides, and β is the overall phase. Then, the initial
conditions corresponding to different solution types (oscillating or growing) can
be conveniently visualized on a phase plane, see an example in Fig. 1e. This plot
illustrates that even for high intensity above the threshold, the type of dynamics
depends on the relative amplitudes and phases in the two waveguides. Interestingly,
the type of nonlinear dynamics remains the same if we swap the intensities between
the two waveguides, which corresponds to a transformation θ → π/2 − θ . In
particular, we could couple light at the input just to the waveguide with loss, or
to the waveguide with gain, and the type of dynamics would be the same. This
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Fig. 1 (a) Scheme of nonlinear PT-symmetric directional coupler with balanced loss in waveguide
1 and gain in waveguide 2. (b,c) Intensity evolution along the propagation direction. Shown are
the regimes of (b) periodic oscillations and (c) nonlinear localization and amplification in the
waveguide with gain. (d) Minimum critical intensity required for nonlinear PT-symmetry breaking
vs. the gain/loss coefficient. (e) Regions of PT symmetry (white shading) and symmetry breaking
with nonlinear switching (black shading) in the plane of initial conditions. Star and triangle mark
stable and unstable stationary solutions, respectively. Parameters are G(I) = γ I , γ = 1, C = 1,
(b,c,e) ρ = 0.5 and I = 2.2, (b) ϕ = π/6 − π/20, (c) ϕ = π/6 + π/20. (Adopted from [16])

is a counter-intuitive result, since in the first case the total intensity will initially
decrease, whereas in the second case the total intensity will be growing. However,
in both cases the type of dynamics will be determined only by the initial intensity
level. This is a consequence of linear PT-symmetry in the strongly nonlinear regime.

Whereas in general solutions are oscillating or growing, for particular initial
conditions the wave intensities can remain constant. Such a regime corresponds
to the excitation of stationary nonlinear modes, which can be viewed as a
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generalization of linear supermodes. They are positioned at the phase space points
(I = I0, θ = π/4, ϕ = ϕ±) and β = β±z, where β± = G(I0/2) + C cos(ϕ±),
sin(ϕ±) = ρ/C, and cos(ϕ±) = ∓[1 − (ρ/C)2]1/2. The fixed point in phase space
is a stable center if (i) γ̃ < γ̃cr and ϕ = ϕ− or (ii) γ̃ > −γ̃cr and ϕ = ϕ+, where
γ̃cr = | cos(ϕ±)| and γ̃ = G′(I0/2)I0/(2C) (prime stands for the derivative). If
these conditions are not satisfied, then the fixed point is a saddle, which indicates
an instability. In case of self-focusing Kerr nonlinearity, G(I) = γ I with γ > 0,
the stationary point at ϕ+ is always stable at arbitrarily high intensities, whereas at
ϕ− the instability appears for I0 > I0cr = 2[1 − ρ2]1/2. The stable point at ϕ+ is
indicated in Fig. 1e by a star, and unstable at ϕ− – by a triangle. We note that the
unstable point is located at a boundary between the domains of periodic or growing
solutions.

Nonlinear PT couplers can have applications for efficient all-optical signal
manipulation with reduced switching power and the possibility to perform intensity-
dependent amplification. Additionally, such couplers can operate as unidirectional
optical valves [15] when nonlinearity breaks PT symmetry, as in this case the output
beam becomes localized in the gain channel, irrespective of initial conditions. It was
suggested that switching performance can be enhanced with application of Bragg
gratings, involving specially engineered modulation of the real and imaginary parts
of the optical refractive index [22]. These concepts can be extended to other physical
systems beyond optics, including electrical circuits [23, 24].

A PT-symmetric coupler with additional gain and loss proportional to nonlinear
terms has been studied in Refs. [25–27]. If such nonlinear PT-symmetric coupler
is embedded into a linear chain, it may give rise to new types of nonlinear Fano
resonances, with entirely suppressed or greatly amplified transmission [26]. A PT
coupler with nonlinear saturation was also formulated based on Wick rotation,
which introduces imaginary-time propagation [28].

2.2 Anti-PT-Symmetry and Parametric Amplification

Nonlinear modes in PT potentials can also be supported by quadratic (χ(2)) optical
nonlinearity [29–31]. Compared to the case of Kerr-type nonlinearity discussed
above, quadratic nonlinear response involves parametric coupling of the fundamen-
tal and second-harmonic optical waves. Such interactions give rise to a rich family
of localized solitons.

Quadratic nonlinearity can also facilitate a fundamentally important regime of
parametric amplification, which is efficiently realized through difference-frequency
generation [32]. Here the amplification rate is determined by the pump, enabling
ultrafast all-optical tunability. Quadratic nonlinear PT-symmetric systems can,
on one hand, realize ultrafast spatial signal switching through pump-controlled
breaking of PT symmetry, and, on the other hand, they enable spectrally-selective
mode amplification [33]. The process of optical parametric amplification in a PT
coupler based on nonlinear mixing between a strong pump, and signal and idler
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Fig. 2 PT parametric amplifier: (a) scheme of wave mixing in a quadratic nonlinear coupler with
linear absorption in one waveguide. (b) Number of spectrally anti-PT symmetric mode pairs, (c) the
largest mode gain (white line marks zero), vs. the input pump amplitude in the first waveguide and
the phase-mismatch. (Adopted from Ref. [33])

waves is illustrated in Fig. 2a. The evolution of near-degenerate (with close similar
frequencies) signal and idler waves in the undepleted pump regime is modelled by
coupled-mode equations, which can be represented in a Hamiltonian form:

i
∂a
∂z

= Ha, (3)

where a(z) = (as1(z), as2(z), a∗i1(z), a∗i2(z))T is a vector of wave amplitudes in the
two waveguides, the subscripts stand for signal (‘s’) and idler (‘i’) waves in two
waveguides (‘1’ and ‘2’),

H =

⎛
⎜⎜⎝
β − iγ1 −C iA1 0
−C β − iγ2 0 iA2

iA∗
1 0 −β − iγ1 C

0 iA∗
2 C −β − iγ2

⎞
⎟⎟⎠ , (4)

β defines the phase mismatch of parametric wave mixing, γ1,2 are the linear loss
coefficients, C is the mode coupling coefficient between the waveguides, and A1,2
are the normalized input pump amplitudes.

Remarkably, the Hamiltonian possesses a spectral anti-PT symmetry, corre-
sponding to a negative sign on the right-hand side of the following equality,

P1,+P2,+TH = −HP1,+P2,+T. (5)
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Here T is a usual time-reversal operator which changes z → −z and performs a
complex conjugation. The parity operators act in spectral domain, interchanging
the signal and idler waves,

P1,± = {as1 ↔ ±a∗i1
}
, P2,± = {as2 ↔ ±a∗i2

}
. (6)

The Hamiltonian is linear, and the properties of its solutions are defined by the
spectrum of its four eigenmodes. Overall, there can be three possible symmetry
regimes: (i) two mode pairs with broken spectral anti-PT symmetry, (ii) one pair of
PT-broken modes and a pair of anti-PT symmetric modes, or (iii) two pairs of anti-
PT symmetric modes. Characteristic dependence of the number of PT-symmetric
mode pairs on the pump amplitude in the first waveguide and the phase-mismatch is
shown in Fig. 2b, and the largest mode gain is presented in Fig. 2c. Remarkably, the
established relations of mode symmetry and gain/loss are reversed in comparison
to previously discussed spatial PT-symmetry in directional couplers, due to the
spectral anti-PT symmetry of parametric wave mixing. Specifically, when all modes
have broken spectral PT symmetry (blue shaded regions in Fig. 2b), the pairs of
eigenmodes exhibit the same amount of gain/loss, and effectively the amounts of
gain and loss are averaged out between the eigenmodes. However, upon transition
to the region with spectrally PT-symmetric modes (green and red shaded regions in
Fig. 2b), there appears an unequal redistribution of gain and loss between the modes.
One PT-symmetric eigenmode exhibits gain much larger than all other modes, while
the latter experience stronger loss. Such sensitivity of amplification to PT-breaking
threshold could be used to discriminate between multiple spectral modes, analogous
to the concept of PT-lasers [5, 6].

In case of perfect phase-matching, β = 0, and pump amplitudes of the same
phase Im(A1) = Im(A2) = 0, the Hamiltonian also features spatial PT symmetry.
Both the spatial and spectral PT-symmetry breaking occurs simultaneously at the
threshold |γ1−γ2−η(A1+A2)| = 2C. However, the spatial and spectral symmetries
are opposite: a mode pair is spatially PT-symmetric and has spectrally broken
symmetry below threshold, whereas the situation is reversed above the threshold.
Numerical simulations reveal a strong connection between spectral symmetry and
spatial dynamics even for non-zero phase mismatches. Specifically, an increase of
pump amplitude can control the period of mode coupling between the waveguides,
while the oscillations get suppressed close to the spectral PT threshold. It is expected
that due to the universality of parametric amplification processes, these concepts can
be extended to different physical mechanisms including four wave mixing in media
with Kerr-type optical nonlinearity.

2.3 Nonlocal Effects

PT-symmetric potentials appear in many physical contexts, and one feature actively
investigated in the context of quantum theories is the property of nonlocality, where
PT-defect dynamics can be sensitive to potential profile at distant locations, raising
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questions about the observability of such behavior in real physical systems [34, 35].
In the following, we present a classical analogue of quantum nonlocality in optical
PT-symmetric structures with gain and loss where beam dynamics can depend on
arbitrarily distant boundaries.

To demonstrate the phenomenon of nonlocality in optical structures, we compare
arrays of coupled optical waveguides with planar and circular geometries as
illustrated in Fig. 3a, b. The beam profile is determined by the mode amplitudes an at
individual waveguides, and mode overlap between waveguides is characterized by
coupling coefficients: C2 between the central waveguides n = 0, 1, and C1 between
all other neighboring waveguides. We consider PT-symmetric structure composed
of waveguide with loss at location n = 0 and with gain at the adjacent waveguide
n = 1. The absolute magnitudes of gain/loss should be equal to satisfy the PT-
symmetry condition. We use the coupled-mode equations [4, 36, 37] to model the
beam propagation:

i
dan

dz
+ C1an−1 + C1an+1 = 0, n �= 0, 1 (7)

i
da0

dz
+ iρa0 + C1a−1 + C2a1 = 0, (8)

i
da1

dz
− iρa1 + C2a0 + C1a2 = 0, (9)

where n is the waveguide number, z is the propagation distance, an are the mode
amplitudes at waveguides, ρ > 0 defines the rate of loss at 0-th and gain at
1-st waveguides, and C1,2 are the coupling coefficients between the modes of
waveguides. The boundary conditions are zero for a planar structure (Fig. 3a),

aN+2 ≡ 0, a−N−1 ≡ 0, (10)

and periodic for a circular configuration (Fig. 3b),

aN+2 ≡ a−N, a−N−1 ≡ aN+1. (11)

The Eqs. (7), (8), and (9) are linear, since we consider weak optical intensities when
the gain saturation and nonlinearity can be neglected. Then, the beam dynamics
can be described by analyzing the eigenmodes an = An exp(iφn + iβz), where
An ≥ 0 and real φn are constant amplitude and phase profiles and β is an eigenvalue
(propagation constant).

The analytical expressions for PT-symmetry breaking thresholds in case of planar
and circular array configurations were derived in Ref. [38], considering the total
number of waveguides 2N to be rather large but finite. For a planar configuration,
the condition of PT-symmetry breaking is

|ρ| > ρp = |C2|, (12)
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Fig. 3 (a, b) Schematic of (a) planar and (b) circular waveguide array with a pair of PT-
symmetric waveguides at sites n = 0, 1 with balanced gain and loss. (c, d) Fastest mode
amplification rate in parameter plane |ρ/C2| and |C1/C2| for (c) planar and (d) circular arrays with
N = 20 waveguides. Solid lines show analytical instability threshold according to (c) Eq. (12) and
(d) Eq. (13), and dashed lines indicate instability threshold for infinitely large structures according
to Eq. (14). (e, f) Optical beam dynamics in (e) planar and (f) circular waveguide arrays for
ρ/C2 = 0.8, C1/C2 = 1.5, and N = 20. (Adopted from Ref. [38])

and the threshold is the same as for an isolated coupler [4], independent on the
coupling coefficient in the rest of the array (C1). This is a surprising result, for
example boundaries can have nontrivial effect on stability for planar structures with
periodically placed gain and loss elements [39]. The threshold is shown with the
solid line in Fig. 3c.

For a circular configuration, the threshold condition nontrivially depends on all
the structure parameters,

|ρ| > ρc = ||C1| − |C2|| , (13)
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and this threshold is shown with solid lines in Fig. 3d. Most remarkably, the PT-
symmetry conditions separating fundamentally different cases of real spectrum,
when the power is conserved on average, and complex spectrum, when some guided
modes experience amplification, are always different for planar and circular arrays
of arbitrary size (N ) – and this is a manifestation of nonlocality.

From a physical point of view, we should expect that if the structure size is
increased towards infinity, N → ∞, the type of boundaries should not matter. In
this case the PT-symmetry breaking would be associated with the amplification at
the waveguide with gain, leading to generation of waves propagating away from the
central region, when

|ρ| > ρinf =
√
C2

1 + C2
2 . (14)

We show the instability threshold with dashed lines in Fig. 3c, d. When ρp,c < |ρ| <
ρinf for planar (‘p’) or circular (‘c’) waveguide arrays, respectively, then there appear
unstable modes in arrays of finite length, however their growth rate reduces to zero
as O(N−1).

As an example, we consider the beam coupled to waveguide number n = 1 at
the input, and choose the structure parameters ρ/C2 = 0.8 and C1/C2 = 1.5 such
that they correspond to a stable region for planar but an unstable region for circular
configuration. The plot of beam dynamics presented in Fig. 3e shows that the power
is conserved on average for the planar structure. For the circular geometry, Fig. 3f
demonstrates that power grows exponentially as the beam circulates around.

These results suggest an experimental path towards observation of the fundamen-
tal property of the PT-symmetric systems associated with their nonlocality, which is
an analogue of nonlocality effects raised in the context of quantum theories [34, 35].
Furthermore, new features of nonlinear interactions in presence of PT nonlocality
are expected.

2.4 Modulated Waveguide Couplers

Modulation of structure parameters along the propagation direction of coupled
optical waveguides with gain and loss can open new opportunities for optical signal
control in both linear [40–42] and nonlinear [43–49] regimes. Interestingly, the
first studies of couplers with modulated loss and gain were carried out without a
consideration of PT symmetry [50–53]. In these studies, it was shown that unidi-
rectional energy transfer between co-propagating optical modes can be achieved in
waveguides with longitudinally modulated gain and loss regions. This phenomenon
relies on the breaking of the time-reversal symmetry through the modulation of the
complex optical refractive index.

When the structural parameters are modulated such that underlying system is
not PT-symmetric at any modulation cross-section, the overall dynamics can still
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Fig. 4 Quasi-PT symmetry in an aperiodically modulated coupler. (a) Schematic of a coupler with
symmetric gain and loss, but with asymmetric modulation of the propagation constants. (b) The
mode growth rate vs. the normalized gain/loss amplitude (horizontal axis) and the modulation
strength (vertical axis), for fast modulations. White line marks the boundary of quasi-PT transition.
(c) Example of almost periodic evolution with very small growth rate in quasi-PT symmetric
regime. (Adopted from Ref. [54])

demonstrate the features of pseudo-PT symmetry [54, 55]. The concept of pseudo-
PT symmetry corresponds to the PT-symmetry in the effective system, which
manifests as quasi-stationary propagation. Such regime can be achieved under
high-frequency periodic modulation, when the modulated system can be mapped
into an effectively unmodulated one with rescaled parameters. Following Ref. [54],
we consider a coupler with balanced gain and loss and modulated propagation
constants. For a biharmonic modulation, as illustrated in Fig. 4a, the corresponding
Hamiltonian is not PT-symmetric. Nevertheless, the effective system obtained after
averaging the high-frequency modulations features PT symmetry. There exists a
spontaneous PT-symmetry-breaking transition in the effective system when the
imaginary part of quasi-energies, Im(ε), changes from zero to nonzero, as illustrated
in Fig. 4b. It appears surprising that the quasi-energies can be real even when the
modulated system is non-PT-symmetric, however the numerical analysis reveals that
the eigenvalues of the original modulated structure have a very small but nonzero
imaginary part. Accordingly, at intermediate propagation distances the dynamics
can be almost exactly periodic in the quasi-PT symmetric regime, as shown in
Fig. 4c.

Further interesting possibilities can arise in the case of an aperiodic driving. It
was found that a phase diagram analogous to Hofstadter’s butterfly spectrum can
emerge in PT Hamiltonians [42]. Another example of modulated systems is a PT-
symmetric coupler with fluctuating parameters [56]. In such a structure statistically
averaged intensity of the field grows independently of the PT symmetry phase of
the underlying deterministic system and for any type of fluctuations.
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3 Pseudo Hermitian Trimer

In contrast to the PT-symmetric dimer considered in Sect. 2, a system composed
of three coupled waveguides has more degrees of freedom and allows different
geometric realisations possessing real spectra. Generally, PT-symmetry is not a
necessary condition for a spectrum to be real. A concept of pseudo-Hermiticity
was introduced in [12] and it states that a Hamiltonian H is pseudo-Hermitian,
if it is non-Hermitian and possesses real eigenspectrum. It can be represented as
H = A−1H′A, where H′ is a Hermitian Hamiltonian and A is an invertible matrix.
Thus, when a system is composed of several non-conservative waveguides, there
might be various non-PT configurations possessing real eigenspectrum.

We compare the features of a general pseudo-Hermitian (PH) trimer to a
PT-symmetric trimer. A PH trimer possesses spatially inhomogeneous gain and
dissipation, and generally speaking is not PT-symmetric. The PT-symmetric trimer
belongs to the class of PH trimers, but hereinafter when referring to the PH timer
we will imply that it is not PT invariant. We determine conditions under which PH
and PT trimers possess entirely real spectra, and reveal new opportunities of PH
structures to flexibly tailor modes’ properties. We will also investigate a behaviour
of PT and PH trimers in the chain of conservative waveguides.

3.1 Necessary Conditions for Real Spectrum

We consider a system of three coupled non-conservative waveguides, schematically
shown in Fig. 5. Propagation of light through such a system can be described in
terms of the coupled mode theory:

i
d

d z

⎛
⎝a−1

a0

a1

⎞
⎠+

⎛
⎝ iρ C−1 0
C−1 iρ0 C0

0 C0 iρ1

⎞
⎠
⎛
⎝ a−1

a0

a1

⎞
⎠ = 0, (15)

here aj is the mode amplitude in the j -th waveguide, j = −1, 0, 1, z is the
direction of propagation, C−1 and C0 are coupling coefficients between -1-st and
0-th waveguides and 0-th and 1-st waveguides, respectively, ρj > 0 or ρj < 0

Fig. 5 Schematic of a
non-Hermitian trimer with
gain/loss strength denoted by
ρ−1, ρ0, and ρ1
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corresponds to loss or gain, respectively. Eigenmodes of such a system can be
sought as aj = A

(n)
j exp(iβnz), where A(n)J are the constant amplitudes, βn are the

propagation constants, n is the mode index. In this section we determine particular
configurations of the non-Hermitian trimer, which provide balance between gain
and loss, and feature a real eigenspectrum.

We use a property that a trace of any square matrix equals to the sum of its
eigenvalues. Thus, from Eq. (15) we obtain

∑
j iρj =

∑
n βn, which means

∑
j

ρj = 0, (16)

if all βn are real. It should be noted, however, that a more general and practically
important situation is when all modes have the same spatially averaged gain/loss
�ρ [57], i.e. when Im(βn) ≡ �ρ for all n. In this case the gauge transformation can
be applied, and the system can be reduced to the pseudo-Hermitian or PT-symmetric
one.

To determine the next necessary condition of the real spectrum, we consider an
eigenmode, aj (z), of the system. Then it can be shown that a∗j (z)(−1)j is also an
eigenmode. The latter means that if βn is a propagation constant, then −β∗n is also a
propagation constant. Thus, there are two possible cases: (i) βk = −β∗k for some k,
which leads to βk = 0 if we assume that the system has an entirely real spectrum; or
(ii) βn = −β∗m for a pair of modes with n �= m. Since the total number of modes is
equal to the number of waveguides, it follows that for an odd number of waveguides
in the system there should always be a mode with zero propagation constant, while
all other modes should have counterparts with opposite propagation constants.

We conclude that in the considered case of non-Hermitian trimer, one of the
eigenmodes should have a zero propagation constant, β1 = 0. It can be shown [58]
that the trimer system (15) supports the mode with zero propagation constant if

ρ0 +
C2−1

ρ−1
+ C2

0

ρ1
= 0. (17)

Condition (17) is another necessary one (but not sufficient) for the whole spectrum
to be real-valued. Substituting aj = A

(n)
j exp(iβnz), j = −1, 0, 1 into Eq. (15) and

taking to account Eq. (17), we find

β1 = 0, β2,3 = ±
√
−ρ2

1 + C2−1 + C2
0 + ρ−1ρ0, (18)

We now use the condition in Eq. (16) to express the three loss/gain coefficients
through two independent parameters ρ and θ :

ρ ≡ ρ−1, ρ0 = −θρ, ρ1 = −(1 − θ)ρ. (19)
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We analyze Eqs. (18) and determine that the spectrum of Eq. (15) is entirely real
under the following conditions:

C0 =
√
(1 − θ)

(
C2−1 − θρ2

)
, (20)

|ρ| ≤ ρcrit =
√

2 − θC−1. (21)

Since we consider conservative couplings with real coefficients C−1 and C0, then
we have an additional restriction on the gain/loss parameter:

|ρ| < ρstruc ≡ C−1/
√
θ. (22)

Note that condition (21) is stronger than condition (22).
From Eqs. (20) and (21) it follows that system (15) can have an entirely real

spectrum if and only if θ ≤ 1. This means that two waveguides of the trimer,
which are of the same type (both with gain or loss) should not be separated by a
waveguide of other type (loss or gain, respectively). This interesting result stems
from the geometric mode symmetry (β1 = 0) and specific gain/loss distribution
providing energy balance.

3.2 Eigenmodes of the Pseudo-Hermitian Trimer

Without loss of generality, we consider the case 0 ≤ θ < 1 corresponding to the
right and middle waveguides of the same type and the left waveguide of the opposite
type. The case θ = 1 corresponds to the uncoupled system of a dimer and a single
waveguide (C0=0). Note that another limiting case θ = 0 corresponds to the PT-
symmetric trimer [25].

In what follows, we compare the basic properties of the PT-trimer (θ = 0) with
the properties of the PH trimer at θ = 0.5. The latter means that the PH trimer
consists of one lossy waveguide (ρ) and two active waveguides with the same gain
(−ρ/2,−ρ/2).

Using Eqs. (19) and (20), the propagation constants defined in Eq. (18) can be
written as

β1 = 0, β2,3 = ±
√
(2 − θ)C2−1 − ρ2. (23)

It is interesting to note that the dependence of the propagation constants βn on the
gain/loss strength does not have a qualitative difference between the PT and PH
trimers.
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Fig. 6 Characteristic mode properties depending on the gain/loss strength (ρ) in a PT trimer
(θ = 0) – top row, and the PH trimer (θ = 0.5) – bottom row. (a, d) Dependence of the coupling
parameter C0 providing balance between gain and loss. (b, c, e, f) Eigenmode profiles: red, black,
and dashed blue curves show the intensities in the left, middle, and right waveguides, respectively.
Vertical dashed line marks the critical value ρcrit of gain/loss parameter ρ. (b, e) correspond to the
propagation constant β1, and (c, f) correspond to β2 and β3. (Adapted from Ref. [58])

We illustrate the features of trimers in Fig. 6, where the top row corresponds to
the PT-trimer, while the bottom row – to the PH trimer. Figures 6a, d show how
the coupling parameter C0 must be adjusted depending on the gain/loss strength ρ
to establish the balance between gain and loss. Panels (b, e) and (c, f) show the
relative intensity distribution between the waveguides for the propagation constants
β1 = 0 and β2,3, respectively. Here red, black, and dashed blue curves represent
the light intensity in the left, middle, and right waveguides, respectively, while the
total mode intensity is normalized to unity. Interestingly, the intensities of modes
with the zero propagation constant do not depend on the gain/loss strength up to
the critical value ρcrit (see Fig. 6b, e), while for β2,3 we observe redistribution of
the intensity between the waveguides (see Fig. 6c, f). Note that for the PT-trimer the
energy is distributed equally between the waveguides with gain and loss in contrast
to the PH-trimer. Another finding is that at the critical point ρcrit, the propagation
constants and complex amplitude profiles of all three modes coincide.

We see that the pseudo-Hermitian trimer can have an entirely real spectrum as
well as a phase transition point denoted as ρcrit, which is usually associated with PT-
symmetric systems. However, for the PT symmetric trimer the coupling parameter
C0 does not depend on gain/loss parameter ρ, and it is found as C0 = C−1, while
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for the PH trimer C0 depends on not only C−1, but on ρ and gain/loss distribution
between the waveguides (θ ) as well. We note that the condition (22) is always
satisfied for the PT trimer.

Next, we investigate the behaviour of a non-Hermitian trimer embedded into
a chain of conservative waveguides in order to reveal its potential for signal
manipulation propagating through optical networks.

3.3 Pseudo-Hermitian Trimer in a Chain of Conservative
Wavegudies

Active elements, incorporated into conservative structures, can demonstrate ben-
eficial effects such as non-reciprocity, signal amplification, suppressed reflection,
and invisibility [59–62]. Here we investigate propagation of light in a long array of
conservative waveguides including the non-Hermitian trimer.

As we have discussed in Sect. 2.3, when a PT-symmetric coupler is embedded
into a chain of conservative waveguides, a symmetry of the structure can be broken
and the growing modes can appear [38]. Therefore, it is important to determine a
range of trimer model parameters, when the system does not possess exponentially
growing and lasing modes. In this regime the PH trimer can be used for active
control of propagating signals, i.e. for amplification, filtering, and switching. We
note that the balance relation (16) is not a necessary condition for absence of lasing
modes in the system due to additional radiation losses through the chain. In what
follows, we consider a general case with ρ−1 + ρ0 + ρ1 �= 0 and introduce the
additional gain/loss �ρ for the trimer waveguides. This shifts the spectrum of the
isolated trimer by the value i�ρ according to the gauge transformation. When
the trimer is embedded into a chain of conservative waveguides, the governing
equations take the form

i
d aj
d z

+ CAaj+1 + CAaj−1 = 0, for j �= −1, 0, 1,

i
d a−1

d z
+ i(ρ −�ρ)a−1 + C−1a0 + CAa−2 = 0, (24)

i
d a0

d z
− i(θρ +�ρ)a0 + C−1a−1 + C0a1 = 0,

i
d a1

d z
− i[(1 − θ)ρ +�ρ]a1 + CAa2 + C0a0 = 0.

Here CA is the coupling coefficient between the conservative waveguides.
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Solving the scattering problem [58] we find the scattering coefficients with
singularities determined by the roots of a function D:

D =eikC̄0
2
[
C̄1 − i(�ρ + ρ̄)eik

]
− ie2ik

[
iC̄Ae−ik +�ρ + (θ − 1)ρ̄

]
×

[
1 + (2iC̄A cos(k)+�ρ − θρ̄)(iC̄Ae−ik +�ρ + ρ̄)

]
,

(25)

where k is the wavenumber of an incident wave, ρ̄ ≡ ρ/C−1, C̄A ≡ CA/C−1,
C̄0 ≡ C0/C−1, and �ρ̄ ≡ �ρ/C−1.

We now fix the parameters CA, C−1, θ , and ρ and consider �ρ = �ρmin ≡
min[ρ,−ρθ,−(1−θ)ρ]. In this case there is no gain in the system and thus no lasing
modes can occur. Next, we gradually increase�ρ until it reaches some critical value
�ρcrit, at whichD turns to zero for some wavenumber kcrit. This means that the wave
with the wavenumber kcrit is a lasing mode and the energy of the system can grow
without any incident light for �ρ > �ρcrit.

In Fig. 7a, we plot�ρ̄crit ≡ �ρcrit/C−1 as a function of ρ̄ and θ for C̄A = 0.5. In
Fig. 7b we show the corresponding wavenumber kcrit. The black dashed line bounds
the range of possible structural parameters according to Eq. (22) and black solid line
separates regions where �ρ̄crit > 0 and �ρ̄crit < 0. A complex behaviour of �ρ̄crit
in the region θ > 0.8 and ρ̄ ≈ 0.9 results from bifurcations of roots of the equation
D = 0 at particular parameters θ , ρ̄ and C̄A.

Remarkably, the value of �ρcrit can be either negative or positive. If �ρcrit < 0,
then for the range�ρcrit < �ρ < 0 the overall gain/loss balance is shifted into loss;
however, lasing modes are present in the system. On the other hand, if �ρcrit > 0,
then for the range 0 < �ρ < �ρcrit the overall gain/loss balance is shifted into gain,
but no lasing modes are observed.

Fig. 7 (a) The minimum value of gain/loss imbalance, �ρ̄crit, at which a lasing mode occurs in
the chain of conservative waveguides with the embedded trimer as a function of ρ̄ and θ . (b) A
wavenumber of the corresponding lasing mode. Dashed black curve bounds the range of possible
structural parameters according to Eq. (22), and black solid line separates regions where�ρ̄crit > 0
and �ρ̄crit < 0. Parameter C̄A=0.5. (Adopted from Ref. [58])
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Fig. 8 Noise dynamics in the chain of conservative waveguides with the embedded PH trimer for
(a) ρ̄ = 0.85 and (b) ρ̄ = 1. (c), (d) Evolution of the total energy of the system, I , corresponding
to (a) and (b), respectively. Insets show evolution of the energy concentrated in the waveguides of
the PH trimer only. Parameters are θ = 0.5, C̄A = 0.5, and �ρ = 0. (Adopted from Ref. [58])

We simulate the dynamics of input noisy conditions in the chain of conservative
waveguides with the PH trimer (θ = 0.5). Although the total number of waveguides
in the considered case is 601, we emulate an infinite long chain by introducing
perfectly matched layers (PML) at the structure boundaries. The noise is introduced
only in the trimer waveguides and it is chosen randomly. We simulate light dynamics
for several realisations of initial conditions and a representative example for C̄A =
0.5 and �ρ = 0 is shown in Fig. 8. For ρ̄ = 0.85, which is below the black curve
in Fig. 7a and corresponds to �ρcrit > 0, we observe that after initial relaxation the
total system energy I = ∑

j |Aj |2 is preserved (see Fig. 8c) and the system does
not lase. However, if ρ̄ = 1, then �ρcrit < 0 (see Fig. 7a) and the system lases (see
Fig. 8b) with growing total energy as shown in Fig. 8d.

A nonlinear regime of the PT-symmetric trimer was first discussed in [63] and
revisited in [25, 64]. We note that an experimental realization of dissipative trimer
having “gain-loss-gain” profile was reported in [64]. Although such a trimer does
not possess PT-symmetry, this experimental setup serves as a first step towards
realization of PT-symmetric trimer.
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4 Guided Modes in Waveguides

In optics, the topic of PT-symmetry is closely related to the studies of various
waveguiding structures with gain. For example, from the conventional point of view,
it is reasonable to expect that by adding gain to the waveguiding structure one can
control the characteristics of the propagating modes, as was shown in Ref. [65].
In plasmonic structures, waveguiding is suppressed by losses particularly strongly.
There is a search in either optimizing the geometry for these structures [66], or using
novel materials [67]. Clearly, such approaches try to minimize losses, and one needs
gain materials to compensate losses in plasmonic structures [68–70].

In a convectional approach, it is assumed that the propagating waves are
monochromatic, exp(−iωt) time convention, and positive imaginary part of the
refractive index describes lossy media, while negative values of this quantity
correspond to gain media. For TE guided modes, which have one non-trivial electric
field component (Ey) and two magnetic field components (Hx,Hz), the modes of
the structure have the formEy = E(x)·exp(iβz), where β is the mode wavenumber,
and the mode profile E is described by the equation

d2E

dx2 + ω2

c2

[
ε(x)− β2

]
E = 0. (26)

A majority of the studies followed the original proposal of a two-layer coupler, and
studied similar or dissimilar directional waveguide couplers showing PT-symmetric
behavior [71–74]. In particular, it was shown that directional couplers built of
dissimilar waveguides that do not fulfill the PT symmetry, can demonstrate the
behavior similar to the one observed in PT symmetric systems [74].

Generally, as discussed above, pseudo-Hermitian optical couplers have the
properties more advanced in comparison with the true PT-symmetric couplers [58],
and the mode spectrum can be entirely real even without PT symmetry, provided the
waveguides in a coupler are placed in a special order.

As an example of a non-Hermitian waveguiding structure, we study three-layer
non-Hermitian dielectric waveguides with gain and/or loss shown schematically in
Fig. 9a. We follow the original paper [75], and consider a three-layer structure to
achieve a wider range of regimes as compared to two-layer structures. For the case
of three-layer waveguides, Turitsyna et al. [75] demonstrated the stationary regimes
when gain and loss compensate each other globally but not locally.

We consider a three-layer waveguide placed in a free space, as shown schemati-
cally in Fig. 9a. Each layer i has a thickness di , and can have an arbitrary complex
index of refraction. In the examples given below we assumed that layers are of the
same thickness, di = d.

In general, Eq. (26) cannot be solved analytically; therefore, in what follows we
solve it numerically in order to find the mode wavenumbers β. To find regimes
when conservative modes exist in this structure, we fix parameters of the first layer,
n1 = 2+0.1i, and also fix the real parts of the refractive indices of the two remaining
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Fig. 9 (a) Schematics of a three layer non-Hermitian waveguide. Each layer can be either passive
or exhibit gain/loss. For visual identification, we use red tint to denote gain layers (layer 2), blue –
loss (layer 3), and grey – passive layers (layer 1 in this scheme). (b) Mode structure shown for the
electric field amplitudes and phases, when one of the layers is passive. Parameters of the structures
are shown in the panel. (Adopted from Ref. [75])

layers at 2. Then, we scan the plane of parameters of imaginary parts of the layers 2
and 3 (Im(n2), Im(n3)) in order to find points at which there is a solution to Eq. (26)
with real β.

The example shown in Fig. 9b is quite remarkable, and it suggests a new
mechanism for controlling the required balance between gain and loss in two non-
conservative layers. Indeed, if we have two layers of the same thickness, then the
condition of usual PT symmetry requires that the amount of gain in one of the
layers is equal to the loss in another layer. Now, we can attach the third layer to
the structure, and due to a change in the mode profile the amount of the required
gain can be smaller or larger (for the latter, see Fig. 9b). In a more general case, the
modes have a complicated structure.

Thus, the guiding properties of non-Hermitian multi-layered dielectric wave-
guides with gain and loss revealed that the functionalities of conventional PT-
symmetric optical waveguides can be expanded substantially by adding an addi-
tional dielectric layer and extending the structure into a broader class of non-
Hermitian systems to control a ratio of gain and loss required to support propagating
and non-decaying guided modes.

5 Conclusion

In this chapter, we discussed the unique features of non-Hermitian optical couplers
composed of several waveguides and their possible applications for effective light
control. We formulated the necessary conditions for the spectrum to be real for dif-
ferent optical systems: PT-symmetric dimers, pseudo-Hermitian trimers and chains
of conservative waveguides including non-Hermitian defects. We investigated an
interplay between nonlinearity and PT-symmetry of a dimer system, analysed
nonlinear parametric amplification and the emergence of anti-PT symmetry in
spectral domain. We demonstrated how the non-Hermitian defects embedded into



Non-Hermitian Optical Waveguide Couplers 297

a chain of conservative waveguides can affect the system spectrum, giving rise
to nonlocal effects. We also studied guided modes in a three-layer non-Hermitian
optical coupler with gain and loss regions.

Acknowledgements The authors acknowledge support by the Australian Research Council
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Parity-Time Symmetric Plasmonics

D. Barton III, M. Lawrence, H. Alaeian, B. Baum, and J. Dionne

Abstract Plasmons are hybrid photon-electron waves bound between conducting
and dielectric materials. They have enabled strongly enhanced light-matter inter-
actions for light emission and sensing, sub-wavelength structuring of photonic
devices, and exotic optical phenomena such as optical-frequency magnetism. To
date, most control over plasmon dispersion has been achieved through structuring
of the real part of the refractive index, while losses have been viewed as detrimental.
Photonic Parity-Time (PT) symmetry takes advantage of these inherent losses,
utilizing them in conjunction with balanced gain media to control eigenmode
evolution. In this chapter, we review progress in PT-symmetric plasmonics, focusing
on planar and coaxial geometries. We show how inclusion of balanced loss and gain
gives rise to exceptional points, enabling a multitude of phenomena including: (1)
subwavelength mode multiplexing; (2) chiral molecule sensing and discrimination;
(3) subwavelength polarization conversion; and (4) nonreciprocal, nonlinear optical
metamaterials. We also show a route towards thresholdless symmetry breaking.
These results provide a foundation for ultra-compact optical components with
almost complete control over scattering, reflection, and transmission by tuning the
PT potential.

1 Introduction

Surface plasmons are hybrid electronic and photonic excitations supported between
conducting and dielectric materials [1]. Their unique dispersion enables small
wavelengths and high electromagnetic field intensities at optical frequencies,
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effects which have been utilized to realize subwavelength waveguides [2], efficient
light-emitting diodes [3], thresholdless nanoscale lasers [4], and lenses that beat the
diffraction limit [5]. Since plasmonic effects generally take advantage of the real part
of a material’s refractive index, losses (which arise from the imaginary component
of the index) are seen as detrimental. However, the concept of Parity-time (PT)
symmetry in optics has cast the imaginary component of the refractive index in a
more favorable light. PT-symmetric media allow for control over electromagnetic
field distributions with careful structuring of the imaginary index, which depending
on sign, encompasses both optical attenuation and amplification.

In general, PT-symmetric systems require that the refractive index fulfills
n
(−→
r
) = n∗

(−−→
r
)
[6]. Accordingly, spatially-symmetric distributions of loss and

gain are inherent to these non-Hermitian systems. Fulfilling this condition on the
refractive index guarantees the existence of a so-called exceptional point, where
two distinct eigensolutions coalesce to the same values; beyond this point, the
electromagnetic properties of a system significantly shift.

PT-symmetric potentials have emerged as a new scheme to control field distribu-
tions in loss and gain media, so that light propagation can be asymmetric and even
unidirectional. They have enabled loss-induced optical transparency [7, 8], lossless
Talbot revivals [9], unidirectional invisibility [10] and perfect cavity absorber-lasers
[11, 12]. Combined with non-linear media, PT-symmetric potentials have also been
suggested for optical diodes, isolators and circulators.

While most optical components have been constructed from wavelength-scale
components, here we describe novel nanophotonic PT elements based on plas-
monics. Combining the tunable properties from plasmonic nanostructures with the
asymmetric and exceptional point behavior of PT media, wholly new devices can
be constructed which overcome fundamental limits in traditional optics. In this
chapter, we first develop our understanding of PT-symmetric plasmonic structures
by considering both planar and coaxial waveguide geometries. We solve for the
waveguide modes with varying PT potentials, and then use this understanding to
design ultra-compact perfect absorber-amplifiers, compact multiplexers, and unity-
efficiency polarization converters. Placing emitters near these structures leads to
other unconventional behavior, including extremely high Purcell enhancements near
exceptional points and spectral regimes where emitters act as perfect absorbers and
vice versa. Finally, we explore metamaterials constructed from these plasmonic
building blocks, developing bulk synthetic media with tunable optical properties. In
particular, we show how in the linear regime, such metamaterials can enable unity
efficiency Veselago lensing, and in the non-linear regime, broadband and wide-angle
nonreciprocity.

Taken together, this suite of PT-plasmonic structures can lay the foundation of
novel devices throughout optical engineering, from lasing, sensing, and communi-
cation, all within deeply subwavelength footprints whose lengthscales compete with
their electronic counterparts.
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2 Section 1: Plasmonic Waveguides [13]

Perhaps one of the simplest, yet most fundamental, PT-symmetric plasmonic
building blocks is a 5-layer Metal-Insulator-Metal (MIMIM) waveguide. As seen
in Fig. 1, it is composed of deeply subwavelength metallic layers separated by
dielectric containing either loss or gain in equal magnitude. Using exact solutions
of Maxwell’s equations to investigate the dispersion, propagation, field distribution,
and power evolution as a function of the loss/gain parameter, we will understand
the impact of a Parity-Time symmetric potential, and in particular the exceptional
point, has on the optical properties. First, we determine the transverse-magnetic
(TM) modes of this plasmonic waveguide. This will illustrate eigenmode evolution
and the crossing of the mode propagation constants with increasing non-Hermiticity
parameter. Then, we demonstrate how tuning the coupling between the metallic
and dielectric layers of the MIMIM waveguide impacts state coalescence and
propagation constant merging. We note that, while our discussion focuses on
waveguide geometries, these derivations and results can be extended to other
coupled PT-symmetric systems, such as coupled resonators and quantum wells.

Figure 1a illustrates the five-layer plasmonic waveguide studied here. We
consider silver as the metallic layer, with a permittivity described by a lossless

Drude model: εAg = 1 − (ωp
ω

)2
, with ωp (the bulk plasma frequency of silver)

equal to 8.85 × 1015 rad/sec. We consider a lossless Drude model to highlight the
emergent features of PT potentials in plasmonic waveguide systems, but note that
similar effects can be obtained with a lossy metal. The dielectric layers are assumed
to be TiO2 with real

(
εT i02

) = 10.2 (real(n) = 3.2). Parameter κ corresponds
to the amount of loss or gain in the dielectric layers, and is hereafter called the
non-Hermiticity parameter. Note that loss and gain are always balanced in the
system, regardless of the value of κ. This system can be viewed as two MIM
plasmonic waveguides, each supporting a symmetric and antisymmetric plasmon
mode, coupled through the metallic spacer layer. The transverse-magnetic (TM)
modes of this five-layer system are described by

(
d2

dx2
+ k2

0εl − k2
z

)
Hyl (x) = 0, (1)

Fig. 1 Structure of
plasmonic waveguide system.
A layered structure with
dielectric thickness td and
metal thickness tm is
considered, where the
dielectric layers have equal
and opposite inclusions of
loss (+iκ) or gain (−iκ)
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where kz is the wave vector along the propagation direction z, Hyl(x) is the magnetic
field, and the subscript l denotes the lth layer.

The dispersion of this waveguide system can be determined with the Transfer
matrix method, which can be found in other texts [14]. First, we consider metallic
and dielectric layer thicknesses of tm = td = 30 nm. Figure 2a shows the dispersion
curves of the four lowest order modes (labeled B1–B4), of the structure as a function
of normalized frequency (ω/ωp) for κ = 0 (i.e., a lossless waveguide). As seen in
Fig. 2a, all modes have divergent wave vectors at a free-space energy of 1.73 eV (0.3
ωp), which corresponds to the surface plasmon resonance frequency (ωsp) of Ag and
TiO2. Such divergent wave vectors are typical for lossless plasmonic systems. For a
non-Hermiticity parameter κ = 0, (x) = (−x), and all distinct modes have definite
magnetic field parities with respect to x: modes B1 and B3 are odd with respect to
x = 0 (the midpoint between the five-layer MIMIM waveguide), while modes B2
and B4 are even. Note that modes below ωsp are positive index modes, while modes
above ωsp are negative index modes, as evidenced by the slope of the dispersion.

One simple way of rationalizing these four MIMIM modes is through the concept
of coupled systems. The five-layer MIMIM waveguide is effectively a system of
two coupled three-layer MIM waveguides. For td = 30 nm, each MIM waveguide
supports only two plasmonic modes: an even parity mode below ωsp and an odd
parity mode above ωsp. When these two waveguides are coupled together to form the
five-layer waveguide of Fig. 1a, even and odd superpositions of the two lowest order
plasmonic modes form four distinct branches B1–B4. This feature can be clearly
observed in panels b–e of Fig. 2, which plot the real part of Hy (x) and z component
of the mode Poynting vector (side panels) for each branch. For modes B1 and B2,
the fields are indeed in- or out-of-phase superpositions of even MIM modes, while
modes B3 and B4 are superpositions of odd modes.

As the non-Hermiticity parameter κ is increased, the wave vectors begin to
move into the complex plane. For example, Fig. 3a shows the dispersion curves of
the MIMIM structure for κ = 0.2. Below the surface plasmon resonance, modes
B1 and B2 appear to coalesce at an energy of 1.34 eV (0.23 ωp), while above
the surface resonance frequency, B3 and B4 merge at 1.8 eV (0.31 ωp). Beyond
these “exceptional points” (EP), the wave vectors become complex conjugate pairs.
Therefore, they can be distinguished in the imaginary plane: One mode corresponds
to an exponentially-growing mode along the propagation axis (z), while the other
exhibits exponential decay. It should be noted that the propagation constant is
complex beyond the exceptional point, even though the loss and gain values in the
dielectric layers are always balanced.

The bottom panels of Fig. 3b–e, show the distribution of Hy for κ = 0.2. As in
Fig. 2, field profiles are shown for wavelengths of 1165 and 615 nm, corresponding
to energies less than and greater than the exceptional point energies, respectively. As
seen, the distributions of the fields are not symmetric. Notably, the fields become
skewed compared to their lossless counterparts, and begin to appear more similar
to each other as the exceptional point is approached. However, the power is still
distributed symmetrically with respect to x, which is consistent with having a
real propagation constant in these regions. As the symmetry of the power is still
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Fig. 2 Dispersion and fields in passive plasmonic waveguides. (a) Dispersion curve for κ = 0.
Fields from two different branches for modes with free-space wavelengths of 1165 (b, c) and 615
(d, e) nm. These fields demonstrate alternating, but definite, parity of the waveguiding modes
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Fig. 3 Dispersion and fields in PT-symmetric waveguides. (a) Dispersion curve for κ = 0.2. Fields
from two different branches for modes with free-space wavelengths of 1165 (b, c) and 615 (d, e)
nm. Note the asymmetric field profiles
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Fig. 4 Exceptional point symmetry breaking. Field profiles for bands B1, B2 and bands B3, B4
in the unbroken (a and b, respectively) and broken (c and d, respectively) phases. Balanced field
amplitude in the loss and gain channels are observed in the unbroken phase, while enhanced fields
in either the loss or gain are seen in the broken phase. Power distribution displayed on the right
side of each field plot

preserved with respect to x, these regions are called “unbroken” phases of the PT
system.

Figure 4a and b shows the distribution of the real part of Hy(x) at frequencies very
close to, but still within, the unbroken phase regime. Here, it can be clearly observed
that the distribution of B1 approaches that of B2 while that of B3 evolves toward B4.
Similarly, while the modal energy is distributed symmetrically with respect to the x
axis, it becomes quite similar for the two merged modes. These features indicate that
the crossing of the branches is not a simple degeneracy of states with multiplicity
of 2 (i.e., having two different field profiles with the same energy), but instead a
coalescence of two states.

In contrast, Fig. 4c and d illustrate the fields and power profiles for frequencies
in the merged region of the dispersion curves. Here, the modes again become
distinguishable, both in their complex wave vector and in their field localization.
While they have the same phase velocity, they are either growing or decaying
in amplitude as they propagate along the waveguide. Accordingly, the fields
concentrate exclusively in either the gain region (modes B2, B3) or the loss region
(modes B1, B4) of the waveguide. Further, this asymmetric field concentration
is accompanied by an asymmetric power distribution: For the decaying/growing
modes, power is concentrated in the loss/gain regions, respectively. Due to this
asymmetry, this region is termed a “broken” phase of the system.

Next, we explore the effect of coupling between the gain and loss regions of
the MIMIM waveguide, controlled via the metal thickness tm. As will be shown,
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Fig. 5 Exceptional point
frequencies with
non-Hermiticity. (a)
Calculated exceptional point
frequency for metal spacer
thickness of 20 nm (green),
30 nm (blue), and 50 nm
(red), for bands indicated. In
general, the exceptional point
frequency red-shifts with
increasing non-Hermiticity.
Dispersion plots for a metal
thickness tm = 20 nm and
dielectric thickness of
td = 30 nm when (b) κ = 0
and (c) κ = 0.2

such coupling not only determines the exceptional point energy, but also which
modes coalesce. We consider tm = 20, 30, and 50 nm. As before, we keep the
dielectric layer thicknesses fixed at td = 30 nm to maintain the same number of
waveguide modes. Figure 5 plots the exceptional point energy as a function of the
non-Hermiticity parameter κ. As seen, for fairly large thicknesses, tm = 30 nm and
50 nm, this mode merges with B2. Increasing κ or increasing the metal thickness
(i.e., decreasing the coupling) shifts the exceptional point to lower energies.
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Fig. 6 (a) Schematic diagram of a laser cavity and it’s time reverse, a coherent perfect absorber.
The two devices are PT-symmetric if positioned as in (a). (b) Schematic diagram of designed
absorber-amplifier. Dielectric channels are 25 nm thick with a 30 nm spacer between them.
Balanced inclusions of loss and gain in the dielectric channels renders this structure PT symmetric

As the metal thickness is reduced to 20 nm, mode B1 no longer merges with
mode B2, but rather with mode B4. The merging of a positive and negative index
mode is illustrated in the dispersion diagrams of Fig. 6. For a zero non-Hermiticity
parameter, four distinct modes exist, similar to the dispersion for waveguides with
tm = 30 nm. As the non-Hermiticity parameter is increased, modes B1 and B4 merge
together while B2 and B3 merge. As seen in Fig. 5, this exceptional point energy is
along the surface plasmon resonance frequency (ωsp), and is approximately constant
with increasing κ.

3 Section 2: Finite Plasmonic Waveguides for
Phase-Controlled Amplification and Absorption [15]

With the modal properties of planar PT plasmonic waveguide structures established,
we can exploit their unique properties in new, ultra-compact structures which
could enable small-footprint and high-speed signal modulation. Modulation of
optical signals typically requires wavelength-scale devices, since most materials
have relatively weak optical nonlinearities or electro-optic coefficients. Such large
dimensions ensure that the optical signal has sufficient interaction volume with the
active material. However, recent advances have enabled compact, subwavelength
optical modulators based on the strongly enhanced near fields afforded by surface
plasmons. While plasmonic losses play an important role in some of these devices,
for example by aiding signal absorption, they generally limit the maximum signal
modulation that can be achieved. Indeed, in many plasmonic modulators, it is
challenging to completely extinguish losses, resulting in signal attenuation even
when the device should be in a transmissive or amplifying state. Accordingly, ohmic
losses are often treated as a detriment, reducing propagation lengths or siphoning
energy into heating.



310 D. Barton III et al.

Loss, however, plays a beneficial role in PT-symmetric optical systems. Such PT
-symmetric optical systems will exhibit real eigenvalues below a critical magnitude
of the loss and gain (|κ|crit), and complex eigenvalues above. Importantly, below
κcrit, optical modes will neither become amplified nor attenuated as the loss and
gain perfectly balance one another. Above κcrit, however, new optical modes emerge
which preferentially interact with either the gain or loss and exhibit either strong
amplification or attenuation. This transition plays an important role in enabling
unidirectional and even non-reciprocal propagation in these optical devices.

For active signal modulation, no greater contrast exists than that between perfect
absorption and lasing, which represent zeros and poles in a scattering matrix. While
lasing produces a coherent beam of emitted light, a coherent perfect absorber (CPA)
uses the interference of two incoming coherent sources to trap all light in a cavity
that contains a threshold amount of loss until it is completely absorbed. If the
phase between the two sources is offset, the interference effect is modified and
total absorption is lost. The processes therefore represent the time-reverse of one
another, (t → −t), as illustrated in Fig. 6a. Furthermore, note that in lasers, gain
(−κcrit) provides amplification and ultimately stimulated emission, while in CPAs,
perfect absorption is achieved via equal but opposite loss (+κcrit). The relationship
between time, loss, and gain in both devices motivates the combination of perfect
absorption and lasing in one device based on PT-symmetry. The output of a CPA-
laser is determined by its illumination: two coherent illumination sources with the
correct phase relation result in CPA, while all other illumination phases produce
amplification and lasing.

Inspired by this, we theoretically demonstrate a nanoscale PT-symmetric modula-
tor capable of both strong coherent absorption and amplification. The device design
is based on a subwavelength plasmonic aperture composed of deeply subwavelength
plasmonic waveguides. As shown in Fig. 6b, we consider two 25 nm-thick dielectric
channels separated by a 30 nm metal spacer layer and embedded in a semi-infinite
metallic cladding. The length of the aperture is L. The dielectric channels are
modeled as materials with a Lorentzian dispersion that have an approximate real
refractive index of n ≈ 1.44 corresponding to SiO2, while the imaginary component
is varied for different simulations but always kept equal in magnitude and opposite
in sign for the two channels. The metal is a lossy Drude model representative of
silver. Note that we call the aperture PT-symmetric in describing the dielectric
channels; the cladding and separating metallic layer do not maintain PT-symmetry
and are uniformly lossy.

We first explore this PT-symmetric system for the case of a large aperture length
(L), with L → ∞, to determine the dependence of the modal dispersion on the
non-Hermiticity factor (κ). Using both an analytic transfer matrix method and a
finite difference time domain (FDTD) mode solver (Lumerical), we determine the
complex wavevectors and the |E| field profiles for different values of κ at a fixed
near-infrared wavelength, λ= 1662 nm, for the infinite waveguide. This wavelength
corresponds to the peak transmission through a 300 nm long, finite length, absorber-
amplifier described in later sections and is near wavelengths of interest to telecom
applications. Our analytic and FDTD methods produce highly corroborating results
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Fig. 7 Dispersion and field profiles in dielectric channels. Real (a) and imaginary (b) wavevectors
for the two modes considered. FDTD simulations (dots) match analytical model (line). Loss (c)
and gain (d) modal field profiles for κ = 0, 0.05, 0.1, and 0.15. All fields are normalized to either
the loss or gain channel, respectively

for modes supported by the structure from κ = 0 to κ = 0.2, which encompasses a
range of experimentally accessible values.

As seen in Fig. 7a and b, the two lowest order modes in the passive (κ = 0)
structure have imaginary wavevectors of a similar magnitude but distinct real
wavevectors, since they represent the even and odd magnetic field (Hy) distributions
in a structure. The green point represents the even mode of the five-layer metal-
insulator-metal structure, while the red point represents the odd mode of the κ = 0
structure. For κ > 0, the modes lose their definite parity, and we simply refer
to mode 1 (green trace) and mode 2 (red trace). As the non-Hermiticity factor
is increased, the real components of the wavevectors approach the same value,
while the imaginary components begin to diverge. Above κ = 0.1 mode 2 becomes
increasingly lossy while mode 1 evolves into a gain mode. This is the transition
from unbroken- to broken-symmetry. At κ = 0.11, mode 1 crosses the zero point in
Fig. 7b and becomes lossless, and for greater κ, it experiences amplification.

Figure 7c and d display the time averaged |E|-field profiles for the two modes
for selected values of κ. At κ = 0, the field intensity is greatest within the dielectric
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channels, with the odd mode possessing slightly greater field intensity in the metal
spacer layer. This profile results in the larger imaginary part of the wavevector. For
larger values of κ, the field profiles in the loss and gain channels become unequal
for the two modes with greater intensity in the gain channel for mode 1 and greater
intensity in the loss channel for mode 2. Note that in our Figure, the magnitude of
|E| is normalized such that the intensity remains constant in the dominant channel
and is diminished in the other channel. As κ increases, the reduction of intensity in
the non-dominant channel becomes more pronounced, and at κ = 0.15, it is half the
intensity of the dominant channel. The unequal field distribution and clearly defined
loss and gain modes indicate a transition to broken-symmetry and a unidirectionality
of power flow between the two channels in the structure.

For ideal PT-symmetric optical systems, a singular exceptional point marks the
transition between the unbroken- and broken-symmetry regimes of the device. In
other words, this exceptional point marks the splitting of the imaginary components
of the mode wavevectors and the merging of the real components. Correspondingly,
the distribution of the power remains perfectly symmetric up to the exceptional
point and becomes asymmetric beyond. Our system does not exhibit such a sharp
exceptional point because we include a lossy Drude model for the metal, and
thus our system is not perfectly PT-symmetric. However, we note that ideal PT-
symmetric behavior could be restored through “healing” the device [16] by altering
the real part of the index in one or both of the waveguides.

We next consider a finite-length resonator with L = 300 nm for both κ = 0
and κ = 0.1. Using FDTD simulations, the resonator is illuminated with a single
plane wave at normal incidence and the transmitted and reflected intensities are
collected. Figure 8 shows the transmission and reflection of both the κ = 0 and
κ = 0.1 resonators. As seen, the maximum transmission of the passive resonator
peaks at a wavelength of 1542 nm and is approximately 6% of the incident intensity.
A minimum in reflection occurs at slightly blue-shifted wavelengths (1470 nm) and
dips below 3%. Except at this minimum, the passive structure reflects substantially
more than it transmits, reaching a maximum of 50% of the incident intensity at a
wavelength of 1770 nm.

In contrast to the κ = 0 configuration, peak transmission through the cavity with
κ = 0.1 is 40 times greater than the peak with κ = 0, exhibits substantial line-width
narrowing, and reaches a maximum at 1662 nm. The reflection and transmission
peaks also occur at 1662 nm, and for both reflection and transmission, the signal
is amplified by more than two times. In other words, the cavity with κ = 0.1
has greater-than-unity reflection and transmission coefficients on resonance. For
wavelengths longer than the peak transmission, much of the incident intensity is
reflected. However, for wavelengths shorter than the peak transmission, there is little
reflection or transmission (< 30%) with a minimum in reflection of less than 4% at
1645 nm. From these simulations, we see that the κ = 0.1 configuration shows
unique transmission and reflection properties from κ = 0, holding promise as a
device with signal amplification.

To realize phase-modulated absorption and amplification, we illuminate the
resonator with two plane wave sources of equal intensity. As illustrated in Fig. 9a,
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Fig. 8 Normalized Transmission and reflection from the aperture with κ = 0 (grey, left) and
κ = 0.1 (black, right). Illumination condition is indicated by the inset

two sources of intensity Iin impinge on the aperture from opposite sides. The
right side source possesses a phase lead, φ, between 0◦ and 360◦. The scattering
from the aperture is collected as Iout,l and Iout,r, with Iout,r corresponding to the
side with the variable phase lead. As shown in Fig. 3, the κ = 0 and κ = 0.1
resonators have different spectral profiles, and therefore exhibit different phase-
dependent behavior at different wavelengths. For κ = 0, we consider a wavelength
of λ = 1767 nm, which is the reflection peak. We leave out the transmission peak
wavelength for κ = 0 from this discussion as the transmission intensity is far
less than the reflection intensity and the phase dependent behavior is accordingly
similar but less remarkable. For κ = 0.1, we look at the peak transmission and
reflection wavelengths, λ= 1662 nm, as well as the minimum reflection wavelength,
λ = 1645 nm. The peak transmission wavelength exhibits large modulation depths,
while the minimum in reflection wavelength shows strong directionality. The total
intensity scattered from the structures, as well as Iout,l and Iout,r, is plotted as a
function of phase offset for these wavelengths in Fig. 9b–d.

The phase dependent scattering for κ= 0 at λ= 1767 nm is shown in Fig. 9b. The
total scattering and directional scattering are normalized to the combined amplitudes
of the two plane waves constructively interfering in free space. The total scattering
(Iout,l + Iout,r) reaches a maximum of 63% when the two sources are perfectly
out of phase and a minimum of 47% when both sources are in-phase. Between
these two extremes, the aperture exhibits minimal directionality, with the difference
in scattering between both sides differing by no more than 10% of the incident
intensity.

The device’s scattering when κ = 0.1 for λ = 1662 nm is shown in Fig. 9c.
Sweeping the phase offset reveals far greater modulation in the total scattered
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Fig. 9 Phase-dependent absorption and amplification. (a) Broadband plane wave illumination
from both directions with equal intensity Iin. The right side input has a phase lead phi which varies
between 0 and 360◦ relative to the left side input. Iout,l and Iout,r represent the combined reflection
and transmission scattered normal to the aperture. (b–d) Scattering intensity exiting the aperture
while illuminated from both directions as a function of phase offset. (b) shows peak intensity for the
passive aperture, while (c) and (d) show maximum amplification and differential output intensity
for the κ = 0.1 aperture. (e–g) Cross sections of the pointing vectors for the same wavelength
and κ values of (b–d). (e) Power profile through a κ = 0 aperture with 180◦ offset at a free-space
wavelength of 1767 nm. (f) Maximum pointing vector magnitude for 1662 nm illumination of
a κ = 0.1 aperture occurs at 180◦ offset. (g) Strongly directional output intensity observed for
80◦ offset at 1645 nm with κ = 0.1 aperture. Poynting vector maps are normalized to the passive
aperture. Scale bar represents 25 nm

intensity compared to the κ = 0 configuration. Notably, a phase offset near 0◦
generates a total output that is less than half of the input intensity, while a phase
offset of 180◦ generates a total output that amplifies the input intensity by 5.7
times. Alternatively, the output from each side (Iout,l or Iout,r) can also vary between
roughly three times to less than 15% of the input intensity. Furthermore, the devices
with κ = 0.1 also exhibit more pronounced directionality than an aperture with
κ = 0. Almost complete directional absorption of the incident field is observed at
a wavelength of λ = 1645 nm, shown in Fig. 4d. With an incident phase offset of
80◦, the scattering from Iout,r can be reduced to a minimum of 0.46% of the incident
intensity. Maximum scattering occurs at a phase offset of 260◦ with Iout,r reaching
55% of the input intensity. The modulation depth at this wavelength is therefore
greater than 99%.

To better illustrate how far-field modulation arises from near-field properties,
Fig. 9e–g plot 2D near-field maps of the Poynting vector for the κ = 0 and κ = 0.1
resonators at the same wavelengths in Fig. 9b–d. The overlaid arrows indicate the
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direction of the Poynting vector and the underlying color maps show the magnitude
of the Poynting vector and are normalized such that the maximum magnitude in the
κ = 0 plot is unity. As seen in Fig. 9e, when κ = 0 and the structure is illuminated by
a phase offset of 180◦, the Poynting vector from each aperture facet is symmetric.
The Poynting vector points towards the aperture and into the metal with generally
low intensities as would be expected for a structure without gain. When κ = 0.1
and the structure is illuminated with a phase offset of 180◦, the Poynting vector
behavior is again symmetric along the y-axis (Fig. 9f). However, the maximum
intensity is more than two orders of magnitude greater than the κ = 0 aperture
and the distribution is no longer symmetric along the x-axis. The Poynting vector in
the gain (top) and loss (bottom) channels now differs by roughly a factor of 1.5,
and point from the gain channel to the loss channel. Since the aperture is near
but not beyond the exceptional point at κ = 0.1 and the length of the aperture is
small in comparison to the wavelength, we expect this directionality between the
two channels. The arrows in Fig. 9f also show that the scattering from the aperture
is dominated by the loss channel, indicating that the destructive interference at the
ends of the channel necessary for complete CPA is not present although nascent
intensity nodes do appear at the ends of the gain channel.

A near-field Poynting vector map is also plotted at a phase offset of 80◦ (Fig. 9g)
for λ= 1645 nm. As with the 180◦ phase offset at λ= 1662 nm, the Poynting vector
points from the gain channel to the loss channel inside of the aperture, while on the
aperture’s left, the Poynting vector mainly emerges from the loss channel. Unlike
panels (e) and (f), the color map indicates an unequal distribution of the magnitude
of the Poynting vector at the two ends of the aperture. Intensity is greater on the left
side and the scattering from the right side is hindered by interference effects visible
as a more pronounced node in intensity in the gain channel. The right side of the loss
channel does not possess an equally apparent node, but intensity is still substantially
reduced in comparison to the intensity from the left side matching the asymmetry in
Fig. 9d.

4 Section 3: Thresholdless Symmetry Breaking with Coaxial
Plasmonic Geometries [17]

Our analysis of planar plasmonic waveguides provides a foundation to understand
modal evolution under a PT symmetric potential which can be applied to other novel
systems with more complex configurations. While the waveguides exhibit transla-
tional symmetry, PT-symmetric systems can be designed with rotational symmetry.
As we will show, azimuthally arranged loss and gain with rotational symmetry
leads to new phenomena. Most interestingly, thresholdless exceptional points can be
deterministically designed, greatly reducing the materials requirements for this sort
of system. The addition of loss and gain can lift the degeneracy between clockwise
and counterclockwise modes, which can be used in mode-division multiplexing.
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Fig. 10 Schematic of the
PT-symmetric coaxial
waveguide where the channel
includes alternating sections
of loss (red) and gain (yellow)

As shown in Fig. 10, our structure is a three-layer coaxial waveguide consisting
of a dielectric ring and silver core embedded in a silver cladding. The silver core
has a radius of 60 nm and the permittivity is described with a Drude model as εAg =
1 − (ωp

ω

)2
, where ωp = 8.85 × 1015 Hz. The dielectric channel is 25 nm thick

and characterized by a real refractive index of n = 1.5. The channel is filled with
alternating sections of gain and loss, which can be represented as

�n =
{
ngain = −iκ, lπ/n ≤ φ ≤ (l + 1/2) π/N
nloss = +iκ, (l + 1/2) π/N ≤ φ ≤ (l + 1) π/N

(2)

Here, κ is the magnitude of the gain/loss, 2N is the number of loss (or gain)
segments, φ is the azimuthal angle around the coaxial channel, and l is an integer
spanning 0,1,...,2 N − 1. The presence of gain and loss makes the system non-
Hermitian, so κ can be considered the non-Hermiticity parameter. In this geometry,
the parity operator is defined as P(φ) → −φ. The refractive index profile and
permittivity of the coaxial waveguide therefore satisfy the PT-symmetry condition
(ε(r,φ) = ε∗(r,−φ)). While a closed-form solution to this PT coaxial waveguide
does not exist, a Hamiltonian formulation and degenerate perturbation theory can
be used to investigate the modal properties.

Due to the axial symmetry of the waveguide, the modes vary azimuthally as eimφ ;
in other words, they have well-defined angular momenta parametrized by m. For a
periodic refractive index distribution as in Eq. 2, the index can also be expanded in
the harmonic basis of eimφ . The overall symmetry of the waveguide’s cross section
can be categorized based on whether N is an integer or half integer.

N (half-integer): the distribution possesses anti-symmetry with respect to the
center of the coaxial waveguide (ε(r,φ) = ε∗(r,φ + π )), so even-order Fourier
coefficients vanish.

N (integer): the distribution has inversion symmetry with respect to the center
of the coaxial waveguide (ε(r,φ) = ε∗(r,φ + π )), so odd-order Fourier coefficients
vanish.
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The transverse electric and magnetic fields, Et and Ht, and corresponding
propagation constants β of the waveguide modes are determined via

Ĥ

[−→
Et−→
Ht

]
= β

[
0 ẑ×
ẑ× 0

][−→
Et−→
Ht

]
(3)

Here, the subscript t refers to the transverse components of the fields and ẑ is the
direction of propagation. The Hamiltonian Ĥ depends on the waveguide geometry,
as well as the material properties, and is given by

Ĥ =
[
ωε0ε − 1

ωμ0
∇t × [̂z (̂z · ∇t×)] 0

0 ωμ0 − 1
ωε0

∇t × [̂z (̂z · ∇t×)]

]
(4)

where ε0 and μ0 are the permittivity and permeability of free space, ε is the material

permittivity, and ω is the angular frequency. By choosing a complete basis |−→Fn
〉
, the

matrix elements of the Hamiltonian Ĥ can be determined as

Hmn =
〈−→
Fn|Ĥ |−→Fn

〉
= ωε0

∫
WG

ε(r)
−→
E

∗
mt ·

−→
E mtds

+ ωμ0

∫
WG

−→
H

∗
mt ·

−→
H mtds − ωε0

∫
WG

ε(r)∗E∗
mzEnzds

− ωμ

∫
WG

H ∗
mzHnzds

(5)

where subscripts m and n refer to the mth and nth modes, respectively; subscript z
denotes the longitudinal direction; and the integral

∫
WGds indicates an integration

over the cross section of the waveguide. From this last equation it can be inferred
that Ĥ is Hermitian if and only if ε(r) is real, i.e., all the materials are lossless.

