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Fluorite Crystal

Detail of a painting by Vera Andrianova Forwerk, a Bulgarian master student of
photonics at Abbe School of Photonics, Friedrich Schiller University Jena,
Germany. Printed with permission.

Fluorite is a naturally occurring crystalline modification of calcium fluoride, a
widely used optical material for applications as windows, lenses and the like from
the middle infrared up to the vacuum ultraviolet spectral regions. See Sect. 8.2.2
for optical constants.



Foreword

The present book provides the reader with top-notch reports from the workbenches
of renowned colleagues in the field of thin film characterization.

The field of thin films is an ever-expanding area with optical coatings repre-
senting the oldest, yet perhaps the fastest, still developing area among the various,
multidisciplinary applications of thin films.

A most current snapshot of the vast expanse and speed by which the field of thin
films is moving is provided in this book.

Thin films are abundant in modern science and engineering owing to sophisti-
cated and continuously improved techniques for their preparation, their usefulness
in basic and applied research, and their suitability for mass production in a sheer
limitless variety of new and advancing device structures. Perhaps one of the most
intriguing peculiarities of thin films is inscribed within their optical properties,
which depend in most complex ways on the structural arrangements of matter from
atomic to macroscopic scales.

The authors in this book provide the reader with a set of chapters to gain a fast
foothold in understanding of the topics needed to engage in optical thin film
characterization at the present level of the state of the art.

The electromagnetic spectrum offers a broadest interval over which the response
of thin films can be interrogated. Advanced optical and structural investigations
techniques are required for characterization of thin films. Likewise, intricate theo-
retical tools are needed when the attempt is made to relate the observations made to
the real structure of the thin films. The tools for calculations descent from quantum
mechanics as well as continuum physics concepts, and their implementations can be
made easily on personal computers or may reach the limits of contemporary
computation capabilities.

The book reflects the complexity of this topic from a multitude of perspectives.

Introductory portions provide the reader with the information on techniques for
optical and structural characterization of advanced optical thin films. Examples are
presented where the reader is walked through the complexity and challenges which
one faces when simply questions are related to complex structured real samples.
Rather than attempting to cover the vastness of all possible situations, the book
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viii Foreword

focuses on selected examples, such as microstructure gradients, porosity, damages,
defects, thin films composed of regular nano- and microstructures, and challenges
in instrumentation and their circumvention.

The book is not the first in this field and will not be the last. It is the current best
step stone to the next level of understanding.

I found the book a very interesting read and recommend it highly to beginners
and experts alike, both in the field of optical characterization of thin films as well as
to anyone in our expanding, multidisciplinary scientific community who is working
with thin films.

Lincoln, NE, USA Mathias Schubert
July 2017



Preface

The idea for this book arose at a bilateral workshop held by colleagues from Czech
Republic and Germany on optical coating characterization in Brno, Czech
Republic, October 11-13, 2016. The workshop dealt with different aspects of thin
film optical characterization, including modeling, spectrophotometric approaches,
spectroellipsometric approaches, specifics of characterization of defected or cor-
rugated coatings, as well as the measurement of smallest optical losses with
laser-based experimental equipment. It thus provided a snapshot on the current state
of the art in diverse branches of optical coating characterization.

In a narrower sense, all speakers at the workshop stemmed from research
facilities located either in Brno (Czech Republic) or in Jena (Germany), so that the
broad circle of characterization approaches presented there also served as a
demonstration of the analytic possibilities located in these two cities.

We strongly believe that the material discussed and presented at the workshop
may be of interest to a broader audience. Therefore, each of the speakers was asked to
extend the content of his or her presentation in order to supply a chapter that became
part of the present book. It was our first intention to provide a guide to modern and
powerful thin film characterization techniques while emphasizing the benefits
of their coherent interaction, even when including non-optical techniques into the
characterization approach. Thus, atomic force microscopy combined with mea-
surements of the elastically scattered light appears to be a powerful tool for surface
and film roughness investigation. Information on film porosity may be gained from
simple spectrophotometric (or spectroellipsometric) measurements performed in
different ambient conditions and spectral ranges, combined with an elemental
analysis performed, for example, by energy-dispersive X-ray spectroscopy.

Our second intention was to emphasize the role of modeling. Practically
throughout the whole book text, emphasis is placed on the development and pre-
sentation of manageable theoretical models with highest predictive power, and with
clearly defined interfaces to interact with experimentally available input data. All
presented models are applicable to broadest classes of characterization problems
currently needed in industrial and partially also in academic research. In this con-
text, characterization examples are presented, which are in most cases of high
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X Preface

practical relevance today. They stem from real characterization problems and
illustrate the feasibility of the coherent interaction of robust theoretical approaches
and modern commercially available measurement facilities.

Concerning the target audience of this book, it is our feeling that every scientist
or engineer having finished a master study in a physical, chemical, or engineering
discipline and being involved in thin film characterization tasks can benefit from
reading this book.

The editors are extremely grateful to all authors for their effort to provide
high-quality contributions in a very short time—it took less than nine months of the
workshop to the submittal of the book manuscript. Many thanks are also to
Professor Mathias Schubert, Electrical & Computer Engineering, University of
Nebraska—Lincoln, for critical remarks to the manuscript and, in particular, for
contributing a foreword to this book.

All German authors acknowledge the financial support to the workshop provided
by the Deutsche Forschungsgemeinschaft DFG. All authors thank to the Brno
University of Technology and Masaryk University, Brno, for organizing the
workshop.

Jena, Germany Olaf Stenzel
Brno, Czech Republic Miloslav Ohlidal
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Symbols and Abbreviations

F

Py
Q,

BT C ™R 8

Parameter “a” in the j-th layer of a layer stack
Absorptance

Absorption coefficient

Roughening exponent (in Chap. 14)
Two-photon absorption coefficient (in Chap. 16)
Velocity of light in vacuum

Discrepancy function

Phase, phase shift

Scattered power

Detector solid angle

Electric field strength

Field amplitude

Band gap

Energy level (in quantum mechanics)
Euler’s number (2.71828182...)

Elementary charge (1.60217662 x 10" C)
Complex dielectric function

Real part of the dielectric function
Imaginary part of the dielectric function
Diagonal element of the dielectric tensor
Dielectric function

Vacuum permittivity (8.854187817 x 10~2F-m™')

Relative strength of the absorption lines
Oscillator strength in quantum mechanics
Incident angle

Azimuth angle

Brewster’s angle

Damping constant

Homogeneous linewidth

Physical film thickness
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Symbols and Abbreviations

Thickness

Reduced Planck constant (1.0545718 x 10737 -s)
Physical substrate thickness

Magnetic field strength

Hamilton operator, Hamiltonian

Intensity

Imaginary unit

Characteristic matrix

Electric current density

Extinction coefficient

Wave vector

Size of wave vector in vacuum ko = 27/
Boltzmann’s constant1.380648 x 10723J . K~!
Depolarization factor (Chaps. 2, 7and 10)
Optical loss

Wavelength of light in vacuum

Spatial period

Mass

Electron rest mass (9.109383 x 103! Kg)
Permeability of free space

Concentration

Number (where specified)

Refractive index

Substrate refractive index

Complex index of refraction

Wavenumber

The ratio of a circle’s circumference to its diameter (3.14159265...)
Dipole moment

Polarization

Incident power (in Chap. 14)

Polarization of /-th order

Matrix element of the dipole operator
Refraction angle, propagation angle
Charge

Radius

Reflectance

Reflectance of p-polarized light
Reflectance of s-polarized light

Position vector with r = (X, y, z)T

Field reflection coefficient (for s- or p-polarized light)
Mass density

RMS of thickness variation

Surface area

Signal (in Chap. 16)
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ISR
ITF
JDOS
KK
KS
LDA
LIDT

RMS surface roughness

RMS value of the heights of irregularities
Static value of the electrical conductivity (in Chap. 7)
Absolute temperature

Transmittance

Field transmission coefficient (for s- or p-polarized light)
Time

Time constant, relaxation time

Heaviside step function

(polar) scatter angle

Volume

Fraction volume

Velocity

Wavenumber

Probability

Angular frequency

Eigenfrequency, resonance frequency
Plasma frequency

Transition frequency, resonance frequency in quantum mechanics
Spectral bandwidth

Linear dielectric susceptibility
Autocorrelation function

Atomic force microscopy
Angular-resolved scattering
Bethe—Salpeter equation

Charge-coupled device

Complementary metal-oxide—semiconductor
Density functional theory

Density of states

Damped Harmonic Oscillators

Effective medium approximation
Far-infrared spectral region

Full width half maximum

Generalized gradient approximation
Grating waveguide structure

Halfwave

Infrared

Infrared spectral region

Imaging spectroscopic reflectometry
Identical thin film

Joint density of states

Kramers—Kronig

Kohn—Sham

Local density approximation
Laser-induced damage threshold
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LSM
MIR
NIR
NIR
PBC
PCSA
PIAD

PIDOS
PSCA
PSDF
QP
QW
RGB
RMS
RPA
RRT
SDT
SPM
SQS
SR
TB-mBJ
TRK
TS
UDM
uv
uv
VASE
VIS
VIS

Symbols and Abbreviations

Least squares method

Middle-infrared spectral region
Near-infrared spectral region
Near-infrared

Periodic boundary conditions
Polarizer—compensator—sample—analyzer
Plasma-ion-assisted electron beam evaporation (a film preparation
technique)

Parameterization of the joint density of states
Polarizer—sample—compensator—analyzer
Power spectral density function
Quasiparticle

Quarterwave

Red-Green-Blue

Root-mean-square

Random phase approximation
Rayleigh—Rice theory

Scalar diffraction theory

Scanning probe microscopy

Special quasirandom structure
Spectroscopic reflectometry

Tran—Blaha modified Becke—Johnson
Thomas—Reiche—Kuhn

Total scattering

Universal dispersion model

Ultraviolet

Ultraviolet spectral region

Variable angle spectroscopic ellipsometry
Visible

Visible spectral region
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Chapter 1
Introduction

0. Stenzel and Miloslav Ohlidal

Abstract Optical thin film characterization represents the total of all theoretical and
experimental activities, which pursue determination of various thin film construction
parameters. The purpose of optical characterization is usually in the determination
of film thickness, refractive index and extinction coefficient, porosity, surface rough-
ness, film stoichiometry, film density and the like.

1.1 First Considerations

The interaction of electromagnetic radiation with matter is in the basis of any optical
phenomenon. Whenever we are looking into our surrounding, our eyes receive light
from various objects (material systems). This light may by emitted from an object
itself, but it may also result from specular as well as diffuse reflections of light
originating from a remote light source that is used to illuminate the object. At the
moment, while you are reading this text, both of these situations may be relevant. In
the case that you read it from the computer screen, your eyes receive photons actively
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emitted by the screen. In this case, any external light may be strongly disturbing.
However, if you are reading this text in a printed book, you certainly make use of an
external light source, and your eyes receive photons that are (in this particular case
diffusely) reflected from the book page.

Of course, the particular properties of any reflected radiation are to a certain
extent defined by the process of interaction of the incident light with the correspond-
ing material system. Hence, the reflected light carries some information about the
objects properties. Understanding the mechanisms of the interaction of light with
matter is absolutely necessary to disclose this information in a quantitative manner.
Consequently, we may gain information on the specifics of a material system by
analyzing the properties of light that has interacted with that system. Essentially, this
is the idea of optical characterization.

Optical characterization techniques are applied to many different types of samples,
among them thin films. Thin films enter into our daily lives in many different situa-
tions. For us the most significant are those thin films we prepare for improvement of
quality of our lives by means of various technologies. The ranges of utilization of thin
film optical properties, of technologies for thin film preparation, and of techniques
which determine parameters of thin film optical properties are huge.

Thin films are used in many different areas of technology, including semiconductor
technology, optoelectronics, mechanical or chemical surface conditioning, or optical
surface functionalization. All of these films may, in principle, be characterized by
optical techniques.

If we focus on the measuring techniques of optical properties of thin films, which
are currently used, the number of them is of the order of one hundred. This number is
related to the fact that thin film is a specific object with various properties (microstruc-
ture, variations in stoichiometry, inhomogeneity, anisotropy), which may differ sig-
nificantly from the properties of the corresponding bulk substance. These properties
typically depend on the conditions of the thin film preparation. The production of thin
films or film systems with new and more challenging properties fulfilling require-
ments of optical practice require more and more advanced techniques measuring
these properties.

Once optical characterization is based on the interaction of light with matter, a
basic understanding of the mechanisms of that interaction is absolutely essential
for performing an optical sample characterization. In a narrow sense, light may be
understood as electromagnetic radiation in the visible spectral range only. When
further speaking on optical characterization, we will nevertheless use a somewhat
broader understanding of the terminus “light”, including at least the infrared and
ultraviolet spectral regions into the discussion. The actual spectral range included
into a particular optical characterization may differ from case to case, but this is in
fact not so essential. The more important point is that any electromagnetic wave is
characterized by electric and magnetic field strength vectors, which interact with
different degrees of freedom within the material system. Fields cause forces acting
for example on a test charge, and the natural writing of the electric and magnetic
fields in a light wave would operate with real (in the mathematical sense) functions
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and coefficients only. Thus, for such real electric fields and the particular case of a
plane wave, a description of the type:

Erear(t,r) = EO,real cos (wt — kr + do) (1.1)

is often used in order to quantify the electric field strength as a function of time and
space coordinates.

The plane wave expression for the electric field as introduced in (1.1) is applicable
when the light emitter is placed “sufficiently far” from the sample, when comparing
with the wavelength of the light. This is guaranteed in a multiplicity of optical thin
film characterization techniques today. On the other hand, for thin film samples,
interference effects within the film are of crucial importance. Therefore we really
have to consider electric fields, which carry phase information, while it would be
insufficient to work with light rays characterized by certain intensity.

However, a more convenient mathematical treatment is achieved when rewriting
(1.1) in the following manner:

Erea] (t, r) — [E(),realeii(wtikr)eii&) + E(),reglei(wtikr)eisn] = Eoefi(wtfkr) +c.c

(1.2)

| =

Here “c.c.” denotes the conjugate complex to the preceding expression. We recognize
that the real electric field (1.1) may be expressed as the superposition of a complex
field and its conjugate complex counterpart. Clearly, the latter does not contain any
new physical information. The complex field amplitude E is defined as:

EO,reale_iao
Ey= =" (1.3)

In our further treatment we will therefore make use of the complex field defined by
(1.4):

E(t,r) = Ege @~k (1.4)

Then, for the real field we have:
Ereai(t,r) = 2ReE(t, 1) (1.5)
The choice of (1.4) for the complex writing of the electric field defines a particular

convention, which will be used throughout this book. When recalling (1.2), itbecomes
evident there exists an alternative writing:

Ereal(ta r) — E(),reale+l(wt7kr)e+180 + Eo’realefl(wffkr)efl&) = Eoe+1(wt7kr) +c.c;
2

EO,reale+i80
Ey=——
2
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Fig. 1.1 Thin film on a thick

substrate, irradiated by light medium 1: !
under an incidence angle ¢. incidence medium |
For details see text [Tttt T :_
I medium 2: film : h

medium 3: substrate heuo
medium 4: exit medium \
|
It
In this case, instead of (1.4) we would have:
E(t,r) = Egeti@ =+ (1.6)

For our further purposes, it makes absolutely no physical difference, which of the
(1.4) or (1.6) is used for building the theory. In our particular treatment, we will use
the minus-sign as fixed in (1.4). Let us remark that the writing of the expression
for the complex index of refraction (n + ik or n — ik) depends on the choice of
either (1.4) or (1.6). In our further treatment, in consistency with the choice of the
time-dependence (1.4), the complex index of reraction will be given as n + ik.

Let us now assume a thin film, deposited on a thick substrate as shown in Fig. 1.1.

The intensity I of the light can be understood as the amount of light energy
penetrating a unit surface area per unit time interval. After interaction with the sample,
apart of the intensity of the incident light (/) may be transmitted into the exit medium
with the intensity /7, while another part is reflected back into the incident medium
with the intensity /z. Note that in the case of oblique incidence of the light, both
transmission an reflection are strongly dependent on the polarization of the incident
light.

As it follows from Fig. 1.1, a light wave which has penetrated a thin film sample,
will carry information about the materials which form the sample (i.e. about both film
and substrate material constants), as well as about its geometry (here the thicknesses
of film % and substrate hy,;,). Generally, the same will be true for the reflected wave,
because all interfaces can principally contribute to the reflectance spectrum. So that
we have to expect, that both I7 and Iz will be rather complicated functions of all
the mentioned construction parameters. Thus, measured transmission and reflection
spectra can be used to gain information about both material properties and sample
geometry.

In the model case of optically homogeneous, isotropic, and non-magnetic media,
the linear optical material properties may be expressed in terms of a scalar complex
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Surface roughness

Absolutely smooth and parallel interfaces

Film: homogeneous, isotropic

Index gradient

substrate

porosity = Shift

Fig. 1.2 On left: ideal thin film sample; on right: TEM cross-section of a real hafnia film

dielectric function. When further neglecting all effects related to spatial dispersion,
this dielectric function appears to be a function of the angular frequency w only [1,
2]. When assuming (1.4), e(w) is related to the optical constants (refractive index n,
which defines the phase velocity of light in the medium, and extinction coefficient &,
which it defines the light amplitude damping in the medium) through the relationship:

n(w) +ik(w) = e(w) = n(w) 1.7

Here 71 is the so-called complex index of refraction; its frequency-dependence is
called dispersion. The absorption coefficient « is defined as:

a(w) = 2§k(a)) (1.8)

c is the velocity of light in vacuum. Note that use of the alternative convention accord-
ing to (1.6) would result in the appearance of the minus-sign in the left-hand term
in (1.7). Let us also mention that a positive imaginary part of the dielectric function
will result in energy dissipation in a medium. Whenever the dielectric function is
purely real, no energy will be dissipated.

When further assuming absolutely smooth and parallel surfaces and interfaces in
the system shown in Fig. 1.1, then the transmission and reflection of a plane incident
light wave will be performed only into well-defined directions, which are related to
the propagation direction of the incident light by Snells law of refraction. In other
words, the idealized thin film model as shown in Fig. 1.1 will not allow for elastic
light scatter losses.

In any practical situation, the real film geometry may show more or less significant
deviations from that model case, so that more complicated models may be necessary
in order to reproduce measured spectral sample features in a consistent quantitative
manner. This is visualized in Fig. 1.2.

It is straightforward to give a theoretical description of the optical properties of
a film that is close to the idealized model sketched in Fig. 1.2 on the left. In reality,
as it is exemplified in Fig. 1.2 on the right, the ideal model assumptions are not
fulfilled. Columnar film morphology may violate homogeneity and isotropy of the
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film material. Samples may be porous, which tends to reduce the refractive index and
results in vacuum and thermal shift phenomena. Refractive index gradients as well
as surface and interface roughness alter the transmission and reflection properties
of the film. Depending on characteristic lateral dimensions, surface roughness may
also provide a mechanism for diffuse light scattering. All these deviations from the
ideal model assumptions will result in significant complications of characterization
tasks. They require more effort in modelling as well as more complex experimental
equipment.

1.2 Coating Characterization and Quality Control

Many analytical tools such as spectrophotometers, interferometers, or scanning probe
microscopes may be used in coating characterization as well as in coating quality
control. Let us therefore clearly distinguish between these two different tasks:

e The terminus “quality control” will be used in our treatment in order to define a set
of measurements, performed with the only goal to check the degree of adherence
of sample properties with some pre-defined target specification.

e The terminus “sample characterization” will be used to define the total of all theo-
retical and experimental investigations, performed with the purpose to determine
general construction parameters of the considered sample.

1.3 Organisation of the Book

The book is subdivided into four parts. The first part is of introductory character with
certain emphasis on modelling.

Chapter 2 provides a short overview of characterization techniques relevant in
the context of the present book. The mutual interplay of selected characterization
techniques is exemplified in application to the analysis of the properties of a porous
zirconia thin film.

In Chap. 3, a dielectric response of a material is modeled by a universal disper-
sion model. This model consists of a collection of dispersion models which describe
individual elementary excitation in solids while respecting the basic conditions that
follow from the theory of dispersion (time reversal symmetry, Kramers—Kronig con-
sistency and finite sum rule integral). The combination of these models can be used
for the description of complete dielectric response of a wide range of materials in
the spectral range from far infrared to X-ray.

Chapter 4 deals with ab initio modeling techniques that can be used for the
quantum-mechanical calculation of electronic band structure of solids within the
framework of density functional theory and many body perturbation theory, with a
particular focus on the evaluation of optical properties of these solids. A reader of


https://doi.org/10.1007/978-3-319-75325-6_2
https://doi.org/10.1007/978-3-319-75325-6_3
https://doi.org/10.1007/978-3-319-75325-6_4

1 Introduction 9

the chapter should gain a general idea about the possibilities of the standard ab initio
techniques, not only in the case of interpreting experimental results, but also in the
case of predicting optical properties of even not-yet-known materials.

The second part is focused on spectrophotometric and spectro-ellipsometric thin
film characterization of different real thin film samples.

Chapter 5 is devoted to the optical characterization of thin films, which exhibit
area non-uniformity in their optical properties, by means of the non-microscopic
imaging spectroscopic reflectometry. Essential features and implementation of this
relatively new technique are given here together with the basic experimental setup
of imaging spectroscopic reflectometers. The classification of the experimental data
processing methods is also performed from the point of view of the way in which the
information contained in the image of the film measured is exploited. Potential of
imaging spectroscopic reflectometry utilization in the field of optical characterization
of thin films is demonstrated by examples of results achieved.

Data processing approaches and algorithms for imaging optical techniques are
discussed in Chap. 6, with focus on imaging spectrophotometry in the visible and
ultraviolet regions. It therefore follows on from the issue of Chap. 5. Efficient fitting
methods are developed for huge number of experimental data. This is achieved by
splitting the least squares problem in different ways in order to extract useful infor-
mation and by constructing effective models for individual phenomena and types
of samples. Efficient computation of optical quantities is discussed for ideal, non-
uniform, and rough films. Modelling of optical constants and spectral or angular
averaging are discussed too.

The Chaps. 7 and 8 introduce the reader to basic skills of modern spectrophotomet-
ric substrate and coating characterization. Both ex situ and in situ spectrophotometry
versions are presented. Examples demonstrate the application of spectrophotom-
etry to the characterization of dielectric, semiconductor, and metal films. The
Drude model, the Lorentzian oscillator model, as well as the newly developed
Beta-distributed oscillator (8_do) model are applied to fit the experimental data.

Chapter 9 focuses on a brief description of the principles of ellipsometry from
theoretical and experimental points of view. The theoretical results are formulated
using Jones, Stokes—Mueller, Yeh matrix formalisms, and matrix formalism for opti-
cally isotropic layered systems. The basic principles of conventional, generalized
and Mueller-matrix ellipsometry together with the most common ellipsometric tech-
niques and model approaches are also described.

The third part concentrates on samples that show rather strong deviations from
the ideal case postulated in Fig. 1.1.

Chapter 10 introduces theoretical approaches usable for describing the most com-
mon defects in thin film systems. Specific topics treated are random roughness
of boundaries, thickness non-uniformity, optical inhomogeneity corresponding to
refractive index profiles, overlayers, and transition layers. The influence of defects
is demonstrated by means of several numerical and experimental examples.

Chapter 11 focuses on the use of Scanning Probe Microscopy in the optical thin
film analysis. Even if this is not an optical technique, it is often used to get surface
roughness characteristics as important input to the models of the optical response
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of thin film surfaces. Basic measurement principles, data processing, and roughness
statistical quantities most frequently used in the field of thin film optics are listed in
the reader’s reference.

Chapters 12 and 13 deal with periodically structured films, while structuring is
performed along lateral directions. Thus, in Chap. 12, resonant Grating Waveguide
structures are introduced as candidates for narrowline high reflectors. Chapter 13 is
focused on design, preparation, and characterization of grid polarizer devices used
for application in the deep ultraviolet region.

And finally, the fourth part of the book is dedicated to the characterization of
close-to-ideal films that show smallest absorption or scattering losses.

Here, small scattering losses are in the focus of Chap. 14. The chapter provides an
introduction to both theoretical background and experimental techniques necessary
for measurement and interpretation of scattered light on surfaces, single films, and
multilayer coatings.

Similarly, in Chap. 15, the limits of smallest absorption loss measurements are
discussed. A short overview is provided on the state-of-the-art in absorption measure-
ment. Then, focus is given on photothermal deflection techniques and measurements
of the Laser Induced Fluorescence (LIF).

The forth part is finished with Chap. 16, which explains the application of Cav-
ity Ringdown Decay (CRD) techniques to the accurate measurement of highest
reflectance, and thus smallest reflection losses. The techniques are demonstrated
in application to high reflector coatings.
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Chapter 2

Characterization of Porous Zirconia Samples
as an Example of the Interplay Between
Optical and Non-optical Characterization
Methods

0. Stenzel

Abstract Optical characterization appears particularly strong when it is combined
with suitable non-optical characterization techniques, as well as theoretical mod-
elling efforts. As an example, we provide results on the characterization of porous
zirconia samples by a combination of spectrophotometry and non-optical charac-
terization techniques like transmission electron microscopy, energy dispersive x-ray
spectroscopy and x-ray reflection.

2.1 Optical and Non-optical Coating Characterization

In the context of the Sect. 1.2, we now define optical characterization as a particular
case of sample characterization, where the experimental input data stem from any
kind of optical measurements. Optical coating characterization is thus based on the
interaction of electromagnetic radiation (light) with a specific kind of matter (the
sample, which is in our case a thin film system). After interaction, certain parameters
characterizing the properties of the electromagnetic radiation will have changed in a
specific manner — we will use them to judge the particular properties of the sample.
In many cases this is possible without any destruction of the sample.
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Fig. 2.1 Optical signal as
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Let us start our discussion from a monochromatic plane light wave incident on a
sample. In a complex notation (compare (1.4)), the electric field strength of the wave
is given by (Fig. 2.1):

E =E (t,r) = Ege™ '@ —*D 2.1)

In usual characterization practice, the parameters characterizing the incident light
may be supposed to be known. For example, we may illuminate the sample with
monochromatic light of a well-defined frequency. But the signal may contain new
frequencies, obtained as the result of the light-matter interaction. These new fre-
quencies may arise from luminescence, from spontaneous Raman scattering, or from
various nonlinear optical processes. But anyway they contain valuable information
about the specifics of the sample.

The same applies to other parameters of the incident light. The intensity of the light
may change, for examples as a result of absorption processes. Intensity changes are
detected by means of photometric techniques. The interaction processes may further
result in changes of the polarization state of the light, as detected by ellipsometry and
used for further sample characterization. The simple refraction process at the interface
between two transparent media is a manifestation of changes in the propagation
direction of the light and provides access to differences in the refractive index.

Thus, the diversity of parameters which define the properties of light (in reality
they are more than those mentioned here for the model case of an incident plane
monochromatic wave) gives rise to quite diverse measurement techniques in optical
coating characterization. Some major optical techniques, which are in the focus of
this book, are summarized in Table 2.1.

After having clarified what is meant with the terminus “optical characterization”,
itis clear that “non-optical characterization” may be defined as a sample characteriza-
tion process based on non-optical measurement techniques. Although the non-optical
techniques definitely constitute a powerful set of individual characterization tech-
niques, we will mainly use them as a source of side information for use in optical
characterization tasks.

Clearly, the distinction between optical and non-optical measurement techniques
is of relative nature. For example, in a strong sense, X-ray-reflectometry XRR should
be regarded as an optical technique as well, because it is entirely based on the
interaction of (X-ray) photons with matter. Nevertheless, when primarily being used
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Tab.2.1 Survey of selected experimental techniques, used in optical characterization and discussed
further in this book

Measurement technique Chapter
Ex situ spectrophotometry (MIR/NIR/VIS/UV): measurement of transmittance
. . 2,5-8, 10
and reflectance at different angles of incidence
In situ spectrophotometry (NIR/VIS): measurement of transmittance and/or
. 7,8
reflectance (usually at a fixed angle of incidence)
Cavity ring-down decay CRD: accurate measurement of highest transmittance or 16
reflectance values
Absorption measurements, Laser induced fluorescence LIF: Determination of 15
small absorption losses
Elastic light scattering: determination of small amounts of scattered light 14
Variable angle spectroscopic ellipsometry VASE 9.10
Tab.2.2 Survey of selected non-optical characterization techniques
Technique Information gained Chapter
X-ray reflectometry XRR Density, surface and interface roughness, 2
layer thickness
Scanning electron microscopy SEM Surface topology 1213
Energy dispersive X-ray spectroscopy Atomic composition
2
EDX
Scanning probe microscopy Surface profile, Power spectral density, 11. 14
surface roughness ’
Transmission electron microscopy TEM | Film Morphology ) 13

as a source of side information in optical characterization focused on other spectral
regions, it is often tackled as a non-optical technique.

Table 2.2 summarizes important classes of non-optical coating characterization
techniques, with relevance to the topic of this book.

As an example for the value of non-optical side information, Fig. 2.2 shows the
cross-sectional transmission electron microscopic (TEM) image of an approximately
200 nm thick zirconium oxide thin film [2]. Note that the morphology of that real film
is quite different from the idealized picture initially developed in Fig. 1.1. In Fig. 2.2,
one can directly recognize small elongated pores in the film (these are the bright
features, the solid fraction appears grey). These pores do not only result in a reduction
of the mean density of the film, but also cause certain surface roughness (Chap. 14) as
well as a gradient in the refractive index (Chap. 10). Such side information is utmost
important in coating characterization practice, because it is extremely helpful for the
correct interpretation of the measured optical spectra. Therefore, spectrophotometric
characterization always benefits from accompanying non-optical characterization.
We will return to this later in Sect. 2.3.
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Fig. 2.2 TEM cross
sectional image of a porous
zirconium oxide thin film.
The pores can be well
identified as elongated bright
structures. Left: substrate
side. The image is courtesy
of Johannes Biskupek and
Ute Kaiser, Ulm University
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2.2 Optical Characterization Based on Intensity
Measurements

We will proceed with a characterization example based on spectrophotometric mea-
surements. In this case, it is the intensity of the light that has to be measured and
discussed in order to gain information on the sample properties. The intensity / of
the light is defined as the amount of light energy penetrating a unit surface area per
unit time interval. In the case that the electric field of the wave is written in the
complex notation according to (2.1), the expression for the light intensity in ST units
is obtained as given in (2.2) [1, 3, 4]

=2 |E,? 2.2)
CHo

Note that in the real notation (compare (1.1)), we have E,.(t,r) =
Eo eqi cos (wt — kr + §p), and the expression for the intensity changes to

n

- m |E0,real|2 (22&)

The transmittance T and reflectance R of the light are defined through the directed
transmitted (/1) or specularly reflected (/) light intensities, divided by the intensity
of the incident light (/g):

I
T=-2"
Ig
I
R=2 (2.3)
Ig

As soon as the thin film has been prepared on a transparent substrate, the spectrally
resolved measurement of 7" and R (at any chosen incidence angle ¢ and any required
polarization state of the incident light) appears as a widely used straightforward
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Fig. 2.3 Principle scheme of a double beam dispersive spectrophotometer; (LS) light source, (MC)
monochromator, (CH) chopper, (SC) sample compartment, (D) detector, (A) amplifier

characterization tool (Chaps. 7 and 8). Alternatively, spectrally resolved ellipsometric
measurements become more and more frequently used in coating characterization
practice (Chaps. 9 and 10).

Itis arelative advantage of spectrophotometry, that the measurement of both 7 and
R under rather identical conditions gives direct access to the optical loss L, which
is composed from total scatter 7S and absorptance A. Thus, we find from energy
conservation:

1-T—-R=L=TS+A (2.4)

Details concerning sophisticated measurements of 7', R, A, and TS form the content
of the later book Chaps. 8 and 14—16. Let us mention here that measurements of the
transmittance are most easily accessible, because transmission spectrophotometers
belong to the commercially available standard equipment in many labs today. The
construction principle of a typical dispersive spectrophotometer is shown in Fig. 2.3.

For many spectrophotometers, suitable specular reflectance accessories are
optionally available, so that the measurement of 7 and R is in most cases acces-
sible. From (2.4), the full optical loss may be determined straightforwardly.

Discrimination between absorption and scatter losses needs additional effort. Nev-
ertheless, some indications of surface scatter may already be drawn from the 7-and
R-spectra: If the first surface of a dielectric sample is rough, both the directed trans-
mittance and the specular reflectance gradually decrease down to zero with increasing
frequency. Absorption, on the contrary, tends to show more complicated frequency
behaviour (absorption lines, absorption edges). Moreover, absorption in a smooth
sample suppresses the transmittance, while the reflectance remains finite because of
the Fresnel reflection at the first sample surface.

In the case of small optical losses (typically below 0.01 or 1%), the application
of (2.4) is no more suitable for loss determination because of the inaccuracies in 7-
and R-measurements. It is then preferred to measure scatter and absorptance directly.
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Scatter losses are usually measured by means of integrating spheres, and the state of
the art in the measurement and interpretation of light scattering will form the topic
of Chap. 14.

The accurate measurement of smallest absorption losses is based on the principle,
that any energy portion initially accumulated in the sample as the result of light
absorption must either enhance the sample temperature or leave the sample in order
to re-establish thermodynamic equilibrium conditions. So that the idea is to make
use of energy relaxation processes in order to detect the amount of absorbed light
intensity. In Chap. 15, absorption measurements will be discussed in detail.

2.3 Characterization Example: Interplay Between Optical
and Non-optical Methods

2.3.1 Optical Constants

We will now exemplify the interplay between spectrophotometry and selected non-
optical characterization techniques in application to porous zirconia thin films, such
as shown in Fig. 2.2. Let it be the task to estimate the packing density or alternatively
the degree of porosity in such a film. What we will present here is a rather condensed
version of a treatment that is explained in full detail in [2]. In principle contrast to [2],
we will emphasize the interaction between optical and non-optical characterization
methods, instead of emphasizing the interplay between deposition parameters and
layer properties.

In the course of optical thin film characterization, the first step may be to fit
experimental transmission and reflection spectra such as shown in Fig. 2.4 (left) in
order to obtain the linear optical constants n and k as shown in Fig. 2.4 (right).

Figure 2.4 presents experimental spectra which stem from a real characteriza-
tion experiment. The zirconium oxide thin films have been prepared by plasma ion
assisted electron beam evaporation on two different substrates, namely fused silica
and both-side polished silicon wafers [5]. (Near) normal incidence VIS/UV T- and
R-spectra of samples deposited on fused silica have been measured with a dispersive
spectrophotometer. In addition, the MIR 7- and R-spectra of the samples on silicon
have been recorded by means of an FTIR spectrometer. A representative set of such
spectra is shown in Fig. 2.4 on left.

This is a typical experimental input a researcher might have in order to perform an
optical characterization of the film(s). Assuming for simplicity that the films optical
constants do not depend on the substrate (that is a severe simplification!), and that
there are no prominent spectral features in the films optical response in the NIR
(a rather feasible assumption), the optical constants of our zirconia samples may be
determined by means of a spectra fitting procedure assuming a multi oscillator model
for describing the dispersion of the optical constants [1]. As a result of the fit in terms
of the LCalc software [6], we obtain the optical constants as shown in Fig. 2.4 on
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Fig. 2.4 Measured spectra and optical constants of zirconia (ZrO,) films: left on top: 7- and R-
spectra of a film deposited on fused silica; left on bottom: the same as deposited on a silicon wafer;
right on top: refractive index n, right on bottom: Extinction coefficient k

right, and a film thickness of approximately 240 nm. Let us note at this point that the
oscillator model provides a robust but sometimes inconvenient tool for modelling
the dispersion of optical constants of solids, some more refined dispersion models
such as the Universal Dispersion Model UDM or beta distributed oscillator model
(B_do model) will be introduced and discussed in the Chaps. 3, 7 and 8 of this book.

The obtained optical constants show a rather typical behaviour. The extinction
coefficient reveals a broad transparency region, where the refractive index shows
normal dispersion. In the UV, the extinction increases because of the optical excitation
of valence electrons, which results in anomalous dispersion in the refractive index.

The absorption feature in the MIR is of obvious extrinsic nature. As a particular
conclusion from the TEM image shown in Fig. 2.2, it makes sense to tackle the real
film as a binary mixture, composed from a solid and a pore fraction. Stored in normal
ambient, the pores are expected to be filled with water, and indeed, a comparison
of the extinction shown in Fig. 2.4 with the optical constants of water (Fig. 2.5)
[7] suggests, that there is a water contribution to the optical response of the real
film. Clearly, the binary mixture model is the utmost simplest model assumption,
because neither the possible co-existence of different solid phases nor a possibly
different filling state of the pores can be taken into account explicitly this way. But
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this simplest model will give access to understanding major features in the behavior
of the coatings.

So that as a working hypothesis, we will postulate that the optical constants as
shown in Fig. 2.5 represent the response of a mixture coating, built up from a solid
and a pore fractions. It is therefore worth having a look on frequently applied mixing
models.

2.3.2 Relation of Optical Constants to Porosity: Mixing
Models

Let us start from the general mixing formula [8]:

(Eefr — €n) . Z (81 — &n) (2.5)
gh

en + (&epy — n)L +(ej — &)L

Here L is the so-called depolarization factor, which depends on the shape and ori-
entation of the inclusions. p; is the volume filling factor of the j-th type of inclusion
with dielectric function ¢;, and ¢, being the dielectric function of the material which
is supposed to act as the host for the inclusions. &5 denotes the effective dielectric
function of the mixture [1, 8]. From the effective dielectric function, the effective
optical constants n.5 and k. are calculated in the usual way by means of (2.6):

Nef +ikerr = \f€eff (2.6)

When regarding the real film shown in Fig. 2.2 as a mixture of pores and a solid
fraction, (2.5) provides a vehicle for understanding the impact of pores on the films
optical constants in a quantitative manner.
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For spherical inclusions, L = 1/3. Note that ¢;, = 1 results in the Lorentz—Lorenz
mixing approach, while for ¢, = &y, from (2.5) the Bruggeman approach (also called
EMT = Effective Medium Theory or EMA = effective medium approximation) is
obtained. In the case that one of the mixing partners itself acts as the host medium
(guest-host-system), we arrive at the Maxwell Garnett approach.

Note that physically reasonable values of L are confined by the bounds L = 0
and L = 1. Regardless of the choice of ¢, in these cases, (2.5) results in the simpler
relationships

L:O:}geff:ZpJEJ (27)
J

L=1=¢e}, =Y pje;" (2.8)
J

In the case of a binary mixture with real and positive dielectric functions, (2.7) and
(2.8) form the Wiener bounds to the dielectric function of the binary mixture.

On the other hand, expressions (2.7) and (2.8) may be regarded as the limiting
cases of a class of more empirically formulated mixing models, as described by (2.9):

b= "pieli (—1=p<1 (2.9)
J

Equation (2.9) is a general writing of the Lichtenecker mixing formula [9], for
B = 1 we again obtain (2.7) and (2.8). 8 = %2 corresponds to a mixing model
where the refractive indices of the mixing partners are linearly superimposed; such
an approach has proven useful in the design of rugate filters built up from mixtures
of oxide coatings [10]. For 8 = 1/3, (2.9) results in the Looyenga mixing formula,
which may be exactly derived for isotropic inclusions and the assumption of only
small differences between the individual values of ¢; [11].

2.3.3 Application to a Porous Film

When assuming a columnar film structure built up from free-standing cylinders,
the mixing model of Bragg and Pippard may be a good choice for modelling the
complex index of refraction 7 of the mixture. This model is obtained from (2.5)
when considering a binary mixture where the pore fraction forms the host medium,
and the solid fraction the inclusion (guest). In films with columnar structure, it is
reasonable setting L = 2. Then from (2.5) we obtain

A2 (1 - px)ﬁé + (1 + ps)ﬁgﬁ%
(1 + p)i} + (1 — po)nz

(2.10)
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Here, p; denotes the volume filling factor of the solid fraction (or packing density),
while 7, is the complex refractive index of the solid fraction. 7, is the complex
refractive index of the pore or void fraction, the corresponding porosity is 1-p.
Knowledge of 7, and 71, thus allows determining the packing density from measured
values of the complex refractive index of the real film, hence it provides access to
information about the microstructure of the film.

We will present three different optical approaches for estimating the porosity:

(a) Estimation of the packing density from the refractive index in the visible
spectral region

In this case, all optical constants may be regarded as real, and the packing density
may be directly determined from inverting (2.10):

_ (n% — nz)(ni + nf)
~ (n2 — n2)(n2 +n?)

@2.11)

s

When n was determined at atmosphere (n = ng;), it is reasonable assuming that the
pores are filled with water, i.e. n, = 1.33. As an approximation for n,, one can take
the refractive index of a rather dense film.

(b) Estimation of the packing density from the Thermal and Vacuum spectral
Shift

Generally, when a porous coating is stored in atmospheric conditions, after a certain
time most of its pores are filled with water. Shift measurements [12] may be used to
judge this amount of water. The basic idea of our shift measurements is to compare the
transmission spectrum of a sample measured first in atmospheric conditions at room
temperature with that measured after evacuation of the sample chamber in vacuum
at 100 °C. Figure 2.6 shows the result of such a shift measurement performed with
a zirconia film on fused silica. For details of the measurement equipment, the reader
is referred to Chap. 8.

Both water migration and sample heating cause a change in the coatings optical
thickness. This may be quantified in terms of the shift of the wavelength X, of a
selected interference structure in the normal incidence spectrum according to:

Shifl = A(nh) % 100% = )\m,vacuum,100°C - )‘m,atmosphere.roomzemperature % 100%
)‘m,atmasphere,roomtemperalure
An Ah
= — % 100% + v * 100% (2.12)
n

Here An is the change in refractive index mainly caused by water migration from
the coating. When further setting Ah/h*100% =~ 0.2% in order to account for the
thermal expansion, we find the film refractive index in vacuum conditions (at 100 °C)
Nyqe according to:

shift — 0.2%) 013

Ryac = Natm + AN = Nggm (1 + 100%
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Fig. 2.6 Shift measurement: 1.00 - -
transmittance of a zirconia
film at room temperature at T
atmosphere (solid line), and 0.95
at 100 °C in vacuum (dashed
line)
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Nam 18 the refractive index as determined in atmosphere at room temperature. In fact
we assume, that during the short evacuation time relevant for the shift measurement,
not all the water will leave the coating. Instead, it may be only a part of the pores
which lose their water, and we will call these pores for simplicity the “larger pores”.
Other pores remain filled with water, and we well call them the “smaller pores”. The
solid fraction of the film and the smaller pores thus form a sub-system that practically
does not change its refractive index ny during the shift measurement.
In terms of (2.10) and (2.13), the following expression is obtained for ny:

2 _
ng =

2 2 2 2 2 2
(nv — 1)(nutmnvac — nv) + (n?} - 1)(natmn\%ac — nlz,) n2
2(n2n2,  —n2 22t — n2 v

(nvnvac natm) (nvnvac natm)

n,=1.33
(2.14)

We then find for the “large pores” (compare (2.11)):

2 2 2 2
v natm)(nv + 110)

2 2
(n?2 —ng)(n2 +ng,,)

L=

_ L a- n2, (1 +n3)
n,=1.33 (1 - n%)(l + n\zzuc)

(n

(2.15)

P’large pores” =

According to (2.11), the subsystem formed from the solid fraction and the smaller
pores has a packing density given by:

(n% — n%)(ng + nf)

(n2 —n2)(n2 + n(z))

(2.16)

Psubsystem =

n,=1.33

So that for the full packing density p, as defined through (2.10) or (2.11) we find:

Ps = (1 — Plarge pores”)psubsystem (217)
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Finally we calculate the volume factor corresponding to the fraction of “smaller
pores” from (2.15) and (2.17):

P’small pores” = 1 - P’large pores” — PDs = (1 — P’large pares”)(l - psubsystem) (218)

In our terminology, the value of the combined discussion of shift and refractive index
is in the possibility to discriminate between rather large and rather small pores. Of
course, the full porosity is:

P pores” = P”small pores” t D"large pores” (2.19)

(c) Estimation of the water content from Infrared Spectroscopy

Water shows characteristic absorption bands in the infrared, and we will focus on the
features caused by O-H stretching vibrations around the wavenumber of 3400 cm™!.
From the infrared spectra, we will therefore estimate the water content in the films
again in terms of (2.10), but now making use of the imaginary part of the correspond-
ing optical constants. In this case, we explore the pronounced absorption structure
which is shown in Fig. 2.4 right on bottom in the MIR spectral region.

The estimation of the water content is then based on an integral approach according
to [12]:

V2

PH,0,FTIR X /”(V)Ol(v)d‘) (2.20)

Vi

with a = 4mvk (compare (1.8)) and v; = 2650 cm™!; v; = 4000 cm™!. The method
is calibrated by simulations in terms of (2.10). That leads to the following picture
for the integrand in relation (2.20) (Fig. 2.7):

Fig. 2.7 Simulation: the < 18000 — T T T
product n(v)a(v) of the g

densest zirconia film (the §

line closest to the bottom of = 13500

the figure) intermixed with =

optical constants of water <

(increment 5%) 9000

4500
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Fig. 2.8 Refractive index and shift of zirconia films, deposited at different levels of assistance

After having performed that calibration, the water content in the film may be
estimated from experimental optical constants according to (2.20).

Because of possible other contributions to the MIR absorption (any OH-, NH-, or
CHe-infrared active vibrations originating from plenty of possible contaminations),
our FTIR treatment rather serves as an estimation of the upper limit of the water con-
tent. Hence, py,0. rrir > 1 — ps when being determined from (2.20) at atmospheric
conditions.

Results

Figure 2.8 presents experimental results on the refractive index at a wavelength of
400 nm, as well as the measured shift. On the abscissa, an assistance parameter
AP is used for quantifying the effect of plasma assistance during film growth. It is
calculated as the square root of the BIAS voltage [5], divided by the average growth
rate [12].

From Fig. 2.8 it is evident, that both refractive index and shift are strongly influ-
enced by the level of assistance. Strongly assisted films appear to have highest refrac-
tive indices and a negligible shift; hence we expect that their porosity is lowest. The
application of our theoretical apparatus leads to the following results for the porosity
(Fig. 2.9):

We notice that both the treatments (a) and (b) (Fig. 2.9 on left) deliver a dependence
of the full porosity on the assistance parameter that is in good qualitative agreement
to what is obtained from method c) (FTIR). Nevertheless, as expected, the FTIR
“porosity” values are found to be larger than the porosity values obtained from the
VIS refractive indices. This is not only caused by the mentioned sensitivity of method
¢) to different kinds of contaminations; in fact a more refined treatment shows that the
samples on silicon (used for the FTIR investigations) indeed have another (in most
cases a higher) porosity than those on fused silica [2]. So that our initial assumption
of optical film constants that do not depend on the substrate was helpful for getting
a first understanding of rough trends concerning the relation between assistance and
porosity; a finer quantitative treatment would require discussing samples on fused
silica and silicon separately. It turns out that optical thin film characterization is



24 0. Stenzel

o
T T T T T ~ T T T T T
> 03f { Lo3rg . |
2 gl .
S a Q 4,
Q 0.2+ . 0,2+ E
“ A
A AA A AA A
0.1+ A A g 0,1r A .
2 Aﬁ AAA A A 4
IQA Apa A LAA
0.0k ‘ ‘ ' "N 0,0k | ‘ Y
0 10 20 30 40 0 10 20 30 40
AP %%(nms) AP ®%(nmis)

Fig. 2.9 Porosity as obtained from optical measurements; on left: full triangles: full porosity from
(2.11) or (2.19), open triangles: amount of small pores according to (2.18); on right: pH20 FTIR as
calculated from (2.20)

often an iterative procedure: simplest initial models reveal robust general trends,
while remaining inconsistencies indicate the necessity to use more refined models at
a later stage in order to understand the nature of quantitative details.

What is most astonishing, however, is the rather large amount of pores that are
too small to contribute to the shift measurement or contain contaminations with a
rather low electronic polarizability that are chemically bound to the zirconia network
(Fig. 2.9 on left, open triangles). From the FTIR data, but also from the deposition
history of the coatings, one should expect that these small pores contain some kind
of OH groups, but our optical measurements cannot validate this assumption. This
is the point where additional, non-optical characterization tools become useful. In
our case it turned out to be helpful investigating the stoichiometry of the samples by
Energy Dispersive X-ray spectroscopy EDX [13].

Stoichiometric zirconia films contain 66.7at.% oxygen. But oxygen or water
molecules incorporated into the pores, as well as chemically bound hydroxyl groups
will result in deviations of the oxygen content from the value of 66.7at.%. And this
is really observed (Fig. 2.10). Once EDX measurements are usually performed in
vacuum conditions, water molecules contained in large pores are not expected to
contribute to the EDX signal. The excess oxygen found by EDX (Fig. 2.10) should
therefore stem from smaller pores or diverse chemically bound contaminations.

We note that an increase in AP results in a reduction in that excess oxygen con-
tribution (Fig. 2.10), in good accordance to the results calculated from the shift
measurements as shown in Fig. 2.9 (open triangles). Note that excess oxygen in zir-
conia films has been reported in earlier studies too, compare for example [14], where
the oxygen concentration has been determined by Rutherford backscattering.

We come to the result, that all the data concerning optical constants, shift, as well
as the oxygen concentration reveal a consistent picture of the water content in the
films and their packing density.

The later statement may be validated by an independent measurement as well. In
that connection, Fig. 2.11 shows the packing density of zirconia films as determined
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by (2.11) opposed to the films mass density p as determined by X-Ray-Reflectometry
XRR.

From Fig. 2.11 we recognize the excellent agreement between the mass den-
sity and the packing density as obtained from the refractive index in the VIS. The
experimental dependence even converges to the crystalline value relevant for the
monoclinic zirconia crystal phase.

Of course, the distinction between small and large pores as introduced in our
treatment is of relative nature. It is clearly the duration of the shift measurement
that does matter when discriminating between “large” and “small” pores: When
waiting long enough, even smaller pores may be evacuated when the sample is held
in vacuum conditions. A few quantitative considerations on this subject will define
the content of the next section.
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Fig. 2.12 Model of a porous coating

(d) Discussion: A simple model of water migration in a porous coating

Let us now develop a simple model idea on the water migration kinetics in our porous
film.

The general idea of the proposed model is schematically presented in Fig. 2.12.
As before, we postulate co-existence of different kinds of pores in the film, namely
large elongated open pores and small, rather isolated and (nearly) closed pores. In
principle, both can be filled with water, while the filling rates k are quite different for
the different types of pores. Indeed, let us make the following model assumptions
for the filling kinetics:

(1) “Large pores” interchange water directly with the ambient with a filling or
evacuation rate «; (solid arrows in Fig. 2.12). We apply this terminus predom-
inantly to elongated cylindrical pores which typically have diameters in the
region 1-3 nm and are open to the film surface.

(i) ““Small pores” interchange water with large pores with a filling or evacuation
rate «y; (dashed arrows in Fig. 2.12).

(iii) While «, appears to be determined by the interplay of capillary and liquid
friction forces [15, 16] within the rather cylindrical large pores, «yj is rather
defined by diffusion of O, H, OH, or H,O species through a defected atomic
network. We therefore make the reasonable assumption x| >> k.

Let us assume that the sample was held at atmosphere for a time long enough so
that all pores are essentially filled with water. Let y express the full water content
in the film, y; the degree of filling of the large pores, and y, that of the small pores.
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Tab.2.3 Water content in pores at different evacuation times

Time regime | Condition Water content y(¢) according to (2.22)
0 =0 ) = D"small pores” + P"large pores”

I << KII ) ~ P7small pores” + P"large pores”

I KII <<t<< (P”largepores”KH)_l y(t) =~ P small pores”

I (p”largepores”KH)il <<t y@)—0

Let us further assume, that at the moment ¢ = 0, the film is brought into vacuum.
So the surrounding is practically free of water, which is controlled by an ambient
parameter y, that is set equal to zero. Hence, the evacuation kinetics of the film may
be described by the following system of rate equations:

dyl dys
p”largepores”? = P’large pores”KJ_(yO - yl) - p”smallpores”w
dys
dt = p”largepores”KII(yl —¥s)
Y=0yt=0=1Ly@=0=1 (2.21)

Here, priarge pores” 18 the volume fraction occupied by the large pores, and prgmal pores”
that of the small pores. As a solution of (2.21), the full amount of water y(¢) is then
obtained as given in (2.22) (compare Chap. 8):

(&) = prsman pores”ys(t) + p”la.rgepores”yl(t)

Kt

— P large pores” K11t —KL
€ eep + Drlarge pores” €

X Prsmall pores (222)
Inamoderately porous layer, large rather cylindrical pores are likely to exist (compare
Figs. 1.2 and 2.2). To our experience, in suchlike coatings KII is typically of the order
of a few minutes, while (Priarge pores” k)~ ! corresponds to several ours or even days.
Therefore, a typical shift measurement rather detects effects that are connected to the
evacuation of the ,]large open pores*. Some more detailed information on the output
of (2.22) in different time regimes is condensed in Table 2.3.

FTIR and refractive index measurements of samples that have been stored at atmo-
sphere correspond to measurements in the time regime 0O or I, hence they give access
to the full porosity p = prsmati pores” + Prlarge pores” (Fig. 2.9). Our shift measurements
detect a change in water content between the time regimes 0 and II, so that it is prac-
tically the volume fraction of large pores that is quantified by the shift measurement.
The comparison with the full porosity allows then estimating the amount of small
pores (Fig. 2.9. on left). Our EDX measurements present a snapshot of the oxygen
concentration in regime I, so it is the fraction of smaller pores that is accessible
this way (Fig. 2.10). Time regime III is rather responsible for remaining storage and
aging effects.
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Fig. 2.13 Relation of the discussed characterization tools to the porosity of the zirconia films

2.4 Conclusions

Before concluding this chapter let us remark, that the combination of optical spec-
troscopy (VIS, MIR) with EDX and XRR reveals a consistent picture of the porosity
of zirconia films with a microstructure that is far from the ideal homogeneous and
isotropic layer model. In summarizing, Fig. 2.13 shows the interaction of the indi-
vidual characterization tools as exemplified in this chapter in a schematic manner.

Figure 2.13 demonstrates the relative information obtained from the different
characterization techniques. While the VIS refractive index and the mass density
obtained by XRR may give, in principle, access to the full porosity, the FTIR method
detects only those pores which contain any kind of hydroxyl groups. Shift measure-
ments allow discriminating between pores which allow water migration (large or
open pores) and pores which do not (small or closed pores). EDX as performed in
vacuum conditions gives a rough measure of any hydroxyl groups that do not migrate
during evacuation. So neither of the methods may be called a favorite one, it is in
fact their combination which allows estimating amount and kind of porosity of a real
sample.

Acknowledgements The author wants to express his gratitude to the PhD student Christian Franke,
who performed a significant amount of porosity calculations, and prepared Fig. 2.7 in the course of
his PhD thesis work.
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Chapter 3

Universal Dispersion Model for
Characterization of Thin Films Over Wide
Spectral Range

Daniel Franta, Jifi Vohanka and Martin Cermak

Abstract The universal dispersion model is a collection of dispersion models (con-
tributions to the dielectric response) describing individual elementary excitation in
solids. All contributions presented in this chapter satisfy the basic conditions that
follow from the theory of dispersion (time reversal symmetry, Kramers—Kronig con-
sistency and finite sum rule integral). The individual contributions are presented in
an unified formalism. In this formalism the spectral distributions of the contributions
are parameterized using dispersion functions normalized with respect to the sum rule.
These normalized dispersion functions must be multiplied by the transition strengths
parameters which can be related to the density of charged particles. The separation
of contributions into the transitions strengths and normalized spectral distributions
is beneficial since it allows us to elegantly introduce the temperature dependencies
into these models.

3.1 Introduction

The dispersion models are used to describe dielectric response of materials. From
the theory of dispersion it follows that the dielectric response must fulfill three fun-
damental conditions [1-7] and one supplementary condition. For isotropic materials
without spatial dispersion in thermodynamic equilibrium these conditions can be
written for the dielectric function as follows:

1. Time-reversal symmetry
é) =& (~w), 3.1

where the star denotes the complex conjugation. This condition ensures that the
response function is a real function in time domain.
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2. Kramers—Kronig (KK) relations

1 [ &(®)

;,ooéj—a)

(@) =1+ de | (3.2)

where the subscripts ‘r’ and ‘i’ denote the real and imaginary parts and the integral
must be understood as the Cauchy principal value. The condition (3.1) allows us
to write the KK relation (3.2) as

2 [* &)

8;(&)):]—1—;0 £ o

dg . (3.3)

The KK relations follow from the causality of the response function.
3. Sum rule

wej(w)ydw = —w?, 3.4)
/ =

where the constant wj, is called the plasma frequency and it is related to the
electron density N, as follows [7]

) ENU

@p

(3.5)
€M

The dimensionless correction factor U compensates the influence of the positive
nuclei. If the ratio of nucleon number to proton number is assumed be 2:1 then
the theoretical value of this factor is U = 1.000274 [7-11]. The sum rule can
be derived with the help of the superconvergence theorem, assuming that at high
frequencies, the dielectric function is the same for all materials as

w2

Bo)~1——. (3.6)
W
The term plasma frequency is motivated by the equation above since it corresponds
to the model of sparse noninteracting plasma. The sum rule can be also derived
on the basis of either classical or quantum laws of motion.
4. Dissipative system condition

glw)>0 for w>0. (3.7)

This condition corresponds to systems in thermodynamic equilibrium.

This chapter will discuss only models of linear dielectric response of nonmagnetic
media without spatial dispersion, which satisfy the three fundamental conditions.
In principle the tensor of dielectric functions should be used instead of the scalar
dielectric function. For simplicity, only results for the scalar dielectric function will
be presented, i.e. for isotropic materials. It is, however, not difficult to generalize
these models to anisotropic media.



3 Universal Dispersion Model for Characterization ... 33

In this chapter, the collection of models suitable for describing various elemen-
tary excitations will be presented. A combination of these models can be used for
the description of complete dielectric response of a wide range of materials in the
spectral range form far IR to X-ray. Therefore, the collection of these models will be
further called the universal dispersion model (UDM). The emphasis will be placed on
models for which the dielectric function can be calculated analytically. Although this
chapter aims to present the dispersion models from the practical point of view, basic
knowledge of condensed matter physics will be necessary in order to understand the
principles behind the presented models. Thus, in this chapter, the isotropic version
of the UDM will be presented.

The Kramers—Kronig relations (3.2) and (3.3) allow us to calculate the real part of
the dielectric function if the imaginary part is known. It is even possible to understand
these relations in the sense of generalized dielectric functions, i.e. the imaginary
part of the dielectric function can contain delta functions or discontinuities. The
situation is more complicated for the inverse Kramers—Kronig relation expressing
the imaginary part of the dielectric function. The general form of this Kramers—
Kronig relation is as follows

ooy = L ][°° ) 1y, limeoe® 48)
T) o £€—w w
o 20 ™ 1 li
@) = 22 ergé)—z dé + img o £&i(€) (3.9)
TJo &°—w w

The second term in (3.2) and the first term in (3.8) represent the Hilbert transform
and the inverse Hilbert transform of the imaginary and real parts of the susceptibility
X (@) = &(w) — 1. The second term in (3.8) is zero for dielectrics, but it is nonzero
for conducting materials. Therefore, for conducting materials it is not possible to
calculate the imaginary part of the susceptibility function simply as the inverse Hilbert
transform of its real part [6]. This problem can be avoided if the Kramers—Kronig
relations are written for the quantity proportional to wx (@) (e.g. complex optical
conductivity 6 (w) = —iweg ¥ (w)). For such quantity the Kramers—Kronig relations
are given only by the Hilbert transforms.

3.2 Theoretical Background

3.2.1 Classical Model

In the beginning, there was the classical model, and the classical model was used
for modeling of everything. Within the frame of the classical model, the medium is
described as a system of massive charged particles forming quasi-neutral environ-
ment. Two types of forces are considered, the restoring forces which act to return the
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particles to the equilibrium positions and damping forces slowing down the particles.
Itis not necessary to consider all the particles forming the system. Since identical par-
ticles in equivalent configurations exhibit identical behavior, it is possible to consider
an equivalently behaving system consisting of m nonequivalent coupled particles.
Taking into account the above considerations (in the isotropic case) the problem
leads to m linear ordinary differential equations which can be easily solved [12]. The
dielectric function of such a system can be written in a closed matrix form

8 =1+0,[S — o’ 1-i0G] '@, , (3.10)

where the column vector w, contains plasma frequencies. These are proportional to
square roots of the effective densities of individual modes:

T
w, = (a)p,lv Wp,2, " awp,m)» 3.11)
where the symbol T denotes transposition. The matrix S is diagonal with squares

of central frequencies on the diagonal (zero frequencies for the description of free
carriers are possible):

a)g’l 0 0
0 w?,--- 0

s=| . 7 |, (3.12)
0O 0 - a)gym

I denotes the unit matrix and G is real symmetric positive definite matrix

Y11 Y12 © Yim
Y12 Y22 © Vom

G=| . . . . , (3.13)
Yim YV2m *** Ymm

where yj; are the damping parameters. The positive definiteness of the matrix G
ensures that system is dissipative. The matrix G can be conveniently parameterized
using Cholesky decomposition as

G =BB", (3.14)

where B is a lower triangular matrix with positive entries on the diagonal. The
classical model contains 3 parameters for each mode determining the frequency,
strength and damping plus additional m(m — 1)/2 parameters determining the
coupling between modes, therefore, the total number of dispersion parameters is
3m+m@m —1)/2.

The dielectric response (3.10) is a general result for the system of damped har-
monic oscillators (DHO) with coupled modes. In practice, it is often possible to
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assume that the oscillators are independent. If this is the case, the matrix G is diag-
onal and the resulting model is known as the Drude-Lorentz model. The dielectric
function of the Drude—Lorentz model is then given as [13]

Bw) =1+ Z— (3.15)

—w? — iy

where yx = Y. The terms for which w.; = 0 corresponds to the Drude model
describing the dielectric response of free charges. The terms with nonzero w,  cor-
respond to the Lorentz model describing dielectric response of bound charges.

The classical model is derived from equations of motion which ensures that it
fulfills the time reversal symmetry and it is KK consistent. From the asymptotic
behavior it is possible to prove that the sum rule integral depends only on the plasma
frequency parameters as

o0 7T 5
/0 w & (w) do = E;wp‘k. (3.16)

The classical model presented above is expressed in the basis of eigenmode vibra-
tions, i.€. a)g, « describes the strength of the vibration mode, but the sum rule takes
the same form also in the basis of individual particles. Thus, the sum of the plasma
frequencies over all the vibration modes is

Za)pk - (3.17)

where wy, is the plasma frequency related to the density of the particles in the system
by (3.5).

The classical model is universal in the sense that it can be used to model a wide
range of absorption phenomena in solids. For some phenomena the accuracy of the
classical model is sufficient but for many others, it is not possible to achieve the
desired accuracy with a reasonable number of terms. This is not surprising since a
number of quantum mechanical effects cannot be described by models based purely
on classical mechanics (e. g. bandgap). Therefore, one should look for other models
which would be more appropriate for the description of such phenomena.

3.2.2 Models Based on Quantum Mechanics

In principle it is possible to describe solids as many body systems and use the laws
of quantum mechanics to derive the dielectric response. This approach, known as ab
initio calculations, is very important for the study of the properties of solids since
they does not need any experimental input. It is, however, numerically intensive and
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moreover, the current approximate approaches are not accurate or fast enough to
be utilized as dispersion models in practice (see Chap.4 for details). The practical
dispersion models are based on the results known from the quantum mechanical
theory but apart from that they also require some empirical knowledge.

A good starting point for expressing the dielectric function is using the Fermi
golden rule (or alternatively Kubo formula) [ 10, 13—16] for an open quantum mechan-
ical system at temperature 7. The real and imaginary parts of the dielectric function
in the frame of the dipole approximation are then expressed as

[#i

A E_f — E,’
&(E) =1+ v Zf P(T)I(f1dyli))?

Ty (3.18)

fH#i
si(E) = eolv Y P S1d i) [8(Ef — Ei — E) = 8(Ei — Ef — E)]
if

(3.19)

where the summation runs over all possible initial states |i) and final states | f). The
symbol V denotes the volume of the system and the symbol E denotes the photon
energy, which is related to frequency as E = hw. The symbols E; and E; are the
initial and final state energies of the system. The interaction of light with the quantum
system is represented by stimulated absorption or emission of the photons with
simultaneous transitions of the system from the initial to the final state. In (3.19) the
absorption and emission processes are represented by delta functions in the imaginary
part. The use of the delta functions is correct in the approximation of infinite lifetime
of the states. The finite lifetime of the states leads to fluctuation of the energies of
the states and the delta functions must be replaced by functions with finite width.
This will be discussed in detail in Sect. 3.2.3. The real part (3.18) is calculated using
the KK relation (3.2) which leads to the poles. The signs of these functions depend
on whether an absorption process is taking place E; < E; or an emission process
is taking place E; > E ;. The probability of the transition is given by the square of
the size of dipole matrix element { f |3x |i), where dy is the dipole operator along the
coordinate x parallel to the external electric field

de =Y q;%;. (3.20)
J

In the expression above, the summation over j runs over all particles with the charges
q; and position operator % ;. Therefore, for each term in (3.19) representing absorp-
tion process, there is a term representing a reverse emission process with the same
transition probability. These terms have opposite signs but the probability P;(7T") of
finding the system in the initial state |i) is different for the absorption processes
E; < E and for the emission processes E; > E . For this reason, the net contribu-
tion is nonzero. In equilibrium, the system is described by the canonical distribution
with the probability of finding the system in state |i) given by:


http://dx.doi.org/10.1007/978-3-319-75325-6_4
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Pi(T) = exp Q- E , (3.21)
ke T

with the canonical potential €2 determined from the normalization condition
Q—E
Y=o (7
1 1

Note that for systems in equilibrium, the probability for the absorption process
is higher than for the reverse emission process. Therefore, the contribution to the
imaginary part of the dielectric function in (3.19) is positive for all positive photon
energies E. The condition that the imaginary part of the dielectric function is positive
is the fourth supplementary condition for dissipative systems that must be fulfilled by
dispersion models. In the classical model the fulfillment of this condition is ensured
by the positive definiteness of the matrix G composed of damping coefficients (3.13).

The dipole matrix elements in (3.18) and (3.19) can be rewritten using the current
matrix elements as

”) =1. (3.22)

2 RR(fL )P

[(fld:i)]” = E, - E (3.23)

where fx is the volume integrated current density operator (or simply current opera-
tor [16]) related to the momentum operators of individual particles p, ; as

A qj
Jx = _px j (3.24)

J
The imaginary part of the dielectric function is then expressed as

> &4 (Flli) 2
&(E) = ZP(T)(Ef AL [8(Ef — E; — E) — 8(E; — E; — E)] ,
(3.25)

Since the delta functions ensure that |E; — E;| = E, the factor (Ef — E;? in the
denominator can be written as E2 and placed outside of the sum. Therefore, if we
define the joint density of states (JDOS) function as

hz f#i
J(E) = — Z Pi(T)|(f1jeli)* [8(E; — Ei — E) = 8(E; — E;f — E)]
(3.26)
then the imaginary part of the dielectric function reduces to
J(E
e(E) = 2L (3.27)

E?
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In some cases, the JDOS function is defined without the matrix elements inside the
sum

f#i
JE) =+ Zf: P(T)[8(E; — E; — E) — 8(E; — E; — E)] . (3.28)

This function coincides, up to a constant factor, with the JDOS function (3.26) only if
the matrix elements are independent oni and f. The approximation of constant matrix
elements is commonly used in the case of transitions of the same type occurring in the
narrow energy range. In general, however, the matrix elements cannot be assumed
to be constant.

Apart from the functions ¢;(E) and J(E) it is convenient to also introduce the
function F(E) given as

2 f#
F(E) — h ZP(T)Hf']x'l;' [8(E; — Ei — E)+8(Ei — E; — E)] .
Ey

L

(3.29)

This function will be called the transition strength function and it is related to the
imaginary part of the dielectric function as

E F(E) 3.30
&(E) = ——. (3.30)
Note that, the transition strength function in the frame of the dipole approximation is,
up to the constant factor, equivalent to the real part of the complex optical conductivity
0:(E) = F(E) €g/h. The function F(E) is important because it provides a bridge
between the classical sum rule and the quantum mechanical Thomas—Reiche—Kuhn
(TRK) sum rule [13, 17]. The TRK sum rule can be applied separately to each type
of the charged particles (electrons, different nuclei) existing in the system. The TRK
sum rule further says that the sum of dimensionless oscillator strengths f/} over the
final states f is independent on the initial states i and is equal to the number of
particles of type k in the system:

f#i

— Z (3.31)

In the formula above, V is the volume of the system and N; is the density of the
particles of type k. The oscillator strength can be defined with the help of the matrix
elements of the dipole d,y or current Jxk operators for particles of type k as

2my 2y |(f | Jkli)
k T =kl 1™
fir = o 2(Ef ED|(flduli))* = 2 E—E (3.32)
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where ¢; and my are the charge and mass of the particles of type k, respectively.
Note that the TRK sum rule (3.31) is derived from the general principles of quantum
mechanics and the assumption that the Hamiltonian is a sum of kinetic energy, which
depends only on momentum operators, and the potential energy, which depends only
on position operators. In the frame of the dipole approximation, the TRK sum rule
can be written using of the transition strength function as [7]

o0 FL 2 h 2
/ F(E)dE:Z%(Qk N =T =N, (3.33)
0 P €omy 2 €yme

which is equivalent to the classical sum rule (3.16). The quantity N introduced in
the above equation will be called the total transition strength. In theory, the quantity
N can be determined from the known density of charged particles.

Although the right side of (3.19) is expressed as a sum of delta functions, the
number of energy levels in the system is sufficiently high so that it is possible to
use the continuous JDOS functions. In practice, it is convenient to express the JDOS
function as a sum of contributions corresponding to individual elementary absorption
processes. The JDOS function corresponding to the individual elementary absorption
processes are modeled on the basis of both the theoretical and empirical knowledge.
Although these contributions can be expressed using the transition strength function
or the imaginary part of the dielectric function, this method is always referred to
as parameterization of the JDOS function (PJDOS). It is beneficial to express the
individual contributions using the terms normalized with respect to the sum rule
and the transition strength parameters corresponding to the individual absorption
processes. The total transition strength function is then given as

F(E)=) NF)(E), (3.34)

where the index ¢ distinguishes individual contributions (terms), NV, are the transitions
strengths parameters and F(E) are normalized transition strength functions. The
dispersion parameters of the whole model consist of the transition strength parameters
N; and parameters of the functions FZO(E ) which determine spectral distributions of
individual contributions (e. g. bandgap energy). The dielectric function is calculated
as

2 [ F(x) 0
e(E)=1+Y_ N mopd=lt D N (E), (3.35)
t t

0
&(E)=)Y N, F’éE) =Y Ni& (E). (3.36)
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The expression for the imaginary part follows from (3.30) and the real part is calcu-
lated from the KK relation (3.3). In the adopted formalism, the quantities é?(E ) are
normalized susceptibilities of individual contributions but they will be called normal-
ized contributions to the dielectric function or just normalized dielectric functions.
Note that in the derivation of the above expressions it was assumed that the
eigenstates of the Hamiltonian are known. For the description of specific elementary
excitations of the dielectric response we often utilize the second quantization, i.e.
describing the system using one-particle states and quasiparticles. It should be further
emphasized that the total transition strength N can be expressed on the basis of the real
number of particles in the system but the transition strengths of individual elementary
excitations cannot be used to calculate the densities of particles involved in these
processes. These transition strengths must be understood as strengths corresponding
to the effective number of particles or, alternatively, particles with effective masses
or effective charges must be considered. For example, the transition strength of
valence electron excitations is usually described using the effective number of valence

electrons per atom ., [4]

Nye = % (eh)2

Nanye (3.37)
T €M

where N, is the density of atoms. The transition strength of free carriers is usually
described using the effective mass m*m,

Nie = ———Ny, (3.38)

where Ny is the density of dopants. Finally the transition strength of phonon excita-
tions is usually expressed using the effective charge g*e

_2(geh)?

Npn
T €pmy

Nu, (3.39)

where N, and m, are density and mass of the nuclei.

3.2.3 Broadening

As mentioned above, it is not possible to obtain an exact quantum mechanical solu-
tion for the complex systems encountered in the solid state physics. In practice,
different approximate models are employed for individual elementary excitations.
For example, the approximation of non-interacting particles applied to crystalline
materials often leads to discrete spectrum or discontinuities in the JDOS (or its first
derivative) known as Van Hove singularities [18], which are, however, usually not
observed in the real absorption spectra. In reality, the sharp structures are blurred as
a consequence of different effects neglected in the approximate models. The effects
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that contribute to the blurring (broadening) of the sharp structures in the absorption
spectra are the finite lifetime of the states (temperature dependent, intrinsic for open
systems) or various irregularities in the lattice (usually temperature independent).
An empirical broadening procedure is then used to model the blurring of the sharp
structures [19-30].

In practice, the unbroadened JDOS is determined based on an approximate model
and the broadened dielectric response is then calculated as a convolution of the
function representing this dielectric response with appropriately chosen normalized
broadening function 8(x). Since the broadening procedure is an empirical approach,
it is not evident on which function, representing the dielectric response, should the
broadening procedure be applied. For example, the broadening procedure can be
applied to functions &;(E), F(E) or J(E) [31]:

&(E) = /00 B(E —t)&(t)dt & — broadening, (3.40)

. F (E) .

§(E) = — / B(E —1t) F(t)dt F — broadening, (341
f(E)

= N / B(E —1t)J(t)dt J — broadening, (3.42)

where the tilde denotes the broadened functions. Two one-parametric normalized
distribution functions are used for the broadening, the first being the Gaussian func-

tion
! ( x ) (3.43)
exp| —— 1, .
27 B P 2B?

where B is the broadening parameter representing the root mean square (RMS) value.
The second distribution function is the Lorentzian function

Ba(x) =

B/2

BL(x) =

where the broadening parameter B represents the full width half maximum (FWHM)
value. The Gaussian distribution function is more universal (thanks to central limit
theorem) than the Lorentzian distribution function but the Lorentzian distribution
function often leads to expressions that can be calculated analytically.

It was previously shown that the J-broadening or F-broadening procedure
can give nonzero static conductivity [21, 31] even if the unbroadened dielectric
response had zero static conductivity (F(0) = 0). On the other hand the ¢-broadening
always gives a dielectric response with zero static conductivity [31]. Therefore,
the e-broadening is appropriate for dispersion models of contributions represent-
ing bounded charges (interband electronic transitions, phonon absorption, etc.) and
J-broadening or F-broadening is appropriate for dispersion models of contributions
having nonzero static conductivity (e. g. contributions of free charges or direct elec-
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tronic transitions in 2D graphene sheet). Furthermore, it was shown that only the
e-broadening and F-broadening preserve the sum rule integral [31] and, therefore,
they preserve the normalization if applied to the normalization contributions.

The e-broadening and the F-broadening can be written in a concise form with the
help of the symbol * denoting the operation of convolution as

1
§0=Bxe) and &= E(ﬂ x FO). (3.45)

The KK relation for the real part of the normalized dielectric function can be written
with the help of the Hilbert transform H as [32]

o L0
)(E) = 1][ O G4y = HI(E). (3.46)
)X —E

Since the order of the Hilbert transform and the convolution can be exchanged [31],
the real part of the e-broadened normalized dielectric function can be written as

&' =H[&" = H[B x&] = H[B] x . (3.47)

A similar expression can be derived for the real part of the F-broadened normalized
dielectric function

SR F? —1H[ FO]—1 H[B] * F° 3.48

Both the e-broadened and F-broadened normalized dielectric functions can be writ-
ten very compactly as

- ~ ~ 1 A
B0=fxe) and &= (B F). (3.49)

where the complex function B is defined as
B =HII+ip. (3.50)

The fact that the real part of the broadened dielectric function can be calculated with
the help of only a single integral instead of double integral (convolution followed by
the Hilbert transform) is important if this function is calculated numerically.

The Hilbert transform of the Gaussian distribution function (3.43) is given by

2
H[Bcl(x) = —%D ( \/;B) : 3.51)

where D(x) denotes the Dawson function (integral) [33—35] defined as



3 Universal Dispersion Model for Characterization ... 43

D(x) = exp(—x?) / ’ exp(t?) dr . (3.52)
0

The Dawson function can be efficiently evaluated in numerical calculations. The
Hilbert transform of the Lorentzian distribution function (3.44) is given by

1 by
H =——— . 3.53
B = = 57 (3.53)
The complex Lorentzian broadening function can be elegantly written as
A = ——— (3.54)
L = T YT iB /2" '

The Lorentzian e-broadened dielectric function ﬁL * 8? can be calculated as [30]

E) = —][ 8O 4r where £ — E+iB)2. (3.55)

ox—F

The Lorentzian e-broadening provides a bridge between the quantum and classical
dispersion models. The imaginary part of the normalized dielectric function of a
discrete transition with the energy difference E; in the two-level system is given by

eN(E) = Ei<5(E —E)—8(E+ Er)> . (3.56)

T

The Lorentzian e-broadening of this response function gives

EOE) = H[f) % el = —— ( E—-E  E+E >
1 (E_Er)2+32/4 (E+Er)2+32/4
(3.57)
= et = o ( 1 - : ) . (3.58)
T 2E \(E—E)’+ B4 (E+E) +B/4

which is equivalent to the Lorentz term in the classical model because the real and
imaginary part of the normalized dielectric function (3.15) are expressed as

2 E? — E* 2 BE
ed(E) = = < e(E) = =

, . (359
7 (E? — E?)? + B2E2" 1 m (E2 — E?)? + B2E? (359

The broadened functions (3.57) and (3.58) can be written as (3.59) with the central

energy equal to
E.=,/E?+ B%/4. (3.60)
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Note that that the Lorentz terms corresponding to critically damped (E. = B/2)
or overdamped (E. < B/2) harmonic oscillator cannot be expressed as Lorentzian
e-broadened discrete transitions.

3.3 Dispersion Models of Elementary Excitations

Linear dielectric response corresponds to the transitions of the system between two
states, which are accompanied by absorption or emission of photons. The absorption
(emission) processes involving electron excitation (recombination) are called elec-
tronic transition (absorption) processes. If the phonon occupation numbers are not
changed in the electronic transition processes, they are referred to as direct electronic
transition processes while if the phonon occupation numbers are changed, they are
referred to as indirect electronic transition processes. Phonon absorption (emission)
processes, on the other hand, are those without electron excitation (recombination).
The electronic transitions cover the whole spectral range from zero frequency (photon
energy) up to X-ray. If the Fermi energy lies inside the band of valence electrons or
close to it, the states in this band are partially filled and indirect intraband transitions
are possible. Indirect intraband transitions are referred to as free carrier contribu-
tions. The schematic diagram of the band structure and classification of electronic
transitions is depicted in Fig. 3.1. In the materials with the filled valence band which
is separated from the empty conduction band, both the direct and indirect interband
transitions can exist. The origin of the valence and conduction band is in the splitting
of the partially occupied atomic valence orbital states. The band above the conduction
band which originates from the orbital states above the valence shell is called higher
energy excitation band. The excitations of the valence electrons into these states are
called higher energy excitations (see Fig.3.1). These higher energy excitations can

core valence interband transitions conduction dielectrics
level band band
higher energy
8 excitation band
a
Joe. oS
core valence conduction metals
level band band
intraband higher energy
8 transitions excitation band
a

Fig. 3.1 Schematic diagram of the electronic density of states (DOS) distribution function and
possible interband an intraband transitions in dielectrics and metals
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also be understood as the scattering processes. The orbitals below the valence shell
result in discrete core level states and excitations from these states are called core
electron excitations.

3.3.1 Phonon Absorption

The phonon absorption exhibits different behavior in different types of materials
(crystals vs. disordered, homopolar vs. ionic, etc.). In the following subsections,
several dispersion models describing phonon absorption will be discussed.

3.3.1.1 One-Phonon Absorption in Disordered Materials

From the point of view of vibrational modes, disordered solids can be viewed as a
collection of a very large number of atoms having independent vibrational modes
with the total number of vibrational modes given by the number of degrees of freedom
minus three. In disordered solids the vibrational modes are localized, i.e. the eigen-
vectors describing the amplitudes of to the vibrational modes have non-negligible
values concentrated in blocks corresponding to small volumes in the solid. Each of
these blocks can be viewed as a molecule with a relatively small number of vibra-
tional modes. The transition strength function of such a molecule is given as a sum
of delta functions

Fipn(E) =Y N, [8(E — E,) +8(E+ E,)] . (3.61)
P

where the index p distinguishes individual vibrational modes (peaks in the spectra).
The symbols E, and N, denote the energy and transition strength of individual
modes, respectively. The imaginary part of the dielectric function is then calculated
as (3.30)

N
giiph(E) = 2 : E—” [8(E—E,) —8(E+E)]. (3.62)
P p

This is the same result that one would obtain for non-interacting molecular gases.
For this reason the terminology used in the absorption spectroscopy of gases is often
adopted also in the study of phonon absorption in disordered solids.

The atoms, which are lying outside of the blocks forming the above mentioned
molecules lead to the broadening of the delta functions, forming the absorption
spectra. If the molecules are weakly interacting (which is true for gases) then the
Lorentzian e-broadening is appropriate. This is because the interactions (collisions)
of molecules can be described by the relaxation time and, therefore, the Lorentz
model provides a suitable description.
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In disordered solids, the assumption of weak interactions is not valid. The inter-
actions are so strong that they cannot be described by the relaxation time and it is
more correct to imagine the interactions as something that distorts (deforms) the
molecules. The random deformations of the molecules cause changes in the fre-
quencies of the localized vibrational modes. According to the central limit theorem,
the Gaussian distribution provides accurate distribution of the changes in these fre-
quencies [34-37]. Therefore, the Gaussian e-broadening is more appropriate in this
case.

The e-broadened contribution to the dielectric function (susceptibility) describing
one-phonon absorption in disordered solids is then

N, -
iph(E) = Z E—" Bo.p * [8(E — E,) —8(E+E,)], (3.63)
P 14

where the complex Gaussian broadening functions ﬁAG, p» are given by (3.50), (3.43)
and (3.51). The spectral dependency of the normalized Gaussian e-broadened dielec-
tric function is compared with different e-broadened dielectric functions in Fig. 3.2.
The explicit expression for the normalized dielectric function corresponding to one
mode is given by

-2 E—E E+E
e (E) = V2 D r) _p(EEEe) |, (3.64)
’ TByE, V2B, V2B,
1 (E — E,)? (E + E,)?
0 14 )4
&) (E) = —— |exp| ———==2 | —exp| ———2— | | . (3.65)
P V27 B,E, p( 2B12, ) p( 2B§,

200 T T T

T T
Gaussian e-broadened peak
Voigt e-broadened peak ]
R Lorentzian e-broadened peak

150 -

)

S

w

c

he]

E

3 100 —

2 T RGN IR

8 %0 l“.';,

° %

S .

S 0 .

3 =

@

N 50 Re

©

£

5 -100 . . e | | |
0 0.05 0.1 0.15 0.2 0.25 0.3

photon energy, E (eV)

Fig. 3.2 Spectral dependencies of the normalized dielectric functions of e-broadened discrete
spectrum calculated using three different broadening functions: E, = 0.1eV (peak energy),
B, = 0.05eV (FWHM), L, = 0.5 (Lorentzian fraction in Voigt profile)
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where B, is the broadening parameter which may be different for individual vibra-
tional modes. The real part is calculated using the the Dawson integral D(x) defined
in (3.52). The broadening factor B, in (3.64) and (3.65) gives the RMS value. Since
we usually work with FWHM values in the IR spectroscopy (the RMS value is not
defined for the Lorentzian distribution), it is useful to point out that in the case of the
Gaussian distribution, the RMS and FWHM values are related as

BFWHM

JopRMs _ 2
24/In2

(3.66)

3.3.1.2 One-Phonon Absorption in Crystalline Materials

The one-phonon absorption in ideal crystalline materials is represented by a discrete
spectrum of vibrational modes. These modes correspond to the transverse optical
(TO) phonons with zero momentum (i. e. in the I point). The number of TO modes
depends on the number of atoms in the primitive cell. Only the optically active modes,
i.e. those with a non-vanishing dipole matrix element, appear in the absorption
spectra. The appropriate model in this case is the classical model of independent
underdamped harmonic oscillator, which is equivalent to the model of the Lorentzian
e-broadened discrete transitions. The normalized dielectric function corresponding
to the TO mode p is then given by

éO(E):iB *[8(E—E)—5(E+E)]= 2/
P E,""" r P B2+ B2/4— E2—iB,E’
(3.67)
where the complex Lorentzian broadening function /§L, p is given by (3.54). The
broadening parameter B, is the FWHM of the absorption peak and E , is the resonant
energy. The expression E ]2) + B,z, /4 in the denominator is often written with the help
of the central energy defined as EZ , = E; + B, /4. The form with E} + B, /4 is,
however, more convenient since the condition that the DHO is underdamped can
then be written as £, > 0.

In some cases the phonon absorption cannot be described by independent DHO
(Lorentz) model and the model of DHO with coupled modes must be used. The
model of DHO with coupled modes was already discussed in Sect.3.2.1. In this
model the contribution to the dielectric function (susceptibility) can be expressed
using matrices as

2
Biph(E) = ;NT[S — E*I-iEBB"]"'N, (3.68)

where N is areal vector formed by the square roots of transition strengths of individual
TOmodes N,, p=1,...,m:

NT = (/N1 /Nay ..., /N (3.69)
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The matrix S is a real diagonal matrix with squares of central frequencies E. , on
the diagonal

E2, 0 - 0
0 E2.... 0

s=| . . ], (3.70)
0 0 ECZm

the symbol I denotes the unit matrix and the matrix B is a real lower triangular matrix
with positive values on the diagonal

v B 0 0
UIZBlz/«/|Blz| VB o0
: : A 3.71)
VlmBlm/\/|Blm| vszZm/AllBZm| /Bm

where the constants B, and By; determine the broadening and coupling of modes.
The constants v;; are defined as follows

v/ NiN;

3.72
NTN (3.72)

Vkl =

The constants vy; are introduced in order to ensure that the corresponding elements
in the matrix B vanish if N; or N, is zero.

This model of DHO with coupled modes produces asymmetrically shaped absorp-

tion peaks (see Fig.3.3). In contrast to the simpler model of independent DHO, the

50
40 -
30
20
10

-10 .‘--_::'.'.'J"' ;

(% i Re

dielectric function, €(E)
o
T

220 o - i
O F: Drude-Lorentz model: B1;=0eV,By3=0eV,By3=0eV —
-30 - DHO model with coupled modes: By, = -0.05 eV, B4z = 0.05 eV, By = 0.05 eV b
-40 |- DHO model with coupled modes: B4, = 0.05 eV, B13=-0.05 eV, By3 =-0.05 eV —— -
1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3

photon energy, E (eV)

Fig. 3.3 Contributions to the dielectric function of DHO model with three independent
(Drude-Lorentz model) and three coupled modes: N1 = 0.02 eV, E.1 =0.1eV, By =0.005eV,
Ny =0.1eV%, Ecp =0.2eV, B, =0.01eV, N3 =0.1eV2, Ec3 = 0eV, B3 = 0.05¢V. The third
mode with zero central frequency describes contribution from free charges. The values of the param-
eters B2, B3 and B3 are different for each curves
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parameters B, cannot be interpreted as FWHMSs of the peaks in the model. The
relation between the FWHM of the peaks and parameters B, and By, is, in this case,
very complicated. Furthermore, the relation between the central energies E. ,, which
are used to parameterize the model, and resonant energies E,, which correspond to
the photon energies of the peaks, is also very complicated. If the broadening and
coupling factors are small then the resonant energies differ only slightly from the
central energies.

3.3.1.3 One-Phonon Absorption in Partially Disordered Materials

In some cases the phonon absorption peaks are properly described neither by the
Lorentzian nor the Gaussian e-broadened discrete spectrum and both the broadening
procedures must be combined. The resulting broadening procedure is described by a
two parameter broadening function known as the Voigt profile corresponding to the
convolution of the Lorentzian and Gaussian distribution

Bv.p = Bo.p*BLp=PBr,*Bcp, (3.73)

or with the help of the complex Faddeeva function W(z) as [38-42]

A i X +1iBy /2
px) = w : , (3.74)
Pv.r NI ( V2B,
where the Faddeeva function is given by the following integral
i [ exp(—t?
we = [ o)y, (3.75)
TJ_o 22—t

The normalized dielectric function corresponding to one mode could, in this case,
be expressed as

(E) - i wlE=EptiBLp/2) _(E+E,+iBLy/2\ |
A/ 21 BG‘pEp «/ZBG”,, \/EBG.p

(3.76)

The exact dependence of the FWHM of the Voigt profile on parameters By ,
(FWHM of the Lorentzian part) and Bg, , (RMS of the Gaussian part) is quite com-
plicated. However, the dependencies of these broadening parameters on the FWHM
of the Voigt profile B, can be approximated with sufficient accuracy using the fol-
lowing formulas [43]

BL,~B,L,, Bg,~ \/(1 —aL,?—(1—apL2, (377

242 ln
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where a = 0.5346 and L , is the parameter mixing the Gaussian and Lorentzian part.
The comparison of the e-broadened normalized dielectric functions calculated using
the Voigt, Gaussian and Lorentzian broadening functions is in Fig.3.2.

Since the evaluation of the complex Faddeeva function is more complicated than
the evaluation of the real Dawson function, it is convenient to use an approximation
in which the Voigt profile is replaced by the linear combination of the Gaussian and
Lorentzian distributions. There are several approaches to define this linear combina-
tion and they differ in the choice of broadening factors for the Gaussian and Lorentz
distributions. The simplest approach is to combine the Gaussian and Lorentzian
functions with the same FWHM [44]:

By~ —LyBc,+LyPL,, (3.78)

where L, is the parameter mixing the Gaussian and Lorentzian parts. Note that
this mixing parameter has different meaning than the mixing parameter introduced
in (3.77). The deviation from the exact values of the Voigt profile in this approxi-
mation is smaller than the usual experimental errors (absolute error lower than 10~*
peak value).

3.3.1.4 One-Phonon Absorption with Asymmetric Absorption Peaks

The classical model of DHO with coupled modes, which gives asymmetric peaks,
can be approximated by the Lorentz model with complex transition strengths [45]. As
mentioned above, the underdamped Lorentz model can be written as the Lorentzian
e-broadened discrete spectrum. The contribution to the dielectric function (suscep-
tibility) can be then expressed as

bion(E) = — S (N, +iM, £ ) 2= B, % [5(E — E,) — 8(E + E
glph( )_CTN;< p+1 pE_p>E_pﬂp*[( p) ( + p)]s
(3.79)
where M|, determines the asymmetric part of the transition strength of the absorp-
tion peak and Cy is a normalization constant. In the case of underdamped Lorentz
model, the complex broadening function B » 1s given by (3.54) but the model can
be easily generalized using different types of broadening functions. While the real
parts of transition strengths N, are always positive, the imaginary parts of transition
strengths M, can be chosen arbitrarily. Such a model fulfills the first two fundamen-
tal conditions for the dielectric response (i.e. the time reversal symmetry (3.1) and
KK consistency (3.2) and (3.8)). The dimensionless factor E/E,, in (3.79) ensures
the time reversal symmetry of the model. Using the superconvergence theorem it is
easy to prove that the sum rule integral (3.4) is infinite for all individual asymmetric
terms in the sum (3.79). In order to ensure the third fundamental condition (i.e. the
convergence of the sum rule integral), the following sum must be equal to zero [45]:
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M,
Y —L=o0. (3.80)

The asymmetric part contributes to the sum rule for a Lorentzian broadening function
but not for Gaussian broadening. The normalization constant is then given from the
superconvergence theorem as

1 M, By
Cn = (N + M) , (3.81)
Zp NP Z g EP

P

where By, is the Lorentzian part of the broadening of the p-peak (B, , = L, B, for
both the Voigt and linear combination profile).

The advantage of this model is that for three and more modes the asymmetric part
is determined by a smaller number of independent dispersion parameters (m — 1)
than in the DHO model with coupled modes (m(m — 1)/2), where m denotes the
number of modes. On the other hand, the disadvantage of this model is that the fourth
auxiliary condition (i.e. &; > 0 in the whole spectral range) is difficult to satisfy.

For sufficiently small values of the parameters M ,, the model satisfies the fourth
condition, though it is difficult to formulate the general limits under which this
condition is satisfied. The asymmetric peaks in Fig. 3.4 do not fulfill this condition.
For the selected parameters the fourth condition is fulfilled for |M,| < 0.002767.
Thus, this model could be used only for modeling peaks which are only slightly
asymmetric. For strongly asymmetric peaks, the model of the DHO with coupled
modes must be used or the model presented in (3.79) has to be considered together
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Fig. 3.4 Contributions to the dielectric function of two asymmetric Voigt e-broadened peaks.
Asymmetry represents the redistribution of transition strength due to coupling between phonon
modes. The dielectric function without coupling is added for comparison. The parameters
were chosen as follows: N; = 0.02eVZ, E; =0.1eV, B; =0.0leV, L; = 0.3, N, = 0.05eV?2,
E;, =0.2eV, B =0.02eV, Ly = 0.7. The values of the parameters M| and M, are different for
each curves with M| = —(E{/Ey)M»
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with some other contribution to the dielectric function that ensures that the imaginary
part of the resulting dielectric function is positive in the whole spectral range.

