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Preface

Open quantum systems is the study of quantum dynamics of the system of
interest, taking into account the effects of the ambient environment. It is ubiq-
uitous in the sense that any system could be envisaged to be surrounded by its
environment which could naturally exert its influence on it. It traces its roots
from Quantum Optics and has found applications in diverse areas, ranging from
condensed matter to quantum cosmology. Open Quantum Systems allows for
a systematic understanding of irreversible processes such as decoherence and
dissipation, of essence in order to have a correct understanding of realistic quan-
tum dynamics and also for possible implementations. This would be essential
for a possible development of quantum technologies. Interest has been revived
in recent times due to the upsurge of theoretical and experimental progress.

We try to put down in this book, in a comprehensive manner, the basic
ideas of open quantum systems and the tools needed for the same. Emphasis is
given to both the traditional master equation as well as the functional (path)
integral approaches. In fact, this book can be used as a beginning guide for
understanding and use of path integrals. The basic paradigm of open systems,
the harmonic oscillator and the two-level system are discussed in detail. The
traditional topics of dissipation and tunneling as well as the modern field of
quantum information find a prominent place in the text.

Despite its importance, the subject of Open Quantum Systems is not
present in the curriculum of Indian Universities and Institutes; it is treated, at
best, as an abstruse subject. One of the main goals, and hopes, of this book
would be to bring a change in this scheme of things. Assuming a basic back-
ground of quantum and statistical mechanics, this book will help to familiarize
the reader with the basic tools of open quantum systems.

This book is aimed at taking a reader with a basic background of quan-
tum and statistical mechanics to the level where he/she can start appreciating
research problems of current interest. A good background of undergraduate
physics should suffice to begin with the present book. In any case, an introduc-
tory chapter on quantum statistical mechanics and path integrals are included,
with references to more advanced literature. The book aims to highlight the
ubiquity of Open Quantum Systems based on simple models and calculations.

As I reflect back, I find that there are a number of people to whom I owe
the development of this book. The first person who comes to mind is Prof. R.
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Ramaswamy who has been a teacher and friend to me for a long time. It was his
suggestion that started this project. His constant help and advice, along with
that of Prof. Debashis Ghoshal and Mr. D. K. Jain of Hindustan Book Agency
made this book possible. If I were to trace the roots of my involvement with this
subject, then I would say that it started with the works of Profs. A. O. Caldeira
and A. J. Leggett. I also immensely benefited from the works of Prof. Vinay Am-
begaokar, with whom I was fortunate to have a brief interaction, and Profs. H.
Grabert, G. Ingold, P. Hanggi, G. S. Agarwal and B. L. Hu. My sincere thanks
to all of them. I have also benefitted very much from the classic book on the
subject by Profs. H-P. Breuer and F. Petruccione, with both of whom I have had
the opportunity of some interaction. Over the years there have been a number of
people in the scientific community to whom I have looked up to for inspiration
and this would be an appropriate juncture to thank them. They are Profs. R.
Ghosh, R. Rajaraman, (late) D. Kumar, R. Simon, J. Kupsch, G. Rajasekaran,
H. S. Mani and C. S. Seshadri. My journey in this field would not have been
possible without discussions and collaborations with a number of colleagues:
Richard Mackenzie, Andreas Buchleitner, Christophe Couteau, Sibasish Ghosh,
C. M. Chandrashekar, V. V. Sreedhar, R. Jagannathan, R. Parthasarathy, Ab-
hishek Dhar, R. Srikanth, (late) N. Kumar, Hema Ramachandran, A. R. Usha
Devi, A. K. Rajagopal, Subhash Chaturvedi, Subhasish Dutta Gupta, Arun
Jayanavar, Pankaj Agrawal, Arun Pati, Debasis Sarkar, Archan S. Majumdar,
Guruprasad Kar, Somshubhro Bandyopadhyay, Prasanta K. Panigrahi, Anir-
ban Pathak, V. Ravishankar, Sankalpa Ghosh, Sandeep Goyal, George Thomas
and S. Uma Sankar. In particular, I need to thank S. Omkar, Pradeep Ku-
mar, N. Siddharth, Javid A. Naikoo and Supriyo Dutta for their extensive help
with the numerical and formatting related issues associated with the book. I
also want to express my gratitude to my family and friends for all their help
and support. I conclude by thanking my wife Pallavi and son Shubhonkar for
making me realize there is more to life than open quantum systems.
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Chapter 1

Introduction

Quantum theory of open systems represents a very important problem in
quantum-statistical mechanics as it attempts to provide a natural route for
reconciliation of non-unitary processes such as damping and dephasing or deco-
herence with the process of quantization [1, 2]. One starts with the conservative
composite closed system consisting of the system of interest and its environ-
ment to which the standard rules of quantization are applied. The total system,
comprising of the system of interest and its ambient environment, are evolved
via a unitary evolution and then the environmental coordinates are eliminated
to give a closed equation (reduced dynamics) for the dissipative system alone.
In this picture, friction comes about by the transfer of energy from the “small”
system (the system of interest) to the “large” environment. The energy, once
transferred, disappears into the environment and is not given back within any
time of physical relevance (but only in the so-called Poincaré recurrence time).

There are various approaches to the quantum theory of open systems.
The traditional approaches include the master equation and Langevin equation
approach [3, 4], but in a number of scenarios, it is seen that the functional
integral (path integral) approach [5] provides a practical method of description.
Quantum optics provided one of the first testing grounds for the application of
the formalism of open quantum systems [6, 7]. Application to other areas was
intensified by the works of [8, 9, 10] and [11], among others. The recent upsurge
of interest in the problem of open quantum systems is because of the spectacular
progress in manipulation of quantum states of matter, encoding, transmission
and processing of quantum information, for all of which understanding and
control of the environmental impact are essential [12, 13, 14].

There are many scenarios in nature which can be described by a system
with one or few degrees of freedom in contact with a complex environment
whose number of degrees of freedom is very large (tending to infinity). The
coupling of a system, with few quantum degrees of freedom, to a thermal reser-
voir results in fluctuating forces reflecting the characteristics of the environment
(reservoir or bath) and the coupling. In the classical regime, the dynamics of
such systems is described by a Langevin equation which is a phenomenolog-
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ical equation with a frictional force proportional to the velocity and driven
by a fluctuating force. A prototype example of this is the theory of Brownian
motion. One of the earlier reviews of this is [15].

The approaches to quantum open systems can be broadly classified into
two categories. They either modify the procedure of quantization or use the
system-plus-reservoir approach. In the context of the former approach, Kostin
[16] introduced a theory with a nonlinear Schrödinger equation. The same equa-
tion was found later in [17] using Nelson’s stochastic quantization procedure
[18]. However, besides violating the superposition principle, this theory shows
some highly controversial results such as stationary damped states. In [19] a
canonical quantization procedure was developed using complex variables. De-
spite reproducing some interesting results, such as the Fokker-Planck equation
for the Wigner transform of the density operator, the theory appears obscure
in some points such as the unphysical noise source for the equation of motion
and another one for the momentum equation. The more natural and successful
approach is the system plus reservoir method of quantum open systems [1, 2]
and will be used consistently in this book.

Another approach to open systems has been developed over the last
few decades, i.e., the Stochastic Schrödinger Equations (SSEs) approach that
evolves the wave function of the system as a vector, in the Hilbert space of the
system, following a stochastic trajectory. The resultant reduced density matrix
can be recovered as a sum of the projectors of stochastic trajectories. Depend-
ing on the method used in the derivation, there are many different SSEs that
recover the reduced density matrix of the open system and are called unravel-
ings of the reduced density matrix [20, 21]. In this book, we will not dwell on
this approach.

As stated above, the formalism of open quantum systems allows for a nat-
ural description of processes such as decoherence and dissipation, due to the
influence of the environment on the system of interest. It is ubiquitous in the
sense that any system could be envisaged to be surrounded by its environment
which could naturally exert its influence on it. This becomes clearer when we
try to gauge the range of applications of the ideas of open quantum systems,
from quantum optics to condensed matter physics and issues related to quan-
tum cosmology and quantum gravity to the recent developments in quantum
information processing; some of which will be covered, in due course, here.

We try to put down in this book, in a comprehensive manner, the basic
ideas of open quantum systems and the tools needed for the same. Emphasis
is given to both the traditional master equation as well as the functional in-
tegral approaches. The basic paradigm of open systems, and perhaps of all of
physics, the harmonic oscillator is studied in detail from a number of different
perspectives. The other paradigm model of open quantum systems is the two-
level system, also called, in the parlance of quantum information processing,
the qubit. This is studied using path integral methods. As a matter of fact,
this book can be used as a beginning guide for understanding and use of path
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integrals, needless to say, appropriately supplemented by a number of great
books on the subject, some of which find their place in the bibliography.

This book has been written keeping in mind an advanced undergraduate
or a graduate student wanting to learn about open quantum systems. For this
reason, an introduction is made to the various tools of quantum statistical me-
chanics and path integrals. This is followed by a discussion of master equations
and the influence functional approach, a path integral method used here. These
form the core required for a coherent understanding of the rest of the material
presented. The tools developed are next applied to the two paradigm models of
open systems, viz. the dissipative harmonic oscillator and the dissipative two-
level system. The dissipative harmonic oscillator is studied using both master
equation and path integral techniques. Discussion of the dissipative two-level
system follows naturally into the problem of quantum tunneling, which is stud-
ied here using path integral techniques. As we have had occasion to remark
earlier, the field of quantum information provides a natural breeding ground
for ideas of open quantum systems. This endeavor is thus undertaken next.
The book culminates with a brief discussion of some modern trends in the use
of open system ideas. A number of results obtained with the help of different
colleagues appear in this book. They follow naturally from the formalism de-
veloped. Problems are given intermittently and serve the purpose of further
sharpening the arguments presented.

In the process of elucidating various aspects of open quantum systems, well
known models from different fields of study, such as the Lindblad evolution
and dissipative Jaynes-Cummings model, of importance in quantum optics,
Caldeira-Leggett and the spin-Boson models are also discussed. Applications
of open quantum systems to quantum optics, quantum information, condensed
matter and high energy physics can easily be gleaned from the material. This
should, hopefully, serve to highlight the ubiquity of open quantum systems. So
without further ado, let us begin our journey.
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Chapter 2

A Primer on Quantum Statistical
Mechanics and Path Integrals

2.1 Introduction

In this chapter, we will focus on some of the basic tools of quantum statistical
mechanics as well as get introduced to the subject of path integration. These
are vast enterprises in themselves and are needed to have an understanding
of the subject of open quantum systems. Here we introduce some of the basic
concepts in quantum statistical mechanics and path integration. The harmonic
oscillator, which has a ubiquitous presence in all realms of physics, will be
discussed in detail, both from the perspective of quantum statistical mechanics
as well as path integration. One of the themes pursued in this chapter is to
discuss concepts from dual point of views, that is, using ideas of (conventional)
quantum statistical mechanics as well as by using path integration. For example,
we discuss the partition function as well as the evolution of the density matrix
from this perspective. This, we believe, would encourage the reader to develop a
global viewpoint on the issues studied. Reference is made to advanced literature
on the subject in the end.

2.2 Quantum Statistical Mechanics

Statistical mechanics is about trying to find how macrosystems emerge from
their microscopic origins. Often, this requires also the application of the laws
of quantum physics. The amalgamation of statistical and quantum mechan-
ical ideas is quantum statistical mechanics. As the title of this chapter sug-
gests, what we will discuss here will be the bare rudiments of this vast subject.
However, we feel that the topics discussed are suffice to give the reader an
appreciation of the subject. Thus, we talk about the basic setup of quantum
mechanics; how states and operators are defined, their transformations, the
various pictures used in different contexts. We then discuss the Baker Camp-
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bell Hausdorff theorem, which is very useful in computations with operators;
we come across operators repeatedly in quantum statistical mechanics. The
study of open quantum systems, the principal object of this book, is basically
a theory of quantum statistical mechanics. Here we encounter mixed states fre-
quently. They are handled conveniently by density matrices. The ubiquitous
harmonic oscillator, without a discussion of which no study of quantum statis-
tical mechanics would be appropriate, is then discussed using the method of
annihilation and creation operators. We then briefly discuss the notions of the
partition function and entropy. A guide is provided to more complete literature.

2.2.1 States, Operators, Evolutions and Transformations

A quantum mechanical system lives, mathematically, in a Hilbert space H.
This is a complex, complete, linear vector space equipped with a positive semi-
definite inner product [22, 23]. A very convenient representation of quantum
states, and one which we will follow consistently in this book, is the Dirac bra
and ket formalism [24]. In this, a state is represented by |ψ〉, called ket psi and is
a column vector whose entries are, in general, complex numbers. Its Hermitian
conjugate is 〈ψ|, called bra psi. As an example, the states of a two-level system,
also called qubit in the parlance of quantum information, are

|0〉 =
(
1
0

)
, |1〉 =

(
0
1

)
. (2.1)

A complex, linear vector space is a set of elements (vectors), which are closed
under addition and admit multiplication with complex scalars, which is linear
and associative [23, 25]. Further, there exists a unique zero and identity. An
important concept in these issues is the notion of an inner product. Given two
states |ψ〉 and |φ〉, the inner product between them can be defined by 〈ψ|φ〉.

A vector space which is equipped with an inner product is called an inner
product space. The inner product obeys the properties of Hermiticity, that is,
it is equal to its transposed conjugate counterpart and linearity. Further, the
notion of an inner product allows for the definition of a distance function on
the state space. Thus, we have that 〈ψ|ψ〉 ≥ 0, with equality if |ψ〉 = 0. This is
the property of positive semi-definiteness of the inner product. The length or
the norm of a vector |ψ〉 is ∣∣∣∣∣∣|ψ〉∣∣∣∣∣∣ = √

〈ψ|ψ〉. (2.2)

Thus we see that the length of a vector is related to its inner product. Another
important concept is that of a basis. A basis is a set of vectors which is linearly
independent and complete. This implies that if a vector space V is spanned by
a basis, say for example {|φi〉}, i = 1, · · ·n, then any vector |ψ〉 in V can be
expressed as a linear combination of the basis, that is, |ψ〉 = ∑n

i |φi〉, where n
is the number of elements or vectors in V. Another crucial concept, related to
the basis, is its completeness, which implies that

∑n
i |φi〉〈φi| = 1. When the
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basis spanning the vector space is both linearly independent and complete, it
follows that the number of elements of the basis is equal to the dimension of
the vector space.

An operator can be represented conveniently by an outer product, for ex-
ample, given two vectors |ψ〉 and |φ〉, an operator can be constructed as |ψ〉〈φ|,
which from simple matrix multiplication can be seen to have the form of a
matrix, in contrast to an inner product, which would be a number. The general
definition of an operator is that it acts on a vector to produce another vector(

|ψ〉〈φ|
)
|χ〉 = 〈φ|χ〉|ψ〉 = c|ψ〉, (2.3)

where c is a complex number. The form of the matrix representing an operator
depends upon the basis chosen to represent the matrix elements. The basis
in which the matrix representation of the operator is diagonal is called the
diagonal basis. In another basis, the matrix may not be diagonal. The sum of
diagonal elements of a matrix representation of an operator is called its trace.
The trace operation is independent of the basis chosen to represent the operator
and is cyclic. Given two operators A and B,

Tr(AB) = Tr(BA). (2.4)

This can be proved as follows:

Tr(AB) =
∑
i

〈i|AB|i〉 =
∑
i,j

〈i|A|j〉〈j|B|i〉

=
∑
i,j

〈j|B|i〉〈i|A|j〉 =
∑
j

〈j|BA|j〉

= Tr(BA). (2.5)

Here we have made use of the completeness of basis
∑

i |i〉〈i| = 1 and the fact
that an inner product is an ordinary c number and can be moved in any order.
Trace is used to compute the average of an operator in a given state 〈A〉|ψ〉 as

〈A〉|ψ〉 = 〈ψ|A|ψ〉 = Tr(A|ψ〉〈ψ|). (2.6)

Problem 1: Prove that for operators A, B and C, the following holds:
Tr(ABC) = Tr(BCA) = Tr(CAB).

We have defined in Eq. (2.3), the basic action of an operator. A special
case of this is the eigenvalue equation of operators,

A|ψ〉 = λ|ψ〉. (2.7)

Here, |ψ〉 is the eigenvector and λ is the eigenvalue of the operator A. Two
kinds of operators find prominent use in quantum mechanics, viz. the Hermitian

2.2 Quantum Statistical Mechanics 9



and Unitary operators. An operator is Hermitian if it is equal to its transpose
conjugate, also known as the adjoint of the operator and represented by the
symbol †, while the adjoint of a unitary operator yields its inverse. It can
be easily shown that the eigenvalues of a Hermitian operator are real, while
those of a unitary operator are complex, with unit modulus [23, 25]. Since the
eigenvalues of a Hermitian operator is real, it can be used to represent physical
observables, such as energy and momentum. On the other hand, the unitary
operators are used for the evolution of the state

|ψ(t)〉 = U(t, 0)|ψ(0)〉. (2.8)

This implies that the unitary operator U(t, 0) evolves the state |ψ〉 from time
t = 0 to time t. From this equation, it can be seen that the unitary evolution
preserves the state norm, that is,

〈ψ(t)|ψ(t)〉 = 〈ψ(0)|U†U |ψ(0)〉 = 〈ψ(0)|ψ(0)〉, (2.9)

because U †U = I.

Problem 2: A well known matrix, for a two level system, is the Pauli
matrix:

σZ =

(
1 0
0 −1

)
.

Find the eigenvalues and eigenvectors of this matrix. This is the matrix repre-
sentation of the Pauli-Z operator in the computational basis {|0〉, |1〉}, given in
Eq. (2.1).

Another important transformation, effected on operators, is the similarity
transformation. In quantum mechanics, unitary operators are used to effect this
transformation. Thus, for example, given an operator R and a unitary matrix
U , built from the eigenvectors of R, the similarity transformation would be

D = U†RU, (2.10)

where D is the diagonalized form of the matrix R. We could say that D and R
are similar. Commutators and anti-commutators are very important operations
associated with operators. Given two operators A and B, their commutator

would be
[
A,B

]
= AB−BA, while their anti-commutator would be

[
A,B

]
+
=

AB+BA. An interesting aspect of this is that if
[
A,B

]
= 0 and we assume non-

degeneracy, that is, different eigenvectors correspond to different eigenvalues,
then A and B can be measured simultaneously. We conclude this discussion
by stating a useful representation of an operator, its spectral representation.
Given an operator A, its spectral representation is given by

A =
n∑

i=1

λi|i〉〈i|. (2.11)

10 A Primer on Quantum Statistical Mechanics and Path Integrals



Here λi, |i〉 are the eigenvalues and eigenvectors of the operator A, respectively.

Problem 3: Prove the relation in Eq. (2.11).