For κ �= 0, the Hamiltonian can be written as Ĥ = ĤR + iĤI . When κ 	 n,
ĤR of the PT-symmetric and the uniform waveguide are nearly equal—hence ĤR is
diagonal in the basis of the homogeneous waveguide modes. Using Eq. 4 we have

Hmn =
〈−→
F m | ĤR + iĤI | −→F n

〉
=
〈−→
F m | ĤR | −→F n

〉
+ i
〈−→
F m | ĤI | −→F n

〉

= βnδmn + i
〈−→
F m | ĤI | −→F n

〉 (6)

The matrix elements of the perturbing Hamiltonian are determined as

HImn =
〈−→
F m | ĤI | −→F n

〉
= ωε0

∫
WG

εi(r)
−→
E

∗
m · −→E nds (7)



318 D. Barton III et al.

Here εi(r) is the imaginary part of the dielectric constant spatially modulated as
in Eq. 1. Considering the azimuthal variation of the modes in a uniform waveguide,
the above equation can be simplified to

HImn =
〈−→
F m | ĤI | −→F n

〉
= ωε0

∫ Rout

Rin

dr r
−→
R

∗
m(r) ·

−→
R n(r)

×
∫ 2π

0
dφ εi(φ)

i(n−m)φ = 2πωε0Cm−n ×
∫ Rout

Rin

dr r
−→
R

∗
m(r) ·

−→
R n(r),

(8)

where
−→
R (r) is the radial distribution of the modes and Cm − n is the (m − n)th

Fourier coefficient of the gain/loss arrangements in the channel given in Eq. 4.
Since Cm − n describes the gain and loss, it is linearly proportional to κ. The Fourier
coefficients can be largely controlled via N. The modal properties of each case can
be determined by solving for the eigenvalues and eigenfunctions of the H matrix
given by Eq. 6.

We first apply this formalism to a coaxial waveguide with a uniform channel
(κ= 0). Figure 16a plots the dispersion for this coaxial structure, where mode orders
up to m = 6 are found below 3 eV. Note that the dispersions of all modes diverge for
energies close to the surface resonance frequency of the silver-dielectric interface
(ωsp ≈ 3.1 eV). The modes of the uniform waveguide (κ = 0) form a complete

set, so they can be used as a basis |−→Fn
〉

to find the modes of the PT-symmetric

waveguides of Fig. 10b. Figure 11b shows the distribution of the longitudinal power
Pz of the zeroth-, first-, and second-order modes. Note that these modes all have
azimuthally symmetric power distributions as a result of possessing well-defined
angular momenta.

To investigate the effect of loss and gain inclusions on the modal properties,
we consider a fixed energy, E = 2 eV. As seen in Fig. 11, the uniform waveguide
supports five modes at this energy, namely, β0, β±1, and β±2. β± represents a pair of
degenerate modes, corresponding to CW and CCW OAM. Utilizing these modes
as the basis of expansion in Eq. (2), one can investigate the mode morphology
as a function of both N and κ. Fig. 17a shows the modal properties of a coaxial
waveguide with N = 0.5 at E = 2 eV. Panels (a) and (b) show the variation of the
real and imaginary parts of the propagation constants of the five lowest order modes
as a function of κ. To differentiate the new modes that appear when κ �= 0 from the
κ = 0 modes, superscript indexing has been used. At κ = 0 in Fig. 12, all modes
possess the same propagation constants as in Fig. 11, and the superscript notation
eigenvalues can therefore be matched to the unperturbed subscript eigenvalues. The
β(0) branch has the largest propagation constant and at κ = 0 corresponds to the
m = 0 mode β0. The degenerate pair β±1 becomes β(1) and β(2) for κ �= 0. Similarly,
the degenerate pair β ± 2 becomes β(3) and β(4) for κ �= 0.

As κ increases, the real(β) of degenerate modes separate from one another (i.e.,
β(1) from β(2), β(3)from β(4)) and at κ = 0.05, β(0) and β(1) reach an EP and real(β)
coalesce. β(2) and β(3) form a similar pair and coalesce at an EP at κ = 0.13. The
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Fig. 11 (a) Modes of the
passive coaxial waveguide
numbered based on their
azimuthal order. For the rest
of our discussion, we will
focus on a photon energy of
2 eV, marked by the three
stars. (b) Poynting vector
distributions for the m = 0, 1,
and 2 modes at an energy of
2 eV

propagation constants of the PT-symmetric waveguide’s modes are always either
real or complex conjugates of each other. To clarify this feature, the imaginary
parts of the propagation constants are plotted in Fig. 12a. Note that where real wave
vectors converge when the imaginary parts diverge.

Figure 12c shows the spatial distribution of the longitudinal component of the
Poynting vector Pz of the modes at small and large values of κ. For small values
of non-Hermiticity and before all EPs (κ = 0.02), the propagation constants of all
the modes are real, since the power is symmetrically distributed in the gain and loss
sections. As seen in Fig. 12a, the power distributions of all modes are symmetric
with respect to the x axis; however, in contrast to the uniform waveguide, the power
is no longer azimuthally symmetric. When the non-Hermiticity factor is increased
to a value beyond both EPs (κ = 0.2), new complex conjugate modes are formed.
These modes, on display in Fig. 12c, lose their symmetry with respect to the x axis
and are either localized mainly to the loss or gain half of the waveguide. The only
mode of this set which does not lose its x-axis symmetry is β(4). At higher values
of κ and for E > 2 eV, this mode would also eventually reach an EP and lose its
symmetry.

The results for N = 0.5 are reminiscent of classical EP behavior in one-
dimensional systems: namely, a finite value of κ is required to induce mode
coalescence and enter the broken-phase regime. However, because the coaxial
waveguide supports degenerate modes, thresholdless behavior can be achieved
provided the PT symmetry is engineered. Such behavior requires that the mode
symmetry match the distribution of loss and gain—a condition that can be met when
N = 1, but which can also be satisfied for higher order modes with higher values of
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Fig. 12 (a) Real and (b)
imaginary wavevectors for
the first 5 modes of the
coaxial structure under
consideration with N = 0.5 as
a function of non-Hermiticity
for photon energy E = 2 eV.
Inset shows cross section of
waveguide. (c) Out of plane
power distribution of the first
3 modes of the structure for
κ = 0.02 and κ = 0.2

N. The variations of the propagation constants as well as the corresponding power
distributions for this structure are given in Figs. 5 and 6 for E = 2 eV. For this case,
modes β(1) and β(2) possess a constant real propagation constant. The imaginary
parts of these modes separate from each other for κ �= 0 and therefore have no EP.
This behavior exists for all energies above cutoff for β(1) and β(2) at approximately
0.9 eV. We also observe a new pairing between β(0) and β(3), which reach an EP at
κ = 0.175. We note this EP occurs at a higher κ than both the pairing of β(0) − β(1)

and β(2) − β(3) for the N = 0.5 coaxial waveguide because β0 − β±2 have a greater
separation than β0 − β±1 and β±1 − β±2. The mode with the smallest wave vector
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remains unaffected by the inclusion of gain and loss and possesses a constant real
propagation constant with no imaginary part.

Figure 13 shows the power distribution for this N = 1 coaxial waveguide, again
at κ = 0.02 (a) and 0.2 (b). Unlike the N = 0.5 geometry, β(1) and β(2) show an
unbalanced power distribution even at the small value of κ = 0.02. The splitting
of these two modes is thresholdless (i.e., κth = 0), and for any non-Hermiticity
parameter greater than zero the power of these modes will be unequally distributed
in the gain and loss sections. This phenomenon can be considered spontaneously
broken PT symmetry without a regime of unbroken PT symmetry, as the propagation
constant becomes complex for any nonzero value of κ. Two additional modes (β(0)

and β(3)) reach the broken phase, but these modes possess a classic EP. One can see
the power is amplified and attenuated for β(1) and β(2) in Fig. 13c, while all other
modes show no variation in magnitude along the propagation direction for κ = 0.02.

5 Section 4: Nanoscale Coaxial Polarizers [18]

With the understanding of degenerate modes in PT systems, we apply coaxial
structures to finite devices for active polarization control. While high-quality
polarizers exist at the nanoscale, they typically reduce transmission. An unpolarized
source can be transformed into linearly polarized light with the use of filters, which
reduces transmission by 50%. Metasurfaces can spatially modify the outgoing phase
of incident light and convert light to another polarization without loss, but these
systems are not reconfigurable. Thus, tunable and active polarization conversion
in small footprints could be very useful for optical modulation and on-chip light
sources. Further, reconfigurability should be more than binary operations, which
may occur with electrical or mechanical biasing of phase change materials, liquid
crystals, etcetera. To accomplish all of this, we will theoretically demonstrate active
polarization conversion in a PT-symmetric plasmonic coaxial structure based on the
structures developed in the previous section.

A schematic of the aperture is shown in Fig. 14a. The coaxial aperture is within
a 300 nm thick silver film modeled with empirical data from Johnson and Christy.
The core’s radius is 60 nm, and the dielectric channel is 25 nm across—for a total
coaxial cross section of 170 nm. The real part of the refractive index of the dielectric
channel is n = 1.5, while the imaginary part, ±κ, is dynamically adjusted from 0 to
0.0187 during device operation. These values are achievable with traditional sources
of gain media including quantum dots and dopant dyes that could be introduced into
a SiO2 host. The distribution of positive or negative κ is azimuthally defined as four
alternating quadrants of gain and loss, producing two-fold mirror symmetry.

The transmission spectra of the finite coaxial aperture is highly dependent on the
addition of gain and loss when illuminated with an incident plane wave. Figure 14b
shows that the lowest order Fabry-Perot resonance of the aperture occurs at a
wavelength of 1117 nm. The transmission is normalized to that of the κ = 0
aperture and becomes ten times greater when κ = 0.018 for linear polarized light
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Fig. 13 (a) Real and (b)
imaginary wavevectors for the
first 5 modes of the coaxial
structure under consideration
with N = 1 as a function of
non-Hermiticity for photon
energy E = 2 eV. Inset of (a)
shows a cross section of the
waveguide. (c) Out of plane
power distribution for the first
3 modes of the structure for
κ = 0.02 and κ = 0.2

aligned between the gain and loss sections. The inset of this Figure shows a cross
section of the field profile at 1117 nm to confirm this is the lowest order Fabry-
Perot resonance. Because only the imaginary part of the index of the dielectric is
being modulated, the resonance wavelength changes by less than a nanometer—
a distinct advantage of this design over other phase-change material approaches.
Alternative dielectric fillers and metals could also tune the response of the resonator
and would be particularly useful in regions of the electromagnetic spectrum where
silver’s losses are too great.

The total transmission for the PT -symmetric coaxial aperture increases with κ,
but different output polarization states in the far field will evolve differently. This
effect produces the polarization control we explore in this section. We consider two
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Fig. 14 (a) schematic of the coaxial waveguide with alternating sections of gain (yellow) and
loss(red). Labels give the specified geometry. (b) Transmission spectra of the 300 nm long coaxial
aperture when κ = 0 and κ = 0.018. (c) dispersion of the imaginary wavevectors of the infinitely-
long coaxial waveguide as a function of non-Hermiticity at 1117 nm

orthogonal linear polarizations, one aligned to the loss sections and one aligned
to the gain sections, as a basis from which all polarizations can be built through
variations in phase or amplitude. The loss-aligned polarization (−45◦) experiences
enhanced absorption as κ is increased, and the gain aligned polarization (+45◦)
experiences less absorption or even amplification. Variations in the orthogonal
polarizations allow the coaxial aperture to effectively pull an input polarization state
towards a linear polarization state aligned with the gain sections.

Our first example of polarization control is conversion from circularly polarized
light (CPL) to linearly polarized light (LPL), schematically illustrated in Fig. 15a.
Self-normalized near-fields at the end of the aperture are displayed in Fig. 15b for
select values of κ. The peak fields are found along the core of the coaxial channel
for all values of κ, but the azimuthal distribution differs. When κ = 0.006, the peak
fields near the core interface are altered first, and the fields in the loss sections
drop by roughly a factor of two compared to the peak fields in the gain sections.
A node starts to appear in the middle of the loss sections for κ = 0.012 and reaches
near-minimum fields at κ = 0.018. Throughout the full range of operation, the gain
regions appear largely unchanged because of the self-normalization but experience
well over a two-times amplification. The changes in the near-fields can be relevant
for directional or locationally dependent near field coupling applications. To confirm
the transmitted polarization state, we propagate the forward scattered light to the far-
field, in the direction normal to the film surface, and analyze the transverse electric
field components.
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Fig. 15 (a) Schematic of illumination conditions considered. (b) Evolution of output electric field
intensity with increasing non-Hermiticity. Linear polarization characteristic evolves with κ. (c)
Poincare sphere of the transmitted polarization state in the far field, showing a transition from
circularly polarized light to linearly polarized light. (d) Far-field phase difference between Ex
and Ey

Figure 15c shows the polarization state of the coaxial aperture’s far-field
transmission for a range of κ when illuminated with CPL; we consider the fields
normal to the coaxial aperture. The Poincare sphere is oriented such that the north
and south poles correspond to CPL, while the equator is LPL. The polarization
is marked with circles for κ = 0 through κ = 0.0187, as indicated by the
colormap. Each point represents a κ = 0.001 increment, aside from the last,
which represents a 0.0007 increment. The points show a smooth progression from
CPL, through varying degrees of ellipticity, to linear polarization. The polarization
angle is approximately 45◦, the angle corresponding to the center of the gain
region.

To explain the rate of change of ellipticity as a function of κ, we consider
the anisotropic amplitude modification and investigate the change in phase of the
orthogonal polarizations. Figure 15d shows that the difference in phase between
the electric field in x and y drops from π/2 to zero as the polarization transitions
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from circular to linear. We consider Ex and Ey aligned between the gain and loss
sections such that their total magnitudes will remain constant for all κ, but the
weight between the gain and loss mode will change considerably. As seen, there
is a sublinear drop from π/2 phase difference to effectively 0 phase difference
when κ = 0.0187, the value at which the loss mode is killed off and the gain mode
sufficiently amplified in this geometry.

Selective amplification and absorption can also be used to smoothly achieve
polarization rotation of linearly polarized light by adjusting the relative amplitudes
of the orthogonal components. The coaxial aperture is capable of up to 80◦
polarization rotation while maintaining a high degree of linearity. Rotation always
occur in the direction with the shortest path of rotation to the gain-orientation
defined as 45◦, as noted in Fig. 15a. The electric field intensity at the end of the
coaxial aperture is shown in Fig. 16b when the structure is illuminated with −35◦
linearly polarized light for four values of κ. −35◦ corresponds to 10◦ away from the
loss axis, and so the electric fields are localized to the loss sections while field nodes
exist in the gain sections. As κ is increased, the hot spots and nodes rotate counter-
clockwise around the dielectric ring. Beyond κ = 0.012, the rotation increment per
κ increases; by κ = 0.018, the hot spots have aligned with the gain sections, and the
weaker nodes are aligned with the loss sections. The fact that the minima are slightly
elevated hint that the polarization has taken on some minor ellipticity for this full
80◦ rotation. For input polarizations beyond 85◦ offset from the gain-angle, we see
the coaxial aperture functions as a polarization filter and increasingly absorbs light
for higher values of κ; LPL inputs between −40◦ and − 50◦ will therefore lose some
intensity when passed through the coaxial aperture.

The progression of the normal far field polarization rotation is expanded on for
two input linear polarizations, −5◦ and −35◦, in Fig. 16b. The Poincare spheres
are rotated such that the perimeter corresponds to linear polarized outputs equator.
For both inputs, we see that for κ = 0.0187 the polarization is pulled to 45◦, the
angle corresponding to the gain sections. When the input is −5◦, the points are
relatively equally spaced and lie directly on the perimeter. In fact, for the final
45◦ output, the ellipticity ratio between the gain aligned polarization and the loss
aligned polarization (major axis and minor axis) is over 550. Conversely, when
the input polarization is −35◦, the spacing between the equal steps in κ appears
nonlinear, and for the maximum degree of rotation the point lies slightly off the
perimeter, indicating some ellipticity. For this maximum range of 80◦ rotation, the
elliptical contrast ratio between the gain and loss axis (major axis and minor axis)
is approximately 25.

A complete range of input polarizations and their resulting far-field output
polarizations is shown in Fig. 16c for four select values of κ. All input polarizations
<80◦ offset are fully rotated to 45◦. We see the polarizations are pulled down to the
gain axis at 45◦ with nonlinear rates that vary both as a function of input polarization
and κ. The nonlinearity of the polarization rotation is explored more thoroughly
in Fig. 16d. For −5◦ and −15◦ inputs, we see roughly linear polarization rotation
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Fig. 16 (a) Electric field intensity at the output of the aperture when illuminated with LPL aligned
to −35◦. Field intensity rotates around the coaxial structure with increasing non-Hermiticity. (b)
Poincare sphere representation oriented to show linear polarization conversion for two different
illumination conditions. (c) Output polarization angle as a function of input angle with increasing
non-Hermiticity. (d) Simulation and model of output polarization as a function of κ

as a function of κ in both the simulation and the model. As the total distance of
rotation is increased, as in the case of −25◦ and −35◦ inputs, we see the sensitivity
of the output polarization to κ increases with κ in both the simulation and the model.
This nonlinearity arises from the inverse relationship between the transmitted fields
and κ.
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6 Section 5: Parity-Time Symmetric Plasmonic
Metamaterials [19]

All of the properties we have described thus far result from the strongly confined
fields inherent in plasmonic nearfields, which allow us to build materials with deeply
subwavelength length scales. Because of this, effective properties can be defined
and we can construct metamaterials from these building blocks. As we will see,
the exceptional point has a dramatic impact on the optical properties of the meta-
material, with mode coalescence leading to dramatic changes in refractive index,
reflection, and transmission. Myriad interesting effects such as a negative refractive
index, elliptical to hyperbolic dispersion, double refraction, and others can be tuned
by the modifying the non-hermiticity parameter. Due to the large modulation in the
bandstructure achievable in this system, we will further demonstrate nonreciprocal
transmission over a large bandwidth in the visible with simple assumptions about
the saturation of loss and gain media.

We again consider a planar plasmonic metamaterial with five layers of alternating
metal and dielectric, with the unit cell period indicated by �. Within each unit cell,
the thicknesses of the metal tm and dielectric td are deeply subwavelength, with
tm = td = 30 nm. We consider silver as the metal, described by a lossless Drude
model with dielectric constant εAg = 1 − (ωp/ω)2; the bulk plasma frequency of Ag
is again assumed to be 8.85 × 1015 s−1. We consider the dielectric layers to be TiO2
with n = 3.2 ± iκ. PT-symmetric potentials require balanced loss and gain, so the
magnitude of the imaginary index of TiO2 (κ) is identical for alternating dielectric
layers. With these materials, the surface plasmon resonance ωsp occurs at 1.73 eV
(ωsp/ωp = 0.29), and negative index modes are observed between this frequency
and ωp. Here we theoretically investigate the evolution of the optical bands of this
metamaterial upon varying the non-Hermiticity parameter.

Using the transfer matrix approach, we solve for the dispersion curves of the
five-layer unit-cell plasmonic waveguide for transverse-magnetic (TM) polarized
illumination. To determine the band diagrams of the periodic metamaterial, the
wave vector along the z direction is swept in the first Brillouin zone (0,π/�),
and the characteristic equation is minimized to find the propagation constant along
the x direction at each frequency. The results are shown in Fig. 17b–e for κ =0,
0.2, 0.3, and 0.5, respectively, reflecting gain coefficients achievable with current
(κ ≤ 0.2) and next-generation gain media. Note that the colormap indicates purely
real values of kx, corresponding to lossless propagation along the metamaterial.
For a non-Hermiticity parameter k = 0, four different branches are observed:
two below ωsp (B1 and B2) and two above (B3 and B4). Because all constituents
are lossless, the wave vectors diverge at ωsp. B1 and B2 are characterized by
positive slopes and hence positive refractive mode indices. In contrast, B3 and
B4 are characterized by negative slopes and hence negative refractive mode
indices.
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Fig. 17 (a) schematic of metamaterial considered in this section. (b–e) band diagrams through
the first Brillouin zone for the metamaterial with κ = 0, 0.2, 0.3, and 0.5, respectively. Exceptional
points are denoted with black dots, where eigenvalues cease to be real and enter the complex plane
(path beyond the EP is traced out with dashed lines)

When κ is increased, the modes merge together at the exceptional points of the
dispersion, denoted by black circles in Fig. 17c–e. Beyond these exceptional points,
the two distinguishable lossless modes below and above ωsp (i.e., B1 and B2 or B3
and B4, respectively) evolve to a gain mode and a loss mode with the same phase
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velocity. Due to their complex wave vectors, we denote these modes as black, dashed
lines in Fig. 17c–e.

To understand these loss and gain modes, note that the transfer matrix of the
PT-symmetric metamaterial possesses the following symmetry property:

T
(
ω, kz, k

∗
x

)
T ∗ (ω, kz, kx) = I, (9)

where I is the identity matrix. The Bloch modes of the metamaterial are eigenvalues
of T and satisfy

∣∣∣T (kx)− ei�kzI

∣∣∣ = 0. (10)

Taking the complex conjugate of Eq. 12 and using the symmetry property of Eq.
11, the following relation is obtained:

∣∣∣T (k∗x)− ei�kzI

∣∣∣ = 0. (11)

Equation 11 means that if kx admits a real solution for the Bloch wave vector,
k∗x is also a solution. Accordingly, the bands are centrosymmetric in the complex
(kx,kz) plane. Also note that the loss and gain modes of Fig. 17c–e coalesce at ωsp
and their wave vectors at ωsp remain finite.

While real periodic spatial refractive index profiles lead to the appearance of an
infinite number of band gaps, complex periodic index profiles result in complex
dispersion curves and no complete band gap across the entire frequency range.
However, if the refractive index profile satisfies the condition for PT symmetry
(n(z) = n∗ (−z)), real propagation constants and complete band gaps can exist
provided κ ≤ κth. Here κth is the threshold value at which the Hamiltonian and
the PT operator no longer commute, and consequently, real-valued solutions cease
to be supported by the complex potential. Fig. 17c–e illustrate this feature for
increasing non-Hermiticity parameter. For example, for κ = 0.2 and κ = 0.3 purely
real wave vectors and band gaps are observed for all bands both above and below
ωsp. However, for κ = 0.5, purely real eigenmodes below ωsp do not exist across
visible and near-infrared frequencies. Furthermore, the band gap between B3 and
B4 merges for large kz, and these bands only exist over a very limited wave vector
and wavelength range.

The non-Hermiticity parameter not only changes the propagation constant
and band gap of the metamaterial, but also the band curvature. Figure 18 plots
the equifrequency contours of bands B1–B4 at wavelengths of λ = 954 nm
(ω/ωp = 0.22) for B1 and B2, λ = 604 nm (ω/ωp = 0.35) for B3, and λ = 445 nm
(ω/ωp = 0.48) for B4. As seen in Fig. 18, for a non-Hermiticity parameter κ = 0,
bands B1 and B4 are elliptical (i.e., n2

xn2
z ≥ 0) while bands B2 and B3 are

hyperbolic (i.e., n2
xn2

z ≤ 0). Moreover, B4 is characterized by a nearly perfect
circular equifrequency contour and almost equal values of effective refractive
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Fig. 18 Equifrequency
contours of the metamaterial
with increasing
non-Hermiticity parameter.
(a) Bands B1 and B4 are
plotted at 954 nm and
445 nm, respectively. (b)
Bands B2 and B3 are plotted
at 954 nm and 604 nm,
respectively. Band B4 is
isotropic for zero and small
non-Hermiticity, while B3
undergoes a hyperbolic to
elliptical transition with
increasing non-Hermiticity

indices in both the x and z directions. Accordingly, this metal-insulator-metal
metamaterial is isotropic at λ = 445 nm.

For increasing non-Hermiticity parameter, B1 and B4 remain elliptical while
B2 remains hyperbolic. However, band B3 undergoes a hyperbolic to elliptical
transition for κ = 0.5. Such hyperbolic-to-elliptic transitions could enable dynamic
tuning of Purcell enhancements for emitters near the metamaterial. Furthermore,
they could modulate Talbot revivals or the formation and resolution of images
generated by hyperbolic metamaterial superlenses.

The results of Fig. 18 imply that with increasing non-Hermiticity parameter,
the material can evolve from an isotropic metamaterial to an anisotropic one. The
structure can also become highly directional. This property cannot be derived from
the band diagrams, but can be understood by considering the transfer matrix:

T =
[
a b

c a∗
]
. (12)

Here the parameters a, b, and c are related to the reflection and transmission
coefficients r and t as rL = −c/a∗ , rR = b/a∗ , and tL = tR = 1/a∗ , where the
subscripts L and R denote illumination from the left and right, respectively. As these
equations indicate, an optical system composed of linear and reciprocal materials is
nondirectional provided the components are lossless. In other words, the transmitted
and reflected powers T = |t|2 and R = |r|2 sum to unity and are independent of
illumination direction, since TL = TR = T and T + RR = 1 = T + RL, so RL = RR.
When loss or gain is introduced into the system, the transmission coefficient remains
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the same for both directions of illumination. However, the reflection coefficient need
not be symmetric, as power can be attenuated or generated within the structure. The
asymmetry is obtained at the price of losing propagating Bloch modes. However,
asymmetric responses can be obtained in a PT-symmetric potential where purely
real bands exist as well.

To illustrate this directional behavior, Fig. 19 plots plane-wave refraction of
light from vacuum (n = 1) through a metamaterial composed of 10 unit cells. We
consider TM-polarized illumination of wavelength λ = 445 nm impinging on the
metamaterial at an angle of θ = 45◦ in the (x,z) plane. The colormap of Fig. 3
plots the Hy component of the fields. The arrows of Fig. 19 indicate the direction of
illumination and transmission, each determined by spatially averaging the Poynting
vector in each region.

For κ = 0 (Fig. 19a) the power is negatively refracted with an angle of ∼
−32◦. This result is in excellent agreement with our band structure calculations,
which yield a refracted angle from Snell’s law of ∼ −31◦. The refractive index
n = −√

1.87 = −1.36 at this non-Hermiticity value is independent of the
illumination angle and direction. Indeed, for illumination in the (x,z) plane, or
an “endfire configuration,” the same refraction angle is observed (see Fig. 20a).
The same refraction angle is also observed for illumination from all sides of the
metamaterial (i.e., illumination from ±x, ±y, and ± z).

Upon increasing the non-Hermiticity parameter of the metamaterial, the material
becomes highly directional. Fig. 19b and c illustrate the field profiles in a 10-layer
PT-symmetric metamaterial when illumination is from the loss and gain side (i.e.,
illumination in the +z or −z directions, respectively). As a particular example we
consider κ = 0.445. As seen, field profiles and refraction angles are completely
different for illumination from +z (loss side) versus −z (gain side). Illumination
from +z yields negative refraction at an angle of −81◦ (Fig. 19b). In contrast,
illumination from −z yields negative refraction at an angle of ∼ −43◦ (Fig. 19c).

Furthermore, this structure is characterized by tunable reflection and transmis-
sion coefficients that can range from zero to at or above unity. This characteristic is
illustrated in the lower panels of Fig. 21, which plot the normalized-to-incidence
power at each position along the direction of propagation. For example, for
illumination from the −z direction (Fig. 20c) power flows backward toward the
source in the illumination region (Pz =−1), and away from the metamaterial on the
transmission side (Pz =+1). Therefore, the metamaterial is completely transparent,
in that the metamaterial can transmit all of the incident power, even though light is
emitted back towards the source.

Complementarily, for illumination from the +z direction (Fig. 20b) this meta-
material can also achieve unidirectional invisibility. As seen, the power is unity
on both sides of the metamaterial, indicating complete suppression of reflection
on the illumination side and complete transmission on the other. Formally, perfect
invisibility requires that the transmitted phase (φt) equal the phase of a plane
wave propagating in free-space (φFS). For the 10-layer metamaterial of Fig. 20b,
(φFS − φt)/2π = 2.75, so the object could be identified through the interference
with a reference plane wave. However, perfect unidirectional invisibility, i.e.,
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Fig. 19 Transmission and Reflection from structure. Magnetic field values for free-space light
with wavelength 445 nm is incident on the structure at 45◦ from the layer normal for κ = 0 (a) and
κ = 0.445 (b and c). Light incident from the loss side (b) and gain side (c) lead to substantially
different reflected intensity

φFS − φt = 2mπ, where m is an integer, can be achieved when the number of
periods is increased to 55, 74, and 91.

The directional scattering properties of the metamaterial can be rationalized by
considering the power as light propagates through the array. For κ = 0, power
remains constant throughout the metamaterial (Fig. 19a). However, with increasing
κ, power begins to oscillate within the metamaterial, with power increasing in the
gain regions and decreasing in the loss regions.

As a final visual example of the unusual unidirectional properties of this metama-
terial, Figure 20 plots the fields and refracted angles for illumination along the +x



Parity-Time Symmetric Plasmonics 333

Fig. 20 (a) 445 nm light
incident on passive structure
with angle of +45◦, with the
magnetic field values 1
micron from the interface
plotted on the right. (b) and
(c) plot fields for light
incident at +45◦ or −45◦,
respectively, for metamaterial
with κ = 0.445

direction (endfire illumination). For a non-Hermiticity parameter k = 0, illumination
at θ = ±45◦ yields refraction at ∓30◦, respectively, in good agreement with the
previously determined value of ∓31◦. With increasing non-Hermiticity parameter,
however, illumination at +θ yields markedly different results than illumination at
−θ. For example, for κ = 0.445, illumination at +45◦ yields a refracted angle of
−11◦, while illumination at −45◦ yields refraction along the metamaterial interface
at an angle of −90◦. This double refraction does not just manifest itself in the
intensity of the transmitted beam, but also in the profile of the fields, as seen in
the right panels of Fig. 20.

We now consider the effect of varying the non-Hermiticity parameter on the
scattering properties of the metamaterial. As before, we consider TM-polarized
illumination with a 45◦ tilted plane wave at λ = 445 nm. We limit our analysis
to illumination along either +z or −z. Based on equation 9, a generalized energy
conservation formula can be derived as |T−1| = √

RRRL, where T is the
transmitted power and RR and RL are the reflected powers from the right and left
sides, respectively.
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Fig. 21 Reflected and transmitted powers of the metamaterial with increasing k and varying
numbers of periods. (a) Reflected power upon illumination from the left (loss) side of the
metamaterial; (b) reflected power upon illumination from the gain (right) right side; (c) quotient
of reflected powers; and (d) transmitted power. In all panels the incident angle is θ = 45◦ and
the illumination wavelength is λ = 445 nm. The inset in (b) and (d) show the behavior of the
reflected and transmitted powers around κ = 0.035, where RR vanished and T = 1 independent of
the number of periods

Figure 21 plots the reflection and transmission coefficients as a function of k. As
seen, for κ= 0.035, the transmitted power equals unity independent of the number of
layers. Correspondingly at this point rR, shown in Fig. 21b, vanishes for any number
of layers. This property manifests itself as a peak in Fig. 21c, where the quotient
of relative reflection coefficients is plotted. Importantly, for κ = 0.035, this PT-
symmetric metamaterial is still isotropic, characterized by circular equifrequency
contours. Therefore, this PT-symmetric optical potential could enable lossless and
far-field Vesalago lensing, where PT symmetry significantly suppresses reflection.

For larger non-Hermiticity parameters (κ > 0.035), T exceeds unity. While the
transmitted power varies with k and the number of unit cells, it never drops below
1 up through κ = 0.445. At this non-Hermiticity value, the reflected power from
the left/loss side (RL) vanishes, as shown in Fig. 21a. For larger k, T remains at or
below unity. Non-Hermiticity parameters κ above 0.63 yield purely imaginary kz, so
no propagation is allowed through the metamaterial. This property is accompanied
by a rapid drop in T and strong increase in the reflectance for any number of layers.
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7 Section 6: Tunable Purcell Enhancement Near
PT-symmetric Potentials [20]

So far, our discussion has focused primarily on the propagating modes of these
structures. However, evanescent modes are also of great interest for near-field
interactions, such as nearfield scanning optical microscopy (NSOM), coupling and
energy transfer between different structures, and countless other topics. Here, we
will focus on the reflection and transmission of light from a quantum emitter in the
vicinity of this material. This represents a complete discussion of evanescent waves
and coupling between an emitter and cavity. Further, this may inform design of non-
hermitian local density of states, which may open new avenues for work in quantum
optics, strong coupling, and polaritonic-based metastructures.

The spontaneous emission and radiated power of an emitter can be dramatically
modified by interaction of a quantum emitter with its surroundings. Optical cavities
modify the local density of optical states which an emitter can decay into, which
may increase or decrease the radiative and nonradiative pathways. The enhanced
rate of radiative decay is encapsulated in the Purcell factor, a measure of the
decay rate relative to a dipole emitting into free space. Parity-Time symmetry in
these cavities will strongly modify the LDOS due to the guaranteed confluence
of optical modes with either increasing loss and gain, or by exceptional points
in frequency-wavevector space. As such, it is informative to understand the role
that non-hermitian optics has on quantum emitters. The strongly varying reflection
coefficients from a planar PT structure will lead to dramatic changes in the emission
of electric and magnetic dipoles, which may be used to determine chirality and
increase absorption of enantiomers of particular handedness. We begin by exploring
achiral emitters, showing how both the magnitude and sign of the radiated power can
be tuned. Depending on the strength of κ, the dipole can act either as a strong optical
source or an efficient absorber, with positive or negative radiated powers. Further,
the emitted power can be increased by several orders of magnitude at the exceptional
point, where the eigenstates coalesce and increase the LDOS. Subsequently, we
explore the radiation of chiral emitters near PT-symmetric metamaterials. Through
appropriate design of PT-symmetric potentials, we show how enantiomers can
be distinguished by their decay rates, with maximum differences observed at the
exceptional point.

We consider the same planar plasmonic metamaterial (shown in Fig. 22a) as in
prior sections, composed of a five-layer stack of alternating metallic and dielectric
films. The metal and dielectric thicknesses, tm and td, are deeply subwavelength
and are taken to be 30 nm. The metal is modeled as a lossless Drude material
with a permittivity ε = 1 − (ωp/ω)2. The plasma frequency ωp is taken to be
8.85 × 1015 s−1, similar to bulk plasma frequency of Silver. The dielectric layers
have a refractive index n ± iκ, with one layer corresponding to loss media (+κ) and
the other corresponding to gain media (−κ). For concreteness, we consider n = 3.2,
corresponding to the refractive index of TiO2 in the frequency range of interest. The
imaginary part of the refractive index κ is variable, but it is always identical in each
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Fig. 22 (a) Schematic of Purcell factor calculations. The same plasmonic waveguide structure is
considered, with a quantum emitter placed z0 away from the surface. Dispersion of TM (b) and TE
(c) modes for this structure

dielectric layer to satisfy the PT-symmetric condition of ε(z) = ε∗ (−z). The dipole
emitter is assumed to be a distance z0 away from the first vacuum/metal interface of
the structure.

Figure 22 shows the dispersion curves for the structure, indicating that both
transverse-magnetic (TM) and transverse-electric (TE) modes are supported. Each
panel includes calculations for two values of the non-Hermiticity parameter, κ = 0
and κ = 0.23. At κ = 0, the in-plane wave vector kx diverges for TM modes
(Fig. 22b) at the Ag-TiO2 and Ag-vacuum surface plasmon resonance frequencies
(E = 1.7 and 4 eV, respectively). Wavevectors remain finite and smaller than the
TiO2 light line for TE modes. As the non-Hermiticity parameter is increased, modes
converge toward the same energy and wave vector and coalesce at the exceptional
points (EPs), denoted by black circles. The exceptional point is of particular
importance as it shows a phase transition in the modal behavior of the waveguide.
Before this EP, the modes have real propagation constants, and field distributions
have a definite symmetry. After the EP, however, the propagation constants move
into the complex plane, and the fields lose their symmetry. This region beyond the
exceptional phase is called the broken phase. In the broken phase, one mode is
localized almost exclusively in the gain media, while the other is confined to the
lossy region.

To determine how these modes impact dipolar emission, we calculate the power
radiated by a dipole P normalized to its radiated power in free space P0. For an
electric dipole the normalized radiated power of the dipole is given by [21]
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whereas for a magnetic dipole, the radiated power is given by

P

P0
= 1 + 3

4

∣∣−→mρ

∣∣2∣∣−→m ∣∣2
∫ ∞

0
Re

[
kρ

kz

(
rTM − rT Ek

2
z

)
ei2kzz0

]
dkρ

+ 3

2

∣∣−→mz

∣∣2∣∣−→m ∣∣2
∫ ∞

0
Re

[
k3
ρ

kZ
rTEe

i2kzz0

]
dkρ

(14)

In Eq. 13, −→p , −→p ρ , and −→
p z denote the electric dipole moment and its transverse

and normal components, respectively [with the same scheme for Eq. 14]. Likewise,

kρ is the transverse momentum in the x-y plane (kρ =
√
k2
x + k2

y), and rTE and rTM

are the reflection coefficients from the structure for TE and TM polarizations.
In general, these equations imply three features of dipolar emission near a PT

plasmonic structure: First, the power strongly depends on the modal wave vector.
Therefore, at the surface plasmon resonance frequencies where mode momenta
diverge and a flat band appears, the LDOS increases and a significant modification
of the Purcell factor is expected. Second, the Purcell factor strongly depends on the
reflection coefficient. As discussed later, the reflection coefficient can be modified
with increasing the non-Hermiticity parameter. An abrupt change in the behavior
of the reflection coefficient at the exceptional point noticeably enhances the Purcell
factor, essentially giving rise to a new system resonance. Lastly, Eq. 13 suggests that
the reflection coefficient can control the sign of the power as well. The reflection
coefficients of evanescent components (kρ ≥ k0) interacting with the gain or loss
side of PT media are always complex conjugate of each other: rG = r∗L. For these
evanescent components, kz is purely imaginary; thus, the exponential term ei2kzz0

is real, and the power spectrum is directly proportional to the imaginary part of
the reflection coefficients. Accordingly, the nonradiative power changes sign when
the dipole is repositioned from the loss to the gain side. Ultimately, whenever
the nonradiative contribution is dominant (i.e., when the dipole is close to the
structure), this feature can change the sign of the total power P. This intriguing result
complements the reports of asymmetric reflections of propagating plane waves from
PT structures when illuminated from the loss or the gain side. In the following
sections, we present the numerical results particular to the structure depicted
in Fig. 22.

Since the power emitted by a dipole is directly related to the reflected fields, we
start by investigating the reflection coefficients. Figure 23a plots the variation of
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Fig. 23 (a) Reflection coefficients of 1.2 eV light as a function of in-plane wavevector and non-
hermiticity. A resonant loop is observed. (b) Purcell factor for vertical (red) and horizontal (blue)
electric dipoles 20 nm above the metamaterial on the gain side dashed line) or loss side (solid line)

the reflection coefficient with non-Hermiticity parameter κ and in-plane momentum
kρ. We consider TM-polarized illumination and set the energy to E = 1.2 eV.
At this energy, all modes supported by the structure lie below the vacuum light
line and have real momenta exceeding that of free space (Fig. 22b). As seen, the
reflection coefficient diverges for wave vectors corresponding to the guided modes.
For κ = 0, this divergence occurs for three wave. As the non-Hermiticity parameter
is increased, the mode with the lowest wave vector exhibits minimal variation. For
better clarification the vacuum light line is added to Fig. 23a as well (black dashed
line). Referring to Fig. 22b, one can clearly see that at low energies some of the TM
modes closely follow the light line and only detach from when the energy increases.
However, the higher-momentum modes have reflection coefficients that begin to
coalesce and form a loop in the kρκ plane, terminating at the exceptional point,
κ ≈ 0.23 in Fig. 23a. For larger values of κ, the reflection coefficient at these larger
wave vectors decreases due to the lack of momentum matching between guided
modes and incident plane waves.

Figure 23b indicates that the sign of the total power changes based on whether
the dipole is located on the gain side (dashed lines) or loss side (solid lines) of
the metamaterial. As described before, the nonradiative part of the power spectrum
experiences complex-conjugated reflection coefficients from the gain and loss sides.
This result implies that the nonradiative part of the power changes sign as the
dipole is relocated from the gain side to the loss side. Here, the dipole’s close
proximity to the interface means that the nonradiative contribution dominates the
radiative contribution by about two orders of magnitude. Therefore, if the sign of
the nonradiative part is changed, the sign of the total power can also be changed.
While the large positive power from the loss side means that the dipole behaves
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Fig. 24 Purcell factor for vertical (red) and horizontal (blue) magnetic dipoles 20 nm away from
structure on the gain side (dashed) or loss side (solid). Incident photon energy of 1.2 eV (a) and
3.6 eV (b). At higher energies, exceptional points emerge for both TM and TE polarizations,
leading to much more enhanced emission

as an efficient emitter, the negative sign on the gain side implies that the dipole
efficiently absorbs the power reflected back from the structure.

To understand this behavior further, we investigate the effect of the dual TE
modes and calculate the emitted power from a magnetic dipole. Figure 24a plots the
normalized power for both horizontal and vertical magnetic dipoles as a function of
κ at a fixed energy of E = 1.2 eV. Here, unlike electric dipoles, dipole orientation
leads to significant differences. While the horizontal magnetic dipole shows a
maximum at the exceptional point (κ ≈ 0.23) like the electric dipole case, the
vertical magnetic dipole has no resonant features. Based on the symmetry of emitted
fields from these dipoles, it is clear that a horizontal magnetic dipole excites both
TE and TM polarizations, while a vertical dipole exclusively couples to TE modes.
Since the structure supports no TE modes here, neither an EP nor a significant
resonant feature will be observed at E = 1.2 eV for TE modes. Accordingly, the
powers remain small for vertically oriented dipoles. Further, the total power for
horizontal magnetic dipoles is not symmetric. This asymmetry is a general feature
for all dipoles near PT media due to their directional scattering properties, but it is
magnified for this particular case since the ratio between nonradiative and radiative
contributions is small. While the nonradiative part still contributes dominantly to
the total power at this short dipole-structure separation, it only is about three times
larger than the radiative part.

As the energy increases, the structure supports both TM and TE modes. For
example, at E = 3.6 eV, the TE reflection coefficient in the kρκ plane shows a
loop at κ ≈ 0.25. Therefore, unlike E = 1.2 eV, at 3.6 eV both TE and TM
modes have exceptional points in their spectra. Figure 24b shows the total power
radiated by both vertical and horizontal magnetic dipoles at this energy. Unlike
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lower energies, resonant features in the dipole power are observed for both dipole
orientations. In particular, the vertical magnetic dipole has a resonant peak at
κ = 0.25, corresponding to the exceptional point of these modes at this energy.
The horizontal dipole, on the other hand, has two resonance features: one due to the
TM-mode coalescence and another due to the TE-mode coalescence. Note that the
latter coincides with the resonance features of the vertical magnetic dipole at the EP
of the TE modes. For better clarification, the inset shows the zoomed-in version of
the power radiated by a horizontal magnetic dipole in the vicinity of the TE and TM
exceptional points.

Figures 23 and 24 imply that mode coalescence at the exceptional points
significantly modifies the power dissipation spectrum (the integrand of equation 13)
and the total power. The poles of the reflection coefficients (or S-matrix) provide
a deeper understanding of this phenomenon. Before the exceptional point, the two
simple poles, corresponding to the two slow modes below the TiO2 light line in
Fig. 22b, contribute oppositely to the integral and hence the total power. At the
exceptional point, these modes coalesce and form a double pole, and this opposite
behavior vanishes. Therefore, a marked increase in the power is obtained. After the
exceptional point, only one simple pole contributes. However, the contribution of
this pole monotonically decreases as the pole moves away from the real axis into
the complex plane (larger κ); hence, the total power decreases again. The spectral
variation of the radiated power as a function of energy is shown in Fig. 25. Both
vertical electric and magnetic dipoles are included. As seen for a dipole 20 nm
above the surface of the metamaterial, peaks in the normalized power appear at
both frequencies of the exceptional point as well as the surface plasmon resonance
frequencies. For example, a vertical electric dipole couples exclusively to TM modes
and exhibits local maxima in the Purcell factor for energies of 1.2 and 1.9 eV
(the exceptional points for the four lowest-order branches) and at 2.3 and 4 eV.
In contrast, magnetic dipole radiation cannot couple to TM modes at E = 1.2 eV.
However, its power spectrum has a resonance feature at E = 3.8 eV, where an

Fig. 25 Vertical (a) electric
and (b) magnetic dipoles
20 nm above metamaterial
surface on the gain (red) or
loss (blue) side. The
non-Hermiticity parameter κ

is set to 0.23. The incident
photon energy is varied from
less than 1 eV to greater than
4 eV.
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exceptional point arises for κ = 0.23. Variation of the normalized power at lower
energies is due to the appearance of the two TE modes around 1.9 and 2.7 eV.

While the above results pertain to electric and magnetic dipoles, the effect of
the exceptional point on the radiated power is a general property of the structure
and its modal features. Therefore, the results can be extended to more complicated
sources, including chiral emitters. The emergence of chirality is largely attributed
to the interaction of simultaneous electric and magnetic dipoles. Consequently,
as with achiral emitters, the decay rate and radiated power of chiral molecules
can be modified through their surrounding environment. It has been shown that
enantiomers exhibit enantiospecific coupling to the modes of a chiral scatterer and
that chiral structures can substantially modify the decay rate and radiation pattern of
chiral molecules. Here, we consider the radiation of a chiral molecule in the vicinity
of our PT-symmetric structure, which, importantly, contains no chiral constituents.
As will be shown, even this achiral structure can significantly modify the radiation
of chiral emitters.

Equation 1 can be extended to include the simultaneous radiation of the electric
and magnetic dipoles. Doing so, the normalized power radiated by a chiral source
composed of electric and magnetic dipoles is given by

P
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= 1 + ω
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Im
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In this equation, −→pe and −→
pm are the electric and magnetic dipole moments of

the molecule, while
−→
E
s

and
−→
B
s

are the scattered electric and magnetic fields
at the position of the molecule −→

r 0. P0 is the power radiated by a chiral source
in free space. Since the magnetic moment is purely imaginary for a two-level
system, a π/2 phase difference exists between the electric and magnetic dipoles.
With this phase difference it can be shown that P0 is given by the summation of
the power emitted by each dipole in free space individually. More complex chiral
molecules are characterized by a variable phase relationship and the possible need
for quadrupolar terms. For simplicity, we consider only dipolar terms here. We use
the common naming convention based on the sign of −→pe ·−→pm, where a right-handed
enantiomer refers to a positive product, while a left-handed enantiomer refers to a
negative dot product.

The electric and magnetic dipoles are located 20 nm away from the inter-
face in the x-y plane with an angle θ between them. We assume that the ratio
between the magnetic and electric dipoles is ξ = 0.1c, where c is the speed of
light. From Figs. 3 and 4, we know achiral emitters will exhibit an increased
power emission at the exceptional point. Is it possible to utilize the same LDOS
enhancement at the exceptional point to manipulate the emitted power of the
chiral source near PT-symmetric potentials? More importantly, do differences
in the decay rates of enantiomers emerge, and can they be used to distinguish
enantiomers?
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Fig. 26 Chiral emitter
discrimination with a PT
symmetric metamaterial. (a)
molecule enantiomers, which
can be considered as electric
and magnetic dipolar emitters
with differing −→

pe · −→pm. (b)
Calculated difference in
radiative rates between
enantiomers as a function of
non-hermiticity parameter

For chiral selectivity, there must be an effect from the electric dipole at the
position of the magnetic dipole and vice versa. Otherwise, the power radiated by
each enantiomer would be the same. Since state coalescence at the exceptional
point manifests itself in all of the scattering parameters, an enhancement in the
normalized power of the chiral emitters is expected as well. Figure 26b plots
the difference between the normalized emitted powers (decay rates) of the right
(+) and left (−) enantiomers as a function of κ. The energy again is fixed at
1.2 eV, where an exceptional point appears at κ ≈ 0.23. The parameters for the left
enantiomer have been calculated by substituting −→

pm with−−→
pm, while −→pe is always

fixed along the x direction. While the difference between decay rates is minimal
below the exceptional point, at this exceptional point the decay rates are markedly
different. This difference monotonically increases by increasing the angle between
the dipoles. Note that an x-directed electric dipole at r0 produces only nonzero Hy at
this point. Therefore, as the angle between the dipoles approaches 90◦, the magnetic
field scattered by an electric dipole along the magnetic dipole increases. At θ ≈ 90◦,
the difference between enantiomer decay rate is maximized to 4.5.
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8 Section 7: Broadband Nonreciprocity with PT-symmetric
Plasmonic Metamaterials [22]

In a final demonstration of the versatility of these materials, we consider the
nonreciprocal transmission of light through this metamaterial. For all linear and
time-invariant systems, Lorentz reciprocity guarantees identical transmission upon
exchange of emitter and detector. In a two-port configuration, this means that,
regardless of reflection, transmission is the same when illuminated from the front
or the back. This complicates the design of optical diodes and active camouflage,
among others. Especially at small length scales (on the order of the incident
wavelength), nonreciprocal devices are exceptionally challenging to make due to the
weak magneto-optic and nonlinear couplings in typical materials. However, we have
just shown dramatic modification of the bandstructure in the visible as a function of
non-hermiticity. We can use this to our advantage by adding nonlinearities to the
loss and gain, which we will show below.

Given the bandstructure of an infinitely large material (Fig. 17), we next
investigate the transmission of a 10 unit cell metamaterial, which has a total
thickness of 1.5 μm, approximately three times the wavelengths considered. Figure
27 shows the transmission of θ = 45◦ light from free space through this material
as a function of wavelength for κ = 0 and κ = 0.37. For the passive metamaterial
(κ = 0), the bandgap is readily apparent as a 100 nm wavelength region of low
transmission. Upon increasing κ to 0.3734, the bandgap completely disappears, and
transmission near unity is seen throughout the entire range (dashed black line).
Considering a wavelength of 500 nm, we can observe the impact κ has on the
transmission (Fig. 27b). For a passive (κ = 0) material, the transmission is ≈10−7

and increases super-exponentially until a value of κ = 0.3734, where transmission is
unity. Here, the reflection from the forward direction is zero, while reflection from
the backward direction is not (10−5), corresponding to an exceptional point in the
scattering parameters. Beyond this value transmission stays at or greater than 1, but
is no longer a monotonically increasing function of κ.

At the exceptional point, the field intensity distribution in the material is
markedly different when illuminated from the forward or backward directions,
as shown in Fig. 27c. When illuminated from the gain side (forward direction),
the intensity pattern for each unit cell is approximately the same, with maximum
normalized magnetic field intensities of approximately 8 at the interface between
metal and dielectric. Conversely, when illuminated from the loss side (backward
direction), the field intensities are larger in magnitude than their corresponding value
from the gain side, with a maximum in the center. Indeed, intensities near the center
of the material are enhanced by over a factor of 80 compared to the incident field.
This asymmetry is a direct consequence of the asymmetric loss-gain distribution in
this PT-symmetric structure. Here, the material is perfectly impedance matched in
the forward direction with no reflection, while a cavity mode is excited from the
backwards direction. Note that, while the internal field distributions and reflected
intensities are different, the transmission when illuminated from either direction
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Fig. 27 (a) Transmission through a 10 unit cell metamaterial as a function of wavelength for
κ = 0 (solid line) and 0.3734 (dashed line). (b) Transmission versus non-Hermiticity parameter for
500 nm light through this structure. (c) Magnetic field profiles through the structure for 500 nm
light incident at 45◦ in the forward (top) and backward (bottom) directions, showing strongly
enhanced internal field intensities. The middle shows the normalized magnetic field intensities for
these directions

is the same, as this material is still reciprocal. In order to break reciprocity,
nonlinearities or some form of time modulation is still required.

Considering the asymmetry inherent in PT systems and nonresonant field
enhancements inherited from plasmonics, nonlinearities are an attractive route
towards nonreciprocity. Since the internal field intensity is enhanced from the
backward direction, the nonlinear response of this material will be more pronounced
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from this direction. Further, since the loss-gain parameter κ modulates the band-
structure over a 100 nm range, modification of this will have dramatic impact on the
optical properties. In the linear regime, when no saturation effects are present, the
permittivity of the dielectric regions are described as εr = 1+ χT iO2 + χPT , where
εr is the relative permittivity, χT iO2 is the susceptibility of the host dielectric (and
hence 1 + χT iO2 = n2), and χPT is the susceptibility of the added loss or gain. As
the intensity in the dielectric increases, saturation modifies the contribution of the

PT susceptibility as: χPT
(|E|2 ) = χ∞

PT

1+ |E|2
|Esat |2

Here, χ∞
PT is the linear susceptibility,

|E| is the electric field within the medium, and |Esat|2 is the saturation electric field
intensity, a materials parameter. The plasmonic fields inherent in this system mean
that the nonlinear permittivity of the dielectric layers will be a strong function of
position through the layer; as such, the nonlinear metamaterial is in general non-
Hermitian, rather than PT symmetric. For the dielectric layers defined by a refractive
index n and loss or gain component κ, the full description of the permittivity with

saturation reads as: εr
(|E|2) = n2 + −κ2±2inκ

1+ |E|2
|Esat |2

, where the ± indicates whether the

material is the loss or gain layer, respectively. While the gain or loss susceptibility,
and hence κ is a strong function of position and intensity, we will show that this
non-Hermitian material can be homogenized to a linear PT-metamaterial whose
non-Hermiticity parameter is uniformly tuned by the incident intensity.

To understand the nonlinear response of this metamaterial, nonlinear simulations
are performed using a Finite Element solver. For these, we consider an initial
κ = 0.3734. First, we consider illumination of 500 nm light incident at θ = 45◦
as a function of incident intensity normalized to the saturation intensity. Figure 28a
shows the transmission through the metamaterial when illuminated in the forward
or backward direction. In both cases, unity transmission is seen at low intensities,
corresponding to the linear, reciprocal metamaterial. As the incident intensity
increases, transmission is reduced regardless of illumination direction. However,
backward illumination leads to lower transmission, consistent with the enhanced
internal intensities seen in the linear material. At 3.5% |Esat|2, transmission is
below 10% in the backward direction, while approximately 50% in the forward
direction. Plotting the ratio between the forward and backward directions, we can
see the transmission or isolation ratio as a function of incident intensity in Fig. 28b.
As expected, low incident intensity leads to a transmission ratio of 1, where the
material acts reciprocally. As the incident intensity increases, the transmission ratio
monotonically increases to approximately 6.5 at 3.5% |Esat|2.

Figure 28c shows transmission from the forward or reverse direction as a function
of wavelength (θ = 45◦) for three different incident intensities. We choose to study
wavelengths in a 50 nm range centered on 500 nm, as the transmission is relatively
flat and near unity within this range in the linear regime. At a relatively low incident
intensity (0.35% |Esat|2), transmission is maintained at approximately unity when
incident in the forward direction, while a parabolic depression of the transmission is
seen in the backward direction, an indication of the opening bandgap. As intensity
increases, this region of reduced transmission increases, and we see transmission
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Fig. 28 Nonlinear and Nonreciprocal transmission with initial κ = 0.3734. (a, b) Transmission
of 500 nm light as a function of normalized incident intensity. (c, d) Transmission over a 50 nm
bandwidth in the visible. (e, f) Transmission through a 60◦ angular spectra for 500 nm light. The
left column plots the transmission in the forward (solid) and backward (dashed) directions, while
the right column plots the transmission ratio Tfwd/Tback

uniformly decreases in both the forward and backward cases, while the transmission
ratio throughout the wavelength range monotonically increases. At the maximum
intensity studied (3.5%|Esat|2), the transmission ratio varies between 5 and 12 within
the studied wavelength range. Thus, nonreciprocal transmission is observed over at
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Fig. 29 Retrieval of effective
non-Hermiticity. (a)
schematic of retrieval
procedure. (b) retrieved
nonlinear effective
non-Hermiticity for the
forward (red) and backward
(blue) directions when
considering the transmission
(solid) and reflection (dashed)
intensities as a function of
incident intensity

least a 50 nm bandwidth. In principle this bandwidth is limited only by the initial
bandgap size and the incident intensity on the structure. Both increasing the number
of unit cells and increasing incident intensity can enhance the transmission ratio and
bandwidth of operation.

We additionally consider nonreciprocal transmission when the metamaterial is
illuminated from differing angles. Figure 28e and f show the transmission for the
same incident intensities as 28c and 28d, but consider illumination of 500 nm
light incident at an angle ranging θ = 0◦ to 60◦. In general, transmission increases
with increasing angle, corresponding to a greater degree of coupling to plasmonic
modes. As intensity increases, transmission decreases at lower incident angles, but
transmission greater than 1 is seen at 60◦ for 3.5%|Esat|2. Here the transmission ratio
spans 3–18 with incident angle. Because the wavelengths studied here are above the
surface plasmon frequency and the refractive index is negative, this may lead to
the development of novel nonreciprocal optical elements such as a nonreciprocal
Veselago lens, given suitable gain materials.

To better understand the underlying mechanism of nonreciprocity, we consider
the transmission and reflection as a function of power. Remarkably, while the
nonlinear metamaterial has in general a spatially varying permittivity in the
dielectric, both the reflection and transmission coefficients for a given direction can
be well correlated with a uniform and linear value of the loss-gain parameter κeff .
In doing so, this metamaterial can be homogenized to an intensity- and directionally
dependent PT-symmetric metamaterial. A schematic of this homogenization scheme
is given in Fig. 29a. Figure 29b gives the retrieved κeff from the forward (left panel)
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or backward (right panel) direction. κeff is determined by separately considering the
reflection and transmission values, and both results are plotted for each direction.
In the forward direction, almost identical values of κeff are retrieved from the
reflection and transmission parameters. The agreement is not as exact in the
backward direction (within 5% relative error), likely due to the induced cavity mode
and strongly varying field intensity. This homogenization, possible because of the
metamaterial structure, means that the bandstructure is directly modified by the
incident intensity, and a spatially varying material can be treated as an effective
homogenized nonlinear material.

9 Conclusion

Clearly, these plasmonic structures are of great interest in nanophotonics by virtue
of the strong electromagnetic confinement and unique dispersion. By adding in
judicious inclusions of loss and gain, we have shown that these properties are highly
tunable. Further, there are phenomena which can only be achieved by the non-
hermitian structuring, such as reflection and transmission simultaneously greater
than unity. By understanding the underlying modal properties of these structures
we may better design future devices which could enable ultra-compact optical
modulators, diodes, light-emitters, polarizers, and waveguides. These structures
could also provide a foundation for compact, ultra-sensitive free-space molecular
sensors. All of these rely on the tunability from the additional loss and gain, as well
as the dynamics of exceptional points, which are guaranteed to exist on the real line
in PT-symmetric media.
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PT-Symmetry and Non-Hermitian Wave
Transport in Microwaves and RF Circuits

Huanan Li, Mahboobeh Chitsazi, Roney Thomas, F. M. Ellis,
and Tsampikos Kottos

Abstract Many novel concepts in PT -symmetric wave transport were initially
explored and demonstrated in the conceptually simpler and experimentally more
accessible framework of active electronic circuits. These include eigenmode analy-
sis and spatio-temporal dynamics of the stored energy in static and in periodically
driven (Floquet) PT -symmetric circuits, and PT -symmetric scattering in both
the linear and nonlinear regime. We review several of these advances – often
stretching the borders of investigation to the most general area of non-Hermitian
wave transport where concepts like coherent perfect absorbers, gain-induced lasing
shut-down, and asymmetric transport are naturally emerging.

1 Introduction

While gain mechanisms have been always considered an important component in
signal processing, this is not the case for its time-reversal i.e. physical mechanisms
that are associated with attenuation of signals and energy loss. The latter are typi-
cally considered an “anathema” – an undesirable feature which is (unfortunately)
abundant in nature and have to be contained at all costs. It is perhaps for this
particular reason that researchers have never intentionally explored the possibility
to utilize loss as a useful ingredient whose manipulation can lead to the realization
of devices with non-conventional properties.

Recently, however, an alternate viewpoint has emerged advocating for the
importance of loss and the possibility to utilize it together with a delicately
balanced amplification mechanism, in order to realize a new class of novel materials
and structures that demonstrate unconventional wave transport characteristics and
unprecedented functionalities. The technological aspect together with an unveiled
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wealth of the underlying mathematical structures of these systems, led to a blooming
of the field, which during the last few years has reached a climax. Undoubtedly,
among the various areas of physics, optics and photonics has been the tip of the
spear for these new developments [50, 62, 63]. Consequently, new concepts based on
the sole manipulation of loss, like loss-induced transparency [28], perfect absorbers
[10, 47], PT [21, 31] and chiral-symmetric lasers [59, 68], hypersensitive sensors
[7, 32, 75, 78] etc. have been generated, realized and flourished in the photonics
framework. It turns out, as it is evident from the various contributions appearing in
this book, that this approach has far reaching benefits to a vast range of wave systems
including, radio-frequency (RF) [4, 9, 39, 46, 60, 65, 66] and microwaves systems
[15–17, 19, 42, 70], acoustics [22, 67], and even cold atoms [30, 36, 57, 58, 69] and
magnonics [40].

Our main contribution to the development of non-Hermitian and PT -
symmetric wave transport was in the RF and microwave domain. In Ref. [65] (see
also [4, 9, 39, 46, 60, 66]), we have demonstrated that a pair of coupled LRC circuits
with active elements, one with amplification and the other with equivalent amount
of attenuation, provide an experimental realization of a wide class of systems where
gain/loss mechanisms break the Hermiticity while preserving parity-time (PT )
symmetry. Our set-up [65], being the first experimental investigation of PT -
symmetric systems in the spatio-temporal domain, allowed for the experimental
exploration of many new fundamental concepts associated with PT -symmetric
structures. Coupling the isolated system to external leads (transmission lines)
allowed us to perform the first experimental demonstration of PT -symmetric
scattering [46, 66] and show the phenomena of unidirectional invisibility [45]
and CPA-lasing [47]. We have also demonstrated, for the first time, asymmetric
transport due to the interplay of non-linearities and gain/loss [4] or extending
the notion of PT -symmetry to generalized anti-linear structures which involve
gyrotropic elements [39]. Recently we have extended these studies to the case
of Floquet PT -symmetric circuits [9], thus providing the first experimentally
accessible example of this class of systems.

In this chapter we provide a concise review of our results on PT -symmetric
RF and microwave domain. Although we have tried to make the presentation
self-sufficient, some of the technical details on the design of PT -symmetric
circuits and theoretical derivations were left out and we have simply provided the
appropriate references for the interested reader. In the next Sect. 2 we provide the
general electronic considerations associated with the design and implementation
of PT -symmetric RLC circuits. Then in Sect. 3 we examine the structure of the
normal modes and the associated dynamics using a prototype PT -symmetric
circuit, the PT -dimer. We theoretically derive its properties and experimentally
demonstrate that this simple circuit displays all the novel features encountered in
PT -symmetric systems. We further extend the study to circuitry with broken
time-reversal symmetry due to the presence of a gyrotropic element. In the same
section we also discuss a microwave implementation of the PT -symmetric dimer.
In the next Sect. 4 we couple the PT -symmetric dimer with transmission lines
and analyze its scattering properties. A generalized conservation relation is derived
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theoretically and tested experimentally. We demonstrate that a direct consequence
of this relation is the existence of specific parameters (frequencies, gain/loss values)
for which the system exhibits unidirectional invisibility. We furthermore show,
using our PT -symmetric dimer, that appropriately prepared incoming waveforms
can be completely absorbed at specific frequencies. At the same frequencies and
gain/loss values the structure can act as an amplifier if the incoming wave does
not satisfy specific conditions. The counter-intuitive possibility to “shut-down” the
amplification action by further increasing the gain at one of the nodes of the circuit is
also discussed in this section and a simple theoretical explanation is provided based
on circuit theory. Finally, in the same section, we discuss the effects of gyrotropy
in the scattering process. We demonstrate the existence of a giant non-reciprocal
transport in the neighborhood of spectral singularities associated with exceptional
points. We also propose the use of such gyrotropic PT -symmetric structures for
the realization of unidirectionally lasing action. In Sect. 5 we analyze the presence
of non-conservative nonlinearities in the scattering process and demonstrate a highly
asymmetric transport due to the interplay of gain/loss and nonlinearities. Finally in
the last Sect. 6 we present our recent efforts to realize a periodically driven PT -
symmetric system. This is a new class of system where driving can act as an extra
control parameter in order to induce a cascade of exceptional point singularities.
Our conclusions and outlook is given in the last Sect. 7.

2 General Electronic Considerations

One of the most convenient advantages of an electronic approach is that, at least
in the low frequency domain, where the wavelength is significantly greater than
the dimensions of the circuit, all spatial symmetry considerations can be reduced
to a matter of network topology defined through the application of Kirchoff’s
laws. Physical symmetry is irrelevant as long as the network has the desired node
topology and the connecting elements are appropriately valued. Analogous to the
familiar case of a PT -symmetric potential, the parity operation is equivalent to
the interchange of labels corresponding to pairs of associated circuit components.

The usual PT -symmetric potential has a symmetric real part and an antisym-
metric imaginary part, as required by the invariance of the combined parity and time
reversal operations. Translating this to the realm of discrete electronics implies that
the simple non dissipative elements – that is the reactive components, capacitors
and inductors – are unchanged by time reversal. The sign reversal imposed on the
device current is restored to the identical Kirchhoff relation due to the sign reversal
associated with the reactive time derivative.

This is not the case for the dissipative conduction of a resistor. Here, the
reversed current transforms to a charge flow uphill with respect to the potential drop.
Mathematically, this is Ohm’s law with a negative resistance. Practically, this cannot
be a passive device, but has to be actively motivated, essentially an amplifier. The
time reversed resistor is the conceptually simplest form of amplification, a device
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Fig. 1 (a) Simplified schematic of the PT -symmetric electronic dimer. Both mutual inductance
coupling and capacitive coupling are included for generality. (b) Ground referenced negative
resistance. This is the simplest electronic element contributing physical gain, always implemented
in reality by positive feedback as shown with the ideal amplifier equivalent

having Ohmic gain. Figure 1b illustrates how an ideal linear amplifier can be
configured to achieve negative resistance. The schematic implementation shown
results in a single, ground-referenced node completely equivalent to a negative
resistance. A similar circuit involving two amplifiers can achieve a two-terminal
floating version [66].

With these principles in mind, the simplest, and conceptually most straight-
forward PT system is illustrated in Fig. 1a. Two identical simple harmonic
oscillators, in the electronic form of LC resonators are coupled either capacitively
or inductively. The non-Hermitian dissipation on the right is paired with its negative
resistance counterpart on the left. The convention in this figure will be maintained
throughout this chapter: left/right or (1)/(2) will always refer to the gain/loss sides
respectively, if not explicitly labeled as such.

There are two aspects of such systems – not unique to electronic circuits – that
need to be kept in mind, both relating to practical implementation.

First is that any actual source of gain requires careful management of bandwidth.
The negative resistance illustrates this concept. As an ideal, stand-alone device, it
is inherently unstable [66] without any additional bandwidth limitation imposed
either explicitly, as in the parallel RLC combination of Fig. 1a, or implicitly as a
limitation of the actual source of the gain, i.e, the non ideal bandwidth limitation of
a real amplifier used in Fig. 1b.