It is necessary to note that it is possible to prove [45] that the model (3.79) with
Lorentzian broadening is equivalent to the the model known as ‘factorized Lorentz
oscillators’ introduced in [46].

In the conducting materials (e. g. graphite [47-49]) there are one or more phonon
absorption peaks in the IR region which have asymmetric profile. The asymmetry
of the profile of these phonon absorption peaks is caused by quantum mechanical
interference between the phonons and free charges, called the Fano resonance [50].
In this case, the asymmetric peaks cannot be described by the model based on the
e-broadened discrete transitions with the imaginary parts of transition strengths sat-
isfying the condition (3.80). The problem can be solved if the factor E,/E is used
instead of the factor E/E, used in (3.79)

E,\ 1 -
Bipn(E) = Z (Np + iMpr> = By * [8(E—E,) —8(E+E,]. (3.82)
P P

In this case, the sum rule integral is always zero for the individual asymmetric
parts. Therefore, this model satisfies all three fundamental conditions even if only
one phonon vibrational mode is considered. The fourth auxiliary condition can be
satisfied if the above dielectric function is used as a part of the UDM because it
also contains the contribution from free carriers (see Fig.3.5). The asymmetric part
of the absorption peak should be understood as a redistribution of the transition
strength function of free carriers. The asymmetric part of the model changes value of
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Fig. 3.5 Contributions to the dielectric function of asymmetric Voigt Fano e-broadened peaks
representing redistribution of transition strength due to Fano resonance effect between phonon
peak and free carrier contribution. The dielectric functions with symmetrical peak (without Fano
resonance effect) and without phonon peak (Drude contribution) are added for comparison. The
parameters corresponding to Drude model and phonon peak were chosen as follows: Np = 2 eV2,
Bp =0.1eV, Npp =0.1 eVv2, Eph =0.1eV, By, =0.01eV (FWHM), Lpy = 0.2. The value of
the parameter My, is different for each curves
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the imaginary part of the dielectric function in zero energy, i.e. static conductivity.
Therefore, using this model as a part of a model without free carrier contribution leads
to an artificial positive or negative Drude-like singularity in the dielectric function.

3.3.1.5 Temperature Dependence of One-Phonon Absorption

In the equilibrium the mean values of the phonon occupation numbers are determined
by the Bose—Einstein statistics

1
exp(E,/(ksT)) — 1

fPEE,. T) = (3.83)

This statistical factor can be derived in the quasiparticle approximation from the
probability factor of open systems (3.21). In the quasiparticle approximation the
probability of the one-phonon absorption process is proportional to the occupation
number plus one while the probability of the one-phonon emission process is propor-
tional to the occupation number. The resulting transition strength of the one-phonon
absorption peak at energy E, is a sum of the transition strength of the absorption
process N, (T), which is positive, and the transition strength of the emission process
N_,(T), which is negative,

Ny(T) = Ny p(T) + N_,(T) ~ fP¥(E,, T)+1— fPXE, . T)=1. (3.84)

This equation says that the strength of the one-phonon absorption is not temperature-
dependent through the statistical factor. However, the resonant frequency of phonons
E, and broadening B, are temperature dependent. Moreover, the phonon matrix
elements are slightly temperature-dependent, meaning that the transition strength
N, could also be slightly temperature-dependent. The temperature dependencies of
the phonon frequencies are mostly a consequence of the thermal expansion and could
be modeled by the average Bose—Einstein statistical factor with dependency given
by the average phonon energy [51-53]. In this case, the temperature dependence can
be parameterized using the following three parametric formula

exp(®/300K) — 1
exp(®/T) — 1

E,(T) = E)* + (E}°F — EV) , (3.85)

p

where E0 and E>% are the phonon energies for zero and room temperature. Note
that the E,(T") decreases with temperature (£ ;’,OOK < E?,K ). The parameter © is the
average phonon energy in Kelvins. This parameter is common to all phonon modes.
It represents the contribution from all the phonons which participate in the thermal
expansion (i. e. also the optically inactive phonons). Therefore, kg ® is a completely
different quantity than the discrete energies E, of the optically active phonons.
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The same type of temperature dependency could be also used for the parts of the
broadening factors B, representing the finite lifetime of phonons [54]. In this case,
the broadening factors increase with temperature (B;OOK > BgK ).

3.3.1.6 Multi-phonon Absorption

Multi-phonon absorption is very weak effect compared to the one-phonon absorp-
tion, with the exception of homopolar crystalline materials, such as diamond, silicon
or germanium. In homopolar materials the multi-phonon absorption is the domi-
nant effect in the IR region because it is not masked by the one-phonon absorption
processes which are mostly prohibited due to the selection rules (vanishing dipole
matrix elements).

In materials with non-negligible charge transfer (e.g. polar crystals, disordered
solids) where the one-phonon absorption is dominant, it is difficult to separate the
absorption spectra into parts corresponding to one-phonon and multi-phonon absorp-
tion. The magnitude of multi-phonon absorption effects often lies close to the limit of
experimental accuracy. Therefore, the choice of the model used for the multi-phonon
absorption is not usually very important and the same model as for one-phonon
absorption but with broader peaks and smaller transition strength can be utilized.
‘We will not discuss this model in this section and rather, we will focus on the mod-
els needed to describe the multi-phonon absorption in the homopolar crystalline
materials.

In one-phonon absorption processes, only the phonons with zero momentum (i. e.
at the I" point) contribute to the absorption processes. This is a consequence of the
fact that the total momentum in the absorption process must be conserved and the
momentum of photons is negligible. In multi-phonon processes the situation is more
complicated since we must take into account all the absorption and emission pro-
cesses for which the sum of momenta of all phonons participating in these processes
is zero. In the case of two-phonon processes, the JDOS can be calculated using an
integral over the Brillouin zone. In addition to the integration over the Brillouin
zone, the summation over all the optical and acoustical phonon branches must be
performed. For three and more phonon processes, the situation is even more compli-
cated since multiple integrals over the Brillouin zone are needed and the summation
over phonon branches is more complicated. In this section, we will concentrate on
models describing the two-phonon absorption.

It is known from the theory of crystalline solids that the integration over the
Brillouin zone mentioned above leads to singularities in the derivative of the JDOS
function called Van Hove singularities [15, 18]. The Van Hove singularities corre-
spond to critical points in the Brillouin zone which are located at the points of high
symmetry or near the points of lower symmetry. In the three-dimensional space (3D)
there are four types of the Van Hove singularities. The M, type singularity corre-
sponds to critical points representing the minima of energy of absorption processes,
the M, and M, types correspond to saddle points and the M3 type corresponds to
maxima. From the theory, it follows that each type of critical point must occur at
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Table 3.1 Shape functions L; modeling 3D Van Hove singularities

3D (Eo, E1, E2, E3)

Ey < E < E E\<E<E Ey <E<Es
My Lo(E) = VXi(E) Yu(E) 0
M Li(E) =1—JN(E) | Yu(E) 0
M, Ly(E) =0 Xu(E) 1 — Xm(E)
M3 L3(E) =0 Xu(E) VY (E)

least once for each combination of phonon branches but some of them cannot be
distinguished in the spectra due to the degeneracy of phonon branches in the points
of symmetry. Note that even in the situation with many critical points the JDOS func-
tion can be expressed as a sum of contributions corresponding to basic sequences
My—M—M,—M; of critical points. Moreover, some Van Hove singularities may not
be visible in the absorption spectra due to vanishing dipole matrix element. There-
fore, the multi-phonon absorption for a single combination of phonon branches can
be modeled using the e-broadened piecewise continuous JDOS functions within the
energy interval between E¢—FE3; and discontinuities in the energies E; and E,. The
number of absorption bands corresponding to combination of phonon branches is
specific for each material. Although we will not discuss the individual materials here,
the general aspects of the model of two-phonon absorption will be presented.

The JDOS function for the 3D isotropic Van Hove singularities can be modeled
by the shape functions L; introduced in Table 3.1. The functions Xy, Xy, Xy and Y7,
Y11, Yip are defined as follows

E —
E —E_,

E—E
Xi(E) = LB Yi(E) =
- E

for E;_y < E <E,, (3.86)
where index [ = 1(I), 2(Il), 3(IIT). The schematic diagram of the JDOS function
corresponding to the basic sequence of the critical points is depicted in the upper
panel of Fig.3.6. The behavior around the isotropic critical points is described by
the quadratic form with eigenvalues having the same size with the number of neg-
ative eigenvalues determining the type of the critical point. In reality, most of the
critical points, especially at the boundary of the Brillouin zone, are anisotropic, i.e.
with differently sized eigenvalues of the quadratic form. In the extreme cases, the
anisotropic 3D critical points may appear as points in lower dimensions, i.e. as 2D
(one eigenvalue is zero) or 1D (two eigenvalues are zero) critical points. The JDOS
function for the anisotropic critical points can be approximated by the linear com-
bination of contributions corresponding to 3D, 2D and in very rare cases also 1D
Van Hove singularities. The functions corresponding to 2D and 1D singularities are
introduced in Tables 3.2 and 3.3. The columns in these tables correspond to differ-
ent alignment of 2D and 1D critical points with respect to 3D critical points. The
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JDOS

JDOS

JDOS

Fig. 3.6 Schematic diagram of joint density of states (JDOS) of two-phonon absorption processes
corresponding to 3D, 2D and 1D Van Hove singularities. The individual contributions are calculated
as J;(E) = E2L;(E) with assumptions Eg = 0.8F3, E; = 0.88E3 and E> = 0.93F3

Table 3.2 Shape functions L; modeling 2D Van Hove singularities

2D (Eo, E1, E2) 2D (E, En, E3)

Ey<E<E Ey<E<E, |Ei<E<E; Ey <E<E;
My L4(E) = Y{(E) 0 L7(E) = Yu(E) 0
M, Ls(E) = —InYi(E) | —In Xu(E) Lg(E) = —InYn(E) | —In X1 (E)
M Le(E) =0 Xu(E) Lo(E) =0 Xm(E)

schematic diagrams of the contributions to the JDOS function corresponding to the
2D and 1D singularities are shown in the middle and bottom panels of Fig.3.6.
The resulting normalized imaginary part of the dielectric function describing the
absorption band of two-phonon absorption combining the phonon branches A and B
can be calculated as follows

& pon(E) =

fasB(E, T)
C

N

15

H(E) ) ALi(E),

i=0

(3.87)
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Table 3.3 Shape functions L; modeling 1D Van Hove singularities

1D (Eo, E1) 1D (E1, E») 1D (E7, E3)

Egy < E<E; E\<E=<E E; <E<E3

My |Lio(E) =1/VXi(E)—1 |La(E)=1/Xu(E) —1 |L14(E) =1/J/Xm(E) — 1
My | Lu(E)=1/yN(E) =1 |Li3(E)=1/JyTu(E) =1 |Li5(E) =1//Ym(E) — 1

1.4
| Il 1
12 -
—~ 1 m
Ll
I 08f B
06| K| = ‘I.O,)\|=arb, K||=0.7, )\||= 1.0, K|||=1 5, )\|||=1.0 I
. K =1.5,A=1.0, Ky =0.7, \y = 2.0, Ky = 1.5, Ay = 2.0
04 Kk =0.7, A = 1.0, Ky=0.7,\y=0.5 Ky = 1.5, Ay =0.5 —— 4
Eo Eq E, Es

Fig. 3.7 Examples of the shape modifying function H (E) for different values of parameters

where Cy is the normalization constant, A; are weights describing the strength of the
individual L; contributions and fa1p(E, T) is the temperature dependent factor. The
index A =+ B distinguishes absorption bands corresponding to different combinations
of A and B branches.

The function H(E) is introduced in order to change the shape of the dielec-
tric function in the intervals between the critical points. This function is important
because the linear combination of the L; functions provides correct description only
in the vicinity of the Van Hove singularities, meaning that additional parameters influ-
encing the shape of the dielectric function between these singularities are needed.
The function H (E) can be, for example, defined as follows

kA Y (E) K1/ M X (E)

H(E) =
(kh = DY(E)+ 1 (/A — DX(E) + 1

for £, 1 <E<E,
(3.88)

where «; and X; are non-zero positive parameters regulating the shape in the corre-
sponding intervals. This definition ensures that H (E) is continuous in the interval
between E( and E3 and it is equal to unity at the critical point energies. This function
is smooth on the intervals between the critical point energies but its derivatives may
exhibit jumps at E| and E,. Note that if the shape modifying parameters k; is equal to
unity then the function H (E) is constant in the corresponding interval (see Fig. 3.7).

If the structure of the critical points is known for the studied material, it is con-
venient to express the critical point energies Eg—E3, which are used to model the
Van Hove singularities, using energies of individual phonons participating in the
two-phonon absorption process. These energies are then given as a sum (A+B) or
difference (A—B) of phonon energies at critical points

Eg=EN £ E)°, ... Es=EX +E". (3.89)
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This procedure reduces the number of independent parameters in the model. For
example, the two-phonon absorption in crystalline silicon was modeled in [55] by 15
absorption bands with critical energies determined by the set of only 17 independent
phonon frequencies.

The temperature dependencies of the critical point energies are modeled by the
same average Bose—Einstein statistical factor as in the case of one-phonon absorption,
i.e. the temperature dependency is described by the formula (3.85). The same average
phonon energy parameter ® is used for temperature dependencies of all phonon
frequencies.

While in the case of one-phonon absorption the temperature dependencies of
the probabilities of absorption and emission did not result in temperature dependent
factor (see (3.84)) the situation is different for two-phonon absorption processes. The
temperature dependent factor fatp(E, T') can be derived by the same procedure as
for the one-phonon absorption in Sect.3.3.1.5 but the creation/annihilation of two
phonons must be taken into account. In the case of simultaneous creation of two
phonons or simultaneous annihilation of two phonons temperature dependent factor
is given by

Far(E, T) =1+ fBE(EA(E), T) + fPE(ER(E), T), (3.90)

where EA(E) and Eg(E) describe the phonon energies in A and B branches par-
ticipating in the absorption or emission processes of photon with energy E. A sim-
ilar calculation gives the temperature dependent factor for processes, in which one
phonon is created and one phonon is annihilated

faB(E, T) = fBE(Eg(E), T) — fPE(EA(E), T). (3.91)

The values of the functions Ex (E) and Eg(E) at the critical point energies are known
from the known structure of phonon branches. In the regions between these energies
they can be approximated with the help of linear interpolation:

EA(E) = EN"'Y/(E) + EM'X,(E) for E,_ <E <E,. (3.92)

The same linear interpolation is used to approximate Eg(E). We should emphasize
that the temperature-dependent factors (3.90) and (3.91) do not require the introduc-
tion of any new parameters.

The complex dielectric function for two-phonon absorption is calculated from the
unbroadened imaginary part of the dielectric function calculated with (3.87) by the
e-broadening procedure described in Sect.3.2.3. This step can be performed only
numerically, i.e. the convolution integrals in (3.49) must be performed numerically.
Alternatively, we can split the intervals between the critical point energies into suf-
ficiently small subintervals (E;_i, E;), use the polynomial approximation of the
function (3.87) on these subintervals (e.g. cubic splines) and then use the analytical
results for broadened polynomials. On the j-th interval we can write
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m
e) (E)=) aj,E" for E; <E<E;, (3.93)

where m is the degree of the approximating polynomial and a; , are its coefficients.
Thus, the contribution of this subinterval to the broadened dielectric function is
expressed as follows:

- Ej m E-E; m
§j+(E)=/ ﬂ(E—t)Zaj,nt"dtzf ,B(x)ZAj,,,(E)x"dx,
Ej—l n=0 E*E,'_] n=0
(3.94)
where
S K\ i
Ajn(E) = (=1) ;aj,k (n) EF™. (3.93)

The contribution & +(E ) is calculated for the interval (E;_;, E;) lying in positive
values of energy. Because of the time reversal symmetry relating the dielectric func-
tion for positive and negative energies we can write the result that includes the
contributions from both intervals (E;_;, E;) and (—E;, —E;_;) as

2E =33 a k( )( By [~ (BuE = Ejo) — B(E — Ep)
n=0 k=n
+Ba(E + ;) = By(E+ Ep] (3.96)
where B, (x) are the functions defined by the following integrals

Bu(x) = / x" B(x)dx . (3.97)

For the Lorentzian broadening, the results of the integrals can be expressed ana-

Iytically
. 1 /—iB\" i2x =l i2x nk
bt =1 (3) [l< )2 ()i (5 ) }
(3.98)

In the case of the Gaussian broadening the integrals can be expressed with the
help of the following recurrent formulas

Bgn(x) = Dy(x) +iG,(x) (3.99)



60 D. Franta et al.

where
Do(x) 2D<x ) Go(x) 1erf<x ) (3.100)
X)=——Dbj ’ X)=Z = ’ .
0 = '\ /2B 0 2\ /28
D()_@D(x >_f G()—i(l— (_i>>
T\ ) T T T e U ) )
(3.101)
\/EB X 1
_ _ 2 n—1 __— .n
Dy(x) = (1 = DD, 2(x) + *——x D<ﬁB> —x", (3.102)
() = (1 — DB Gya(x) — —— ! ( i) (3.103)
Z(x) =0 — n_n(x) — mx exp 55 ) .

The recurrent formulas use three special functions, the Dawson function D(x) (3.52),
its integral D;(x) and the error function erf(x) defined as

Di(x) :/OXD(t)dt, erf(x) = %/0 exp(—t2) dr . (3.104)

All three functions can be efficiently calculated in computer.

In the case of the Voigt broadening (3.74), it should be possible to write the
result using complex special functions but in practice the approximation of the Voigt
broadening by the linear combination of the Lorentzian and Gaussian broadening is
sufficient (see Sect.3.3.1.4).

In the presented model of the two-phonon absorption, the functions describing the
Van Hove singularities Lo—L 5 are used to model the imaginary part of the dielectric
function. Similar model of the two-phonon absorption in crystalline silicon was
presented in [55]. The functions describing the Van Hove singularities were used to
model the transition strength function instead of the imaginary part of the dielectric
function. This required a different definition of the shape function H (E) because if
the critical point energy Ej is zero then the imaginary part of the dielectric function
must behave as ¢;(E) o« E for small energies.

3.3.2 Valence Electron Excitations

The valence electron excitations correspond to transition of electrons from the occu-
pied valence band to the empty conduction band or to empty higher energy excita-
tion band. In the crystalline solids in the quasiparticle approximation the one-particle
states have well-defined momentum. Due to the momentum conservation it is possible
to distinguish between direct and indirect valence-to-conduction interband electron
transitions. This classification cannot, however, be used in the case of amorphous
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materials. Therefore, the valence electron excitations must be studied separately for
crystalline and amorphous materials.

3.3.2.1 Direct Valence Electron Excitations in Crystalline Solids

In the frame of one-electron approximation the dielectric function can be modeled
with the help of the 3D and 2D Van Hove singularities [13, 15, 18, 21, 56, 57]
described in detail in Sect.3.3.1.6. The imaginary part of the normalized dielectric
function is then given by the formula:

fvc(E, T)

9
B H(E) Y AJi(E). (3.105)

i=0

) W (E) =

where fyc(E, T) is a temperature dependent factor, Cy is the normalization con-
stant, the shape modifying function H(E) is defined by (3.88) and the weights A;
describe the strength of individual contributions J; (E). In the absence of many-body
effects, the contributions J; (E) are given as J;(E) = L;(E) with functions L;(E)
given in Tables 3.1 and 3.2. While in the case of two-phonon absorption described in
Sect.3.3.1.6 the functions L;(E) modeled the imaginary part of the dielectric func-
tion, the situation is different in the case of direct transitions (DT). More specifically,
these functions are used to model the JDOS function (notice the factor E? in the
denominator in (3.105)).

In contrast to phonons which could be, for most purposes, considered independent
quasiparticles, the interactions between electrons cannot be neglected. The electron—
hole interactions are manifested via two phenomena in the absorption spectra. The
first phenomenon is the appearance of the discrete transitions, called excitons, in
the region below the minimal energy of interband electronic transitions Ey. These
discrete transitions correspond to bonded states between the electron—hole pairs.
The second phenomenon is the redistribution of the transition strength (probability
of transition) from higher energies to lower energies. This redistribution represents
the effect of the continuum part of the spectra in the electron—hole system. In the
frame of the Elliott theory [15, 24, 57-59], the contribution describing the discrete
part Ao Jger(E ) must be added as an extra term in the sum in (3.105) and the square
root parts of the contributions Jo(E) and J3(E) must be modified. The schematic
diagram of the JDOS function with and without the many-body effects is in the upper
panel in Fig.3.8. The function J;P(E) is defined as

Oex
o0
2R R
3D __ ¢3D
Jom(E) = S3P(Eq) ; — 6<E — Eo + ﬁ> : (3.106)

where the parameter R is the Rydberg energy describing the strength of the electron—
hole interaction. Since the discrete part lies below the critical point energy E, we
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JDOS

JDOS

Fig. 3.8 Schematic diagram of joint density of states (JDOS) of direct valence electron excita-
tions corresponding to 3D and 2D Van Hove singularities, assuming R = 0.004E3, Eg = 0.5E3,
Ey =0.7E3 and E; = 0.8E3. The dotted lines correspond to individual contributions without
many-body effects while the solid lines correspond to contributions that include excitonic effects,
i.e. corrected by the Sommerfield factors. The arrows indicate the positions of the first excitons
(n = 1) in the series of discrete transitions

must extend the definition of the function H (E) in such a way that it is equal to unity
for E < Ey. The functions Jy(E) and J3(E) are changed to

S3P(EY)
Jo(E)y = 22—~ for Ey <E <E,, 3.107
o(E) SI(E) or Eg < E<E ( )
S3P(Ey)
Jy(E) = 3=~ for E; < E < E;, 3.108
3(E) SI(E) » = E < Ej ( )

The functions S3°(E) and S3P(E), which are called the Sommerfield factors, are
defined as

S3D(E)=1—exp —2r L S3D(E)=exp 2 L -1
0 E—E) E;—E '

(3.109)
In the limit of small R, the functions Jy(E) and J3(E) are identical with Ly(E) and
L3(E).
In the case of the 2D Van Hove singularities the Elliott theory gives two series of
discrete transitions, one below the critical point energy E( and the other below the
E 1-
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>, 32R 4R
JgeDX(E)=S§D(EI)ZWS(E—E0+W) s (3.110)
n=1
= 32R 4R
leer(E) = SIZD(EZ)ZW(S(E - E+ m) . 3.111)
n=1

These functions must be added to the sum in (3.105) as two extra terms A4 Jozg (E) +

A7J3P(E). Moreover, the contributions 4, 6, 7 and 9 must be changed to:

lex

Ji(E) = Yi(E) Sa°(En) for Ey<E<E (3.112)
= _— or , .

4 1 S (E) 0= L =Lk

Jo(E) = Xu(E) S (En) for Ey<E<E (3.113)

6 = X1 SP(E) 1= B = b, .

J1(E) = Yu(E) Si(E2) for Ey<E<E (3.114)

7 - I SIZD(E) 1 = i 2 .

S3P(E»)
Jo(E) = Xm(E) = for E; <E <Es, (3.115)

S3P(E)

where the 2D Sommerfield factors are defined as

R R
SSD(E) =1+exp (—27{ T Eo) , S%D(E) =1+exp <27t B, E) ,

(3.116)

SP(E)y =1+exp |27 R
) Ei—E]’
(3.117)

SP(E) =1 -2
1() +eXp< v E_E

The models of the discrete transitions below E,, which were introduced above
are correct as long as the critical point M is purely 3D, purely 2D, or if the Rydberg
energy R is smaller than the broadening parameter and the discrete transitions appear
as a single structure (peak) in the absorption spectra. In the case of anisotropic critical
point M, and Rydberg energy larger than the broadening parameter, it must be ensured
that the series of discrete transitions is not doubled. A useful usable approximation
is the formula with weighted averages for the amplitudes and positions of discrete
transitions. The imaginary part of the normalized dielectric function is in this case
given as
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(E,T) =
Sgdt(E) :ng.TH(E) |:Z Agex,n 6 (E — Egex.n)
n=1
o0 9
+ D Aln8(E = Erec) + Y A,-J[(E)} : (3.118)
n=1 i=0

where the amplitudes and energies of excitons are expressed as

R (240S°(E) | 324483°(E))
- , (3.119)
T Ao+ Ay n (2n —1)?
e g R (Ao, _ 444 (3.120)
Oex,n = £0 Ao+ As \ n2 2n — 1)2 ’ .
4 _RASP(E) 4R (3.121)
lex,n = (2}1 — 1)3 s lex,n = L1 (2Vl IR 1)2 . .

The temperature-dependent factor fyc(E, T) can be derived using the Fermi—
Dirac statistics. If the Fermi energy lies in the band gap and both the valence and
conduction bands are sufficiently far from the Fermi energy, then the value of this
factor can be set to unity. Therefore, temperature dependency in dielectrics and
semiconductors introduced by this factor is negligible. The temperature dependencies
of the critical point energies could be described by the same formula as in the case
of phonons, i.e. with the help of the average Bose—Einstein statistical factor (3.85).
In contrast to phonons, separate average phonon energy parameters ®,—®3; must be
used for individual critical point energies Eyg—E3 [52, 53].

The presented model uses the functions Jo—Jy describing the Van Hove singulari-
ties to model the JDOS function. In materials where all the critical point energies E
are greater than zero, i. e. dielectrics and semiconductors, it is not specifically impor-
tant that the functions describing the Van Hove singularities are used to model the
JDOS function, the transition strength function or the imaginary part of the dielectric
function. Therefore, the factor E? in the denominator in (3.118) could be replaced by
E or 1, itis even possible to use a generic factor E“ with « being the parameter of the
model. The e-broadening should be used if DT in dielectrics or semiconductors are
modeled. In contrast to phonons, where only a single broadening parameter is typi-
cally used, in the case of the DT it is necessary to use several broadening parameters.
It is often necessary to use different broadening parameters for structures belonging
to individual critical points. For example, the structure around M, (contributions
Joex»> Jo, J4) are broadened using By, the structure around M, (contributions Jiex, Ji,
Js) by B etc.

Only the 3D and 2D Van Hove singularities were considered in this section. In
principle the model can be extended to include also 1D singularities with correspond-
ing 1D excitonic effects.
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The slightly modified variety of the model of DT discussed in this section was
used in the temperature-dependent dispersion model of crystalline silicon [60]. It
was shown that the presented model could be understood as the extension of the
models of Adachi [19, 61], Kim et al. [21, 22], Tanguy [23, 24] and Herzinger and
Johs [25, 26].

In metals, the parabolic band approximation cannot be used to describe the behav-
ior around the minimal energy of DT if the initial or final band is not fully filled.
Therefore, the JDOS around this minimal energy cannot be described as a Van Hove
M, singularity and a special model must be devised. Moreover, the initial or final
energy is given by the Fermi energy and, therefore, the thermal dependent factor
cannot be approximated by unity. We will not discuss the models of DT in metals in
this chapter.

Another special case is graphene. The graphene forms a two-dimensional structure
in which the valence and conduction bands touch at the K points of the hexagonal
Brillouin zone. Moreover, the bands around the points of contact form the cones
with the Fermi energy lying exactly at the level where the vertexes of the cones
touch. This band structure together with the assumption of the constant momentum
(current) matrix element results in constant conductivity (constant transition strength
function), known as the universal conductivity. In this case the unbroadened transition
strength function of the ordinary part of the dielectric response can be modeled
with the help of the functions F4(E) = L4(E), F5(E) = Ls(E) and Fs(E) = Jo(E)
describing the 2D Van Hove singularities with critical point energy Ey = 0. In this
special case the F-broadening must be used instead of e-broadening and, furthermore,
it must be performed prior to the multiplication by the the temperature dependent
factor

0 oSBT | -
80(E) = o E B * i;6A,F,(E) , (3.122)

where the temperature dependent factor fyc(E, T) is given as
fve(E,T) = ffP(=E/2,T) - f7P(E/2,T), (3.123)

where fTP(E, T) is the Fermi—Dirac statistical factor with the Fermi energy equal

to zero
1

FD _
JEED = exp(E/(kgT)) +1°

(3.124)

The similar absorption structure appears also in graphite [48] which is a 3D structure
with strongly anisotropic critical points.
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3.3.2.2 Indirect Valence Electron Excitations in Crystalline Solids

Apart from the direct electronic transitions there are also indirect electronic tran-
sitions in which the transitions of electrons between the valence and conduction
bands are accompanied by a simultaneous change in phonon occupation numbers.
The dominant absorption processes in this case are the processes involving creation
or annihilation of one phonon. The processes in which multiple phonon occupa-
tion numbers are changed are much weaker and they can be neglected. Thus, the
temperature-dependent imaginary part of the dielectric function can be separated
into two parts

£ — N, (fBE(E,. T)+ 1) F3(E — Ep) + fB8(E,, T)FQ(E + E,)
giia(E) = ; E 2fBE(E,. 300K) + 1 ’

(3.125)
where the summation over p is performed for phonon branches corresponding to pos-
sible energies of phonons E, ensuring momentum conservation in indirect absorp-
tion processes. The part with E — E, corresponds to processes in which a phonon
is created and the part with £ + E, corresponds to processes in which a phonon
is annihilated. The term in the denominator ensures proper normalization of the
terms at 300 K. The parameters N, are the transition strengths for the corresponding
phonon branches at 300K. The Bose—Einstein statistical factors fBF (3.83) deter-
mine the phonon occupation numbers, i. e. probabilities of the processes [7, 15, 62].
In principle we should also include the temperature dependent factor fyc(E, T) but
its effect can be usually neglected. The normalized transition strength function of
indirect transitions (IDT) corresponding to one branch when the phonon is created
or annihilated is calculated as

(IE| = Eg)*(En — |E)?

FY(E) = v
(B = e ((IE| — E»)? + B2/4)

Mg, £,(ED, (3.126)

where the symbols E, and Ey, denote the minimal and maximal energy needed for
excitation of electrons from the valence band to the conduction band. The parameter
vcouldbe Qor 1. If v = 0, the formula represents the broad absorption band between
E, and E} with quadratic behavior in neighborhoods above E, and below Ej. In the
band gap region this behavior is known as the Tauc’s law discussed in Sect. 3.3.2.4.
The parameter x regulates the asymmetry of this absorption band. If v = 1, the shape
of the absorption band is modified by the Lorentzian term and the symbols E, and
B denote the resonant energy and broadening, respectively. The function g, g, (E)
ensures that the transition strength function is zero below E, and above Ejp

Mg, g, (E) = O(E — E;) O(E, — E). (3.127)
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Fig. 3.9 Contributions to the dielectric function of the IDT and IBT model (3.126) or (3.133) for
v = 0 and selected values of k: Eg = 1€V, E,; = 15e¢V and N = 400 eV?2

In many cases it is not possible to model the shape of the absorption band by using
only one function (3.126) and several terms must be used. Note that separate param-
eters E; and B should be used for each absorption band but it impossible in practice
to distinguish individual absorption branches with the exception of the region around
the band gap energy E,. Therefore, only one set of parameters E, and B could be
used for all phonon branches.

The real part of the dielectric function and normalization constant Cy must be cal-
culated using the KK relations and normalization integral. The result can be expressed
in an analytic form for integer values of the parameter « (fork = l and v = 0, 1 see
[63, 64]). For k =0, 1,2 and v = 0, the dielectric function is plotted in Fig.3.9. In
order to avoid the numerical integration when the parameter x has non-integer val-
ues, we can use the approximation in which the linear interpolation between integer
values of « is used

FS(E, k)~ (k — lkK)) FS(E, 1+ k) + (1 — &k + [k ])FS(E, [x])  (3.128)

where |« | is the floor function.

It is apparent that the total transition strength of IDT is strongly temperature-
dependent because the probabilities of IDT depend on the occupation numbers
of phonons which are determined by the Bose—FEinstein statistics. The transitions
strength of the whole system, which includes both the DT and IDT, is only weakly
temperature-dependent due to the thermal expansion of the system. Therefore, the
increase of the transition strength of IDT with temperature is at the expense of the
transition strength of DT.
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3.3.2.3 High Energy Valence Electron Excitations

Above a certain energy level the absorption spectra of crystalline solids are smooth
without visible structures in the region of interband transitions. This can be explained
by the fact that at higher energies, the electrons behave more like free electrons than
bonded electrons. Although there is no clearly defined energy above which the tran-
sitions from the valence band lead to these structureless absorption spectra it is
convenient to separate the excitations of valence electrons into those to conduction
band (direct and indirect) and those to the band located above the conduction band
(see Fig.3.1). The transitions of the valence electrons to the states above the conduc-
tion band are called high energy valence electron excitations. The transition strength
of these electron excitations is only weakly temperature dependent due to the thermal
expansion of the system.

The simplest model of high energy transitions (HET) is a one-parametric model
with the normalized dielectric function given by

3E (Ex — E)? E| (Ex+E)? E 2 2Ey

0 X X

E) = 2 |l - — |+ 22— 4 —| - — - =X,

gr,het( ) TE2 < 3 n Ex o n|l+ Ey 3E, 72
3Ex(|E| — Ex)?

e (E) = =5 O(El = Ex), (3.129)

where the parameter Ey is the energy threshold of the higher energy valence electron
excitations. The value of this parameter must lie above the band gap energy E,; and is
usually closer to E, than to the maximal energy of valence-to-conduction interband
transitions Ey. The imaginary part of the dielectric function has quadratic behavior
near the threshold energy Ey thus there is no pronounced structure associated with
this energy in the absorption spectra.

The imaginary part of the dielectric function of the above models falls as 1/E3
at high energies. The classical models (see Sect.3.2.1) exhibit the same behavior
and for this reason it is called the classical asymptotic behavior of the dispersion
model. From the experiment it is known that for energies in the X-ray region the
imaginary part of the dielectric function given mainly by the elastic scattering losses
falls faster than 1/E>. If we want to model the dielectric response in this region then
we can include the term (| E| + E,) ensuring faster decay above the energy E, in the
denominator of (3.129)

(IE| — Ex)*

— " O(E| - E). 3.130
CxES(E| + By (FITEY G130

Ehet (E) =

For both the presented models of high energy valence electron excitations, it is pos-
sible to express the real parts 82 1et (E) and normalization constants Cy analytically.
The imaginary parts of the dielectric functions corresponding to HET models are

compared in Fig.3.10.
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Fig. 3.10 Contributions to the dielectric function corresponding to HET models (3.129) and
(3.130): Ex = 10eV, E, = 500eV, Ny = 500eV?

3.3.2.4 Valence Electron Excitations in Amorphous Materials

In disordered materials, it is not possible to distinguish between valence-to-
conduction interband transitions that involve changes in phonon occupation numbers
and those in which phonons do not participate. Therefore, the interband transitions
can be described by a single broad absorption band between E, (band gap energy)
and E}, (maximal energy of interband transitions). The situation is similar to the case
of IDT in the crystalline solids, but without the temperature dependency introduced
by the average Bose—Einstein statistical factor for phonons (3.126). This is because
the phonon assisted absorption processes have practically the same spectral distribu-
tion as the processes in which phonons do not participate and the sum of transitions
strengths of both of these processes is only weakly temperature dependent (it is given
mostly by the thermal expansion).

The behavior of the JDOS function in the vicinity of the bandgap can be derived
using the one-particle approximation and quadratic band approximation. The JDOS
function is then given as the correlation between the initial states in the valence band
and final states in the conduction band

J(E) = / Svc(E, T) Dy(S) Dc(S + E)dS, (3.131)

where the integration is performed over the energies of initial states S. The symbols
Dy and D¢ denote the densities of states (DOS) of initial and final states, respectively.
If the momentum (current) matrix element is assumed to be constant, the probability
of transition is given only by the temperature dependent factor fyc(E, T) which is
determined by the Fermi—Dirac distribution as

FeE, T) = f2S, T) (1= fFP(S+ E, T)) . (3.132)
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This factor is usually set to unity because the Fermi energy lies in the bandgap far
from the valence and conduction bands (see Fig. 3.1). The result, known as the Tauc’s
law, states that the JDOS function should be quadratic in the neighborhood above
the band gap energy E, and zero below E,. The similar result can be obtained for
the behavior of the JDOS in the vicinity of the maximal energy of transitions Ej.
The model of the interband transitions (IBT) which fulfills the quadratic depen-
dencies above E, and below E}, can be constructed as a linear combination of terms

(|E| — Ep)*(En — |E|)?
CnE|EI* ((|E| — E)?* + B2/4)"

&) (E) = Mg, 5 (E). (3.133)

with the same values of Ey, Ey and « but with different values of parameters v,
E; and B for each term. The real part of the dielectric function and normalization
constant Cy can be expressed in an analytic form for integer values of the parameter
Kk (fork =1and v =0, 1 see [63, 64]). For k =0, 1,2 and v = 0, the dielectric
function is plotted in Fig.3.9.

The high energy excitations in amorphous materials are modeled in the same way
as in crystalline solids. Therefore, the dielectric response of the total valence electron
excitations can be expressed as a sum of IBT and HET contributions

Bvee(E) = Nipi (E) + NneBp (E) . (3.134)

The threshold energies Ex and E}, appearing in equations for the HET and IBT
cannot be identified by any visible structures in the absorption spectra. Therefore, the
HET and IBT are often described by the model which does not contain the parameters
Ex and Ey. The Tauc—Lorentz (TL) models combining the Tauc’s law valid in the
vicinity of the bandgap with the Lorentz model (or Lorentz function) are utilized for
this purpose.

The first physically correct model combining the Lorentz model with the Tauc’s
law was suggested by Campi and Coriasso [65, 66]. The Campi—Coriasso (CC) model
is based on the fact that the transition strength function of the Lorentz model (3.59)
has quadratic form in the vicinity of zero energy

(3.135)

P By = 2 BE?
IS m (B2 — E2? + B2E?

The Campi and Coriasso shifted the Lorentz model by the bandgap energy Eg, i.e.
they performed the substitution £ — E — E,, and for energies below the E, they
set the transition strength to zero. The normalized transition strength function is then
given by
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FOo(E) = FW(E — Eg) O(E — Ey)

_2 B (E — E,)? O(E — Ey) (3.136)

T ((Be— Ep? - (E - Eg)z)2 + B2(E — E,)?

where the parameter E. must fulfill the inequality E. > E,. The dielectric function
is calculated using (3.30) and the KK relations, the analytic expressions can be found
in [67].

Another approach to constructing the models combining the Tauc’s law with the
Lorentz model includes multiplying the transition strength function of the Lorentz
model by a truncate function that is zero below the bandgap, quadratic in the neigh-
borhood above the bandgap and tends to unity at high energies. Two such models are
widely used, the Jellison—-Modine (JM) model [68] which uses the one-parametric
truncate function

(E — Ey)?

Ti(E) = T®(E_Eg)’ (3.137)
and the A. S. Ferlauto et al.(ASF) model [69] which uses the two-parametric truncate
function )
(E—Eyp)

PO = 2

O(E - E,). (3.138)

In the literature the JM model is usually referred as the Tauc—Lorentz model whereas
ASF model is known as the Cody-Lorentz model. Two models that use the same
truncate functions as the JM and ASF models but with the transition strength of the
Lorentz model (LM) replaced by the Lorentz function (LF) were suggested in [67].
We will refer to these models as to truncated Lorentz function models TLF1 and
TLF2.

The imaginary part of the dielectric function of the JM, ASF, TLF1 and TLF2
models can be expressed with the help of the generic formula

o _ TB)Fy(E)

i , 3.139
=G F (3.139)

where Cy is the normalization constant, the truncate function 7, (E) is either (3.137)
or (3.138) and F;(FE) is one of

E? 1

F E = N F E = 3
(E) (E2 — E2)? + B2E2 Lr(E) (E — E,)? + B2/4

(3.140)

where the energies E. and E; are related as (3.60). The summary of these models is
in Table 3.4.

Each version of the TL model introduced above has a slightly different shape. In
order to compare these models the dielectric function of the CC model calculated
in the spectral range 0-10eV for the selected dispersion parameters was fitted by
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Fig. 3.11 Contributions to the dielectric function of three versions of Tauc—Lorentz models. The
dispersion parameters are in Table 3.4

the other versions of the TL model. The dispersion parameters corresponding to the
best fits and the parameters §¢ representing the rms values of the differences between
the models are in Table 3.4. The results for the IBT+HET model (3.134) with one IBT
term (3.133) and one HET term (3.129) are introduced for comparison. In Fig.3.11
the dielectric function of the CC model is compared with the four-parametric JM
and TLF1 models. The curves corresponding to the five-parametric ASF and TLF2
models are not displayed since the differences from the CC model are too small to
be visible in the figure. A more detailed comparison of these models can be found
in [67].

From the physical point of view, there is no reason to prefer one of the TL models
over another. The choice of the model giving the best results is specific for individual
materials. If we are unsure which model to use, it is possible to model the valence
electron excitations with a linear combination of several of the presented models.

3.3.3 Electronic Transitions Involving Localized States

Apart from the extended states forming the valence and conduction bands there
are localized occupied and unoccupied states (see Fig.3.1). In both disordered and
crystalline solids there are localized states originating from the broken transition
symmetry. In crystalline solids, the broken transition symmetry (disorder) is a con-
sequence of the thermal motion of nuclei forming the crystal while in the disordered
solids the disorder is both inherent and caused by the thermal motion. The local-
ized states could originate also from the defects in the materials, such as vacancies,
impurities, etc. If the initial and final states are localized states, we talk about local-
ized excitations and if the initial or final state is the extended state, i.e. valence or
conduction state, then the excitation is modeled by the subgap absorption tails.
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3.3.3.1 Localized Excitations

The localized states are typically observable below the band gap energy as discrete
transitions with the photon energies given as the differences between the energy of
corresponding occupied and unoccupied localized states. This means that the JDOS
cannot be calculated as the correlation between the initial and final states as in the
case of IBT (3.131). In most cases, the Gaussian e-broadened discrete transitions are
an adequate model [63, 64], i.e. the same model as for phonons (see Sect.3.3.1.1).
In the case of excitations of m-electrons in diamond-like carbon (DLC) [70-73] or
excitations of non-bonding electrons in chalcogenides [74—76] the corresponding
absorption structures can be described by the IBT model (3.133). In these cases the
degree of localization of the w-electron and non-bonding electron states is relatively
low and, therefore, it is possible to represent the density of states as two valence
bands and two conduction bands with different bandgap energies.

3.3.3.2 Exponential (Urbach) Tail

The exponential (Urbach) tail is employed to describe the weak absorption below
the band gap caused by the transitions of electrons from the localized valence states
to the unoccupied extended states and the transitions from the extended valence
states to the unoccupied localized states [77] (see Fig.3.1). The JDOS associated
with these transitions are given as the correlation between the density of localized
states with the density of states in valence or conduction bands. The density of
localized states is given by the narrow peak with typical width in tens of meV which
decays exponentially. Since the typical width of extended bands is around 10eV
the correlation gives the JDOS which looks like copies of the extended bands with
exponential tails on both of its ends. The exponential tails have limited extent because
the DOS of the localized states is bounded by the Fermi energy. The imaginary
part of the normalized dielectric function corresponding to localized-to-extended or
extended-to-localized transitions can be modeled by [63, 64]

0 1 |E| — Eq
& w(E) = TV R Ng,2.E,(E)
oy BB Q|E| — Em — Eg)?

4Ey 4Ey(Em — Eg)

} Mg, £, (ED) (3.141)

Em — |E| E
+6XP<mT> HEm.Em+Eg/2(|EI)—eXP<—§ HEg, /2, En+Eg2(ED [
u u

where E, is the parameter called the Urbach energy. It express the slope of the
decrease of the exponential tail and the parameter k modifies the shape of the absorp-
tion band. The energy E\, is the difference between the energies of tops of the valence
and conduction bands if the model describes the localized-to-extended transitions
and the difference between the energies of the bottoms of the valence and conduc-
tion bands if the model describes extended-to-localized transitions. In principle two
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Fig. 3.12 Schematic diagram of JDOS function of exponential (Urbach) tail model (x = 1)

models (3.141) with different E,, should be used but because the absorption struc-
tures corresponding to these transitions are weak they are masked by other absorption
structures above the E,. For this reason, it is possible to use one model with the mean
value

En =Eg/2+ Ep/2. (3.142)

A schematic diagram of this model constructed from three parts is plotted in
Fig.3.12. In (3.141) the first three terms correspond to the three parts of the model
and the fourth constant term ensures the continuous course of the JDOS in energies
Eg/2and Ey, + Eg/2. As was mentioned above the exponential tail has extent limited
by the Fermi energy. For this reason the model is constructed such that it is zero below
E, /2 and above E, + E,/2,i.e.itis assumed that the Fermi energy lies in the middle
of the bandgap. The analytic expressions for the real part of the normalized dielectric
function and the normalization constant Cy for x = 1 can be found in [64].

When the valence electron excitations are described by the Tauc—Lorentz models,
it is possible to use the model of exponential (Urbach) tail, which is not limited by
the energy E,, but extends to infinity

g? (E)=; exp( EL=Ee) _exn(— L2 ) |nn (E))
i,ut CNE|E|K p Eu p 2Eu E¢/2,E,

A(E| - Eo)
B

O(E| — Eg)} . (3.143)

The model is parameterized by the energies E,, E; and the integer «. The values of
Ey and A must be determined so that the imaginary part of the dielectric function
and its derivative are continuous at E,.

3.3.4 Free Carrier Contributions

If the valence or conduction band is partially occupied, i.e. the Fermi energy lies
inside or sufficiently close to these bands, the indirect intraband transitions contribute
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to the dielectric response of the material. These transitions are called free carrier con-
tributions (FCC) because they can be interpreted as movement of carriers of charge,
i.e. electrons and holes, in the frame of quasiparticle approximation. Although the
maximum energy of the FCC is given by the width of the partially filled band, it is
possible to use the classical model, which is not bounded by any maximum energy.
The absence of the upper energy limit is not a serious problem because it lies in the
region of the interband electronic transitions which are, in this region, much stronger
than the FCC. Since the dielectric function corresponding to the FCC has a singu-
larity at the zero energy, it is more convenient to describe the free carrier dielectric
response using the complex optical conductivity 6 (w) = —iwep[€(w) — 1] or equiv-
alently using the transition strength function which is proportional to its real part o;.
The normalized transition strength function of the Drude model (3.15) is given as
follows

2 B
F)(E) = (3.144)

mE*+ B
Instead of being bounded by a high energy limit, the Drude model exhibits classical
asymptotic behavior. This could be problematic if we intent to model the dielectric
response in the high energy X-ray region. In that case, it is better to use the modified
version of the Drude model that introduces the high energy limit E\, as follows

Foo(E) =

ELZEVOUE) G BB (B - 30
CN(EZ + B2) B 37V
(3.145)
The dielectric function of this model can be expressed analytically by (3.35) and

(3.36). The comparison of this model with the Drude model is in Fig.3.13.
The temperature dependence of the intraband transitions is a complex phe-
nomenon and it is impossible to describe it by a formula which is universally valid.

Roughly speaking, it depends on the position of the Fermi energy within the band

45 T T T T T
classical Drude
FCC model with upper energy limit

transition strength function, FO(E)

0 1 1 1 L I
0 0.2 0.4 0.6 0.8 1 1.2

photon energy, E (eV)

Fig. 3.13 Normalized transition strength functions F %E)y=E sio(E ) for models of free carrier
contribution: B = 0.2eV, Ey = 1eV
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structure. For example, if the Fermi energy lies inside the valence band (like in
metals), the electron occupation numbers are redistributed inside the partially filled
band and the total transition strength is practically constant. The broadening parame-
ter B increases with the temperature due to the blurring of the Fermi—Dirac statistics
which results in the decrease of the static conductivity. If the Fermi energy lies inside
the band gap (like in semiconductors) then the conductivity of the material increases
with temperature because the density of holes in the valence band and electrons in
the conduction band increases. In intrinsic semiconductors the the Fermi energy lies
exactly in the middle of the bandgap and the temperature dependence of the transition
strength of intraband indirect transitions is given as [78, 79]

o T \" 1 1 0
FOET) = —— _Ze (2o )| RAE), (3.146
tee (£ T) <300K> eXp[ 2ks (T 300K>} Re(E). (3.146)

where the normalization of F,(E) is performed for 300K.

Although the description of materials in the superconducting state poses con-
siderable theoretical problem, it is quite easy to write the part corresponding to
superconductivity (SC) in the dielectric model. The normalized contribution to the
transition strength is given as

FY(E) = 28(E) (3.147)

and the contribution to the real part of the dielectric function is

& (E)= 2 (3.148)
r,SC - 7TE2 . .

3.3.5 Core Electron Excitations

Apart from the valence electrons the core electrons can also be excited to the unoc-
cupied electronic states (see Fig.3.1). These excitations are manifested by sharp
absorption edges in the spectra. The positions of these absorption edges are deter-
mined by the energies of the core electron states in the individual atoms forming
the material. This means that each element contained in the material is manifested
by absorption edges at energies characteristic for this element. The exact configu-
ration of atoms in the material has only a small influence on the positions of these
absorption edges.

The excitations of core electrons into conduction band influence the shape of
the absorption structures near the absorption edges. These structures are called fine
absorption structures and their shape is determined not only by the types and quan-
tities of atoms forming the material but also by their configuration within this mate-
rial. The excitation of core electrons into higher states contributes to the dielectric
response by smooth functions. The strength of these smooth contributions is deter-
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mined only by the types and quantities of the atoms and it is independent on the exact
configuration of these atoms within the material.

The influence of the core electron excitations (CEE) on the dielectric response in
the region of valence electron excitations is very small. Therefore, if the experimental
data do not extend to very high energies, it is possible to neglect the contribution
coming from the CEE or a simple analytical model that is sufficiently accurate at
low energies could be used [7, 60, 64, 78]:

E + E,
E—E,

2E
E

~0 Es
Eeee(E) = gy In

E;
>+iE®(|E| —E). (3.149)

At low energies this model gives a practically constant contribution to the real part
of the dielectric function, which can be expressed as

A0
g_)mo Eeee(E) = 371—E§ . (3.150)
For example, in the case of hydrogenated amorphous silicon these contributions are
1.2 x 1073 for K and 0.0204 for L core electrons [64].

The model of the CEE (3.149) has classical asymptotic behavior and singularity
atenergy E = E. Similarly as for the HET the correct model of the CEE should fall
faster than the classical asymptotic behavior at high energies. The faster decay at high
energies could be achieved by placing the term (| E| + E,) into the denominator of the
imaginary part of (3.149). The singularity at E = E is caused by the Heaviside step
function and it can be removed by the broadening procedure. Thus the normalized

dielectric function of the corrected CEE dispersion model can be written as

A

&0.(E)=p O(E| - Ey), (3.151)

*—
CNE*(IE| + Ea)

where Cy is the normalization constant given by

_ Es[ln(Es) - ln(Es + Ea)] + Ea

c
N E,E?

(3.152)

If the Lorentzian broadening function (3.55) is used, the result can be expressed
analytically as
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Fig.3.14 Contributions to the dielectric function corresponding to CEE models (3.149) and (3.153):
Neee = 500eV2, Eg = 100eV, B = leV, E, = 500eV

1 2
0 _
Ecee(E) = = In(E, + E) — —— In(Ey) — -
e 7CN { E2(E* — E?) E2E? E,E,E?
(3.153)
1 1 . E+ E; T
+ ———— | =In((E + E,)* + B*/4 —1arctan( )+1—:|
EME, - E) [2 ( ) ) B/2 2

1 1 2 ) . E - E LT
_ m |:§ln((E — E\)* + B*/4) —1arctan( 5/ )—15}} .

In Fig. 3.14, the contributions to the dielectric function calculated by the CEE models
are shown in alog-log plot. In this figure, it is observed that the Lorentzian broadening
results in nonzero contribution to the imaginary part in the low energy region. This
slowly decaying weak absorption tail is unphysical in the region below the bandgap
where the exponential (Urbach) tail should be observed. For this reason it is better
to use the Gaussian broadening in (3.151) but in this case the broadened dielectric
function requires the use of numerical integration.

3.4 Conclusion

The UDM is a collection of models describing various elementary excitations pre-
sented in a unified form. The contributions corresponding to these elementary exci-
tations must be combined in order to describe the dielectric response of a specific
material. In order to decide which contributions should be included in the model
some prior knowledge of the structure of the studied material is needed. Moreover,
the exact number and types of the contributions depend on the spectral range in
which the model should be valid and the desired precision of the model. The models
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presented in this chapter are only a basic set of models of elementary excitations
and some modifications or extensions of these models are possible. An example of
a software that uses the UDM is newAD project [80]. So far the UDM was used to
describe the optical response of the following materials: a-Si:H [64, 81], HfO, [63,
82], SiO; [82, 83], Al,O3 [82], TayOs [82], TiO, [82], MgF; [82, 84] and ZnSe [85].
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Chapter 4
Predicting Optical Properties from Ab Initio
Calculations

Pavel Ondracka, David Holec and Lenka Zajickova

Abstract In this chapter a short overview is given of some of the ab initio methods
that can be used to predict optical properties of solids in order to gain insights
into the underlying principles and to explain experimentally observed phenomena or
predict properties of new materials. Density functional theory is presented as the most
popular first principles technique for electronic structure calculations along with a
brief description of a more sophisticated many body perturbation theory based on the
Green’s functions formalism. The Bethe—Salpeter equation is introduced as a mean
to calculate optical properties including excitonic effects. Those methods are applied
to a model system of crystalline silicon as well as more complicated oxide materials.

4.1 Introduction

Ab initio methods, also called first principles methods, allow calculating certain phys-
ical quantities using only fundamental principles without a need for any empirical
parameters. A bottom-up approach in materials science builds on such quantum-
mechanical calculations and up-scales the obtained properties either for a better
understanding of experimental results or for a prediction and planning the experi-
ments. While the ab initio modeling techniques have been around for almost a whole
century, it was only in the last two decades that they have seen much broader adop-
tion and applications beyond the simplest crystal systems. This is due to the rapid

P. Ondracka (X)) - L. Zajickova

Plasma Technologies, CEITEC, Masaryk University, Purkyfiova 123,
61200 Brno, Czech Republic

e-mail: pavel.ondracka@gmail.com

P. Ondracka - L. Zajickova
Faculty of Science, Department of Physical Electronics,
Masaryk University, Kotlafska 2, 61137 Brno, Czech Republic

D. Holec
Department of Physical Metallurgy and Materials Testing,
Montanuniversitit Leoben, Franz-Josef-Strale 18, 8700 Leoben, Austria

© Springer International Publishing AG 2018 83
0. Stenzel and M. Ohlidal (eds.), Optical Characterization of

Thin Solid Films, Springer Series in Surface Sciences 64,
https://doi.org/10.1007/978-3-319-75325-6_4



84 P. Ondracka et al.

increase of the available computing power, advancements in fundamental theories,
numerical methods, and increasing availability and user friendliness of the ab initio
software. Combination of those factors lowers the entry barrier for researchers inter-
ested in the ab initio methods, and allows to apply them to much more sophisticated,
hence more realistic, systems than ever before. While the main focus of this book
is on the experimental characterization of thin films, this chapter provides a very
brief overview of techniques used to predict band structures and optical properties
of solids. However, the aim is not a thorough description of the underlying theory
and principles because it could not fit in a single chapter.

After reading this chapter, the reader shall have a general idea about possibili-
ties of the standard ab initio techniques, and how they can be used to complement
experimental efforts. There are two conceptually different approaches to the utiliza-
tion of first principles calculations. The first one uses the ab initio calculations for
interpreting experimental results, i.e. explaining the observed phenomena and gain-
ing insights into the underlying principles. For example, in the context of optical
properties, the information obtained from calculations is not limited only to the final
dielectric function but includes also the complete band structure, momentum matrix
elements, etc. Such knowledge is essential for understanding and interpreting the
measured data. The second field of applications of the ab initio calculations uses
their predictive power. Since no empirical input is needed, in principle, the ab initio
techniques can be used to model properties of not-yet-known materials. For example,
high throughput searches for novel materials via scanning a broad range of possible
material candidates and selecting the most promising ones for subsequent in-depth
experimental studies, are gaining on importance as they save experimental costs and
efforts.

4.2 Band Structure Calculations

4.2.1 Wave Function Quantum Mechanics

The first step and, in theory, the only needed input for any ab initio calculation is a
specification of the system. Mathematically, it means to formulate Hamiltonian, H,
a quantum-mechanical operator “setting up the scene”. Then, the system is described
by a wave function, W (r, #), whose squared norm represents the probability that the
system is in a particular configuration r at time ¢. The Hamiltonian defines the wave
function by the Schrédinger equation

A W
H‘P(r,t):ihaa—t(r,t), 4.1)

which in the stationary case assumes a form known as the time-independent
Schrodinger equation
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AY(r) = EV(r), 4.2)

where E is the total energy of the system. In the context of solid state physics, the
system is usually considered to be composed of positively charged ions, each placed
at a position R; and having a charge ¢;, and electrons at positions r; and possessing
charge —e. Equation (4.2) representing such a many-body problem reads

HY(R;}, {ri}) = EV({R;}, {ri) . (4.3)

While formally simple, the Schrédinger equation is a partial differential equation
for the many-body wave function W({R}, {r;}), and hence its solution is impossible
for majority of problems with a practical relevance. The mass of a single proton is
~1836x bigger than the mass of an electron, and therefore the electrons can react to
any perturbation much faster. This inspires the Born—Oppenheimer approximation

W({R;}, {ri}) =vn({R;}) x ¥ ({r;}, (R;}) 4.4

separating the nuclear (y¥n ({R})) and electronic (y ({r;}, {R;})) wave functions. It
turns out that in most cases the nuclei can be treated using classical mechanics as
positively charged particles in a potential landscape given by the electrons. Contrarily,
the instantaneous state of electrons is an ab initio solution of an electronic many-
body problem in the static configuration of nuclei (e.g., the {R;} now plays only the
part of an external parameter). A further simplification is the assumption that the
electronic many-body wave function v ({r;}) takes the form of a product of single
electron wave functions

Yy({r:}) =Mp(r;), 4.5)

known as the Hartree approximation. This form, however, violates the Pauli exclusion
principle since the resulting wave function is not anti-symmetrical with respect to the
exchange of particles, as required for fermions (particles with half-integer spin, e.g.,
electrons). This is resolved in the Harftree—Fock (HF) approximation by assuming
the electronic wave-function in a form of the Slater’s determinant

o1(r1) ¢a(ry) -+ on(ry)

1 [$1(r2) ¢a(r2) -+ Py (r2)
Yv(r) = — . )

i (4.6)

$1(r) Ba(ra) - S ()

Although fulfilling the Pauli exclusion principle (exchange interaction), the Hartree—
Fock solution is still based on the single particle orbitals, and hence misses many-
body effects except the simple exchange. We note that for (4.6) to be correct, the
@; (r j) must already contain a spin (spin-orbital). i.e. the position vectors r ; already
include electron spin-coordinates and their integration includes summation over spin-
coordinates.
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4.2.2 Density Functional Theory

A new avenue for quantum-mechanical calculations has been opened via density
functional theory (DFT) by switching from the many-body wave function to charge
density as the main quantity. This fundamentally simplifies the solution, since we
are now dealing with a function of only one position, r. The ground state electron
charge density, p(r), is related to the many-body wave function as

,o(r):Z/drldrz...g:{...drlv1//*(r1,r2,...,r,-Er,...,rN)-
'1//(1‘1,1'2,...,1‘,'Er,...,l‘N). (47)

Hohenberg and Kohn [1] proved also a reverse relation, i.e., that any observable
(including the total energy) is uniquely determined by p (r) up to an additive constant.
Consequently, the many-body problem was reformulated as a variational problem:
the ground state charge density minimizes the total energy functional. Finally, Kohn
and Sham [2] provided a practical recipe by proving that the ground state charge
density, p(r), of many interacting electrons is identical to that of a ground state of
a system of fictitious non-interacting particles with the same elemental charge. The
corresponding single-particle wave functions ¢; and energies ¢; are solutions of the
Kohn—Sham (KS) equations [2]

Hispi = € (4.8)

leading to

N
p(r) =" ¢;(r)$i(r), (4.9)

i=1

where N is the total number of electrons.
The KS Hamiltonian can be decomposed into four parts

N P, &2 , p(r)
HKS = — V + — dr ; + Vext + ch 9 (410)
2me 4mey |[r" —r|

where the first term is the kinetic energy of the non-interacting electrons, the second
term (called the Hartree potential Vy) is the Coulomb electrostatic potential of the
electronic cloud with the density p (r), the third term is the external potential of atomic
nuclei and/or external fields, and the last one is the so-called exchange-correlation
(xc) potential. The last term represents the quantum-mechanical part of the electron-
electron interactions. The external potential is, in contrary to other terms, system
specific and is defined by the system geometry and chemistry (e.g., positions and
types of atoms).
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Fig. 4.1 The self-consistent scheme for calculating the electron charge density within the DFT
framework

The Kohn—Sham orbitals are solutions of the KS equations (4.8), depending on
the charge density, which in turn depends on the KS orbitals themselves. Thus, a self-
consistent solution is needed, starting from an initial guess of the electron density
(for example a superposition of atomic densities), solving the KS equation, and
mixing the old and new electron densities until a converged, self-consistent solution
is obtained. This process is schematically depicted in Fig.4.1. We note that the KS
equations can be easily extended to include the spin-polarization [3]. However, in
order to give as simple picture as possible only the non-spin-polarized case will be
considered throughout this chapter.

It is important to note that while some quantities, such as the charge density and
the total energy, have well-defined physical meaning, the KS orbitals are not, in fact,
single-electron states in the Hartree—Fock sense. Therefore, interpreting the KS states
as the single-particle states does not have a formal justification. Despite that, it was
shown that the KS wave functions are very similar to quasiparticle wave functions [4].
Consequently, the interpretation of the KS eigenvalues as quasiparticle energies and
their differences as excitation energies, has been successful in some cases.

4.2.3 Exchange-Correlation Functionals

Although the KS equations do not contain any other than the Born—Oppenheimer
approximation, and are guaranteed to lead to a ground state solution, an exact form
of the exchange-correlation potential V. is not known. Consequently, there exist
different levels of approximations [5] for the exchange-correlation energy Ey., from
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which the exchange-correlation potential can be recovered as

SEx[p]

ch[,O](") = 5[)(1')

4.11)

e Local Density Approximation (LDA)
In the LDA scheme, the exchange-correlation energy is modeled by that of a
homogeneous electron gas with a density equal to the density of the real system [1]

EPMpl = / d*rpr)el™(p(r)) . 4.12)

where €M™ is the exchange-correlation energy per particle of the homogeneous

electron gas. The exchange energy of homogeneous electron gas is known ana-
lytically, the correlation energy has been determined from quantum mechanical
Monte Carlo simulations [6] and a simple analytic formula for the correlation part
has been also established [7].

The LDA was quite successful describing the total energies and structural proper-
ties. However, it suffers from problems such as overestimated binding (and thus
underestimated cell sizes) or a notoriously known underestimation of the band
gap [8]. It is worth noting that the failure in a correct determination of the band
gap is not entirely caused by the LDA [9]. Moreover, it was shown for some cases
that the shifted LDA band structure can be in a good agreement with the quasipar-
ticle band structure calculated with a more sophisticated many-body approach [9].

e Generalized gradient approximation (GGA)

In the GGA, the first correction to the LDA, the xc energy functional depends not
only on the total electron density at a given point r, but also on its gradient

EZ o]l = /d3rf(p(r), Vo(r). (4.13)

There have been developed many parametrization of the GGA functional, some
based on a semi-empirical approach including parameters determined from fitting
properties of a selected set of materials (e.g. [10]) and others developed fully
ab initio, such as the popular PBE functional [11]. While the GGAs are quite
successful with correcting some of the LDA problems such as the total energy
or the structural parameters [12] (although usually not both at the same time),
the improvements over LDA in band energies with respect to the experiment are
usually only marginal [13].
e Meta-GGA

Meta-GGA functionals are another step in ladder of exchange-correlation approxi-
mations [ 14], adding a semi-local kinetic energy density t (r) as another ingredient

Eg= G0 [p] = /dSrf(p(r), Vo(r), ©(r)), (4.14)
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hz

T = 2m

N
DIV . (4.15)
¢ i=1

Meta-GGA allows a construction of functional that gives lattice constants, binding
and surface energies with a good accuracy [15], in contrast to the GGA functionals
that are usually optimized to give only one of those quantities reliably. One particu-
lar example worth mentioning due to the present focus on the optical properties, is
the modified Becke—Johnson (TB-mBJ) functional, which was developed specif-
ically to provide correct band gaps [16]. It predicts band gaps with the accuracy
comparable to computationally extensive GW approaches, which are typically
in an excellent agreement with experiments [17] (see Fig.4.2). However, it was
argued that for some materials the good band gap values comes at the cost of worse
overall band structure compared to the GGA [17, 18].
e Hybrid functionals

Hybrid functionals combine the DFT with the Hartree—Fock theory by including
a fraction of the exact exchange component

— e i // Fror, OGS0
ij

4 eg |ry — 73]

in combination with fraction of exchange and full correlation from DFT functionals
[19]. Due to the mixing of KS local potential with non-local HF potential, a much
better description of the band gaps, lattice constants and other properties can be
obtained [20]. There are various hybrid functionals available, with the most popular
ones being B3LYP [21], PBEO [22], or HSE [23]. The differences between them
boil down mostly to the choice of the exchange-correlation functional used in
combination with the exact exchange, the mixing factors of the DFT and Hartree—
Fock exchange, and the calculation of screening.

4.2.4 Beyond the DFT

4.2.4.1 The GW Method

For a rigorous description of the quasiparticle properties, methods beyond the DFT,
e.g., many-body perturbation theory using Green’s functions, become unavoidable.
Here, we highlight only some general concepts, particularly those which are also
directly related to the calculation of optical properties. For a thorough review on the
GW method, the interested reader is directed, e.g., to [4, 24, 25].

In the many-body formalism of the Green’s functions, the quasiparticle energies
enQ;; for a general inhomogeneous system can be obtained from the following quasi-
particle equation
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Fig. 4.2 Band structure plot — PBE —— HSEO06 hybrid
of Si as obtained with —— TB-mBJ GoWo
different levels of DFT [
functionals and with the
GoW( method on top of the
PBE. This highlights the
band gap problems of the
standard DFT functionals (in
this case the PBE). However,
it can be seen that even the
methods which can
reproduce the quasiparticle
GoW)y band gap such as the
hybrid functional (HSE06) or
the TB-mBJ functional show
some other problems such as
a different compression of
the valence bands and other
minor changes in the band
structure

Energy (eV)
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>
=
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x
c
=
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=

(T + Vext + Vi) ¥k (1) + / SPrEr, el) Vi) = i) (4.17)

with 7 being the kinetic energy operator, Ve and Vi are the external and Coulomb
(Hartree) potentials, respectively, and X (r, r’, e,?i) is the electron self-energy oper-
ator. It represents the potential due to the exchange and correlation effects among
.. .. QP
electrons. It is in general non-Hermitian operator, thus the €, can be a complex
number, with the imaginary part corresponding to a lifetime of the quasiparticle.
The single- and two-particle Green’s functions, G and G,, are defined as

G(1,2) = —%(NITD//(Z)WU)]IN) (4.18)

and

.\ 2
G,(1,2;1,2) = — (%) (NITTy Dy @y @)y aHIN). 4.19)

In this formalism (1) stands for (r, t), the |N) is the ground state configuration
of system with N electrons, 7 is the time-ordering operator, and v (1), ¥i(1) are
field operators in Heisenberg picture that annihilate and create electron at (1). The
physical meaning of single particle Green’s function is the probability amplitude
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that for #, < t;, a hole will propagate from r; to r», or for t, > ¢, an electron will
propagate from r;, to ri. When Fourier-transformed to the frequency domain, the
poles of the Green’s function correspond to the excitation energies.

A set of self-consistent equations, in which the self-energy operator X is connected
to the single particle Green’s function, was formulated by Hedin [26]

2(1,2) = iﬁ/d(34)G(1, 3+)W(1,4)A(3, 2,4), (4.20)
G(1,2) = Go(1,2) +/d(34)G0(1, 3H)X3,49)GH4,2), “4.21)
A(1,2,3)=46(1,2)5(1,3 d456762(1’2)G46G75A673
2, —(,><,>+/< o s 04 OG.HAG.T.3)
(4.22)
W(,2) =v(1,2) +/d(34)v(l,3)P(3,4)W(4, 2), 4.23)
P(1,2) = —iﬁ/d(34)G(1, 3)A@B3B,4,2)G4, 1+) , 4.24)

where A is the vertex function, P is the polarization function, G is the non-
interacting Green’s function (corresponding to ¥ = 0), W is the screened Coulomb
potential, and 1% denotes the state r — ¢ + &, with § being positive infinitesimal.
The screened Coulomb potential is connected to the bare Coulomb potential through

the inverse microscopic dielectric function ¢! as

wW(,2) = /d(3)6‘_1(1, 3v3,2). (4.25)

In the GW approximation, the second part of the vertex function is neglected, leaving
only A(1,2,3) =4(1,2)8(1, 3) which leads to

(1,2) =ihG(1,2)W(1,2), (4.26)
wW(,2) =v(,2) +/d(34)W(l, 3)P(3,4)v4,2), 4.27)

and
P(1,2) = —ihG(1,2)G(2,11). (4.28)

After a Fourier transform to the frequency domain the self-energy takes the following
form

S rw) = ﬁ/dm’G(r,r’;a)+w’)W(r,r'; W) . (4.29)
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To calculate the screened Coulomb potential using (4.25), one needs to calculate the
microscopic dielectric function which is connected with the polarizability as

e(r,r',w) =8(r —r') — / dr'’vir —r'"YP@", v, w) . (4.30)

A standard approximation for the calculation of the polarization is the random phase
approximation (RPA) [27, 28]. It again considers only the first part of the vertex
function, leading to (4.28) with G replaced by the non-interacting G

PO(1,2) = —ihGy(1,2)Go(2,17) , (4.31)

where P is the independent-particle polarization.

In the most simple case, the density functional theory is used as a starting point
for the evaluation of quasiparticle properties using the KS orbitals as a basis. In such
case, the non-interacting Green’s function is constructed from the KS states as

Puk (F) i (")

hw — €, — sgn(ep — €,x)18

Golr.r's0) =

nk

(4.32)

where e, is the Fermi energy. The independent particle polarization, P°, is a sum over
all independent transitions of non-interacting electrons that respond to total potential
(induced screening and external)

val cond

POr, v @) =D D $m ()i (NG (b (') x

nk n'k

1 1
x (ha) — € € +18  hw + €py — €tn — 15) '
(4.33)

For a crystalline material, (4.30) can be Fourier-transformed to
€6.6'(q, w) =866 —v6(q)Pg ¢ (q. ®) (4.34)
where G and G’ are reciprocal lattice vectors, and ¢ is a wave vector from the first

Brillouin zone, vg(q) = 4we?/|q + G|*. The irreducible polarizability in the RPA
approximation than takes a form
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1 . . N
Poo@ @) =g D n kle T k+ q) (', ke + qle O |n, k) x

n,n' k

1 1
X [f(Gn’,k+q) - f(en,k)] [ + ]

€n' k+qg — €nk — hw — 168 €n k+q — €Enk T+ how + 168
(4.35)

where €2 is the unit cell volume and f is the Fermi distribution function. The first part
of the sum, e.g., the momentum matrix elements correspond to the transition proba-
bility, while the second part corresponds to the joint density of states (JDOS). After
calculating the dielectric tensor & by (4.30), inverting it to get the ¢!, calculating
W (4.25), and using the G (4.32) as approximation of G, we obtain the self-energy

defined in (4.26). Finally, we can use this to obtain the quasiparticle energies G;?,i in
the first-order perturbative approach on top of the KS results
ek = €nk + Cok Re(@n k| Z(€n k) — Vielbni) - (4.36)
where C, x is the quasiparticle renormalization factor
Cuk = (1 = Re( k9T () /D€, | $nr) - 437)

This formulation of the perturbation method is usually denoted Gy W to show that
both, the Green’s function and the screened Coulomb potential are calculated with-
out self-consistency [4]. There are many other schemes (G Wy, G W) with different
amounts of self-consistency [29-31].

4.3 Optical Properties

The directly measurable macroscopic dielectric function ey is connected to the
microscopic dielectric function by the (0,0) element of the inverse dielectric ten-

sor 1

Here, ¢ — 0 stems from the fact that a wave vector of the light is usually much
shorter than a typical wave vector of electrons in the system.

In the case of a microscopic inhomogeneity in the system, all of the elements
of the dielectric matrix contribute to the &, o component. This is called a local field
effects and originates from the fact that in inhomogeneous systems even spatially
constant external field induces some field fluctuations on the microscopic scale, and
leads to an effective mixing of the transitions even if the polarizability (e.g., in the
RPA) contains no explicit electron-hole interaction.
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One of the problems associated with (4.38) is that it involves evaluation of e ¢’
for G, G’ up to a certain artificial limit, and a subsequent inversion to get the €. (')
component. A possible simplification is to skip the inversion of the full dielectric
tensor, and to replace the (0, 0) component of the inverse tensor with the inverse of the
(0, 0) component. In other words, this neglects the local field effects and simplifies
(4.38) to

e (@) = ;IE}) €0,0(¢, @) =1— ;12% [v(@)Poo(g, »)] . (4.39)

4.3.1 Bethe-Salpeter Equation

It was shown in the previous section, how to obtain the microscopic dielectric func-
tion using the independent transitions RPA (independent particles) approach. This
approximation is sufficient for metals and for other materials where the excitonic
(electron-hole interaction) effects are negligible due to effective screening. In semi-
conductors, however, the excitonic effects usually cannot be neglected.

Two most popular frameworks for including excitonic effects into optical response
is the Bethe—Salpeter equation (BSE) [32-35] and time-dependent density functional
theory [36, 37]. We focus only on the former since it is much better established and
more widely used, even though computationally somewhat more demanding.

The Bethe—Salpeter theory is formulated in terms of two-particle propagators, the
four-point functions describing the motion of two particles through the system. The
BSE for the four-point generalized (reducible) polarization function P in the direct
space assumes a form [37]

P(1,2;1,2) = PO(1, 2; 1’,2’)+/d(3456)P°(1,4; 1',3)K3,5,4,6)P(6,2;5,2),
(4.40)

where P is defined in the terms of one and two particle interacting Green’s functions
P(1,2;1,2) = ih[Gz(l, 2;1,2) - G(A,1)G(2, 2/)] , 4.41)

and K is an interaction kernel which contains both the screened and bare Coulomb
interaction

K(3,5:4,6) =68(1,2)8(3%,4)v(1,3) —8(1,3)8(2, HW(1+,2), (4.42)
where Vv is the modified Coulomb interaction. vg(q) is defined as O for G = 0 and
v (q) otherwise, e.g., this is the bare Coulomb potential without the long range term.

The P°(1,2; 1’,2') is the four-point independent particle polarization

P(1,2:1,2) =ihG(1,2)G(2, 1) . (4.43)
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It is convenient to deal with the P instead of the irreducible polarization P since
it can be shown that &y can be calculated directly from the polarization function,
hence avoiding the costly matrix inversion of the dielectric tensor in (4.38) [37]

em(@) =1 — ;i_I}}) [vo(q) Poo(q. )] . (4.44)

The four-point polarization is related to its two-point analogy used in the calculation
of macroscopic dielectric function

P(1,2) = P(1,2;17,2%). (4.45)

Finally, the generalized (reducible) polarizability P is connected with the irreducible
polarizability by the Dyson-like equation

P(1,2) = P(1,2) +/d(34)P(1,3)17(3,4)f’(4, 2). (4.46)

When going into the transition space with basis defined by single particle states
(usually the KS orbitals), the BSE takes the form of matrix equzition and leads to an
eigenvalue problem for the effective two particle Hamiltonian HBSE

ABE, o AL = EX AL (4.47)

vek,v'e vek>
where v spans over all occupied valence bands, while ¢ goes over empty conduction
bands. The Hamiltonian in the Tamm-Dancoff approximation [38] (i.e., neglecting
the coupling terms of the Hamiltonian) reads

FBSE _ f(diag) 42 H® + A i (4.48)

The diagonal term of the Hamiltonian, H 9 accounts for a contribution of the
single-particle transitions

I:I(diag) = (Eck - evk) 8vv’ 805’ 8kk’ . (449)

vek,v' 'k

The electron-hole exchange term, H® is repulsive and is caused by the unscreened
Coulomb interaction

A% ow = / &*r / & G (r) G () T, 1) e () do (7). (4.50)

The direct (correlation) term H@" describes the screened attractive electron-hole
interaction, due to the screened Coulomb potential

A% = / d’r / &Cr Gk (r) 5 () W(r, 1) ¢35 (1) ¢ (7). (4.51)
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This decomposition of the Hamiltonian allows to easily turn off and on its different
parts, i.e., different interactions. For example, neglecting the H@n jg equivalent to
the RPA with local field effects.

Then, the generalized polarizability can be written as [35]

B A)L kAA*
_ Ve vk
Pvckv’c’k/ - Z ho — E~ (452)

and the &4, component of the macroscopic dielectric function is subsequently cal-
culated according to the following formula [35]

1
,S:Z:tl E; — Bh(w +18)
(4.53)

1 *R?
gaaM(w)_1+_ 2

n 2
Z ar Scklpa|vi)

vek
€ck — €vk

cvk

where p, is the @ component of the momentum operator p.

The BSE calculation is quite time-consuming, especially for large systems, since
the BSE Hamiltonian has size N = N, NNy and the diagonalization problem has a
time complexity of O(N?). There are some alternative approaches to speed up the
calculations such as the time-evolution algorithm, in which the macroscopic polariz-
ability obtained from the solution of initial-value problem instead of diagonalization
of the BSE Hamiltonian, leading to a much better O (N?) complexity [39].

4.3.2 Usual Workflow

In most cases, a sequence of calculations depicted in Fig. 4.3 is needed in order to get
the optical spectra including the excitonic effects. One starts with the KS orbitals and
energies, which are used to construct the non-interacting Green’s function G and to
calculate the screening at the RPA level. Using the single-pass Gy and W, the self-
energy is constructed leading to quasiparticle energies which together with the W,
and KS orbitals are used to construct the BSE two-particle Hamiltonian. A common
simplification is to skip the GW step and use the DFT energies (with a possible
rigid shift, i.e., the scissor operator). Differences between the dielectric functions
calculated with those two schemes, GoW, BSE and PBE BSE, are demonstrated

Fig. 4.3 Schematic » //—\

workflow for the BSE 7N\ ’/,,Z > ngﬂ

calculation on top of DFT Go f @ —&M
N

and GoWy €RPA—>WO
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Fig. 4.4 Imaginary part of the dielectric function, &;, calculated at different theory levels compared
with the experimental ¢; of c-Si determined from ellipsometry at 10K using UDM described in
Chap.3 [40]. The GoWy calculations were done on top of the PBE-DFT calculations. Notice a
significant spectral weight shift between the Gy Wy BSE and GoWy RPA calculations caused by
the inclusion of excitonic effects in the former. In this simple model case, the shape of ¢; calculated
with the BSE on top of the PBE-DFT results (PBE BSE) is almost identical to the BSE results on
top of the quasiparticle Go W calculations (Go Wy BSE) except for the band gap underestimation
of the PBE functional (i.e., rigid energy shift)

in Fig.4.4 on an example of cubic Si. Figure4.4 also demonstrates the significant
spectral weight shift between the Gy Wy BSE and G, W, RPA calculations caused by
the inclusion of excitonic effects in the former approach.

4.4 Modeling of Complex Systems

As mentioned at the beginning of this chapter, the only needed input for the ab initio
calculations is, in the principle, the structure of the system, which defines the external
potential Vi, related to the atomic cores. This is an easy task for ordered crystalline
materials, which structure is unambiguously defined by the primitive cell. However,
the situation is more complicated for systems that do not possess any short range
order such as solid solutions or amorphous materials. Although an exact description
suitable for standard DFT calculations is not readily available in these cases, it is still
possible to generate structural models fulfilling the periodic boundary conditions
(PBCs) framework, which, in most cases, yield representative results also of such
aperiodic structures.

4.4.1 Special Quasi-random Structures

There are several approaches to treat crystalline solid solutions within PBCs. Per-
haps the most commonly used one is the so-called supercell approach, in which a
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Fig. 4.5 Structural models of: left — Tip 5Sip 50> solid solution in anatase structure created with
the SQS method; right — amorphous TiO; structure created by simulated annealing

multiple of the unit cell is employed and atoms forming the solid solution are dis-
tributed on the corresponding sublattice. For example, in the case of anatase-based
Ti, Si;—,O,, Ti and Si atoms are distributed on the Ti sublattice sites of the underly-
ing anatase structure. A special quasi-random structure (SQS) [41, 42] is a specially
designed supercell with atoms closely mimicking short range order parameters of
a statistically random solid solution with the same composition. The advantage of
this method is that it explicitly includes various local environments, which may lead
to non-uniform local relaxations and connected localized features in the electronic
structure. The generation of SQS supercells is relatively straightforward and provides
a geometrical insight. On the other hand, the accessible compositions are directly
limited by the supercell size (e.g., an example 108-atom anatase supercell in Fig.4.5
contains 72 oxygen atoms and 36 metal atoms, hence the smallest available com-
positional step in Ti, Si;—,O; is Ax = 0.03). Large supercells supposedly treating
dilute compositions remain computationally prohibitive. However, this method is an
ideal tool for studying trends over a large range of compositions.

4.4.2 Simulated Annealing

A simulated annealing “melt and quench” scheme is a theoretical method to generate
models of amorphous structures which follows a physical process of fast quenching
and hence freezing a disordered, liquid-like structure with none or only a small degree
of order. In the context of DFT, ab initio molecular dynamics are used to perform this
process, in which the originally crystalline structure is kept for some time (typically a
few ps) at high temperature (e.g., 5000 K) and then over a few ps rapidly cooled down
to 0 K. The resulting structure is then relaxed to remove any residual forces on ions. If
reliable force fields are available the simulated annealing can be performed also using
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classical molecular dynamics which significantly shortens the computational time.
Since the DFT calculations (either simulated annealing itself, or any subsequent
calculation of optical properties using the generated structure) employ PBCs, the
aim is to remove crystalline short-range order, while the long range-order cannot be
prevented. Therefore, it is crucial to choose a large enough simulation box so that
the PBC-induced artificial long-range order does not impact the predicted properties
while, at the same time, it is small enough to keep computations affordable.

4.4.3 Example: Refractive Index of Ti,Si1—, 0>

An example of application of solid solution models and amorphous structures is given
inFig. 4.6. There, refractive index, was calculated for different crystalline-based solid
solutions well as for an amorphous-like Ti, Si;—, O, for several discrete compositions
covering the whole quasi-binary SiO,-TiO, tie-line. The selection of crystalline
structures was based on the most stable crystal polymorphs of the boundary binary
oxides. The predicted values of n are compared with experimentally measured ones
using ellipsometry on thin film samples deposited with plasma-enhanced chemical
vapor deposition (PECVD) [43]. An excellent agreement between the values pre-
dicted using the TB-mBJ potential (see Sect.4.2.3) for the amorphous structure and
experiment is seen. Perhaps the largest discrepancy between theoretical prediction

B Rutile calc. a-quartz calc.
® Anatase calc. B-tridymite calc.
4 Amorphous calc. PECVD exp.
T T T T T T
261 }=632.8nm -
[
L [ ] |
5 2.4 .® ° 0:
(0] ] [ ]
2 221 R * 1
2 20f n 'S -
© °
< 18f ¢ i
14 *
161 v ]
*
141 & E
I 1 1 1 1 1
0.2 04 0.6 0.8 1
x in Ti,SiqO2

Fig. 4.6 Compositional dependence of calculated refractive index of Ti, Sij—y O, mixed oxide at
632.8nm [43]. The electronic structure was calculated using DFT with the TB-mBJ functional,
optical properties were calculated at the RPA level. The crystalline structures based on the anatase,
rutile, -quartz, and B-tridymite were produced by SQS, amorphous structures were constructed
by the simulated annealing approach. Experimental refractive index of amorphous Ti, Sij_, O thin
films is included for comparison
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and measurement is obtained for TiO, where experimental values of n agrees bet-
ter with that of the anatase rather then amorphous structure. Indeed, such structural
evolution was confirmed also by X-ray diffraction showing that while the pure TiO,
sample assumed the anatase structure, all other samples containing Si were X-ray
amorphous [43].

4.5 Few Notes on Interpretation of the Results

4.5.1 Predictions Versus Experiment

Despite the great progress on the development of theories and available computational
resources the perfect agreement between calculated predictions and experimental
data is usually not reached. It is caused by a multiple reasons such as

e approximations in the theory (GW approximation, RPA);

e numerical accuracy — especially for larger systems it is sometimes prohibitively
difficult to get well converged calculations with respect to parameters such as num-
ber of k-points (i.e., discretization of the reciprocal space), number of conduction
bands, etc.;

e temperature effects — strictly speaking, ab initio calculations correspond to 0K
(without the zero-point vibrations), and although consideration of electron-phonon
interactions is possible [44], it is not yet well established in the ab initio codes, in
addition to being computationally expensive;

e models of infinite perfect systems contrast real finite-sized systems with defects.

Sometime extra caution is needed even in cases of good agreements. For example,
it was reported that the simple LDA+RPA approach can provide a good estimate for
the electronic part of the static dielectric tensor g, in some cases such as TiO, [45].
However, in this case, the actual agreement is a lucky error cancellation since the
downshift of the valence band from DFT was compensated by the missing redshift
caused by the excitonic effects.

On the other hand, it is fair to conclude that although it is quite challenging to get
accurate absolute values of the band gap and optical properties, general trends like
relative values and compositional trends are usually qualitatively correct.

Only electronic transitions were discussed in this chapter. Note that a calcu-
lation of phonon spectra and evaluation of phonon-photon interactions using the
frozen-phonon method or the density functional perturbation theory [46] are relative
straightforward. The phonon-assisted indirect electronic transitions can be included
as well [47]. Nevertheless, this is not a routine task at present.
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4.5.2 Electronic Versus Optical Band Gap

The value of the band gap is an important benchmark parameter in the ab initio cal-
culations of electronic and optical properties as well as during a development of new
methods and functionals. Since it is just a scalar quantity, it provides a very handy
way for comparison and/or validation of the calculations with other reports. Unfor-
tunately, there are some common misconceptions in the band gap comparison. In
contrast to the photo-electron spectroscopy (PES) and inverse photo-electron spec-
troscopy (IPS) needed to get the quasiparticle band structure, it is relatively easy to
perform the optical measurements. Because of the availability of experimental data it
is common to compare the band gap value obtained from the electronic structure cal-
culations with the experimental optical band gap. As an example let us name titanium
dioxide of which two most common crystalline polymorphs, rutile and anatase, have
optical band gaps of 3.03 and 3.2 eV, respectively [48]. Numerous papers compare the
calculated electronic HOMO-LUMO-like band gap with those values, such as [49,
50]. However, the quasiparticle band gap of rutile was reported to be 3.6eV [51] by
PES and IPS, and the lower optical band gap is caused by below-the-gap excitons.
Another problematic area is the treatment of band gap in amorphous materials.
While in crystalline materials the electronic states are delocalized and the absorption
onset is sharp, in the amorphous structure the band edges consist of spatially localized
electronic states and the absorption onset is slower. This is known as the Urbach
tail and it contains the contributions from factors such as a structural disorder and
disorder originating from thermal lattice vibrations. Therefore, the HOMO-LUMO
gap obtained from the electronic structure calculations can be significantly lower
then the experimental one. The commonly used experimental method for extraction
of the optical band gap is the so-called Tauc plot fitting [52, 53] justified by the
formula
w /e « (hw — E,) . (4.54)

Within this procedure, the linear part of w./¢ near the absorption onset is fitted by a
linear function of iw, and extrapolated to zero. A similar approach can be used also
for ab initio data, either for the calculated dielectric function [54] or as a simple fitting
of the joint density of states under the assumption of constant matrix elements [55].

4.6 Conclusions

This chapter reviewed ab initio methodology developed for the calculation of elec-
tronic structure within the framework of standard DFT, with a particular focus on
the evaluation of optical properties. Different levels of accuracy and complexity,
from a single-particle DFT employing standard approximations for the quantum-
mechanical exchange and correlation electron-electron interactions to a quasiparticle
GW approach, were introduced. Prediction of the optical properties using RPA and
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Bethe—Salpeter theory were briefly described. Finally, issues related to the modeling
of realistic materials, e.g., solid-solutions or amorphous structures, were also men-
tioned. Selected examples of calculated electronic band structure, dielectric function,
and refractive index, suggest that the state-of-the-art ab initio calculations possess
the predictive power and qualitative, often also quantitative, accuracy needed for
modern, knowledge-based materials science.

Acknowledgements We would like to thank professor Dominik Munzar for reading this chapter,
valuable comments and helpful discussion.
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Chapter 5

Optical Characterization of Thin Films
by Means of Imaging Spectroscopic
Reflectometry

Miloslav Ohlidal, Ji¥i Vodak and David Necas

Abstract This chapter focuses on optical characterization of thin films by means
of non-microscopic imaging spectroscopic reflectometry. This technique is primar-
ily intended for characterization of thin films with an area non-uniformity in their
optical properties. An advantage of the technique is the possibility to measure along
a relatively large area of the measured films. The motivation for development and
exploitation of this technique is also discussed. Essential features and implementa-
tion of the technique are given, as well as the basic experimental set-up of imaging
spectroscopic reflectometers and the way the experimental data are obtained. The
data processing methods are classified based on the purpose of the thin film mea-
surement. Furthermore, this chapter presents examples of results of imaging spec-
troscopic reflectometry in the field of thin films. At the end of the chapter, potential
applications of imaging spectroscopic reflectometry in other tasks are also briefly
mentioned.
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5.1 Introduction

The production of thin films and thin film systems, which possess novel and sophis-
ticated properties desirable in optical applications, requires increasingly advanced
techniques measuring these properties. In the following paragraphs, we will present
one of such techniques, the imaging spectroscopic reflectometry (ISR) technique.
We will describe the essential features and possibilities of the technique and also
its implementation. We will classify the ISR methods and also we will demonstrate
selected results achieved by means of them in the field of thin film optical characteri-
zation. It should be noted that we will differentiate between the concepts ‘technique’
and ‘method’ in the following text. We will use the expression ‘technique’ when
referring to the way of obtaining experimental data. The expression ‘method’ will
be used when describing the determination of thin film optical characteristics from
aforementioned experimental data. The ISR technique and the ISR methods are parts
of a whole, which we call simply as ‘ISR’.

5.2 Motivation for Development and Exploitation
of Imaging Spectroscopic Reflectometry

The aim of any manufacturer of thin films for optical applications is to produce ideal
thin films fulfilling specific requirements in their optical properties. Unfortunately,
thin films produced under real conditions often exhibit various defects influencing
those properties. Ignoring the existence of these defects can lead to significantly
distorted or even incorrect values of the optical parameters of these films. This issue
is addressed in Chap. 10.

One of the defects mentioned above is the area non-uniformity in the optical
properties of a thin film. From the point of view of thin film optics we use the term
non-uniformity of thin films, if their optical properties, and therefore, their optical
parameters (thickness and optical constants), vary along the area of the films. The
most frequent type of this defect, which we can encounter in practice, is the non-
uniformity in thin film thickness. Even when the thin film is non-uniform only in
thickness, well established (non-imaging) optical techniques, such as conventional
ellipsometric and conventional spectrophotometric techniques [1-3] can fail as long
as the thickness non-uniformity is of a general type.

This is caused by the fact that the diameter of the illuminating light beam in com-
mercial spectrophotometers and ellipsometers used in optical analysis of thin films
is relatively large (usually in the order of mm? up to tens of mm? depending on the
angle of light beam incidence). Consequently, local film thickness variations within
an illuminated spot on the surface of the film lead to averaging in the parameters
of the film. On the other hand, the measurement of optical properties of thin films
using conventional techniques is a local measurement. Therefore, the general non-
uniformity in the film thickness cannot be assessed in this way. For this purpose, it
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is necessary to scan the studied area of the film, which is time consuming. Another
case, in which it is difficult to expect the correct result using a conventional tech-
nique, is the characterization of coating of objects with lateral dimensions smaller
than the diameter of the illuminating beam. In the field of spectrophotometry several
authors [4-8] solved the problem of thin film thickness non-uniformity with the aim
to obtain more correct values of film optical parameters from output experimental
data provided by conventional spectrophotometers. They assumed that the film non-
uniformity in thickness was of a special shape, namely the shape of a wedge. They
also assumed that the sample is illuminated by the light beam of a rectangular cross
section two sides of which are oriented parallel with the thickness gradient. Unfortu-
nately, the formulae used by them are not applicable in the case of general thickness
non-uniformity.

In [9] the reflectance of thin films which are non-uniform in thickness was
expressed by means of an integral over the distribution density of the film thick-
ness. This approach to solving the problem of film non-uniformity in thickness is the
most general yet. But also this approach does not provide a distribution (map) of the
thin film local thickness.

This map can be acquired by scanning an interesting region of the investigated
film by means of an illuminating light beam of a reduced diameter (requested spatial
resolution of the map is given by a size of the illuminating spot on the film surface).
A studied sample is illuminated by a white light beam, the reflected light is gathered
from a small sample area by a fiber and then analyzed by an optical spectrum analyzer
[10-13]. The scanning is performed either by a 2D movement of a sample holder
relative to the immobile fiber or a 2D movement of the fiber relative to the immobile
sample. The technique is very time consuming in the case when the investigated film
region is large and/or the requested spatial resolution of the measurement is high. It
is the significant drawback of the technique.

Several works also took into account the influence of the thin film thickness non-
uniformity during evaluation of measurements of thin film optical parameters by
means of conventional ellipsometers [14—16].