2.2.2 Various Pictures

In applications of quantum mechanics, we often make use of various pictures.
The most prominent among them are the Heisenberg, Schrödinger and the
interaction pictures [23, 26]. In the Heisenberg picture, the time dependence
is carried by the operators while the state vector is time independent. This is
reversed in the Schrödinger picture while the interaction picture is intermediate
between the two.

Heisenberg picture: Here the evolution of an operator OH in time t is given
as

OH(t) = e
i
�
HtOH(0)e−

i
�
Ht. (2.12)

Here the superscriptH, on the operatorOH, denotes Heisenberg. Differentiating
the equation with respect to time t yields the equation of motion

i�
∂

∂t
OH(t) =

[
OH(t), H

]
, (2.13)

where H is the Hamiltonian. Now OH(0) in Eq. (2.12) is the operator at time
t = 0. Also, the state vectors in this picture do not evolve with time, that is,
|α, t〉H = |α, 0〉H = |α〉H.

Schrödinger picture: Here OS = OH(0), while

|α, t〉S = e−
i
�
Ht|α, 0〉S , (2.14)

where |α, 0〉S = |α〉H. Here the superscript S, on the operator OS , denotes
Schrödinger. Differentiating this with respect to time t yields

i�
∂

∂t
|α, t〉S = H|α, t〉S . (2.15)

Note that operator averages are unchanged, irrespective of the picture used for
computation. Thus, we have

〈β, t|OS |α, t〉S = 〈β|e i
�
HtOSe−

i
�
Ht|α〉H = 〈β|OH(t)|α〉H. (2.16)

The transformations between the two pictures is mediated by canonical trans-
formations, that is, transformations preserving commutation relations. Thus, if[
AH, BH

]
= CH, then

[
AS , BS

]
= CS .

Interaction picture: This is intermediate between the above two pictures.
It is very suited to discuss scenarios where the total Hamiltonian can be split
up into the free Hamiltonian and an interaction Hamiltonian H = H0 + HI .
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Here the free term is H0, while the interacting part is HI . In this picture, the
operators evolve as

OI(t) = e
i
�
H0tOSe−

i
�
H0t, (2.17)

while the state vector evolves as

|α, t〉I = e
i
�
H0t|α, t〉S . (2.18)

Here the superscript I denotes the interaction picture. For HI = 0, OI(t) =
OH(t) and |α, t〉I = |α〉H; while for t = 0, OI(0) = OS = OH(0) and |α, 0〉I =
|α〉H = |α, 0〉S . Differentiating Eq. (2.18) we get

i�
∂

∂t
|α, t〉I = HI

I |α, t〉I , (2.19)

while differentiating Eq. (2.17) we get

i�
∂

∂t
OI(t) =

[
OI(t), H0

]
. (2.20)

Here HI
I is the interaction Hamiltonian in the interaction picture.

Problem 4: Derive Eqs. (2.19) and (2.20).

2.2.3 Baker Campbell Hausdorff (BCH) Theorem

A crucial thing with operators, is that functions of operators cannot be fac-
torized like functions of ordinary (c) numbers. This is captured by the BCH
theorem [27], and comes in handy in many applications. Consider the function
f(ξ) of the parameter ξ:

f(ξ) = eξÂeξB̂ . (2.21)

Differentiation with respect to the parameter ξ gives

∂f

∂ξ
= (Â+ eξÂB̂e−ξÂ)f(ξ). (2.22)

In this sub-section, we will denote operators with a hat on top. The nontrivial

term in the above equation is eξÂB̂e−ξÂ. If Â and B̂ had been c numbers, then
this would become B. However, as we will see below, this term will have a
non-trivial expansion, due to the operator nature of Â and B̂. In fact, it turns
out that

eξÂB̂e−ξÂ = B̂ + ξ[Â, B̂] +
ξ2

2
[Â, [Â, B̂]] + . . . . (2.23)

This can be proved as follows, using the technique of parametric differentiation.
Let

ĝ(ξ) = eξÂB̂e−ξÂ, · · · ĝ(0) = B̂. (2.24)
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Then,

∂ĝ

∂ξ
= [Â, ĝ(ξ)], · · · ∂ĝ

∂ξ

∣∣∣
ξ=0

= [Â, B̂],

∂2ĝ

∂ξ2
=

[
Â, [Â, ĝ(ξ)]

]
, · · · ∂

2ĝ

∂ξ2

∣∣∣
ξ=0

=
[
Â, [Â, B̂]

]
. (2.25)

(2.26)

Using Taylor’s expansion, we have

ĝ(ξ) = ĝ(0) + ξ
∂ĝ

∂ξ

∣∣∣
ξ=0

+
ξ2

2

∂2ĝ

∂ξ2

∣∣∣
ξ=0

+ . . . . (2.27)

This proves Eq. (2.23). Setting ξ = 1 in Eq. (2.23), we get

eÂB̂e−Â = B̂ + [Â, B̂] +
1

2
[Â, [Â, B̂]] + . . . . (2.28)

Problem 5: Let Â = i
�
p̂, B̂ = q̂ and the parameter ξ ∈ R, such that

[q̂, p̂] = i�. Show that

e
i
�
p̂ξ q̂e

−i
�

p̂ξ = q̂ + ξ.

Thus, momentum p̂ is the generator of displacement q̂.

If
[
Â, [Â, B̂]

]
= 0 =

[
B̂, [Â, B̂]

]
, this is so when [Â, B̂] is a c number, then,

from Eq. (2.23), we see that eξÂB̂e−ξÂ = B̂+ξ[Â, B̂]. Parametric differentiation
of the function f(ξ), Eq. (2.21), gives

∂f

∂ξ
= (Â+ B̂ + ξ[Â, B̂])f(ξ). (2.29)

It can be seen that, in the above equation,
[
Â + B̂, [Â, B̂]

]
=

[
Â, [Â, B̂]

]
+[

B̂, [Â, B̂]
]
= 0. This allows for the factorization of (Â+B̂)+ξ[Â, B̂] as ordinary

commuting variables. Using f(0) = 1, the solution of Eq. (2.29) is given by

f(ξ) = e((Â+B̂)ξ+ ξ2

2 [Â,B̂])

= eξ(Â+B̂)e
ξ2

2 [Â,B̂]. (2.30)

Setting ξ = 1 we get

eÂeB̂ = e(Â+B̂)e
1
2 [Â,B̂], (2.31)

e(Â+B̂) = eÂeB̂e
−1
2 [Â,B̂]. (2.32)

These are two well-known forms of the BCH theorem.
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Problem 6: Let there be two n×nmatrices A and B such that [A, [A,B]] =
[B, [A,B]] = O. Show that:

eA+B = eAeBe−
1
2 [A,B]

= eBeAe
1
2 [A,B].

2.2.4 Density Matrices

The usage of density operator is ubiquitous in studies related to Open Quantum
Systems. Here we recapitulate some common properties of density operators.

Consider the average of an operator M in Schrödinger picture (SP) (where
the state vector evolves with time, but not the operator), in the state |ψS(t)〉
as

〈M〉 = 〈ψS(t)|MS |ψS(t)〉
= TrMS|ψS(t)〉〈ψS(t)|. (2.33)

In many cases, it is not possible to determine exactly the state |ψS(t)〉 to which
the system belongs. The best one can have is the probability pψ of the system
being in the state |ψS(t)〉. Then the above expression for the operator average
becomes modified to

〈〈M〉〉 = ΣψpψTrMS|ψS(t)〉〈ψS(t)|
= TrMSρS(t), (2.34)

where the density matrix (or operator) ρS(t) is

ρS(t) = Σψpψ|ψS(t)〉〈ψS(t)|, (2.35)

and Σψpψ = 1. The density matrix satisfies two properties:

Trρ = 1,

Trρ2 ≤ 1, (2.36)

with equality for pure and inequality for mixed states.

Problem 7: Prove the above identities for density matrices.

Using the Schrödinger equation

i�
∂

∂t
|ψ〉 = H|ψ〉,
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it can be seen easily that Eq. (2.35) yields the following equation of motion

i�
∂

∂t
ρ =

[
H, ρ

]
. (2.37)

This is the well known Schrödinger-vonNeumann equation [27].
Let us consider an example of density matrices, which as we will see in

the sequel, is a rather important one, a two-level system representing a qubit.
Consider the Hamiltonian

HS =
�ω

2
σz, (2.38)

where σz =

(
1 0
0 −1

)
is the usual Pauli matrix. Now consider as the system

eigenbasis |j,m〉, these are the well-known Wigner-Dicke states [28]. The eigen-
value equation of HS is

HS |j,m〉 = �ωm|j,m〉
= Ej,m|j,m〉, (2.39)

where −j ≤ m ≤ j. Consider the initial state to be

|ψ(0)〉 = cos

(
θ0
2

)
|0〉+ eiφ0 sin

(
θ0
2

)
|1〉. (2.40)

By the way, this represents the state of a qubit with θ0 and φ0 being the polar
and azimuthal angles, respectively. The time-evolved density matrix is

ρsm,n(t) =

(
cos2( θ02 )

1
2 sin(θ0)e

−i(ωt+φ0)

1
2 sin(θ0)e

i(ωt+φ0) sin2( θ02 )

)
. (2.41)

Problem 8: Check for yourself that the state, Eq. (2.41), is attained by
evolving the initial state, Eq. (2.40), by the Hamiltonian, Eq. (2.38). Does Eq.
(2.41) represent a pure or a mixed state?

We will now derive a very convenient representation of a single field mode,
H = �ω(a†a + 1/2), basically a harmonic oscillator , in thermal equilibrium,
whose state can be written as

ρ =
e−βH

Z . (2.42)

Here

Z = Tr
(
e−β�ω(a†a+1/2)

)
=

1

2 sinh(β�ω2 )
. (2.43)

Also, using the completeness of basis composed of the eigenstates |n〉 of the
harmonic oscillator, that is,

∑
n |n〉〈n| = 1, we have

e−βH =
∑
n

e−β�ω(a†a+1/2)|n〉〈n| = e−
β�ω
2

∑
n

e−nβ�ω|n〉〈n|. (2.44)
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Thus, Eq. (2.42) can be written as

ρ =
∑
n

(1− e−β�ω)e−nβ�ω|n〉〈n|. (2.45)

We will make use of this representation later. Next, we make use of the state
ρ, Eq. (2.45), to present a very useful identity

Tr

[
ρ exp(xâ† + yâ)

]
= exp

[
xy

2
coth

(
β�ω

2

)]
. (2.46)

Here x, y are ordinary numbers and β = 1/(kBT ), where kB is the Boltzmann
constant and T is the temperature. The proof is sketched below. Consider LHS:
using Eq. (2.45), the LHS of Eq. (2.46) is

(1− e−β�ω)Tr

[∑
n

e−nβ�ω|n〉〈n| exp(xâ† + yâ)

]
. (2.47)

The trace term can be written, using completeness of basis, as∑
m

∑
n

〈m|e−nβ�ω|n〉〈n| exp(xâ† + yâ)|m〉. (2.48)

Now we make use of the BCH identity

e(xâ
†+yâ) = e−xy/2eyâexâ

†
. (2.49)

Note that

exâ
† |m〉 =

∞∑
α=0

xα

α!

(
(m+ α)!

m!

)1/2

|m+ α〉. (2.50)

Using Eqs. (2.50) and (2.49), Eq. (2.48) can be written as

∑
n

e−nβ�ω
∞∑

α=0

e−
xy
2
(xy)α

(α!)2
(n+ α)!

n!
. (2.51)

Hence, the LHS of Eq. (2.46) becomes

(1− ζ)e−u/2
∑
n,α

ζn
(u)α

(α!)2
(n+ α)!

n!
. (2.52)

Here xy = u, e−β�ω = ζ. Using

1

(1− ζ)α+1
=

∞∑
n=0

(n+ α)!

α!

ζn

n!
, (2.53)
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Eq. (2.52) can be easily seen to be exp{u
2
1+ζ
1−ζ }, which is equal to

exp

[
xy
2 coth

(
β�ω
2

)]
, the RHS of Eq. (2.46).

Next, we present another useful identity involving a density matrix ρsqth,
representing a squeezed thermal state

ρsqth = Ŝ(r, φ)ρthŜ
†(r, φ), (2.54)

where ρth represents the thermal bath and is given in Eq. (2.45). Also, Ŝ(r, φ)
is the squeezing operator [29] and is given by

Ŝ(r, φ) = exp

[
r

(
â2

2
e−i2φ − â†

2

2
ei2φ

)]
. (2.55)

Here r and φ are the amplitude and phase of squeezing, respectively, while â
and â† are the harmonic annihilation and creation operators, respectively. The
identity we are interested in, and which we will make use of later, is

Tr

[
ρsqthD̂(x−x′)

]
= exp

[
− 1

2
coth

(
β�ω

2

)∣∣∣(x−x′) cosh(r)+(x−x′)∗ sinh(r)ei2φ
∣∣∣2
]
.

(2.56)

Here

D̂(x) = exp

[
xâ− x∗â†

]
, (2.57)

is the displacement operator [29]. The proof of Eq. (2.56) is sketched below.
The LHS can be re-written, using the cyclicity of trace, as

Tr

[
ρthŜ

†(r, φ)D̂(x− x′)Ŝ(r, φ)

]
. (2.58)

Using the identity

Ŝ†(r, φ)D̂(x)Ŝ(r, φ) = D̂(x cosh(r) + x∗ sinh(r)ei2φ), (2.59)

and Eqs. (2.57) and (2.46), the identity, Eq. (2.56), is proved.

Problem 9: Prove the identity Eq. (2.59).

2.2.5 Harmonic Oscillator

Consider the Hamiltonian

H =
1

2
(p2 + ω2q2). (2.60)
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This is the Hamiltonian of the harmonic oscillator with mass m = 1, frequency
ω and q, p being the standard position and momentum operators, respectively,
satisfying [q, p] = i�. We will use the harmonic oscillator as an opportunity to
introduce the concept of annihilation a and creation a† operators, a very useful
concept that has ramifications on many aspects of quantization [24]. Let

a =
1√
2�ω

(ωq + ip),

a† =
1√
2�ω

(ωq − ip). (2.61)

It is easy to see that [
a, a†

]
= 1.

Using Eqs. (2.61) in Eq. (2.60), the Hamiltonian takes the form

H = �ω
(
a†a+

1

2

)
. (2.62)

Problem 10: Derive Eq. (2.62).

Thus, the problem of finding the eigenspectrum of the harmonic oscillator
is equivalent to finding the spectrum of the operator N = a†a. This problem is
treated in all the standard textbooks of quantum mechanics, see for example
[22, 23, 25], and leads to the following useful relations

a|n〉 =
√
n|n− 1〉,

a†|n〉 =
√
n+ 1|n+ 1〉. (2.63)

Since, the annihilation operator reduces n by one, while the creation operator
raises it by one; they are called the ladder operators. Here n is a positive
semidefinite integer, n = 0, 1, 2, · · · . From Eq. (2.63), it can be seen that

a†a|n〉 = n|n〉.
This justifies the terminology, number states for |n〉. Using this, the eigenvalue
equation of the harmonic oscillator becomes

H|n〉 = �ω
(
n+

1

2

)
|n〉. (2.64)

Eigenfunctions of harmonic oscillator
We will next generate the eigenfunctions of the harmonic oscillator using

the method of creation and annihilation operators [30]. Let us first construct
the wavefunction of the vacuum ψ0. We know that aψ0 = 0. Using Eq. (2.61),
we have

1

(2�w)
1
2

(wq + �
∂

∂q
)ψ0(q) = 0. (2.65)
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This can be solved to give ψ0(q) = ce−
wq2

2� , where c is a constant. It can be
determined by the normalization of the wave function∫ ∞

−∞
dq|ψ0(q)|2 = 1, (2.66)

giving c =
(

w
�π

) 1
4 . Thus the wave function of the vacuum, in the coordinate q

representation, can be written as

ψ0(q) =
( w

�π

) 1
4

e−
wq2

2� . (2.67)

From this, the other eigenfunctions can be obtained by repeated application of
the creation operator. For example,

ψn(q) =
1√
n
(a†)nψ0(q)

=
( w

�π

) 1
4 1√

n!

1

(2�w)
n
2
(wq − �

d

dq
)ne−

w
2� q2

= Pn(q)e
− w

2� q2 .

Here Pn(q) = Hn(
√
wq), where Hn is the Hermite polynomial of order n.

2.2.6 Partition Function

Partition function is a very useful tool in statistical mechanics, classical as well
as quantum. Before we get into this, it would be appropriate to briefly discuss
the notion of an ensemble . In statistical mechanics, we are interested in the
macroscopic dynamics of systems, characterized by macroscopic parameters
such as temperature T , pressure P and volume V . Now a typical macroscopic
system is composed of a large number of microscopic subsystems, also called
microstates. An ensemble is the assembly of all possible microstates, consistent
with the constraints with which the system is characterized macroscopically
[31, 32, 33]. Thus

• Microcanonical Ensemble: is an assembly of all states with fixed energy
E, fixed size; number of particles or systems N and volume V . This is
appropriate for describing a close, isolated system.

• Canonical Ensemble: is an assembly of all states with fixed size, but energy
E can vary. This is appropriate for describing a system in contact with a
heat bath.

• Grand-Canonical Ensemble: is an assembly of all states with size and
energy fluctuating.

Now consider the Gibbs or the canonical distribution, characterized by
the probability, of finding a sub-system in the nth state by

pn = Ce−βH(p,q), (2.68)
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where β = 1/(kBT ), kB being the Boltzmann constant and T being the equi-
librium temperature. Also, H(p, q) is the system Hamiltonian as a function of
the phase space variables p and q. C is a constant, determined by the require-
ment that the probability pn is normalized and is the inverse of the partition
function. Explicitly, the partition function for the canonical distribution would
be

Z =

∫
d3Npd3Nq

N !(2π�)3N
e−βH(p,q). (2.69)

Here N denotes the number of sub-systems, d3Npd3Nq is the phase space vol-
ume, � = h/(2π) and the factor (2π�)3N in the denominator is due to the
quantum-classical correspondence between the number of quantum states in
a given energy interval and the phase space occupied, classically. This has an
important ramification in the definition of entropy, a point to which we will
return to shortly. In the context of quantum statistical mechanics, the partition
function has a similar form and can be represented by

Z = Tr
(
e−βH

)
=

∑
n

e−βEn . (2.70)

The partition function allows expressing a number of important bulk thermo-
dynamic quantities in a compact form, thereby facilitating their calculation.
Thus, for example, the mean energy can be expressed in terms of the partition
function of the canonical distribution as

〈H〉 = − ∂

∂β
ln(Z). (2.71)

Further, the partition function allows for the definition of another important
quantity called the free energy F as

Z = e−βF . (2.72)

The free energy, an extensive quantity, is related to the mean energy U by
F = U − TS, where S is the entropy. Also, other thermodynamic quantities
can be expressed in terms of F as

P = − ∂

∂V
F
∣∣∣
T=constant

,

S = − ∂

∂V
F
∣∣∣
V=constant

. (2.73)

As an illustration of these concepts, we will compute the thermodynamic prop-
erties of N independent harmonic oscillators in equilibrium at temperature T .
This constitutes Einstein’s model of heat capacity . The Hamiltonian of a single
harmonic oscillator is

H1 = �ω(a†a+ 1/2) = �ω(n+ 1/2), · · ·n = 0, 1, .. (2.74)
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The corresponding partition function is

Z1(β) = Σ∞
n=0e

−βEn =
1

2 sinh(β�ω2 )
. (2.75)

The total partition function is Z(β) =

[
Z1(β)

]N

= 1
2N sinhN ( β�ω

2 )
. Using Eq.