Second is that in any real system, it is important to realize that all physical
electronic elements deviate from their ideal intended function. They all have
unintentional (stray) impedances – resistive and reactive components – that can
become significant in different situations. This is what makes microwave electronics
particularly challenging. Electronic elements, particularly amplifiers, are also sub-
ject to both linearity and stability limitations, the later most critical in the vicinity
of exceptional points.
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In summary, ideal PT -symmetric circuits incorporating these basic elements
require that (1) all reactive elements either have representation in parity-associated
network pairs, or directly connect parity inverted network nodes, (2) all Ohmic
elements are paired with opposite sign, and (3) each negative Ohmic element has
an associated parallel capacitance, for bandwidth limitation, as part of the circuit.
Valid PT -circuits of arbitrary complexity can be built up using these simple
rules, though their overall stability needs to be independently determined. Note
that the long-wave approximation of electronics can be relaxed with an appropriate
inclusion of waveguide elements and connections. Waveguide elements also allow
a conceptual transition from the electronic regime to the optical, with microwave
systems positioned in the middle.

Finally, to complete the toolbox of fundamental electronic devices, we finish with
a discussion of the gyrator. Although these devices have no known passive physical
implementation approaching ideal in the long-wave electronic regime, some electro-
mechanical-magnetic coupled devices can exhibit significant gyrotropic properties,
and, due to their availability in the microwave and optical regime, it is nevertheless
useful to consider their implementation in electronics as another approach toward
simplifying the analysis of certain wave systems.

The ideal gyrator is defined as a four pole device where each of its two-pole ports
a, b accepts a voltage difference Va,b and passes a current Ia,b through the poles of
that port according to the conductance relation

(
Ia

Ib

)
=
(

0 G

−G 0

)(
Va

Vb

)
(1)

where, in spite of the gyrator being characterized by a conductance G, it is a
Hermitian (energy conserving) element. The gyrator is complementary to mutual
inductance in that, while mutual inductance has equal off-diagonal terms (see theM
terms in the mutual inductance parts of Eqs. 2 and 3) the gyrator has opposite off-
diagonal terms. The gyrator has a transconductance with equal magnitudes in both
directions, like mutual inductance, but opposite phase in one direction compared to
the other.

A two port, two-pole schematic symbol shown in Fig. 2a, references the voltages,
and responds by producing the ideal currents into a common ground shared by
lower poles of each port. Figure 2b shows an active-electronic implementation
where negative feedback imposed by the op-amps require that the voltages Va and
Vb applied to the op-amp positive inputs force Va and Vb on the corresponding
negative inputs. With these voltages determined, the voltages on the series string of
four resistances R can be deduced by moving up the string from ground. The port
currents can found from Ohm’s law.

A similar circuit for the fully floating two-port, four-pole gyrator can be
built up from four op-amps. Although these op-amp gyrators are implemented
experimentally as active circuits, they could, in principle, be physically passive
devices. In practice, such passive devices have yet to be engineered in the long-
wave electronics regime.
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Fig. 2 (a) Gyrator symbol and definitions used for Eq. 1, similar to a mutual inductance, but with
an opposite sign that imposes a 180◦ phase depending on direction. (b) Ground based op-amp
gyrator circuit equivalent. All resistances are R as is the gyration resistance, with R = 1/G

Later we associate a mirror-time reversal (MT ) symmetry with electromagnetic
systems having chiral properties (such as gyrotropic materials) exhibiting a symme-
try analogous to PT systems. This is discussed in detail in Sect. 4.4.

3 Closed Dimer

The analysis of the simple dimer circuit presented earlier in Fig. 1a shows the char-
acteristic PT -symmetric behavior associated with the pseudo-Hermitian spectrum
and modes. We include both capacitive and mutual inductive coupling for generality,
although the experimental results presented throughout this work are exclusively
one or the other. Kirchoff’s laws in the frequency domain are given below for the
gain side (Eq. (2)) and loss side (Eq. (3)) [33].

V1 = iω(LI1 +MI2) I1 − V1

R
+ iωCV1 + iωCc(V1 − V2) = 0 (2)

V2 = iω(LI2 +MI1) I2 + V2

R
+ iωCV2 + iωCc(V2 − V1) = 0 (3)
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Eliminating the currents from the relations, scaling frequency and time by ω0 =
1/
√
LC, and taking μ = M/L and c = Cc/C gives the matrix equation:

(
1

ω(1−μ2)
− ω(1 + c)− iγ ωc − μ

ω(1−μ2)

ωc − μ

ω(1−μ2)
1

ω(1−μ2)
− ω(1 + c)+ iγ

)(
V1

V2

)
= 0. (4)

At this point, it is obvious that the system is PT symmetric: swapping the
indices and changing the sign of i leaves the equations unchanged. This linear,
homogeneous system has four normal mode frequencies, as required to fulfill any
arbitrary initial condition for voltage and current, given by

ω1,2 = ±
√
γ 2
c − γ 2 +

√
γ 2
PT − γ 2

2
√

1 + 2c
; ω3,4 = ±

√
γ 2
c − γ 2 −

√
γ 2
PT − γ 2

2
√

1 + 2c
; (5)

with the PT symmetry breaking point identified as

γPT = | 1√
1 − μ

−
√

1 + 2c

1 + μ
| (6)

and the upper critical point by

γc = 1√
1 − μ

+
√

1 + 2c

1 + μ
. (7)

Note that the given forms explicitly show all of the relationships among the critical
points and the real and imaginary parts of the frequencies. The exact phase, 0 < γ <

γPT , is characterized by four purely real eigenfrequencies coming in two pairs of
positive (ω1, ω3 > 0) and negative (ω2, ω4 < 0) values, while in the broken phase
below the upper critical point, γPT < γ < γc the eigenfrequencies are coming in
complex conjugate pairs with non-vanishing real parts, and above γc, as two purely
imaginary complex conjugate pairs. The broken phase of the PT dimer is unstable,
in that it is ultimately dominated by an exponentially growing mode.

The normal modes in the exact phase are characterized by equal magnitudes
for the voltage oscillations in the gain and loss sides, which in the +ω, real part
convention allowed by the real eigenfrequencies, are given by

(
V1

V2

)
±
= 1√

2

(
1

− exp(iφ±)

)
(8)
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with a phase φ± of the loss side

φ± = π/2 − tan−1
[

1

γ

(
1

(1 − μ2)ω±
− (1 + c)ω±

)]
. (9)

As the gain/loss parameter traverses the exact region, 0 ≤ γ ≤ γPT , the phase
progresses from the in- and out-of-phase configuration of a Hamiltonian coupled
oscillator, to a mode coalescence at γPT with φ± ∼ π/2 with the real frequency

ω+ = ω− =
[
(1 − μ2)(1 + c)

]−1/4
(10)

Examination of the inductor currents,

(
I1

I2

)
±
=
(

1
1−μ2 − μ

1−μ2

− μ

1−μ2
1

1−μ2

)(
V1

V2

)
±

(11)

reveal phase shifts, relative to the corresponding voltages, that advance on the gain
side and retard on the loss side within either mode. This is as required for the net
transfer of electrical energy from the gain side to the loss side as the gain/loss
parameter increases. This evolutionary behavior is helpful in understanding the
spectral and dynamical behavior of the dimer.

These modes are plotted in Fig. 3 along with experimental points [65] obtained
from an electronic implementation of the circuit in Fig. 1a constructed according
to the principles discussed in Sect. 2. The circuit was based on a pair of 30 kHz
inductively coupled LC resonators, with the negative resistance feedback amplifier
of Fig. 1b based on an LF356 op-amp. The experimental circuit reproduces both the
complex eigenfrequencies of the PT system and the phases of Eqs. 5, 6, 7, 8, 9,
and 10.

Similar results from a COMSOL [12] investigation of a model microwave system
[42] illustrate that the modes of a PT dimer are relatively independent of a dramatic
redistribution of where the gain and loss are located within the system, as long
as the required spatial parity is respected. Figure 4 illustrates the evolution of the
isolated eigenfrequencies as a function of the gain/loss parameter for three different
configurations involving a coupled pair of half-wave microstrip resonators. Both the
gain and loss are implemented via an imaginary part to the dielectric constant of the
supporting substrate. In Fig. 4a the gain and loss are collapsed into a localized patch
at the resonator ends, as shown schematically in the inset. In Fig. 4b the gain and
loss is uniformly distributed over the left and right sides of the whole substrate, and
in Fig. 4c, the gain and loss are confined directly beneath the individual resonator
striplines.
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Fig. 3 Parametric evolution of the (a) real and (b) imaginary part of the eigenmodes of the PT -
symmetric dimer versus the normalized gain/loss parameter γ /γPT . The experimental data are
shown as filled circles while the theoretical predictions are shown as continous lines. In all cases
we show the eigenfrequencies associated with Re(ω) > 0. The open circles in (b) are reflections of
the experimental values of Im(ω) with respect to Im(ω) = 0. In (c) we report the experimental
(filled circles) and theoretical results (continous and dashed lines) for the relative phase φ± versus
the normalized gain/loss parameter. In (d) we report the theoretical (line) prediction for φPT

versus μ together with an experimental measurement (filled circle). (After Ref. [65])

Fig. 4 Parametric evolution of the eigenmodes of a microwave circuit consisting of two PT -
symmetric microwave cavities (see inset). In each of the three cases the balanced gain/loss has
been included in different ways: (a) In localized manner (with γMT = 1.6742); (b) in distributed
manner (with γMT = 0.095); and (c) the gain and loss is confined directly beneath the individual
resonator striplines (with γMT = 0.26). (After Ref. [42])

While the latter two scenarios could be realized in the optics framework by
appropriately distributed gain and loss media, case (i) is more relevant to the
microwave domain. Concentrating the gain and loss into a small patch at the anti-
nodes of the half-wave electric potential oscillations in the microstrip resonator
mimics the action of discrete electronic gain or loss elements such as transistors
or resistors. All cases demonstrate the appropriate transition from the exact phase
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Fig. 5 Stability map for
coupled LRC dimer
illustrating the regions of
exponential decaying
solutions (stable) and
exponentially growing
solutions (unstable). The PT
line, γ2 = γ1, follows a line
of neutral stability until near
the PT point, |γ1,2| = γPT ,
where the stable region peels
off toward the asymptotic
region γ2 > 0, γ1 > 0

to the broken phase, as seen by the critical behavior of both the real and imaginary
parts of the frequencies upon passing through γPT .

The PT symmetric relation Eq. 4 has real eigenvalues for gain/loss parameter
γ < γPT . From an experimental perspective, it is useful to understand the stability
of the dimer when the conductances deviate from the PT balanced condition. To
this end, we present a map of the character of the eigenfrequencies for arbitrary
conductances of either sign, γ1 on the left side of Fig. 1a and γ2 on the right, with
positive scaled conductance corresponding to loss (Fig. 5). The map is separated
into an exponentially decaying (stable) domain, roughly in the first quadrant, and an
exponentially growing (unstable) domain elsewhere. Separating these two domains
are lines of oscillation threshold.

The straight line along the diagonal γ2 = −γ1 with |γ1| < γPT is the PT
symmetric condition in the exact phase. The separation curves elswhere lead away
toward the asymptotes γ1 > 0, γ2 = 0 and γ2 > 0, γ1 = 0 respectively. There are
several notable features pertaining to these threshold lines. First, is the intrusion
of the stable domain into regions of individual oscillator gain. This behavior is
necessary in order to meet up with the exact PT situation. Second, the exact PT
line, and only this line, is simultaneously the threshold for both modes. This feature
is crucially useful for balancing the experimental system. Finally, extending inward
from γPT along the exact phase line is a small segment with zero imaginary part
completely surrounded by unstable domain. This is not a threshold – separating
stable from unstable – but rather a segment of marginal stability and an extremely
difficult region to experimentally explore.
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An alternate analysis of the dimer is necessary for a proper analytical consid-
eration of the dynamics, and is accomplished by recasting time-domain version of
Kirchoff’s laws, Eqs. (2) and (3) into a “rate equation” form by making use of a
Liouvillian formalism [60]

dΨ

dτ
= LΨ ; L =

⎛
⎜⎜⎜⎝

0 0 1 0
0 0 0 1

−αβ αζ γ 1+c
1+2c −γ c

1+2c
αζ −αβ γ c

1+2c −γ 1+c
1+2c

⎞
⎟⎟⎟⎠ (12)

where α = 1/(1 − μ2), β = 1+c−cμ
1+2c , ζ = −c+μ+cμ

1+2c and Ψ ≡ (Q1,Q2, Q̇1, Q̇2)
T

with Qn = CVn. This formulation opens new exciting directions for applications
[60] of generalized PT -mechanics [53] as it can be interpreted as a Schrödinger
equation with non-Hermitian effective Hamiltonian Heff = iL . This Hamilto-
nian is symmetric with respect to generalized P0T0 transformations [60], i.e.
[P0T0,Heff] = 0, where

P0 =
(
σx 0
0 σx

)
; T0 =

(
1 0
0 −1

)
K (13)

and σx is the Pauli matrix, 1 is the 2×2 identity matrix, and K denotes the operation
of complex conjugation. By a similarity transformation R [60],

R =

⎛
⎜⎜⎝
μ+ μ+ ı

√
1 + 2c −ı√1 + 2c

μ− −μ− ı ı

−μ− μ− ı ı

μ+ μ+ −ı√1 + 2c ı
√

1 + 2c

⎞
⎟⎟⎠ (14)

Heff = R−1HR can be related to a transposition symmetric, PT −symmetric

Hamiltonian H = HT = PH †P , T = K where P = RP0R−1 =
(

0 σx

σx 0

)
.

The matrix H is then

H =

⎛
⎜⎜⎝

0 b+ + ır b− + ır 0
b+ + ır 0 0 b− − ır

b− + ır 0 0 b+ − ır

0 b− − ır b+ − ır 0

⎞
⎟⎟⎠ (15)

where b± = 1
2

(
μ+ ± μ−√

1+2c

)
, μ± = 1/

√
1 ± μ and r = 1

2
γ√

1+2c
. The frequencies

and normal modes within this framework are identical to Eqs. (5) and (11).
The dynamical behavior typical of the exact phase region for an inductively

coupled dimer has been observed in electronic circuits [66] and demonstrated to
have the expected beat superposition associated with two real frequencies. The beat
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Fig. 6 Temporal evolution of the capacitance energy Etot
c (τ ) of the whole dimer for gain/loss

values below the exceptional point (black line); above the exceptional point (blue line); and at the
exceptional point (red line). The dashed red line indicates a τ 2 growth while the dashed blue line
indicates an exponential growth exp(2Im(ω1)τ ). (After Ref. [65])

is asymmetric between the gain side and the loss side nodal times, with oscillatory
activity spending more time between gain side nodal points as energy grows to a
significantly larger size before decaying and growing between the loss side nodal
points. However, unlike traditional coupled-oscillator beats, instead of “sloshing”
between both sides during the course of the beats, a growth and decay energy
dance occurs with both sides more or less equally represented except in the vicinity
of the nodal points. This behavior is a direct result of the non-orthogonal phase
relationships that become more pronounced as γ → γPT . A Hamiltonian dimer
would exhibit a perfect half-beat offset between the left and right voltage beat
envelopes.

These energy dance features have also been traced by studying the time-
dependence of the total capacitance energy:

Etot
C (τ) =

Q2
1(τ )+Q2

2(τ )

2C
. (16)

With the initial condition used in the experiment, we expect power oscillations
which are due to the unfolding of the non-orthogonal eigenmodes [3, 50, 63, 79].
This universal feature is evident in the temporal behavior of Etot

C (τ) as can be seen
in Fig. 6. On the other hand, for γ > γPT the dynamics is unstable and Etot

C (τ)

grows exponentially with a rate given by the maximum imaginary eigenvalue
max{Im(ωl)} (see Fig. 6).

The most interesting behavior appears at the spontaneous PT -symmetry
breaking point γ = γPT . At this point the matrix L has a defective eigenvalue.
In this case, the evolution U = exp(L τ) can be calculated from the Jordan
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Fig. 7 Parametric evolution
of the eigenfrequencies of a
PT -symmetric dimmer
versus the rescaled gain/loss
parameter γ /ω0 for various
mutual inductances μ. The
borders of the highlighted
area (marked with a black
dashed line) indicate a
constant bandwidth path with
δω/ω0 = 0.36. (After
Ref. [60])

decomposition of L as J = SL S−1. Having in mind the form of the exponential
of a Jordan matrix, it follows immediately that linear growing terms appear in the
evolution of the charge vector (Q1(τ ),Q2(τ ))

T [26]. This results in a quadratic
increase of the capacitance energy i.e. Etot

C (τ) ∼ τ 2. Although all systems typically
becomes very sensitive to parameters near a critical point, we are able to control
the circuit elements sufficiently well to observe the approach to the predicted τ 2

behavior of the energy.
Figure 7 shows both theoretical and experimental results for the exact phase

eigenfrequencies for various values of the coupling μ. The black dashed lines
bounding the shaded region illustrate a path of fixed bandwidth, δω/ω0 = 0.36,
through the families of eigenfrequencies.

Equation (12) can be solved either analytically or via direct numerical integration
in order to obtain the temporal behavior of the capacitor charge Qn(τ) and the
displacement current In(τ ) in each of the two circuits of the PT -symmetric dimer.
For the investigation of the tachistochrone wave evolution, we consider an initial
displacement current in one of the circuits with all other dynamical variables zero.
The first passage time τfpt is then defined as the time interval needed to reach
an orthogonal state. In our experiments this corresponds to the condition that the
envelope function of the current at the initially excited circuit is zero. We find that
the first passage time is asymmetric with respect to the initially excited circuit [60].
Specifically we have that

τfpt = 1

δω

[
π ± arccos

(
δω2 − γ 2

δω2 + γ 2

)]
(17)

where the + sign corresponds to an initial condition starting from the gain side
while the − sign corresponds to an initial condition starting from the lossy side.
For γ � δω, Eq. (17) takes the limiting values τfpt ≈ 2π/δω and τfpt ≈ 2/γ
respectively. The latter case indicates the possibility of transforming an initial state
to an orthogonal final one, or in more practical terms, transferring energy from one
side to the other, in an arbitrarily short time interval. In the opposite limit of γ = 0,
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we recover for both initial conditions the Anandan-Aharonov lower bound for the
first passage time τfpt = π/δω [1]. This is the time for which energy is transferred
from the initial circuit to its partner according to the constraint of the Bandwidth
theorem.

Geometrically, one can understand the relation (17) in the following way: the
time required for the evolution between two states induced by a Hermitian Hamilto-
nian is proportional to the length of the shortest geodesic connecting the two states
in projective Hilbert space [1]. Non-Hermitian PT -symmetric Hamiltonians in
the exact PT -symmetric domain can be similarity mapped to equivalent Hermitian
Hamiltonians. Under such a similarity mapping the corresponding projective Hilbert
space undergoes a deformation obtaining a nontrivial metric. This results in an
effective contraction or dilation of the corresponding geodesic and with it of the
corresponding evolution time [25, 27, 54].

In Fig. 8 we present some typical measurements for the temporal behavior
of the displacement currents. In Fig. 8a we show |I1(τ )| for an initial condition
corresponding to the case I1(0) = 1 with all other dynamical variables zero. The
case where the initial current excitation is at the lossy side i.e. I2(0) = 1, is shown
for contrast in Fig. 8b. In both cases, agreement between the experiment (circles) and
the simulations (lines) is observed. For comparison, we also report with black line
the temporal behavior of the displacement current for the case of a passive circuit
(i.e. γ = 0) with the same δω-constraint. We observe that the orthogonal target state
is reached faster (or slower) depending on whether the initial excitation is applied
to the lossy (or gain) side.

The above results can be verified in more cases by changing the inductive
coupling μ and gain/loss parameter γ , while keeping the frequency difference
δω = ω2 − ω1 constant. A summary of our measured τfpt versus γ is presented
in Fig. 8c. The experimental data show agreement with the theoretical prediction
Eq. (17).

A parallel analysis pertains directly to the study of the energy transport from
one side to another. Using the same initial conditions as above we investigate the
temporal behavior of the energies

En(τ) = 1

2

Q2
n

C
+ 1

2
LI 2

n (18)

of each n = 1, 2 circuit. The first passage time can be defined as the time for which
the two energies become equal for the first time i.e. E1(τ

E
fpt) = E2(τ

E
fpt). For passive

(i.e. γ = 0) coupled circuitry, this time is half of the beating time τEfpt = τfpt(γ =
0)/2 and it is insensitive to the initial preparation. In contrast, for the active PT -
symmetric dimer of Fig. 1a, we find that the energy transfer from the lossy (gain)
side to the gain (lossy) one, is faster (slower) than the corresponding passive system
with the same δω. In Fig. 8d, we summarize our measurements for the τEfpt versus γ
under the constraint of fixed frequency bandwidth δω. A similar behavior as the one
found for the displacement current is evident.
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Fig. 8 A typical temporal evolution of the displacement current (a) I1(τ ) for the case that the
initial excitation occurs at the gain side (n = 1) and for (b) I2(τ ) when the initial excitation occurs
at the loss side (n = 2). In both cases the bandwidth constraint is δω/ω0 = 0.36. The red/green
lines indicate the results of the simulations for a circuit with γ = 0.24 and μ = 0.39. The black
line is drawn for reference and correspond to the simulations for the case where γ = 0. The
measurements are indicated with circles. The cyan (black) arrow indicates the first passage time
τfpt for the case of the active (passive) circuit. (c) The measured τfpt (versus γ ) when it is extracted
using the displacement currents. The red circles correspond to the case that the initial excitation
occurs at the gain side (I1(0) = 1) while the green circles correspond to the case that the initial
excitation occurs at the lossy side (I2(0) = 1). Equation (17) is reported as a solid line and the
beat time corresponding to a circuit with γ = 0 is reported as black dashed line. (d) The same as
in (c) but now the first passage time τEfpt is extracted using the energy exchange condition. Lines

correspond to the theoretical prediction τEfpt = τfpt/2. The black dashed line denotes τEfpt for γ = 0.
(After Ref. [60])

3.1 Gyration Eigenmodes

We now discuss how gyration influences the normal modes of isolated PT
balanced dimer. For simplicity, we consider only mutual inductance coupling along
with a coupling through the gyrator of Fig. 2a between the two oscillators of the
dimer. With c = 0, the equivalent of Eq. 4 for Kirchhoff’s laws in the frequency
domain leads to a similar form for the eigenvalue equation,

(
ω̃2 − 1

1 − μ

)(
ω̃2 − 1

1 + μ

)
− (g2 − γ 2)ω̃2 = 0 (19)
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where the gyration strength g = G
√
L/C is seen to trade off with the gain/loss

parameter γ . The eigenvalues of the antisymmetric and symmetric modes follow
the same structure

ω̃0
a/s(γ ) =

√
γ 2
c − γ 2 ±

√
γ 2
MT − γ 2

2
(20)

along with their redundant negatives, which are again defined in terms of two critical
points for the gain/loss parameter, i.e., an MT symmetry breaking point

γMT =
√√√√
g2 +

[√
1

1 + μ
−
√

1

1 − μ

]2

(21)

and an upper critical point

γc =
√√√√
g2 +

[√
1

1 + μ
+
√

1

1 − μ

]2

. (22)

Note that the given forms explicitly show all of the relationships among the
analogous exceptional points and the real and imaginary parts of the frequencies.

The normal modes in the exact phase are again characterized by equal magni-
tudes for the voltage oscillations in the gain and loss sides, given by

(
Vg

Vl

)
a/s

= 1√
2

(
1

exp(iφa/s)

)
(23)

with a phase φa/s of the loss side relative to the gain side of

φa/s = arg

(
(

1

1 − μ2
−
(
ω̃0
a/s

)2 − iγ ω̃0
a/s)(

μ

1 − μ2
+ igω̃0

a/s)

)
. (24)

It is here that we observe how the gyration qualitatively changes the character
of the normal modes in a new way. With mutual inductance alone, as the gain/loss
parameter traverses the exact region, 0 ≤ γ ≤ γMT , the phase progresses from
the in- and out-of-phase configuration of a Hamiltonian coupled oscillator pair,
to a mode coalescence at γMT with a real frequency ω̃0

a = ω̃0
s = (1 − μ2)−1/4,

where both the magnitudes and phases of the voltage oscillations are identical.
The role of the gyration strength g is subtle: it acts in an orthogonal sense to
the mutual inductance coupling because of its inherent non-reciprocal coupling of
current and voltage, and results in mode phasers initially related by π/2 usually
indicative of dissipation. However, in spite of the gyration being characterized by
a real conductance, it is actually a non-dissipative element. Figure 9 schematically
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Fig. 9 Loss side voltage phasors relative to the gain side (+x axis) for the low frequency (solid)
and high frequency (dashed) isolated dimer modes. Phasors in (a) are for pure mutual inductance
coupling; (b) is for pure gyration coupling; and (c) mixed coupling. In all cases, the high and low
modes coalesce to identical relations as γ approaches γMT

illustrates the evolution of the left and right voltage mode phasers for pure mutual
inductance coupling in (a); pure gyration coupling in (b); and a combination of the
two in (c). In all cases, the high and low mode coalesce as γ increases, approaching
γMT .

We note that the gyration is thus imposing a non-dissipative quadrature normal
mode character to the electronic circuit analogous to the circularly polarized eigen-
states of free electromagnetic waves in a gyromagnetic medium. The combination
of the gyrotropic coupling with normal reactive coupling allows simple electronic
circuits to embody many of the important features of gyrotropically coupled
resionators, such as a microstrip dimer on a biased magnetic substrate.

4 Open Dimer (Scattering)

We have seen how the closed PT systems have a phase relation between the
modes that, as a function of the gain/loss parameter, γ , is not accessible with a
normal Hermitian system. This additional dimension of control extends to systems
incorporating gyration. We now discuss how the unique properties of the normal
modes can be used to create novel scattering systems with useful engineering
applications.

4.1 Single Lead Case

We start by comparing two reciprocal geometries where a single scattering lead
is attached to either the gain or loss side of the previously isolated PT dimer.
As before, the qualitative features of generic systems are most easily analyzed and



368 H. Li et al.

0.8 0.9 1 1.1 1.2ω/ω0

-10

0

10

20

R
ef

le
ct

io
n 

R
ga

in
/lo

ss
 (d

B
)

Rloss (exp)
Rgain  (exp)
1/Rgain (exp)
Rgain (theory)

0.9 1 1.1 1.2
-3

0

3

φ ga
in

/lo
ss

ω/ω0

Incident from Loss

Incident from Gain

Fig. 10 Experimental (red and green squares) and theoretical (continous blue line) reflectances
versus the rescaled incident frequency ω/ω0. The black dashed line indicate the experimental
data associated with 1/Rgaim and fall nicely on top of the experimental data for the Rloss –
thus confirming the generalized conservation relation RgainRloss = 1. In the inset we report
the experimental values of the phases of the corresponding gain/loss (red circles/green circles)
reflection amplitudes together with the theoretical prediction (solid line) versus the rescaled
frequency. The parameter used are γ = 0.188875, μ = 0.29 and η = 0.0305. (After Ref. [46])

understood through the electronics case. The lower right and left insets of Fig. 10
respectively show the transmission line connected to either of the parity-associated
nodes in the circuit.

Experimentally, the equivalent of a TEM transmission line with characteristic
impedance Z0 is a Thevenin voltage source attached to the LC circuit node. The
Thevenin source resistance with Rth = Z0 sets the equivalent transmission line
impedance, and the source voltage, Vth, determines the incoming wave amplitude.
Thus knowledge of the source voltage and measuring the LC node voltage, VLC ,
allows determination of the incoming, Vin = V0/2, and reflected, Vref l = VLC −
V0/2, complex wave voltage amplitudes for either configuration of Fig. 10.

The simplicity of the circuit allows a straight-forward algebraic analysis. We are
interested in the behavior of the reflectance Rgain/loss ≡ |rgain/loss |2, and nodal
potential Vgain/loss inside the gain or loss sides of the scattering domain, as the
gain/loss parameter γ , and the frequency ω changes.

For PT -symmetric structures, the corresponding scattering signals satisfy
generalized unitarity relations which reveal the symmetries of the scattering target.
Specifically, in this single-port set up this information is encoded solely in the
reflection. To unveil it, we observe that the lower left set-up of Fig. 10 is the PT -
symmetric replica of the lower right one. Assuming therefore that a potential wave
at the gain-side lead (lower right inset) has the form Vgain(x) = exp(ikx) +
rgain exp(−ikx) (we assume unit incoming amplitude), we conclude that the form
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of the wave at the loss-side lead associated with the lower left set-up of Fig. 10, is
Vloss(x) = exp(−ikx)+ rr exp(ikx) = V ∗

gain(−x). Direct comparison leads to the
relation

rgain · r∗loss = 1 → Rgain = 1/Rloss and φgain = φloss (25)

where φgain/loss are the reflection phases from the gain or loss sides. Note that
Eq. (25) differs from the more familiar conservation relation R = 1, which applies
to unitary scattering processes as a result of flux conservation. In the latter case left
and right reflectances are equal. Instead, in the PT -symmetric case we have in
general that Rgain �= Rloss .

For the specific case of the PT -symmetric dimer, the exact expression for the
reflection coefficients are

rgain(ω) = −f (−η,−γ )/f (η,−γ )
rloss(ω) = −f (−η, γ )/f (η, γ ) (26)

f = 1 − [2 − γm(γ + η)]ω2 +mω4 − iηω(1 −mω2)

with m = 1/
√

1 − μ2 and η = Z−1
0

√
L/C. In the limiting case of ω → 0,∞ the

reflections becomes rgain = rloss → ∓1 and thus unitarity is restored.
The main panel of Fig. 10 shows a representative measurement of the reflection

signals for the two scattering configurations with their comparison to Eq. (26). The
measured reflectances Rgain, and Rloss satisfy the generalized conservation relation
Rgain ·Rloss = 11 while for the reflection phases, shown in the upper inset, have that
φgain = φloss as expected from Eq. (25). Therefore, our experiment demonstrates
that a PT -symmetric load is a simple electronic Janus device that, for the same
values of the parameters ω,μ, γ acts as a signal absorber as well as a signal
amplifier, depending on the direction of incident signal.

The (ω, γ ) parameter space can then be partitioned into a sub-unitary domain
for which R < 1 (flux is diminished), and a super-unitary domain for which R > 1
(flux is enhanced). At the transition between the two domains Rgain = Rloss =
1, in which case the scattering from either side conserves flux. Such a reflectance
degeneracy (RD) occurs along the continuous boundary between the two domains,
defined by |r| = 1, giving

γRD(ω) =
√
−1 + 2ω2 − (1 − μ2)ω4

(1 − μ2)ω2 and
|ω2 − 1|
ω2 ≤ μ ≤ 1 (27)

A panorama of theoretical Rloss(ω, γ ) are shown in Fig. 11. The transition line
γRD(ω) where the reflectance degeneracy occurs. Inside this domain, a singularity

1The slight deviation from reciprocity in the vicinity of largest reflectance in Fig. 10 is attributed
to nonlinear effects.
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Fig. 11 The Rloss versus the
gain/loss parameter and the
rescaled frequency ω/ω0 for
the case of a PT -symmetric
dimer with one TL attached
to the lossy element. The
super-unitary
(log10(Rloss) > 0) and the
sub-unitary
(log10(Rloss) < 0) domains
are separated via the violet
plane at log10(Rloss) = 0. The
boundary, in the γ − ω

parameter space that defines
the transition from
super-unitary to sub-unitary
scattering is also shown as a
red line. The inductive
coupling in this case is
μ = 0.57. (After Ref. [46])

point appears for which Rloss → ∞, while a reciprocal point for which Rloss = 0
is found in the complementary domain. The corresponding (ωs; γ∞,0) are found

from Eq. (26) to be γ∞,0 = 1
2

(√
η2 + 4μ2

(1−μ2)
∓ η
)
; ωs = 1√

1−μ2
Obviously via

Eq. (25) we have the reverse scenario for Rgain.
The sub-unitary to super-unitary PT -symmetric transition is also manifest in

the gain/loss nodal voltages inside the dimer, where

Vgain = 2ηω [1 −mω(ω − iγ )] /D

Vloss = −2ημω/D (28)

D = ηω(1 −mω2)+ i
(

1 − ω2
[
2 −m(ω2 + γω + γ 2)

])

Typical potential magnitudes |Vgain| and |Vloss |, for the transmission line attached
to the loss side (lower left inset of Fig. 10) versus the frequency ω are shown in
Fig. 12. In general, the potentials are asymmetric. In the super-unitary domain, the
gain side is characterized by a larger potential amplitude |Vgain| > |Vloss | while
in the sub-unitary domain the scenario is reversed and |Vgain| < |Vloss |. The latter
configuration ensures that more power is being consumed than compensated by the
gain circuit, while the inverse argument applies for the former configuration. At
frequencies where the reflection degeneracy occurs, the nodal voltages are spatially
symmetric. This is consistent with the intuitive expectation that in order to conserve
flux the excitation must on average spend equal amounts of time in the loss and
gain circuits of the structure. Obviously, the reverse scenario occurs if we couple
the transmission into the PT -dimer from the gain side.
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Fig. 12 The distribution of experimentally measured potentials inside the PT -symmetric dimer
versus the frequency ω. The potential and the loss (gain) side is indicated with a green square (red
circle). The dimer is coupled to one transmission line attached at the lossy node. The parameter
used are γ = 0.188875, μ = 0.29 and η = 0.0305. The theoretical predictions for the potential at
the loss (gain) side are shown with continuous green (red) lines. The blue dashed lines indicate the
boundaries between sub-unitary to super-unitary scattering. (After Ref. [46])

4.2 Stability with Leads

We momentarily turn to a discussion of the stability of a PT system with “leads”
attached. As discussed in the context of Fig. 5, the closed, but unbalanced gain/loss
dimer is equivalent to a balanced, but open system. The radiative dissipation
associated with the leads generally shifts the effective operating point of the system
into the stable regime, but surprisingly, this is not always the case. It is possible,
by monotonically increasing the gain in the parameter space of Fig. 5, to experience
reentrant stable/unstable transitions [8].

This behavior is a generic property of systems with spatially distributed gain
that includes a PT -symmetric configuration. Figure 13 shows such a path in
a 1D optical gain/loss laser cavity, Fig. 14 shows a similar reentrance path in a
tight-binding PT dimer model with leads, and Fig. 15 shows an experimental
demonstration.

Figure 13b shows the evolution of Im(ω) for the dominant pole of the scattering
matrix for a specific path of the gain parameters γ1, γ2 associated with the left and
right portions of the cavity shown in Fig. 13a. The dominant pole is the only one to
experience the stability-instability transitions within the frequency range assumed
for the γ1 and γ2 gain curves. Initially, we assume that both the left and right regions
of the optical cavity have the same intrinsic loss γ0 < 0 as described earlier. The left
part of the cavity is then pumped with increasing gain, γ0 < γ1 < γmax

1 , until the
dominant pole crosses the real axis (Im(ω) = 0) at some critical gain γ ∗

1 < γmax
1 .
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Fig. 13 (a) An
one-dimensional lasing cavity
occupying a space [−L,L]
with asymmetrically
distributed gain determined
by the imaginary part of the
index of refraction
Im(n(−L < z < 0) = −γ1
and
Im(n(−L < z < 0) = −γ2
with γ1 �= γ2. (b) The
evolution of the dominant
pole as the gain γ1,2 in each
of the compartments of the
lasing cavity is changing.
(After Ref. [8])

Fig. 14 Right inset: a representation of the simple tight-binding (TB) model that we have used in
the text. The two sites at positions n = 1 and n = 2 in the middle of the TB chain model the couple
lasing cavities and have imaginary on-site potential γ1 �= γ2. The sites on the left/right of the active
dimer model the leads. Left inset: the γ1 −γ2 parameter space of the TB model. Red areas indicate
unstable domains while blue areas indicate stable domains. The black line indicates the pumping
path. Main panel: the parametric evolution of one resonance as γ1 and γ2 changes (see left inset).
The other resonance is not reported since its motion is symmetric, with respect to the origin of the
axis Re(E ), to the one reported here. (After Ref. [8])

At this point, a lasing state in the cavity is created. For γ ∗
1 < γ1 < γmax

1 the pole
continues to travel upwards in the positive (Im(ω) > 0) plane indicating unstable
dynamics. In this regime, any physical system ultimately becomes non-linear and
the scattering approach fails. However, we may infer from our low amplitude linear
analysis the presence or absence of the lasing instability. The pumping on the
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Fig. 15 (Left) Experimental values of the steady-state voltage (measured at side-1 LC node)
versus γ2 for the paths indicated in the inset. Note that although the overall gain increases, the width
of the “lasing death” response diminishes. (Right) The maximum imaginary part of the eigenvalues
Max[Im(ω)] versus the total gain for the pumping path shown in the inset. The theoretical results
are indicated with a continuous black line while the measurements are shown as red filled circles.
The lasing death phenomenon occurs when the path traverses a protrusion in the stability map the
most positive imaginary part momentarily dips back into the negative region. (After Ref. [8])

left partition is now kept constant at γ1 = γmax
1 , while additional pumping, via

increasing γ2 is applied to the right partition of the cavity. Surprisingly, this results
in reversing the evolution of the pole back towards Im(ω) = 0. At some critical
value γ2 = γ ∗

2 , the pole re-crosses the real axis returning to Im(ω) < 0. Such
transitions indicate that the system returns to stability, i.e. the laser shuts off despite
the fact that the overall pump power provided to the system has been increased.
Further increase of γ2 once again reverses the direction of the motion of the pole
which moves upwards and crosses into Im(ω) > 0. At this new critical value,
γ = γ ∗∗

2 , the mode once again becomes unstable signifying a second turn-on of the
laser.

It is instructive to point out that it is possible to express the S-matrix at an
arbitrary wavenumber k in terms of all eigenvalues and eigenfunctions of the
corresponding closed cavity. This is achieved by employing the so-called reaction
matrix formalism which has been developed in the frame of nuclear physics by
Wigner and Eisenbud [76]. Specifically we have that

S = 1̂ − iK

1̂ + iK
; K = πW †GinW (29)

where K is the so-called reaction matrix and (Gin)n,n′ =
[
k2(δn,n′ − iΓ̂n,n′)

−k2
nδn,n′

]−1
is the Green’s function of the closed active cavity. The gain matrix,

Γ̂ denotes the gain distribution inside the cavity and the matrix Ŵ (k) denotes the
coupling of the internal level n to the scattering channel j . Equation (29) can be
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further expressed [23] in terms of an effective non-Hermitian Hamiltonian Heff
which contains the dynamics of the closed system and the coupling to the scattering
channels:

S = 1̂ − 2iπW †GeffW ; Geff = [E −Heff]
−1 (30)

where (Heff)n,n′ = k2
nδn,n′ − iπ(WW †)n,n′ and E = k2(1̂ − Γ̂ ). We see therefore

that the poles of the scattering matrix are the complex eigenvalues of an effective
Hamiltonian. It is useful at this point to keep in mind the equivalence between the
various forms of the scattering matrix.

The universality of lasing death via asymmetric pumping can also be illustrated
within a simple two-level model (dimer) coupled to two leads. The system is shown
in the inset of Fig. 14. The Hamiltonians of the dimer Hd and of the leads Hleads
read:

Hd =
∑

nN=1,2

εnN |nN 〉〈nN | + (|nN 〉〈nN + 1| + c.c.)

H
L,R
leads =

∑
n=nL,nR

εn|n〉〈n| + (|n〉〈n+ 1| + c.c.) (31)

where nL = 0, · · · ,−∞, nR = 3, · · · ,∞ and {|n〉} is the Wannier basis of the
tight-binding Hamiltonian. The on-site potentials are εn = Vn+iγn with γn = 0, for
n �= 1, 2. We note that, unlike the case of optical cavity that we discuss previously,
Im(εn) > 0 represents gain while Im(εn) < 0 represents loss. Furthermore,
without loss of generality we will assume that Vn = 0 for all n. The complex zeros
E of the secular equation det[M22(E )] = 0 can be calculated analytically:

E = i[γ1γ2(γ1 + γ2)± (2 + γ1γ2)
√
(γ1 − γ2)2 − 4]

2(1 + γ1γ2)
(32)

Figure 14 shows the parametric evolution of the poles E for a pumping path (see left
inset) analogous to the previous discussion: an initial increase of γ1 until the lasing
threshold is reached, followed by an increase of γ2. As before, during the second
section of the path the system is first driven back towards stability (lasing death)
while later on returning to instability at a second lasing threshold. It should be noted
that the pumping path within the shaded region of Fig. 14 has to be excluded from
the analysis. Here, the poles have Re(E ) > 2 and the scattering modes fall outside
of the propagation band E(k) = 2 cos(k) of the leads.

The generality of the lasing death phenomenon calls for a universal formulation
for its explanation. Using standard methods [49] we write the scattering matrix
elements in the form [38, 51]

Sα,β(E) = δα,β − i
√

4 − E2 W T
α (E − Heff)

−1Wβ , (33)



PT-Symmetry and Non-Hermitian Wave Transport in Microwaves and RF Circuits 375

where α, β = 1, 2 and Heff is a 2× 2 effective non-hermitian Hamiltonian given by

Heff(E) = Hd +*(E)
∑
α

Wα

⊗
W T
α (34)

The two-dimensional vectors W1 = δα,1 and W2 = δα,2 describe at which site we

couple the leads with our sample while *(E) = E−i
√

4−E2

2 is the so-called self-
energy.

The poles of the S-matrix are equal to the complex zeros E of the following
secular equation

det[E −Heff(E )] = 0. (35)

Solving Eq. (35) is (in general) a difficult task. However, there are circumstances
such as the RLC circuit previously discussed, for which one can neglect the
dependence of Heff on energy. In such cases the second term in Eq. (34) results
in a simple constant shift of the on-site potential of the Hamiltonian Hd .

Results from the experimental electronic version is shown in Fig. 15. In order
to make contact with saturable laser dynamics and insure graceful behavior above
threshold, a simple conductance nonlinearity was included in the form of parallel of
back-to-back diodes in parallel with each of the LRC resonators in the basic dimer.
This forces a dominant positive conductance (loss) at high voltage amplitudes,
and assures a well behaved limit cycle when the system is unstable, above any
oscillation threshold. The linear regime occurs for voltages below approximately
150 mV, where the diodes have negligible conductance.

In the electronic circuit, the equivalent of both “pumping” and output coupling
are achieved simply as a re-interpretation of the resistances R1 and R2 of Fig. 1: a
transmission line output equivalently modifies the resistance of the attachment node
by its characteristic impedance in parallel, and pumping similarly is equivalent to a
parallel negative conductance. Thus, effective combinations of leads and pumping
determine particular paths through the γgain γloss parameter map of Fig. 5. These
paths are shown on the insets of Fig. 15. The curves in the main portion of Fig. 15a
show the corresponding RMS voltage amplitudes vs. the gain, which fall to zero
during the stable (lasing death) values for gain, and grow to a level determined by
the saturation dynamics otherwise.

In all cases the total gain γ1 + γ2 provided to the system is increased. It is
seen that depending on the value of γ1 the system either undergoes a transition
from instability to stability or it remains unstable all the time. The former case
corresponds to the phenomenon of lasing death found numerically in Ref. [44] and
is achieved only for the leftmost three pumping paths shown in the inset of Fig. 15a.

To understand which pumping paths can result in lasing death we see that the
paths are associated with the existence of reentrant stability domains in the (γ1, γ2)

plane of Fig. 5 which are traversed by the specific pumping schemes. In this respect,
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every time that a path crosses a boundary between an unstable to stable domain we
have a suppression of lasing action and thus the emergence of lasing death.

Figure 15b shows the evolution of experimental values for Im(ω) as a function
of total gain, defined as γ1 + γ2 obtained along the path in the (γ1, γ2) stability
map shown in the inset. The color scheme used is the same as that of Fig. 15a.
Experimental frequencies were obtained by imposing a momentary V = 0 on both
sides of the dimer and then recording the subsequent transients to obtain the most
positive imaginary part of the of the two eigenfrequencies. The comparison to theory
is also shown.

4.3 Two Lead Case

We return to the linear two-lead scattering and describe the additional consequences
of a transmission channel, as shown in the inset of Fig 16. This system has also
been analytically and experimentally studied and reveal generalized conservation
relations. Specifically, for 1D geometries, it was found [6, 11, 45, 47] that while
the reflectances for left (gain) and right (loss) incident waves might be different
(as in the single-port case), the corresponding transmittances must be the same, i.e.
Tgain = Tloss = T . Moreover, the following conservation relation was shown to
hold [11]:

√
RgainRloss = |T − 1| (36)

0.8 0.9 1 1.1

10-2

10-1

100

Rgain (exp)
Rloss (exp)
T (exp)
RgainRloss+2T-T2 (exp)

ω/ω0

Fig. 16 Measurements (symbols) and numerics (lines of corresponding color) of T , RL/R for
the two-port scattering set-up. The vertical black dashed lines indicate the frequencies where
unidirectional transparency occurs. The conservation relation Eq. (36) is also evaluated using the
experimental data. The horizontal dashed blue line is drawn for the eye and indicates the value 1.
The parameter used for the PT -symmetric dimer are γ = 0.188875, μ = 0.29 and η = 0.0305.
(After Ref. [46])
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Note that Eq. (36) is an intriguing generalization of the more familiar conservation
relation R + T = 1, which applies to unitary processes. In the PT -symmetric
case, the geometric mean of the two reflectances,

√
RgainRloss , replaces the single

reflectance R .2

Measurements for Rgain/loss and T are shown in Fig. 16. The quantity
RgainRloss + 2T − T 2 (blue circles) is evaluated from the experimental data and it
is found to be 1 as it is expected from Eq. (36). An interesting result of the analysis
is that at specific ω−values (marked with vertical dashed lines), the transmittance
becomes T = 1, while at the same time one of the reflectances vanishes. Hence,
the scattering for this direction of incidence is flux conserving and the structure
is unidirectionally transparent. It is interesting to note that a periodic repetition
of such a PT -symmetric unit it will result in the creation of unidirectionally
transparent frequency bands. This phenomenon was first predicted in [45] and its
generalization was discussed in [11].

Figure 17 illustrates another interesting feature of two-port PT -symmetric
scattering, a so-called simultaneous coherent perfect absorber-amplifier, or CPA-
laser [47]. This functionality was first implemented [66] in the capacitively coupled
version of the electronic dimer scatterer shown in the inset of Fig. 17a. With μ = 0,
Kirchhoff’s laws in terms of the traveling wave components in the leads can be
recast into a transfer matrix giving the gain-side wave components from the loss-
side components:

Fig. 17 (a) The overall output coefficient Θ(ω) versus frequency ω near the amplifica-
tion/attenuation frequency ωJ (vertical dashed line). The PT -symmetric electronic circuit is
coupled to two ports and has η = 0.110, γ = 0.186 and c = 0.161. At ω = ωJ , the system
acts as a perfect absorber when the input signal satisfies the coherent attenuation relation V −

R =
M21(ω)V

+
L . For any other incident signal (e.g. see the blue line corresponding to V −

R = V +
L )

the system acts as an amplifier. The dots are experimental values while the lines are numerical
results. (b) Plots of experimental Θ(ωJ ) versus the relative phase φ of the signal entering the
structure from the lossy node. Various curves correspond to different excitation amplitudes. Note
the extremely sharp dependence at the Janus condition. (After Ref. [66])

2Equation (25) is a special case of Eq. (36) once it is recognized that in the single port case, the
transmittance T = 0.
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(
V +
loss

V −
loss

)
= M

(
V +
gain

V −
gain

)
; M = 1

2ωcη

(
A+ iB iC

−iD A− iB

)
(37)

where the transfer matrix elements M are A = 2ηΩ , B = Ω2 − η2 − ω2c2 + γ 2,
C = (γ−η)2+Ω2−ω2c2, andD = (γ+η)2+Ω2−ω2c2, withΩ = ω(1+c)−1/ω.
The transmission and reflection coefficients for gain-side, or loss-side incidence can
now be expressed in terms of the transfer matrix elements as [6, 55]

tgain = tloss ≡ t = 1

M22
, rgain = −M21

M22
, rloss = M12

M22
(38)

where we have used the identity that det(M ) = 1. Note that these relations result
in the conservation relation stated earlier for the inductively coupled case, Eq. 36,
illustrating the independence of these results from the form of the internal dimer
coupling.

Using an equivalent scattering matrix language [66] one can derive conditions
allowing the PT -symmetric structure to act either as an amplifier or as a perfect
absorber. For a laser oscillator without an injected signal, the boundary conditions
V +
gain = V −

loss = 0. In contrast, for a perfect absorber the boundary conditions,

V −
gain = V +

loss = 0, corresponding to zero reflected waves, hold. In general, the
condition for an amplifier/laser system is not satisfied simultaneously with the
condition for a perfect absorber. However for any PT -symmetric structure, one
can show that at a real “Janus” frequencyω = ωJ the amplifier/laser condition exists
simultaneously with the absorber condition satisfied by M22(ωJ ) = M11(ωJ ) = 0
along with the incident wave condition V −

loss = M21(ω)V
+
gain. Hence the two-

port PT -symmetric dimer can behave simultaneously as a perfect absorber and
as an amplifier. This property can be explored using an overall output coefficient Θ
defined as [47]

Θ = |V +
loss |2 + |V −

gain|2
|V +
gain|2 + |V −

loss |2
(39)

Note that in the case of a single-port scattering set-up discussed earlier, the Θ-
function collapses to the left/right reflectances. The Θ-function (Eq. 39) can be re-
expressed directly in terms of the incident wave amplitudes and the transfer matrix
elements giving

Θ(ω) =
| V−

loss

V+
gain

M12(ω)+ 1|2 + | V−
loss

V+
gain

− M21(ω)|2

(1 + |V−
loss |2

|V+
gain|2

)|M22(ω)|2
. (40)
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At the singularity frequency ω = ωJ and for a generic ratio V −
loss/V

+
gain, the

Θ(ω)-function diverges as ω → ωJ and the circuit acts as an amplifier/laser. If on
the other hand, if the perfect absorption condition V −

loss = M21(ω)V
+
gain is applied,

we get Θ(ωJ ) = 0.
In the context of the actual electronic circuit (Fig. 17a inset), the two port

simultaneous laser/absorber presents a delicate balance of the driven, marginally
stable circuit. The singular behavior of the theoretical Θ in Fig. 17a, solid curves,
illustrate that at the Janus frequency ωJ the injected signals can result in either
amplification or complete attenuation, depending on the relative amplitude and
phase of the injected signals. The perfect absorption condition is particularly
sensitive to the injection parameters: the deviation of the experimental data, Fig. 17a
dots, is characteristic of component imbalance of less than 1%. In fact, the
minimally absorbing experimental points near the dip in the attenuation curve of
Fig. 17a can only be obtained by an independent determination of the minimal
reflectance condition at each frequency. Figure 17b shows this extreme sensitivity
to the phase of the right input signal near ωJ and illustrates practical limits to the
achievement of the CPAA condition.

4.4 MT Symmetry, Two-Port Circuit, Stripline Structure

We now turn to discussion of systems which incorporate gyration in order to achieve
highly directional transmission. Since a one-dimensional linear transmission struc-
ture – including gyration – is only capable of a direction dependent phase shift,
in addition to the gyration, there are two other requirements for linear, directional
transmission: (1) there must be at least two parallel paths, introducing the possibility
of (even perfect) interference, and (2) there must be a dissipative component
within the structure to avoid complete impedance mismatch as the signal splits
and recombines within the scattering system. PT -symmetric scattering systems
provide, through the gain/loss parameter, another engineering tool to help achieve
these conditions.

PT symmetry have been generalized to include systems with generic gyrotropy
such as biased magnetic structures [70]. Here, the symmetry operations have been
more carefully accounted for by introducing the notion ofMT symmetry to include
a mirroring operation appropriate for the dynamical chirality. The parity in this case
is extended through the mirroring operation that preserves an antilinear mirror-time
reversal symmetry. The linear mirror-symmetry operator M performs a reflection
(x, y, z)→ (−x, y, z) with respect to the mirror yz-plane at x = 0 and reverses the
direction of the magnetic field H0 → −H0. The antilinear time-reversal operator T ,
performs a complex conjugation i → −i together with an inversion of the direction
of the magnetic vectors i.e. H0 → −H0. For the generic gyrator of Fig. 2a, both
the mirror operation and the time reversal operation applied to this device change
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Fig. 18 Equivalent electronic circuit. The full circuit show in (a) has reduces the stripline
resonators to a lumped equivalent RLC pair with mutual coupling that includes both inductive and
gyrotropic components. The transmission line coupling is reduced to single capacitances spaced at
d along the ideal TEM transmission lines. The isolated resonator pair is then further reduced to its
equivalent conductance matrix, Gdimer, shown in (b)

the sign of the gyration conductance G in Eq. 1. As before, in the specific case of
gain and loss elements, the complex conjugation operation is also equivalent to the
exchange of the gain and loss.

Once again, we return to an electronic circuit analog that maintains the essence of
the desired physics while also allowing a significantly simplified path toward both
analytic and numeric analysis. Figure 18 shows anMT -symmetric lumped element
dimer circuit coupled in parallel with a TEM mode transmission line. The dimer is
internally coupled with a parallel combination of mutual inductance and gyration.
Since the mutual inductance and the gyrator are both pure transconductances – i.e.,
the current on the left of Fig. 2a depend only on the voltage on the right – Kirchhoff’s
laws given in Eqs. 2 and 3 for the two-port dimer of Fig. 1a, can immediately be
incorporated as effective inductor currents defined through

(
I1

I2

)
= 1

iω

[
L M

M L

]−1 (
V1

V2

)
+
[

0 G

−G 0

](
V1

V2

)
. (41)

The gain and loss are implemented by negative and positive parallel resistances,
which could be of slightly different magnitude to include the small inherent loss
discussed earlier.

In the frequency domain, Kirchoff’s Laws for this circuit are easily expressed,
though transcendental due to the trigonometric wave components in the transmis-
sion line section. All seven elements of the circuit (L, C, R1, R2, M , G, Cc, and
d) represent essential features of the original structure that can contribute to the
enhancement of the transmission nonreciprocity. Note that in this circuit, Cc is the
individual resonator coupling to points on the transmission line and that the diagonal
terms in Eq. 41 are the only means of direct coupling.
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Fig. 19 The microwave structure that we have studied consists of two half-wave microstrip
resonators which are end-coupled to a bus waveguide. The substrate consists of YIG which is
exposed to an external bias field H0 along the y-direction. A balanced gain/loss is distributed
uniformly beneath each of the two resonators. When the gain/loss parameter γ aquires a specific
value (close to γPT ) the transmittance in the forward direction (a) is approximately unity while
it becomes almost zero in the backward direction (b). (After Ref. [70])

Noting that the gyration G plays a similar role as a static magnetic field H0 in
a gyrotropic substrate [42], this circuit was specifically considered to serve as an
electronic analog of the model structure shown in Fig. 19 consisting of a pair of
half-wave microwave strip-line resonators forming the dimer, in close proximity
to a perpendicular bus transmission line passing by their ends. The substrate is a
ferrite such as Yttrium Iron Garnet, with a ground plane on the lower surface. A
static magnetic field parallel to the resonator axis (H0 in Fig. 19) lends a gyration
component to the inter-resonator proximity coupling, and the end-coupling of the
resonators to the bus transmission line completes a second signal path between the
resonators.

In the model structure, gain and loss are confined to the spatial domain beneath
each of the microstrip resonators and implemented by introducing an imaginary
part to the permittivity defined as ε = εrε0(1 ± iγ ), where γ assumes the role of
the gain and loss parameter. The structure was targeted for approximately 1.3 GHz
and a 56Ω port impedance.

Analysis of the transmission properties of this two-port set-up is straight-
forward based on the scattering parameters returned by the simulation software. To
quantify the dependence of the non-reciprocal effect on various system parameters,
a nonreciprocity strength NR (here expressed dB) is defined as

NR (γ ) = 10 × maxω

{∣∣∣∣log10
TB

TF

∣∣∣∣
}
, (42)

where TF and TB are the transmittances obtained for the forward (gain-to-loss) or
backward (loss-to-gain) respective cases. Both the numerical investigations of this
system and the electronic analog indicate that the maximum values of NR are
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achieved in the proximity of the symmetric mode resonant frequency ωs , so this
mode will be the focus of our subsequent discussion.

A theoretical analysis of the function NR(γ ) can be understood within the
framework of temporal coupled-mode theory. The calculation scheme breaks down
the effect of the magnetic field (gyration) into two parts. First, the effect to the
resonant frequency of the individual resonators separately (for γ = 0) in a magnetic
substrate is separately considered. Next, the effect of gain and loss γ in each of these
resonances, now considered as a two level system and coupled via a non-magnetic
substrate with a coupling constant Ω0 (evaluated with H0 = 0) is added.The
resulting symmetric ω(0)s and antisymmetric ω(0)a resonant modes of the isolated
composite structure are then:

ω
(0)
s/a = ω0 ∓

√
Ω2

0 − (ργ )2 (43)

where ρ is a scaling parameter. All parameters, including the exceptional point
position γ 0

MT = Ω0/ρ are extracted from the simulation analysis of the set-up
of Fig. 19.

The second part of our analysis considers the consequences of the magnetic
field (gyration) in the coupling between ω(0)s/a . Specifically, the resonances (ω(0)s/a)
are coupled via the magnetized substrate between the two microstrip cavities and
indirectly via the presence of the bus wave-fields. In general, this additional coupling
constant λ is a function of the geometric properties of the two stripline resonators,
the applied magnetic field, H0, and the wavenumber kx of the bus field. Based
on symmetry considerations [70] it is assumed that up to a linear approximation,
λ = λ0 + ı (b0kx + c0H0) where λ0, b0, c0 are real parameters. When an incident
electromagnetic radiation with frequency ω in the vicinity of one of these two
resonances enters the bus waveguide, in either direction, it will primarily excite the
closer mode in frequency without being (to a good approximation) affected by the
presence of the other resonance. Again, it is assumed that ω ≈ ωs , where maximum
non-reciprocity is observed, and that the incident wave is coupled directly only with
the symmetric mode.

Under these assumptions, the temporal evolution of the symmetric (as) and
antisymmetric (aa) modal amplitudes is described by the following equations

das
dt

=ıω(0)s as − 1

τ
as − λ∗aa + κ1S

in
1 + κ2S

in
2

daa
dt

=ıω(0)a aa + λas (44)

Sout− =Sin2 − κ∗2as; Sout+ = Sin1 − κ∗1as

where 1
τ
= 1

τ− + 1
τ+ is the radiative coupling of the symmetric mode to a left-going

( 1
τ− ) or a right-going ( 1

τ+ ) output wave, and {κ1, κ2} indicate the coupling constants
between the symmetric mode and the incoming or outgoing waves. We have that
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|κ1|2 = 2
τ+ and |κ2|2 = 2

τ− . The modal amplitudes are normalized in such a way that

|as |2 (|aa|2) correspond to the energy stored at the specific mode, while
∣∣Sin1 ∣∣2 and∣∣Sin2 ∣∣2 (

∣∣Sout−
∣∣2 and

∣∣Sout+
∣∣2) are the powers carried by incoming (outgoing) waves

from (to) two different directions of the bus waveguide.

The forward TF ≡ |Sout+ |2∣∣Sin1 ∣∣2
and backward TB ≡ |Sout− |2∣∣Sin2 ∣∣2

transmittance for a left

Sin1 ∝ eıωt and right Sin2 ∝ eıωt incident monochromatic field can be calculated
from Eq. (44) by imposing the appropriate boundary conditions Sin2 = 0 and Sin1 = 0
respectively. We obtain that

TF/B (ω) =

∣∣∣∣∣∣∣∣∣∣

i

(
ω − ω

(0)
s − |λF/B|2

(ω−ω(0)a )

)
∓Δε

i

(
ω − ω

(0)
s − |λF/B|2(

ω−ω(0)a
)
)
+
(

1
τ

)

∣∣∣∣∣∣∣∣∣∣

2

(45)

where Δε = 1
τ+ − 1

τ− �= 0 due to gyrotropy and λF/B is the coupling between ω(0)s

and ω(0)a for forward and backward propagation.
These theoretical results compare nicely with the COMSOL simulations as

shown in Fig. 20 in the domain of ω ≈ ωBs . A non-linear least square fit has been
used in order to fit Eq. (45) to the data for TB. The parameters that we have obtained
are Δε ≈ −0.0075, 1

τ
≈ 0.05215, η ≈ 4.9 × 10−3 (all measured in nsec−1) and

|λB |2 ≈ 0.111 nsec−2. All these parameters, apart from |λF |2, have been kept fixed
for the forward transmission TF , see Eq. (45). The fitting value of TF indicated
that |λF |2 ≈ |λB |2 nsec−2. Finally, using Eq. (45) together with Eq. (42) we have
calculatedNR versus γ . These theoretical results are shown in Fig. 20 together with
the simulations of COMSOL. Note particularly that the sharp maximum in NR(γ )
occurs just below the exceptional point at γMT . The physics of this offset will be
discussed later.

In order to enhance our understanding of the origin of the giant nonreciprocal
effect we have further approximatedNR at ω = ωBs . Guided by the numerics, which
indicates that TF (ωBs ) ∼ O(1) in this frequency domain, we have assumed that
log10 TF

(
ωB
s

)
is negligible when compared to log10 TB

(
ωB
s

)
. Therefore NR(γ ) ≈

10| log10 TB(ω
B
s )|. This approximation leads us to the following expression up to

leading order in η,Δε and ε ≡ 1/(2τ):

NR =

⎧⎪⎪⎨
⎪⎪⎩

20 log10

1+ ε
η

(
1+

√
β√

1+β
)

1+Δε
2η

(
1+

√
β√

1+β
) ; 0 < γ < γ 0

MT

10 log10
(η+ε)2+βη(η+2ε)

(η+Δε/2)2+βη(η+Δε) ; γ 0
MT < γ < γMT

(46)

where β ≡ Ω2
0−(ργ )2
|λB|2 .
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Fig. 20 (a) The parametric evolution of resonant modes (Re(ω), •/Im(ω), ) vs. the gain/loss
parameter γ for the set-up of Fig. 19 with H0 = 0 only in the domain between the two micro-
cavities (simulations). A fitting with the theoretical expression Eq. (43) (solid line) gives ω0 ≈
8.545,Ω0 ≈ 0.2576 and ρ ≈ 1.445 (all measured in nsec−1) corresponding to γ 0

P̃T
≈ 0.178.

(b) Non-reciprocity (NR) obtained by calculating the difference between the FWD and BWD
transmittance T from the simulations (•) and from the theoretical expressions Eqs. (45) (◦). The
green line is the approximated expression for NR, see Eq. (46). (After Ref. [70])

A further analysis of Eq. (46), indicates that when Δε
2η < min

{
− Ω
Ω0+Ω , − ε

2ε+η
}

,

then NR(γ ) has a single maximum in the exact phase i.e. 0 ≤ γ ≤ γMT (H0)

which occur at some critical value γ = γNR. In case Δε
2η < −1, we have

γNR = γ 0
MT while for −1 < Δε

2η < min
{
− Ω
Ω0+Ω , − ε

2ε+η
}

we have γNR =√
(γ 0
MT )

2 − |λB/ρ|2(
Δε
2η /
(

1+Δε
2η

))2−1
. Thus we conclude that the existence and position

of the NR is strongly dictated by γ 0
MT and |λB |2, i.e., this giant non-reciprocal

behavior is a consequence of an interplay between the EP degeneracy and the
interaction of fields within the gyrotropic substrate.

The parameter space affecting the position and strength of the nonreciprocal
transmission, as described by NR (γ ), is best explored with the parameters of the
lumped electronic system of Fig. 18 where Kirchhoff’s laws, transcendental as they
are with the central transmission line segment, can be solved significantly more
efficiently than a 3D model simulation.

Figures 21 and 22 illustrate numerical results exploring the NR with gain/loss and
gyration strengths, γ = 1

2 (R
−1
1 + R−1

2 )
√
L/C and g = G

√
L/C respectively, to

a detail that is not only computationally expensive in the COMSOL simulation, but
somewhat abstract in the theoretical analysis. The NR density plot shown in Fig. 21
is separated into two regions by the black solid line representing the position of the
isolated system exceptional point, with the exact MT phase above and the broken
phase below. The singular NR is seen as the bright swath within the unbroken region
just above. Figure 22b, below) shows cuts of the NR at several fixed values of the
gyration strength g along with the corresponding isolated dimer eigenfrequencies
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Fig. 21 A density plot of the
non-reciprocity NR versus the
gain/loss
γ = 1

2 (R
−1
1 + R−1

2 )
√
L/C

and gyration strength
g = G

√
L/C associated with

the lumped circuit shown in
Fig. 18. (After Ref. [70])
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Fig. 22 (a) The non-reciprocity for the circuit of Fig. 18 for several gyration strengths g versus
the gaon/loss parameter γ . The parameters used are Z0

√
C/L = 0.82, kd ≈ π at the LC resonant

frequency, Cc/C = 0.3,M/L = 0.03, and η = 1
2 (R

−1
2 −R−1

1 )
√
L/C = 0.03 for the intrinsic loss.

(b) The real and imaginary parts of the balanced, isolated (η = Cc = 0) dimer mode frequencies
versus the gain/loss parameter. All other values of the circuit are the same as in (a). An one-to-one
relation between the exceptional points and the singularities of the giant non-reciprocity is evident.
The solid line through the NR density plot shows the position of the isolated system exceptional
point, slightly beyond the singularity. (After Ref. [70])

(a, above). Note again that the maximum NR occurs below the isolated exceptional
points. The similarities with Fig. 4 associated with the photonic structure is striking,
thus indicating the shared NR mechanism. Specifically for γ = 0 we again observe a
moderate non-reciprocal behavior which is dramatically enhanced at γ -values close
to γMT . This can be better appreciated by analyzing the parametric evolution of the
eigenfrequencies of the isolated circuit. The isolated system in this electronic analog
includes all of the effects of the resonator coupling, such as the gyration, fulfilling
the inequality expressed in Eq. 46.
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This universal nature of the giant non-reciprocal response near the EP calls for
an intuitive explanation. First we have to realize that the structure constitutes an
effective ring since the two cavities are directly coupled to one-another while at
the same time they are coupled indirectly via the bus waveguide. At the EP the
two supermodes of the effective ring structure are degenerate having a definite
chirality [70]. The presence of the magnetic field breaks the spectral degeneracy,
while weakly preserving the (common) chiral nature of the modes. As a result the
two modes are coupled differently with a left and a right incident wave. Assuming,
for example, that the chirality of the modes is clockwise (CW) we conclude that
due to phase matching such a mode will be coupled only to a left incident wave but
not to a right incident one. Accordingly, the left incident wave will excite the CW
supermode while at the same time can exploit a direct optical path associated with a
transmission via a direct process between the incident and transmitted channels.
These optical paths can interfere destructively at the output channel (depending
on the propagation phase associated with the length of the bus waveguide and the
gyrotropy) leading to a Fano effect and consequently to a (near) zero transmittance.
An important condition here is that the internal losses of the cavities are small
so that the two interfering waves have the same amplitudes. On the other hand, a
right incident wave, because of phase mismatch, does not couple to the CW chiral
supermode of the effective ring. As a result it does not experience the internal losses
inside the cavity and consequently the (direct) transmission is high.

It is now clear why the non-reciprocity could be enhanced by theMT symmetric
behavior. As the gain/loss parameter γ progresses toward the exceptional point,
γMT , both the frequencies of the modes and their phases coalesce. The novel
eigenfrequency and eigenmode behavior present in these systems introducing new
parameter distinctly capable of tuning the device in unusual ways to enable the
gyrotropic coupling.