Again, the approaches presented there do not provide a map of local thin film
thickness. It is, therefore, needed to extend the conventional spectrophotometry and
ellipsometry to their imaging versions which add a spatial resolution on a sample
to the conventional techniques without a necessity of scanning the sample, and thus
open up new ways for characterization the optical properties of thin films that vary
along the surface of these films. Such imaging techniques are developed particularly
in the last decade.

The often utilized technique in the aforementioned problem has been the imag-
ing ellipsometry. We do not deal with this technique in this book, but the relevant
information concerning it can be found elsewhere, e.g. [17-25].

We only mention that this technique has certain drawbacks which cause the fact
that imaging ellipsometry to have about the same sensitivity as conventional, i.e.
non-imaging ellipsometry technique, but lower trueness of results (when data are
not repaired). The imaging ellipsometers utilize an imaging system which creates
an image of the studied sample mostly on a chip of a CCD camera. That imaging
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system is mostly constructed as a microscopic one. This brings a substantial benefit
of the spatial resolution on a studied sample, but also leads to certain shortcomings
of this imaging technique. The reason of them is that parameters of imaging are not
ideal: the angle of incidence is varying in a range given by the numerical aperture of
an imaging lens; the numerical aperture must be high to achieve a sufficient spatial
resolution; the measurement is averaged over a range of angles circumscribed by this
aperture (this problem can be eliminated by a certain correction, which is however not
simple); as a result of the possible oblique incidence of the illuminating light beam
a sample image is deformed and it is also necessary during the data pre-processing
to carry out fusion of images caused by insufficient depth of field of view of the
imaging system; the material from which the elements of the imaging system are
made defines the spectral range that can be used.

Furthermore, the upgrading the conventional techniques to their imaging versions
also increases complexity of the corresponding measurement systems, and, conse-
quently, their price. It is, therefore, desirable to find such an imaging technique that
overcomes some of these shortcomings. Such a technique is the non-microscopic
imaging spectroscopic reflectometry at normal incidence of light, which utilizes the
image of the whole sample. In the following paragraphs we will focus on this tech-
nique and we will refer to it as the ISR technique.

Therefore, we will deal neither with the scanning reflectometry techniques [10,
12, 13, 26, 27] nor the microscopic imaging reflectometry [28].

The ISR technique is being developed since the end of 1990s. It has been used
and its applicability has been confirmed in many cases [11, 29—41]. It was proven
that the ISR technique is a powerful tool for optical characterization of thin films
non-uniform in thickness.

5.3 Brief Specification of Non-microscopic Imaging
Spectroscopic Reflectometry at Normal Incidence
of Light

ISR is specifically intended for characterization of the optical properties of non-
uniform thin films. Of course, ISR can also be used to inspect the thin film uniformity.
The most general aim of ISR is to obtain maps of local parameters describing the area
optical non-uniformity of thin films. However, the most common practical application
of ISR is a precise mapping of the thin film thickness and determination of spectral
dependence of the optical constants of the film. Regarding its wider aims, ISR can
also determine the parameters of the dispersion model used, such as the band gap of a
thin film material, the maximum energy limit of the relevant electron transitions, or a
parameter proportional to the concentration of electrons participating in the relevant
transitions. In some cases, it also can provide maps of the RMS parameter of the
upper film boundary roughness.
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Fig. 5.1 An example of a A e
sample studied by means of
ISR .
ne=1 air
huv H AUV = n Y + ik non - uniform film

The general situation for a non-uniform thin film is shown in Fig.5.1. The non-
uniform weakly absorbing thin film with thickness and optical constants varying
along the area of the film is deposited on an absorbing substrate. A collimated
monochromatic light beam impinges perpendicularly on the film from the air. The
selected wavelength A of the beam can vary in a sufficiently wide spectral inter-
val. The response of the whole system on the incident light is given by the local
thickness 2" and the local refractive index 7}"" = n|"'+ik]"" of the film (n}"" is the
real local refractive index, k'f’v is the local extinction coefficient) and the refractive
index of the substrate %" = n*’+ik"" (we will assume that the absorption of the
substrate is so high and/or the substrate is so thick that its lower boundary does not
influence the result). The word ‘local’ means that these local optical parameters of
the film characterize the optical properties of the film in a small part of its area and
may differ from optical parameters in other areas. These areas form a continuous
matrix covering the whole area of the studied film and are labeled with indices u
and v. The measured quantity is the local reflectance of the film in a wide spectral
range (NUV, VIS and NIR). In the following text, electromagnetic radiation from
this interval will simply be called light. From the perspective of optics, thin films
are defined as films in which light is undergoing interference. Since we are dealing
with such films, the local reflectance is given by the interference of the light between
the film boundaries. This simultaneously implies that the ISR technique can be only
applied to non-absorbing or weakly absorbing thin films. When a collimated beam of
monochromatic light illuminates a thin film perpendicularly, the interference fringes
viewed with an imaging system focused on the film are fringes of equal thickness
and they are localized within the film [42].

All instruments applied for the ISR technique utilize an imaging system creating
an image of the studied sample which is most often recorded by a CCD camera. This
imaging system must be focused on the studied film. It is just the imaging process
that assigns each (u, v)™ pixel of the CCD camera to the corresponding (u, v)" small
area of the sample surface. The size of these areas should be small enough so that it
is possible to consider that the film is uniform within each of these areas.! Then the
local reflectance of the small (u, v)™ area of the system in Fig. 5.1 corresponding to
the (u, v)™ pixel of the CCD camera is given by the following expression:

"When the gradient of thickness non-uniformity is so high (e.g. edges of thin films) that the film
cannot be considered uniform within those areas, it is possible to perform correction leading to the
correct results.
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Fig. 5.2 The ensemble of
monochromatic images of
the studied thin film. This
ensemble allows to obtain the
map of spectral dependence
of the film local reflectance

slexid ZTS

5.1

In the equation above, 1" is the intensity of light reflected by the (u, v)" area of the
film, I}V is the intensity of light incident on the (u, V)M area of the film and 7" is
the local reflection coefficient. This coefficient at normal incidence is expressed as
follows:

AU,V AULY PRV TRY
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- A A . 5 ’
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where 7"" and 75" are local Fresnel reflection coefficients on the upper and lower
boundary, respectively. The symbol X“ denotes the local phase-shift angle.
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The ability to measure the local reflectance R*” in each (u, v)™ area of the film
brings a spatial resolution compared with the conventional non-imaging reflectome-
try, without the need for scanning the sample. Changing the wavelength of incident
light between the acquiring the successive monochromatic images we can obtain a
relatively large ensemble of these images of the film, and in this manner also the map
of spectral dependence of local reflectance (see Fig.5.2).

5.4 Experimental Set Up of ISR Technique

The experimental set up of the ISR technique is simple. Its principal scheme is shown
in Fig.5.3.

A white light source illuminates the input of a monochromator, the monochromatic
light beam with a computer-controlled wavelength emerging from the output of the
monochromator is split by a beamsplitter. A part of this beam illuminates the studied
sample perpendicularly and, after being reflected from the sample, it goes back
through the imaging system which creates an image of the sample on the chip of a
CCD camera.
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Fig. 5.3 Basic scheme of Light source
ISR technique )

Reference
sample H

Imaging system A\
:D Studied

Camera Beam splitter sample

Monochromator

The normal incidence of a collimated monochromatic light beam on a studied
sample brings some benefits. Specifically, we get information from the whole sample
surface at once (i.e. without scanning the surface), the interference fringes carrying
the necessary information are exactly imaged by means of the imaging system on the
CCD camera chip and formulae used for evaluation of required optical parameters are
simpler. The disadvantage is that a beamsplitter must be used. The imaging system
defines the applicable spectral range. It is better to base this system on reflection
optics which works well also in the UV spectral region where the optical properties
of thin films are manifested more prominently. The CCD camera must have a good
spectral sensitivity within the spectral range, in which the sample is studied. Together
with the imaging system, it defines the spatial resolution on a sample. The ISR
technique is designed as a relative technique, i.e. the measurement of the studied
sample is compared with the measurement of a reference (known) sample under the
same conditions. In this way, a possible non-uniformity in the sample illumination is
eliminated. Of course, it is necessary to ensure the identical position of the studied
and the reference samples. This can be done by means of an appropriate sample
holder.

5.5 Imaging Spectroscopic Reflectometers
The concrete implementation of the basic scheme of the ISR technique can be demon-
strated by two examples verified in practice.
5.5.1 Imaging Spectroscopic Reflectometer with Wide
Spectral Range

The spectral range in which the local reflectance of the studied film is measured must
be wide enough, in order to get the information needed for reliable evaluation of the
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Fig. 5.4 a Computer-rendered 3D view of ISRWS (external parts of the whole set up of ISRWS,
i.e. the xenon lamp, the monochromator and the control computer are not presented). b The three
parts of ISRWS experimental set up: The first, illuminating part is a XeUV arc lamp Xe, which
is connected to the second part (a monochromator M) by a fiber, a fiber coupler FC and a filter F.
The third part (the measuring system) consists of a collimator C, a set of silica wedges BS|_4, an
auxiliary mirror AM, a sample holder SH, an imaging mirror IM and a CCD camera CCD. The
reference channel of the measuring system consists of a secondary reference channel sample RS
and a small part of the CCD chip — 2CCD. Everything is controlled by a personal computer — PC

optical parameters. In this context, using imaging systems with refractive optical
elements brings issues caused by the dispersion of light in these elements. Further-
more, refractive optical elements manufactured from common optical materials do
not work in the UV spectral region in which the optical properties of thin films mani-
fest themselves more prominently. These issues can be effectively resolved by using
an imaging system with reflective optical elements. Then, only dispersion of lightin a
beamsplitter must be tackled. An example of a non-microscopic spectroscopic imag-
ing reflectometer with wide spectral range (ISRWS) which uses such an approach is
shown in Fig. 5.4a (computer-rendered 3D view), its scheme is in Fig.5.4b.

The complete ISRWS system is divided into three distinctive parts connected
using optical cables. Although the use of optical cables reduces the overall light
throughput on the other hand it allows higher flexibility of the system set up. The three
parts of the ISRWS system are: A light source (a UV capable xenon arc lamp Xe),
a monochromator M (a commercially available computer controlled Czerny-Turner
type monochromator) and an original measuring system itself. The measuring system
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consists of a collimator (a single off-axis parabolic mirror C), a sample holder SH,
a set of fused silica wedges BS;—BS, (some used also as beamsplitters), a spherical
imaging mirror IM and a UV-VIS CCD camera. The monochromator with the xenon
lamp connected serves as a source of monochromatic light for the measuring system
and thanks to the use of fiber optics it can be easily used as a source for other
devices as well. In the measuring system the divergent monochromatic light beam
is collimated by the collimator and then it is directed at the measured sample using
the first fused silica wedge (functioning as a beamsplitter in a way described in Sect.
5.4). In this way a normal incidence of light on the sample can be achieved. Light
reflected from the measured sample is then directed through all four silica wedges.
The first one serves as the aforementioned beamsplitter, while the others are used to
eliminate secondary reflections from the main light path. The fourth wedge is also
used as a beamsplitter to allow in-axis imaging by the imaging mirror located behind
all the silica wedges. The image created by the optical system is then recorded by
the chip of the CCD camera. Light, which initially passes through the BS; is not
used for imaging of the measured sample. In fact, it contributes to the losses of light
intensity. But it can be exploited in a reference channel to measure and subsequently
eliminate possible fluctuations of the source light intensity. This is realized using a
secondary reference sample which is imaged on the CCD camera chip at the same
time as the measured sample (there is a specifically reserved part of the CCD chip
for this purpose). The principle of this idea is that the secondary reference sample is
never replaced or moved between a series of sample measurements so it is possible
to observe intensity changes of the source light. The ISRWS is capable of measuring
samples of maximum size about 20 mm x 20 mm while maintaining spatial resolution
of 91p/mm.

The spectral range spans from 270 to 1000nm (1.2-4.6eV). The duration of a
measurement of a single sample measurement is typically 30 min (not including
the measurement of a reference sample and the background, which need not to be
measured every time).

5.5.2 Imaging Spectroscopic Reflectometer with Enhanced
Spatial Resolution

An example of a very simple instrument allowing an implementation of the ISR
technique is the imaging spectroscopic reflectometer with enhanced spatial resolution
on a sample (ISRER).

The ISRER was designed as a low cost, simple instrument for optical characteri-
zation of thin films with high gradients of non-uniformity. Its computer-rendered 3D
view is shown in Fig. 5.5a and its basic scheme is in Fig. 5.5b.
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Fig. 5.5 a Computer-rendered 3D view of the ISRER (external parts of the whole set up of the
ISRER, i.e. a xenon lamp, a monochromator and a control computer are not presented). b Basic
scheme of the complete ISRER. A xenon UV arc lamp Xe is connected to a monochromator M
by a fiber, a fiber coupler FC and a filter F. Measuring system itself consists of a collimatorC, a
membrane (pellicle) beamsplitter PB, two auxiliary mirrors AM| _;, a sample holder SH, an imaging
mirror IM and a CCD camera CCD. The reference channel is realized by a secondary reference
sample 2RS and a small part of the CCD chip (?CCD). The whole system is controlled by a personal
computer PC

A monochromatic light source (the lamp and the monochromator) for the ISRER
is the same as used in the ISRWS, only the measuring part of the ISRER is different.
The main difference is the usage of a membrane (pellicle) beamsplitter instead of the
four silica wedges. The advantage of the pellicle beamsplitter is the low thickness of
the membrane which in a sense eliminates the influence of the secondary reflection
(the secondary reflection is so close to the primary reflection that they cannot be
distinguished and therefore does not degrade the captured image). Since there is
no additional beamsplitter used, the imaging is realized as slightly off-axis imaging
(when using an auxiliary mirror AM; to reduce the off-axis angle) which brings the
benefit that the light intensity hitting the CCD chip does not decrease significantly
(use of even an ideal beamsplitter results in 75% loss of intensity). Although the
spatial resolution of the ISRER is significantly higher than of the ISRWS, it is still
low enough not to be affected by the off-axis imaging setup. The reference channel
is realized in a similar way as in the ISRWS by the use of a reference channel
sample. The size limit of the measured sample for the ISRER is about 20 mm x 15 mm
(a bit less than ISRWS) but the measurement can be done with spatial resolution of
16 wm x 16 wm on a sample. The spectral range from which the wavelengths can be
selected spans from 400 to 1000 nm.

The maximum value of thickness gradients is 12.5 pm/mm. The possibilities of
the ISRER in the case of thin films with high gradients in thickness are demonstrated
in Figs.5.6 and 5.7.
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Fig. 5.7 3D representation of the film edge from Fig. 5.6 and profile of the film edge perpendicular
to this edge

5.6 Data Acquisition

Both aforementioned imaging spectroscopic reflectometers measure spectral depen-
dencies of local reflectance of a sample studied. From the ensemble of these data the
values of spectral dependencies of local relative reflectance R;"”()) of the sample
are obtained. These values for a given wavelength A, are arranged in a matrix. The
(u, v)"™ element of this matrix corresponds to the (u, v)™ pixel of the CCD camera
recording the image of the studied sample at the wavelength X;. It means that this
matrix element R"-"(;) corresponds to the (u, v)™" small area on the sample surface
which is imagined on the above mentioned (u, v)™ CCD pixel. Indices of these indi-
vidual small areas imaged on corresponding pixels of the CCD camera take values
u=1.U;v=1...V.U andV are the numbers of pixels of the CCD chip in horizon-
tal and vertical directions and are given by the CCD camera resolution. The matrix as
a whole corresponds to the imaged area of the sample. When measuring, the wave-
lengths A, are suitably selected (accordingly to the presumed spectral reflectance of
the studied sample) from the usable spectral range of the given imaging spectroscopic
reflectometer (ISRM) with a chosen sampling step. In this way an ensemble of matri-
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ces is obtained from the set of sample images (see Fig.5.2). Vectors formed from
matrix elements with the same indices u and v represent sought spectral dependencies
of the sample local relative reflectance. This ‘map’ of spectral dependencies of the
sample local relative reflectance is used for the determination of optical parameters of
a studied thin film. In order to eliminate the temporal fluctuations in the light source
intensity, both reflectometers were designed as two-channel instruments. Retrieving
the experimental data of a sample using both the reflectometers is a three-step pro-
cedure consisting of the measurement of a reference sample (measured at the time
t1), the measurement of the sample to be studied (measured at the time £,), and the
measurement of the background signal (measured at the time #3). The background
signal can be expressed as follows:

S (e 3) = DY O, 13) + 1"V 1, (M, 13),

where 1,(A, t3) is the intensity of the monochromator output at the wavelength
and at the time #3, """ is the constant of proportionality, b*V I, (A, t3) is the response
of the CCD camera to the light scattered inside the reflectometer, D;’V(Ak, t3) is
the dark frame (it contains the whole signal which is generated by the CCD chip
without being exposed to any light) obtained at the closed CCD camera shutter at the
exposure time and the chip temperature identical to the actual measurement of the
sample. This dark frame is acquired immediately after obtaining the relevant signal
and it is subtracted. Therefore, the dark frame is not mentioned further in the text.
After eliminating the dark frame, the whole three-step procedure of the experimental
signal processing may be concisely expressed as follows: The signal already without
the D”;'V obtained from a single pixel with coordinates u and v can be written as

S s 1) = Lo Oues tD [ () R () + 071, (5.2

whereindex J can take two values: value m, which stands for ‘measuring channel’
and value s for ‘reference channel’, index i can be of value 1, 2 or 3 according to the
kind of the measurement (1 is for the measurement of the reference sample, 2 is for
the measurement the studied sample and 3 is for the measurement of the background
i.e. without the sample).

1, (X, t;) s again the intensity of light on the monochromator output at the wave-
length A and at the time #;, n**¥ (1) describes all the influences of the apparatus, e.g.,
effects of possible imperfections in optical elements and/or bad pixels of the camera,
but also the signal amplification or camera bias, noise etc. R;"V(Ak) is the absolute
local reflectance of the current sample given by the index. Since the reflectance is
equal to O for index i = 3 (blank measurement without any sample), the first addend
in the formula (5.2) is also equal to 0 and only the background 1,(Ax, #;)b"" (A, t3)
remains. The following formula (5.3) ensures that any temporal instability of the
light source of the ISRM is eliminated (i.e. it removes the time dependence of the
1,(Ag, t)). It also removes the influence of the background and of any non-uniformity
in the illumination of samples:
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This is the spectral dependence of the local relative reflectance of the studied
sample in the spectral range chosen in the measurement. In this way we acquire
a map of such local reflectance spectral dependencies (see Fig.5.6). The duration
of a single sample measurement is typically 30 min (without the measurement of a
reference sample and the background, which need not to be measured every time).

5.7 Key Features of Imaging Spectroscopic Reflectometry

At the end of our treatise on ISR technique, we will summarize the main features of
this technique as follows:

e A CCD camera records monochromatic images of a relatively large area of a stud-
ied film, which are created by an imaging system within wide span of wavelengths.

e A small region of the film surface is assigned to a one pixel of the CCD camera
by the process of imaging.

e These areas are so small that the film can be considered uniform within individual
areas.

e The ISR technique is a relative technique. The spectral dependence of the local
reflectance of the studied sample is measured against the spectral dependence of
the local reflectance of a reference sample (mostly a silicon single crystal wafer).

e The output experimental data of the ISR technique are the maps of spectral depen-
dence of the thin film local relative reflectance.

e Normal incidence of the collimated beam of light illuminating the sample elimi-
nates the necessity of scanning and also image fusion during postprocessing the
output experimental data.

5.8 Methods of Imaging Spectroscopic Reflectometry

As mentioned in the introduction, we consider an ISR method as a way of experi-
mental data processing, through which we determine interesting optical parameters
of a thin film. These methods are an integral part of the determination of the optical
parameters of thin films. The experimental data obtained by means of the ISR tech-
nique are the maps of spectral dependence of the local thin film reflectance. This fact
defines the limit of the information content of these data. The different methods of
the data processing give a different level of information we can get within this limit.
Their specific feature is that they must handle enormous amounts of experimental
data (assuming an image 500 x 500 pixels large with a 500-point spectrum in each
pixel the number of data points is 1.25 x 10®) and also to determine a huge amount
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of the thin film parameters (the number of parameters searched can be estimated to be
about 2.5 x 10°). This means that it is not possible to simply use the standard form of
Levenberg—Marquardt non-linear least-squares fitting algorithm for the determina-
tion of thin film parameters but it is necessary to develop original algorithms for this
purpose. On the other hand, this enormous amount of experimental data eliminates
random errors of the thin film parameters. Therefore, the determined values of the
parameters have only systematic errors. The ISR methods are discussed in detail in
Chap. 6, where their mathematical formulation is presented.

It is also important to stress another significant feature of the ISR methods. Most
of thin film parameters that are sought are practically always mutually correlated.
Then, it is impossible to determine them unambiguously. To overcome this problem,
the multi-sample method must be applied to improve the stability of least-squares
data fitting (e.g. [43]). The ISR technique, performing independent measurements
in individual CCD pixels, inherently provides data for a multi-sample method. Now
we will focus on the classification of these methods and, simultaneously, we will
present selected demonstrations of individual ISR methods in order to illustrate their
possibilities. We will classify the ISR methods from the viewpoint of the way in
which the information provided by CCD pixels is used. It should be emphasized that
this classification can only be schematically. The reason is that the use of the ISR
method depends not only on the task which we solve, but also on our decision what
method we want to use. For example, when aiming to determine the local thickness of
athin film with a known spectral dependence of the optical constants, the relevant ISR
method can be used as the stand-alone method. But if we aim to characterize a thin
film which differs very much from an ideal one (for example a film exhibiting more
defects) and/or with a complicated form of spectral dependencies of optical constants,
we probably would have to use the method in combination with other methods of
film characterization (i.e. conventional ellipsometric or spectrophotometric) and the
ISR method should be used as a complementary method. However, sometimes we
can also use the relevant ISR method for the latter film as the stand-alone method.
The schematic classification is presented in Fig.5.8.

We will mark an ISR method as the single-pixel method when the spectra of local
reflectance measured by individual CCD camera pixels are processed separately.
When those spectra are processed simultaneously the method is called the multi-

ISR methods

Single-pixel method Multi-pixel method

Stand-alone  Complementary Manual multi-pixel method Global method

-
C

Increasing efficiency of the method

Fig. 5.8 Scheme of ISR methods classification
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pixel method. We will start our demonstration of the individual methods with the
case where the ISR method can be applied as the stand-alone single-pixel method.

5.8.1 Single-Pixel ISR Method as the Stand-Alone Method

The single-pixel ISR method can be applied as the stand-alone method for optical
characterization of a non-uniform thin film, as long as it is possible to suppose that the
film does not exhibit another structural defect than non-uniformity in thickness, the
film is uniform in optical constants and the spectral dependence of optical constants
of this film is relatively simple (or even known) within the interesting spectral range.

Then the number of parameters appearing in the dispersion model describing the
spectral dependence of those optical constants is small as opposed to the case when
the spectral dependence of the optical constants is complex. In that case all these
dispersion parameters and local thickness can be determined independently by a
fitting procedure separately in each pixel.

The aforementioned case can be demonstrated using carbon-nitride films, which
were deposited onto silicon single crystal wafers by a dielectric barrier discharge with
CHy4/N; gas mixture (details of the technological procedure used to prepare the films
are given in [44]). When treating the experimental data, the dispersion model based
on parametrization of the joint density of electronic states (PJDOS) corresponding to
amorphous materials [45] was used. It was assumed that the films contain no defects
other than the thickness non-uniformity.

It was found that those films can be considered uniform in the optical constants
(the determined values of dispersion model parameters were practically the same in
all film areas which corresponded to the individual pixels of a CCD camera). Spectral
dependence of these optical constants determined from the parameters of the above-
mentioned corresponding dispersion model are presented in Fig.5.9a for a sample
selected from a measured file of those films. The 3D map of the local thickness of
this carbon-nitride film is shown in Fig.5.9b.

The maps of the spectral dependence of the local relative reflectance got from
ISR measurements exhibit noise. This implies that the maps of the local thickness
and the values of the film optical constants determined from individual CCD pixel
inevitably exhibit noise as well. The reflectance values R*"” were measured with the
statistical relative error about 1% (corresponding to the standard deviation). Using
a standard error analysis, it was found that the values of the local thicknesses in the
area distributions were determined with the statistical relative error of 1-2% (corre-
sponding to the standard deviation). The same conclusion concerning the accuracy
was also found for the optical constants.

The single-pixel ISR method is simple. That is its main advantage. Unfortu-
nately, this method cannot be applied when the characterized non-uniform thin films
exhibit a complicated course of spectral dependence of the optical constants requir-
ing the usage of a dispersion model with a larger number of parameters and/or exhibit
further defects than non-uniformity in thickness (such as the roughness of boundaries,
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Fig. 5.9 a Spectral dependence of the refractive index n and the extinction coefficient k of the
selected non-uniform carbon-nitride film. b 3D map of the local thickness of this carbon-nitride
film determined using the ISR method

very thin overlayers on the upper boundary or very thin transition layers between the
substrate and the film). Then it is necessary to complete this ISR method with other
methods such as conventional (non-imaging) spectroscopic ellipsometry and con-
ventional (non-imaging) spectrophotometry. The detailed description of this method
application to the presented case can be seen in [36]. Other applications can be found
in [32, 33].

5.8.2 Single-Pixel ISR Method as the Complementary
Method

In this case, the single-pixel ISR method is applied in combination with other optical
methods (e.g. ellipsometric and/or spectrophotometric). It plays a role of a comple-
mentary method to these other methods, i.e. the method which allows us to obtain
values of the local thin film parameters by which it is possible to characterize a
non-uniformity of the film along its surface (e.g. local thickness or local roughness),
while the film optical constants that can be supposed to remain unchanging along the
entire surface of the film are found by means of the above mentioned other methods.
As the demonstration example of the case where the single-pixel ISR method is used
as the complementary method in combination with other optical methods, we will
present the optical characterization of a selected sample of considerably non-uniform
Si0,C,H; thin films deposited using plasma enhanced chemical vapor deposition
onto a silicon single-crystal wafer (the detailed preparation of the film see [11]).
Three optical techniques, i.e. conventional variable-angle spectroscopic ellipsom-
etry (VASE), mapping spectroscopic ellipsometry with microspot (WSE), and ISR
were used for the film characterization. Both ellipsometric techniques were used to
determine spectral dependence of the optical constants of the studied film. Moreover,
WSE was used to evaluate uniformity of the film in its optical constants and the type
of the film thickness non-uniformity. For this purpose \.SE measurement was car-
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ried out in 99 sample positions that formed a regular 11 x 9 grid with 1 mm spacing.
Experimental data acquired by the ISR technique were used for the determination
of the map of the film local thickness. The experimental data obtained by means
of ellipsometric techniques were processed by the Levenberg—Marquardt algorithm
using the following structural model of the film: The film is without defects except
the thickness non-uniformity, i.e. the material of the film is optically isotropic, it is
homogeneous in the direction perpendicular to the sample plane, the film bound-
aries are sharp and smooth, and the thickness non-uniformity is of the wedge type.
Moreover, it is assumed that the film optical constants do not vary within the region
corresponding to the microspot used in WSE (the circle 250 wm in diameter for nor-
mal incidence). In the case of ISR, the film is assumed as uniform within the region
corresponding to a single pixel of the CCD camera. The film complex refractive index
was modeled using an expression for SiO,—like materials based on PJDOS [45]. The
single pixel ISR method was utilized as the complementary method to conventional
VASE and pSE. Spectral dependencies of the film optical constants were found by
fitting VASE data. Subsequently, reflectance spectra in individual pixels obtained by
ISR were fitted, utilizing the optical constants obtained by ellipsometry and assuming
they were correct. The results obtained are presented in Fig.5.10.

Since itis not feasible to display the error bars for all the 99 . SE curves in Fig. 5.10,
the errors will be summarized numerically. The average three standard deviations
error estimate for the refractive index n was about 0.013 in the whole spectral range,
whereas for the extinction coefficient k it varied from approximately 0.01 at the UV
end of the spectrum to 0.001 at the IR end. It is evident from Fig. 5.10 that the error
bars of the conventional VASE and pSE overlap. The results are thus in agreement.
No trend was found in the area distribution of refractive index values obtained by
means of WSE. Their fluctuations represented random experimental errors and the
same can be said about the extinction coefficient. Therefore, no evidence of non-
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Fig.5.10 Comparison of spectral dependencies of optical constants, i.e. refractive index and extinc-
tion coefficient determined using conventional VASE (solid thick lines), using single-sample pSE
in all 99 individual locations (thin shaded lines), and using multi-sample WSE (dotted lines). Error
bars corresponding to three standard deviations are plotted for the conventional VASE as dashed
lines [11]
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Fig. 5.11 a Map of film local thickness obtained by ISR data fitting. Pink regions along the right
and top edges correspond to bad pixels and pixels outside of sample. b Map of film local thickness
determined using wSE [11]

uniformity of optical constants was found within the experimental precision. It is
worth pointing out that such conclusion is typical according to our experience. In
other words, even if the film is considerably non-uniform in thickness its optical
constants can usually be still considered uniform.

Because of the aforementioned consistency of the values of optical constants
obtained by conventional VASE and wSE, the spectral dependence of the optical
constants determined using conventional VASE was utilized for determining the fine
local thickness map by the ISR presented in Fig. 5.11a. The corresponding map found
using WSE is shown in Fig.5.11b.

An exact comparison of the maps of local thickness determined by using ISR and
WSE is not possible because it is not possible to ensure exactly the same position of
the sample during both the measurements. However, the trend of both the maps allows
us to conclude that both the measurements are in agreement. Finally, it can be said
that the combination of conventional VASE, WSE and ISR represents a precise tool
for optical characterization of thin films non-uniform in thickness. Unfortunately, it
is not convenient for routine use because the analysis of the discussed film by means
of WSE took approximately five days. Other cases, in which the single-pixel ISR
method is applied as the complementary method in combination with other optical
methods, are published in [35, 38], where the ISR method is applied in combination
with conventional VASE and conventional spectroscopic reflectometry (SR) at near
normal incidence. Again, the latter two methods served to determine the spectral
dependence of the optical constants and the single-pixel ISR method to determine
the fine map of the local thickness of the films exhibiting a thickness non-uniformity
only.

In conclusion of this paragraph, it is necessary to make the following note. If the
thin film is considerably non-uniform in thickness, it is possible to suspect that the
deposition process was not sufficiently uniform and the film material would also be
non-uniform along the film, although this material non-uniformity is probably smaller
than the thickness non-uniformity. This implies that the film could be non-uniform
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in the optical constants as well. Unfortunately, the salient feature of reflectance
spectra, interference in the film, depends primarily on the product of film thickness
and refractive index, called optical thickness. This makes difficult to distinguish
non-uniformities in thickness and optical constants. Therefore, in the case where the
conventional methods do not determine optical constants correctly the single pixel
ISR method utilized together with those conventional methods leads also to incorrect
results. This fact limits the applicability of the results of the single-pixel ISR method
in the case under consideration.

5.8.3 Manual Multi-pixel ISR Method

When the single-pixel ISR method processes spectral dependencies of the film local
reflectance fitting the dispersion model parameters independently in each pixel, the
resulting maps exhibit high noise. On the other hand, it is not possible to simply
fit the ISR data in all the pixels together using one set of shared dispersion model
parameters. The total number of fitting parameters is huge and they are all corre-
lated. Nevertheless, these two problems can be solved, as we will demonstrate in
the case of strongly non-uniform thin films deposited from hexamethyldisiloxane
on silicon substrates by a single capillary plasma jet at atmospheric pressure. The
detailed description of the preparation of these films can be found in [37]. The manual
multi-pixel ISR method has been used as the stand-alone method in that case. The
procedure had three steps and each step involved only least-squares fitting problems
with reasonable numbers of parameters:

First step: Film thickness is fitted independently in each pixel using the model of
an ideal thin film and an initial estimate of film optical constants. In this particular
case tabulated optical constants of SiO, were used. The thickness maps obtained in
this way are not yet correct, but this first step is sufficient to distinguish good and
bad pixels in the image of the film. The criterion for it is the agreement between
experimental local reflectance spectral dependence and its fit in manually selected
pixels representatively covering the region of interest. The pixel selection should
respect the requirement to cover the full range of values of the sought parameters.
The evaluation of this agreement is done subjectively.

Second step: A set of several (e.g. ten) good pixels was selected manually. The
experimental data corresponding to those pixels were fitted simultaneously assum-
ing common optical constants. The large variation in thickness within the selected
spectrum set helps reducing the correlation between the thickness and dispersion
model parameters and improves stability of the fitting procedure (the multi-sample
approach). The PJDOS dispersion model for SiO; like materials [45] was used for
the films, values of Si substrate values were taken from the literature [46].

Third step: Film thickness is again fitted independently in each pixel, but this time
utilizing optical constants found in the second step. The spectral dependence of the
film real refractive index is presented in Fig.5.12. Even though the dispersion model
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permitted absorption, it was found that the film was essentially non-absorbing in the
spectral range of the measurement. The extinction coefficient is therefore not shown.

The 3D map of the local thickness of the film obtained as the final result of the
procedure described above is presented in Fig. 5.13a. In this figure, the artificial edge
created by scratching away a half of the film by means of a scalpel can be seen.
The thickness of the film was also measured with a Veeco Dektak profilometer. This
measurement was performed with a step of 0.5 mm along the edge (i.e. in the plane
in Fig. 5.13a) twice. Finally, the film edge was measured using a Bruker Dimension
Icon atomic force microscope in the ScanAsyst mode. Utilizing a motorized table
for accurate movement between successive scans, 50 images were acquired and in
each the step height was then evaluated.

All measurements were compared using 2D profiles defined by the green plane in
Fig.5.13a. This comparison of the profiles obtained by all three measurement tools
is plotted in Fig.5.13b.

Considering the uncertainty of the individual measuring tools, the agreement of the
results obtained can be considered good. Figure 5.13b also shows a strong thickness
non-uniformity of the studied thin film. The largest gradient of local thickness in the
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smooth part of the film (excluding the edges and debris), determined from inter-pixel
thickness differences, was approximately 1.6 x 10~*. The analysis of experimental
errors of the discussed ISR method found that the accuracy of local thickness mea-
surements was approximately 2 nm. The limiting factor was the uncertainty of optical
constants of the film as they represented the largest uncertainty source. Finally, we
can state that the discussed ISR method was successfully applied as the stand-alone
method for determining the optical constants and local thickness map of the film
strongly non-uniform in thickness.

5.8.4 Global Method

Although the manual multi-pixel method presented in the previous paragraph works
well in practice, it has several shortcomings. Firstly, to do the fitting, it is necessary
to manually find a small, yet representative, subset of pixels with a good spectral
dependence of local reflectance from the region of interest. It is somewhat unsatis-
factory that this choice is subjective and is irreconcilable with automation of data
analysis. Moreover, not utilizing entire available data means that the contribution
of random noise to parameter uncertainties is larger than necessary. If the analysis
utilizes all available data, i.e. reflectance curves from all pixels, random errors can
become insignificant compared to systematic errors and thus effectively eliminated.

Therefore, on the assumption of a thin film non-uniform in thickness only, an
original experimental data processing procedure has been developed, utilizing the
specific structure of the least-squares problem related to the main task of ISR. The
basic features of this procedure consist in splitting the free parameters into thicknesses
(local parameters, possibly different in each pixel) and dispersion model parameters
(shared parameters common for all pixels). Subsequently, both kinds of parameters
are fitted by turns, utilizing an unmodified Levenberg—Marquardt algorithm. How-
ever, this algorithm is used in such a way that the local thicknesses are corrected
during the dispersion model parameters fitting step to preserve the effective optical
thickness (product of film thickness and refractive index). This brings a substantial
improvement in the procedure convergence and permits the analysis of large imag-
ing reflectometry data sets with reasonable computational resources. The reason for
using the condition of preservation of the effective optical thickness is that it is the
optical thickness what determines the locations of interference minima and maxima
in a reflectance spectrum. The minima and maxima thus move in response to chang-
ing optical thickness. When the theoretical reflectance curve already corresponds
relatively well to the experimental points, the sum of the squared differences will
always increase even if the extrema shift only slightly. The fitting algorithm thus
becomes unable to progress further by updating thicknesses and dispersion model
parameters separately once the tiniest changes are now permitted. This limitation
grows more severe with increasing film thickness since the extrema are spaced more
closely for thicker films. The precise analysis of the ISR experimental data process-
ing described just above is presented in [47], where this approach was used for the
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Table 5.1 Characteristics of the experimental ISR data sets and fitting parameters for the two thin

films
Film SiO,C,H; CN,:H
Number of fitted spectra M 70,310 85,469
Points per spectrum K 656 628
Data set size [MiB] 176 205
Free shared parameters D 5 5
Shortest fitting time [s] 540 624

first time. It was applied to the case of two thin films of different amorphous materials
deposited on silicon substrates, both exhibiting strong thickness non-uniformity.

The first sample was a hydrogenated carbon-nitride film (CN,.:H) prepared in an
atmospheric pressure dielectric barrier discharge from CH4:N, =1:10 gas mixture.
The second sample was a SiO,C,H, film deposited in a low pressure radio frequency
(13.56 MHz) capacitively coupled discharge from the mixture of tetraethoxysilane
and methanol (The details of the deposition procedure can be found in [47]). The
same structural and dispersion models were used for both films. The films were
considered ideal within a single ISR pixel. The complex refractive index was modeled
using an expression for SiO,-like materials based on PIDOS [45]. Straightforward
parallelization on data was applied. It was demonstrated that the strategy of preserving
quantities corresponding to effective optical thicknesses in individual pixels resulted
in the fastest convergence of the least-squares fit. It was also shown that even though
a behavior of the algorithm deteriorates above a film thickness of approximately
600 nm, the result was still acceptable. The sizes of the data and fitting parameter
sets are summarized in Table 5.1 for both thin films. The table also includes the time
duration of the computation running on a reasonably powerful personal computer
(six-core AMD Phenom II processor and 16 GiB of RAM). The computation times
listed in Table 5.1 evince that the developed fitting procedure made a global ISR data
analysis possible, even with relatively modest computational resources.

The reduction of parameter errors and improved reliability of results following
from multi-pixel data fitting may be beneficial in the characterization of samples
that could be characterized also by other means. However, the key advancement
is that a wider range of samples can now be characterized using ISR as a stand-
alone method, without resorting to combination with conventional ellipsometry and
spectrophotometry. Because this method exploits the experimental data of all pixels
in the image of the film in the way that the shared parameters and local parameters
are fitted continuously during the fitting procedure, it can be named as the global
method.

To show the real power of this method, an application of the method for character-
ization of a thin film, which is far from an ideal one, is presented here. A ZnSe film
prepared by molecular-beam epitaxy (MBE) on a (100) GaAs single crystal substrate
can serve as a good example (for detailed deposition parameters see [40]). Epitaxial
ZnSe thin films deposited on GaAs substrates by means of MBE have randomly rough
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Fig. 5.14 Schematic overlayer

depiction of the structural J\/\/\/\/\W/\/V\/W (identical rough thin film)
model of the film

ZnSe film

GaAs substrate

upper boundaries. This roughness arises from the mosaic (or block) structure of the
films [48]. MBE normally produces thin films that are fairly uniform along the sub-
strate plane. However, it is sometimes possible to encounter ZnSe epitaxial thin films
whose thickness varies to such extent that they need to be considered non-uniform. Of
course, when both imperfections, surface roughness and thickness non-uniformity,
occur together, then film characterization is more difficult. The structural model of
the film under consideration is shown in Fig.5.14.

Since the ZnSe thin film with a rough upper boundary was placed in the air, it was
covered with a very thin overlayer [49]. This overlayer was modeled as so-called
identical rough thin film, i.e. a film with upper and lower boundaries that are exact
geometrical copies of each other (see also Fig. 6.4). When lateral correlations play no
role, a single number is then sufficient to describe the roughness, the RMS of height
irregularities. The substrate—film boundary was assumed to be smooth. Although
the film was relatively non-uniform in thickness, within the range of the surface
corresponding to a single pixel of a CCD camera, the film was considered uniform
in thickness.

The optical constants of the ZnSe film were expressed using a PJDOS model
for valence-to-conduction inter-band transitions [50, 51] and fitted. Tabulated val-
ues found in earlier studies were used for both the overlayer [49] and the GaAs
substrate [52].

Scalar diffraction theory (SDT) was used to model the influence of the upper
boundary roughness on reflectance [53]. The expressions resulting from SDT have
the form of an infinite series. This series was rewritten into a form suitable for an
efficient evaluation by computers. In particular, the computation time was made
almost independent on the precision to which the series was evaluated, eliminating
the need to make any trade-offs between precision and speed in SDT computations.
This is the great advantage in comparison with the Rayleigh—Rice theory (RRT) [53]
which has been used for modeling of the upper boundary roughness influence for
the optical characterization of the same (discussed above) ZnSe thin film in [38],
where the single-pixel ISR method has been used in combination with conventional
VASE and SR. The influence of the roughness is described by very complicated
formulae within RRT. This is significant in the case of ISR, when large numbers of
experimental data must be processed, and would lead to very long data processing
times. The fitting algorithm described in this paragraph has led to a satisfactory fit
essentially in the whole image of the film. It is illustrated in Fig.5.15.

Since the optical constants of the ZnSe film were modeled and fitted in the ISR
data analysis, it was possible to compare the obtained spectral dependencies with
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Fig. 5.15 Selected typical ISR spectrum of the ZnSe film on GaAs and its fit by the theoretical
model. The spectrum corresponds to a pixel close to the image center [40]
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Fig. 5.16 Spectral dependencies of optical constants of the ZnSe film. The curves denoted
‘AO53_5606’, ‘JO 18_015401", ‘APS53_95’ and bulk (Adachi) represent optical constants found
for epitaxial ZnSe in [38, 40, 54] and optical constants of bulk ZnSe [55], respectively [40]

those found in other works. This comparison is shown in Fig.5.16, where also the
dependencies for the same film determined in [38] by VASE, for epitaxial ZnSe films
studied in [54] and for bulk ZnSe [55] are presented.

The agreement between the results presented in Fig. 5.16 can be considered good.
The uniformity of the film in the optical constants was also checked by dividing the
ISR data into four quadrants and rerunning the fitting procedure individually for each
quadrant. Parameters controlling the overall shape of the complex refractive index
curve were fitted, but parameters determining the locations of fine structures in the
spectral dependencies were fixed in values obtained from the whole data.

Considering typical experimental errors of the method, all four obtained spectral
dependencies were indistinguishable. The initial assumption that the film material
could be considered uniform was thus justified.

Maps of local film thickness /, the RMS surface roughness and thickness of the
overlayer are presented in Fig. 5.17. The artefacts which can be seen in both the maps
of the RMS roughness and overlayer thickness correspond to defects on either the
studied sample or the reference sample. The pixels corresponding to these artefacts
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Fig. 5.17 Maps of local thickness of the ZnSe film, RMS roughness of its upper boundary and
overlayer thickness

as well as bad pixels (with low quality of reflectance spectra) were removed, and
the mean (or typical) values of the RMS roughness and overlayer thickness were
determined from the remaining pixels.

The average RMS roughness of 4.7nm agrees well with other optical [38, 49]
and atomic force microscopy [38] studies. The average overlayer thickness value
10.3nm is somewhat higher than the values found by other methods [38, 49] but still
in reasonable agreement.

We can conclude that the ISR technique, when complemented by appropriate
data processing approaches, is practical as a stand-alone method of optical charac-
terization of thin films that differ significantly from ideal ones and which, therefore,
require complex modeling.

5.9 Precision and Accuracy of ISR

At the beginning of this paragraph, it should be noted that the precision and accuracy
of ISR depend, to a great extent, on the problem to be solved. In order to demonstrate
the precision and accuracy of the ISR measurements themselves (i.e. the precision
and accuracy of reflectance data obtained), a sample of a uniform SiO, film of the
thickness of 800nm was deposited on a Si substrate and then measured repeatedly
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(eight times) by means of the reflectometer ISRER. All the reflectance data obtained
in this manner were then compared with the theoretical values calculated by the
method described in [56] using the values of the SiO; film optical constants obtained
from many conventional measurements (VASE and SR, both in many configurations).
This curve can be considered correct. The result can be seen in Fig. 5.18. In the top part
of this figure, the theoretical curve is compared with the spectral dependence of the
local reflectance of a selected small area of the film (imaged onto the relevant single
pixel of the CCD camera) obtained by the ISR measurement. In the bottom half of
the Fig. 5.18, each point of the graph represents the difference between the calculated
theoretical curve at the given wavelength and the relevant mean value of the local
reflectance acquired from all CCD pixels corresponding to a region located at the
center of the measured sample. This region was selected to be approximately the same
as the region utilized (i.e. illuminated) by the conventional techniques (VASE and
SR). Different colors indicate different measurements. The relative mean difference
was of about 5% in the vicinity of minima of the spectral reflectance dependencies.
This value can be considered as the maximum relative difference between the correct
and measured values of local thin film reflectance.

However, an ISR user is usually more interested in the reliability of determining
sample optical parameter values rather than accuracy of individual reflectance values.
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Fig. 5.18 Difference between measured ISRER spectra and theoretical reflectance curves
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As it was mentioned in the conclusion of the Sect. 5.8.2, if the main task is to
determine the local film thickness, the largest contribution to its error comes from the
uncertainty of optical constants of the film material. Whether the optical constants are
determined within ISR itself or taken from other measurements (and thus represent an
external source of the error), they are seldom known with better accuracy than about
0.01. Consequently, as the technique is sensitive primarily to the optical thickness n#h,
the absolute thickness values are systematically deviated by a constant multiplicative
factor. Depending on a film thickness and other aspects, this systematic deviation
can reach up to a few nanometers. This point has to be considered in metrology, but
it is moot in characterization of highly non-uniform samples in material research,
where the spatial dependence (i.e. a shape) is more important. Therefore, we will
further illustrate the precision of ISR results here as more relevant aspect.

Figure 5.19 illustrates the theoretical standard deviation of the thickness of a thin
film (on a silicon substrate) determined from a typical ISRWS measurement. It repre-
sents the precision limit that cannot be improved without reducing noise or increasing
the number of spectral points in a spectral dependence of the local reflectance of a
film. The theoretical sensitivity of the measurement is apparently good, with the
standard deviation of the fitted film thickness in tens of picometers.

Fig. 5.19 Theoretical 140 w w w w w w
standard deviation of the
fitted film thickness due to
the noise for an ISRWS
typical measurement, plotted
as a function of film
thickness and refractive
index. Spectral dependencies
of refractive index were
modeled using a simple
Cauchy formula; values of
its constant term A are
shown in the plot a0 1
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Fig. 5.21 Map of the 300 pm
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To answer how does the theoretical estimate corresponds to actual experimental
results, the above mentioned measurements of 800 nm thick SiO, film uniform in
thickness were used. The individual measurements were independently fitted (with
fixed optical constants) and the resulting thickness maps statistically analyzed. The
map of the local standard deviation of fitted film thickness, which was obtained is
shown in Fig.5.20.

The film is rather uneven and contains spots with relatively large variation in the
order of hundreds of picometers on the background of reproducible measurements.
The overall mean and median of the map are 128 and 116 pm, respectively, less than
twice the theoretical estimates. This verifies the good precision (reproducibility) also
in practice.

Finally, Fig.5.21 shows a complementary demonstration of the consistency of the
ISR results. An almost uniform area of a 300 nm thick TiO, thin film was measured
and the map fitted (with fixed optical constants). Since the uniformity was not perfect,
the thickness map was then fitted with a low-order polynomial, and the polynomial
subtracted to obtain the residuum plotted in Fig. 5.21. In the ideal case, the residuum
would be zero. The map again contains isolated spots where the residuum is of the
order of hundreds of picometers. However, the mean square residuum is 52 pm, i.e.
about twice the theoretical value (TiO, has a much higher refractive index).

5.10 Another Application of ISR

Up to now, we have focused on the ISR application to the basic task of the optical
characterization of thin films, i.e. determination of their thickness and spectral depen-
dencies of their optical constants. These films could exhibit some defects like thick-
ness non-uniformity, non-uniformity in upper boundary roughness and their struc-
tural model could comprise an overlayer. The ability to measure spatially resolved
reflectance in a wide spectral range can be beneficial also in other applications. As an
example of such an application can serve the use of ISR for the localization of metal-
lic gold in an organic layer. The metallic gold was reduced from an organo-metallic
compound by alocalized thermal treatment using a plasma-jet [57]. The plasma treat-
ment of solid surfaces has a lot of interesting and important applications generally. In
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Fig. 5.22 The organogold ] area fraction of gold
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film surface is shown &

Q
Q
O
N
O

organic layer with gold

Q
)
Q
Q

glass substrate

the application mentioned above organogold layers were prepared on a microscopy
glass plate by spincoating and then vacuum dried (the detailed description of the
layers preparation see [57]).

In these layers, the gold was in the oxidation state +1. By the action of plasma
jet, this gold contained in the precursor layers is reduced to metallic gold (i.e. gold
in its oxidation state 0) in the form of small grains (see Fig.5.22).

The projection of these metallic gold grains on the layer surface can be quantita-
tively evaluated by means of the ISR technique. The models used for the description
of light interaction with the studied layers can be various. They have to respect the
fact that the layers of interest are approximately 6 wm thick, non-uniform and the
refractive index of their organic material is close to that of the glass substrate. Hence,
the interference of light is weak in those parts, where the layers are transparent. The
parts with metallic gold (the heat treated parts) were not transparent. Therefore, the
layers were modeled as thick slabs and the interference was not considered. It was
also taken into account that the layers significantly differ from ideal ones, which
implies various defects and distortions in the reflectance spectra. Considering also a
huge number of ISR experimental data, a simple, robust, model was needed which
would agree with experimental data as much as possible. Finally, the layer was mod-
eled as a thick slab formed by separated regions covered by the untreated organic
compound or metallic gold. This model works with an area fraction of metallic gold
ay, which is defined as follows:

u,v
au,v _ Agold
- u,y *

f Areg

The area of gold covering the region corresponding to a camera pixel (with coordi-
nates u and v) is denoted as A, and A}y is the area of this whole region. Using a’y",
the local relative reflectance of the region corresponding to the same CCD camera

pixel can be expressed as
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Fig. 5.23 a Area metallic gold map obtained by ISR measurements. The scale shows a value of
the model parameter a s—the area fraction of metallic gold in the organogold precursor treated by
plasma jet. b Local relative reflectance comparison. Measured local relative reflectance of the spots
(marked in a) on the measured sample together with measurements of the pure gold layer and the
organogold layer without any plasma jet treatment

R () = @ Rgota () + (1 — @) Rorg (ut). (5.4)

Here, R;,14(Ax) is the value of the relative reflectance of gold obtained by measur-
ing the reference sample (a uniform gold layer prepared by magnetron sputtering on
a glass sheet) at the wavelength A;. R, (Ax) is the value of the relative reflectance of
the untreated uniform organogold precursor layer at the same wavelength. The values
of a?-’” were determined by the least square method using the previous equation (5.4).
Put together, these values form a map of the area projection of the reduced metallic
gold distribution in the studied sample.

The results achieved are shown in Fig.5.23a. Three spots A, B, C are selected in
this figure to illustrate how the corresponding local relative reflectance obtained by
the ISR is changing along the surface of the studied film (see Fig.5.23b). The spot
A contains the largest amount of metallic gold (and thus its reflectance is closest to
pure metallic gold), the spot B contains less metallic gold and the spot C was not
thermally treated and thus it does not contain any metallic gold.

The ISR method was completed by X-ray photoelectron spectroscopy applied at
the points A, B, C of the sample surface and confocal microscopy (which provides
only qualitative evaluation of the area distribution of metallic gold along the studied
sample surface). Results obtained by means of both the additional techniques were
consistent with the quantitative results from ISR.
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5.11 Conclusion

In the deposition of thin films for optical applications, various factors may cause
defects significantly affecting the desired properties of these films. This is valid par-
ticularly during the development and tuning of a new deposition technology. There-
fore, it is desired to have instruments which can detect the existence of these defects
and characterize the influence of them on thin film optical properties. The ISR tech-
nique, in conjunction with the adequate data processing methods, is such a suitable
tool for this purpose. The advantages of the ISR fully manifest when characterizing
thin films with area non-uniformity in their parameters. When such a non-uniformity
is of a general type, i.e. it is not possible to describe this non-uniformity analytically,
a correct optical characterization of these films by means of the conventional (non-
imaging) and frequently used optical methods (e.g. photometric and ellipsometric
methods) cannot be performed.

The main aim of ISR in the field of thin film optics is the determination of thin
film optical parameters, primarily maps of local thickness, and spectral dependencies
of optical constants. With the help of ISR, it is also possible to determine other
material parameters appearing in the dispersion models, such as the band gap of a
thin film material, the maximum energy limit of the relevant electron transitions, or a
quantity proportional to the concentration of electrons participating in the transitions.
Eventually, it also allows to determine some structural parameters, such as maps of
local RMS roughness of the upper film boundary.

The experimental set up of the ISR technique is simple. The design of imaging
spectroscopic reflectometers allows to measure thin film samples up to 20mm x
20 mm size, at normal angle of light incidence. The measurements can be done within
the spectral range (270-1000) nm, i.e. (1.2—4.6) eV, with the spatial resolution on the
sample up to 16 um x 16 pum and the maximum value of the local thickness gradient
approximately 12.5 pm/mm. The duration of a one sample measurement is typically
30 min (without the measurement of the reference sample and the background, which
need not to be measured every time).

The ISR technique provides a tremendous amount of experimental data. This fact
implies the necessity of special data processing methods with the aim to determine
the sought optical parameters of the film. The use of the appropriate method is
determined by a task to be solved. If spectral dependence of optical constants of
a thin film is known, the stand-alone single-pixel ISR method can be used for the
determination of the map of the film local thickness. If the spectral dependence of
optical constants of a thin film is not known, conventional (non-imaging) methods
can be used for their determination under the assumption of film uniformity in these
constants. The single-pixel ISR method can then be used for the determination of the
map of the local thickness of the film as a complementary method. The same task
can be solved using the stand-alone manual multi-pixel ISR method.

The multi-pixel approach is equivalent to the multi-sample approach which is
inherently present in the ISR technique. This fact further increases the efficiency
of this method in solving the basic task of spectroscopic reflectometry. The most
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powerful ISR method is the global ISR method which enables to address the issue
of the characterization of a thin film which is even far from an ideal one. That is,
it enables us to determine the unknown spectral dependence of thin film optical
constants (assuming the uniformity of the film in optical constants), the map of
thin film local thickness and, if necessary, other parameters of the film, such as the
RMS roughness of the upper boundary and the mean thickness of the overlayer film.
This global method uses an original algorithm for processing the ISR data, which
ensures fast convergence of the procedure finding the sought thin film parameters.
The above-mentioned ISR technique and the ISR methods form an integral whole —
ISR.

It is necessary to mention that all the ISR methods presented here are built on the
assumption of thin film uniformity in optical constants. In accordance with our expe-
rience, this assumption is fulfilled in the vast majority of real-life cases. In principle,
the characterization of thin films exhibiting non-uniformity in optical constants and
simultaneously in thickness is also possible using ISR. However, up to date this task
still represents a challenge.

The accuracy of optical parameters determined by means of ISR depends on the
concrete issue that is being addressed. The optical constants can be seldom deter-
mined with a better accuracy than about 0.01. The uncertainty of optical constants
causes a systematic deviation of the local thickness of the measured thin film. Depend-
ing on the film thickness and other aspects, this systematic deviation can even be a
few nanometers. The precision of ISR measurements is good. In the case of the local
thickness determination, this precision can be estimated by the value of the RMS
deviation in the local thickness which is in the order of 10'~10? picometers.

The applicability range of ISR can be defined as follows: Since the aim of applying
the ISR technique is, among other things, to determine a map of the thin film local
thickness, it is necessary to exploit the interference pattern which originated in the
film. This means there must be interaction between the light beam and the bottom
boundary of the film, which affects the local reflection of the film. Thus, only thin
films that absorb sufficiently little in the spectral range used can be studied by means
of the ISR technique. By other words, the ISR technique can be utilized for dielectric
or semiconductor thin films, but not for strongly absorbing thin films (e.g. metal
films).

In the previous paragraphs, we dealt with the application of ISR within the field
of optical characterization of thin films. We presented not only a solution of the basic
task of finding the spectral dependence of optical constants and determination of
local thickness maps of thin films, but also pointed out a wider potential of ISR in
this field (see Sect. 5.10). Generally speaking, ISR can also be a good choice for the
analysis of intentionally modified thin films (like are patterned, locally deposited,
locally etched films). In conclusion, we can state that ISR represents the powerful
tool for optical characterization of thin films. At the same time, it should be noted
that the potential for using ISR outside the thin film optics field is also high. It can
be successfully applied wherever it is desirable to know the local reflectance maps
along the surface of the studied samples, such as biological, medical objects, etc.
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Chapter 6
Data Processing Methods for Imaging
Spectrophotometry

David Necas

Abstract Data processing approaches and algorithms for imaging optical tech-
niques are discussed, with focus on imaging spectrophotometry in the visible and
ultraviolet regions. Since the techniques often produce large quantities of data, effi-
cient data fitting methods must be developed. This is covered from the high-level
view of attacking the huge least squares problem and splitting it in different ways in
order to extract useful information, as well as construction of effective models for
individual phenomena and types of samples. Efficient computation of optical quan-
tities is discussed for ideal, non-uniform and rough films together with modelling of
optical constants and spectral or angular averaging.

The results shown in Chap. 5 attest the utility of imaging spectrophotometry in thin
film characterisation. Here we continue in this topic and describe in more detail the
models and data processing methods, focusing again primarily on measurements of
thin films in the NIR-VIS-UYV spectral region. The salient feature of optical spectra
in this region is interference — the pattern of minima and maxima, whose density is
given by the film thickness and refractive index. Also other film properties manifest
themselves in the spectra in a fairly complex way; rarely it is possible to extract use-
ful information by analysing a short spectrum segment. Data processing, therefore,
requires quantitative modelling of entire spectra and searching for the best match
between the model and experimental values.

This is in contrast to imaging spectrophotometry techniques for biological and
chemical analysis, from IR absorption to fluorescence, where spectrally localised
features (peaks) are analysed. Images of interesting quantities are obtained by spectral
integration or peak fitting together with various factor and component analyses such
as the principal component analysis.

Some of the more general points discussed in Sects. 6.1, 6.3 and 6.4 still apply
to spectral imaging in general. Nevertheless, here the concrete models, formulae

D. Necas ()

Plasma Technologies, CEITEC, Masaryk University, Purkynova 123,
61200 Brno, Czech Republic

e-mail: yeti@physics.muni.cz

© Springer International Publishing AG 2018 143
0. Stenzel and M. Ohlidal (eds.), Optical Characterization of

Thin Solid Films, Springer Series in Surface Sciences 64,
https://doi.org/10.1007/978-3-319-75325-6_6


http://dx.doi.org/10.1007/978-3-319-75325-6_5

144 D. Necas

and algorithms are developed for imaging spectroscopic reflectometry (ISR) of thin
films and its application to solid matter and material research, because this is how the
technique is employed in practice [1-13]. Their adaptation to transmittance mode is
straightforward. The basic concepts also carry over to imaging spectroscopic ellip-
sometry, albeit the particulars have to be adapted.

Finally, we note straight off that imaging brings no fundamental changes to the
description of interaction of light with thin film systems and all the theories and
approaches developed in Chaps.2, 3, 7-10 and 14 are in principle usable in ISR.
Their practical utility depends on whether they are suitable for the processing of
high volumes of optical data that may have somewhat lower accuracy.

6.1 The Challenges

The spectral range and resolution, measurable area and spatial resolution of an imag-
ing instrument depend on the optical system design as well as the pixel resolution of
the detector and measurement procedure. What can be, however, be said with cer-
tainty is that the pixel resolutions are increasing steadily. Resolution of 512 x 512
pixels is considered moderate nowadays and instruments can be equipped with
1024 x 1024, 2048 x 2048 or even larger detectors. Improved data acquisition rates
permit the collection of more points in each spectrum. Consequently, large data sets
can be produced by a single measurement, which is both a blessing and a curse. On
one hand it enables detailed characterisation of samples and even opens the possi-
bility of completely new approaches, on the other hand the sheer data volume brings
new challenges.

Consider, for example, a typical measurement using the imaging spectrophotome-
ter described in Chap. 5, with fine spectral sampling. It takes approximately 40 min
and yields 640 images for the individual wavelengths, each 512 x 512 pixels large.
In other words about 1 GiB of experimental data per hour are acquired. Similar data
production rates have been noted for other imaging spectrophotometers [4, 10], even
though the acquisition of a low-resolution spectra set in a limited range can take as
little as one minute.

The data acquisition times are acceptable. However, for an experimental technique
to be practical and suited for routine characterisation, it is also necessary that the data
analysis time is acceptable. In particular, simple analysis should be sufficiently fast to
at least allow interactive experimentation, if instantaneous processing of GiB-large
data sets may not be a reasonable demand. And, generally, common data analyses
should not take much longer than the acquisition. When this is not satisfied the
technique becomes ‘specialised’ and its applications more limited. A large part of
this chapter is, therefore, dedicated to fast data processing, and efficiency will be a
key factor in the selection of models and approaches. The second important factor is
the number of fitting parameters, which should be low.

The basic task in ISR data processing is the same as in other optical techniques.
A model of the measurement is formulated, which includes general sample structure
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(the number of layers, relations between them, etc.), models of spectral dependen-
cies of optical constants of materials constituting the films (detailed in Chap. 3) and
imperfections of both the sample and instrument (Chaps. 9 and 10).

The model determines how the measured reflectance R depends on the independent
variables (wavelength A or position on the sample (x, y)) and on the parameters we
are trying to find, such as film thickness, roughness or band gap energy. Frequently
it also includes nuisance parameters, for instance related to defects or systematic
errors, that may be of no interest to us but are nonetheless necessary because the
model has to include all important effects influencing the measured quantities. The
model thus defines the function

R\, x,y,...;p), 6.1)

where p = (p1, pa. ..., pp)" is the column vector of parameters and P is the number
of parameters. The parameter values are then obtained by fitting this theoretical
dependence on the experimental values using the least-squares method (LSM), i.e.
by finding parameters p that minimise the sum of squared differences between the
model and experimental values:

[RCuss Xy Vs - 3p) — R =d'd . (6.2)

n=1

(9
:Nl’_‘

Index n distinguishes all measured values R, (N in total) and the corresponding
values of independent variables (see also Table 6.1). Factor ¢, is equal to the standard
deviation of the nth measurement and determines its weight, so the vector of weighted
differences has components

dn = (Rn - szp)/cn . (63)

In the minimum of § it holds 55
— =0. 6.4)

0P

In the following we will write R(A,,, X, Vn, - - . ; P) as R, (p) for brevity.

The dependence of optical quantities on the parameters is highly non-linear, neces-
sitating non-linear least-squares fitting, which is almost universally realised using
the Levenberg—Marquardt (LM) method [14—17], although Hanson—Krogh [18] has
been also utilised [4], and even a brute-force search of the parameter space [19] (in
the case of extremely low number of spectral points).

The LM method is an iterative procedure that we will summarise briefly. In can
be written in terms of the Jacobian matrix J

1 0R,
Joo = — (65)
Cn OPa
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Table 6.1 Notation for counts of the various items appearing in this chapter and index variables
usually associated with them (the index variables may vary where necessary). The total numbers
satisfy the relations N =K x M andP =G +M x L

Item Total number Index | Example
Individual data point N n R — a single measured reflectance
Point in a spectrum K k A — kth wavelength
Image pixel M m hy, — film thickness in mth pixel
Fitting parameter P o Po — cth fitting parameter
Local fitting parameter | L o Vm,« — octh local parameter in pixel m
Global fitting parameter | G o uy — global ath fitting parameter
witha = 1,2, ..., P. Using J and d, we form the approximate Hessian matrix H

(which is positive definite) and gradient vector g as follows
H=J"J and g=J"d (6.6)
and solve the system of linear equations for parameter changes Ap
H+uD)Ap+g=HAp+g=0. (6.7)
The parameter values are then updated
p—>p+A4p. (6.8)

This procedure represents one step of the LM method and is repeated until it con-
verges, i.e. the sum of squares S and/or the parameters p cease to change. The
resulting set of parameters then satisfies (6.4) (within chosen criteria), although it
may not correspond to the global minimum of S, i.e. the best possible agreement.

The damping (also called Marquardt) parameter & controls the trust region of
the method and consequently the behaviour of the parameter update step. Large u
means the LM step is cautious and close to a steepest descend method [17] step for
finding the solution of (6.4), while small © means a confident step close to a step
of the Newton method [17]. A successful step is therefore followed by a u decrease
and unsuccessful step by an increase [20].

Matrix D, which augments the Hessian to H,is a diagonal matrix that defines
how the method scales with parameters. In the simplest case D = 1, corresponding
to so called unscaled LM method which converges poorly when parameters are
not of comparable magnitude. The convergence can be improved by choosing D =
diag H, which results in so called scaled LM method — but other choices are possible
[16, 17].

In this high-level view the data from all optical techniques are processed in the
same manner. The crucial difference between ISR or imaging spectroscopic ellip-
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sometry and single-spot measurements is in the scale of the problem. Continuing the
introductory example, assume for instance we would like to fit just the film thickness
in each pixel. In addition, five parameters of the dispersion model would be common
to a sample region because the film material is uniform there (note that global param-
eters do not necessarily entail constant sample properties — they can also describe
spatial dependencies). For a relatively small region of 200 x 200 pixels we have
40000 fitting parameters and 25.6 x 10° experimental data points. The Jacobian J
has approximately 10'? elements, while the Hessian H has mere 1.6 x 10° elements.
The matrices are in fact relatively sparse so the amounts of non-zero elements are not
so huge (we will explore that in more detail in Sect. 6.4). Nevertheless, it is evident
that taking a random LM implementation and plugging in the model and an entire
ISR data set would be an endeavour doomed to fail.

The core difficulty is the large number of fitting parameters that are, unfortunately,
all entangled together. For instance film thickness values in two different pixels may
seem independent at the first sight. However, they are tied together via the global
parameters of the dispersion model that are strongly correlated with all thicknesses.
In the following sections we will therefore break the problem to smaller pieces
and start from approaches that are within the capabilities of a stock LM method
implementation, gradually progressing to data fitting scenarios involving more and
more coupled parameters.

Data abundance is not the only issue in imaging techniques, as they also often
suffer from somewhat complementary difficulty, less information in individual spec-
tra. Compared to non-imaging techniques, the spectra are more noisy as the received
radiant flux is smaller. Local defects (‘bad pixels’) are often encountered and also
systematic errors are more common. In general, the transition to imaging increases
the complexity of the entire measurement system. Many imaging systems are con-
structed as microscopic, i.e. with magnification greater than unity. This leads to
major complications associated with aberrations of the imaging system, depth of
focus, numerical aperture (ill-defined angles of incidence and reflection), suitability
of materials of the optical components for a wide spectral range including the UV
region, etc. [21]. Complex models are used just to obtain somewhat reliable thick-
ness maps [8]. Imaging instruments are therefore often limited compared to their
non-imaging counterparts. Complex post-processing, such as image fusion using
wavelet reconstruction [22], is required when the angle of incidence is oblique —
unless the Scheimpflug principle [23] is satisfied by tilting the detector accordingly.
In consequence, the methods are frequently used for semi-quantitative and compar-
ative measurements. Normal-incidence ISR can avoid these problems. On the other
hand, the spectra contain less information than, for instance, full three-component
ellipsometric spectra at oblique incidence. We will seek to set these two disadvan-
tages — too much and too little information — against each other and turn them to a
strength.
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6.2 Single-Spectrum Models

A simple and obvious way of breaking the least-squares problem (6.1)—(6.8) to
manageable pieces is to avoid global parameters. All parameters are then local,
pertaining to particular image pixels and the Hessian H becomes a block-diagonal
matrix, with blocks corresponding to pixels. Symbolically,

H,
H,
H= . . 6.9)

Hy

Each of the M spectra can be fitted independently, exactly as in single-spot methods.
So instead of a single least-squares problem with huge J and H, we need to solve a
large number of small ones.

As each sub-problem has only a few free fitting parameters and K data points, a
software implementation can easily employ a standard high-quality LM implementa-
tion such as MINPACK [16] or its GSL adaptation [24]. Custom ISR data processing
software is common [4, 9, 25], and often a necessity. When ISR data analysis pro-
gresses from a proof of concept to routine characterisation and applications, it enables
evading overheads invariably incurred by general software frameworks. Parallel com-
putation can obviously shorten the analysis times, and a number of approaches for
parallelisation of the LM algorithm were suggested [26]. In practice simple paral-
lelisation on data suffices, taking the fitting of a single spectrum as one basic task
and handling these tasks in parallel. Since one spectrum can be fitted quickly (from
tens of microseconds for fine spectral resolution down to about a microsecond for
coarse spectra —in 2016), it is actually advisable to split the work to larger tasks than
individual pixels, for instance image rows, to reduce overheads.

The subproblems can be simplified further using a priori knowledge about the
sample. It can come from known tabulated properties of the film and substrate, or
from prior characterisation using other methods such as conventional ellipsometry
and spectrophotometry. Large non-uniformity (usually among the primary reasons
why ISR is employed) can impede the characterisation using conventional optical
methods. Nevertheless, with the help of suitable modelling even quite non-uniform
films can be characterised successfully [7].

When we know the overall film properties, for instance spectral dependencies of
optical constants, mean thickness or roughness values, most fitting parameters can be
fixed in the ISR data processing. ISR then usually serves as an auxiliary technique,
providing fine maps of selected parameters [1, 2, 4, 9]. An example of this type of
analysis is also discussed in Sect.5.9.

This single-spectrum approach is by far the most common [1-8, 10]. In fact,
published works seldom venture beyond single-spectrum data processing. And this
should not be seen as a shortcoming, at least not necessarily. Fine mapping of a few
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selected parameters often brings most of the useful information that can be extracted
from ISR data while simultaneously avoiding some of the possible pitfalls.

Single-spectrum data processing and the corresponding models also serve as basic
building blocks for more complex schemes described in Sects. 6.3 and 6.4. Therefore,
we will start by summarising common film properties and other effects that need to
be modelled and by developing corresponding models suitable for ISR from the
efficiency and parameter count standpoint.

6.2.1 Thickness

Film thickness is the most useful and common quantity measured in each pixel.
Almost all thin films with any substantial spatial variation of properties are non-
uniform also in thickness, whereas films non-uniform in thickness frequently do not
exhibit measurable variation in other parameters [9, 27]. If the thickness variation
is the result of etching (as opposed to non-uniform deposition) there is seldom any
reason to even consider local differences in film material. Hence we will start by
fitting local thickness in the mth pixel &, — or simply £, as each spectrum is processed
individually and the pixel-distinguishing subscripts can be dropped.

The reflectance is the squared absolute value of the effective Fresnel reflection
coefficient » (for normal incidence there is only one)

R=1r*=rr, (6.10)

where star* denotes complex conjugation. For a thin film with refractive index 7 and
thickness /& on opaque substrate we can write

U 4
r= nt+nt , where U =exp(iuh) and u = —nﬁ . (6.11)
14+ rrU A

Here X is the vacuum wavelength and 7| , are the Fresnel reflection coefficients at the
two boundaries (see Chap.2). The only quantity that depends on the film thickness
isU.

In a slightly more general case, the investigated film can be inside a thin film
system. Such system is frequently formed by the film and a thin overlayer on its
upper boundary and/or a transition layer between the film and substrate. The reflection
coefficient is still a simple linear rational expression:

nt, —rir))nU
PO A UL : rn)r (6.12)
1 —rnU

where 7, , are the Fresnel transmission coefficients, prime’ denotes coefficients for
light incoming from the substrate side and all coefficients are effective coefficients
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for the systems above and below the film (Fig. 6.1). The only quantity depending on
the thickness is still U.

All other quantities, optical constants, even Fresnel coefficients, can be precalcu-
lated and tabulated for all wavelengths A corresponding to individual spectral points,
speeding up the data processing. Nevertheless, the most time consuming operation
is the evaluation of complex exponential functions exp(ixs) occurring in U (6.11).
Since & can vary arbitrarily they cannot be precalculated.

Therefore, it is important to reduce the number of exp evaluations, and this will
be a recurring topic in this chapter. Here the reduction is quite straightforward. The
derivative of reflectance by % that occurs in J,,, can be written

o T

oR  or ar* or or
= =2|Rer Re — +Imr Im — .1
[er eah—i— mr mah:|, (6.13)

where for r expressed by (6.11) and (6.12)

ar  iwUrn(l —r} 9 wuUryt 1]

o _WHnRy T rd=r) and — = —— 2 r,zl L, (6.14)
ah (14 rirpU)? oh (1 —rnU)?

respectively. Therefore, the reflectance and its derivative can be calculated together
using just a single exp, a substantial improvement compared to the three that would
be required by naive numerical differentiation.

6.2.2 Optical Constants

Spectral dependencies of optical constants can be in principle determined by fitting
dispersion model parameters in each pixel. Even the simplest dispersion models
have several parameters. The basic PIDOS model for interband transitions [28, 29]
has three, the Tauc—Lorentz model [30] has four (or five), and even though the
Cauchy formula for refractive index n = A + B/A? has only two it often needs to be
supplemented by an exponential formula for extinction coefficient k = o exp(—BA),
bringing again the parameter count to four.

One obvious consequence is the increase of computational demands. The increase
is in part unavoidable, but the amount of additional complex calculations compared
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to fitting thickness alone can be kept small. We first note that formula (6.13) holds
for any model parameter; it is not specific to 4. If p, is a parameter of the dispersion
model for the complex refractive index of film n; = n;(p; A) the derivative of the
reflection coefficient can be written using the chain rule as

ar ar on;
= — . (6.15)
apot anl apot

The first factor on the right hand side is not specific to p, and can be evaluated only
once:

ar _ 1
oan (14 rnrnU)?

87‘1
n

[(1 - r§U2)a ]

+1 =7 (U% + rzﬂ)} . (6.16)

any oy

Furthermore, when the derivatives are expressed using the refractive indices and
reflection coefficients we obtain

0 1 2no(1 — r2U? 4mih 2n
TS YIRS Ty PSS P |
ong  (I+rnl) (1 + no) A (ny +ny)

6.17)

where ng and n; are the refractive indices of the ambient and substrate, respectively.
Although the right hand side of (6.17) is not particularly simple, it is a rational
function of quantities that enter the expression for R and have to be calculated anyway.
The second factor in (6.15) is specific to the dispersion model and each p, . For some
models, such as the Cauchy formula, the derivatives are very simple functions. In
other cases the derivatives are complicated and it may not even be worth calculating
them analytically because the evaluation of the derivative has similar computational
demands as numerical differentiations.

The idea of fitting the complete dispersion model in each pixel and obtaining
two-dimensional maps of all its parameters sounds appealing and was explored in
practice [6, 31]. In an attempt to execute we however usually run into the another
consequence of increased number of parameters: correlations. One of the main rea-
sons why strong correlations between parameters occur is that the sum (6.2) is very
sensitive to positions of interference minima and maxima in the spectrum. And the
positions depend only on the optical thickness, i.e. the product of thickness and
refractive index, not each separately. In combination with the lower information
content of normal reflectance spectra this results in highly correlated parameters,
large uncertainties and sensitivity to any imperfections and systematic errors in the
experimental spectra.

The parameter correlations are illustrated in Fig. 6.2. We took a simple model of
ideal thin film, with optical constants described by the Cauchy formula, on silicon
substrate and assumed reflectance measurement in the spectral range from 300 to
800 nm. The correlation coefficient Cy4 ; between parameter A of the Cauchy formula
and film thickness & was then calculated according to the LSM and plotted for several
A values as a function of film thickness. For most parameter combinations Cy j attains
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Fig. 6.2 Correlation coefficient between Cauchy formula parameter A and film thickness /4 as a
function of film thickness, plotted for several different values of A (with the corresponding refractive
index shown in a subplot). Dashed lines mark correlation coefficient equal to 0 and — 1, correspond-
ing to no correlation (the ideal case) and completely negatively correlated A and & (the worst case)

large negative values. In particular when the film is thin (2 < 50 nm) or the refractive
index high the correlation coefficient is very close to —1, indicating that the reliability
of fit results will be low. When attempting to fit the complete dispersion model in
each pixel it is, therefore, necessary to carefully consider if the resulting parameter
maps represent real spatial variation or mere artefacts — and more generally what
value they bring.

6.2.3 Non-uniformity

Even though the main application of ISR is the measurement of highly non-uniform
films, the areas corresponding to detector pixels are so small that the film often can
be assumed uniform within one pixel. When the thickness variation is so large that
this assumption is no longer valid we observe a decrease of interference contrast in
the spectra. The reflectance then has to be integrated over the thickness distribution
within the area corresponding to one pixel (see Sect. 10.4):

R(h) =/,0(t)R(h+t)dt, (6.18)

where h now stands for the mean film thickness in the pixel (the integration is
understood being over the domain of p). The thickness density (density of thickness
distribution) in the pixel p depends on thickness variation 7 = h(x, y) as well as the
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pixel shape and have quite a complicated analytical form. Furthermore, integration
is a slow operation that impacts the data processing speed.

Fortunately, up to relatively large non-uniformities the precise form of p is not
critical. The influence on optical quantities can be characterised using a single param-
eter, the RMS of thickness variation s [7, 32]:

st = /z2p(t)R(h+t) dr . (6.19)

We can choose p(h) in the form corresponding to a simple wedge-shaped film, i.e.
constant thickness gradient

()
o) =— 1= (6.20)
STT 2s

that is also reasonable approximation for other film shapes. The density is illustrated
in Fig.6.3.

An efficient method of evaluation of integrals of type (6.18) to low and moderate
precision is Gaussian quadrature with p as the weight function [33]. An n-point
quadrature rule has n abscissae A; and weights W; found so that

/ p(ORM+1)dt ~ Y WiR(h+Ay) , 6.21)

J=1

integrates exactly all polynomial functions R(%) up to degree 2n — 1. Therefore, if
R(h) is a smooth function, locally well approximated by polynomials of low order,
which almost invariably holds, the recipe (6.21) requires the computation of R(h)
for only a few thicknesses to reach sufficient accuracy.

An advantage of the density (6.20) is that it is the same as the weight function for
Chebyshev polynomials of the second kind (apart from scaling), for which A; and
W; have a simple closed form [33, 34] j = 1,2, ..., n):

2 ., 7nj
and W, = ——sin® —— . (6.22)
n+1 n+1

j
A; = 2scos
n
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Table 6.2 Abscissae and weights for a few useful low-order Gaussian quadratures. All functions
p(t) are normalised so that their integrals and second moments (dispersions) are unity, and their
first moments (means) are zero

Function p(¢) Interval Points Abscissae Weights
V1=2/4/7 [—2,2] 3 0 12
+v2 1/4
5 0 1/3
+1 1/4
+V3 112
exp(—12/2)/N21 | (=00, 00) 3 0 2/3
+/3 1/6
5 0 8/15
+[5 — V10)]'/2 3/(140 — 40+/10)
+[5 + +/10)]'/2 3/(140 + 404/10)
1/2V/3 [—v3,43] |3 0 4/9
+3/v/5 5/18
5 0 641225
+(5/3 — 2/10/63)'/2 | (322 + 134/70)/1800
+(5/3 4 24/10/63)'/2 | (322 — 134/70)/1800

We use quadrature rules with low numbers of points because computation speed
is important and they are sufficient for ISR. The simplest useful rule implement-
ing (6.18) is the three-point rule (see Table 6.2 for the five-point rule)

R(h, s) ~ %R(h) + %[R(h —V25)+R(h+29)]. 6.23)

It integrates exactly R(h) up to polynomials of the fifth degree and requires the
evaluation of three exp functions, one in each term. One evaluation can be eliminated
by noting that

exp(iu«/zs) exp(—iunv2s)=1. (6.24)
Therefore,
qr1 + U r1 + rqU
rth—~2s)="——— and r(h++2s) = —— | 6.25
( ) q+rnU ( ) 14 rirnqU ( )

where g = exp(iu~/2 5). The improvement becomes substantial when we combine
evaluation of R with the evaluation of its derivative by A. The factor ¢ is a constant.
Hence the derivatives do not introduce any new exp functions:
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dr(h—~/2s)  iuqUry(1 —r}) q dar(h+~/2s)  iugUry(1 —r})
o (qrnn0z O oh (I+nngU)
(6.26)
In total only two exp function evaluations are still necessary — compared to nine
required by naive calculation and numerical differentiation.
Comparably low computational demands can be achieved if we instead employ
the second-order derivative formula [32]

2
R(h, s) ~ R(h) + %R”(h) (6.27)

to approximate the averaged reflectance (6.18). However, the rule (6.23) remains a
good approximation to larger s values than (6.27) and when it starts to fail it does so
gracefully, whereas (6.27) is prone to shooting off suddenly to unphysical values.

The film non-uniformity s can be fitted as an independent parameter along with
thickness. This requires the evaluation of derivatives of R by s that can again be done
using only algebraic manipulation because

ar(h+£+2s) iﬁi)r(h:t V2s)

2
as oh (6:28)

and the right hand side is given by expressions (6.26). If & and s are the only fitted
parameters this can still be a reasonable approach. However, in normal reflectance
spectra non-uniformity is often difficult to distinguish from other other effects, in
particular absorption [35, 36]. The alternative is two-step processing where in the
first step only the film thickness map is determined. The local non-uniformity is then
calculated from estimated thickness gradient or spread of thickness value distribution
in the neighbourhood of each pixel. The calculated local s values are used in the
second step, but as fixed values. Note that it is necessary to use robust estimators
that are resistant to local defects [37], e.g. inter-quartile differences for the spread
estimation, to suppress the influence of bad pixels and defects on the sample or
reflectance normal. The estimated gradient V# is related to the pixel’s s value

2v/3s=AVh, (6.29)

where A is the side of sample area corresponding to one pixel. An empirical factor
may need to be inserted to (6.29). In particular, CMOS sensors have somewhat
smaller fill factors compared to CCD sensors where the light sensitive area is close
to 100 % of the pixel. Therefore, the true s is smaller than estimated from the gradient.
Another reason for a correction factor may be multiple reflections (or other effects)
that cause slight blurring of the images [38].
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6.2.4 Spectral and Angular Averaging

If the imaging spectrophotometer has a monochromator and the light beam incident
on the sample is collimated, we can usually disregard the finite line width of the
monochromator (the exception being films with thickness around 1 um or more) and
essentially always disregard the spread of angles of incidence. Some imaging instru-
ments that can be still considered spectroscopic employ filter carousels or variable
band pass filters [2, 8] with large band width; in extreme cases even RGB light sources
and detectors were used to obtain somewhat spectrally resolved reflectance [19, 39].
Correct integration over the spectral distribution then becomes crucial. Similarly,
integration over the distribution of incidence angle is crucial for instruments with
focused light beams and, consequently, large numerical apertures.

Spectral and angular averaging, as well as integration over any other quantity,
are similar to thickness averaging (6.18), the only difference being the replacement
of thickness & with A or ¢ and the replacement of p(h) with the corresponding
distribution. Gaussian quadratures can be again utilised for efficient integration. For
instance a Hermite—Gauss quadrature [33, 34] if the density p is Gaussian (abscissae
and weights for a few low-order rules are again listed in Table 6.2).

Averaging over multiple quantities should be in principle done using an integral
with their multi-dimensional distribution. In practice we replace it with sequential
averaging over individual marginal distributions p, and p, because the full distribu-
tion is unknown:

/ 0:.(1) [ / pe(()R(A 41,0 + 1) dﬂ} dr, (6.30)

As each integration slows down the computation considerably, efficient quadratures
become even more important.

For spectral averaging, extra calculations can be avoided by the utilisation of
reflectances calculated for neighbour spectral points. For instance a three-point rule
for averaged R*%(A) is implemented

R™8 () ~ W_iR(Ag—1) + WoR(Ai) + WiR(Ai11) (6.31)

where the weights W_;, W, and W, are calculated to approximate the chosen distri-
bution p;. This is, of course, possible only if the spectral points A are sufficiently
close. If they are farther apart it may be still advantageous to calculate the spectrum
with a finer spectral step and then average this supersampled spectrum with appro-
priate weights to obtain R*¢()1;). In general, when multiple neighbour values are
necessary, the rule (6.31) is a discrete correlation

R () ~ Y WiR(hyy) - (6.32)
J
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Discrete correlations can be efficiently evaluated by utilising the correlation theorem
and fast Fourier transform [40]. However, when we find this avenue appealing usually
it is an indication that the spectral band is simply too broad.

Averaging over the angle of incidence has some specifics. First, for oblique angle
of incidence the Fresnel coefficients for p- and s-polarised light differ. The single
expression for 7 in formulae (6.11) or (6.12) must be replaced with separate , and 7
expressions (see Chap.?2) and then

1
R= §(|rp|2 + Irsl?) (6.33)

under the assumption the light source, detector and optics are polarisation-unbiased.
Notably, u for oblique incidence

4 |
U= Tn cos @y . (6.34)

is the same for both polarisations, so U only needs to be computed once for both
polarisations. The angles of incidence ¢ and angle refraction into the film ¢; only
occur as cos ¢ and cos ¢; in u and the Fresnel coefficients. It is, therefore, useful to
work with the cosines instead of the angles themselves. If the spectral dependencies
of optical constants are fixed the cosines can and should be precalculated and tabu-
lated. Since cos ¢ &~ 1 — ¢?/2 for small g, the cosines deviate negligibly from unity
for normal-incidence collimated beams. This explains why the spread of incidence
angles can be disregarded in this case.

Second, the angular distribution is one-sided because ¢ > 0. If nominally normal
incidence of light (¢ = 0) is considered and the light is focused, the mean incidence
angle is positive, possibly substantially. Hence, the positions of interference minima
and maxima in the spectrum are shifted compared to normal incidence of light. When
this is not taken into account, film thickness are systematically underestimated.

The crudest possible approximation that still achieves some correction of the
interference extrema positions is based on the calculation of the mean value of cos ¢y,
which is then taken as the cosine of the effective angle of refraction cos ¢; ¢ [8, 41]

wl’nﬂx
COS @1 eff = / Py (@) cos pi(g) dy . (6.35)
0

All other angles and Fresnel coefficients are then calculated for this effective
angle ¢ .. Although extrema positions are corrected, this ad hoc approximation
cannot describe the decreased interference contrast, and since it does not conform
to (6.30) it is unclear how to extended or refine it to cover this effect.

Therefore, angular averaging should be preferably based on the integral (6.30). A
one-point Gaussian quadrature rule requires the evaluation of R for a single angle of
incidence, like the cos ¢ ¢fr approach, and also leads to a similarly crude approxima-
tion. However, it belongs to a framework extendable to multi-point rules that capture
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the interference contrast reduction and provide better approximations of the averaged
reflectance. Unfortunately, o, is seldom a weight function of a known quadrature
rule. Furthermore, it does not even have a fixed form, i.e. functions p,, for two dif-
ferent maximum angles of incidence ¢n,,x cannot be obtained one from the another
by simple scaling. Therefore, the quadrature rules have to be obtained numerically
on case-by-case basis, which is inconvenient.

So, instead, we transform ¢ to a variable v = v(¢) with constant density p,(v)
— depending on the light source and optics, it can be v = cos ¢, v = 1/cos? ¢ or a
similar quantity. The integral over ¢ is replaced by

/ " RO dv (6.36)

that can be evaluated using the standard Legendre—Gauss quadrature [33, 34] because
the weight is now unity (see Table 6.2 for abscissae and weights for selected low-order
rules). It is important that the change of variable does not distort the shape of R(¢)
for small ¢ in a manner that would prevent the utilisation of Gaussian quadrature —
the function remains smooth and approximable by polynomials of low order.

6.2.5 Roughness

Roughness of film boundaries is an ubiquitous phenomenon that influences mea-
sured optical quantities and often has to be taken into account. A large body of
theoretical approaches have been developed for the description of interaction of
light with randomly rough surfaces and media boundaries in general. For specularly
reflected light (as opposed to scattered) three are most commonly used, the effective
medium approximation (EMA) [42], scalar diffraction theory [43—46] and second
order Rayleigh—Rice theory [47—49]. They are described in depth in Sect. 10.3; here
we limit the discussion to their suitability for ISR data processing.

The EMA is the simplest of the three and valid only for very fine roughness [50].
Each rough boundary between two media is replaced with a fictitious layer. The layer
optical constants are calculated from the optical constants of surrounding media using
a mixing formula. Its thickness hgyma is conventionally taken to be proportional to
the roughness RMS value o even though in fact no such relation exists and /gma
is just an effective parameter without definite interpretation [50]. The EMA can be
easily adopted in ISR models. Since the optical constants of the fictitious layer are
given by the mixing formula only one new parameter appears in the model for each
rough boundary, the fictitious thickness Agma -

Even with EMA the functional dependence of reflectance on model parameters
becomes quite complicated, and this holds even more for the derivatives. The calcu-
lation of derivatives of R by & and hgya can still utilise formula (6.14) (the second
variant). The derivatives by dispersion model parameters should still be calculated
using the chain rule (6.15). However, the derivatives dr/dn, that are expressed by
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(6.17) for smooth film boundaries, may be as well calculated numerically if the
refractive index 7; enters the EMA.

The second-order RRT represents the opposite extreme — it has a wide region of
applicability [49, 50] but it is very complex. The RRT expressions involve multiple
integrals that make it computationally prohibitive for ISR, except perhaps in special
applications that justify the computation cost. It should be also noted that in RRT
the roughness is described by the power spectral density of spatial frequencies (see
Chap. 11 for statistical characterisation of roughness). Even when its functional form
is fixed, for instance to Gaussian, it still has to be characterised by at least two
parameters that then enter the model as free fitting parameters.

The SDT is moderately complex and can still be computationally accessible when
implemented efficiently, as we show below. It is valid only when the rough boundaries
are locally smooth, i.e. in the limit of long-wavelength roughness. This makes it in
some sense complementary to the EMA and the two approaches can be naturally
combined if required.

In SDT the roughness is described by the statistical distribution of z-coordinates
of the boundaries. If the thin film system consists of F layers the distribution is
F+1-dimensional as there are F + 1 boundaries. The formulae resulting from the
SDT express the reflection coefficient of a rough thin film system (r) as a statistical
average of the reflection coefficient r for the corresponding smooth film system over
the F+1-dimensional distribution. If the distribution is assumed to be Gaussian the
averaged reflection coefficient is equal to the sum of terms involving one to F + 1
boundaries, i.e. zero to F layers [11, 46]:

F
(r) = {r)a - (6.37)

d=0

The surface roughness (zero-layer) term is simple:

1
(r)o = riexp (_§B£S1’1> ) (6.38)

The others (d > 1) have the form of a series

[o¢]
(a=Y_ Y exp(2imX)Q,(m)Hy(m) . (6.39)
= m=p
Elements m; of vector m = (m;, my, ..., mp) express how many times the light

passes through the jth layer. Factors exp(2imf( ) describe the phase gained by light
by passing through the layers, where X is a vector formed from the phase terms
X; = 2mi;h;/A. Factors Qq (m) represent interactions at layer boundaries. They are
certain homogeneous polynomial of degree 2p + 1 in Fresnel coefficients for the
corresponding system of smooth layers. And finally the factors H,(m) express the
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influence of roughness. They are multidimensional Gaussians, the arguments of the
exponential functions being scalar products of certain vectors with the matrix S

S,"j = O','O'jc,‘,j s (640)

defining the RMS values o; of the rough boundaries and correlations C;; between
them.

For a general multilayer with arbitrarily correlated rough boundaries the expres-
sions are still rather complex. They simplify if we consider a single film with rough
boundaries, which is the type of sample most likely to be analysed by ISR. The
sum (6.37) then consists only of two terms, (r)o and (r);. The latter is given by the
classic series [44, 46, 51]

(r)1 =) expQipX1) Qi(p) Hi(p) , (6.41)
p=1
where
01(p) = uty(r)P~ ' (6.42)
and . X
Hi(p) = exp (— EDfsl,1 — 51)552,2 — DIDZSM) ) (6.43)

The summation index p enters H (p) via D;
4 4
D;=B;—Bi_;, where By= T”no B = T”pﬁl and B,=0. (6.44)

The single-layer expressions are reasonably complex. With Q; (p) in the form (6.42)
they do not require any modification when additional very thin layers are considered
at the film boundaries, either actual overlayers and transition layers or fictitious
layers originating from the EMA. It is sufficient to replace ry, r{, f; and ¢ in (6.42)
and (6.38) with the effective Fresnel coefficients of the corresponding additional
layers. More precisely, the replacement is permissible if the additional layers are are
so-called identical thin films [52], i.e. films with geometrically identical upper and
lower boundaries (Fig. 6.4). Thin overlayers and transition layers essentially always
satisfy this condition.
The matrix S is equal to

2
. of Coiop\ (o1 0 1C\ (o O
§= <C0162 o3 ) - (0 02) <C 1 00,/ (6.45)

where C = Cy; is the correlation coefficient between the two boundaries. It is unde-
fined if one of the boundaries is smooth but we can simply put C = 0 in this case.
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Non-identical thin film
Identical thin film \_’\/\A

Fig. 6.4 The upper boundary of an identical thin film is the same as the lower boundary, only shifted
along the z-axis. A non-identical thin film has geometrically different lower and upper boundaries,
even if they may be the same statistically

Alas, formula (6.41) also brought back complex exponential functions. And they
arrived in force, each term contains at least one. Combining the exps from (6.42)
and (6.43) to a single exp ensures each term contains exactly one, but one per term
is still too many.