(2.71), the mean energy U = 〈H〉 is

U =
N�ω

2
coth

(
β�ω

2

)
= N

[
�ω

2
+

�ω

eβ�ω − 1

]
. (2.76)

Also, using the partition function, the free energy F , Eq. (2.72), is

F = NkBT ln(e
β�ω
2 − e−

β�ω
2 ), (2.77)

entropy S is

S = −NkB ln(e
β�ω
2 − e−

β�ω
2 ) +

N�ω

2
coth

(
β�ω

2

)
. (2.78)

Using Eq. (2.76), the specific heat capacity, at constant volume, is

C =
∂U

∂T

∣∣∣
V=constant

= NkB(β�ω)
2 eβ�ω

(eβ�ω − 1)2
. (2.79)

Thus, the heat capacity at high T is C ≈ NkB , independent of T .

2.2.7 Entropy

Entropy S is a central concept in statistical mechanics [32, 31, 34]. It is the
logarithm of the statistical weight of the sub-system ΔΓ

S = kB lnΔΓ = −kB〈ln pn〉 = −kB
∑
n

pn ln pn. (2.80)

ΔΓ is the number of quantum states in a macroscopic energy interval ΔE, equal
in order of magnitude to the mean fluctuation of energy of the subsystem and
is the degree of broadening of the macroscopic state of the subsystem w.r.t its
microscopic states. Here, pn is the probability distribution of energy levels of the
sub-system and the angular brackets in the RHS of Eq. (2.80) denotes average
with respect to the distribution pn. In classical statistical mechanics, this is
connected to the phase space volume as ΔΓ = ΔpΔq

(2π�)n , where n is the number

of degrees of freedom of the subsystem considered. This relation is obtained by
taking a quasi classical correspondence between the volume of a region of phase
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space and the corresponding number of quantum states. Also, n quantifies the
quantum, classical phase space correspondence. Thus, the classical entropy is

S = kB ln

(
ΔpΔq

(2π�)n

)
. (2.81)

In the definitions of entropy, the proportionality constant is kB , the Boltzmann
constant. In purely classical statistics, the entropy can also be defined by S =
kB ln(ΔpΔq). This is defined only to within an additive constant which depends
on the choice of units, and only differences of entropy, are definite quantities
independent of the choice of units. Using the definition in Eq. (2.81), allows for a
dimensionless definition of entropy. Consider two bodies in thermal equilibrium
with each other, forming a closed system. Then the entropy of the system is
maximum. From this, it can be shown that the derivative of the entropy with
respect to the energy is a constant. This constant defines the inverse of the
absolute temperature of the body. From this it follows that the temperatures
of bodies in thermal equilibrium with each other are equal.

Entropy plays myriad roles not only in its traditional arena of classical
(quantum) statistical mechanics, but also in information theory. There, entropy
tells us about the average uncertainty in a random variable and is measured in
bits [35]. It is also the basis for the Shannon data compression theorem [36],
where it sets the limit to which data can be safely compressed. Entropy forms
the basis of the definition of the mutual information, which is the entropy of
a random variable conditioned on the knowledge of another random variable.
The mutual information is in turn used to define the channel capacity of a
communication channel. In the quantum regime, von-Neumann entropy is used,
which is similar to the Shannon entropy [27, 37], with the density matrix used
to represent the probability distribution. The concept of entropy also plays an
important role in quantum information [38], where the von-Neumann entropy
is used to quantify entanglement between two systems. Also, quantum mutual
information is a measure of total quantum correlations. We will have occasion
to discuss these, in some detail, later on in this book when we discuss aspects
of open quantum systems in quantum information.

We will now discuss a novel use of entropy, that is, the use of the principle
of maximum entropy, initiated by Jaynes [39]. We will use this to obtain the
canonical or Gibbs distribution. Consider the entropy

S = −kBTr
(
ρ ln p

)
. (2.82)

This is subject to the constraint

Trρ = 1, (2.83)

which is the statement of normalization of the state ρ. Further, we know the
average energy of the system

〈E〉 = TrρH, (2.84)

22 A Primer on Quantum Statistical Mechanics and Path Integrals



where H is the system Hamiltonian. Now we maximize the entropy, Eq. (2.82)
keeping into account the constraints of Eqs. (2.83) and (2.84). We then have

Tr(1 + ln ρ)δρ = 0,

Trδρ = 0,

TrHδρ = 0. (2.85)

We now apply the method of undetermined multipliers by multiplying the first
constraint, of normalization, by α and the second one, of average energy, by β
to get

Tr(1 + α+ ln ρ+ βH)δρ = 0. (2.86)

Since δρ is arbitrary, all variations are independent. Eq. (2.86) will be satisfied
for

ln ρ = −1− α− βH, (2.87)

which implies that
ρ = e−1−αe−βH . (2.88)

The first term on the RHS of Eq. (2.88) is nothing but the partition function
Z = Tre−βH, as can be checked by demanding the normalization of the state
ρ. The average energy 〈E〉 = − ∂

∂β lnZ. From this, the constraint β can be

obtained. It can be shown that β = 1/(kBT ). Using this in Eq. (2.88), we get

ρ =
e
− H

kBT

Tre
− H

kBT

, (2.89)

the canonical distribution.

2.3 Path Integrals

The path integral approach provides an alternative to the operator approach
to problems involving quantum mechanics. In contrast to the usual evolution
equations, such as the Schrödinger equation where the properties of a state at
a given time are determined from their knowledge at an infinitesimally earlier
time, the path integral allows for a global understanding of the state evolution.
Further, in the path integral formalism, the formalism of operators is replaced
by ordinary c numbers, though the price to be paid is the involvement of infinite
products of integrals. The path integral approach has become very important
in the quest for understanding gauge field theories. Also, in the context of open
quantum systems, the subject of the present book, path integrals play a major
role. Here we will provide an introduction to the method of path integrals and
illustrate them by working out the propagators for the free particle as well as
the harmonic oscillator. Then we develop the path integral formalism for the
partition function, thereby providing a glimpse into the notion of imaginary
time path integrals. This approach is very useful in studies related to quantum
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statistical mechanics. We then provide a path integral description of the evolu-
tion of the density matrix. The construction made here will be directly carried
over to the development of the influence functional approach to open quantum
systems, in Chapter IV.

2.3.1 Introduction to the Path Integral

Let us consider the amplitude

ψ(x, t) = 〈x, t|ψ〉. (2.90)

Here |x, t〉 = e
i
�
Ht|x〉, where H is the Hamiltonian and |ψ〉 is the state at

time t = 0. We know from our discussions about various pictures that this
is also the state in the Heisenberg picture. This satisfies (a). Orthonormality:
〈x′, t|x, t〉 = δ(x′ − x), and (b). Completeness:

∫
dx|x, t〉〈x, t| = 1. Hence, |x, t〉

can be used as a basis. Using these, we can express the amplitude, in Eq. (2.90),
as

〈x′, t′|ψ〉 =

∫
dx〈x′, t′|x, t〉〈x, t|ψ〉

=

∫
dx〈x′, t′|x, t〉ψ(x, t). (2.91)

This is the starting point of the construction of the path integral. The transition
amplitude 〈x′, t′|x, t〉 in Eq. (2.91) is the so called Feynman kernel or propaga-
tor [40, 41, 42, 43, 44, 1]. The path integral provides a means to construct the
transition amplitude (Feynman kernel) from the classical Hamiltonian of the
system, without any explicit reference to non-commuting operators or Hilbert
space vectors [45]. As evident from Eq. (2.91), knowledge of the Feynman ker-
nel 〈x′, t′|x, t〉 allows for the determination of the state’s evolution at any time.
Thus, the path integral provides a global approach to the time evolution prob-
lem.

The next step is to split the time interval (t, t′), in Eq. (2.91) into n slices,
such that tn = t + nε, n = 1, 2, · · · , N − 1. This implies that t′ − t = Nε. At
each of the n lattice (grid) points, a complete set of basis states {|xn, tn〉} is
inserted to give

〈x′, t′|x, t〉 =
∫

dxN−1 · · ·
∫

dx2

∫
dx1〈x′, t′|xN−1, tN−1〉 · · · 〈x2, t2|x1, t1〉〈x1, t1|x, t〉.

(2.92)

In Eq. (2.92), 〈xn+1, tn+1|xn, tn〉 is the transfer T matrix and is, using |x, t〉 =
e

i
�
Ht|x〉,

〈xn+1, tn+1|xn, tn〉 = 〈xn+1|e− i
�
H(p,x)ε|x〉, (2.93)

where ε = tn+1 − tn. It should be noted that in the above equation, H(p, q)
in the RHS is an operator, as in quantum mechanics, observables, such as
position x and momentum p are operators. The construction in Eq. (2.92) can
be interpreted as a coherent superposition, interference, of all paths from x, t
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to x′, t′. Now we know from our previous discussions on operators that it is not
possible to simply factorize functions, such as exponentials, of operators as for
the corresponding c number cases. However, for infinitesimal ε, we can express
Eq. (2.93) as

〈xn+1, tn+1|xn, tn〉 = 〈xn+1|1− iε

�
H(p, x)|xn〉+ o(ε2). (2.94)

Using completeness of the momentum basis {|p〉},

〈xn+1|H(p, x)|xn〉 =
∫

dpn
2π�

〈xn+1|pn〉〈pn|H(p, x)|xn〉. (2.95)

Now, 〈pn|H(p, x)|xn〉 = 〈pn|xn〉H(pn, x̄n). Here x̄n = xn or 1
2 (xn+1 + xn)

(the so called mid-point prescription), depending upon whether the momentum
operators stand to the left of the position operators or they are symmetrically
distributed, obeying a Weyl ordering, repectively [43, 44]. This allows us to
write Eq. (2.94) as

〈xn+1, tn+1|xn, tn〉 =
∫

dpn
2π�

exp
[ i
�
pn(xn+1 − xn)

](
1− iε

�
H(pn, x̄n)

)
+ o(ε2).

(2.96)
It should be noted that the pn, xn in the RHS of the above equation are now
ordinary c numbers. Substituting Eq. (2.96) in Eq. (2.92) and invoking the
limits ε → 0 or N → ∞, we get

〈x′, t′|x, t〉 = lim
N→∞

∫ N−1∏
n=1

dxn

N−1∏
n=0

dpn
2π�

exp
[ iε
�

N−1∑
n=0

pn
(xn+1 − xn)

ε

]
(2.97)

×
N−1∏
n=0

(
1− iε

�
H(pn, x̄n)

)

= lim
N→∞

∫ N−1∏
n=1

dxn

N−1∏
n=0

dpn
2π�

exp
[ iε
�

N−1∑
n=0

(
pn

(xn+1 − xn)

ε
−H(pn, x̄n)

)]
.

(2.98)

Here use is made of the identity

lim
N→∞

N−1∏
n=0

(
1 +

xn

N

)
= exp

(
lim

N→∞
1

N

N−1∑
n=0

xn

)
. (2.99)

In the limit of N → ∞, the lattice (grid) points xn and pn come arbitrary close
and can be viewed as sampled values of continuously defined functions x(t) and
p(t). The object constructed in Eq. (2.98) is called a functional integral or a

path integral. Using compact notations
∫ N−1∏

n=1
dxn =

∫
Dx,

∫ N−1∏
n=0

dpn

2π� =
∫
Dp,

(xn+1−xn)
ε = ẋ(tn), ε

N−1∑
n=0

f(tn) =
t′∫
t

dτf(τ), the Feynman kernel can be written
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as a path integral in phase space

〈x′, t′|x, t〉 =
∫

Dx

∫
Dp exp

[ i
�

t′∫
t

dτ
(
pẋ−H(p, x̄)

)]
. (2.100)

This path integral is over all functions p(t) in momentum space and in coor-
dinate space satisfies the boundary conditions x(t) = x, x(t′) = x′. The path
integral, thus provides a means of computing the transition amplitude as a sum
over all paths, between the given boundary conditions. The modulus square of
the amplitude then gives the probability, which is the Born rule .

Now consider the usual Hamiltonian

H(p, x) =
p2

2m
+ V (x), (2.101)

where V (x) is the potential. Using Eq. (2.101) in Eq. (2.96), we see that

〈xn+1, tn+1|xn, tn〉 ≈
∫

dpn
2π�

exp
[ iε
�

(
pnẋn − p2n

2m
− V (x̄)

)
. (2.102)

The exponent in the RHS of Eq. (2.102) is quadratic in pn and hence forms a
Gaussian integral which can be easily done to yield

〈xn+1, tn+1|xn, tn〉 ≈
(2πi�ε

m

)−1/2

exp
[ iε
�

(1
2
mẋ2

n − V (x̄n)
)]

. (2.103)

Here use is made of p = 1
2mẋ2. Inserting Eq. (2.103) in Eq. (2.98), we have

〈x′, t′|x, t〉 = lim
N→∞

(2πi�ε
m

)−N/2
∫ N−1∏

n=1

dxn exp
[ iε
�

N−1∑
n=0

(1
2
mẋ2

n − V (x̄n)
)]

= N
∫

Dx exp
[ i
�
S(x, ẋ)

]
. (2.104)

Here S(x, ẋ) is the action and is

S(x, ẋ) =

t′∫
t

dτ
(1
2
mẋ2 − V (x̄)

)
=

t′∫
t

dτL(x, ẋ). (2.105)

L(x, ẋ) is the Lagrangian , N is a normalization constant and we have made
use of the abbreviated notations defined above. Thus, we see that the Feynman
kernel is defined in terms of the action, a property which makes it very useful
in many scenarios, including open quantum systems and quantum field theory.

If S � �, then the terms in the argument of the exponential, in the RHS
of Eq. (2.104) become highly oscillating and cancel each other. The only paths
where this cancellation is avoided are where the action remains stationary, that
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is, where δ
t′∫
t

dτL(x, ẋ) = 0. Hence, the classical description of the system can

be derived from the corresponding quantum theory using the stationary phase
approximation to the path integral. For a more mathematical introduction to
the subject, the reader is encouraged to look into [46].

Problem 11: Do the Gaussian integral to arrive at Eq. (2.103).

2.3.2 Illustrative examples

Now we illustrate the formalism developed above by working out examples of
the Feynman kernel for a free particle as well as that of a particle in a harmonic
oscillator .

Free Particle Path Integral: For the case of a free particle, V (x) = 0. The
Eq. (2.104) gives

〈x′, t′|x, t〉 = lim
N→∞

(2πi�ε
m

)−N/2
∫ N−1∏

n=1

dxn exp
[ im
2�ε

N−1∑
n=0

(
xn+1 − xn

)2]
.

(2.106)
Repeatedly using the Gaussian integral identity

∞∫
−∞

dxn exp
[
− α(qn+1 − qn)

2
]
exp

[
− β(xn − xn−1)

2
]

=

√
π

α+ β
exp

[
− αβ

α+ β
(xn+1 − xn−1)

2
]
, (2.107)

N − 1 times, Eq. (2.106) becomes

〈x′, t′|x, t〉 = lim
N→∞

√
m

2πi�Nε
exp

[ 1

Nε

im

2�
(xN − x0)

2
]

=

√
m

2πi�(t′ − t)
exp

[ im
2�

(x′ − x)2

(t′ − t)

]
. (2.108)

It can be easily seen that the Feynman kernel, Eq. (2.108), satisfies the free

particle Schródinger equation i�∂ψ
∂t = Hψ, whereH = − �

2

2m
∂2ψ
∂x2 . This motivates

the adjective propagator for the Feynman kernel.

Problem 12: Derive Eq. (2.107).

Harmonic Oscillator Path Integral: The harmonic oscillator serves as a
paradigm for many systems in physics. Keeping in mind its importance, we
now work out in detail the Feynman kernel or the propagator for the harmonic
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oscillator. This will also serve to provide a firm insight into the working of the
path integral method. Here the potential V (x) = 1

2mω2x2. Note that x̄ in Eq.
(2.105) is, here, equal to x. We start with Eq. (2.104)

〈x′, t|x, 0〉 = N
∫

Dx exp
[ i
�
S(x, ẋ)

]
= N

∫
Dx exp

{
i

�

t∫
0

ds

(
1

2
mn

[
ẋ2(s)− ω2x2(s)

])}
. (2.109)

Here, for simplicity of notation, we have replaced the initial time t by zero
and final time t′ by t. We now need to evaluate the functional integral in Eq.
(2.109) where we have to sum over all paths x(s) of the oscillator with x(0) = x
and x(t) = x′. Since the functional integral is Gaussian, its dependence on the
boundary values x, x′, can be obtained by expanding about the path x̃(s)
minimizing the action in the exponent of Eq. (2.109), the classical path. Let us
express

x(s) = x̃(s) + α(s), (2.110)

where x̃(s) is the solution of the stationary value of the action, and is the
classical path. α(s) is the quantum fluctuation about this path, and x̃(0) = x
and x̃(t) = x′. We have by Taylor expansion of the action about the classical
path

S[X] = S[x̃] +

∫
ds

δS[x]

δx(s)

∣∣∣
x=x̃

+
1

2!

∫
ds1ds2α(s1)α(s2)

δ2S[x]

δx(s1)δx(s2)

∣∣∣
x=x̃

.