We now examine a system demonstrating a related nonreciprocal lasing phe-
nomenon [39], experimentally explored in a different radio-frequency domain
MT -symmetric RLC circuit without the need for transmission line coupling. The
basis is a generic lasing cavity system shown in Fig. 23a consists of a gyrotropic
element sandwiched between two active elements, one with gain and the other one
with an equal amount of loss. The total structure is invariant under the generalized
MT -symmetry which enforces a new set conservation relations, analogous to
Eq. 36 discussed earlier, but now modified by the gyration. Under these conditions
one can get unidirectional amplification which can turn to lasing at a critical
value of the gain/loss parameter. Furthermore, we show that reversing the gain/loss
switches the direction of lasing thus achieving a reconfigurable lasing action. The
applicability of these ideas was demonstrated using theMT -symmetric RLC circuit
shown in Fig. 23b. Elimination of the transmission line coupling, fundamentally
serving both as a parallel path and an impedance matching element, is replaced
in the electronic circuit analog by the gyrotropically coupled pairs of resonators.
It also has the advantage of removing the transcendental relations introduced by a
transmission line. To our knowledge, this was the first experimental demonstration
of a system that belongs in the MT -symmetry class.
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Fig. 23 (a) A sketch of a MT symmetric cavity consisting of a gain (G) and a loss (L) domains
which are indicated by red and green respectively. The gyrotropic element is placed symmetrically
between the gain and loss domains and it is indicated by β. (b) The equivalent MT -symmetric
electronic circuit. Rg indicates the gyrator. (After Ref. [39])

For clarity of the presentation we concentrate on one-dimensional scattering
setups which allows us to illuminate the basic principles without the unnecessary
algebraic complications of higher dimensions. A conceptual visualization of aMT -
symmetric scattering setup is shown in Fig. 23a. The red area indicates a gain
domain (G) while the green a balanced loss (L) element. The cyan area in the
middle indicates the existence of a gyrotropic element. A monochromatic wave
(with wavevector k) on the right of the scattering domain VR = V +

R exp(ikx) +
V −
R exp(−ikx) is related to the wave on the left of the scattering domain VL =
V +
L exp(ikx)+ V −

L exp(−ikx) via the 2 × 2 transfer matrix M ,

(
V +
R

V −
R

)
= M

(
V +
L

V −
L

)
. (47)

Note that this transfer matrix is different than the one used in Eq. 37 due to the
different circuit details (compare the circuit of Fig. 23b with that in the inset of
Fig. 17a). The transmission and reflection coefficients for left (L) and right (R)
incident waves can be found using the boundary conditions V −

R = 0 and V +
L = 0

respectively. These can be expressed in terms of the transfer matrix elements as
follows

rL = −M21

M22
, tL = det M

M22
, tR = 1

M22
, rR = M12

M22
. (48)

The associated transmittances and reflectances are then defined as TL/R ≡ |tL/R|2
and RL/R ≡ |rL/R|2.
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Next, we define the conditions at which a MT -symmetric system behaves as a
unidirectional laser. We request that the output field in one direction, say the left, be
amplified while attenuated in the opposite direction. In terms of transmissions and
reflections, the above condition reads as

rL → ∞; tL → 0; tR → ∞; rR → 0. (49)

Equations (49) are written in terms of M -matrix elements using Eq. (48). We get

M22(ω, β, γ ) = 0 (lasing condition)

M12(ω, β, γ ) = 0 (unidirectionality condition).
(50)

In this framework, the complex frequencies ω for which M22(ω, β, γ ) = 0,
correspond to the poles of the scattering matrix. Due to flux conservation and
causality relations they lie on the lower part of the complex plane when a parameter
γ that controls the degree of gain/loss strength of the two active elements is
equal to zero. As γ is increased, the poles move towards the real axis. Lasing
action is achieved at a critical γcr, at which the first of these poles ωcr crosses
the real axis. If the second condition in Eq. (50) is also satisfied at ωcr, we get
det M → 0 �= 1 which characterizes non-reciprocal transport in MT -symmetric
systems (see Eqs. (48) and [61]).

Application of circuit laws at the transmission line contacts yields the following
expressions for the current/voltages amplitudes in the transmission line leads:

i[γVL − β(V1 − V2)] − ω[VL + κ(VL − V1)] + VL

ω
= −iηZ0IL

i[γVR − β(V1 − V2)] + ω[VR + κ(VR − V2)] − VR

ω
= −iηZ0IR

i[γV1 − β(VL − VR)] − ω[V1 − κ(VL − V1)] + V1

ω
= 0

i[γV2 − β(VL − VR)] + ω[V2 − κ(VR − V2)] − V2

ω
= 0

(51)

where ω is a dimensionless frequency in units of ω0 and η = √
L/C/Z0 withZ0 the

impedance of the transmission line. Note that Eqs. (51) are invariant under combined
P (L ↔ R, 1 ↔ 2) and a modified T̃ (i ↔ −i, β ↔ −β) reversal. The resulting
M -matrix takes the form

M =
(
(a + ib) i(c − d)

i(c + d) (a − ib)

)
/A. (52)

where a, b, c, d,A are polynomials in ω and their exact form is given in [39].
As discussed previously, the condition det M → 0 is a necessary (but not

sufficient) condition for unidirectional lasing. Assuming constant coupling κ , we
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get

det M = β(1 − ω2(1 + κ))− γ κω2

β(1 − ω2(1 + κ))+ γ κω2 = 0 → β = γ κω2

1 − ω2(1 + κ)
. (53)

Next we find the set of ωcr, γcr, βcr, values for which M22(γcr, βcr, ωcr) = 0
and M12(γcr, βcr, ωcr) = 0 are simultaneously satisfied. The latter is achieved
by substituting Eq. (53) in these two relations. In Fig. 24 we plot the evolution of
complex zeros of M22(ω, γ ;β = βcr) as the gain/loss parameter γ increases and
for a fixed value of the magnetic field βcr. At a critical value γ = γcr the first
resonance crosses the real axes at ω = ωcr and a unidirectional lasing is achieved.

We confirm the existence of a unidirectional lasing mode by introducing an
overall left/right outgoing coefficient ΘL/R(ω, γ, β), defined as the ratio of the
left/right outgoing field intensity to the total incident intensity:

ΘL = |V −
L |2

|V +
L |2 + |V −

R |2 ; ΘR = |V +
R |2

|V +
L |2 + |V −

R |2 (54)

Whenever ΘL � 1 (ΘR � 1) while ΘR ≈ 0 (ΘL ≈ 0) a left (right) unidirectional
laser has been achieved. At ω = ωcr, the outgoing coefficient Θ(ωcr) diverges,
i.e. ΘL → ∞ (ΘR → ∞), signalling the transition to left (right) lasing action.
Typical behavior of ΘL/R near a left unidirectional lasing mode (associated with
the parameter values of Fig. 24) is shown in the inset of Fig. 24. We see that around
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Fig. 24 (a) Evolution of resonances ω vs. γ . The starting point of the evolution is indicated with
a circle and the ending point with a square. Different colors indicate different resonances. The
parameters used are β = βcr = −0.50609, k = 0.8, and η = 0.9. The unidirectional lasing
frequency (red square) is ωcr = 1.05394 and it occurs at γcr = 0.56919. (b) The overall left/right
outgoing coefficient Θgain/loss. A divergence of Θgain at ωcr indicates a left unidirectional lasing
action. In the same subfigure we also report the ratio Θgain/Θloss. (After Ref. [39])
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Fig. 25 Experimental results for the overall left/right outgoing coefficient Θgain/loss . A diver-
gence of Θgain (Θloss) at ωcr signifies a left (right) unidirectional lasing action. For completeness
we also report theratio Θgain/Θloss. The parameters used in the experiment are L = 1.4 mH;C =
10 nF;Cc = 3 nF, R = 2.7 kW, Z0 = 1 : 35 kW and Rg = 4.7 kW. (After Ref. [39])

ω = ωcr, the ΘL is very large while it diverges at ω = ωcr. At the same time,
ΘR acquires a small constant value O(10−2) around ωcr while it becomes zero at
ω = ωcr.

Figure 25 shows experimental results for the left/right outgoing coefficients
ΘL/R (ω, γ, β) of Eq. (54) for a circuit based on four LRC resonators. The two
negative resistances are based on positive feedback with LM356 op-amps [65].
Experimentally, the values used (see caption of Fig. 25) were based primarily
on the limitations of the op-amps used for the gyrator and negative resistances,
with the exact transmission line impedance carefully adjusted to just below the
circuit instability (lasing) threshold. Under this condition, scattering parameters
used for ΘL/R(ω) were deduced from circuit voltages captured by a four-channel
oscilloscope. The corresponding scaled parameters for the data shown were γ =
0.23875;β = 0.765; κ = 0.356; and η = 0.38. Above threshold, the circuit exhibits
self-oscillatory exponential growth of the single linear mode at ωcr , ultimately
leading to complex saturation dynamics beyond the scope of this investigation.

The proximity in parameter space to a system instability threshold is responsible
for two near-threshold modes corresponding to those in Fig. 24 imposed by the
MT symmetry. Figure 25 shows the left unidirectional mode associated with the
experimental parameters used. The asymmetric phase inversion that characterizes
the gyrator transmission combined with the coupled oscillator phases is ultimately
responsible for the expression of asymmetry in the left/right mode amplitudes
shown.

This analysis shows that MT -symmetric structures combined with gyrotropic
components are capable of directionally controlled power output. Furthermore we
show that reversing the gain/loss results in reconfiguring the lasing action. The
experimental demonstration of the phenomenon in an electronic circuit illustrates
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the physics, emphasizing the crucial role of phase-reversed coupling provided by
the gyrator. It will be interesting to implement these ideas in the optics framework
using, for example, MT -symmetric structures like the ones discussed in Ref. [61].
Potential applications of suchMT -symmetric laser include optical ring gyroscopes
in which a beat frequency between two oppositely directed MT lasers is detected
to measure the rotation rate, optical logic elements in which the direction of lasing
in a ring is the logic state of the device etc.

5 Circuit Nonlinearity

In Ref. [4] we investigated the transport properties of a class of nonlinear PT -
symmetric systems whose anharmonic parts contain judiciously balanced gain
and loss. The electronic circuit consisted on a pair of coupled Van der Pol
oscillators [73], each with complementary anharmonic gain and loss conductances,
see Fig. 26a, b. The respective nonlinear I–V curves for the gain (red) and loss (blue)
elements are shown in the right panel of Fig. 26c. In the same figure we also report
the modeled behaviour of the individual (gain or loss) circuit elements using an
NGSPICE simulator. The gain and loss arrangement in the combined dimer was
such that the whole circuitry preserved a parity-time PT -symmetry. The system
was turned to a scattering set-up when two transmission lines (TL) were coupled on
its left and right side, see Fig. 26b.

Fig. 26 (a) Gain and loss circuits of the van der Pol PT -symmetric dimer. The elements shown
above are incorporated as parallel conductances in the capacitively coupled LC resonators making
up the dimer. (b) The non-linear PT -symmetric dimmer. (c) Experimental I–V response (circles)
for the gain (red) and loss (blue) elements along with the corresponding NGSPICE simulations
(solid), taken at a frequency of 30 kHz, typical of the active range of the VDP dimer. (d) An
equivalent optical circuit. (After Ref. [4])
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Fig. 27 (Color online) Measured TL and TR transmittances for a left (solid blue line) and right
(solid red line) incident waves. The NGSPICE simulated TL(TR) transmittances are shown as
dashed blue (red) lines. Inset: The ratio between the transmittance amplitudes associated with the
third harmonic T (3) and the fundamental frequency T (1). The parameter used are η = 0.031 and
γ = 0.15. (After Ref. [4])

The analysis of the PT -symmetric dimer indicated that, the left and right
transmittances were different indicating a high degree of asymmetric transport
which is accompanied with a strong transmitted signal. The physical mechanism
has been traced to the presence of amplitude-dependent (nonlinear) resonances
which are excited differently, depending if the incident wave interacts first with the
gain or the loss element of the PT -symmetric dimer. Importantly, in contrast to
conservative nonlinearities, the outgoing signal was found to be relatively unpoluted
from higher harmonics. Such systems, can also be implemented in optics circuitry
(see Fig. 26d) using, for example, optical amplifiers, saturable absorbers [35] and
two-photon losses to realize the nonlinear PT -symmetry.

In Fig. 27 we show the measured left (right) transmittances TL(ν) (TR(ν))
versus the driving frequency ν. We found that the degree of asymmetry, i.e.
TL(ν) �= TR(ν), is more pronounced in the frequency regime near the resonances
of the corresponding linear dimer. At the same figure we report the simulated
transmittances using NGSPICE. The slight deviations were associated with a small
parasitic inductive coupling that was not modeled efficiently by NGSPICE. Our
direct measurements indicated clearly that the asymmetric transport is not associated
with the generation of higher harmonics. For example, the ratio T (3)/T (1) is found
to be less than 10−4 (see inset of Fig. 27). For higher harmonics the ratios T (n)/T (1)

were below the noise level of our measurements. This behavior has to be contrasted
with typical non-linear based, asymmetric transport schemes, where the observed
asymmetric transport is due to the high harmonics generation [24, 41, 56, 64].
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The transport features of the system of Fig. 26b have been theoretically modeled
using a lump theory [4]. Using the first and second Kirchoff’s laws at the TL-dimer
contacts we derive the following set of coupled differential equations for the
current/voltage wave amplitudes I, V at the left (L) and right (R) contact equations

η
dIL

dτ
= γ (1 − V 2

L )
dVL
dτ

+ VL + (1 + c)
d2VL
dτ 2 − c

d2VR
dτ 2 , (55)

η
dIR

dτ
= γ (1 − V 2

R )
dVR
dτ

− VR − (1 + c)
d2VR
dτ 2

+ c
d2VL
dτ 2

where all the quantities above are expressed in terms of their dimensionless
vadiables: the current (voltage) amplitudes I (V ) at the lead-dimer contacts IL/R =
V0
Z0

IL/R (V = V0VL/R); the dimensionless time τ = t/
√
LC; the dimensionless

TL conductance η = √
L/C/Z0; and the dimensionless coupling capacitance

c = Cc/C.
Furthermore, the forward V +

L/R and backward traveling wave amplitudes V −
L/R ,

and the voltage VL/R and current IL/R at the TL-dimer contacts satisfy the
continuity relation

VL/R =
(
V +
L/R + V −

L/R

)
e−iωτ + cc; (56)

IL/R =
(
V +
L/R − V −

L/R

)
e−iωτ + cc.

Substituting Eqs. (56) into Eqs. (55) and keeping in mind that the output signal is
mainly carried by the fundamental frequency we evaluate the transmittances T ≡
|Vout/Vin|2 using the so-called backward map [29]. The initial conditions utilized
in this approach involve the output signal Vout = V +

R (V
−
L ) and the scattering

boundary conditions V −
R = 0(V +

L = 0) corresponding to a left (right) incoming
wave. Specifically, for the left transmittance we have

TL =
∣∣∣ 2ωηc

ηα + α
(
γ (1 − |αVout

cω
|2)+ i

ω
− iω(1 + c)

)+ (cω)2

∣∣∣2, (57)

where α = (η−γ (1−|Vout |2)+ i
ω
−iω(1+c)). The transmittance TR associated with

a right incident wave is TR(γ ) = TL(−γ ) and it is different than TL(γ ) (compare
blue dashed and red solid lines in Fig. 28b). To further highlight the importance of
the interplay between nonlinearity and PT -symmetry, we also report in the inset
of Fig. 28 the transmittances for a nonlinear VDP dimer with both elements having
gain or loss and for a linear PT -symmetric dimer. In contrast to the nonlinear
PT -symmetric structure, the transmission in all these cases is symmetric.
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Fig. 28 (Color online) Left
TL and right TR transmission
curves for a nonlinear
PT -symmetric VDP dimer
with γ = 0.14, η = 0.03,
ω = 0.98, and c = 0.27.
Inset: Theoretical
transmission curves for the
nonlinear all-gain (red solid
line) and all-loss (blue solid
line) VDP dimer where
reciprocal transport TL = TR
is found. (After Ref. [4])
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6 Floquet-Driven Coupling

Recently, activities related to time-dependent PT -symmetric systems have started
to attract increasing attention [13, 14, 20, 34, 37, 43, 48, 52, 71, 74, 77]. For PT -
symmetric systems one hopes that the use of periodic driving schemes can allow
for management of the spontaneous PT -symmetry breaking for flexible values
of the gain and loss parameter. Essentially the periodic driving can lead to a
renormalization of the coupling and a consequent tailoring of the position of the
EPs. In this section, we discuss an experimental example where periodically driven
PT symmetric systems can be investigated [9]. The set-up is similar to Fig. 1,
consisting of two coupled LC resonators with balanced gain and loss. In addition,
the capacitance that couples the two resonators is parametrically modulated with
a network of varactor diodes. In order to calibrate both the resonator frequency
balance and the gain/loss balance in the experimental system, the experimental
unmodulated PT diagram, shown with the color-map in Fig. 29a, is used to
match theoretical results. The coupling is then modulated, directly comparing each
calibrated point with and without the modulation. Signal transients are measured
by chopping the gain in the system and capturing the resonator responses on both
the gain and loss sides. The captured signals are frequency-analyzed to obtain the
modulated (or unmodulated) spectrum, shown in Fig. 29b, c.

Theoretically, the driven capacitive coupling is given as c ≡ Cc
C

= c0 +
ε cos (ωmτ) with respect to the rescaled time τ = ω0t and ω0 = 1√

LC
. Using

Kirchoff’s laws, the dynamics for the voltages V1 (V2) of the gain (loss) side of the
driven dimer is:

d2

dτ 2V + A
d

dτ
V + BV = 0; V ≡ (V1, V2)

T , (58)
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Fig. 29 Spectral density
plots for Re (ω) of a driven
PT -symmetric dimer with
c0 = 0.0671 and ε = 0.01:
(a) Undriven dimer ε = 0.
The Floquet ladder
ω1,2 + nωm associated with
the eigenfrequencies of HF,0
is indicated by the white
circles (here ωm = 0.0198);
(b) The crossing points
“evolve” to flat regions when
the system is driven; (c)
Different driving frequency
ωm = 0.01745 leads to a shift
of the flat regions to different
γ -domains. The white circles
in (b, c) indicate numerical
data. (After Ref. [9])

where

A = 1

β

[
−γ (1 + c)+ 2

·
c γ c − 2

·
c

−γ c − 2
·
c γ (1 + c)+ 2

·
c

]

B = 1

β

[
1 + c+ ··

c c− ··
c

c− ··
c 1 + c+ ··

c

]
. (59)
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Above β = 1 + 2c, γ = R−1√L/C is the rescaled gain/loss parameter, and
·
c (

··
c)

denotes the first (second) derivative of the scaled capacitive coupling c with respect
to the scaled time τ . Equation (58) is invariant under joint parity P and time T
operations, where T performs the operation τ → −τ and P is the Pauli matrix σx .

In the absence of driving, i.e., ε = 0, the eigenfrequencies ωα (α = 1, 2) of
system Eq. (58) are given as

ωα = 1

2
√

1 + 2c0

(√
γ 2
c − γ 2 + (−1)α

√
γ 2
PT − γ 2

)
(60)

where γPT = √
1 + 2c0 − 1 for the spontaneous PT -symmetry breaking point

and γc = √
1 + 2c0 + 1 for the upper critical point, which are both determined by

the strength of the (capacitance) coupling c0 between the two elements of the dimer.
As shown in Fig. 29a, where the open circles represent Eq. (60) and the color map
for the experimental results, the spectrum of the undriven dimmer is divided into
two domains of exact (γ < γPT ) and broken (γ > γPT ) PT -symmetry phase.

We move to the Floquet picture to study the effects of driving. To this end, we
employ a Liouvillian formulation of Eq. (58), which takes the form

dψ

dτ
=Lψ, L =

[
0 I2

−B −A
]
, ψ =

(
V
·
V

)
(61)

and allows us to identify a non-Hermitian effective Hamiltonian Heff = ıL
through time-dependent Schrödinger-like equation. The general solution of Eq. (61)
is given by Floquet’s theorem which in matrix notation reads F (τ) = �(τ) e−ıQτ

with�
(
τ + 2π

ωm

)
= �(τ),Q a Jordan matrix and F(τ) a 4×4 matrix consisting of

four independent solutions of Eq. (61). The eigenvalues of Q are the characteristic
exponents (quasi-energies) which determine the stability properties of the system:
namely the system is stable (exact PT phase) if all the quasi-energies are real and
it is unstable (broken PT phase) otherwise. We can evaluate the quasi-energies
by constructing the evolution operator U (τ, 0) = F(τ)F−1(0) via numerical
integration of Eq. (64) (or of Eq. (58)). Then the quasi-energies are the eigenvalues
of 1

−ı2π/ωm lnU (τ = 2π/ωm, 0).
Our numerical findings together with the experimentally measured values of the

quasi-energies versus the gain/loss parameter are reported in Figs. 29, 30, and 31.
The unmodulated situation is shown in Figs. 29a and 30a, while Figs. 29b and 30b
show the behavior at modulation frequency ωm = 0.0198 and modulation amplitude
ε = 0.01. Finally, Figs. 29c and 30c show the evolution of the spectrum with a small
change in modulation frequency ωm for fixed ε.
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Fig. 30 The imaginary part
of the Floquet
eigenfrequencies Im(ω)

versus the rescaled gain/loss
parameter γ /γPT for: (a)
an undriven; and (b, c) driven
dimers, with ωm shown. The
arrows and stars correspond
to the fixed crossing points in
Fig. 29a for reference. The
experimental data are shown
as aqua circles, the numerics
as blue lines and the results
from the perturbation theory
Eq. (69) as green circles.
(After Ref. [9])
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Fig. 31 The (ε, ωm)
parameter space for fixed
γ /γPT at the position of the
arrows in Fig 30. The
domains where the system is
in the exact PT-symmetric
phase are indicated as white
while the domains where the
system is in the broken
PT -symmetric phase are
shaded. (After Ref. [9])

There are several new features in the spectrum of the driven PT -symmetric
systems. First we see that there exist a cascade of domains for which the system
is in the broken PT -phase. These domains emerge as shown in Fig. 29b, c where
the real parts of eigenfrequencies have merged in the vicinity of the crossing points
(indicated by the arrows and stars) and in Fig. 30a–c the non-zero imaginary parts
(the so-called unstable “bubbles”) appear. Both the size and position of the unstable
“bubbles” can be controlled by the values of the driving amplitude ε, compare
Figs. 29a and 30a with Figs. 29b and 30b or by the driving frequency ωm, compare
Figs. 29b and 30b with Figs. 29c and 30c. Between the nearest bubbles, there exist
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γ -domains where the system is in the exact (stable) PT -phase. Through the typical
EP degeneracy (notice the square -root singularities in Fig. 30a–c), the transition
between stable and unstable domains occurs. Beyond some critical gain/loss value
γmax, the system eventually becomes unstable. The γmax is defined as the maximum
value of the gain/loss parameter, above which there are no further stability domains.
Generally γmax depends on both ε and ωm. However, in the limit of ε = 0, it
becomes equal to γPT . In Fig. 31 we report the numerically determined PT-exact
(white) and broken (shaded) phases, when γ is fixed at the position of the arrows in
the accompanying plots.

We utilize the notion of Floquet Matrix HF to understand the spectral metamor-
phosis from a single exact/broken phase to multiple regions of broken and preserved
PT -symmetry, when ε increases from zero. First, we introduce a time-dependent
similarity transformation R, which brings the effective Hamiltonian matrix Heff
that dictates the evolution in the Schrodinger-like equation Eq. (61) to a symmetric
form. We shall see below that the symmetric form is inherited in the Floquet
matrix(up to the first order perturbation in ε and ωm ∼ O (ε)). Consequently the
bi-orthogonal Floquet eigenmodes of the unperturbed Floquet matrix are transpose
of each other – a property that greatly simplifies the analytical process for the
evaluation via first-order theory of the Floquet eigenmodes. First we observe that
Heff satisfies the property, i.e., P0T0Heff (τ ) P0T0 = Heff (−τ) with

P0 =
[
σx 0
0 σx

]
, T0 =

[
I2 0
0 −I2

]
˜K , (62)

where σx is the Pauli matrix, I2 is the 2 × 2 identity matrix and ˜K denotes the
operation of complex conjugation together with setting τ → −τ . To determine the
similarity transformation R, we impose the transposition symmetry of RHeff R−1

together with the requirements T = K̃ = RT0R
−1 and P =

[
0 σx

σx 0

]
= RP0R

−1.

Therefore the similarity transformation R follows:

R (τ) =

⎡
⎢⎢⎢⎢⎣

1 1 ı
√
β −ı√β√

1 + 2
··
c −

√
1 + 2

··
c ı ı

−
√

1 + 2
··
c

√
1 + 2

··
c ı ı

1 1 −ı√β ı
√
β

⎤
⎥⎥⎥⎥⎦ . (63)

Under this transformation R (τ), Eq. (61) takes the form

ı
d

dτ
ψ̃ =H̃ ψ̃; H̃ ≡ RHeffR−1 − ıR

d

dτ
R−1 (64)
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which dictates the evolution of the transformed state ψ̃ = Rψ . The matrix H̃ has
the form

H̃ = H̃ T =

⎡
⎢⎢⎢⎢⎢⎢⎣

− 3
2
ı
·
c
β

c+ + ıγ

2
√
β
c− + ıγ

2
√
β

3
2
ı
·
c
β

c+ + ıγ

2
√
β

ıc(3)

2(1+2
··
c)

− ıc(3)

2(1+2
··
c)
c− − ıγ

2
√
β

c− + ıγ

2
√
β

− ıc(3)

2(1+2
··
c)

ıc(3)

2(1+2
··
c)

c+ − ıγ

2
√
β

3
2
ı
·
c
β

c− − ıγ

2
√
β
c+ − ıγ

2
√
β

− 3
2
ı
·
c
β

⎤
⎥⎥⎥⎥⎥⎥⎦
, (65)

where c± = 1
2 ± 1

2

√
1+2

··
c√

β
and c(3) denotes the third derivative of the capacitive

coupling with respect to the scaled time τ . In addition we can easily show that
PT H̃PT = H̃ .

Now in component form, the Floquet Matrix HF is given as

〈α, n|HF |β, l〉 =H̃ (n−l)
αβ + nωmδαβδnl, (66)

where the subscripts α, β = 1, 2, 3, 4 label the components of H̃ , see Eq. (65), n, l
are any integers and H̃ (n)

αβ = 1
2π/ωm

∫ 2π/ωm
0 H̃αβ (τ ) e

−ınωmτ dτ . In this picture the
quasi-energies are simply the eigenvalues of the Floquet Matrix HF . Equation (66)
defines a lattice model [5] with connectivity given by the off-diagonal elements of
HF and an on-site gradient potential nωm.

Generally the Floquet Matrix HF in Eq. (66) is not transposition symmetric
since H (τ) �= H (−τ). However, within the first order approximation to the
strength of the driving amplitude ε and the modulation frequency ωm ∼ O(ε),
the Floquet Hamiltonian is symmetric and takes the block-tridiagonal form HF =
HF,0 + εHF,1 + O

(
ε2
)

where 〈n|HF,0 |n〉 = H̃ (0) |ε=0 + nωmI4 consists of the
diagonal blocks of HF while 〈n+ 1|HF,1 |n〉 = 〈n|HF,1 |n+ 1〉 = X consist of
off-diagonal blocks of HF . The 4 × 4 matrix X has the form

X = ı

4 (1 + 2c0)
3/2

⎡
⎢⎢⎣

0 ı − γ −ı − γ 0
ı − γ 0 0 −ı + γ

−ı − γ 0 0 ı + γ

0 −ı + γ ı + γ 0

⎤
⎥⎥⎦ . (67)

The analytical evaluation of the quasi-energies is shown as follows. First, we
diagonalize the leading term HF,0. Specifically we can construct a similarity trans-
formation P−1

0 H̃ (0) |ε=0 P0 = diag {ω2, ω1,−ω1,−ω2}. Then the eigenvalues
of HF,0 are given as {ω2 + nωm,ω1 + nωm,−ω1 + nωm,−ω2 + nωm} i.e. the
spectrum resembles a ladder of step ωm with the basic unit associated with the
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eigenfrequencies of the undriven dimer Eq. (60). The resulting ladder spectrum
(white circles) is shown in Fig. 29a versus the gain/loss parameter γ . We notice

that level crossing occurs at some specific values of γ (j) < γPT , i.e., ω2

∣∣∣γ (j) =
ω1

∣∣∣γ (j) + jωm.

After we turn on the driving amplitude ε, the crossing points evolve to broken
PT -symmetry regions with respect to gain/loss parameter γ . The centers of
the instability bubbles are associated with γ (j) which is controlled by ωm (see
Fig. 29b, c). In addition, the real part of the eigenfrequencies become degenerate for
a range of γ -values around γ (j), Fig. 29b, while an instability bubble emerges for
the imaginary part – see Fig. 30b for numerical (blue solid lines) and experimental
data (filled aqua circles). The transition points from stable to unstable regions have
all the characteristic features of an EP. To understand this phenomenon, we consider
the effect of the off-diagonal term εHF,1. For simplicity, we focus on the unstable
region around the crossing point at γ (1). Application of degenerate perturbation
theory to the nearly degenerate levels ω2 and ω1 + ωm gives

ω = (ω2 + ω1 + ωm)±
√
(ω2 − ω1 − ωm)

2 + 4ε2X̃12X̃21

2
, (68)

where X̃ = P−1
0 XP0 and the subscripts of X̃ indicate the corresponding matrix

components. Around the EP, ω can be written as

Re (ω) ≈ ω2

∣∣∣γ (1) , Im (ω) =± Cm
√
γ − γ0, γ > γ0 (69)

which has the characteristic square-root singularity of EP degeneracies. The con-
stant Cm depends on ε, ωm and is given as

Cm =1

2

√√√√√ 1

γ 2
PT − γ 2

0

εγ0

1 + 2c0

⎡
⎣
⎛
⎝ 2√

1 + 2c0
− ωm√

γ 2
PT − γ 2

0

⎞
⎠ γ0 + ε

2 (1 + 2c0)

⎤
⎦,

(70)

where γ0 is the solution of the equation (ω2 − ω1 − ωm)
2 + 4ε2X̃12(γ )X̃21(γ ) = 0

(see Eqs. (67) and (68)). For the experiment, where γ0 → γPT and γPT → 0, we
estimate that

γ0 ≈ γPT

⎛
⎝1 −

(√
2ωm +√2ω2

m + ε (4γPT + ε)

4γPT + ε

)2
⎞
⎠ . (71)

Equation (69) imply that both ωm, ε are responsible for a renormalization of the
coupling between the two levels (compare with Eq. (60)). We see that predictions
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(69) are in agreement with the numerical and experimental data (see green line in
Fig. 30b, c). Additionally, higher orders of EPs γ (j) can be analyzed in a similar
manner if we incorporate higher order perturbation theory corrections. In Fig. 31
we report a summary of PT -exact and broken domains in the parametric (ε, ωm)
space [18, 72] where γ /γPT = 0.74 (indicated by white arrow in Fig. 29a–c).

It is interesting to observe the revival of the exact PT phase around γ /γPT =
1.07, see Fig. 30b, c. To understand this phenomenon, we realize that for constant
ωm (determining the center of the bubble), the edges of the instability domain are
pushed away when ε increases, which can be deduced from Eq. (71). Furthermore,
the broken PT -symmetric regimes can be even broaden beyond the γPT border.
At the same time γmax moves beyond γPT . In fact in the high frequency limit, one
can average out the time dependence and recover a “static” PT -symmetric dimmer
with renormalized coupling constants [34, 77] and predict the γmax. Finally the
stability domain between the upper border of the γ (1)-bubble and γmax, originating
from the unbroken γ -region between γ (1) and the γPT in the undriven case, appear
around γ /γPT = 1.07.

The management of the exact and broken PT symmetry phase, either via
the driving amplitude ε or via the frequency ωm, also has direct implications to
the dynamics of the system. In Fig. 32 we report the total capacitance energy of
the dimer for the same γ = 0.0483 and ε = 0.01 values but different driving
frequencies ωm = 0.01745 (left) and ωm = 0.0198 (right). In the latter case
the energy grows exponentially with a rate given by the imaginary part of the
eigenfrequencies (see Fig. 30b) while in the former case we have an oscillatory
(stable) dynamics (see Fig. 30c).
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Fig. 32 Measured (cyan lines) time-dependence of the total capacitance energy of the whole
circuit Ec(t) = (

V 2
1 (t)+ V 2

2 (t)
)

(in units of Volt2) for driving frequencies (a) ωm = 0.01745
and (b) ωm = 0.0198, and for the same driving amplitude and gain/loss paramater γ (indicated by
black arrow in Fig. 30b, c). The green lines indicate the theoretical predictions (from simulations)
for the slope of the envelope of Ec(t). (After Ref. [9])
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7 Conclusions

The aim of the RF circuit and microwave project that we have carried over the
last seven years was/is to develop a new circuit design that exploits fundamental
PT concepts using active electronic circuitry as a working framework. The
implemented circuits are experimentally simple, mathematically transparent, and
display all the universal phenomena encountered in systems with generalized
PT -symmetries. In fact, in many occasions they have provided a validation to
theoretical approximations which due to the non-Hermitian nature of the systems
under investigation can be subtle.

On the one hand, we expect that the circuit architectures and concepts that have
and will emerge from these studies can also find direct applications in RF systems.
A recent example in this direction is the implementation of PT -circuitry for the
realization of robust wireless power transfer [2]. Another example is the utilization
of PT -circuitry for the realization of invisible acoustic sensors [22].

On the other hand, we believe that the development of PT -circuitry will
allow us to better predict the behavior of more complicated structures currently
proposed, such as coupled optical micro-resonators or exotic split-ring metamaterial
arrays, as they inevitably migrate into the realm of active elements. These ultimate
applications, which will undoubtedly be very difficult and expensive to develop,
will become significantly less challenging if the fundamental theory and consequent
design is well grounded by this more transparent experimental contact.
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Coupled Nonlinear Schrödinger
Equations with Gain and Loss: Modeling
PT Symmetry

Vladimir V. Konotop

Abstract Coupled nonlinear Schrödinger (NLS) equations is an ubiquitous model
describing wave propagation in diverse physical systems. In combination with
gain and loss exactly balanced with each other, this model allows for modeling
parity (P) and time (T ) symmetries in frameworks beyond the non-Hermitian
quantum mechanics, where they have been introduced originally. Being open, i.e.
not conserving energy, such systems nevertheless bear many properties which are
characteristic for conservative models. This allows one to explore various wave
phenomena in PT -symmetric settings, including bright and dark solitons and
their interactions with defects, soliton switches, resonant wave interactions, wave
collapse, etc. In this Chapter an overview of some recent results on these processes
is presented. The outcomes are interpreted in contexts of nonlinear optics and matter
wave theory.

1 Introduction

The nonlinear Schrödiner (NLS) equation is a fundamental model which describes
propagation of weakly non-linear and weakly dispersive waves. It is used for
theoretical description of wave processes in systems having different physical, and
not only physical, nature, like optics, atomic physics, acoustics, hydrodynamics,
biology, economy, etc. As its name indicates, the NLS equation represents a
nonlinear generalization of the well-known Schrödinger equation which describes
a non-relativistic particle in quantum mechanics. This mathematical analogy served
as the background for extension of the ideas of parity (P) and time (T ) symmetric

V. V. Konotop (�)
Departamento de Física and Centro de Física Teórica e Computacional, Faculdade de Ciências,
Universidade de Lisboa, Lisboa, Portugal
e-mail: vvkonotop@fc.ul.pt

© Springer Nature Singapore Pte Ltd. 2018
D. Christodoulides, J. Yang (eds.), Parity-time Symmetry
and Its Applications, Springer Tracts in Modern Physics 280,
https://doi.org/10.1007/978-981-13-1247-2_14

407

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-1247-2_14&domain=pdf
mailto:vvkonotop@fc.ul.pt
https://doi.org/10.1007/978-981-13-1247-2_14


408 V. V. Konotop

systems from non-Hermitian quantum mechanics [6, 7], first to optics [23, 39, 45,
52], and later to many other branches of physics (see e.g. [33] for review).

In application to wave processes in media with gain and loss, the PT symmetry
implies existence of exact balance between domains where a wave is amplified and
where it is attenuated. These non-conservative effects are described by complex
coefficients of the respective wave equations or by complex potentials. For obser-
vation of stable wave propagation, the balance between nonlinearity and dispersion
(or diffraction) must be verified simultaneously with the balance between gain and
loss. This is also typical for dissipative systems [3], where however, both balance
conditions can be satisfied only for specific values of the wave parameters. Presence
of PT symmetry completely changes the situation enabling those conditions for
the whole, or at least for a continuous, range of the wave parameters. In this way
the PT symmetry provides conditions for existence of families of nonlinear wave
solutions, which can be stable, in spite of the presence of gain and loss.

A simple way of modeling a nonlinear PT -symmetric system is to consider two
optical waveguides (or two subsystems, in a general case) one of which amplifies the
wave and another one absorbs it [53]. If the waveguides are linearly coupled, such
that the energy can be transmitted from the waveguide with gain to the one with
loss, it is natural to expect that balance necessary for stable wave propagation can
be achieved if the coupling is strong enough. In optical applications such a system
represents a dispersive coupler, supporting propagation of wavepackets.

Coupled NLS equations with gain and loss have been studied already for many
years [41] (see also [40] for a recent review). A decade ago, a linear coupler
(without dispersion) which obeys PT -symmetry was introduced in [23] and later
implemented experimentally in [53]. These works initiated studies of the discrete
PT −symmetric optics. Soon after that, the idea of a PT -symmetric (dispersion-
less) coupler was formulated for the waveguides with Kerr nonlinearity [51, 54].
Study of dispersive (i.e. allowing for propagation of wavepackets) couplers obeying
PT -symmetry was initiated by the works [1, 20–22].

There exists special interest in modeling PT symmetry by coupled NLS
equations. Implementation of this symmetry in optical media is constraint by the
causality principle, mathematically expressed by the Kramers-Kronnig relations.
Required delicate balance between gain and loss can be realized only for isolated
frequencies, rather than for a continuous frequency range [60]. This does not affect
modeling of the paraxial PT −symmetric optics, initiated by works [23, 39, 45],
since the paraxial optics deals with monochromatic beams. However, this becomes
relevant for study of short pulses, obeying finite-band frequency spectra. Indeed, by
creating gain and loss domains in different media, similarly to the first suggestion
on implementation of PT symmetry in optics [52], which are coupled with each
other, one can consider dynamics of pulses with relatively broad spectra.

In this Chapter we overview some recent results on coupled NLS equations
with PT -symmetric gain and loss. The results are interpreted in the contexts
of nonlinear optics and of theory of matter waves in two-component mixtures of
spinor Bose-Einstein condensates (BECs). We start with a short summary of the



Coupled Nonlinear Schrödinger Equations with Gain and Loss: Modeling PT . . . 409

basic concepts in Sect. 2 which includes the formulations of the model (Sect. 2.1),
definition of the symmetries (Sect. 2.2), and the notions of broken and unbroken
PT -symmetric phases (Sect. 2.3). In Sect. 3 we review some results on the exis-
tence of solutions of two coupled PT -symmetric equations of the NLS-type. In the
subsequent sections we study the modulational instability of plane-wave solutions
(Sect. 4), as well as bright (Sect. 5) and dark (Sect. 6) vector solitons. Interaction of
symmetric and anti-symmetric bright solitons with localized defects is described in
Sect. 7. Section 8 is devoted to the phenomenon of four-wave mixing in the coupled
PT -symmetric NLS equations. In the next Sect. 9 two physical systems, whose
symmetries involve three operators (time reversion as well as, space and “charge”
inversions) are described. These systems are Bose-Einstein condensates with spin-
orbit coupling (Sect. 9.1) and optical coupler with dispersive coupling (Sect. 9.2).
In Sect. 10 we describe evolution of χ(2) solitons in a PT -symmetric coupling
in the cascading limit resulting in coupled NLS equations with nonlinear PT -
symmetric terms. In Sect. 11 PT -symmetric coupled NLS equations allowing for
Hamiltonian formulation are introduced. Some results on multi-dimensional models
are listed in Sect. 12. The last Sect. 13 contains concluding remarks.

2 Basic Concepts

2.1 The Model

In order to introduce the main model of this Chapter, let us consider one of the
pairs of coupled waveguides illustrated in Fig. 1. These are either one-dimensional
(1D) two-core waveguides along which optical pulses can propagate (Fig. 1a, c), or
planar waveguides (Fig. 1b, d) where diffraction of monochromatic beams can be
considered. In all the cases z-axis coincides with the direction of light propagation.
The second independent variable is either time τ = t − vgz, where vg is the group
velocity of the carrier wave (Fig. 1a, c), or spatial coordinate x (Fig. 1b, d). The
waveguides are considered having homogeneous gain and loss characterized by the
strengths +γ and −γ , respectively (Fig. 1a, b, d), and/or homogeneous coupling κ
(Fig. 1a–c). Hereafter we fix γ > 0. We will also consider a coupler with segments
of active and absorbing media, i.e. with γ = γ (z) (Fig. 1c), or having varying
coupling κ = κ(z) (Fig. 1d). If variations of gain and loss strengths or change
of the coupling constant are localized along z, they are referred to as defects. An
important requirement in all the cases considered below, is that the gain and loss
are exactly balanced, i.e. have equal strengths at any value of the coordinate z (any
instant of time). It will also be assumed that the waveguides obey Kerr nonlineary
(either focusing or defocusing).
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Fig. 1 Schematic illustration of dispersive couplers which in the presence of the nonlinearity are
described by coupled NLS equations (1). (a) Coupled waveguides one with gain and another with
loss; (b) planar waveguides with gain and loss; (c) transparent waveguides with a localized gain-
and-loss defect; (d) planar waveguides with a defect of coupling

Collecting the above assumptions, choosing x as a second independent variable
(for the sake of definiteness only), and denoting the dimensionless fields in the
waveguides with gain and loss by q1 and q2, respectively, one can write down the
system of equations describing a coupler, as follows

i
∂q1

∂z
= −∂

2q1

∂x2
+ iγ q1 + κq2 + (g|q1|2 + g̃|q2|2)q1 ,

i
∂q2

∂z
= −∂

2q2

∂x2 − iγ q2 + κq1 + (g|q2|2 + g̃|q1|2)q2 .

(1)

Here g and g̃ describe self-phase modulation (SPM) and cross-phase modulation
(XPM), respectively. For the waveguide models shown in Fig. 1a, c, the variable x
must be substituted by τ , while for the examples shown in Fig. 1b and Fig. 1d one
should consider z-dependent functions γ (z) and κ(z).

In what follows it will be convenient to use also a vectorial form of Eqs. (1),
where the field is written in a form of the column-vector, q = (q1, q2)

T (hereafter
the superscript T stands for transpose). Introducing the operator

H = −σ0∂
2
x + κσ1 + iγ σ3 (2)
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where σ0 and σ1,2,3 are respectively the 2 × 2 identity and the Pauli matrices, i.e.,

σ0 =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

as well as the 2 × 2 diagonal nonlinearity matrix

F(q) = diag(g|q1|2 + g̃|q2|2, g|q2|2 + g̃|q1|2) , (3)

equations (1) can be rewritten in a compact matrix form:

iqz = H q + F(q)q. (4)

2.2 Symmetries

At F(q) ≡ 0, system (4) formally coincides with the simplest form of the
dimensionless Schrödinger-Pauli equation for a spinor wavefunction of a quantum
particle with spin, except that now z plays the role of time t . Respectively, H
can be viewed as a non-Hermitian Hamiltonian acting on the two-component
spinor q (this justifies the names for H and q used below). Bearing in mind this
analogy we recall the basic symmetry operators (they can be found in textbooks
on quantum mechanics, see e.g. [43]). The space inversion in 1D case (4) is given
by Pxq(x, z) = q(−x, z) (the subscript x here specifies the coordinate which is
inverted). In our case Px commutes with the Hamiltonian (2): [H ,Px] = 0.
The anti-linear time-reversal operator, which in the quantum mechanics corresponds
to particles with integer-spin (i.e. to bosons), acts as T q(x, z) = q∗(x,−z). For
stationary (i.e. z−independent) solutions it is simply T = K where K is the
complex conjugation: K q = q∗. Both operators Px and T have the properties
P2
x = T 2 = 1.
The operator of complex conjugation K (and thus T ) defined above does

not commute with H . Meantime, an anti-linear operator commuting with the
Hamiltonian can be constructed. Indeed, one verifies that σ1K commutes with the
Hamiltonian: [σ1K ,H ] = 0. In order to give an interpretation of the symmetry
defined by σ1K , we notice that σ1 applied to H results in flipping of the
waveguides q1 ↔ q2. This is the same as inversion of y− coordinate: y → −y
(see Fig. 1). Hence, one can identify σ1 with the parity operator: Py = σ1. Then
the Hamiltonian H becomes PyT -symmetric: [PyT ,H ] = 0, although it is
not PxT symmetric, [PxT ,H ] �= 0. The action of the operator Px on the
Hamiltonian (2) is trivial. Thus, in terms of the complete spatial inversion operator
P = PxPy the Hamiltonian is also PT -symmetric: [PT ,H ] = 0.
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The inversion operator Px , however, acquires nontrivial meaning at least in two
general cases. First, adding a term V (x)q, where V (x) is a scalar or matrix potential,
to the Hamltonian, yields the equation

iqz = H q + V (x)q + F(q)q. (5)

The added term breaks the Px symmetry, unless V (x) is an even function, i.e.
unless V (x) = V (−x). A real potential V (x) does not break time reversal
symmetry. Thus, if V (x) is either scalar function or commute with σ1, it does not
break Py-symmetry, and model (5) remains partially PyT symmetric, but it is
not fully PT -symmetric anymore. In such cases the symmetry is referred to as
partial-PT symmetry [29, 33, 58].

In the second case, the Px symmetry is broken by the coupling. Two such
systems will be considered in Sect. 9, where also there will be given another physical
interpretation for the operator σ1. In the first example of a spin-orbit coupled BEC
(Sect. 9.1), q1,2(t) stand for macroscopic wavefunctions of different atomic states.
In that case flipping q1 ↔ q2 is not related to inversion of spatial coordinates. Then
σ1 has close analogy with the charge operator C [30]. It appears more convenient
to introduce separately three symmetry operators P , C , and T (rather than to
define C P as a new parity inversion operator, although this is possible too) and
consider C PT symmetry. Each of the introduced symmetries can be broken
without affecting the remaining ones, giving origin to PT , C T , and C P models.

Finally, we have to clarify the formal meaning of T operator for a Cauchy
problem, defined for z > 0, with initial condition at z = 0. This can be done by
considering a map T q(z) = q∗(−z), provided that a solution existing in an interval
[0, z0] with some z0 > 0, can be extended to the symmetric interval Z0 = [−z0, z0].
Then one can define a new vector-function qPT (z) := σ1q∗(−z). The model (1)
(or (4)) is said to obey PT -symmetry if for any its solution q(z) defined on the
interval Z0, the spinor qPT (z) is a solution, as well [49].

2.3 Unbroken and Broken PT -Symmetric Phases

For experimental feasibility of a physical system, it is necessary to require that it is
stable in the absence of perturbations, i.e. in the background state. For coupled NLS
equations, from the mathematical point of view, this means that the zero solution is
stable. Therefore, we start with the linear limit of (1), letting g = g̃ = 0 (i.e. F(q) ≡
0 in Eqs. (4)). Without loss of generality we consider γ, κ > 0. To distinguish
solutions of the linear system, below the respective fields and spectral parameters
will be denoted by tildes. Thus we consider the system iq̃z = H q̃. Substitution of
the ansatz q̃ ∼ eibz+ikxs, where s is a constant two-component column-vector, in
this equation gives two branches b̃ = b± of the dispersion (diffraction) relation:

b±(k) = −k2 ±
√
κ2 − γ 2 = −k2 ± κ cos δ, (6)
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were the parameter δ is defined by the relations:

sin δ = γ

κ
, cos δ =

√
1 − γ 2

κ2 , δ ∈
[
0,
π

2

]
. (7)

The respective eigenvectors q± read:

q± ≡ s±eib±(k)z+ikx, s− = 1√
2

(
eiδ

1

)
, s+ = 1√

2

(−e−iδ
1

)
. (8)

The background is stable, and hence supports propagation of linear waves, if
b±(k) are real for all k, what happens if κ > γ . If κ < γ , b±(k) become a
complex conjugate pair and the zero solution becomes unstable. These two cases
are referred to as unbroken (real eigenvalues) and broken (complex eigenvalues)
PT -symmetric phases, respectively, [6, 7]. The limiting case κ = γ at which
the phase transition occurs is called the exceptional point (EP) [31]. The latter is
characterized by coalescence of the eigenvalues b± and eigenvectors q±. Indeed, in
the EP δ = π/2 and we obtain b± = −k2 and s± = (i, 1).

At δ = 0 the coupler is conservative. In that case, the eigenvectors q− and
q+ represent field distributions in the coupler arms which are correspondingly
symmetric (in-phase, “−”) and antisymmetric (out-of-phase “+”). Extending this
terminology, accepted for conservative couplers [56], to PT -symmetric systems
at δ > 0 [10, 20, 21], the modes q+ and q− will be referred to as antisymmetric
and symmetric, respectively. (Note, that this terminology makes sense only for a
fixed sign of the coupling; change κ → −κ is equivalent to multiplication of one of
the field component by −1, or to the transformation q → σ3q, which changes the
relative phase of the modes by π .)

For a nonzero δ, the non-Hermitian nature of the eigenvalue problem manifests
itself in the non-orthogonality of the linear modes: q†

+q− �= 0. This enables
energy transfer among modes during the propagation. In the EP the modes are self-
orthogonal, meaning that sT±s± = 0 at κ = γ .

The described scenario of the phase transition through the EP is most typical
and is verified for majority of physical systems. However it is not the only
one. A singular phase transition was found in Ref. [30] (it is described below in
Sect. 9.1). Recently, a novel scenario of PT -symmetry breaking occurring through
emergence of complex eigenvalues from continuous spectrum was discovered
numerically in Ref. [59] and explained as splitting self-dual spectral singularity in
Ref. [34].

Eigenvalues (8) can be obtained also by using the global rotation. To this end we
consider the unbroken phase and introduce vector Q through the relation

q = UQ, U =
(
eiδ/2 −e−iδ/2
e−iδ/2 eiδ/2

)
. (9)
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It is straightforward to verify that Q solves the system of equations

i
∂Q1

∂z
= −∂

2Q1

∂x2 + κ cos(δ)Q1 + F1(Q),

i
∂Q2

∂z
= −∂

2Q2

∂x2
− κ cos(δ)Q2 + F2(Q)

(10)

where the nonlinearities are given by

F1 =
[
(g + g̃)|Q1|2 + 2g|Q2|2

]
Q1

+(g − g̃)Q∗
1Q

2
2 + 2i sin(δ)

[
g̃|Q1|2Q2 − gQ∗

2Q
2
1

]
,

F2 =
[
(g + g̃)|Q2|2 + 2g|Q1|2

]
Q2

+(g − g̃)Q∗
2Q

2
1 − 2i sin(δ)

[
g̃|Q2|2Q1 − gQ∗

1Q
2
2

]
.

System (10) has two advantages as compared with the original equations (4)
for q. First, its linear part is governed by the Hermitian Hamiltonian (it does not
have gain or loss). This is a manifestation of the equivalence of a PT -symmetric
Hamiltonian in the unbroken phase to a Hermitian Hamiltonian [44]. Second, linear
coupling is absent in Eqs. (10). Thus one can readily find linear solutions. Even more
importantly, in the nonlinear case one can look for “one-component” solutions Q1 =
(Q1, 0) and Q2 = (0,Q2) with Qj solving the standard NLS equation (j = 1, 2)

i
∂Qj

∂z
= −∂

2Qj

∂x2 − (−1)j κ cos(δ)Qj + (g + g̃)|Qj |2Qj (11)

In terms of the original variables q, the solutions Q1,2 describe the symmetric and
antisymmetric spinors

q− = √
2e−iδ/2Q1s−, q+ = √

2eiδ/2Q2s+. (12)

3 On Global Existence of Solutions

Since we are dealing with a non-conservative nonlinear system, the first question to
be addressed is the existence of solutions for a given class of initial data. Using the

standard notation for the H 1-norm: ‖q‖H 1 =
[∫

R

(
q†
xqx + q†q

)
dx
]1/2

, one can

prove the existence theorem (see [49], where a more general statement extending
the result to non-PT -symmetric coupled NLS equations with gain and loss can be
found, as well):
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Theorem 1 For any spinor q0 ∈ H 1(R) × H 1(R) there exists a unique global
solution q(z) ∈ C(R,H 1(R)×H 1(R)) of system (1) with κ =const and γ =const,
such that q(z = 0) = q0.

This Theorem ensuring boundness of both components of the field q and of their
derivatives at any finite distance z, however, does not forbid infinite growth of a
solution on the semi-infinite real axis. It turns out, that subject to the additional
requirement of equal SPM and XPM, i.e. at g = g̃, which often is referred to
as Manakov nonlinearity [42]: F(q) ≡ gq†q, boundness of the field at infinite
propagation distance can be established. Using the definition of the L2-norm

S0 = ‖q‖2
L2 =

∫
R

q†qdx =
∫
R

(
|q1|2 + |q2|2

)
dx, (13)

the following statement can be proven [49]:

Theorem 2 At g = g̃, γ =const, κ =const, and γ < κ (unbroken PT symmetry),
for any global solution q(z) ∈ C(R,H 1(R) × H 1(R)) of Theorem 1, there exists
a constant Smax > 0 such that supz∈R S0(z) ≤ Smax. For γ ≥ κ (broken PT
symmetry), there exists a global solution of Theorem 1 such that limz→∞ S0(z) =
∞.

For the next consideration it is convenient to introduce the Stokes variables Sj :=∫
R

q†σjqdx, or in the explicit form

S1 =
∫
R

(
q∗1q2 + q∗2q1

)
dx,

S2 = i

∫
R

(
q∗2q1 − q∗1q2

)
dx,

S3 =
∫
R

(
|q1|2 − |q2|2

)
dx.

(14)

Proof (of Theorem 2) For κ =const, γ =const and g = g̃, using definitions (14),
one straightforwardly computes from (1) that the Stokes component S1 and the sum
κS0 + γ S2 = Q are integrals of motion, i.e. they are z-independent quantities:
dS1/dz = 0 and dQ/dz = 0. The norm S0 solves the equation

d2S0

dz2
+ 4(κ2 − γ 2)S0 = 4κQ. (15)

Thus, if κ > γ (unbroken phase), S0 oscillates with the “frequency” 2κ cos δ. The
amplitude of oscillations of S0(z) is computed from the initial conditions giving

Smax =
[
κQ+

√[
S0(0)(κ2 − γ 2)− κ2Q

]2 + (κ2 − γ 2)S2
3(0)/4

]
/(κ2−γ 2).

"#
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Growth of the norm S0 is observed in the EP κ = γ and in the broken phase
κ < γ . However the character of the z-dependence is different: it is algebraic in the
former case and exponential in the last case.

Thus the Manakov nonlinearity plays a special role. This can be understood
by noting that such nonlinearity is PT -symmetric in accordance with the defi-
nition [62]:

[PT , F (q)] = 0 for any q. (16)

In this case the balance between gain and loss, which is verified in the linear limit, is
not broken by the nonlinear terms, unlike this happens for a general situation where
g �= g̃. We emphasize that in (16) the parity operator is applied to the matrix F(q) as
a whole, without affecting the components of q individually, in particular, PF(q)
should not be confused with PF(Pq) where simultaneous P transformation of
the column-vector q occurs. If

PT F(q)q = F(q)q for all PT −symmetric q : PT q = q (17)

the nonlinearity is termed weakly PT symmetric. Clearly, if a nonlinearity is
PT -symmetric, it is also weakly PT symmetric.

4 Modulational Instability

Let us start the discussion of particular solutions of (1) with stability properties of
a nonlinear plane wave having a finite amplitude ρ. Below this solution is referred
to as a carrier wave (CW). From (12) one concludes that there exist symmetric and
antisymmetric CWs. Here we address the modulational instability (MI) of these
solutions, following Refs. [10, 12] (analysis of a more general case of CWs having
different amplitudes can be found in [12]).

By noting that s+(π − δ) = s−(δ), one can extend the interval of δ, beyond the
one defined in (7), and consider δ ∈ [0, π ]. This allows to limit the investigation to
only one spinor, say q+. To reduce the number of parameters in this Section we set
κ = 1 (without loss of generality). Then the CW solution can be written down as
follows

q(cw) = ρs+eibz+ikx, b = −k2 − ρ2(g + g̃)+ cos δ. (18)

Following the standard procedure, in order to study the stability of the CW one
has to consider the evolution of its perturbation, i.e. the anstaz

q = q(cw) +
(

ue−i(βz−λx) + v∗ei(β∗z−λx)
)
eibz+ikx (19)
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where the spinor components u and v are considered small constants:
|u1,2|, |v1,2| 	 ρ, and λ and β are real and complex constants, respectively.
Substituting (19) into system (1) and linearizing with respect to u and v one obtains
four branches of the dispersion relation for the linear waves against the CW:
β = β±1,2 where

β±1 (λ) = 2kλ± λ

√
λ2 + 2ρ2(g + g̃), (20)

β±2 (λ) = 2kλ± λ

√(
λ2 + 2 cos δ

) [
λ2 + 2 cos δ + 2ρ2(g − g̃)

]
. (21)

The first conclusion follows form Eq. (20). The CW is unstable if

g + g̃ < 0, (22)

i.e. both β±1 (λ) become complex for |λ| < √
2ρ|g + g̃|. Condition (22) is not

affected by presence of gain and loss. Thus it represents the conventional MI
observed also for two coupled conservative NLS equations. The obtained result is
expectable in view of the reduction (9), (10).

In presence of gain and loss new instability domains appear. It follows from (21)
that β±2 (λ) are complex at sufficiently small λ if the system parameters are chosen
such that

cos δ < max
{

0, ρ2(g̃ − g)
}
. (23)

Thus, independently on other parameters, the symmetric solutions, that now cor-
respond to the parameter interval δ ∈ [π/2, π ], are unstable. This instability
is only due to gain and loss introduced in the system. Antisymmetric solution,
δ ∈ [0, π/2], do not display this type of instability if the repulsive SPM is
strong enough, compared with XPM, i.e. at g > g̃. Thus the MI of antisymmetric
solutions is induced by the gain and loss only if g < g̃. A peculiarity of the
instability in domain (23) is that for a given gain-and-loss coefficient γ (respectively,
for a fixed δ) unstable waves have large amplitudes above some threshold, i.e.
ρ2 > cos(δ)/(g̃ − g), while MI in domain (22) occurs for arbitrary amplitude of
the background (due to long-wavelength excitations). Meantime, there is overlap
of instability domains (22) and (23) for the antisymmetric solutions, where both
scenarios of MI can be observed. Figure 2 summarizes the analysis of MI domains
on the plane (g, g̃). An interesting property, clearly seen the figure, is that the
PT -symmetric nonlinearity, i.e. the Manakov nonlinearity g = g̃, similarly to
an EP in the linear case, separates the regions of stable and unstable solutions
(provided no conservative MI occurs, i.e. outside the domain (22)). This feature
also correlates with the peculiar role of the Manakov nonlinearity in existence of
nonlinear solutions discussed in Theorem 2 in the preceding Section. More detail
description of different dynamical scenarios of MI can be found in Ref. [12].
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Fig. 2 Domains of MI of the antisymmetric carrier wave in the plane (g, g̃). Different colors
denote “conservative” MI determined by (20), instability described by (21) and induced by PT -
symmetric gain and loss, as well as the domain where instabilities of both types exist. The empty
domain corresponds to stable CWs

5 Vector Bright Soliton

Instability of a CW background indicates on possibility of existence of bright
solitons. Particular solutions of this type in the “one-component” form (12) can be
readily found in terms of the rotated variables (9), (10). Such solutions were studied
for the case of zero XPM [2, 20, 21], g̃ = 0, when it is necessary to require g < 0
to ensure (22), and in more general cases when both types of the nonlinearity are
present [10]. Symmetric and anti-symmetric bright solitons in the last case, when
condition (22) for MI is satisfied, are given by

q± = η
√

2√|g + g̃| cosh
(
ηx/

√
2
)ei(cos δ−δ/2+η2/2

)
zs±. (24)

Here η is a positive constant which determines amplitudes and widths of the solitons.
Explicit expression (24) reveals an important feature: although the system is not

conservative its localized nonlinear solutions belong to continuous families, like
this usually happen in Hamiltonian systems and contrasting to typical dissipative
systems (in the latter case dissipative solitons appear as isolated fixed points). For
solution (24) such a family is parametrized by η. This is a general property of
nonlinear PT -symmetric systems (it will be obtained below also for other types
of soliton solutions, including dark solitons (26) and solitons in the presence of
dispersive coupling (49)).

Figure 3 shows examples of unstable (panels a and b) and stable (panel c)
dynamics of solitons obtained in [10] by the direct numerical simulations of Eqs. (1).
The stationary regime, shown in Fig. 3c, is achieved at very short distances even
if a soliton is initially perturbed. Stable vector solitons do not display any energy
transfer between the fields, since now |q1| = |q2| (see Eq. (24)). Oppositely, energy
transfer between the components q1 and q2 exists if an input pulse corresponds to
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Fig. 3 Evolution of symmetric solitons. (a) and (b) Field intensities of an unstable soliton with
η = 0.6 and δ = arcsin(0.2). (c) Intensity of the first component of a stable soliton at η = 0.3
and δ = arcsin(0.2) (after stabilization the second component has the intensity equal to that of
the first component). The results are shown for g̃ = 1, g = −1.5. (d) Boundaries of stability
domains, denoted by S±, for antisymmetric q+ and symmetric, q− solitons (24) (blue and red
lines respectively), as well as analytic curve (black dotted) for the stability estimate of q+ soliton,
obtained for g̃ = −1, g = 0.5. The green dashed line S− shows the stability domain for q− soliton
for g̃ = 1, g = −1.5. Solitons are stable (unstable) below (above) the respective curves

an unstable soliton. Intensities of such pulses can acquire values greatly exceeding
the intensity of the input pulse, what is a consequence of the system to be not
conservative (Fig. 3a, b).

Detail analysis of the stability has to be done numerically. Examples of the
stability domains corresponding to different choices of SPM and XPM were
obtained in [12]. They are shown in Fig. 3d. Solitons are stable for sufficiently small
amplitudes. The threshold between stable and unstable domains decreases with the
intensity of gain and loss. Thus, non-conservative effects (i.e. growing γ ) reduce the
domain of soliton stability. At the linear EP, i.e. at γ = 1 (recall that in this Section
we have set κ = 1), solutions become unstable due to the instability of the zero
background.

All curves displayed in Fig. 3d have similar shapes (the same is valid also for
attractive SPM and XPM [10] and for zero XPM g̃ = 0 [2, 21]). The numerical
curves are also qualitatively similar and quantitatively close to the analytical
estimate of the stability domain boundary (black dotted line in Fig. 3d). The latter
was obtained by analyzing only perturbations which break the symmetry (e.g.
antisymmetric solitons subject to symmetric perturbations) [21]. In the case at hand
such analysis gives [10]

η2
cr =

16(g + g̃) cos δ(
3
√−g − g̃ −√7g̃ − 25g

) (√−g − g̃ +√7g̃ − 25g
) . (25)
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Solitons are expected to be stable at η < ηcr . The curve ηcr(γ ) is illustrated in
Fig. 3d (by the dotted line). It is situated above the actual stability domains. This
is expectable, because expression (25) does not account for effect of perturbations
that have the same symmetry as the symmetry of the soliton itself, and can become
additional sources of instability.

Since in terms of the variables Q, introduced by (9), the one-component solution
is described by the conservative NLS equation, the system also possesses the
whole set of solutions known for the NLS equation (see e.g. [24]). They include,
breathers, multisoliton solutions, rogues waves (i.e. Peregrine solitons [50] studied
for PT -symmetric coupled NLS equations in [10, 16]), etc. All these solutions
are characterized by absence of energy exchange between the waveguides. More
sophisticated “two-component” solutions where both Q1,2 �= 0, in particular,
breathers can also be constructed [5]. Such breathers can be stable and appear to be
ubiquitous in problems of soliton interaction with localized defects as it is illustrated
below in Sect. 7.

6 Vector Dark Solitons

If a finite amplitude CW background is stable, one can look for dark soliton
solutions against it. For the backgrounds having equal amplitudes ρ of both
components, these are solutions satisfying nonzero boundary conditions |q1,2| → ρ

at x → ±∞. Like for stability of bright solitons it was necessary for a system to
be in unbroken PT -symmetric phase, stability of dark solitons is possible only if
the CW background is stable. Results of the respective analysis are shown in Fig. 4a
in the plane (g,−b). The CW background is stable either at g > g̃ (Fig. 4a) or at
sufficiently small amplitudes ρ < ρ∗ = cos(δ)/2g̃ (shown in the inset). In both
regions the stability does not depend on a specific value of g. If g < g̃ or ρ > ρ∗
there appear instability domains (white regions in Fig. 4) either at small enough b
(notice that the diagrams are shown for −b) or for sufficiently large amplitudes.

Considering stable backgrounds only, symmetric and antisymmetric vector dark
solitons of the PT -symmetric NLS equations can be written in the form

q± = 1√
2(g + g̃)

[
iv − w tanh

(w
2
(x − vz)

)]
eibzs± (26)

where the velocity v and the depth of the background modulation w are related with
the nonlinearity parameters: w2 + v2 = 2(g + g̃)ρ2.

The results of linear stability of a dark soliton at zero velocity v = 0, are shown
in Fig. 4b (more detail discussion can be found in [12]). The whole domains shown
in the main panel b and in the inset, correspond only to stable backgrounds. The
stability of a soliton in the case of repulsive XPM in the region determined by −g̃ ≤
g ≤ g∗, where g∗ is some critical value (it is obtained numerically) shown by the
vertical dashed line, coincides with the stability of the background. At g > g∗ there
appears an instability domain whose size increases with g. Interestingly, the lower
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Fig. 4 (a) Domains of stability (shaded) and MI (white) of the CW with equal amplitudes of the
components. The vertical dashed line shows the case g = g̃ while the left edge of the panels
corresponds to g + g̃ = 0 according to (22). The bottom edge is defined by b = cos δ. (b) The
stability (shaded) and instability (white) domains for the zero velocity dark solitons against stable
backgrounds. Both diagrams are shown in (−b, g) plain, and in the (ρ, g) plane in the insets. In
the inset of panels (a) and (b) g̃ = 1. The vertical dashed line at g∗ in panel (b) corresponds to the
left edge of the inset. Panels (c) and (d) show the evolution of an unstable dark soliton for g = 2.5,
g̃ = 1, b = −3.5 and ρ2 ≈ 1.2 [indicated by point A in panel (b)]. Panels (e) and (f) show the
evolution of a stable dark soliton for g = 2.5, g̃ = 1, b = −8.5, and ρ2 ≈ 2.633 [indicated by
point B in panel (b)]. In all panels γ = sin δ = 0.7.

edge on the instability domain (the green line) depends on the nonlinearity very
weakly. Unstable solitons correspond to small propagation constants (large values
of −b).

An example of the dynamics of an unstable dark soliton is shown in Figs. 4c, d.
The instability of the soliton leads to growing irregular excitations of almost entire
background, although the same background being homogeneous is modulationally
stable. Figure 4e,f shows evolution of a stable dark soliton. Remarkably, the soliton
can be viewed as stable even if dissipation and gain are not exactly balanced (say
given by −γ1 and γ2, respectively, with γ1 �= γ2). Then the system is not exactly
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PT -symmetric any more, but it has net dissipation or gain, depending on the sign
of γ1 − γ2. At initial stages of the evolution, such dissipation (or gain) leads only to
weak decay (or growth) of the CW amplitude, nearly preserving the shape of a dark
soliton [12].

7 Interaction of Solitons of PT -Symmetric NLS Equations
with Defects

Now we turn to dynamics of solitons of coupled PT -symmetric NLS equations
with varying parameters. As a first general comment, we notice, that if the
nonlinearity in model (5) is given by F(q) = gq†q, the term V (x)q with a
scalar function V (x), does not change the properties of the model with respect
to rotations (9). Hence one-component solutions, of the type Q = (Q, 0), can be
obtained from the single NLS equation. If additionally V (x) is real, model (5) obeys
PyT -symmetry. Furthermore, if H in (5) is Hermitian and V (x) = V ∗(−x) the
model obeys partial PxT symmetry (vector solitons in such model with periodic
V (x) were considered in [28]). If H and V (x) obey the above symmetries, the
system becomes fully PT -symmetric with P = PxPy (see Sect. 2.2).