If the series (6.41) contained only exps of the exp(2ipX;) kind then most of them
could be eliminated easily. Writing

exp(2ipX;) = [exp(2iX))]" = 2 (6.46)

would turn the series into a power series. A simple power series

oo
> a” (6.47)
p=0

can be evaluated using the Horner’s algorithm which avoids the computation of
powers (or exponentiation) in each term, replacing them by successive multiplications

=77 (6.48)

that generate the power z” required in pth term from the power z”~! used in the
previous term.

The exponent in SDT factor H; (p) contains also terms proportional to p. There-
fore, the simple recurrence relation (6.48) is insufficient. A double recurrence rela-
tion, however, makes an efficient summation possible. We start by regrouping the
terms according to their dependence on p

(r)1=CY BA" (6.49)

p=l1

where A, B and C are constants. Specifically,
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82 2
A =exp —7(51,1 — 28512+ 80207 ), (6.50)
, . 1672 R
B = rrn exp(21X1) exp )L2 (2S1’2 - Sl,l)nlno (651)
and 5
ht 167 )
C = 7 exXp (—751,1n0 . (652)

The evaluation of all three requires two complex exps and one real. Then we define
two auxiliary sequences y, and z, as follows:

y1=A, z1=ABC, Yp+1 =A2yp and I+l = Byp-‘rlzp . (6.53)

It can be verified that z, = CBPAP’ and thus
o0
(M=) 2. (6.54)
p=1

No additional costly operations are necessary; the recipe (6.53) and (6.54) involves
only multiplications and additions.

When the series converges fast a few terms can suffice to obtain the sum with a pre-
cision needed to model experimental data. Sometimes, therefore, the speed gain may
be insubstantial (note that the series converges faster for larger roughness [46]). The
reformulated summation scheme however keeps an important advantage. It elimi-
nates the necessity to estimate how many terms are needed and make speed—precision
trade-offs [51]. The computational cost is essentially fixed. Once we paid it we can
evaluate the sum to a high precision for free. This is particularly useful for numerical
differentiation which can lead to nonsensical values if the function is not smooth, and
appreciated also in plotting of the theoretical spectra as it prevents spurious jumps
in the curves. Numerical differentiation is unfortunately the only sensible option for
calculation of derivatives by fitting parameters when SDT is involved.

Frequently only the upper film boundary has to be considered rough; the lower
one is smooth. This means o, = 0 and the expressions (6.50)—(6.52) for A, B and C
simplify somewhat. Specifically, S» » = S1.2 = 0 and therefore only terms involving
S1.1 = o} remain in the arguments of the exponential functions. Nevertheless, the
overall complexity of the calculation remains the same. This is because the phase
gained by light when it travels through the layer still varies due to roughness, even if
only one of the boundaries is rough. Only identical thin films (a category including
layers with both boundaries smooth as a special case) can be replaced by effective
boundaries, allowing to reduce the complexity. The upshot is that the case of films
with only one boundary rough is not worth separate implementation.
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6.2.6 Thick Layers, Mixing and Incoherent Models

Thin films are not the only type of sample that can be characterised using ISR. In
the case of thick layers, for which interference is no longer observed (or becomes
negligible), thickness is no longer a meaningful quantity to fit, but it is still possible
to observe spatial variation of layer material.

For modelling, we must switch to the incoherent formalism. If the substrate is
opaque or back-side reflection can be disregarded, the reflectance of the sample is

R BB m 2B e Ry = T7R, . (6.55)
1 —R\R;

In this formula R; and R, are the reflectances of the lower and upper layer boundary
(squared absolute values of reflection coefficients). The expression (6.55) includes
the layer transmittance denoted by T for generality. Nevertheless, usually the layer
is either transparent (7 = 1) and R, = R, oritis opaque (T = 0)and R = R;. If itis
weakly absorbing just so that T # 0, 1, its thickness appears again in the formulae,
or at least the product of thickness and extinction coefficient.

The fitting parameter that characterises the variation of layer material can be
chosen in different ways, the basic ones being:

e Explicit formula parametrising the spectral dependencies, for instance using mass
density or atomic fraction of an element in a compound. Such formulae can be
obtained by parametrised interpolation between experimental curves, if theoretical
dependences are difficult to obtain.

e EMA mixing formula in which the parameter is the fraction p of one material.
This model is useful if the layer consists of materials mixed at the microscopic
level. Depending on the assumptions about the layer structure and constituent
materials, different EMA formulae summarised in Sect. 10.3.1 are used to express
the dielectric function of the mixture.

e Incoherent (or spatial) averaging, in which we assume a fraction p of the area is
covered by one material and the remaining part 1 — p by another material. This
model is useful when the constituent materials are not mixed at the microscopic
level. The reflectance is then given as R = pR, + (1 — p)Ry where R, and Ry, are
calculated using (6.55) for the two materials a and b.

An example of the last type of analysis was shown in Sect.5.13. We remark it is
probably the least computationally demanding model discussed here — and arguably
the least demanding imaginable. Not only R, and R, can be precalculated and tabu-
lated, but the least-squares problem is linear. Therefore, the area fraction is given by
the explicit formula

K

1 1o

P=z |:B +3° SRRk~ Rb,k):| , (6.56)
k=1 "k
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where

K 1 K 1 )
B=—Y —Roi(Rox —Ros) and C = —(Rus — Ro) (6.57)
k=1 k ¢

1 k=1 "k

are constants. The EMA models are more involved and require non-linear least-
squares fitting, but they are still computationally inexpensive.

6.3 Multi-spectra Processing

The limited information in a single normal-incidence spectrum limits the number
and reliability of parameters we can hope to obtain in each pixel. Obtaining some
sample properties beforehand by independent measurements is helpful but not always
possible or practical. When ISR must stand on its own as a thin film characterisation
technique, only one option remains how to reduce parameter correlations and improve
reliability in general: smarter data processing.

We can take inspiration from multi-sample analysis frequently used with con-
ventional optical techniques. In a multi-sample analysis the experimental data for
several related samples are fitted simultaneously using a single consistent model
for the entire data set. A related approach is the simultaneous fitting of data from
different techniques and instruments. Both are effective at reduction of parameter
correlations and improving sensitivity.

In ISR, spectra from individual pixels can play the role of a set of related mea-
surements with some parameters independent for each pixel (usually at least film
thickness), others common to all pixels (some or even all dispersion model param-
eters). However, it is not necessary to advance immediately to the huge general
least-squares problem described in Sect.6.1. We can take more reasonably sized
spectra sets and utilise multi-pixel (or multi-spectra) data processing.

6.3.1 Manual Multi-pixel

Optical data fitting software for conventional techniques, such as newAD?2 [53] or
RefFIT [54], can handle moderate data sets consisting of tens or even a hundred
spectra. Such subset must be somehow selected from the full experimental data set
which contains from tens of thousands to millions of them. The easiest method is
often manual selection based on visual inspection, taking into account:

e quality — exclude spectra with evident defects and distortions,

e spatial coverage — cover the entire region of interest, and

e parameter coverage — attempt to sample the full range of thicknesses and other
parameters that vary within the area.
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This reduced set of M spectra is then processed, obtaining values of the common
parameters. In the subsequent full ISR data fit these parameters are fixed [9].

This procedure does not intrinsically remove the correlation between parame-
ters such as thickness and refractive index for non-absorbing and slightly absorbing
films, which remains high (if considerable absorption structures are present then
Kramers—Kronig consistency can decrease the correlation when spectra for different
film thicknesses are fitted together). Nevertheless, it has several positive effects. By
limiting the number of parameters fitted independently in each pixel it often allows
to obtain reasonable results even from rather poor spectra. At the same time the poor
spectra do not influence the common parameters — and if there are random small
distortions and deviations in the chosen spectra, they can cancel out. And finally, the
effect of random noise is suppressed by the factor 1/+/M , which can be significant,
in particular when individual spectra consist of relatively few points.

Itis useful to iterate the procedure twice, because defects and distortions are easier
to judge with a reasonable fit of the data at hand. The second iteration can be also
performed automatically, based on spatial and parameter coverage and residual sum
of squares from the previous iterations. Running the second iteration several times
also helps in assessing stability of the results. An example of such approach was
shown in Sect.5.10.

6.3.2 Zonal Multi-pixel

In the multi-pixel procedure we assumed some film properties are constant over an
entire film area. If they vary, but slowly, or they vary according to an identifiable
pattern the procedure can be refined to include the variation. Identifiable pattern
may include linear or radial dependence of film properties on coordinates (the latter
frequently occurring in the case of local etching and deposition) or distinct areas
covered by different materials.

In all these cases we split the sample area into zones and process the data in each
zone using the multi-pixel method. The zones are usually defined using the results
of a preliminary fit. Distinct areas that require different models can be identified by
fitting all spectra with all possible models and then selecting the model that leads
to the smallest residual sum of squares (morphological operations such as opening
and closing can be used to regularise the zone boundaries if required). Centres of
radial patterns can be found from simple fits of local thickness. It is also possible
to specify the zones as areas with film thickness within certain ranges, based on the
assumption that any other film property would vary with the same geometry as film
thickness [9]. Finally, the sample area can be mechanically split into rectangles to
obtain a low-resolution map of a slowly varying film property.

Individual zones cover smaller areas and/or ranges of film properties — that was the
point of defining them. This also means smaller reduction of parameter correlation
and compensation of errors. Uncertainties of the results are thus correspondingly
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larger. Still, zonal processing represents a reasonable middle ground between single-
pixel processing and imposing uniformity in all film parameters.

6.3.3 Timeline Multi-sample

ISR can be used to study kinetics of deposition and etching processes, even in situ [2,
4, 10]. Although the usual approach is to fit each time frame separately and post-
process the results, a set of related measurements for the multi-sample method then
naturally arises from the sequence of spectra acquired in the same pixel but at dif-
ferent times t1, 1, ..., t7.

If the film material does not change during the process, an assumption valid for
etching and sometimes even for deposition, the multi-sample model is simple. All
spectra correspond to the same film, only its thickness (or possibly roughness) is
different for each measurement.

If the deposited material slowly changes, the film at time ¢; is commonly modelled
as the stack of j sublayers. The lower j — 1 sublayers correspond to the film at time
ti_1 and the uppermost one appears newly at time #;. The thickness of each sublayer
is an independent parameter, but most other properties should be still common to all
sublayers, only selected parameters, for instance related to film density or composi-
tion, should vary. Alternatively, and often preferably, the time evolution is described
by a deposition rate model, roughness growth model or film density evolution model,
and only parameters of these models are fitted.

6.4 Global Data Processing

In all the data processing approaches discussed above we avoided dealing with the
giant least-squares problem with tens of thousands to millions correlated parameters
that was formulated in Sect. 6.1. This allowed the utilisation of standard LSM tools.
In this section we avoid it no more.

By fitting simultaneously all spectra from a sample area or zone we seek to
eliminate the need for manual selections and other ad hoc choices and to achieve
the maximum suppression of random noise influence. In fact, when so much data
are fitted together the LSM error estimates for global parameters, which decrease as
1/+/N, become so small they are negligible to systematic errors — and thus no longer
useful for estimation of uncertainties [25]. Adding more data beyond this point no
longer improves the accuracy of global parameters. Hence, it may not be necessary
or even useful to fit all spectra together if the data set is very large; we only need to
reach the point when random errors are effectively eliminated.
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6.4.1 Alternate Global and Local Fitting

Assume for a moment that the local and global parameters are independent. The
problem can then be split into two much more approachable parts. The local part
with Hessian (6.9) was already handled in Sect. 6.2.

The global part is not demanding either because there are only G global param-
eters. Therefore, the Hessian is a G x G matrix and similarly the parameter and
gradient vectors have only G elements. The Jacobian matrix (6.5) is still quite large
because it has N rows and N is the total number of data points. Even though LM
implementations typically take the Jacobian J and derive other quantities themselves,
it is clear from the formulation (6.1)—(6.8) that this is not necessary and the algo-
rithm can be written in terms of H and g. We can avoid constructing J explicitly if
we choose an LM routine which allows supplying directly

Y. 1R, 18R, Y1 0R,
— — and g, =
=1 Cp 3Pa Cp 8p,3

L®, - (658)

H,; = -
o Cn pa Cn

n=1

instead of J. The sums (6.58) can be evaluated term by term and no matrices larger
than G x G then ever appear in the calculation. It should be noted that there is, of
course, a reason why implementations in terms of J are more common. Most are
geared towards small least-squares problems in which working with J is preferable
because it allows a smarter formulation of the algorithm [ 16] —but in terms of matrices
and operations are better avoided here (such as QR or singular value decomposition
of the Jacobian).

Since both parts are easy and can be realised using standard LM routines, a possible
data processing procedure seems obvious: fit alternately local and global parameters
until both fits converge. Unfortunately, when the LM algorithm is split into separate
updates of distinct parameter subsets its convergence tends to be abysmal [17, 25].
Only if the parameter subsets can be fitted almost independently we can hope for a
reasonable convergence of the alternate updates.

Are the global and local parameters almost independent in the typical ISR case?
No, if film thickness per pixel while the dispersion model is global, the parameter
subsets are far from being independent (as illustrated in Fig. 6.2). It is enlightening
to look at how exactly the minimisation of S is stymied. The positions of interference
minima and maxima in a reflectance spectrum are given by the optical thickness nh,
i.e. the product of real refractive index n and film thickness /4 (disregarding dispersion
for now). When the optical thickness changes, the minima and maxima shift. If the
theoretical spectrum already corresponds relatively well to the experimental data, the
shift will increase S unless the minima and maxima move just slightly. This restricts
the magnitude of changes of thicknesses and dispersion model parameters when they
are updated separately. The limitation is more severe for thicker films because the
minima and maxima are spaced more closely.

Now it is clear that the solution is to choose the fitting parameters more wisely. If
we replace the local film thickness with local optical thickness, the dispersion model
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fitting step can progress without disturbing the positions of interference extrema.
The local thickness fitting step then performs some small adjustments of the optical
thicknesses, and the entire procedure can converge quickly. At the end, physical film
thicknesses are recovered by dividing the optical thicknesses by the refractive index.

Instead of actually changing the model parametrisation we can instead update
film thicknesses during the global dispersion model fitting step. In both cases we
must define what exactly refractive index means in presence of dispersion. Simple
spectral averaging is sufficient:

1. &,
(n) == Re;n(kk) . (6.59)

The mean index (n) is then used for all conversions between physical and optical
thicknesses. The procedure is thus as follows. At the beginning of the global fitting
step, calculate the mean refractive index and denote it (n)o. Whenever the optical
constants change, recalculate the mean refractive index (n) and use

h= h@ (6.60)
(n)

in place of A. Crucially, this must be also done during the computation of derivatives
by dispersion model parameters.

Whichever approach is chosen, the reflectance for wavelength A; no longer
depends only on the refractive index for this wavelength. Formula (6.59) makes it
dependent on all 72()y ), changing the calculation of derivatives. The chain rule (6.15)

becomes .
or or 0n;  Or oh

= — + —= .
Py ony 0pq dh P«

(6.61)

The additional term consists of two factors, of which dr/ dhis given by (6.14) and
~ K

oh d 1 on(A

h (n)o d(n) h (n)o Re Z n(dy) .

= 6.62
e (6.62)

opa (P 0py (2K
The averaging (6.59) does not need to be performed repeatedly during the com-
putation of the derivatives dr/dp, and the derivative d(n)/dp, appearing in (6.61)
can be evaluated only once prior to the computation. Even if the derivatives are all
calculated numerically, factoring out and precalculating the derivatives of & by dis-
persion model parameters is a crucial step that enables an efficient implementation.
With this optimisation, global optical constants and local thicknesses can be fitted
together within several minutes [25].
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When the film is strongly absorbing in a part of the spectral range the mean
refractive index formula (6.59) has to be improved. Only the optical constants in the
region of transparency are relevant for the preservation of interference minima and
maxima. Therefore, we change the mean refractive index definition as follows [11]:

K
1 4
(n) = - Re ;:1 i) exp <—A—7thm Im ﬁ(,\k)> . (6.63)

Here hpean is @ mean film thickness over the analysed area (the procedure is not
sensitive to its value). This approach is also illustrated in Sect.5.11.

6.4.2 Sparse Levenberg—Marquardt Algorithm

The ISR least-squares problem has a specific algebraic structure that is well suited
for the sparse LM algorithm [17]. The sparse algorithm is a reformulation of the
LM algorithm in which the fitting parameters are split into subsets but it remains
equivalent to the algorithm for the whole parameter set. In particular, the parameter
update step (6.8) does not consist of mere independent updates of the individual
subsets; it includes the cross-terms correctly. If J and H were general dense matrices
the splitting would just make the entire procedure more complex. However, as the
name suggests, if the matrices have a specific sparse structure the algorithm allows
an efficient factorisation of the computation into operations with reasonably-sized
matrices and vectors.

Here we formulate the algorithm specifically for ISR, where the two naturally
arising two groups of fitting parameters (global and local) correspond to the splitting
that is advantageous for sparse LM. With this division, the parameter and gradient
vectors have the block structure

p= <‘v‘> and g = (Z) , (6.64)

where u is the vectors of global parameters
u' = (uy, ua, ..., ug) (6.65)
and v consists of blocks of L local parameters corresponding to individual pixels:
- (V115 V12 oo s VILs V215 V220 oo s VOLy e e s VM1 VM 2y ---> VL) - (6.60)
For instance, if film thickness is the only local parameter then L = 1 and

v = (hy, by hay) (6.67)
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The blocks a and b forming the gradient vector g are analogous to u and v. The
Hessian has the block structure:
U W
H= (WT V) , (6.68)

where U and W are dense G x G and G x ML matrices, but V is a block-diagonal
ML x ML matrix consisting of M blocks of size L x L (the same structure as (6.9)):

Vi
V,
V= , . (6.69)

Vu

The reason is that derivatives of R by local parameters are non-zero only if the local
parameter belongs to the same pixel as the reflectance value:

R, R,
0 k= uam,m’ s (670)

aVm’.ot 8vm,a

where §; ; is the Kronecker delta. We write R,,, x instead of just R,, to distinguish pixels
m and spectral points k as it became important here. Expressing the matrix elements
explicitly,

aﬂ—zz L %aRm" 6.71)

et ot Cmie e g
K
Vo gt = 8 1 OR,k ORy i 6.72)
'klc MWima OV g
K
W 1 ORuk ORmk 6.73)
o,m,p -5 .
= c?mk iy Vg
M K
1 ORmk
aazzzcz " R — ROD) (6.74)
m=1 k=1 ~mk
X1 4R
m,k exp
bym = — R, 6.75
. ;ci,k Ty Rk =R (6.75)

it can be verified that the number of independent non-zero elements in H is G?/2 +
ML?/2 + GML ~ ML(G + L/2). The sums that express all the matrices and vectors
consist of approximately N (G + L + 1)?/2 terms. Therefore, they can be calculated
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in a reasonable time and the required storage is smaller than for the experimental
data values (assuming L(G + L/2) < K, which holds for sensible data analysis).
Note that this is not true for the Jacobian, which has N (G + L) non-zero elements
and can require order of magnitude larger storage than the experimental data.

In order to perform the LM parameter update step (6.8) we need to solve the
system of linear equations (6.7). The augmented Hessian H differs from H only
in the diagonal elements, so augmented U and V can be introduced by modifying
their diagonal elements exactly in the same way. A block matrix inversion formula
provides the inverse matrix

_ X —XY
H™ = <—YTX v-! +YTXY> ’ (6.76)

where ~ B
Y=WV! and X=(U-YWH !, (6.77)

The matrix H™! is huge and dense. However, the evaluation H™'g can be broken
down to a sequence operations, listed in Table 6.3, that do not involve huge dense
matrices. In total, the evaluation requires O(M G(G + L)* + L*) operations.

If we choose this approach, the price for generality, flexibility and efficiency is
the necessity to reimplement the LM algorithm using the sparse-matrix operations
outlined above. While it is not an insurmountable obstacle, it is an obstacle nonethe-
less.

Table 6.3 Sequence of matrix operations solving the system of linear equations (6.7) in the sparse
LM algorithm

Term Operation Dimensions Operations
v-! M inversions LxL ML?
Y M multiplications GxLbyLxL MI?G
YWT Multiplication G x MLby ML x G | MLG?
X Inversion GxG G3
Xa Multiplication GxGbyG x1 G?
Yb Multiplication G x MLby ML x 1 MLG
X(Yb) Multiplication GxGbyG x1 G?
Xa Multiplication GxGbyG x 1 G?
YT (Xa) Multiplication MLxGbyG x 1 MLG
YT (XYb) Multiplication MLxGbyMLx1 |MLG
V-ip M multiplications LxLbyLx1 ML?
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6.4.3 Direct Solution

The progress in solvers for large sparse systems of linear equations in recent years has
made feasible a direct attack on the problem (6.7) even in the global data processing
case. It is possible to write a generic implementation of the LM algorithm using
software libraries for linear algebra with sparse matrices, as was demonstrated in
the SparseLM software library [55]. The terminology becomes somewhat confusing
here because this approach also has the right to be called ‘sparse LM’ — and often
it is called so. To avoid the confusion we will refer to it using the adjective ‘direct’,
with sparsity silently implied.

The direct LM approach is more flexible as it is not limited to cases in which
we know how to split the parameter set and factor the problem to employ efficiently
the sparse LM algorithm. This is mostly relevant in other fields where large sparse
least-squares problems are encountered, such as computer vision, but it could enable
new interesting parametrisations also in ISR data processing. The parameter set
splitting in sparse LM remains the most efficient option for least-squares problems
with the structure (6.68). Nevertheless, direct large-scale LM routines were shown
to be relatively competitive, taking only about twice as much time as the sparse LM
algorithm for problems of a similar type [55], albeit somewhat smaller.

6.5 Concluding Remarks

Much of this chapter was devoted to speed and reformulation of models and algo-
rithms for fast data processing. Now it is finally time to look at where we stand with
respect to the goals stated in Sect.6.1. An overview of how long it takes to fit an
ISR data set for various types of problems is shown in Table 6.4. Even though we
did not succeed completely — having to wait several minutes may not particularly
invite interactive experimentation and the data processing times for the most complex
models exceed acquisition times noticeably — overall, the results are satisfactory.

Table 6.4 ISR data processing times for various types of problems discussed in this chapter,
assuming typical data set sizes and personal computer speeds (in 2016)

Data analysis type Typical computation time
Area fraction A couple of seconds
Thickness Tens of seconds
Thickness + manual 72(A) fit A minute

Thickness + roughness Minutes

Thickness + local 7,,, (1) Ten minutes

Thickness + global 7(}) fit Tens of minutes
Thickness + roughness + global n(A) fit Hours
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Finally, we note that the detailed parameter maps obtained by ISR data fitting
are invaluable for overview, illustration and visual inspection. However, they still
consist of hundreds of thousands data values. Quantitative analysis thus often requires
another data reduction step in which the maps are postprocessed and various overall
characteristics (for instance dimensional or statistical) are extracted.

The postprocessing methods and algorithms differ from those used in optical
spectra fitting and mostly belong to the category of image or height field processing.
Although any image processing software can be utilised in principle, most image
analysis programmes are geared towards images in the sense of pictures representing
recorded light intensity, not maps of physical quantities in absolute units.

A set of related ‘images’ of different physical quantities is, however, precisely the
type of data that is standard in atomic force microscopy (AFM). The basic quantity
imaged in AFM, surface height, is also analogous to the basic quantity imaged in
ISR, film thickness. Many tools developed for AFM data analysis are, therefore,
useful for ISR data postprocessing. Writing ISR maps in a format understood by
AFM software such as Gwyddion [56] enables for instance:
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Fig. 6.5 Examples of ISR data postprocessing: a large-area map of thickness of a plasma polymer
film deposited in dielectric barrier discharge, obtained by merging the results of several measure-
ments; b characterisation of uniformity of a similar plasma polymer film near its edge, showing
the thickness dependence along the principal axis of the setup and in the perpendicular direction;
c analysis of the anisotropy of an etch created in an amorphous carbon thin film using an Ar+O,+H,O
plasma jet. Insets in parts b and ¢ show the corresponding film thickness maps
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visualisation and data presentation,

geometrical transforms,

merging multiple parameter maps together (Fig. 6.5a),

removal of slowly varying ‘background’ film thickness for investigation of specific
features, i.e. levelling,

dimensional measurements,

combination of maps of different quantities using arithmetic operations,
summarisation and statistical characterisation (Fig. 6.5b [13]),

detection and correction of outliers, or

complex measurements based on the detection of ‘grains’ and other features
(Fig.6.5¢).
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Chapter 7

In Situ and Ex Situ Spectrophotometric
Characterization of Single- and
Multilayer-Coatings I: Basics

Olaf Stenzel and Steffen Wilbrandt

Abstract Optical spectrophotometry provides a powerful tool for the characteri-
zation of modern coatings, no matter whether they are manufactured for optical
or non-optical applications. Spectrophotometry of coatings gives primary access to
optical constants and their dispersion as well as to the film thickness. In a second
step, the application of sophisticated Kramers—Kronig-consistent dispersion models
gives further access to related quantities, including density, porosity, but also charge
carrier density, crystalline structure, band structure and possible impurities of the
coating. We will present and discuss the state of the art in spectrophotometry of sin-
gle and multilayer coatings, including their in situ as well as ex situ versions. In situ
spectrophotometry allows re-engineering as well as monitoring the deposition pro-
cess of a growing coating, resulting in excellent specification adherence particularly
in the field of optical coatings.

7.1 Introduction

The present chapter deals with the application of spectrophotometry for characteri-
zation of thin (solid) films. The general idea of spectrophotometric characterization
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Fig. 7.1 Thin film on a thick

|
substrate, irradiated by light medium 1: R

under an incidence angle ¢. incidence medium ¢ :
For details see text
medium 2: film h
A
medium 3: substrate h
sub

medium 4: exit medium

is to bring a thin film sample into interaction with electromagnetic radiation. As the
result, certain parameters of the electromagnetic radiation will be modified. In spec-
trophotometry, the focus is on changes in the intensity of the light, which is measured
and further used to judge on specific sample properties.

This general situation is visualized in Fig. 7.1.

The intensity I of the light is defined as the amount of light energy penetrating a
unit surface area per unit time interval. The transmittance T and reflectance R of the
light are defined through the directed transmitted (I7) or specularly reflected (1)
light intensities, divided by the intensity of the incident light (/g ):

I
T=-2"
Ig
I
R=— 7.1
I (7.1)

As soon as the thin film (system) has been prepared on a transparent substrate,
the spectrally resolved measurement of 7 and R (at any chosen incidence angle ¢
and any required polarization state of the incident light) appears as a widely used
straightforward characterization tool. Alternatively, spectrally resolved ellipsometric
measurements become more and more frequently used in coating characterization
practice (compare Chap. 9).

The measurement of both 7" and R under identical conditions provides information
on the optical loss L, which is composed from total scatter 7S and absorptance A. As
a result of energy conservation we have:


https://doi.org/10.1007/978-3-319-75325-6_9
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7.2 Theory

7.2.1 Basics

As it is evident from Fig. 7.1, a light wave which has penetrated a thin film sample,
will carry information about the materials which form the sample (i.e. about both film
and substrate material constants), as well as about its geometry (here the thicknesses
of film £ and substrate hg,;,). Generally, the same will be true for the reflected wave,
because all interfaces can principally contribute to the reflectance spectrum. So that
we have to expect, that both 7" and R will be rather complicated functions of all the
mentioned construction parameters. Thus, measured T and R spectra can be used to
gain information about material properties as well as the sample geometry.

In the model case of optically homogeneous, isotropic, and non-magnetic media,
the linear optical material properties may be expressed in terms of a scalar frequency-
dependent complex dielectric function ¢ (w) with w - angular frequency of the elec-
tromagnetic radiation [1, 2]. ¢ is related to the optical constants n and k through the
relationship:

n(w) + ik(w)=+v e(w) = n(w) (7.3)

Here 71 is the complex index of refraction; its frequency-dependence is called disper-
sion. The absorption coefficient « is defined as:

o () = 2§k () (7.4)

Let us also mention that a positive imaginary part of the dielectric function results in
energy dissipation within a medium. Whenever the dielectric function is purely real,
no energy will be dissipated [3].

For characterization purposes, thin films are usually deposited on a much thicker
substrate with smooth and parallel surfaces. Therefore, it makes sense to discuss the
simplest case of the optical properties of an uncoated substrate first. So we start our
discussion from a simplified system like it is shown in Fig. 7.2.

It is rather straightforward to write down the equations for 7" and R of a bare thick
substrate. In accordance to Figs. 7.1 and 7.2, let the incidence medium be numbered
as medium 1, while the substrate defines medium 3 (73 = ng,, — see Fig. 7.1). Let
us further assume, that the incidence (medium 1) and exit media (medium 4) are
identical (n4 = ny). This results in [2]:
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Fig. 7.2 Uncoated substrate medium 1:

incidence medium | |
E

medium 3: substrate h

sub

medium 4: exit medium I

|l13|2 |l31 |2 e—4nvhwhlm«/ﬁ§“b—n% sin’ ¢
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2 12 g 2 a0 Imn A, ST g
R Irial? + 11317 3117 |31 @ ¥ I/ R =it
le = 1713
e 1— |ry |4 e 8T Vhsup Im /i3, —n} sin® @
w
I (75)
2rc

Here, symbols of the type #;; and r;; represent nothing else than the Fresnel coeffi-
cients for the transmitted and reflected electric field strength at the interface between
the ith and jth media, respectively [1, 2]. w is the angular frequency. Note that at
oblique incidence, the Fresnel coefficients are sensitive to the polarization state of
the incident light.

Equation (7.5) allow calculating transmittance and reflectance of an uncoated sub-
strate (i.e. a thick slab as shown in Fig. 11.3), taking all internal multiple reflections
into account, as well as possible absorption and any effects arising from oblique inci-
dence. Note that (7.5) are obtained when assuming incoherent superposition of all
multiple internally reflected wave trains. It cannot be applied to the analysis of thin
films, because the latter are usually thin enough to guarantee coherent superposition
of internally reflected wave trains.

In the case of normal incidence, (7.5) can be written as:

(1 — Ry3)% e~ whsws
1 — R%3e_2asubhwb
Ry3[1 — e 2hur QR 3 — 1)]

R 7.6
Lalc|¢;_0 1— R%efZa;m;hm (7.6

Tcalc |(p=()
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Table 7.1 Overview on substrate materials, often used for film characterization purposes
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Material

Approximate wavelength
range of transparency (nm)

Refractive index

Crystalline Germanium Ge

>2000

nsup ~ 4.0 (infrared)

Crystalline Silicon Si >1000 ngup ~ 3.45 (infrared)
BK7, B270 3504500 ngup ~ 1.52 (visible)
Fused silica SiO, 2004500 ngup ~ 1.45 (visible)
Crystalline Calcium fluoride 130-12000 nsup ~ 1.43 (visible)
CaF,

Crystalline Magnesium 115—7500 ngup ~ 1.38 (visible)

fluoride MgF»

Here R;3 denotes the normal incidence intensity reflectance of a single substrate
interface:
Ri3 = Ry = |rp3)? (7.7
When damping is absent, or even at moderate damping levels, both transmittance
and reflectance may be measured and subsequently used for substrate optical char-
acterization. For strong damping, from (7.5) we obtain:
O5subhsub — 0! Tculc g 0; Rcalc g Rl3 (78)
In this case, substrate transmission is completely suppressed, while we still have a
reflection signal, originating from the first substrate surface. The latter still contains
all information about the substrate optical constants and may therefore be used for
substrate optical characterization as well. Nevertheless, in thin film spectrophotomet-
ric characterization, it is most convenient to make use of at least semi-transparent

substrates, in order to have both transmission and reflection signals available. Often
used substrate materials are summarized in Table 7.1.

7.2.2 Elaboration of Film Thickness and Optical Constants
Jrom Single Thin Film Spectra

7.2.2.1 Basic Equations for Transmittance and Reflectance of a Single
Thin Film on a Thick Substrate

It is now rather straightforward to write down the equations for 7" and R of a single
thin film on a thick substrate. Let the film by composed from medium 2, and the
substrate from medium 3 (73 = g, — see Fig. 7.1). Assuming nq = ny, in analogy
to Sect. 7.2.1, we can write [2]:
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|t123 |2 |t31 |2 e—4ﬂvhwblm4/ﬁ:ﬁub—n% sin ¢

Teare = = —
1— |’,.321 |2 |V31 |2 ef&zvhwhlm«/n;ubfnl sin” ¢
2 22
2 (s s P 150 |P @SV I/, —misiny
Reaie = |risl™ + — — (7.9)
1— |V321 |2 |r31 |2 678nvh,;,4,,1m«/nmbfn] sin” @
Moreover, we have [1, 2]:
; l‘,‘jl‘jkellS
ik = —————————
Y 1+ r,-jr_]-k6215
2i8
rij +rje
rig = (7.10)

1+ r,-jrjk6215

Thereby, the superposition of internally reflected light portions within the film is
assumed to be completely coherent. The possibly complex phase § is essential for
the description of the thin film interference pattern, it is given by [2]:

§ = ZhyJi2 — n?sin2 = 2mv hy/A2 — n?sin? ¢ (7.11)
C

Note that for » — 0, T and R approach the corresponding values of the uncoated
substrate, hence the spectrophotometric characterization of ultrathin films (2 < < A)
is much more complicated than in the case & & X (see next section). In such cases, a
spectroellipsometric characterization or even a combination of both approaches may
be clearly of use.

7.2.2.2 Information from the Interference Pattern Observed from
Dielectric Films

In the case of dielectric or even semiconducting thin films, the couple of (7.9)—(7.11)
describes a type of spectra as shown in Fig. 7.3. This figure shows measured spectra
of a 211 nm thick zirconium dioxide (zirconia) single film on a fused silica substrate
with a thickness of 1 mm. For comparison, the corresponding spectra of the bare
(uncoated) substrate are also shown as dashed lines. This is a rather typical thin film
spectrum, and it is worth mentioning some of its specific features:

The spectrum may generally be subdivided into several sections, according to the
value of the optical loss L as defined in (7.2).

e In the wavenumber region between 10000 cm~! and approximately 35000 cm™",
the spectrum appears almost free of optical losses, because T and R sum up to 1 in
terms of the spectrophotometric measurement accuracy (compare later Sect. 8.1).
Hence, the dielectric functions of both film and substrate materials are practically
real.
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Fig. 7.3 symbols: normal 1.0
incidence 7'- and R-spectra TR
of a zirconium oxide thin

film on a thick fused silica

substrate in the NIR/VIS/UV

spectral regions; dashed 06
lines: T and R of the bare

substrate
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e In such spectral regions, dielectric or semiconductor films of suitable thickness
usually show a pronounced interference pattern, which may be identified as a series
of subsequent maxima and minima in 7 and R, observed at discrete wavenumbers
v;. Certain extrema appear tangential to the bare substrate spectrum; they define
what we will call the halfwave (HW) points of the spectrum. The other extrema
define quarterwave (QW) points. For normal incidence, the wavenumbers of the
extrema are defined by:

A
QW — points: nzh:jzj;j: 1,3,5...

)\'.
HW — points: nyh :jZ];j =0,2,4,...
1

ki

v (7.12)

e Inthe case that the QW transmittance appears to be higher than that of the bare sub-
strate (the QW reflectance lower than that of the substrate), the refractive index of
the film will be in-between those of the substrate and the ambient. In the practically
relevant case, that the ambient medium is air, and the substrate index ny,; > 1,
we can conclude that the film index is certainly lower than that of the substrate:
ngp >n > 1 (low index coating).

e In the opposite case (as it is relevant for the example shown in Fig. 7.3), the
film refractive index is outside the interval spanned by the substrate and ambient
indices. In the practically relevant case, that the ambient medium is air, and the
substrate index ng,, > 1, we can conclude that the film index is certainly higher
than that of the substrate (high index coating).

e The dependence of the QW transmittance/reflectance on the refractive indices n
and ny,; offers the principle possibility for determining the film refractive index
by inverting (7.9)—(7.11), independently from knowledge of the film thickness.
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On the contrary, when neglecting dispersion, the film thickness may be subse-
quently estimated from (7.13):

1
h— 7.13
4ns (vin —v)) 7

e This type of approach may be extended to the analysis of weakly absorbing films,
and is in the basis of the so-called envelope methods for film characterization [4,
5]. Note that here knowledge about ng,;, is usually presumed.

e At oblique incidence, according to (7.11), the interference pattern shifts towards
higher wavenumbers (smaller wavelengths). This so-called angular shift offers an
alternative method for estimating the film refractive index. Let us assume, that at
an angle of incidence ¢,, an interference extremum of arbitrary order j is observed
at the wavelength A,. At another angle ¢;, the same interference extremum will
have shifted to the wavelength ,. When neglecting dispersion, from (7.11) we
find:

A% sin? @, — A2 sin?
nzznl\/ p S Pa = %o S @0 (7.14)

A — A2

Note that this approach does not presume knowledge about ng,;.

The mentioned spectral characteristics may be used for a first “quick-and-dirty”
estimation of refractive index and thickness of the coating in spectral regions with
negligible damping. For wavenumbers higher than approximately 35000 cm~!, the
optical loss according to the spectra shown in Fig. 7.3 appears to be no more negli-
gible. In such spectral regions, the above type of discussion is no more applicable in
the strong sense.

Consequently, in the special case that normal incidence 7 and R spectra of both the
uncoated substrate (Fig. 7.2) and a film-on-substrate system (Fig. 7.1) are available, a
simple straightforward optical dielectric thin film characterization may be performed
adhering to the following recipe:

(i) First measure T and R of the bare substrate at normal incidence, as well as
the substrate thickness #g,;. Then, the optical constants of the substrate may
be calculated inverting (7.6) [6]. In the case that the substrate is completely
intransparent, the substrate optical constants can still be deducted from the
reflectance of the substrate surface (see later Sect. 8.2.2).

(ii) Measure T and R of the film-on-substrate system and calculate L according to
(11.2). Identify spectral regions where L is negligible (transparency regions).

(iii) Intransparency regions, identify HW and QW points in the interference pattern.
From QW points, make clear whether you deal with a high index or a low index
coating.

(iv) Inthe case that in the HW points, the T/R-spectra are tangential to those of the
substrate, the film may be tackled as a homogeneous film. In this case, calculate
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the refractive index from the QW points (inverting (7.9)—(7.11)), using substrate
data as determined in point v;. Note that this procedure is ambiguous for a low
index coating, so that one has to identify the physically meaningful solution
from side information obtained otherwise. Estimate the film thickness from
(7.13).

In the case that L =~ 0 and the T/R-spectra are not tangential to the substrate
spectrain the HW points, the film is expected to show a refractive index gradient
(inhomogeneous film) [7]. These effects are no more covered by (7.9)—(7.11).
In this case, the measured T and R-values in the HW points embody impor-
tant information about the so-called degree of inhomogeneity (doi), while the
corresponding values in the QW points correspond to an average refractive
index (n), while averaging is performed over the film thickness. So that HW
points give information on the doi, while QW points on the average index. This
situation is schematically sketched in Fig. 7.4, which shows measured spectra
of an inhomogeneous zirconium oxide film. Note that in this particular case,
the origin of the refractive index gradient becomes obvious when comparing
with the TEM image shown in Fig. 2.2. It stems from a similar sample and
confirms a depth-dependent porosity as well as a depth-dependent degree of
crystallinity in a real zirconia film, which has a direct impact on the spectrum.
Having estimated the film thickness as well as the refractive index in the trans-
parency region, the (averaged over the film thickness) extinction coefficient
may be estimated from (7.9)—(7.11) in any spectral region.
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7.2.2.3 Curve Fit Procedures

A more precise elaboration of film thickness and optical constants is possible in terms
of so-called curve fit procedures [8]. In this case, measured (exp) spectral curves are
fitted by theoretical (calc) spectra calculated according to (7.9)—(7.11). The sets of
optical constants which result in a sufficiently good fit of experimental spectra form
a set of possible mathematical solutions to the characterization problem. Once the
solution of such fitting attempts is usually ambiguous, side knowledge on the optical
constants behavior (compare later Sect. 7.3.1) as well as on the thickness is highly
welcome to identify the physically meaningful solution from the set of solutions of
the mathematical fitting procedure.

Mathematically, the fit may be performed by minimizing a discrepancy function
DF of the type as defined in (7.15):

1
DF = J N Z {[Texp i) — Teate (VI; i (v) ;h)]z + [Rexp (vi) — Reale (Vl; it (vr) ;h)]z}
=1
(7.15)

Here, the choice of {v;} defines a grid of discrete data points which enter into the
discrepancy function (7.15) to be minimized (compare later Sect. 8.1.4). Of course,
one can include more than two spectra (even including ellipsometric data) into the
expression (7.15). The data obtained earlier from the interference pattern (if available)
may serve here as a reliable initial approximation for further minimizing (7.15).
Examples of curve fits with different degrees of complexity will be presented in
Sect. 8.2.3.

7.2.3 Multilayer Spectra Evaluation

In the case of multilayer characterization, we have a series of films stacked on the
substrate as shown in Fig. 7.5.

Equation (7.9) nevertheless preserve their general structure, although values like
t123 and rp3 have to be replaced by the more general expressions f,cx and k-
Symbols characterizing reverse light propagation direction (#3,; and r3;;) have to
be replaced by new expressions ¢, and r;,, . The new field transmission and
reflection coefficients fyqck, Fstack, thyqe and 1}, May be calculated in terms of
the matrix formalism [1, 2]. They carry information about optical constants and
thicknesses of all individual layers which compose the film stack shown in Fig. 7.5.

Correspondingly, instead of (7.9), we now have the expressions (7.16):


https://doi.org/10.1007/978-3-319-75325-6_8
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(7.16)

Here, the individual layers forming the stack are numbered in terms of the subscript
J-

In the case that 7 and R have been measured, a fit of these experimental data may
again be performed by minimizing a suitable discrepancy function. Instead of (7.15),
one now has to minimize a discrepancy function of the type (7.17):

DF =
1

When keeping in mind the tremendous number of unknown values {ft j (vl)} and
{h_,- }, areliable re-engineering procedure (i.e. determination of the optical constants
and the thicknesses from the measured spectra) appears to be a rather hopeless effort.
There are two basic approaches to facilitate the situation:

z| -
M=

{[exp (1) = Teate (5 4 ()} {0 DT + [Rexp () = Reate (v 4 ()} ()T
(7.17)

1

(a) Reducing the number of parameters to be determined.
(b) Increasing the number of input data, i.e. measured spectra.

(a): In many situations, optical constants of the materials forming the stack are
known with sufficient accuracy. In this case, the re-engineering task reduces to the
determination of the set of individual layer thicknesses { /; }. This may still be difficult
enough, but a further reduction of unknown values may be achieved when making use
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Fig. 7.6 Principle of acquisition of in situ transmission spectra during multilayer coating deposition

of correlations between individual film thicknesses and/or optical constants, defined
by systematic deposition errors inherent to the specific thickness monitoring strategy
applied during multilayer deposition [9].

(b): On the other hand, the number of measured data entering into (7.17) may be
enhanced. T and R measurements may be performed at different angles of incidence,
compare later Sect. 3.1. Also, spectroellipsometric data may be included into (7.17)
[10].

But the inclusion of more independent ex situ measurement data like oblique inci-
dence spectrophotometry and ellipsometry appears to be both time- and cost consum-
ing because of expansive extra equipment required. An alternative is provided by the
use of in situ spectrophotometry (or spectroellipsometry), where numerous experi-
mental data about 7' and/or R measured on the not yet finished stack are collected
directly during the film deposition.

The idea is simple (Fig. 7.6). Let us assume that the film deposition chamber is
equipped with a spectrophotometer that allows measuring 7 and/or R directly during
multilayer coating deposition. This will allow, for example, a spectrum recording
immediately after each of the individual layers (numbered by j) has been deposited.
Typically, a “Oth” spectrum is recorded prior to starting deposition, it corresponds to
the spectrum of the bare substrate (j = 0) and may be used for calibration purposes.
Then, the 1st spectrum is recorded after the first layer has been deposited (j = 1). It
contains information about the optical constants and thickness of the first layer. Then,
deposition proceeds with the second layer, again followed by a spectrarecording. That
second spectrum contains information about optical constants and thicknesses of two
layers, and so on. Finally, we will obtain as many spectra as there are individual layers
in the stack. This is a tremendous amount of information, and it is obtained from one
single spectrometer set-up, which can operate automatically without any additional
sample handling. Moreover, when fast spectrometers are used, the amount of extra
time necessary for spectra recording during coating deposition is of no relevance.
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When fitting in situ spectra one must keep in mind, that optical constants (and even
layer thicknesses) in a coating may principally change when the coating is exposed to
air and heated up or cooled down to its operation temperature. Therefore, one has to
distinguish between in situ and ex situ optical constants. This is particularly relevant
for porous coatings, prepared in vacuum conditions by PVD techniques. We will
not discuss all the corresponding models here (some simple considerations will be
made in Sect. 7.3.3, compare also Sect. 2.3). Instead, we will assume that the in situ
relevant optical constants are well-known, and the only task of in situ spectroscopy
is the reliable determination of the individual layer thicknesses. This task may be
solved by means of a so-called full triangular re-engineering algorithm [11]. In the
following we will give a short explanation of this algorithm. The basic principle is
visualized in Fig. 7.6. The superscript “7” indicates spectra used in the triangular
algorithm.

Let us assume that a first transmission spectrum 7,I (U (1)) is recorded when
the first layer has been deposited. This spectrum depends only on the thickness of
the first layer ;. The second spectrum 7,7, - (1)) is recorded after the deposition
of the second layer has been completed. It naturally depends on two thickness values
h; and h,. This process is repeated until the full multilayer coating deposition has
finished. The essence of the full triangular re-engineering algorithm is to determine
all thickness values simultaneously by fitting all those transmission spectra by the
corresponding theoretical spectra 7.7, . /) (v;). Thickness calculation is thus achieved
by minimizing the triangular discrepancy function DFT [11]:

J T () T () 2
1 T ,j(Ul)—T‘l,j(\)l,/’ll,...,h')
DFT]’Z,...,]’Z — meas calc J
( 1 J) JN ;:l ;:1 ( ATT (Vl)

(7.18)

Here J is the number of individual layers deposited at the relevant state of the depo-
sition process. ATT (v;) is the in situ transmittance measurement error.

So far, in situ spectroscopy combined with the full triangular algorithm is accepted
to be the most reliable tool for individual layer thickness determination in complicated
optical coatings. For different application examples see references [12—14].

7.3 Further Information Gained from Optical Constants

7.3.1 Basic Classical Dispersion Models and Analytic
Properties of the Dielectric Function

As already mentioned, the dielectric function, and consequently the optical con-
stants, appear to be frequency-dependent. This phenomenon is called dispersion. For
selected material systems, this frequency dependence may be reliably modelled in
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Table 7.2 Optical constants in terms of the oscillator and Drude dispersion models

Bound charge carriers: Free charge Carriers:

Lorentzian Single Oscillator model Drude Model

Application: bound electrons in dielectrics and | Application: Free electrons in metals
metals

2 2
e@=1 _ %=1 _ Npouna 4° 1 9 . _ [ Nreed®
e@H2 T 242 T 3 som wf—w?—2iwy @) =1 o 2iyw PP = gom
Npouna: concentration of bound charge carriers | N s,¢.: concentration of free charge carriers
m: mass of bound charge carriers m: mass of free charge carriers
q: their charge q: their charge
wy: their resonance frequency y: damping constant

y: damping constant

@ @

terms of rather compact dispersion models. The Lorentzian oscillator model as well
as the Drude model can be regarded as the basic classical dispersion models for
the description of optical properties of dielectrics and metals [1, 2, 15]. Their main
features are summarized in Table 7.2.

When looking on the picture in the left column of Table 7.2, the most striking
feature in the optical response of a system with bound charge carriers is resonance
behavior of the extinction coefficient at w— w, which results in rather strong damp-
ing of the propagating wave. Note that apart from resonance (transparency region),
the refractive index increases with increasing frequency, which is called normal dis-
persion. Close to resonance (strong damping), the refractive index decreases with
increasing frequency (anomalous dispersion).

This type of dispersion is in strong contrast to that described by the Drude model
(right column of Table 7.2). Here the refractive index may be significantly smaller
than the extinction coefficient as long as the light frequency is well below the plasma
frequency. Such a behaviour of the optical constants results in high reflection at the
air-material-interface, as it is typically observed at metal surfaces. When describing
the optical behavior of metals in terms of the Drude model, parameters like the
concentration of free electrons become accessible as well as derived parameters
such like dc conductivity oy, (am,t = sowf, / (2)/)) and the damping constants or
relaxation times corresponding to the free electrons motion [2].

In rather transparent dielectrics, as a rule, from Table 7.2 we observe that the
condition k < n is fulfilled. Good metals, i.e. metals where the optical response is
dominated by the free electron fraction, show the opposite behavior, namely k > n.
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The obviously correlated behaviour of n and & as visualized in the Table 7.2 can be
tackled as the manifestation of a more general relation between the real and imaginary
parts of the dielectric function as expressed in terms of the Kramers—Kronig relations
[16]:

[ Ime €)Eds

2
Res(a)):1+;VP/ PER
0

Ime (@) :—z?wVP/ [Ree (§) — I]d

0

Ostat

&+

g - (7.19)

VP denotes the Cauchy principal value of the integral. (7.19) is in consistency with
the relations:

Ree (w) = Ree (—w);—Ime (w) = Ime (—w) (7.20)

It is easily checked, that the dispersion relations given in Table 7.2 are consistent
with these fundamental requirements.

Analogous relations my also be formulated for the optical constants [17]. Here
we have for insulators as well as conductors:

2 [ k(E)Eds

0
20pp [® -1, (7.21)

T £2 — w?
0

k(w) =—

Kramers-Kronig-consistency is a strong and useful criterion for the physical rele-
vance of any dispersion law used in coating characterization or design practice.

As a direct consequence from (7.19), the following useful relationships are
obtained:

Static dielectric constant of a dielectric:

oo

2
gstatzg(wZO)=1+_/
T

0

me @ ,, (7.22)

w

The static dielectric constant of a dielectric is thus always larger than 1.
In the high frequency limit, contrarily, we find (convergence supposed):
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[ Ime € eds

2
R =1+ —-VP
ee(w) - PE

el—%/lm£(§)§d§<l
Tw
0

w—> 00

(7.23)

As arule, in the extreme ultraviolet (EUV) or soft X-ray spectral ranges, the dielectric
function as well as the refractive index are therefore smaller than but close to 1.

An utmost important sum rule interconnects the full concentration of oscillators
N (i.e. oscillating electrons on the background of heavy nuclei) with the integral
energy dissipation:

[e¢]

_ 28om / Im & (@)wdw (7.24)

N =

mq?

Rewriting (7.24) in terms of the optical constants — see (7.3) and (7.4), one immedi-
ately obtains:
oo

N = 2‘90”;6 / n (@)a () do (7.25)
mq
0

Here we arrive at the fundament of any quantitative spectrophotometric analysis,
where the concentration of any kind of absorption centres (molecules, impurities,
and so on) is obtained from the integral over the measured absorbance. Of course,
in practice, the integration in (7.25) may be performed only over a finite frequency
interval accessible to the measurement.

7.3.2 Often Used Other Dispersion Models

Clearly, the mentioned basic models correspond to rather idealized situations, and in
characterization practice, more complicated dispersion models have to be applied. In
our treatment, we will restrict on models relevant for description of optical properties
from the middle infrared up to the ultraviolet spectral regions. This way we include
models relevant for infrared analytics (atomic nuclei vibrations), rather transparent
materials for interference coating applications, modelling the absorption edge(s)
in (selectively) absorbing materials for light blocking, optoelectronics, and solar
energy conversion, as well as metals for reflector optics or light blocking purposes.
A schematic overview on optical constants and single film optical behavior of typical
dielectric, semiconductor and transparent conductive oxide (TCO) materials from the
infrared up to the ultraviolet is presented in Fig. 7.7.

As it is shown in Fig. 7.7, many dielectric or semiconducting materials offer
a broad transparency range, which usually extends from the near infrared to the
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Fig. 7.7 Transparency range in dielectric/undoped semiconducting (on top) or transparent conduc-
tive oxide (TCO) materials (on bottom). The photon energy is given by /iw

visible or even the ultraviolet spectral ranges. At the short wavelength (high photon
energy) side, transparency is limited by the onset of valence electron excitations,
which marks the energy position of the fundamental absorption edge. At the long
wavelength (low photon energy) side, it is limited by optical excitation of atomic
nuclei vibrations, which occur in the middle infrared spectral range. However, in
TCO materials, optical excitation of free electron movement may result in additional
transparency range shrinking at low photon energies.

Some often used dispersion models useful for describing properties of dielectrics,
metals, and semiconductors from the infrared to the ultraviolet spectral ranges are
summarized in Table 7.3.
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7.3.3 Optical Properties of Material Mixtures

Let us now assume a mixture built up from several constituents, numbered by j. Let
us further assume, that we know the optical constants (or the dielectric function ¢;)
of any of the constituents. Let it be our task to determine the optical constants of the
mixture.

We will make the following assumptions:

Let the mixture occupy the full volume V. In the mixture, let us assume that each
of the constituents occupies a certain volume fraction V;. The corresponding volume
filling factor p; of the jth material in the mixture is then defined as:

Vi
=) 7.26
Pj % ( )

Obviously,

> opi=1 (7.27)
J

Traditionally, the mixing partners are tackled as small (compared to the wavelength)
inclusions numbered by the subscript j, embedded in a certain host medium with a
dielectric function ¢;, [23]. This assumption leads to the general mixing formula:

Cor=a) 5, (o) 28)
e+ (seff — 8,,) L r e+ (8j — sh) L

Here L is the so-called depolarization factor, and .7 is the effective dielectric

function of the mixture. Note that0 < L < 1holds. In the case of spherical inclusions,

set L = 1/3.

Table 7.4 provides a survey of mixing models that represent special cases of the
general formula (7.28).

Knowledge on the optical behavior of mixtures is of extreme practical relevance,
because no real material can be regarded as absolutely pure. Contrarily, it may be
composed from several crystalline and amorphous phases, it may contain stoichio-
metric as well as non-stoichiometric fractions as well as several kinds of impurities.
Even the zirconia film shown in Fig. 2.2 cannot be regarded as a pure film: It is
obviously a mixture of crystalline and amorphous zirconia fractions, and a pore
fraction.

In this sense, mixture models even provide a vehicle for understanding the origin of
the difference between in situ and ex situ optical constants as mentioned in Sect. 7.2.3.
Indeed, when a coating is prepared in vacuum conditions, the pores are empty, and
so the pore fraction is characterized by a “pore refractive index” that is equal to 1.
At atmosphere, however, water may penetrate into the pores, changing the pore’s
refractive index to a value of approximately 1.33. The resulting effects in the optical
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Table 7.4 Survey of mixing models [2]

Model Equation Application/remarks
Parallel nanolaminate Eeff =D DjEj Nanolaminate oriented
J parallel to the orientation of

the electric field vector.
Obtained from (7.28) when
setting L =0

Vertical nanolaminate szf‘lf = Z Pjé j_l Nan'olaminate or.ientec.l

J vertical to the orientation of
the electric field vector.
Obtained from (7.28) when

setting L = 1
Maxwell Garnett % = Guest-host system with the /th
o () mixing partner acting as the
Z Pi (=L host. Obtained from (7.28)
when setting &, = &
Lorentz-Lorenz e =l) Guest-host system with
1+(€,_ff ])L .
(-1 vacuum acting as the host.
Z PiteG L Obtained from (7.28) when
setting 5, = 1
Bruggeman 0= p) % Molecular mixtures, obtained
J from (7.28) when setting

&p = &eyr. Also known as
effective medium
approximation (EMT or EMA)

properties of the coating may be calculated in terms of suitable mixing models and
are known as the vacuum-to-air shift [15] (compare also Chap. 2, Sect. 2.3).

7.3.4 An Empirical Extension of the Multi-oscillator Model:
The Beta Distributed Oscillator (B_do) Model

As itis indicated in Fig. 7.7, in a limited spectral range, the merger of the Drude and
Lorentzian multioscillator model is well suited for describing the dielectric function
of a large variety of materials. When the spectral range includes the fundamental
absorption edge, the required number of Lorentzian oscillators for accurate mod-
elling the dielectric function increases and the resulting large number of parame-
ters often results in numerical instabilities in the fitting process. A reduction of the
required number of parameters could be achieved when a suitable distribution func-
tion for the oscillator’s strength is used. A prominent example is the Brendel model
(Table 7.3), which makes use of a Gaussian distribution of resonance frequencies.
Another promising approach is given by the Beta distribution:
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Fig. 7.8 Probability density functions of the beta distribution (left: « = g, right: B = 5, blue:
a = 1, red: o = 2, yellow: @ = 5, violet: @ = 10, green: o« = 15)

_ T@th) _a—1/1 _ \f—1 — x*'(1=—x)f"!
fbeta(x, o, ﬂ) - F(a)F(ﬁ)x (1 )C) - B(a,B) fOI'O S X S 1 (729)

Jbeta(x, 0, B) =0 forx < OQorx > 1

where I"(z) is the gamma function and B(«, B) is the beta function, defined by:

1
B(a, ﬁ)z/ N1 =) ldx (7.30)
0
The beta function can be easily generalized to cover an arbitrary interval
[Vmins 1)ma)c]:

= Vuin)* ™" Wax — E)F!
B((X, ,3) (Vmax - 1)mt‘rt)a-'-'871

Soeta (&5 &, B, Viins Vinax) = (7.31)

When o = B the distribution will be symmetric (Fig. 7.8 left). Fore = g =1a
uniform [0,1] distribution and for « = 8 — oo a delta function at the midpoint can
be generated. In the case o # B the distribution function will be skewed (Fig. 7.8
right).

For practical application of the beta distribution for modelling the oscillator
strength distribution in optical materials a further property seems prospective. Even
the case of normally distributed oscillator strength (Brendel model) can be approxi-
mated quite well by a symmetric beta distribution. In Fig. 7.9 the (truncated) normal
distribution with mean value 0.5 and standard deviation 0.1 is shown (circle). The
shape is very close to a beta distribution with @« = g = 13 (solid line).
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0
0 0.1

Fig. 7.9 Probability density functions of the normal distribution (circle, mean: 0.5, standard devi-
ation: 0.1) and beta distribution (solid line, « = 8 = 13)

To apply the beta distribution to the Lorentzian multi oscillator model the depen-
dence of the susceptibility x; (v) of a jth single oscillator from wavenumber v can
be used (compare Table 7.3):

3w == /i

—_— 7.32
Vo — v2 —2iv T} ( )

For compatibility reasons to the current implementation of the oscillator model used
in LCalc software [24], a slightly different formulation will be used:

7 () = L 1 b (7.33)
X = vo; —v —il;  vo; +v+il] ’

Let us introduce the complex function X(£,v). It is defined according to:

Jyera s 1 1
X (§.v) = 72 <§ — ) (7.34)

: + :
- 1Iﬂbeta,j %- +V+ IFbeta,j

To replace the jth single oscillator by a set of beta distributed oscillators located in
the interval [vmim i Vmax, j], we write:

)zbeta,j (v) = f ' Jeta (Sv aj, ﬂj, Vmin,j» Vmax,j) X (&, v)dé (7.35)

Vmin, j

Instead of the single Lorentzian line, as defined by the imaginary part of (7.32),
expression (7.35) describes an inhomogeneously broadened absorption structure,
which might be used for modelling the absorption edge shape in thin solid films.

Next, the integral function will be replaced by a finite sum. Thereby, an equidistant
grid of N wavenumbers can be used
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Vmax,j — Vmin,j

Vs, j = Vpin,j +5 - A§ withs € [1, N] and A§ = N1

(7.36)

Then, the susceptibility of the set of beta distributed oscillators (“f_do”) can be
calculated by

N
)zbeta,j (V) = Z fbeta (Vs,jv o, ﬂa Vmin,j» Vmax,j) X (Vs,js 1)) AS

s=1

. 1 N (Vs,j _ Vmin,j)a_l (vmax,j — vs’j)ﬁ—l
~ (N+1)B(a, p) Z )a+ﬂ72 X (Vs,j’ V)

s=1 (Vmax,j — Vmin,j

(7.37)

Additionally, it is convenient to replace the beta function also by a sum (compare
(7.30)):

N

a—1 p—1
1 Vs,j = Vmin,j Vmax,j — Vs,j
B, p)=+—D e ) )(jﬂH ) (7.38)

s=1 (vmax,j - Vmin,j

From (7.31), (7.33)—(7.35), the susceptibility can be calculated by:

N
Z we Jpeta,j 1 + 1
S ) m Vs j=V=ilperaj Vs, j+V+iTpera,j

A s=1
Xbeta, j (v) =

N (7.39)

with weight factors

Ws,j =

1 —1 -
(Us,_,' — Um,‘n,j)a’ (Vmax,j — Us,j)ﬁ/ _ ( S )a_f—l <N +1— S)ﬁ" !

18,2
(Vmax,j - Vmin.j)aj+ﬁj N+1 N+1

(7.40)

Equations (7.39) and (7.40) essentially define what we will further call the beta
distributed oscillator model (8_do model). In Fig. 7.10 the individual contributions
from a beta distributed oscillator set to real and imaginary part of the susceptibility
are shown.

The impact of the line width to real and imaginary part of susceptibility for a beta
distributed set of oscillators is shown in Fig. 7.11. In trend, the width of the imaginary
part of the susceptibility decreases with the line width of the underlying individual
oscillators. When the line width becomes small in comparison to the width of the
beta distribution, the resulting shape becomes dominated by the beta distribution.
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Fig. 7.10 Real (left) and imaginary part (right) of susceptibility of individual equally spaced
Lorentzian oscillators defined by the f_do model (N = 15, vy, = 5000cm™!, vpax =
15000 cm™ !, Jpera = 1000cm ™", Terg = 500cm™!, o = B = 5)
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Fig. 7.11 Real (left) and imaginary part (right) of the susceptibility in the 8_do model (N = 1000,
Vmin = 5000em™, vy = 15000cm™!, Jpera = 1000cm™!, blue: Ihere = 1000cm™!, red:
Theta = 500cm™!, yellow: ey = 200 em™!, violet: Iperq = 100cm™!, green: ey = 50 em™!)

7.4 Conclusions

In this chapter, basic theoretical concepts and equations necessary for spectrophoto-
metric characterization of thin films and film systems have been introduced. Partic-
ularly the B_do model turns out to be extremely useful in coating characterization
practice, including typical inorganic dielectric coatings, but also metal coatings,
semiconductor films, and even organic molecular films. In Chap. 8, corresponding
examples will be presented and discussed.


https://doi.org/10.1007/978-3-319-75325-6_8

7 In Situ and Ex Situ Spectrophotometric Characterization ... 201

References

1.

2

3.
4.

13.

15.

16.

17.

18.

19.

M. Born, E. Wolf, Principles of Optics (Pergamon Press, Oxford, 1968)

O. Stenzel, The Physics of Thin Film Optical Spectra: An Introduction. Springer Series in
Surface Sciences, vol. 44, 2nd edn. (Springer, Berlin, 2015)

R. Gross, A. Marx, Festkorperphysik (Walter de Gruyter GmbH, Berlin, 2014)

J.C. Manifacier, J. Gasiot, J.P. Fillard, A simple method for the determination of the optical
constants n, k and the thickness of a weakly absorbing thin film. J. Phys. E: Sci. Instrum. 9,
1002-1004 (1976)

. L. Ohlidal, K. Navrétil, Simple method of spectroscopic reflectometry for the complete optical

analysis of weakly absorbing thin films: application to silicon films. Thin Solid Films 156,
181-190 (1988)

E. Nichelatti, Complex refractive index of a slab from reflectance and transmittance: analytical
solution. J. Opt. A: Pure Appl. Opt. 4, 400-403 (2002)

A.V. Tikhonravov, M.K. Trubetskov, B.T. Sullivan, J.A. Dobrowolski, Influence of small inho-
mogeneities on the spectral characteristics of single thin films. Appl. Opt. 36, 7188-7198
(1997)

J.H. Dobrowolski, F.C. Ho, A. Waldorf, Determination of optical constants of thin film coating
materials based on inverse synthesis. Appl. Opt. 22, 3191-3200 (1983)

T.V. Amotchkina, M.K. Trubetskov, V. Pervak, B. Romanov, A.V. Tikhonravov, On the relia-
bility of reverse engineering results. Appl. Opt. 51, 5543-5551 (2012)

V. Janicki, J. Sancho-Parramon, O. Stenzel, M. Lappschies, B. Gortz, C. Rickers, C. Polenzky,
U. Richter, Optical characterization of hybrid antireflective coatings using spectrophotometric
and ellipsometric measurements. Appl. Opt. 46, 6084—-6091 (2007)

. A.V. Tikhonravov, M.K. Trubetskov, On-line characterization and reoptimization of optical

coatings. Proc. SPIE 5250, 406-413 (2004)

T.V. Amotchkina, M.K. Trubetskov, V. Pervak, S. Schlichting, H. Ehlers, D. Ristau, A.V.
Tikhonravov, Comparison of algorithms used for optical characterization of multilayer optical
coatings. Appl. Opt. 50, 3389-3395 (2011)

S. Wilbrandt, O. Stenzel, N. Kaiser, Experimental determination of the refractive index profile
of rugate filters based on in situ measurements of transmission spectra. J. Phys. D 40, 1435-1441
(2007)

S. Wilbrandt, O. Stenzel, M. Bischoff, N. Kaiser, Combined in situ and ex situ optical data
analysis of magnesium fluoride coatings deposited by plasma ion assisted deposition. Appl.
Opt. 50, C5-C10 (2011)

O. Stenzel, Optical Coatings: “Material Apects in Theory and Practice” (Springer, Berlin,
2014)

L.D. Landau, E.M. Lifschitz, Lehrbuch der theoretischen Physik, Bd. VIII: Elektrodynamik der
Kontinua [engl.: Textbook of Theoretical Physics, Vol. VIII: Electrodynamics of Continuous
Media] (Akademie, Berlin, 1985)

V. Lucarini, J.J. Saarinen, K.E. Peiponen, E.M. Vartiainen, Kramers-Kronig relations in Optical
Materials Research (Springer, Berlin, 2005)

R. Brendel, D. Bormann, An infrared dielectric function model for amorphous solids. J. Appl.
Phys. 71, 1-6 (1992)

G.E. Jellison, Spectroscopic ellipsometry data analysis: measured versus calculated quantities.
Thin Solid Films 313(314), 33-39 (1998)



202 0. Stenzel and S. Wilbrandt

20. J. Tauc, R. Grigorovic, A. Vancu, Optical properties and electronic structure of amorphous
germanium. Phys. Stat. Sol. 15, 627-637 (1966)

21. A.S. Ferlauto, G.M. Ferreira, J.M. Pearce, C.R. Wronski, R.W. Collins, X. Deng, G. Ganguly,
Analytical model for the optical functions of amorphous semiconductors from the near-infrared
to ultraviolet: applications in thin film photovoltaics. J. Appl. Phys. 92, 2424-2436 (2002)

22. FE. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorp-
tion of solids. Phys. Rev. 92, 1324 (1953)

23. D.E. Aspnes, J.B. Theeten, F. Hottier, Investigation of effective-medium models of microscopic
surface roughness by spectroscopic ellipsometry. Phys. Rev. B 20, 3292-3302 (1979)

24. O. Stenzel, S. Wilbrandt, K. Friedrich, N. Kaiser, Realistische Modellierung der NIR/VIS/UV-
optischen Konstanten diinner optischer Schichten im Rahmen des Oszillatormodells. Vak.
Forsch. Prax. 21(5), 15-23 (2009)



Chapter 8

In Situ and Ex Situ Spectrophotometric
Characterization of Single- and
Multilayer-Coatings II: Experimental
Technique and Application Examples

Steffen Wilbrandt and Olaf Stenzel

Abstract In the previous chapter, the theoretical background for characterization
of single layer and multilayer coatings has been outlined. In this chapter, important
aspects for the underlying experimental techniques will presented. Furthermore, we
demonstrate the application of different dispersion models for characterization of
uncoated substrates, single layer coatings of dielectrics, semiconductors, metals and
organic coatings. Thereby, the focus has been set to the §_do model. Finally, the
interplay of in situ and ex situ spectroscopy will be demonstrated for a multilayer
antireflection coating (V-coating).

8.1 Experimental Techniques in Spectrophotometry

Let us for a moment return to Fig. 1.1. Imagine the very simplest case—a monochro-
matic plane light wave that is incident onto the sample with a light intensity /. In
a complex notation, the electric field E of that light wave depends on the time ¢ and
the coordinates r according to (2.1).

S. Wilbrandt ()

Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Str. 7,
07745 Jena, Germany

e-mail: steffen.wilbrandt@iof .fraunhofer.de

O. Stenzel

Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Str. 7,
07745 Jena, Germany

e-mail: olaf.stenzel @iof.fraunhofer.de; optikbuch@optimon.de

0. Stenzel
Abbe School of Photonics, Friedrich-Schiller-University Jena, Albert-Einstein-StraBe 6, 07745
Jena, Germany

© Springer International Publishing AG 2018 203
0. Stenzel and M. Ohlidal (eds.), Optical Characterization of

Thin Solid Films, Springer Series in Surface Sciences 64,
https://doi.org/10.1007/978-3-319-75325-6_8


https://doi.org/10.1007/978-3-319-75325-6_1
https://doi.org/10.1007/978-3-319-75325-6_2

204 S. Wilbrandt and O. Stenzel

Once our focus is on spectrophotometry, it is the intensity of the light that has
to be discussed in more detail. It is given by (2.2). In ex situ coating characteriza-
tion practice, the experimental determination of 7,,, and R.,, as defined in (2.3)
is usually performed by means of commercial spectrophotometers, which may be
roughly divided into dispersive and Fourier transform spectrophotometers [1]. Let us
mention in this context, that for coating characterization purposes, highest absolute
accuracy in intensity measurements is utmost important for getting reliable results
from minimizing discrepancy functions like (7.15) while highest spectral resolution
is usually not of use. Thereby, T, and R.,. are theoretical spectra, which are
calculated within a certain layer model.

8.1.1 Spectral Resolution

A usual and convenient assumption in the applied layer model is, that the film is
thin enough for observing interference phenomena that arise from multiple internal
reflections in the film. On the other hand, the substrate should be thick enough so
that multiple internal reflections within the substrate superimpose incoherently, e.g.
without observable interference. This defines a constraint to the allowed spectral
resolution in the corresponding measurement: A too high resolution would resolve
interference effects in the substrate, which is no more consistent with the assumed
incoherent superposition of internally reflected light trains within the thick substrate.
As a rough estimate, the spectral resolution in the 7- and R-measurements at near
normal incidence should therefore be restricted so that (8.1) is fulfilled [2]:
)“2

orAr > —— (8.1)

Av >
2T”’Lmbhsub 27Tnsubhsub

Here, Av or A denote the spectral bandwidth of the incident light (the absolutely
monochromatic wave as assumed in (2.2) is only a convenient model assumption,
which is never observed in reality in a strong sense). Condition (8.1) is easily fulfilled
in characterization practice, because commercial spectrophotometers usually allow
setting the spectral bandwidth to a sufficiently large value; or a suitably thick substrate
has to be chosen.

On the other hand, highest accuracy in intensity measurements is not so easily
achieved. Fortunately, stochastic measurement errors in 7 or R are not so crucial
when performing curve fit s by minimizing (7.15) [3]. The bad news is that systematic
measurement errors are highly disturbing [3].

A common source for systematic measurement errors is the limited spectral res-
olution of the device caused, for example, by the finite width of entrance or exit
monochromator slits in a dispersive spectrophotometer. These slits represent rect-
angular apertures through with light enters into and exits from the monochromator.
In an ideal spectrometer, the effect of the finite width of the slit can be modelled in
terms of a point spread function with a triangular shape (Fig. 8.1). The obvious result
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Fig. 8.1 Point spread function of a slit in an ideal spectrometer
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Fig. 8.2 Theoretical transmittance (black) and reflectance (red) assuming a monochromatic wave
(solid line) and with effects of a finite spectral bandwidth assuming a triangular point spread function
(dotted line: 1 nm, dashed line: 2 nm and dash-dot line: 5 nm slit width)

is a systematic measurement error in transmittance and reflectance, which is largest
at the extrema positions of the spectra (Fig. 8.2). The limited spectral resolution of a
spectrometer will decrease the measured photometric values at the maxima positions
and increase it at the minima position.

In real devices, a more complicated point spread function will be obtained. To
take this effect into account, either the point spread function may be included in the
calculation of theoretical spectra or a sufficiently high spectral resolution has to be
selected during measurement. For an estimation of the required spectral resolution,
the impact of the point spread function to a single layer coating can be investigated
analytically.

For the special case of vanishing damping, the transmittance at normal incidence
of a single layer (refractive index n) on a semi-infinite substrate (refractive index
ngyup) can be calculated by [2]:
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2
2\2( 2
Msub (m) (n+nw,)

2
1-n\2 ( n—ngw 1-n n—Nsup
1+ ( 1+n ) (n+n5,,b ) + 2 ( 1+n ) (n+n”,b COS28

(8.2)

with
28 = 4mvnh (8.3)

Itis obvious, that the extrema in transmittance correspond to multiples of 7 for the
26 term (weak dispersion presumed). Odd multiplies are quarter-wave (QW) points,
even multiplies are half-wave (HW) points.

When applying the triangular point spread function to the transmittance, the
expected transmittance T obtained by means of a real spectrometer could be esti-
mated according to:

- 1 1 1
T~ ZT (na Nsub, 8 — A(S) + ET (nv Nsub, 8) + ZT (I’l, Nsub, 3+ A&) (84)
with
nnh
AS = —— AL (8.5)
)“0

For the measurement errors at the QW- and HW-points, we can deduct:

2 2 2 2 _
_2” Rsub (n nsub) (}’l 1) (A(S)z (8.6)

(n2 + nsuh)4

2n*ngup (0° = n3,,) (1> — 1) (A5)>

ATow =T - T ~

ATyw =T - T ~ 8.7
v I’l4 (1 + nsub)4 ( )
From here we see, that the following relations are valid:
|ATow| < |ATyw! forn > ng (8.8)
|ATQw| > |ATyw| forn < Nsub (89)

In both cases, the largest effect will be observed at the transmittance maxima. For a
given accepted tolerance AT, the required spectral resolution can be now estimated.
For n > ny,;, we get:

AM

22 2 AT
< Mo +”“"’)/ (8.10)

wh 25 (n2 - n?ub) (n2 — 1)

and for n < ng,;:
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A2 (n? +n, 2 AT
AN < o ‘””)/ 8.11)

anh 2005 (n? —n2,,) (12— 1)

Together with (8.1), this will confine the spectral resolution suitable for spectropho-
tometric measurements of the film-on substrate system.

8.1.2 Sample Illumination

Basically, possible illumination configurations can be classified by the relation
between the incident light spot and the field of view of the detector (Fig. 8.3 on left).
When both areas are identical in shape and size, the reversibility of light enables the
use of identical optical configurations for illumination and detection in the case of
fiber optic based approaches. This will reduce costs for development, but make this
approach sensitive to alignment errors. Even a small misalignment between illumi-
nation and detector optics will change the throughput of light and may therefore lead
to measurement errors. To overcome this problem, spot sizes for illuminated and col-
limated light should be different. In principle, either a small spot for the illuminated
light and a large spot for collimated light (Fig. 8.3 in center) or vice versa (Fig. 8.3
on right) may be selected. In the case of a small illumination spot, spatial homo-
geneity of the light source is not required, but is essential for the collimation optic
of the detector. Furthermore, in this set-up, any additional light arriving from other
sources (ambient light caused by electron beam gun or plasma/ion source) may be
problematic. In the opposite case, spatial homogeneity of the light source is crucial,
but not required for the collimation optic in front of the detector. In general, spatial
homogeneity can be optimized for both cases using diffuser plates, Ulbricht sphere
s, light mixing rods, or micro optics arrays.

Diffusing plates and Ulbricht sphere result in significant reduction of the light
throughput of the system, while micro optics arrays are expansive. Bearing in mind
that unwanted deposition on optics can result in measurement errors, Ulbricht spheres
will be advantageous here, because the small port size in relation to the inner surface
make it nearly insensitive to unwanted deposition. If the Ulbricht sphere is build up
from ceramics, it can withstand high temperatures, and any contaminations can be
removed by sandblasting. When the Ulbricht sphere is used as in chamber housing
for the light source, it may additionally shield the detector from ambient light.

8.1.3 Transmission and Reflection Measurements

Many commercial spectrophotometers are multiple purpose devices, primarily opti-
mized for performing absorbance measurements in gas or liquid cell geometries.
Thin film sample measurements often require the application of optional measure-
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U

U

Fig. 8.3 Possible illumination configurations for optimal aligned (top) and slightly misaligned set-
up (bottom); On left: Identical incident light spot and field of view of the detector in shape and size
in center: small spot for the illuminated light and a large spot for collimated light; On right: Large
spot for the illuminated light and a small spot for collimated light

ment accessories, which have to be mounted into the sample compartment and are
usually offered for performing reflection measurements at different angles of inci-
dence. The quantification of their systematic measurement errors requires severe own
efforts, while corresponding information as included into the manuals—if ever—is
usually not very helpful.

In this connection, it is worth mentioning that in many spectrophotometers, /g,
I or Iy cannot be measured as directly as it is indicated in Fig. 7.1. Instead, after
having interacted with the sample, the light has to pass a certain sequence of opti-
cal components before reaching the intensity detector. Therefore, in measurement
practice, T and R are accessible from the following set of standard measurements:

e Measurement of an intensity /g, corresponding to an empty sample compartment,
i.e. with no sample in the light path (Baseline or Auto Zero measurement)

e Measurement of /7 or Ix with the sample in the light path (sample measurement)

e Measurement of I with the light path blocked (dark signal measurement).

From these intensity data, 7' and R are obtained in terms of (8.12) [4]:

Ir — [ Ir — [
T=1"90. g _R"7 (8.12)
Lo — 1o Lo — 1o

In the case of transmittance measurement at (near) normal incidence, the implemen-
tation is straight forward (Fig. 8.4).

In the case that the reflected light has been measured relative to a reference mirror
with the reflectance R,.s, instead of (8.12), we have:

Ir — [ Ir — [
T 7. R:R,efR—O
Lo — Iy

— : (8.13)
Tioo — 1o
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Fig. 8.4 Light path for transmission measurement used in a Perkin Elmer Frontier Optica FTIR

Fig. 8.5 Light path for transmission (left) and reflection measurement (right) in a VN accessory
for ¢ = 6°

Thereby, normal incidence cannot be realized for geometrical reasons. Reference-
free (or absolute) -measurements may be performed by means of special accessories
exploiting the so-called VN—measurement principle. The corresponding light path
for near normal angle of incidence is shown in Fig. 8.5. It is obvious, that the underly-
ing principle can be easily adapted to oblique incidence. In this case, light polarization
as well as effects like beam splitting and displacement must be considered [4].

Basically, two movable mirrors are required to direct the transmitted (Fig. 8.5 left)
and reflected light (Fig. 8.5 right). Geometrical constraints may require an additional
mirror to direct the light from the sample toward the detector.

A more detailed description is provided in [4] and references cited therein. We
also mention here that the VW- and IV-measurement principle s [4] give direct access
to R? instead of R. They are therefore not suitable for the measurement of very low
reflectance values, but strong in the measurement of high reflectances.
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Fig. 8.6 On left: Schematic of the Cary 7000 UMS. Light incident onto the sample can be
s- or p-polarized [2]. Absolute specular reflection or transmission can be measured. The detec-
tor module allows mounting of an optional depolarizer immediately in front of the detector; On
right: Schematic of the Agilent UMA, an absolute variable angle reflectance and transmission
accessory, in 45° measurement geometry. Pictures are adapted from [5, 6], and are printed with
kind permission by Agilent Technologies Deutschland GmbH

Recently, the Agilent company has developed a measurement system which
is adapted to the direct measurement of Ig, Iy or Iz by combining the typical
spectrophotometer construction principle with a fully automated mini-goniometer
set-up (Cary 7000UMS—compare Fig. 8.6 [5, 6]). It is mounted into an extra
sample compartment (the Agilent UMA—Universal Measurement Accessory). The
movable detector allows performing direct (reference-free) /7 or Ix measurements
at practically any reasonable angle of incidence (Fig. 8.6, on left—compare with
Fig. 7.1). The broad detector area even allows collecting the multiply internally
reflected light trains which broaden the light beam in oblique incidence conditions
(Fig. 8.6, on right, compare also [4]). The recently published TRACK-method for
optical thin film characterization [7] is based on the measurement possibilities
offered by this innovative spectrometer construction principle.

8.1.4 Pre-processing of Spectra

In principle, measured spectra could be directly used for characterization and any
pre-processing of them is not necessarily required. Nevertheless, it may be useful to
eliminate superfluous data from measurements.
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Fig. 8.7 Transmittance and reflectance of an alumina single layer on a fused silica substrate using
a wavelength (left) and wavenumber grid (right)

In general, experimental spectra will contain a certain level of random noise. It
could be either reduced by averaging multiple measurements on the same sample or
by applying some filter to the measured data. It is obvious, that the first approach
does not require any a priori knowledge on the spectral characteristic. In the case
of normally distributed noise, the noise level for N repeated measurements Ay (N),
each individual measurement with a noise level Ay (1), can be estimated by

Ay (1)
VN

Therefore, a substantial noise reduction by averaging will commonly result in a
significant increase of measurement duration and applying a filter to the measurement
data could be prospective. Clearly, the underlying parameters and the algorithm must
be carefully selected to minimize resulting systematic errors. Thereby, any a priori
knowledge of the spectral characteristic could be very helpful. Common filters used
in spectroscopy are Fourier filters and Savitzky-Golay filters [8]. Both filter types can
preserve the major features in the spectra and do not affect the grid of the measurement
data.

The spatial response of gratings used in dispersive spectrophotometers favors an
equidistant wavelength grid for measurements. In the case of single layer coatings
on a substrate, this grid will destroy the quasi-periodicity of the interference pattern
as shown in Fig. 8.7 on left. Therefore, using an equidistant wavelength grid does
not seem to be an efficient choice for coating characterization.

This is not astonishing, because (8.3) will favor a reciprocal stretching of the
axes. This could be achieved, when spectra plotted in an equidistant wavenumber
grid instead. In this case, the interference pattern appears nearly periodic (Fig. 8.7

Ay (N) =

(8.14)
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Fig. 8.8 Measured (cross)and pre-processed transmittance spectra (solid line, circles indicate grid)
of an alumina single layer on fused silica substrate measured with the 6° VN accessory in the DUV

right). For this reason, an equidistant wavenumber grid appears as the better choice
for coating characterization.

Furthermore, a data grid different to the measurement grid may also be useful
to eliminate redundant data and to accelerate the characterization process. For this
reason, an optional adaption of the data grid during filtering should be considered.

In Fig. 8.8 measured and pre-processed transmittance data of an alumina single
layer deposited on a fused silica substrate in the deep ultraviolet (DUV) spectral range
is shown. Here, a cubic spline interpolation was used for pre-processing transmittance
data. Instead of the huge number of measurement data (crosses), much less data
(circles) are used for characterization purposes. Nevertheless, the few wavenumber
points (circles) considered for spectra fitting contain all relevant information about
the interference pattern.

8.1.5 Specifics of In Situ Spectrophotometry

Photometric measurements in the deposition chamber have already been reported
in the previous millennium [9-14]. A overview of the state of the art on optical
monitoring techniques can be found at [15]. In this section, we will address only
some selected aspects on optical monitoring. Thereby, the broadband monitoring
system (OptiMon) developed at the Fraunhofer IOF will be used as an example for
a possible implementation. For optical coatings, it clearly will be an advantage to
have these measurements available for process control. In contrast to conventional
thickness monitoring techniques (e.g. quartz crystal), which only control non-optical
properties (e.g. mass), photometric measurements grant access to optical properties of
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the layer, and particularly to their optical thickness. Significant progress in sensitivity
of detectors, miniaturization and degree of integration of electronic circuits used for
sensors, as well as decreasing costs of components and increasing processing speed
of computers have led to the result that nowadays photometric measurements are
widely used in commercial deposition plants for deposition process control. A large
variety of monitoring systems are known and can be classified with respect to spectral
range, measurement object, termination criteria and error compensation strategy.

8.1.5.1 Classification of In Situ Monitoring Systems by Spectral Range

The accessible spectral range of a monitoring system is limited by the light source
and the spectrometer. Commonly, the complete visible spectral range and parts of the
ultraviolet and near infrared spectral regions are covered. In situ monitoring systems
with broader spectral range are not very common and significantly more expensive.

In general, available solutions can be subdivided into single wavelength and broad-
band monitoring systems. In single wavelength monitoring systems, transmittance
and/or reflectance are either measured at a fixed or variable single wavelength (the
latter version is also called monochromatic monitoring). Single or monochromatic
monitoring systems are known to be very sensitive to random measurement errors
[3, 16, 17]. To improve the signal-to-noise ratio, commonly log-in amplifiers are
used. In the case of a single fixed wavelength, commonly a monochromatic light
source (e.g. laser) is used for illumination. Alternatively, a broadband light source
and a monochromator are applied. The monochromator can be either located between
light source and sample or between sample and detector. In practice, the location of
monochromator in front of the detector (as part of the detector) is preferred, because
in this case light from other sources (e.g. plasma/ion source, electron beam gun) is
damped by the monochromator, so that the resulting signal-to-noise ratio is better.

In a broadband monitoring system, a broadband light source and a polychromator
are used. Depending on the selected type of polychromator, the number of paral-
lel measured wavelength could reach a few thousand. Nowadays, image sensors
with up to 250 million pixels for photographic applications are in development [18].
In practice, the useful number of pixels is limited by the optical resolution of the
spectrometer, and linear arrays with 2048 pixels are sufficient for most applications.
The impact of random noise in a broadband monitoring system is reverse proportional
to the square root of (independent) pixels [16]. Therefore, broadband monitoring sys-
tems are significantly less sensitive to random noise compared to single wavelength or
monochromatic monitoring. Furthermore, broadband monitoring can give access to
dispersion of the refractive index. The outlined advantages of broadband monitoring
often make it to the preferred approach for new deposition plants.
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Fig. 8.9 Classification of in situ monitoring systems by measurement object direct monitoring:
photometric measurement is performed directly on a relevant sample (red), semi-direct monitoring:
photometric measurement is performed on a plane extra substrate (witness glass, blue) located
spatially close to the sample, identical performance of the coating on the witness sample and the
optical parts is reasonably expected indirect monitoring: photometric measurement is performed
on a witness glass (blue) usually mounted at a fixed position in the deposition chamber (e.g. center
of the rotating substrate holder), identical performances of the coatings on the witness sample and
the optical parts cannot be presumed

8.1.5.2 C(lassification of In Situ Monitoring Systems by Measurement
Object

Depending on the selected measurement object, in situ monitoring approaches
are subdivided into direct, semi-direct and indirect monitoring methods [19]—see
Fig. 8.9. In the case of direct monitoring, the photometric measurement is performed
directly on a relevant sample. This approach is commonly preferred for samples
with a simple geometry (e.g. plane substrates). In practice, optical parts may have a
more complicate geometry (e.g. lenses, prisms) and are not suited for measurements
in a generalized measurement configuration. Therefore, a plane extra substrate (the
so-called witness sample) is often used for monitoring purposes. In the case of semi-
direct monitoring, the witness sample is located spatially close to the relevant optical
parts, so that an identical performance of the coating on the witness sample and
the optical parts is reasonably expected. Direct as well as semi-direct monitoring
approaches commonly require a precise synchronization between the movement of
the samples and the measurement. The required information could be deducted from
different types of sensors. Often, a rotary encoder could be mounted on the driving
axes outside the deposition chamber. Alternatively, inductive, capacitive, optical or
magnetic sensors inside the plant are used. Moreover, in direct broadband monitoring,
the rotating sample holder can be used as a “natural” chopper wheel.

In the case of indirect monitoring, the witness glass is usually mounted at a fixed
position in the deposition chamber, for example in the center of the rotating substrate
holder. Therefore, identical performances of the coatings on the witness sample and
the optical parts cannot be expected, so that differences in optical constants, layer
thicknesses and further properties must be known. This will cause a serious dis-
advantage of indirect monitoring, because any drift in the assumed behavior will
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result in systematic deposition errors and finally limits the achievable accuracy. On
the other hand, the use of a fixed witness sample simplifies the design of the mea-
surement system, because synchronization between measurement and movement of
the optical parts is no longer required. This will also result in more flexibility on
selecting integration time and measurement rate. Additionally, in the case of indi-
rect monitoring, different witness samples can be used during one deposition run,
when a witness sample changer is used. Nevertheless, the current trend is towards the
application of direct and semi-direct monitoring approaches, because of the superior
optical performance.

Further classification of monitoring systems can be performed with respect to
deposition termination criteria and deposition error compensation strategies. How-
ever, a discussion of these topics will lead us into the field of deposition process
optimization and thus beyond the narrower field of optical coating characterization,
so that it shall not be performed here. Interested readers are referred to [20].

8.1.5.3 Process Photometer OptiMon

The process photometer OptiMon developed at Fraunhofer IOF (Fig. 8.10) is a broad-
band monitoring system for industrial deposition plants (e.g. OptoTech OAC-90F,
Biihler Syrus pro LCIII). It can be used for direct or semi-direct monitoring and is
commonly used to terminate the deposition of homogeneous layers. The halogen
light source is located in an MACOR-Ulbricht sphere integrated into the evaporation
stop blend and is used to generate a large illuminated spot on the sample, while the
collimating optic collects light only from a much smaller sample area, corresponding
to the arrangement shown in Fig. 8.3 on right.

This approach provides sufficient tolerance to measure transmittance and rela-
tive reflectance of the sample [21], but limits the spectral range to approximately
360—2500 nm. Depending on the used spectrometer, the usable spectral range may

quartz crystal monitoring

rotating substrate holder

optical components
(Ulbricht sphere,
collimation optic)

plasma source

electron beam gun

Fig. 8.10 Simultaneous in situ measurement of transmittance and reflectance with process pho-
tometer OptiMon in a deposition plant
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be further reduced. Currently, two different spectrometers provided by Jeti GmbH
[22] are supported:

e PS2000 for wavelength up to 1000 nm
e PS2000 NIR for wavelength in the range 900-1650 nm.

Both devices have built-in hardware for synchronization between sample move-
ment and measurement and internally calculate photometric values from intensity
measurements. For determination of layer thicknesses from in situ spectra of homoge-
neous multilayer systems, a re-engineering software package developed by Alexan-
der Tikhonravov and Michael Trubetskov specifically adapted to the OptiMon system
is used. Thereby, the layer thickness during deposition is determined by minimizing (
7.17), while breaks between the layer deposition are used to adapt all layer thickness
according to (7.18).

Robust re-engineering algorithms use in situ spectra for determining the film thick-
ness assuming that the optical constants are known. They may have been obtained
earlier from ex situ measurements performed with suitable single film samples. How-
ever, in ex situ conditions, optical constants may be different from those relevant in
the vacuum chamber because of atmospheric water which has penetrated into pores in
the film. Shift measurements provide a convenient tool to judge differences between
ex situ and in situ optical constants. Fortunately, they may be performed by means
of the same in situ spectrophotometers.

8.1.6 Shift Measurement

As a further application of in situ spectrophotometry, let us mention measurements
of the air-to-vacuum shift of real coatings. In Chap. 2, we have already been in
touch with such kind of measurement, when characterizing PIAD zirconia coatings
with respect to their porosity. Figure 2.6 shows the change in transmittance of a
zirconia film when it is brought from air into vacuum. Once the effective refractive
index of a porous coating is dependent on whether the pores are filled with water or
not, measurements of the shift give direct access to the porosity of a film, as long
as the pores are large enough to exchange water with the surrounding within the
measurement time.

In Chap. 2, Sect. 2.3.3e) we have formulated a simple model of a porous layer,
which discriminates between rather large and rather small pores, and gives phe-
nomenological access to the water migration kinetics in a porous film. Let y express
the full water content in the film, y; the degree of filling of the large pores, and y;
that of the small pores. The filling or evacuation kinetics of the pores are described
in terms of the simple system of differential (2.21):

dy _ dys
p”largepores”ﬁ - p”la.rgepures”KJ_(yO - yl) - p”smallpores”T

dy,
o= DPrlarge pores”K11(Y1 — Ys)-

(8.15)
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All symbols have the same meaning as introduced in Sect. 2.3.3e. System (8.15)
may be used for calculating the evacuation kinetics as well as the filling kinetics of
the pores, dependent on initial conditions and ambient parameter setting.