(2.111)
It should be noted that as the classical path x̃(s) is stationary for the action,
the first derivative of the action in the RHS of Eq. (2.111) vanishes. As a result,
Eq. (2.109) becomes

〈x′, t|x, 0〉 = N exp

{
i

�

t∫
0

ds

(
1

2
m

[
˙̃x2 − ω2x̃2

])}

×
∫

Dα exp

{
i

�

t∫
0

ds

(
1

2
mα̇2 − ω2α2

)}
. (2.112)

The functional integral over α(s) sums over all paths α(s) with α(0) = α(t) = 0
so that the dependence on x(0) and x(t) is completely included in the first
exponential. To calculate the functional integral in Eq. (2.112) we made use of
the fact that x̃(s) is a trajectory that minimizes the action. Consider the first
term in Eq. (2.112). The Euler-Lagrangian equation of motion is

δS[x]

δx(s)

∣∣∣
x=x̃

= 0, (2.113)
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which implies that

m¨̃x(s) +mω2x̃(s) = 0. (2.114)

The solution of Eq. (2.114) satisfying the boundary conditions is

x̃(s) =
β(s)

β(t)
x′ +

β(t− s)

β(t)
x, (2.115)

where β(s) = 1
mω sin(ωs). To compute the action of the trajectory x̃(s) we

perform an integration by parts and use the equation of motion (2.114). This
yields

t∫
0

ds

(
1

2
m

[
˙̃x2 − ω2x̃2

])
=

1

2
m(x̃(t) ˙̃x(t)− x̃(0) ˙̃x(0)). (2.116)

The RHS of Eq. (2.115) is then inserted in Eq. (2.116), to yield the classi-
cal contribution to the action. We now want to evaluate the contribution to
the functional integral, Eq. (2.116), from the quantum fluctuations α(s), see
Eq. (2.110). This can be obtained by expanding the α dependent part of the
functional integral, Eq. (2.112), into a Fourier series, using α(0) = α(t) = 0

α(s) =

∞∑
n=1

cn sin(νns); νn = πn/t. (2.117)

Due to the orthogonality of the sine functions, the integrand in the second term
in the RHS of Eq. (2.112) becomes

exp

{
i

�

t∫
0

ds

(
1

2
mα̇2−ω2α2

)}
= exp

{
i
mt

4�

∞∑
n=1

(
(cn)

2(ν2n−ω2)

)}
, (2.118)

while the integration measure becomes

∫
Dα · · · =

∞∏
n=1

(
N−1

1

∞∫
−∞

dcn · · ·
)
. (2.119)

Here N1 is a constant independent of ω which arises from the Jacobian of the
transformation in Eq. (2.117). From the Eqs. (2.118) and (2.119), it can be seen
that the functional integral factorizes into regular Gaussian integrals over the
Fourier components cn which can be done separately. We then have

f(t) =

∫
Dα exp

{
i

�

t∫
0

ds

(
1

2
mα̇2−ω2α2

)}
= C

∞∏
n=1

(
1−ω2

ν2n

)−1/2

. (2.120)
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The constant C has all the factors independent of ω, including N and N1. Using
the mathematical identity

∞∏
n=1

(
1− ω2

ν2n

)
=

sin(ωt)

ωt
, (2.121)

we get

f(t) = C

(
ωt

sin(ωt)

)1/2

. (2.122)

The constant C can be determined by evaluating the Jacobian of the trans-
formation, Eq. (2.117). Another way of doing this is by comparing Eq. (2.120)
with the corresponding result for the case of a free particle, Eq. (2.108). Thus
we see that

f(t, ω = 0) = C =

(
m

2πi�t

)1/2

. (2.123)

Using Eqs. (2.123), (2.122) and the result obtained by substituting the RHS of
Eq. (2.115) in the RHS of Eq. (2.116), we get

〈x′, t|x, 0〉 =
(

mω

2πi� sin(ωt)

)1/2

exp

{
i

�
Φ(x′, x)

}
, (2.124)

where

Φ(x′, x) =
mω

2 sin(ωt)

{
(x2 + x′2) cos(ωt)− 2xx′

}
. (2.125)

This is the Feynman kernel or the propagator for the harmonic oscillator.

2.3.3 Partition Function as a Path Integral

Keeping in mind the ubiquity of the partition function in quantum statistical
mechanics, we now provide a path integral description of it. The starting point
of a path integral derivation of the partition function is the quantum mechanical
partition function, introduced earlier in Eq. (2.70). This can be put in contact
with the evolution operator via analytic continuation to imaginary time as

Z = Tr
(
e−βH

)
=

∑
n

e−βEn = Tre−i(t′−t)H/�, (2.126)

where t′− t = − i�
kBT ≡ −i�β. The trace can be computed using any convenient

basis. For example, in the position basis {|x〉}, this amounts to integrating the
above amplitude over x′ = x, at the analytically continued time t′ − t = −i�β

Z =

∫ ∞

−∞
dxζ(x) =

∫ ∞

−∞
dx〈x|e−βH |x〉 =

∫ ∞

−∞
dx〈x, t′|x, t〉

∣∣∣
t′−t=−i�β

. (2.127)
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Here the object ζ(x) = 〈x|e−βH |x〉 = 〈x, t′|x, t〉∣∣
t′−t=−i�β

plays the role of

the partition function density. This has the form of the Feynman kernel or
propagator with the added proviso that here the position of the end point is
the same as that of the initial point. From the Eqs. (2.124) and (2.125) for the
harmonic oscillator propagator, and using the imaginary time relation, we see
that

ζ(x) =

(
mω

2π� sinh(β�ω)

)1/2

exp

{
− mω

�
tanh

(1
2
β�ω

)
x2

}
, (2.128)

is the harmonic oscillator partition function density. In the general case, we
proceed as in Eqs. (2.92) and (2.93) keeping in mind that now we are dealing
with imaginary time. Thus, we basically split the factor e−βH into a product of
N +1 factors e−εH/� with ε = �β/(N +1) and insert partitions of unity, using
the {|x〉} basis, between each factor, set the beginning and end positions equal
and then integrate over it. The path integral would thus be composed of the
product of factors like Eq. (2.96)

〈xn+1|e−εH/�|xn〉 ≈
∫

dpn
2π�

exp
[ i
�
pn(xn+1 − xn)− ε

�
H(pn, x̄n)

]
. (2.129)

The difference with the earlier, real time case, is that here there is no imaginary
term i in front of the Hamiltonian H. The product of the terms like Eq. (2.129),
in the manner indicated above, gives

Z ≈
N+1∏
n=1

[ ∫ ∞

−∞
dxn

∫ ∞

−∞

dpn
2π�

]
exp

[
− 1

�
ξNE

]
, (2.130)

where ξNE , the superscript E denoting Euclidean, is

ξNE =
N+1∑
n=1

[
− ipn(xn+1 − xn) + εH(pn, x̄n)

]
. (2.131)

In the continuum limit, the sum goes over to the integral and we have the
partition function

Z =

∫
Dx

∫
Dp

2π�
e−ξE(p,x)/�, (2.132)

where we have used the compact notations introduced in our introduction of
the path integral. Also,

ξE(p, x) =

∫
�β

0

dτ
[
− ip(τ)ẋ(τ) +H(p(τ), x(τ))

]
. (2.133)

This is the imaginary time or Euclidean action, and is a functional of p(τ),
x(τ), which could be thought of as paths along an imaginary time axis τ = it.
The partition function, Eq. (2.132), is symmetrical with respect to x and p.
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Problem 13: Derive Eq. (2.128). Use it to show that the partition func-
tion Z =

∫∞
−∞ dxζ(x) is equal to the result obtained in Eq. (2.75) by another

method.

Gaussian integrals play an important role in many practical calculations.
Try out the following problems involving Gaussian integration.

Problem 14: For ψ(x) =
(
2a
π

)−1/4
e−ax2/2, with a real find 〈xn〉 for an

interger n > 0. The average is to be taken w.r.t the state ψ(x).

Problem 15: Let ψ(x) = A(ax− x2), 0 ≤ x ≤ a. Normalize ψ(x) and find
〈x〉, 〈x2〉. The average is to be taken w.r.t the state ψ(x).

2.3.4 Density Matrix Evolution as a Path Integral

We have seen before in this chapter that when we deal with open quantum
systems, more often than not we have to work with mixed states that entail
working with density matrices . Here we present a path integral approach to
studying the evolution of the density matrix. This would be of immense impor-
tance to us when we study the influence functional approach to open quantum
systems later. We start with the evolution of the state ρ(0) at time t = 0,
evolving under the Hamiltonian H as

ρ(t) = e−
i
�
Htρ(0)e

i
�
Ht. (2.134)

In the coordinate representation this can be expressed as

〈x|ρ(t)|y〉 =
∫

dx′dy′〈x|e− i
�
Ht|x′〉〈x′|ρ(0)|y′〉〈y′|e i

�
Ht|y〉. (2.135)

Here we have introduced partitions of unity, for example,
∫
dx′|x′〉〈x′| = 1. We

know from Eq. (2.104) that

〈x|e− i
�
Ht|x′〉 =

∫
Dx exp

[ i
�
S(x, ẋ)

]
= K(x, t;x′, 0), (2.136)

and

〈y′|e i
�
Ht|y〉 =

∫
Dy exp

[
− i

�
S(x, ẋ)

]
= K∗(y, t; y′, 0). (2.137)

Here we have used the compact path integral notation and have absorbed
the normalization constant in the path integral measure. The Eqs. (2.136)
and (2.137) could be thought of as the forward K(x, t;x′, 0) and backward
K∗(y, t; y′, 0) Feynman propagators , respectively [47, 48]. They are functional
integrals over paths x and y with x(0) = x′, x(t) = x, y(0) = y′ and y(t) = y.
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Using Eqs. (2.136) and (2.137) in Eq. (2.135), the evolution of the density
matrix is seen to be

ρ(x, y, t) = 〈x|ρ(t)|y〉 =
∫

dx′dy′K(x, t;x′, 0)K∗(y, t; y′, 0)〈x′|ρ(0)|y′〉.
(2.138)

This gives us the intuitive picture of the evolution of the density matrix in-
volving a product of two propagators, one evolving forward in time and the
other evolving backward in time. This construction would be very handy when
we discuss the influence functional formalism of open quantum systems. We
will then see that the interaction of the system with its environment results
in coupling of the forward and backward propagators and is expressed as the
influence functional.

2.4 Guide to advanced literature

In this chapter we have provided a glimpse to the vast subjects of quantum
statistical mechanics and path integrals. This is required as the study of open
quantum systems draws heavily from both these subjects. As has been men-
tioned in the text, there are a number of standard text books on the subject of
(quantum) statistical mechanics, such as [27, 31, 32, 33, 34, 49, 50], to which
the reader is encouraged to look into for persuing a topic discussed here in more
detail. The subject of path integrals is an equally vast one. The first textbook
on it was [40]. At present there are a number of very good textbooks on the
subject, a small sample of which would be [41, 42, 51, 52, 53, 54]. Also, there
is a preponderance of the use of path integrals in the modern treatments of
gauge field theory, see for example, the books [43, 44]. Further, in [1] the study
of open quantum systems is presented in considerable detail.
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Chapter 3

Master Equations: A Prolegomenon
to Open Quantum Systems

3.1 Introduction

In this chapter, we will discuss the foundations of open quantum systems whose
roots are in (non) equilibrium (quantum) statistical mechanics. The approach
to this problem is to begin with the Liouville equation, which is the equation
of motion in (quantum) statistical mechanics, and then develop a scheme that
ensures irreversible dynamics emerging from it [55, 56]. Irreversible dynamics
is the observed macroscopic behavior and hence the need to understand how
it emerges from the underlying reversible microscopic dynamics. A number of
tools have been developed to achieve an understanding of emergent irreversibil-
ity. The Langevin equation is an important technique employed in this context.
It attempts to provide a contracted description of the system, on the macro-
scopic scale and invokes a probabilistic description. We will discuss Langevin
equations and illustrate the theory by working out a model of Brownian motion
of harmonic oscillators, a paradigm model in these studies. The Fokker-Planck
equation is another approach used in the study of irreversible behavior. It is
an equation of the probability distribution and is connected to the Langevin
equation, though under certain constraints. The Fokker-Planck equations will
be elucidated by examples of the ubiquitous Brownian motion and the Smolu-
chowski equation modeling strong friction. This is followed by a brief discussion
of the Boltzmann equation, of great utility in describing kinetic processes. The
conditions under which this can be approximated by a Fokker-Planck equation
are spelled out. We will then move on to the master equations by spelling out
their stochastic background. The attempt would be to bring out the inherent
framework of (non) equilibrium statistical mechanics in all these discussions. Af-
ter this will be discussed a few classes of well known master equations employed
in a large number of studies related to open quantum systems. We will start
with a detailed discussion of the dynamical semigroup and its related Lindblad-
Gorini-Kosakowoski-Sudarshan master equation [57, 58]. This equation, which
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describes memoryless or Markovian evolution, has found prolific use in quan-
tum optics and quantum information, a topic we shall return to later in this
book. We then study a unique quantum mechanical process called the quantum
non-demolition. This will be followed by a discussion of the Nakajima-Zwanzig
master equation [59, 60, 61] and the time-convolutionless projection operator
technique (TCL) [62, 63, 64], both of which are general master equations for
dealing with non-Markovian scenarios.

3.2 Liouville Equation

The Liouville equation is one of the cornerstones of nonequilibrium statistical
mechanics [55, 56, 34]. In the classical context, it is a statement of the fact
that due to motion in phase space, {q, p}, the number of points in a given
volume, of phase space, remain unchanged. Thus, if the ensemble is specified
by a distribution function ρ(q, p, t), which is proportional to the probability
density of the ensemble in phase space, then invoking the Hamiltonian equations
of motion [65]

∂H

∂p
= q̇,

∂H

∂q
= −ṗ, (3.1)

we have
∂ρ

∂t
= −iLρ, (3.2)

which is the Liouville equation. Here L is the Liouville operator which acts on
a function f(q, p) of phase space as

iLf =
{
f,H

}
, (3.3)

where
{
f,H

}
is the standard Poisson bracket given by

{
f,H

}
=

(
∂f

∂q

∂H

∂p
− ∂f

∂p

∂H

∂q

)
. (3.4)

When L is time independent, Eq. (3.2) can be solved to give

ρ(q, p, t) = e−iL(t)ρ(q, p, 0). (3.5)

e−iL(t) could be called the evolution operator. The Liouville operator can be
used to generate the dynamical equations of motion of observables. Thus, for
example, for a dynamical observable O(q, p, t), using Eqs. (3.1), it can be shown
that

dO

dt
=

∂O

∂t
+

{
O,H

}
. (3.6)

Problem 1: Derive Eq. (3.6).

36 Master Equations: A Prolegomenon to Open Quantum Systems …



The Liouville equation for the quantum case can be analogously written
as

∂ρ(t)

∂t
= −iLquρ(t) = − i

�

[
H, ρ(t)

]
. (3.7)

Here
[
H, ρ(t)

]
is the usual Dirac commutator . The classical and quantum

Liouville equations have a similar form. However, in the classical case, the
Liouvillean operator is basically a function while in the quantum mechanical
case, it acts in the space of operators and is a superoperator. Further, ρ(t)
has different connotations in the classical and quantum cases. In the classical
scenario, it is the distribution function of the ensemble, while in the quantum
case, it denotes the density matrix. Also, the Poisson bracket is replaced by
the Dirac commutation relation. The Liouville equation, both classical as well
as quantum, possess time-reversal invariance. This property is closely related
to the fact that the Liouville equation is a reflection of Hamiltonian dynamics.
Thus, it is unable to, in its present form, explain the approach to equilibrium.
Hence, the way forward to understand the statistical evolution of macroscopic
systems is to take into account interaction with the ambient environment. This
introduces violation of time-reversal invariance in the evolution, leading to the
appropriate macroscopic dynamics. We shall try to bring out this point in
various guises, in this book. This would be the crux for understanding open
(quantum) systems.

3.3 Langevin Equation

One of the main aims of statistical mechanics is to achieve an understanding of
the emergence of the macroscopic behaviour from the underlying microscopic
one. The Liouville equation, discussed above, is the fundamental approach to
this problem. However, implementing it in practice could be a daunting task.
Thus, a number of approximate methods have been developed to address these
issues. The methodology of Langevin equations [56] is a prominent example
of this. This usually results in a contracted description of the system, on the
macroscopic scale and needs a stochastic (probabilistic) prescription. We will
begin our discussion of Langevin equations by using the backdrop of Brownian
motion , a ubiquitous model of (quantum) statistical mechanics, which has its
roots in the attempt to understand the random motions of a small particle
immersed in a dense fluid [66, 67]. The notion of Brownian motion has been
used to address random motions associated with some collective property of a
macroscopic system, for e.g., SQUID (Superconducting Quantum Interference
Device) ring threaded by an external flux near half-a-flux quantum. Such a
superconducting device could be appropriate for the observation of macroscopic
quantum coherence effects [68].

We begin our discussion of the Langevin equation with the random motion
of a Brownian particle. The equation of motion, for the Brownian particle
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position x, would be

m
d2x

dt2
= F (t), (3.8)

where F (t) would be the force acting on the particle. In a typical, classical,
Brownian motion scenario, the force is dominated by a frictional force −ζv, that
is, a velocity v dependent force with the frictional constant ζ. If we insert this
into the RHS of Eq. (3.8) and solve for the velocity, we get v(t) = e−ζt/mv(0).
This is however in contradiction with our notions of thermodynamic equilibrium
according to which the mean squared velocity of the particle should approach
kBT/m in equilibrium [32]. Here kB is the Boltzmann constant and T is the
equilibrium temperature. In order to achieve this consistency, the RHS of Eq.
(3.8) must be modified. Along with the dissipative, frictional force, there should
be a random (fluctuating force) Fran(t) such that the equation of motion be-
comes

m
d2x

dt2
= −ζ

dx

dt
+ Fran(t). (3.9)

This is the Langevin equation in its basic form and could be called the equation
of motion approach to modelling the (quantum) stochastic evolution of the
system. It strives to achieve a balance between dissipation and fluctuations.
Both the friction, source of dissipation and noise, causing fluctuations, have
their origin in the interaction of the Brownian particle with its environment,
also called the reservoir or the heat bath.

The effect of the random, fluctuating force is given by its first and second
moments

〈Fran(t)〉 = 0, 〈Fran(t)Fran(t
′)〉 = 2Aδ(t− t′). (3.10)

Here A is a measure of the strength of the fluctuating force and the angular
brackets indicate an average over an infinitesimal time interval. The delta func-
tion indicates no correlation between the impacts on the Brownian particle, due
to Fran, at different time intervals. Due to the large number of impacts caused
by the fluctuating force, it is a reasonable assumption to model the fluctuating
force by a Gaussian distribution determined by the above two moments. The
Langevin equation (3.9) can be easily solved for the velocity v(t) = dx

dt to give

v(t) = e−ζt/mv(0) +

∫ t

0

dt′e−ζ(t−t′)/mFran(t
′)

m
. (3.11)

From this, the mean squared velocity 〈v2(t)〉 can be obtained using Eq. (3.10)
as

〈v2(t)〉 = e−2ζt/mv2(0) +
A

ζm
(1− e−2ζt/m). (3.12)

It can be seen that in the long time limit, the mean squared velocity tends to
A
ζm . Further, this should be equal to the equilibrium value of kBT/m [32]. This
implies that

A = kBTζ, (3.13)
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which is a simple form of the famous fluctuation-dissipation (F-D) theorem
[49, 50], connecting the fluctuating parameter A to the dissipative parameter
ζ.