In this Section we address two cases where the parameters are varying along the
propagation direction, i.e. along z−axis. First, we consider gain and loss localized
along z−axis, as illustrated in Fig. 1c. Second, we address interaction of a soliton
with the localized defect of coupling like in the example shown in Fig. 1d. In
literature, such problems were studied for localized modulations [1, 11], as well as,
for periodic ones [20, 35]. For all cases considered below, an important requirement
will be that in spite of spatial modulations locally, at a given z, the system obeys
PyT -symmetry.

7.1 Soliton Switch Using PT -Symmetric Defects

Consider a conservative coupler with gain and loss segments embedded in the first
and second arms, respectively (as it is sketched in Fig. 1c). Such PT -symmetric
defect is described by z−dependent gain-and-loss function γ (z). It is centered
a some propagation distance z0 from the input and has length !. The evolution
equations for a pulse propagating along such coupler read [cf. (1)]:

i
∂q1

∂z
= −∂

2q1

∂τ 2 + iγ (z)q1 + q2 − |q1|2q1,

i
∂q2

∂z
= −∂

2q2

∂τ 2 − iγ (z)q2 + q1 − |q2|2q2.

(27)

Without loss of generality, the coupling coefficient is set to be one: κ = 1.



Coupled Nonlinear Schrödinger Equations with Gain and Loss: Modeling PT . . . 423

We concentrate on the problem of switching of a localized input pulse between
the coupler arms resulting from the interaction of the pulse with the defect [1]. To
this end we consider the input signals for q1 and q2 fields to be different and having
solitonic shapes

q
(s)
j = (−1)jAj sech (τ/T ) eiφj , j = 1, 2. (28)

The amplitudes A1,2, the duration T (considered equal for both solitons), and the
phases φ1,2 are treated as slow functions of the propagation distance z. Approximate
equations governing these functions can be obtained using the Lagrangian approach,
known for solitons in a conservative coupler [48]. The result is conveniently
expressed in terms of the renormalized Stokes components S̃3 = −S3(z)/S0(z)

and S̃0 = S0(z)/S0(z = 0) [1]:

dS̃3

dz
= −2γ (z)(1 − S̃2

3)+ 2 sin(φ)
√

1 − S̃2
3 ,

dS̃0

dz
= −2γ (z)S̃0S̃3,

dφ

dz
= S0(z = 0)

3T
S̃3S̃0 − 2S̃3

cos(φ)√
1 − S̃2

3

,
dT

dz
= 0.

(29)

Figure 5 illustrates switch of an input signal q1(z = 0) = 5/ cosh(5τ/
√

2),
q2(z = 0) = −20/ cosh(10

√
2τ), which interacts with the defect γ (z) =

γ0{arctan[5(z − 3)] − arctan[5(z − 1.5)]}. The shown results are obtained from
system (29) (the red dashed line) and from the direct numerical simulations of (27)
(blue solid line) [1]. In terms of the Stokes variable switching corresponds to the
change of sign of the sign S̃3 (the lower curves) after interaction of the pulse with
the defect (marked by the gray stripe). The normalized integral intensity S̃0 changes
slightly only in the defect region and remains practically unchanged, S̃0 ≈ 1,
in the conservative parts of the coupler before and after the interaction. Thus, in
terms of the original Stokes components, the solitonic switch performs the operation
[S3]input → [−S3]output.

Fig. 5 Switching of an input
solitonic signal (28) between
the arms of coupler (27). The
position of the defect is
indicated by the vertical
shaded stripe. The blue solid
and red dashed curves show
respectively the results of
direct simulations of Eqs. (27)
and the results obtained from
approximate Eqs. (29) 0 10 20
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The obtained switching is characterized by nonzero signals applied to both arms
and, what is more important, accounts for dispersive effects. This distinguishes it
from conventional linear switches using PT symmetry but based on dispersionless
couplers (i.e. τ -independent in our case) [37, 46]. The letter usually operates
with the so-called bar and cross states [32], i.e. with the modes of the types
qbar = (q, 0)T and qcross = (0, q)T . Unlike in the cases of linear dispersionless
switches, determining input characteristics of a signal which would result in a
desired output signal, remains an unexplored subject. In this context, it is interesting
to mentioned, that for a linear dispersionless PT -symmetric coupler it is possible
to formulate an optimization problem, which leads to a quite unexpected prediction.
For implementation of a linear switch with the minimal energy costs, the latter
measured by the integral

∫ z0+!/2
z0−!/2 γ (z)dz, the coupler must operate in the EP

regime [38]. In our case EP means that the PT -symmetric defect is characterized
by γ (z) = 1, i.e. has much larger value than the one explored in the example shown
in Fig. 5. For solitonic switches optimization problem was not considered, so far.
However, the effect of a soliton scattering by an EP defect, achieved by modulation
of the coupling, was already studied; it is described in the next subsection.

7.2 Interaction of a Soliton with a Defect of Coupling

Interaction of a vector soliton propagating in a PT -symmetric coupler with a
localized defect of coupling, κd(z) (similar to one illustrated in Fig. 1d) is described
by the following PT -symmetric NLS equations

i
∂q1

∂z
= −∂

2q1

∂x2
+ iq1 + κd(z)q2 − |q1|2q1,

i
∂q2

∂z
= −∂

2q2

∂x2 − iq2 + κd(z)q1 − |q2|2q2.

(30)

Below it will be assumed that the defect has the minimal value κmin at z = 0,
i.e. κmin = minz{κd(z)} = κd(0), and tends to a constant value κ at z → ±∞.
Following Ref. [11] here we present the results of numerical simulations performed
for the coupling of the from κd(z) = κ − (κ − κmin) e

−z2/!2
, where ! characterizes

the width of the defect. In Fig. 6a, b and in Fig. 7a–d, illustrating the main results,
location of the defect is outlined by the two horizontal lines. Respectively, the
coupler input is located at negative z: zin = −10. The difference κ − κmin can
be interpreted as the strengths of the defect, which can be either positive or negative
depending on the local increase or decrease of the distance between the waveguides.
In (30) without loss of generality we set γ = 1, i.e. κmin = 1 corresponds to the EP.

If the defect is located far form the input of the coupler, one can launch a soliton
(symmetric, −, or antisymmetric, +) q± = 2ηei(η

2±κ2 cos δ)zsech(ηx)s± having
amplitude η, which freely propagates in absence of the defect.
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Fig. 6 (a), (b) Interaction of an antisymmetric soliton with the impurity for η = 0.15, κ = 2, and
! = 1. The coupler input is situated at z = −10. (c) Evolution of the Stokes component S0 for
η = 0.5, κ = 4. Excitation of a breather at ! = 1 < !cr and fast growth of the intensity at the
critical length !cr = 1.1 are shown by solid and dotted red lines, respectively. Amplitudes |q1| and
|q2| are shown by solid blue and dashed green lines. (d) Dependence of the critical lengths of the
defect on the soliton amplitude. In the gray domain at η < ηcr ≈ 0.1 no “blow-up” solutions were
found. In all cases κmin = 1

Interaction of the antisymmetric soliton q+ with the EP defect is illustrated in
Fig. 6a, b. The shown behavior is typical for dynamics when the length of the
defect is below some critical value !cr (for the shown dynamics ! < !cr ≈ 7),
or alternatively if the soliton width 1/η is large enough, i.e. at η < ηcr (for a
given defect length). In these cases a soliton passes through the defect. However
the interaction with the defect transforms it into a breather. Such breather is
characterized by almost complete periodic energy transfer between the waveguides
(cf. the intensity distributions in panels (a) and (b) of Fig. 6). The period is well
approximated by π/

√
κ2 − γ 2, that is the frequency of oscillations of S0 obtained

in (15). This last estimate is predictable since having passed the defect the pulse
propagates in the homogeneous PT -symmetric coupler (this corresponds also to
the breather frequency derived in [5]). If however, for a given soltion width η, the
length of the defect is above !cr , i.e. ! > !cr , the soliton cannot overcome the defect;
the field amplitude starts to grow very rapidly. This is reported in Fig. 6c. The solid
(black) and dotted (red) lines show the evolution of S0(z) slightly below the critical
length of the defect and at (numerically found) critical length !cr . While in the
former case one observes creation of a breather, in the unstable case increase of the
energy resembles collapsing behavior (which however is not the authentic blow up,
see Sect. 3). Exchange of the energy between waveguides in the breather solution
is also shown by solid blue and dashed green lines describing the field amplitudes
Fig. 6c. Numerically obtained critical length !cr is a decaying function on the soliton
amplitude (Fig. 6b). All solutions tested numerically for sufficiently small incident
amplitudes, η < ηcr ≈ 0.1, overpassed the defect and were transformed into
breathers.
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The existence of a critical length of a defect and a critical soliton amplitude,
which separate dynamical regimes of breather excitations and growing amplitudes,
are also obtained for symmetric solitons. Excitation of breathers, however, now has
more different scenarios. In particular, four different types of patterns emerging
from interaction of a soliton with the defect were found in [11]. They are shown in
Fig. 7. By increasing the length of the defect one can observe generation of a single
breather Fig. 7a (similar to one observed in Fig. 6a, b), a breather-like solution with
repeating broadening in the transverse direction (Fig. 7b), soliton splitting in two
out-propagating breathers (Fig. 7c), as well as a diffracting breather (Fig. 7d).

8 Four-Wave Mixing

An important features of PT -symmetric systems in the unbroken PT -symmetric
phase, is the possibility of modifying dispersion relation (6) by varying the gain-and-
loss coefficient γ . This opens novel possibilities for obtaining matching conditions
necessary for resonant wave interactions. Thus, resonantly interacting waves can be
manipulated by the strengths of gain and losses. In this section, following [57], we
consider an example of four-wave mixing (FWM) in a PT −symmetric coupler
described by the system

i
∂q1

∂z
= −∂

2q1

∂x2 + iγ q1 + q2 + |q1|2q1 ,

i
∂q2

∂z
= −∂

2q2

∂x2
− iγ q2 + q1 + |q2|2q2 .

(31)

Observation of FWM requires matching conditions for wavenumbers, k, k1 +
k2 = k3 + k4, and for propagation constants, b(k1) + b(k2) = b(k3) + b(k4),
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which have to be satisfied simultaneously. It follows from dispersion relation (6) that
coupler (31) admits three possibilities for both matching conditions to be satisfied.
These cases (the left column) and the respective four-wave processes (the right
column) can be summarized as follows:

b−(k1)+ b−(k2) = b+(k3)+ b+(k4), q−[k1] + q−[k2] ↔ q+[k3] + q+[k4],
(32)

b+(k1)+ b+(k2) = b−(k3)+ b+(k4), q+[k1] + q+[k2] ↔ q−[k3] + q+[k4],
(33)

b−(k1)+ b−(k2) = b−(k3)+ b+(k4), q−[k1] + q−[k2] ↔ q−[k3] + q+[k4].
(34)

Here the wavenumbers are indicated explicitly in the notation for the fields q (in
square brackets) since they play an important role in the analysis and “↔” indicates
modes which are converted in the FWM process.

Each of the processes in (32), (33), (34) involves energy transfer between two
branches b+ and b−, since at least one symmetric and one antisymmetric modes
have to be involved. Let k1,2 are the input wavevectors. Then setting κ = 1, one
obtains the matching conditions for the emergent waveves (they correspond to (32),
(33) and (34)):

k3= k̄ ±
√
Δk2 + 2 cos δ , k4= k̄ ∓

√
Δk2 + 2 cos δ, (35)

k3= k̄ ±
√
Δk2 − cos δ , k4= k̄ ∓

√
Δk2 − cos δ , (36)

k3= k̄ ±
√
Δk2 + cos δ , k4= k̄ ∓

√
Δk2 + cos δ . (37)

where k̄ = (k1 + k2)/2 and Δk = (k1 − k2)/2. Importantly, k3,4 in each of the
processes involve the parameter δ. Thus by changing gain and loss one can change
the wavenumbers of the outgoing waves. In the EP δ = π/2 (γ = 1) all these
conditions degenerate because of coalescence of the eigenvectors. From (36) one
can conclude that process (33) has a threshold: it is possible only for sufficiently
large mismatch of the wavevectors of the input beam, i.e. at |k1 −k2|2 � 4 cos δ. No
threshold exists for other two processes.

For the sake of illustration let us consider degenerate FWM process (32), k1 =
k2 = k̄. It corresponds to the transformation 2q−[k̄] → q+[k3] + q+[k4] (see [57]
for more details and other examples). Due to Galilean invariance one can fix k̄ = 0.
Then the wavenumbers of output waves are computed as k4 = −k3 = √

2 cos δ, as
it follows from (35).

In Fig. 8a it is shown how the mode q−[k1 = 0] having a slow Gaussian envelope√
0.9u0/(

√
2πσ) exp[−x2/(4σ 2)], with u0 = 177 and σ = 44, at the input splits

into two outgoing wavepackets, which emerge in process (32). To trigger the FWM,
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Fig. 8 (a) Split of an input source-beam with Gaussian envelope obtained numerically from (31).
The central panel shows the normalized intensity, u = |q1|2+|q2|2, with the input value u0 = 177,
at distance z = 235 in the direct space. Left upper inset shows the evolutions of beams in the
direct space. Right inset shows the intensity distribution in the Fourier space, ũ(k), at z = 235.
Vertical red dashed-doted lines in the right inset indicate wavevectors of the generated beams:
k3 = −√

cos δ and k4 = √
cos δ. (b) Powers of the output beams U3 and U4 (solid blue and

red lines) obtained by direct integration of Eqs. (31) are compared with the respective intensities
obtained from the equations of the slowly varying approximations (39) (dotted lines). All results
are obtained for γ = 0.7 (δ ≈ π/4). Note that the primary beam is not shown here

shown in the figure, one of the output beams was seeded with an input: q+[
√

2 cos δ]
having the same Gaussian profile as the primary beam, but the amplitude of an order
of magnitude smaller. The main panel of Fig. 8a shows the total beam intensity in
the real space, u(x) ≡ |q1(x)|2 + |q2(x)|2, at some distance after the separation of
the beams k3 and k4. The intensities in the Fourier space, û(k) ≡ |q̂1(k)|2+|q̂2(k)|2,
where q̂j (k) is the Fourier transform of the field qj (x), are shown in the right inset.
The left inset illustrates the dynamics of beam splitting.

The initial stages of the evolution of a FWM can be qualitatively described in
the approximation of slowly varying amplitudes. In our case this corresponds to the
ansatz

q(z, x) = 2a1(z)e
−iδq−[k1] + a3(z)q+[k3] + a4(z)q+[k4], (38)

where a1,3,4(z) are slowly varying amplitudes. Substituting this expression in
Eqs. (31) and projecting over q∗± we derive the equations for the amplitudes:

i
da1

dz
= a3a4a

∗
1 +

(u1

2
+ u3 + u4

)
a1,

i
da3

dz
= 2a1a1a

∗
4 +

(
u1 + u3

2
+ u4

)
a3,

i
da4

dz
= 2a1a1a

∗
3 +

(
u1 + u3 + u4

2

)
a4.

(39)

It follows from Eqs. (39) that in degenerate FWM process (32) the total power,
given by utot = u1 + u3 + u4, where u1 = 4|a1|2 and u3,4 = |a3,4|2, is
conserved, dutot/dz = 0. However, this conservation, representing the well-known
Manley-Rowe relation, is a result of the slowly varying amplitude approximation.
Equations (39) describe well only the initial stage of the evolution; they fail for
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short pulses considered at longer times. This is illustrated in Fig. 8b where the
evolution of the intensities u3,4 obtained from system (39) is compared with the
evolution of the total normalized energies of the generated beams computed as
Uj = ∫ |qj |2dx/ ∫ ( |q1|2+|q2|2

)
dx from the coupled PT -symmetric NLS

equations (31).

9 C PT -Symmetric Coupled NLS Equation

In all examples considered so far, coupled NLS equations were PyT -symmetric.
Since such systems possess also the trivial Px symmetry, they were also PT
symmetric (see discussion in Sect. 2.2). Now we consider two examples of fully
PT -symmetric models which do not obey PyT and Px symmetries. In alterna-
tive interpretation, such systems are C PT -symmetric.

9.1 Spin-Orbit Coupled Bose-Einstein Condensate

First, we consider a spin-orbit (SO) coupled BEC [26, 36] which is described by the
spinor ' = ('↑, '↓)T , where '↑ and '↓ are macroscopic wavefunctions of the
hyperfine atomic states. It is assumed that atoms are permanently added in the state
'↓, and simultaneously removed from the state '↑. Such SO-BEC is governed by
a non-Hermitian Hamiltonian whose linear part reads

HSOC = −1

2

∂2

∂x2 + ωσ1 + iκσ1
∂

∂x
+ iγ σ3 + V (x). (40)

Here ω is the strength of the linear coupling resulting from the Zeeman field, κ is the
strength of the SO coupling, γ > 0 accounts for loading and eliminating atoms, and
V (x) is the trap potential. The two-body interactions are modeled by the Manakov
nonlinearty F(�) ≡ g�†� [36]. The Gross-Pitaevskii equation describing SO-
BEC acquires the form (4), which in the new variables reads i� t = HSOC� +
F(�)�. Below we overview some of the results on this model obtained in [30].

When dissipation and gain are absent, γ = 0, Hamiltonian (40) is PxT
symmetric. When there is no SO coupling, κ = 0, Hamiltonian (40) is σ1T
symmetric. Flipping of the spinor components, '↑ ↔ '↓, executed by the matrix
σ1, corresponds to inversion of population of the hyperfine states, rather than to
space inversion discussed in Sect. 2.2. Interpreting the states '↑ and '↓ as having
positive, ε, and negative, −ε, energies with respect to average chemical potential
μ (i.e. having chemical potentials μ ± ε), one observes that σ1, has similarity with
the charge operator. Therefore, one can refer to σ1 as to a C operator, denoting
C = σ1. So defined C operator obeys the basic properties of the charge: C 2 = 1,
[C ,PT ] = 0, and the eigenvalues of C are ±1.
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There is an additional reason to use separately C and P operators (rather
than redefine the parity operator P → σ1P corresponding to P = PxPy

discussed above for optical systems). In typical experimental setups with SO-BECs
the coefficients ω, κ , and γ , as well as the external trap V (x), are controlled by
laser beams. Any of this factors can be excluded from the dynamics, and thus,
the symmetry C PT can be transformed in PT or in C T symmetries. At all
parameters γ , ω and κ different from zero, the system does not posses partial
symmetries, but is C PT −symmetric: [C PT ,HSOC] = 0. For discussion of
a different definition of the operator C used for the internal product in the proper
Hilbert space see [6]. Yet another definition of the C operator for a two-component
system with gain and losses was used in [19].

One of the most interesting features, introduced by C PT -symmetry is a
novel scenario of C PT -symmetry phase breaking. In order to describe this
phenomenon, let us consider the linear eigenvalue problem μ̃ψ̃ = HSOCψ̃ where
μ̃ is the spectral parameter. Unlike in the cases described above, where the PT -
symmetry breaking was determined by only one parameter which was the relation
between gain (loss) and the coupling, the C PT -symmetric Hamiltonian (40)
is characterized by two parameters controlling the phase transition. The first
parameter, ω/γ describes atom transformation between two hyperfine states due
to the linear coupling ω. This type of coupling was present in all above examples.
SO coupling κ , introduces a new parameter κ/(γ !). A peculiarity of this second
parameter is that the SO coupling depends on the characteristic scale of the wave-
function ! determined by the relation: |∂'↑,↓/∂x| ∼ |'↑,↓|/!. This has important
consequences, which we illustrated below on an exactly solvable example [30].

Consider a SO-BEC loaded in a toroidal trap without any additional potential,
V (x) ≡ 0. Assume that the trap is sufficiently narrow in the transverse direction
and has the length !. Thus ψ(x) = ψ(x + !). This cyclic boundary condition plays
the role of an external trap which limits the length of the condensate in space. Now
the chemical potential can be computed exactly as μ̃ = μn,± where

μn,± = 4π2n2/(2!2)±
√
(ω − 2πnκ/!)2 − γ 2, n = 0,±1, . . . (41)

Since the sign of ω is irrelevant, we consider it positive. If ω < γ the zero mode
μ0,± is unstable at least for n = 0. Thus, the unbroken phase may exist only
for ω > γ , what in articular, is verified for κ = 0. However, for nonzero SO
coupling the spontaneous phase breaking can occur if κ > 0. More specifically,
the C PT symmetry is broken if there exists an integer n belonging to the interval:
(ω − γ )!/2πκ < n < (ω + γ )!/2πκ. This means that arbitrarily small κ > 0
results in the symmetry breaking, provided all other parameters remain unchanged.
Moreover, at κ → 0 the number of unstable modes, i.e. number of integers in
the above interval, tends to infinity. In Ref. [30] this phenomenon was termed as
a singular phase transition.

Let now SO coupling κ is fixed. For sufficiently large κ , such that κ > γ !/π ,
and varying ω there appear alternating domains of broken and unbroken C PT
symmetry. Broken symmetry domains correspond to 2πnκ/!−γ < ω < 2πnκ/!+
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γ, (n = 1, 2, . . .). Thus when linear coupling grows the system subsequently enters
and leaves the unbroken phase. This phenomenon is referred to as the re-entrant
C PT -symmetric phase.

The described properties of C PT -symmetric phases of the SO-BEC in a
toroidal trap are generic and can also be observed for other types of trap potentials
V (x), say in parabolic traps. For detail study of this latter case, as well as for
description of the properties of the nonlinear modes in C PT −symmetric systems
we refer to [30].

9.2 Dispersive Coupled Waveguides

An analog of SO coupling in BECs can be obtained in optical waveguide systems.
Consider a coupler illustrated in Fig. 1a with coupling characterized by the inter-
modal dispersion [15]. Such coupling can be modeled by the operator [14]

K = κ0 + iκ1∂τ − κ2∂
2
τ , (42)

with real constants κ0,1,2 characterizing dispersionless coupling (κ0), as well as first
(κ1) and second (κ2) orders of dispersion of coupling. The equations describing
pulse propagation in such device read (cf. Eq. (1))

i
∂q1

∂z
= −∂

2q1

∂τ 2 + iγ q1 −Kq2 − 2|q1|2q1,

i
∂q2

∂z
= −∂

2q2

∂τ 2 − iγ q2 −Kq1 − 2|q2|2q2.

(43)

C PT -symmetric system (43) was introduced and studied in Ref. [61]. Here we
recall some of the obtained results focusing only on the case κ0,1 > 0.

The dispersion relation for the linear modes of Eq. (43) has two branches
(obtained by the ansatz q̃ ∝ eibz−iωτ s where s is a constant column-vector):

b̃1,2 = −ω2 ± (K̂2(ω)− γ 2)1/2, K̂(ω) = κ2ω
2 + κ1ω + κ0. (44)

An example of these brunches is shown in Fig. 9a.
The C PT symmetry is unbroken if γ < κ0 − κ2

1/(4κ2). This condition can
be satisfied only for sufficiently strong dispersion of the coupling: κ2 > κ2

1/(4κ0),
allowing one to consider rotation (cf. (9))

p̂ = S−1q̂, S(ω) =
(
e−iα(ω) −eiα(ω)
eiα(ω) e−iα(ω)

)
, α(ω) = 1

2
arcsin

[
γ

K̂(ω)

]
, (45)
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Fig. 9 (a) Two branches of the dispersion relation (44) in the unbroken phase. The green dot
indicates the maximum of b at ω0 from which small amplitude solitons (49) bifurcate. (b) A family
of solutions on the diagram (b, S0) (where S0 is defined in (13)). Stable (black) and unstable
(red) parts are indicated. The red dot corresponds to the soliton shown in (c). (c) Example of a
quiescent soliton at b = 1.7. The amplitudes of the components and currents are shown. In all
panels κ{0,1,2} = {1, 0.5, 0.1} and γ = 0.2

which is applied now to the Fourier transform of the field: q̂n = ∫∞−∞ qne
iωτ dτ . In

the case at hand, the Fourier space is more convenient because of the nonlocality of
the coupling. If the matching conditions for resonant FWM are not satisfied, i.e. no
resonant excitations of higher harmonics occurs, one can look for an (approximate)
solution in the “one-component” form p̂j (ω) �= 0 and p̂3−j (ω) ≡ 0 where j = 1, 2
(by analogy with one-component Q solutions considered in the previous sections).
In this approximation one obtains the integral NLS equation in the Fourier space
(presented here for j = 1)

∂p̂1(ω)

∂z
= ib1p̂1(ω)+ i

∫∫
dω1dω2G(ω,ω1, ω2)p̂1(ω1)p̂1(ω2)p̂

∗
1(ω1 +ω2 −ω),

(46)
where

G(ω,ω1, ω2) = cos [α(ω1)+ α(ω2)− α(ω1 + ω2 − ω)+ α(ω)]

2π2 cos[2α(ω)] .

It is to be mentioned that Eq. (46) remains valid for a more general nonlocal coupling
of the form Kq = ∫ K (τ − t)q(t)dt where K (τ ) is a localized function.

In spite of the approximate character Eq. (46) allows to obtain an exact solution
of the original system (43): p̂1 = √

2πAei[b1(�)+|A|2]zδ(ω−�) where A and� are
arbitrary amplitude and frequency. This solution is the plane wave

q1,2 = A√
2
ei[b1(�)+|A|2]z−i�τ∓iα(�) (47)

in the real space.
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Turning to spatially localized solutions, families of quiescent solitons, qn =
eibzwn(τ), which are characterized by the continuous dependence of the total power
S0 on the propagation constant b, they can be obtained numerically (definition of S0
given in (13) remains valid here, with substitution of x by τ ). In Fig. 9b we show
an example of a soliton family. A representative shape of a stable soliton solution
is shown in Fig. 9c. The shown family is stable for sufficiently small amplitudes of
solitons (they correspond to small propagation constants b). When soliton amplitude
increases, instability emerges from the continuous spectrum. For the example in
Fig. 9b this occurs at b ≈ 1.78. An interesting effect of the dispersive coupling is the
existence of the internal energy flow (current) jn = |qn|2(arg qn)τ accompanying
solitons in each waveguide. An example of such currents is illustrated in Fig. 9c.

Bifurcations of soliton families from the linear spectrum occurs from the top of
the upper branch of the spectrum, denoted below as ω0 (it is shown by the green dot
in Fig. 9a), such that b′1(ω0) = 0 (hereafter b′j (ω) ≡ ∂bj /∂ω). In order to construct
small-amplitude solitons one considers p̂1(ω) to be a small function well-localized
around ω = ω0. Expanding Eq. (46) in powers of ω−ω0 and calculating the inverse
Fourier transform, one obtains the NLS equation in the real space

∂p1

∂z
= i

(
b1 + ω2

0b
′′
1

2

)
p1 + ω0b

′′
1
∂p1

∂τ
− ib′′1

2

∂2p1

∂τ 2 + 2i|p1|2p1. (48)

The soliton solution of Eq. (48) has the form qn = eibzwn(τ) and is characterized
by the amplitude η:

q1,2 = η
exp

{
i[η2 + b1(ω0)]z− iω0τ ∓ iα(ω0)

}
cosh

[
η(2/|b′′1(ω0)|)1/2 (τ ± α′(ω0))

] . (49)

From this expression we conclude that the combined effect of the gain, loss,
and dispersive coupling introduces temporal shift 2α′(ω0) between the soliton
components, as well as non-zero energy currents jn in the soliton components
(Fig. 9c) which can be estimated from Eq. (49) as jn ≈ −ω0|qn|2.

10 Coupled NLS Equations as a Cascading Limit of a
PT -Symmetric χ(2) Coupler

Further extension of the PT -coupled NLS models can be obtained as the cascading
limit [55] of the χ(2)-coupler, studied in [47]:
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i
∂u1

∂z
= −∂

2u1

∂x2
+ κ1u2 − 2u∗1v1 + iγ1u1,

i
∂v1

∂z
= −1

2

∂2v1

∂x2 + κ2v2 − u2
1 − βv1 + iγ2v1,

i
∂u2

∂z
= −∂

2u2

∂x2
+ κ1u1 − 2u∗2v2 − iγ1u2,

i
∂v2

∂z
= −1

2

∂2v2

∂x2 + κ2v1 − u2
2 − βv2 − iγ2v2.

(50)

Here uj and vj are the dimensionless field components of the fundamental fields
(FFs) and second harmonics (SHs), respectively, in the j -th arm of the coupler
(j = 1, 2), κ1 and κ2 are the coupling coefficients of the FFs and SHs, respectively,
γ1 and γ2 are the gain (loss) coefficients of the FF and SH in the first (second)
waveguides, and β is the mismatch of the propagation constants. System (50)
describes the diffraction in a planar coupler, similar to one illustrated in Fig. 1b,
where each of the slabs possesses χ(2) nonlinearity.

The PT -symmetry of systems (50) is described by the transformations of
the four-component column-vector ψ = (u1(x, z), v1(x, z), u2(x, z), v2(x, z))

T

defined by the time reversal operator T : T ψ(x, z) = ψ∗(x,−z) and by the
“permutation” operator

P = σ1 ⊗ σ0 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ . (51)

The latter can be viewed as a generalization of Py and C operators introduced in
Sect. 2.2 and in Sect. 9.1, respectively.

PT -symmetric solutions of system (50) of a general type, i.e. modes satisfying
PT ψ = ψ , are described in [47]. Here we concentrate on the cascading limit,
which in conservative χ(2) systems is defined by the requirement |β| � 1 [55].
In the PT -symmetric case, due to presence of gain and loss, the condition for
cascading limit is more general; it reads |Δ| � 1, where Δ = β2 + γ 2

2 − κ2
2 .

Thus the cascading limit can be achieved not only by means of a large mismatch of
the propagation constants, but also at strong coupling κ2 or at a large gain-and-loss
coefficient γ2 of the SHs. In this limit, one can neglect the second derivatives of the
SHs, and express the functions v1,2 through the FFs:

v1 ≈ − (β + iγ2)u
2
1 + κ2u

2
2

Δ
, v2 ≈ − (β − iγ2)u

2
2 + κ2u

2
1

Δ
. (52)
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Using these relations in the equations for the FFs one obtains coupled PT -
symmetric NLS equations

iu1,z = −u1,xx + κ1u2 + iγ1u1 + 2(β + iγ2)

Δ
|u1|2u1 + 2κ2

Δ
u∗1u2

2,

iu2,z = −u2,xx + κ1u1 − iγ1u2 + 2(β − iγ2)

Δ
|u2|2u2 + 2κ2

Δ
u∗2u2

1.

(53)

This is a PT -symmetric coupler with effective complex SPM and additional FWM
term resulting from the coupling of the FFs with SHs. It is to be emphasized that the
nonlinearity in (53) is weakly PT -symmetric according to definition (17).

An interesting feature of system (53) is that the sign of its effective Kerr-like
nonlinearity is determined by the coefficient β/Δ and hence can be either focusing
(β/Δ < 0) or defocusing (β/Δ > 0). Thus the “conservative” nonlinearity depends
on the gain and loss. The considered χ(2) coupler is not the unique system obeying
such property; similar phenomenon was recently reported in [9] for a non-PT -
symmetric waveguide with active core and absorbing boundaries.

A soliton solution of (53) can be found subject to constraints

κ2
1γ2 = 2κ2γ1

√
κ2

1 − γ 2
1 < β < κ2 cos(2δ1) where δ1 = arcsin

γ1

κ1
. (54)

It reads

(
u1

u2

)
= ηsech

(
ηx√

κ2 cos(2δ)− q

)
s±, (55)

where η is the soliton amplitude. It was found in the direct numerical simu-
lations [47], that the soliton (55) represents an initial condition for launching
sufficiently robust χ(2) solitons of original system (50).

11 Hamiltonian PT -Symmetric Coupler

For the models considered in previous sections, integrals of motion are not known.
This is a typical situation for nonlinear PT -symmetric wave equations. Some
exceptions, however can be found. A Hamiltonian coupler with balanced gain and
loss for which there exist several integrals of motion was reported in [63]. The
evolution equations read

i
∂q1

∂z
= −∂

2q1

∂x2 + iγ q1 + κq2 + ge−iφ |q1|2q1 + 2ge−iφ |q2|2q1 + geiφq∗1q2
2 ,

i
∂q2

∂z
= −∂

2q2

∂x2
− iγ q2 + κq1 + geiφ |q2|2q2 + 2geiφ |q1|2q2 + ge−iφq2

1q
∗
2 .

(56)
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Here φ is a real constant characterizing the relative strength of the nonlinear gain
and loss. System (56) can be viewed as a generalization of the cascading limit
equations (53) where additional XPM terms are added. On the other hand, without
dispersion, i.e. for x-independent solutions q(t), it is reduced a PT -symmetric
Hamiltonian dimer. A theory of dimers with cubic nonlinearities was developed
in [4]. General discussion of the role of PT -symmetry of nonlinearity for existence
of the integrals of motions for systems of PT -symmetric ordinary differential
equations can be found in [62].

System (56) is obtained from the Hamiltonian equations

i
∂q2

∂z
= δH

δq∗1
, i

∂q1

∂z
= δH

δq∗2
, i

∂q∗2
∂z

= − δH
δq1

, i
∂q∗1
∂z

= − δH
δq2

(57)

with the Hamiltonian

H =
∫ ∞

−∞

[
∂q∗1
∂x

∂q2

∂x
+ ∂q∗2
∂x

∂q1

∂x
+ iγ (q1q

∗
2 − q∗1q2)+ κ(|q1|2 + |q2|2)

+g(|q1|2 + |q2|2)(eiφq∗1q2 + e−iφq1q
∗
2 )
]
dx. (58)

Equations (57) have a cross-gradient structure, previously explored for PT -
symmetric coupled linear oscillators [8]. Remarkably, in addition to Hamilto-
nian (58), which does not depend on z, system (57) has two more real integrals
of motion. These are the Stokes component S1 defined in (14), i.e. dS1/dz = 0, and
the quasi-momentum P [63]:

P = i

∫ ∞

−∞

(
∂q1

∂x
q∗2 − ∂q∗1

∂x
q2

)
dx,

dP

dz
= 0. (59)

Exact soliton solutions of (56) can be found in both unbroken and broken PT -
symmetric phases, provided the linear and nonlinear gain and loss are related in
a special way. If in the unbroken phase (γ < κ) the parameter φ is equal to one

of two values φ1,2 = ∓ arctan

(
γ κ
√
κ2 − γ 2

κ2 + γ 2

)
then transformation (9) leads to a

conservative NLS equation for one of the components of the vector Q. For example,

i
∂Q1

∂z
= −∂Q1

∂x2 ±
√
κ2 − γ 2Q1 + 4gκ√

3γ 2 + κ2
|Q1|2Q1, Q2 = 0. (60)

If PT symmetry is broken (γ > κ), one can introduce another “angular”
parameter δ̃, according to sin δ̃ = κ/γ , and use modified transformation (cf. (9))

q = ŨU1Q, Ũ =
(
eiδ̃/2 −e−iδ̃/2
e−iδ̃/2 eiδ̃/2

)
, U1 = 1√

2

(
1 −1
1 1

)
(61)
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[notice that Ũ is defined similarly to U in (9) but with δ substituted by δ̃]. Now the
one-component solution Q = (Q, 0) is obtained from the NLS equation

i
∂Q

∂z
= −∂

2Q

∂x2 + iκ cot(δ̃)Q+ 2g|Q|2Q (62)

with either gain, if δ̃ ∈ (0, π), or loss, if δ̃ ∈ (−π, 0). In the EP, γ = κ ,
equations (60) and (62) coincide.

Detail analysis of the soliton stability and interactions of system (56), as well
generalization of the model to Hamiltonian non-PT -symmetric coupler can be
found in [63].

12 On Multidimensional PT -Symmetric NLS Equations

Finally, we briefly discuss more general, but less explored models, where two (or
more) coupled NLS equations with gain and losses are considered in R

N , i.e. to
PT -symmetricN -dimensional models. DirectND generalization of Eqs. (1) reads

i
∂q1

∂t
= −Δq1 + iγ q1 + κq2 − (g1|q1|2 + g̃|q2|2)q1,

i
∂q2

∂t
= −Δq2 − iγ q2 + κq1 − (g̃|q1|2 + g2|q2|2)q2.

(63)

Here x ∈ R
N , t ≥ 0, Δ is the N -dimensional Laplacian. The Cauchy problem

for (63) is formulated with the initial conditions: q1,2(x, 0) = q
(0)
1,2(x), q

(0)
1,2 ∈

H 1(RN), |x|q(0)1,2(x) ∈ L2(RN).
Sufficient conditions for supercritical collapse in this Cauchy problem in dif-

ferent ranges of the nonlinear coefficients, were established in [18]. Apart from
the technical details, like the possibility of exponential growth of S0(z) and
non-conserved energy functional, the main results of the mentioned analysis are
similar to those known for the supercritical collapse of two NLS equations with
linear coupling, whose comprehensive analysis can be found in [27]. In particular,
sufficient conditions for blow up have been established for the cases g1,2 > 0,√
g1g2 + g̃ > 0 and g1 > 0, g2 ≤ 0, and g ≤ 0. Results on the critical blow up can

be found in Ref. [17].
For existence of solitons in 2D PT -symmetric NLS equations, strong instabil-

ities must be suppressed, what is possible by adding to the system repulsive quintic
nonlinearity. For two coupled 2D PT -symmetric NLS equations this problem
was studied in [13]. A diversity of two-dimensional solitons in three coupled
PT -symmetric NLS equations (such model describes triple-core nonlinear optical
waveguides with balanced gain and loss) in presence of quintic nonlinearity were
reported in [25].
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13 Concluding Remarks

In this Chapter we described a variety of nonlinear phenomena modeled by coupled
nonlinear Schrödinger equations with gain and loss which are exactly balanced
with each other. The reported systems describe wave propagation in dispersive
optical couplers, diffraction in planar waveguides, matter waves in spin-orbit-
coupled condensates, etc. In optical applications the gain and loss are introduced
by active and absorbing elements, while in the matter wave applications, they can
be achieved by adding atoms in and eliminating atoms from the required hyperfine
states. It was shown that such systems allow one to model full and partial PT
symmetries, as well as C PT symmetry. It was shown how to introduce PT -
symmetric defects in such systems. We also discussed the conventional scenario of
the PT symmetry breaking through the exceptional point, as well as less common
singular phase transitions.

From the point of view of wave propagation, PT -symmetric NLS equations
allow to investigate existence and stability of bright and dark solitons, breathers,
as well as other solutions familiar from the theory of the nonlinear Schrödinger
equation. Interaction of solitons with defects can also be described by the model. In
the reported systems it is possible to achieve matching conditions for resonant wave
processes, in particular for four-wave mixing in one-dimensional setting.

It was shown that, a special version of coupled PT -symmetric equations of the
nonlinear Schrödinger type allows for a Hamiltonian formulation and may posses
integrals of motion.

Several results on multidimensional coupled PT -symmetric NLS equations
were also mentioned.
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Y. V. Bludov, G. Huang, C. Hang, Y. V. Kartashov, M. Trippenbah, M. Ögren, R. Driben, D. E.
Pelinovsky, J.-P. Dias, M. Figueira, T. Wasak, and P. Szańkowski, for fruitful collaboration on the
results reported in this chapter.
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Making the PT Symmetry Unbreakable

Vitaly Lutsky, Eitam Luz, Er’el Granot, and Boris A. Malomed

Abstract It is well known that typical PT -symmetric systems suffer symmetry
breaking when the strength of the gain-loss terms, i.e., the coefficient in front of the
non-Hermitian part of the underlying Hamiltonian, exceeds a certain critical value.
In this article, we present a summary of recently published and newly produced
results which demonstrate various possibilities of extending the PT symmetry to
arbitrarily large values of the gain-loss coefficient. First, we recapitulate the analysis
which demonstrates a possibility of the restoration of the PT symmetry and,
moreover, complete avoidance of the breaking in a photonic waveguiding channel
of a subwavelength width. The analysis is necessarily based on the system of
Maxwell’s equations, instead of the usual paraxial approximation. Full elimination
of the PT -symmetry-breaking transition is found in a deeply subwavelength region.
Next, we review a recently proposed possibility to construct stable one-dimensional
(1D) PT -symmetric solitons in a paraxial model with arbitrarily large values of
the gain-loss coefficient, provided that the self-trapping of the solitons is induced
by self-defocusing cubic nonlinearity, whose local strength grows sufficiently fast
from the center to periphery. The model admits a particular analytical solution for
the fundamental soliton, and provides full stability for families of fundamental and
dipole solitons. It is relevant to stress that this model is nonlinearizable, hence the
concept of the PT symmetry in it is also an essentially nonlinear one. Finally, we
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report new results for unbreakable PT -symmetric solitons in 2D extensions of the
1D model: one with a quasi-1D modulation profile of the local gain-loss coefficient,
and another with the fully-2D modulation. These settings admit particular analytical
solutions for 2D solitons, while generic soliton families are found in a numerical
form. The quasi-1D modulation profile gives rise to a stable family of single-peak
2D solitons, while their dual-peak counterparts tend to be unstable. The soliton
stability in the full 2D model is possible if the local gain-loss term is subject to
spatial confinement.

1 Introduction

A fundamental principle of the quantum theory is that, while the underlying wave
function may be complex, eigenvalues of energy and other physically relevant
quantities must be real, which is provided by the condition that the respective
Hamiltonian is self-conjugate (Hermitian) [1]. On the other hand, the condition
of the reality of the entire energy spectrum does not necessarily imply that it is
generated by a Hermitian Hamiltonian. Indeed, it had been demonstrated, about
twenty years ago, that non-Hermitian Hamiltonians obeying the parity-time (PT )
symmetry may also produce entirely real spectra [2–8]. In terms of the usual single-
particle Hamiltonian, which includes potential U(r), the PT symmetry implies that
the potential is complex, U(r) = V (r) + iW(r) (the usual Hermitian Hamiltonian
contains a strictly real potential), its real and imaginary parts being, respectively,
even and odd functions of coordinates [2]:

V (r) = V (−r),W(−r) = −W(r), i.e., U(−r) = U∗(r), (1)

where ∗ stands for the complex conjugate. For a given real part of the potential,
the spectrum of PT -symmetric models remains completely real, i.e., physically
relevant, as long as the strength of the imaginary component of the potential is kept
below a certain critical value, which is a threshold of the PT -symmetry breaking,
above which the system becomes unstable. The loss of the PT symmetry may
be preceded by the onset of the jamming anomaly, which means transition from
increase to decreases of the power flux between the gain and loss elements in the
system following the increase of the gain-loss coefficient [9, 10]. It is relevant
to mention that some relatively simple PT -symmetric systems may be explicitly
transformed into an alternative form admitting a representation in terms of an
Hermitian Hamiltonian [11, 12].

While the concept of PT -symmetric Hamiltonians remained an abstract one
in the framework of the quantum theory per se, theoretical works had predicted
a possibility to emulate this concept in optical media with symmetrically placed
gain and loss elements [13–26], making use of the commonly known similarity
between the Schrödinger equation in quantum mechanics and the classical equation
governing the paraxial light propagation in classical waveguides. These predictions
were followed by the implementation in optical waveguiding settings of various
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types [27–30], as well as in metamaterials [31], lasers [32] (and laser absorbers
[33]), microcavities [34], optically induced atomic lattices [35], exciton-polariton
condensates [36–38], and in other physically relevant contexts. In particular,
the transitions from unbroken to broken PT symmetry was observed in many
experiments. One of prominent experimentally demonstrated applications of the PT
symmetry in optics is unidirectional transmission of light [39].

Other classical waveguiding settings also admit emulation of the PT symmetry,
as demonstrated in acoustics [40] and predicted in optomechanical systems [41].
Also predicted were realizations of this symmetry in atomic Bose-Einstein con-
densates [42], magnetism [43], mechanical chains of coupled pendula [44], and
electronic circuits [45] (in the latter case, the prediction was also demonstrated
experimentally). In terms of the theoretical analysis, PT -symmetric extensions
were also elaborated for Korteweg – de Vries [46, 47], Burgers [48], and sine-
Gordon [49] equations, as well as in a system combining the PT symmetry with
the optical emulation of the spin-orbit coupling [50].

While the PT symmetry is a linear property of the system, it may be naturally
combined with intrinsic nonlinearity of the medium in which the symmetry is
realized, such as the ubiquitous Kerr nonlinearity of optical waveguides. Most
typically, these settings are modelled by nonlinear Schrödinger equations (NLSEs)
with the PT -symmetric potentials, subject to constraint (1), and cubic terms. Such
models may give rise to PT -symmetric solitons, which were considered, chiefly
theoretically, in a large number of works (see, in particular, theoretical papers
[15, 19–25] and recent reviews [51, 52]), and experimentally demonstrated too [30].
While most of these works were dealing with one-dimensional (1D) models, stable
PT -symmetric solitons were also found in some two-dimensional (2D) models
[23, 50, 53–58]. A characteristic feature of solitons in PT -symmetric systems is
that, although these systems model, generally speaking, dissipative dynamics (the
systems have no dynamical invariants), their solitons form continuous families like
in conservative systems (defined by usual Hermitian Hamiltonians) [59], while
traditional dissipative nonlinear systems normally give rise to isolated solutions in
the form of dissipative solitons, which do not form families (if a dissipative soliton
is stable, it plays the role of an attractor in the system’s dynamics [60–62]).

Similar to their linear counterparts, soliton states are also subject to destabi-
lization via the breaking of the PT symmetry at a critical value of the strength
of the gain-loss terms [63]. Nevertheless, there are specific models which make
the solitons’ PT symmetry unbreakable, extending it to arbitrarily large values of
the gain-loss strength, i.e., the coefficient in front of the non-Hermitian part of the
respective Hamiltonian [64–66]. The particular property of those models is that self-
trapping of solitons is provided not by the usual self-focusing sign of the cubic
nonlinearity, but by the opposite defocusing sign, with the local strength of the
self-defocusing growing fast enough from the center to periphery. For conservative
systems (in the absence of gain and loss), this scheme of the self-trapping of stable
1D, 2D, and 3D solitons was elaborated previously in a number of works [67–77].

The objective of the present article is to provide a brief survey of systems which
may support unbreakable PT symmetry, as this property is quite promising for
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potential applications, and is interesting in its own right. It was recently elaborated
in two completely different settings. One is the above-mentioned model with the
solitons supported by the spatially growing strength of local self-defocusing. On the
other hand, a possibility of creating the PT symmetry persisting up to indefinitely
large values of the gain-loss coefficient was also discovered in the context of
nanophotonics, considering light propagation in structures combining refractive,
amplifying, and attenuating elements at a subwavelength scale [78]. This setting was
theoretically analyzed in a purely linear form, with an essential peculiarity that the
corresponding model is, naturally, based on the full system of Maxwell’s equations,
rather than on the paraxial-propagation equation of the Schrödinger type, which
was used in an absolute majority of works dealing with the PT symmetry in optical
media. Basic findings for the restoration of the PT symmetry, and a possibility of
making it completely unbreakable in the linear nanophotonic model are presented
below in Sect. 2.

The results for unbreakable 1D PT -symmetric solitons in the model based on
the paraxial-propagation NLSE with the spatially growing strength of the self-
defocusing nonlinearity are summarized in Sect. 3. It is followed by Sect. 4, which
reports new results for 2D extensions of the unbreakable PT symmetry in a
nonlinear model of a similar type. We consider two different versions of the 2D
system, with the quasi-one-dimensional or fully two-dimensional PT symmetry,
the former meaning that the gain and loss are swapped by reflection x ⇔ −x, while
the reflection in the perpendicular direction, y ⇔ −y leaves the gain-loss pattern
invariant. The main issue is the stability of the 2D PT -symmetric solitons, which
turn out to be essentially more stable in the case of the quasi-1D symmetry than in
the framework of the full 2D scheme. An essential asset of the 1D, quasi-1D, and
full 2D models is that a number of soliton solutions can be obtained in an exact
analytical form, even if not all of them are stable.

2 Restoration and Persistence of the PT Symmetry in the
Photonic Medium with a Subwavelength Structure

Following Ref. [78], we here consider the propagation of monochromatic light
beams with the TM (transverse-magnetic) polarization , which include only Ex ,
Ez, and Hy components of the electric and magnetic fields. The propagation
is considered along the z axis in an effectively 2D medium whose dielectric
permittivity is modulated in the transverse direction, x. The spatial evolution of the
field components is governed by the reduced system of the Maxwell’s equations:

i
∂Ex

∂z
= − 1

ε0ω

∂

∂x

(
1

εrel

∂Hy

∂x

)
− μ0ωHy,

i
∂Hy

∂z
= −ε0εrelωEx, (2)
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Ez = i

ε0εrelω

∂Hy

∂x
,

where ω is the frequency of the monochromatic carrier, ε0 and μ0 are the vacuum
permittivity and permeability, and εrel = εbg + εre(x) + iεim(x) is the complex
relative permittivity of the PT -symmetric structure, with x-dependent real and
imaginary parts, added to the background permittivity, εbg.

Two different modulation patterns were considered in Ref. [78], corresponding,
respectively, to a single waveguiding channel or a periodic guiding structure in the
(x, z) plane. In this article, we focus on solitary (localized) modes, therefore only
the former pattern is explicitly considered. It is defined by the following transverse
(x-dependent) profile:

εrel(x) = εbg + sech2
(x
d

) [
p + iα sinh

(x
d

)]
, (3)

where d and p > 0 represent, severally, the width and depth of the guiding channel,
while α > 0 is the strength of the gain-loss term. In accordance with the general
definition of the PT symmetry, the real and imaginary parts of the profile are even
and odd functions of x, respectively, cf. Eq. (1).

Eigenmodes for subwavelength beams with propagation constant b are looked
for as solutions to Eq. (2) in the form of

{
Ex(x, z),Hy (x, z) , Ez (x, z)

} = eibz
{
Ex(x)Hy (x) , Ez (x)

}
. (4)

Numerical solution of Eq. (2) with modulation profile (3) has produced three
types of the solutions [78]: (i) ones with real b >

√
εbg represent stable PT -

symmetric beams guided by the channel; (ii) solutions with a complex propagation
constant, which has Re(b) >

√
εbg, Im(b) �= 0 represent, as it follows from

Eq. (4), exponentially growing (unstable) channel-guided modes with broken PT
symmetry, and (iii) delocalized modes, which are not actually guided by the channel,
have Re(b) <

√
εbg.

The situation which occurs in a majority of previously studied models is that,
with the increase of the gain-loss strength, α, the PT symmetry of the guided states
suffers breaking at a critical value, αcr. This is indeed observed in the present case
in the nearly-paraxial regime, namely, at d/λ � 1/5, where λ is the underlying
wavelength of the optical beam (below, following Ref. [78], particular results are
displayed for λ = 632.8 nm (visible red), and εbg = 2.25). In particular, at d = 120
nm, the breaking of the PT symmetry takes place at αcr ≈ 1.95, see Fig. 1a (in
Fig. 1, the PT symmetric modes exist at a single value of the propagation constant,
as the underlying wavelength is fixed). However, in the deeply subwavelength
situation, corresponding to essentially smaller channel’s widths, such as d = 60
nm � λ/10 and 30 nm � λ/20 (see Fig. 1b, c), a drastically different situation is
observed: in the former case, the breaking of the PT symmetry is followed by its
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Fig. 1 Real and imaginary parts of the propagation constant, br and bi, versus the gain-loss
strength, α, in Eq. (3), for the guiding channel with depth p = 1.7, and widths d = 120 nm (a),
d = 60 nm (b), and d = 30 nm (c) (as per Ref. [78]). Circles in panel (b) designate examples of the
eigenmodes displayed in Fig. 2. The underlying wavelength is λ = 632.8 nm, and the background
dielectric permeability is εbg = 2.25. The emergence of bi in panels (a) and (b) signals the breaking
of the PT symmetry, while the disappearance of bi in (b) implies the restoration of the symmetry.
In the case shown in (c), the PT symmetry is never broken

restoration at still larger values of α, and in the latter case the breaking does not
happen at all.

It is relevant to mention that a similar effect of the spontaneous restoration of
the PT symmetry, although not the full elimination of the symmetry breaking, was
reported too in some other models (based on the paraxial, rather than subwavelength,
equations), including a linear discrete system of the Aubry-André type [79], and
a nonlinear model based on the NLSE in 1D [80]. Examples of unbreakable PT
symmetry are known too in simple models with few degrees of freedom, such as a
PT dimer [11].

A set of typical eigenmodes of the electromagnetic fields, which correspond,
respectively, to the unbroken, broken, and restored PT symmetry, are displayed in
Fig. 2. It is clearly seen that, in the case of the unbroken and restored symmetry,
each field component is either spatially even or odd, while the modal spatial
(anti)symmetry is broken too when the PT symmetry does not hold.



Making the PT Symmetry Unbreakable 449

Fig. 2 Profiles of the guided modes designated by circles in Fig. 1, at α = 2.0 (a), 4.5 (b), and
9.5 (c), which are typical modes with unbroken, broken, and restored PT symmetry, respectively
(as per Ref. [78]). The fields are plotted in dimensionless units, while transverse coordinate x is
measured in μm

Finally, the results of the consideration of the model are summarized in Fig. 3,
which shows regions of the unbroken, broken, and restored PT symmetry in the
plane of the essential control parameters, viz., the gain-loss coefficient, α, and the
width of the guiding channel, d. Relatively small areas where no guided modes
exist (in the latter case, the optical beam coupled into the channel waveguide
suffers delocalization, spreading out into the entire (x, z) plane) are shown too.
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Fig. 3 Domains of the existence and stability of the PT -symmetric modes guided by channel (3),
in the plane of the channel’s width, d, and gain-loss coefficient, α (as per Ref. [78]). The depth of
the channel is p = 0.3 in (a), which represents a shallow conduit, and p = 1.7 in (b), representing
a deep one. The symmetry is broken in region 1, and unbroken or restored in region 3, respectively,
while region 2 does not support any localized mode

The conclusion suggested by Fig. 3 is quite clear: in the near-paraxial regime,
corresponding to a relatively broad guiding channel, with d � 120 nm, the usual
scenario of the PT -symmetry breaking, following the increase of α, is observed.
However, in the deeply subwavelength region, the symmetry (hence, the stability
of the guided modes too) is either readily restored with the further increase of
α, or is never broken. Figure 3 demonstrates that region 3 of the unbroken and
restored stability tends to expand, although not very dramatically, with the increase
of the channel’s depth, p (see Eq. 3), while, quite naturally, the delocalization area
2 shrinks.

3 Unbreakable PT -Symmetric Solitons in One Dimension

The 1D model which is capable to support solitons with unbreakable PT symmetry
by means of the self-defocusing nonlinearity with the local strength, S(η), growing
from the center to infinity, as a function of coordinate η, is based on the NLSE for
the amplitude of the electromagnetic field, u [64]:

i
∂u

∂ξ
+ 1

2

∂2u

∂η2
− S(η)|u|2u = −iR(η)u, (5)

where ξ is the propagation coordinate, and S(η) provides for the self-trapping of 1D
solitons under that condition that S(η) grows faster than |η| at |η| → ∞ [68, 71].
Here, following Ref. [64], we adopt a steep anti-Gaussian modulation profile,
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S(η) =
(

1 + ση2
)

exp

(
1

2
η2
)
, (6)

where coefficients equal to 1 and 1/2 may be fixed to these values by means
of rescaling of a more general expression. Further, the spatially-odd gain-loss
modulation profile is adopted also as it was done in Ref. [64]:

R(η) = βη exp
(
−�η2

)
, (7)

with β > 0 and � ≥ 0.
An advantage of fixing the profiles in the form of Eqs. (6) and (7) is that they

admit a particular exact solution for the self-trapped PT -symmetric soliton [64],
provided that � = 0 is set in Eq. (7):

u (η, ξ) = 1

2
√

2σ
exp

(
ibξ − 2iβη − 1

4
η2
)
, (8)

at a single value of the propagation constant:

b = −
(

2β2 + 1

4
+ 1

8σ

)
. (9)

The availability of the exact solution is principally important for establishing the
concept of the unbreakability of the PT symmetry: obviously, the solution given by
Eqs. (8) and (9) exist for arbitrarily large values of the gain-loss strength, β, there
being no critical value beyond which solitons cannot be found. Moreover, in Ref.
[64] it was checked, at least in a part of the parameter plane (β, σ ), that the exact
solitons are stable.

It is relevant to stress that the model with the sufficiently quickly growing
nonlinearity coefficient S(η) is nonlinearizable: the form of decaying tails of generic
self-trapped modes can be investigated analytically (it turns out to be the same
as in the particular exact solution (8)), but it is necessary to keep the nonlinear
term in Eq. (5) for this purpose [67, 68]. Accordingly, the linear spectrum of the
present model cannot be defined, the respective concept of the PT symmetry and
its breaking or unbreakability being a nonlinear one too. The same pertains to the
2D model considered in the next section.

Numerical solution of Eq. (5) produces many families of complex solitons with
real propagation constant b, in the form of

u (η, ξ) = exp (ibξ) [wr(η)+ iwi(η)] , (10)
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Fig. 4 Profiles of fundamental (a),(b) and dipole (c),(d) stable one-dimensional solitons, found
as numerical solutions of Eq. (5) with σ = 0 and γ = 1/2, for a fixed value of the propagation
constant, b = −10 (as per Ref. [64]). Panels (a), (c) and (b), (d) pertain, severally, to β = 1.04 and
3.47

which may be naturally identified as fundamental solitons, dipoles, tripoles,
quadrupoles, and so on. These solution types feature profiles of |w(η)| ≡√
w2

r (η)+ w2
i (η) with, respectively, one, two, three, etc. peaks (local maxima).

Solitons are characterized by their integral power,

U =
∫ +∞

−∞
|w(η)|2 dη. (11)

Characteristic examples of stable fundamental and dipole solutions are displayed
in Fig. 4 (they were obtained for σ = 0, in which case exact soliton (8) does not
exist, but numerically found solitons are available and may be stable). It is seen that
the increase of the gain-loss coefficient, β, makes the shape of the solitons more
complex, but the fundamental and dipole solitons remain fully stable as long as they
exist, while higher-order tripoles and quadrupoles have both stability and instability
areas [64], as shown in Fig. 5b.
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Fig. 5 The solitons’ integral power, defined in Eq. (11), vs. the gain-loss strength, β, for branches
of the fundamental and dipole solitons (a), and ones of the tripole and quadrupole types (b) (as
per Ref. [64]). In (b), black and red segments designate stable and unstable solitons, respectively
(the fundamental and dipole solitons are completely stable in their existence areas). Circles in (a)
correspond to examples of the solutions shown in Fig. 4 (circles in (b) correspond to examples
of stable and unstable tripole and quadrupole solitons which can be found in Ref. [64], but are
not shown here). The families are produced for σ = 0 in Eq. (6), γ = 1/2 in Eq. (7), and fixed
propagation constant, b = −10. The fundamental and dipole families merge at β ≈ 2.135, while
the tripole and quadrupole ones merge at β ≈ 3.565. (c) The critical (“upper”) value, βd

upp, at

which the fundamental and dipole branches merge, vs. the propagation constant, b. Curve βq
upp(b)

shows the same for the merger of the tripole and quadrupole branches

Most essential results characterizing the behavior of solitons in the present model
are collected in Fig. 5. In particular, Fig. 5a shows that, at fixed b, branches of the
fundamental and dipole solitons, remaining completely stable, merge and disappear,
with the increase of the gain-loss coefficient, β, at a critical (“upper”) value, which
is βupp ≈ 2.135 in Fig. 5a. However, stable fundamental and dipole soliton can be
found at arbitrarily high values of β, as demonstrated by the lower curve in Fig. 5c,
which shows the critical value βupp vs. b: obviously, β may become indefinitely
large with the increase of |b|. In addition, the upper curve shows the growth with |b|
of a similar critical (“upper”) value at which another pair of solitons, viz., tripoles
and quadrupoles, merge, as can be seen in Fig. 5b (however, unlike the fundamental
and dipole modes, the tripole and quadrupole branches become unstable prior to the
merger, as seen in Fig. 5b).
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4 Unbreakable PT -Symmetric Solitons in Two Dimensions

4.1 The Model and Analytical Solutions

Results presented in the above sections summarize findings originally published in
Refs. [78] and [64], respectively. Here we report previously unpublished analytical
and numerical results obtained for 2D generalizations of the model based on Eq. (5).
The 2D model with transverse coordinates (x, y) and propagation distance z is based
on the following NLSE for the amplitude of the electromagnetic field, w (x, y, z):

i
∂w

∂z
+ 1

2

(
∂2w

∂x2
+ ∂2w

∂y2

)
− S(r)|w|2w = iR (x, y)w, (12)

where r ≡ √
x2 + y2 is the radial coordinate, and the nonlinearity-modulation

profile is chosen similar to its 1D counterpart (6):

S(r) =
(

1 + σr2
)

exp
(
r2
)
, (13)

with σ ≥ 0.
Here we consider two different versions of the gain-loss spatial profile: a quasi-

1D one, symmetric only with respect to x:

R (x, y) = β0x exp
(
−�r2

)
, (14)

and a profile symmetric with respect to x and y, which may be called a fully 2D
one:

R (x, y) = β0xy exp
(
−�r2

)
, (15)

with constants � ≥ 0 and β0 > 0. Strictly speaking, the fully 2D gain-loss profile,
unlike its quasi-1D counterpart, cannot be called a PT -symmetric one, but it is
completely relevant as the physical model.

Stationary solutions with a real propagation constant, b, are looked for as

w (x, y) = exp (ibz)W (x, y) , (16)

with complex function W (x, y) satisfying the following equation:

bW = 1

2

(
∂2W

∂x2 + ∂2W

∂y2

)
− S(r)|W |2W − iR (x, y)W. (17)

In the case of � = 0 in Eqs. (14) and (15), Eq. (17), with σ and R (x, y) taken in
the form of Eqs. (13) and (14), gives rise to an exact analytical solution:
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W (x, y) = W0 exp

(
−1

2
r2 − iβ0x

)
, (18)

(cf. the 1D solution (8)), with

W 2
0 = 1

2σ
, b = −

(
1 + β2

0

2
+ 1

2σ

)
. (19)

This solution exists for all values of the control parameters, β0 and σ , except for
σ = 0. Further, Eq. (11) with σ and R (x, y) taken in the form of Eqs. (13) and (15),
where � = 0 is again fixed, also gives rise to an exact solution:

W (x, y) = W0 exp

(
−1

2
r2 − 1

2
iβ0xy

)
, (20)

this time with

W 2
0 = 1

2σ

(
1 −

(
β0

2

)2
)
, b = −

[
1 + 1

2σ

(
1 −

(
β0

2

)2
)]

. (21)

This solution exists if Eq. (21) yields W 2
0 > 0, i.e., β0 < 2 and σ > 0.

Another exact solution of Eq. (11), with σ and R (x, y) again taken in the form
of Eqs. (13) and (15), exists under the special condition,

β0 = 2, σ = 0, � = 0. (22)

This solution is also found in the form of ansatz (20), precisely with 1
2β0 replaced by

1, as per Eq. (22). However, unlike the solution represented by Eqs. (20) and (21),
this time it is not a single one, but a continuous family of exact solutions, with
arbitrary amplitude W0, and propagation constant

b = −
(

1 +W 2
0

)
. (23)

The possibility to obtain the continuous family of the exact 2D solitons, instead of
an isolated one, is a compensation for selecting the special values of the parameters,
as fixed by Eq. (22).

The exact solutions clearly suggest that the quasi-1D model, based on Eq.
(14), features the unbreakable PT symmetry, as the respective solution, given by
Eqs. (18) and (19), exists for an arbitrarily large strength of the gain-loss term, β0.
On the other hand, the full 2D model, based on Eq. (15), gives rise to the exact
solutions, in the form of Eqs. (20), (21) or (22), (23), which exist only at β0 ≤ 2,
hence the unbreakability of the PT symmetry is not guaranteed in the latter case.
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4.2 Numerical Results

4.2.1 The Quasi-1D Model

The exact solution of the model with the quasi-1D gain-loss modulation, given
by Eqs. (18) and (19), can be embedded into a family of solitons produced by
a numerical solution of Eq. (17), with S(r) and R (x, y) taken as per Eqs. (13)
and (14), respectively (the latter is taken here with � = 0). The stationary 2D
solutions were constructed by means of the Newton conjugate gradient method [81].
Then, the stability of the stationary states was identify by numerical computation
of eigenvalues of small perturbations, using linearized equations for perturbations
around the stationary solitons. This computation was performed with the help
of the spectral collocation method. Finally, the stability prediction, based on the
eigenvalues, was verified through direct simulations of the perturbed evolution of
the solitons.

Generic examples of numerically found stable and unstable solitons, which may
have single- and dual-peak shapes, are shown in Fig. 6. In accordance with these
examples, all the double-peak solitons are unstable, and almost all the single-peak
ones are stable. In particular, all the exact solutions, given by Eqs. (18) and (19), are
found to be stable.

Results of the stability analysis for the PT -symmetric solitons in the model with
the quasi-1D shape of the gain-loss term, based on the eigenvalue computation,
are summarized by the stability chart in the plane of (b, β0), i.e., the soliton’s
propagation constant and strength of the gain-loss term in Eq. (14), which is
displayed in Fig. 7. Direct simulations completely corroborate the predictions
produced by the stability eigenvalues. In particular, the solitons which are predicted
to be unstable get destructed, decaying in the course of the perturbed evolution. This
figure corroborates the unbreakable character of the PT symmetry in the model, as
the stability region does not exhibit a boundary at large values of β0.

The stability chart, drawn in Fig. 7 for σ = 1 in Eq. (13), is quite similar to its
counterparts produced at other values of σ > 0. The situation is different in the
case of σ = 0, when the exact solution given by Eqs. (18) and (19) does not exist.
The respective stability chart, is displayed in Fig. 8, all unstable solutions, as well
as stable ones, featuring the single-peak shape.

4.2.2 The Full 2D Model

A drastic difference produced by the stability analysis for exact solutions of the full
2D model, given by Eqs. (20) and (21) for σ > 0, � = 0 and arbitrary β0, and by
Eq. (23) for the special case (22), is that these solutions are completely unstable.
Furthermore, all numerical solutions found in the full 2D model with � = 0 in
Eq. (15) are unstable too. The stabilization in this model may be provided by � > 0,
i.e., by confining the spatial growth of the local gain and loss in Eq. (15). For fixed
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Fig. 6 Typical examples of
2D PT -symmetric solitons
produced by the model with
the quasi-1D gain-loss profile
defined by Eq. (14). The
bottom and top panels
display, severally, a stable
single-peak soliton with
propagation constant b = −2,
and an unstable dual-peak
one with b = −2.7. In both
cases, other parameters are
β0 = 0.8, σ = 1, and � = 0

σ , there is a minimum value �min of � which provides for the stabilization. In fact,
�min depends on the size of the solution domain: in an extremely large domain,
one may find very broad stable solitons, i.e., ones with very small b (see Eq. (17)),
at any � > 0. Practically speaking, the size of the domain is always finite, as the
steep growth of S (r), defined as per Eq. (13), cannot extend to infinity. As shown
in Refs. [67–76], it is sufficient to secure the adopted modulation profile of S(r) on
a scale which is essentially larger than a characteristic size of the soliton supported
by this profile. Thus, we have concluded that, for instance, in the domain of size
|x|, |y| ≤ 9 the solitons are stable in the model with σ = 1 in Eq. (13) at � ≥ 0.2
in Eq. (15), being explicitly unstable, e.g., at � = 0.1. Typical examples of the
stability charts for the PT -symmetric solitons, numerically produced in the full 2D
model with β > 0, are displayed in Fig. 9. Naturally, the stability area expands
with the increase of �. It is worthy to note that Fig. 9b clearly suggests that the PT
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Fig. 7 (Color online) The stability chart for the solitons supported by quasi-1D PT -symmetric
gain-loss profile (14) with � = 0, in the case of σ = 1 in Eq. (13). Exact soliton solutions,
given by Eqs. (18) and (19), are indicated by stars (they all are stable), while stable and unstable
numerically found solitons are shown by green and red dots, respectively. Numbers near the dots
denote the number of peaks in each soliton (one or two). No soliton solutions were found in white
areas
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Fig. 8 The same as in Fig. 7 (the stability chart for PT -symmetric solitons), but for σ = 0 in
Eq. (13)



Making the PT Symmetry Unbreakable 459

-4 -3.5 -3 -2.5 -2 -1.5 -1
b

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0

884 885

88

4

8

4

4

44

4

4

4

4

4

5

4

4

4

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

-4 -3.5 -3 -2.5 -2 -1.5 -1
b

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

1

4

4

4

6444

1

4

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Fig. 9 The same (stability charts) as in Figs. 7 and 8, but for the full 2D model based on Eq. (15),
with � = 0.5 , σ = 1 and σ = 0 in the top and bottom panels, respectively

symmetry in the model with the full 2D modulation of the gain-loss term may also
be unbreakable, as the stability chart does features no upper boundary.