In order to calculate evacuation kinetics, we shall assume that a sample was held
at atmosphere for a time long enough so that all pores are essentially filled with
water. Then, at = 0, we assume that it is suddenly brought into vacuum (no water
in the ambient). In this case, the following conditions hold:

Yo=0; e =0=1; y,¢=0)=1 (8.16)

The full amount of water in the film y is obtained by solving (8.15) and (8.16)
according to:

P’ large pores” S1+ prsman pores” Ja e_/'3[ P"arge pores” S2 + Prsman pores” 5 e_-f“

OES
q q
Knp —Kk1+q knp —kL —¢q knp+kiL —q . knptki+qg
fi=———— h=—7-7""5 f3= s fa=
2 2 2 2
q= \/KJz_ + 2KJ_K[](P”smallpores” - p”largepores”) + K]2]]72
P = Prsmallpores” + P’large pores” (8.17)

The system of (8.15) also allows calculating the kinetics of water penetration into
the pores after film preparation in vacuum conditions. We shall assume now, that
at t = 0, the pores are initially empty. At ¢t = 0, the system is suddenly exposed to
(humid) air, so that the ambient parameter y is set equal to 1. Then, instead of (8.16),
we now have the conditions (8.18):

yo=1L yt=0=0; yt=0=0 (8.18)

The corresponding solution is:

(1—e 31 (1—efa1)
y(@) = fa(prsmanpores” k11 — f5) — f3(P7smali pores” k11 — f6)
qKi qKi
f K11(P7small pores” — P"large pores”) tKkl —¢q : fe k1 (Prsmall pores” — P’large pores”) tKkL +q
5 = N =
. ) .
(8.19)

This model calculation results in some important practical conclusions. According
to the definition of the shift as given by (2.12), evacuation or venting processes
will result in a continuous change in the optical film thickness with time, which
is easily accessible by means of in situ spectroscopic tools. Thereby, as it fol-
lows from (8.17) and (8.19), that shift may be analytically described as the sum
of two different exponential functions with damping constants f3 and f4. In prac-
tice, their determination may be a straightforward procedure, but their interpreta-
tion is not: According to (8.17), f3 and f4 are involved functions of the porosity
and the exchange rates «. Nevertheless, in special cases (see Table 8.1), simplified
and physically transparent expressions for the dependence of water content on time
may be derived:
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Table 8.1 Water migration kinetics: Special cases

Condition Application in practice | Process Water content in the film
K| >> K| Moderately porous layer | Venting y(t) ~
P7small pores” (1 —e ™ Plargepores” 111 )+
—K |1
P”Iargepores”(l —e )
evacuation | y(t) ~
P”small pores” e~ Plargepores” et +
—kyt
P'"arge pores” € L
K| =KI=K Almost dense layer Venting y(t) ~
p << 1 P”small pores”(l - e_p//lmg':p“mm(t) +

—Kt
Parge pores” (1 — € “T)

evacuation | y(t) ~
P’ small pores” e_p”largepores//l([ 4

—Kt
P’ large pores” ©

Prsmallpores” << p | Strongly porous layer Venting Y(t) & Priarge pores” (1 — €7<L1)

evacuation | y(t) & priargepores’€ '

Thus, the moderately porous layers correspond to the situation sketched earlier in
Fig. 2.12. The large pores are in direct correspondence with the ambient, their filling
or evacuation kinetics are defined by a time constant dominated by the value of KIl.
Small pores, however, have been postulated to exchange water only with the fraction
of the large pores. Their filling or evacuation kinetics are therefore dominated by a
time constant given by (priarge poresnlql)*l. Both time constants are accessible from
measurements of the time evolution of the optical film thickness.

In strongly porous layers as introduced in Fig. 8.11 the effects caused by filling
or evacuation of the large pores are expected to be clearly dominant. The kinetics are
practically defined by a simple single exponential function with the time constant
KII.

In almost dense layers, however, large open pores are no more expected to be
relevant (Fig. 8.11). The introduction of two exchange rates x| and «y; does no more
make sense, and the distinction between large and small pores now lacks its formerly
obvious geometrical interpretation. According to (8.15), “large pores” merely have
to be interpreted as pores which are able to exchange water with other pores and
the ambient, while “closed pores” do only interact with other pores. Within this
interpretation, the equations provided in Table 8.1 describe a minor and slow change
of the optical thickness with time. In a typical shift measurement, those layers appear
to be stable. At longer time scales, as they are typical for storage or aging effects,
small gradual changes in the optical behavior may be recorded.

It turns out that shift measurements may give access to qualitative features even
of the pore size distribution, although pore diameters are not explicitly present in
equations like (2.21) or (8.15). Nevertheless, pore diameters have an implicit impact
on the postulated values of the exchange rates as well as the volume fractions of
small and large pores. We strongly believe that spectrophotometric shift measure-
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moderately porous layer

KL >> Ky

I’T pi
K

strongly porous layer almost dense layer

ykeEK=k p<<1

I

Fig. 8.11 Geometrical visualization of the porosity regimes introduced in Table 8.1. p is here the
full porosity

ments do have the potential for determining the pore size distribution in a similar
way as it may be done today be means of spectroellipsometric porosimetry [23,
24]. For another alternative approach, see also Sect. 15.2.3 of this book (Effect of
hydrocarbons absorption in thin films at 193 nm) in this regard.

8.2 Examples

8.2.1 Basics

Classical and often used dispersion models as well as the f_do model [25] have
been outlined in Sect. 7.3. For characterization, we will use the wavenumber grid
(compare Sect. 8.1.4). In general, a merge of different dispersion models will be used
for the following examples.
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& (V) = €00 (V) + XDrude (V) + Xp_do (V) (3.20)

Thereby, &, is the contribution of a single Lorentzian oscillator with assumed neg-
ligible line width. In this case, (7.33) simplifies to

2J
foo (1) = 14 — 0 (8.21)
7 (vi —v?)
The contribution from the Drude model y p,,q4. Will be modelled by
V%) d
XDrude (V) = ———=THf (822)

V2 + 2ilprygeV

For the B_do model contribution xg 4, Will be calculated using (7.39) and (7.40).

8.2.2 Ex Situ Characterization of Substrates

Let us start our presentation of examples with the results of the infrared optical
characterization of a bare substrate. Figure 8.12 presents transmission and reflection
spectra of a 1 mm thick calcium fluoride substrate, as measured with a Perkin Elmer
Frontier Optica FTIR spectrophotometer.

First of all, we recognize that the measured spectral range may be subdivided
into two sections: a transparency region, where a remarkable transmission signal
may be recorded. This transparency range corresponds to wavenumbers higher than
approximately 800 cm~!.

In this transparency range, measured transmission and reflection data are avail-
able for characterization. Fortunately, for normal incidence, according to Nichelatti
[26] equations for transmittance and reflectance of the uncoated substrate may be

1.0 :
1.6 b ;
0.8t 120}
ke o 4 i~
o 06f % = Y vl
= b = 0.8f } f :
0.4 \ ; .’Fﬁ :
04} ¥
0.2 \ » |
0.0 o mlin — 0.0 :
400 600 800 1000 400 600 800 1000
vincm’ vincm’

Fig. 8.12 Left: Measure (circle) and modelled (line) transmittance (black) and reflectance (dark
cyan) of an uncoated CaF; substrate; Right: Calculated (squares) and literature data [27] (line) of
the refractive index (red) and extinction coefficient (blue) dashed line marks wavenumber limit used
for explicit solution (right) and fit (left)
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inverted analytically, so that the calculation of ny,; and ky,, appears to be a rather
straightforward task.

At lower wavenumbers, the transmission is suppressed, so that it is the reflectance
only that gives us access to the optical constants. Here, we can make use of a
Lorentzian multioscillator model (7.33) to fit the measured reflectance by minimizing
a discrepancy function corresponding to the second term in (7.15).

The thus obtained optical constants are presented in Fig. 8.12 on the right together
with literature data [27]. The excellent agreement with the literature data confirms
us about the consistency of the presented approach.

8.2.3 Ex Situ Characterization of Single Layer Coatings

8.2.3.1 Dielectric Coatings

Here, we present characterization examples for single layer coatings built from hafnia
and zirconia. In the transparency region of the corresponding coating, the application
of the Lorentzian multi-oscillator model is known to work fine [28]. The task becomes
a little bit more challenging, when the fundamental absorption edge is included
into the characterization. Commonly, the number of Lorentzian oscillators must be
increased. In the case of the hafnia layer, a set of at least 10 Lorentzian oscillators
would be required. Thereby, two oscillators have a zero linewidth and only affect
the refractive index. Nevertheless, already 28 parameters are used for modelling the
dispersion of the optical constants. Therefore, the application of the §_do model
(Sect. 7.3.4) seems promising. In fact, a merger of the f_do model (5 parameters
witha = B8, N = 1000) and (8.21) is required to achieve a practically identical result
(Fig. 8.13). This results in a total of only 7 fitting parameters. Thereby, the calculated
optical constants show a similar spectral dependence as probably higher densified
hafnia layers characterized by the universal dispersion model (Chap. 3 and [29],
asterisks). Results from [30] (circles) look also similar, but seem to underestimate
refractive index dispersion in the ultraviolet spectral range.

Next, the 8_do model is applied to a zirconia single layer coating deposited
on fused silica. Here, the coating is opaque for wavenumbers above approximately
47000 cm™! (Fig. 8.14). Nevertheless, spectra could be fitted again using a merger of
the B_do model and (8.21). The determined optical constants are in good agreement
with data available from [30] (Table 8.2).

8.2.3.2 Semiconductor Coating

The characterization of amorphous germanium (a-Ge) in the UV/VIS/NIR/MIR spec-
tral range using a merger of (8.21), (8.22) and (7.33) appears to be quite challenging
atask [31]. Here, considering measurements from the same coating at different ¢, on
different substrates and coatings with different layer thickness has been required to
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Fig. 8.13 Left: Measured transmittance (upward triangle) and reflectance (downward triangle)
and corresponding modelled spectra (solid line) of a hafnia single layer coating on fused silica
substrate; Right, Top: Refractive index of hafnia calculated with the §_do model (solid line) and
multi-oscillator model (cross) in comparison with published data ([29] asterisks, [30] circles); Right,

Bottom: Extinction coefficient calculated with the new model (solid line) and multi-oscillator model
(cross)
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Fig. 8.14 Left: Measured transmittance (downward triangle) and reflectance (upward triangle)
and corresponding modelled spectra (solid line) of a zirconia single layer coating on fused silica

substrate; Right: Calculated refractive index (solid line, left axes) and extinction coefficient (dotted
line, right axes) of zirconia
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extract approximately 300 parameters for the multi-oscillator model. It is obvious,
that application of the S_do model instead of (7.33) could significantly reduce the
number of required parameters and improve the stability of the fitting process. Here,
only experimental data from an approximately 100 nm single layer coating on a
CaF, substrate have been included into the discrepancy function. Transmittance and
reflectance spectra measured with the Perkin Elmer Frontier Optica FTIR at near nor-
mal incidence and with the 6° and 60° VN-accessory for the Perkin Elmer Lambda
900 are used (Fig. 8.15) for characterization. The calculated optical constants (under-
lying model parameters are summarized in Table 8.3) are quite smooth and in good
agreement with previously published data obtained from the multi-oscillator model
[31]. The calculated layer thickness is 102.1 nm and close to expected value. A total
of 9 fitting parameters summarized in Table 8.3 is used.

Table 8.2 Model parameters for optical constants of hafnia and zirconia

XB_do (V) o0 (V)
Vimin,1 10 | Umax, 110 | Jpera,1 0 | Therg,1in |0 = B Vo in Jincm™!
cm™ cm™ em™! em™! cm™!
hafnia 19170 98695 60095 96.3 359 87857 300119
zirconia | 30253 74582 47423 97.2 13.7 74826 307380

5 3
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Fig. 8.15 Top: measured transmittance (left) and reflectance (right) of an approximately 100 nm
thick a-Ge layer on a CaF, substrate measured at near normal incidence in a Frontier Optica
FTIR and Lambda 900 equipped with a 6° VN accessory (solid line) and at 60° for s-(dotted
line) and p-polarization (dashed) measured in a Lambda 900 equipped with a 60° VN accessory
Bottom: Calculated refractive index (left) and extinction coefficient (right) using a merger of a single
Lorentzian oscillator with zero linewidth, Drude model and multi-oscillator model (gray line) and
B_do model (black line)
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Table 8.3 Model parameters for optical constants of a-Ge

XDrude (V) XB_do (V) €00 (V)

VDrude I'Drude Vmin,1 in Vmax,1 in Jhetzl,l Tpeta, a=p Vo in Jin
inecm™! |inem™! |cem™! cm™! incm™! |incm™! cm™! cm™!
511.5 5.15 6329.7 | 36176 388443 | 376.1 2.79 63703 532173

Table 8.4 Model parameters for optical constants of Cu single layer

XDrude (V) XB_do (V) £oo (V)

VDrude I'prude Vmin,1 in Vmax, 1 in Jbeta,l Tpeta,1 a—1 Vo in Jin
incm™! |inem™! |em™! cm~! incm™! |inem™! cm™! cm™!
69368 307.6 17711 41413 127101 |530.0 2.1e-07 | 38777 68360

8.2.3.3 Metal Coating

The fit of metal thin film spectra is another difficult task, because the transmit-
tance spectra are suppressed in broad spectral regions, and no interference pattern is
observed that could give us valuable a priori information according to what has been
discussed in Sect. 7.2.2.2. Nevertheless, reliable spectra fits are possible in terms
of a merger (8.21), (8.22) and (7.33), as earlier demonstrated in [2, 32]. Again, we
now replace the multioscillator model (7.33) by the S_do model. Underlying model
parameters are summarized in Table 8.4. Here, the parameters « = § are close to 1
and therefore, the set of oscillators is nearly uniformly distributed.

In Fig. 8.16 we see the spectra fits of an approximately 120 nm thick copper film
on fused silica (top). The corresponding optical constants resemble what has been
presented in Table 7.2, and we recognize the expected high extinction coefficients
(k > n) in broad spectral regions. The drop in the reflectance around a wavenumber
of 20000 cm™! (corresponding to a wavelength of 500 nm) is responsible for the
typical color of clean copper surfaces.

Let us denote, that the calculated thickness could be estimated only from the
weak transmittance signal around the wavenumber 20000 cm~!. Nevertheless, the
calculated layer thickness of 129 nm is close to the expected value.

The underlying model parameters are summarized in Table 8.4. According to
the theoretical considerations discussed in Sect. 7.3.1, the parameters of the Drude
function shall give information about the plasma frequency w, and damping constant
of the corresponding metal. In order to provide an impression, Table 8.5 presents
corresponding values obtained from the fit compared to literature data.

Note that the thin film relaxation times are generally lower than the reported
bulk values; this is a physically consistent result, because real films produced by
technologically relevant deposition techniques contain plenty of defects, which give
rise to the lower relaxation times for free electrons motion.
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Fig. 8.16 Left: Measured (circle) and modelled (solid line) transmittance and reflectance of an
approximately 130 nm thick Cu layer on a fused silica substrate; Right: Modelled refractive index
and extinction coefficient (solid line) and literature data (asterisk: [33], triangle [34], cross [35])

Table 8.5 Drude function parameters as obtained from the fit of the Cu film spectra

Model Estimated plasmon energy Estimated relaxation time
Our fit Literature data Our fit Literature data
(single film) (single film)
B_do 8.6eV 9.3 eV (bulk) 8.6 fs 16-35 fs (bulk)
[36] [36]
Lorentzian 9.1eV 9.7 fs

8.2.3.4 Organic Dye Coating

Finally, we want to apply the new model to so-called Q absorption band of an approx-
imately 20 nm thick free base phthalocyanine (H,Pc, Fig. 8.17 [37]) layer deposited
on a fused silica substrate. Corresponding transmission and reflection spectra are
shown in (Fig. 8.17 left). For this material, application of the multioscillator model
to this spectral range is known to be problematic because inhomogeneous broadening
of the lines should be considered [38] so that the Brendel model (Table 7.3) may be
used instead [39, 40].

When using the §_do model, we have to consider contributions to the optical
constants which arise from absorptions outside of the Q-band. To do this, an extended
version of (8.21) is used:

J3 1 1 2]41)()4
fo () =142 — )+ —= (8.23)
7 \vyy —v—il3 vy +v+il} 7 (vg —v?)
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Fig. 8.17 Structure of the HyPc molecule calculated with [37]. Hydrogen atoms are shown in
yellow, carbon in grey, and nitrogen in navy. Printed with permission of Advanced Chemistry
Development, Inc

Table 8.6 Model parameters for optical constants of the HpPc single layer

B_do model

j Vimin,j in cm~! Vmax,j in cm! Jpeta,j in cm~! Tpeta,j in cm~! aj = B;
12907 15110 474.1 2.75 3.60

2 1003.9 30056 7189 369.3 85.5
Lorentzian oscillators
Vo in em™! Jjin em™! I'jin em™!

3 24031 1245.8 1473.0
42754 93302 0

The calculated model parameters are summarized in Table 8.6 (Fig. 8.18).
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Fig. 8.18 Left: Modelled (line) and measured transmittance (up triangle) and reflectance (down
triangle) of an approximately 20 nm thick H>PC layer on a fused silica substrate; Right: Modelled
refractive index (top) and extinction coefficient (bottom)

8.2.4 Interplay of Ex Situ and In Situ Spectroscopy:
Preparation and Characterization of a V-Coating

The increased number of parameters and the multiplicity of mathematical solutions
make the characterization of multilayer coatings to a quite challenging task. The
latter may be addressed by including additional measurement data into the charac-
terization process. Thereby, including of recorded in situ measurement data seems
prospective, but may result in further complications when optical constants depends
on environment conditions (compare Sect. 8.1.6). Here, some basic concepts will be
applied to one of the simplest multilayer coating: a two-layer antireflection coating
for 1030 nm at 31° angle of incidence (*“'V-coating”) with a high laser induced damage
threshold (LIDT) in the femtosecond regime. In this case, high band gap materials
are prospective [41] so that alumina has been selected as high index material and
aluminum fluoride as low index material. It is well known, that fluoride coatings
are not well-suited for preparation under conditions of ion assistance and therefore,
electron beam evaporation without assistance was used for this layer. The resulting
porous structure of the coating results in a significant air-to-vacuum shift (Fig. 8.19),
which has to be taken into account. The corresponding refractive indices of the AlF;
film as modelled in terms of (8.21) are shown in Fig. 8.20.
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Fig. 8.19 Modelled (solid 1.00 — T T T T T T
line) and measured in situ 0.98
(hollow triangle) and ex situ

(filled triangle) transmittance 0.96
(black) and reflectance (red) 0.94
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Fig. 8.20 Modelled in situ (hollow triangle) and ex situ (filled triangle) refractive index of an
approximately 334 nm thick AlF;3 layer deposited on fused silica

In the case of alumina deposition, two different approaches have been considered:

1. weak assistance and moderate heating during deposition (used later in the design
AR1)
2. neither assistance nor heating (used later in the design AR2).

In both cases, ex situ and in situ optical constants have been determined. The cor-
responding designs AR1 and AR2 for the V-coating (Fig. 8.21) are nearly identical.

For both coatings, the in situ measured transmittance has been in a good agreement
with the theoretical performance. In contrast, the ex situ reflectance of AR2 shows
significant deviations from the theoretical performance (Fig. 8.22 on right).

Obviously, the assumed optical constants of the AlF; layer are not correct when
it is deposited on non-assisted alumina (AR2). This may be explained by a different
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Fig. 8.21 Refractive index profile of the V-coating with weak assistance (AR1: 167.88 nm Al,O3,
201.66 nm AlF3) and no assistance (AR2: 167.55 nm Al,O3, 201.70 nm AlF3)
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Fig. 8.22 Left: Measured and calculated reflectance of the V coating AR1; Right: Measured and
calculated reflectance of the V coating AR2

fluoride growth on a slightly porous alumina layer when being compared with the
growth on a fused silica substrate. On porous alumina, the porosity of the resulting
fluoride layer also seems to be increased which results in a slightly decreased in situ
refractive index, which in turn leads to an increased geometrical thickness when
the layer growth is monitored by optical means. That increased thickness explains
the observed difference in the minima positions of ex situ measured and calculated
reflectance (Fig. 8.22 on right).

Furthermore, the measured LIDT for both the coatings obtained from a series of
429 fs pulses at 1030 nm depends on deposition conditions (Fig. 8.23). The LIDT
is 1.89 J/cm? for AR1 and 1.32 J/cm? for AR2 [42]. Therefore, the weak assistance
applied for alumina preparation in AR1 does not only result in a better agreement
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Fig. 8.23 Damage of V-coating AR1 (left) and AR2 (right) after a series of 429 fs pulses at 1030 nm

between experimental and theoretical performances, but also in an improved sub-
picosecond LIDT of the coating.

8.3 Conclusions

In this chapter, combined with Chaps. 2 and 7, we have demonstrated the application
of spectrophotometric approaches to the characterization of single thin films and a
multilayer system. We have presented selected experimental aspects and numerous
examples from coating characterization practice. Emphasis was placed on ex situ
characterization of single films based on normal incidence transmission and reflection
data, which are widely available in practice. For completeness, a more advanced
example concerned the inclusion of in situ transmission spectra as well as ex situ
data into the characterization strategy for multilayer coatings.
We would like to summarize our analysis in terms of the following theses:

e Spectrophotometry allows determination of the optical constants of thick sub-
strates as well as thin films. This has been demonstrated for selected dielectric,
metal and semiconductor films, including an organic dye layer.

e Additionally, spectrophotometry gives access to geometrical construction param-
eters like the film thickness.

e In complicated samples (for example multilayer coatings), the inclusion of oblique
incidence spectra and/or in situ spectra obtained during film deposition may be
helpful for enhancing the reliability of the characterization results.

e The obtained optical constants give further access to related quantities, includ-
ing density, porosity, but also charge carrier density, band structure and possible
impurities of the coating. The latter may again be related to results of non-optical
characterization techniques like electron microscopy, X-ray-reflection, stoichiom-
etry investigations and the like, and thus contribute to the completion of a physical
picture on the nature of the samples investigated.
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Chapter 9
Ellipsometry of Layered Systems

Ivan Ohlidal, Jifi Vohdnka, Martin Cermdk and Daniel Franta

Abstract Inthis chapter the theoretical aspects of ellipsometry and their applications
in optics of layered systems are presented. The basic formulae of the theory of
ellipsometric measurements are introduced. For this purpose the Jones and Stokes—
Mueller matrix formalisms are used. By using these formalisms the individual types
of ellipsometry and the most utilized ellipsometric techniques are briefly described.
Furthermore, the matrix formalisms enabling us to derive the formulae for the optical
quantities of optically isotropic and anisotropic layered systems are described as well.
Applications of the matrix formalisms in practice are illustrated by means of three
examples.

9.1 Introduction

Ellipsometry is a very useful experimental tool allowing to perform optical character-
ization of thin film systems efficiently. Therefore, a considerable attention has been
devoted to developing both the theoretical and experimental aspects of ellipsometry.
During the last two decades, enormous progress has been achieved in this field. In
this chapter we will deal with the theoretical aspects of ellipsometry and their appli-
cations in optics of thin films. The results will be formulated with the help of matrix
formalisms that allow us to derive formulae for the ellipsometric quantities of thin
films in a systematic way. Specifically, we will focus on the Jones matrix formalism,
Stokes—Mueller matrix formalism, matrix formalism for optically isotropic layered
systems and matrix formalism for optically anisotropic layered systems (Yeh matrix
formalism).

Applications of both the Jones and Stokes—Mueller formalisms are used to
describe the theory of ellipsometric measurements within conventional, generalized
and Mueller-matrix ellipsometries together with ellipsometric techniques utilized for

1. Ohlidal (<) - J. Vohanka - M. Cermik - D. Franta

Faculty of Science, Department of Physical Electronics, Masaryk University,
Kotlarska 2, 611 37 Brno, Czech Republic

e-mail: ohlidal@physics.muni.cz

© Springer International Publishing AG 2018 233
0. Stenzel and M. Ohlidal (eds.), Optical Characterization of

Thin Solid Films, Springer Series in Surface Sciences 64,
https://doi.org/10.1007/978-3-319-75325-6_9



234 1. Ohlidal et al.

practical measurements. Furthermore, we present three examples demonstrating the
use of the matrix formalisms. The applications of the matrix formalisms to reflec-
tion of light from an isotropic inhomogeneous layer, uniaxial anisotropic layer and
the reflection and transmission of light by a transparent slab covered with layered
systems are performed.

Only ellipsometric formalisms concerning specular reflection and transmission
corresponding to Snell’s law will be presented. Ellipsometry corresponding to the
scattered light will not be considered.

9.2 Matrix Formalisms

9.2.1 Jones Formalism

Let us assume that a polarized monochromatic plane wave is incident on a thin film
system. After the interaction between the incident wave and the system, an outgoing
monochromatic plane wave emerges from this system. A schematic diagram of this
situation is presented in Fig.9.1. The Cartesian coordinate systems (x, y, z) and
(x', y', ') are connected with the incident and outgoing plane waves propagating
along z and 7/, respectively. The wave vectors k; and k, need not be mutually parallel.
It will be assumed that x and x’ and/or y and y’ coordinate axes are parallel and/or
perpendicular to the plane of incidence given by the wave vector of the incident wave
and the normals to the boundaries of the system. Both the plane waves mentioned
above are described by the Jones vectors E (incident) and E (outgoing) [1-4]. The
Jones vectors are the complex two-dimensional vectors given as

B - (@ix) - (‘?ip) and B, = (E) - (‘EF’P) RNCRD
Eiy Eis Eoy Eos

where Eix and Eiy and/or on and Eoy denote the complex amplitudes of the electric
fields of the p- and s-polarized incident and/or outgoing monochromatic plane waves,
respectively. The Jones vector fully describes the polarization state (polarization) of
the polarized monochromatic plane wave. Moreover, it will be assumed that the thin

N
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k
\ Ny,
o/ > e layered system e N N >
/ N ~ \
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N , I

y Ei y E,

Fig. 9.1 Schematic diagram of the incident wave on the system and the emergent wave from this
system
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film system is linear, i.e. nonlinear and depolarization effects are absent in the system.
It is then possible to write the following matrix equation:

B-EDE e
Eos Jsp Jss Eis

or if the 2 x 2 matrix, called the Jones matrix, is denoted by j then we can write this
as:

A

E,=JE;. 9.3)

Note that in general, the elements Ji ; of the Jones matrix are complex numbers. The
Jones matrices can be also written as

j= <JPP Jl”) = (rpp ’:ps> (reflection mode),

Jsp Jss fsp Tss

< (I foo 1 .

J=("P ) =P P) (transmission mode), 9.4)
Jsp Jss Isp Iss

where Fpp, Fps, Fsp, Fss are the Fresnel reflection coefficients and 7y, Zps, fsp, Iss are the
Fresnel transmission coefficients.
In ellipsometry, it is convenient to introduce the normalized Jones matrix as

7 _ )61 ,52 _ jpp/jss fps/jss 95
Jn_<ﬁ3 1>_(Jsp/~]ss 1 ) ( . )

When the ellipsometric measurements are performed in reflected light (reflection
mode), the elements of the normalized Jones matrix are expressed as follows

? o ?

~ bp ~ ps ~ sp

P11 == P2 =7, P3 = . (9.6)
Tss Tss Tss

In the case of ellipsometric measurements carried out in the transmitted light (trans-
mission mode), they are expressed as follows:

1, 1, 1,

A PP A ps A sp

1= =, 02 ==, 03 = =. 9.7)
tSS tSS tSS

It is practical to describe the polarization states of light waves using the relative
amplitudes and differences of the phases belonging to their p- and s-polarizations,
i.e. it is advantageous to define the following complex quantities

>
=B
S
>
>
[}
S

9.8)
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The dependence of ¥, on x; is called the polarization transfer function and it is given
by
. PIXit P

. 9.9
p3xi+ 1 ©)

9.2.2 Stokes—Mueller Formalism

The Jones vectors can be used to describe fully polarized monochromatic plane
waves. In order to describe the partially polarized states of light, it is necessary to
use the Stokes—Mueller formalism. The Stokes—Mueller formalism can, of course,
also be employed for strictly defined polarization states, which makes it more general
than the Jones matrix formalism. The Stokes vector is defined as [5, 6]

So Iy
s -1
s=sol=1/"% (9.10)
S3 Iy — Iy

where Iy denotes the total intensity of the wave and Iy, I, I, I », I, and I
represent intensities transmitted by ideal polarizers transmitting the linearly polarized
light along the axis tilted with respect to the plane of incidence by 0, 7 /2, — /4, 7 /4
and left and right circularly polarized light, respectively. The Stokes vectors fully
describe the polarization states of light waves.

While the Jones formalism works with the electric field amplitudes which can not
be measured directly, the Stokes formalism works with the intensities of light which
can be measured experimentally.

The Stokes vector S(E) corresponding to a fully polarized monochromatic wave
described by the Jones vector E can be calculated using the following formula:

>

+
>£11> sl
> o

o
»
» % v %

S(E) = 9.11)

I+
m*c*

oy 0oy O Oy
e o
o> oy o s

o
® % L xT ¥xT %

—
T %

From the above formula it is evident that the Stokes vector is independent on the total
phase of the Jones vector. Of course, this total phase is not measurable in ellipsometric
and reflectometric measurements. The components of the Stokes vector in (9.11) are
given as a linear combinations of terms in the form E *Ek with indices j, k taking
values p, s. It is trivial to show that the relation between the components of the Stokes
vector and these terms can be inverted, i.e. the terms E;* Ek can be determined if the
Stokes vector is known.
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In Sect.9.2.1, it was shown that for non-depolarizing sample, the Jones vector
of the outgoing wave is related to the Jones vector of the incident wave by (9.3).
Therefore, it is possible to write the following relation:

E:jﬁok = Z Z j?]jkl7lé;;Eims (912)

[=p,s m=p,s

where E; ; and E, ; are the components of the Jones vectors corresponding to the
incident and outgoing waves, respectively. Since the quadratic terms Ej E determine
the Stokes vectors and vice versa, the above equation can be also understood as a
linear relation between the Stokes vector S (E ;) of the incident wave and the Stokes
vector S (fi o) of the outgoing wave as follows:

Moo Moy Moz Moz
Mo My Myx M3
My May My Mps
M3y M3, M3y M3

S(E,) = MJ)S(E;), where M(J))= 9.13)

The 4 x 4 real matrix M(j ) is called the Mueller matrix of the layered system [6—8].
The elements of this Mueller matrix can be calculated as

1/ A A A

Moo = 5 (ol + 1l + g 2+ 1isl?) ©9.14)
1/ N A A

Mot = 5 (Ll = sl + 1 = 1)

My, = Re (jpsjl;kp + fssj;;,) ’ My; = —Im (jpsj;p + jssj:;)> s

A A

Jody). My =Re(Ady, — Jp ).

So far we have considered only fully polarized monochromatic waves. In order
to describe partially polarized waves, it is useful to represent these partially polar-
ized waves by incoherent superpositions of fully polarized waves with different
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polarization states, i.e. different Jones vectors. If the sample is non-depolarizing
and the incident wave is monochromatic but only partially polarized, then the for-
mula (9.13) can be used to express the Stokes vector of the outgoing wave by means
of the statistical ensemble corresponding to the incident monochromatic wave with
frequency w. Thus, the Stokes vector S, of the outgoing wave is given as

So = (S(E,)) = MMDS(E)) = MD)S;, (9.15)

where M(j ) is calculated from the Jones matrix J using (9.14) and S; = (S (E i)) is the
mean value of the Stokes vector of the incident wave calculated using the statistical
ensemble consisting of the Jones vectors E; corresponding to fully polarized waves
(see (9.11)).

If we want to take into account the influence of the temporal coherence, it is nec-
essary to consider a wave which consists not only of waves with differently polarized
states but also with different frequencies. This corresponds to polychromatic light
described by the spectral density of the intensity (see e.g. [5]). In this case the incident
and outgoing waves are characterized by the spectral densities of the Stokes vectors
denoted Gi(w) and G,(w), respectively. The zeroth components of these vectors
are the spectral densities of the intensity while the other components correspond to
spectral densities of intensities defined in (9.10). It is possible to write

Go(w) = M(J(0))Gi(w), (9.16)

where M(j (w)) is calculated using (9.14) and J (w) is the Jones matrix dependent
on the frequency. If the detection of the polarization states of the outgoing wave is
independent on frequency, then one can write the following formula:

g:/&@M=/meawm, (9.17)

where S, is the Stokes vector measured by the detector. If the polarization states of the
incident wave do not depend on frequency, i.e. the direction of G (w) does not change
with frequency, then the spectral density can be expressed as G;(w) = S{wspecm] (w),
where Wypeciral (@) denotes the normalized spectral distribution of the intensity of the
incident wave and the symbol S; denotes the frequency independent Stokes vector.
Note that the Stokes vectors S; and S|, are the mean values calculated for the incident
and outgoing waves, respectively, over the spectral interval of polychromatic light.
Under these assumptions it is possible to write the following formula:

S, =MS,, (9.18)

where
M= /M(j(a)))wspectral(w)dw- (9.19)
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If the sample is depolarizing, then the outgoing wave can be only partially polar-
ized even when the incident wave is monochromatic and completely polarized. The
depolarizing character of the sample can be taken into account if the sample is not
described by one Jones matrix but it is described by the statistical ensemble of Jones
matrices. If it is assumed that the mean values over statistical ensemble of Jones
matrices can be expressed using the probability density wgample (§) of one variable &,
then one can express the Stokes vector of the outgoing wave as

S, = (M)S], (9.20)

where

M) = / M(J (@, £))Wspectral (@) Wsampie (§)dwdE 9:21)

This formula takes into account not only the depolarization caused by the sample
but also the influence of the temporal coherence. The results expressed by (9.19) and
(9.21) are important from the practical point of view because the elements of the
Mueller matrix can be determined experimentally.

For a given Stokes vector the degree of polarization P is defined as

1
P = S—,/Sl2 + 83+ 53 (9.22)

0

The parameter varies from the value of 1 for the fully polarized states to value 0
for completely unpolarized states. The inequalities Sy > 0 and 0 < P < 1 must be
understood as conditions that restrict the physically realizable polarization states. The
fact that the components of the Stokes vector must fulfill the mentioned inequality
contrasts with the case of Jones vectors, where any two-dimensional complex vector
represents a valid polarization state. It is trivial to show that the Stokes vectors
corresponding to fully polarized waves, i.e. calculated by means of the formula (9.11),
always give P = 1. It is also possible to prove that if P = 1, then there is a Jones
vector E (unique up to a total phase factor) such that the relation (9.11) is valid.
The following special form of the Mueller matrix is often encountered in practice

M — (9.23)

This Mueller matrix occurs, for example, for optically isotropic layered systems, lay-
ered systems formed by anisotropic materials with each principal axis either lying in
the plane of incidence or perpendicular to the plane of incidence (see e.g. Sect. 9.4.2).
The same form of the Mueller matrix is encountered even if these systems exhibit
depolarization caused by a finite spectral line width, thickness non-uniformity, area
non-uniformity in optical constants, or as a consequence of back-side reflections in
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non-absorbing substrates. In this special case, the elements of the normalized Mueller
matrix M, defined as M = MyM, determine the associated ellipsometric param-
eters I, I, I, as follows: Myg = —1I,, My = I., My»3 = I,. The values of these
parameters can be measured by phase modulated ellipsometry (see Sect.9.3.4.3). For
ellipsometry in reflection mode the quantities appearmg in the Mueller matrix (9.23)
can be calculated from (9.14) if we set J op = Tp» JSS =7, J, s = J s = 0. The result-
ing expressions are

(171%) + (17 (7p2) = (A7)
Myp=R=--"2"—"— My = 22— 3 -~
(FpP &) + (F3FS) (Fprs) — (FyTs)
My = ==t My = —i—te P (9.24)

where the angled brackets denote the mean values calculated as indicated in (9.21),
i.e. averaging over the statistical ensemble of Jones matrices and over spectral dis-
tribution of incident light. If the reflection coefficients 7, and 7, are replaced by the
Fresnel transmission coefficients fp, f,, analogous expressions are obtained for the
transmission mode. In general these quantities fulfill the inequality /2 + 12 + 12 < 1,
with the equality occurring in the case without depolarization [9].

Although only the influence of the temporal coherence was included in the con-
siderations presented above, it is possible to modify the results to include also the
influence of the spatial coherence of the light beam. The generalization to probability
density function Weampie (€1, &2, . . .) of several variables is straightforward. An exam-
ple of the depolarization by an area non-uniformity of the sample is presented in detail
in Chap. 10. The ideas presented here can be used also in the context of quantum
mechanics where the states of the light are described by the density operator [10].

9.2.3 Matrix Formalism for Isotropic Layered Systems

The reflection and transmission coefficients of layered systems formed by L isotropic
thin films (see Fig.9.2) can be calculated using a simple matrix formalism. This
system will be called the isotropic layered system. In isotropic layered systems with

nl - / = nl
Eir|E1R Ejr |Ejr Eryir|Erir
— | — —— — | —

’ ’ - i
Evp|Ein ... Eiu|BjiL ... Eran|BraL
— [+—— — [ — — [ +—

medium 0 | 1 Jj—11J L|L+1
boundary 1 j L+1

Fig. 9.2 Schematic diagram of isotropic layered system
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parallel boundaries, it is possible to investigate the propagation of s- and p-polarized
waves separately. In this formalism the s- or p-polarized waves are described by
means of complex vectors

r ll
<Pf-f’R> and (@{’R> (9.25)
E;vL E

that determine the amplitudes of the electric intensity components tangent to the
boundary. The amplitudes with primes correspond to the right side of the jth bound-
ary while the amplitudes without primes correspond to the left side of the jth bound-
ary. The subscripts L and R distinguish the amplitudes of the left-going waves from
the amplitudes of the right-going waves. The boundary conditions imply that the tan-
gential components of the electric and magnetic fields must be preserved at the jth
boundary. The amplitudes E s and H ;,s will denote the amplitudes corresponding

to the total electric and magnetic fields at the jth boundary. These total tangential
fields are expressed as

Ejs=Er+EjL=Ex+E, (9.26)
1is =Y 1Ejr =YV, 1 EjL =Y Ej g — YV, E} (9.27)

where the symbol f’j denotes the optical admittance of the medium in which the
waves propagate. These admittances are different for the s- and p-polarizations:

Y; =njcosy; forthe s-polarization, Y; = coslll/A/ for the p-polarization,
J

(9.28)

where 71; denotes the complex refractive index of the jth medium (7; = n; + ik;,
where n; and k; are the real refractive index and extinction coefficient, respectively)
and ¥ ; denotes the refraction angle of the wave propagating in the jth medium (in
the ambient this angle corresponds to the incidence angle 1}0 = ).

The boundary conditions can be expressed in the so called admittance nota-
tion [11]:

A

E. N E. . (E'
([:]j.’s> = Vj—l <EJ’R> = Vj (EA'{’R> s (929)
.S J.L J.L

N 11 N i
Y=(,-5,) T 0) e
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The equation (9.29) can be rewritten as

A

<€%R> =W, [ J®),  where W;=V;V, (9.31)
E./',L Ej,L

The matrix W j is called the refraction matrix and it can be expressed as

W:l(H@/’fﬂ l‘ff/%*) =_5f11<1 ff') 9.32)
P2\l =YY 1+ Y /Y ¢ i ’

where 7; and 7; are the Fresnel reflection and transmission coefficients for the jth
boundary, respectively, and the quantities ¢; are given as

¢j =1 for s-polarization, ¢j = cos g@j for p-polarization. (9.33)

In order to prove the second equality in (9.32) the following expression for the Fresnel
coefficients must be used
R 1Y ~  Cj1 21?1'—1

rj =z, lj=—F—5——= (9.34)
-1+ Y Cj Y1 +7Y;
The tangential components of the electric fields on the left and right side of the
Jjth layer are connected by the following equation:

E’ A~ L N —ig;
SR =, <’§J+LR>, where U; = (€ Q_ , (9.35)
Ejv Ejiv 0 e

where q3 i = @Qm/Mh jﬁ j cos 1/} ; with A denoting the wavelength of the light and 4
denoting the thickness of the jth layer. The matrix U introduced in the above equation
is called the phase matrix.

For the system containing L layers, the following relation between the amplitudes
of the electric fields on the left and right sides of this system can be expressed as

(@LR) =P AR where P =W, UW,---UWp,. (9.36)
EiL EL+1,L

The matrix P is called the system transfer matrix. By using the elements of the
system transfer matrix P;; the Fresnel reflection and transmission coefficients can be
expressed as
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p D N r/ N
s (B _ Py PR Eiar _ ¢ 1
— ~ — A — A A~ — A ~ -
Eir B —o Py CL+1 Eir oo CL+1 Pyy
L+1,L— L+1,L—
(9.37)
ol 5 N ~ . A
= (ELH,R) _ _P12 7= CL+1 < EiyL ) _ Crq1 det P
o/ - 5o - A ~, = =X ~ .
ErniL/ g o Py € \NEriiL/ g e=o o Py
(9.38)

The symbols 7 and 7’ denote the Fresnel reflection coefficients for the incident wave
falling onto the system from the left and right, respectively. The same is valid for the
Fresnel transmission coefficients 7 and 7’.

The sequence of matrices VAVj and U ;jin (9.36) implies introducing new matrices
I ; by using the association rule as follows:

A

L=V,0,v;' = ( (9.39)

cos d;j i)A’j’l sin 43j
i¥jsing; cosg;
The matrix I ; is called the interference matrix of the jth layer (some researchers call
it the characteristic matrix). From the foregoing it is clear that the system transfer
matrix can be written as

A

P=V;'1V,,, where I=11,---1,. (9.40)

The matrix I is called the interference matrix of the whole layered system. The
meaning of the interference matrix I is given by the following matrix equation

. R - £ T
(hz"s) =V, ('?I’R> =1V, | AEFIR) =1 (@L“*S) ) (9.41)
His EL E L Hii1s

From (9.40), it is evident that the elements of the transfer matrix P can be expressed
using the elements of the interference matrix I. Thus, on the basis of (9.37) and (9.38)
it is possible to write the Fresnel coefficients of the layered system with the help of
the elements of the interference matrix I of this system. For example, the Fresnel
reflection and transmission coefficients of the system corresponding to the incidence
of light from the left side are given as:

Iy =Y 'Yy + Y0y — V'L
P A11 AO,I AL+l Azz + AL+1 A12 Ao,l A21 ’ 9.42)
I +Yy Yipiln+ Yl +Yy Iy
Co 2

>
|

L (9.43)
Cirt Iy + Yy Yoplon+Yiln+ Yy I
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where f,, are elements of the matrix I. The symbols I}o and I?LH denote the admit-
tances of the ambient and substrate, respectively.

9.2.4 Matrix Formalism for Anisotropic Layered Systems

This matrix formalism, known as the Yeh formalism, concerns the propagation of
monochromatic plane waves in layered systems formed by homogeneous anisotropic
media. A schematic diagram of the anisotropic layered system consisting of L
anisotropic layers is shown in Fig.9.3. The media are numbered O, ..., L 4 1 with
media O representing the ambient and media L + 1 representing the substrate. The
boundaries are numbered 1, ..., L 4+ 1 with jth boundary separating the (j — 1)th
media from the jth media. The Cartesian coordinate system (x, y, z) is chosen such
that the z axis is normal to the boundaries of the layered system.

In the jth medium, the electric field corresponding to a propagation of a monochro-
matic plane wave can be expressed using the complex wavevector k ; and amplitude
E j as

E;(r.t) =Re (E ,ei"f’—iw’) . (9.44)

In anisotropic media the characteristics of light propagation depend on the direction
of propagation. The Maxwell equations imply the following wave equations [2, 5,
12]

ij(ijEj)+k0éjEj=O, (945)

where kg = w/c = 2m /. The symbol & ; denotes the tensor (matrix) of the dielectric
functions describing the optical response of the jth medium. In general this tensor is
complex and does not posses any symmetry. In the case of optically non-absorbing
anisotropic materials without optical activity, the dielectric function tensor is sym-
metric [5, 12] and it is, therefore, possible to find such a coordinate system in which
it is diagonal. This result is valid also for the absorbing anisotropic materials with
relatively high crystallographic symmetry [5].

The continuity of the electric and magnetic fields on boundaries implies that
the components of the wavevector IAc.,- tangent to the boundaries must be the
same on the both sides of the boundary. Therefore, in the layered system with
mutually parallel boundaries that are perpendicular to the z axis, it is possible

N P P ~ T N ~ 1
ArlAy Aj|A; AjrlAj Ari| Ap
medium 0 | 1 j—1 J j+1 L|L+1
boundary 1 j j+1 L+1

Fig. 9.3 Schematic diagram of anisotropic layered system
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to write lch = (l%x, Igy, IE_,;Z). The wave equation (9.45) can be rewritten into the
following matrix equation

K3Bjcx — K2 — K2 K38y +hiky KR+ K kj -\ (Ejx
kgéj,yx—i—kykx k3 ;. yv—k k2 koe”,—}-k k” E;y]=0.
kééj,zx + kj  ky k2 082y +kj Zk kOs] 2z — x — k2 E;.

(9.46)

If the matrix in front of E which can be considered a function of & ; 2> 18 denoted
by N(k J.z)» then the equation takes the form:

N(k;.)E; = 0. (9.47)

This matrix equation has a nontrivial solution only if the determinant of the matrix
in front of E vanishes, i.e. det N(k; j,z) = 0. This leads to quartic equations for kj iz
with four roots ; ja,z distinguished by the index o =1, 2, 3, 4. The corresponding
wavevectors will be denoted by k ja = (ky, lgy, k ja,z) and the corresponding polar-
ization vectors will be denoted by p ;,. The polarization vector p, is the solution

of (9.47) for a given root lgja,z, ie. N(lgja,z)i;ja = 0. Moreover, we will assume that
it fulfills the normalization condition p, - p;, = 1. The electric field in the jth
medium can be expressed using the polarization vectors as

Ej(r,1) =Re <Z Ajaﬁlot lk otk ka2 ]wl) ) (9.48)

a=1

where A(}a denotes the amplitudes corresponding to different polarizations of light
waves. An analogous expression can be written also for the magnetic field

4

1 A .
H(r,t) =Re —§ A0 G . eifertiby ik z—ion | 9.49
j( ) (l,l,oa) jaqja ( )

a=1

where the polarization vectors for the magnetic field are related to polarization vectors
i’ Jjo as
o =kKjo X Py (9.50)

In order to write the conditions for continuity of E and H at the boundaries, it is
convenient to introduce the amplitudes A ;, and A;a that correspond to the amplitudes
occurring on the left and right side of the jth boundary
Aju = Af_ e, Ay = A e, (9.51)
where z; denotes the z coordinate of the jth boundary. Itis evident that the amplitudes
A » and A j+1o are related as
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Ay = Ajpra@®is i = Ay oot 9.52)

where the symbol i; = z;,| — z; denotes the thickness of the jthlayer. If we arrange

~ ~ A~ ~/
the amplitudes A, and A’;, into column vectors A; and A then the formula above
could be written in the matrix form as

A =TA; ., (9.53)
with the matrix T ; defined as
eikichi 0 0 0
T, = 8 efik(;z'zh’ e—ugmj g . 9.54)
0 0 0 e kil

The conditions for the continuity of E and H on the jth boundary now take a very
simple form

Zexp, A Zexp,a Zeyp, WA Zevp,a (9.55)
ZeXéj—laAAJu = ZeXéjaAA;a’ Ze}'éj—laAAja = ZeyqjotAA/ja’ (956)
a=1 a=1 a=1 a=1

In the matrix form these equations are written as

A ~

_A;=D A (9.57)
where the matrix D ; is defined as

€xPji €xPjr €xPj3 €xPjy

- 4. eyq i, €,q 5 €yq;

D; = [ &9 &9 €53 &4 | (9.58)
€yPj1€eyPjreyPjz€ypjs
€xq ;1 €xqj> €xq ;3 €xq s

The relation between the amplitudes on the left and right sides of the jth boundary
can be expressed as

~ A A

Aj=BA, whee B;=D'D,. (9.59)

The amplitudes on the left side of the first boundary (i.e. on the left side of the layered
system) and the amplitudes on the right side of the last boundary (i.e. on the right
side of the layered system) are related as
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~ A A/ A A

A =XA;,, where X=BTBT.B; - T, B, (9.60)

It is assumed that the anisotropic layered system is placed between two isotropic
media corresponding to ambient and substrate. In isotropic media, it is possible to
choose the polarization vectors p ;, in such a way, that the vectors of amplitudes take
the following form

A~ A,
AjpRr Ajpr
N A L N A L
A=|5 ] Ay =] 9.61)
LJsR JJjsR
. /
A]S,L Ajs,]_

where the subscripts p and s distinguish the p- and s-polarizations and the subscripts
L and R distinguish left- and right-going waves.

Then the following matrix equation can be written for the anisotropic layered
system if the wave is incident from the left side

A:lp,R ):(11 ):(12 ):(13 }:(14 A/L-Hp,R

A Xo1 Xo» X053 X

AL | _ | X21 X22 X3 X N 0 7 (9.62)
4ls,R X31 X3 X33 Xaa | | ALyier

AL Xa1 X4z Xu3 Xag 0

where A Ip.R> A 1s,r are the amplitudes of the wave incident on the first boundary, A Ip,L>
Ay, are the amplitudes of the reflected wave and A} | g, A7 | g are the amplitudes
of the transmitted wave. The Fresnel reflection and transmission coefficients of the
anisotropic multilayer system can then be expressed as

N AL n ApL
T'pp = AA ’ Fps = A ’
IR/ 4 5r=0 ISR/ 41pr=0
A Als,L A~ Als,L
Ysp = A , I'ss = AA s
PR/ 4 r=0 Is,R Appr=
A A
~ L+1p,R ~ L+1p,R
tpp = A ) tps = A s
Ip.R A r=0 Is.R AAIpAR=

A A
~ L+1s,R 2 L+1s,R
tsp - (AA— ’ o = AA— ’ (9‘63)
IR/ 4 =0 ISR/ Aipr=0

The following formulae are obtained for these Fresnel coefficients from (9.62):
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o X0 X3 — X3X3

X1 X33 — X3X31

Fps = =

— —, - —,
X1 X33 — X13X3; X1 X33 — X13X3

A XuXp— XX

X1 X4z — X X3

1. Ohlidal et al.

I'sp = == ~ A Fss = =% ~ A
X1 X33 — X13X31 X11X33 — X13X3
R X33 R X3
Ipp = Z 2 =5 s = 7% =
X1 X33 — X13X31 X11X33 — X13X31
A X A X1
Ip = T3 I ’ Is = (9.64)

X1 X3 — X13X31 X1 X3 — X13X31

Note that the Yeh matrix formalism describes the change of polarization states of
the wave outgoing from the system with regard to the wave incident on this system.

The Yeh matrix formalism is quite different from the Jones and Stokes—Mueller
matrix formalisms. The Jones and Stokes—Mueller formalisms are well-suited for
describing the relation between the polarization states of the incident wave and the
wave reflected or transmitted by the sample. The Yeh formalism, on the other hand,
is not used to describe the same relation. It serves as an efficient tool for calculating
the mentioned changes of polarization states caused by reflection or transmission by
the anisotropic multilayer system.

If the jth layer consists of an optically isotropic material then the polarization
vectors could be chosen as described in (9.61). Assuming that the x—z plane is the
plane of incidence, the wavevectors and polarization vectors are given as

p1= (ko /k;j, 0, —k, /kj), = (0,k;, 0,

'Q)

oy = (kv 0, —k;.2), = (kj-/kj, 0, ke /k), é 0, —k;, 0),
ey = (ke 0, kj2), =(0,1,0), 43 = (—kj., 0, ko),
ky = (ke, 0, —k; ), =(0,1,0), gy = (kj.,0,k), (9.65
where lgx = np sin ¢ and
RN k.= k28, — k2. (9.66)
The matrices D ; (9.58) and T ; (9.54) then take the following forms:
ki Jkikiofk; 000 e 0 0 0
A ki —k; 0 0 A 0 €% 0 0
D = J J T, = 2 .
! 0 0 [ O / 0 0 e 0o |’ 067
0 0 —kj:kj: 0 0 0 &%
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We should also mention the Berreman matrix formalism [13]. In this formalism
the propagation of a monochromatic plane wave is described by means of a system
of four ordinary differential equations (ODE) which give the dependence on the
z coordinate. The differential equations are formulated using 4 x 4 matrices and
four-dimensional vectors whose components are (E,, E,, H,, H,), i.e. this vector
specifies dependence on the z coordinate of the electric and magnetic field amplitudes
that are perpendicular to this axis. In this way the Berreman formalism is very similar
to the Yeh matrix formalism (see the definition of the matrix (9.58)). In Berreman
formalism it is assumed that the optical properties of the materials can depend on the
z coordinate in an arbitrary way. The Berreman formalism is very general because it
assumes that both the dielectric and permeability tensors can exhibit anisotropy and
that optical rotation tensors describing the optical activity can be non-vanishing. All
of these tensors are assumed to be dependent of the z coordinate in the Berreman
formalism.

The application of the Berreman formalism to layered systems was performed
in Schubert’s paper [14]. In this paper it was shown how to derive systematically
optical quantities usable in ellipsometry for layered systems consisting of homoge-
neous anisotropic nonmagnetic media without optical activity. Moreover, a model of
continuously twisted anisotropic material was investigated in that paper.

The Berreman formalism was used, for example, to study surfaces of uniaxial
TiO, within generalized ellipsometry in [15].

9.3 Theory of Ellipsometric Measurements

Ellipsometry allows to measure the changes of the polarization states of light waves
interacting with the studied sample. Therefore, ellipsometry offers the possibility to
perform the optical characterization of the layered systems. Ellipsometric methods
can be classified into the following three groups: conventional ellipsometry, gener-
alized ellipsometry and Mueller-matrix ellipsometry.

9.3.1 Conventional Ellipsometry

The methods of conventional ellipsometry are applied to samples characterized by
diagonal Jones matrices (Jps = Jsp = 0). The normalized Jones matrix (9.5) is then
given as

A

N b f
Jh = PO where p = ]:—P or p=-=L, (9.68)
01 7 7,

where the symbols 7, = 7, and 7, = 7, denote the Fresnel reflection coefficients of
the p- and s-polarized waves and the symbols , = f,,, and 7, = 75, denote the Fresnel
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transmission coefficients of the p- and s-polarized waves. From the ellipsometric
point of view, the samples are then unambiguously described by one complex quantity
0 called the ellipsometric ratio. This ratio o can be written as

p = tanye'®, (9.69)

where the angles 1 and A are called the azimuth and phase change. These angles
represent the ellipsometric parameters of the system in the reflection or transmis-
sion modes. The polarization transfer function (9.9) takes a very simple form in
conventional ellipsometry

Xo = PXi- (9.70)

9.3.2 Generalized Ellipsometry

The methods of generalized ellipsometry are utilized for characterizing samples
described by non-diagonal Jones matrices. Within this group of ellipsometric meth-
ods, the samples are unambiguously described by three complex quantities 01, 02, 03
(see (9.5)—(9.7)). Then the polarization transfer function expressed in (9.9) is given
by Mobius transformation. The methods of generalized ellipsometry are employed
for optical characterization of layered systems with films and substrates formed by
anisotropic materials whose principal axes are situated in general positions with
respect to the plane of incidence (generalized ellipsometry can also be utilized for
systems containing materials with optical activity).

Within generalized ellipsometry, one must know the response of the layered sys-
tem for three independent polarization states of the incident wave, at least. Therefore,
it is necessary to know three output polarization states Xo1, Xo2, Xo3 corresponding
to three polarization states xij, Xi2, Xi3 of the incident waves. In this case, the com-
ponents of the normalized Jones matrix (9.5) can be calculated using the following
equations [2]

5y = Xot Xo2 (Xi1 — Xi2) + Xo3 Xo1 (Xi3 — Xi1) + Xo2Xo3(Xi2 — Xi3)
1= ~ .

9.71)
D
5y = — Hot Xo2 (Xi1 — Xi2) Xis + )203)201()&{— Xin) Xi2 + Xo2 Xo3(Xi2 — Xi3) Xit 7
D
A Xo3(Xit — Xi2) + Xo2(Xiz — Xi) + Xo1 (Xi2 — Xi3)
= b ,
where

A

D = X3 xi3(Xi1 — Ri2) + Xo2Xi2(Xiz — Xi1) + Xo1 Xi1 (Xi2 — Xi3)- (9.72)
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The Yeh matrix formalism is closely connected with generalized ellipsometry,
because if the Yeh matrix X of the system of anisotropic layers is known, then the
polarization transfer function (9.9) for reflected light can be calculated as follows [12]

. Xos(X11 — %iX31) + Xo1 (X33 — X13)
0= — AR —.
X3(Xn1 — XxiX31) + Xa1(Xi X33 — X13)

(9.73)

A detailed description of generalized ellipsometry and its practical applications
are presented, for example, in [1, 16].

9.3.3 Mueller-Matrix Ellipsometry

Within the Mueller-matrix ellipsometry, the values of the general Mueller matrix
(9.13) are measured. The simplest instrument that allows us to measure all the ele-
ments of the Mueller matrix is the single-channel Mueller-matrix ellipsometer. This
ellipsometer consists of the light source, polarizing optics, sample, analyzing optics
and detector. The light intensity / detected by the detector can be expressed as

I = ILAMSp, (9.74)

where Sp is the Stokes vector of light leaving the polarizing optics and incident on
the sample, A is the first row of the Mueller matrix of the analyzing optics, Iy denotes
the detector responsivity and M is the Mueller matrix describing the sample. This
equation is derived under the assumption that the detector measures only the total
intensity of light leaving the analyzing optics (this intensity corresponds to the first
component of the Stokes vector of light falling onto the detector, which is calculated
using only the first row of the matrix A). From (9.74), it is evident that the values
of the sixteen elements of the Mueller matrix can be determined if at least sixteen
independent discrete settings of the polarizing and analyzing optics are used (i.e.
sixteen different combinations of Sp and A). The sixteen linear algebraic equations
generated by (9.74) for sixteen configurations of A and Sp can be solved in order to
obtain all the Mueller matrix elements. If less than sixteen independent settings of A
and Sp are used, then the Mueller matrix can not be fully determined. The number
of the Mueller matrix elements that can possibly be determined is dependent on the
type of the ellipsometer employed.

The discussion above took into account the case of the general Mueller matrix
with sixteen independent elements. In many cases, there are dependencies between
these elements or some of these elements may vanish. For example, the Mueller
matrix can take the special form (9.23). If the specific form of the Mueller matrix is
taken into account, it is possible to fully determine the Mueller matrix with smaller
number of independent configurations of A and Sp. If these configurations are chosen
appropriately, it is sufficient to use the same number of configurations as the number
of independent Mueller matrix elements.
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Fig. 9.4 Schematic diagram

of PCSA ellipsometer light source detector
working in reflection mode

/ polariser

9.3.4 Techniques for Conventional and Generalized
Ellipsometry

9.3.4.1 Null Ellipsometry

Within null ellipsometry, the polarizer—compensator—sample—analyzer (PCSA) ellip-
someter is utilized in most cases (see Fig.9.4). An equivalent ellipsometer to the
PCSA type is the PSCA type.

The mathematical formulae usable for conventional ellipsometry will be derived
below. Assuming that the polarizer, analyzer and compensator are optically ideal
elements, the Jones vector of the wave incident on the detector is given as

Ep o JaAR(@a)JaR(—¢c)JcR(¢c — dp) Ep, (9.75)

where the normalized Jones matrix jn is given by (9.68) and

A cosa Ssino - 10 - 10 S 1
R() = (—sina cosa)’ Je = (o —i)’ o= (0 0)’ Er= <0>'

(9.76)

The matrices ﬁ(a), j c and j A represent, in this order, the transformation of the Jones
vector under the effect of a coordinate rotation, the Jones matrix of the quarter-wave
compensator and the Jones matrix of analyzer transmitting p-polarized waves. The
vector Ep represents the p-polarized wave from the light source passing through the
polarizer. The symbols ¢p, ¢c and ¢4 denote the azimuth angles of the polarizer,
compensator and analyzer, respectively. The s-component of the vector Epis always
equal to zero and the p-component is given as:

Epp o pcos(pc — ¢p) cos da cos gc — if sin(de — dp) cos ¢a sin dc
~+ cos(¢pc — ¢p) sin ¢4 sin ¢¢ + isin(¢pc — ¢p) sin Ppa cos ¢¢c. (9.77)
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The null ellipsometry is based on the fact that the azimuth angles of the polarizer,
compensator and analyzer can be configured so that no light intensity is recorded by
the detector. In practice, the azimuth angle of the compensator is fixed in selected
value and only the angles of the polarizer and analyzer are changed. The condition
of vanishing light intensity at the detector leads to the following formula for the
ellipsometric ratio:

tan ¢c + itan(¢c — ¢p)
1 —itan(¢c — ¢p) tan gc

p = —tangn (9.78)

The technique of null ellipsometry is mainly utilized in the methods of conven-
tional ellipsometry. It is especially useful for monochromatic methods of ellipsom-
etry because it allows to achieve high precision, when a practically parallel beam,
produced by a laser source, is used. In principle, this ellipsometry is also usable for
generalized ellipsometry but it is rarely used in this role because of long measurement
times.

9.3.4.2 Rotating-Analyzer Ellipsometry

Rotating-analyzer ellipsometry [1, 3] is mostly applied with polarizer—sample—
analyzer ellipsometers. The polarizer is fixed in a certain position of the azimuth
angle ¢p (¢p # 0, /2, m, 37 /2) and the analyzer is rotating, i.e. the azimuth angle
¢da is a function of time. In conventional ellipsometry the Jones vector of the light
wave incident onto the detector is expressed using the following equation:

Ep o JAR(@A ()T R(—¢p) Ep. (9.79)
The light flux recorded by the detector obeys the following equation
I(t) = |Ep(®)|* o¢ 1 + y, sinQ2a (1) + e cos2pa(t)). (9.80)

If ¢a(2) is a linear function of time, then the coefficients y5, y. are determined as
the Fourier components of the harmonics of the intensity 7 (¢). For the conventional
ellipsometry, the following equation can be derived (see e.g. [1, 3])

tre cosA = — 9.81)
L=y 1—y2

C

tan ¢ = tan ¢p

There is also a modified version of the rotating-analyzer ellipsometry, in which
the analyzer is fixed and polarizer is rotated. These techniques of rotating-analyzer
(rotating-polarizer) ellipsometry can also be employed for measurements in gener-
alized ellipsometry. For generalized ellipsometry, the equations for ys and y, are
different from those for conventional ellipsometry. These equations are presented,
for example, in [1, 17, 18].
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9.3.4.3 Phase-Modulated Ellipsometry

In phase-modulated ellipsometry, PCSA or PSCA ellipsometers are employed (see
e.g. [1, 3, 19]). The polarizer, compensator and analyzer are fixed in selected posi-
tions. The phase retardation of the compensator is a function of time §(¢). In the
conventional ellipsometry the Jones vector of the light wave incident onto the detec-
tor of the PCSA ellipsometer is expressed as follows:

Ep < JAR(@)IR(—¢c)Jc(OR(pc — ¢p)Ep,  where Je(t) = <(1) ei?(t)) :

(9.82)

The symbol Je(o) represents the Jones matrix of the compensator. From (9.82) it is
implied that

Ep () oc(sin ¢4 sin gc + f cos da cos ¢e) cos(gp — ¢c)
+ D (sin ¢ cos pc — P cos Pa sin Pe) sin(dp — dc).  (9.83)

If it is assumed that § (1) = A sin(2t), with A being the amplitude and 2 being the
frequency of the periodic signal of the modulation of the phase retardation, then the
periodic signal registered by the detector can be processed by the Fourier analysis. In
this way, it is possible to obtain the values of the associated ellipsometric parameters
I, I, I, (see e.g. [2, 3, 19]) related to the azimuth i and phase change A as

Iy = sin 2y sin A, I. = sin2yr cos A, I, = cos 2. (9.84)

The techniques of phase-modulated ellipsometry can be employed also for measure-
ments in generalized ellipsometry (see e.g. [20]).

9.3.5 Techniques for Mueller-Matrix Ellipsometry

The techniques and ellipsometers for the Mueller-matrix ellipsometry are more com-
plicated than those for conventional and generalized ellipsometries. Not all types of
Mueller-matrix ellipsometers allow to determine all the Mueller matrix elements.
The overview of the Mueller-matrix ellipsometric techniques together with schematic
diagrams showing the elements of the Mueller matrix which can be determined is
presented in Figs.9.5 and 9.6 [21]. In the dual-rotating-polarizer configuration [6,
21-23] (see Fig.9.5), the optical elements are rotated with different angular frequen-
cies and the Mueller matrix elements are determined by the Fourier analysis of a
single signal recorded by the detector. In the simplest configuration with the rotating
polarizer and analyzer shown in Fig. 9.5a, only nine elements of the Mueller matrix
are determined. The versions in Fig.9.5b, ¢ have a rotating compensator placed in
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S

(a) source P . A detector

O
(b) source P C A detector

00
S
(c) source P C eeoe A detector
e 0o 00
e 0o 00
OO e o o o
O S O
(d) source P C eecee C A detector
e 0o 00
0° o000 0°

Fig. 9.5 Mueller-matrix ellipsometers with rotating elements: P, C, S and A denote the polarizers,
compensators, samples and analyzers, respectively. The arrows indicate rotated elements and the
angles specify the fixed positions of elements owing to the plane of incidence

front of the sample or behind the sample. These configurations allow to determine
twelve elements of the Mueller matrix. In the most complicated version shown in
Fig.9.5d the polarizer and analyzer are fixed but rotating compensators are placed
in front of the sample and behind the sample. In this configuration all 16 elements
of the Mueller matrix can be determined. The two techniques with the phase mod-
ulation presented in Fig.9.6 have all the optical elements in fixed positions but the
modulation of the phase retardation is used for all the compensators [6, 21, 24-26].
The periodic signal recorded by the detector is processed by the Fourier analysis
in order to determine the values of the Mueller matrix elements. From Fig. 9.6 it is
evident that dual phase modulation on both sides of the sample must be used in order
to determine the values of all sixteen Mueller matrix elements.

Mueller matrix ellipsometry is often used to measure the Mueller matrix elements
in scattered light [21, 27, 28]. In this case, multi-channel ellipsometers are utilized.

9.3.6 Imaging Ellipsometry

Many thin films encountered in practice exhibit an area non-uniformity in their
thickness, optical constants and other quantities (e.g. parameters of the boundary
roughness). If this non-uniformity is sufficiently large, then the results of optical
characterization obtained by the standard ellipsometric methods described above are
misrepresented (see Chap. 10). For the optical characterization of these non-uniform
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(a) source P o .?S.T C, A detector
0° 45° ceie 90° 45°

(b) source P 85’2 R :S: . C(—)a A detector
0° 45°0° cees 0°45° 0°

Fig. 9.6 Dual-phase-modulation Mueller-matrix ellipsometers: P, C, S and A denote the polariz-
ers, compensators, samples and analyzers, respectively. The arrows indicate the modulated com-
pensators and the angles specify the fixed positions of elements owing to the plane of incidence

thin films, imaging spectroscopic ellipsometry (ISE) is suitable. In this ellipsometry,
the CCD cameras are utilized as detectors. Small areas on the samples correspond
to individual pixels of the CCD camera used. This means that local ellipsometric
quantities can be measured for these small areas. If it is possible to assume that
the small areas on the samples are uniform in optical quantities, one can apply
the formulae valid for uniform thin films at processing the local experimental data
measured by the individual pixels. After processing these local experimental data
one obtains distributions (maps) of the quantities characterizing the non-uniformity
of the thin film samples. The ISE can be applied by means of all the ellipsometric
techniques presented above. Of course it can also be achieved by using the other
ellipsometric techniques, such as the technique based on rotating compensator.

The ISE has been applied in practice to the optical characterization of many
layered systems. For example, the ISE based on the PCSA configuration with a
rotating compensator was utilized for the optical characterization of a SiO,/Si nano-
film stepped layer pattern in the visible range [29]. In [30], it was shown that the ISE
is a versatile tool for investigating the uniformity and spectral dispersion functions
with extreme lateral resolution for ITO-films. Monochromatic imaging ellipsometry
was even used within in-situ mode in [31].

Within the imaging ellipsometry, there is a potentially promising method based on
simultaneous processing of all the experimental data corresponding to the individual
pixels. This method can be called multipixel ellipsometry. It is a modification of the
multisample methods of spectroscopic ellipsometry and spectrophotometry utilized
for a simultaneous processing of experimental data measured on different samples
differing in values of some parameters (e.g. in thicknesses of the films, see e.g.
[32-34]). The multisample methods improve the results of optical characterization
because the correlations among the parameters sought are reduced or removed. The
same effect can be achieved by multipixel ellipsometry since the local data measured
by the individual pixels correspond to different values of some parameters sought (e.g.
different local thicknesses). However, within the multisample modifications, several
samples of the same layered system must be used while the multipixel ellipsometry
can be applied to a single non-uniform sample because the local experimental data for



9 Ellipsometry of Layered Systems 257

all the pixels are obtained simultaneously. This represents a considerable advantage
of this method. Note that the multipixel method was successfully applied to the optical
characterization of non-uniform ZnSe thin films by means of imaging spectroscopic
photometry in papers [35, 36] (see also Chap. 5).

9.4 Applications

In this section, examples of applying the matrix formalisms in optics of thin films
are presented.

9.4.1 Approximation of Reflection Coefficients
of Inhomogeneous Layers

One of the applications of the matrix formalism for isotropic layered systems is
a derivation of the approximate formula for the reflection coefficients of isotropic
inhomogeneous layers. It will be assumed that the inhomogeneous layer has a profile
of the refractive index represented by a continuous function 7(z) of the coordinate
z corresponding to the axis perpendicular to the parallel boundaries. The inhomo-
geneous layer is surrounded by the ambient and the substrate. An approximation of
this inhomogeneous layer is represented by a layered system consisting of a suffi-
ciently large number of thin homogeneous layers [37]. The system transfer matrix is
expressed by (9.36).

Due to the large number of thin films in the layered system, the refractive indices
of the media adjacent to the inner boundaries are mutually very close. Then the
matrices W ;in (9.32) can be expressed as follows:

0 _AY
Wj =1+ Sj, where Sj = AV 2 . (9.85)
- _ah g
27;

The symbol I denotes the unit matrix and A? j = f’j — IA/ j—1. The system transfer
matrix can then be written as

P=W2ZW,,;, where Z=U,d+8)0,---A+8)0,. (9.86)

The Fresnel reflection coefficients are calculated from the elements of the matrix Z
using the formula (9.37) as

rnZy+rripZion+Zo+ripZy
Zy+riZin+rZoyg +rirpe1Zo

(9.87)

P =
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where Zj are the elements of the matrix Z. The symbols 7y and 7, denote the
Fresnel reflection coefficients for boundaries that separate the inhomogeneous layer
from the ambient and substrate, respectively. If the elements of the matrices K j are
sufficiently small it is reasonable to organize the terms in (9.86) into a perturbation
series as:

where the number of 8 j matrices in each term determines the perturbation order.
The dots at the end represent the terms consisting of matrix products with more than
two & ;j matrices. It is convenient to denote the products of U, matrices (9.35) by the
symbol U j.k defined as:

-1 —1(Xk X/) 0 R j—1 .
=UU = iy | where ijnga. (9.89)

Using this notation, the perturbation series (9.88) can be written as:

L

L
Z=U .+ Zﬁ1,j5jﬁj,L+1 Z Zﬁ i A, U804+ (9.90)
= =3 j=

In the limit of an infinite number of layers L — oo, the discrete indices in (9.90)
and (9.89) become continuous variables and the sums are replaced by integrals. The
result of this limit is given by:

h
Z =U(Q,h) —l—/ U(0, 2)8(z)U(z, h) dz
0
h 2, n N n n
+ / / 00, 203001, 22)8(z) 0. h) dzidzs + -+ (9.91)
0 0

with / being the thickness of the inhomogeneous layer. The matrix functions 3(z)
and U(zy, z,) are given as:

iR % ¥'(2)
R e—iX (@)X (@) 0 R 0 -
= N N = . (2)
U(z1,22) = ( 0 sike—fe | 3(2) _ra g , (9.92)
2Y(z
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where the symbol ?/(z) denotes the gerivative of the admittance f’(z) with respect
to the coordinate z and the function X (z) is defined as:

N 2 z R 2 z
R(z) = Tﬂ / A() cos (7)) de’ = Tﬂ / JA2(@) —ndsinpdz,  (9.93)
0 0

where 7 (z) denotes the refraction angle in the inhomogeneous layer. The expression
for the admittance Y (z) is different for the p- and s-polarization:

_ @ % (z2)
cos (2) JA(z) —n}sin?
Y (z) = Ai(z) cos U(z) = /n2(2) — n} sin?¢  for s-polarization. (9.95)

Performing the matrix products in (9.91), the result up to the second order is given

Y(z) for p-polarization, (9.94)

as follows: R R
R -iXW L p _elX(M) |
2 e (9.96)
—e1X( )11 eiX( )(1 + D,)
where the first order corrections are given by the integrals
P (" Y@ ik SR (G
I :f —— el X @ 7, 12=f ———e X@ gz, (9.97)
0 2Y(2) 0o 2Y(z)

and the second order corrections are given by the integrals
h % % . .
bl = / /Zz Y:(Zl) _Y:(ZZ) e 21X (@) +2iX(z2) dzydzs,
0 Jo 2Y(z1)2Y(22)

. h 2 ?/ ?/ = .
D, = / / A(Zl) A(ZZ) e2iX () —2iX(z2) dz;dz,. (9.98)
o Jo 2Y(z1)2Y(22)

The Fresnel reflection coefficients are calculated from the elements of the
matrix (9.96) by means of the formula (9.87).

The foregoing formulae for the reflection coefficients of the inhomogeneous layers
take into account the approximation up to the second order, i.e. the integrals of the
first and second orders occur in these formulae. The similar formulae for higher order
approximations, i.e. for the higher order integrals, can be derived in the same way.
Note that the derivation above was based on the calculations presented in [38].
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9.4.2 Uniaxial Anisotropic Layer

In this section we will use the Yeh matrix formalism introduced in Sect.9.2.4 to
calculate the Fresnel reflection coefficients for the system consisting of an anisotropic
layer surrounded by isotropic ambient and isotropic substrate. Only the simplest case
of uniaxial anisotropy with the optical axis perpendicular to the boundaries will be
considered in the medium forming the layer.

The coordinate system will be chosen such that the x—z plane will be the plane of
incidence and the boundaries will be parallel to the x—y plane. The dielectric tensor
describing the anisotropic film is given as:

&% 0 0
E=10%60 (9.99)
00 é&

In the anisotropic media, the wave equation is solved using (9.44)—(9.46). The equa-
tion (9.46) simplifies, in the case of uniaxial anisotropy, to

k38, — k2 0 ok, E,
0 keo—kX—k> 0 E, | =0, (9.100)
-k 0 k3e. — k) \E.

where IEX = ko singp. The condition of the vanishing determinant of the matrix
in (9.100), which ensures that this equation has nontrivial solution, leads to the
following quartic equation for k:

kG (k3Eo — k2 — k) (k3BoBe — Eok? — 8ck2) = 0. (9.101)

The solution of (9.100) and (9.101) gives the following wavevectors and polarization
vectors of the electric and magnetic fields

]}1 = (k\xa 0, ic\e,z)» ﬁ] = &_l(éek\e,z, O» _éolzx)y él = &_l (0 kééoée» 0)7

ky = (ko) 0, —ke), Po=a "(Eekes, 0,80ky), Gy =G0, —k3202c, 0),

ks = (ke,0, ko), P3=1(0,1,0), 43 = (—ko, 0, ky),

ky = (ke 0, ko), Py =(0,1,0), G, = (koz, 0, k), (9.102)
where

~ 2A N A7 £~ 2A r
ke, =\ k§éo — Eo/Eck2, ko, =+ kyéo — k2,

&= \/kgéoég + (82 — Bofo)k2. (9.103)
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In (9.102) the indices 1 and 2 correspond to the right- and left-going extraordinary
waves and the indices 3 and 4 correspond to the right- and left-going ordinary waves.
In the case of uniaxial anisotropy considered here, the extraordinary and ordinary
waves correspond to the p- and s-polarized waves, respectively, i.e. with the electric
field parallel or perpendicular to the plane of incidence. Note that because the quartic
equation (9.101) has four different roots, the polarization vectors are determined
uniquely up to a sign. If some of the roots were degenerated (double roots), then
there would be infinitely many choices of polarization vectors corresponding to these
degenerate roots. The double roots are encountered, for example, in isotropic media
or for waves propagating along the optical axes in anisotropic media. In isotropic
media there are always two double roots and it is customary to choose the polarization
vectors such that they correspond to the p- and s-polarized waves.
The matrices D (9.58) and T (9.54) are given as:

boke,/& Bekes/@ O 0O e 0 0 0
b k3Eofe /G —k3E0Ee/@ O O | © eide 0 0
0 0 J . 0 0 e o |’
0 0 _ko,z ko,z 0 0 0 ei(;"
(9.104)

where ¢A)e = hlze,z, ¢A>O = hlzmZ and the symbol 4 denotes the thickness of the film.
The Yeh matrix of the whole system (9.60) is equal to

X = D;'DTD'Ds, (9.105)
where the matrices Dy and Dg corresponding to the isotropic ambient and substrate

are given by (9.67). It is convenient to calculate the product of matrices DTD ' i
the middle of (9.105) separately:

cospe  —ilkoYe) ! sin e 0 0
BiDH-! — —iko)?e sin dge cos ¢36 0 R 0
0 0 cos ¢, 1(k0Y )~ sin ¢0
0 0 iko ﬁ, sin (ﬁo cos ¢U

(9.106)
where Y, and Y, are the admittances corresponding to the extraordinary and ordinary
waves:

. kobe o ko
y, = X% ¥, = oz (9.107)

L

Note that the 2 x 2 blocks on the diagonal are very similar to interference matrices
introduced in (9.39). All the matrices (9.106), (9.67) in the product (9.105) have a
block diagonal structure with nonzero elements only in the the 2 x 2 blocks on the
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diagonal. Therefore, the Yeh matrix of the whole system must have the same block

diagonal structure and the nonzero elements of the Yeh matrix (9.105) are:

X ko ks. [ & Ys,p Ve Ysp\|
X === L cosge | 1+ 7 —isinge [ =—— + P
2ko: ks Yop Yo /|
. 1k k P Tsp)]
X12:—A—0i cos¢e 1-—- —1sm<]>e A—e—ﬁ )
2 ko ks Yo Y. /]
. 1k k NSRRI
X21_—A0 ASZ cosge |1 — +isinge | =— — >,
2ko: ks Yop Yo /|
o1k ks, NSRRI
Xy = = 2 f cos e +isinge (== + =2 )|,
2ka ks [ Yop Yo /|
A 1 fo ?S S ]
X33 == |cos, [ 1 + —ising, | —— 4+ —=
2 Yos 0,s Yo i
.1 Yo o Pss)]
X3 = = cos¢0 1 — —isin ([50 — — AS'S
2 Yos 0,s Yo i
~ 1 ),} ),}S s ]
X4 = = | cos ¢0 1-— +isin qbo ~— — &
2 Yos 0,s Yo i
X Yo o Psi)]
X4y = = | cos (,bo 1 + ~ +1isin ¢0 ~— + f‘s (9108)
L YO,s 0,s Y, i

where the admittances of the ambient i}O,s’ 1?0,1, and the substrate f’s_s, )A’s,p are defined
by (9.28). The meaning of the symbols ko, lgo,z, ks and I%s,z is the same as in (9.67)
with the subscripts 0 and S corresponding to the ambient and substrate, respectively.
The Fresnel reflection coefficients are calculated as (9.64):

fl,s + ;2,se2l¢u

A A~ 2id

A Tip+rpe i9e
A A S

1 + 7y 47 5%

Tpp =

Iss fps == ;Sp = 0, (9109)

L+ 7y pfs pe?ide

where the Fresnel reflection coefficients 7| ,, 71 s for the boundary between the ambi-
ent and anisotropic film and the Fresnel reflection coefficients 7, ,, 7, s for the bound-
ary between the anisotropic film and substrate are defined as:

A~ YO,p - Ye A e — ISp A~ YO,s - Yo A~ Y YS s
Np= %"=, Np== ~— I'ls = X ~, Is= =%
YO,p + Ye e 1+ S.p YO,s + Yo Y + YS S
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The foregoing formulae for the Fresnel reflection coefficients are in coincidence with
those presented in the monograph [1].

9.4.3 Reflection and Transmission of Light by Transparent
Slabs Covered with Layered Systems

Often, one needs to carry out optical characterization of the layered systems placed
on substrates formed by transparent slabs with parallel boundaries. Generally, it is
possible to assume that the layered systems are present on both the lower and upper
boundaries of the slabs. The presence of the transparent slabs makes the optical
characterization of the layered systems more complicated because of the reflections
inside the slabs (see Fig. 9.7). If the slabs are sufficiently thick (compared to coherence
length of light), the inner reflections in the slab must be described as incoherent
superposition of light intensities. This can be achieved using the Stokes—Mueller
matrix formalism. In this formalism, the reflection and transmission of light by the
slab covered with layered systems are described by the Mueller matrices R and T.
These matrices contain the information about the reflectance and transmittance as
well as the information concerning the ellipsometric quantities. The Mueller matrices
R and T can be expressed as a sum of Mueller matrices corresponding to the paths
of the individual beams in the following way:

00
R =R, + T,UR,U |:Z(R’,U’R2U)”:| T, 9.111)
n=0
00
T = T,U |:Z(R’1U’R2U)":| T, 9.112)
n=0

where R;, R} and T, T, are the Mueller matrices describing the reflection and trans-
mission of light by the layered systems placed on the upper (j = 1) and lower (j = 2)
boundaries of the slab, respectively. The quantities without the primes correspond to
the light wave incident from the top while the primed quantities correspond to the
light wave incident from the bottom (see Fig. 9.7). The matrices U and U’ describe the
influence of the slab if the light wave travels from top to bottom and in the opposite
direction, respectively. The infinite sums of matrices in (9.111) and (9.112) can be
calculated as follows:

o0

Zs"=1+s+ss+...=(1_5)—‘, 9.113)
n=0

where S = R|UR,U.
In the simplest case, the slab is formed by an isotropic medium. The matrices U
and U’ are then identical and proportional to the unit matrix, i.e.
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Fig. 9.7 Schematic diagram R

of multiple reflections inside
the slab
\\ '

o 2

U=U=UL U=exp [—Zkolm (ﬁs cos I}S) hs] , 9.114)

where ng is the complex refractive index of the medium forming the slab, hg is the
thickness of the slab and v is the complex refraction angle in the slab. The scalar
quantity U describes the attenuation of the waves passing through the slab. If the slab
is anisotropic then the expressions for the matrices U and U’ are more complicated.
In general, they are mutually different.

In practice, the stress caused by the layered systems placed onto the boundaries of
isotropic slabs often induces weak artificial anisotropy in these slabs. It is reasonable
to assume that this weak anisotropy has a negligible influence onto the values of
the Fresnel reflection and transmission coefficients of the boundaries of the slab.
However, this anisotropy has a non-negligible influence on the phases of waves
propagating inside slabs. In a special case of anisotropy with each principal axis
lying either in the plane of incidence or perpendicular to the plane of incidence,
this results in a phase retardation between the p- and s-polarized waves. This phase
retardation can be described by means of the Mueller matrix C(8) corresponding
to the special Mueller matrix (9.23) for transmitted light with 7, = 1 and 7, = €',
where § is a small retardation angle. The matrices U and U’ are then given as:

10 0 0
01 O 0
0 0 cos(8) —sin(6)
0 0 sin(8) cos(d)

U=U =UC®), where C()= 9.115)

Of course, the retardation angle § depends on the elements of the dielectric tensor
describing the anisotropy, wavelength of light, incidence angle and the thickness of
the slab.

The formulae (9.111) and (9.112) describe only the depolarization caused by
multiple reflections inside the slab. Often it is also necessary to take into account the
depolarization caused by other effects discussed in Sect.9.2.2. In this case the sums
in (9.111) and (9.112) must be performed first and the formula (9.21) is then applied
to the resultant matrices R and T. The situation is relatively simple if the special
form of the Mueller matrix described by (9.23) and (9.24) can be employed (e.g. for
optically isotropic systems).
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Fig. 9.8 Schematic diagram ) detector
of experimental setup in *“ght source ;

which only part of reflected

light beams is registered by p
the detector “aperture '

sample

It is evident from Figs. 9.7 and 9.8 that the outgoing light beams corresponding to
different paths of light inside the slab are mutually shifted. If the slab is sufficiently
thick, these shifts can not be neglected and the finite size of the detector aperture
must be taken into account. Since each term in the sums in (9.111) and (9.112)
corresponds to a particular path of light in the sample, it is possible to incorporate
this phenomenon by multiplying each of these terms by a factor that expresses the
fraction of the light intensity registered by the detector for a given outgoing beam.

It should be noted that an influence of depolarization, including an induced
anisotropy and thickness non-uniformity in the transparent slab, must often be taken
into account when performing the optical characterization of the layered systems
covering these slabs. Of course, the influence of the finite size of the detector aper-
tures of the ellipsometers discussed above must also be considered.

9.5 Conclusion

This chapter briefly describes principles of ellipsometry needed for the optical char-
acterization of the layered systems.

In the first part of this chapter, the matrix formalisms usable in ellipsometry of
layered systems are presented. These matrix formalisms allow us to formulate the
theoretical results in an efficient and concise form. The Jones and Stokes—Mueller
matrix formalisms are used to describe the theoretical principles of ellipsometric
measurements. Two other matrix formalisms applicable to calculation of optical
quantities of layered systems are also presented. One of them is applicable to the
systems consisting of isotropic layers and the other formalism, called the Yeh matrix
formalism, is applicable also to systems containing anisotropic layers.

In the second part of this chapter, the basic types of ellipsometry, i.e. conventional
ellipsometry, generalized ellipsometry and Mueller-matrix ellipsometry, together
with three frequently utilized ellipsometric techniques, i.e. null ellipsometry, rotating
analyzer (polarizer) ellipsometry and phase-modulated ellipsometry, are introduced.
The other ellipsometric techniques such as the rotating compensator ellipsometry,
oscillating-analyzer ellipsometry, return-path ellipsometry, etc., were not described,



266 1. Ohlidal et al.

even though they are frequently applied for the optical characterization of the lay-
ered systems. Modern imaging ellipsometry was also briefly discussed. It should
be noted that some types of ellipsometry that are used in practice were not men-
tioned here. One example is immersion ellipsometry employed in monochromatic
or spectroscopic modes (within immersion ellipsometry the values of the refractive
index of the ambient are varied by means of immersion of the samples into vari-
ous non-absorbing liquids, such as acetone, toluene, chloronaphthalene, etc.), see
e.g. [39-41].

The chapter concludes by the presentation of three selected applications of the
matrix formalisms introduced in the first part, i.e. by deriving the approximate expres-
sions for the reflection coefficients of the isotropic inhomogeneous layer, the formu-
lae for the reflection coefficients of the uniaxial anisotropic layer placed onto the
isotropic substrate and the formulae for the reflection and transmission of light by
transparent slabs covered with layered systems. These examples illustrate the prac-
tical use of the corresponding matrix formalisms.
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funded by Ministry of Education Youth and Sports of the Czech Republic.
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Chapter 10
Optical Characterization of Thin Films
Exhibiting Defects

Ivan Ohlidal, Martin Cermék and Ji¥i Vohanka

Abstract In this chapter the influence of the main defects on the optical charac-
terization of thin films is described. These defects are random roughness of bound-
aries, thickness non-uniformity, optical inhomogeneity corresponding to refractive
index profiles, overlayers and transition layers. The theoretical approaches and the
formulae for the corresponding optical quantities of the thin films exhibiting these
defects are presented. The attention is concentrated on the ellipsometric parame-
ters and reflectance of these thin films belonging to the specular reflection. The
selected numerical examples illustrating the influence of the defects are introduced.
Several experimental examples of the optical characterization of the thin films with
the defects are also shown. The discussion of both the numerical and experimental
results is carried out too.

10.1 Introduction

Thin film systems occurring in practice exhibit various defects. These defects often
influence the optical properties and optical characterization of these systems in a non-
negligible way. Results of their characterization can be misrepresented if the defects
are neglected. Therefore, it is necessary to employ methods allowing us to include
these defects into optical characterization of thin films. Including the defects requires
their incorporation into structural models of the corresponding thin film systems and
using a suitable theoretical approach mathematically describing the influence of
these defects. The creation of correct structural and dispersion models of the layered
systems is the basic condition for their reliable and precise optical characterization.
The five most frequent defects occurring in practice are: random surface (boundary)
roughness, area non-uniformity, optical inhomogeneity represented by profiles of the
complex refractive index across the films, transition layers and overlayers.
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In this chapter, both the theoretical and experimental features of the methods for
the optical characterization of the thin films with defects mentioned above will be
presented. Several typical examples of the thin films exhibiting the defects or their
combination will be utilized for experimental illustration.

10.2 Quantities for the Optical Characterization

For the optical characterization of thin films, spectroscopic ellipsometry and spectro-
scopic photometry are used most frequently. Therefore, the spectral dependencies of
ellipsometric parameters and spectral dependencies of reflectance or transmittance
of these films are employed for this purpose. In the specular direction the reflectances
are defined as follows:

R, = qu;‘, qg=p,s, R=rr", (10.1)

where 7, and 7, are the complex Fresnel reflection coefficients for p- and s-
polarizations at the oblique incidence, respectively. The symbol R denotes the
reflectance at normal incidence (7 = 7, = 7). In specular reflection the ellipsometric
parameters are defined by means of the ellipsometric ratio ¢ = 7, /7, in the following
way [1, 2]

0 = tanye'®, (10.2)

where i and A are the azimuth and the phase change, respectively. Ellipsometric
parameters ¥ and A are measured within null ellipsometry while tan ¢ and cos A are
measured within rotating-analyzer ellipsometry and rotating-polarizer ellipsometry.
Within phase-modulated ellipsometry, the associated ellipsometric parameters I, I;
and I, are measured. They are defined as [1, 3]

e P o o S A R

_ p
|’§s|2+|;p|2, |rs|2+|rp|2

— s s 10.3
RET IR (103)

¢ n

Note that the other ellipsometric quantities can also be utilized for the optical charac-
terization of thin films. In transmitted light, the ellipsometric parameters and trans-
mittances are defined by means of the Fresnel transmission coefficients of the cor-
responding thin film systems (see e.g. [4, 5]).

It should also be noted that in this chapter, we will deal with the systems consisting
of optically isotropic thin films and substrates. It is also necessary to emphasize
that the foregoing equations are usable for the optical characterization of thin film
systems only if the optical response of the system, i.e. the relation between the
incident and outgoing waves, can be described with the help of the Fresnel reflection
and transmission coefficients in an unambiguous way. In some cases, the relation
between the incident and outgoing waves cannot be completely described by the
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Fresnel reflection and transmission coefficients. For example, if the sample exhibits
area non-uniformity, which will be discussed in Sect. 10.4 of this chapter, or in the
case of samples which depolarize light (see Chap.9).

10.3 Random Roughness of Thin Film Boundaries

Random roughness of boundaries is a defect which occurs in most thin films encoun-
tered within fundamental research, applied research and industrial applications. The
choice of the theoretical approaches applicable for incorporation of this roughness
into the formulae expressing the measured optical quantities of these films depends
on the relations between the linear dimensions of roughness and wavelengths of
incident light.

The utilized theoretical approaches enabling us to include random roughness into
the optical characterization of thin films will be presented in this section. These
approaches cover the whole domain of random roughness having a practical mean-
ing in the thin film characterization. Note that homogeneous and isotropic random
roughness will be assumed in this chapter.

10.3.1 Effective Medium Approximation

If the inequalities 0 < A and T < A are fulfilled then the effective medium approxi-
mation (EMA) can be used to include this fine random roughness into the formulae of
the optical quantities (A, o and T are the wavelength, the RMS value of the heights
of irregularities and autocorrelation length of roughness, respectively). This fine
roughness is often called random microroughness.

Within the EMA, random microroughness of surfaces or boundaries is replaced by
a homogeneous fictitious layer (HFL) with a certain effective thickness and effective
dielectric function (or effective optical constants). The effective dielectric function
can be calculated by the Lorentz-Lorenz (LL), Maxwell Garnet (MG) and Bruggeman
(BR) formulae [6]. These formulae have the same generic formula [6]:

A N 5
£—¢ j—¢
=) Pt (10.4)
e+28 o Tg; + 8+ 28,
where %, &, €;(j = 1,2, ..., N)are the dielectric functions of the effective medium,

host medium, and inclusions of types j in the host medium, respectively, and p;
represent volume fractions of materials of inclusions of types j in the total volume
(the volume fraction is the relative part of the corresponding inclusion volume in the
host medium volume related to the total volume). The symbol N denotes the total
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number of these inclusions. The dielectric function of the effective medium will be
referred to as the effective dielectric function below.