In a similar fashion, the mean squared displacement 〈Δx2(t)〉 can be ob-

tained from Eq. (3.9). Using Δx(t) =
∫ t

0
dsv(s) and Eq. (3.11), we have

〈Δx2(t)〉 = 2kBT

ζ

(
t− m

ζ
+

m

ζ
e−ζt/m

)
. (3.14)

In the long time limit, the mean squared displacement is dominated by the term
2kBT

ζ t. Einstein’s expression relating mean squared displacement to diffusion D

of the Brownian particle is 〈Δx2(t)〉 = 2Dt [67]. This implies that D = kBT
ζ .

Problem 2: Work out the details leading to Eqs. (3.12) and(3.14).

Upto now our discussion of Langevin equations deals with Markovian
evolution, that is, the case where memory effects are not accounted for. In
particular, this entails that the friction parameter ζ at a particular time depends
upon the velocity v at the same time. In general, the friction will have memory,
that is, the friction at time t will depend on the velocity at a time t′ < t. Thus,

ζv(t) →
∫ t

−∞
dsμ(t− s)v(s) =

∫ ∞

0

dsμ(s)v(t− s). (3.15)

Here the friction parameter ζ is replaced by the memory function μ(t). In the
above equation, the history is assumed to have begun at time t = −∞. The
corresponding Langevin equation is

dx(t)

dt
+

∫ ∞

0

dsμ(s)x(t− s) = Franx(t). (3.16)

Here μ(s) is the memory and Franx(t) is the random force. The above equation
is a prototype of a non-Markovian Langevin equation.

Langevin Equation for Brownian Motion of a Harmonic Oscillator:
Now we consider the Langevin equation for the Brownian motion of a

harmonic oscillator. This is a prototype model for a number of studies in Open
(Quantum) Systems. The model we consider is written in such a manner that
it has relevance to both classical as well as quantum mechanical systems. We
start with the total Hamiltonian H

H = HS +HR +HSR, (3.17)

where

HS =
p2

2m
+ V (x), (3.18)

is the system Hamiltonian. For the case of (quantum) Brownian motion of a
harmonic oscillator, V (x) = 1

2mω2x2, else it could be an arbitrary potential.
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Note that in the quantum case, the x, q and p’s are operators satisfying appro-
priate commutation relations. Further,

HR =
∑
i

[p2i
2

+
1

2
ω2
i q

2
i +

c2i
2ω2

i

x2
]
, (3.19)

is the reservoir of harmonic oscillators of, for convenience, unit mass, also called
interchangeably the heat bath or the system’s environment. The third term in
the RHS of the above equation could be absorbed into the potential V (x) in
HS . Further,

HSR = −
∑
i

cixqi, (3.20)

is the interaction part of the Hamiltonian with ci being the coupling constant.
This bilinear form of the interaction allows for easy tractability of the resultant
dynamics. The equations of motion are

dx

dt
=

p

m
,

dp

dt
= −V ′(x) +

∑
i

ci

(
qi − ci

ω2
i

x
)2

, (3.21)

dqi
dt

= pi,
dpi
dt

= −ω2
i qi + cix. (3.22)

If the motion of the system variable x(t) is known, then from the above equa-
tions, it is easy to solve for the reservoir oscillator qi(t). Substituting this into
the equation for the system momentum p(t), we get

dp

dt
= −V ′(x(t))−

∫ t

0

dsμ(s)
p(t− s)

m
+ Franp(t). (3.23)

This has the form of a Langevin equation with the memory

μ(t) =
∑
i

c2i
ω2
i

cos(ωit), (3.24)

and the noise term

Franp(t) =
∑
i

cipi(0)
sin(ωit)

ωi
+

∑
i

ci

(
qi(0)− ci

ω2
i

x(0)
)
cos(ωit). (3.25)

By appropriately choosing the reservoir spectrum {ωi} and coupling constants
{ci}, the memory function μ(t) can be designed. Thus, for example, if the
spectrum is continuous, then the sum over the frequencies can be replaced by
an integral as

∑
i → ∫

dωρ(ω), where ρ(ω) is the reservoir density of states.
Then the memory function becomes

μ(t) =

∫ ∞

0

dωρ(ω)
c2(ω)

ω2
cos(ωt). (3.26)
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If ρ(ω) ∝ ω2, c(ω) = c (a constant), then μ(t) ∝ δ(t) and the Langevin equa-
tion (3.23) becomes Markovian. If the number of bath oscillators is very large,
then the noise generated would have, invoking the central limit theorem, a sim-
ple Gaussian distribution. Assuming the bath oscillator initial conditions to
be e−βHR , where β = 1/(kBT ), then the average over the reservoir variables
becomes easy. The linear terms average to zero, while the quadratic terms go
as 〈(

qi(0)− ci
ω2
i

x(0)
)2〉

=
kBT

ω2
i

, 〈p2i (0)〉 = kBT. (3.27)

Using the above equation, we have〈
Franp(t)Franp(t

′)
〉
= kBTμ(t− t′). (3.28)

This is the fluctuation-dissipation theorem for (quantum) Brownian motion. In
passing we remark that in the quantum mechanical scenario, Eq. (3.28) would
be replaced by

1

2

〈
Franp(t)Franp(t

′) + Franp(t
′)Franp(t)

〉
= �K(t− t′), (3.29)

where

K(t− t′) =
∑
i

c2i
2ω2

i

cos(ωit) coth

(
�ωi

2kBT

)
. (3.30)

On taking the classical limit of Eq. (3.29), we recover Eq. (3.28).

3.4 Fokker-Planck Equation

The Fokker-Planck (FP) equation is another prominent technique used in the
study of nonequilibrium processes. It is a kind of a Liouville equation and is
connected to the Langevin equation for memoryless (Markovian) friction and
Gaussian white noise. Let us consider the Langevin equation for the collective
variable {x}, denoting a set {x1, x2, · · · }. Assuming a Markovian dynamics,
for example, memoryless friction and a white noise distributed according to a
Gaussian distribution, the corresponding Langevin equation is

dx

dt
= v(x) + F(t). (3.31)

Here F(t) is the Gaussian noise, with zero average, and second moment〈F(t)F(s)
〉
= 2Kδ(t− s). (3.32)

The strategy behind developing the FP equation is that instead of concentrat-
ing on the solution of the equation (3.31), we concentrate on the probability
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distribution p(x, t) of the values of x at time t. Also, what we are really inter-
ested in is the behaviour of this distribution averaged over the noise F . Since,
the probability distribution is conserved, we have a continuity equation

∂p

∂t
= − ∂

∂x

(
∂x

∂t
p

)
. (3.33)

This step is also encountered when we deal with the Liouville equation. Now
we make contact of the FP equation with the Langevin equation. Substituting
Eq. (3.31) into the RHS of Eq. (3.33) we get

∂p(x, t)

∂t
= − ∂

∂x
.

(
v(x)p(x, t) + F(t)p(x, t)

)
. (3.34)

This can be rearranged as

∂p(x, t)

∂t
= − ∂

∂x
.

(
v(x)p(x, t)

)
− ∂

∂x
.F(t)p(x, 0)

+
∂

∂x
.F(t)

∫ t

0

dse−(t−s)L ∂

∂x
.F(s)p(x, s). (3.35)

Here L is the symbol representing the following operation

Lf ≡ ∂

∂x
.

(
v(x)f

)
. (3.36)

Next, we average Eq. (3.35) over the noise F(t), using Eq. (3.32), to get

∂

∂t
〈p(x, t)〉 = − ∂

∂x
.v(x)〈p(x, t)〉+ ∂

∂x
.K.

∂

∂x
〈p(x, t)〉. (3.37)

This is the FP equation. The first term on the RHS is independent of noise and
is the drift term. The second term is responsible for diffusion and corresponds to
the averaged effect of noise. The FP equation (3.37) is thus a stochastic differ-
ential equation. It should be noted that the equivalence between the Langevin
and FP equation established here depended crucially on the noise being white
and Gaussian distributed and may not exist for more complicated scenarios
[69]. The FP equation has the general form of the probability conservation
equation

∂〈p(x, t)〉
∂t

= −∂J(x, t)

∂x
. (3.38)

Here J(x, t) is the probability current and is a reflection of the conservation
of probability which holds under FP evolution. The analogous treatment in a
quantum setup would follow the same lines with the probability distribution
p(x, t) being replaced by the density matrix ρ(t).

Examples:
(a). Brownian motion:
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We consider the Brownian motion of a particle moving in a potential V (x).
Let us restrict to the case of memoryless friction ζ. The corresponding Langevin
equations are

dx

dt
=

p

m
,

dp

dt
= −V ′(x)− ζ

p

m
+ Franp(t). (3.39)

Here V ′(x) is the differential of the potential V (x) with respect to x. The noise
has the second moment〈Franp(t)Franp(s)

〉
= 2ζkBTδ(t− s). (3.40)

Making correspondence with the nomenclature used in discussing the F-P equa-
tion, that is,

x =

(
x
p

)
, v(x) =

(
p/m

−V ′(x)− ζp/m

)
,

F(t) =

(
0

Franp(t)

)
,K =

(
0 0
0 ζkBT

)
, (3.41)

we get, comparing with Eq. (3.37), the following FP equation

∂p(x, t)

∂t
= − ∂

∂x

(
vp(x, t)

)
− ∂

∂p

(
− V ′(x)− ζv

)
p(x, t) + ζkBT

∂2

∂p2
p(x, t).

(3.42)
This is a parabolic differential equation and v = p/m is the velocity. Also,
〈p(x, t)〉 has been depicted in the above equation, as well as in the next example,
for notational simplicity, as p(x, t).

(b). Smoluchowski equation:
This is a special case of the evolution governed by Eq. (3.39) and holds

for the case of strong friction, that is, when the time scale m/ζ is smaller than
all the other time scales in the problem, including that coming from motion
due the potential term V (x). Thus, the Brownian particle velocity relaxes to its

stationary value very quickly. Hence, the d2x
dt2 term, in the Langevin equation,

can be set to zero. The Langevin equation we deal with here is thus simplified
to

dx

dt
= −1

ζ
V ′(x) +

1

ζ
F(t). (3.43)

Following the discussions above, the corresponding FP equation is

∂p(x, t)

∂t
=

1

ζ

∂

∂x
V ′(x)p(x, t) +D

d2

dx2
p(x, t). (3.44)

Here D = kBT
ζ is the diffusion constant. The corresponding probability current,

Eq. (3.38), is

J(x, t) = −1

ζ

(
V ′(x) + kBT

∂

∂x

)
p(x, t). (3.45)
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3.5 Boltzmann Equation

The Boltzmann equation was developed with the aim to provide a correct de-
scription of dynamical processes in a dilute gas [31]. It is associated with the
famous H-theorem, providing a prescription for the approach to equilibrium of
the gas asymptotically. The equation could be envisaged as an artifact of the
Liouville equation and is

∂f

dt
+ v.Δrf +

1

m
F (x).Δvf =

(
∂f

∂t

)
collision

, (3.46)

where the LHS is basically the Liouville equation, (3.2), for single particle
motion in a potential. F (x) is the external force acting on the particle of mass
m and f(x, p, t) is the density function. The RHS is called the collision integral
and accounts for changes in f due to collisions [56]. Since the RHS involves
collisions and at least two particles are required for a collision, it makes the
Boltzmann equation nonlinear. Assuming F = 0 and a uniform distribution,
the collision terms can be assumed to be position independent. Define

f(p, t) =
1

V

∫
d3xf(x, p, t), (3.47)

which is the normalized probability distribution in momentum space. Then the
Boltzmann equation takes the form

∂f(p, t)

dt
=

(
∂f

∂t

)
collision

. (3.48)

In the absence of external force, all the variation in the probability distribution
can be ascribed to collisions. Defining ζ(p, k) to be the rate of collisions which
change the momentum from p to p− k, the RHS of Eq. (3.48) becomes(

∂f

∂t

)
collision

=

∫
d3k[ζ(p+ k, k)f(p+ k)− ζ(p, k)f(p)]. (3.49)

The integral operators involved in the collision processes, contained in ζ(p, k),
makes the dynamics of Eq. (3.48) complicated. At this stage if it can be assumed
that the collisions are dominated by soft processes, that is, low energy collisions,
then the integrand on the RHS of Eq. (3.49) can be converted into a differential
operator [70, 71], that is,

ζ(p+ k, k)f(p+ k) ≈ ζ(p, k)f(p) + k.
∂

∂p
(ζf) +

1

2
kikj

∂2

∂pi∂pj
(ζf). (3.50)

Using this in Eq. (3.49), we see that Eq. (3.48) becomes

∂f

∂t
=

∂

∂pi

[
Ai(p)f +

∂

∂pj
[Bij(p)f ]

]
. (3.51)
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This has the form of a Fokker-Planck equation with

Ai =

∫
d3kζ(p, k)ki, (3.52)

Bij =
1

2

∫
d3kζ(p, k)kikj , (3.53)

being the drift and drag coefficients, respectively.

3.6 Master Equation

In the endeavour to understand nonequilibrium statistical mechanics, master
equations are a very convenient and well known tool. The master equation
can be developed, classically, from the perspective of stochastic processes [72,
73, 74, 75]. We recall some standard definitions: P1(x1, t1) is the probability
density that the stochastic variable X takes the value x1 at time t1. The joint
probability density of n stochastic variables is written, in short, as Pn, which
is positive semi-definite, can be reduced and is normalized. Another important
term is the conditional probability P1|1(x1, t1|x2, t2), that is, the probability
that the stochastic variable X takes the value x2 at time t2, given that it was
x1 at t1. A standard relation between these quantities is∫

dx1P1(x1, t1)P1|1(x1, t1|x2, t2) =

∫
dx1P2(x1, t1;x2, t2) = P1(x2, t2).

(3.54)
Here P2(x1, t1;x2, t2) is the joint probability that the stochastic variable X is
x1 at t1 and x2 at t2. Expanding the conditional probability in

P1(i, t+Δt) =

J∑
j=1

P1(j, t)P1|1(j, t|i, t+Δt), (3.55)

which is basically the discretized form of Eq. (3.54), in powers of Δt, and taking
the limit of Δt → 0, we get

∂P1(i, t)

∂t
=

J∑
j=1

[
P1(j, t)wj,i(t)− P1(i, t)wi,j(t)

]
, (3.56)

themaster equation. The master equation is inherently linear. Here wj,i(t) is the
transition probability rate and is obtained by expanding the conditional prob-
ability term in Eq. (3.55). The transition probability rates satisfy the detailed
balance condition when

PS(i)wi,j = PS(j)wj,i, (3.57)

where PS(i) is the long time stationary limit of the probability P1(i, t). This
conveys the information that at equilibrium, the flow of probability into a level
i from a level j is balanced by the flow from i to j.

3.6 Master Equation 45



Now we turn to the quantum aspects of master equations. This can be
done at various levels, as we will see in this chapter. We start with the Pauli
master equation, for the Hamiltonian H = H0 + λV , where H0 is the basic
unperturbed Hamiltonian, while V is the perturbing term causing transitions
between the unperturbed energy levels and λ is the term gauging the strength
of the perturbation. The Pauli master equation is a gain-loss equation for the
probability of occupation of a given state i, Pi,

dPi(t)

dt
=

∑
j

(
wjiPj(t)− wijPi(t)

)
. (3.58)

Note that this has the form of Eq. (3.56). Eq. (3.58) tells us that the rate of
change of probability of a state i at a time t is equal to the balance of flow from
states j to state i and the flow from i to states j. Here, wji is the transition
probability from states j to i. Its form is given by the standard Golden Rule
[23], which using first order of perturbation theory is,

wij =
2π

�
λ2|Vij |2δ(Ei − Ej). (3.59)

Here Ei’s are the eigenvalues of the unperturbed Hamiltonian H0. The Pauli
master equation allows for transitions between states with approximately equal
total, unperturbed energy, that is, it is microcanonical in nature. The transition
rates are symmetrical in states, wij = wji, called microscopic reversibility. A
note is in order here. The Golden Rule formula is valid as long as λ is small,
time t is large and λ2t is of order 1, called the van Hove limit [76].

Now we turn to a master equation having a canonical nature, that is,
exchange of energy is also taken into account. This is usually discussed under
the guise of the heat bath (reservoir) master equation . We will now discuss this
in some detail, as this is a protoype of open (quantum) systems. Consider the
total Hamiltonian H

H = HS +HR +HSR, (3.60)

where HS is the Hamiltonian of the system of interest, for which the master
equation will be constructed. HR is the reservoir Hamiltonian, while HSR is the
interaction part which connects the system to the reservoir and would be like
the λV term, discussed above. The system and reservoir Hamiltonian’s have
the eigenvalue equations

HS |i〉 = Ei|i〉, HR|α〉 = εα|α〉. (3.61)

Using the Pauli master equation, (3.58), in the basis of the unperturbed system
and reservoir Hamiltonians we have

dPiα

dt
=

∑
jβ

(
wjβ,iαPjβ − wiα,jβPiα

)
. (3.62)
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Here wjβ,iα = 2π
�
λ2|〈jβ|V |iα〉|2δ(Ei+εα−Ej−εβ). Assuming that the reservoir

remains in its state of thermal equilibrium,

Piα(t) ≈ Pi(t)ρα. (3.63)

Here Pi(t) is the nonequilibrium probability of the state i and ρα is the thermal
equilibrium state of the bath. Substituting Eq. (3.63) in Eq. (3.62) and summing
over the reservoir states |α〉, that is, tracing out the reservoir degrees of freedom,
we have the master equation of the system of interest S

dPi

dt
=

∑
j

wjiPj −
∑
j

wijPi. (3.64)

Here

wji =
∑
α

∑
β

wjβ,iαρβ ,

wij =
∑
α

∑
β

wiα,jβρα. (3.65)

The master equation, (3.64), allows the determination of the relaxation of the
system probability Pi(t) (given by, say, the diagonal elements of the system
density matrix and denoting, for example, the population) to its thermal equi-
librium Peql(T ), where the temperature T is determined by that of the reservoir.
The principle of micocanonical reversibility of the Pauli master equation is now
replaced by the principle of detailed balanced

wjie
−βEj = wije

−βEi . (3.66)

Here β = 1/(kBT ).
We now couch the above example in terms of the standard lexicon of

open quantum systems. The interaction Hamiltonian is expressed as a product
of system and reservoir operators

HSR = λV = MΘ, (3.67)

where M is a system and Θ a reservoir operator. Thus λVjβ,iα = MjiΘβα. The
thermally averaged transition rate becomes

wij =
2π

�
|Mij |2

∑
α

∑
β

δ
(
Ei − Ej + εα − εβ

)|Θαβ |2ρβ . (3.68)

Using the integral representation of the delta function, the transition rate can
be brought to the convenient form

wij =
1

�2
|Mij |2

∫ ∞

−∞
dteiωijt〈Θ(0)Θ(t)〉eql. (3.69)
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Here 〈Θ(0)Θ(t)〉eql is the thermal average, obtained using ρβ , of the reservoir
time correlation function. Thus, the transition rate is proportional to the spec-
tral density of the reservoir time correlation function evaluated at the frequency
ωij = (Ei − Ej)/� of the transition.