These charts include unstable and (very few) stable solitons with multi-peak
shapes. Indeed, taking larger �, i.e., stronger confinement of the gain and loss in
Eq. (15), it is possible to find stable multi-peak solitons with rather complex shapes,
an example being a stable four-peak soliton displayed in Fig. 10 for � = 0.5.
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Fig. 10 An example of a
stable PT -symmetric
four-peak soliton with
propagation constant b = −3,
found in the full 2D models
with σ = 1 in Eq. (13) and
� = 0.5 in Eq. (15)

The results for the quasi-1D and full 2D systems, reported in this section, do
not provide an exhaustive analysis of these models. A comprehensive analysis,
including, in particular, the consideration of possible solitons with embedded
vorticity, will be presented elsewhere.

5 Conclusion

The objective of this article is to summarize theoretical results which demonstrate
the stabilization of the PT symmetry in both linear and nonlinear systems, making
it possible to produce PT -symmetric states at arbitrarily large values of the strength
of the gain-loss terms in the system, i.e., of the coefficient in front of the non-
Hermitian part of the underlying PT -symmetric Hamiltonian. In Sects. 2 and 3,
we have surveyed previously reported results obtained in two altogether different
settings. Namely, the possibility of the restoration and complete stabilization of
the PT symmetry in the linear nanophotonic model of the waveguiding channel
with a subwavelength width, the analysis of which is based on the full system of
the Maxwell’s equations, was recapitulated in Sect. 2. The full stabilization, i.e.,
removal of the symmetry-breaking transition, takes place in the deeply subwave-
length region. In Sect. 3 we have summarized results concerning the possibility of
finding stable 1D solitons supported by the model with arbitrarily large values of
the gain-loss coefficient, where the self-trapping of the solitons is provided by the
self-defocusing nonlinearity with the local strength growing fast enough from the
center to periphery. The model admits a particular exact solution for the fundamental
soliton, the families of both fundamental and dipole modes being entirely stable.

Section 4 has presented new results for the unbreakable PT -symmetric solitons
in two 2D extensions of the 1D model, viz., with the quasi-1D and full 2D
modulation profiles of the local gain-loss coefficient. These models also admit
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particular exact solutions, this time for 2D solitons. As a result, it is found the quasi-
1D model readily gives rise to the stable family of fundamental (single-peak) 2D
solitons for an arbitrarily large strength of the gain-loss term, while dual-peak ones
are unstable. On the other hand, the stability of the solitons in the model with the full
2D gain-loss profile requires to impose spatial confinement on the gain-loss term.
Further results for the 2D models will be presented elsewhere.
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Abstract We explain the concept of Krein signature in Hamiltonian and PT -
symmetric systems on the case study of the one-dimensional Gross–Pitaevskii
equation with a real harmonic potential and an imaginary linear potential. These
potentials correspond to the magnetic trap, and a linear gain/loss in the mean-
field model of cigar-shaped Bose–Einstein condensates. For the linearized Gross–
Pitaevskii equation, we introduce the real-valued Krein quantity, which is nonzero
if the eigenvalue is neutrally stable and simple and zero if the eigenvalue is unstable.
If the neutrally stable eigenvalue is simple, it persists with respect to perturbations.
However, if it is multiple, it may split into unstable eigenvalues under perturbations.
A necessary condition for the onset of instability past the bifurcation point requires
existence of two simple neutrally stable eigenvalues of opposite Krein signatures
before the bifurcation point. This property is useful in the parameter continuations
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1 Introduction

We consider the prototypical example of the one-dimensional Gross-Pitaevskii
(GP) equation arising in the context of cigar-shaped Bose–Einstein (BEC) con-
densates [42, 43]. The model takes the form of the following defocusing nonlinear
Schrödinger (NLS) equation with a harmonic potential [9, 28]:

i∂tu = −∂2
xu+ V (x)u+ |u|2u, (1)

where u represents the complex wave function and V characterizes the external
potential. The probability density of finding atoms at a given location and time is
characterized by |u|2.

In the case of magnetic trapping of the BECs [42, 43], the potential V is real-
valued and is given by

V (x) = �2x2, (2)

where � is the ratio of longitudinal to transverse confinement strengths of the
parabolic trapping. The NLS equation (1) with the potential (2) is a Hamiltonian
system written in the symplectic form

i
∂u

∂t
= δH

δū
, (3)

where ū stands for the complex conjugate u and H is the following real-valued
Hamiltonian function

H(u) =
∫
R

[
|∂xu|2 + V (x)|u|2 + 1

2
|u|4
]
dx. (4)

When quantum particles are loaded in an open system, the external potential V
may be complex-valued [10, 18]. The intervals with positive and negative imaginary
part of V correspond to the gain and loss of quantum particles, respectively. If the
gain and loss are modeled by linear functions and the gain matches loss exactly, the
external potential is given by

V (x) = �2x2 + 2iγ x, (5)

where γ is the gain-loss strength. The NLS equation (1) with the potential (5) can
still be cast to the form (3) but the Hamiltonian function H in (4) is now complex-
valued. The complex-conjugate equation to (3) is determined by H̄ with H̄ �= H .
Hence, the NLS equation (1) with the potential (5) is not a Hamiltonian system.

Although V in (5) is not real-valued, it satisfies the following condition

V (x) = V (−x), x ∈ R. (6)
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Let us introduce the parity operator P and the time reversal operator T acting on a
function u(x, t) as follows:

Pu(x, t) = u(−x, t), T u(x, t) = u(x,−t). (7)

Then, we can see that V satisfying (6) is PT -symmetric under the simultaneous
action of operators (7). We say that the NLS equation (1) with the potential (5) is
PT -symmetric. For any solution u(x, t),

ũ(x, t) = PT u(x, t) = u(−x,−t)

is also a solution to the same NLS equation (1) with the potential (5).
Such PT -symmetric models have attracted substantial attention over the past two

decades. They were initially proposed in the context of a (non-Hermitian) variant
of quantum mechanics [6, 7] (see also review in [4]). However, their experimental
realization in both low-dimensional (e.g., dimer) [45] and high-dimensional (e.g.,
lattice) [52] settings has been confirmed in nonlinear optics. This direction has also
inspired an extensive volume of theoretical activity and even experiments in other
areas, including mechanical [5] and electrical [46] systems. Two recent reviews on
the subject can be found in [32, 50].

The concept of Krein signatures was introduced by MacKay [34] for the finite-
dimensional linear Hamiltonian systems, although the idea dates back to the works
of Weierstrass [51]. In the setting of the NLS equation (1) with the potential (2), the
linear Hamiltonian system can be formulated as the spectral problem

JLv = λv, (8)

where L is a self-adjoint unbounded operator in the space of square-integrable
functions L2(R) with a dense domain in L2(R) and J is a skew-adjoint bounded
operator in L2(R). The operators L and J are assumed to satisfy J 2 = −I and
JL+ L̄J̄ = 0, thanks to the Hamiltonian symmetry.

If λ0 ∈ C is an eigenvalue of the spectral problem (8), then it is neutrally stable
if Re(λ0) = 0 and unstable if Re(λ0) > 0. Thanks to the Hamiltonian symmetry of
L and J , the eigenvalues appear in symmetric pairs relative to the axis Re(λ) = 0.
Indeed, if v is an eigenvector of the spectral problem (8) for the eigenvalue λ, then
w = −J v̄ is an eigenvector of the same spectral problem (8) with the eigenvalue
−λ̄, which follows from the following equivalent transformations of the spectral
problem (8) with v = J̄ w̄:

JLJ̄ w̄ = λJ̄ w̄ ⇔ L̄w̄ = λJ̄ w̄ ⇔ J̄ L̄w̄ = −λw̄ ⇔ JLw = −λ̄w.

For a nonzero eigenvalue λ0 ∈ C of the spectral problem (8) with the eigenvector
v0 in the domain of L, we define the Krein quantity K(λ0) by

K(λ0) := 〈Lv0, v0〉, (9)
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where 〈·, ·〉 is the standard inner product inL2(R). The Krein quantity in (9) satisfies
the following properties:

Main properties of the Krein quantity:

(1) K(λ0) is real if λ0 ∈ iR.
(2) K(λ0) is nonzero if λ0 ∈ iR\{0} is simple.
(3) K(λ0) is zero if λ0 ∈ C\{iR}.

The Krein signature is defined as the sign of the Krein quantity K(λ0) for
a simple neutrally stable eigenvalue λ0 ∈ iR\{0}. If parameters of the NLS
equation (1) change, parameters of the spectral problem (8) change, however, the
simple eigenvalue λ0 ∈ iR remains on the axis Re(λ) = 0 unless it coalesces with
another eigenvalue or a part of the continuous spectrum, thanks to the preservation
of its multiplicity and the Hamiltonian symmetry of eigenvalues. In this case, the
eigenvalue λ0 and its Krein quantity K(λ0) are at least continuous functions of the
parameters of the NLS equation (1).

It is quite typical in the parameter continuations of the spectral problem (8) to
see that the simple eigenvalue λ0 ∈ iR coalesces at a bifurcation point with another
simple eigenvalue λ′0 ∈ iR and that both eigenvalues split into the complex plane as
unstable eigenvalues past the bifurcation point. The Krein signature is a helpful
tool towards predicting this instability bifurcation from the following necessary
condition.

Necessary condition for instability bifurcation. Under some non-
degeneracy constraints, the double eigenvalue λ0 = λ′0 ∈ iR of the
spectral problem (8) with a bifurcation parameter ε ∈ R splits into
a pair of complex eigenvalues symmetric relative to Re(λ) = 0 for
ε > 0 only if there exist two simple eigenvalues λ0, λ

′
0 ∈ iR with

the opposite Krein signature for ε < 0.

In other words, if two neutrally stable eigenvalues of the same Krein signature
move towards each other in the parameter continuation of the spectral problem (8),
then their coalescence will not result in the onset of instability, whereas if the two
neutrally stable eigenvalues have the opposite Krein signature, their coalescence is
expected to result in the onset of instability, subject to technical non-degeneracy
constraints.

The concept of Krein signature in the infinite-dimensional setting, e.g. for the
NLS equation, was introduced independently in works [23, 37]. It was justified in a
number of mathematical publications [14, 24] and it remains a practical tool to trace
instability bifurcations in physically relevant Hamiltonian systems [41, 47] (see
review in [31]). The following completeness result is available for the Hamiltonian
systems.
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Hamiltonian–Krein Theorem. If L has finitely many negative
eigenvalues n(L) < ∞ and the rest of its spectrum is strictly
positive, then eigenvalues of the spectral problem (8) satisfy the
completeness relation

n(L) = Nreal +Ncomp +N−
imag,

where Nreal is the number of real positive eigenvalues λ, Ncomp is
the number of complex eigenvalues λ with Re(λ) > 0, and N−

imag
is the number of purely imaginary eigenvalues λ with negative
Krein signature. All numbers are accounted in their algebraic
multiplicity.

In the context of the NLS equation (1) with the potential (2), the phase invariance
introduces a symmetry and a kernel of the operator L. In this case, the negative
index n(L) has to be recomputed in a subspace of L2(R) which is J -orthogonal to
the kernel of L. See monographs [25, 39] for further mathematical details.

It was only very recently that the concept of Krein signature was extended
to the non-Hamiltonian PT -symmetric systems. The linear Schrödinger equation
with a complex-valued PT -symmetric potential was considered in [35], where the
indefinite PT -inner product with the induced PT -Krein signature was introduced
in the exact correspondence with the Krein signature for the Hamiltonian spectral
problem (8). Coupled non-Hamiltonian PT -symmetric systems were considered in
[2, 3] (see also [48]), where the linearized problem was block-diagonalized to the
form for which the Krein signature of eigenvalues can be introduced. A Hamiltonian
version of the PT -symmetric system of coupled oscillators was considered in
[11, 12], where the Krein signature of eigenvalues was introduced by using the
corresponding Hamiltonian. Finally, Krein signature of eigenvalues was defined in
[13] for the spectral problem related to the linearization of the NLS equation with
complex-valued potentials.

Compared to the Hamiltonian case in [23, 37] and to the linear PT -symmetric
Schrödinger equation in [35], it was shown in [13] that the Krein signature of
eigenvalues in the linearization of the PT -symmetric NLS equation cannot be com-
puted just from the eigenvectors in the spectral problem. This is because the adjoint
eigenvectors need to be computed separately and the sign of the adjoint eigenvector
needs to be chosen by a continuity argument. This limits practical applications of
the Krein signature in nonlinear PT -symmetric systems. Nevertheless, the main
properties of the Krein quantity listed above for the Hamiltonian NLS equation are
extended to the case of the PT -symmetric NLS equation. Moreover, the necessary
condition for the instability bifurcation is extended to the PT -symmetric NLS
equation but not the Hamiltonian–Krein Theorem.

The purpose of this chapter is to explain definitions and properties of the Krein
signature on the prototypical example of the NLS equation (1) with either the
potential (2) or the potential (5).
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We also address the Krein signature in the linear PT -symmetric Schrödinger
equation as the one introduced in [35], where we discuss differences from the Krein
signature in the linearized PT -symmetric NLS equation introduced here. We will
show that the linear Schrödinger equation with a real even potential (2) admits two
equivalent Hamiltonian formulations and hence two equivalent definitions of the
Krein signatures. The standard Hamiltonian formulation leads to eigenvalues of
only positive Krein signature, whereas the non-standard Hamiltonian formulation
leads to infinitely many eigenvalues of opposite Krein signature. It is the latter
Hamiltonian formulation that can be extended to the case of the PT -symmetric
potential (5).

This chapter is organized as follows. Section 2 addresses nonlinear stationary
states bifurcating from simple eigenvalues of the quantum harmonic oscillator and
describes Krein signature in the linearized NLS equation with the potential (2).
Section 3 describes Krein signature for the PT -symmetric NLS equation with the
potential (5), where we highlight the differences between the Hamiltonian and the
PT -symmetric cases. Section 4 contains discussion of the linear PT -symmetric
Schrödinger equation. Section 5 summarizes the results and lists further directions.

2 Krein Signature for the NLS Equation

In the context of the NLS equation (1) with the potential (2), we consider the
nonlinear stationary states of the form u(x, t) = e−iμtφ(x), where μ ∈ R is
referred to as the chemical potential [18] and the real-valued function φ satisfies
the differential equation

μφ(x) = −φ′′(x)+ x2φ(x)+ φ(x)3, (10)

where we have set � = 1 without loss of generality. In the linear (small-amplitude)
limit, we obtain the quantum harmonic oscillator with the eigenvalues μn = 1+2n,
n ∈ N0 := {0, 1, 2, . . .} and the L2-normalized eigenfunctions

ϕn(x) = 1√
2nn!√π Hn(x)e

−x2/2,

where Hn is the Hermite polynomial of degree n, e.g., H0(x) = 1, H1(x) = 2x,
H2(x) = 4x2 − 2, etc.

Each eigenfunction ϕn for a simple eigenvalue μn generates a branch of solutions
bifurcating in the stationary problem (10). This follows from the general Crandall–
Rabinowitz bifurcation theory [16] and is generally used in physics community, see,
e.g., [20, 54]. Each branch can be approximated by the following expansion in terms
of the small parameter ε:
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{
μ = μn + ε2μ

(2)
n + . . . ,

φ = εϕn + ε3ϕ
(3)
n + . . . ,

(11)

where (μn, ϕn) is the n-th eigenvalue–eigenfunction pair, (μ(2)n , ϕ
(3)
n ) are the next-

order correction terms to be found, and the dots denote the higher-order corrections
terms. The n-th branch of the nonlinear stationary states is smooth with respect to
the small parameter ε, which parameterizes both μ and φ, whereas it has a square-
root singularity when it is written in terms of the parameter μ− μn.

The formal solvability condition for the correction terms (μ(2)n , ϕ
(3)
n ) yields

μ(2)n =
∫
R

ϕn(x)
4dx > 0, (12)

which implies that the branch of nonlinear stationary states extends towards μ >

μn. The limit μ → ∞ can be rescaled as the semi-classical limit. Each n-th
branch of the nonlinear stationary states is uniquely extended to the limit μ → ∞,
where it is approximated asymptotically as a bound state of n dark solitons on the
background of the harmonic potential V in (2) [15, 38].

When considering the stability of the nonlinear stationary state of the form
u(x, t) = e−iμtφ(x), we linearize the NLS equation (1) with the expansion

u(x, t) = e−iμt
[
φ(x)+ δ

(
a(x)e−λt + b̄(x)e−λ̄t

)
+ . . .

]
, (13)

where δ is a formal small parameter. To the leading order in δ, the eigenvalue–
eigenvector pair (λ, v) with v = (a, b)T is found from the spectral problem

Lv = −iλσ3v, (14)

where σ3 = diag(1,−1) and the linear operator L is written in the differential form:

L =
[−∂2

x + x2 − μ+ 2φ(x)2 φ(x)2

φ(x)2 −∂2
x + x2 − μ+ 2φ(x)2

]
. (15)

The operator L is extended to a self-adjoint operator in L2(R) with the domain
H 2(R) ∩ L2,2(R) (see [22], Ch. 4, p.37), where H 2(R) is the Sobolev space of
square integrable functions and their second derivatives and L2,2(R) is the space
of square integrable functions multiplied by (1 + x2). The spectrum of L is purely
discrete (see [44], Ch. XIII, Theorem 16 on p.120).

The spectral problem (14) takes the abstract form (8) with the self-adjoint
operator L given by (15) and the skew-symmetric operator J = iσ3. The
Hamiltonian symmetry J 2 = −I and JL+ L̄J̄ = 0 (or, equivalently, σ3L = L̄σ3)
is satisfied. The eigenvalues are symmetric relative to the imaginary axis. To be
precise, if λ0 is an eigenvalue with the eigenvector v0 = (a, b)T , then −λ0 is another
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eigenvalue with the eigenvector σ3v̄0 = (a,−b)T by the Hamiltonian symmetry
σ3L = L̄σ3.

In addition to the Hamiltonian symmetry, the operator L in (15) satisfies σ1L =
L̄σ1, where σ1 = antidiag(1, 1). This symmetry implies that the eigenvalues are
symmetric relative to the real axis. Indeed, if λ0 is an eigenvalue with the eigenvector
v0 = (a, b)T , then λ̄0 is another eigenvalue with the eigenvector σ1v̄0 = (b̄, ā).
Hence, the unstable eigenvalues with Re(λ0) > 0 occur either as pairs on the real
axis or as quadruplets in the complex plane, whereas the neutrally stable eigenvalues
with Re(λ0) = 0 occur as pairs on the imaginary axis.

For each nonzero eigenvalue λ0 ∈ C of the spectral problem (14) with the
eigenvector v0 = (a, b)T ∈ H 2(R)∩L2,2(R), the Krein quantity K(λ0) introduced
in (9) can be written explicitly as follows:

K(λ0) = 〈Lv0, v0〉 = −iλ0〈σ3v0, v0〉 = −iλ0

∫
R

[
|a(x)|2 − |b(x)|2

]
dx. (16)

If K(λ0) is nonzero and real, the sign of K(λ0) is referred to as the Krein signature.
In what follows, we only consider eigenvalues with λ0 ∈ iR+, for which −iλ0 > 0.

Let us verify the main properties of the Krein quantity K(λ0).

(1) If λ0 ∈ iR, then (−iλ0) ∈ R. The integral in (16) is also real. Hence, K(λ0) is
real.

(2) Let us write the eigenvalue problem (15) for the generalized eigenvector vg:

(L+ iλ0σ3)vg = σ3v0. (17)

If λ0 ∈ iR\{0}, then v0 is in the kernel of the adjoint operator (L+ iλ0σ3)
∗, and

the Fredholm solvability condition of the above equation is 〈σ3v0, v0〉 = 0. If
K(λ0) = 0, then there exists a solution to the nonhomogeneous equation (17),
so that λ0 is not simple. Hence, K(λ0) �= 0.

(3) Using the self-adjoint property of L, one can write

〈Lv0, v0〉 = 〈v0,Lv0〉,

which can be expanded as

−iλ0〈σ3v0, v0〉 = iλ̄0〈v0, σ3v0〉,

where the equality holds either for λ0 ∈ iR or 〈σ3v0, v0〉 = 0. Hence K(λ0) =
0 for λ0 �∈ iR.

Let us now illustrate how the Krein signatures can be used to predict instability
bifurcations from multiple neutrally stable eigenvalues of the spectral problem (14).
We restrict consideration to the small-amplitude limit. If ε = 0 and μ = μn, the
linear operator (15) becomes diagonal:
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L0 =
[−∂2

x + x2 − μn 0
0 −∂2

x + x2 − μn

]

and the eigenvalues are located at σ(L0) = {2(m − n), m ∈ N0}, where n ∈ N0
is fixed. Because of the skew-symmetric operator J = iσ3 in the right-hand side of
the spectral problem (14), these eigenvalues are mapped to the imaginary axis in the
pairs λ ∈ ±i{2(m− n), m ∈ N0}.

If n = 0, the ground state branch (11) leads to a double zero eigenvalue and
a set of simple eigenvalues in pairs λ ∈ ±i{2m, m ∈ N0\{0}}. The double
zero eigenvalue is preserved in ε due to gauge symmetry, whereas the simple
neutrally stable eigenvalues are preserved on the imaginary axis due to Hamiltonian
symmetry (at least for small ε). Moreover, each eigenvalue has a positive Krein
signature, therefore, by the necessary condition for instability bifurcations, no
complex eigenvalue quartets can arise in parameter continuations of solutions to the
spectral problem (14) in ε (or equivalently, in μ). These spectral stability properties
are natural for the ground state solution.

If n = 1, the first excited state branch (11) associated with a single dark soliton
[15, 38] leads to a double zero eigenvalue, a pair of double eigenvalues λ = ±2i,
and a set of simple eigenvalues in pairs λ ∈ ±i{2(m−1), m ∈ N0\{0, 1, 2}}. The
double zero eigenvalue is again preserved in ε due to gauge symmetry but the pair
of nonzero double eigenvalues λ = ±2i may split if ε �= 0. Note that two linearly
independent eigenvectors exist for λ0 = 2i:

v1 =
[
ϕ2

0

]
, v2 =

[
0
ϕ0

]
. (18)

The two eigenvectors induce opposite Krein signatures for the coalescent double
eigenvalue since K(λ0) > 0 for v1 and K(λ0) < 0 for v2. Therefore, by the
necessary condition on the splitting of the double eigenvalues, we may anticipate
unstable eigenvalues for small ε.

Similarly, if n = 2, the second excited state branch (11) associated with two dark
solitons [15, 38] leads to a double zero eigenvalue, two pairs of double eigenvalues
λ = ±2i and λ = ±4i, and a set of simple eigenvalues in pairs λ ∈ ±i{2(m − 2),
m ∈ N0\{0, 1, 2, 3, 4}}. The double zero eigenvalue is again preserved in ε due to
gauge symmetry but the pairs of nonzero double eigenvalues λ = ±2i and λ = ±4i
may split if ε �= 0. Note that two linearly independent eigenvectors exist as follows:

λ0 = 2i : v1 =
[
ϕ3

0

]
, v2 =

[
0
ϕ1

]
(19)
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and

λ0 = 4i : v1 =
[
ϕ4

0

]
, v2 =

[
0
ϕ0

]
. (20)

Again, the two eigenvectors induce opposite Krein signatures for each coalescent
double eigenvalue, hence by the necessary condition on the splitting of the double
eigenvalues, we may anticipate unstable eigenvalues for small ε.

In order to compute definite predictions whether or not the double eigenvalues
produce instability bifurcations for the first and second excited states, we shall
proceed using perturbation theory arguments. We substitute expansion (11) into the
spectral problem (14) and expand it into powers of ε2 as follows:

(L0 + ε2L1 + . . . )v = −iλσ3v, (21)

where

L1 =
[

2ϕn(x)2 − μ
(2)
n ϕn(x)

2

ϕn(x)
2 2ϕn(x)2 − μ

(2)
n

]
.

Let −iλ = ω0+ε2ω1+. . . , where ω0 is a coalescent double eigenvalue and ω1 is
a correction term. Representing v = c1v1 + c2v2 + . . . and projecting the perturbed
spectral problem (21) to the eigenvectors v1 and v2 yield the matrix eigenvalue
problem

M

[
c1

c2

]
= ω1σ3

[
c1

c2

]
, (22)

where Mij = 〈L1vi, vj 〉, 1 ≤ i, j ≤ 2, and the L2 normalization of eigenvectors
has been taken into account.

Let us consider the first excited state n = 1 bifurcating from μ1 = 3. For ε = 0,
the eigenvalue at ω0 = 2 is double with two eigenvectors (18). However, there exists
a linear combination of v1 and v2 which produces the so-called dipolar oscillation
(also known as the Kohn mode, see explicit solutions in [29]) and thus the eigenvalue
at ω0 = 2 related to this linear combination is independent of the variations of the
chemical potential in ε. The shift of the eigenvalue for another linear combination
of v1 and v2 has been the subject of intense scrutiny as it is associated with the
oscillation frequency of the dark soliton in the parabolic trap [8, 40].

By using (12) for n = 1, we find μ(2)1 = 3/(4
√

2π). The matrix M in the matrix
eigenvalue problem (22) is computed explicitly as

M =
[

1
8
√

2π
1

8
√
π

1
8
√
π

1
4
√

2π

]
.
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Computations of eigenvalues of the matrix eigenvalue problem (22) yield 0 and
−1/(8

√
2π). The zero eigenvalue corresponds to the dipolar oscillations. The

nonzero eigenvalue near ω0 = 2 is given by the following expansion:

ω = 2 − 1

6
(μ− 3)+ . . .

Numerical results on the top left panel of Fig. 1 confirm this prediction. The smallest
nonzero eigenvalue remains below ω0 = 2 and approaches ω → √

2 as μ→ ∞, in
agreement with the previous results [8, 40].

It is relevant to indicate that the asymptotic limit of the eigenfrequencies of the
ground state solution with n = 0 can be computed in the limit of large μ [49] (see
also [29] for a recent account of the relevant analysis). These modes include the
so-called dipolar oscillation, quadrupolar oscillation, etc. (associated, respectively,
to m = 1, m = 2, etc.) and the corresponding eigenfrequencies are given by the
analytical expression in the limit μ→ ∞:

Fig. 1 The top left panel corresponds to the case of the first excited state, the top right one
corresponds to the second excited state, while the bottom panel corresponds to the third excited
state. Eigenvalues of negative (positive) Krein signature are shown in red (green), complex
eigenvalues are shown in black. Asymptotic values in (23) are shown using blue dashed lines.
For the first excited state, only the lowest nonzero eigenfrequency has a negative Krein signature
(but its linear degeneracy with a symmetry mode yields no instability). For the second excited
state, there are two degenerate modes at 2 and 4. Only the latter yields the quartet of complex
eigenvalues. For the third excited state, there are three degenerate modes at 2, 4, and 6; the last two
yield quartets of complex eigenvalues
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ωm = √2m(m+ 1), m ∈ N. (23)

These asymptotic values are also shown on Fig. 1 by using blue dashed lines. From
the top left panel, we can see that these frequencies of the ground state solution are
present in the linearization of the first excited state in addition to the eigenfrequency
ω∗ = √

2, which corresponds to the oscillation of the dark soliton inside the trap.
While the example of the first excited state is instructive, it does not show any

instability bifurcations due to coalescence of eigenvalues of the opposite Krein
signatures. This is because although the eigenfrequency at ω0 = 2 is double, the
dipolar oscillations do not allow the manifestation of an instability as a result of
resonance. However, the onset of instability can still be found for the other excited
states, e.g. for the second excited state n = 2 bifurcating from μ2 = 5.

By using (12) for n = 2, we find μ(2)2 = 41/(64
√

2π). At ε = 0, the eigenvalue
at ω0 = 2 is double with the two eigenvectors (19). The dipolar oscillation mode
is present again and corresponds to the eigenvalue at ω0 = 2 independently of
the variations of the chemical potential in ε. The other eigenvalue at ω0 = 2 is
shifted for small ε. The matrixM in the matrix eigenvalue problem (22) is computed
explicitly as

M =
[

5
32

√
2π

15
64

√
3π

15
64

√
3π

15
64

√
2π

]
.

Computations of eigenvalues of the matrix eigenvalue problem (22) yield 0 and
−5/(64

√
2π). The nonzero eigenvalue near ω0 = 2 is given by the following

expansion:

ω = 2 − 5

41
(μ− 5)+ . . . (24)

While the degeneracy at ω0 = 2 does not lead to the onset of instability, let us
consider the double eigenvalue at ω0 = 4 with the two eigenvectors (20). The matrix
M in the matrix eigenvalue problem (22) is computed explicitly as

M =
⎡
⎣ 1

512
√

2π
9

128
√

3π
9

128
√

3π
7

64
√

2π

⎤
⎦ .

The complex eigenvalues of the matrix eigenvalue problem (22) are given by
(−55 ± 3

√
23i)/(2048

√
2π). The complex eigenvalues near ω0 = 4 are given by

the following expansion:

ω = 4 + −55 ± 3
√

23i

656
(μ− 5)+ . . . (25)
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The eigenvalues remain complex for values of μ � 5 but coalesce again on the
imaginary axis at μ ≈ 13.75 and reappear as pairs of imaginary eigenvalues of
the opposite Krein signatures. This reversed instability bifurcation takes place in a
complete agreement with the necessary condition for the instability bifurcations.

In the large chemical potential limit, the eigenfrequencies of the linearization at
the excited state with n = 2 include the same eigenfrequencies of the linearization
at the ground state with n = 0 given by (23), see the top right panel of Fig. 1.
In addition, two modes with negative Krein signature appear due to the dynamics
of the two dark solitary waves on the ground state. One mode represents the in-
phase oscillation of the two dark solitons and it is continued from the eigenvalue
expanded by (24) to the limit μ → ∞, where it approaches ω∗ = √

2. The other
mode represents the out-of-phase oscillation of the two dark solitons and it appears
from the complex pair (25) which reappears back on the imaginary axis for higher
values of the chemical potential μ. Asymptotic approximation of the out-of-phase
oscillation in the limit μ→ ∞ is obtained in [15].

This pattern continues for other excited states with n ≥ 3. The bottom panel on
Fig. 1 shows the case n = 3. For every n ≥ 3, there are n double eigenvalues with
opposite Krein signature at ε = 0. If ε �= 0, the lowest double eigenvalue does not
lead to instability due to its linear degeneracy with the dipolar symmetry mode. The
remaining n−1 double eigenvalues may yield instability bifurcations with complex
eigenvalues. For large μ, these eigenvalues reappear on the imaginary axis after the
reversed instability bifurcations in agreement with the necessary condition for the
instability bifurcation. The n eigenvalues of negative Krein signature characterize
n dark solitons on top of the ground state solution. As such, they provide a rather
lucid example of the nature and relevance of the negative Krein signature concept.
Further details can be found in [15] for the large μ case and in [27] for the small μ
case.

3 Krein Signature for the Nonlinear PT -Symmetric
Schrödinger Equation

Next, we consider the PT -symmetric NLS equation (1) with the potential (5).
Taking the nonlinear stationary states in the form u(x, t) = e−iμtφ(x) with μ ∈ R,
we obtain the following differential equation for the complex-valued φ:

μφ(x) = −φ′′(x)+ (x2 + 2iγ x)φ(x)+ |φ(x)|2φ(x), (26)

where we have set � = 1 again without loss of generality. We say that φ is a PT -
symmetric stationary state of the PT -symmetric NLS equation if φ satisfies the
PT -symmetry condition:

φ(x) = PT φ(x) = φ(−x), x ∈ R. (27)
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In the linear (small-amplitude) limit, we can convert the linear spectral problem
to the quantum harmonic oscillator by using the complex variable z = x + iγ .
Then, the eigenvalues occur at μn = 1 + 2n + γ 2, n ∈ N0 and the PT -symmetric
eigenfunctions are given by

ϕn(x) = in√
2nn!√π Hn(x + iγ )e−(x+iγ )2/2. (28)

Note that ϕn in (28) satisfies the PT -symmetry condition (27). The eigenfunction
ϕn is normalized by the condition

〈ϕn, ϕn〉PT = (−1)n,

where the modified inner product is used in the form

〈ψ, ϕ〉PT :=
∫
R

ψ(x)ϕ(−x)dx. (29)

The inner product in the form (29) is used for all linear PT -symmetric systems [4]
and the alternating sign of 〈ϕn, ϕn〉PT is taken in [35] as the Krein signature of the
eigenvalue μn, see discussion in Sect. 4.

By the same Crandall-Rabinowitz bifurcation theory [16], each PT -symmetric
function ϕn for a simple eigenvalue μn generates a branch of solutions, which can
also be approximated by the same expansion (11). Bifurcations of such nonlinear
stationary states in the PT -symmetric systems from simple real eigenvalues are
considered in [19, 30], where it is proven that the bifurcating branch of the stationary
states satisfies the PT -symmetry (27) and the chemical potential μ is real (at least
for small ε).

The formal solvability condition for the correction terms (μ(2)n , ϕ
(3)
n ) of the

expansion (11) yields

μ(2)n =
∫
R
ϕn(x)|ϕn(x)|2ϕn(−x)dx∫

R
ϕn(x)ϕn(−x)dx

= (−1)n
∫
R

ϕn(x)|ϕn(x)|2ϕn(−x)dx.

Although it is obvious that μ(2)n is real, the sign of this quantity is less explicit than
in (12). At least for small γ , we know that μ(2)n > 0 by continuity of μ(2)n in γ .
Continuation of branches of the nonlinear stationary states in the limit μ → ∞ is
a highly non-trivial problem (see [55, 56] for numerical results and [21] for partial
analytical results on the ground state branch).

In our numerical experiments, we fix μ = 12 and continue in γ the first four
branches from the Hamiltonian case γ = 0. The resulting continuations are shown
on the left panel of Fig. 2. Branches with stable nonlinear states are shown by using
blue solid curves and branches with unstable states are shown in dashed red. The
power curves represent the power of the mode:
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Fig. 2 Left: Power curves for branches of nonlinear states for μ = 12 and γ > 0. Solid blue
(dashed red) curves indicate stable (unstable) states. Right: Sample profiles for nonlinear states
that correspond to the points shown on the power curves, from the top to the bottom branches

‖φ‖2 =
∫
R

|φ(x)|2dx.

The right panel of Fig. 2 shows the mode profiles corresponding to the points shown
on the power branches on the left panel. Analyzing branches reveals two saddle-
node bifurcations: the first branch meets the second one at γ ≈ 0.292, whereas the
third and fourth branches meet at γ ≈ 0.469. Profiles of the nonlinear states for
the merging branches at the saddle-node bifurcation become very similar, and after
the bifurcation point both branches disappear. Such bifurcations are typical in the
defocusing case, whereas branches of nonlinear states are extended for all γ in the
focusing case [55, 56].

Linearizing the PT -symmetric NLS equation with the same expansion (13)
yields the same spectral problem as in (14):

L(γ )v = −iλσ3v, (30)

with σ3 = diag(1,−1), but L(γ ) is no longer a self-adjoint linear operator. The
operator L(γ ) is still defined in L2(R) with the domain H 2(R) ∩ L2,2(R) and is
now given by

L(γ )=
[
−∂2

x + x2 + 2iγ x − μ+ 2|φ(x)|2 φ(x)2

φ(x)2 −∂2
x + x2−2iγ x−μ+2|φ(x)|2

]
.

This operator does not satisfy the Hamiltonian symmetry, σ3L(γ ) �= L̄(γ )σ3 but
instead, it satisfies the PT -symmetry PL(γ ) = L̄(γ )P . In addition, it satisfies the
symmetry σ1L(γ ) = L̄(γ )σ1, the same as in the Hamiltonian case. The quadruple
symmetry of eigenvalues still exists due to these two symmetries. Indeed, if λ0 is
an eigenvalue with the eigenvector v0 = (a, b)T , then −λ̄0 is also an eigenvalue
with the eigenvector PT v0, that is (a(−x), b(−x))T for x ∈ R, whereas λ̄0 is
another eigenvalue with the eigenvector σ1v̄0 = (b̄, ā). Hence, eigenvalues of the
PT -symmetric spectral problem (30) still occur either in real or purely imaginary
pairs or as quadruplets in the complex plane.
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Besides the spectral problem (30), we also introduce the adjoint spectral problem
with the adjoint eigenvector denoted by v#:

L∗(γ )v# = −iλσ3v
#, (31)

where L∗(γ ) is the adjoint linear operator to L(γ ) given by

L∗(γ ) =
[
−∂2

x + x2 − 2iγ x − μ+ 2|φ(x)|2 φ(x)2

φ(x)2 −∂2
x + x2 + 2iγ x − μ+ 2|φ(x)|2

]
.

Unfortunately, the main limitation towards the Krein signature theory in the PT -
symmetric case γ �= 0 is that the adjoint eigenvector v# of the adjoint spectral
problem (31) cannot be related to the eigenvector v of the spectral problem (30) for
the same eigenvalue λ. Neither L∗(γ ) = L(γ ) nor L∗(γ ) = PL(γ )P is true.

Let us now consider a simple isolated eigenvalue λ0 ∈ C\{0} of the spectral
problems (30) and (31) with the eigenvector v0 ∈ H 2(R) ∩ L2,2(R) and the adjoint
eigenvector v#

0 ∈ H 2(R) ∩ L2,2(R), respectively. If λ0 ∈ iR, then there exists a
choice for the eigenvectors v0 and v#

0 to satisfy the PT -symmetry constraint:

v0(x) = v0(−x), v#
0(x) = v#

0(−x), x ∈ R. (32)

For each nonzero eigenvalue λ0 ∈ C of the PT -symmetric spectral problem (30)
with the eigenvector v0 = (a, b) ∈ H 2(R) ∩ L2,2(R) and the adjoint eigenvector
v#

0 = (a#, b#) ∈ H 2(R) ∩ L2,2(R), we define the Krein quantity K(λ0) as follows:

K(λ0) := 〈σ3v0, v
#
0〉 =

∫
R

[
a(x)a#(x)− b(x)b#(x)

]
dx. (33)

If γ = 0, then L∗(0) = L(0) and the adjoint spectral problem (31) becomes
equivalent to the spectral problem (30). Therefore, the adjoint eigenvector v#

0 can be
related to the eigenvector v0 by v#

0 = v0. In this Hamiltonian case, the definition (33)
represents the integral in the right-hand-side of the definition (16). The signs of
K(λ0) defined for γ = 0 by (16) and K(λ0) defined for γ ∈ R by (33) are the same
if −iλ0 > 0 and γ = 0.

If γ �= 0, the adjoint eigenvector v#
0 satisfying the PT -symmetry condition (32)

is defined up to an arbitrary sign. As a result, the Krein quantity K(λ0) in (33) is
defined up to the sign change. In the continuation of the NLS equation (1) with
respect to the parameter γ from the Hamiltonian case γ = 0, the sign of the Krein
quantity K(λ0) in (33) is chosen so that it matches the sign of K(λ0) in (16) for
every −iλ0 > 0 and γ = 0, hence we choose v#

0 = v0 at γ = 0. After this choice
is made for γ = 0, the eigenvector v0, the adjoint eigenvector v#

0, and the Krein
quantity K(λ0) are extended continuously with respect to the parameter γ .

Let us verify the main properties of the Krein quantity K(λ0) defined by (33).
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(1) If f and g satisfy the PT -symmetry condition (32), then the standard inner
product 〈f, g〉 is real-valued. Indeed, this follows from

〈f, g〉 =
∫
R

f (x)g(x)dx =
∫ +∞

0

(
f (x)g(x)+ f (−x)g(−x))dx

=
∫ +∞

0

(
f (x)g(x)+ f (x)g(x)

)
dx.

By (32), v0 and v#
0 are PT -symmetric if λ0 ∈ iR, hence K(λ0) is real if λ0 ∈

iR.
(2) Let us write the spectral problem for the generalized eigenvector vg:

(L(γ )+ iλ0σ3)vg = σ3v0. (34)

If λ0 ∈ iR\{0}, then v#
0 is in the kernel of the adjoint operator (L(γ )+ iλ0σ3)

∗,
and the Fredholm solvability condition of the above equation is 〈σ3v0, v

#
0〉 = 0.

IfK(λ0) = 0, then there exists a solution to the nonhomogeneous equation (34),
so that λ0 is not simple. Hence, K(λ0) �= 0.

(3) Taking inner products of the spectral problems (30) and (31) with the corre-
sponding eigenvectors yields

〈
Lv0, v

#
0

〉
= −iλ0

〈
σ3v0, v

#
0

〉

and
〈
v0,L∗v#

0

〉
= iλ0

〈
v0, σ3v

#
0

〉
,

hence

i(λ0 + λ0)K(λ0) = 0.

If λ0 /∈ iR, then λ0 + λ0 �= 0 and K(λ0) = 0.

Let us now illustrate how the Krein signatures can be used to predict instability
bifurcations from multiple neutrally stable eigenvalues of the spectral problem (30).
Recall that the eigenvalue is called semi-simple if algebraic and geometric multi-
plicities coincide and defective if the algebraic multiplicity exceeds the geometric
multiplicity. In Sect. 2, we continued a semi-simple double eigenvalue with respect
to parameter ε. Here we continue a defective double eigenvalue with respect to
parameter γ .

Let γ0 denote the bifurcation point where two neutrally stable eigenvalues
coalesce: λ0 = λ′0 ∈ iR\{0}. Near γ = γ0, we expand the linear non-self-adjoint
operator L(γ ) as follows:
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L(γ ) = L0 + (γ − γ0)L1 + . . . , (35)

where

L1 =
[

2ix + 2∂γ |φ(x)|2|γ=γ0 ∂γ φ
2(x)|γ=γ0

∂γ φ2(x)|γ=γ0 −2ix + 2∂γ |φ(x)|2|γ=γ0

]
,

and ∂γ denotes a partial derivative with respect to the parameter γ . We assume that
there exists a defective double eigenvalue λ0 ∈ iR\{0} of the spectral problems (30)
and (31) with the eigenvector v0, the generalized eigenvector vg , the adjoint
eigenvector v#

0, and the adjoint generalized eigenvector v#
g , respectively. We will

show that under the following non-degeneracy condition

〈L1v0, v
#
0〉 �= 0, (36)

the necessary condition for instability bifurcation applies to the spectral prob-
lem (30). Thanks to the decomposition (35), we are looking for an eigenvalue λ(γ )
of the perturbed spectral problem

(L0 + (γ − γ0)L1 + . . .) v(γ ) = −iλ(γ )σ3v(γ ), (37)

such that λ(γ ) → λ0 as γ → γ0. Since λ0 is a defective eigenvalue of geometric
multiplicity one and algebraic multiplicity two, we apply Puiseux expansions [26]:

{
λ(γ ) = λ0 + (γ − γ0)

1/2λg + (γ − γ0)λ̃+ . . . ,

v(γ ) = v0 − i(γ − γ0)
1/2λgvg + (γ − γ0)v1 + . . . ,

(38)

where λg , λ̃, and v1 are correction terms. To define v1 uniquely, we add the
orthogonality condition 〈σ3v1, v

#
0〉 = 〈σ3v1, v

#
g〉 = 0. The coefficient −iλg comes

in front of vg thanks to the nonhomogeneous Eq. (34) arising at the order of
(γ − γ0)

1/2 from the perturbed spectral problem (37).
Plugging (38) into (37) yields at the order of (γ − γ0):

(L0 + iλ0σ3) v1 = −L1v0 − λ2
gσ3vg − iλ̃σ3v0. (39)

Fredholm solvability condition is satisfied if the right-hand side of the nonhomoge-
neous equation (39) is orthogonal to the kernel of adjoint operator (L0 + iλ0σ3)

∗
spanned by v#

0. This orthogonality condition yields the constraint:

〈−L1v0 − λ2
gσ3vg − iλ̃σ3v0, v

#
0〉 = 0. (40)

Since K(λ0) = 0 for the defective eigenvalue λ0 ∈ iR, λ̃ is not determined by
equation (40). On the other hand, λg is defined by equation (40), which can be
rewritten as follows:
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(−iλg)2 = 〈L1v0, v
#
0〉

〈σ3vg, v
#
0〉
. (41)

The denominator of (41) is nonzero because of the following argument. If λ0 is a
double eigenvalue, then the solution of the nonhomogeneous equation

(L0 + iλ0σ3)ṽg = σ3vg,

does not exist in L2(R). Hence 〈σ3vg, v
#
0〉 �= 0. Since v0, v#

0, vg , and L1 satisfy the
PT -symmetry conditions, both the nominator and the denominator of (41) are real-
valued. By the assumption (36), the numerator of (41) is nonzero. Thus, (−iλg)2 is
either positive or negative.

Let us assume that (−iλg)2 > 0 without loss of generality and fix −iλg > 0. If
γ > γ0, then i(γ − γ0)

1/2λg ∈ R and we obtain the following expansions for the
two simple purely imaginary eigenvalues λ1 and λ2 given by

λ1 = λ0 + (γ − γ0)
1/2λg + . . . ,

λ2 = λ0 − (γ − γ0)
1/2λg + . . .

The corresponding eigenvectors are expanded by

v1(γ ) = v0 − i(γ − γ0)
1/2λgvg + . . . ,

v2(γ ) = v0 + i(γ − γ0)
1/2λgvg + . . . ,

whereas the adjoint eigenvectors for the same eigenvalues are expanded by

v#
1(γ ) = v#

0 − i(γ − γ0)
1/2λgv

#
g + . . . ,

v#
2(γ ) = v#

0 + i(γ − γ0)
1/2λgv

#
g + . . .

The leading order of Krein quantities for eigenvalues λ1 and λ2 is given by

K(λ1) = 〈σ3v1(γ ), v
#
1(γ )〉 = −i(γ − γ0)

1/2λg〈σ3vg, v
#
0〉

+ i(γ − γ0)1/2λg〈σ3v0, v
#
g〉 + . . . ,

K(λ2) = 〈σ3v2(γ ), v
#
2(γ )〉 = +i(γ − γ0)

1/2λg〈σ3vg, v
#
0〉

− i(γ − γ0)1/2λg〈σ3v0, v
#
g〉 + . . .

Since

〈σ3vg, v
#
0〉=〈vg, σ3v

#
0〉=〈vg, (L0+iλ0σ3)

∗v#
g〉=〈(L0+iλ0σ3)vg, v

#
g〉=〈σ3v0, v

#
g〉,
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the two expansions for K(λ1) and K(λ2) can be rewritten in the case of
i(γ − γ0)

1/2λg ∈ R as

K(λ1) = −2i(γ − γ0)
1/2λg〈σ3vg, v

#
0〉 + . . . ,

K(λ2) = 2i(γ − γ0)
1/2λg〈σ3vg, v

#
0〉 + . . .

Since 〈σ3v0, v
#
g〉 �= 0, K(λ1) has the opposite sign to K(λ2).

If γ < γ0, then i(γ − γ0)
1/2λg ∈ iR, so that λ1, λ2 /∈ iR, whereas K(λ1) =

K(λ2) = 0. Thus, the necessary condition for the instability bifurcation holds under
the nondegeneracy assumption (36).

Note in passing that if the non-degeneracy assumption (36) is not satisfied, then
λg = 0 follows from (41) and the perturbation theory must be extended to the next
order with a characteristic equation to be derived for the correction term λ̃. In this
case, the double defective eigenvalue λ0 ∈ iR may split safely along iR both for
γ > γ0 and γ < γ0.

Figures 3 and 4 show eigenvalues of the PT -symmetric spectral problem (30)
for the first four branches of the nonlinear stationary states with μ = 12 shown on
Fig. 2.

Figure 3 shows that the first branch is stable until γ ≈ 0.27, whereas the second
branch is stable until γ ≈ 0.25. For the first branch (left panel), eigenvalues of
the positive Krein signature coalesce at the origin, whereas for the second branch
(right panel), eigenvalues of the negative Krein signature coalesce at the origin. The
instability of the first branch is unusual, since it plays the role of the ‘ground state’ in
analogy to Hamiltonian case. Nonetheless, this is no surprise since similar behavior
was observed in [55], where the first two branches lost their stability very close to
each other.

Figure 4 (left panels) shows seven bifurcations among eigenvalues of the third
branch of the stationary states that occur at γ1 ≈ 0.126, γ2 ≈ 0.271, γ3 ≈ 0.304,
γ4 ≈ 0.316, γ5 ≈ 0.335, γ6 ≈ 0.338, and γ7 ≈ 0.393. Bifurcations at γ2, γ5, and
γ7 occur when eigenvalues on the imaginary axis coalesce at the origin, resulting
in pairs of eigenvalues on the real axis. The necessary condition for instability

Fig. 3 Purely imaginary eigenvalues λ of the PT -symmetric problem (30) for the first two
stationary states with μ = 12. Eigenvalues of negative (positive) Krein signature are shown in
red (green), complex eigenvalues are shown in black
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Fig. 4 The same as Fig. 3 but for the third (left panels) and fourth (right panels) branches of the
stationary states. Top panels show imaginary parts and the bottom panels show real parts of the
eigenvalues λ

bifurcations is not applicable if the double defective eigenvalue is located at the
origin. The bifurcation at γ6 occurs when real eigenvalues formed after bifurcations
at γ2 and γ5 coalesce and transform into a quadruplet of complex eigenvalues.

At γ1, complex quadruplets continued from the case γ = 0 coalesce and bifurcate
into the imaginary eigenvalues with opposite Krein signatures, which provides an
excellent example for the necessary condition of the reverse instability bifurcation.
At γ3 and γ4, we have more examples of the instability bifurcation and the reverse
instability bifurcation, in which the two eigenvalues before γ3 and after γ4 on the
imaginary axis have opposite Krein signatures.

Figure 4 (right panels) shows six bifurcations among eigenvalues of the fourth
branch of the stationary states at γ1 ≈ 0.099, γ2 ≈ 0.131, γ3 ≈ 0.154, γ4 ≈ 0.322,
γ5 ≈ 0.326, and γ6 ≈ 0.380. The bifurcation at γ1 is similar to the one for the third
branch: a complex pair of eigenvalues coming from the Hamiltonian case coalesces
on the imaginary axis and splits along the imaginary axis into two eigenvalues with
opposite Krein signatures moving away from each other. Bifurcations at γ2 and γ3
occur when two imaginary eigenvalues with opposite Krein signatures continued
from γ = 0 coalesce and bifurcate off into the complex plane at γ2, after which
the complex eigenvalues coalesce again on the imaginary axis at γ3 and emerge as
a pair of purely imaginary eigenvalues with opposite Krein signatures.

At γ4, a pair of purely imaginary eigenvalues of negative Krein signature
coalesces at the origin and they bifurcate into real eigenvalues. At γ5, the purely
imaginary eigenvalues nearly coalesce, but the numerical results are somewhat
inconclusive. Figure 5 shows the squared norm of the difference of eigenvectors for
the corresponding eigenvalues. As we can see, the difference between eigenvectors
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Fig. 5 Distance between eigenvectors (red solid curve) and adjoint eigenvectors (dashed blue
curve) for the fourth branch in Fig. 4 near γ5

does not vanish, which rules out the possibility of a double defective eigenvalue at
the bifurcation point γ5.

Finally, bifurcation at γ6 shows coalescence of two eigenvalues with opposite
Krein signatures after which they bifurcate into a complex quadruplet. Bifurcations
at γ1, γ2, γ3, and γ6 agree with the necessary condition for the instability bifurcation.

Stability of nonlinear stationary states of the PT -symmetric NLS equation (26)
was studied numerically in [55] for fixed values of γ . The recent study in [13] was
applied to a modified potential V where the imaginary part of V had a Gaussian
decay; see also the earlier study of [1]. The instability bifurcations were found to
be very similar to the present study. In addition to the bifurcations visible on Fig. 4,
there was also the case when two eigenvalues with opposite signatures coalesce
into a defective eigenvalue but not bifurcating into the complex plane. This may
happen when the non-degeneracy condition (36) is not satisfied, so that the two
eigenvalues of opposite Krein signature can pass each other on the imaginary axis
without generating complex quadruplets.

4 Krein Signature for the Linear PT -Symmetric
Schrödinger Equation

Here we discuss the concept of Krein signature in the linear PT -symmetric
Schrödinger equation introduced in [35]. For the potential (5) with � = 1, we can
write the linear spectral problem in the form:

μψ(x) = −ψ ′′(x)+ x2ψ(x)+ 2iγ xψ(x), (42)
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which is related to the non-self-adjoint PT -symmetric Schrödinger operator
H = −∂2

x + x2 + 2iγ x defined on the domain H 2(R) ∩ L2,2(R) in L2(R).
The adjoint operator H∗ = −∂2

x + x2 − 2iγ x satisfies H∗ = PHP , where P is
the parity operator. Because of this relation, if ψ0 is an eigenfunction of H for the
eigenvalue μ0, then ψ#

0 = Pψ0 is an eigenfunction of H∗ for the same eigenvalue
μ0. By using the relation ψ#

0 (x) = ψ0(−x), the Krein quantity of the eigenvalue μ0
in the spectral problem (42) can be defined by the inner product in (29):

K(μ0) := 〈ψ0, ψ0〉PT = 〈ψ0, ψ
#
0 〉 =

∫
R

ψ0(x)ψ0(−x)dx. (43)

This definition was used in [35] to verify the main properties of the Krein quantity
and the necessary condition for instability bifurcation.

The spectral problem (42) can be written in the Hamiltonian form (8), or
explicitly,

iP(PH)ψ = iμψ, (44)

where L = PH is self-adjoint, J = iP is skew-adjoint and invertible, and λ =
iμ is a new eigenvalue. By using the definition (9) of the Krein quantity for the
Hamiltonian spectral problem (8), we obtain

K̃(μ0) = 〈PHψ0, ψ0〉 = μ0〈ψ0,Pψ0〉 = μ0K(μ0), (45)

which is only different from the definition (43) by the factor μ0. However, μ0 > 0
since the spectral problem (42) admits only positive eigenvalues. Thus, the Krein
signature introduced in (43) coincides with the Krein signature introduced in (45).

The only difference between the Hamiltonian spectral problem (14) for the
linearized NLS equation and the spectral problem (44) for the linear Schrödinger
equation is that the eigenvalues λ of the spectral problem (14) on the imaginary axis
occur in pairs thanks to the symmetry σ1L = L̄σ1, whereas the eigenvalues λ = iμ

of the spectral problem (44) are located on the positive imaginary axis.
In the limit γ → 0, eigenfunctions of the Schrödinger operator H0 = −∂2

x + x2

for the quantum harmonic oscillator are either even or odd. Eigenvalues μ2N =
4N + 1, N ∈ N0 with even eigenfunctions have positive Krein signature in (43),
whereas eigenvalues μ2N−1 = 4N − 1, N ∈ N with odd eigenfunctions have
negative Krein signature. This seems to be surprising at first glance, since all
eigenvalues are strictly positive and the operator H0 is self-adjoint in L2(R).

It is more natural in the Hamiltonian case γ = 0 to define the Krein quantity of
an eigenvalue μ0 by

KH(μ0) := 〈H0ψ0, ψ0〉 = μ0〈ψ0, ψ0〉 = μ0

∫
R

|ψ0(x)|2dx, (46)
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which is strictly positive for every eigenvalue μ0 > 0. Rewriting the spectral
problem H0ψ = μψ in the Hamiltonian form

iH0ψ = iμψ, (47)

with L = H0, J = i, and λ = iμ, we obtain the same sequence of eigenvalues on
the positive imaginary axis but associated with the positive Krein quantity (46).

The apparent confusion is resolved by observing that the Schrödinger operator
H0 admits two equivalent Hamiltonian formulations (44) and (47), where only the
former is extended continuously with respect to the parameter γ �= 0. In the former
formulation (44) with γ = 0, the self-adjoint operator L = PH0 has now two
sequences of real eigenvalues: positive eigenvalues μ2N = 4N + 1, N ∈ N0 for the
even eigenfunctions and negative eigenvalues −μ2N−1 = −4N + 1, N ∈ N for the
odd eigenfunctions. This explains why the Krein quantity (43) is sign-alternating
even at γ = 0, whereas the Krein quantity (46) is always positive.

5 Summary and Further Directions

We have extended the concept of the Krein signature beyond Hamiltonian systems
and applied it to PT -symmetric systems. We have reviewed the Hamiltonian
theory, including the necessary condition for instability bifurcation as a result
of the collision of two eigenvalues of opposite Krein signature. An instructive
case example from the area of Bose–Einstein condensation provides a countable
sequence of nonlinear states bifurcating from eigenstates of a quantum harmonic
oscillator. The Krein signature was defined for the linearized NLS equation at
each of these nonlinear states both in the Hamiltonian and PT -symmetric cases.
The standard properties of the Krein signature were explicitly confirmed and the
necessary condition for instability bifurcation was verified. An illustrative (and rich
in terms of bifurcations) example was given in the form of a linear gain/loss term in
the NLS with a parabolic trap.

One can envision numerous extensions of the present theory. On the practical side
of specific applications, it would be especially relevant to consider two-dimensional
problems involving vorticity in settings such as the one of [1]. Also, more recently
partially PT -symmetric settings have been introduced in [17, 53] where one
dimension retains the symmetry and the other dimension does not. Considering
the applicability of the ideas herein in such systems or in systems with complex,
yet non-PT -symmetric potentials with families of solutions [33, 36] would also
be of interest. Finally, from a more mathematical perspective, an understanding of
whether ideas related to the Hamiltonian-Krein theorem can be adapted to the PT -
symmetric setting would be an especially intriguing task.
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Integrable Nonlocal PT Symmetric and
Reverse Space-Time Nonlinear
Schrödinger Equations

Mark J. Ablowitz and Ziad H. Musslimani

Abstract In this chapter a review of recent advances related to the emerging field
of integrable nonlocal nonlinear PT symmetric, reverse space-time and reverse time
only equations is presented. Starting from the well-known AKNS theory, it is shown
how to obtain a host of nonlocal integrable equations previously discovered by the
authors. Included are the nonlocal PT symmetric (1 + 1)D nonlinear Schrödinger
(NLS) equation and its multi-component generalization; the reverse space-time and
reverse time only NLS equations along with their vector versions. The inverse scat-
tering transform associated with the nonlocal NLS hierarchy is briefly summarized
and one soliton solutions corresponding to each of the above case are presented.
The discrete nonlocal PT symmetric, reverse space-time and reverse time only NLS
equations are also discussed. Starting from the Ablowitz-Ladik scattering problem,
it is shown that all these discrete models arise from simple symmetry reductions.

1 Introduction

Integrable systems have a rich and long history that dates back to the nineteenth
century. Their impact spans many areas of the mathematical sciences including
mathematical analysis, solutions of differential equations and differential geometry
to name a few. Some integrable models find important applications in physics
including classical and quantum physics; e.g. water waves, nonlinear optics,
elasticity, lattice dynamics, quantum statistical mechanics and quantum field theory.
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Originally, integrable systems were studied in the framework of classical finite
dimensional Hamiltonian mechanics. In this regard, the concept of integrability
refers to the existence of a canonical transformation from generalized coordinates
(position and momenta) to action-angle variables. Alternatively, an autonomousN th
order dynamical system is said to be integrable if there exists N − 1 constant of
motions that help reduce the order of the system to one.

The discovery of solitons by Zabusky and Kruskal in 1965 [1] opened the door
and created an opportunity to extend the theory of integrable finite-dimensional
Hamiltonian systems to infinite-dimensions. Indeed, in 1967, Gardner, Greene,
Kruskal and Miura [2] used methods of direct and inverse scattering associated with
the time independent Schrödinger operator to solve the Cauchy problem associated
with the KdV equation. This together with the results of [3, 4] established the
integrability of the KdV in terms of an infinite number of conserved quantities and
action angle variables of an associated Hamiltonian system.

Inspired by these findings, Lax proposed in 1968 [5] a novel approach to solve
the initial value problem associated with the KdV equation by reformulating it
as a compatible set of two first order PDEs later known in the literature as Lax
pairs. This new method was used by Zakharov and Shabat [6]. They introduced
a Lax type compatible system, one of which was the Dirac system, and used it to
solve the Cauchy problem associated with the nonlinear Schrödinger equation. They
showed it was an integrable Hamiltonian system. In 1974, AKNS [7] introduced a
method to generate evolution equations both in one and multi dimensions whose
outcome is a single or set of PDEs that are guaranteed to be (i) integrable and
(ii) solvable by the inverse scattering transform. Soon thereafter, intense research
activity related to integrable soliton equations emerged, covering wide spectrum
of research ranging from pure to applied to computational mathematics and to
theoretical and experimental physics [8–16].

Towards the end of the nineteen nineties, it was believed that most relatively
simple and physically relevant integrable evolution equations were already classified
and their analytic and solution properties well understood. In this regard, research
interest shifted towards understanding special solutions, asymptotics, symmetries,
related aspects of integrability, perturbations as well as a more general nonlinear
waves phenomena governed often by non-integrable PDEs.

In 2013 a new nonlocal symmetry reduction for the AKNS scattering problem
was discovered [17] giving rise to a new type of integrable nonlocal nonlinear
Schrödinger equation that preserves PT symmetry, i.e., it is invariant under the
combined action of space reflection and time reversal symmetry. This surprising
result ignited a renewed interest in integrable systems with emphasis on analysis
of its underlying mathematical structure and physical applications [18–29]. Further
unexpected results followed soon thereafter where additional (previously unknown)
symmetry reductions for the AKNS system were found by the authors [30]. They
belong to the so-called reverse space-time and reverse time only type reductions
and give rise to numerous new integrable continuous and discrete equations.
Examples include the reverse space-time and reverse time only NLS, mKdV, Davey-
Stewartson, multi wave interactions, sine-Gordon equations to name a few. These
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findings have also been extended to the discrete domain where new PT , reverse
space-time and reverse time only symmetry reductions to the well-known Ablowitz-
Ladik [31, 32] scattering problem have been identified and new discrete evolution
systems have been derived [30, 33].

The focus of this book chapter is on reviewing recent progress in the emerging
area of nonlocal PT symmetric and reverse space-time integrable systems. The
emphasis is going to be on how to obtain a host of new integrable evolution
equations, list a few of their integral of motions and present some of their soliton
solutions.

2 Continuous Models

To outline the derivation of the nonlocal PT symmetric, reverse space-time and
reverse time only NLS equations we start from the well-known AKNS scattering
problem given by [8, 34]

vx(x, t) = Xv(x, t) , (1)

where subscript denotes partial derivative, v(x, t) ≡ (v1(x, t), v2(x, t))
T and

q(x, t), r(x, t) are complex valued functions of the real variables x and t that are
assumed to vanish rapidly as |x| → ∞. The 2×2 matrix X depends on the functions
q(x, t) and r(x, t) as well as on the spectral parameter k

X =
(−ik q(x, t)

r(x, t) ik

)
. (2)

Associated with the scattering problem (1) is the time evolution of the eigenfunc-
tions vj (x, t), j = 1, 2 which is given by

vt (x, t) = Tv(x, t) , (3)

with

T =
(

A B
C −A

)
. (4)

Here, the quantities A,B and C are scalar functions of q(x, t), r(x, t) and the
spectral parameter k. Depending on the choice of A,B and C one finds an evolution
equation for the potential functions q(x, t) and r(x, t) which, under a certain
symmetry restriction, leads to a single evolution equation for either q(x, t) or
r(x, t). In the case where the quantities A,B and C are second order polynomials in
the isospectral parameter k with coefficients depending on q(x, t), r(x, t), i.e.,
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A = 2ik2 + iq(x, t)r(x, t) , (5)

B = −2kq(x, t)− iqx(x, t) , (6)

C = −2kr(x, t)+ irx(x, t) , (7)

the compatibility condition of system (1) and (3) leads to

iqt (x, t) = qxx(x, t)− 2r(x, t)q2(x, t) , (8)

−irt (x, t) = rxx(x, t)− 2q(x, t)r2(x, t) . (9)

Equations (8) and (9) are known in the literature as the general q, r system. As we
shall see later, depending on the choice between the potentials q and r an integrable
evolution equation for either q or r can be derived.

2.1 Classical Local NLS

The classical NLS equation is obtained from system (8) and (9) by imposing the
following relation between the potential functions q(x, t) and r(x, t)

r(x, t) = σq∗(x, t), σ = ∓1 , (10)

that gives rise to the classical NLS equation

iqt (x, t) = qxx(x, t)− 2σ |q(x, t)|2q(x, t) . (11)

It should be pointed out that relation (10) is well-known in the literature for over
forty years. The first few conserved quantities associated with Eq. (11) are given by
(conservation of mass, momentum and energy respectively)

∫
R

|q(x, t)|2dx = constant, (12)

∫
R

q∗x (x, t)q(x, t)dx = constant, (13)

∫
R

(
σ |qx(x, t)|2 + |q(x, t)|4

)
dx = constant. (14)
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2.2 Nonlocal PT Symmetric NLS

In 2013 a new symmetry reduction of the AKNS scattering problem was identified
that leads to a new nonlocal NLS type equation that preserves PT symmetry, i.e.,
invariance under space reflection and time reversal symmetry (complex conjuga-
tion). Indeed, under the symmetry reduction

r(x, t) = σq∗(−x, t) , σ = ∓1, (15)

system (8) and (9) are compatible and leads to the nonlocal nonlinear Schrödinger
equation first introduced in [17]:

iqt (x, t) = qxx(x, t)− 2σq2(x, t)q∗(−x, t), (16)

where star denotes complex conjugation. The corresponding Lax pairs given by

X =
(−ik q(x, t)

σq∗(−x, t) ik

)
, (17)

T =
(

2ik2 + iσq(x, t)q∗(−x, t) −2kq(x, t)− iqx(x, t)

−2σkq∗(−x, t)− iσq∗x (−x, t) −2ik2 − iσq(x, t)q∗(−x, t)
)
. (18)

The important symmetry reduction (15) was first discovered in [17] and leads
to a novel class of nonlocal integrable nonlinear evolution equations including a
nonlocal NLS hierarchy. This is a special and remarkably simple reduction of the
more general AKNS system [7] which had not been previously found. A list of few
important properties of Eq. (16) are given below [19]:

• Time-reversal symmetry: If q(x, t) is a solution so is q∗(x,−t).
• Invariance under the transformation x → −x : If q(x, t) is a solution so is
q(−x, t).

• Gauge invariance: If q(x, t) is a solution so is eiθ0q(x, t) with real and con-
stant θ0.

• Complex translation invariance: If q(x, t) is a solution so is q(x+ ix0, t) for any
constant and real x0.

• Equation (16) is a Hamiltonian dynamical system and is obtained using the
variational formulation

iqt (x, t) = δH

δq∗(−x, t) , (19)

where δH
δq∗(−x,t) is the variational derivative of the Hamiltonian with respect to

q∗(−x, t) and is given by

H=
∫ +∞

−∞

[
−qx(x, t)q∗x (−x, t)−σq2(x, t)q∗2

(−x, t)
]
dx , σ=∓ 1. (20)
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• PT symmetry: If q(x, t) is a solution so is q∗(−x,−t). Define the quantity

V (x, t) = ±2q(x, t)q∗(−x, t), (21)

which, in classical optics is referred to as a self-induced potential, implies

V ∗(−x, t) = V (x, t). (22)

With this at hand, Eq. (16) is rewritten in the new form

iqt (x, t) = qxx(x, t)+ V (x, t)q(x, t). (23)

This equivalent formulation allows one to connect Eq. (16) with PT symmetric
optics for which V (x, t) represents a “waveguide" and the resulting equation
remains invariant under the joint transformation of x → −x, t → −t and a
complex conjugate. Thus, the nonlocal equation (16) is PT symmetric [35]. We
remark that wave propagation in PT symmetric coupled waveguides or photonic
lattices has been observed in experiments in classical optics [36–51].