The generic formula (10.4) was derived for mixtures of bulk solids under the
assumptions of spherical inclusion geometry and dipole interaction only [6-8]. Due
to the spherical inclusion geometry, the depolarization factor was taken in the value
of 1/3 at deriving the generic formula. Neither of these two assumptions is rigor-
ously satisfied by random roughness. This fact is a weak point of the EMA at its
application to randomly microrough surfaces and thin film boundaries. In spite of
this fact, the formulae implied by this generic formula (10.4) are mostly utilized
for expressing the optical response from randomly microrough surfaces and bound-
aries (see e.g. [6-8]). A change of the depolarization factor from value of 1/3, i.e.
a change from the spherical inclusion symmetry, is not generally significant [6]. In
the MG approximation one medium is selected as a host medium in (10.4) and other
media are considered to be inclusions into this host medium. Therefore, the MG
approximation exhibits the ambiguity in selecting the host medium for the mixtures
containing two bulk media since the roles of the host medium and inclusion can be
interchanged. In bulk applications, this ambiguity was removed by Bruggeman [9]
who suggested replacing &, with g ie. letting the effective medium itself act as host
medium. Removing of the ambiguity is probably the main reason why the Brugge-
man formula derived by the above mentioned replacement in (10.4) is mostly used
to express optical quantities of the bulk mixtures and randomly microrough surfaces
and boundaries. Note that the LL approximation assuming vacuum as a host medium
is used to describe microrough surfaces only exceptionally. Ellipsometric measure-
ments of smooth and rough surfaces are mostly performed in air. The majority of
these surfaces are then covered with various overlayers. These overlayers are usually
very thin, i.e. they exhibit thickness in nanometric scale (see e.g. [1, 10-24]). Never-
theless, they must be taken into account in ellipsometric studies because ellipsometry
is extremely sensitive to them (overlayers need not only be considered under special
conditions, e.g. at ellipsometric measurements in ultrahigh vacuum). If the overlay-
ers are very thin, it is reasonable to model them by the identical thin films (ITF).
The ITF exhibits the upper and lower randomly rough boundaries that are identical
from both the geometrical and statistical points of view (see [1, 12, 13, 25-27]).
Microroughness of both the boundaries is the same as that of the surface on which
the overlayer is placed. Moreover, it is assumed that the overlayers are continuous,
i.e. overlayers with island character and volume defects are not taken into account.
It is also assumed that the overlayers are optically homogeneous together with their
substrates. When the Bruggeman approximation is employed, the effective dielectric
function is given as follows (see (10.4)):

80—5 2‘0—5 g‘s—g
=~ T PO =+ Ps =
gy + 2¢ &o + 2¢ &s +2¢

Po 0, (10.5)
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where po, po and pg, are the volume fractions of ambient, overlayer and substrate,
respectively. The symbols &g, €o and &s denote the dielectric functions of ambient,
overlayer and substrate, respectively.

By means of the following equations, it is possible to define fictitious thicknesses
corresponding to the volume fractions of the ambient, overlayer and substrate, i.e.

po = hg /by, po = hg/hy, ps = hi/nl, (10.6)

where Al = hfl + h§ + hY is the thickness of the HFL. If the model of the ITF is
used then the volume fractions of the ambient and substrate are usually chosen to be
the same, i.e. hf] = hi.

Equation (10.5) leads to a cubic equation with regard to the unknown effective
dielectric function €. The roots ék, (k =0, 1, 2) of this cubic equation can be found
using the known Cardano’s method. This method allows to find three roots of the cubic
equation from which only one has a physical meaning. The finding of the solution
of the cubic equation together with choice of the physically-meaningful root is a
non-trivial task. It seems that to avoid this complication, some researchers used the
model of the system of randomly microrough surface covered with very thin overlayer
consisting of two layers. The lower layer is the HFL describing microroughness with
the effective dielectric function corresponding to a mixture of vacuum voids and
surface material. The upper layer then consists of a continuous and homogeneous
overlayer. For example, this special model was utilized for a slightly rough silicon
surface covered with very thin SiO, overlayer in [28]. However, such a model is not
completely correct since the material of the overlayer must also be incorporated into
the fictitious layer describing random microroughness.

There is a further problematic point with the EMA based on the HFL. Specif-
ically, it is evident that a distribution of volume occupied by the material forming
the randomly rough surface changes along the normal direction to the mean plane of
this surface. Results of several researchers indicate this fact. For example, Aspnes
et al. [6] showed that the fictitious layer representing random microroughness of the
upper boundary of an amorphous silicon film did not correspond to a homogeneous
layer, but it exhibited a clear density gradient. Therefore, microroughness of this
silicon sample was approximated by two HFL mutually differing in thickness and
an effective dielectric function. Aspnes et al. fitted also the experimental data of this
rough silicon sample by the inhomogeneous fictitious layer (IFL) with the dielectric
function profiles calculated by means of the volume fraction profiles for periodically
rough surfaces corresponding to triangular ridges, hemicylindrical ridges, pyramids,
hemicylindrical pyramids and hemispherical geometry. They employed the theo-
retical results derived for the volume fraction profiles of the periodic models of
roughness discussed above in [29]. After processing the experimental ellipsometric
data of the amorphous silicon sample, they found that the best fit was obtained for
the hemispherical geometry.



276 1. Ohlidal et al.

If the statistical approach is utilized for replacing random microroughness by the
IFL, the profiles of the volume fractions of the individual materials are determined
by a one-dimensional distribution of probability density of the heights of roughness
irregularities wy (z) of the overlayer boundaries. It holds that [30]:

ps(z) = / wi(z)dz7'. (10.7)

For the Gaussian distribution wy(z) is given by

2

1 z

w1(2) Nor s exp < 2(01)2) . (10.8)
The symbols ¢! and ps(z) denote the RMS value of the heights of the roughness
irregularities and function describing the volume fraction profile of the substrate (sur-
face) material, respectively. The symbol w; (z) denotes the Gaussian one-dimensional
probability density of heights of roughness irregularities corresponding to the lower
boundary of the overlayer. Function po(z) describing the volume fraction profile of
the overlayer material is given as

po(2) 2/ wi(Z — hi)dz —/ wi(z)dz (10.9)

where wi (' — h{)) is the Gaussian one-dimensional distribution of probability den-
sity corresponding to the upper boundary and k¢, is the mean thickness of the over-
layer. The function po(z) describing the volume fraction profile of the ambient is
given as follows:

po(2) = f w1 = hp)dz' =1 = ps(z) — po(2). (10.10)

oo

After inserting functions ps(z), po(z) and py(z) into the Bruggeman formula, one
obtains the corresponding profile of the effective dielectric function of the IFL.

The Fresnel reflection coefficients for the HFL are calculated using the well-
known formula for the system of a smooth substrate covered with a single layer (see
e.g. [2-5]). In the case of the IFL, several procedures can be used to calculate its
reflection coefficients (see Sect. 10.5).

After assessing numerical and experimental results available in literature, the
advantages of the EMA approaches can be summarized in the following way:

e The mathematical formalism concerning the EMA approaches is very simple and
its utilization is quite easy in the processing of the optical data. This is why the
EMA approaches are employed very frequently in practice.
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e In spite of the fact that the replacement of the random microroughness by the
fictitious layer is unphysical the EMA approaches allow to partially exclude the
influence of this random microroughness.

e The overlayer thickness is determined correctly and precisely if the RMS value
of the heights or RMS value of the slopes of random microroughness are very
small. One can even determine the spectral dependence of the refractive index of
the overlayer if a simple dispersion model is used.

The limitation of the EMA approaches are as follows:

e The EMA approaches can not describe roughness correctly. In these approaches,
random microroughness is described by the effective parameters such as the effec-
tive RMS values of the heights and effective thicknesses that do not describe the
real properties of this microroughness.

e Within the EMA approaches one can not take into account the scattering of light
caused by random microroughness. Consequently, the EMA approaches are appli-
cable rather for ellipsometry since the ellipsometric quantities are less sensitive
to the influence of scattering losses in the specular direction than the intensity
quantities such as reflectance.

e The expressions for the effective dielectric function used in the EMA approaches
are based on the formulae derived on the basis of the assumptions that are not
completely fulfilled for random microroughness.

e It is very difficult to estimate the conditions under which the EMA approaches
give reasonable results.

10.3.2 Rayleigh—Rice Theory

The Rayleigh—Rice theory (RRT) is one of perturbation theories applicable for
describing interaction of light with randomly rough surfaces and thin films with ran-
domly rough boundaries [31-33]. It is a second-order perturbation theory that can
be used to derive formulae for quantities describing specularly reflected, transmitted
and scatered light. To our experience, the RRT represents a very efficient theoretical
approach for optical characterization of the randomly rough surfaces and thin films
if the following relations are fulfilled: o < A and tan By < 0.1, The roughness cor-
responding to the foregoing inequalities is referred to as slight roughness. Within
this perturbation theory, the Fresnel reflection coefficients 7, (g = p, s) of slightly
randomly rough surfaces are given as follows [33, 34]:

Fg =P + ARy, (10.11)

where f;()) are the reflection coefficients of the corresponding smooth surfaces and
AF, represent the corrections in specularly reflected light calculated as
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oo oo N
AR, = / / fy(Ko, K)W(KL, K,)dK dK,. (10.12)
—00 J =00

The symbols K, K, are the spatial frequencies of the roughness.
K. =K, — (2n/Mngsing,

where ¢ is the incidence angle on the mean plane of the surface and ng = /& is the
refractive index of the ambient. The function fq (K, K,) is a complicated function of
K., K,, A, ¢ and optical constants of media forming the system. The power spectral
density function (PSDF) W (K, K) can be expressed by the Gaussian function

f 02T2 7(K/2+K2)T2/4
W(KX,Ky):?e P HKOT/4, (10.13)

Note that the PSDF can be expressed by other functions of K, and K. The corrections
to the Fresnel reflection coefficients of the multilayer system with slightly randomly
rough boundaries are given as follows [33]:

L+1 L+1

oo [o¢]
AR, = ZZ/OO/m fiig(Ke, K)Wii (KL, K,)dK K, (10.14)

i=1 j=1Y"

where L + 1 is number of boundaries. The symbols W;; (K}, K,) and fi j.q denote
the mutual PSDF of the ith an jth boundaries and functions dependent on K, K,
A, ¢ and optical constants of media forming the system, respectively.

The system consisting of a substrate covered by a single layer with rough bound-
aries is the most frequently occurring in practice. The expressions for A7, of this
system are presented in detail in [33, 34].

Similar formulae can be derived for light transmitted by the single surfaces and
systems with rough boundaries. The RRT can also be utilized for expressing formulae
for intensity of scattered light (see e.g. [33]).

In [35, 36], the formulae for the RRT presented in [33] are modified for small
autocorrelation lengths of slight random roughness. Within this modification, it
is assumed that the autocorrelation length is much smaller than the wavelength of
incident light. For randomly microrough surfaces, this small autocorrelation length
modification is utilized for a comparison to the EMA. However, this modification
must be used with caution since the utilization of the RRT is based on the assump-
tion that the roughness slopes are also relatively small. Therefore, the relation 7 < A
restricts the use of this RRT modification for very small values of o ensuring the
validity of relation tan By < 0.1. In other words, the validity of relation T < A can
imply that the microrough surfaces fulfilling this relation are practically smooth and
so the use of this modification of the RRT is irrelevant for such surfaces. This state-
ment is evident, for example, for the Gaussian roughness because tan Sy = ~/20/T
[1, 12, 13, 37].
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The RRT can also be used for other surfaces such as self-affine surfaces and rough
surfaces exhibiting fractal character [35, 36, 38].

The approaches based on physical principles, such as the RRT, provide a more
suitable alternative to the EMA for the optical characterization of randomly micror-
ough and slightly rough surfaces covered with very thin overlayers. This statement
is also implied by results presented in literature (see e.g. [30]). Of course, the RRT
is also more suitable than the EMA for the layered systems with microrough and
slightly rough boundaries.

In [36], it is stated that the model of the randomly rough surfaces characterized by
a Gaussian PSDF is unphysical. This statement is generally not correct. In practice, it
is often possible to encounter real randomly rough surfaces or boundaries exhibiting
this Gaussian PSDF [39-43].

There are several other perturbation theories applicable for describing the inter-
action of light with slightly randomly rough surfaces and boundaries (e.g. Green’s
function perturbation theory [44, 45]). A survey of the perturbation theories con-
cerning the randomly rough surfaces and multilayer systems is presented in Ogilvy’s
monograph [45] and paper [25].

10.3.3 Scalar Diffraction Theory

If the relations o < A and T >> A are fulfilled, the scalar diffraction theory (SDT)
can be used to derive formulae for calculating the values of the optical quantities of
the corresponding randomly rough surfaces and thin films. Although the theoretical
consideration require the inequality 7 >> A, the real applicability of the SDT extends
even to the situations, in which a weaker condition 7 2, A is fulfilled. The randomly
rough surfaces and boundaries fulfilling inequality 7 >> A are locally smooth sur-
faces and boundaries because at all their points they can be approximated by the
corresponding tangent planes (see e.g. [12, 22]). The roughness corresponding to
the foregoing inequalities is often referred to as the moderate roughness. For the
rough surface the starting point of this theory is given by the Helmholtz-Kirchhoff
integral (HK) [46, 47], i.e.

R 1 . 3G(ro—rp) 4 IE,(rp)
Eq(rQ):E//S |:Eq(r3)$—G(rQ—r3)z—nB ds,

(10.15)
where Eq (r ) and/or E 4 (r o) isthelocal electric field at a point B on the rough surface
and/or the electric field at point Q in the far zone. The symbol d/dn represents a
directional derivative with respect to the normal of the rough surface (the illuminated
part of this surface is denoted as S). The function G is expressed as

N 1 .
G(ro —rp) = ————e Holrersl (10.16)
lro —rgl
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where ky is the absolute value of the wave vector of the light wave propagating in
the ambient and |ry — r | denotes the distance of point Q from an arbitrary point
B on the rough surface (o and rp denote the radius vectors of these points). The
Kirchhoff approximation is employed for expressing the local electric field [47] i.e.

E,(rp) = 1+ D) Eo,(rp). (10.17)

where f;l) are the local Fresnel reflection coefficients on the rough surface and
qu(rg) is given as
Eo (rp) = Agge o, (10.18)

where Aoq and kg are the amplitude and wave vector of the incident monochromatic
plane wave corresponding to p- and s-polarizations. After several mathematical oper-
ations one obtains the following equation for the Fresnel reflection coefficients of
the randomly rough surface 7,;, which corresponds to the specular direction (see e.g.
[12, 22]):

00 coty [e'S) )
Fy = / / / P (@0 20, 20" Wz, i, 2y)d2dzadz,y, (10.19)
—00 J —coty J—00
where u = — (4 /)\)ng cos ¢, z denotes the values of the random function n(x, y)

describing the rough surface, z, and z, represent the values of the derivatives of the
random function 7(x, y) with respect to x and y coordinates within the mean plane,
respectively. The symbol w(z, z,, z,) denotes the three-dimensional distribution of
the random functions n(x, y), n,(x, y) and n,(x, y). Note that (10.19) takes into
account the presence of shadowing among roughness irregularities (see [22, 48]). In
the case of a surface, the local reflection coefficient is independent on z, and therefore,
only the dependence 7, (2, z,) must be included in (10.19). If the random function
n(x, y) is statistically independent on its derivatives, i.e. the heights of the roughness
are statistically independent on the slopes of the roughness, then the formula (10.19)
can be written as:

R [ee] cot ¢
fg=A / f P (2, 2y)Wa (2x, 2y)dzedzy, (10.20)
—00 J —coty
where
A~ o0 .
A:/ ey, (2)dz, (10.21)
—00

where the symbol wy (zx, z,) denotes the two-dimensional probability density of the
values of the derivatives of n(x, y).

The same formula is true for the single ITE. Of course, the expression for
f;l) (2x, 2y) is different from that for the rough surface (see [12, 22]). Formula (10.20)

with the corresponding expression for f;’) (zx, zy) is evidently true for a multilayer
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system formed by the homogeneous ITFs. If the multilayer systems consists of homo-
geneous non-identical films, such as films with correlated boundaries or statistically
independent boundaries, the formula (10.20) is not valid. For such complicated rough
multilayer system, only formulae corresponding to negligible slopes at the bound-
aries have been formulated so far. In multilayer systems with correlated boundaries
and negligible boundary slopes, the reflection coefficients can be written as:

00 00
fq :/ / f;l)(zl,...,ZL_H)CMZ]W(Z],...,ZL.H)dZ]...dZL+1, (10.22)
—00 —o00

where L is the number of films in the system, z ; denotes the values of the random func-
tion describing the jth boundary and the symbol w(zy, ..., zz+1) denotes the L + 1
dimensional distribution function of random functions n; (x, y), ..., n.+1(x, y). The
approximate recursive formulae for reflection and transmission coefficients based
on (10.22) were presented in [1, 49-51]. The exact formulae for the reflection coef-
ficients of the system with the randomly rough boundaries exhibiting negligible
slopes were derived in [52]. If the distribution function w(zy, ..., zz+1) is given by
the (L + 1)-dimensional Gaussian distribution then the following formula is valid
for normal incidence [52]:

) "
p=1
(10.23)

where )A(‘,- =4nn jﬁ j/A, and the symbol i_z‘,- denotes the mean thickness of the jth
film. The remaining quantities are expressed in this way:

m

in(L,p) b . . .
Z Zexp izijj Qp(m)H,(m),
b= m j=I

Tq = T1€xXp <
1

b min(m;,m;_1)

~army—1 m;, nmj m]_l AMj_1—0;] 7. 7y0i prmi—o;
Oy(m) = 717! 1‘[ 3 ()( i L

0;=1

| b b
Hj(m) = exp . D;D;S; ; |,
i=1 j=1
A 4 R R
Dj=— (mji; —mjij1),

Sij = ninj) = 0i0;Ci j,

where o is the RMS value of the heights of irregularities of the jth boundary and C; ;
is the cross-correlation coefficient between the ith and jth boundaries with C; ; = 1.
The elements m ; of the vector m = (my, ma, ..., m) express how many times the
light passes through the layer j downwards, which is the same number it passes
upwards. The summation over m is carried out for all sets of
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mj;>1forl <j<b, mj=0forb <j, and m;+my+---+my =p.

The symbol p represents the total ‘length’ of the path of light through the multilayer
system. The number b < L denotes the path depth which is equal to the highest index
of the media, through which the path passes. The summation over m is expressed as

p—b+1—My p—b+2—M;  p—1—M,_,

D I W o

my=1 my=1 my_1=1

where M; = lezl my; and My = 0. In addition we define mo = 1, m, = p — M;_;
and m; = 0 for j > b. The reflection and transmission coefficients of jth boundary
aredenotedas7;, 77, i, f; respectively. The coefficients without primes correspond to
light incident from the top while the primed coefficients correspond to light incident
from the bottom (7} = —7;, fjf} =1- ff). The symbol o; expresses how many
times the light:

e visits the subsystem from medium j downward,
e passes through the (j — 1)/j boundary from the side of medium j — 1,
e passes through the (j — 1)/j boundary from the side of medium j.

The first point should be understood as follows: the entire path can be divided into
segments contained within media from 0 to j — 1 and segments contained within
media from j downward. The symbol o; is the number of the latter segments. For all
paths and all layer systems for j > b, itholds thato; = m; = 0. For details see [52].

Similar formulae for the Fresnel transmission coefficients of the randomly rough
multilayer systems can also be derived if the boundary slopes are neglected.

Eastman [53] employed the SDT for deriving the formulae for reflection and
transmission coefficients of the multilayer system with randomly rough boundaries
exhibiting the negligible slopes as well. His approach is based on a matrix formalism
in which the random functions describing boundary roughness were incorporated
into phase matrices. The reflection and transmission coefficients, which are given by
ratios of the corresponding system matrix elements, were then expanded into a second
order Taylor series with respect to the random functions. The statistical mean values
of the optical quantities were then calculated using this Taylor series. This means that
the Eastman’s approach is also an approximate approach. Similar matrix approach
based on the SDT was utilized for calculating the changes in specular reflectance and
transmittance of multilayer systems exhibiting randomly rough boundaries in paper
of Carniglia [54]. The formulae describing the diffuse scattering near the specular
beams are also presented in this paper. In [55] the SDT was employed for predicting
the angular distribution of light scattered from multilayer system with randomly
rough boundaries. In [54] and [55] it is shown that scattered light can be used to
characterize the layered systems with rough boundaries. Formulae describing light
scattering from randomly rough surfaces and thin film systems derived using the
SDT are also presented in [25, 45, 47, 56].
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In literature, the approaches based on the vector diffraction theory (VDT) are
presented for the derivation of formulae expressing the optical quantities of randomly
rough surfaces. The starting point of the VDT approaches is the Stratton-Chu-Silver
integral [57]. The formulae for the reflection coefficients of randomly rough surfaces
are presented in papers [1, 58] (in these papers randomly rough surfaces fulfilling
relations among A, o and T presented in this section are studied). The interaction of
light with considerably or very rough surfaces can be described within the VDT as
well, for example, in [45, 56, 58-60].

10.4 Area Non-uniformity of Thin Films

In this chapter the emphasis will be put on the area non-uniformity of the thin films
corresponding to the non-uniformity in thickness. It has to be pointed out that there
is a principal difference between surface roughness and thickness non-uniformity in
optics of thin films. This principal difference is implied by the characteristic lateral
scales of both the defects. The characteristic lateral scale of the random roughness is
from nanometers to tens of microns (such the surfaces correspond to the EMA, RRT,
SDT and VDT approaches). Therefore, the coherent formalism must be employed
to describe the influence of this roughness on the optical quantities. On the other
hand, the characteristic lateral scale of thickness non-uniformity is several orders of
magnitude longer i.e. from millimeters to tens of centimeters. This implies that the
thickness non-uniformity must be described by the incoherent formalism.

The necessity of using the incoherent formalism can be proved by the following
mathematical evidence performed for the normal reflectance of a single thin film with
the thickness non-uniformity [61]. The light beam incident on the homogeneous thin
film non-uniform in thickness has finite dimensions. Therefore, it is possible to use
the SDT for expressing the intensity of reflected light from this film. Within the SDT,
the electric field £ of the reflected light at point (xg, yo) of the detector is given as
follows [62]:

E (xo, yo) = iC / exp [iko (L(x, y) — 2£(x, »))] F(x, y)dxdy, (10.24)
S

where C = Ag/(ALg), Ao is the amplitude of the incident wave, L is the distance
between the center of the illuminated spot on the film and detector, kg = 27 /X is the
wave number, 7 (x, y) is the local Fresnel reflection coefficient of the non-uniform
film on the upper boundary, L(x, y) is the distance of the point in the detector plane
from the point in the illuminated light spot, £(x, y) is the local thickness deviation
from the mean thickness and S denotes the area of the light spot on the upper boundary
of the film.
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Hence, the intensity 7 (xo, yo) at the point of the detector is given as

I (xo, yo) = C? / / exp [iko (Z _T -2+ 25’)] Frdx'dy’dedy,  (10.25)
S S

where quantities calculated at primed coordinates are marked with primes for brevity.
The total detected intensity / is then given in the following way

1 =/I(x0,yo)dx0dy0, (10.26)
SI)

where Sp denotes the detector area. Owing to the spatial distribution of the intensity
diffracted within the Fresnel diffraction [46] and the fact that the areas of the detectors
of spectrophotometers and irradiated spots on the films are sufficiently large, it is
possible to write instead

oo 00
I = / /I(Xo,yo)dXQdyo. (1027)

—00 —00

Substituting (10.25) into the preceding formula and reversing the order of integrations
over thin film and detector planes, one obtains

I= CZ//exp[—Ziko (5 - é’)] Fr* |:f / exp[iko (Z — L,)]dxody0:| dx'dydxdy.
SS —00—00

(10.28)
Keeping only the terms corresponding to the Fresnel approximation in the expansion

of L—T [46], the integral in square brackets can be written as follows:

2_ 2,2 n27F T
exp ikox S b /explli)x’—x deofexp@y’_y vo [dyo
2L Lo Ly '
—00

(10.29)
By taking into account the expression for the inverse Fourier transform of the Dirac’s
delta function and performing the resulting trivial integration. one obtains the follow-
ing final formula for the normal reflectance R of the homogeneous film non-uniform
in thickness:

I 1
_ — | R(x. y)dxdy. 10.30
SAZ S/ (x, y)dxdy ( )
S

where R(x, y) = 7(x, y)7*(x, y) is the local reflectance of this non-uniform thin film.
Similar formulae are valid for oblique incidence of light and for other photometric
quantities corresponding to thin films with thickness non-uniformity.
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The area non-uniformity along the substrates of thin films is a defect present in
many thin films prepared by various technologies. For example, different plasma
chemical technologies produce thin films exhibiting this area non-uniformity. It is
known that disregarding the area non-uniformity when processing experimental data
can lead to misrepresented results due to the deformation of the reflectometric and
ellipsometric spectra. The thickness non-uniformity is the most common type of
area non-uniformity occurring in practice. However, only a few papers have been
devoted to the optical characterization of thin films non-uniform in thickness using
spectrophotometry [63—67] or spectroellipsometry [68—71]. Moreover, these papers
dealt with studies of a special case of wedge-shaped thickness non-uniformity and
a special position of the rectangular light spot owing to the thickness gradient. This
special case corresponds to uniform distribution of thickness, i.e. a thickness distri-
bution density is constant inside a certain interval and zero outside. In the case of a
general thickness non-uniformity, the use of the special formulae corresponding to
the above-mentioned special case is not justified. The possibility of using a general
thickness distribution in ellipsometry is briefly mentioned in [72] but without any
specific examples or applications. The formulae for the optical quantities of the thin
films exhibiting general thickness non-uniformity will be presented below.

It will be assumed that the non-uniform thin films and substrates are optically
homogeneous, the ambient is non-absorbing, the boundaries of the non-uniform
films are smooth and the thickness of these films vary sufficiently gradually along
the substrates, i.e. the films are locally uniform.

The local reflection coefficient 7 (x, y) at normal incidence is given as follows:

F1 + Fexp [i)A((x, y)]

1 + Firexp [if((x, y)] ’

Flx,y) = (10.31)

where 7| and 7, are the Fresnel reflection coefficients on the upper and lower film
boundary, respectively, and X (x, y) denotes the local phase-shift angle at point (x, y).
It holds that

. no—nhp ., A—ns R0x.y) 4, hix. ) (1032)
o= , I = = > X, = —n X, B .
1 o + 1 2 AL+ fis Yy 3 1 y

where 711 and 7ig are the complex refractive indices of the film and substrate, respec-
tively, and A (x, y) is the local film thickness.

Since the local reflectance R(x, y) is a function of the local film thickness only,
the formula (10.30) can be written in the form of an integral over this local thickness,
i.e.

R =/R(h)g(h)dh, (10.33)

where o(h) is the distribution of local thicknesses. It can easily be shown that o (%)
is given as follows [73]:
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1 di
h) = — _— 10.34
e(h) S/c,, |grad h| ( )

where the integration is performed over curves Cj, of constant thicknesses / (contour
lines) and the symbols d/ and grad i denote the length element and gradient of the
function & (x, y) at a given point of the curve, respectively.

For wedge-shaped thin film thickness and an elliptic illuminated spot the distri-
bution density is [73]

i [a2 — (h — E)z]l/z forlh — h| < a,

oy = 7 (10.35)

0 otherwise,

where 7 is the mean thickness within the illuminated spot and 4 — a and & + a are
the minimum and maximum thicknesses, respectively.

The expression for g(h) for some other simple geometrical forms of the upper
boundaries of the thin films non-uniform in thickness are presented in [73]. If the
thickness non-uniformity of the thin films is sufficiently small, one can perform the
Taylor expansion of R(%) around the mean thickness 7 and then consider only a few
terms at the beginning of the series of this expansion. This Taylor expansion is as

follows:
o0

Ry =Y %R(’”)(E)(h ", (10.36)

m=0 "

where R () is the mth derivative of R(h) calculated in the mean thickness %.
After substituting this expansion into (10.33) and exchanging the order of inte-
gration and summation, the following formula is obtained

R=RM)+) %R(’")(E),um, (10.37)

m=2 ’
where u,, denotes the mth central moment of p, i.e.

]

U = / o(h)(h — h)"dh. (10.38)

—00

If only the first two terms of the Taylor expansion are considered, one can write

— ()'2 —
R=R®M) + T‘R”(h), (10.39)
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where oy = /17 is the RMS value of the thickness distribution and R” (h) denotes
the second derivative of R(h) calculated in & = h. Equation (10.39) shows that
in this approximation, the normal reflectance is independent on the shape of the
non-uniformity. The higher-orders terms in the expansion can also be taken into
account. However, the non-uniformities occurring in practice exhibit the thickness
distributions that are often symmetric or nearly symmetric. In this case the third
order term is close to zero and the fourth order term must be considered. This implies
that (10.39) often represents approximation accurate up to o;’.

The polarization states of the light waves are completely described by their Stokes
vectors whose components are given by the total intensity of light Iy and I3, I, Ix_,
I », I, and Iy representing intensities transmitted by ideal polarizers transmitting
the linearly polarized light along the axis tilted with respect to the plane of incidence
by 0, w/2, —m /4, /4 and left and right circularly polarized light, respectively [2,
69] (see also Chap.9). The influence of the sample on the polarization state of the
incident wave is given by the unnormalized Mueller matrix. For a non-depolarizing
sample this matrix can be expressed as follows [74, 75]:

(|fp|2+|fs|2) /2 (lfp|2_|fs|2)/2 0 0
M = (|fp|2_|fs|2)/2 (lfp|2+|;€|2)/2 0 0
0 0 Re (fpf:) Im (fpf:‘) ’
0 0 —Im (fpfs*) Re (fpfs*)

(10.40)
where 7, and 7 are the complex Fresnel reflection coefficients of the sample for
p and s polarizations respectively (|7,| and |7| are the modules of these reflection
coefficients).

If the thin film corresponding to the sample is non-uniform, the matrix M is
dependent on the local position within this film, where x and y are the Cartesian
coordinates in the mean plane of the upper boundary. In this case one must consider
that the intensity detected by the detector corresponds to the value integrated over the
detector area (see formula (10.30)). Then the elements of the unnormalized Mueller
matrix M of the non-uniform film are expressed as

— 1
M = ng(x, y)dxdy. (10.41)
S

If the thin film exhibits thickness non-uniformity one can write M(x,y) =
M(h(x, y)). Therefore, (10.41) can be rewritten as follows:

M= / o(h)M(h)dh. (10.42)

For the wedge-shaped non-uniformity and elliptic illuminated spot the density o (%)
can be expressed as [76]:
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o(h) = [402(¢) — (h — h)?] (10.43)

2n Gtz ()

The RMS value of thickness differences within the illuminated spot ¢; depends on
the angle of incidence ¢ as follows:

2

ol (p) =o; (222—22 + sin? a) , (10.44)

where oy is the RMS value for the normal incidence and « is the angle between
the thickness gradient direction and the plane of incidence. The form of density
(10.43) enables efficient evaluation of the integrals in (10.42) using a Chebyshev—
Gauss quadrature of the second kind (for details see [76]). If the non-uniformity
shape deviates from the ideal wedge this integration method is not sufficient. In that
case, it is possible to parametrize the thickness 4 (x, y) assuming a more general
form, e.g. a higher order polynomial, but this approach has two disadvantages. The
first disadvantage is a large number of non-uniformity parameters that have to be
introduced. The second disadvantage is that the possibility of straightforward use of
a Gaussian quadrature is lost as the thickness density form becomes dependent on
the non-uniformity parameters and also on the angle of incidence ¢. In our paper [76]
we therefore proposed a different approach. Since small changes of the form of o(h)
have only a weak influence on the measured optical quantities (see [73, 76]), the
formula (10.43) for the density is retained. Only the dependence o2 (¢) is expressed
with the help of a general polynomial in 1/ cos?(¢) and the same type of dependence
on ¢ is assumed also for the mean thickness /(¢). The mathematical procedures
enabling us to perform the foregoing steps are described in [76]. As the result of
these procedures the two following equations are obtained:

_ _ h h.
h(@) = hoo + —5 2 (10.45)
cos’gp  cos*g
and 5 5
@) =s0+—S—+——+ . (10.46)
cos?¢p  cos*gp
where Eoo, Em, Ezo, ..., 80,51, 82, ... are used as the parameters instead of the geo-

metrical parameters of non-uniformity. The foregoing equations are then substituted
into (10.43).

The associated ellipsometric parameters I, I., I, measured within the phase
modulated ellipsometry occur in the normalized Mueller matrix M,, defined as [77]

(10.47)

5

o
oo~
&
NN O O
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where My is the reflectance of the sample for the given angle of incidence.

From the foregoing, it is clear that the associated ellipsometric parameters I, I.
and 1, corresponding to the single thin film non-uniform in thickness are given as
follows:

T= i (fff:‘) — (F57s) = (fffs*) + (fi;?s) T = (|fs|2> - (|;:p|2)‘ (10.48)

(I3 + (I17p]%) (I7s]2) + (17p1%)

The angle brackets denote the mean values of the corresponding quantities calculated
using the density distribution (see (10.42)). The values of the parameters hoo. hio,
hag,s - -, S0, S1, S2, ... are then sought at processing the experimental data within
the optical characterization of the thin films non-uniform in thickness.

The influence of non-uniformity of thin films in the optical constants has not
been studied so far. In principle the incorporation of this type of area non-uniformity
can be performed in a similar way as for the films with thickness non-uniformity.
As for investigating thin films exhibiting non-uniformity in the optical constants,
only mapping spectroscopic ellipsometry with a light microspot was utilized for
assessing whether the single films of SiO,C,H, were non-uniform in the optical
constants (see [78]).

The influence of the area non-uniformity on the optical quantities of the multilayer
systems has not been studied so far.

10.5 Inhomogeneity of Thin Films Represented by
Refractive Index Profiles

Within the majority of thin film technologies, great emphasis is put on achieving
homogeneous thin films. Nevertheless, specific applications in thin film optics require
to create inhomogeneous thin films whose refractive indices vary continuously in
a prescribed manner across these films along the axis perpendicular to the parallel
boundaries [79]. In that case, the refractive indices of the films form profiles described
by continuous functions of the coordinate along this axis, i.e. the coordinate denoted
z. Such an inhomogeneity can not be considered to be a defect. However, if the aim
is to achieve the homogeneous thin films, refractive index profiles can be seen as a
defect of these films.

10.5.1 Exact Solutions

It will be assumed below that inhomogeneous thin films are uniform along the sub-
strates and that the boundaries are smooth and flat without any transition layers (sub-
strates are optically homogeneous). This means that the functions of z which describe
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the refractive index profiles are not dependent on the corresponding Cartesian coor-
dinates x and y lying in the plane of the upper boundary. Theoretical approaches
applicable for describing the interaction of light with such inhomogeneous thin films
are presented in [4, 5, 80-83]. Unfortunately, exact solutions in analytical forms are
known only for several profiles of the refractive index n(z) of the inhomogeneous
thin films. For normal incidence of light the profiles corresponding to these exact
solutions are introduced in [79]. They are as follows:

n’(z) = nd — % (n3 —n?), (10.49)

1 z /1 1\ "?
2y | Loz (L 1 , 10.50
v =5 G =) 1o
n(z) = ZUTL (10.51)

- (nL — ny)

In the equations above, the symbols ny, ni. and & denote the refractive index at the
upper boundary, refractive index at the lower boundary and thickness, respectively.
The formulae for the reflection and transmission coefficients corresponding to these
exact solutions are presented in [79]. For the oblique incidence there is an exact
solution for the following exponential profile

z/h
n(z) = ny (”—L) . (10.52)

ny

The refractive index profile expressed in (10.52) can also be written as
n(z) = nyexp (az) , where a=—1n—. (10.53)

The formulae for the reflection coefficients corresponding to this exact solution are
presented in [4, 79, 84, 85] and the formulae for the transmission coefficients are
introduced in [4, 79]. For the oblique angle of incidence the exact solution is also
known for the Rayleigh profile expressed as

1 1 1 1 Z 1 1 1
w2l ) Goa)(Goa) ooy

The formulae for the reflection coefficients corresponding to this exact solution are
presented in [86].

The utilization of the exact solutions is rather limited in practice because most
real inhomogeneous thin films exhibit refractive index profiles considerably differing
from those corresponding to these exact solutions. Moreover, the refractive index
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profiles given by (10.49)—(10.51) do not have exact solutions at the oblique incidence.
Therefore, approximate methods enabling us to derive approximate formulae for
the optical quantities of the inhomogeneous thin films are needed. The majority of
them are applicable for an arbitrary refractive index profile. The most important
approximate methods will be presented bellow. Some of these approximate methods
have been employed in [87-93].

10.5.2 WKBJ Approximation

If the gradient of the profile is very small, it is possible to apply the Wentzel-Kramers—
Brillouin—Jeffreys (WKBJ) approximation (see e.g. [1, 4, 81, 94]). The reflection
coefficients corresponding to the WKBJ approximation are given as

i Pagexp [iY(h)]

1 + FigfaqeXp [i?(h)]

(10.55)

where . R .
. nocos@ — Ay cosyy AL COS Yy — Mg COS Yrg
rlS = A A rZS = N A~ ~ A
1( COS @ + Ny Cos Yy i1, cos Yy + fig cos Yrg
R ngcos Y, —Aycosy AL COS Yrs — Mg COS Yo
Fip = . » Top =7 — —
ng cos Y + ny cos ¢ N, cos Yrs + fig cos Y

n
?(h :Tn/,/ A2(z) — n3sin’ ¢ dz.
0

The symbols 714, 724 (¢ = s, p) and X (h) denote the Fresnel reflection coefficients
of the upper boundary, lower boundary and phase-shift angle of the inhomogeneous
thin film, respectively. Furthermore, from the Snell’s law it follows that ng sing =
ny sm 1//1 = n(z) sin w(z) = ng sin 1//2 = g sin 1//5, where the symbols wl, 1//2, llfs
and Ip(z) represent the refraction angle at the upper boundary, lower boundary,
substrate and variable refraction angle inside the inhomogeneous film, respectively.
Equation (10.55) can be derived easily if one realizes that it is possible to approximate
the inhomogeneous film by a multilayer system containing a large number of sub-
layers with the property that adjacent sub-layers exhibit very small differences in
the refractive indices. The formula (10.55) corresponds to neglecting all internal
reflections on the inner boundaries belonging to the sub-layers and the limit for the
number of dividing sub-layers going to infinity. A similar formula can be derived for
the transmission coefficients of this film.
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10.5.3 Approximation by Multilayer Systems

If the gradient of the refractive index profile of the inhomogeneous thin film is too
large to utilize the WKBIJ approximation, it is possible to use an approximation
based on replacing this film by the multilayer system containing a sufficient number
of sub-layers, as mentioned above. Therefore, in this approximation, the reflection
coefficients 7, of the inhomogeneous film are expressed by the formulae for a mul-
tilayer system. For this purpose, the matrix formalism or recursive formalism [4,
5] can be employed. By using a sufficient number of sub-layers in this system, it
is possible to achieve practically any precision in the calculations of the reflection
coefficients of any inhomogeneous thin film. Thus, by employing this approximation,
it is possible to calculate the values of the reflection coefficients even for the inho-
mogeneous thin films exhibiting large gradients of the refractive index profiles with
required precision. The same statements are true for the transmission coefficients of
the inhomogeneous thin films.

10.5.4 Approximation Based on Recursive Formulae

This approximation was presented in paper of Kildemo et al. [95]. It is based on
recursive formulae for the reflection coefficients of a multilayer system replacing
the inhomogeneous thin film. By subdividing the inhomogeneous film into more
and more sub-layers and applying a recursive process, one can see that the reflection
coefficients can be expressed in terms of single, double, triple and higher-order sums.
In the limit of an infinite number of sub-layers, the sums occurring in the recursive
formulae are replaced by integrals. Then the following formulae are obtained for
inhomogeneous thin films [95]:
- Fig + lig +F1glg Eq + F1gD1g + DogEq + Thg + igTog Eq +--- + E
1+ flq]lq + Ly Eq+ Dy + fquZqEq + fqulq +TyEy+--- + fl(qlgqs’@

where

h h
hy, = / fo@exp[iX@ ] dz, by = / fo@exp[-iX ()] dz,
0 0

h oy
£, = irgexp X0, Diy = [ [ o) fyrexe [X() - X dzay.
0 0
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h oy
by = [ [ i@ fiwew[i¥e - iXo)]azay,

0 0

Z

s 1 A = . 4m \/2/—
fq(Z)_2?q(z)—dz , X() = )\/ (z') — ngsin” ¢ dz,

0

and the optical admittances I?q (z) are given as

. n(z) cos x@(z), s — polarization
Yq (z) = A
n(z)/ cos ¥ (z), p — polarization

The symbols f’]q and f"zq denote triple integrals that can be expressed by means of
double integrals blq and bzq using the recursive formulae presented in [95]. It is
also stated, in the aforementioned paper, that it is sufficient for many refractive index
profiles to include only the single integrals in (10.56), i.e.

i boE, + E,
po= tat b gl By + (10.57)

1+r1q11q +]2qE +quE

In [95], it is moreover shown that the formula (10.56) containing single, double and
triple integrals is sufficient for the inhomogeneous thin films containing complicated
profiles with large gradients. Note that if the terms comprising integrals can be
neglected the WKBJ approximation is obtained.

It should be pointed out that the approximate formulae for the reflection coeffi-
cients of inhomogeneous thin films can also be derived using the matrix formalism
(for details see Chap.9).

10.5.5 Runge—Kutta Methods

These numerical methods are suitable for solving generic ordinary differential equa-
tions [96]. Therefore, they can also be utilized for solving the system of ordinary
differential equations describing the propagation of monochromatic plane waves in
media inhomogeneous along one axis. These methods are often used as reference
methods for the comparison with results achieved by approximate methods for optical
quantities of inhomogeneous thin films (see e.g. [95]).
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10.6 Overlayers and Transition Layers

Overlayers and transition layers are unwanted homogeneous or inhomogenous thin
films occurring in various layered systems. Their thicknesses are mostly in nanome-
ters. These layers can exhibit smooth or rough boundaries (overlayers with randomly
microrough boundaries modeled by the ITF are taken into account in Sect. 10.3.1).

Overlayers and transition layers can be considered as defects of thin film systems.
They are unwanted products of thin film technologies or other miscellaneous pro-
cesses. Overlayers often originate on surfaces of solids or the uppermost boundaries
of thin film systems as native oxide layers or adsorption layers because of an influ-
ence of environmental media on these objects (see Sect. 10.3.1). Transition layers
often appear at boundaries between substrates and films or at boundaries between
adjacent films in layered systems. An example of their origin is mutual diffusion of
materials of thin films adjacent to the boundary. Because of relatively small thickness
of overlayers and transition layers it is considerably difficult to perform their optical
characterization. This statement is true, in particular, if the optical characterization
of overlayers and transition layers must be carried out together with the characteri-
zation of the other films occurring in the multilayer system studied. If overlayers and
transition layers are modeled by the homogeneous thin films then the well known
matrix or recursive formalisms can be used (see e.g. [4, 5]). If these layers are mod-
eled by the inhomogeneous thin films the formulae corresponding to the procedures
presented in Sect. 10.5 have to be used except for the WKBJ approximation which
can not usually be utilized (overlayers and transition layers usually exhibit large pro-
file gradients). If the thicknesses of overlayers and transition layers are substantially
smaller than the wavelength of incident light (2 < A), the Drude approximation can
be employed to calculate the Fresnel reflection coefficients of these inhomogeneous
layers. After applying the procedures presented in [5, 97] one obtains the following
formulae for overlayers placed onto substrates:

no cos ¢ — fis cos Yrs + iko (hnoﬁs oS ¢ cos Y — foh 1%(z) cos? 1/Af(z)dz)

fs = » n n ,
no COS @ + fig cos Yrs + ik (hnoﬁs coS ¢ oS Ys + foh n2(z) cos? w(z)dz)
(10.58)
Ny cos Vs — fg cos ¢ + ikg (nofzs foh cos? Y (z)dz — cos ¢ cos P foh ﬁz(z)dz)
Fp =

no cos Vs + fig cos ¢ + ikg (nofls foh cos? Y (z)dz + cos ¢ cos Ps foh ﬁz(z)dz)

In the foregoing equations, the symbol 7(z) denotes the variable refractive index
inside the overlayer. The same equations are valid for the reflection coefficients
of the overlayers appearing at the uppermost boundaries and for inner transition
layers inside the thin film systems. However, the refractive indices and refraction
angles in (10.58) must be changed accordingly. The Drude approximation was mainly
utilized for the optical description of overlayers (see e.g. [5, 98]).
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Within the Drude’s approximation the similar equations can be derived for the
Fresnel transmission coefficients of overlayers and transition layers.

If the overlayers and transition layers cover randomly rough surfaces or bound-
aries, the approximation corresponding to the IFL and HFL can be used (see
Sect. 10.3.1).

In spite of difficulties in optical characterization of the overlayers and transition
layers, many works devoted to this problem were published (see e.g. [1, 10-24, 41,
99-107)).

10.7 Numerical Examples

In Fig. 10.1 the spectral dependencies of the normal reflectance calculated by means
of the SDT (see Sect.10.3.3) for a three-layer system with rough boundaries are
introduced for illustration (see (10.23) for L = 3). This three-layer system is formed
by the triple layer SizN4/SiO,/Si3Ny on a silicon single crystal substrate. The thick-
nesses of these layers were 150 nm (top Si3Ny layer), 130 nm (middle SiO, layer)
and 100 nm (bottom SizNy4 layer). Optical constants of all materials were taken from
standard tables [108—110]. The boundary roughness of this three-layer system is
described by ten parameters, i.e. by ten independent elements of matrix S or, equiva-
lently, by four o; and six C . It was assumed that the kth layer adds an independent
roughness contribution y,(x, y) of the same RMS value ¢ on top of the (k + 1)th
layer. The heights of irregularities were, therefore, related:

(X, y) = M1 (x, y) + l(x,y) for 1 <k <L, (10.59)
where
(L1, VL1 (x, ) =07, (10.60)
(e, )y (x, ) = 8007, (10.61)
(v (x, Ynp41(x, y)) = 0. (10.62)

The symbol o, ;| denotes the RMS of heights of the lowermost boundary. The symbol
djr is the Kronecker delta. This results in the following values of elements of the
matrix S:

Sik =07, + (L +1—max(j, k)o>. (10.63)

Values o7 1 =10 nm and o =5 nm were used in the calculation.

For comparison, numerical quadrature and ray tracing methods were also utilized
for calculating the spectral reflectance of the system under study. From Fig. 10.1,
one can see that the calculated spectral dependencies of reflectance are practically
identical for all the three approaches employed, i.e. for the approach based on the
series formula (10.23), numerical quadrature and ray tracing methods. Moreover, the
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Fig. 10.1 The solid line corresponds to result obtained by series, integration or ray tracing when
calculated to a sufficient precision. The dashed line represents the approximate method [1, 49-51].
The dotted line corresponds to reflectance calculated for smooth boundaries

approximate formulae presented in paper [1, 49-51] and formulae for the smooth
three layer system were used to calculate the spectral dependencies of the reflectance.
FromFig. 10.1, itis further seen that the approximate formulae provide the reflectance
values that are relatively close to the values obtained by the series formula, numeric
quadrature and ray tracing method. Nevertheless, deviations up to several percent
are noticeable in the short-wavelength region. It is also evident that the formulae for
the corresponding system with smooth boundaries provide inadequate results over
the entire spectral range of interest (see Fig. 10.1).

In Fig. 10.2, the calculated spectral reflectance of SiO, thin films with a wedge-
shaped non-uniformity for several selected values of oy are introduced for illustration.
From this figure it is seen that with increasing the value of oy the contrast of the
reflectance extrema, i.e. maxima and minima, is decreasing.

InFig. 10.3, the comparison of the spectral dependencies of the normal reflectance
for the non-uniform thin film and thin film with randomly rough boundaries is per-
formed. It is apparent that the influence of the thickness non-uniformity on the one
hand and the influence of the boundary roughness on the other hand are strongly
different.

For illustration, the spectral dependencies of the reflectance for normal incidence
are also introduced for two inhomogeneous thin films with a linear profile of the
dielectric function in Fig. 10.4. It is observed that, for the inhomogeneous thin films,
the positions of the maxima and minima changed compared to the homogeneous
film as a consequence of the change in their optical thickness. The values of the
reflectance at maxima and minima of both the inhomogeneous films changed rela-
tively to the homogeneous film. The maxima of the inhomogeneous thin film with
higher refractive index at the upper boundary are higher than the maxima for the
homogeneous film. If the refractive index of the inhomogeneous thin film is higher
at the lower boundary then the maxima are lower than those for the homogeneous
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Fig. 10.2 Calculated spectral reflectances R of SiO; films with a wedge-shaped non-uniformity
for several selected values of oy: the spectral dependence of the refractive index of the SiO; film is
of nsio, = A1 + A2/A%, where A| = 1.4478 and A, = 3621 nm?, the substrate refractive index is
chosen for simplicity with the value of 4 within the entire spectral range and the mean thickness of
the film is assumed to be 500 nm for all the films
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Fig. 10.3 Calculated spectral dependencies of the normal reflectance R of the rough thin film and
wedge-shaped non-uniform film. The spectral reflectance of the rough thin film is calculated using
the formula (10.23) for L = 1 under assumption that C1, = 0, 07 = 20 nm, oo = 25 nm, the mean
thickness /2 = 500 nm. The spectral reflectance of the non-uniform thin film was calculated for
ot = 15nm. The curve corresponding to the thin film without defects is plotted for comparison.
The same optical constants as in Fig. 10.2 were used
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Fig. 10.4 Calculated spectral dependencies of the normal reflectance R of two inhomogeneous
thin films with linear profile of the dielectric function n(z)? = n% — (z/d)(n%J - nf). The curve
1 corresponds to thin film with ny = 1.4478 + 3621 nm? /A%, np, = 1.24 + 2600 nm? /A% and the
curve 2 corresponds to ny = 1.24 4+ 2600 nm? /22, np = 1.4478 + 3621 nm?/A2. The refractive
index of the substrate and thickness of the film are n =4 and & = 500nm, respectively. The
homogeneous thin film is for ny = ny. = 1.4478 + 3621 nm2 /A2

film. The minima of both the inhomogeneous thin films are practically the same and
they are higher than the minima for the homogeneous film. Owing to the fact that the
gradient of the inhomogeneity of both the films is small, the previous statements can
also be obtained by mathematical analysis of the reflectance formula for the inho-
mogeneous thin film corresponding to the WKBJ approximation (see Sect. 10.5.2).
One can see that the influence of the inhomogeneity on the spectral dependencies of
the normal reflectance of the thin films is clearly different from those corresponding
to boundary roughness and thickness non-uniformity.

10.8 Experimental Examples

This section presents four examples of the optical characterization of the thin film
systems exhibiting defects discussed above.

10.8.1 Slightly Randomly Rough Surface Covered with Very
Thin Overlayer

First, we show an example of the optical characterization of a sample with slight
random roughness of silicon single crystal substrate covered with native oxide layer
(NOL) using the EMA and RRT approaches (the NOL represents the homogeneous
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Table 10.1 The values of the parameters determined using the RRT and EMA. The roughness
parameter values determined by AFM are shown for comparison

| RRT AFM | EMAIFL

sample with smooth boundaries

ho[nm] | 3.31+0.05 ho[nm] | 3.5 +0.1
Xell 5.04 Xen [nm] | 4.96
rough sample

ho[nm] | 3.68 +0.05 h}) [nm] | 3.50 +0.08

o[nm]| 5.48+0.01| 4.83+0.02 o![nm]| 0.85+0.03

T [nm] | 52.06 +0.09 |47.8 +0.5
Xell 3.93 Xell [nm] 12.88
dispersion parameters
B 1.41 +£0.01 B 1.37 £0.02
B, [nm?]| 3032+ 160 B, [nm?] | 2199 + 212

overlayer). The rough silicon surfaces were prepared by anodic oxidation under con-
stant voltage followed by dissolution of the grown oxide layers. The NOLs were
created by the interaction of air and the rough surfaces. The experimental data were
composed from the data corresponding to variable angle spectroscopic ellipsometry
and spectroscopic reflectometry applied at near-normal incidence. The sample of
smooth silicon single crystal surface covered with the NOL was also measured and
the experimental data for both the samples were processed simultaneously, i.e. the
multi-sample method was utilized [111-114]. If the EMA was utilized for the optical
characterization only the ellipsometric data were used while both the ellipsometric
and reflectometric data were employed within the RRT. The results of the optical
characterization by the RRT and EMA approaches are presented in Table 10.1. In
the table the symbols o and T denote the RMS value of the heights and autocorre-
lation length found by the RRT (see Sect. 10.3.2). The symbol /¢ denotes the NOL
thickness. The symbols o' and h{) denote the effective RMS value of the heights and
effective NOL thickness corresponding to the EMA approach based on the IFL if the
Gaussian distribution and Bruggeman formula are used (see Sect. 10.3.1). The refrac-
tive index of the NOL was modeled using the Cauchy formula nnoL = Bj + B»/A2
with parameters B; and B, common for both the samples. The optical constants of the
silicon single crystal were taken from literature [115]. The quantity x.; expressing
the quality of the fit of the ellipsometric data is also presented. It is seen that the RRT
achieves much better fit of the ellipsometric data than the EMA approach for the
rough sample. It should be noted that the RMS value of the heights determined using
the EMA approach represents clearly an effective quantity. The results in Table 10.1
support the theoretical statements introduced in Sect. 10.3.2.

In Fig. 10.5 the spectral dependence of the measured associated ellipsometric
parameter I, together with the differences of this parameter from the theoretical
values calculated using the RRT and EMA approaches is shown. It is evident that
these differences are smaller for the RRT than for the EMA approach. In Fig. 10.6
the measured spectral dependence of the relative reflectance of the slightly rough
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Fig. 10.5 Spectral dependence of the associated ellipsometric parameter I, measured for the inci-
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Fig. 10.6 Spectral dependence of the measured near-normal relative reflectance R of the rough
sample and corresponding theoretical curve calculated by the RRT (left). Spectral dependencies of
the refraction index no of the NOL determined by the RRT and EMA based on the IFL (right)

sample together with the fit performed by the RRT is plotted. The relative reflectance
was measured with the smooth sample used as a reference sample. Furthermore, the
spectral dependencies of the refractive index of the NOL determined by the RRT and
EMA approaches are introduced in this figure. A relatively good agreement between
both the dependencies is observed. From the previous, it is possible to deduce that
the RRT is much better in describing slightly randomly rough surfaces covered with
the NOLs than the EMA approach.
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10.8.2 Thin Film with Thickness Non-uniformity, Boundary
Roughness and Overlayer

The method of optical characterization of a selected zinc selenide (ZnSe) thin film
will be presented. It is a thin film deposited by the molecular beam epitaxy on gal-
ium arsenide (GaAs) single crystal substrate exhibiting three defects, specifically
the thickness non-uniformity, roughness of the upper boundary and homogeneous
overlayer. This method is based on processing of single- and variable-angle spec-
troscopic ellipsometry! and near-normal spectroscopic reflectometry. For describing
the optical properties of the ZnSe film and overlayer, the universal dispersion model
is employed [116] (see also Chap.3). The optical constants of the GaAs substrate
were also determined using the universal dispersion model applied to experimental
data obtained for wafers of GaAs covered with native overlayers.

As for the structural model, it is assumed that the thickness non-uniformity of
the ZnSe film is wedge-shaped which was indicated visually. Based on atomic force
microscopy (AFM) studies, it was revealed that the random roughness of the upper
boundary exhibits a wide interval of spatial frequencies. Therefore, this roughness
is modeled by the combination of the RRT and SDT. In this combination, the SDT
describes the roughness components corresponding to locally smooth roughness (low
spatial frequencies) and the RRT describes the roughness components exhibiting
high and moderate spatial frequencies. The overlayer is represented by an ITF. Then
the reflection coefficients 7, of the ZnSe film are expressed by the formula (10.19)
in which the distribution function w(z, z,, z,) corresponds to the random function
n(x, y) describing the low spatial frequencies of the roughness [39]. The local reflec-
tion coefficients 7\ (z, z, z,) correspond to a wedge-shaped film, locally represent-
ing the ZnSe film covered with a thin overlayer. The slopes of this local wedge-shaped
films are given by the derivatives z, and z, and the thickness of the film is h¢ + z,
where Ay is the mean thickness of the ZnSe film [39]. Itis assumed, based on the AFM
results, that these slopes are very small, i.e. tan 8y < 0.01. The reflection and trans-
mission coefficients of this overlayer are calculated using the RRT with the PSDF
corresponding to components of the roughness in the high and moderate range of spa-
tial frequencies. Within the SDT, the Gaussian distribution for the heights and slopes
of the upper boundary was utilized. The PSDF given by the Gaussian function (10.13)
was used in the RRT. In this approximation, the integration over z in (10.19) can be
performed independently on z,, z, with the result expressed as a finite series. The
resulting expression for 7, contains a quadruple integral (double integral over zy, z,
and double integral from the RRT). The Gauss quadrature was found to be efficient
for calculating the double integral over z,, z,,. The double integral corresponding to
the RRT could also be performed quite efficiently by a specially designed numerical
integration method.

Subsequently, the measured optical quantities, i.e. the reflectance R and the asso-
ciated ellipsometric parameters 73, 70, Tn, were calculated by means of (10.33) and

IThe VUV ellipsometric data were measured for single incidence angle (70°) and in the IR, visible
and UV range the ellipsometric data were measured in the variable-angle mode (55-75°).
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(10.48), respectively. Thus, these optical quantities were calculated by averaging over
the local thickness distribution corresponding to the wedge-shaped non-uniformity
within the irradiated spot on the sample (for details see [39]).

Within the processing of the experimental data, it was found that the value of
the autocorrelation length 71, corresponding to low spatial frequencies could not be
determined with a sufficient accuracy. This is a consequence of a low sensitivity of the
ellipsometric quantities to this autocorrelation length (reflectance at normal incidence
is not sensitive to this quantity at all). This is why the value of 71 was fixed at the
value determined by AFM . Owing to the convolution between the roughness and the
tip of the AFM apparatus, it is possible to expect that the values of the autocorrelation
length determined by AFM rather correspond to 71, than to the autocorrelation length
Ty characterizing high and moderate spatial frequencies [117].

In Table 10.2, the values of the structural parameters related to the thickness non-
uniformity are introduced. These values had to be determined for the individual
spectral ranges and instruments separately since the irradiated spots were different
for each instrument. Moreover, it was not possible to ensure the same position of the
spots on the samples in each instruments. The values of the structural parameters of
the roughness and overlayer are also introduced in this table. These structural param-
eters are common for all instruments and spectral ranges. The symbols oy, and oy
denote the RMS values of the heights corresponding to low spatial frequencies and
to high and moderate spatial frequencies, respectively. The values of the roughness
parameters determined by AFM are presented for comparison. The overlayer thick-
ness is evidently larger than the expected value and the value determined in [40].
The typical thickness of the overlayers is roughly equal to 4 nm for the ZnSe films.
Therefore, one can expect that the remaining roughly 6 nm in the thickness of the
overlayer corresponds to microroughness manifested into the increase of this over-
layer thickness. This microroughness could be incorporated into the structural model
of the ZnSe film by means of the EMA approaches. The fact that this microrough-
ness is not included in the total RMS value or = (Gﬁ + UE) 1/2 also explains why the

Table 10.2 The values of the structural parameters related to the thickness non-uniformity (left)
and structural parameters of the roughness and overlayer (right). The spectral ranges are denoted
as MIR (medium infrared), NIR (near infrared), VIS (visible), UV (ultraviolet), VUV (vacuum
ultraviolet). The symbol /¢ denotes the overlayer thickness and symbol o1 denotes the total RMS
value of the heights calculated as ot = (0'1_21 + ULZ)I/ 2. The values are rounded such that the errors
are in the last digit

h¢ [nm] o [nm] AFM
el NIR | 1199.5 32.8 ho [nm] 10.59
el NIR-UV | 1204.7 6.8 o1 [nm] 729 745
el,VIS-VUV | 1211.7 16.8 oy [nm] 4.79
RMIR | 1196.6 329 Ty [nm] 56.77
RNIR | 1196.8 16.9 o, [nm] 5.5 7.45
R,VIS-UV | 1200.9 14.8 Tt [nm] | 608(fixed) | 608
tan Bo,1. 0.013| 0.017
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Fig.10.7 Spectral dependencies of the refractive index n and extinction coefficient k of the selected
ZnSe film

value determined by AFM is larger than the value o7 determined from the optical
characterization (because of the convolution mentioned above the RMS values of
the heights determined by AFM are usually smaller than those determined optically,
see e.g. [41, 117]).

In Fig. 10.7 the determined spectral dependencies of the optical constants of the
selected ZnSe thin film are depicted. The optical constants of the ZnSe single crystal
taken from Adachi [118] are introduced for comparison. An excellent agreement
between the selected experimental data and their fits is seen from Fig. 10.8. This
example of optical characterization shows that it is possible to perform the successful
optical characterization of thin films exhibiting several defects if the combination of
several theoretical approaches and several types of the experimental data measured
in a wide spectral range are employed.

10.8.3 Inhomogeneous Thin Film

The optical characterization of the inhomogeneous thin film of non-stoichiometric
silicon nitride prepared by plasma enhanced chemical vapor deposition onto silicon
single crystal wafer is selected for illustrating the optical characterization of the
thin films exhibiting the profiles of the refractive index. The optical characterization
of this silicon nitride film was performed using phase-modulated variable angle
spectroscopic ellipsometry. The profile of the complex refractive index was modeled
by the linear dependence of the dielectric function, i.e. by the formula (10.49). The
dispersion model of the silicon nitride film with the imaginary part of the dielectric
function g; was used as follows [89]:
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Fig. 10.8 Agreement between the experimental data and their fits for the ellipsometric parameter
I, measured at the incidence angle 70° (left) and the near-normal reflectance R (right)

32Q0%(E — Ey)*(En — E)?
(En — Eg)E?

&(E) = IT(Eg, Ey; E), (10.64)

where Eg, E}, and Q are the band gap energy, maximum energy of transitions and
parameter proportional to the density of electrons. The function IT is defined as:

Ha.bix)y— 11 @=¥=b (10.65)
@7 ZV0 0 otherwise. ’

The real part of the dielectric function was determined using the Krammers—Kronig
transform [119]. It was necessary to search six dispersion parameters describing the
spectral dependencies of the dielectric functions at upper and lower boundaries. The
thickness value had to be searched together with these dispersion parameters.

Two structural models of the silicon nitride film were employed. The first model
assumed a refractive index profile and fine random roughness on the upper boundary
of this film (RPF model). The latter model assumed a refractive index profile and
the overlayer on the upper boundary of the film (OPF model). The roughness of
the upper boundary was included into the formulae for the associated ellipsometric
parameters by means of the RRT. The incorporation of the overlayer represented by
a homogeneous thin film was performed using the matrix algorithm.

The best fits of the experimental data were achieved for both the structural models.
One could not distinguish between these models because their influence on the exper-
imental data was practically identical. It was also impossible to distinguish between
them using AFM . The RMS value of the heights of the roughness was 1.6 nm and the
autocorrelation length was 6.0nm. The thickness value of the overlayer was deter-
mined as 1.9nm. The thickness of the silicon nitride film was found in the value of
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Fig. 10.9 Spectral dependencies of the optical constants for the upper ny, ky and lower np,
k1, boundaries of the silicon nitride film (left). Spectral dependencies of the measured associated
ellipsometric parameters I, I, I, at angle of incidence of 65° and their fits (right)

114.8 nm for the RPF and 113.9 nm for the OPF. It is probable that both the defects,
i.e. fine roughness and overlayer, are partially present onto the upper boundary of
the silicon nitride film under study.

The spectral dependencies of the optical constants of the investigated silicon
nitride film are plotted for the upper and lower boundary in Fig. 10.9. These spectral
dependencies are indistinguishable for the RPF and OPF models. From this figure,
it is evident that the differences between the upper and lower boundaries are larger
for the refractive indices ny and ny than for the extinction coefficients ky and kg .
In Fig. 10.9 the experimental values of the associated ellipsometric parameters are
introduced together with their fits. One can see an excellent agreement between the
experimental data and their fits. This implies that the structural and dispersion models
of this silicon nitride thin film characterized were used in a correct way.

10.8.4 Transition Layers

The two examples concerning the optical characterization of the layered systems
covered with overlayers are introduced in Sects. 10.8.1 and 10.8.2. Therefore, we
will focus on the examples of optical characterization of the layered systems with
transition layers here.

Transition layers between the silicon single crystal surfaces and their NOLs
or thermally grown oxide films are studied in literature most frequently. This is
due to their technological importance and also the fact that this is the simplest
semiconductor-oxide layered system. This is why the results concerning two exam-
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ples of optical characterization of the transition layers of the system mentioned above
will be presented.

The transition layers between silicon single crystal substrates and thermally grown
Si0O, films were studied by monochromatic ellipsometry in [120]. First, the ideal
model of the system Si—SiO, was assumed, i.e. assuming no defects. The dependence
of the refractive index values of the SiO, films was measured as a function of their
thicknesses within a relatively wide interval. Some anomalies were observed for this
dependence. These anomalies were removed if the ideal model was improved by
including weak stress-induced double refraction in the SiO, films and by including
very thin non-absorbing homogeneous transition layers between silicon substrates
and the SiO; films. After processing the experimental data by the improved model, the
following values of the parameters characterizing the transition layers were found
for the selected sample: the thickness of the transition layer was 0.6nm and the
refractive index was 2.8 at A = 546.1 nm. It was also found that the transition layers
were thicker for SiO; films grown at lower temperatures than for SiO, films grown
at higher temperatures. The refractive index values of the transition layers were
independent on temperature of the growth of the SiO; films (for details see [120]).

In [105, 106] in-situ studies of the transition layers between silicon single crystal
surfaces and their thermal oxide films were performed using spectroscopic ellipsom-
etry. The transition layers were again modeled by the homogeneous thin films. The
ellipsometric data were processed by three structural models of the system. The best
results were obtained for the model consisting of four media: silicon substrate, tran-
sition layer, SiO; thin film and ambient. It was assumed that the SiO, films contain
voids with certain volume fractions. The mixing of the voids and SiO, was described
by the Bruggeman formula. The weak stress-induced birefringence of SiO, films
was also incorporated as in [120]. The dielectric functions of the transition layers
were calculated for a physical and chemical mixtures of Si and SiO,. The physi-
cal mixtures corresponded to optically identifiable separate regions of amorphous
Si and SiO,, i.e. microroughness. This mixing was described by the Bruggeman
formula. The chemical mixtures corresponded to combining silicon and oxygen on
atomic scale. The complex dielectric function corresponding to chemical mixing
was calculated by means of the model developed in [121]. Within the four-media
model, the chemical mixtures of the transition layers gave better fits of the ellip-
sometric data than the physical mixtures The best fit of the experimental data was
achieved for the transition layer thickness of 0.7 £ 0.2 nm and average stoichiome-
try of Sig.g+0.1(S102)0.250.1- The transition layer thickness value determined in this
paper is in agreement with that found in [120]. However, it is necessary to note that
in several papers the transition layers at the boundaries between silicon single crystal
substrates and thermal SiO; thin films were not observed (see e.g. [122]).

The transition layers modeled by the inhomogeneous thin films were found at
optical characterization of thin films of zirconia (ZrO,) prepared by vacuum evap-
oration onto silicon single crystal substrates in [88]. In this paper it was observed
that these ZrO, thin films exhibit certain refractive index profiles. In their optical
characterization this profile was modeled by the following function:
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n(z, &) = n. (M) p(z) + nuM)[1 — p@)], (10.66)

where the function p(z) is expressed as

p(z) = et =0 oy Toed e aun . 067
1 —eab 1 —eab
where a, b, ¢ are parameters of the profile and 4 is the thickness of the inhomogeneous
ZrO; film. The function p(z) varies continuously from the value p(z) = O0forz =0
to the value p(z) = 1 for z = h. The spectral dependencies of the refractive indices

ny(X) and np (1) were given by the Cauchy formula as follows:

BU BL
I’lU()\,) = AU + ?, nL()\.) = AL + ﬁ (1068)

All the parameters of the model, i.e. a, b, ¢, h, Ay, By, AL and Br, were sought
within the optical characterization. For determining these parameters the com-
bined method of variable angle spectroscopic ellipsometry and near-normal spec-
troscopic reflectometry was utilized. The matrix formalism was used to calculate
the spectral dependencies of ellipsometric parameters and reflectance. The follow-
ing values of parameters were determined for the selected sample: a = 60 % 14,
b =15.824+0.30,c = 0.560 & 0.066, h = 321.96 & 0.26nm, Ay = 1.610 £ 0.078,
By = (2.91 £0.28) x 10*nm?, Ap = 2.212254+0.0061, By = (6.16 £0.98) x
103 nm?. The refractive index profile of the selected ZrO, film and the spectral depen-
dencies of the boundary refractive indices are plotted in Fig. 10.10. The refractive
index nisy corresponding to depth of 150nm is introduced as well. The spectral
dependence of the refractive index of the ZrO, thin film determined by Chindaudom
and Vedam [123] is depicted for comparison. From Fig. 10.10 one can see that the
substantial part of the ZrO; film exhibits almost constant refractive index which cor-
responds to homogeneous thin film. The region adjacent to the boundary between the
silicon substrate and ZrO; film can be considered as a transition layer with the refrac-
tive index profile (the depth of this region is about 70nm). The region of the ZrO,
film adjacent to the ambient corresponds to the overlayer also exhibiting refractive
index profile (the depth of this region is about 10 nm). It is probable that the columnar
structure of the ZrO, thin films is responsible for the existence of both the overlayers
and the transition layers (as for columnar structure of thin films see e.g. [124—-127]).
The larger packing density of columns close to the substrate corresponds to the tran-
sition layer while the the overlayer mainly corresponds to microroughness formed
by tops of columns (packing density of the columnar thin film is defined as a ratio
of the volume occupied by the columns to the total volume of this film).
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Fig. 10.10 The results concerning the selected ZrO; thin film: the refractive index profile for
A = 600nm (left), the spectral dependencies of the refractive indices (right)

10.9 Closing Remarks

In practice it is possible to encounter other defects of thin films than those presented
here. These defects can also influence the results of the optical characterization.
One of these defects is a columnar structure of thin films usually accompanied with
their porosity. This defect causes the dependence of the optical properties of such
the films on temperature and environmental medium because of the capillary con-
densation in the pores. This can substantially change the properties of multilayer
systems fabricated in optics industry that are utilized in many scientific and commer-
cial instruments. Therefore, many studies of an influence of this defect on the optical
properties of the columnar thin films have been published so far. Results concern-
ing the optical characterization of columnar thin films are presented, for example,
in [124-126, 128-131].

Mechanical stress inside films can induce a non-negligible artificial optical
anisotropy. This artificial anisotropy influences the polarization states of light waves
reflected or transmitted by the thin films characterized and, therefore, this defect
affects the ellipsometric measurements of such films. The photometric quantities
such as reflectance and transmittance of these films are also influenced by this defect.
For the successful optical characterization of thin films with artificial anisotropy, the
choice of the model of this anisotropy is important (see e.g. [132]). The influence of
the induced artificial anisotropy of transparent slabs caused by the inner stress must
often be taken into account at optical characterization of thin film systems covering
these slabs.

An important defect is caused by the existence of local volume inhomogeneities
such as voids and inclusions of materials differing from the host material of the films
studied. If the linear dimensions of these volume inhomogeneities are substantially
smaller than the wavelength of light the EMA formulae can be used to describe their
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influence on the optical properties and optical characterization of these films (see
e.g. [105, 106, 133]).

The defects such as boundary roughness and volume inhomogeneities can cause
scattering of light. The dependencies of the flux of scattered light on various param-
eters (e.g. angles describing the direction of scattered light) can also be utilized for
optical characterization of thin films with these defects (see e.g. [134—136]).

10.10 Conclusion

This chapter describes the influence of the most important thin film defects, i.e.
random boundary roughness, thickness non-uniformity, optical inhomogeneity in
the form of refractive index profile, overlayers and transition layers, on the optical
characterization of the films. The theoretical approaches enabling us to derive the
formulae for the optical quantities of thin film systems exhibiting the defects men-
tioned above are presented. We focused on the quantities corresponding to specularly
reflected light from these systems. Similar formulae and discussion can be presented
for the optical quantities corresponding to transmitted light under assumption that
the substrates are transparent. In the theoretical part of this chapter the influence of
the defects on spectral reflectance of the selected thin film systems is illustrated by
means of several numerical examples. These numerical examples make it easier to
understand the influence of the defects from the practical point of view in photometry.

In the latter part of this chapter, the selected experimental examples of the optical
characterization of the thin films are shown. The examples are chosen so that they
include all the defects discussed in the theoretical part. The examples indicate that
even the thin films exhibiting the combined defects can be successfully characterized.

From both the parts of this chapter, it can be implied that the neglecting of the
defects mentioned above can cause the substantial misrepresentation of the results of
the optical characterization of the thin film systems exhibiting these defects. There-
fore, it is necessary to incorporate them into the structural models of such thin film
systems in practice, in spite of the complications arising from this step. In this chapter
itis also indicated that many sophisticated methods are available for the optical char-
acterization of thin films with defects.
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Chapter 11
Scanning Probe Microscopy
Characterization of Optical Thin Films

Petr Klapetek

Abstract Scanning Probe Microscopy is a technique very frequently used for thin
film surfaces measurements at different stages of their preparation and/or character-
ization. It provides information about the surface morphology and can also be used
to measure locally various physical quantities. In this chapter we discuss typical
quantities measured and evaluated in the field of thin films, which basically consists
of roughness characterization and film thickness determination. The basics of instru-
mentation, related metrology and techniques to perform measurements on large area
to obtain enough statistical information about the sample properties are discussed as
well.

11.1 Introduction

Using a term Scanning Probe Microscopy (SPM) measurement techniques for solid
surfaces characterization that have a common basis - use of a very sharp probe that is
scanned in a close proximity to the studied sample. Various interactions can be used
for preserving the small gap between probe and sample, e.g. keeping the interatomic
forces or tunneling current constant. In top of the local probe position various other
channels of information can be stored. A typical product of any SPM measurement
is therefore a map of surface topography, eventually coupled to a map of some other
physical quantity. The spatial resolution can go the sub-atomic range and in special
cases (especially in UHV applications) atomic lattice can be imaged. After more
than twenty years of development, Scanning Probe Microscopy had evolved into a
widely used tool for surface characterization that is used in many fields of science
and technology.

Optical thin films are only one of many classes of samples that are being routinely
measured using SPM techniques. There are numerous resources about the SPM tech-
niques itself, so in this chapter we want to focus on practical aspects of measurement
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of thin films, based on many years of experiences in SPM measurements for vari-
ous groups working on the field of optics [1-3]. As for any type of samples, also
here are some typical tasks, user wishes and instrument limitations and these will
be discussed here. These are almost entirely related to dimensional measurements.
Note that this selection represents simple and typical tasks in thin films analysis,
not the full spectrum of possibilities that SPM can offer - using various advanced
techniques we could e.g. measure film thermal, electrical, mechanical or even optical
properties. However these advanced measurements are still far from anything like
“routine analysis” and we refer to specific literature about SPM for more details
[4, 5].

The most frequent routine measurement in the field of thin films is related to sur-
face roughness. Roughness originates from nearly any technological operation while
preparing thin films and its knowledge is important to separate its influence on optical
properties during optical characterization (where surface and interface roughness is
one of the important uncertainty sources). As all the SPM techniques provide surface
topography data (see the example of a rough surface on Fig. 11.1a) it is relatively
easy to evaluate the roughness statistical parameters. The only limitation is in scanned
area and density of measured points, which limits the range of spatial frequencies
accessible by SPM measurements; these problems can be partly overcame by large
area measurements and/or advanced sampling techniques as demonstrated.

Apart of statistical properties, there are also dimensional quantities that can be
evaluated directly from the data, like thickness of the film where its edge is exposed
(e.g. due to some masking procedure or due to the film delamination). This is also
frequently requested measurand as it can give an information about the sample thick-
ness that is independent on any optical phenomena, and therefore not affected e.g.
by the refractive index profile across the film. An example of data related to such
SPM task is shown in Fig. 11.1b.

To present the basic aspects of the above mentioned surface measurements using
SPM techniques, we first summarize the technological principles of SPM, focusing

201 nm
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Fig. 11.1 Examples of typical SPM data measured on thin films: a rough surface where roughness
parameters are evaluated, b film edge where film thickness is evaluated mostly
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on the metrology of SPM devices and its capabilities for dimensional measurements
as the absolute majority of the requests in the field of optical thin films is to give
some quantitative numbers about dimensional properties of the sample. Then we
review typical data processing related to extraction of the relevant information from
the measured data.

11.2 Instrumentation

Scanning probe microscope operation is based on use of a very sharp probe (often
called “tip”) that is scanned across the sample surface, using some probe-sample
interaction to keep the probe-sample distance constant via a feedback loop. The most
often used interaction is force, monitored using a optical lever techniques, like that
shown in a sketch of a possible SPM design in Fig. 11.2. Based on the interactions
that are observed, probe selection and scanning regimes we can distinguish some
basic types of SPM measurement regimes:

e Atomic Force Microscopy (AFM) - based on attractive or repulsive forces the
topography is measured, often coupled with analysis of mechanical properties if
samples are soft enough.

e Scanning Tunneling Microscopy and Spectroscopy (STM, STS) - based on tun-
neling current the sample topography and electronic properties are measured.

feedback

head holder mechanism

+ coarse z motion

cantilever holder & cantilever

sample

O coarse stage

base

Fig. 11.2 Schema of a typical scanning probe microscope, using laser deflection for the feedback
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e Conductive Atomic Force Microscopy (cAFM) - in addition to AFM the probe-
sample current is measured, using conductive probe and applied voltage.

e Magnetic Force Microscopy (MFM) - above the topography scan another layer(s)
of information about magnetic stray field are determined using a magnetic probe.

e Scanning Thermal Microscopy (SThM) - using a local heater and temperature
senor thermal properties or temperature of the sample are measured.

e Scanning Near Field Optical Microscopy (SNOM) - using nanoscale light source,
either based on aperture or on a scattering metallic probe the sample is illuminated
to overcome the diffraction limit in classical optical microscopy.

e Tip Enhanced Raman Spectroscopy (TERS) - using plasmon resonance and related
field amplification at sharp metallic tip apex the local Raman spectra are recorded
with nanoscale resolution.

As mentioned in the Introduction, even if the advanced techniques had already
matured to some level of reliability, obtaining quantitative results of local electri-
cal, thermal, magnetic or optical properties is still not trivial task and cannot be
considered as a standard measurement applicable on all the possible samples, with-
out special attention to different caveats and without deeper understanding of the
individual probe-sample interactions and their sensing mechanisms. This is caused
partly by complexity of all the interactions observed in SPM techniques, partly by
lack of good reference samples and intensive research is done in many academic
labs and at instrument manufacturers to improve this state. However, so far, for mea-
surements with metrological traceability (result can be related to a reference through
a documented unbroken chain of calibrations), absolute majority of measurements
is related to dimensions of some objects on the sample surface. This is also where
the microscope principle (acquisition of data by scanning) is most favorable to get
the traceability. Luckily enough, dimensional measurements are what is typically
requested by people working with thin film optics so we can concentrate here on the
very basic technique only, which is the Atomic Force Microscopy.

The AFM, already demonstrated in Fig. 11.2, is constructed of some basic building
blocks that will be discussed separately in the next few paragraphs. Even if details
can vary from manufacturer to manufacturer, the basic functionality of the building
blocks is nearly the same in all the cases.

11.2.1 Probe and Feedback Mechanism

As we discuss here the Atomic Force Microscopy, we are interested in detection
system suitable for monitoring probe-sample forces in the range of pN-uN. Even if
alternatives are possible as well, absolute majority of commercial instruments is using
the optical lever technique for this, based on monitoring the deflection (bending) of a
very soft probe holder (called cantilever) via sensing the shift of a laser beam reflected
from this holder. The spring constant of the cantilever is in range of 0.01-100 N/m
(suited for different scanning regimes) and the cantilever dimensions are in range
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Fig. 11.3 Left: SPM probe geometries: a contact mode silicon nitride probe, b tapping mode silicon
probe, ¢ Focused Ion Beam cut supersharp probe, d colloidal probe for accurate force measurements.
Right: SPM cantilever V shape and I shape geometry

of few hundreds of micrometers. Two typical cantilever geometries are shown in
Fig. 11.3. Probe is integrated into the cantilever (being manufactured together with
it), forming a pyramid or cone protruding from the cantilever, with length of few
micrometers and apex radius of around 10 nm.

A low power laser diode is used to form the beam for cantilever deflection mon-
itoring; the beam is reflected from area near to the cantilever apex and hits the
position sensitive detector located relatively far from the cantilever, which assures
the deflection signal magnification. The position sensitive detector can be formed e.g.
by a quadrant photodiode, which provides four signals from four individual sensors.
Then the signal used for feedback loop is calculated via hardware or software tools
as follows:

_ Urp+Irg — Igr — IgR)
(It + It + IpL + Ipr)

TB (11.1)

where Irp, ITg, IpL, IR, are top-left, top-right, bottom-left and bottom-right pho-
todiode currents.

If this signal is kept constant during the scan, using a proportional-integral-
derivative (PID) feedback loop, we obtain a constant force image, so the position
data from the scanning system can be directly treated as the measured sample topog-
raphy. If the signal is only monitored and sample is not moving in the z direction
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(the “height” direction), we get constant height image which can be converted into
topography using the cantilever deflection sensitivity information, however this sec-
ond approach is not very frequently used in commercial instruments.

Even if we concentrate on the constant force mode only, we still have several
possible variants of detection and scanning regimes:

e In the contact mode the microscope is operating in the repulsive forces regime, so
in fact it is acting like a gramophone needle, sliding across the sample. The forces
are still in nN range so we can treat this still as non-destructive measurement if
we are not dealing extremely soft samples.

e In the tapping mode the interactions are monitored dynamically from amplitude
or phase change of the cantilever excited at its resonant frequency, microscope
operates at the border of repulsive forces and attractive forces (e.g. van der Waals)
and measurement is really non-contact unless a feedback loop fault happens.

e Some of the advanced regimes use combination of both - e.g. individual measure-
ments and evaluation of force-distance curves for both keeping the force constant,
but also detecting the sample mechanical properties and optimizing the contact
force and feedback loop parameters. This is also direction which most of the
manufacturers follow at present in their novel instruments.

11.2.2 Scanners

To realize the probe-sample motion, some kind of positioning mechanism has to be
used. This is called “scanner” and can be used to move either the probe or the sample,
depending on the microscope construction. The absolute majority of instruments is
based on use of piezoelectric elements as scanners, using the very small displace-
ments that can be generated when a voltage is applied on some material like lead
zirconate titanate (PZT). Scanners are manufactured as stacked elements (forming a
rod), moving in one direction only or as tubes, bending in all the directions. If only
voltage applied on the scanner would be used as a position information we would
be facing many principal problems of the piezoceramic scanners (creep, hysteresis,
aging, etc.), so nowadays nearly all the instruments are equipped by a feedback loop
which connects the scanner voltage to some independently measured displacement
signal. From metrology point of view, this would be ideally an interferometer, how-
ever most frequently a strain gauge is used which, together with driving circuit, is
a simple strain-voltage transducer. Any sensor is used and scanner is “closed loop”,
it leads to dramatic increase of accuracy over the older “open loop” systems with
no position feedback. A schematic drawing of different stages with piezoceramic
actuators is shown in Fig. 11.4a.
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Fig. 11.4 Scanner schematics: a—c piezoceramic actuators in different configurations for XYZ
motion and d a voice coils based XY motion system

As we are dealing optical thin films, we are often facing a need of performing
measurements on a larger area, that would be more comparable to areas covered
by optical instruments. Large area Scanning Probe Microscopy is relatively small
field of research, but has very broad potential in metrology of thin films and optical
surfaces. An increase of the range of SPMs above about 100 x 100 jum? is still com-
plicated and very rare as we need to solve various limitations of the SPM architecture.
Piezoceramic scanners have only limited displacement per unit length and cannot
be scaled infinitely without introducing significant systematic errors. Even if we use
some lever technique all the problems are not solved. To reach a spatial resolution
in order of nanometers for scans in a centimeter range using a voltage—displacement
transducer need a 24 bit digital to analog converter and appropriate signal to noise
ratio in the other parts of the electronics leading from the digital part to the trans-
ducer (scanner) e.g. in the high voltage amplifiers for piezoelectric actuators. Not
only scanners, but also sensors are problematic in larger scanning ranges as the most
frequent sensors - strain gauges - are limited to smaller displacements. A possible
solution is using a combination of voice coils (as actuators) with interferometers (as
sensors). Such system, schematically shown in Fig. 11.4d, is capable of performing
measurements on areas up to square centimeters. This actuation principle is used only
in very special instruments so far, however from the point of thin films metrology it
offers many novel possibilities. As an example, in Fig. 11.5 we show a measurement
on a delaminated thin films sample performed using a large area SPM [6].
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Fig. 11.5 Delaminated sample large area measurements performed using voice-coil based scanner

11.3 Metrological Traceability

Many of the SPM measurements in thin film analysis are done for reference purposes
- to determine the film thickness, thickness variations or surface roughness and having
the system properly calibrated is therefore important. From metrology point of view
this means to have the system traceable - all the components characterized by some
other etalons that form a chain of measurements up to primary definitions of the
respective physical units. The uncertainties of the calibration procedures, together
with all the other uncertainties related to the particular measurement can be then
used to establish an uncertainty budget for each data provided by the instrument (a
nice example of this procedure can be seen in [7]). This is however very rare; most
of the instruments used in academic institutions are not properly calibrated and no
special effort is given to uncertainty analysis. As aresult, the data obtained from SPM
measurements are by different users either taken as infinitely correct or as absolute
unreliable, which both is clearly wrong. It is therefore important to follow at least
basic steps of various SPM parts calibration and to understand the basic uncertainty
sources and basic systematic errors.
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11.3.1 Scanning System Calibration

The key step for bringing some metrology to the SPM measurements is to calibrate
the scanning system and to do it periodically. Regarding traceability, there are two
classes of instruments:

e Metrology SPMs are built typically by metrology institutes and are serving as
an etalon for providing traceability for other microscopes. They are equipped by
stabilized lasers that provide the traceability to length units and they are designed
to operate with maximum possible accuracy, often at costs of low speed or limited
range of possible measurement regimes. Traceability of these instruments is based
on calibration of the laser and estimation of all the uncertainty sources.

e Commercial SPMs are designed and built to provide the best possible user expe-
rience, including large number of scanning regimes, speed, automated cantilever
adjustment, etc., however they are not equipped by sensors that could be inde-
pendently calibrated. Traceability needs to be provided via calibration samples,
that user typically needs to purchase separately, namely if they should be really
traceable. As calibration samples, gratings are used for lateral distances, for the
Z axis, step height standards that can be evaluated according to ISO 5436-1 are
available.

For getting the right set of calibration samples or for getting the samples itself trace-
able, SPM probes manufacturers offer various solutions, or you can ask your National
Metrology Institute.

11.3.2 Cantilever Stiffness Calibration

If we measure dimensional quantities, at first sight we don’t need to have our can-
tilever stiffness calibrated, at least if we assume that we are measuring in the constant
force regime and cantilever serves only as a null sensor. Cantilever calibration is how-
ever necessary when we want to know at which force the measurement is performed
or we want to set this force to some value, or when we are performing measurements
using some advanced automated measurement regime (e.g. ScanAsyst by Bruker),
or when we want to estimate some other properties in parallel to dimensional mea-
surements.

First of all, one can not believe the stiffness values provided by SPM tips man-
ufacturer, as these values are only very coarse and evaluated for whole batches of
cantilevers at best; more usually these are only some desired values that can differ
from the real stiffness by tens of percents or even order of magnitude. There are
several ways how to perform the cantilever stiffness calibration:

e Based on dimensional measurements of the cantilever shape we can get only a
coarse estimate — probably similar to what the manufacturer provided as a nominal
value. Assuming that the thickness of cantilever is 7, and the other geometric
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constants are defined in Fig. 11.3, we can then use the following equations [8], to
determine the cantilever stiffness for a cantilever of ‘I’ shape

Ew.t>
.= < 11.2
aL3 (12
and similarly
Ew.t3
ke = ‘ 11.3

for cantilever of a “V’ shape (under assumption that it is treated as two parallel
beams as a simplest approximation). As the bulk mechanical properties that we
would use for evaluation of the stiffness from cantilever dimensions differ from
the real values of thin films forming the cantilever, we can’t expect higher accuracy
than tens of percents [9, 10].

e If we already have a reference cantilever with known stiffness, we can use it as a
tool to characterize an unknown cantilever. If we are able to mount the reference
cantilever in a way that we can press the unknown cantilever towards reference
cantilever (or vice versa), we can estimate the stiffness of our cantilever from
deflection of the reference one and its stiffness; this can lead to a uncertainty
between 10 and 30 % [9, 11].

e We can measure the free resonant frequency of the cantilever, and its dimensions.
This method was reported to give results with an accuracy below 7% when the
dimensions are measured in SEM, which was tested by comparison of method
performance on multiple different instruments [12]. Under standard conditions it
was assumed that the typical uncertainty of this method is in order of 15-20%
[9, 10].

e In many of the software packages the power spectrum method is used, based on
measurement of the thermal fluctuations of the cantilever, treated as a harmonic
oscillator. For this method a 5-25% uncertainty was reported in the literature
[10, 13], depending on cantilever type and measurement conditions.

e Using special device (e.g. a nanoindenter) or a special samples constructed for
these purposes, like MEMS we can obtain the best possible results like 1 %
[14-16], however this is quite complex and costly approach.

Some National Metrology Institutes provide cantilever stiffness calibration as a
service as well, mostly via the special devices route, however it is not so frequent
comparing to calibration of the dimensional reference standards.

11.3.3 Apex Radius Calibration

The most common problem related to the SPM probe and related to all the SPM
techniques, is an artifact known as tip-sample convolution. This effect is typically
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Fig. 11.7 Probe imaged on a microchip surface: a intentionally, multiple tips imaged, b uninten-
tionally, showing even the cantilever end

seen in data when we use a bad (blunt) probe and its characteristic sign are repeated
patterns seen on the image. It can be also observed when we measure a very sharp
spike which in fact images the tip, as shown in Fig. 11.7, either obtained intentionally
on sample designed for probe imaging or unintentionally on a complicated sample.
An illustration of the process how the tip-sample convolution affects the SPM results
is shown in Fig. 11.6. We can see that at some points the surface structures are only
distorted while at some other points the structures are completely hidden from the tip.
There are morphological operations that can describe these processes mathematically
[17] — dilation, erosion and surface reconstruction, and under different names these
are available in many software packages for SPM data processing.

To completely recover the true surface in the presence of tip-sample convolution
artifacts is hard as part of the information might be missing. This is namely true
for measurements on samples with steep slopes or pores [18]. As there are many
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algorithms to simulate the process and to create surface reconstruction at least in
parts of the sample where it is doable, it is important to know the probe shape as
good as possible. This is not easy, as the probe shape is in principle unknown already
when it is taken from the box (manufacturer only claims what is the maximum radius)
and during the scanning the probe shape may evolve undefinitely.

There are few possible ways how to check the probe shape:

e Using Scanning Electron Microscope and image probe from different sides and
evaluate main geometrical properties from the images.

e Imaging known structures, e.g. very sharp spikes that several probe manufacturers
offer for these purposes. If such structure is ideal (a delta-function), the tip would
be imaged at every spike.

e Using Blind tip estimation algorithm which searches for local slopes in data mea-
sured in a rough sample, assuming that statistically there is enough of sloppy parts
on the sample.

An example of using the Blind tip estimation on different tips is displayed in
Fig. 11.8, where small gallium spots on the surface served as nice objects for tip
imaging and successively for the tip estimation algorithm. Presence of repeated

Opm 25pm Sum  Opm 25pm 5pm

Fig. 11.8 Results of blind tip estimation routines together with the source data
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patterns on the surface (as seen in most of the surfaces in Fig. 11.8 is usually a sign
of tip convolution artifacts.

When we know the tip shape we can also try to recover parts of the sample affected
by the tip-sample convolution. An algorithm called “surface reconstruction” can be
used for these purposes. This can be performed only at positions where information
was not lost, e.g. on positions where any part of the tip touched the surface and
there were no multiple touches. Finally, a “certainty map” algorithm was designed
to detect which parts can be reconstructed - where the tip touched the sample in a
single point and where multiple touches happened and information is therefore lost.

11.4 Data Processing

11.4.1 Basic Tasks

The very basic operation that user needs to perform on the data after measurement is
the mean plane or some polynomial background subtraction. This is often followed
by some other data manipulation steps, like removal of defects in measurements
(spikes, feedback loop faults, noisy lines). Except the mean plane subtraction case
this is already a heavy data manipulation and if we want to determine our results
with a known uncertainty, we should include some idea on how the data manipulation
might affect the uncertainty, which can depend on how the user is experienced and
similar factors that can be hardly estimated [19].

Direct dimensional quantities (width, height, depth, area, etc.) are typically eval-
uated from profiles that are extracted from the height field in some data processing
software, like Gwyddion [20]. This includes typically measurements of height and
lateral dimensions of various structures on a flat substrate, like semiconductor masks.
It is important, whenever possible, to extract profiles that are then used for evalua-
tion in the fast scanning direction as these are the least affected by drifts and similar
error sources. Rotation of the sample to reach this state is always a benefit. When
extracting profiles and evaluating results from the we need to have in mind the real
pixel size (ratio between physical size and number of pixels) as obtained during the
measurement. The pixel size affects the final uncertainty of the results and no inter-
polation can substitute the information that would be missing if the data would be
measured too coarse. If a drift is not a big issue, having as large number of pixels as
possible is always good if we do measurements for metrology purposes.

Besides direct measurements of some height or lateral values from profiles we can
use also some other tools for dimensional measurements in an SPM data processing
software. This includes e.g. a measurements of continuous areas, grains or particles,
sometimes followed by a detection of the requested features and some statistical
analysis. We refer to the user manual of the reader’s favorite SPM data processing
software, as the implementation of these tools can be different and there are no
“standard” approaches that we could list here.
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11.4.2 Roughness Analysis

Roughness is probably the most frequent measurand in thin films analysis via SPM
techniques, as this is directly related to manufacturing processes performance and as
it directly affects the optical quality of the thin film.