Let us revisit the model of Brownian motion of a harmonic oscillator,
Eqs. (3.17) to (3.20). By comparison, M = x and Θ = −∑

j cjqj . Since the
reservoir is composed of harmonic oscillators, the time correlation function of
the reservoir operator is

〈Θ(0)Θ(t)〉eql =
∑
j

c2j cos(ωjt)〈q2j 〉eql +
∑
j

c2j
ωj

sin(ωjt)〈pjqj〉eql. (3.70)

The equilibrium averages can be done in a straightforward manner, see for
example, Eq. (3.27).

Problem 3: Sketch the steps leading to the Eq. (3.69).

Upto this point we have outlined the general framework of non-equilibrium
(quantum) statistical mechanics. We now are in a position to make contact with
some well known classes of master equations.

3.7 Quantum Dynamical Semigroups and Markovian Master

Equation

We will now discuss an important class of master equations, the Lindblad equa-
tions [57, 58, 77]. Apart from being aesthetically appealing, they find use in a
large number of studies in quantum optics and quantum information [29, 2].
Suppose that the system S and reservoir R are initially uncorrelated, that is,

ρ(0) = ρS(0)⊗ ρR. (3.71)

Let us define a dynamical map V (t) describing the transformation of the re-
duced system at t = 0 to some t > 0 as

ρS(t) = V (t)ρS(0) = TrR(U(t, 0)[ρS(0)⊗ ρR]U†(t, 0)), (3.72)

where U(t, 0) is the unitary operator giving the evolution of the full S+R com-
plex. If t is allowed to vary, it leads to a one-parameter family of dynamical maps
with V (0) being the identity map. The map V (t) represents a convex-linear,
completely positive and trace-preserving quantum operation, the meaning of
this will become clear in Chapter 8. If the characteristic time scales over which
the reservoir correlation function decays are much smaller than the character-
istic time scales of the system, memory effects in the reduced dynamics can be
neglected. This leads to a Markovian-type behaviour and may be formalized
with the help of the semigroup property:

V (t1)V (t2) = V (t1 + t2), t1, t2 ≥ 0. (3.73)
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Thus a quantum dynamical semigroup is a continuous, one-parameter family of
dynamical maps satisfying the semigroup property. By its very definition, the
semigroup property breaks the time reversal invariance in the dynamics and
is a suitable starting point for obtaining irreversible dynamics from the Liou-
ville equation, as discussed earlier in this Chapter. If the quantum dynamical
semigroup V (t) is contracting, that is,

||V †(t)A||1 ≤ ||A||1, (3.74)

for an operator A in the Hilbert space of the open system and where ||A||1 =
TrS|A| is the trace norm, then there exists a linear map L called the generator
of the semigroup

V (t) = exp(Lt), (3.75)

which leads to
d

dt
ρS(t) = LρS(t), (3.76)

the Quantum Markovian Master equation. The construction of the most general
form of the generator L leads to the Lindblad equation.

3.7.1 Derivation of the Lindblad-Gorini-Kosakowoski-Sudarshan Mas-

ter Equation

Here we discuss the details of the derivation of the Lindblad-Gorini-
Kosakowoski-Sudarshan (LGKS) master equation and spell out the physical
criteria behind its construction [2]. The derivation is along the lines, sketched
earlier, of attempting to obtain irreversible behavior starting from the Liou-
ville equation, which here would imply starting with the interaction picture
von Neumann equation

d

dt
ρ(t) = −i[HSR(t), ρ(t)], (3.77)

for the total density matrix ρ(t). This gives

ρ(t) = ρ(0)− i

∫ t

0

ds[HSR(s), ρ(s)]. (3.78)

Inserting the integral into the von Neumann equation and tracing over the bath,
in order to obtain the equation of motion of the system of interest S,

d

dt
ρS(t) = −

∫ t

0

dsTrR[HSR(t), [HSR(s), ρ(s)]], (3.79)

where TrR[HSR(s), ρ(0)] = 0 is assumed. The RHS of the equation depends on
the full density matrix ρ(s). This is where the first approximation is made, the
Born approximation. This assumes that the coupling between S and R is weak,

3.7 Quantum Dynamical Semigroups and Markovian Master Equation 49



ρR is negligibly affected by the interaction and the total system after time t is
ρ(t) ≡ ρS(t)⊗ ρR. This gives

d

dt
ρS(t) = −

∫ t

0

dsTrR[HSR(t), [HSR(s), ρ
S(s)⊗ ρR]]. (3.80)

A further simplification: ρS(s) −→ ρS(t). Thus the evolution equation of the
system at t depends only on the present state. This is the Redfield equation
[78]. The Redfield equation is local in time, but depends on the choice of the
initial preparation at t = 0, and hence is not Markovian. To make it Markovian
we replace s by t − s in the integrand and let the upper limit go to infinity.
This results in

d

dt
ρS(t) = −

∫ ∞

0

dsTrR[HSR(t), [HSR(t− s), ρS(t)⊗ ρR]]. (3.81)

This is a Markovian equation and the approximation is called the Markovian
approximation. It is justified when the time scale associated with the reservoir
correlations τR is much smaller than the time scale τrel over which the state
varies appreciably. Thus the Markovian evolution is defined on a coarse-grained
time scale, where the dynamical behaviour over times of the order of τR are
not resolved. Since τR depends on the reservoir temperature and τrel on the
S − R coupling strength, the Markovian approximation is easily justified for
weak S −R coupling and high T .

The approximations made till now would be collectively called the Born-
Markov approximation. However, they do not guarantee a quantum dynamical
semigroup evolution [79, 80]. A further approximation involving averaging over
the rapidly oscillating terms in the master equation is performed, the Rotating
Wave Approximation. For accomplishing this, the interaction Hamiltonian HSR

is decomposed into eigenoperators of the system Hamiltonian HS . A generic
interaction Hamiltonian in the interaction picture can be written as

HSR(t) =
∑
α,ω

e−iωtAα(ω)⊗Bα(t), (3.82)

where A, B denote operators belonging to the system and reservoir, respec-
tively. Also,

Aα(ω) =
∑

ε′−ε=ω

Π(ε)AαΠ(ε′), (3.83)

where Π(ε) projects the operator onto the eigenspace of HS belonging to the
eigenvalue ε. Thus [HS , Aα(ω)] = −ωAα(ω), i.e., Aα(ω) lowers the energy of
HS by ω while A†

ω raises it by ω. Invoking the Heisenberg picture,

eiHStAα(ω)e
−iHSt = e−iωtAα(ω), (3.84)

and
eiHRtBαe

−iHRt = Bα(t). (3.85)
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The earlier condition TrR[HSR(s), ρ(0)] = 0 now implies 〈Bα(t)〉 =
TrR(Bα(t)ρ

R) = 0, which is consistent with the assumption made, earlier in
this chapter, on the vanishing of single operator averages. This leads to the
following form of the Born-Markov equation obtained earlier

d

dt
ρS(t) =

∑
ω,ω′

∑
α,β

ei(ω
′−ω)tΓα,β(ω)[Aβ(ω)ρ

S(t)A†
α(ω

′)−A†
α(ω

′)Aβ(ω)ρ
S(t)] + h.c.

(3.86)

Here h.c. denotes Hermitian conjugation and

Γα,β(ω) =

∫ ∞

0

dseiωs〈B†
α(t)Bβ(t− s)〉, (3.87)

is the one-sided Fourier transform of reservoir correlation functions

〈B†
α(t)Bβ(t− s)〉 = TrR(B

†
α(t)Bβ(t− s)ρR). (3.88)

If ρR is a stationary state of the reservoir, that is, [HR, ρ
R] = 0, the reservoir

correlation functions are homogeneous in time

〈B†
α(t)Bβ(t− s)〉 = 〈B†

α(s)Bβ(0)〉. (3.89)

In the above evolution equation, |ω − ω′|−1 defines the typical time-scale asso-
ciated with the intrinsic evolution of the system. If the systematic evolution of
the system is very quick, then it goes through many cycles during the relax-
ation time. Thus the non-secular terms, that is, those for which ω′ �= ω, may be
neglected. This is the rotating wave approximation . With this, the evolution
equation becomes

d

dt
ρS(t) =

∑
ω

∑
α,β

Γα,β(ω)[Aβ(ω)ρ
S(t)A†

α(ω)−A†
α(ω)Aβ(ω)ρ

S(t)]+h.c. (3.90)

In the above equation, the term Γα,β can be rearranged as

Γα,β(ω) =
1

2
γα,β(ω) + iSα,β(ω), (3.91)

where

γα,β(ω) = Γα,β(ω) + Γ∗
β,α(ω) =

∫ ∞

−∞
dseiωs〈B†

α(s)Bβ(0)〉, (3.92)

and

Sα,β(ω) =
1

2i
(Γα,β(ω)− Γ∗

β,α(ω)). (3.93)

With these, the evolution equation of the system of interest S can be written
as

d

dt
ρS(t) = −i[HLS , ρ

S(t)] +D(ρS(t)), (3.94)
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where
HLS =

∑
ω

∑
α,β

Sα,βA
†
α(ω)Aβ(ω), (3.95)

is called the Lamb shift as it leads to a Lamb-type renormalization of the
unperturbed energy levels due to the S−R coupling and provides a Hamiltonian
contribution to the dynamics. The term D(ρS(t)) is called the dissipator and
takes the form

D(ρS(t)) =
∑
ω

∑
α,β

γα,β

(
Aβ(ω)ρ

SA†
α(ω)−

1

2
{A†

α(ω)Aβ(ω), ρ
S}

)
. (3.96)

Here {A,B} = AB + BA. The term γα,β , in the dissipator is the Fourier
transform of the homogeneous reservoir correlation functions , is positive by
Bochner’s theorem and hence can be diagonalized. With that the evolution
equation, (3.94), takes the form of the standard Lindblad equation

d

dt
ρS(t) = LρS(t)

= −i[H, ρS(t)] +
N2−1∑
j=1

γj

(
Ajρ

SA†
j −

1

2
{A†

jAj , ρ
S}

)
. (3.97)

The operators Aj are called the Lindblad operators. We thus stress that the
physical assumptions underlying the LGKS form of the master equation are the
Born (weak coupling), Markov (memoryless) and Rotating Wave Approxima-
tion (fast system dynamics compared to the relaxation time). These physical
assumptions result in implementing the semigroup dynamics, from the initial
Liouvillean dynamics, on the system of interest. This is thus a concrete example
of the general program of nonequilibrium (quantum) statistical mechanics.

3.7.2 Examples

(a). Dissipative Two-Level System
We illustrate the LGKS evolution by means of a practical example, that

is, the decay of a two-level system interacting with a radiation field (bath)
in the weak Born-Markov, rotating wave approximation. Consider a system
Hamiltonian HS = 1

2�ω0σz, ω0 is the transition frequency. The system interacts
with a bath (reservoir/environment) of harmonic oscillators via the atomic
dipole operator (in the interaction picture)

�D(t) = �dσ−e−iωt + �d∗σ+e
iωt, (3.98)

where �d = 〈g| �D|e〉 is the transition matrix elements of the dipole operator D
and the S −R coupling term is

HSR = − �D. �E. (3.99)
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Here �E is the electric field operator, which in the Schrödinger picture is

�E = i
∑

k

∑
λ=1,2

√
2π�ωk

V
�eλ(�k)

(
bλ(�k)− b†λ(�k)

)
. (3.100)

The field modes are represented by �k and the two corresponding, transverse
unit polarization vectors �eλ(�k). The Pauli operators σ−, σ+ satisfy [HS , σ−] =
−ω0σ−, [HS , σ+] = ω0σ+, that is, they lower/raise the atomic energy by ∓ω0.
Comparing with the structure of the basic Lindbladian equation, (3.94), we see

that this process has two Lindblad operators: �A(ω0) ≡ �A = �dσ−, �A(−ω0) ≡
�A† = �d∗σ+.

The LGKS master equation for the reduced density matrix operator in
the interaction picture (neglecting the so called Lamb shift terms) becomes

d

dt
ρS(t) = γ0(Nth + 1)

(
σ−ρS(t)σ+ − 1

2
σ+σ−ρS(t)− 1

2
ρS(t)σ+σ−

)
+ γ0Nth

(
σ+ρ

S(t)σ− − 1

2
σ−σ+ρ

S(t)− 1

2
ρS(t)σ−σ+

)
. (3.101)

Here γ0 is spontaneous emission rate

γ0 =
4ω3|�d|2
3�c3

, (3.102)

and σ+, σ− the standard raising and lowering operators, respectively, and are

σ+ = |1〉〈0| = 1

2
(σx + iσy) ; σ− = |0〉〈1| = 1

2
(σx − iσy) . (3.103)

The first term on the RHS of Eq. (3.101) containing γ0(Nth + 1) is responsi-
ble for spontaneous (γ0) plus thermal (γ0Nth) emission while the second term
containing γ0Nth is responsible for thermal absorption. The master equation
(3.101) leads to the so called optical Bloch equations. We can see from Eq.
(3.101) that even at zero temperature (T = 0 and hence Nth = 0), the dy-
namics is irreversible, that is, not of the unitary von Neumann type and is
controlled by the spontaneous emission term. The master equation (3.101) may
be expressed in a manifestly LGKS form [81, 82]

d

dt
ρs(t) =

2∑
j=1

(
2Rjρ

sR†
j −R†

jRjρ
s − ρsR†

jRj

)
, (3.104)

where R1 = (γ0(Nth + 1)/2)1/2σ−, R2 = (γ0Nth/2)
1/2σ+. (If T = 0, a single

Lindblad operator suffices.) Also, Nth = 1(
e

�ω
kBT −1

) is the Planck distribution

giving the number of thermal photons at the frequency ω. We will return to
this equation in Chapter 8, where we will see that it has many applications in
Quantum Information.
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Problem 4: Sketch the steps needed to reach Eq. (3.104) from Eq. (3.101).

(b). Dissipative Harmonic Oscillator
Another example that could be discussed here would be the dissipative

harmonic oscillator, HS = ω0a
†a. Now the Lindblad operators would be �A = a,

�A† = a†. Using this in Eq. (3.97) we get a master equation whose form is similar
to Eq. (3.101) and is given, in the Schrödinger picture by,

d

dt
ρS(t) = −iω0

[
a†a, ρS(t)

]
+ γ0(Nth + 1)

(
aρS(t)a† − 1

2
a†aρS(t)− 1

2
ρS(t)a†a

)
+ γ0Nth

(
a†ρS(t)a− 1

2
aa†ρS(t)− 1

2
ρS(t)aa†

)
. (3.105)

This equation has been used to model the damping of an electromagnetic field
mode in a cavity [83], where a, a† correspond to the annihilation and creation
operators of the cavity mode and the damping is mediated by modes outside
the cavity at a rate γ0.

Since the problem of the damped harmonic oscillator is very important
and elucidates some of the key techniques of open quantum systems, we will
exclusively devote the next chapter to it.

3.7.3 Connection to the Pauli Master Equation

We now briefly show the connection between the LGKS master equation and
the Pauli master equation. For this, we use the Lindblad equation for modeling
the equation of motion of the populations, the diagonal elements of the system
density matrix. We choose a basis {|n〉} which diagonalizes the Hamiltonian.
Since the Hamiltonian’s presence in the master equation is in the von Neumann
form, it is evident that in this basis the Hamiltonian will not participate in the
motion. The typical Lindblad operators, including the ones used in the above
example, have at most one non-zero entry in each row or column. Thus they
connect each basis state to at most one other basis state. Then the LGKS
equation for the diagonal elements ρsnn(t) is

∂ρnn(t)

∂t
=

∑
j

[(
Lj

)
nmj

ρmjmj

(
L†

j

)
mjn

−|Lj,nmj |2ρnn

]
=

∑
j

|Lj,nmj |2
(
ρmjmj−ρnn

)
.

(3.106)

Here we assume that the Lindblad operator Lj couples state n only to state
mj . Thus, the Eq. (3.106) can be recast into the equation of the population
P (n, t) = ρnn(t) as

∂P (n, t)

∂t
=

∑
j

[
wjnPj(t)− wnjPn(t)

]
. (3.107)

This equation has the standard form of the Pauli master equation (3.58) with
wjn =

∑
j |Lj,nmj |2δn,mj .
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3.8 Quantum Non-Demolition Master Equations

We now consider a very special class of master equations. Let us begin with
the generic Hamiltonian

H = HS +HR +HSR

= HS +
∑
k

�ωkb
†
kbk +HS

∑
k

gk(bk + b†k) +H2
S

∑
k

g2k
�ωk

, (3.108)

where S is the system of interest, R the reservoir (bath), S−R the interaction
between them. Here [HS , HSR] = 0 which implies dephasing without dissipa-
tion. Use is made of the above Hamiltonian in the context of the influence of
dephasing in quantum computation [84, 85]. This form has also been used by
[86] in the context of engineered reservoir.

Quantum non-demolition (QND) measurement of observable Â would be
a sequence of precise measurements of Â such that each measurement is com-
pletely predictable from the result of the first measurement, i.e., the system
to be measured is independent of the backaction of the measuring apparatus.
This implies [Â, Ĥint] = 0, where Ĥint is the interaction term between the ob-
servable and the measuring apparatus. Historically, it was introduced to design
gravitational-wave antennas [87].

Further, [Â(ti), Â(tj)] = 0 for all times ti, tj . This would protect Â from

contamination by noncommuting (with Â) observables. This is guaranteed if Â
is a constant of the free evolution, i.e., [Â, ĤS ] = 0, where ĤS is the Hamil-
tonian responsible for the free evolution of Â [88]. If Ĥint = κÂP̂R, where κ
is a constant and P̂R ∈ HR, HR being the Hilbert space of the apparatus or
probe, then the evolution of Â with coupling turned on is identical to its free
evolution and is free from contamination. Then Â is the pointer observable and
the interaction Ĥint corresponds to a measurement of Â. For Â = ĤS , this
would correspond to the measurement of energy.