The PT symmetric NLS equation (16) is an integrable Hamiltonian dynamical
systems admitting infinite number of conservation laws, the first few are given by

∫
R

q(x, t)q∗(−x, t)dx = constant, (24)

∫
R

[
qx(x, t)q

∗(−x, t)+ q(x, t)q∗x (−x, t)
]
dx = constant, (25)

∫
R

[
qx(x, t)q

∗
x (−x, t)− σq2(x, t)q∗2

(−x, t)
]
dx = constant. (26)

2.3 Reverse Space-Time NLS

Recently, new additional symmetry reductions associated with the AKNS scattering
problem were found [30]. Unlike the previous ones (the classical and PT symmet-
ric) the new ones are of the so-called reverse space-time type in which a reflection
in both space and time is performed. The system of Eqs. (8) and (9) are compatible
under the symmetry condition

r(x, t) = σq(−x,−t), σ = ∓1, (27)
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that leads to the so-called reverse space-time nonlocal nonlinear Schrödinger
equation

iqt (x, t) = qxx(x, t)− 2σq2(x, t)q(−x,−t). (28)

The new symmetry condition (27) gives rise to a new class of nonlocal (in both space
and time) integrable evolution equations including a nonlocal reverse space-time
NLS hierarchy. Equation (28) is another special and remarkably simple reduction
of the more general q, r system mentioned above. For completeness, we give the
compatible pair associated with Eq. (28):

X =
(−ik q(x, t)

σq(−x,−t) ik

)
, (29)

T =
(

2ik2 + iσq(x, t)q(−x,−t) −2kq(x, t)− iqx(x, t)

−2σkq(−x,−t)− σ iqx(−x,−t) −2ik2 − iσq(x, t)q(−x,−t)
)
. (30)

It is well-known that the compatible pair (2)–(3) with (5)–(7) lead to an infinite
number of conservation laws and conserved quantities cf. [8]. The first few
conserved quantities associated with Eq. (28) are given by

∫
R

q(x, t)q(−x,−t)dx = constant, (31)

∫
R

qx(x, t)q(−x,−t)dx = constant, (32)

∫
R

(
σqx(x, t)qx(−x,−t)+ q2(x, t)q2(−x,−t)

)
dx = constant. (33)

In the context of PT symmetric linear/nonlinear optics, the analogous quantity in
Eq. (31) is referred to as the “quasipower.” We also note that Eq. (28) is an integrable
Hamiltonian system with Hamiltonian given by equation (33). It should be pointed
out that Eq. (28) breaks time and space translation symmetry, i.e., if q(x, t) is a
solution to Eq. (28) then q(x + x0, t + t0) with constants x0, t0 (generally speaking)
is not. Another interesting observation is that Eq. (28) breaks gauge invariance
symmetry as well, i.e., if q(x, t) is a solution to Eq. (28) then q(x, t)eiθ with
constant are real θ (again generally speaking) is not. Despite the lack of these
important symmetries, Eq. (28) is still invariant under time reversal symmetry, i.e.,
if q(x, t) is a solution to Eq. (28) so is q̃(x, t) = q∗(x,−t).
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2.4 Reverse Time Only NLS

Another interesting nonlocal symmetry reduction that system (8) and (9) admits is
given by

r(x, t) = σq(x,−t), σ = ∓1, (34)

which, in turn, leads to the following new reverse-time only nonlocal nonlinear
Schrödinger equation

iqt (x, t) = qxx(x, t)− 2σq2(x, t)q(x,−t). (35)

Again, the condition (34) is remarkably simple and was noticed first by the authors
[30] and leads to a nonlocal in time NLS hierarchy. Furthermore, since this equation
arises from the above AKNS scattering problem, it is an integrable Hamiltonian
evolution equation that admits an infinite number of conservation laws /conserved
quantities. The first few are listed below:

∫
R

q(x, t)q(x,−t)dx = constant, (36)

∫
R

q(x, t)qx(x,−t)dx = constant, (37)

∫
R

(
σqx(x, t)qx(x,−t)+ q2(x, t)q2(x,−t)

)
dx = constant. (38)

The Lax pairs associated with Eq. (35) are thus given by

X =
(−ik q(x, t)

σq(x,−t) ik

)
, (39)

T =
(

2ik2 + iσq(x, t)q(x,−t) −2kq(x, t)− iqx(x, t)

−2σkq(x,−t)± iqx(x,−t) −2ik2 − iσq(x, t)q(x,−t)
)
. (40)

Similar to the reverse space-time case, here Eq. (35) breaks only time translation
symmetry. This implies if q(x, t) is a solution to Eq. (35) then q(x, t + t0) with
real or complex constant t0 (generally speaking) is not. Equation (35) breaks gauge
invariance as well but not time reversal symmetry.
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2.5 Multi-component Case

The extension to the matrix or vector (multi component) reverse space-time or
reverse time only nonlocal NLS system can be carried out in a similar fashion.
Indeed, if we start from the matrix generalization of the AKNS scattering problem
then the compatibility condition generalizing the one given in system (8) and (9)
now reads

iQt (x, t) = Qxx(x, t)− 2Q(x, t)R(x, t)Q(x, t), (41)

−iRt (x, t) = Rxx(x, t)− 2R(x, t)Q(x, t)R(x, t), (42)

where Q(x, t) is an N ×M matrix; R(x, t) is anM ×N matrix of the real variables
x and t and super script T denotes matrix transpose. Under the symmetry reduction

R(x, t) = σQT (−x,−t), σ = ∓1, (43)

system (41) and (42) are compatible and this leads to the reverse space-time nonlocal
matrix nonlinear Schrödinger equation

iQt (x, t) = Qxx(x, t)− 2σQ(x, t)QT (−x,−t)Q(x, t). (44)

In the special case where Q is either a column vector (M = 1) then Eq. (44)
reduces to

iqt (x, t) = qxx(x, t)− 2σ [q(x, t) · q(−x,−t)]q(x, t), (45)

where dot stands for the vector scalar product. As in the scalar case, we can
generalize Eq. (35) to the matrix or vector multi component case. Indeed, we note
that system (41) and (42) are compatible under the symmetry reduction

R(x, t) = σQT (x,−t), σ = ∓1, (46)

which in turn gives rise to the following nonlocal in time only matrix nonlinear
Schrödinger equation

iQt (x, t) = Qxx(x, t)− 2σQ(x, t)QT (x,−t)Q(x, t). (47)

To obtain the multi-component analogue of Eq. (47) we restrict the matrix Q to a
column vector (N = 1) giving rise to the following nonlocal evolution equation

iqt (x, t) = qxx(x, t)− 2σ [q(x, t) · q(x,−t)]q(x, t). (48)
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3 Discrete Models

In this section we show how to derive discrete analogues to the nonlocal PT
symmetric, reverse space-time and reverse time only NLS equations first introduced
in [30]. Since all these models originate from the Ablowitz-Ladik scattering
problem they constitute integrable Hamiltonian systems and admit infinite number
of conserved quantities.

The starting point is the well-known discrete scattering problem [31]

vn+1 =
(
z Qn

Rn z
−1

)
vn, (49)

dvn

dt
=
(

An Bn
Cn Dn

)
vn, (50)

where vn = (v
(1)
n , v

(2)
n )T ,Qn and Rn vanish rapidly as n→ ±∞ and z is a complex

spectral parameter. Here,

An = iQnRn−1 − i

2

(
z− z−1

)2
, (51)

Bn = −i
(
zQn − z−1Qn−1

)
, (52)

Cn = i
(
z−1Rn − zRn−1

)
(53)

Dn = −iRnQn−1 + i

2

(
z− z−1

)2
. (54)

The discrete compatibility condition d
dt
vn+1 = ( d

dt
vm
)
m=n+1 yields

i
d

dt
Qn(t) = �nQn(t)−Qn(t)Rn(t) [Qn+1(t)+Qn−1(t)] , (55)

−i d
dt
Rn(t) = �nRn(t)−Qn(t)Rn(t) [Rn+1(t)+ Rn−1(t)] , (56)

where

�nFn ≡ Fn+1 − 2Fn + Fn−1. (57)
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As is the case with the continuum limit, any “consistent” relation between the
two discrete potentials Qn,Rn would lead to a discrete evolution equation that is
integrable and solvable by the inverse scattering transform.

3.1 Ablowitz-Ladik Lattice

In [31, 32], it was shown that the system of Eqs. (55) and (56) are compatible under
the symmetry reduction

Rn(t) = σQ∗
n(t), σ = ∓1, (58)

and gives rise to the Ablowitz-Ladik model [31, 32]

i
dQn(t)

dt
= �nQn − σ |Qn(t)|2 [Qn+1(t)+Qn−1(t)] . (59)

3.2 PT Symmetric Discrete NLS

In 2014 an integrable discrete PT symmetric NLS model was introduced by
the authors [33]. It arose from a new symmetry reduction to the Ablowitz-Ladik
scattering problem given by

Rn(t) = σQ∗−n(t), σ = ∓1, (60)

in which case theQn,Rn system reduces to a single nonlocal differential-difference
equation

i
dQn(t)

dt
= �nQn − σQn(t)Q

∗−n(t) [Qn+1(t)+Qn−1(t)] . (61)

Importantly, Eq. (61) is an integrable system admitting an infinite number of
conservation laws. The first two conserved quantities are given by

+∞∑
n=−∞

Qn(t) Q
∗
1−n(t) = constant. (62)

+∞∑
n=−∞

[
σQn(t) Q

∗
2−n(t)−

1

2

(
Qn(t) Q

∗
1−n(t)

)2] = constant. (63)
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+∞∏
n=−∞

[
1 − σQn(t) Q

∗−n(t)
] = constant. (64)

Note that Eq. (61) is a Hamiltonian dynamical system with Qn(t) and Q∗−n(t) play-
ing the role of coordinates and conjugate momenta respectively. The corresponding
Hamiltonian and (the non canonical) brackets are given by

H = −σ
+∞∑
n=−∞

Q∗−n(t) (Qn+1(t)+Qn−1(t)) (65)

−2
+∞∑
n=−∞

log
(
1 − σQn(t) Q

∗−n(t)
)
.

{
Qm(t),Q

∗−n(t)
} = i

(
1 − σQn(t) Q

∗−n(t)
)
δn,m. (66)

{Qn(t),Qm(t)} =
{
Qn(t),Q

∗−m(t)
} = 0. (67)

A discrete soliton solution was derived in [33].

3.3 Reverse Space-Time Discrete NLS

Interestingly, the system of discrete Eqs. (55) and (56) are compatible under the
symmetry reduction

Rn(t) = σQ−n(−t), σ = ∓1, (68)

and gives rise to the reverse discrete-time nonlocal discrete NLS equation:

i
dQn(t)

dt
= �nQn − σQn(t)Q−n(−t) [Qn+1(t)+Qn−1(t)] . (69)

The discrete symmetry constraint (68) was first noticed in [30]. Since Eq. (69)
comes out of the Ablowitz-Ladik scattering problem, as such, it constitute an infinite
dimensional integrable Hamiltonian dynamical system. The first two conserved
quantities are given by

+∞∑
n=−∞

Qn(t) Q1−n(−t) = constant. (70)
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+∞∑
n=−∞

[
σQn(t) Q2−n(−t)− 1

2
(Qn(t) Q1−n(−t))2

]
= constant. (71)

+∞∏
n=−∞

[1 − σQn(t) Q−n(−t)] = constant. (72)

Importantly, Eq. (69) is a Hamiltonian dynamical system with Qn(t) and Q−n(−t)
playing the role of coordinates and conjugate momenta respectively. The corre-
sponding Hamiltonian and (the non canonical) brackets are given by

H = −σ
+∞∑
n=−∞

Q−n(−t) (Qn+1(t)+Qn−1(t)) (73)

−2
+∞∑
n=−∞

log (1 − σQn(t) Q−n(−t)) .

{Qm(t),Q−n(−t)} = i (1 − σQn(t) Q−n(−t)) δn,m. (74)

{Qn(t),Qm(t)} = {Qn(t),Q−m(−t)} = 0. (75)

3.4 Reverse Time Only Discrete NLS

Equations (55) and (56) admit another important symmetry reduction given by

Rn(t) = σQn(−t), σ = ∓1. (76)

This symmetry reduction is called reverse time Ablowitz-Ladik symmetry and
results in the following discrete reverse time nonlocal discrete NLS equation:

i
dQn(t)

dt
= �nQn − σQn(t)Qn(−t) [Qn+1(t)+Qn−1(t)] . (77)

The discrete symmetry constraint (76) was first observed in [30]. As is the case
with the complex discrete-time symmetry, Eq. (77) is also integrable and posses an
infinite number of conservation laws. The first few conserved quantities are listed
below
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+∞∑
n=−∞

Qn(t) Qn−1(−t) = constant. (78)

+∞∑
n=−∞

[
σQn(t) Qn−2(−t)− 1

2
(Qn(t) Qn−1(−t))2

]
= constant. (79)

+∞∏
n=−∞

[1 − σQn(t) Qn(−t)] = constant. (80)

Importantly, Eq. (77) is a Hamiltonian dynamical system with Qn(t) and Q−n(−t)
playing the role of coordinates and conjugate momenta respectively. The corre-
sponding Hamiltonian and (the non canonical) brackets are given by

H = −σ
+∞∑
n=−∞

Qn(−t) (Qn+1(t)+Qn−1(t)) (81)

−2
+∞∑
n=−∞

log (1 − σQn(t) Qn(−t)) .

{Qm(t),Qn(−t)} = iσ (1 − σQn(t) Q−n(−t)) δn,m. (82)

{Qn(t),Qm(t)} = {Qn(t),Qm(−t)} = 0. (83)

4 Single-Soliton Solutions

The inverse problem consists of constructing the potential functions r(x, t) and
q(x, t) from the scattering data (reflection coefficients) as well as the soliton
eigenvalues kj , kj in the upper, lower half plane, respectively and norming con-
stants Cj (t), Cj (t). Using the Riemann-Hilbert approach, one can find equations
governing the eigenfunctions of the associated scattering problem (cf. [34]) which
in turn determines the potentials q(x, t) and r(x, t). For the one soliton solution,
they are given by

q(x, t) = 2ie−2ik̄1xC̄1(t)

1 + C1(t)C̄1(t)

(k1−k̄1)
2e2i(k1−k̄1)x

, r(x, t) = − 2ie2ik1xC1(t)

1 + C1(t)C̄1(t)

(k1−k̄1)
2e2i(k1−k̄1)x

. (84)
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The time dependence of the potentials q and r in Eq. (84) is encoded in the
eigenvalues and norming constants C1 and C1. For the PT symmetric and reverse
space-time as well as the reverse time only NLS problems we will be discussing
here, following the derivation outlined in [34] for the temporal evolution one finds

C1(t) = C1(0)e
−4ik2

1 t , (85)

C1(t) = C1(0)e
4ik

2
1t . (86)

Here, k1 and k1 are often called the soliton eigenvalues and C1(0), C̄1(0) are
termed norming constants. The corresponding well-known one soliton solution of
the classical NLS Eq. (11) is obtained from Eq. (84) by letting σ = −1, r(x, t) =
−q∗(x, t) and k1 = ξ + iη and is given by

qNLS(x, t) = 2ηsech(2η(x − 4ξ t − x0))e
−2iξx+4i(ξ2−η2)t−iψ0 , (87)

where e2ηx0 = |C1(0)|/(2η), ψ0 = arg(C1(0))−π/2. Next, we provide one soliton
solution for the PT symmetric and reverse time only nonlocal NLS equations.

4.1 Solitons for PT Symmetric NLS

As was shown in [17, 19], for the PT symmetric NLS equation, the soliton
eigenvalues are on the imaginary axis: k1 = iη, k̄1 = −iη̄, η > 0, η̄ > 0 in which
case we have C1(0) = i(η + η̄)eiθ , C̄1(0) = −i(η + η̄)eiθ̄ . Thus, the one soliton
solution of the PT symmetric nonlocal NLS Eq. (16) is given by

qPT (x, t) = 2(η + η̄)eiθ̄ e−2η̄x−4iη̄2t

1 − ei(θ+θ̄ )e−2(η+η̄)x+4i(η2−η̄2)t)
. (88)

An alternative form of writing the above 1-soliton solution (88) is

qPT (x, t) = (η + η̄)ei(θ̄−θ−π)/2e−(η̄−η)xe−2i(η2+η̄2)t

cosh
[
(η + η̄)x − 2i(η2 − η̄2)t − i(θ + θ̄ + π)/2

] . (89)

Next, some remarks are in order.

• The solution qPT (x, t) given in (88) is doubly periodic in time with periods given
by T1 = π

2η̄2 and T2 = π
2(η2−η̄2)

.

• The intensity |qPT (x, t)|2 breathes in time with period given by T = π
2(η2−η̄2)

.

• The solution (88) can develop a singularity in finite time. Indeed, at the origin
(x = 0) the solution (89) becomes singular when
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tn = 2nπ − (θ + θ)

4(η2 − η2)
, n ∈ Z. (90)

• The solution (88) is characterized by two important time scales: the singularity
time scale and the periodicity of breathing.

• A feature of this solution of (88) (and other singular solutions discussed in this
paper) is that it can be defined after singularity has developed; i.e. it has a pole
in time and it can be avoided in the complex time plane; i.e. the solution is of
Painlevé type.

• We recall that not all members of the one-soliton family develop a singularity at
finite time. Indeed, if one let η = η̄ ≡ η in (88) then we arrive at the well behaved
soliton solution of the nonlocal PT symmetric NLS equation

q(x, t) = 2ηsech[2ηx − iθ∗]e−4iη2t ei(θ∗−θ), θ∗ �= nπ, n ∈ Z, (91)

where θ∗ = θ + θ̄ + π/2 and η is an arbitrary real constant.

4.2 Solitons for Reverse Time NLS

With the symmetries between the soliton eigenvalues and norming constants given
by k̄1 = −k1 and C̄1(0) = C1(0) and using the above time dependence for
C1(t), C̄1(t) the nonlocal reverse time only NLS equation has the following one
soliton solution

q(x, t) = 2iC1(0)e2ik1xe4ik2
1 t

1 + C2
1 (0)

4k2
1
e4ik1x

, (92)

r(x, t) = −2iC1(0)e2ik1xe−4ik2
1 t

1 + C2
1 (0)

4k2
1
e4ik1x

. (93)

One can see that the symmetry condition r(x, t) = −q(x,−t) is automatically
satisfied. With k1 = ξ + iη another form of the solution is

q(x, t) = 2iC1(0)e2iξxe4i(ξ2−η2)t e−2ηxe−8ξηt

1 + C2
1 (0)

4k2
1
e4iξxe−4ηx

. (94)

Note that as |x| → ∞, q(x, t) → 0, but as ξ t → −∞, q(x, t) → ∞ so in general
it is an unstable solution. If we write C1(0)

2k1
= e2ηx0e−2iψ0 then a singularity can

occur when

1 + e4i(ξx−ψ0)e−4η(x−x0) = 0,
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or when

x = x0, 4(ξx0 − ψ0) = (2n+ 1)π, n ∈ Z.

When we take a special case ξ = 0 the solution is stable and can be singular
depending on C1(0). But if we further take C1(0) = |C1(0)| so that ψ0 = 0, and
call |C1(0)|/(2η) = e−2ηx0 we find

q(x, t) = 2ηsech[2η(x − x0)]e4iη2t , (95)

which is not singular. We note that from Eq. (87) the one soliton solution of NLS
with ξ = 0 is given by

q(x, t) = 2ηsech(2η(x − x0))e
−4iη2t−iψ0 , (96)

which is the same solution as given above in Eq. (95) but with ψ0 = 0. Indeed,
ψ0 = 0 is necessary for this to be a solution of the reverse time only equation.
Indeed any solution to the classical NLS that satisfies the property

q∗(x, t) = q(x,−t), (97)

automatically satisfies the corresponding nonlocal (in time) NLS equation. This
holds when the solution (96) obeys ψ0 = 0. In this regard, we also note that the
solution

q(x, t) = ηtanh(ηx)e2iη2t , (98)

with nonzero boundary conditions q(x, t) ∼ ±ηe2iη2t as x → ±∞, which is a
“dark” soliton solution of the classical NLS, solves the reverse-time NLS equation
Eq. (35) with σ = 1.

5 Conclusions

In this chapter we reviewed recent progress related to the exciting field of integrable
nonlocal nonlinear PT symmetric, reverse space-time and reverse time only equa-
tions. Starting from the well-known AKNS theory, we showed how to derive various
nonlocal integrable equations previously discovered by the authors. Among them
are the nonlocal PT symmetric (1+1)D nonlinear Schrödinger (NLS) equation and
its multi-component generalization; the reverse space-time and reverse time only
NLS equations along with their vector versions. The inverse scattering transform
associated with the nonlocal NLS hierarchy is briefly summarized and one soliton
solutions corresponding to each of the above case are presented. The discrete
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nonlocal PT symmetric; reverse space-time and reverse time only NLS equations
are also discussed. Starting from the Ablowitz-Ladik scattering problem, it is shown
that all these discrete models arise from a simple symmetry reductions.
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Construction of Non-PT -Symmetric
Complex Potentials with All-Real Spectra

Jianke Yang

Abstract We review recent work on the generalization of PT symmetry. We show
that, in addition to PT -symmetric complex potentials, there are also large classes
of non-PT -symmetric complex potentials which also feature all-real spectra. In
addition, some classes of these non-PT -symmetric potentials allow phase transi-
tions which do or do not go through exceptional points. These non-PT -symmetric
potentials are constructed by a variety of methods, such as the symmetry and
supersymmetry methods and the soliton theory. A generalization of PT symmetry
in multi-dimensions is also reviewed.

1 Introduction

Linear paraxial propagation of light in an optical waveguide is governed by the
Schrödinger equation [1–3]

i'z +'xx + V (x)' = 0, (1)

where z is the distance of propagation, x is the transverse coordinate, V (x) is a
complex potential whose real part is the index of refraction and the imaginary part
represents gain and loss in the waveguide. This same equation also arises in non-
Hermitian quantum mechanics [4, 5] and Bose-Einstein condensates [6], in which
case z is the time variable. Looking for eigenmodes of the form'(x, z) = eiμzψ(x)

we arrive at the eigenvalue problem

Lψ = μψ, (2)

where L = ∂xx + V (x) is a Schrödinger operator, and μ is an eigenvalue.
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All-real spectrum for this Schrödinger operator with a complex potential is a
sought-after property not only in non-Hermitian quantum mechanics, but also in
optics and Bose-Einstein condensates. In quantum mechanics, μ is the energy level,
which must be real in order for the system to be physically meaningful. In optics and
Bose-Einstein condensates, an all-real spectrum of a complex potential is significant
because it allows a dissipative optical system with gain and loss to behave like a
conservative system.

Bender and Boettcher [4] first observed that, if the Schrödinger operator L is
parity-time (PT ) symmetric, i.e., it is invariant under the joint transformations of
x → −x and complex conjugation, then its spectrum can be all-real. This PT
symmetry is equivalent to the condition on the complex potential that

V ∗(x) = V (−x), (3)

where the asterisk * represents complex conjugation. In optics, this condition means
that the refractive index needs to be an even function in space, and the gain-loss
profile needs to be an odd function in space. A simple reason for this all-real
spectrum of a PT -symmetric potential is that its eigenvalues always appear in
complex conjugate pairs. This is because for such potentials, if μ is an eigenvalue
with eigenfunction ψ(x), then by taking the complex conjugate of Eq. (2) and
switching x → −x, we see that μ∗ would also be an eigenvalue with eigenfunction
ψ∗(−x). This eigenvalue symmetry restricts the appearance of complex eigenvalues
and facilitates the realization of an all-real spectrum. But this PT symmetry does
not necessarily guarantee an all-real spectrum, and phase transition can occur when
conjugate pairs of complex eigenvalues appear in the spectrum [2, 4, 7].

PT symmetry has found many optical applications, such as unidirectional
reflectionless metamaterials [8], PT lasers [9, 10], and non-reciprocity in PT -
symmetric whispering-gallery microcavities [11]. In these optical applications, the
refractive index and gain-loss profiles of the waveguide were carefully designed so
as to respect PT symmetry. In a PT setting, the gain-loss profile must be anti-
symmetric, which could be restrictive. The pursuit of non-PT -symmetric potentials
with more flexible gain-loss profiles and all-real spectra is thus an interesting
question. In recent years, various techniques have been developed to construct non-
PT -symmetric potentials with all-real spectra, and they will be reviewed in this
article (a brief review on some of these results could also be found in [12]).

2 Non-PT -Symmetric Potentials with All-Real Spectra and
Exceptional-Point-Mediated Phase Transition

To derive non-PT -symmetric complex potentials with all-real spectra, one strategy
is to impose an operator symmetry in order to guarantee conjugate-pair eigenvalue
symmetry [13]. Like the case of PT -symmetric potentials, this conjugate-pair
eigenvalue symmetry guarantees that either the spectrum of L is all-real, or a phase
transition occurs when pairs of complex eigenvalues appear.
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To execute this strategy, we observe that if there exists an operator η such that L
and its complex conjugate L∗ are related by a similarity relation

ηL = L∗η, (4)

then the eigenvalues of L would come in conjugate pairs if the kernel of η is empty
[13]. This operator relation resembles the condition for pseudo-Hermiticity [5], but
we do not require η to be invertible here.

If we let η = P , where P is the parity operator x  → −x, then this η operator
has an empty kernel, and the similarity condition (4) yields V (−x) = V ∗(x),
which recovers the well-known class of PT -symmetric potentials. However, when
branching out to different choices of η, a completely real spectrum can be obtained
for an arbitrary choice of the gain-loss distribution by a judicious construction of
the index of refraction. This will be demonstrated below where η is chosen as a
differential operator.

2.1 Type-I Potentials

First, we consider the simplest choice of a differential η operator,

η = ∂x + a(x). (5)

Substituting this η and operator L into the similarity condition (4), we get the
following two equations

ax = i Im(V ), axx − Vx = (a2)x. (6)

The second equation can be integrated once, and we get

ax − V = a2 + ξ0, (7)

where ξ0 is a constant. Utilizing (6), this equation becomes

Re(V ) = −a2 − ξ0. (8)

Equations (6), (7), and (8) show that a(x) is a purely imaginary function, and ξ0 is
a real constant. Denoting a(x) = ig(x), where g(x) is an arbitrary real function,
we get Re(V ) = g2(x) − ξ0 and Im(V ) = g′(x), with the prime representing the
derivative. The constant ξ0 can be eliminated by a gauge transformation to Eq. (1),
and thus the resulting complex potential is

V (x) = g2(x)+ ig′(x). (9)
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These potentials were called type-I potentials in [13]. They generalized the poten-
tials of the same form in [14, 15], where special choices of the g(x) function were
taken (see Sects. 2.3 and 5 for reviews).

Compared to PT -symmetric potentials, a distinctive feature of these type-I
potentials is that the gain-loss profile g′(x) is now arbitrary since g(x) is arbitrary.
But due to the symmetry relation (4), the spectra of these potentials can still be
all-real, just like PT -symmetric potentials. This possibility of all-real spectra for
arbitrary gain-loss profiles is made possible by a judicious choice of refractive
indices in relation to the gain-loss profiles.

As an example, we take

g(x) = tanh[2(x + 2.5)] − tanh(x − 2.5)+ c0, (10)

where c0 is a real constant. In Fig. 1, we show two potentials of the form (9), with
the c0 value taken as 0 and −0.3 respectively. In the upper row, the potential with
c0 = 0 has a completely real spectrum, and increasing c0 will maintain the reality of
the spectrum as more discrete eigenvalues bifurcate off the edge of the continuous
spectrum. However, as c0 is decreased, the spectrum will undergo a phase transition
at c0 ≈ −0.181, where a pair of real eigenvalues and their eigenfunctions coalesce
and form an exceptional point at μ ≈ 0.056. This exceptional point then bifurcates
off the real axis and creates a pair of complex eigenvalues afterwards. This can be
seen in the lower row of Fig. 1 with c0 = −0.3. We stress that this phase transition
is induced by going through an exceptional point, which is a common scenario for
phase transition [4, 7].

2.2 Type-II Potentials

Type-I potentials (9) come from taking the simplest form of a differential η operator
[i.e., a first-order operator (5)]. By increasing the order of this differential operator,
more families of potentials arise. Let η now be a second-order operator,

η = ∂xx + a(x)∂x + b(x). (11)

Inserting this η into the similarity condition (4) and collecting coefficients of the
same order of derivatives on the two sides of this condition, we get

ηL L∗η
∂4
x 1 1

∂3
x a a

∂2
x V V ∗ + 2a′

∂1
x V a + 2V ′ V ∗a + a′′ + 2b′

∂0
x V b + V ′a + V ′′ V ∗b + b′′
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Fig. 1 Spectra of type-I potentials (9) with g(x) given in (10). Upper row: c0 = 0; lower row:
c0 = −0.3. In the potentials, the solid blue line is Re(V ), and the dashed pink line is Im(V ).
(Adapted from [13])

Setting these coefficients in ηL and L∗η to match each other, we get a system of
equations which can be solved from top to bottom. From the ∂2

x coefficients, we get
a′(x) = i Im(V ). Setting a(x) = ig(x), where g(x) is a real function, we obtain
Im(V ) = g′(x). Inserting this a(x) formula into the ∂1

x equation and integrating
once, we get

b = Re(V )− 1

2
g2 + i

2
g′ + c1,

where c1 is a constant.
Now we insert these a(x) and b(x) solutions into the ∂0

x equation. After simple
algebra, this equation becomes

[Re(V )g2]′ = g3g′ − 1

2
g′′′g − 2c1g

′g,

from which we can solve the refractive index Re(V ) as

Re(V ) = 1

4
g2 + g′2 − 2g′′g + c2

4g2
− c1,

where c2 is a real constant. The overall constant c1 can be removed without loss of
generality.
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Fig. 2 Spectra of type-II potentials (12) with g(x) given in (10). Upper row: c0 = 1 and c2 = −1;
lower row: c0 = 1 and c2 = 4. (Adapted from [13])

Putting the above results together, we get potentials

V (x) = 1

4
g2 + g′2 − 2g′′g + c2

4g2 + ig′, (12)

where g(x) is an arbitrary real function, and c2 is an arbitrary real constant. These
potentials were called type-II potentials in [13], and they generalized potentials of
the same form but with c2 ≤ 0 in [16] (see Sects. 2.3 and 4 for reviews).

Like type-I potentials, the gain-loss profile g′(x) of these type-II potentials is
also arbitrary, but their spectra can still be all-real due to the symmetry relation (4).

As an example, we take the same function g(x) as in (10). The spectrum of this
potential with c0 = 1 and c2 = −1 is completely real, see Fig. 2 (upper row).
Fixing c0 and decreasing c2 will maintain the all-real spectrum. If c2 is increased
above a certain threshold (which is approximately 2.535), a phase transition occurs,
where a pair of real eigenvalues coalesce and form an exceptional point, which then
bifurcates off the real axis and creates a pair of complex eigenvalues afterwards.
This can be seen in the lower row of Fig. 2 for c2 = 4. In this lower row, an overall
real constant (c2

0 + c2/c
2
0)/4 has been subtracted from the potential (12) so that the

refractive index drops to zero at infinity. Again, the phase transition here is induced
by going through an exceptional point.
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2.3 Potentials with Strictly All-Real Spectra

For the two types of potentials (9) and (12), an exceptional-point-mediated phase
transition is in general possible (see Figs. 1 and 2). But under certain restrictions on
these potentials, all-real spectra can be guaranteed.

For type-I potentials (9), it was shown by Tsoy et al. [14] that, if g(x) is a single-
humped localized real function, then its spectrum is strictly real. This result was
based on an observation by Wadati [15] that the Zakharov-Shabat (ZS) spectral
problem [17]

v1x + iζv1 = g(x)v2, v2x − iζv2 = −g(x)v1, (13)

with ζ being a spectral parameter, can be transformed into the Schrödinger
eigenvalue problems

ψxx + V (x, t)ψ = μψ, φxx + V ∗(x, t)φ = μφ,

with V (x) being the type-I potential (9) and μ = −ζ 2, through the transformation

ψ = v2 − iv1, φ = v2 + iv1. (14)

This means that, in order for the type-I potential (9) to have all-real μ spectrum,
the necessary and sufficient condition is that the ζ spectrum of the ZS spectral
problem (13) is either real or purely imaginary (note that the continuous spectrum
of the ZS problem is the real ζ axis). It was shown by Klaus and Shaw [18] that
when g(x) is a single-humped localized real function, then all discrete eigenvalues
of the ZS problem are purely imaginary, and thus type-I potentials (9) have all-real
spectra.

For type-II potentials (12), it was shown by Andrianov et al. [16] that if c2 ≤ 0,
then the spectrum is strictly real. The proof is based on supersymmetry (see Sect. 4).
Specifically, when c2 = −ε2 ≤ 0, with ε being a real parameter, then we have the
following intertwining operator relation,

[−∂x +W(x)] [∂xx + V (x)] = [∂xx + V0(x)] [−∂x +W(x)] , (15)

where V (x) is the complex type-II potential (12),

W(x) = g′ + ε

2g
− 1

2
ig,

and V0 is a real potential,

V0(x) = 1

4
g2 + 2gg′′ − 3g′2 − 4εg′ − ε2

4g2 .
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The intertwining relation (15) shows that the Schrödinger operators ∂xx + V (x)

and ∂xx + V0(x) are related by a similarity transformation, and thus they share the
same spectrum. Since the spectrum of the real potential V0 is all-real, the spectrum
of the type-II potential (12) is then all-real as well. Note that for c2 > 0, such an
intertwining operator relation does not exist, and the supersymmetry approach does
not apply. In such cases, phase transition can occur in type-II potentials as Fig. 2
shows.

3 Non-PT -Symmetric Potentials with All-Real Spectra and
Exceptional-Point-Free Phase Transition

Extending the symmetry approach of the previous section, additional new types of
complex potentials with all-real spectra can be constructed [19]. More interestingly,
these potentials exhibit exceptional-point-free phase transition, which is very novel.

In this construction, instead of choosing η in Eq. (4) as pure differential operators,
we now take η to be a combination of the parity operator P and differential
operators. In the simplest case, we take η to be a combination of the parity operator
and a first-order differential operator, i.e.,

η = P [∂x + h(x)] , (16)

where h(x) is a complex function to be determined. Substituting this η into the
similarity condition (4), we get the following two equations

V (x)− V ∗(−x) = 2h′(x), (17)

[
V (x)− V ∗(−x)]h(x) = h′′(x)− V ′(x). (18)

From the first equation, we see that
[
h∗(−x)]

x
= h′(x); thus

h∗(−x) = h(x)+ c1, (19)

where c1 is a constant. Substituting Eq. (17) into (18) and integrating once, we get

V (x) = h′(x)− h2(x)+ c2, (20)

where c2 is another constant. Lastly, inserting (19) and (20) into Eq. (17), we obtain

c2
1 + 2c1h(x)+ c2 − c∗2 = 0. (21)
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In order for the potential V (x) in (20) not to be a constant, the function h(x) should
not be identically zero. Thus, Eq. (21) dictates that c1 = 0 and c2 is real. The
former condition means that the complex function h(x) is PT -symmetric in view
of Eq. (19). Regarding the latter condition, since a real constant in a potential can be
easily removed by a simple shift of the eigenvalue, we can set c2 = 0 without loss
of generality. In the end, we find that for new complex potentials of the form

V (x) = h′(x)− h2(x), (22)

where h(x) is a PT -symmetric complex function, i.e., h∗(x) = h(−x), the
Schrödinger operator L satisfies the similarity condition (4) with η given in (16).
Because of this, the eigenvalues of L exhibit complex-conjugate symmetry. Hence,
the spectrum of L can be all-real, but phase transition may also occur, similar to
PT -symmetric potentials as well as non-PT -symmetric potentials of the previous
section.

In these new potentials, h(x) is an arbitrary PT -symmetric function. Because of
this, simple algebra shows that these potentials can accommodate any arbitrary gain-
loss profile [19], analogous to type-I and type-II potentials of the previous section.

A peculiar property of this new class of non-PT -symmetric potentials is that, if
these potentials are localized, then they will not admit any discrete real eigenvalues.
This contrasts the previous non-PT -symmetric potentials (9) and (12), where
discrete real eigenvalues are very common (see Figs. 1 and 2).

To prove this statement, we recall that for any localized potential, the continuous
spectrum of the Schrödinger operator L is the semi-infinite interval −∞ ≤ μ ≤ 0;
and discrete real eigenvalues, if any, are positive numbers. Suppose μ = k2, with
k > 0, is a discrete real eigenvalue in the localized potential (22). Since L is a
second-order differential operator, its discrete eigenvalue μ can only have geometric
multiplicity one, meaning that the corresponding eigenfunction ψ is unique (up to a
constant multiple). Applying the operator η to the eigenvalue equation Lψ = k2ψ

and recalling the symmetry relation (4), we get L∗(ηψ) = k2(ηψ). Taking the
complex conjugate of this equation, we get L(ηψ)∗ = k2(ηψ)∗. This means that
(ηψ)∗ is also an eigenfunction of L at the same eigenvalue μ. Thus, (ηψ)∗ and ψ
must be linearly dependent on each other, i.e., (ηψ)∗ = αψ , where α is a complex
constant. In view of the expression of η in Eq. (16), this relation can be rewritten as

[∂x + h(x)]ψ(x) = α∗ψ∗(−x). (23)

Now we examine this relation as x → ±∞. Since the potential V (x) is localized,
h(x) is localized as well. From the eigenvalue equation (2), we see that the large-x
asymptotics of ψ(x) is

ψ(x)→ a±e−k|x|, x → ±∞,

where a± are complex constants which cannot be both zero. Since h(x) is localized,
as x → ±∞, the contribution of the h(x) term in Eq. (23) is subdominant and will
be ignored. Then, inserting the aboveψ-asymptotics into (23), we get two parameter
conditions
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−ka+ = α∗a∗−, ka− = α∗a∗+.

Dividing these two equations and rearranging terms, we get

|a+|2 + |a−|2 = 0,

which is impossible since a± cannot be both zero. Thus, localized potentials (22) do
not admit discrete real eigenvalues.

The fact of localized potentials (22) not admitting discrete real eigenvalues is a
distinctive property, and it has important implications. Since there are no discrete
real eigenvalues, a phase transition in these potentials clearly cannot be induced
from collisions of such eigenvalues through an exceptional point. Instead, complex
eigenvalues will have to bifurcate out from the continuous spectrum. Below, we will
use an example to show that this is exactly the case. In this example, we take

h(x) = d1sechx + id2 sechx tanhx, (24)

which is PT -symmetric for real constants d1 and d2. We also fix d1 = 1. Then
for two different d2 values of 1 and 2, the resulting non-PT -symmetric localized
potentials and their spectra are plotted in Fig. 3. We see that neither spectrum
contains discrete real eigenvalues, which corroborates our analytical result above.
When d2 = 1, the spectrum is all-real (see the upper right panel). But when d2 = 2,
a conjugate pair of discrete eigenvalues μ ≈ −0.7067 ± 0.4961i appear (see the
lower right panel). The phase transition occurs at d2 ≈ 1.385. Closer examination
reveals that the two complex eigenvalues bifurcate out from μ0 ≈ −0.8062,
which is in the interior of the continuous spectrum. It is also noticed that the
discrete (localized) eigenfunctions of the two complex eigenvalues bifurcate out
from two different continuous (nonlocal) eigenfunctions of the real eigenvalue
μ0, rather than from a single coalesced eigenfunction. This reveals two facts: (1)
these discrete eigenmodes bifurcate out from continuous eigenmodes, rather than
embedded isolated eigenmodes, in the interior of the continuous spectrum; (2)
this phase transition does not go through an exceptional point. The second fact is
particularly significant, because all phase transitions reported before in both finite-
and infinite-dimensional non-Hermitian systems occurred either due to a collision
of real eigenvalues forming an exceptional point, where different eigenvectors or
eigenfunctions coalesce [4, 7, 13], or through an exotic singular scenario, where
complex eigenvalues bifurcate out from infinity of the real axis [20]. This is the
first instance where a phase transition occurs without an exceptional point or a
singular point. Very recently, an analytical explanation of this mysterious bifurcation
was given by Konotop and Zezyulin [21] through the splitting of self-dual spectral
singularity.
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Fig. 3 Spectra of localized potentials (22) with h(x) given in (24) and d1 = 1 (the d2 values are
shown inside the panels). Left column: real (solid blue) and imaginary (dashed red) parts of the
complex potentials. Right column: spectra of potentials in the left column (the red arrows in the
lower panel indicate that the two complex eigenvalues in the spectrum bifurcate out from the red
dot in the interior of the continuous spectrum when a phase transition happens). (Adapted from
[19])

4 Construction of Non-PT -Symmetric Potentials with
All-Real Spectra Using Supersymmetry

The concept of supersymmetry (SUSY) was first introduced in quantum field
theories and high-energy physics (see [22] and the references therein). Subse-
quently, SUSY was utilized in quantum mechanics to construct analytically solvable
potentials. This construction is based on the factorization of the Schrödinger
operator into the product of two first-order operators. Switching the order of these
two first-order operators gives another Schrödinger operator with a new potential
(called the partner potential) which shares the same spectrum as the original
potential (except possibly a single discrete eigenvalue). SUSY can establish perfect
phase matching between modes in the partner potentials, which has motivated
applications such as mode converters in SUSY optical structures [23]. Extending
the idea of SUSY, parametric families of complex potentials with all-real spectra
can be constructed [16, 24–27].

Let us employ the idea of SUSY to construct complex potentials with all-real
spectra, following [24, 27, 28].
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Suppose V1(x) is a potential with all-real spectrum, and μ(1) is an eigenvalue of
this potential with eigenfunction ψ(1), i.e.,

[
d2

dx2 + V1(x)− μ(1)
]
ψ(1) = 0. (25)

We first factorize the linear operator in this equation as

− d2

dx2
− V1(x)+ μ(1) =

[
− d

dx
+W(x)

] [
d

dx
+W(x)

]
. (26)

The function W(x) in this factorization can be obtained by requiring ψ(1) to
annihilate d/dx +W(x), and this gives W(x) as

W(x) = − d

dx
ln(ψ(1)). (27)

It is easy to directly verify that thisW(x) does satisfy the factorization equation (26).
Now we switch the two operators on the right side of the above factorization, and

this leads to a new potential V2(x),

− d2

dx2
− V2(x)+ μ(1) =

[
d

dx
+W(x)

] [
− d

dx
+W(x)

]
, (28)

where

V2 = V1 − 2Wx. (29)

This V2 potential is referred to as the partner potential of V1. It is known that for any
two operatorsA andB,AB andBA share the same spectrum in general (except for a
possible difference in the zero eigenvalue when the kernel of A or B is non-empty).
Then, in view of the two factorizations (26) and (28), we see that the spectrum of
V2 is that of V1, but with μ(1) generically removed.

The new potential V2, however, is only real or PT -symmetric if V1 is so. In
order to derive non-PT -symmetric potentials, we build a new factorization for the
V2 potential,

− d2

dx2
− V2(x)+ μ(1) =

[
d

dx
+ W̃ (x)

] [
− d

dx
+ W̃ (x)

]
. (30)

The function W̃ in this new factorization can be derived as follows [24, 27]. Equating
this new factorization with the previous one in (28), we get

W̃x + W̃ 2 = Wx +W 2.
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Denoting W̃ = W + φ, we see φ satisfies a Ricatti equation

φx + 2Wφ + φ2 = 0.

Through the standard variable transformation φ = q ′/q, the function q is found to
satisfy a linear homogeneous equation

q ′′ + 2Wq ′ = 0.

Utilizing the W expression in (27), we obtain the general q solution as

q = ĉ

[
c +

∫ x

0
[ψ(1)(ξ)]2dξ

]
,

where c and ĉ are arbitrary complex constants. In view of the variable transformation
φ = q ′/q, we see the constant ĉ does not contribute to the φ solution. Putting all the
above results together, we find the general function W̃ (x) as

W̃ (x) = − d

dx
ln(ψ̃(1)), (31)

where

ψ̃(1)(x) = ψ(1)(x)

c + ∫ x0 [ψ(1)(ξ)]2dξ .

For the new V2 factorization (30), its partner potential, defined through

− d2

dx2 − Ṽ1(x)+ μ(1) =
[
− d

dx
+ W̃ (x)

] [
d

dx
+ W̃ (x)

]
,

is

Ṽ1 = V2 + 2W̃x.

Utilizing the V2 and W̃ formulae (29) and (31), this Ṽ1 potential is then found to be

Ṽ1(x) = V1(x)+ 2
d2

dx2 ln

[
c +

∫ x

0
[ψ(1)(ξ)]2dξ

]
. (32)

For generic values of the complex constant c, this Ṽ1 potential is complex and non-
PT -symmetric. In addition, its spectrum is identical to that of V1. Indeed, even
though μ(1) may not lie in the spectrum of V2, it is in the spectrum of Ṽ1 with
eigenfunction ψ̃(1). Hence, if V1 has an all-real spectrum, so does Ṽ1. Notice that
this Ṽ1 potential, referred to as the superpotential below, is actually a family of
potentials due to the free complex constant c.
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Fig. 4 (a) Superpotential (33) with c = 1 + i; (b) Periodic superpotential (34) with V0 = 1 and
c = 0.5 − 2i. The solid blue curve is Re(V ), and the dashed red curve is Im(V ). (Adapted from
[28])

Now we give two explicit examples of non-PT -symmetric superpotentials (32)
with all-real spectra. The first one is constructed from the parabolic potential
V (x) = −x2 and its first eigenmode of μ1 = −1 with ψ1 = e−x2/2. Then the
superpotential (32) reads

V (x) = −x2 + 2
d2

dx2 ln

[
c +

∫ x

0
e−ξ2

dξ

]
. (33)

This potential with c = 1+ i is shown in Fig. 4a. The spectrum of this potential (for
any complex c value) is {−1,−3,−5, . . . }, i.e., is all-real.

In the second example, the superpotential (32) is built from the PT -symmetric
periodic potential V (x) = V 2

0 e
2ix and its Bloch mode ψ(1) = I1(V0e

ix) with
eigenvalue μ1 = −1. Here V0 is a real constant, and I1 is the modified Bessel
function. The resulting periodic superpotential (32) reads

V (x) = V 2
0 e

2ix + 2
d2

dx2 ln

[
c +

∫ x

0
I 2

1 (V0e
iξ )dξ

]
. (34)

For V0 = 1 and c = 0.5 − 2i, this potential is shown in Fig. 4b. The diffraction
(dispersion) relation of this superpotential (for all c values) is the same as that of the
original potential V (x) = V 2

0 e
2ix , i.e., μ = −(k + 2m)2, where the wavenumber k

is in the first Brillouin zone, k ∈ [−1, 1], and m is any non-negative integer.
If V (x) is a localized real potential, then SUSY allows to construct localized

complex superpotentials (32) with all-real spectra [27, 28].
A related technique to construct complex potentials with all-real spectra was

proposed by Cannata, et al. [25]. This technique is based on the formulae (27)
and (29). But instead of choosing μ(1) as an eigenvalue of the potential V1(x)

and ψ(1) as the corresponding eigenfunction, one chooses μ(1) as an arbitrary
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real number and the function ψ(1) as a complex linear combination of the two
fundamental solutions to the Schrödinger equation (25) [here we do not require
ψ(1) to be square-integrable]. For instance, if V1(x) is a real potential and μ(1)

is an arbitrary real number, then we can choose ψ(1) as a linear combination
c1f1(x)+ c2f2(x), where f1, f2 are the two real fundamental solutions to Eq. (25),
and c1, c2 are complex constants. With such choices of μ(1) and ψ(1), it is easy to
see that the potential V1(x) and the complex potential V2(x) [as given by Eq. (29)]
still share the same spectrum in general. The only possible exception is regarding
μ(1). If 1/ψ(1) is square-integrable, then since

[
− d

dx
+W(x)

]
1

ψ(1)
= 0,

μ(1) is in the discrete spectrum of V2; but it may not be in the discrete spectrum
of V1. Using this construction, non-PT -symmetric complex potentials with all-real
spectra can also be obtained. For examples, see [25].

One more variation of SUSY is based on the following observation. It can be
seen from Eqs. (26) and (28) that, for any complex functions W(x) and a complex
constant c, the two potentials

−V1(x) = W 2(x)−W ′(x)+ c, −V2(x) = W 2(x)+W ′(x)+ c,

form partner potentials which share the same spectrum (with the possible exception
of a single bound state). Thus, if we choose W(x) so that V1(x) is real, then the
resulting complex potential V2(x) will have an all-real spectrum. These complex
potentials V2(x) turn out to be type-II potentials (12) described in Sect. 2.2 but with
c2 ≤ 0. An equivalent derivation of this result was given by Andrianov et al. [16]
and reviewed in the end of Sect. 2.3.

5 Construction of Non-PT -Symmetric Potentials with
All-Real Spectra Using Soliton Theory

Another technique to construct complex potentials with all-real spectra is to use the
soliton theory. This technique was proposed by Wadati [15] for the construction of
PT -symmetric potentials with all-real spectra, but it apparently can be extended
to construct non-PT -symmetric potentials with all-real spectra, as we will demon-
strate below.

Let us consider the modified Korteweg-de Vries (mKdV) equation

ut + 6u2ux + uxxx = 0 (35)
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for the real function u(x, t), where x is the spatial coordinate, and t is time.
We will consider localized solutions, lim|x|→∞ u(x, t) = 0. Equation (35) is the
compatibility condition between the Zakharov-Shabat (ZS) spectral problem [17]

v1x + iζv1 = u(x, t)v2, v2x − iζv2 = −u(x, t)v1, (36)

and the linear system

v1t = 2iζ(u2 − 2ζ 2)v1 + (2iζux − 2u3 − uxx + 4ζ 2u)v2,

v2t = (2iζux + 2u3 + uxx − 4ζ 2u)v1 − 2iζ(u2 − 2ζ 2)v2.

Here, ζ is a spectral parameter.
The ZS spectral problem (36) can be transformed into Schrödinger eigenvalue

problems through the transformation (14). Under this transformation, we get

ψxx + V (x, t)ψ = μψ, φxx + V ∗(x, t)φ = μφ, (37)

where

V (x, t) = u2(x, t)+ iux(x, t), (38)

and μ = −ζ 2. Here, time t plays the role of a parameter. If u(x, t) is an even
function of x, then the potential V (x, t) is PT symmetric; for general u(x, t)
solutions, this potential is complex and non-PT -symmetric.

Discrete eigenvalues of the ZS problem (36) appear as quadruples (ζ, ζ ∗,−ζ,−ζ ∗)
if ζ is complex and as complex-conjugate pairs (ζ, ζ ∗) if ζ is purely imaginary.
The continuous spectrum of the ZS problem is the real-ζ axis. In view of the
above connection between the ZS and Schrödinger eigenvalue problems, we see
that from any solution u(x, t) of the mKdV equation (35) that possesses purely
imaginary discrete ZS eigenvalues, one can obtain a complex potential V (x, t),
defined by (38), with strictly real spectrum. Further, we notice that while u(x, t)
depends on the parameter t , its ZS spectrum does not since u(x, t) satisfies the
mKdV equation. This means that t can be considered as a “deformation” parameter,
and u(x, t) generates a family of deformable potentials V (x, t) with the same real
spectrum. Since the solution u(x, t) is asymmetric in general, the resulting complex
potential V (x, t) is then non-PT -symmetric.

Analytical solutions u(x, t) with purely imaginary discrete ZS eigenvalues can
be derived by the soliton theory. Indeed, through the inverse scattering method,
N -solitons of the mKdV equation with purely imaginary discrete eigenvalues
{±ζn, 1 ≤ n ≤ N} were found as [29]

u(x, t) = −2
∂

∂x
arctan

Imdet(I + A)

Redet(I + A)
, (39)
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where I is the N × N identity matrix, Re and Im represent the real and imaginary
parts, A is the N ×N matrix whose elements are

Anm(x, t) = − cn

ζn + ζm
ei(ζn+ζm)x+8iζ 3

n t ,

ζn = iηn, ηn > 0, and cn are real constants. The corresponding complex potential
V (x, t) from Eq. (38) then would have all-real spectrum, with discrete eigenvalues
as −ζ 2

n = η2
n (1 ≤ n ≤ N) and the continuous spectrum as (−∞, 0].

As an example, we present non-PT -symmetric potentials obtained from the two-
soliton solution of the mKdV equation. These two solitons are found from the above
general formula by taking N = 2 and can be written as [29]

u(x, t) = 4
η1 + η2

η2 − η1

G(x, t)

F (x, t)
, (40)

where

G(x, t) = ε1η1cosh

[
2η2x + δ2(t)+ 1

2
γ12

]
+ ε2η2cosh

[
2η1x + δ1(t)− 1

2
γ12

]
,

F (x, t) = cosh[2(η1 + η2)x + δ1(t)+ δ2(t)] + 4η1η2ε1ε2
(η1−η2)

2

+
(
η1+η2
η1−η2

)2
cosh[2(η2 − η1)x + δ2(t)− δ1(t)+ γ12],

ε1 = ±1, ε2 = ±1, η1 > 0, η2 > 0,

δ1(t) = δ1 − 8η3
1t, δ2(t) = δ2 − 8η3

2t, γ12 = ln(η2/η1),

and δ1, δ2 are real constants. To illustrate, we take

η1 = 1, η2 = 2, δ1 = δ2 = 0, ε1 = ε2 = 1. (41)

The soliton u(x, t), the complex potential V (x, t) and its spectrum at times t =
0 and 0.1 are displayed in the upper and lower rows of Fig. 5 respectively. Both
complex potentials are non-PT -symmetric and differ from each other significantly,
but they have identical real spectra.
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Fig. 5 Non-PT -symmetric potentials with real spectra from the soliton theory. Left column:
the two-soliton solution (40) with parameters (41); middle column: the corresponding complex
potential V (x, t) from Eq. (38); right column: spectrum of this V (x, t) potential. Upper row: t = 0;
lower row: t = 0.1

6 Partially-PT -Symmetric Potentials in Multi-dimensions

In this section, we consider the generalization of PT symmetry to higher spatial
dimensions. Let us consider a (2 + 1)-dimensional generalization of the paraxial
linear beam propagation equation (1),

i'z +'xx +'yy + V (x, y)' = 0, (42)

where z is the propagation direction, and (x, y) is the transverse plane. Looking
for eigenmodes of the form '(x, y, z) = eiμzψ(x, y) we arrive at the eigenvalue
problem

(∂xx + ∂yy + V )ψ = μψ, (43)

where μ is the eigenvalue and ψ the eigenfunction.
The usual PT symmetry of the complex potential V (x, y) is defined as

V ∗(x, y) = V (−x,−y), (44)

i.e., the potential is invariant under complex conjugation and simultaneous reflec-
tions in both x and y directions. For these potentials, the spectrum can be all-real,
with a possibility of phase transition, just like one-dimensional PT -symmetric
potentials.
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However, this usual concept of PT symmetry can be generalized. Indeed, if the
potential is invariant under complex conjugation and reflection in a single spatial
direction, i.e.,

V ∗(x, y) = V (−x, y), or V ∗(x, y) = V (x,−y), (45)

its spectrum can still be all-real with a possibility of phase transition. These
potentials were introduced in [30] and termed partially-PT -symmetric potentials.

The fundamental reason these partially-PT -symmetric potentials can also fea-
ture all-real spectra is that, their eigenvalues also come in complex conjugate
pairs (μ,μ∗). This eigenvalue symmetry is a common feature of PT -symmetric
potentials, partially-PT -symmetric potentials, and complex potentials derived in
Sects. 2 and 3, which results in the possibility of all-real spectra for all these
potentials.

The complex-conjugate-pair eigenvalue symmetry for these partially-PT -
symmetric potentials is easy to prove. Indeed, if V ∗(x, y) = V (−x, y) or
V ∗(x, y) = V (x,−y), then by taking the complex conjugate of Eq. (43) and
switching x → −x or y → −y, we see that μ∗ would also be an eigenvalue with
eigenfunction ψ∗(−x, y) or ψ∗(x,−y).

As an example, we take the partially-PT -symmetric complex potential V (x, y)
to be localized at four spots:

V (x, y) = 3
(
e−(x−x0)

2−(y−y0)
2 + e−(x+x0)

2−(y−y0)
2
)

+2
(
e−(x−x0)

2−(y+y0)
2 + e−(x+x0)

2−(y+y0)
2
)

+iβ
[
2
(
e−(x−x0)

2−(y−y0)
2 − e−(x+x0)

2−(y−y0)
2
)

+
(
e−(x−x0)

2−(y+y0)
2 − e−(x+x0)

2−(y+y0)
2
)]
, (46)

where x0, y0 control the separation distances between these four spots, and β is a
real constant. For definiteness, we set x0 = y0 = 1.5. This potential is not PT -
symmetric, but is partially-PT -symmetric with symmetry V ∗(x, y) = V (−x, y).
For β = 0.1, this potential is displayed in Fig. 6 (top row). It is seen that Re(V ) is
symmetric in x, Im(V ) anti-symmetric in x, and both Re(V ), Im(V ) are asymmetric
in y. The spectrum of this potential is plotted in Fig. 6c. It is seen that this spectrum
contains three discrete eigenvalues and the continuous spectrum, which are all-real.

For potential (46) with varying β, we have found that its spectrum is all-real
as long as |β| is below a threshold value of 0.214. Above this threshold, a phase
transition occurs, where pairs of real eigenvalues coalesce and then bifurcate off
into the complex plane. This phase transition is illustrated in Fig. 6d, where the
spectrum at β = 0.3 is shown.
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Fig. 6 (a, b) Real and imaginary parts of the partially-PT -symmetric potential (46) for β = 0.1;
(c, d) spectrum of this potential for β = 0.1 and 0.3 respectively. (Adapted from [30])

7 Summary and Discussion

In this article, we have reviewed various approaches to generalize PT symmetry.
We have shown that large classes of non-PT -symmetric complex potentials can also
feature all-real spectra. These potentials are constructed by a variety of techniques,
such as the symmetry method, the supersymmetry method, the soliton theory and
partial PT symmetry. Of these non-PT -symmetric potentials, the ones derived
from the symmetry condition (4) in Sects. 2 and 3 allow for arbitrary gain-loss
profiles. In addition, as free parameters and functions in those potentials vary, the
spectrum could change, and phase transition (either through exceptional points or
without) can occur. In non-PT -symmetric potentials derived from supersymmetry
and the soliton theory, on the other hand, the gain-loss profile is not totally free; and
as free parameters in those potentials vary, the spectrum stays exactly the same.

The focus of this article was the spectrum of non-PT -symmetric complex poten-
tials, which is inherently a linear theory. When the spectrum of the complex potential
is all-real, then wave propagation in the linear evolution equations (1) and (42)
would show features which resemble those in real potentials (without gain and loss).
When nonlinearity arises in these complex potentials, where nonlinear terms appear
in the evolution equations (1) and (42), the interplay between nonlinearity and these
complex potentials is an interesting question. In PT -symmetric potentials and other
PT -symmetric systems, this interplay between nonlinearity and PT symmetry has
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been reviewed in [12, 31]. In non-PT -symmetric potentials, it was shown that
the evolution equation (1) with Kerr nonlinearity could admit continuous families
of solitons in type-I potentials (9), but not in other types of complex potentials
[14, 28, 32, 33]. How other types of nonlinearities interact with these complex
potentials is a worthy question for study in the future.

Acknowledgements This material is based upon work supported by the Air Force Office of
Scientific Research under award number FA9550-18-1-0098, and the National Science Foundation
under award number DMS-1616122.

References

1. Kivshar, Y.S., Agrawal, G.P.: Optical Solitons: From Fibers to Photonic Crystals. Academic
Press, San Diego (2003)

2. Musslimani, Z.H., Makris, K.G., El-Ganainy, R., Christodoulides, D.N.: Optical solitons in
PT periodic potentials. Phys. Rev. Lett. 100, 030402 (2008)

3. Yang, J.: Nonlinear Waves in Integrable and Nonintegrable Systems. SIAM, Philadelphia
(2010)

4. Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having PT symme-
try. Phys. Rev. Lett. 80, 5243–5246 (1998)

5. Mostafazadeh, A.: Pseudo-Hermitian representation of quantum mechanics. Int. J. Geom.
Methods Mod. Phys. 7, 1191–1306 (2010)

6. Pitaevskii, L.P., Stringari, S.: Bose–Einstein Condensation. Oxford University Press, Oxford
(2003)

7. Ahmed, Z.: Real and complex discrete eigenvalues in an exactly solvable one-dimensional
complex PT -invariant potential. Phys. Lett. A 282, 343–348 (2001)

8. Feng, L., Xu, Y.L., Fegadolli, W.S., Lu, M.H., Oliveira, J.E.B., Almeida, V.R., Chen,
Y.F., Scherer, A.: Experimental demonstration of a unidirectional reflectionless parity-time
metamaterial at optical frequencies. Nat. Mater. 12, 108–113 (2013)

9. Feng, L., Wong, Z.J., Ma, R., Wang, Y., Zhang, X.: Single-mode laser by parity-time symmetry
breaking. Science 346, 972–975 (2014)

10. Hodaei, H., Miri, M.-A., Heinrich, M., Christodoulides, D.N., Khajavikhan, M.: PT -
symmetric micro-ring laser. Science 346, 975–978 (2014)

11. Peng, B., Özdemir, S.K., Lei, F., Monifi, F., Gianfreda, M., Long, G.L., Fan, S., Nori, F.,
Bender, C.M., Yang, L.: Parity-time-symmetric whispering-gallery microcavities. Nat. Phys.
10, 394–398 (2014)

12. Konotop, V.V., Yang J., Zezyulin, D.A.: Nonlinear waves in PT -symmetric systems. Rev. Mod.
Phys. 88, 035002 (2016)

13. Nixon, S., Yang, J.: All-real spectra in optical systems with arbitrary gain and loss distributions.
Phys. Rev. A 93, 031802(R) (2016)

14. Tsoy, E.N., Allayarov, I.M., Abdullaev, F.K.: Stable localized modes in asymmetric waveguides
with gain and loss. Opt. Lett. 39, 4215–4218 (2014)

15. Wadati, M.: Construction of parity-time symmetric potential through the soliton theory. J. Phys.
Soc. Jpn. 77, 074005 (2008)

16. Andrianov, A.A., Ioffe, M.V., Cannata, F., Dedonder, J.P.: SUSY quantum mechanics with
complex superpotentials and real energy spectra. Int. J. Mod. Phys. A 14, 2675–2688 (1999)

17. Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-
dimensional self-modulation of waves in nonlinear media. Zh. E’ksp. Teor. Fiz. 61, 118 (1971)
[Sov. Phys. JETP 34, 62–69 (1972)]



534 J. Yang

18. Klaus, M., Shaw, J.K.: Purely imaginary eigenvalues of Zakharov-Shabat systems. Phys. Rev.
E 65, 036607 (2002)

19. Yang, J.: Classes of non-parity-time-symmetric optical potentials with exceptional-point-free
phase transitions. Opt. Lett. 42, 4067–4070 (2017)

20. Kartashov, Y.V., Konotop, V.V., Zezyulin, D.A.: CPT -symmetric spin-orbit-coupled conden-
sate. Europhys. Lett. 107, 50002 (2014)

21. Konotop, V.V., Zezyulin, D.A.: Phase transition through the splitting of self-dual spectral
singularity in optical potentials. Opt. Lett. 42, 5206–5209 (2017)

22. Cooper, F., Khare, A., Sukhatme, U.: Supersymmetry and quantum mechanics. Phys. Rep. 251,
267–385 (1995)

23. Heinrich, M., Miri, M.-A., Stützer, S., El-Ganainy, R., Nolte, S., Szameit, A., Christodoulides,
D.N.: Supersymmetric mode converters. Nat. Commun. 5, 3698 (2014)

24. Khare, A., Sukhatme, U.: Phase-equivalent potentials obtained from supersymmetry. J. Phys.
A 22, 2847–2860 (1989)

25. Cannata, F., Junker, G., Trost, J.: Schrödinger operators with complex potential but real
spectrum. Phys. Lett. A 246, 219–226 (1998)

26. Bagchi, B., Mallik, S., Quesne, C.: Generating complex potentials with real eigenvalues in
supersymmetric quantum mechanics. Int. J. Mod. Phys. A 16, 2859 (2001)

27. Miri, M., Heinrich, M., Christodoulides, D.N.: Supersymmetry-generated complex optical
potentials with real spectra. Phys. Rev. A 87, 043819 (2013)

28. Yang, J.: Necessity of PT symmetry for soliton families in one-dimensional complex
potentials. Phys. Lett. A 378, 367–373 (2014)

29. Wadati, M., Ohkuma, K.: Multiple-pole solutions of the modified Korteweg-de Vries equation.
J. Phys. Soc. Jpn. 51, 2029–2035 (1982)

30. Yang, J.: Partially PT -symmetric optical potentials with all-real spectra and soliton families
in multi-dimensions. Opt. Lett. 39, 1133–1136 (2014)

31. Suchkov, S.V., Sukhorukov, A.A., Huang, J., Dmitriev, S.V., Lee, C., Kivshar, Y.S.: Nonlinear
switching and solitons in PT -symmetric photonic systems. Laser Photonics Rev. 10, 177–213
(2016)

32. Konotop, V.V., Zezyulin, D.A.: Families of stationary modes in complex potentials. Opt. Lett.
39, 5535–5538 (2014)

33. Nixon, S., Yang, J.: Bifurcation of soliton families from linear modes in non-PT -symmetric
complex potentials. Stud. Appl. Math. 136, 459–483 (2016)



Constant-Intensity Waves in
Non-Hermitian Media

Konstantinos G. Makris, Andre Brandstötter, and Stefan Rotter

Abstract When waves propagate through a non-uniform potential landscape their
interference typically gives rise to a complex intensity pattern. In this chapter we
review our work on how to entirely suppress these intensity variations by adding
system-specific gain and loss components to the potential. The resulting constant-
intensity (CI) waves are entirely free of interference fringes and get perfectly
transmitted across any such non-Hermitian scattering landscape that is put in their
way. We discuss how to generalize this concept to more than one dimension and
to the non-linear regime where these special wave states open up the way to study
the phenomenon of modulation instability in non-uniform potentials. Experimental
implementations of these unique wave states are envisioned not just in optics, but
also in other fields of wave physics such as in acoustics.

1 Introduction

Waves play an important role in many fields of science and in all of them the
plane wave solution is the one that solves the corresponding wave equation in the
most straightforward way. When placing a spatially varying potential in the way
of such a plane wave, however, the problem becomes immediately less trivial as
potentials typically reflect and scatter the wave, leading to interference and a non-
uniform wave intensity that is strongly position-dependent. Such a potential could
be an electrostatic field for an electronic matter wave, a non-uniform distribution
of a dielectric medium for an electromagnetic wave or a wall that reflects an
acoustic pressure wave. All of these cases lead to diffraction and wave interference,
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resulting in the highly complex variation of a wave’s spatial profile that we are
all very familiar with. Engineering these effects at one’s will is a challenging task
– think here, e.g., of the search for a cloaking device [1] or of the entire field of
adaptive optics [2]. New strategies in this direction are thus in high demand and
could establish a fertile ground in many of the different disciplines of science and
technology in which wave propagation is a key element.