Atomic force microscopy data are usually represented as a two-dimensional array
of datapoints of size N x M, where N and M represent the number of rows and
columns within the data field. A special case of data that are not-equidistant is
discussed later in this chapter, but it is still very rare, so typically the data are equally
spaced. The real size of this array will be here denoted as L, x L, where L, and L,
are the sizes of axis x and y. The sampling interval (distance between two adjacent
points within the scan) is denoted A. As mentioned above, in this section we will
assume that the sampling interval is the same in both the x and y direction. As we
discuss random roughness here, we assume that the surface height in a given point x,y
can be described by a random function ¢ (x, y) that has given statistical properties.

11.4.2.1 Probability Distribution of Heights and Angles

The most frequently used parameter for the description of statistical properties is
probably a “roughness”. This typically the means root-mean-square (RMS) value of
height of surface irregularities, and is denoted as R, or 0;.,,; (in novel standardization
documents it is called S, to distinguish it from single profile based roughness value).

If we start from the surface model given above, the roughness can be defined as:

% 1
ol =/ z2w(z)dz=Slim gffgz(x,y)dxdy, (11.4)
_ — 00 K

o0

where w(z) is the one-dimensional distribution of the probability density of the
random function ¢ (x, y), z denotes the values of the heights of the irregularities of
the AFM data and § = L, x L, represents the surface area of the AFM scan in the
(x, y)-plane.

Similarly we can define the root-mean-square value of the slopes of the irregular-
ities tan® oy can be written:

00 1
tan? ap = / *w()d7 = Jim < f / ¢ (x, y)dxdy, (11.5)
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9 (x,y) 9 (x,y)
= or

ox dy

¢'(x,y) (11.6)

w(z) represents the one-dimensional distribution of the probability density of the
random function ¢’(x, y) and 7" represents the values of function ¢’(x, y).
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The above mentioned functions w(z) and w(z’), are in practice calculated using
the following formulas:

_ Nz é2)

w(z) = “NMoz (11.7)
and N8
N z',0z2

W(Z)_—(N—l)M(Sz” (11.8)

where the function .4 (z, §z) resp. A4”(z, 8z) gives the number of the values of
zjj resp. Z';; that are within the interval (z — §z/2, z + §z/2) resp. (z — §2//2, 7' +
87'/2).

The probability density of heights w(z) defined here is also a very frequently used
statistical result, used either directly (having the same shape as the “histogram”),
sometimes it is also used in its cumulative form.

11.4.2.2 Autocorrelation Function

The height and slope quantities discussed above belong to the first-order statistical
quantities, describing only the statistical properties of the individual points, and
representing only statistical nature of the heights as they would be not connected
somehow within the surface. However, for a complete description of the surface
statistical properties it is necessary to use higher order functions that would include
some information about lateral roughness properties. In practice this is namely the
autocorrelation function (ACF), the power spectral density function (PSDF) and the
height-height correlation function (HHCF).

The autocorrelation function is given by

oo
G(Tx,fy)=/f 21 22w(z1, 22, Ta, Ty)dzidzy =
—0Q

1
lim — / f §(x1, yDE(x1 + T, y1 + 1y)dxdyy,
S—o00 S s
(11.9)
where z; and z, are the height values at points [xi, yi1], [x2, 2], Tx = X1 — X2
and 7, = y; — y». The function w(z1, 22, T, 7y) denotes the two-dimensional proba-
bility density of the random function & (x, y) corresponding to points [x;, yi], [x2, ¥2]
and the distance between these points T = /(Tx2 + ‘L')%).
Within AFM measurements we usually evaluate the one-dimensional autocorre-
lation function determined only from profiles in the fast scanning axis (which is less

affected by thermal and mechanical drifts) which can be evaluated from the discrete
AFM data values as
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where m = 7, /A. Function is usually evaluated in a discrete set of values of
separated by the sampling interval A, based on the nature of the measured data.

In order to get only some parameters describing roughness, not whole function we
need to parametrize the functions somehow so we can fit them with some parametric
model. For example, the one—dimensional autocorrelation function is often assumed
to be Gaussian,

G, (ty) = o}, exp(—12/T?); (11.11)

where o0, and T are the root mean square deviation of the heights and the autocor-
relation length, respectively.
Another frequently used model is the exponential form of autocorrelation function

G, (rk)_a s exp(—1,/T); (11.12)

Note that in optical measurements (e.g. spectroscopic reflectometry, ellipsometry)
the Gaussian autocorrelation function is usually expected to be in good agreement
with the surface properties. However, some articles related to surface growth [21]
and oxidation [22] usually assume that the exponential form is closer to the reality.

Forillustration, in Fig. 11.9, the autocorrelation function computed for a simulated
Gaussian model sample is plotted. The dataset used to evaluate it was generated using
Gwyddion software Spectral synthesis module with the parameters o,,,; = 20 nm,
T = 100 nm. The function is fitted by the Gaussian function given by (11.11). The
results are o,,,;, = (20.17 = 0.08) nm, T = (102 & 1) nm.

Note that the uncertainty of the function values is not the same for all the parame-
ters 7. For larger values of t, the number of averaged components in (11.10) reduces
dramatically. Thus we have to limit the function computation only to small values
of 7,.

In practice, the autocorrelation function is not very widely used (for its use see
e.g. [23]); instead of it the power-spectral density function is mostly evaluated from
the AFM data.

11.4.2.3 Height-Height Correlation Function
The two dimensional height—height correlation function can be written as
[o.¢]
H(zy, ty) =/ f (z1 — 22)*W(z1, 22, T, Ty)dzidzy =

= lim — / /(E(xu yi) — & + T, y1 + 1)) dxdy;,  (11.13)
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where z; and z, are height values at points [x;, y1], [x2, ¥2], Tx =x1 —x and 7, =
y1 — ¥2. Function w(zy, 22, 7y, 7,) denotes the two-dimensional probability density
of random function & (x, y) corresponding to points [x, y1], [x2, y»] and the distance

between these points T = /(72 + 12).

Similarly to the ACF, in practice the one-dimensional variant is used that can be
evaluated from the discrete AFM data as

M—m

1 N M=
H (1)) = NOI=m) ; ; @ntmit — Zni)? (11.14)

where m = 1, /A.
The height-height correlation function corresponding to a randomly rough surface
with a Gaussian autocorrelation function is given by

2 T
H(t,) = 20,,,, |:1 — exp (—T—"z)] ) (11.15)
where o,,,; and T denote the root mean square deviation of the heights and the auto-
correlation length respectively. Similarly, height—height correlation function corre-
sponding to a surface with an exponential autocorrelation function is

H(z) =202, [1 —exp (—%)] (11.16)

For the same sample as discussed in the previous paragraph, the correspond-
ing T and o,,, evaluated according to (11.15) are o,,, = (20.28 £ 0.03) nm,
T = (103.3 £ 0.82) nm, so we can see that this is an alternative for using auto-
correlation function.

The height-height correlation function is used in practice for the correlation length
evaluation and fractal dimension estimation, similarly as the power spectral density
function. For details, see e.g. [23, 24].

11.4.2.4 Power Spectral Density Function

The two-dimensional power spectral density function can be written in terms of the
Fourier transform of the autocorrelation function

1 [ :
WK, Ky) = o~ / G(ty, 1y)e Entmigqr dr,,. (11.17)
’ T

—00

Similarly to the autocorrelation function, also here we usually evaluate the one-
dimensional power spectral density function which is given by equation
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This function can be evaluated using the Fast Fourier transform as follows:
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27 ~
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where I3j (K,) is the Fourier coefficient of the jth row, i.e.
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Pi(K,) = 7 E 2j exp (—iK kh). (11.20)
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If we have chosen that a Gaussian autocorrelation function model is the right
representation of our sample statistical properties, the corresponding PSDF is

o2 T
__ _rms w272
Wi(K,) = 2 exp(—K2T?/4) (11.21)

2@

For a surface with an exponential ACF we have

I
Wi(K,) = Zrms — (11.22)
7 14+ K, *T?

These functions can be therefore used for fitting the experimental data. To illustrate
this, in Fig. 11.9, the power spectral density function for a Gaussian model sample
(the same as in the previous section) is plotted. The function is fitted by the Gaussian
PSDF given by (11.21). The results are o,,,; = (20.1 £ 0.2) nm, T = (100 % 2) nm.
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Fig. 11.9 Autocorrelation function (a) and Power Spectral Density Function (b) obtained on a
rough sample and fitted by the analytical dependency based on assumption of Gaussian ACF of the
roughness
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This is a third way how to obtain the same statistical results. In practice, the PSDF is
widely used for the correlation length determination and fractal analysis, see e.g. [25].
As seen from these three sections, any of the surface statistical properties functions is
used we still need to fit it via some analytical model if we want to obtain some simple
parameters that could be fed to some optical model. In thin film optics the Gaussian
model is most frequently used, even if sometimes the thin film growth theories might
favor other models. A choice of the fitting function should be considered as one of
the uncertainty sources and a least some guess of its magnitude could be obtained
by fitting the experimental data by few different models.

11.4.3 Step Height Analysis

Sometimes also step heights are evaluated from data measured on thin films. This is
namely to estimate the film thickness. Even if very powerful optical methods exist
for this, most of them are measuring optical thickness, which might be different from
the “real” thickness as it includes the refractive index as well, which might be not
correctly known. To prepare sample for thickness measurements via AFM is not easy
as we need to have a steep edge at the surface. This can be obtained by masking some
part of the sample during the deposition, however the deposition conditions can still
prevent formation of a sharp edge.

Ideally, one would need to have two steps, forming a so called “step height sam-
ple” which can be evaluated using normative documents (ISO 5436-1) as shown in
Fig. 11.10. On some samples this can be done by scratching the film, assuming that
the substrate is hard enough to resist and that the film can be partly debonded easily.
More often we are able to have only one step, so a similar approach (but not covered
by any standard) can be used to fit only a single step, again skipping the part of the
profile close to the step itself.

If the data are properly leveled we can also use histogram or similar height statistics
to evaluate the step height from all the data, not only from profiles.
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Fig. 11.10 Step height analysis schematics (a), and real data example (b)
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11.5 Tip Sample Convolution Effect on Statistical
Properties

As discussed earlier, tip-sample convolution is one of the biggest error sources in
SPM measurement. If we characterize optical thin films, we very often want to see
very small roughness as the films are of a very high quality, designed to scatter the
light as low as possible. The issues of trying to measure features that are smaller than
the probe radius are therefore a daily bread in optical thin films characterization. As
an example, we show a measurement of the same area on a rough silicon sample
(prepared by anodic oxidation and oxide dissolution [26]). We have used a fresh
new probe designed for AFM measurements on sensitive samples (ScanasystAir by
Bruker) and a relatively large probe that is used for Scanning Thermal Microscopy
measurements (VITA-DM-GLA by Bruker). In Fig. 11.11 a comparison of the same
areas is shown.

It can be expected that the tip convolution effects will not influence only dimen-
sional measurements, but also the results of the statistical data treatment, values like
roughness or autocorrelation length. While for direct measurements the effect of tip
convolution on the data can be intuitively estimated (e.g. we see multiple tips imaged
on the surface), for statistical algorithms we have no simple rule that could help us
to see if the data were affected or not. The best solution is to simulate the effects
for each concrete surface type that we measure. This work was performed earlier for
columnar thin films [18] and for fractal-like rough surfaces [27] and it was found that
the tip convolution leads to large suppression of higher spatial frequencies, which
leads to decrease of the roughness and increase of the autocorrelation length. As an
example, from the data presented in Fig. 11.11 we can evaluate the roughness value
Orms = 6.96nm for the sharp AFM probe and 5.68 nm for the bigger SThM probe.
The autocorrelation length obtained under assumption of Gaussian ACF equals to
67 nm for the sharp AFM probe and 65 nm for the bigger SThM probe.

Fig. 11.11 Measurements of the same surface area by different probes: a sharp AFM probe,
b larger radius thermal microscopy probe
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11.6 Perspectives

Scanning probe microscopes are already quite well adapted for measurements of
optical thin films and apart of lower noise, faster scanning and improved ‘“‘easy-to-
use” regimes there were not many substantial improvements in commercial devices
in recent years if we discuss the dimensional measurements. The basic limit for
standard SPMs is still the same — measurement time and measurement area. When
roughness is analyzed we have always troubles with both, as we need to cover wide
area of spatial frequencies and often we are not sure if increasing or decreasing the
scanning area would not be a good step towards better result. Here we want to discuss
some alternative measurement strategies, that are not yet commercially available, but
could solve some of the problems in thin film roughness and defects analysis.

During scanning the data are usually collected in form of a regularly sampled
matrix, which is a very simple approach from the point of their visualization and fur-
ther data processing. If we are performing measurements on large areas, performing
regular scans is not always an ideal approach. For example, if we want to determine
the power spectral density function (see the Sect. 11.4 in wide range of spatial fre-
quencies we need both dense sampling (to cover the high frequencies) and large area
(to cover the low frequencies). These requirements leads to very long measurement
times and significantly increased risk of loss of the probe. The problem of a suitable
scanning algorithm appears also in the large area measurements data storage. If we
need that our system moves over a millimeter or centimeter range it must be much
faster than the present systems (typically with maximum speeds in hundreds of pm/s.
Moreover, measuring over a millimeter or centimeter range with nanometer resolu-
tion would give us 10'* data points, which is not feasible both from the point of data
acquisition and data processing. A possible solution is to use some non-equidistant
(adaptive) sampling technique, measuring only the data points that are really needed
in the data analysis phase. If we leave the concept of equally spaced points, we have
plenty of possibilities how to arrange the scan path. As an example, we can perform
measurement optimized on obtaining the maximum statistical information for spa-
tial frequencies analysis in minimum time, or to reduce some typical errors in SPM
measurements, like the anisotropy of the data caused by having fast and slow scan
axis.

In our recent work [28] we have created a library for handling non-equidistant
scan paths and here we present four different scan paths that are related to statistical
analysis of roughness and therefore have high potential in optical thin films analysis.
In Fig. 11.12 four different paths are shown:

e The space filling scan path, which is based on a finite-order approximation of the
Hilbert space-filling curve [29-31] (Fig. 11.12a) which is another approach how to
perform isotropic scanning with respect to the two Cartesian axes, suitable e.g. for
roughness analysis as described above. It should be emphasized that in contrast to
classical raster scan there is not preferred axis (fast scan axis). The path consists
of short elements in x and y direction, changing the direction very frequently and
going through the sample in a fractal-like pattern.
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Fig. 11.12 Scan paths for rough samples measurements: a space filling scan path, b random scan
path, ¢ 2D octave scan path, d 1D octave scan path. Adapted from [28]

e The random scan path (Fig. 11.12b) is even more isotropic because the scanning
directions are completely arbitrary, so even x and y direction is not preferred. This
path exhibits no correlation between position and scanning direction and, but also
uniformly covers the area. The random positions needed to generate this path are
generated with uniform distribution in the requested region and then the traveling
salesman problem [32] is approximately (partly) solved to construct the scan path
that is effective for the tip motion.

e The two-dimensional octave scan path (Fig. 11.12c) is a variant of a scan path spe-
cially developed for the roughness measurements purposes, spanning the maxi-
mum range of spatial frequencies. It consists of a series of nested regular grids, each
twice coarser than the smaller one inside, scanned in a spiral fashion. Therefore
it is again isotropic, albeit with correlation between position and scanning direc-
tion. The motivation to create such path was to obtain as much of the roughness
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statistical information (both height and lateral) as possible with a given number of
measured points. This allows to have both dense information for high spatial fre-
quencies and large area for low spatial frequencies in the resulting power spectral
density function.

e One-dimensional octave scan path (Fig.11.12d) is a simpler variant of the 2D
octave scan path presented above, focusing only on the analysis of profiles along
the fast scanning axis, from the point of typical microscope operation it is therefore
more conventional way of measurement. This is very often performed in the field
of roughness analysis, especially if the texture can be assumed isotropic. The
path consists of straight lines along the fast axis, each formed by nested regular
one-dimensional grids. Again, this scan path allows covering a wide range of
spatial frequencies in a single measurement. However data are measured along
one direction and we need to assume that the roughness is isotropic.

To show the potential improvements while using one of the scan paths, in
Fig.11.13 an example of one-dimensional octave scan path use for rough sample
measurement is shown. A rough surface manufactured by Simetrics company was
used for this analysis.

After the measurement based on the 1D octave scan path, the data were split
to individual line profiles with different point spacing and a power spectral density
function (PSDF) was calculated. We can see that using this approach we can span
a large scale of spatial frequencies. The main benefit of the approach compared to
e.g. individual scans with different resolutions, one after the other, is that all the data
are collected at once, all the data post-processing, like drift correction or leveling is
done at once (so there is no artificial tilt added for the high resolution and small range
images). This approach also provides better statistical coverage of the surface as the
detailed profiles are taken on different places of the scan area. It can be seen that as
the information about high spatial frequencies comes from segments with smaller
sampling steps in the octave scan, it not only covers a wider range of frequencies
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Fig. 11.13 Rough sample measurement using 1D octave scan: (left) extracted individual profiles
at three selected scale levels, (right) PSDFs obtained from different levels compared with PSDF
calculated from a regular scan with the same number of points. Reprinted from [28]
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but is also considerably less affected by noise than the regular scan. To get the same
spatial frequency coverage, the regular scan line would need 16 times more data
points. More about the adaptive measurements and also the drift treatment in such
data can be found in [28].

11.7 Conclusion

Scanning Probe Microscopy can be used as a complementary technique to the optical
characterization of thin films. Majority of the measurements on this field is related
to the surface roughness as this is a parameter that appears in many optical models.
If we want to get the sample parameters correctly we need to spend some effort on
making the instrument traceable, i.e. calibrated and with known uncertainty budget.
Tasks that are typically solved using SPM in this scientific field might be considered
as very basic, comparing to wide range of possibilities that SPM techniques offer,
however even here are still open questions and novel research directions, like large
area measurements or measurements covering better the surface statistical properties
that were briefly discussed in this chapter.
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Chapter 12
Resonant Waveguide Grating Structures

Stefanie Kroker and Thomas Siefke

Abstract Resonant waveguide gratings are subwavelength structures that possess
the ability to selectively reflect or transmit light in terms of wavelength, incidence
angle and polarization state. They are of interest in a large variety of optical sen-
sors and optoelectronic devices. Resonant waveguide gratings have also emerged as
low-noise optical components in high-precision metrology, for example frequency
stabilized laser systems for the realization of optical clocks or gravitational wave
detectors. In these applications, Brownian thermal noise of optical coatings, sets a
severe limitation to the feasible sensitivity. In this chapter, we will discuss the rel-
evance of the mechanical loss of optical thin film coatings for Brownian thermal
noise. We will present monolithic resonant waveguide gratings to circumvent the use
of amorphous coatings to reduce thermal noise. First, we will introduce a method
to characterize the mechanical loss of optical coatings and discuss its implications
for high-precision metrology. Afterwards we will explain the working principle of
resonant waveguide gratings. Then, several characterization techniques for the
dimensional and optical characterization will be discussed and experimental results
for monolithic waveguide gratings with one-dimensional and two-dimensional peri-
odicity will be presented.
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12.1 Introduction

In the year 1985 Mashev and Popov observed for the first time anomalies in the
zeroth order diffraction efficiency of dielectric coated gratings [1]. These sharp peaks
in the reflectance spectra were identified as resonant excitations of guided waves.
Since that time, such resonant waveguide gratings have attracted interest in numerous
optical applications. They serve as bandstop [2—-5] and bandpass filters [6, 7], compact
mirrors in lasers [8], as elements for field enhancement in biosensors [9, 10] and
light sources [11] as well as in nonlinear frequency converters [12, 13] or particle
traps [14]. By using high-index materials, grating structures with two-dimensional
periodicity and complex grating geometry, the spectral and angular properties of
resonant waveguide gratings can be shaped in a large range [15-22].

During the past decade, resonant waveguide gratings have also emerged as low-
noise optical components in high-precision metrology, for example frequency stabi-
lized laser systems for the realization of optical clocks or gravitational wave (GW)
detectors [23-25]. In these applications, Brownian thermal noise of optical compo-
nents, sets a severe limitation to the sensitivity [26—30]. Gravitational wave detect
ors, for instance, need to sense relative length changes in the order of 1072! and
even below [31]. Therefore, highly sensitive laser interferometers are utilized [32,
33]. Figure 12.1 shows the schematic setup of such a Michelson interferometer as
employed in the Advanced LIGO detectors (LIGO = Laser Interferometer Gravita-
tional Wave Observatory). The first detection of gravitational waves in September
2015 [31] is not just another proof of Einstein’s theory of general relativity [34] but
also the beginning of a novel kind of astronomy, i.e. gravitational wave astronomy.

For GW astronomy, the sensitivity of current, second generation, GW detectors
is planned to be enhanced by another order of magnitude in the next generation of
detectors. A possible design of such a GW observatory, called Einstein Telescope [35,
36], has been developed in a European collaboration [37]. The Einstein Telescope will
open a new window to the universe exploring new physical properties of astronomical
objects and the universe itself. Due to their thermal noise, optical coatings are the
critical part to reach the required sensitivity enhancement [38]. In the Advanced
LIGO detectors the optical coatings components have been realized with multilayer
stacks of silicon dioxide and tantalum pentoxide layers [39]. In future GW detectors
operating at low temperatures, the amorphous coatings, of the end mirrors (end test
masses) and cavity couplers (input test masses) stacks will be a limiting factor for
the sensitivity.

In the following chapter, we will discuss the relevance of the mechanical loss, a
measure for the internal friction, of optical thin film coatings for Brownian thermal
noise. We will present monolithic resonant waveguide gratings to circumvent the use
of amorphous coatings to reduce thermal noise. First, we will introduce a method to
characterize the mechanical loss of optical coatings and discuss its implications for
high-precision metrology. Afterwards we will explain the working principle of res-
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Fig. 12.1 Sketch of a typical Michelson-type gravitational wave interferometer with additional
arm cavities, power recycling and signal recycling. The arm lengths are typically in the range of
several kilometers. BS—beam splitter, ETM—end test mass, ITM—input test mass, PR—power
recycling mirror, SR—Signal recycling mirror. The thickness of the laser beam indicates the beam
power

onant waveguide gratings. Then, several characterization techniques for the dimen-
sional and optical characterization will be discussed and experimental results for
monolithic waveguide gratings with one-dimensional and two-dimensional period-
icity will be presented.

12.2 Characterization of Mechanical Loss in Optical
Coating Materials and Implications for Waveguide
Gratings in Precision Metrology

Reflective elements in high-precision optical experiments commonly base on mul-
tiple beam interference realized by coating stacks of alternating high-index and
low-index layers on optical substrates. As mentioned above, for gravitational wave
detectors, the current coating materials of choice are silica (SiO;) and tantala (Ta,Os)
which are deposited on silica substrates [39]. These materials provide excellent opti-
cal properties, i.e. low absorption and scattering losses.

Brownian thermal noise in optical components originates from fluctuations of
the sample surface [40]. The equipartition theorem states that every particle of finite
temperature T exhibits a thermal energy of kg 7' /2 per degree of freedom, where kg is
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Boltzmann’s constant. Thus, the atoms of a solid body, e.g. of an optical component,
are permanently in thermal motion adding a random phase to the light interacting
with it. As a direct consequence of the fluctuation dissipation theorem thermal noise
is related to the mechanical loss of the involved materials [41].! For a mirror substrate
with a highly reflective coating stack of total thickness / the Brownian noise power
spectral density S, (f, T) is [30]:

Sz(f,T)ZZkLTL CI)S(T)+L E+£ o (T) . (12.1)
w32 f Yw VTR \Y. Y

Y and Y’ represent the Young’s modulus of the substrate and the averaged Young’s
modulus of the coating stack, respectively. &5 and &, are the related (temper-
ature dependent) mechanical losses. T is the temperature, f the frequency and
R the radius of the laser beam. Equation (12.1) contains four aspects to reduce
Brownian thermal noise:

e Low temperature,

e low-loss materials,

e low coating thickness,

e large beam radii (require large substrates).

Due to their large mechanical loss, the optical coatings dominate Brownian ther-
mal noise in highly reflective optical components. Thus, it is important to investigate
relevant coating materials in terms of their loss. The mechanical loss can be mea-
sured by using ring-down techniques. Therefore, a mechanical resonance of a coated
substrate is excited and the ring down time (the 1/e-decay of the initial oscillation
amplitude) is measured. The mechanical loss is then given by:

1

o= . (12.2)
nfyt

Here, fj is the eigenfrequency of the mechanical resonance. Generally, the measured
mechanical loss contains all mechanical dissipation processes in the system such
as thermoelastic damping [43] or defect induced damping [44]. To characterize the
mechanical loss of optical coatings it is necessary to minimize the influence of
the substrate material and of potential suspension losses. This is achieved by the
deposition of the related coating material on thin flexures. Loss measurements of the
sample before (®) and after coating deposition (P, ) yield the mechanical loss &
of the thin film coating [45]:

1
Piotal = ) [(D—-1) %5 +Pc] (12.3)

D is the dilution factor:

I'The reader may be familiar with this relationship from the Johnson-Nyquist noise of electric
resistors. Here thermal noise is also proportional to the electric resistance, i.e. the dissipation [42,
43].
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Fig. 12.2 a Temperature dependent measured mechanical loss of uncoated crystalline silicon flex-
ure before and after coating with a tantala layer of 500 nm. b Mechanical loss of tantala coated
silicon flexure after implantation and annealing [46]
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with the elastic energies Ec stored in the coating and Eg in the substrate, respectively.
The dilution factor represents a volumetric weighting of the dissipation. It accounts
for the fact, that only the fraction of elastic deformation energy which is stored in the
coating (substrate) can be dissipated by loss mechanisms in the coating (substrate).
The elastic energies and thus D depend on the shape of the mechanical mode which
can be calculated by means of finite element tools like ANSYS or COMSOL [46,
47].

Figure 12.2a shows the temperature dependent mechanical loss for a pure sili-
con flexure and for the same flexure with a tantala coating. At low temperatures the
amorphous coating increases the loss of the substrate by several orders of magnitude
[43, 48, 49]. To reduce the mechanical loss of amorphous coating materials, tech-
niques like ion doping with subsequent thermal treatment are investigated [45, 49,
50]. Figure 12.2b illustrates that these post-processing techniques allows for a loss
reduction by about 20%. Beside an optimization of amorphous materials, crystalline
materials such as silicon, sapphire or GaAs can outperform the mechanical loss of
amorphous materials by several orders of magnitude [51]. This fact has raised interest
in crystalline coating stacks based on AlyGa;_x As as an alternative to amorphous
multilayer coatings. It has been demonstrated that these epitaxially grown stacks
allow for a substantial reduction of thermal noise [52].

The third approach to minimize the detrimental effect of amorphous coatings,
bases on the reduction of the coating thickness. In multilayer mirrors, a thick-
ness reduction is unfavourable for a high reflectivity. Resonant waveguide gratings,
instead, provide high reflectivity with a structured layer which is by a factor of about
ten thinner than typical multilayer mirrors. As will be illustrated in the next section,
resonant waveguide gratings can be implemented even completely monolithic with-
out adding any lossy amorphous material. The monolithic nature enables an operation
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Fig. 12.3 Sketch of the working principle of a highly reflective resonant waveguide grating

at cryogenic temperatures without coating stress induce deformation. And, imple-
mented in silicon, large sample sizes of up to 45 cm in diameter may be feasible
by scaling up the highly developed silicon etching technology. Monolithic resonant
waveguide gratings thus combine all necessary aspects for optical components with
low Brownian thermal noise.

12.3 Functionality of Waveguide Gratings as High
Reflectivity Mirrors

The effect of high reflectivity caused by resonant light coupling in dielectric structures
was discovered and demonstrated for the first time in the 1980s by Mashev and Popov
as well as by Golubenko [1, 2] with a configuration as shown in Fig. 12.3a. The
grating structure leads to a perturbation of the waveguide. This perturbation allows
an incident light wave propagating in z-direction to couple into the waveguide and
to propagate along the horizontal (x-) direction. Usually the coupling of the incident
wave is effected by the first diffraction orders [53]. To achieve this, for the grating
period p the following condition needs to be fulfilled:

A A
—<p< ——. (12.5)
ny + sin @ ny+sing

Here, ¢ is the incidence angle. The right part of the relation allows the structure
to generate the first diffraction orders in the waveguide layer which are utilized to
realize the coupling between the incoming wave and the waveguide modes. The left
part ensures that the first diffraction orders cannot propagate in the cladding. With
Rel. (12.5) it is also ensured that in free space only the propagation of the zeroth
diffraction order is allowed. Thus, in an ideal structure no light would be lost in
higher diffraction orders.

Due to the waveguide’s perturbation the light is not perfectly guided but leaky.
By adjusting the structural parameters (period, ridge width, thickness) it is possi-
ble to achieve constructive interference of the partial waves coupling out in upward
direction. This effect of resonant light coupling is not limited to the configuration
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Fig. 12.4 Possible realizations of resonant waveguide gratings. a Configuration with structured
waveguide layer. b Configuration with structured substrate. ¢ Binary structure as waveguide grating.
d Free standing waveguide grating structure. e Monolithic waveguide grating structure

shown in Fig. 12.3 but can be also extended to several other configurations, e.g. dou-
bly corrugated waveguides [54] and even stand-alone or monolithic T-shape grating
ridges [55]. An overview on typical configurations is given in Fig. 12.4. Although
the structures in Fig. 12.4c—d do not exhibit complete waveguides, their high index
grating layers are still able to confine light. A theoretical description of such strongly
perturbed waveguide structures can be found in the works by Magnusson and cowork-
ers [19-21]. An alternative to the model of perturbed waveguides and leaky modes
was given by Lalanne and by Karagodsky et al. [56, 57]. They use Bloch modes to
describe the behavior of strongly modulated waveguide gratings.

A benefit of the stand-alone and T-shape grating is their monolithic character. This
avoids coating stress. In addition, it minimizes thermal noise of these elements which
will be discussed in detail in the next section. In contrast to stand-alone structures
T-shape gratings are not restricted to small sample sizes but scalable to virtually arbi-
trary areas. In these structures the low-index cladding layer is replaced by an effective
low-index layer which prevents the light to couple from the waveguide layer to the
high-index silicon substrate. The decoupling is the more the smaller the effective
ridge width w of the supporting structure (see Fig. 12.4e). Figure 12.5 shows the
rigorously calculated energy density distribution in a T-shaped monolithic mirror.
The simulation was performed by means of RCWA (Rigorous Coupled Wave Anal-
ysis) [58]. The electromagnetic field is confined in the waveguide layer and merely
penetrates into the support structure. However, in x-direction (in which the waveg-
uide modes are meant to propagate, compare Fig. 12.3) the energy density is clearly
confined in the material and not homogeneously distributed as one would expect
from a waveguide mode. This may be understood by the following explanation: Due
to the high index contrast between ridge (silicon, refractive index 3.48) and groove
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Fig. 12.5 Energy density distribution in a highly reflective nanostructured mirror. For the simula-
tion the following parameters were used: grating period: 688 nm, depth of waveguide layer: 350 nm,
duty cycle of waveguide layer: 0.56, depth of support structure: 800 nm, duty cycle of support struc-
ture: 0.25, wavelength: 1550 nm, incidence angle: 0°, polarization: transverse-magnetic

(free space, refractive index 1.0) the perturbation of the waveguide is strong. The
strong perturbation leads to a very short propagation length of the waveguide modes
of about just one period. The short propagation length manifests itself in the light
confinement within the ridges of the upper part of the T-shape.

An optimum design of monolithic nanostructured mirrors necessitates high reflec-
tivity with possible large fabrication tolerances as well as a good mechanical stability.
A structure with a ridge width ratio of about 1:2 between the support structure and
the upper layer is found to meet both requirements.

12.4 Fabrication of Monolithic Waveguide Gratings

The realization of nanostructured crystalline silicon mirrors bases on techniques
which are well established in semiconductor industry. In a first step, the silicon
substrate is coated with a chromium layer and a layer of electron beam sensitive
resist (see Fig. 12.6a). For the former an ion beam deposition and for the latter a spin
coating process is employed. Then, the subwavelength grating pattern is patterned
in the resist by means of electron beam lithography. Within this process structures
with periodicity in one dimension as well as in two dimensions can be realized. The
development of the resist leads to the structured resist layer shown in Fig. 12.6b.
After this step the structure is transferred into the chromium layer via an anisotropic
(i.e. binary) etching process as illustrated in Fig. 12.6c. This layer then serves as a
hard mask to finally structure the silicon substrate. Here, first an anisotropic process
is applied to define the upper (binary) layer (Fig. 12.6d). The etching time is adjusted
to match the groove depth of the design.

To finally achieve the T-shape structure, two strategies can be pursued: One pos-
sibility is, to cover the side walls with a thin chromium layer by coating the element



12 Resonant Waveguide Grating Structures 349
(a) (b) ()

(d) (e) (f)
AP g g

Fig. 12.6 Fabrication of nanostructured crystalline silicon waveguide gratings. a Substrate with
chromium coating and resist layer on top. b Resist pattern after electron beam lithography and
development. ¢ Pattern transferred into the chromium layer by means of anisotropic dry etching.
d Binary structure after anisotropic etching. e T-shape structure realized with an isotropic etching
process and f Final mirror after removal of chromium and resist layer

Fig. 12.7 Scanning electron
image of a monolithic
waveguide grating made of
crystalline silicon with
two-dimensional periodicity
of a period of 720 nm

under an oblique angle [24]. This procedure protects the ridge side walls from fur-
ther etching while the bottom of the groove is still accessible. Then, an isotropic
(i.e. polydirectional) etching process enables the undercut of the upper structure to
generate the thin supporting structure. This finally ends up in the structure illustrated
in Fig. 12.6e, f, respectively. Another strategy to realize the undercut, is to apply a
gas chopping process [19]. Therefore, the ratio of fluorine and carbon species in the
reactive etching gas allows to alternatingly switch between (isotropic) etching and
passivation of the ridge surface. Typical features of T-shape structures made by this
process are corrugations of the supporting structure as shown in the scanning electron
microscope image in Fig. 12.7. It should be mentioned that these features do not set
an intrinsic limit to the feasible optical function if they are properly considered in
the design of the structure.
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12.5 Dimensional Characterization of Waveguide Gratings

The performance of functional micro-optic or nano-optic surfaces usually substan-
tially depends on the geometric dimensions of the structures. Thus, dimensional
metrology is a key technology to optimize the related fabrication processes and
to understand the optical properties of the structures which may differ from the
design values. A standard tool for dimensional characterization is scanning electron
microscopy (SEM). Therefore, cross sections of the sample need to be prepared as
shown in Fig. 12.7. Alternatively, a focused ion beam (FIB) SEM can be utilized
to take images of the structures. Further tools for dimensional characterization are
atomic force microscopy (AFM), helium ion microscopy (HIM) as well as optical
techniques like scatterometry and ellipsometry [59-61]. Often a combination of sev-
eral of these tools is necessary to retrieve reliable information about dimensional
waveguide grating properties.

12.6 Optical Characterization of Waveguide Gratings

In the following sections, we will discuss techniques for the characterization of trans-
mittance and reflectance in dependence of wavelength, incidence angle and polar-
ization. It has already been mentioned that cryogenic temperatures will be beneficial
for resonant waveguide gratings in high precision optical metrology. Therefore, the
impact of temperature changes on the spectral properties of monolithic waveguide
gratings is discussed as well.

12.6.1 Reflectance Measurements in a Cavity

The reflectivity of highly reflective waveguide gratings can be precisely measured
by Cavity ring-down techniques which are described in Chap. 16. Alternatively,
a resonator setup as illustrated in Fig. 12.8a can be utilized [24]. A conventional
multilayer mirror serves as coupler with a transmittance of t7. By measuring the
cavity finesse F, the amplitude reflectivities rj, = rir, of coupler end waveguide
coating end mirror can be determined by:

T rnr COS COS . .
! ! F F

The finesse F is the ratio of free spectral range (FSR) frsg and cavity linewidth A f
(full width at half maximum). The FSR results from the length of L the cavity by:

C

JrsR = L (12.7)
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Fig. 12.8 a Schematic of reflectivity measurement setup using a cavity. b Signals in dependence
of the cavity detuning. The frequency markers at & fi,0q serve calibrate the frequency range

The length L is changed by means of a piezo actuator attached to the input mir-
ror. Detuning the cavity around the resonance leads to the typical Airy peak in the
transmitted signal which is measured by photodiode 2 (PD2) (see Fig. 12.8b). To
determine f, a frequency calibration is required. Therefore, the Pound-Drever-Hall
(PDH) technique is used. By means of an electro-optical modulator (EOM) sidebands
at £ fioq around the cavity resonance frequency are generated. These sidebands serve
as frequency markers. The cavity reflection which is detected in photodiode 1 (PD1)
is then demodulated by a local oscillator. From the signal curves shown in Fig. 12.8b
the reflectivity of the waveguide grating can be calculated. In their proof-of prin-
ciple experiment Briickner et al. demonstrated a reflectivity of (99.79 £ 0.01) % at
wavelength of 1550 nm [24].
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Fig. 12.9 Characterization results of the structure shown in Fig. 12.8. a Measured reflectance
at an incidence angle of 8° and transverse magnetic (TM) polarization. b Angular spectrum at
a wavelength of 1550 nm. The dashed lines represent the results of simulations performed with
RCWA

12.6.2 Spectral and Angular Dependent Reflectance and
Transmittance Measurements

The reflectivity of monolithic resonant waveguide gratings exhibits large tolerances
with respect to wavelength and angle of the incident light. Figure 12.9 illustrates
the characterization results of the 2D periodic structure shown in the SEM image
of Fig. 12.7. The spectrum displayed in Fig. 12.9a was recorded with a commercial
Perkin Elmer Lambda 950 spectrophotometer [62]. The reflectance reaches values
close to unity in a broad wavelength range. This spectral broadband performance is
caused by the large index contrast of the structure [15, 57]. Here, the full width at
half maximum of more than 500 nm is readily competitive, if not superior, to the
bandwidth of conventional multilayer based mirrors. Similar spectral results can be
achieved with properly designed 1D periodic structure [24].

A feature that is unique for 2D structures and cannot be realized with their 1D
counterparts is the extraordinary large angular tolerance [24]. Figure 12.9b compares
the angular dependent reflectance for transverse magnetic (TM) and transverse elec-
tric (TE) polarization. The related measurement was performed using a fiber-coupled
laser of 1550 nm wavelength and a rotation stage on which the sample was mounted.
The experimental setup is shown in Fig. 12.10. Due to the structural symmetry, at
normal incidence, i.e. 0°, the reflectances for both polarizations are identical within
the limits of accuracy. With increasing incidence angle the TM reflectance decreases,
whereas the TE reflectance remains close to unity (> 98.2%) within the entire angu-
lar spectrum. In the simplified picture of a disturbed waveguide this behaviour can
be understood the following way: In TE-polarization the only non-vanishing com-
ponent of the electric field is perpendicular to the plane of incidence. Changing the
angle of incidence within this plane does not substantially influence the coupling
conditions of this field component to the waveguide. In the direction perpendicular
to the plane of incidence the light still sees the same period as for normal incidence.
For TM-polarization the field components in the plane of incidence have to be taken
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Fig. 12.10 Schematic set up for the angular dependent reflectivity characterization of waveguide
grating. The beam splitter enables a relative measurement independent from power fluctuations of
the laser light source

into account. In this case, a change of the angle leads to an increased effective grat-
ing period which detunes the structure from the high reflectivity. At incidence angles
close to normal incidence Fresnel reflection dominates the reflection behaviour of
the structure which again leads to an increase of the reflectance. In summary, with
monolithic nanostructured mirrors large angular and spectral tolerances are accessi-
ble rendering the related elements robust towards adjustment errors.

12.6.3 Temperature Dependent Transmittance Measurements

The monolithic silicon waveguide coatings are intended for use at low temperatures.
In contrast to conventional multilayer based solutions, their monolithic character
enables cooling without additional stress induced by materials with different thermal
expansion coefficients. Bringing monolithic silicon mirrors to cryogenic temperature
leads to two effects: Firstly, thermal expansion changes the structural period, depth
and ridge width. The thermal expansion coefficient of silicon at room temperature is
2.5 x 107%/K and reduces with decreasing temperature down to about 5 x 1071 /K at
atemperature of 10 K [63]. Thus, a relative change of the structural parameters is less
than 2 x 10~*/K and may be neglected. Secondly, the band gap of silicon changes
from 1.12 eV at 300 K to 1.17 eV at 10 K [63, 64]. The temperature dependence of
the band gap is responsible for a decrease of the refractive index at low temperatures.
Hereby, the value of the index change is determined by the thermo-optic coefficient

B (T):

Ty
An (Ty) = / B(T)dT (12.8)
T

»=300K

With the experimental data of 8 (T') provided by Komma et al. [65] An (T} = 10K)
can be determined to be -0.03. This index reduction leads to a spectral blue shift of the
reflectivity maximum. Since the material dispersion dn/d of crystalline silicon only
accounts for 10~* [66] its influence is much less than the temperature dependent
refractive index change dn/dT. Figure 12.11a shows the transmittance spectra of
the structure from Fig. 12.7 at room temperature and 10 K. A cryostat with optical
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Fig. 12.11 a Measured transmittance spectra of the structure shown in Fig. 12.7. The blue shift of
the room temperature spectrum is result of the refractive index reduction by 0.03. b Wavelength of
maximum reflectance (minimum transmittance) of the right minimum in (a) in dependence of the
temperature

windows was utilized for the characterization. By means of a halogen lamp and a
monochromator setup the spectra were measured. Each of the spectra exhibits two
transmittance minima. For the investigated structure, a wider supporting structure
would reduce the transmittance between the two minima leading to broad wavelength
range of low transmittance equivalent to a reflectance close to unity. In the spectra
the transmittance minimum at a wavelength of about 1380 nm is more pronounced
than the minimum at about 1540 nm. This fact may originate from a higher level of
scattered light at shorter wavelengths as well as by a different interaction of the fields
in the upper grating region with the supporting structure. The fact that the minima are
located at a wavelength of less than 1550 nm can be attributed to a depth of the upper
grating region which is less than the design value. Figure 12.11a implies that the
shift of the short wavelength transmittance minimum (left transmittance minimum)
is smaller than the shift of the minimum at larger wavelengths. However, the price
for the larger temperature tolerance are stricter requirements for the accuracy of the
upper grating layer thickness. Therefore, shifting this transmittance minimum to a
wavelength of 1550 nm by adapting the structural parameters is not advisable.

From An (T} = 10K) the wavelength of minimum transmittance can be cal-
culated by means of rigorous methods solving Maxwell’s equations, for example
RCWA [58]. Figure 12.11b shows the results of these simulations in comparison
to the experimental data. The data illustrate that nanostructured crystalline mirrors
needs be designed for a specific target temperature. Because of the decreasing 8 (T)
at low temperatures there is only a small spectral shift at temperatures below 100 K.
The shift implies that the fabrication and pre-characterization of the mirrors at room
temperature has to be performed at A,x + AA to account for spectral shifts at low
temperatures. The value of AX depends on the operation temperature as well as on
the structural parameters. In applications close to room temperature the temperature
dependent refractive index provides the possibility to precisely tune the wavelength
of maximum reflectance (or minimum transmittance) to the desired wavelength.
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12.7 Outlook

To overcome the limitation of Brownian thermal noise in future gravitational wave
detectors the major challenge for all low-noise concepts will be the improvement of
the mechanical, thermal and/or optical properties of the involved components. Ever
improved properties require ever improved characterization methods. For waveg-
uide gratings a major challenge will be to identify the origin of scattered light and
to systematically mitigate it by optimized fabrication technology. For the charac-
terization of scattered light, the techniques described in Chap. 14 can be applied.
Due to the pronounced modulation of the electromagnetic field, in waveguide grat-
ings defects and surface roughness are particularly critical in regions with high field
intensities. The reduction of scattered light will be the key to enhance reflectivity
and make waveguide gratings competitive to amorphous and crystalline multilayer
based mirrors. Once this challenge is coped, a tenfold enhancement of sensitivity
can be achieved in high-precision optical experiments [67].
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Chapter 13
Polarization Control by Deep Ultra Violet
Wire Grid Polarizers

Thomas Siefke and Stefanie Kroker

Abstract Polarization is an inherent property of transversal electromagnetic light
waves. Hence, the control of the polarization state is a fundamental requirement in
many optical applications. Nowadays, optical measurement and fabrication technol-
ogy strive to shorter wavelengths in the ultra violet to benefit from larger resolution
and material specific electronic transitions used for analysis. Thanks to the progress
of nano-technology it has become feasible to manufacture subwavelength devices
such as wire grid polarizers for this wavelength regime. These elements offer a very
large acceptance angle, large areas and can be integrated with other optical elements
such as photo masks or image sensors. However, not only geometrical properties must
be met, but also specific materials properties must be provided. In this chapter the
principle concepts of polarizers basing on birefringence, reflection and dichroism are
very briefly explained and their limitations are discussed. An overview of commer-
cially available elements is given to set wire grid polarizer in a bigger picture and the
characterization of polarizing elements is described. Further the working principle,
structural and material requirements for wire grid polarizer are discussed in detail.
The fabrication and design is presented. The transmittance spectra of fabricated ele-
ments exhibit resonances in the near ultra violet spectral region. It is discussed how
these can be utilized to reconstruct the geometry and deduce the performance of
the polarizers at much shorter, less accessible, wavelengths in the far ultra violet.
Finally, a comparison of different materials for wire grid polarizers in the ultra violet
wavelength range is presented.
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13.1 Introduction

Light, a transversal electromagnetic wave, inherently possesses polarization prop-
erties—the mode and direction in which the electric field oscillates. Therefore, the
generation and analysis of polarized light is a very important task in nowadays opti-
cal technology such as photo lithography [5, 6, 8], photo mask inspection [38, 39] or
ellipsometry [30, 31]. These techniques benefit from increased resolution and mate-
rial specific electronic transitions providing additional information. Thus, polarizers
for shorter wavelengths are required. Compared to other possible solutions, wire
grid polarizers offer large element sizes, very wide acceptance angles and can be
easily integrated e.g. into the photo mask. Therefore, the further development of
such elements will enable the future optical technology.

One of the first experimental investigations of the polarization properties of light
were conducted by Etienne Louis Malus and published in the year 1808 [15]. Based
on these experiments, the transversal character of light waves was further investigated
by Augustin Fresnel and Thomas Young. Later, in the year 1861 James Clerk Maxwell
published his famous set of equations, from which i.a. polarization properties can be
concluded. This, in those days, controversial theory was experimentally supported
by Heinrich Hertz in the year 1888 [13]. For his experiments with radio waves at a
wavelength of 66 cm, Hertz developed the very first wire grid polarizer. This device
consisted of a wooden frame where copper wires of 1 mm diameter were attached
in a grid with a period of 3 cm.

During the following decades, this approach of a freestanding grid consisting
of individual wires was extended to wavelengths in the far infrared. To circumvent
the mechanical limitations regarding the grating period of this approach, George
R. Bird and Maxfield Parrish Jr. presented the first wire grid polarizer fabricated
by physical vapor deposition of gold or aluminum onto a polymer grating in year
1960 [3]. Fostered by improved nano-fabrication techniques the same approach of
metallic gratings on a transparent substrate was further extended to the near ultra
violet wavelength range [32-34]. Recently, aluminum wire grid polarizers with a
period as small as 33 nm were fabricated by self-assembling diblock copolymers [25].
Unfortunately, however fabricating structures with very small periods is solely not
sufficient to achieve a good optical performance. Efficient polarizers require materials
with high absolute value of the relative permittivity and extinction coefficient. In
metals this is provided by the strong interaction of light with free electrons. However,
in the UV or at shorter wavelengths this interaction becomes weaker. Therefore, other
materials such as wide bandgap semiconductors with direct band transitions are more
suitable materials [27, 28].

In the following chapter, polarization properties in general are discussed, the most
important commercially available polarizing elements are introduced and a charac-
terization method is discussed. Then, the working principle of wire grid polarizer is
explained and material requirements are deduced. Furthermore, the design of deep
ultra violet wire grid polarizers is described and a fabrication route for such ele-
ments is discussed. Additionally, resonances occurring in the transmittance spectra
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are correlated to irregularities induced by the fabrication process deviations. Finally,
the application ranges of wire grid polarizer consisting of different materials are
compared according to measurements results from literature.

13.2 Polarization of Light

Light, as a transversal electromagnetic wave travelling along the z-axis, can be
described by a superposition of two individual waves. According to a Cartesian
decomposition the electric fields E, and E, can be defined as:

Ex (z,1) = Egx cos (ot — kz), (13.1)
Ey(z,1) = Egycos (ot —kz+6). (13.2)

Eg ., Eo,, are the electric field amplitudes and § is the phase between the two
waves. Each polarization state can be described by the superposition of these two
orthogonal waves. In Fig. 13.1a two orthogonal waves are oscillating in phase with
the same amplitude. The superposition of these two waves leads to a linear polarized
wave oscillation along the diagonal plane. By introducing a phase difference of /2
between the two orthogonal waves so called circular polarized light can be achieved.
The tip of the resulting electric field vector moves on a circle projected to the x-y-
plane (see Fig. 13.1b)) [7, 12]. By the relation between the amplitudes and phase,
arbitrary polarization states can be achieved. The denomination of the polarization
states is summarized in Table 13.1.

(@ v (b) v
5

Fig. 13.1 Superposition of two waves resulting in a linear polarized light and b circular polarized
light

Table 13.1 Polarization states

Polarization state Condition
. Eo,x and E,y arbitrary, § = 27 N for
Linear .
N e Ny, orequivalent Eg x = Oor Egy =0
Circular Eox = Eoy,0 =m/2+2xNforN € Ny

Elliptical Eox, Eo,y and§ arbitrary
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Many light sources emit light whose polarization state changes very fast and
statistically. Such light is called natural light. The often used term “unpolarized” is
somewhat misleading, since the light is actually polarized at a specific point in space
and time. The duration in which the polarization state is not altered significantly is
called polarization time [1], which may be much shorter than resolvable by a detector.
Hence, the light appears to be not polarized. The here discussed wire grid polarizer
are linear polarizers, i.e. the transmitted light is linear polarized.

13.3 Characterization of Polarizing Elements

Assuming an ideal linearly polarized beam passing through a ideal linear polarizer,
it is possible to find an orientation where the maximum of the light is transmitted.
Orthogonal to this orientation a minimum transmittance is found. The transmittances
along the two orthogonal axes Ti.,ns and Tpjock can be utilized for the characterization.
The suppression of the transmittance along the undesired polarization direction can
be expressed by the extinction ratio:

Ttran S

Er = ——. (13.3)
Tiiock

Practically, the spectral characterization of a polarizer can be performed by using
a spectrophotometer equipped with a reference polarizer, typically called analyzer
(placed either in front or behind the sample). The measured transmittance 7 for
different angles @& between sample polarizer and analyzer is given by:

T :1/4(Tblock.S + Ttrans,S)(Tblock,A + Ttrans,A)
+1/4 Ccos (®) X (Tblock,S - Ttrans,S)(Tblock,A - Ttrans,A)» (134)

where Tpiock,s and Tians,s are the transmittances of the sample and Tyjock A and Tipans A
of the analyzer, respectively. Assuming that a perfect analyzer (i.e. Tpiock, o = 0 and
Tians,a = 1) s used, the value of Tyjock s is the minimum and for Ti,ns s the maximum
value of I (®), respectively. However, if the analyzer is not perfect the measurement
can be invalidated. For practical purposes the extinction ratio of the analyzer should
be two orders of magnitude larger than that of the sample. Or alternatively, if the
performance of the analyzer is known, (13.4) can be used to correct the results.
Additionally, the polarization effects inherent to the device, e.g. due to reflection at
internal mirrors must be considered.

13.4 Common Elements for Polarization Control

For polarization control, asymmetrical or anisotropic phenomena are required, in
particular birefringence, dichroism and reflection are of technological importance.
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Table 13.2 Comparison of several commercially available polarizers

Wavelength | Transmittance (%) | Extinction | ¢ Area | Cost
range (nm) ratio
Birefringent prism 200-5000 | >95 > 100 - |- -
Glan-Thompson
Rochon 130-7000 | >95 > 10° - |- |-
Dichroic 400-5000 2540 10* o + +
Glass
Polymer 400-700 3040 > 103 o |+ +
Wire grid 300-30000 50-80 > 103 + o o
Reflection 200-30000 | >95 > 103 - o +
(single
wavelength)

In the following section a brief overview of existing technological solutions and their
respective capabilities is given and summarized in Table 13.2.

Birefringent materials have a refractive index which depends on the propagation
direction and the polarization of the incident light. For the fabrication of polarizers
uniaxial materials e.g. calcite, magnesium fluoride or a-BBO are typically utilized.
Two prism of such a birefringent material are polished at suitable angles and attached
to each other. At the interface, one of the orthogonal polarized components of the
incident light experience either total internal reflection or is differently refracted than
the other. Birefringent prism polarizers offer extremely high extinction ratios up to
10° and high transmittances. The application wavelength range is determined by the
utilized material and can range from the far ultra violet to the far infrared. However,
these elements are typically rather bulky and the angle of incidence is limited to a
few 10°. Due to the limited available crystal size such components typically have
clear apertures of a few 10 mm [7, 12].

Dichroic materials show an optical anisotropy of the extinction coefficient, com-
parable to birefringence. The absorption for polarized light oriented parallel to a
certain axis is much larger than for orthogonal polarized light. Commercially, there
are essentially two types of dichroic polarizer available, basing on polymer sheets
and glass plates. They are fabricated by stretching either a thin foil of polymer [12]
or metallic nanoparticle loaded glass sheets at elevated temperatures. Thereby an
anisotropy is achieved. These can be very cheap elements with areas in the range of
several square meters. However these components are temperatures sensitive (espe-
cially those basing on polymer), the extinction ratio and transmittance is limited.
The application wavelength range is typically limited to the VIS to the mid-infrared
spectral region.

Wire grid polarizers belong to this group of dichroic polarizers, their mode of
operation will be subsequently discussed in detail. Commercially available wire grid
polarizers offer application ranges from about 300 nm in the UV to 30 wm in the
far infrared. The achievable extinction ratios are of about 10* at transmittances of
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50-80%. A particular advantage of wire grid polarizers is their large acceptance
angle covering almost the entire half space.

Reflection at an interface depends in general on the polarization of the incident
light. At the Brewster’s angle the reflection of p-polarized light drops to zero, hence
the extinction ratio for the reflected light becomes, theoretically, infinity. However,
this can only be achieved at a specific angle and wavelength. Hence these devices
are very sensitive to misalignment or divergence of the incident beam. This can be
partially circumvented by the utilization of multiple plates or by utilizing multiple
thin films and allows for use in transmittance. Practically, this kind of polarizer overs
extinction ratios of about 1000 and allows deviation of the incident angle of a few
degrees [21].

13.5 Wire Grid Polarizers

Wire grid polarizers (WGPs) are nano-optical grating structures (see Fig. 13.2).
The polarization direction of the incident light is denominated according to the
orientation between the electrical field vector and the ridges. The parallel orientation
is denominated as TE (transversal electric) and orthogonal as TM (transversal
magnetic), respectively.

To avoid diffraction at the grating structure the period p has to obey the zero order
grating condition (ZOG) (compare (12.5):

A

_— 13.5
P= gy +sin @) (13)

where A is the application wavelength, ngy,, is the refractive index of the substrate
and ¢ the angle of incidence (x-z plane, see Fig. 13.2). Technologically very small
periods can be achieved [25], hence (13.5) can be fulfilled even for grazing incidence
i.e. ¢ ~ 90° in the visible and infrared spectral range. Therefore, elements with very
large acceptance angles are feasible, rendering wire grid polarizer superior to other
solutions.

ridge width | | period|_

Fig. 13.2 Schematic wire grid polarizer. Incident light which is polarized parallel to the ridges is
called transversal electric (TE), light which is orthogonal to the ridges is called transversal magnetic
(T™M)
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To understand the working principle of WGPs the polarization dependent condi-
tions for electric fields E [4] at the horizontal surfaces between the ridge material
and the surrounding medium (here air or vacuum) can be considered:

Bl — Eyae for TE (13.6)
8ridgeE~¥§/[ge = 8V3€E~%l]l\5[ forTM (137)

For TE-polarized light, the electric field is continuous at the interfaces (see (13.7).
Therefore, the distortion of a plane wave incident on the WGP is small (see
Fig. 13.3a). For a material with nonzero extinction coefficient the light is expo-
nentially damped. This can be approximated by the Beer-Lambert law:

_ Amkefrz

Trg =¢€ Ao (138)

For a wavelength A the transmittance of TE polarized light becomes small if the ridge
height z becomes large, or if the effective extinction coefficient k. of the grating
becomes large. This means that for a wire grid polarizer a material with a large
extinction coefficient must be utilized.

For TM polarized the dielectric displacement is continuous at the surfaces (see
(13.7). Regarding the absolute value of the electric field 3 different cases can be
distinguished.

(I) |€ridge| > |€sur|
If the absolute value of the permittivity of the ridges is much larger than that of the
surrounding medium the electric field is mainly localized in the gap between the

ridges. Hence, the transmittance of TM polarized light is very high (see Fig. 13.3b).
This is the preferred operation mode for WGPs.

(1) |€ridge | Z|€sur|

(b)
(@) TM-Polarization (€) (d_)
TE-Polarization IErldgeI > I Evacl IEridse 1~ Eva:| lErmse I << lEvacl

Fig. 13.3 Schematic electric field distribution in a wire grid polarizer. The dashed lines denote the
position of the grating ridges and the substrate. a For TE polarized light and a grating material with
nonzero extinction coefficient. b For a material whose absolute relative permittivity is much larger
than that of the surrounding medium and c¢ for a material whose absolute relative permittivity is
much smaller than that of the surrounding medium
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If the absolute value of the permittivity of the ridges approaches that of the surround-
ing medium the electric field penetrates into the ridges thus the transmittance of TM
polarized light is considerably smaller. This operation mode is less expedient or may
not be applicable at all.

(HI) |€ridge| < |€sur|

If the absolute value of the permittivity of the ridges is much smaller than that of
the surrounding medium the electric field is mainly localized in the ridges. Since
the grating material must have a nonzero extinction coefficient the electric field is
strongly absorbed (see Fig. 13.3c). The transmittance of TM polarized light is very
low. Under special circumstances the transmittance of TM polarized light can become
smaller than that of TE polarized light. This is than called inverse polarization effect.
Typically this is only feasible in a very narrow spectral range of some ten nanometers
[18].

The absolute value of the permittivity is coupled to the refractive index n and the
extinction coefficient k:

le| = n® + k2. (13.9)

In summary, to achieve WGPs with a large extinction ratio and a large transmit-
tance a material with a large extinction coefficient and a large absolute value of the
permittivity is necessary.

In the visible and infrared wavelength range this can be easily achieved by using
metals such as aluminum, gold or silver. In these wavelength regions, these materials
can be appropriately described by the Drude model. Thereby the relative permittivity
is expressed as [9]:

_ wp?
f@) =1— —F (13.10)
(0? +iyw)
2
P (13.11)
EoNie

where w is the frequenzy, w, is the plasma frequency, n. number of free electrons
and m, effective electron mass.

Figure 13.4 the calculated complex refractive index and the absolute value of the
permittivity are shown for aluminum. According to the material requirements for
WGP four different working regimes can be deduced:

(A) For large wavelength in the visible and infrared wavelength regime both the
extinction coefficient and the relative permittivity are large. Hence, this material
is very well suited.

(B) Towards shorter wavelength in the near ultra violet, both the extinction coeffi-
cient and the relative permittivity decrease. Hence the optical performance of
such WGPs decreases as well.
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Fig. 13.4 Calculated
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(C) At wavelengths slightly larger than the plasma frequency the relative permit-
tivity becomes smaller than that of the surrounding medium. Hence, an inverse
WGP can possibly be achieved.

(D) For wavelength below the plasma frequency the extinction coefficient of the
material becomes very small, hence such a material cannot be utilized for WGP.

From these considerations it can be concluded that the optical performance of
WGPs consisting of Drude metals will diminish towards the ultra violet spectral range
and will be not suitable below a certain wavelength. This behavior is experimentally
observed for several materials such as iridium [34] or aluminum [23].

Especially, in the ultraviolet spectral range many materials show interband tran-
sitions. If the energy of an incident photon is larger than the bandgap energy of a
material, electrons can be excited to a state in the conduction band. This absorption
phenomenon becomes dominant for wide bandgap semiconductors such as titanium
dioxide in the ultra violet. These interband absorption processes can be described by
a Tauc-Lorentz model [14]

AE)T (E —Ep)° 1

(E2 - E3)’+ ME2 E
Im{e} =0 forE < E,

Im{e} = forE > E,

(13.12)

where E is the energy of the incident photon, E, is the bandgap energy, Ey the peak
transition energy and A describes the strength of the oscillator. The real part of the
permittivity can be obtained applying the Kramers—Kronig relation.

It is again possible to find several working regimes for WGPs as marked in Fig. 13.5.
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(A) In the vicinity of the peak transition energy E, both the extinction coefficient
and the relative permittivity are large. Therefore, the material is well suited for
WGPs at this wavelength.

(B) At smaller wavelengths both the extinction coefficient and the relative per-
mittivity are reduced. Thus the material is less suited at this wavelength, if
applicable at all.

(C) For higher photon energies other transitions can usually be excited [24]. Hence,
the relative permittivity does not drop below that of the surrounding vacuum
and no inverse polarization effect can be observed.

(D) At smaller energies than the bandgap energy, interband transitions cannot be
excited. The extinction coefficient is virtually zero. Hence this material cannot
be applied as wire grid polarizer.

It can be concluded that wide bandgap semiconductors with a peak transition
energy at the targeted application wavelength can be applied as material for WGPs.
Noteworthy, the dominant loss mechanism for WGPs based on interband transition
processes is absorption. Therefore incident TE polarized light is not reflected as for
WGPs based on metals. This avoids the back reflection towards the incident beam
which must otherwise be taken care of e.g. for laser applications.

13.6 Fabrication of Wire Grid Polarizers

For the fabrication WGPs, a variety of methods are available. Since small periods
are necessary, self-aligned double pattering (SADP) processes are often applied [2,
29, 34] to relax the requirements on the lithography.

For the SADP process an initial layer stack is fabricated. First a phenolic resin
is applied by spin coating and is then fully cured by subsequent thermal treatment.
Afterwards a chromium layer is deposited by ion beam deposition. Finally, an electron
beam lithography resist is applied by means of spin coating. This is then structured
by character projection electron beam lithography (see Fig. 13.6a). This technique
employs a patterned mask in the electron beam path e.g. with a grating structure,
which is then printed at an area of several micrometer in one shot. This reduces
the writing time by several orders of magnitude compared to serial electron beam
lithography approaches [16]. This grating is then transferred into the chromium layer
by ion beam etching. This patterned chromium layer serves as hard mask to enhance
the selectivity for the subsequent reactive ion beam etching with oxygen for the
phenolic resin layer (see Fig. 13.6b). This achieved polymer grating is then utilized
as template onto which the target material for the WGP is deposited by means of
atomic layer deposition [26, 32, 33] or ion beam deposition [29] (see Fig. 13.6c).
Finally, the material on the horizontal surfaces is removed by ion beam etching, and
the template grating is removed by reactive ion beam etching. Thereby the final WGP
structure is achieved (see Fig. 13.6¢) [27-29].
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Fig. 13.6 Schematic fabrication process for a wire grid polarizer: a Fabrication of an initial layer
stack and lithography b Patterning of the template grating ¢ Deposition of the grating material and
d Removal of the material on the horizontal surfaces as well as the template grating
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Fig. 13.7 Measured complex refractive index of titanium dioxide deposited by atomic layer depo-
sition

13.7 Design and Characterization of Titania Wire Grid
Polarizers

In the following section the design of WGPs is discussed exemplified at an element
consisting of titanium dioxide. Usually the two optical target parameter extinction
ratio and transmittance of TM polarized light must be met. Since, large transmittance
and extinction ratio are contradictory, a tradeoff must be found. Therefore many
commercially available wire grid polarizer are offered either as high transmittance
or high contrast option.

Itis known that the optical properties of the utilized materials have a great influence
to the performance of the final element [29] and may strongly vary between different
deposition techniques and tools [19]. Hence, the optical properties of the intended
material deposited by the actual deposition process should be measured prior to the
design. This can be accomplished by ellipsometry [10, 11] (see Chaps. 8 and 9). In
Fig. 13.7 such measurement results for the complex refractive index for the here used
titanium dioxide fabricated by atomic layer deposition [26] is shown.

To begin with, the period is determined. In a first place the zero order grating
condition (see (13.5)) must by obeyed. Furthermore, fabrication technique and target
period must be balanced. In this example a period of 104.5 nm was utilized.

Next, the ridge width and height are determined. As previously shown, a WGP can
be understood as a form- birefringent thin film. The polarization dependent refractive
indices can be approximated by the effective medium theory (EMT). Therefrom the
transmittances can be calculated according to the Fresnel equation [20, 37]. While
this approach is elegant and demonstrative it contains some simplification. For the
effective medium approximation a period much smaller than that of the incident light
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Fig. 13.8 Simulated dependency of the a extinction ratio and b transmittance of a titanium wire
grid polarizer on the ridge width and height. The areas with an extinction ratio below 100 and a
transmittance below 50% are hatched. The chosen target parameter ridge width of 26 nm and a
height of 100 nm are marked. The simulation was performed at 248 nm wavelength and normal
incidence
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Fig. 13.9 Measured transmittance and extinction ratio of a titanium dioxide WGP. The dotted line
marks an extinction ratio of 100. If the measured extinction ratio is above this level the wire grid
polarizer is regarded as applicable, thereby the application ranges are deduced

is required [17]. Especially for DUV-WGPs this is hardly the case. Thus, numerical
methods like rigorous coupled wave analysis (RCWA) are necessary [22]. By such a
method the dependency of the extinction ratio and transmittance of TM polarized light
on ridge width and height (see Fig. 13.2) is simulated (see Fig. 13.8). By comparison
with the targeted parameters for the optical performance (here transmittance larger
than 50% and extinction ratio lager 100) a set of geometrical parameters can be
chosen. Here we chose a ridge width of 26 nm and a height of 150 nm.

According to this design titanium dioxide polarizer were fabricated. The measured
optical performance is shown in Fig. 13.9. At 193 nm wavelength an extinction ratio
of 385 was achieved. This is currently the largest reported value at this wavelength.

However, the measured values are below those expected from the design. The
actual performance of a wire grid polarizer is strongly sensitive towards process
induced geometrical deviations [29]. At the one hand this requires a close feedback
between design and fabrication technique at the other hand necessitates a tight process
control. This process control can be based on the evaluation of resonance features in
the transmittance of TM polarized light, here arising at about 375 nm wavelength. The
reasons for that are not equidistantly positioned and tilted ridges [27]. Figure 13.10a
shows a STEM image of a fabricated titanium dioxide wire grid polarizer [28] where
these features are visible.
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Fig. 13.10 a STEM image of a titanium dioxide wire grid polarizer. b Schematic of the distorted
structure
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Fig. 13.11 a Correlation between depths of the dips in the transmittance of TM polarized light at
about 375 nm and measured extinction ratio Er at 248 nm wavelength. b Measured transmittance
for increasing linewidth from 76 nm to 95 nm

From these asymmetries results a supercell with the period of the initial template
grating (see Fig. 13.10b). The period of this supercell of 209 nm obeys the ZOG (see
(13.5), therefore the dip cannot be related to the occurrence of diffraction. But, since
the condition:

A > ngnA (13.13)

is fulfilled, guided mode resonance (for more information see Chap. 12) can occur for
wavelength larger than 313 nm. According to the theory of perturbed waveguides the
strength of the resonance, here the depth of the dip, is proportional to the perturbation
i.e. the asymmetry. This asymmetry in turn leads to a reduction of the extinction ratio
at shorter wavelengths [29]. Therefore, the depth of the dip can be correlated with
the extinction ratio at the targeted wavelength. This was experimental verified by
variation of the width of the initial template grating from 76 nm to 95 nm and
evaluation of the extinction ratio at 248 nm and the minimum transmittance (see
Fig. 13.11b) in the resonance (see Fig. 13.11a).

The evaluation of such resonances in the near ultra violet can be utilized to predict
the performance of WGPs at much shorter wavelength. This is particular beneficial
if the applications wavelength is in the far ultra violet where special devices and
greater experimental effort is required. By evaluation of further properties of the
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resonance such as depth, position, spectral width and angle dependence the original
grating structure can be reconstructed in more detail [36]. This information can then
be utilized to control and improve the fabrication technology.

13.8 Application Ranges for Different Materials

As discussed previously, the choice of the material for WGPs determines the optical
performance and the wavelength range where a specific element can be utilized. To
compare spectral application ranges of WGPs consisting of different materials we
utilize an extinction ratio of 100 as criterion. If the extinction ratio is larger than
this we regard the element as applicable. A suppression of the undesired polarization
direction by two orders of magnitude seems to be appropriate for many purposes,
although for a specific application other values may be more useful. However, a
general conclusion can be drawn from this (Fig. 13.12).

13.9 Outlook

The application of wire grid polarizers has a long history in optics science. With the
development of the modern fabrication and characterization technology it became
feasible to fabricated elements for the infrared, visible and near ultraviolet spectral
region. In the future, the accessible spectral range will be further shifted towards
even shorter wavelength in the far ultraviolet spectral range. As demonstrated in this
chapter, other materials have to be utilized than those which are currently used in
commercially available elements.
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Chapter 14
Roughness and Scatter in Optical Coatings

M. Trost and S. Schroder

Abstract The measurement of light scattering from optical components has received
increased attention in the last decade. In addition to being a serious source of noise,
light scattering can lead to a reduced optical throughput, degrade the imaging quality,
or cause straylight in optical systems. On the other hand, the high sensitivity towards
small imperfections and inhomogeneities makes light scattering measurements a
powerful inspection tool. Measured light scattering is a good indicator of the surface
quality and can be used to characterize the surface roughness or local defects. After
an introduction of the main scattering quantities as well as their standardization,
this chapter will focus on the instrumentation used to characterize light scattering
and provide various application examples ranging from the light scattering based
roughness characterization of supersmooth substrates to the roughness evolution of
different multilayer coatings and its impact on the scattering properties.

Light scattering from optical components can critically affect and influence the per-
formance of optical systems. An apt example for this is the diffusely reflected light
from this white page or computer monitor [1, 2], which creates a homogenous, bright
background, making it possible to easily read the black printed letters. Further exam-
ples are diffuse materials or rough surfaces which are used for a similar purpose in
order to achieve a homogenous illumination in an optical system or to trap light
inside a coating. This can for instance be used to increase the efficiency of thin film
solar cells [3, 4].

But, even high quality optical components exhibit small imperfections and inho-
mogeneities that can lead to a reduced optical throughput, degrade the imaging
quality, or cause straylight, which more often than not became an unexpected source
of practical difficulties in optical systems [5].
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The origins for light scattering are manifold and range from residual surface
roughness and contaminations [6—8] to local defects on the surface (scratches, pits,
etc.) [9, 10], small cracks just below the surface (subsurface damage) [11, 12], or
inclusions inside the bulk material [13, 14].

For thin film coatings, each interface inside the multilayer stack leads to light scat-
tering [15—18]. Depending on the actual multilayer design and the roughness proper-
ties of all interfaces, these contributions can interfere destructively or constructively.
Thus, the light scattering may be reduced or increased in certain scattering directions
compared to a single highly reflective surface [19, 20]. But, also for coatings that
exhibit no sharp interfaces between the layer materials, such as a Rugate coating,
light scattering can occur from refractive index fluctuations [21].

The high sensitivity towards small imperfections on the other hand makes light
scattering measurements a powerful inspection tool [6, 7, 22]. Because of the non-
contact and robust data acquisition, the surface quality can often be advantageously
characterized over large areas or even during the actual manufacturing process [23].
This allows controlling the ever increasing roughness and defect requirements of
optical components.

This chapter is therefore intended to provide an insight into the scattering measure-
ment principles for optical components and to give an overview about the scattering
mechanism of substrates and multilayer coatings.

14.1 Definitions and Standards

Light scattering quantities for optical components can be divided into two major
categories: Angle Resolved Scattering (ARS) and Total Scattering (TS). In the fol-
lowing, an overview about these two quantities as well as their standardization will
be given.

The basic geometry and the nomenclature used for the definition of the specularly
reflected and transmitted beams as well as light scattering are shown in Fig. 14.1.

The sample is illuminated at an angle of incidence ¢; and besides the reflected
and transmitted beam at the angles ¢, and ¢, part of the light is scattered into off-
specular directions described by the azimuthal, ¢, and polar, ¢s, scattering angles.
The orientation of the sample with respect to the incoming beam is defined by the
angle ¢;. All angles are measured with respect to the macroscopic sample normal.

14.1.1 Angle Resolved Scattering

The most important quantity in the discussion of scattering is the angle resolved
scattering, ARS, which describes the relative amount of light scattered into a certain
direction. This is achieved by normalizing the scattered light power AP into the
solid angle A2, to the incident power P; and the solid angle [24]:
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Fig. 14.1 Geometry for the
definitions of specular
quantities and scattering

AP (¢s,¢5)
PAR,

ARS (¢,.¢5) = (14.1)

Besides the two scattering angles, the ARS also depends on the angle of incidence,
the light wavelength, and the polarization of the incident and scattered light and is
thus a multidimensional function.

Other common terms used to express angle resolved scattering are the Bidirec-
tional Reflectance Distribution Function (BRDF) and the Bidirectional Transmit-
tance Distribution Function (BTDF) referring to backscattering or forward scattering,
respectively, or, more generally, the Bidirectional Scattering Distribution Function
(BSDF). The main difference to the scattered intensity definition of the ARS is that
these functions are radiometric quantities defined as the scattered radiance divided
by the irradiance incident on a surface [7, 25]:

dPs (s, ¢5)

BSDF , = —\
(@5, Ps) P2, cos o,

(14.2)

Because of the differential notation, the BSDF is only approximated when mea-
surements are taken with a finite-diameter aperture. However, if the flux density is
reasonably constant over the measuring aperture, actual measurements approximate
the definition very good. Only for the combination of a large detector aperture and a
focused specular or diffracted beam, the approximation becomes very poor.

Comparing (14.1) and (14.2), reveals that the BSDF and ARS are basically the
same functions except for the cosine factor. The normalization to the incident light
power and detector solid angle ensures that both quantities become independent of
the actual measurement system.

Many fundamental aspects for measuring angle resolved scattering are described
in the ASTM standard E 1392-90 [26]. The procedure was also verified in several



380 M. Trost and S. Schroder

round-robin experiments at different wavelengths [27, 28] but is restricted to opaque
samples. Therefore, the ASTM standard ASTM E 2387-5 [29] has been established
later that has a wider range of application.

Currently, an ISO standard procedure for angle resolved light scattering mea-
surements is being developed by the international working group TC172/SC9/WG 6
of the international organization for standardization to meet the increased demands
concerning wavelength ranges, sensitivity, flexibility, and practicability. All these
standards describe the same quantity.

14.1.2 Total Scattering

The Total Scattering, TS, is defined as the light power scattered into the forward (f)
or backward (b) hemisphere normalized to the incident light power [30]:

P
TS = ?@ (14.3)

Practically, the TS can be measured with an Ulbricht/integrating sphere that simply
collects the scattered light into the forward or backward hemisphere and uniformly
spreads the light inside the sphere by using a diffusely reflecting coating. Part of the
sphere can then be viewed with a recessed detector, which allows determining the
total scattered light power Py Alternatively, the TS can be determined with the
help of a Coblentz sphere, which is basically a hemispherical mirror that collects the
scattered light and images it onto the detector.

Both techniques are described in the international standard ISO13696 [30], which
also suggests the angular acceptance range for the scattering angles (¢s = 0°...
360°, s = < 2°... > 85° [backward hemisphere] and ¢ = < 95°... > 178° [forward
hemisphere]). The specular beam is excluded in the calculation, which allows TS
values to be treated as a loss factor similar to an absorption loss. The energy balance
thus reads:

1=R+T+A+TSy+TSt, (14.4)

with the reflectance, R, and transmittance, 7'.

Another quantity used to describe the hemispherical scattering is the Total Inte-
grated Scattering, TIS, which is defined as the ratio between the diffusely reflected
light and the sum of the diffusely and specularly, P,, reflected light [6, 7]:

P

TIS = ‘ (14.5)
Py + P,
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It should be emphasized that TIS and TS are two different quantities although they
are often mixed up with each other which can cause some confusion. For instance,
several optical design software codes use the definition of TS but call it TIS.

The standard ASTM F 1048-87 [31] provides a procedure on how to measure TIS
for opaque samples. One drawback is, however, that no angular ranges for the diffuse
and specularly reflected light are given. It is thus difficult to distinguish at which
angular position the specular beam transits into the diffuse scattering or how much
diffuse scattering is actually included in the specular beam. These tricky questions are
simply avoided in the ISO standard by defining specific angular acceptance ranges.
This is essential when comparing light scattering measurements with reflectance and
transmittance measurements.

If the diffuse scattering is small compared to the specularly reflected light, as it
is usually fulfilled for high quality optics, TSy, and TIS can be converted into each
other with the help of the sample’s reflectance:

P P P TSy

TIS= —>— ~ =% = = ° (14.6)
P.+P P, RP, R

Aside from measuring TS directly, the scattering loss can also be determined by
integrating the ARS over the corresponding hemispheres:

2 +85°/178°
TS, = / f ARS (¢ ) sin ¢, dp, g (14.7)
0 2°/95°

This allows the acceptance angles to be precisely controlled. It is also possible to
determine the TS for arbitrary angles of incidence, which otherwise would require
specially designed Ulbricht- or Coblentzspheres with different entrance and exit
ports.

14.2 Theoretical Background

Scattering from imperfect surfaces has been intensively studied in the fields of acous-
tics, radiophysics [32], and optics [6, 7, 33]. In principle, Maxwell’s equation can be
used to connect the surface irregularities to the ARS. But, in most cases approxima-
tions are necessary in order to get practically useful results. The best known of these
approximations are: (1) the diffraction based Kirchhoff [34] and (2) the perturbation
based Rayleigh-Rice scattering theory [32, 35]. Despite their advanced age, these
theories are still subject of a lively discussion [36, 37].

However, in the case of small deviations of the ideal surface profile and small
angular scattering, both theories agree with each other as well as with experimental
results very good [7, 38]. The main difference between both scattering theories is
that the Kirchhoff approach can be used for rougher surfaces as well. But, it contains
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a paraxial (small angle) assumption that limits its ability to accurately calculate the
scattering distribution at large scattering angles or large angles of incidence.

In contrast, the perturbation approach used in the Rayleigh-Rice scattering theory
requires that the surface irregularities are small when compared to the light wave-
length (rms-roughness, o < ). The main advantage, however, is that all calculations
are vector based, which allows the scattering distribution to be determined at arbi-
trary angles of incidence and scattering. This high flexibility and the circumstance
that most high quality optical components fulfill the small roughness requirement
make the Rayleigh-Rice approach a powerful tool for predicting scattering from
surface roughness and vice versa. The following paragraphs will thus focus on the
Rayleigh-Rice scattering theory in more detail.

14.2.1 Light Scattering from a Single Rough Surface

The basic procedure for modeling light scattering from a rough surface is to solve
Maxwell’s equations for an ideally flat surface and replacing the interface roughness
by plane surface current sheets that act as sources of the scattered light. If only first
order terms are considered in the calculation, the following relationship between the
ARS and the surface roughness is obtained [7, 33]:

1672 )
ARS (¢, ¢s) = BT cos g;cos”ps QPSD (fx, fy) . (14.8)
The ideal sample characteristics of the perfectly smooth surface, such as the refractive
index of the ambient and substrate material, as well as the polarization of the incident
and scattered light are described by the dimensionless factor Q, which can also be
viewed as a generalized surface reflectance. For instance, for s-polarized incident
light, O can be approximated by the specular reflectances at the angles of incidence
and scattering: Qs_pol = \/ Ry_po1 (97) Rs—pol (@5) cos? ¢s.
The roughness properties are described by the power spectral density function,
PSD, which is defined as the squared modulus of the Fourier transform of the surface
topography, z(x,y) [39, 40]:

2

2 (x, y) e Zi(fexr ) dxdy (14.9)
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Another way to look at (14.8) and (14.9) is that the scattered intensity is essentially
a Fourier spectrogram of the surface errors, which makes it convenient to discuss
scattering in the frequency domain. The link between the scattering angles and the
spatial frequencies, fx and f, is given by:
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Fig. 14.2 Roughness spectra determined with different characterization techniques

f sings cosgs —sing;
f= ( X) = A : (14.10)

fy sings singg
A

which can be viewed as a generalization of the conical grating equation for first-order
diffraction for a grating with a period of 1/f.

Stochastic processes such as polishing, etching, or thin film growth usually
do not create a preferential direction and show an isotropic surface roughness
[41, 42]. In this case, the PSD is nearly symmetric in | f| and can be averaged over
all azimuthal angles, enabling a compact visualization of the roughness spectrum.
Another advantage of the PSD is that the roughness information from different char-
acterization techniques, such as topography measurements performed with an atomic
force microscope (AFM), white light interferometer (WLI), or profilometry, as well
as light scattering measurements can be easily combined as shown in Fig. 14.2.

The actual accessible spatial frequency range of the different techniques is usually
smaller than the theoretical limit set by the instrumental resolution and measurement
area. For instance, at the lower end of the PSD determined by AFM or WLI, the
curves tend to fall to smaller values because of a poor sampling. This can also occur
at the upper end, because of a low pass behavior of the microscopy objective.

PSDs determined by light scattering measurements tend to overestimate the rough-
ness spectra at their lower end because of the influence from the specular beam. Also
at the upper end, the PSD usually increases in form of a sharp hook [36]. How-
ever, in the intermediate and thus largest part of the PSD, the curves from different
characterization techniques overlap each other very good.

Changing the spatial frequency range covered by the light scattering measure-
ments is possible by using different light wavelengths. This also illustrates that
roughness components responsible for light scattering are not always the same for
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different light wavelengths. For instance, in the visible spectral range, only spatial
frequencies up to f ~ 2 um~! contribute directly to the light scattering distribution.
For shorter light wavelengths, the upper spatial frequency limit is higher.

Integrating the PSD allows determining the rms-roughness in the bandwidths
relevant for the later application:

Funax 3
o= [271/ PSD(f)fdf:| ) (14.11)

min

By integrating (14.8) according to (14.7) a closed form solution for the TS can be
retrieved. For normal incidence and under the assumption that the scattered light is
concentrated in the vicinity of the specular reflex, this yields:

dno

2
TS, = Ry <T> , (14.12)

where the optical factor, Q, is approximated by the ideal Fresnel reflection of the
surface, Ry.

Using scalar diffraction theory, the same result can be derived for smooth surfaces
(0 < A) as shown by H. Davies [43, 44]. In order to ease the mathematics, he used a
Gaussian PSD function for the surface roughness. However, as (14.12) was obtained
without any assumptions on the surface PSD, this is not necessarily required. It is
interesting to note that the interim result,

TS, = Ry [1 _ e—(“?f’)z] (14.13)

in the paper of H. Davies is also valid for rough surfaces (¢ > )\), as was later demon-
strated by P. Beckmann and A. Spizzichino [34], assuming a Gaussian PSD function
as well. However, in a recent publication [45], it was shown that for sinusoidal grat-
ings, which obviously do not exhibit a Gaussian PSD, (14.13) provides a very good
estimate even for large grating amplitudes by comparing the simulation results to
rigorous calculations. Hence, for a large range of surface roughness values, (14.13)
can be used to predict the scattering loss from single surfaces or highly reflective
metal coatings.

14.2.2 Light Scattering from Thin Film Coatings

Going from one rough interface to multiple rough interfaces is now straight forward.
For each interface, the scattered intensity can be calculated similarly to the single
rough surface. The only difference is that the incident light has to propagate to the
rough interface and the scattered light has to find its way back to the ambient media.
This can however easily be achieved based on the ideal multilayer design, as the
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incident and scattered intensities are not significantly altered by the perturbation
approach. The scattering distribution is then obtained by a superposition of the
individual contribution from all interfaces and results in the following ARS for a
thin film stack consisting of N layers [15-17]:

1 N N
ARS (g5, ¢5) = —422 iFTPSD; ; (fu. fy) - (14.14)
i=0 j=0

Analogous to the single interface, all properties of the perfect multilayer and the
conditions of illumination and observation (dielectric constants, multilayer design,
and polarization) are described by the optical factors F;. Interference between the
scattered electric fields from the individual interfaces of the multilayer is consid-
ered by the cross-correlation PSDs (i # j), besides the individual interface PSDs

(@=J).

14.2.3 Roughness Evolution of Multilayer Coatings

In total, (N +1)? PSDs are required to model the scattering from a multilayer. One way
to determine them experimentally is by using cross-sectional transmission electron
microscopy [20] or AFM after the deposition of different number of layers [46, 47].
This, however, usually results in the destruction of the sample or can be a tedious
and time consuming task because of several deposition runs.

An alternative is given by modeling the thin film growth based on the substrate
roughness and the thin film characteristics. Powerful approaches for this are: (1) the
scaling of the surface roughness according to [48]:

o; = ci? (14.15)

and (2) the linear continuum model [49, 50].

Although very simple in its approach, a good agreement between experimental
results and the first method can be achieved for columnar thin films [51, 52]. A nearly
saturated roughness increase or a rapid roughening from one interface, i, to the next
can be directly described with the help of the roughening exponent, S.

Dense polycrystalline or vitreous amorphous thin films, which can often be
achieved by ion and plasma assisted deposition processes, such as ion beam sput-
tering, pulsed laser deposition, or magnetron sputtering [53], can be more advan-
tageously described with the linear continuum model [21, 54-56]. This approach
assumes that the interface roughness of the ith interface can be expressed by the
sum of the intrinsic thin film roughness, PSDiy;(f), and a replication of the underly-
ing interface weighted by a local smoothing factor, ar;(f), in order to consider the
mobility of the deposited particles:
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PSD; (f) = PSDinti (f) + arep,i (f) PSDi1 (f). (14.16)

The replication factor is essentially a low-pass filter that replicates the roughness
components at low spatial frequencies while high spatial frequency components
are decreased. This agrees with the physical picture that over a short distance the
adatom mobility leads to a purely stochastic roughness, while large ranging roughness
structures are replicated:

ai (f) = e 2 1o 21 (14.17)

The thickness of the ith layer is described by #;, the relaxation rate is characterized
by ¥, and the actual relaxation mechanism is denoted by «;. Different relaxation
mechanisms such as viscos flow (x; = 1), evaporation-recondensation (k; = 2), bulk
diffusion (k; = 3), and surface diffusion (x; = 4) can be directly associated with the
different integer values of the relaxation parameter [48].

The intrinsic thin film roughness can be described by the same parameters with
the addition of the minimal growth volume, £2;:

1 — =22 hivgl2n f1

22)([ yl(,‘ |27Tf|K’

PSD; ine (f) = (14.18)

One way to determine the set of growth parameters for each layer material is to
compare the experimental PSD of the multilayer top surface with the modeling
results [54-56]. All interface PSDs are then automatically obtained by the recursion
relation in (14.16).

In addition, also all cross-correlation PSDs can be modeled with this approach:

PSD ;. (f)=a; (/) aj1 (f)- a1 (f)PSD; (). (14.19)

i<j

Other common cross-correlation models that can be used in combination with the
two presented roughness evolution approaches are:

e Partial correlation model: PSD; ; (f) = min [PSD; (f),PSD; (f)].
e Uncorrelated model: PSD; ; (f) = 0 and the
o Fully correlated model: PSD; ; (f) = PSDiop surface (f)

Which one of these models is the most representative for a given multilayer coating
depends to a large extend on the deposition parameters. For instance, high adatom
mobilities or etching with a secondary ion source during the deposition process can
destroy the correlation in favor of the uncorrelated model.
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14.3 Instruments for Light Scattering Measurements

Measuring light scattering requires fairly sophisticated instruments as the scattered
intensity is usually very small compared to the incident light power and can vary
quickly by several orders of magnitude when approaching the specular beam direc-
tions. For a complete scattering analysis, also a large fraction of the scattering sphere
has to be characterized. In the following, different setups for total scattering, angle
resolved scattering, and compact scattering sensors are introduced.

14.3.1 Total Scattering Measurements

Instruments to measure TS (and TIS) have been developed in a number of laboratories
[6, 40, 57-63] based on integrating/Ulbricht and Coblentz spheres. For the former,
different coatings such as Spectralon (PTFE), barium sulfate, or rough gold are
available, which allow performing these measurements in a wide spectral range
from the ultraviolet to the infrared. Only below A = 200 nm, no diffusely scattering
coatings are available. Therefore, setups for shorter wavelengths require the use of
a Coblentz sphere [64—66], which can be used at longer wavelengths as well.

For integrating spheres, the multiple scattering from the side walls and the small
ratio between detector area and surface area of the sphere reduces the measurement
signal. In addition, the large field of view of the detector is prone to Rayleigh scat-
tering from air molecules, which limits the sensitivity of an Ulbricht sphere based
setup.

The Coblentz sphere approach on the other hand provides a higher signal to the
detector which usually offers a substantially higher sensitivity. However, some of
this light is incident on the detector at very high angles, which tends to discriminate
high angle scattering. For many samples this is not a problem or can be compensated
with the help of a small integrating sphere in front of the detector.

According to the ISO standard 13696 [30], the Ulbricht and Coblentz sphere
exhibit a small exit hole so that the radiation within 2° of the specular beam can
leave the sphere without being detected as shown in Fig. 14.3.

14.3.2 Angle Resolved Scattering Measurements

For the measurement of the ARS or BSDF special photogoniometers, sometimes
referred to as scatterometers, as well as fixed illumination and detection systems
based on CCD or CMOS detectors have been developed in different laboratories [10,
19, 67-72]. The majority of the systems operate in the visible spectral range. But also
specially designed instruments for the lithography wavelengths 13.5 nm [73, 74] and
193 nm [64, 66] as well as the infrared spectral range have been developed. With the
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Fig. 14.3 Measurement principles for total scattering. Left: Ulbricht/integrating sphere based
setup; right: Coblentz sphere based approach

Fig. 14.4 Typical 3D scatterometer for angle resolved light scattering measurements

availability of tunable light sources with high light powers, also first instruments have
been built that enable spectrally resolved light scattering measurements [19, 75].

In principle, all of these instruments can be divided in in-plane scatterometers that
detect the scattered light in the plane of incidence (¢ = 0°) and 3D scatterometers
which cover the entire scattering sphere. A schematic for most common instrument
configuration in use is shown in Fig. 14.4.

Besides this classical setup, there exist also other measurement configurations.
For instance, the source and the detector may be fixed and just the sample is rotated,
which has the advantage of an easy mechanical design but complicates the analysis
because the scattering and the incident angle are changed simultaneously [41].

Other approaches with a fixed detector include the variation of the illumination
direction, which has the advantage that no long detector arms have to be used [75,
76]. In this case, the detector can also be rather bulky and incorporate additional
optics such as a monochromator [77]. The sample is either fixed to the illumination
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direction or can be moved freely with respect to the incoming light beam. For the
latter, the illumination spot size at the sample position changes for the different angles
of incidence and thus leads to different measurement spots during a measurement.
Therefore, these instruments usually incorporate a tunable slit in the illumination
path to compensate this effect [75]. This can however introduce additional scattering
and diffraction from the edges of the slit.

Following the beam path in the schematic sketch shown in Fig. 14.4, the light
from the individual laser sources (1) passes a mechanical chopper (2) to enable lock-
in amplification and noise suppression. Variable neutral density filters (3) are then
used to adjust the incident light power so that the detector (9) operates in its linear
response range, even for the large variations in signal powers between the incident
light beam and low-level scattering.

In order to avoid detecting scattering from the instrument itself which is later
reflected or transmitted by the sample, several beam preparation optics (4) are used:
this includes an iris (5) to alter the beam size on the sample and a spatial filter (6),
consisting of two focusing mirrors and a pinhole. If required, polarizers and wave
plates (7) used to define the incident polarization are commonly placed just before
the pinhole in order to reduce scattering from them as well.

The positions of one or both spatial filter mirrors can be changed in order to
compensate for a possible curvature of the sample being tested (8), so that the pinhole
is imaged over the sample onto the detector aperture. This enables light scattering
measurements in close vicinity to the specular beam which is important for imaging
optics. The typical spot size at the sample position is 1-5 mm.

Alternatively, the light can be focused onto the sample with a typical spot diameter
of 100 wm in order to achieve a high lateral resolution on the sample but at the cost
of a slightly reduced near angle measurement capability.

The irradiation position and the angle of incidence can be adjusted with the sample
positioning system. The detector — usually a photomultiplier tube or a photodiode —
can be scanned freely around the sample. The detector solid angle, §25, is set by the
distance between the detector and the sample as well as the diameter of the detector
aperture. Aperture diameters between 0.1 and 5 mm are typically used, depending
on the specific measurement task, sensitivity requirements, speckle reduction, and
near angle limit.

By application of neutral density filters, more than 14 order of magnitude dynamic
range can be achieved in the visible spectral range [69, 78]. This is sufficient to
investigate samples ranging from superpolished substrates with rms roughness values
below 0.1 nm to thin film coatings, optical materials, as well as nanostructured and
machined surfaces. For high-end scatterometers, the lowest detectable signal is not
necessarily set by electronic noise but by Rayleigh scattering from air molecules
within the light beam that is partly viewed by the detector [79]. This is illustrated in
Fig. 14.5 in more detail.