The system-plus-reservoir composite is closed and hence obeys a unitary
evolution given by

ρ(t) = e−iHt/�ρ(0)eiHt/�, (3.109)

where
ρ(0) = ρs(0)ρR(0), (3.110)

i.e., we assume separable initial conditions. In order to obtain the reduced
dynamics of the system alone, we trace over the reservoir variables. The matrix
elements of the reduced density matrix in the system eigenbasis is [89]

ρsnm(t) = e−i(En−Em)t/� e
−i(E2

n−E2
m)/�

∑
k

(g2
kt/�ωk)

× TrR

[
e−iHnt/�ρR(0)e

iHmt/�
]
ρsnm(0). (3.111)

In Eq. (3.111), En is the eigenvalue of the system Hamiltonian. Here ρR(0)
is the initial density matrix of the reservoir which we take to be a squeezed
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thermal bath given by

ρR(0) = S(r,Φ)ρthS
†(r,Φ), (3.112)

where
ρth =

∏
k

[
1− e−β�ωk

]
e−β�ωkb

†
kbk (3.113)

is the density matrix of the thermal bath at temperature T , with β ≡ 1/(kBT ),
kB being the Boltzmann constant, and

S(rk,Φk) = exp

[
rk

(
b2k
2
e−2iΦk − b†2k

2
e2iΦk

)]
(3.114)

is the squeezing operator with rk, Φk being the squeezing parameters [90]. In
Eq. (3.111),

Hn =
∑
k

[
�ωkb

†
kbk + Engk(bk + b†k)

]
. (3.115)

We have earlier encountered the density matrix Eq. (3.112), in Chapter 2 (Eq.
(54)). Using this, the reduced density matrix of the system is obtained as

ρsnm(t) = exp

[
−i(En − Em)t/�

]
exp

[
−i(E2

n − E2
m)

∑
k

(g2k sin(ωkt)/�
2ω2

k)

]

× exp

[
− 1

2
(Em − En)

2
∑
k

g2k
�2ω2

k

coth

(
β�ωk

2

)

× ∣∣(eiωkt − 1) cosh(rk) + (e−iωkt − 1) sinh(rk)e
2iΦk

∣∣2 ]ρsnm(0). (3.116)

Differentiating Eq. (3.116) with respect to time we obtain the master
equation giving the system evolution under the influence of the environment as

ρ̇snm(t) =

[
− i

�
(En − Em) + iη̇(t)(E2

n − E2
m)− (En − Em)2γ̇(t)

]
ρsnm(t),

(3.117)
where

η(t) = −
∑
k

g2k
�2ω2

k

sin(ωkt), (3.118)

and

γ(t) =
1

2

∑
k

g2k
�2ω2

k

coth

(
β�ωk

2

) ∣∣∣(eiωkt − 1) cosh(rk) + (e−iωkt − 1) sinh(rk)e
2iΦk

∣∣∣2 .
(3.119)

For the case of zero squeezing, r = Φ = 0, and γ(t) given by Eq. (3.119) reduces
to the case of a thermal bath. It can be seen that η(t) (3.118) is independent
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of the bath initial conditions and hence remains the same as for the thermal
bath. The term responsible for decoherence in the QND case is γ̇(t). It is inter-
esting to note that in contrast to the case of quantum Brownian motion, here
there is no dissipation. The QND process is thus a purely quantum mechanical
effect, having decoherence (dephasing) without dissipation. We will encounter
this again in Chapter 8.

The nontrivial terms in the master equation (3.117) are encoded in η(t),
γ(t). We will now calculate them explicitly. For this, we assume the bath to
have large number of degrees of freedom such that information going out of
the system of interest does not return to it. This is effected by taking a quasi-
continuous bath spectrum with spectral density I(ω) such that

∑
k

g2k
�2

f(ωk) −→
∞∫
0

dωI(ω)f(ω), (3.120)

which, in the case of an Ohmic bath has the spectral density

I(ω) =
γ0
π
ωe−ω/ωc , (3.121)

where γ0 and ωc two bath parameter. Then, η(t) and γ(t) turn out to be

η(t) = −γ0
π

tan−1(ωct), (3.122)

and γ(t) at T = 0

γ(t) =
γ0
2π

ln(1 + ω2
c t

2), (3.123)

where t > 2a, and for high T

γ(t) =
γ0kBT

π�ωc

[
2ωct tan

−1(ωct) + ln

(
1

1 + ω2
c t

2

)]
, (3.124)

where, again, t > 2a. Here we have taken, for simplicity, the squeezed bath
parameters as

cosh (2r(ω)) = cosh(2r), sinh (2r(ω)) = sinh(2r), Φ(ω) = aω, (3.125)

where a is a constant depending upon the squeezed bath.

3.9 Projection Operator Techniques

We will now focus on some prominent techniques that have been developed to
tackle classes of master equations more general than the ones discussed in the
last two sections. In general, the reduced dynamics of Open Systems is non-
Markovian. Hence the scope of the dynamics generated by the Lindblad master
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equation, which is Markovian, is restricted. Projection operator techniques pro-
vide a systematic way to address the non-Markovian features of the dynamics
[59, 60, 61].

The basic idea is to regard the tracing over the reservoir as a formal
projection ρ �−→ Pρ in the state space of the total system. The superoperator
P has the property of a projection operator P 2 = P . The density matrix Pρ
is the relevant part of ρ. Corresponding to it is the superoperator L (also a
projection operator) such that Lρ is the irrelevant part of ρ with P + L = I.
Thus ρ �−→ Pρ = TrR(ρ)⊗ ρR ≡ ρS ⊗ ρR, where ρR is some reference state of
the environment. Also Lρ = ρ− Pρ and PL = LP = 0.

Let ρ(t) be the density matrix for the total system with the Hamiltonian
H = H0 + αHI , where H0 stands for the uncoupled system and reservoir
Hamiltonians while HI denotes the interaction between the two and α is a
dimensionless expansion parameter.

The equation of motion for the density matrix, in the interaction picture,
is

d

dt
ρ(t) = −iα[HI , ρ(t)] ≡ αL(t)ρ(t), (3.126)

where L(t) is the Liouville super-operator and HI(t) = eiH0tHIe
−iH0t.

3.9.1 Nakajima-Zwanzig Technique

In the Nakajima-Zwanzig technique, the general program of obtaining irre-
versible dynamics from the Liouvillean is effected by the application of the
relevant projection operators. This is achieved by deriving a closed equation
for the relevant part of the density matrix Pρ(t). We start with the application
of the projection operators P and L to the Liouville-von Neumann equation

d

dt
Pρ(t) = αPL(t)ρ(t),

d

dt
Lρ(t) = αLL(t)ρ(t). (3.127)

Inserting P + L = I into the above equations, we get

d

dt
Pρ(t) = αPL(t)Pρ(t) + αPL(t)Lρ(t), (3.128)

d

dt
Lρ(t) = αLL(t)Pρ(t) + αLL(t)Lρ(t). (3.129)

Eq. (3.129) can be solved for Lρ(t) such that

Lρ(t) = G(t, t0)Lρ(t0) + α

∫ t

t0

dsG(t, s)LL(s)Pρ(s),

where

G(t, s) ≡ Tc exp

[
α

∫ t

s

ds′LL(s′)
]
,
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is the propagator and Tc is the chronological time ordering operator, i.e., time
arguments increase from right to the left. Substituting Lρ(t) into Eq. (3.128),
we get

d

dt
Pρ(t) = αPL(t)G(t, t0)Lρ(t0) + αPL(t)Pρ(t)

+ α2

∫ t

t0

dsPL(t)G(t, s)LL(s)Pρ(s). (3.130)

This is the Nakajima-Zwanzig (NZ) equation. The inhomogeneous term as well
as the third term in the RHS of the NZ equation, involving an integral over the
past history of the system, make the evolution non-Markovian.

We assume that ρR is some stationary Gaussian state of the environment
with vanishing odd moments of the interaction Hamiltonian such that

TrR{ρRHI(t1) · · ·HI(t2k+1)} = 0.

This implies that the second term in the RHS of the NZ equation (3.130)
vanishes. For separable (factorizing) initial conditions ρ(t0) = ρS(t0) ⊗ ρR,
Pρ(t0) = ρ(t0) and Lρ(t0) = 0. This implies that the first term in the RHS of
the NZ equation also vanishes. The NZ equation then becomes

d

dt
Pρ(t) =

∫ t

t0

dsK(t, s)Pρ(s), (3.131)

where the memory kernel K(t, s) = α2PL(t)G(t, s)LL(s)P . To second order in
the coupling constant, K(t, s) = α2PL(t)LL(s)P and thus to this order, the
NZ equation is

d

dt
Pρ(t) = α2

∫ t

t0

dsPL(t)L(s)Pρ(s), (3.132)

where PL(t)P = 0 is used. Using the explicit expressions for P and L(t), Eq.
(3.132) can be written as

d

dt
ρS(t) = −α2

∫ t

t0

dsTrR[HI(t), [HI(s), ρ
S(s)⊗ ρR]], (3.133)

which is the equation obtained earlier for evolution in the Born approximation.

3.9.2 Time-Convolutionless Technique

In general, the time convolution in the memory kernel in the NZ equation
makes it difficult for applications. To make it more useful for applications, the
time convolution in the master equation is removed. This is achieved by the
time-convolutionless projection operator technique (TCL) [62, 63, 64].

The basic idea is to remove the dependence of the future time evolution
on the history of the system from the NZ equation and obtain an equation local
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in time. The starting point is the introduction of the backward propagator such
that

ρ(s) = G(t, s)(P + L)ρ(t), (3.134)

where G(t, s) is the backward propagator of the composite system, the inverse
of the unitary time evolution of the total system and is

G(t, s) = Ta exp

[
−α

∫ t

s

ds′L(s′)
]
. (3.135)

Here Ta indicates antichronological time ordering, i.e., time arguments increase
from left to right. With the help of this, the irrelevant part of the density
matrix, obtained earlier, can be written as

Lρ(t) = G(t, t0)Lρ(t0) + α

∫ t

t0

dsG(t, s)LL(s)PG(t, s)(P + L)ρ(t)

≡ G(t, t0)Lρ(t0) + Σ(t)(P + L)ρ(t), (3.136)

where Σ(t) = α
∫ t

t0
dsG(t, s)LL(s)PG(t, s) is a superoperator containing both

the forward G and backward G propagators. Next, the irrelevant part is rear-
ranged as

Lρ(t) = [1− Σ(t)]−1Σ(t)Pρ(t) + [1− Σ(t)]−1G(t, t0)Lρ(t0), (3.137)

where it is assumed that 1 − Σ(t) can be inverted. This would be possible for
not very large couplings and for small times t − t0. When the above form of
Lρ(t) is fed into the equation for Pρ(t), the relevant part, the TCL equation is
obtained

d

dt
Pρ(t) = K(t)Pρ(t) + I(t)Lρ(t0), (3.138)

where K(t) = αPL(t)[1 − Σ(t)]−1P is the time-local TCL generator and
I(t) = αPL(t)[1 − Σ(t)]−1G(t, t0)L is the inhomogeneous term, which for fac-
torizing initial conditions does not contribute because then Lρ(t0) = 0. The
TCL equation forms the starting point for a systematic approximation method
by expanding K(t) and I(t) in powers of the coupling strength α.

Assuming that [1− Σ(t)] can be inverted and

[1− Σ(t)]−1 =
∞∑

n=0

[Σ(t)]n. (3.139)

This is substituted in the TCL generator to yield

K(t) = α

∞∑
n=0

PL(t)[Σ(t)]nP =

∞∑
n=1

αnKn(t). (3.140)

To determine the contribution of Kn(t) of n-th order in the coupling constant
α to the TCL generator, the superoperator Σ(t) is also expanded in powers of
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α

Σ(t) =
∞∑

n=1

αnΣn(t). (3.141)

This is inserted into the expansion of the TCL generator and a comparison of
equal powers of α yields

K1(t) = PL(t)P,
K2(t) = PL(t)Σ1(t)P,

K3(t) = PL(t){[Σ1(t)]
2 +Σ2(t)}P,

K4(t) = PL(t){[Σ1(t)]
3 +Σ1(t)Σ2(t) + Σ2(t)Σ1(t) + Σ3(t)}P. (3.142)

The forward and backward propagators in the superoperator in these expres-
sions are expanded in powers of the coupling α. Explicitly,

K1(t) = PL(t)P = 0,

Σ1(t) =

∫ t

0

dt1LL(t1)P,

K2(t) =

∫ t

0

dt1PL(t)L(t1)P,

Σ2(t) =

∫ t

0

dt1

∫ t1

0

dt2[LL(t1)LL(t2)P − LL(t2)PL(t1)],
K3(t) = PL(t)Σ2(t)P

=

∫ t

0

dt1

∫ t1

0

dt2PL(t)L(t1)L(t2)P = 0,

K4(t) = PL(t)[Σ2(t)Σ1(t) + Σ3(t)]P

=

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3

[
PL(t)L(t1)L(t2)L(t3)P (3.143)

− PL(t)L(t1)PL(t2)L(t3)P − PL(t)L(t2)PL(t1)L(t3)P

− PL(t)L(t3)PL(t1)L(t2)P
]
. (3.144)

The second order generator K2(t) in the TCL master equation gives the follow-
ing equation for the reduced density matrix

d

dt
ρS(t) = −α2

∫ t

t0

dsTrR[HI(t), [HI(s), ρ
S(t)⊗ ρR]]. (3.145)

Now consider a generic S −R interaction

HI =
∑
k

Fk ⊗Qk, (3.146)
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where Fk and Qk act on the system and reservoir’s Hilbert space, respectively. If
the reservoir is assumed to be in a Gaussian state, all moments of the interaction
w.r.t. ρR can be expressed in terms of the moments of second order

νij(t1, t2) = Re

{
TrR{Qi(t1)Qj(t2)ρR}

}
, (3.147)

ηij(t1, t2) = Im

{
TrR{Qi(t1)Qj(t2)ρR}

}
, (3.148)

where Re and Im stand for the real and imaginary parts, respectively.
To proceed further, and make contact of the theory with applications, it

is convenient to introduce a shorthand notation [2] 0̂ = Fi0(t), 1̂ = Fi1(t1),
2̂ = Fi2(t2), · · · , and

ν01 = νi0i1(t, t1), ν12 = νi1i2(t1, t2), · · · (3.149)

η01 = ηi0i1(t, t1), η12 = ηi1i2(t1, t2), · · · (3.150)

With this notation, the moments can be expressed in a convenient manner.
Thus, for example, the second-order moment is

TrR{HI(t)HI(t1)ρ
S ⊗ ρR} =

∑
i0,i1

(ν01 + iη01)0̂1̂ρ
S , (3.151)

while the fourth-order moment is

TrR{HI(t)HI(t1)HI(t2)HI(t3)ρ
S ⊗ ρR} =

∑
i0,...,i3

(
(ν01 + iη01)(ν23 + iη23)

+ (ν02 + iη02)(ν13 + iη13)

+ (ν03 + iη03)(ν12 + iη12)

)
0̂1̂2̂3̂ρS .

(3.152)

Then the TCL generator to second-order is

K2(t)ρ
S ⊗ ρR = −

∑
i0,i1

∫ t

0

dt1(ν01[0̂, [1̂, ρ
S ]] + iη01[0̂, {1̂, ρS}])⊗ ρR. (3.153)

An application: Dissipative Harmonic Oscillator:
We now use the above formalism, of the TCL technique, to the dissipative

oscillator [91]. The Hamiltonian is H = HS +HR +HSR, where

HS =
1

2
(P 2 +Ω2X2),

HR =
∑
n

1

2
(
1

mn
p2n +mnω

2
nx

2
n),

HSR = −X
∑
n

cnqn = −X ⊗Q. (3.154)
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Using the notations introduced, the real and imaginary parts of the reservoir
correlation functions are seen to be

ν(t) = Re

{
TrR{Q(t)QρR}

}
=

∫ ∞

0

dω

π
I(ω) coth(

ω

2kBT
) cos(ωt),

η(t) = Im

{
TrR{Q(t)Q(t)ρR}

}
=

∫ ∞

0

dω

π
I(ω) sin(ωt), (3.155)

which are the noise and dissipation kernels, respectively and I(ω) is the spec-
tral density of the reservoir. The frequency Ω in HS , Eq. (3.154), is the bare
frequency. The observed frequency Ωr is different, due to the interaction with
the reservoir, and is

Ω2 = Ω2
r +Ω2

c , (3.156)

where

Ω2
c =

∑
n

c2n
mnω2

n

. (3.157)

The bare frequency Ω, due to the above relation with the frequency Ωc, de-
pends on the coupling strength and is of the order α. A consistent expansion
in terms of the coupling strength would thus be needed to take into account
the potential renormalization, explicitly. For the case of factorizing initial con-
ditions, by taking upto the fourth order in the TCL generator K(t), the TCL
master equation yields

d

dt
ρS(t) = −i[HS , ρ(t)]− i

2
Δ(t)[X2, ρS(t)]− iλ(t)[X, {P, ρS(t)}]

− DPP (t)[X, [X, ρS(t)]] + 2DPX(t)[X, [P, ρS(t)]]. (3.158)

This has the form of a generalized Fokker-Planck equation. To second order in
the coupling strength

Δ(2)(t) = 2

∫ t

0

ds η(s) cos(Ωrs),

λ(2)(t) = − 1

Ωr

∫ t

0

ds η(s) sin(Ωrs),

D
(2)
PP (t) =

∫ t

0

ds ν(s) cos(Ωrs),

D
(2)
PX(t) =

1

2Ωr

∫ t

0

ds ν(s) sin(Ωrs). (3.159)

In a similar fashion, the terms to the fourth order in the coupling strength can
also be obtained. A comparison with the exact results show that the TCL results
match with them for sufficietly high temperatures at any coupling strength and
for low temperatures for moderate to weak couplings.
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3.10 Guide to advanced literature

In this chapter we have introduced, formally, the notion of non-equilibrium
(quantum) statistical mechanics. The formal approch is to begin with the Liou-
ville equation and then develop schemes for obtaining irreversibility in the resul-
tant dynamics. There exists specialized literature where this is handled in detail.
A very relevant work pertinent to this is [55]. Further details about the Langevin
and Fokker-Planck equations can be obtained from [56, 32, 34, 72, 73, 74, 75].
The Boltzmann equation finds prolific use in the study of transport phenomena,
see for e.g. [92]. Master equations have become ubiquitous with various stud-
ies related to open quantum systems. A very nice treatment of the Lindblad
equations can be found in [2, 93]. For further details on the uniquely quan-
tum process, the quantum non-demolition process, the reader is ecouraged to
read [89]. Details pertaining to the Nakajima-Zwanzig equation can be obtained
from [56, 55] and for more information on the time-convolutionless projection
operator technique (TCL), [62, 63, 64] could be read profitably.
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Chapter 4

Influence Functional Approach to
Open Quantum Systems

4.1 Introduction

The study of the dynamics of Open Quantum Systems , as already introduced
before, essentially involves the dynamics of the system of interest taking into
account the effect of the ambient environment [94, 1, 2]. Information from the
system leaks into the environment and is interpreted as dissipation as well as
loss of coherence, decoherence. When the dynamics of the system is undeter-
ministic, the most successful approach to study the system dynamics is the
functional (path) integral formalism. The dissipative system is considered as
interacting with a complex environment and the complete system plus environ-
ment composite is assumed to be closed allowing for standard quantization rules
to be applied. For equations of motion linear in the environmental coordinates,
the environmental coordinates can be easily eliminated and one obtains closed
equations for the damped system alone. In the functional integral description,
the environment reveals itself through the influence functional (IF).