The starting point for our endeavor is the insight, that very unconventional
phenomena arise in the situation where waves propagate and diffract in a suitably
chosen spatial refractive index distribution that combines both gain and loss [3].
Such non-Hermitian potential regions [4, 5], which serve as sources and sinks
for waves, respectively, can give rise to novel wave effects that are impossible to
realize with conventional, Hermitian potentials. Examples of this kind, that were
meanwhile also realized experimentally [6–10], are the uni-directional invisibility
of a gain-loss potential [11], devices that can simultaneously act as a laser and
as a perfect absorber [12–14] and resonant structures with unusual features like
non-reciprocal light transmission [10] or loss-induced lasing [15–17]. In particular,
systems with a PT -symmetry [18], where gain and loss are carefully balanced,
have recently attracted enormous interest [19–24]. All these activities that were ini-
tially driven by the introduction of the counter-intuitive concept of PT -symmetry
[18] in the realm of waveguide optics theoretically [19, 20] and experimentally
[6, 7], opened a new area of research, that of non-Hermitian photonics or parity-
time symmetric optics.

In the research presented below we extend the above concepts in a significant
way. Specifically, we show here that for a general class of potentials that spatially
combine gain and loss, it is possible to eliminate the intensity variations in wave
scattering entirely, and create constant-intensity waves [25–28]. In particular, we
present new solutions for a whole class of waves that have constant intensity even
in the presence of a very irregular potential landscape. Quite surprisingly, these
waves are solutions to both the paraxial equation of diffraction, the discrete and
continuous non-linear Schrödinger equation, and the scalar Helmholtz scattering
wave equation. In the linear regime, such constant-intensity waves resemble Bessel
beams in free space [29] in that they carry infinite energy and propagate without
distortion (depending on the truncation). In the non-linear regime, they provide
the only background where the best known symmetry breaking instability, the so-
called modulational instability (MI) [30–35] can be analyzed for the first time in
inhomogeneous non-Hermitian potentials. Using these solutions for studying the
phenomenon of MI, we find that, in the self-defocusing case, unstable finite size
and periodic modes appear and cause the wave to disintegrate and to generate a
train of complex solitons.

This book chapter follows in part our previously published manuscripts on the
above subjects – see, in particular, the following three references [25, 26, 28] where
also more details can be found.
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2 Constant-Intensity Waves and Modulation Instability in
Inhomogeneous Continuous Media

Following [25], we start from the well known non-linear Schrödinger equation
(NLSE). This scalar wave equation encompasses both the physics of matter waves
as well as many aspects of optical wave propagation. Specifically, we will consider
the NLSE with a general, non-Hermitian potential V (x) and a Kerr non-linearity,

i∂zψ + ∂2
xψ + V (x)ψ + σ |ψ |2ψ = 0 . (1)

The scalar, complex valued function ψ(x, z) describes the wave function of a matter
wave as it evolves in time or the electric field envelope along a scaled propagation
distance z. The non-linearity can either be self-focusing or de-focusing, depending
on the sign of σ . For this general setting, we now introduce a whole family of
potentials V (x) which are determined by the following simple relation,

V (x) = W 2(x)+ i
dW(x)

dx
, (2)

where W(x) is a given real generating function to which no further constraints
apply (apart from smoothness). In the special case where W(x) is an even function
of x, the actual optical potential V (x) turns out to be PT -symmetric, since
V (x) = V ∗(−x). We emphasize, however, that our analysis is valid for all confined
or periodic functions W(x), which do not necessarily lead to a PT -symmetric
form of V (x). Rather, we can prove for the entire non-Hermitian family of potentials
that are determined by Eq. (2), that the following analytical and stationary constant-
intensity wave is a solution to the NLSE in Eq. (1),

ψ(x, z) = AeiσA
2z+i ∫ W(x)dx, (3)

with a notably constant and real amplitude A. We emphasize here the surprising
fact, that this family of solutions exists in the linear regime (σ = 0) as well as for
arbitrary strength of non-linearity (σ = ±1). An interesting point to observe is that
the above solutions exist only for non-Hermitian potentials, since for W(x) → 0
we also have V (x)→ 0 . Therefore, these families of counterintuitive solutions are
the direct outcome of the non-Hermitian nature of the involved potential V (x) and
as such exist only for these complex structures.

In order to better understand and highlight the properties of such constant-
intensity solutions we consider one-dimensional potentials that are generated by
Hermite polynomials choosingW(x) = Hn(x)e

−Bx2
. The results for vanishing non-

linearity (σ = 0) are illustrated in Fig. 1. Here, the localized optical potential V (x)
is not PT -symmetric (see Fig. 1a) and corresponds physically to a waveguide-
coupler with lossy arms and optical gain in the evanescent region. If the initial beam
is not designed to have the correct phase (as given by Eq. (3)), then the light diffracts
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Fig. 1 (a) Real part (green line) and imaginary part (black line) of the complex potential V (x)
satisfying Eq. (2) (blue filled regions depict loss, whereas the red one depicts gain). (b) Evolution
of a constant amplitude without the correct phase at the input at z = 0. (c, d) Spatial diffraction
of the truncated constant-intensity solution satisfying the correct phase relation of Eq. (3). Two
different input truncations are shown for comparison. The lines in the x − z planes of (b, c, d)
around x = 0 depict the real refractive index of the potential as shown in (a). Note the different
vertical axis scale in (b)

fast to the gain region as we can see in Fig. 1b. The effects of truncation of the
constant-intensity solution are shown in Figs. 1c, d. Similar to the diffraction-free
beams [29], we find that the wider the width of the truncation aperture is, the larger
is the propagation distance after which the beam starts to diffract. In the case of
no truncation (i.e., infinitely wide aperture) diffraction is fully suppressed for an
infinitely long propagation distance.

In a next step we demonstrate that the above concepts are not restricted to a
single spatial dimension x (apart from the propagation distance z), but can easily be
generalized to two spatial dimensions x, y. The family of these complex potentials
V (x, y) and the corresponding constant-intensity solutions ψ(x, y, z) of the two-

dimensional NLSE i
∂ψ
∂z

+ ∂2ψ

∂x2 + ∂2ψ

∂y2 + V (x, y)ψ + σ |ψ |2ψ = 0 are given as
follows:
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V (x, y) = |W|2 − i∇ · W , (4)

∇ × W = 0 , (5)

ψ(x, y, z) = AeiσA
2z+i ∫C Wdx , (6)

where W = xWx + yWy with Wx , Wy being real functions of x, y and C being
any smooth open curve connecting an arbitrary point (a, b) to any different point
(x, y). As in the one-dimensional case, these solutions are valid in both linear
and non-linear domains. For the particular case of Wx = cos(x)sin(y), Wy =
cos(y)sin(x), the resulting periodic potential V (x, y) is that of an optical lattice
with alternating gain and loss waveguides. The imaginary part of such a lattice is
illustrated in Fig. 2a. In Fig. 2b, we display the diffraction of a constant-intensity
beam with the correct phase (as in Eq. (6)) launched onto such a linear lattice
(σ = 0) through a circular aperture. As we can see, the beam maintains its constant
intensity over a remarkably long distance. The transverse Poynting vector defined
as S = (i/2)(ψ∇ψ∗ − ψ∗∇ψ), is presented in Fig. 2c and the light always flows
following complicated stream line patterns from the gain regions to the loss regions
in a symmetric fashion. Once the finite beam starts to diffract this balanced flow is
disturbed and all the light is concentrated only in the gain regions.

These unique diffraction-free and constant-intensity waves are also solutions of
the NLSE for both the self-focusing and defocusing cases. As a result, we can
study now for the first time their modulation instability under small perturbations. In
other words, we want to investigate how perturbations of the exact CI solutions get
reinforced by the non-linearity leading to a break up of the waveform into a complex
pattern. Specifically, we are interested in understanding the linear stability of the
solutions of Eq. (1) of the form ψ(x, z) = [A+εFλ(x)eiλz+εG∗

λ(x)e
−iλ∗z]eiθ(x,z),

where the phase function is θ(x, z) = σA2z + ∫
W(x)dx. Here, Fλ(x) and

Gλ(x) are the perturbation eigenfunctions with ε 	 1 and the imaginary part
of λ measures the instability growth rate of the perturbation. To leading order
in ε, we obtain the following linear eigenvalue problem for the two-component
perturbation eigenmodes ϕλ(x) ≡ [Fλ(x)Gλ(x)]T , the eigenvalues of which are λ,

i.e.,
←→
M (L̂±) ·ϕλ(x) = λϕλ(x) . The operator matrix

←→
M is defined by the following

expression:

←→
M (L̂±) =

(
L̂+ σA2

−σA2 −L̂−

)
. (7)

Here the appearing linear operators are defined by the following relationships:

L̂± = L̂0 ± iL̂1 (8)

L̂0 = σA2 + d2/dx2 (9)

L̂1 = 2W(x)d/dx (10)
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Fig. 2 Imaginary part of the complex potential V (x, y) discussed in the text. Red and blue regions
correspond to gain and loss, respectively. (b) Iso-contour of the beam intensity launched onto the
potential in (a) through a circular aperture of radius ∼ 40λ0, where λ0 is the free space wavelength.
Also shown are three transverse intensity plots (from bottom to top) at z = 0, z = 5, z = 10. (c)
Transverse power flow pattern (indicated by arrows) of the beam at z = 5

So far the above discussion is general and applies to any smooth function W

(periodic or not) that is real. The eigenspectrum analysis of the above eigenvalue
problem determines whether the constant-intensity solution is stable (λ ∈ R) or
unstable (λ ∈ C). We now apply this analysis to study the modulation instability of
constant-intensity waves in PT -symmetric optical lattices [19, 20] assuming that
W(x) is a periodic potential with period α. In particular, we consider the example of
a PT -symmetric photonic lattice where W(x) = V0

2 + V1 cos(x) and the resulting

optical potential is V (x) = [V 2
0
4 + V 2

1 cos2(x) + V0V1 cos(x)] + iV1 sin(x). The
corresponding constant-intensity solution, whose modulation instability we want to
study is given by ψ(x, z) = A exp[iσA2z + i

V0x
2 + iV1 sin(x)]. In order for this

constant-intensity solution to be periodic in x with the same period as the lattice,
the constant term V0 must be quantized, namely V0 = 0,±2,±4, . . .. For all the
subsequent results we will always assume that V0 = 4 and V1 = 0.2 (without loss
of generality). It is important to note here, that for our PT -lattice V(x) is in the
so-called ‘unbroken PT -symmetric phase’ with only real propagation constants.
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Fig. 3 (a, b) Modulation instability growth rate as a function of the Bloch momentum (half of
first Brillouin zone), for (a) self-focusing non-linearity (σ = 1) and amplitude A = 1, and
for (b) defocusing non-linearity (σ = −1) and amplitude A = 2. Different colors in (a), (b)
denote different instability bands. (c, d) Numerical results for the intensity evolution of a constant-
intensity wave for (c) a self-focusing non-linearity with parameters k = 0, A = 1, ε = 0.01, and
(d) for a defocusing non-linearity with parameters k = 0.22, A = 2, ε = 0.001. The peak values
are indicated on the vertical axes and match very well with the results of our perturbation analysis

In the broken phase some of these eigenvalues are complex and the instabilities
are physically expected. Since W(x) is periodic we can expand the perturbation
eigenvectors ϕλ(x) in a Fourier series and construct numerically the bandstructure
of the stability problem. So at this point we have to distinguish between the
physical band-structure of the problem and the perturbation band-structure of the
stability problem. Based on the above, the Floquet-Bloch theorem implies that
the eigenfunctions ϕλ(x) can be written in the form φλ(x) = φ(x, k)eikx , where
φ(x, k) = φ(x + α, k) with k being the Bloch momentum of the stability problem.
The results are illustrated in the following Fig. 3a for a self-focusing non-linearity
(σ = 1) and for the amplitude A = 1. More specifically, we show the instability
growth rate |Im{λ(k)}| as a function of the perturbation eigenvector k in the first
half Brillouin zone, and we can see that the constant-intensity waves are linearly
unstable for any value of Bloch momenta of the imposed perturbation.
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The situation is different for the defocusing case (σ = −1) where the results
are presented in Fig. 3b. For some values of k the constant-intensity solutions are
linearly stable and their instability dependence forms bands reminiscent of the bands
appearing in conventional MI results for bulk or periodic potentials [30, 33, 34], but
quite different and profoundly more complex. In order to understand the physical
outcome of such instabilities and how they lead to filament formation, we have
performed direct numerical simulations for the dynamics of the constant-intensity
solutions against specific perturbations. The results are presented in Fig. 3c, d. More
specifically, we examine the intensity evolution of a constant-intensity solution
when it is perturbed by a specific Floquet-Bloch mode. In other words, at the input of
the lattice at z = 0, we have ψ(x, z = 0) = [A+ εFλ(x)+ εG∗

λ(x)]eiθ(x,0), and we
are interested to see if the linear stability analysis captures the exponential growth
of the imposed perturbations. For the considered PT -lattice with self-focusing
non-linearity, we examine the non-linear dynamics of the constant-intensity solution
and the result is presented in Fig. 3c. For a perturbation eigenmode with Bloch
momentum k = 0 and A = 1, ε = 0.01, we can see from Fig. 3a that Im{λ(0)} ∼ 1.
Therefore, we can estimate the growth for a propagation distance of z = 5 to be
around |1+0.01·e1·5|2 ∼ 6.1, which agrees very well with the dynamical simulation
of Fig. 3c. Similarly, for the defocusing non-linearity, and for parameters k = 0.22
and A = 2, ε = 0.001, we estimate the growth for a propagation distance z = 35 to
be around |2+0.001·e0.046·35|2 ∼ 4.02, which matches exactly with the propagation
dynamics result of Fig. 3d.

We would like to mention here that the above MI analysis can be extended
to vectorial non-linear Schrödinger equations for which multi-component constant
intensity solutions exist [27].

3 CI-Waves in Discrete Disordered Lattices

Engineering a continuous distribution of gain and loss that perfectly matches the
requirements of our theoretical analysis is a challenging task experimentally. To
facilitate an experimental implementation, we thus also study whether our concepts
can be applied to discrete rather than to continuous potential landscapes (see Fig.
4a,b for an illustration of these two cases). Consider, for this purpose, a lattice of
coupled non-Hermitian single-mode waveguides as depicted in Fig. 4a extending
along the positive z-direction. The propagation of light in such a lattice can be
described using coupled mode theory. Specifically, the beam evolution is governed
by the following normalized paraxial equation of diffraction for N coupled optical
elements (waveguides or cavities),

i
dUn

dz
+ c(Un+1 + Un−1)+ (βn + igγn)Un = 0 , (11)
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Fig. 4 (a) Schematics of a non-Hermitian lattice of coupled optical waveguides, that supports
constant-intensity modes. The waveguides form a ring, corresponding to periodic boundary
conditions. The labels D, L, G, c stand for a dielectric, loss, gain element, and for the coupling
constant, respectively. (b) One of the envisioned goals to realize constant-intensity waves: by
shining light through a spatial light modulator from the top, one can non-uniformly pump the gain
medium inside a material to obtain a spatially varying gain-loss profile that makes the medium
invisible for an incident wave from one side

where Un(z) represents the amplitude of the electric field envelope, z is the
propagation distance, c is the coupling between adjacent neighbors (here taken to
be equal to one, without any loss of generality) and n = 1, . . . N the waveguide
index. Each channel is characterized by either gain (γn < 0) or loss (γn > 0)
and by its real refractive index βn. The gain-loss amplitude is described by the
parameter g. For g = 0 the system is obviously Hermitian. The main question
we will address for the case of an optical non-Hermitian lattice is if and under
which conditions constant-intensity waves exist [26]. Specifically, we are looking
for stationary constant-intensity solutions of the form:

Un(z) = eiθneiλz , (12)

where θn is a given phase distribution over all waveguide channels and λ is the
propagation eigenvalue. It is important to understand that in order for such CI-modes
to exist, periodic boundary conditions must be imposed at the end points of the
lattice. In particular, the Born-Von Karman periodic boundary conditions must be
valid for the field, namely:

U0 = UN,UN+1 = U1 . (13)

We can see that the complex refractive index must satisfy (for any given phase
distribution):

βn = λ− cos(θn+1 − θn)− cos(θn−1 − θn) , (14)

γn = − sin(θn+1 − θn)− sin(θn−1 − θn) . (15)
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Since the constant-intensity wave of Eq. (12) must satisfy the periodic boundary
conditions, it is also true that the phase distribution must satisfy the relations:

θ0 = θN , θN+1 = θ1 . (16)

Physically speaking, the periodic boundary conditions correspond to an optical
ring-lattice of coupled optical elements (waveguides or cavities), as schematically
depicted in Fig. 4a. The given phase distribution θn determines the real and imagi-
nary parts of the refractive index (through Eqs. (14) and (15)) and the eigenvalue
λ (which can be removed by a gauge transformation) affects only the real part
of the index of refraction. An important difference between the solutions found
in the continuum case studied in the previous chapter and those found here is
the following: The CI-waves in the continuous and infinite case are radiation
eigenmodes, while in the discrete and periodic problem at hand they are true
eigenmodes (more precisely supermodes) of the entire system. We have also to note
that for λ = 0, the CI-mode is unidirectionally invisible, since the wave propagates
without any additional phase change and only in one propagation direction (for the
opposite direction the complex conjugate potential must be used).

We have thus found that for system configurations satisfying Eq. (11) the
complex refractive index can always be engineered to yield a CI solution. This
is particularly remarkable in view of the fact that disordered waveguide lattices
without any gain and loss give rise to Anderson localization – a well-studied
phenomenon in condensed matter physics [36–40]. The existence and properties
of localized modes in linear random systems has meanwhile been thoroughly
investigated. The majority of the theoretical and experimental studies have, however,
been concentrated on Hermitian media (with the exception of the random laser
literature) where Anderson localization is now well understood. Adding gain and
loss to the medium makes the fundamental question of localization generally more
complicated [41]. In this context our results now provide the interesting insight that
any disordered medium that gives rise to Anderson localization (without gain and
loss) can also produce extended modes of uniform intensity (CI-supermodes) when
a suitable combination of gain and loss is added.

In Fig. 5 such a random system of 100 coupled waveguides is considered. The
real and imaginary part of the refractive index distribution is depicted for a particular
realization of the lattice in Fig. 5a, b, respectively. As we can see, adding gain and
loss to such a system alters the Anderson localized modes of the Hermitian lattice
to extended delocalized modes, one of which is a CI-supermode (Fig. 5c) with a real
eigenvalue (Fig. 5d).
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Fig. 5 CI-mode (with λ = 2, g = 1) in a disordered lattice ofN = 100 waveguides with a random
phase. In particular, (a) real part and imaginary parts of the refractive index per waveguide, (b)
gain and loss per channel, (c) the amplitude and phase of the CI-supermode, and (d) eigenvalue
spectrum in the complex plane. The eigenvalue of the CI-supermode is denoted with a blue circle

4 CI-Waves in the Scattering Regime

In all of the above considerations, the variation of the refractive index or of
the potential was considered only in the direction transverse to the propagation
direction. The question we want to address in the following is, whether CI waves
also exist for the case that the potential variation occurs in the direction along which
a wave is propagating. In particular, it would be very exciting to see if we can create
in this way a “scattering state” that perfectly penetrates a disordered medium with
constant intensity. The scattering of waves through disordered media has, in fact,
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captured the interest of various communities for quite some time now [42–44].
While much work has been invested into understanding the statistical properties of
the corresponding wave transport [45] there has recently been a surge of interest in
controlling the scattering of waves through individual systems for specific purposes
such as detection, imaging, and efficient transmission across disordered materials
[46, 47]. Remarkable progress in these endeavors has recently been made in the
optical domain, largely due to the availability of spatial light modulators and new
concepts for how to apply them on turbid media [48, 49]. In a first generation
of corresponding experiments the focus was laid on shaping the input wave front
impinging on an immutable disordered sample such as to achieve a desired output,
like a spatial or temporal focus behind the medium [50–53]. More recent studies
concentrated instead on controlling the medium itself, e.g., through the material
fabrication process [54] or through a spatially modulated pumping [55], leading,
e.g., to a versatile control of random and micro-cavity lasers [56–60].

Here we will build on these advances and shall combine them with our insights
on how to construct CI waves [28]. Specifically, we show that for a general
disordered medium, given by a distribution of the real part of the refractive index
nR(x), a corresponding distribution of its imaginary part nI (x) can be found, such
that a wave propagating through this continuous medium will feature a constant
intensity throughout the entire non-uniform scattering landscape. In other words,
we demonstrate that adding a judiciously chosen distribution of gain and loss to
a disordered medium will make waves lose all their interference fringes including
perfect transmission through the disorder.

The solution strategy that we explore for this purpose is based on the one-
dimensional normalized Helmholtz equation that describes time-independent scat-
tering of a linearly polarized electric field ψ(x) both in forward and in backward
direction,

[
∂2
x + ε(x) k2

]
ψ(x) = 0 . (17)

Here ε(x) is the dielectric function varying along the spatial coordinate x and
k = 2π/λ is the wavenumber (with λ being the wavelength). The dielectric function
is complex thus ε(x) = [nR(x)+ inI (x)]2, where nR(x), nI (x) denote the real and
imaginary parts of the refractive index. In general, when a plane wave is incident on
a spatially varying distribution ε(x), interference takes place between the waves
propagating forward and backward. As a result, a complex interference pattern
is produced with fringes on its intensity. As we will now show, this fundamental
physical picture can be quite different in the case of non-Hermitian media with loss
and/or gain.

To jump right to the heart of the matter, we start with an ansatz for a constant-
intensity (CI) wave with unit amplitude, ψ(x) = exp[iS(x)], where S(x) is
a real valued function. Due to the obvious relation to WKB-theory [61], we
will derive the CI solution of the Helmholtz Eq. (17) in the bulk, by demanding
that the ansatz ψ(x) = exp[iS(x)] has to be exact in the first order WKB-
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approximation. Expanding the function S(x) in powers of a small parameter δ,

S(x) = 1
δ

∞∑
n=0

δnSn(x), and inserting it into the Helmholtz Eq. (17) to leading order,

we can show that in the limit of δ → 0, δ scales with 1/k. Setting δ = 1/k and
collecting terms with the same power of k, we can write down the two dominant
terms:

k2 = 1
δ2 : Re[ε(x)] + i Im[ε(x)] − [S′0(x)]2 = 0 (18)

k1 = 1
δ1 : i S′′0 (x)− 2 S′0(x) S′1(x) = 0 (19)

The exactness requirement of our ansatz necessitates that all terms Sn>0 are zero
and the demand for constant intensity of ψ(x) calls for a real-valued S0(x). Both
conditions can be fulfilled by choosing Im[ε(x)] = −S′′0 (x)/k such that the term
Im[ε(x)] moves from Eqs. (18) to (19) leading to Re[ε(x)] = [S′0(x)]2 and S′1(x) =
0. As a result S1(x) = const. and all higher terms are constant as well. Setting
S′0(x) = W(x), we finally obtain the non-Hermitian dielectric function (relative
permittivity),

ε(x) = W 2(x)− i

k
∂xW(x) , (20)

with a corresponding CI solution ψ(x) = exp[ik ∫ W(x′)dx′] that is an exact
solution of the Helmholtz equation and valid for the whole bulk space and all
wavelengths. In other words, we identify a general class of refractive index
distributions where real and imaginary parts are connected through the generating
function W(x), for which the fringes in the interference pattern vanish entirely. The
fact thatW(x) can be chosen arbitrarily, with no limitations on its spatial complexity
(apart from smoothness), is a key asset of this approach, making it very generally
applicable. For the special case that the generating function is left-right symmetric,
W(x) = W(−x), the dielectric function is PT -symmetric since ε(x) = ε∗(−x).
Independently, however, of whether ε(x) is PT -symmetric or not it can be shown
that CI waves can also be found for all dielectric functions that are described by
Eq. (20) in a finite domain x ∈ [−D,D], bordering on free space for x < −D and
x > D. In this case, the scalar Helmholtz equation (17) admits the following exact
CI wave solutions ψ(x):

exp[ik (x +D)], x < −D , (21)

exp[ik
∫ x

−D
W(x′)dx′], −D ≤ x ≤ D , (22)

exp[ik (x −D + c)], x > D , (23)

with c being a constant that is determined by the definite integral of W over the
entire scattering region, in order for the field continuity relations to be satisfied.
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Most importantly, the above solution does not only feature a constant intensity
|ψ(x)|2 = 1 in the asymptotic regions x ≤ −D and x ≥ D, where ε(x) = 1
and simple plane wave propagation is realized, but also inside the finite region
of length 2D in which the dielectric function varies and the phase-evolution is
non-trivial. Regarding the appropriate boundary conditions at x = ±D, it can
be shown that the perfect transmission boundary conditions (zero reflection) [24]
∂xψ(±D) = ikψ(±D) imply the following conditions for the generating function,
W(±D) = 1. From this result it is also clear that for vanishing imaginary part, the
dielectric function, as defined in Eq. (20), reduces to ε(x) = 1, in which limit our
CI wave solution is just a plane wave in free space.

It is also important to note that the wavenumber k appearing in the dielectric
function ε(x) of Eq. (20) is the same as the wavenumber k in the CI wave solution
given in Eq. (21). In other words, for any value of k for which a CI scattering
state is desired, the dielectric function ε(x) has to be engineered correspondingly.
Once ε(x) is fixed and plane waves with varying values of k are impinging on this
dielectric structure, a perfectly transmitting CI solution in general only occurs at the
predetermined k value inherent in the design of ε(x), whereby no issue arises with
the Kramers-Kronig relations.

To elucidate the above ideas, we consider now one specific example of an
index distribution and study the CI-waves it gives rise to. We assume W(x)

to be a parabolic function modulated with a cosine, namely W(x) = [1 −
0.2 cos(15πx/2)](2 −x2). The corresponding real part of the refractive index
distribution nR(x) is shown as the gray shaded area in Fig. 6. A wave impinging
on this dielectric structure composed of only nR(x) is partly reflected and features
a highly oscillatory profile, see Fig. 6a. Quite in contrast, when adding also the
gain and loss inherent in the imaginary index component nI (x) derived from
W(x) (see green and red regions in Fig. 6b), the resulting scattering state is fully
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Fig. 6 (a) Scattering wave function intensity (blue line) in a Hermitian refractive index dis-
tribution for an incident plane wave (from the left) with a specific normalized wavenumber
k = 2π/0.26 = 24.15. (b) Intensity of the CI-wave for the corresponding non-Hermitian refractive
index n(x) and the same incident plane wave. The real part of the refractive index is shown in gray,
whereas its imaginary part is colored in green (loss) and red (gain). For illustration purposes the
imaginary part in (b) was multiplied by a factor of 2. The calculations were performed using the
transfer matrix approach
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transmitted and features a constant intensity. Because of the boundary conditions,
W(x) must be symmetric at the end points of the cavity, resulting in an anti-
symmetric distribution of nI (x). Our example shows that for a plane wave at an
arbitrary incident wavenumber k, we can find the corresponding gain-loss landscape
(from Eq. (20)), such that this wave will fully penetrate the scattering medium
without forming any spatial variations in its intensity pattern.

Fixing a refractive index through Eq. (20) that leads to a CI wave at the specific
wavenumber k0, one can ask the question what happens to incident plane waves
with detuned wavenumbers k �= k0. Naively, one may expect that the emergence
of CI waves is a sharp resonance phenomenon, so that waves with a slight
detuning in the wavenumber k should show a completely different behavior as,
e.g., around a resonance in a Fabry-Perot interferometer [62]. This picture turns
out to be misleading on several levels: Since the CI wave function at position x,
ψ(x) = exp[ik ∫ x−D W(x′)dx′], only depends on the generating function W(x′)
evaluated at values x′ < x, one can easily truncate the system at any point x
and still get a CI wave – provided one continues the system for all x′ > x with
a constant generating function that has the same value as at the point of truncation.
This behavior indicates that a refractive index profile that supports CI waves is
not only reflectionless in total, but also unidirectional at any point inside a given
structure. Perfect transmission in such systems is thus not a resonance phenomenon,
suggesting that CI waves are stable against changes of the incident wavelength. To
check this explicitly, we numerically calculated the average resonance width of the
transmission spectrum |t (k)| of the Hermitian system in Fig. 6, 〈ΔkHerm〉 = 0.84,
in an interval k ∈ [ 2π

0.5 − 3, 2π
0.5 + 3], with minimum transmission |t (k)min| = 0.77.

The transmission of the corresponding CI system (that of Fig. 6 but for the slighlty
different wavenumber k0 = 2π

0.5 ) stays larger than 0.9 over the entire k-interval (not
shown), confirming our prediction.

Another important point to make is that one can easily achieve a transmission
equal to one in a non-Hermitian system just by adding enough gain to it. In a CI
system, however, the net average amplification is zero, since

∫ D
−D Im[ε(x)]dx = 0

and the intensity is equally distributed everywhere. Additionally, the material gain
corresponding to the potentials examined for λ = 1.5 μm is around a realistic value
of 80 cm−1 for max(nI ) = 10−3. Moreover, these uniform intensity waves are still
valid for any slowly varying or rapidly fluctuating (subwavelength) optical potential
(as exact solutions of Helmholtz equation). For these reasons the aforementioned
physical values depend on the size of the scattering region, and on the operation
wavelength.

The most striking application of CI waves occurs for the case of scattering
through disordered environments. From the discussion above on the disordered
lattices we already know that in strongly scattering disordered media Anderson
localization occurs. For scattering states like the ones considered here, Anderson
localization results in an exponential decrease of the transmittance T = |t |2 for
structures with sizes greater than the localization length ξ = −2D〈ln [T (D)]〉−1.
For a given real and disordered index of refraction in the localized regime close
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to unit transmittance is thus very unlikely and occurs only at well-isolated, sharply
resonant wave numbers that are difficult to achieve experimentally [63, 64]. Our
approach now allows to turn this behavior upside down – not only in the sense that
we can engineer unit transmission at any predetermined value of the wavenumber k,
but also that we can create scattering states that have constant intensity in a strongly
disordered environment which would usually give rise to the most dramatic intensity
fluctuations known in wave physics.

We illustrate our results for the disordered one-dimensional slab shown in Fig. 7,
where a refractive index distribution following Eq. (20) is considered with a tunable
imaginary component, ε(x) = [nR(x) + i a nI (x)]2 (the tunable parameter a
controls the overall amplitude of gain and loss). More specifically, the generating
functionW(x) is a superposition of 99000 Gaussian functions of the same amplitude
and width, but centered around random positions. For a = 0 the refractive index is
Hermitian, whereas for a = 1 CI waves exist. The refractive index distribution of
such a non-Hermitian disordered medium is depicted in Fig. 7a, and the localization
length ξ of the Hermitian refractive index (a = 0) is depicted in Fig. 7b. Without the
gain and loss distribution, the system reflects almost all waves due to localization.
Adding first only the gain part of the CI refractive index distribution (see Fig. 7c)
still results in highly oscillatory scattering wave functions with finite reflectance for
all values of the gain amplitude a (from 0 to 1), see Fig. 7d. Quite counterintuitively,
adding also the loss part of the CI index distribution leads to perfect and fringe-free
transmission for a = 1, see Fig. 7e. By varying the gain-loss amplitude a, as in
Fig. 7e, we can also see the smooth transition from the Anderson localization regime
(at a = 0) to perfect transmission with constant intensity (at a = 1).

Another important aspect of CI waves is their experimental realization, with the
most challenging part being the fabrication of a specific index distribution with gain
and loss [65]. In order to overcome such inherent difficulties, we study here also the
existence of CI scattering states in a system of discrete elements, see Fig. 8. Such a
set-up is composed of many discrete sites (cavities) with gain or loss and a specific
real refractive index distribution. Translating the analytic solution of Eq. (20) to
a finite-difference model, yields the following discrete solution that satisfies the
discrete version of the Helmholtz equation with the discrete dielectric elements εm
and the CI scattering state ψm:

εm = b−2
{

2 − e
ik�x

2 (Wm+Wm+1) − e−
ik�x

2 (Wm+Wm−1)
}

(24)

and

ψm = exp

[
ik�x

2

(
W1 +Wm + 2

m−1∑
n=2

Wn

)]
, (25)

where b = ωΔx, ω2 = 2 [1−cos(kΔx)]/Δx2, andm = 1, . . . ,M . Additionally,
perfect transmission boundary conditions imposed at the endpoints of the discrete
chain of the scatterers ψ0 = ψ1 exp (−ik�x) , and ψM+1 = ψM exp (ik�x) as
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Fig. 7 A strongly disordered potential consisting ofN = 99000 Gaussian scatterers is considered.
(a) The corresponding refractive index distribution nR(x) in a small interval of x is shown.
(b) Exponential suppression of the transmittance T with localization length ξ in this system
for variable length of the disordered region D. (c) Imaginary part of the refractive index nI (x)
following from the CI design principle (nI (x) is matched to the real index distribution in (a)).
(d, e) Scattering wave functions for the disordered region as a function of the gain-loss strength
parameter a, for the gain-only and gain-loss potential, respectively. In both cases, an incident plane
wave is considered (from left to right). The CI-wave can be clearly seen for the full gain-loss
strength (a = 1) in (e)

well as the relation ωΔx < 2 must always hold. We consider a specific example in
Fig. 8 ofM-elements that form a one-dimensional disordered chain. By adding gain
or loss onto the sites as prescribed by Eq. (24), an incoming wave from the left will
have the same constant intensity on all of these sites.
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Fig. 8 Disordered chain of discrete scatterers with an incoming plane wave from the left. The real
part (gray) as well as the gain (red) and loss (green) components of the refractive index are shown
for each scatterer. The corresponding discrete CI-wave is depicted with black dots. The normalized
parameters used are M = 20, ω = 12, L = 2 and Δx = L/(M − 1)

5 Future Directions and Outlook

In conclusion, we have presented an overview of recent results related to constant-
intensity waves in non-Hermitian systems such as synthetic media with gain and
loss. The central idea of this line of research is to spatially engineer the imaginary
part of the index of refraction in order to obtain a desired field pattern (constant-
intensity in this case). A possible next step in this context is to generalize CI
scattering states to more than one dimension. It is currently still an open question,
however, whether this is possible at all or under which constraints this can work.
A second direction that we are currently pursuing is to use our design principle not
only to create waves with a constant intensity, but rather with any desired intensity
profile inside a given medium [66, 67]. In preliminary calculations we find, e.g.,
that it is readily possible to create states that have a pronounced focus deep inside
a disordered medium – a property that is very desirable for various applications
in biophotonics and imaging. Last, but not least, we have also recently found
[68] that a medium that supports CI scattering states can be made unidirectionally
invisible. In this way we uncover a general design principle for unidirectional
invisibility that goes far beyond the periodic structure with PT-symmetry discussed
so far [11]. At this point we have to emphasize that these types of phenomena
are based on complex wave interference and are therefore expected to exist in
various areas of wave physics (optics, microwaves, acoustics, etc). As far as the
experimental demonstration of such CI-waves is concerned, we have recently
observed perfect transmission of acoustic CI-waves in disordered media [69]. These
findings demonstrate that CI-waves have considerable potential for new exciting
applications.
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Nonlinear Beam Propagation in a Class
of Complex Non-PT -Symmetric
Potentials

J. Cuevas-Maraver, P. G. Kevrekidis, D. J. Frantzeskakis, and Y. Kominis

Abstract The subject of PT -symmetry and its areas of application have been
blossoming over the past decade. Here, we consider a nonlinear Schrödinger
model with a complex potential that can be tuned controllably away from being
PT -symmetric, as it might be the case in realistic applications. We utilize
two parameters: the first one breaks PT -symmetry but retains a proportionality
between the imaginary and the derivative of the real part of the potential; the
second one, detunes from this latter proportionality. It is shown that the departure
of the potential from the PT -symmetric form does not allow for the numerical
identification of exact stationary solutions. Nevertheless, it is of crucial importance
to consider the dynamical evolution of initial beam profiles. In that light, we define
a suitable notion of optimization and find that even for non PT -symmetric cases,
the beam dynamics, both in 1D and 2D – although prone to weak growth or decay–
suggests that the optimized profiles do not change significantly under propagation
for specific parameter regimes.
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1 Introduction

The original suggestion of Bender and collaborators [1, 2] of a new class of
systems that respect parity and time-reversal (so-called PT -symmetric systems)
was motivated by the consideration of the foundations of quantum mechanics and
the examination of the need of Hermitianity within them. The argument of Bender
and collaborators was that such systems, even if non-Hermitian and featuring gain
and loss, could give rise to real spectra, thus presenting a candidacy for being
associated with measurable quantities.

This proposal found a fertile ground for its development in areas, arguably, differ-
ent than where it was originally proposed. In particular, the work of Christodoulides
and co-workers in nonlinear optics a decade later, spearheaded an array of experi-
mental realizations of such media (capitalizing on the ubiquitous in optics loss and
on controllable gain) [3–8]. Other experiments swiftly followed in areas ranging
from electronic circuits [9–11] to mechanical systems [12], bringing about not only
experimental accessibility, but also an intense theoretical focus on this theme. These
threads of research have now been summarized in two rather comprehensive recent
reviews [7, 8].

While PT -symmetric variants of other nonlinear wave models have more
recently been proposed, including the PT -symmetric variants of the Dirac equa-
tions [13] and of the nonlinear Klein-Gordon models [14], the main focus of asso-
ciated interest has been on models of the nonlinear Schrödinger (NLS) type. This
is natural given the relevance at the paraxial approximation level of such a model
in applications stemming from nonlinear optics and related themes [7, 8]. In this
important case, the PT -invariance is consonant with complex external potentials
Ṽ , of the form Ṽ = V + iW , subject to the constraint that Ṽ ∗(x) = Ṽ (−x). This
implies that the real part, V , of the potential needs to be even, while the imaginary
part,W , of the potential needs to be odd to ensure PT -symmetry. The expectation,
thus, has been that typically Hamiltonian and PT -symmetric systems featuring
gain and loss will possess continuous families of soliton solutions; otherwise, the
models will possess solutions for isolated values within the parameter space.

However, more recent investigations have started to challenge this belief. On the
one hand, work on complex, asymmetric so-called Wadati potentials has produced
mono-parametric continuous families of stationary solutions [15, 16]. On the other
hand, the notion of partial PT -symmetry has been explored, e.g., with models that
possess the symmetry in one of the directions but not in another [17, 18]. In fact,
in the recent work of [19, 20] that motivated the present study, it was shown that to
identify critical points one can localize a soliton1 in a way such that its intensity has
a vanishing total overlap with the imaginary part of the potential, assuming that the
real part of the potential is proportional to the anti-derivative of the imaginary part
(but without making any assumptions on the parity of either).

1Below, we use the term “soliton” in a loose sense, without implying complete integrability [21].
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In the present work, we revisit these considerations. In particular, we discuss
the results of the important contribution of [22]. This work suggests (and indeed
conjectures) that the only complex potentials that could feature continuous families
of stationary solutions although non-PT -symmetric are the ones of the Wadati
type. In our case, we have considered potentials that depart from this form and either
satisfy – or controllably depart from – the simpler mass and momentum balance
conditions of [19, 20]. We observe that in such settings, waveforms “optimizing”
the vector field (which we define as bringing it very – but not arbitrarily – close
to vanishing) may exist, but still are not true solutions, in line with the above
conjecture. We develop diagnostics that explore how these optimized beams behave
dynamically, and identify their slow growth or decay. We do this for two different
broad multi-parametric families of potentials to showcase the generality of our
conclusions. We then extend relevant considerations also to 2D settings, showing
how symmetry breaking bifurcation scenarios can be traced via our optimized beam
approach.

Our presentation will be structured as follows. In Sect. 2, we introduce the model,
connect our considerations to those of [22] and justify the selection of the complex
potential. In Sect. 3, we explore the optimized beams and the associated dynamics
of the relevant waveforms numerically. Then, in Sect. 4, we generalize these notions
in a two-dimensional setting. In Sect. 5, we proceed to summarize our findings and
propose a number of directions for future study. Finally, in the Appendix, details of
the numerical method used to optimize the dynamical beams are presented.

2 The One-Dimensional Potential

As explained in the previous section, motivated by the development in the analysis
of NLS models with complex potentials, we consider the rather broad setting of
the form:

iψt = −ψxx + [V (x)+ iW(x)]ψ − |ψ |2ψ, (1)

with subscripts denoting partial derivatives. In the context of optics, ψ(x, t)
represents the complex electric field envelope, t is the propagation distance,
x corresponds to the transverse direction, while the variation of the dielectric
permittivity plays the role of the external potential, with V (x) and W(x) being
its real and imaginary parts, respectively [7, 8]. In the recent analysis of [19, 20],
assuming the existence of bright solitons (as is natural in the focusing nonlinearity
setup under consideration), dynamical evolution equations were obtained for the
soliton mass and velocity. Here, we use as our motivating point for constructing
standing wave structures of Eq. (1) the stationary form of these equations, which
read (cf. Eqs. (5)–(6) of Ref. [20]):∫ ∞

−∞
|ψ(x)|2W(x + x0)dx =

∫ ∞

−∞
|ψ(x)|2V ′(x + x0)dx = 0, (2)
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where x0 denotes the soliton center. The first one among these equations, corre-
sponds to a “power-balance” (or mass balance) condition, implying that the soliton
has a transverse profile such that it experiences gain and loss in an overall balanced
fashion across its spatial extent. The second equation corresponds to a “momentum-
balance” condition, i.e., the total force exerted on the solitary wave vanishes, hence
the coherent structure is at an equilibrium.

This pair of stationarity conditions in Eq. (2) reduces to a single one, provided
that V ′ = −CW , with C being a constant. In that context, the resulting condition
posits the following: if a soliton can be placed relative to the gain/loss profile so that
its intensity has an overall vanishing overlap with the imaginary part of the potential,
then the existence of a fixed point (and thus a stationary soliton solution) may be
expected.

However, it should be kept in mind that these conditions are necessary but
not sufficient for the existence of a stationary configuration. In particular, a recent
ingenious calculation sheds some light on this problem for a general potential in the
work of [22]. Using a standing wave decomposition

ψ = r(x)ei
∫ x
θ(x′)dx′eiμt

in Eq. (1), the following ordinary differential equations were derived:

rxx − μr − V r + r3 − θ2r = 0, (3)

(r2θ)x = Wr2. (4)

It was then realized that, in the absence of external potential, two quantities, namely
J1 = r2θ (the “angular momentum” in the classical mechanical analogy of the
problem) and J2 = r2

x − μr2 + r4/2 + r2θ2 (the “first integral” or energy in
the classical analogue) are conserved, i.e., dJi/dx = 0. For J1, Eq. (4) yields its
evolution in the presence of the potential while for J2, direct calculation shows:

dJ2

dx
= V (r2)x + 2Wr2θ = Sx − r2Vx − 2(r2θ)x

∫
Wdx, (5)

with S = V r2+2r2θ
∫
Wdx. Combining the last terms, upon substitution of (r2θ)x

from Eq. (4) allows us to infer that this pair of terms will vanish if the coefficient
multiplying r2, namely Vx − 2W

∫
Wdx, vanishes; this occurs if the potential has

the form:

V + iW = −[g2 + ig′(x)] + c,

where c is a constant. A shooting argument presented in [22] suggests that there
are 3 real constants (2 complex ones, yet one of them can be considered as real
due to the phase invariance) in order to “glue” two complex quantities, namely ψ
and ψx at some point within the domain. This can only be done when a conserved
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quantity exists, which requires the type of potential suggested above, in the form
−[g2 + ig′(x)]. However, if additional symmetry exists, such as PT -symmetry,
the symmetry alone may impose conditions such as Im(ψ(0))=Re(ψx(0)) = 0,
which in turn allows for the shooting to go through (and thus solutions to exist) for
a continuous range of μ’s.

Nevertheless, a natural question is: suppose that the potential is not of this rather
non-generic form, yet it deviates from the PT -symmetric limit, possibly in ways
respecting the above mass and/or momentum balance conditions of Eq. (2); then
what is the fate of the system? Do stationary states perhaps exist or do they not, and
what are the dynamical implications of such conditions? It is this class of questions
that we will aim to make some progress towards in what follows.

To test relevant ideas, we will use two different potentials Ṽj (x) = Vj (x) +
iWj (x), with j = 1, 2. In the first one, W is of the form:

W1(x) = A1k1sech(x − xd − δ1) tanh(x), (6)

where A1, k1, xd and δ1 are constants, with the latter two controlling the breaking
of the PT -symmetry. We then use a real potential V1 given by the form:

V1(x)=−2A1

[
arctan

(
tanh

(
xd − x

2

))
coth(xd)− arctan

(
tanh

(x
2

))
csch(xd)

]
,

(7)

which, in the limit xd → 0, transforms into V1(x) = −A1sech(x). The motivation
behind this selection is that if δ1 = 0 in Eq. (6) then V1 is proportional to the anti-
derivative of W1 (hence ensures that the pair of conditions of Eq. (2) degenerate to
a single one). In addition, for δ1 = 0 and in the limit xd → 0, the potential is
PT -symmetric. In short, the two parameters xd and δ1 both control the departure
from PT -symmetry, while the latter affects the departure from proportionality of
V ′

1 andW1. This selection and these parameters thus allow us to tailor the properties
of the potential, controlling its departure from the PT -symmetric limit, but also
from the possible degeneracy point of the conditions (2).

The second potential is given by

W2(x) = A2k2xsech2(x − δ2 − 1), (8)

and

V2(x) = −A2(log[cosh(1 − x)] + x tanh(1 − x)), (9)

where A2, k2 and δ2 are constants. Contrary to the Ṽ1 case, this potential does not
possess a PT -symmetric limit.

For both Ṽ1(x) and Ṽ2(x) potentials, if δj = 0 (j = 1, 2) then V ′
j (x) =

−CjWj (x) and, as shown in Ref. [19], rendering a topic of interest the exploration
of the potential existence of stationary solutions in the vicinity of the interface
between the lossy and amplifying parts when Eq. (2) applies. In our particular case,
the proportionality factor Cj is Cj = 1/kj .
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3 Numerical Results

3.1 Stationary States

We start by seeking stationary localized solutions, of the form ψ(x, t) = eiμtu(x)
with u(x) ∈ C, which will thus satisfy:

F [u] ≡ μu− uxx + [V (x)+ iW(x)]u− |u|2u = 0. (10)

In what follows, we fix A1 = 0.1 and A2 = 1, and consider stationary solutions of
frequency μ = 1. We will make use of periodic boundary conditions.

Notice that the potentials of [22] Ṽ (x) = −[g2(x)+ig′(x)] would, in the present
notation, necessitate:

[V ′(x)]2 = −4V (x)W 2(x). (11)

It is important to note that the potentials studied in our chapter do not fulfill this
relation for any set of parameters (A1, k1, xd, δ1) or (A2, k2, δ2) – except for the
“trivial” PT -limit – as it can be easily demonstrated. As a result then, presumably
because of the above calculation, the standard fixed point methods that we have
utilized fail to converge away from the PT -symmetric limit. For this reason,
we make use of minimization algorithms in order to obtain optimized profiles of
localized waveforms. With these methods, one can seek for local minima of the
norm of F [u] instead of zeros of that function. In our problem, we have made use of
the Levenberg–Marquardt algorithm (see Appendix A for more details), which has
been successfully used for computing solitary gravity-capillary water waves [23],
and established a tolerance of ||F [u]|| < 10−3 with ||F [u]|| being the L2-norm of
F [u]:

||F [u]|| =
√∫

|F [u(x)]|2dx. (12)

In the particular case of potential Ṽ1(x), we have studied the stability of solitons
in the PT -symmetric limit xd = δ1 = 0 as a function of k1, observing that solitons
are stable whenever k1 < kc, with kc = 8.28. At this point, the soliton experiences
a Hopf bifurcation. In order to avoid any connection of the findings below with the
effect of such instability, we have fixed in what follows a value of k1 far enough from
kc. Moreover, since the minimal value attained for ||F [u]|| increases with k1, we
have restricted consideration to relatively small values of k1 and more specifically
will report results in what follows for k1 = 1/2.

Figures 1 and 2 show the potential profile for two different (xd ,δ1) and (k2,δ2)
parameter sets. These figures also show the profile of the waveforms minimizing
||F [u]|| for such potentials, which will be considered further in what follows.
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Fig. 1 Left panels: Real and imaginary part of the potential Ṽ1(x) for A1 = 0.1, k1 = 1/2 and
xd = 0 (top) and xd = 1 (bottom); green line corresponds to the imaginary part for δ1 = 0,
whereas red (black) line corresponds to the imaginary part for δ1 = 0.05 (δ1 = −0.05). Right
panels: Beam profiles minimizing ||F [u]|| (real and imaginary parts) for A1 = 0.1, k1 = 1/2 and
xd = 0 (top) and xd = 1 (bottom); the blue line corresponds to δ1 = 0, and the green (red) line
corresponds to δ1 = 0.5 (δ1 = −0.25)

These beam profiles will be referred to as “optimized” in the sense of the above
minimization. In particular, their real part is nodeless, while their imaginary part
features a zero crossing. Naturally, the profiles are asymmetric mirroring the
lack of definite parity of the potentials’ real and imaginary part. It is interesting
to see that, despite the breaking of both the PT -symmetry and the violation
of conditions such as the one in Eq. (11), there still exist spatially asymmetric
structures almost satisfying the equations of motion. This naturally poses the
question of the dynamical implications of such profiles in the evolution problem
of Eq. (1), as we will see below.
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Fig. 2 Left panel: Real and imaginary part of the potential Ṽ2(x) for A2 = 1, and k2 = 0.05; the
green line corresponds to the imaginary part for δ2 = 0, whereas the red (black) line corresponds
to the imaginary part for δ2 = 0.2 (δ2 = −0.1). Right panels: optimized beam profiles (real and
imaginary parts) for A2 = 1, and k2 = 0.01; the blue line corresponds to δ2 = 0, and the green
(red) line corresponds to δ2 = 0.2 (δ2 = −0.1)

3.2 Dynamics

We now analyze the dynamics of several case examples for the NLS equation
with potential Ṽ1(x), using as initial condition the optimized beam profiles found
by the Levenberg-Marquardt algorithm. Figures 3 and 4 show the outcome of the
simulations for xd = 1 and xd = −1, respectively, when δ1 = 0 is fixed; on the
other hand, Figs. 5 and 6 correspond, respectively, to δ1 = −0.1 and δ1 = 0.1,
when xd = 1 is fixed. In these figures, we show the density |ψ(x)|2 at different
time instants (top left), the real and imaginary part of F [u] (top right), a space-time
contour plot of the evolution of the localized beam density |ψ(x, t)|2 (bottom left),
and the (squared) L2-norm (power/mass in optics/atomic physics), N(t) (bottom
right), defined as

N(t) =
∫

|ψ(x, t)|2dx. (13)

One can observe a clear correlation between the qualitative shape of Im{F [u]}
and the growing/decaying character of the dynamics. In other words, in the growing
case, this quantity is predominantly positive, whereas for the decaying case, it is
predominantly negative.

Moreover, it seems that a larger growth rate (i.e., a faster increase or decrease of
N ) is associated to a larger ||F [u]||. In order to showcase this fact, we have depicted
in Fig. 7 the dependence of diagnostic quantities λ and σ , that we have accordingly
defined as
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Fig. 3 Optimized beam dynamics in the potential Ṽ1(x) for A1 = 0.1, k1 = 1/2, xd = 1 and
δ1 = 0. The top left panel shows the density profile at t = 0, t = 500 and t = 1000, while the top
right panel shows the real and imaginary part of F [u]. The bottom left panel shows the space-time
contour plot of the density evolution, and the bottom right panel shows the evolution of the norm
N(t). The values of diagnostic quantities are λ = −3.63 × 10−3 and σ = −1.07 × 10−4

λ = dN

dt

∣∣∣∣
t=0
. (14)

σ = S||F [u]||, (15)

with

S = sgn

{∫
Im{F [u(x)]}dx

}

The quantity σ takes into account both the (minimized) norm of ||F [u]|| and the
form of Im{F [u(x)]} through S – that is, if the imaginary part of F [u(x)] is chiefly
positive or negative. Notice that the blank regions correspond to solutions for which
||F [u]|| is higher than the prescribed tolerance of 10−3. On the other hand, λ
characterizes the rate of “departure” from the optimized beam profile obtained from
this minimization procedure.
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Fig. 4 Same as Fig. 3, but for xd = −1. The values of diagnostic quantities are λ = 3.63 × 10−3

and σ = 1.07 × 10−4

Figure 7 shows a clear correlation between σ and λ. Notice the symmetry
between the outcomes when the transformation (xd, δ1) → (−xd,−δ1) is applied,
which is also manifested in the values of λ and σ displayed in the captions of Figs. 3
and 4. From this figure it is also clear that, roughly speaking, when xdδ1 < 0, N(t)
grows with time, whereas the opposite takes place when xdδ1 > 0. This is not
always true, as there is a critical value δ1c (close to zero) separating the growing
(λ > 0) and decaying (λ < 0) dynamics, which is tantamount to the separation
of the regions with σ > 0 and σ < 0. The dependence of δ1c versus xd is also
depicted in Fig. 7; having in mind the continuous dependence of σ and λ with xd
and δ1, it is clear that σ = 0 just at the curve δ1c(xd) = 0, so one can find stationary
soliton solutions. This is manifested in Fig. 8, where, for a set of parameters very
close to the curve δ1c(xd) = 0 (in particular, xd = 1 and δ1 = 0.014038), the
decay is very slow (with λ � 10−7), but not identically zero, as ||F [u]|| ∼ 10−8.
Interestingly, as shown in the bottom left panel of the figure, the relation (11) is not
fulfilled. Consequently, there is a range of parameter values for which states with a
very small value of ||F [u]|| can be obtained even if the potential is not of the form
−(g2 + ig′).
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Fig. 5 Same as Fig. 3, but for δ1 = 0.1. The values of diagnostic quantities are λ = 2.07 × 10−2

and σ = 6.07 × 10−4

In the case of the NLS equation with potential Ṽ2(x), we only focus on the
dependence of λ and σ with respect to parameters k2 and δ2, as the outcome
of simulations is essentially the same as in the previous case. Namely, for non-
vanishing values of λ and σ , a growth or decay of the solutions is identified for
typical values of δ2, as shown in Fig. 9. However, this growth or decay is quite
slow, as achieved by the optimization of the beam via the Levenberg–Marquardt
algorithm. Notice there is an anti-symmetry in the outcome when the transformation
k2 → −k2 is applied. In addition, both σ and λ are equal to zero at k2 = 0 as at that
point the potential is real and the solutions are stationary. Once again, the nearly
parabolic curve in the (δ2, k2) plane where λ = σ = 0 enables us to identify
parameter values in the vicinity of which states with particularly small ||F [u]||
appear to exist.
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Fig. 6 Same as Fig. 3 but for δ1 = −0.1. The values of diagnostic quantities are λ = −3.15×10−2

and σ = −9.40 × 10−4

4 Symmetry Breaking in Two-Dimensional Potentials

It is of particular interest to extend the above one-dimensional considerations
towards the emergence of asymmetric optimized beam families in the 2D version
of Eq. (1) that reads:

iψt = −(ψxx + ψyy)+ [V (x, y)+ iW(x, y)]ψ − |ψ |2ψ. (16)

In this case, stationary solutions, ψ(x, y, t) = eiμtu(x, y) with u(x, y) ∈ C, will
satisfy:

F [u] ≡ μu− (uxx + uyy)+ [V (x, y)+ iW(x, y)]u− |u|2u = 0. (17)

In Ref. [24], it is shown that not only symmetric solitons exist but also symmetry
breaking is possible if the potential Ṽ (x, y) = V (x, y)+ iW(x, y) is of the form

Ṽ (x, y) = −[g2(x)+ αg(x)+ ig′(x)+ h(y)] (18)
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Fig. 7 Top panels: Dependence of diagnostic quantities σ (left) and λ (right) as a function of xd
and δ1 for the potential Ṽ1(x) with A1 = 0.1 and k1 = 1/2. The bottom panel depicts the curve
δ1c(xd) at which both σ and λ vanish

with g(x) being a spatially even real function, h(y) being a real function and α a
real constant. Notice that this potential is partially-PT -symmetric (denoted also
as PPT -symmetric), i.e.,

Ṽ ∗(x, y) = Ṽ (−x, y) (19)

The linear spectrum of this potential can be purely real. In this case, a family of
PT -symmetric solitons can emerge from the edge of the continuous spectrum;
two degenerate branches of asymmetric solitons, which do not respect the PPT
symmetry, bifurcate from the symmetric soliton branch through a pitchfork bifur-
cation. It is worthwhile to note that we consider such PPT -symmetric as a first
step into the two-dimensional settings. Nevertheless (and in line with the title of this
Chapter), extending considerations to a non-PT -symmetric 2D setting constitutes
an important open question for future considerations.

The symmetry breaking bifurcation can also be observed either if the potential
possesses double PPT symmetry

Ṽ ∗(x, y) = Ṽ (−x, y) andṼ ∗(x, y) = Ṽ (x,−y) (20)
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Fig. 8 Optimized beam dynamics with almost zero ||F [u]|| in the potential Ṽ1(x) for A1 = 0.1,
k1 = 1/2, xd = 1 and δ1 = 0.014038. The top left panel shows the space-time contour plot of
the density evolution, while the top right panel shows the evolution of the norm N(t). The bottom
left panel compares [V ′

1(x)]2 and 4V (x)W 2(x), showing that Eq. (11) does not hold. The bottom
right panel depicts the real and imaginary part of F [u]. The values of the diagnostic quantities are
λ = −6.09 × 10−8 and σ = −3.87 × 10−8

or PT - and one PPT -symmetry simultaneously

Ṽ ∗(x, y)=Ṽ (−x,−y) and Ṽ ∗(x, y)=Ṽ (−x, y)orṼ ∗(x, y) = Ṽ (x,−y).
(21)

In such cases of double symmetries, there is no need for the potential to have a
special form as in Eq. (18). In addition, the soliton branch that emerges from the
spectrum edge possesses both symmetries whereas the bifurcating branch loses one
of the symmetries although it retains the other.

A later work [25] reports the existence of the same branching behaviour in a
PT -symmetric potential which also features a partial PT -symmetry along the
x-direction. More specifically, the potential used in [25] is given by

V3(x, y) = −[G2(x, y)+G(x, y)], W3(x, y) = k3∂xG(x, y) (22)
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σ and λ vanish

with

G(x, y) = A3e−y2
(e−(x−1)2 + e−(x+1)2). (23)

Notice that the symmetries mentioned above are applicable as a result of the even
nature of the G(x, y).

To give an associated example of the resulting symmetry breaking, we use, as
in [25], A3 = 3 and k3 = 1. The resulting profile of the potential is shown in
Fig. 10. PT -symmetric solitons are calculated by means of the Newton–Raphson
method and the corresponding branch emerges from μ = 5.810; asymmetric
solitons (actually, optimized beams) are attained by using the Levenberg-Marquardt
algorithm, with a tolerance of ||F [u]|| < 10−2. Now, the L2-norm is defined as

||F [u]|| =
√∫

|F [u(x)]|2dxdy. (24)

Figure 11 represents P ≡ N(t = 0) versus μ for the symmetric and asymmetric
soliton branches; notice that N(t) is now defined as

N(t) =
∫

|ψ(x, y, t)|2dxdy. (25)
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Fig. 10 Real (left) and imaginary (right) part of the 2D potential Ṽ3(x, y) for A3 = 3 and k3 = 1

One can observe that the asymmetric branches exist for μ ≥ 6.3837. The figure
also shows the profile of solitons at μ = 7, the same value that was taken in [25].
Notice that all the soliton profiles are symmetric with respect to the y-axis; the
symmetric solitons present a couple of humps at (x = ±x1, y = 0) whereas the
asymmetric solitons only possess a single hump at (x = x2, y = 0). We have only
shown solitons with x2 > 0 as the solutions with x2 < 0 are attained simply by
making the transform u(x, y)→ u(−x, y).

We have also computed the diagnostic quantities λ and σ [see (14) and Eqs. (15),
with S adapted to 2D domains] for the asymmetric soliton and depicted them in
Fig. 12. Again, we have considered asymmetric solitons branches centred at x =
x2 > 0. In that case, the norm grows with time, as corresponds to σ > 0 and λ > 0
whereas the opposite takes place if x2 < 0. We can observe, as in the 1D case, a
clear correlation between the two quantities.

Finally, we show in Figs. 13 and 14 the dynamics of the asymmetric and PT -
symmetric solitons with μ = 7. As it was pointed out in [25], the PT -symmetric
solitons are unstable past the “bifurcation” point, i.e. when they coexist with the
asymmetric branch; as we have shown in Fig. 14, they tend to a state similar to
the asymmetric soliton, although displaying some density oscillations. However, it
was claimed in the same reference that the asymmetric solitons were stable. For the
optimized beam profiles that we have obtained, as shown in Fig. 13, the dynamical
evolution does not dramatically alter the shape of the beam, yet it leads to slow
growth of N(t).

We also considered the stability of the PT -symmetric branch past the relevant
bifurcation point. A spectral stability analysis shows that for μ � 6.40, the solitons
become exponentially unstable as an eigenvalue pair becomes real. Interestingly,
although the asymmetric solitons are actually optimized beams (i.e. solutions with
minimal ||F(u)|| but not exact solutions), they might be more robust than the exact
solutions of the NLS equation corresponding to the PT -symmetric branch, past
the corresponding destabilization point; compare the associated dynamics of Fig. 14
with those of Fig. 13.
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Fig. 11 Top row: dependence of the squared L2-norm P of PT -symmetric solitons (blue full
line) and asymmetric solitons/optimized beams (red dashed line) with respect to μ at the 2D
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asymmetric soliton with the same value of μ
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norm N(t). The values of diagnostic quantities are λ = 1.39 and σ = 4.07 × 10−3
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Fig. 14 Unstable PT -symmetric solitons dynamics in the 2D potential Ṽ3(x, y) for A3 = 3,
k3 = 1 and μ = 7. The top panels show snapshots of the density profile evolution. The bottom
shows the evolution of the norm N(t)

5 Conclusions and Future Work

In the present work, we have revisited a variant of PT -symmetric systems. In
particular, we have examined multi-parametric potentials whose parameters control,
on the one hand, the potential departure from the PT -symmetric case (such as xd
herein), and on the other hand, the potential degeneracy of the conditions (2) for
stationary solutions – motivated by the recent works of [19, 20]. We have confirmed
the results of the important recent contribution of [22], suggesting that in the absence
of a special form of the complex potential, no true stationary solutions are found to
exist. On the other hand, that being said, we have identified beams that come very
close to satisfying the stationary equations. The dynamics of these beams indicate a
slow departure from such a configuration. In fact, diagnostics identifying the rate of
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this growth and connecting it to the proximity of the profiles to a stationary solution
(via ||F [u]||) were developed and numerically evaluated, both in 1D and in 2D.

Naturally, this work poses a number of questions for the future. A notable one
concerns the most general conditions (on, say, a complex potential) under which
one may expect to find (or not) families of stationary solutions. PT -symmetry
is a sufficient but not a necessary condition for such existence and extending
beyond it seems of particular interest. The conjecture of [22] that the potentials
V + iW = −(g2 + ig′(x)) + c represent the generic scenario is plausible, but
it would be particularly interesting to produce a proof, perhaps revisiting more
systematically the relevant shooting argument. It is also important to highlight that
such shooting arguments are only valid in one spatial dimension. Hence, examining
generalizations of the present setting to higher dimensions is of particular interest in
their own right. We have briefly touched upon this aspect here, based on the earlier
works of [24, 25], but clearly further efforts are necessary to provide a definitive
reply in this direction. In particular, while an interesting class of partially-PT -
symmetric potentials has been examined herein, it is particularly relevant to attempt
to understand the phenomenology in non-PT -symmetric settings, constituting an
important extension of our 1D considerations herein.

Appendix: The Levenberg–Marquardt Algorithm

Classical fixed-point methods like Newton–Raphson cannot be used for solving
the problem F [u(x)] = 0 in the setting considered in the context of this Chapter,
essentially because there might not exist a u(x) that fulfils this relation (to arbitrarily
prescribed accuracy). However, it is possible to find a function u(x) that can
minimize F [u(x)]. To this aim, an efficient method is the Levenberg–Marquardt
algorithm (LMA, for short), which is also known as the damped least-square
method. This method is also used to solve nonlinear least squares curve fitting
[26, 27]. LMA is implemented as a black box in the Optimization Toolbox of
Matlab TM and in MINPACK library for Fortran, and can be considered as an
interpolation between the Gauss-Newton algorithm and the steepest-descent method
or viewed as a damped Gauss-Newton method using a trust region approach. Notice
that LMA can find exact solutions, in case that they exist, as it is the case of the
results presented, e.g., in Ref. [23].

Prior to applying LMA, we need to discretize our Eq. (10). Thus, we take a grid
xn = −L/2 + nh with n = 0, 1, 2 . . .M and L being the domain length, and
denote un ≡ u(xn) and Fn ≡ F [u(xn)]. With this definition uxx can be cast as
(un+1+un−1−2un)/h2. In order to simplify the notation in what follows, let us call
u ≡ {un}Mn=1 and F(u) ≡ {Fn}Mn=1. We will also need to define the Jacobian matrix
J(u) ≡ {Jn,m}Mn,m=1 with Jn,m = ∂umFn. In the presently considered optimization
framework, F(u) is also knows as the residue vector.
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Let us recall that fixed point methods typically seek a solution by performing
the iteration uj+1 = uj + δj from the seed u0 until the residue norm ||F(u)|| is
below the prescribed tolerance; here δj is dubbed as the search direction. In the
Newton–Raphson method, the search direction is the solution of the equation system
J(uj )δj = −F(uj ). If the Jacobian is non-singular, the equation system can be
easily solved (as a linear system); however, if this is not the case, one must look for
alternatives like the linear least square algorithm. It was successfully used for some
of the authors for solving the complex Gross–Pitaevskii equation that describes the
dynamics of exciton-polariton condensates [28–30]. This technique also allowed us
to find optimized beams in the present problem, but presented poor convergence
rates, as we were unable to decrease the residue norm controllably below the order
of unity.

As fixed point methods are unable to give a reasonably small residue norm, we
decided to use a trust-region reflective optimization method. Such methods consist
of finding the search direction that minimizes the so called merit function

m(δ) = 1

2
F(u)TF(u)+ δTJ(u)TF(u)+ δTJ(u)TJ(u)δ. (26)

In addition, δ must fulfill the relation

||D · δ|| < �, (27)

where D is a scaling matrix and� is the radius of the trust region where the problem
is constrained to ensure convergence. There are several trust-region reflective
methods, with the LMA being the one that has given us the best results for the
problem at hand. This is a relatively simple method for finding the search direction
δ by means of a Gauss-Newton algorithm (which is mainly used for nonlinear least
squares fitting) with a scalar damping parameter λ > 0 according to:

(J(uj )TJ(uj )+ λjD)δj = −J(uj )TF(uj ) (28)

with D being the scaling matrix introduced in Eq. (27). There are several possibil-
ities for choosing such a matrix. In the present work, we have taken the simplest
option, that is D = I (the identity matrix), so (27) simplifies to ||δj || < �.
Notice that for λj = 0, (28) transforms into the Gauss-Newton equation, while
for λj → ∞ the equation turns into the steepest descent method. Consequently, the
LMA interpolates between the two methods. Notice also the subscript in λj : this is
because the damping parameter must be changed in each iteration, with the choice
of a suitable λj constituting the main difficulty of the algorithm.

The scheme of the LMA is described in a quite easy way in the Numerical
Recipes book [31, Chapter 15.5.2] and is summarized below:

1. Take a seed u0 and compute ||F(u0)||
2. Choose a value for λ0. In our particular problem, we have taken λ0 = 0.1.
3. Solve the equation system (28) in order to get δ0 and compute ||F(u0 + δ0)||
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4. • If ||F(u0 + δ0)|| ≥ ||F(u0)||, then take λ1 = 10λ0 and u1 = u0, as with this
choice of λ0 the residue norm has not decreased.

• If ||F(u0 + δ0)|| < ||F(u0)||, then take λ1 = λ0/10 and u1 = u0 + δ0, as with
this choice of λ0 has succeeded in decreasing the residue norm.

5. Go back to step 3 doing λ0 = λ1 and u0 = u1

This algorithm is repeated while ||F(u)|| is above the prescribed tolerance.
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