One way to minimize the unwanted influence of Rayleigh scattering from air
molecules on the measurement signal is to reduce the detector field of view. However,
it still has to be larger than the illumination spot at the sample position so that the
entire scattered light from the sample is detected.
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Fig. 14.5 Light scattering from air molecules. Left: Schematic illustrating the influence of the
detector field of view on the measurement signal; right: exemplary instrument signature at A
=405 nm in the plane of incidence

The characteristic shape of the instrument signature, which is an ARS measure-
ment without a sample, results from the different length of the observed beam path
and the incident polarization. For instance at ¢; = —180°, the detector looks along
the entire beam path, while in the direction perpendicular to the incident beam, the
observed beam length is confined to the width of detector field of view at the sample
position. The air molecules behave as point polarizable dipoles because they are
smaller than the light wavelengths. Therefore, a typical Hertzian radiation pattern
can be observed for the two polarizations.

14.3.3 Compact Scattering Sensors

The large degrees of freedom for the sample positioning, illumination, and detection
unit can quickly lead to more than 10 motorized axes for a laboratory system. A
different approach is to keep all angles fixed which enables very compact scattering
sensors, as shown in Fig. 14.6.

Similar to the laboratory based systems presented in the previous section, a spatial
filter is used to minimize scattering from the sensor as much as possible. The scattered
light from the sample is detected by a CMOS or CCD matrix array. Because of the
limited size of these sensors, the angular detection range is restricted to a cone with
an opening angle of a few degrees around the specular beam. Another drawback of
this kind of detection is the higher noise compared to a lock-in based technique which
limits the detectable ARS level to values >10~* sr~! and thus above the Rayleigh
scattering signal from air molecules. This is, however, often sufficient even for well-
polished surfaces with rms roughness values down to 0.5 nm.

The matrix based detection allows for a quick data acquisition of less than 1 s
per measurement position, which is a huge advantage compared to the point wise
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Fig. 14.6 Compact light scattering and roughness sensor horos [10]. Left: photograph of sensor
during the characterization of 2 m telescope mirror, right: Schematic of sensor setup

| |

Scattering
sensor

Fig. 14.7 Light scattering and roughness analysis with compact sensor. Left: sensor mounted to
robotic arm during characterization of a primary mirror of a Ritchey-Chrétien-Cassegrain telescope.
Right: implementation of sensor into magnetorheological finishing (MRF) machine

measurement approach of classical scatterometers. In combination with the compact
size, this enables many different application scenarios. Two of them are shown in
Fig. 14.7.

When light scattering is measured from a slightly vibrating sample, the scattering
distribution is not significantly changed. Thus, the high sensitivity to detect even
small surface irregularities is still maintained in harsh environments such as a pol-
ishing machine. This would be an unthinkable application scenario for conventional
roughness metrology techniques. Furthermore, because of the large illumination spot
of a few millimeters during the light scattering measurements, the roughness data
obtained with the scattering sensor are very robust.



392 M. Trost and S. Schroder

14.4 Application Examples

14.4.1 Light Scattering and Roughness of Substrates

The replication of the roughness properties of the substrate from one interface to the
next in a multilayer stack is often responsible for most of the scattering. In particular
the near angular scattering can quickly rise for rougher substrates. Specifying and
analyzing the substrate roughness is thus essential for the fabrication of high-end
optical components with good imaging properties. In the following paragraphs, it
will be described how this can be achieved by light scattering measurements.

A first example is the collector mirror substrate shown in Fig. 14.8, which is used
after the deposition of a molybdenum silicon multilayer as the first mirror in an
extreme ultraviolet (EUV) lithography scanner at the operation wavelength 13.5 nm
[80]. The substrate has a diameter of more than 660 mm and exhibits an elliptical
shape. This allows the EUV light emitted from a laser produced plasma to be collected
before it is redirected to further illumination and imaging optics [81, 82].

The strong wavelength dependence of scattered light of 1/A* (see (14.14)) in
combination with the short wavelength requires a very smooth substrate in order
to avoid optical losses from scattering as much as possible. Thus, the measurement
requirements are quite challenging: preferably the roughness sensitivity should be
below an rms roughness of 0.1 nm and the measurement positions shall be freely
selectable on the surface. This can be achieved by angle resolved light scattering
measurement because of the non-contact measurement principle and the direct rela-
tion between the ARS und PSD, as described in (14.8). By translating the sample,
the entire surface can be characterized as illustrated in Fig. 14.9, which shows a map

Fig. 14.8 Roughness
characterization of an EUV
collector mirror substrate by
light scattering
measurements performed by
the first author of this chapter
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Fig. 14.9 Roughness characterization of an EUV collector mirror substrate. Left: Roughness map
obtained from ARS measurements at 442 nm; right: corresponding histogram
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spatial frequency roughness (HSFR).

The roughness map consists of more than 34 000 individual roughness measure-
ments and enables a detailed overview about the sample roughness and homogeneity;
no severe defect areas and a homogenous surface finish that improves slightly towards
the inner edge of the sample can be observed. Most of the substrate surface has a
HSFR of better than 0.17 nm which is sufficient for the later application.

An alternative to the light scattering based roughness characterization are topog-
raphy measurements performed with an AFM. However, the long measurement time
for one AFM scan of 10-20 min quickly limits the number of measurements points.
It would for instance require more than a year to generate a similar roughness map as
shown in Fig. 14.9 with AFM in a non-stop operation mode. This shows the poten-
tial of the light scattering based roughness characterization in addition to its large
flexibility to different sample geometries.

Another application example is given in Fig. 14.10, which shows the roughness
map obtained from ARS measurements of an unstructured mask blank, which are
known for their low surface roughness. In order to observe just the scattering from
the front side, the sample was coated with a thin ruthenium layer.

The average HSFR is just 0.04 nm. Considering that the fundamental building
blocks of the substrate — the silicon-oxygen tetrahedron — exhibits a distance of
0.16 nm and 0.26 nm between the individual ions, reveals that the topography of the
mask blank was very close to an atomically flat surface.

Measuring such a remarkably low surface roughness with an AFM is also very
challenging because the vertical instrument noise of an AFM is typically between
0.03 and 0.04 nm and thus just below the roughness of the sample. Hence, from a
sensitivity point of view, also very smooth surfaces can be characterized by light
scattering measurements. It should however be noted that for such low roughness
values, Rayleigh scattering from air molecules has to be considered [83].

, often referred to as high
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Fig. 14.10 Characterization of an unstructured mask blank. Left: roughness map obtained from
ARS measurements at A = 405 nm; right: corresponding histogram
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Fig. 14.11 Scattering characterization of rugate coating in an initial state and after the optimization
of the multilayer deposition and substrate roughness

14.4.2 Light Scattering from Multilayer Coatings

Characterizing or modeling the light scattering of ready to use optical components,
which is usually done after the coating deposition, is a prerequisite for simulating
the stray light in entire optical systems. But, also the 3D-ARS and the TS data often
provide a valuable feedback about the deposition process. This is exemplified in the
following section in more detail by a variety of application examples.

14.4.2.1 Light Scattering from Rugate Coatings

In Fig. 14.11, exemplary 3D scattering plots are shown which illustrate the contin-
uous optimization of a highly reflective rugate coating for A = 532 nm towards low
scattering.

The rugate coatings were deposited by reactive co-sputtering with a double ring
magnetron with silicon as inner target and tantalum or hafnium as outer target [21].
The index profile during the deposition was achieved by varying the power ratio
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Fig. 14.12 Spectral scattering analysis of SixTay O, rugate coating. Left: angle resolved scattering
measurements near the lower reflectance band edge. Right: Spectral reflectance plot

between the inner and outer discharge in a total of 30 cycles. The thickness of the
SixTayO, and Si Hf, O, rugate coating is & = 4.5 pm.

By changing the outer target from tantalum to hafnium, the scattering loss is
decreased by more than a factor of 15. This could be attributed to a reduced number
of defects during the deposition process as a result of an optimized cleaning of the
sputter source and the recipient as well as a more advantageous growth behavior of
the thin film.

In a next step, the overall scattering could be reduced once more by a factor of
two by improving the substrate roughness through an exchange of the substrate from
fused silica (6 = 0.14 nm) to a silicon wafer (¢ = 0.10 nm).

Another observation that can be made from these plots is that the 3D-ARS of the
tantalum based rugate coating is slightly asymmetric although the angle of incidence
for the scattering measurements is ¢; = 0°. This can be explained by an oblique
thin film growth [20]. The 3D-ARS of the hafnium based rugate coating on the other
hand exhibits a concentric ring with a high scattering intensity around ¢ = 40°. This
is typical for resonant scattering within the thin film, often referred to as resonant
scattering wings. Thus, even for coatings that do not exhibit classical interfaces,
the replication of the substrate roughness through the thin film can influence the
scattering characteristics.

The resonant scattering wings occur because of constructive interference of the
scattering contributions from different depths of the coating. Thus, they depend on
the coating design and illumination wavelength as illustrated in Fig. 14.12.

Asdiscussed in Sect. 14.2.1, the scattering from a single interface directly depends
on the sample reflectance at this wavelength. Therefore, it might be surprising that
the wavelength with the highest scattering distribution does not correspond to the
wavelength for which the rugate coating exhibits the highest reflectance. In fact, the
most pronounced scattering can be observed at the lower edge of the reflectance
band. The total scattering loss at . = 505 nm is TS = 2.2% and thus a factor of 22
higher than at the central wavelength A = 532 nm.
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A simple explanation for this behavior can be found when considering that the
incoming light has to (1) reach the irregularity or inhomogeneity in the film and (2)
the scattered light has to propagate to the ambient media. Furthermore, if a reflective
coating designed for a longer wavelength and normal incidence shall be used at
shorter wavelengths, the mirror can be used under oblique incidence in order to
maintain a high reflectance. From a Helmholtz reciprocity point of view, this directly
corresponds to light scattering at large angles. Thus, light scattered within the coating
can propagate through the thin film easily at large angles for light wavelengths below
the design wavelength, which can increase the scattering for these wavelengths.
This is a particular concern for filtering optics in combination with a broadband
illumination.

14.4.2.2 Light Scattering from Highly Reflective Coatings

Resonant scattering is not just limited to Rugate coatings, but can also be observed
for classical multilayer coatings, as shown in Fig. 14.13.

The coating is a quarter-wave multilayer consisting of aluminum fluoride and
lanthanum fluoride with 20 periods. The design wavelength is A = 193 nm. For
a comparison, also a hypothetical, perfectly reflecting single surface with the same
interface roughness is plotted. According to (14.8), this curve continuously increases
according to 1/A* towards shorter wavelengths. This principle trend can also be
observed for the multilayer stack with the addition of several resonant scattering
peaks that are most pronounced around the band edges.

This drastic scattering enhancement is illustrated in Fig. 14.14 in more detail,
which shows the spectral ARS and the electric field intensity, |E 12, inside the multi-
layer stack on the same wavelength scale.

Fig. 14.13 Spectral 10-
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Fig. 14.14 Light scattering from quarter-stack for A = 193 nm. Left: ARS as a function of the
incident wavelength; right: field intensity inside the coating on the same wavelength scale

At A = 193 nm, the field intensity is concentrated to the uppermost layers. In
contrast, near the band edges of the coating at A = 182 nm and 210 nm, the electric
field propagates much deeper into the multilayer. Thus, even interfaces close to the
substrate can cause significant scattering within the multilayer stack. At the upper
band edge, this scattered light cannot propagate as easily outside the coating as
for the lower band edge. Therefore, the spectral ARS diagram is narrower around A
=210 nm compared to A = 182 nm. For the latter wavelength also resonant scattering
peaks around ¢ = = 55 can be observed.

Considering that real coatings can exhibit small spectral shifts, caused by thick-
ness variations during the deposition process or changes in the temperature or humid-
ity, enhanced scattering can also occur for applications that use just a single fixed
wavelength.

In addition to these scattering simulations with a fixed PSD for all interfaces,
the scattering was also modeled based on topography measurements performed by
atomic force microscopy of the substrate and multilayer top surface (see Fig. 14.15).

Starting with the substrate, the surface roughness increases quickly after 20 layer
pairs. This can be modeled with the approach presented in (14.15). The ARS can
then be calculated with the help of the partial correlation model. The results of this
simulation are shown in Fig. 14.16.

The best fit to the experimental results can be achieved with § = 1, indicating
a rapid roughening from one layer to the next. However, at large scattering angles
there exists still some difference between the simulations and the experimental obser-
vations. This can be explained by small thickness variations within the multilayer
stack, as illustrated in Fig. 14.16 right. The best agreement between the simulations
and the measurements for the angular positions of the resonant scattering wings can
be achieved for an average thickness variation of 3%.
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Fig. 14.16 ARS simulation of AlF3/LaF3; multilayer stack for A = 193 nm. Left: Influence of the
roughening exponent, §; right: effect of thin film thickness variations from the ideal multilayer
design, 6

The roughness scaling approach has also been successfully used with other high
index materials in combination with AlF; for the low index layer material inside a
multilayer stack. Exemplary results obtained from AFM measurement after increas-
ing number of layers are shown in Fig. 14.17.

For a slow or moderate roughness evolution inside the multilayer stack, an alter-
native to the scaling approach of the rms roughness is the linear continuum model.
This is exemplified in Fig. 14.18 in more detail, which shows the interface PSDs
after different number of layers of a highly reflective multilayer stack for 13.5 nm.
The high index layer material is molybdenum and the low index material is silicon.

At low spatial frequencies, the substrate roughness is almost perfectly replicated
by all layers. At high spatial frequencies, a continuous increase of the interface
roughness from one layer to the next can be observed until the PSDs are on top
of each other around f = 100 wm~'. This convergence can be explained by the
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equilibrium between the roughness increase from intrinsic thin film roughness and
the smoothing capabilities of the adatoms.

The roughness information from the linear continuum model can now be used to
simulate the ARS as shown in Fig. 14.19.

The good agreement between measurement and simulations indicates that the
combination of the linear continuum model with the Rayleigh-Rice scattering theory
is a powerful approach when simulating scattering from multilayer coatings. The
deviation close to the specular beam can be attributed to scattered light from the
beam preparation optics of the measurement system.

A nice feature of the linear continuum model is that the different sources of
roughness can be easily switched off in the simulation. Hence, a detailed analysis
of the individual scattering contributions can be obtained, which could otherwise
not be accessed by scattering measurements on real coatings. This shows that the
dominant scattering source for the Mo/Si multilayer and the given substrate finish is
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intrinsic thin film roughness. Only close to the specularly reflected beam, the observed
scattering can be almost entirely attributed to replicated substrate roughness. Hence,
the imaging quality in an optical system critically depends on the substrate quality,
while the overall scattering loss depends on the intrinsic thin films roughness and
the used deposition parameters.

The detailed roughness evolution model can now also be used to predict the
multilayer scattering for different substrate roughness values, as demonstrated in
Fig. 14.20.

First, the substrate was characterized by angle resolved light scattering measure-
ments as described in Sect. 14.4.1. The corresponding roughness map is shown in
Fig. 14.20 left. Based on the local surface PSDs, the ARS could then be simulated.
This also allows determining the impact of the scattering characteristics on the multi-
layer reflectance before the actual coating process. The results of this calculation are
shown in Fig. 14.20 center. After the multilayer deposition, the final EUV reflectance
was characterized at the application wavelength A = 13.5 nm (see Fig. 14.20 right).

The predicted values and the actual reflectance measurements are in excellent
agreement with each other. Both the average reflectance of 65% and the severe
reflectance drop of more than 40% at the extended defect area are accurately
predicted.

The simulation of the scattering and reflectance properties provides a valuable
feedback and helps to ensure the final performance parameters already early during
the entire fabrication process. For instance, at the extended defect area, the substrate
could be easily re-polished before the coating process. This is not possible after the
multilayer deposition.

3 4
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Fig. 14.20 Influence of substrate roughness on EUV reflectance of Mo/Si multilayer stack at A
= 13.5 nm. Left: roughness map obtained from ARS measurements at > =405 nm, center: prediction
of multilayer reflectance prior to multilayer deposition; right: measured reflectance at application
wavelength
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Fig. 14.21 Scattering analysis of low-loss mirror at A = 1064 nm. Left: experimental ARS; right:
TS when calculated from ARS for different lower integration limits

14.4.2.3 Energy Balance

Important for the analysis of the sample’s reflectance or transmittance is that the
angular acceptance range for the specular quantities are considered. For instance, in
an international round robin experiment, dielectric mirrors made of silica and tantala
with a reflectance of higher than 99.99% at 1 = 1064 nm were characterized with
respect to their losses and reflectance using spectrophotometry and laser ratiometry
[84]. Substantial deviations between the reflectance values and thus the losses could
be observed. This could be explained by the scattering characteristics as shown in
Fig. 14.21.

Integrating the ARS according to the ISO 13696 between ¢, = 2° and 85° leads to
a scattering loss of TS = 7 ppm. However, substantially higher values up to 38 ppm
can be obtained by varying the lower integration limit as illustrated in Fig. 14.21
right. This illustrates that considering the ranges of the acceptance angle is of crucial
importance when measuring optical properties.
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Chapter 15
Absorption and Fluorescence Measurements
in Optical Coatings

Christian Miihlig

Abstract Absorption characterization of optical thin films and coatings has become
one central task for the manufacturers e.g. to ensure stability in the production pro-
cess, to verify functionalities and to understand possible performance changes and
limitations during their use in e.g. high power laser applications. Set by this trend,
numerous direct absorption measurement techniques have been developed in the
last two decades which all—despite particular pro and cons—feature a high sensi-
tivity. However, the different techniques possess remarkable differences regarding
a universal and efficient absolute calibration procedure. After a survey of different
measurement techniques with their calibration procedures, this chapter will focus on
the laser induced deflection (LID) technique, its independent absolute calibration,
particular measurement concepts and experimental results.

Increasing laser power for material processing, decreasing structures for semiconduc-
tor lithography—meeting the advanced requirements put high demands on state-of-
the-art optical components. It turned out that amongst the key parameters in sophisti-
cated laser applications, absorption is recently gaining more and more attention due
to the undesired effects resulting from laser induced thermal lensing. Focus shift-
ing, wave front deformation and depolarization are prominent critical issues which
need to be taken into account in modern optic design to assure the target system
performance.

When taking a look at optical coatings, measuring the spectral reflectance and
transmittances is the most general way to investigate optical losses of thin films with
a subsequent calculation of the extinction coefficient k. However, the thus calculated
extinction coefficient may contain scatter contributions, because small absorption and
scatter losses cannot be distinguished when only directed transmission and reflection
spectra are measured (compare (2.4), Chap. 2). An increasing number of applications,
however, demand for individual absorption and scattering data as a result of their dif-
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ferent possible interference on the optical system performance. In addition, separating
the effects from bulk and coating/surface is essential to discriminate between different
sources of absorption and scattering, respectively. Consequently, direct measuring
of absorption properties in optical thin films and bulk materials turned out to be one
challenge for optics manufacturers to secure or optimize stabile production processes,
to establish particular optical functionalities and to understand potential performance
limitations of the optics when used in highly sophisticated laser applications. Set by
this trend, numerous direct absorption measurement techniques have been developed
in the last two decades which all—despite particular pro and cons—feature a high sen-
sitivity. Recently, the ability of absolute calibration has gained more and more atten-
tion in order to allow for absolute absorption data. Here, however, the different tech-
niques possess remarkable differences regarding a universal and efficient procedure.
After a survey of different measurement techniques with their calibration procedures,
this chapter will focus on the laser induced deflection (LID) technique, its indepen-
dent absolute calibration, particular measurement concepts and experimental results.

Along with direct absorption measurements, laser induced fluorescence (LIF)
investigations can be a very useful tool to identify very sensitively defects and/or
impurities responsible for the observed absorption properties. However, compared
to investigations in bulk materials, there is rather a lack of data with respect to LIF
measurements in optical coatings. This might be attributed to the fact that the exci-
tation volume of thin films decreases by about 5 orders of magnitude in comparison
to bulk samples, not accounting for the peculiarities of e.g. DUV measurement tech-
niques. But, bearing in mind a presumably higher defect density in coatings and
the high photon flux of e.g. excimer lasers, on the other hand, even the small exci-
tation volume of coating samples can be considered to be an accessible range for
experimental investigation.

15.1 Overview of Absorption Measurement Techniques
and Absolute Calibration

‘When looking for potential ways to directly access the absorption of light inside bulk
materials or optical coatings, it is worth considering the effect(s) of absorbed light.
Figure 15.1 gives a scheme of possible processes. In the end it turned out that the
heat generation and related effects (photo-thermal and photo-acoustic effects) have
shown the largest potential for direct absorption measurement techniques. However,
as seen from Fig. 15.1, it needs to be mentioned that for all those techniques only
that part of the absorbed light is detected which is actually transferred into heat.
In particular, this has to be taken into account when considering materials showing
fluorescence with high fluorescence quantum efficiency.
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Fig. 15.1 Block diagram that indicates the possible consequences of optical absorption that leads
to prompt or delayed heat production compared with other deexcitation channels (taken from [1]
with kind permission)
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Fig. 15.2 Schematic diagram of the optical arrangement for the combined laser calorimetry (LC)
and surface thermal lens (STL) technique (taken from [2] with kind permission)

15.1.1 Calorimetry

Longer in use than any other technique is the laser calorimetry. Here, the sample
of investigation is irradiated by a small laser spot and the increasing temperature is
measured directly at defined position on the sample surface (Fig. 15.2).
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Figure 15.3 shows the typical result of a laser calorimetric measurement. When
applying the laser power to the sample of investigation, its temperature rises until the
irradiation stops. Then the sample cools down again. In general, both the temperature
rising and falling can be fitted by corresponding models and used for data analysis
according to the calorimetry ISO standard description (11551 [3]).

In order to distinguish between coating and substrate absorption, there are two
approaches. First, samples with different substrate thickness but identical coating
have to be measured. The measurement data are plotted against substrate thickness
and the extrapolation to zero thickness serves for the coating/interface absorption.
Since this approach is quite costly and the accuracy of this approach is strongly related
to identical sample properties (substrate absorption and coating absorption), mostly
a second approach is applied. Here, the result for the coated substrate is compared
to that of an uncoated substrate and the difference is taken to calculate the coating
absorption. Hence, only the substrate’s bulk and surface absorption properties need
to be identically.

A great advantage of laser calorimetry results from the easy absolute calibra-
tion. An “equivalent” electrical heating of a reference sample allows determining the
required parameters for absolute absorption calculation, without the actual knowl-
edge of material parameters.

15.1.2 Photo-Thermal Techniques

A large variety of absorption measurement techniques belong to photo-thermal tech-
niques [4]. The majority of those techniques are using the so-called collinear pump-
probe-configuration, i.e. pump and probe beams cross each other under a very small
angle. In contrast to the laser calorimetry, the sample heating by pump beam absorp-
tion is detected indirectly by the induced changes in the probe beam characteristics.

In general, the common challenge of all photo-thermal techniques is the abso-
lute calibration. Obviously, a reference sample of same material (where required
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also same geometry) and precisely known absorption is the most favored solution.
However, this case is barely realistic for common “interesting” materials possessing
very low absorption at the application wavelength. Alternatively, reference materials
showing high initial absorption at the desired laser wavelength are applied [5]. In
this case, spectrometers are used to create a “reference” by measuring the absorp-
tion at a particular wavelength and correction values are calculated for the materials
under investigation bearing in mind the changes in the thermo-optical material prop-
erties. However, this approach fails or lacks in accuracy if scattering losses cannot be
neglected in the spectrometer results and if no or differing thermo-optical material
data is on-hand, respectively. Recently, a new calibration approach has been applied
to optical materials that show a high absorption outside the application wavelength
range—preferably in the infrared range to reduce scattering effects—but where other
lasers sources are accessible. In that case, the high absorption is first measured in a
spectrometer at an available laser wavelength and second by the corresponding laser
in the photo-thermal setup. Thereby, the photo-thermal signature for the particular
material is provided and finally, the photo-thermal measurement is repeated at the
application laser wavelength.

For the Common Path Interferometry (PCI) technique the pump beam is focused
to a very small spot in the sample and the absorption (heat) induced change in the
optical path results in a change of the self-interference of a much larger probe beam
[5]. Behind an aperture, this change is registered by a fast and sensitive detector
(Fig. 15.4). For separating between substrate and coating absorption, the cross-point
between pump and probe beams is moved through the sample while steadily moni-
toring the probe beam signal. Figure 15.5 shows the result of such a scan.

A different way to detect the properties of the probe beam due to the pump beam
induced absorption is to use a Hartmann-Shack sensor. Here, the change of the wave
front of a probe beam due to a pump beam of much smaller size is monitored by
a CCD camera with high sensitivity and resolution [7, 8]. Figure 15.6 shows the
scheme of the measuring principle of a Hartmann-Shack wave front sensor.

A representative experimental setup is shown in Fig. 15.7.

For the configuration in Fig. 15.7, the separation between substrate and coat-
ing absorption is achieved similar to the calorimetry, i.e. either by a sample set of
different thicknesses or by comparing coated to uncoated samples. Recently, a 90°-
configuration between pump and probe beam has been applied for easier separation
between substrate and coating absorption. Predominantly, numerical simulation and
analysis is applied for calibrating the experimental data from the Hartmann-Shack
wave front sensor. Absorption values are calculated from the simulations by fitting
to the experimental data [8, 9]. This approach requires both, sophisticated simula-
tion models and—as mentioned above—a precise knowing of the multiplicity of
required material parameters. In particular for materials possessing a non-negligible
expansion coefficient, calculating the stress and its effect on the refractive index via
elasto-optical coefficients is challenging. Consequently, for the majority of optical
materials either only relative absorption data are provided or rather complex strate-
gies are required [9].
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Fig. 15.4 Scheme of the common path interferometry (PCI) concept (taken from [6])
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Fig. 15.5 A longitudinal scan through AR-coated fused silica substrate. Pump power 5 W, wave-
length 1064 nm. Surface calibration was used for the vertical scale (taken from [5] with kind
permission)

Taking the above into consideration, it is not unexpected that photo-thermal tech-
niques show coinciding absolute absorption data mainly for silica or coatings on
silica substrates due to the rather simple simulation models for silica as a result of
its negligible expansion coefficient.
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Fig. 15.6 Principle of the Hartmann-Shack wave front sensor (taken from [9] with kind permission)
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Fig. 15.7 Setup for measurement of the laser induced photo-thermal wave front deformation (taken
from [9] with kind permission)

15.1.3 Photo-Acoustic Technique

Historically a technique long in use is the photo-acoustic spectroscopy (PAS). Here,
acoustic waves are detected by (piezo) microphones which are generated by the
absorption induced shock wave within the sample. PAS is in particular suited for
materials showing high thermal expansion like nonlinear or laser crystals. In contrast,
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Fig. 15.8 Experimental setup: Light pulses are generated and focused onto a sample. A piezo
transducer is attached to the sample to measure the acoustic signal (taken from [10] with kind
permission)
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Fig. 15.9 Typical photoacoustic signal measured with the piezo transducer, the sample is an
undoped congruent lithium niobate crystal with dimensions (x X yxz) = 1x60 x 10 mm?. The dis-
tance between transducer and illuminated cylinder is 40 mm, leading to a delay of Tgelay = 6.5 ps.
The measured quantity is the maximal voltage of the first peak Uphac, called the photoacoustic
voltage (taken from [10] with kind permission)

for materials like silica with negligible expansion coefficients, the accessible sensitiv-
ity is limited. Another challenge for PAS is the separation between surface and bulk
absorption due to the associated shock waves and their reflections at sample surfaces.

After getting low attention in the past 1-2 decades due to a lack of sensitivity,
recent developments show up with improved sensitivity for bulk absorption mea-
surements [10]. Figures 15.8 and 15.9 show an example for an experimental PAS
setup and a typical measurement signal, respectively.

Similar to the mentioned photo-thermal techniques, absolute calibration is a chal-
lenge and mostly done by using a reference sample of known absorption. Recently,
the use of a tunable OPO laser source allowed to measure the sample of investigation
at different wavelengths, e.g. also at wavelengths of high absorption that are acces-
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sible to spectrometric measurements. By this, an absolute calibration is achieved for
the sample of investigation. In order to keep any systematic error due to scattering
effects negligible, the comparing high absorption measurements have been done in
the infrared wavelength region [10].

15.2 Laser Induced Deflection (LID) Technique

The laser induced deflection (LID) technique also belongs to the photo-thermal tech-
nique s with a pump-probe-configuration [11]. Within the sample, the absorbed pump
laser power results in a temperature profile formation (Fig. 15.10). This temperature
profile is turned into a refractive index profile (= thermal lens) by the thermal expan-
sion and the temperature dependent refractive index. The refractive index gradient is
proportional to the absorbed pump laser power and yields a probe beam deflection
that is detected by position sensitive detectors (PSD). Combined with sophisticated
electronics, probe beam deflections in the range of some Nanometers can be detected,
corresponding to absorptions on the sub-ppm-level. In contrast to the photo-thermal
techniques described in the previous section, the LID technique features some major
differences. It uses a so-called transversal pump-probe-configuration, i.e. the probe
beam is guided through the sample under 90° to the pump beam. Thereby, in most
applications both beams do not cross each other but the probe beam passes the sam-
ple outside the pump beam area. Since the refractive index profile outside the pump
beam area is only a function of the absorbed pump laser power, the LID technique
measures independent on the actual pump laser beam geometry. Further, the pump
beam is not focused into the sample and typically has a larger beam size than the
probe beam. Finally, the measurement data is obtained in steady-state mode, i.e. the
absorption induced refractive index profile does not change anymore.

pump beam

probe beams

b= g

o ———

N temperature
dependendrefractive

index profile (thermal
lens)

Fig. 15.10 Sketch of the LID measuring concept (taken from [12] with kind permission
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Fig. 15.11 Calibration samples of different materials for bulk and surface/coating absorption,
respectively

15.2.1 Absolute Calibration, Measurement Procedure and
Absorption Calculation

As stated above, the absolute calibration is a critical issue for all photo-thermal
absorption measurement techniques. For the LID technique, the calibration approach
of the calorimetry has been adapted for the first time to photo-thermal techniques
[13]. To derive absolute absorption data by the LID technique, the thermal lens
is generated by electric heaters. This procedure needs to be applied separately for
both, bulk and coating (surface) absorption as well as for each combination of sam-
ple material and geometry. For bulk absorption calibration, a hole in the center of
the sample’s aperture is required to put in a self-made electrical heater of same
length as the sample (Fig. 15.11). For coating/surface absorption calibration, SMD
heaters are mounted onto a very thin copper plate (thickness ~200 pwm) which is
attached centrally to the sample surface. The copper plate is essential to secure a
high thermal conduction to the sample. It is obvious that these calibration approaches
cannot be applied to a collinear pump-probe configuration but only to transversal
pump-probe configurations where the probe beam is not hitting the irradiated/heated
sample part.

For the calibration procedure, the probe beam deflection is measured as a function
of the electric power. As a result, a linear function of the LID deflection signals
versus electric power is obtained which spans over several orders of magnitude for
the electric power. The slope of this linear function (including the zero-point) defines
the calibration coefficient Fcap, for the given combination of sample material and
geometry (Fig. 15.12).

The unique feature and key advantage of this electric heating approach is the ability
to calibrate the measurement setup without any knowledge of thermo-optical material
parameters. Recently, energy balance measurements—i.e. separate determination of
reflectance, transmission, absorption and scattering—have been done for different
materials and coatings to verify the calibration procedure. The results have given the
proof that within measurement accuracy a value of 1 has been obtained in each of
the investigations [14, 15].
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Once the calibration has been performed, a sample of investigation can be inves-
tigated. An exemplary measurement cycle for an MgF, single layer at 193 nm laser
irradiation is given in Fig. 15.13.

Each cycle in the measurement comprises the time between laser irradiation “on”
and “off” events. Before any sample irradiation start, the “base line” of the LID
signal is required to be constant or show a constant drift (Fig. 15.12a). The latter
typically results from environmental changes in the setup, e.g. the temperature. Small
temperature changes already affect optic mountings within the setup by thermal
expansion resulting in small changes in the probe beam path and thus its location
on the position sensitive detectors. Practically constant drifts over a measurement
cycle of typically a few minutes are taken onto account during data analysis. For
absorption analysis, the LID deflection signal is defined as the difference between the
“base line” signal and the constant signal during irradiation. From the data analysis,
the LID deflection signals for all measurement cycles are obtained. Their mean value
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Fig. 15.13 Surface sensitive measurement concept: experimental results for the measurement of a
single MgF; layer onto a CaF, substrate at the laser wavelength of 193 nm (taken from [16] with
kind permission

is defined as the LID intensity /;;p. Knowing the constant mean pump laser power
P, for all cycles and the calibration coefficient F ¢4, the coating absorption A is
calculated by

1
A= __ Lib . (15.1)
Fcar - P

15.2.2 LID Measurement Concepts

Is there a preference, whether two probe beams pass the sample outside the irradiated
area or one probe beam passes inside the irradiated area? What deflection should be
used—in direction of the pump laser (= horizontal) or perpendicular to it (= vertical)?
The two different concepts are sketched in Fig. 15.14 and their application depends
on the actual measurement tasks.

The vertical concept uses two probe beams above/beneath the irradiated spot as
well as the probe beam deflection perpendicular to the pump beam direction. The
high signal-to-noise ratio makes the vertical concept the best option for absorption
measurements in bulks and highly reflective coatings. The only parameter which
should be changed is the position of the probe beams along the sample length, i.e. for
measuring coatings the probe beams pass the sample close to the coated surface while
for bulk absorption measurement the probe beams pass the sample in the middle of
the sample length.

For the horizontal concept, in contrast, one probe beam is guided centrally through
the irradiated area at a position closest to one sample surface. Its deflection in direction
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Fig. 15.14 (left) Vertical LID concept: two probe beams are guided outside the irradiated volume
and deflection perpendicular to pump beam is measured; (right) Horizontal LID concept: one probe
beam is guide through the irradiated volume and deflection in direction of the pump beam is
measured

of the pump beam detects the surface absorption virtually free of the sample’s bulk
absorption. This makes the horizontal concept the ideal choice for investigating
transparent optical coatings like anti-reflecting or partially reflecting coatings, where
typically both, bulk and coating absorption, are present in the measurement signal
and need to be separated.

The sensitivity of photo-thermal absorption measurement techniques depends
on the thermo-optical properties of the investigated material. For many interesting
materials like nonlinear optical or laser crystals, which favorably form only a small
thermal lens, this often results in an insufficient sensitivity. In addition, the LID
technique so far requires two additional polished side-faces for probe beam guiding
due to the transversal pump-probe-configuration. Furthermore, the required sample
aperture of at least 8 x 8 mm?—the pump beam and two probe beams need to pass
within the sample—prevents the use of the LID technique for investigating very small
sized nonlinear optical and laser crystals.

The recently demonstrated Sandwich-LID concept (Fig. 15.15) solves these issues
[17]. The basic principle is that a small sample is sandwiched between two larger
tiles of an appropriate optical material. While the pump laser still hits the sample of
investigation, the probe beams are guided through the sandwich tiles instead of the
sample. The probe beam deflection now results from the thermal lens that is formed
in the optical tiles by heat transfer from the irradiated sample. Now, the required
sample aperture solely depends on the pump beam size and allows the investigation
of typical sample dimensions of crystals like LBO or BBO.

Until now it was required to calibrate anisotropic or doped optical materials in
dependence on the sample orientation and doping, respectively. For the Sandwich-
LID concept, only the thermo-optical parameters of the optical tile material are
of interest. Hence, it could be shown that calibration now is independent on the
actual orientation or doping of the sample. Furthermore, it could be verified by
measurements that the amount of heat transferred into the optical tiles does not depend
on the polishing of the contact surfaces. Therefore, the requirement for additional



420 C. Miihlig
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side-face polishing is omitted. Moreover, the investigated material does not need
to be transparent for the probe beam anymore. This clears the way for measuring
materials that are nontransparent for visible wavelengths like some infrared materials
or highly reflective mirrors on aluminum substrates.

The most outstanding feature of the new concept, however, is the ability to strongly
increase the sensitivity for materials with a low photo-thermal response by choosing
appropriate optical tiles (Fig. 15.16). This becomes possible since the probe beams
uses now the thermo-optical properties of the optical tiles instead of those of the
sample material. Separating the sites of pump beam absorption (sample of inves-
tigation) and probe beam deflection (optical tiles) allows a sensitivity increase for
many optical materials by more than an order of magnitude. Thereby, much lower
absorption is measured with a fixed pump laser power or a much lower pump laser
power is required to measure a given absorption.
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Table 15.1 Surface absorption values at 193 nm for all investigated CaF, samples in dependence
on the ion beam figuring surface treatment (taken from [12] with kind permission)

Sample Treatment Absorption (% per surface
@193 nm)

#1 Pitch polishing (standard) 0.08 £ 0.008

#2 Pitch polishing (standard) 0.083 £ 0.01

#5 IBF (standard parameters) 0.3 £0.035

#6 IBF (double neutralization) 0.39 £0.03

#7 IBF (double treatment time) 0.445 £+ 0.035

#8 IBF (step-like treatment) 0.355 £0.03

#9 IBF (optimized removal) 0.365 £ 0.035

#10 IBF (preserve treatment) 0.355 £0.03

15.2.3 Experimental Results

15.2.3.1 Surface and Interface Absorption at 193 nm

Assuring constant figures of merit—e.g. aberration control and contrast—for high-
quality imaging optics for optical lithography or space applications, demands enor-
mous efforts in all fabrication steps. To optimize the image of an optical system
and to reduce aberrations, high-end optical surfaces are figured by ion beam pol-
ishing/sputtering. For many different optical materials like fused silica and low-
expansion glasses and ceramics, this ion beam figuring (IBF) process has been well-
established inside the optics fabrication chain. In contrast, IBF has not yet been
studied and applied extensively for precise CaF, surface shaping, even though CaF,
is the second material of choice for the optical lithography at 193 nm. A potential rea-
son might be the fear to introduce extensive subsurface damage by the interaction of
high energy particles with the CaF, lattice. Recently, the change in surface absorption
of deep UV (DUV)-grade CaF, at 193 nm as a function of applied IBF parameters
has been investigated using the horizontal LID concept [12]. Table 15.1 summarizes
the IBF induced surface absorption at 193 nm compared to pitch-polished surfaces
without IBF treatment. While the two pitch-polished samples show very compa-
rable absorption slightly below 0.1%, all IBF treatments result in a significantly
increased surface absorption. This subsurface damage is considered to result from
ion-beam-induced generation of CaF, defects. It is worth to notice that the absorp-
tion at maximum is increased by more than a factor of 5 after applying double IBF
treatment time.

Itis supposed that two different mechanisms are responsible for the surface absorp-
tion increase, namely fluorine dislocation and depletion, respectively. The lack of
fluorine within the CaF, lattice, give rise to the generation of F centers (depleted
fluorine position in the CaF, lattice) and their agglomerates. Interestingly, after AR
coating deposition, the measured surface absorption including the AR coating is
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very comparable to the data obtained for AR coated samples with conventionally
surface treatment. Consolidated, the investigations are an indicator that the coating
deposition provides a significant absorption annealing by two different processes.
On one side, the elevated deposition temperature allows for a relocation of disor-
dered fluorine atoms in the CaF,; lattice. On the other side, fluorine-depleted sites in
the subsurface region are partially-to-fully refilled by the fluorine from the coating
materials. Comparing the effects of the two absorption annealing processes reveals
that for the majority of the investigated IBF treatments, local fluorine depletion is
the predominant source for the raised subsurface absorption in CaF;.

Numerous studies e.g. by laser induced damage tests have indicated that inter-
face engineering, i.e. surface polishing and cleaning, is the key to low absorbing
transparent coatings. Inadequate surface preparation before coating and/or energetic
particles at the start of ion-assisted processes can yield surface absorption not caused
by the thin film itself. Consequently, strongly varying interface/surface absorption
is likely to occur by different polishing/cleaning/coating technologies. Any inade-
quate interface quality may then yield insufficient laser induced damage threshold
(LIDT) values. In order to investigate the interface quality it is required to distinguish
between interface and thin film absorption. This can be allowed for by measuring a
series of samples with different optical film thicknesses but identical surface prepa-
ration. Figure 15.17 gives the results for LID absorption measurements at 193 nm of
single Si0; (thickness: 62 and 186 nm) and MgF,; (thickness: 100, 150, and 200 nm)
layers on CaF, substrates taken from different coating manufacturers. Although a
quantitative evaluation is not done here due to the low number of measurements,
the incorporated linear function in Fig. 15.17 proofs that the interface absorption for
the MgF,-coated samples is remarkably higher than for the SiO,-coated samples.
Contrary, the thin film absorption itself appears to be much lower for the MgF, than
for the SiO, thin films.
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Fig. 15.18 LIF spectrum, LaF, single layer (50nm) on Si substrate
excited at 193 nm with a (A =193 nm)

fluence of H = 15 mJ/cm?, exc
for a 50 nm LaFj; single layer
deposited onto a silicon
substrate. The spectrum was
taken at a recording duration
of 10 s (taken from [13]
with kind permission)
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15.2.3.2 Effect of Hydrocarbons Absorption in Thin Films at 193 nm

Hydrocarbons incorporation is a familiar effect for optical coatings when stored
under or close to ambient conditions. Compared to bulk materials, the rather porous
structure of thin films results in a much higher affinity to store hydrocarbons and
thus be affected by their strong absorption in the UV and IR wavelength regions.
When irradiated with UV light, hydrocarbons contamination is visible by their
broad blue fluorescence which also can be detected using laser induced fluorescence
(Fig. 15.18). In addition, the LIF spectrum in Fig. 15.18 indicates residual impurities
like Cerium and Praseodymium within the LaF3 single layer. In order to avoid DUV
laser induced fluorescence of common substrates (silica, CaF,), the LIF investiga-
tions have been done using coated silicon substrates. It has been proven in advance
that DUV irradiation of uncoated silicon substrates does not result in a detectable
fluorescence signal.

When starting UV/DUV laser irradiation, the strong absorption of the hydrocar-
bons may yield damaging of the optics. Hence, it is strongly suggested to perform a
pre-irradiation at low fluence/power level allowing for a light induced hydrocarbons
removal without coating damage. This effect can be achieved either by direct laser
irradiation (Fig. 15.19a) or by UV lamp illumination. However, due to the signifi-
cantly lower power density, the latter requires a considerably longer time. One have
to keep in mind though, that the laser induced removal is of temporal nature. Hydro-
carbons adsorption repeats when laser irradiation is stopped. Figure 15.19b shows the
development of hydrocarbons re-adsorption with time after stopping the laser irradi-
ation at 193 nm, but still maintaining nitrogen purging. For each measurement, first
a complete laser cleaning was obtained followed by the given storage time in nitro-
gen purged environment. The experimental data are fitted well by an exponential
function indicating a re-adsorption time constant of about six hours. It is notice-
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able, that after only two hours the hydrocarbons can substantially raise the coating
absorption again. For ambient air conditions, the time until a complete hydrocarbons
re-adsorption will be significantly shorter. Since the hydrocarbons incorporation is
a function of the thin film structure, the measurement of the desorption effect like
in Fig. 15.19a can be used to qualitatively investigate the coating porosity (compare
with the model introduced in Sects. 2.3.3 and 8.1.6 in this regard).

The hydrocarbons effect can not only be detected for relatively thick HR coatings
but also for thin AR coatings as shown in Fig. 15.20. After an accumulated irradiation
dose of almost 100 J/cm?2, the hydrocarbons are desorbed from the AR coating and
the fluorescing Cerium impurity (280-310 nm) becomes detectable.
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Fig. 15.20 LIF spectra of an AR coating on a silicon substrate showing the change in the hydro-
carbon fluorescence peaks around 290 and 430 nm that is due to ArF laser irradiation at a fluence of
H ~ 15 mJ/cm?. The spectra were taken at a recording duration of 100 ns. The spectrum after ArF
laser irradiation is rescaled for better viewing. Inlet: Integral fluorescence intensities for the two
hydrocarbon peaks around 290 and 430 nm as a function of the ArF laser irradiation dose (taken
from [13] with kind permission

15.2.3.3 Single Layer and Multilayer Investigations

When measuring the absorption of common optical coatings like anti-reflective (AR),
partial-reflective (PR) or highly-reflective (HR), the obtained numbers are barely
addressable to a particular coating material used in the coating stack or to the interface
zone between substrate and first layer. Therefore, it is of great interest to investigate
the absorption of single layers and thus k values for the individual coating materials.
Using these numbers, total absorption data for the coating stacks can be calculated
by means of the particular coating design. For high laser intensities and/or short
laser wavelengths not only the linear but also a potential nonlinear absorption in the
coatings needs to be considered.

In general, optical materials like SiO; or metal fluorides show very small intrin-
sic absorption due to their large bandgaps. For common DUV lasers, however, the
combination of high photon energies and short pulse durations allows for intrin-
sic or defect related multi-photon absorption, which is not accessible to spectral
transmission measurements. Therefore, direct absorption measurement techniques
have been recently used to investigate the nonlinear absorption behavior in com-
mon DUV bulk materials, mainly at the important wavelength 193 nm of the ArF
excimer laser. Contrary, there is a lack of experimental results with respect to the
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nonlinear properties of the common thin film materials for the DUV wavelength
region. One reason might be the linear absorption of DUV light within the coat-
ings, which is significantly higher than in the corresponding bulk materials. Thus,
any intrinsic nonlinear absorption is potentially too small to be distinguished from
the strong linear absorption background. Recent direct absorption measurements,
however, have shown measurable nonlinear absorption in thin single layers [18-20].
The experimental results have indicated two-photon absorption (TPA) coefficients
that are remarkably higher than the intrinsic TPA coefficients in the corresponding
bulk materials. To a certain extent, these enlarged nonlinear absorption values are
referred to sequential two-step absorption processes via intermediate defect energy
levels [18].

For investigating the two-photon absorption, the samples of interest are measured
as a function of the laser intensity. In the case of very weak absorption, i.e. ah < 1
and Blyh < 1, the absorption A of a thin film with thickness % as a function of the
incident laser intensity /, simplifies to

A= (a+B -1 -h, (15.2)

where o and 8 denote the one- and two-photon absorption coefficient, respectively.
Accordingly, combining thin film absorption measurements as function of the laser
intensity (or fluence) with a linear data extrapolation (15.2) allow for a calculation of
the TPA coefficient 8. Figure 15.21 shows exemplarily the absorption of a LaF3 thin
film as a function of the laser fluence at 193 nm wavelength. Table 15.2 summarizes
the calculated extinction coefficients and TPA coefficients for the investigated MgF,
and LaFj3 thin films. The measured TPA values provide the proof that potentially due
to large defect concentrations in thin films, sequential two-step absorption occurs
yielding several orders of magnitude higher TPA coefficients than typically obtained
for fluoride single crystals.
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Table 15.2 Summary of the linear absorption (k) and the two photon absorption (nonlinear absorp-
tion) coefficient 8 of MgF, and LaF; single layers obtained by the horizontal LID concept (taken
from [21] with kind permission)

Thin film material Small signal absorption k Nonlinear absorption

coefficient [cm/W]
MgF; (1) (1.8 £0.1)*10~* (1.8 £ 0.6)¥107>
MgF; (2) (6.9 & 0.35)*10~* (5.1 £3.8)¥107>
LaF3 (2.0 £ 0.3)*10~* (10 £ 3)*1073

In order to evaluate the physical origins of thin film absorption, the laser induced
fluorescence has recently become a more and more sophisticated technique, in partic-
ular for the UV and DUV wavelength regions. The zero background LIF technique
allows detecting concentrations of fluorescing defects or impurities down to the
ppm level or even below. The separation of luminescence contributions from thin
films and substrates is a key factor for thin film LIF investigations. Unfortunately,
calcium fluoride and fused silica, being the most common UV substrate materials,
exhibit strong (intrinsic and extrinsic) bulk emissions by e.g. self-trapped excitons
and non-bridging oxygen hole centers. Due to the much larger excitation volume
compared to the thin films, the substrate fluorescence commonly suppresses any
chance to detect a potential thin film signal and therefore strongly affects the use
of laser induced fluorescence for the thin film analysis. Interestingly, recent experi-
ments have revealed that 193 nm laser irradiation of 80 nm thick aluminum films and
standard silicon wafers does not result in any detectable photoluminescence. Conse-
quently, it is strongly recommended to use these substrate/underlying layer materials
for thin film fluorescence analysis. As example, Fig. 15.22 shows the recalculated
LIF spectrum of an Al,Oj3 thin film onto silicon substrate showing characteristic UV
emission between 3 and 4.5 eV which appear on nanosecond time scale after the
6.4-eV photon excitation. From the spectral positions and fluorescence lifetimes of
the observed bands in Fig. 15.22, oxygen vacancies—typically introduced during
the deposition process—are identified as the main fluorescence feature for 193 nm
excitation of Al,O3 thin films. In particular, the observed spectral and temporal
luminescence characteristics prove that—similar to crystalline Al,0O;—F*, F, and
F~ center transitions between 3 and 4.5 eV are present in the emission.

An important field of interest for absorption and accompanied fluorescence mea-
surements is the demand for deposition process optimization. Besides the evaluation
of different coating raw materials, e.g. the effect of low-oxide containing fluorides,
the multitude of deposition process parameters is a large playground. One of the
important parameters is the deposition temperature, i.e. the temperature of the sub-
strate surface that is to be coated. We have investigated the influence of the deposition
temperature on the fluorescence and absorption properties of LaF; single layer, all
deposited using identical raw material. Figures 15.23 and 15.24 show the LIF spec-
tra with short and long living fluorescence lifetimes, respectively. The LIF recording
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Fig. 15.22 Recalculated AlLO;, single layer luminescence (193 nm excitation )
photoluminescence of Al,O3 . i i

thin films 20 ns after 6.4-eV
laser excitation: the revised
measurement data provide
the thin-film luminescence
intensity without
interference overlay. The
characteristic color-center
emission between 3 and

4.5 eV can be decomposed
into two Gaussian emission
centers around 3 and 3.8 eV
(taken from [22] with kind
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time is one main parameter that allows distinguishing between different fluorescing
species overlaying in a particular wavelength region.

From the visible hydrocarbons fluorescence (Fig. 15.23) it has been expected
and confirmed experimentally that the absorption of all LaF; layers decreases upon
193 nm laser irradiation (Fig. 15.25). Itis clearly proved that the sample with the high-
est hydrocarbons incorporation possesses both, the highest initial absorption and the
strongest absorption decrease upon laser irradiation. In addition, the highest station-
ary absorption (Table 15.3) is observed for the lowest deposition temperature sample
(250 °C).Table 15.3 also shows the measured LaF; layer densities. There is a strong
correlation between the layer density and the measured hydrocarbons fluorescence,
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Fig. 15.24 Overview of LIF
spectra with long
fluorescence lifetime

(>>100 ns) for LaF; single
layers deposited from the
same raw material but
different deposition
temperatures

Fig. 15.25 Course of LaF3
layer absorption upon ArF
laser irradiation until
reaching stationarity
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Table 15.3 Summary of deposition temperature, stationary absorption and layer density for the

investigated LaF3 single layers

Deposition temperature

Absorption (1073)

Layer density [g/cm?’]

250 °C (A1) 5.8£03 4.58
360 °C (A2) 40=£02 5.77
360+ °C (A3) 28+£0.2 5.89

i.e. a decreasing layer density allows more effective hydrocarbons incorporation.
Again, the experimental results give a proof that measuring the initial hydrocar-
bons fluorescence is a fast and sensitive tool to qualitatively investigate single layer

densities.

Not only the initial absorption but also the stationary absorption after 193 nm
laser irradiation strongly varies for the LaFs single layers. With increasing depo-
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sition temperature the stationary absorption decreases. The LaF; raw material is
ruled out since the constant impurity concentrations (e.g. Pr** in Fig. 15.24) reveal
identical raw materials for all layers. From Fig. 15.24 it is seen, that the samples
strongly differ in a broad fluorescence of currently unknown origin (300...550 nm)
with long fluorescence lifetime. Interestingly, this fluorescence is strongest for the
highest deposition temperature (— lowest stationary absorption) and virtually absent
for the lowest deposition temperature (— highest stationary absorption). Hence, the
underlying absorption must be very weak compared to the measured stationary values
and/or the fluorescence quantum yield is very high (photo-thermal absorption mea-
surements only detect absorption that is transferred into sample heating!). However,
the stationary absorption correlates with the hydrocarbons fluorescence and layer
density. Two potential assumptions are suggested. First, despite the laser induced
hydrocarbons desorption, not all of the incorporated hydrocarbons are removed from
the layers. Consequently, a higher remaining hydrocarbon content is expected for a
lower deposition temperature resulting in a higher stationary absorption. Second,
the lower density for lower deposition temperature can be an indicator for a higher
disorder in the LaF3 lattice structure. This would yield a higher density of absorbing
lattice defects which do not show fluorescence upon 193 nm laser irradiation, e.g. F
centers and their agglomerates.

In summary, direct absorption measurements and laser induced fluorescence have
proven to be valuable tools for state-of-the-art thin film analysis in complement to
established characterization techniques. In particular for low loss optical coatings,
the introduced techniques allow investigating extrinsic as well as intrinsic material
properties which are not accessible to common characterization tools.
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Chapter 16
Cavity Ring-Down Technique for Optical
Coating Characterization

Christian Karras

Abstract Mirror reflectance values above R > 0.999 can be accurately determined
by measuring the life time of photons coupled into a cavity consisting of at least two of
these mirrors (Cavity ring-down, CRD). This technique is superior compared to other
methods such as laser ratiometric or spectrophotometric measurements. The accuracy
of the measurement is determined by the cavity alignment and the reflectance value of
the reference. When applying the CRD technique for high reflectance measurements,
care has to be taken to minimize or estimate cavity losses (CRD-losses) resulting
from scattering, absorption, mirror transmission and diffraction. The present chapter
describes the fundamentals of the CRD technique for both, continuous wave or pulsed
applications and provides experimental advises for setting up a CRD system capable
of reliably detecting reflectances above R > 0.999.

16.1 Introduction

Using stacks of dielectric layers allows the design of high reflective (HR) optical
coatings with reflectivity coefficients of R > 0.99 [1]. Those HR coatings are e.g.
required for the design of beam routing or cavity mirrors for high power laser appli-
cations. An insufficient mirror reflectivity and consequently a larger transmission,
absorptance or scattering might result in laser induced damage of the optical compo-
nents or can be critical in terms of laser safety. Another possible field of application
is the design of efficient optical filters for selected spectral bands e.g. to isolate a
Raman signal from Rayleigh scattered light.

In order to achieve those large reflectivities, stacks of several hundred layers might
be necessary and all of these have to be manufactured with sufficiently large accuracy.
In the past decades the reflectivity value of the layer system was solely simulated. An

C. Karras ()
Leibniz-Institute of Photonic Technology IPHT, Albert-Einstein-Strae 9, 07745 Jena, Germany
e-mail: christian.karras @leibniz-ipht.de

© Springer International Publishing AG 2018 433
0. Stenzel and M. Ohlidal (eds.), Optical Characterization of

Thin Solid Films, Springer Series in Surface Sciences 64,
https://doi.org/10.1007/978-3-319-75325-6_16



434 C. Karras

accurate measurement of R was commonly not provided by the coating manufactures
and remained the task of the end user.

Determining such large reflectivities is far from being simple. Hence it was
announced as “2010 Measurement Problem” at the “Optical Interference Coatings”
conference (OIC) in 2010 [2]. Several methods suitable for measuring the mirror
reflectivity were compared in the framework of this task:

Spectrophotometric measurements: The coated sample is placed into a spec-
trophotometer in order to determine its transmission (or reflection) value. This
method allows the determination of the reflection (or transmission) coefficient over a
broad spectral range without the need of comprehensive subsequent data analysis in
a fairly simple, commercially available setup. The maximum reflectivity that can be
measured reliably is determined by the accuracy of the spectrograph. It is typically
limited to R < 0.995 [3].

Laser ratiometric measurements : Applying this technique, the ratio of an inci-
dent and reflected or transmitted laser beam is determined and from this the coating
reflectivity is deduced. Although reflectance measurements of R = 0.9999 were
reported [4] laser ratiometric measurements failed to reliably determine those values
in the OIC measurement contest [2]. Typically the limit of the achieved reliably deter-
mined mirror reflectivity amounted to R < 0.999. The accuracy of this technique is
basically limited by fluctuations in the laser power and accuracy of its detection.

Cavity ring-down measurements: Applying the Cavity ring-down (CRD) tech-
nique the reliable determination of mirror reflectivities R = 0.998 and above [2] is
possible.

A detailed explanation of the CRD technique for the determination of large coat-
ing reflectivities is the subject of this chapter. It majorly focuses on conveying the
general technological aspects to the reader, in particular the discussion of important
experimental design issues when accurately measuring mirror reflectivities above
R > 0.99.

In the first section, the general CRD concept will be presented and differences
between pulsed and continuous wave measurements will be outlined. Also the con-
cept of retrieving the coating reflectivity from CRD raw data will be explained.
In order to support the understanding of the experimental details this section also
includes a brief summary dealing with optical resonators.

The second part provides an experimental guide for setting up a CRD system in
order to determine reflection coefficients as high as R = 0.9999 and above. Also
different possibilities for light generation and detection suitable for CRD measure-
ments are compared and issues of possible cavity designs are analyzed. In addition
a comprehensive analysis the system accuracy is presented.

The chapter closes with evaluating the limits of the technique.
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16.2 The CRD Technique for Detecting Reflectivities

16.2.1 The General CRD Concept and Physical Basics

The CRD method was originally developed decades ago for the accurately measur-
ing weak absorption coefficients in gases [5] and has evolved to a standard tool in
absorption spectroscopy ever since [6—11].

In contrast to competing techniques for measuring the reflectivities such as laser
ratiometric approaches or spectrophotometric methods, which aim for comparing
the incident and transmitted light of a reflective surface, the CRD method follows
an indirect approach. The light is coupled into an optical cavity in which it travels
around. At each round trip, a small fraction is being coupled out at a cavity mirror. As
the power inside the cavity decreases the absolutely outcoupled light power decreases
as well with an increasing number of round trips. The outcoupled power is measured
as a function of time. The detected time trace is directly related to the losses of the
cavity (CRD-losses, in the following referred to as “losses”). Assuming negligible
scattering and absorption inside the cavity, these losses arise from a nonzero mirror
transmission 7 = 1 — R > 0. Consequently, the losses deduced from the time trace
reveal the mirror reflectivity. The typical time constant, characterizing the decay is
sometimes called “photon life time of the cavity”. This approach enables highly
accurate measurements, since the result is independent from typical noise sources,
such as laser pulse fluctuations.

The CRD concept and a typical result of one high reflectance measurement is
exemplary depicted in Fig. 16.1.

Mirror 1 Mirror2
{ \ g
Light
source \ }
R, R, Detector

Fig. 16.1 Scheme of a Cavity ring-down setup. The light (trace illustrated by the blue line) is
coupled into a cavity, consisting of mirrors 1 and 2 with reflectances R1 and R2. The power of the
outcoupled light is measured as a function of time behind the cavity
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Table 16.1 Selected characteristic values of an optical resonator

o = ZTL The time of one round trip inside the cavity

e RM = /R|R> The geometrical average of the mirror
reflectivity

oTM =TT, The geometrical average of the mirror
transmission

o F = ’I_ 11;1‘1\21 The “Finesse” of the resonator

egi=1-1L The “g-parameter” of mirror i

pi

2 L . .
oN; = 4. [@izD(pitn;—L) The Fresnel number for a stable two mirror
Api L(pj—L)

cavity with arbitrary mirrors (i,j € 1,2;j # 1)
[15], N is the vacuum wavelength inside the
cavity

16.2.2 Fundamentals of Optical Resonators

The center piece of a CRD system is the optical cavity. Thus it is worth to briefly
revisit selected cavity properties which are important for further understanding. For
a more detailed explanation of optical cavities the reader is referred to respective
literature [12-14].

The optical characteristics of a resonator are dictated by its geometric parameters
(a selection of derived parameters can be found in Table 16.1):

p;i The radius of curvature for mirror i

R; The reflectance of mirror i

r; The field reflection coefficient of mirror i

T; Transmittance of mirror i. In the absence of scattering and absorption it equals
toT;, =1—R;

t; The field transmission coefficient of mirror i

e a; The diameter of mirror i (assuming a round aperture)

e L The resonator length.

In order to apply Occam’s razor, losses due to scattering and absorption inside the
cavity are considered to be negligible for now, we assume a cavity consisting out of
two mirrors only and the refractive index inside the cavity is considered to be 1.

For a Cavity ring-down experiment, one is interested in the temporal characteris-
tics of the resonator. It can be expressed in terms of a Green’s function G(¢) [16]. This
is the impulse function of the resonator with respect to an electrical field and is deter-
mined by the round trip time and the geometrical average of the mirror reflectivity
and transitivity:
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G(’)=¢1¢22(”1”2)"<§<t—<n+%>t,>, (16.1)

n=0

with § being the Dirac function. The temporal output signal (intensity) of the cavity
is the absolute square of the convolution of (16.1) with the input electrical field. It is
noted, thatin (16.1) the field reflection and transmission coefficients are considered to
be areal values, meaning that the reflection at the mirrors is not creating an additional
phase shift.

The Fourier transform of (16.1) leads to the spectral transmission characteristics
of the cavity. Its square absolute value is the well-known Airy formula describing
the spectral transmission of a Fabry—Perot like cavity:

5 TM?
T (0) =|FT (G ®)|" = 5 , (16.2)
(1— RM?) (1 + (2F)? sin? (%fr))
with its typical resonance frequencies at v, = £ = %7, and q being a positive

L — < js known as

integer. The spectral distance between two resonances Av = -~ = 57

“free spectral range” of the cavity.
The full width half maximum (FWHM) of the resonance peak is the ratio of the
free spectral range and the Finesse:

_Av
- F

Sv (16.3)

Particularly if a light beam with a sufficiently large coherence length is coupled into
the cavity (narrow spectral bandwidth), the spectral transmission behavior becomes
crucial (c.f. Sect. 16.2.4).

Equations (16.1) and (16.2) do not take the geometrical properties of the mirrors
such as the radius of curvature into account. This, however, determines the stability
of the cavity. A stable resonator arrangement as prerequisite for a successful CRD
measurement has to fulfill the stability criterion:

0<gigp =1 (16.4)

The supported field distribution of the resonator is obtained by finding the Eigenso-
lution of the Kirchhoff diffraction integral [12, 17]. For sufficiently large and round
apertures those are given by Gauss—Laguerre modes. They are characterized by the
integer mode parameters p and [ and represent an orthonormal basis for every field
configuration. The complete set of cavity Eigenmodes are referred to as “transverse
modes” (T EM ).

The resonance frequencies (and thus the free spectral range) of this cavity modes
are different for different transverse modes. They are given by:
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1 2p+1+1
Vplg = - |:q + p—acos\/g1g2:| (16.5)
; T
Not that for g;g = 1 (planar resonator), the free spectral range is Av = } as

derived above, whereas for a g;g» = 0 arrangement (confocal resonator) it amounts
to Av = %

Furthermore when using aperture limited cavity mirrors diffraction on the mirror
rims takes place. This introduces additional losses which are larger for higher modes
as those possess a larger field diameter on the mirrors. The exact computation of
diffraction losses requires the numerical solution of the Kirchhoff diffraction integral.
A measure allowing the estimation of the diffraction losses is the Fresnel number
N;.

In case of large N; value, the losses on one mirror may be estimated [15, 17]:

2w BN

= 16.6
pl(p+l+1)! ( )
The loss per round trip due to diffraction is given by:
1
K= 5 (k1 + K2) (16.7)

16.2.3 CRD Using Pulsed Light Sources

The detected field behind the cavity is given by the convolution of this Greens function
and the incident light field.

Let’s first assume a short laser pulse to be coupled into the cavity with a pulse
duration Atp,s. < t. and an arbitrary envelope function of the electrical field £ ()
(c.f. Fig. 16.2a). The latter could for instance be a Gaussian function. For typically
used cavities of several tens of cm, the pulse duration should be in the range of
Atpse = 1 ns or below. Even very short pulses of several fs only, should not be
a problem, since the dispersive pulse broadening introduced by the air in the cavity
would not cause the pulse duration to exceed several ps. It is, however, noted that a
too large dispersion introduced by the mirror surfaces has to be avoided, when very
short pulses should be used.

The output signal behind the cavity will be given by:

ht Z (rr)" & (t - <n + %) lr) emie(i=(n+3)1)
n=0

2
IG (1) ® Ei (1)* =

n

ad 1
:Tszz R\R, | & (t—<n+§> z,>+1F, (16.8)
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(a) Signal S
‘ i Tcrp
-l—» It
Timet

(b)
Signal S
— Thuild-u Tcro
-';on J t01"1" Timet

Fig. 16.2 Cavity ring-down measurements with a pulsed and b continuous wave laser sources: The
blue arrows indicate the direction and position of the light beam. The pulse and the continuous light
train including the field enhancement inside the cavity is illustrated in red in a and b respectively. The
cavity output signal is depicted on the right hand side: Tcrp: Cavity ring-down time characterizing
the decrease of the outcoupled maximum pulse intensity a or the decrease after the cw source is
switched off at toff. T puild-up: characteristic time for the build-up of the field enhancement after the
cw light is switched on at top

with I F being interference terms. Due to the short pulse duration the coherence length
of the incoupled light is very short and the interference terms are thus negligible.

Let’s further assume, that the exact temporal shape of the envelope cannot be
resolved by the detector, which is an adequate assumption for Atp,;5. = 1 ns. Thus
after each round trip a time integrated signal S of the pulse is measured at the output
of the cavity, which is proportional to the mirror transmission, the incident pulse
intensity I;,, and the reflection after the respective number of roundtrips. For N
round trips it is

Sy o Iy - TM* - RM*Y (16.9)
The time for N round trips is

) (16.10)

Thus S, is transformed to S (¢)

St) o Iy -TM?-RMT
— Iin . TM2 . e’f~1n(RM)
~ Iy - TM? e TU-RM

— Ly - TM? ¢ . (16.11)
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Consequently, the outcoupled signal follows an exponential time behavior. The time
constant 7¢ g p of the exponential function is determined by fitting the measured time
trace exponentially or by plotting it in a logarithmically scaled diagram and fitting it
linearly. From t¢gp the average reflectance can be computed:

Tcgp = —————— > RM =1-— (16.12)

C(l—RM) TcrRD * C

16.2.4 CRD Using Continuous Sources

Applying a continuous wave laser source in CRD measurements (or a pulse with
Atpuse > t) the interference terms in (16.8) have to be taken into account and the
outcoupled signal behind the cavity is not consisting out of distinct pulses anymore.

Let’s first assume a continuous light wave with amplitude A which is switched
on at a certain time #,, = 0. In addition its frequency should meet the resonance
condition of the resonator (c.f. (16.2)).

2

G0 ® Ein () = |1y (nr)"-A-© (t - (n + %) tr) eie(t=(r2)n)

n=0

- 1
=TM*.- A-) RM”.0(t- -t ), 16.13
Yo (i-(arg)e).  aer

n=0

with © being the Heaviside step function. Since the incident light field is in resonance
with the cavity, a standing wave is present in the resonator and the interference terms
in (16.8) lead to a field enhancement inside the cavity. This effect and the square of
the incident field amplitude are summarized in A in (16.13).

The sum in (16.13) describes the overlay of newly incoupled light with the light
which is traveling around in the resonator. It is illustrated in Fig. 16.2b. The signal
behind the cavity after N roundtrips can be calculated by solving the sum in (16.13)
for this case:

al 1
ZRM2”~(—)(t—(n+§>tr)
n=0

AR 1 RM? -1
=Y RM™ 0 (t—(n+-)t]) |-

~ 2 RM?—1

(RM™N + RM*V=D ... RM? +1) - (RM? — 1)
RM2 —1

(RM*N*D 4 RMPN 4.+ RM* + RM?) — (RM?N + RM*V=D 4 ...+ RM? + 1)
RM? — 1

RMZ(N+1) -1 1— RM2(N+1)

RM2—-1 ~  1—RM?
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. 1 ~ RM2N+D _ 1

—>S(N)OCTMZ-A-ZRMZ”-@(t—<n+§>tr> :TMZ-A-W
n=0 -

(16.14)

Note that for many round trips the output signal becomes constant S (N — o0) =
TM2A
T—RM?*

If the signal is switched off at a certain time f,7f > #,, = 0, at which the incident

beam has performed N* round trips already the output signal of the cavity after the
N’th roundtrip (N > N*) is given by:

N
S(N)ocTMZ-Z-ZRMZ"-[@) <t— <n+l>tr) —@(t— <n+N*+l)tr>]
n=0 2 2

RMZ(N*+1) -1

=TM?> A - RM?N-NY
RM? — 1
_ ) o~ RMZ(N*+1) -1 o
=TM? A — o RMY, (16.15)

with N being the number of round trips after the light was switched off. With the
exception of the proportional constant, which describes the field enhancement due
to the signal overlay in the cavity S (IV ) can be treated analogous to the pulsed case
in order to derive the correlation between the S (]V ) the time trace and the average
mirror reflectance.

If the incident field and the resonator are not in resonance the situation is more
complicated, since the interference terms have to be considered. In the comprehensive
work of Lee et al. [16] the impact of spectral detuning between the cavity and the
incident light was analyzed also as function of Atp,.. The result is depicted ~in
Fig. 16.3. In the presence of detuning the amplitude of the output signal § (N)
decreases and only a small fraction of this output follows an exponential decay
which can be used to determine the average mirror reflectance RM.

These results agree with what is expected when analyzing the spectral transmission
behavior in the presence of detuning (Fig. 16.4).

The transmission of the cavity is only high in the range of the resonances. In
this case the exponential decay can be observed behind the cavity, after the pulse
or when the cw—signal is switched off. Due to the field enhancement, the signal
is much stronger as if short pulses would be used. If, however, the frequency of
the incoupled laser light and the resonance frequency of the cavity are detuned, the
transmittance of the cavity drops. The light is not confined in the cavity and only
part which is transmitted by the mirrors passes. In the case of a small detuning (or a
broad pulse) there are always parts of the incident spectrum which are in resonance
and parts which are not. The former contribute to the exponentially decaying signal
and can be used to determine R M, the latter do not.
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Fig. 16.3 Ring-down signals altering behaviors with the variation in pulse duration At p,s. and
detuning between the detuning wg,s between laser pulse central frequency and the cavity resonance:
AT pyise Were settobe a 0.25 x ¢, b 0.5 x £,,¢ 1 x £, and d 2 x ¢, with ¢, being the round trip
time of the light in the resonator (depicted in separate columns). For each pulse dw amounted to
(1) 0 x Aw, (2) 0.25 x Aw, and (3) 0.5 x Aw with Aw being the free spectral range of the cavity
in units of the angular frequency (depicted in separate rows). The low finesse cavity with mirror
reflectivity of R = 0.95 was considered for the calculations and the origin of the abscissa, £ = 0, is
set as the moment when the transmitted peak of the input pulse component undergone no round-trip
is about to escape from the cavity. This image was taken from [16] (Copyright (1999) The Japan
Society of Applied Physics)
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Fig. 16.4 Transmission of a cavity with a Finesse of F = 29 (black, R = 0.9) around a wavelengths
of A = 500 nm (@ ~ 3.767 x 1015s~1) and the spectra of a broad band (red) pulse (AXpyise =
Spm, Awpyise = 10%s~1) and a narrow band signal (green, blue, AL = 0.5pm, Aw = 1085~ 1.
Note that a detuning of d@ger = 50 x 10%s~! of the narrow band signal causes the transmission to
drop to less than 10%, whereas a detuning of the broad band signal (red) would not cause a significant
change in transmission, as there are always resonance peaks covered by the light spectrum

Due to the large finesse of the cavity, detuning is very likely and definitely present,
when the incoupled signal is spectrally broader than a resonance peak. E.g. the finesse
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of a two—mirror cavity with mirror reflectances of R = 0.9999 at each side is
F ~ 31000. For a L = 30 cm long cavity (free spectral range Av ~ 500 MHz), the
transmission bandwidth is than 8f ~ 16 kHz. For a central wavelength of . = 500 nm
this corresponds to a linewidth of 61 & 0.013 fm only.

It is pointed out that the present consideration is only a simple one dimensional
estimation. In case of spatial extension of the beam, please refer to more detailed
literature regarding optical cavities [12, 18].

16.2.5 Calculating the Mirror Reflectivity

Until now, only the geometrical average of the reflectances RM was considered. It
is directly related to the time constant of the exponential decay (c.f. (16.12)). When
performing a CRD measurement one is, however, interested in the absolute individual
reflectance R; of each mirror.

Let’s assume a linear cavity (two mirrors) where the reflectance of one mirror
(reference mirror R,.r) is known with sufficient accuracy. In that case the unknown
reflectivity of the sample can simply be calculated from the RM value and R,.s:

_ RM?

R .
Rref

(16.16)

In the more general case, that no reflectance is known, the mutual R M values of three
mirrors with initially unknown reflectances R;, R, and Rz have to be measured:

RM, = V/R\R,
RM> = /R Rs
RM; = /R2Rs (16.17)

From those values, the absolute reflectance of each mirror can be calculated:

RMRM,
RM;
RMRM;
RM,
RM>RM;

Ry=—7"— 16.18
3 RM, ( )

Ry, =

For reasons of accuracy (c.f. Sect. 16.3.6), the mirror with the largest reflectivity
should be used as reference mirror.

Until now, only mirrors designed for an angle of incidence ¢ = 0 were considered.
In case of ¢ # 0, a cavity consisting of three mirrors has to be set up, with the sample
mirror in the center (c.f. Fig. 16.5).
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Fig. 16.5 Setup of a CRD R,
measurement using three
mirrors. The angle of
incidence for the sample R
. - . 1
mirror with reflectance R is

not zero
Laser

In case of a cavity consisting of three mirrors generally the center mirror (nonzero
angle of incidence) is to be determined.

In this case it is sufficient to only measure the RM value of the linear cavity
consisting of the cavity mirrors R; and R, (RM>y,) as well as the RM value of the
folded cavity (RM3y). R can be computed by the ratio:

RM
R— .
RM>y

(16.19)

16.3 Making It Run! A Guide Towards a CRD System

If one aims for accurately measuring reflectivities as high as R = 0.9999 and above,
the design of the CRD setup is far from being trivial. Care has to be taken in order
to choose the proper light source, a suited detection unit and an appropriate cavity
design. This section focusses on giving some advices for setting up the CRD system,
which provides reliable results for high reflectivity measurements.

16.3.1 The Light Source

Basically both, pulsed as well as continuous wave laser sources may be used for the
CRD experiment. In both cases, the laser power is the most critical parameter for a
successful measurement.

If pulsed sources are used, assuming a pulse duration Atp,;,. < ?, field enhance-
ment effects will be absent (c.f. Sects. 16.2.3 and 16.2.4). This is generally true for
pulse durations Atp,;. & Ins and shorter. In that case the attenuating effect of the
cavity has to be taken into account. E.g. a cavity with a reflectance of R = 0.99999
for each mirror shows an optical density of O D = 10. Thus care has to be taken,
to ensure a detectable transmission through the cavity, i.e. a sufficiently large laser
power. The number of transmitted photons can easily be estimated by:
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with A being the wavelength, & the Planck constant, c the speed of light and E the input
pulse energy. For three different wavelengths, the transmitted number of photons is
depicted exemplary in Fig. 16.6. This number of course refers to the number of
photons that can maximally be detected after the first round trip. In order to get a
reliably measure a CRD time trace one should be able to measure 10% of n,,,,.

If a continuous wave laser source is used, care has to be taken, to ensure a fast
modulation of the laser in order to avoid a convolution between the ring down signal
and the switch off characteristics. Hence the decay time of the laser after switch-
ing should be much smaller than the ring down time. Most modern laser systems
support fast electronic switching down to a few nanoseconds, which is sufficient
for characterizing reflectances of R = 0.99 (tcgp = 100ns, assuming a cavity
length of L = 30 cm). If the laser system does not support properly fast switching
an acousto-optical modulator (AOM) has to be applied to modulate the laser beam.

In case of a cw laser the transmitted signal S can be as large as the corresponding
input due to the Fabry-Perot characteristics of the cavity. This, however, requires the
light field to match the cavity resonances. This can be achieved by adjusting one
mirror position using a piezo driven actuator and a feed-back loop (c.f. [19-21]).
Additionally, the spectral width of the laser emission must be very narrow, as the
CRD cavity is comparable with a Fabry-Perot-interferometer of high finesse (c.f.
Sect. 16.2.4).

If broader sources are used, the cavity “picks” the respective components out of
the emission spectrum (c.f. Fig. 16.4). Only those will be transmitted through the
cavity and contribute to the CRD signal (c.f. Sect. 16.2.4). If the spectral width is
large enough, no cavity locking is required. Though, the drawback is a tremendous
decrease in transmission efficiency. Assuming a spectral width of the incoupled laser
which is much larger than the free spectral range of the cavity, the transmitted power
P can roughly be estimated by:
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with P;, being the incident laser power. As a rule of thumb, the output power of the

used laser should amount to at least Py, ., = 100 mW in order to achieve satisfying

results, assuming a mirror reflectivity in the range of R =~ 0.9999. Continuous wave
diode lasers or diode pumped solid state (DPSS) lasers are suited light sources.

(16.21)

16.3.2 The Detection Unit

As discussed in the previous section the amount of light to be detected is usually
very small. E.g. the maximum transmitted power amounts only to Py = 10pW in
case of a mirror reflectance of R = 0.99999 and a laser power of Pz, = 100 mW.
Thus the requirement on the detectivity of the photo detector is very high. On the
other hand the temporal resolution of the detector should be high, in particular for
measuring small reflectivities around R & 0.99 or lower. The raise time t,;,, of the
apparatus function should thus not exceed 10 ns.

Especially due to the requirement of high sensitivity the choice of the detector
limits to either photo multiplier tubes (PMTs) or avalanche photo diodes (APDs).
Both detectors are in principle capable of single photon counting.

16.3.2.1 Photo Multiplier Tubes

Photo multiplier tubes (PMT’s) are based on multiplication of electrons emitted by
a photocathode. The material of the photocathode basically determines the spectral
response of the multiplier. For the visible spectral range silicon based photo cathodes
are typically used. For longer wavelength their quantum efficiency (QE) is poor.
Typically the QE for silicon based PMTs drops below QF < 1% for wavelengths
A > 800nm [22, 23].

InGaAs or InP/InGaAsP based cathodes are more suited for the near or mid
infrared spectral. Their detectivitiy ranges up to wavelengths of around A = 1.7 pm.
They require, however, sufficient cooling and are fairly cost intensive [23, 24]. Their
QE is still much lower than that of silicon based diodes in the visible spectral range.

PMT’s typically show a large linear gain up to gain factors around 10°, a low
excess noise factor as well as a large aperture of up to several centimeters in diameter.
In particular the latter makes them easy to use as detector for CRD setups, as the
alignment of the detector is then very easy. No additional imaging optics behind the
cavity is needed.

Their signal rise time typically lies in the range of t,;,. ~ 1 ns, which adequate
even for high loss CRD measurements.
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16.3.2.2 Avalanche Photo Diodes

Avalanche photo diodes (APDs) are generally a low cost alternative for measuring
small signals. Especially for infrared applications APDs were proven to be superior
compared to PMTs due to their larger quantum efficiency [22]. The major disadvan-
tage of APDs is their larger excess noise and smaller linear gain. Thus especially in
the visible region the signal-to-noise ratio of APDs is poor compared to that one of
PMTs.

Furthermore, the aperture of APDs, which possess the required temporal reso-
lution of t,;5c &~ 10ns is in general very small, amounting to an aperture diameter
below 1 mm. Thus a sufficient imaging optic behind the resonator is required in order
to detect the complete transmitted signal.

For measurements in the far infrared (A > 1.7 pm), HgCdZnTe/HgCdTe based
photo diodes are the only sensor that show a sufficiently large specific detectivity for
Cavity ring-down measurements [25, 26]. With those signals up to A = 10 wm can
be measured.

16.3.3 Broad Band Measurements

If the sample mirror reflectivity should not only be characterized at one particular
wavelength, but over a broad range the laser light source and possibly the detection
unit have to be extended in order to support broad band measurements.

In this case a tunable laser source such as an optical parametric amplifier (OPA)
or oscillator (OPO) has to be used. Those systems are, however, very cost intensive
and require circuitous tuning of the laser. In general, when changing the output laser
wavelength in these systems the output beam position changes, which requires a
realignment of the CRD cavity. Alternatively a short laser pulse (e.g. a nanosecond
pulse from a Q-switched laser system) can be coupled into a photonic crystal fiber
(PCF) generating a white light continuum.

Its major advantage compared to using a tunable light source is the simultaneous
detection of the whole loss spectrum. This technique was e.g. applied to determine
the mirror reflectance (0.9976 < R < 0.9998) spectrally resolved over a spectral
range reaching from 1 = 530 nm to A = 760 nm [27]. The results are depicted in
Fig. (16.7a)

Inboth cases alaser pulse (Atp,;. = 1ns) was spectrally broadened in a photonic
crystal fiber before coupling it into the CRD cavity. The transmitted signal was
recorded behind the cavity using a time gated CCD system in combination with a
spectrograph.

Later a comparable setup was applied for characterizing photo damage in CaF,
crystals induced by intense ultra violet radiation ([28], c.f. Fig. 16.7b). Within the
framework of the latter study, the broad band reflectivity of the used mirrors was
found to amount to R > 0.9993 in the spectral range of 480nm < A < 650nm
with a spectral resolution of AA = 0.3 nm. The acquisition of the whole spectrally
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Fig. 16.7 Examples for broad band CRD measurements: a Spectrally resolved reflectivity curve
for two cavity mirrors (reflectivity > 99.98% between 635 and 698 nm). Image taken from [27]
(Reprinted from [27], with the permission of the OSA), b Normalized broad band transmission
(480nm < A < 650nm) of a CRD cavity with a CaF, sample inside. Image taken from [28]
(Reprinted from [28], with the permission of AIP Publishing)

resolved CRD time trace took less than 2 min. The spectrally resolved detection in
this case was achieved by using a spectrograph (Shamrock 3031) in combination with
a gated and intensified CCD camera (Andor iStar).

16.3.4 The Cavity Design

16.3.4.1 Stability

For a successful CRD measurement, the cavity has to be stable. Thus the constrain
(16.4) has to be fulfilled for the cavity mirrors.
For the ratio

L
0 =—,—>L=api=12 (16.22)

pi

for each cavity mirror i, the relation between «; and o, for a stable cavity is given
by:

(241

>ay>1 for a;>1
Oll—l
g

<ay <1 for a;<l1 (16.23)
[04] -1

It is pointed out that even for one convex mirror the cavity can be stable, if the second
mirror is chosen appropriately. Thus the CRD technique can be used to determine
the reflectivity of convex mirrors as well.
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For the special case that both mirrors have comparable radii of curvature p; ~
02 & p, (0] = ay) the cavity must be shorter than twice p:

L <2p (16.24)

Itis pointed out that the particular case of L = p (confocal resonator, g;g» = 0), p =
oo (planar resonator g;g» = 1) or L = 2p (concentric, g;g» = 1) are theoretically
stable. These resonator configurations are in practice, however, not suited for CRD
cavities, as they are very instable with respect to misalignment.

16.3.4.2 Effect of Diffraction Losses

Even in case of a stable cavity, the light inside will experience losses due to diffraction
because of the finite mirror diameter. The diffraction losses are larger for smaller
diameters a; and can basically be estimated using the effective Fresnel numbers
N; in combination with (16.6) and (16.7). Although diffraction losses are typically
very small for Fresnel numbers above 3.5 according to common literature [29] it
is occasionally worth to estimate them for the CRD cavity since the losses to be
determined are very small as well. For common cavity configurations with cavity
lengths in the L ~ 10cm region and mirror diameter in the a¢; ~ 1cm range the
Fresnel numbers amount to several thousand, thus diffraction losses are generally
negligible.

16.3.5 Coupling of Cavity and Light Source

Especially when coupling modulated continuous wave light or long pulses into the
resonator it off resonant light will be suppressed effectively due to the high Finesse
values (c.f. Sect. 16.2.4). This requires a fine tuning between the incoupled light field
and the cavity.

16.3.5.1 Cavity Feed Back

As discussed in Sect. 16.2.4 an accurate locking of the cavity length to the laser
frequency is necessary, particularly when using narrow band laser systems. One
way to simplify this experimental challenge is to lock the laser frequency to the
respective cavity length by exploiting optical feedback. Therefore diode lasers are
required, which show an emission spectrum much broader than the free spectral range
of the cavity. If the back reflected light of the optical cavity is coupled back into the
laser, the emission in case of strong optical feedback will lock to the supported cavity
modes. Thus the transmission of the resonator will be much larger, leading to a bigger
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Fig. 16.8 Setup of a cavity
feedback CRD setup: The

light is coupled into the :
cavity. Back reflected light is Diode
coupled into a diode laser Laser

source causing it to lock to
the cavity resonances

CRD signal and less noise [30]. A typical optical feedback CRD setup is depicted in
Fig. (16.8).

A detailed explanation of the optical feedback mechanism is beyond the scope of
this work. The reader is referred to respective literature for that [31-35].

16.3.5.2 Mode Matching

If an arbitrary light field is coupled into the cavity it will be decomposed in different
transversal modes [12]. In case of a stable cavity conformation (0 < g1g, < 1) the
resonance frequencies for different transverse modes are detuned for several MHz
with respect to each other (c.f. (16.5)). Consequently all except of one TEM mode,
for which the cavity might be locked (generally TEMyy) will be suppressed causing
a decrease of coupling efficiency between the light source and the cavity.

In order to get the most efficient incoupling of light, the incident beam should
be matched to one selected cavity mode (c.f. Fig. 16.9). Typically the TEMyy mode
is chosen. Therefore the incident beam has to be shaped in a way that its radius
of curvature at the cavity mirrors is identical with the radius of curvature of those
mirrors. One should be aware that a nonplanar incoupling mirror changes the beam
divergence. The mode matching can be performed by using only one lens between
the laser source and the cavity in order to adapt the laser beam profile to the cavity
mode. Using a telescope (2 lenses) or a zoom optic (3 lenses) will however simplify
the optical setup, as the exact distance between laser source and cavity is not that
critical anymore. Particularly when mirrors of varying radius of curvature shall be
measured a multilens system will strongly simplify the adaption of mode matching
to the respective radius of curvature.
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(a) Not mode matched

(b) Mode matched

-«mb——ﬂ

Fig. 16.9 a Not mode matched cavity setup: the field of the incident laser beam (black) and the
TEMjo mode are not adapted. The cavity will the incident field cause to be decomposed in higher
cavity modes (not depicted here). The dashed lines illustrate the phase fronts of the field distributions,
b Mode matched case: The incident laser field (black) is adapted to the cavity TEMgp mode (red)

16.3.6 Accuracies

One crucial issue of performing a reliable CRD measurement is the proper analysis
of the measurement accuracy. It is generally determined by the fitting accuracy and
the alignment error.

16.3.6.1 The Fitting Accuracy of the Time Trace

Although the accuracy of fitting the decay time curve exponentially depends on the
noise of the detector, it is generally very low, if the sample rate of the detector is
sufficiently large. Typical sample rates of modern read out electronics are in the range
of fsampie = 1 GHz. From those time traces a fitting accuracy of the time constant of
M ~ 0.5% can easily be achieved, particularly if a PMT is used for read out (c.f.
Sect 16.3.2). In case of very noisy data, e.g. due to a very small transmitted power
and/or the need of using APDs for signal detection the accuracies can be achieved
by sufficient averaging of the time trace.

16.3.6.2 The Alignment Accuracy of the Optical Cavity

Even a slight misalignment will increase the diffraction losses of the cavity. As
discussed above the diffraction losses are in general very low and for common cavity
configurations negligible compared to reflection, scattering or absorption losses. The
influence of improper cavity alignment onto the cavity stability[13] and losses has
been analyzed theoretically and can be estimated by modifying the Fresnel numbers
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Fig. 16.10 a Effect of tilting on cavity mirror onto the geometrical average of the reflectances RM
computed from the measured cavity ring-down time tcgp. A tilt of 0.1 degree causes a signal
decrease of approximately 5%. The error bars arise from repeating the experiments for the fixed
detuning angle 10 times. b scheme of the experiment

N; by incorporating a tilt of the respective mirror [ 12]. For N; values above N; > 1000
the increase in losses is still negligible, especially, if the cavity configuration is close
to cavities with g-values around 0.5-0.8 as those configurations are very stable with
respect to misalignment.

What on the other hand might have a crucial influence on the losses is a smaller
reflectivity of the mirrors for angles of incidence deviating from the designed value.
In this case the impact of the misalignment depends not only on the cavity geometry
but also on the particular layer design.

For one CRD configuration (L = 30cm, p; = p = 100cm — g; = go = 0.7)1it
was estimated by conducting a systematic study. Therefore the system was repeatedly
aligned and misaligned. Afterwards, one cavity mirror was titled by a defined angle.
The results are summarized in Fig. 16.10. In this case the statistical deviation of the
cavity losses (the signal decay time) due to misalignment amounts to 5%. This value
is a good estimate as standard alignment error for the CRD measurement.

One important aspect of the CRD method is that systematic errors due to poor
system alignment will only decrease the signal decay time t¢ g p. This leads to an over
estimation of the cavity losses, i.e. an under estimation of the mirror reflectances.
Thus a possible misalignment must only be taken into account at the lower error
margin of the reflectance. The upper margin is solely determined by the accuracy of
the exponential fit.

16.3.6.3 Accuracy of the Reflectivity Measurement

What in-fact was determined by the systematic misalignment study in the previous
section is the accuracy of the losses (1 — RM in the absence of scattering and
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absorption). The correlation between the relative and the absolute error of RM thus
is given by:

. ARM,
ARM* =5%
| — RM
i ARM_
ARM™ = ——— = 0.5% (16.25)
1 — RM

If the reflectivity of one mirror in a linear cavity is retrieved using a geometrical
averages RM; to RMj; of three mirrors in all their combinations (c.f. (16.18)) the
accuracy of the reflectivity is given by:

RM|RM AR
R, = 1—2 — Aer = — = 3ARMrEI = +15% (1626)
RM; 1—-R —1.5%

In case of a folded cavity consisting out of three mirrors (16.19) with the sample
mirror in the center, the accuracy is given by:

RM AR
rR=_""M AR™ = T—r= ARMS + ARMSS = { +10% (16.27)

RM;y - ~1.0%

If a previously defined reference mirror is used in order to retrieve the reflectance of
a sample mirror (c.f. (16.16)) the accuracy is given by:

2RM o RM?
AR = (1— RM) - ARM"™ +

Rrﬁf ref Rref

RM?
R =

(1 = Ryer) x AR

ref

(16.28)

In this case the accuracy for the determination of the mirror reflectivity strongly
depends on the reflectance of the reference mirror. If the reference reflectivity is
very small compared to that of the sample mirror the former determines the cavity
losses and the accuracy for determining R is decreasing tremendously. The effect is
depicted in Fig. 16.11. On the other hand, the accuracy for determining R can be
very high, if the reflectivity of the sample mirror is very large compared to that of
the sample. Hence one should aim for using the mirrors with the highest reflectance
values as references.

16.4 Limits of the Technique

The indirect determination of the reflectivity coefficient by measuring the losses,
which makes the measurement independent of the exact knowledge of the input
laser power and thus stable with respect to laser fluctuations shows a significant
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drawback: The cavity losses are composed of absorption, scattering and reflection
(besides losses due to inappropriate cavity design, c.f. Sect. 16.3.4). Hence, if absorp-
tion and/or scattering becomes dominant compared to reflection inadequacies, those
will lead to an underestimation of R using the CRD method. In such cases, the CRD
measurement has to be supported by accurate scattering and absorption measure-
ments for determining the correct R values. This is particularly critical in case of
very high mirror reflectivities R > 0.99999, poor surface qualities or when light in
the short wavelength visible or ultraviolet spectrum is used for characterization.

Sophisticated techniques for evaluating scattering or absorption are subject of
Chaps. 14 and 15 of this book.

In the case of small mirror reflectivities R < 0.99 corresponding to large losses,
the decay time of the CRD signal is very short (tcgp < 100ns for L = 30cm).
In this case the temporal resolution of the detector or the sampling of the read out
electronic limits the accurate determination of R. Such low reflectances can, however,
easily be determined by spectrophotometric or laser ratiometric measurements.

In this context CRD technique should not be considered to be superior with respect
to spectrophotometric or laser ratiometric measurements but more as a complement-
ing method.

Finally, using the CRD technique the reflectance can only be determined accu-
rately in the center of the mirror. Although scanning of the mirror surface could be
performed in a certain range, close to the rim of the mirror diffraction losses will
exceed the reflectance losses.
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16.5 Summary

In this chapter the possibility of applying the cavity ring-down (CRD) method in order
to determine reflectances above R > 0.99 was discussed in detail. For such large
reflectances CRD is superior compared to e.g. laser ratiometric or spectrophotometric
measurements as the reflectivity is determined indirectly by measuring the losses of
a cavity in which light is confined. Since this is done by determining the life time of
the light inside the cavity the measurement accuracy is independent of laser power
fluctuations and does not require a large dynamic range of the detector.

A detailed guideline of performing reliable CRD measurements is also fixed in
the ISO standard 13142 [36] since 2015.

A successful CRD measurement does, however, require a carefully designed and
aligned cavity. In particular the cavity length, the mirror diameters and their radius
of curvature must be chosen appropriately in order to avoid losses due to cavity
instabilities or diffraction.

The CRD method is a complementing technology with respect to laser ratiometry
or spectrophotometric rather than a competing one for measuring reflectances. It is
superior for R > 0.99 but inferior for R < 0.99.
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