The functional integral treatment has been used to tackle a vast diversity
of problems in the field of open quantum systems. Among the exactly solvable
problems are the damped harmonic oscillator and linear quantum Brownian
motion [47, 48, 95, 96, 10, 27] wherein the quantum mechanical system is taken
as a harmonic oscillator coupled linearly via its displacement x to a fluctuat-
ing environment. Quantum Brownian motion (QBM) serves as a paradigm of
quantum open systems in that it provides a model wherein the concepts of the
system plus reservoir are elucidated. Quantum Brownian motion being a gen-
eralization of classical Brownian motion into the quantum regime, gives us a
physical realization of dissipation reconciled with quantization. Interest in this
has been motivated by observation of macroscopic effects in quantum systems
such as dissipation in tunneling and problems of quantum measurement theory
(for example, the loss of quantum coherence due to a system’s interaction with
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its environment). This has also been used to gain useful insight into problems
which are not exactly solvable.

As a signature of the diversity of the functional integral treatment of
quantum open systems, this has been used in recent years to address issues
in quantum gravity [97, 98, 99]. In these investigations detailed analysis was
made of quantum Brownian motion to see the interconnection of some basic
quantum statistical processes such as decoherence, dissipation, particle cre-
ation, noise and fluctuation. The understanding of many quantum statistical
processes in the early universe and black holes [98] requires an extension of the
existing framework of quantum field theory in the setup of quantum open sys-
tems represented by the quantum Brownian motion [1]. These ideas have been
applied to the analysis of some basic issues in quantum cosmology [100, 101],
effective field theory [102] and the foundation of quantum mechanics, such as
the uncertainty principle [103] and decoherence [104, 105, 106] in the quantum
to classical transition problem.

The general plan of the influence functional formalism of open quantum
systems is to first have an idea about the influence functional, characterizing
the environment, also called the reservoir or the bath, influencing the system
of interest, such as the harmonic oscillator. Once that is done, one obtains
what is known as the propagator. The propagator can then be used as a cap-
sule to generate the final state of the system of interest, given its initial state,
hence the name propagator. To extract the physics behind the problem, it is
very useful to obtain the master equation, the non-unitary counterpart of the
Schrödinger-von-Neumann equation. Here, after a fairly detailed introduction
to the influence functional formalism, we solve it explicitly for the case of lin-
ear quantum Brownian motion starting from the state where the system was
originally decoupled from its ambient environment. We do this by two differ-
ent methods. We then obtain the corresponding propagator. How to obtain a
master equation is then discussed in detail. We also indicate how to obtain the
Wigner equation, a very useful tool for probing the quantum-classical connec-
tion, from the master equation. We end the chapter with a brief guide to more
advanced literature.

4.2 A Primer to the Influence Functional (IF) formalism

In the IF formalism [48, 95, 96, 10] adapted to the open systems, one deals with
a system S, in contact with its environment (reservoir) E, with an interaction
SE between the two. The object of interest here is the reduced density matrix
of the system alone obtained by tracing over the environment variables, i.e.,

ρSr (x, x
′, t) =

∫
dq ρ(x,q;x′,q, t). (4.1)

Here ρr stands for the reduced density matrix of the system obtained by tracing
over the reservoir coordinates. x stands for the system coordinate and q is anN -
component vector q = (q1, q2, ..., qN ) denoting the environmental coordinates.
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Now action S for the total system can be written as

S = SS + SE + SSE . (4.2)

Since the S +E composite constitutes a closed system, it is subject to unitary
evolution. Using this, the reduced density matrix becomes

ρSr (x, x
′, t) =

∫
dxidx

′
idqidq

′
idqf K(x,qf , t;xi,qi, 0)

×ρ0(xi,qi, x
′
i,q

′
i, 0)K

∗(x′,qf , t;x
′
i,q

′
i, 0). (4.3)

This form of the density matrix can be seen to be directly coming from the
construction of the path integral approach to the evolution of the density matrix
presented earlier in Chapter II, with the addition that now explicit use is made
of the reservoir variables as well. Further, due to the operation of taking a trace
over the reservoir coordinates, the forward and backward propagators , K and
K∗, get coupled to each other. This will be encoded in the functional called the
Influence Functional, introduced below, and is responsible for the open system
effects . In Eq. (4.3) the sum is over all the paths x(s),q(s), x′(s),q′(s) in real
time s with 0 ≤ s ≤ t,

x(0) = xi, x(t) = xf ;x
′(0) = x′

i, x
′(t) = x′

f ;

q(0) = qi,q(t) = qf ;q
′(0) = q′

i,q
′(t) = q′

f . (4.4)

K stands for the standard expression for the propagator

K(x,qf , t;x
′,q′

i, 0) =

∫ ∫
DxDq exp

{
i

�
S[x,q]

}
, (4.5)

as introduced earlier in Chapter II. ρ0 is the initial density matrix of the S+E
composite.

In the conventional Feynman-Vernon theory [47], it was assumed that the
system and the environment (reservoir) were initially uncorrelated, a condition
called ‘separable initial condition’ [48] in the literature. In such a situation the
initial density matrix factorizes so that

ρ(0) = ρS(0).ρE(0), (4.6)

where ρS(0) stands for the initial system density matrix and ρE(0) stands for
the initial reservoir density matrix. The reduced density matrix becomes

ρSr (x, x
′, t) =

∫
dxidx

′
i J(x, x

′, t;xix
′
i, 0)ρ

S(xi, x
′
i, 0). (4.7)

Here, for convenience of notation, we have placed S in the superscript,
ρSr (x, x

′, t) is the reduced density matrix of the system of interest, taking into
account the effect of the environment and the propagator J is
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J(x, x′, t;xi, x
′
i, 0) =

∫ ∫
DxDx′ exp

{
i

�
[SS [x]− SS [x

′]]

}
F [x, y]. (4.8)

Here F [x, y] stands for the IF given by

F [x, y] =

∫
dqidq

′
idqf ρR(qi,q

′
i, 0)

×
qf∫

qi

Dq

qf∫
q′
i

Dq′ exp

{
i

�

(
SSE [x,q] + SE [q]

−SSE [x
′,q′]− SE [q

′]

)}
. (4.9)

The separable initial conditions are not the only kind of initial conditions. The
separable initial condition is very different from the equilibrium state of the to-
tal system since even far away points are initially quantum mechanically very
coherent. Also in many applications, the system and the reservoir are integral
parts of the same system and their interaction is not at our disposal. The sep-
arable initial conditions assume a sudden switch-on of the interaction between
the system and the reservoir at t = 0 which leads to unphysical divergences.
This can become very severe if one is interested in macroscopic quantum co-
herence, macroscopic quantum tunneling and related problems since the artifi-
cial switch-on of the interaction would very seriously influence the subsequent
short-time behavior of the system.

These considerations lead to the introduction of a class of initial condi-
tions, the ‘generalized initial conditions’ [95, 96, 10, 107]. A very general class
of initial conditions are of the form [10, 108]

ρ0 =
∑
j

OjρβO
′
j , (4.10)

where

ρβ = Z−1
β exp(−βH) (4.11)

is the canonical density matrix describing the equilibrium of the interacting sys-
tem in the presence of a time-independent potential V and Z−1

β is the partition

function. Here β = (kBT )
−1, with T being the equilibrium temperature of the

interacting system. The operators Oj , O
′
j act upon the system coordinate only

and leave the environment (reservoir) coordinates unchanged but can be chosen
arbitrarily otherwise. This definition of the initial state has the usefulness that
it can be used even in situations where ρ0 is not a proper density matrix.
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The simplest initial state of the form Eq. (4.10) is the equilibrium density
matrix ρβ itself. It can be prepared by waiting sufficiently long so that the
system reaches equilibrium at time t = 0. Then the response of the particle to
a time-dependent external force acting at time t > 0 can be studied.

A modification of this comes when the system is displaced from equilib-
rium by applying a constant external force F and ρ0 describes the modified
equilibrium in the presence of this force. When the external force is switched
off at time t = 0+, the relaxation towards nonconstrained equilibrium can be
studied.

Further, for a system in equilibrium at time t = 0−, a measurement of
a dynamical variable of the Brownian particle may be made. This leads to a
reduction of the density matrix. The state ρ0 after the measurement will be
of the form Eq. (4.10), where the operators Oj , O

′
j describe the effect of the

measuring device [108]. For instance, an ideal position measurement with the
outcome q0 − δ/2 < q < q0 + δ/2 leads to

ρ0 = PqρβPq, (4.12)

where

Pq = N−1/2

q0+δ/2∫
q0−δ/2

dq |q〉〈q| (4.13)

projects on the measured interval and N stands for a normalization factor.
Another case where Eq. (4.10) can be used is when a scattering experiment

is performed in which the cross-section is related to an equilibrium correlation
function of the Brownian particle [109]. An equilibrium correlation function
〈A(t)B〉 may be viewed as the expectation value of A at time t in the ‘initial
ensemble’ ρ0 = Bρβ . Now Bρβ is not a proper density matrix but is of the form
Eq. (4.10).

In the coordinate representation, Eq. (4.10) becomes

ρ0(x,q, x
′,q′) = 〈x,q|ρ0|x′,q′〉

=
∑
j

∫
dx

∫
dx′ Oj(x, x)O

′
j(x

′, x′)ρβ(x,q, x′,q′), (4.14)

where

Oj(x, x) = 〈x|Oj |x〉 and O′
j(x

′, x′) = 〈x′|O′
j |x′〉.

Thus the initial states are of the form

ρ0(x,q, x
′,q′) =

∫
dx

∫
dx′ λ0(x, x, x

′, x′)ρβ(x,q, x′,q′), (4.15)
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where

λ0(x, x, x
′, x′) =

∑
j

Oj(x, x)O
′
j(x

′, x′) (4.16)

is called the ‘preparation function’ and it gives the deviation from the equi-
librium distribution. Now using the unitary evolution of the entire ‘system-
environment’ composite, the density matrix in the coordinate representation is
obtained as

ρ(xf ,qf , x
′
f ,q

′
f , t) =

∫
dxidx

′
idqidq

′
i K(xf ,qf , t;xi,qi, 0)

× ρ0(xi,qi, x
′
i,q

′
i, 0)K

∗(x′
f ,q

′
f , t;x

′
i,q

′
i, 0). (4.17)

The functional integral representation of ρβ is

ρβ(x,q, x
′,q′) = Z−1

β

∫
DxDq exp

[
− 1

�
SEQ[x,q]

]
, (4.18)

where the integral is over all paths x(τ), q(τ) with 0 ≤ τ ≤ �β. Also x(0) =
x′, q(0) = q′, x(�β) = x, q(�β) = q. Here SEQ stands for the Euclidean
action which arises from the Euclidean functional integral representation of the
correlation that exists between the system and the environment initially. Thus
Eq. (4.17) becomes

ρ(xf ,qf , x
′
f ,q

′
f , t) =

∫
dxidx

′
idxdx

′dqidq
′
i λ0(xi, x, x

′
i, x

′)Z−1
β

×
∫

DxDqDx′Dq′DxDq

× exp

{
i

�
(S[x,q]− S[x′,q′])− 1

�
SEQ[x,q]

}
. (4.19)

Here the sum is over all the paths x(s),q(s), x′(s),q′(s) in real time s, 0 ≤ s ≤ t
(see Eq. (4.4)), and over the paths x(τ),q(τ) in imaginary time τ , 0 ≤ τ ≤ �β,
with

x(0) = x′, x(�β) = x;q(0) = q′
i,q(�β) = qi. (4.20)

It is evident from the above that the reservoir endpoints qf and q′
f are con-

nected by a continuous path.
To get the reduced density matrix of the system alone, a trace is taken

over the reservoir coordinates to obtain

ρSr (xf , x
′
f , t) =

∫
dqf ρ(xf ,qf , x

′
f ,qf , t). (4.21)
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Thus the reduced density matrix involves integrations over only the closed paths
of the environment. This can then be written as

ρSr (xf , x
′
f , t) =

∫
dxidx

′
idxdx

′ λ0(xi, x, x
′
i, x

′)Z−1

∫
DxDx′Dx

× exp

{
i

�
(SS [x]− SS [x

′])− 1

�
SEQ
S [x]

}
F̃ [x, x′, x], (4.22)

where F̃ is the ‘generalized IF’ and is given by

F̃ [x, x′, x] =

∫
dqfdqidq

′
iZ

−1
R

∫
DqDq′Dq

× exp

{
i

�
(SE [q] + SSE [x,q]− SE [q

′]− SSE [x
′,q′])

−1

�
(SEQ

E [q] + SEQ
SE [x,q])

}
. (4.23)

Here Z = Zβ/ZR and ZR is a normalization constant such that the IF is equal
to one for vanishing interactions.

Below, we will work out, in detail, the IF for linear QBM starting from
separable initial conditions and provide a guidance to the literature dealing with
more general IFs, including those dealing with correlated initial conditions.

4.3 Influence Functionals: An Explicit Evaluation

From the above discussion, it is evident that the Influence Functional (IF)
is a central object in the considerations of a number of problems, such as,
quantum Brownian motion (QBM). Here we will evaluate the IF in two different
ways; the first one is a conventional derivation, while the next is a somewhat
unconventional one, involving ideas from a number of areas of physics. We will
concentrate on the case of separable initial conditions.

4.3.1 Conventional Derivation of IF

The IF is given by, see Eq. (4.9),

F [x, y] =

∫
dqidq

′
idqf ρR(qi,q

′
i, 0)

×F̃ [x,qf ,qi]F̃
∗[x′,qf ,q

′
i]. (4.24)
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Concentrating on the QBM model, a harmonic oscillator interacting with a
bath of harmonic oscillators, we have the following Hamiltonian

H = HS +HE +HSE , (4.25)

where

HS =
1

2
M

[
ẋ2 + ω2

0x
2
]

(4.26)

is the system Hamiltonian,

HE =

N∑
n=1

1

2
mn

[
q̇n

2 + ω2
nq

2
n

]
(4.27)

is the environment (reservoir) Hamiltonian, and

HSE = −
N∑

n=1

[cnxqn] + x2
N∑

n=1

c2n
2mn

ω2
n (4.28)

is the system-environment interaction Hamiltonian. In HSE , the last term on
the RHS is a coupling induced normalization of the potential. It can be ab-
sorbed in the potential term in HS . Here cn is the system-reservoir coupling
constant. In Eq. (4.24),

F̃ [x,qf ,qi] =

qf∫
qi

exp

{
i

�

(
SSE [x,q] + SE [q]

)}
. (4.29)

Here

SE [q] = exp

{
i

�

N∑
n=1

t∫
0

ds

(
1

2
mn

[
q̇n

2 − ω2
nq

2
n

])}
, (4.30)

and

SSE [x,q] = exp

{
i

�

N∑
n=1

t∫
0

ds

(
cnxqn − x2 c2n

2mnω2
n

)}
. (4.31)

For a reservoir of harmonic oscillators, Eq. (5.88), the functional integral in Eq.
(4.29) factorizes into individual contributions from each reservoir oscillator, i.e.,

F̃ [x,qf ,qi] =
∏N

k=1 F̃k[x,qkf
,qki

], where

F̃k[x,qkf ,qki ] =

∫
Dq exp

{
i

�

t∫
0

ds

(
1

2
mn

[
q̇n

2 − ω2
nq

2
n

]
+ cnxqn − x2 c2n

2mnω2
n

)}
.

(4.32)

We now need to evaluate the functional integral in Eq. (4.32) where we have to
sum over all paths qn(s) of the nth environmental oscillator with qn(0) = qni

and qn(t) = qnf
. Since the functional integral is Gaussian , its dependence on
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the boundary values qni , qnf
, can be obtained by expanding about the path

q̃n(s) minimizing the action in the exponent of Eq. (4.32), the classical path.
Expressing

qn(s) = q̃n(s) + αn(s), (4.33)

where q̃n(s) is the solution of the stationary value of the action and αn(s) is
the quantum fluctuation around this path, q̃n(0) = qni

and q̃n(t) = qnf
. Eq.

(4.32) can be written as

F̃k[x,qkf
,qki ] = exp

{
i

�

t∫
0

ds

(
1

2
mn

[
˙̃q2n − ω2

nq̃
2
n

]
+ cnxq̃n − x2 c2n

2mnω2
n

)}

×
∫

Dαn exp

{
i

�

t∫
0

ds

(
1

2
mnα̇n

2 − ω2
nα

2
n

)}
. (4.34)

The functional integral over αn(s) sums over all paths αn(s) with αn(0) =
αn(t) = 0 so that the dependence on qni

and qnf
is completely included in the

first exponential. To calculate the functional integral in Eq. (4.34) we made use
of the fact that q̃n(s) is a trajectory that minimizes the action. Consider the
first term in Eq. (4.34). The Euler-Lagrangian equation of motion reads

mn
¨̃qn(s) +mnω

2
nq̃n(s) = cnx(s). (4.35)

Here the term on the RHS can be interpreted as a time-dependent force acting
on the environmental oscillator due to its coupling to the Brownian particle.
The solution of Eq. (4.35) satisfying the boundary conditions is

q̃n(s) =
βn(s)

βn(t)
qnf+

βn(t− s)

βn(t)
qni−cn

(
βn(s)

βn(t)

∫ t

0

duβn(t−u)x(u)−
∫ s

0

duβn(s−u)x(u)

)
,

(4.36)

where βn(s) = 1
mnωn

sin(ωns). To compute the action of the trajectory q̃n(s)
we perform an integration by parts and use the equation of motion (4.35). This
yields

t∫
0

ds

(
1

2
mn

[
˙̃q2n − ω2

nq̃
2
n

]
+ cnxq̃n − x2 c2n

2mnω2
n

)
=

1

2
mn(q̃n(t) ˙̃qn(t)

− q̃n(0) ˙̃qn(0))

− 1

2
cn

∫ t

0

dsx(s)q̃n(s)

− c2n
2mnω2

n

∫ t

0

dsx2(s). (4.37)

The RHS of Eq. (4.36) is then inserted in Eq. (4.37). We now want to evalu-
ate the contribution to the functional integral, Eq. (4.32), from the quantum
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fluctuations αn(s), see Eq. (4.33). This can be obtained by expanding the αn

dependent part of the functional integral, Eq. (4.34), into a Fourier series, using
αn(0) = αn(t) = 0

αn(s) =
∞∑
θ=1

αθ
n sin(νθs); νθ = πθ/t. (4.38)

Due to the orthogonality of the sine functions, the integrand in the second term
in the RHS of Eq. (4.34) becomes

exp

{
i

�

t∫
0

ds

(
1

2
mnα̇n

2 − ω2
nα

2
n

)}
= exp

{
i
mnt

4�

∞∑
θ=1

(
(αθ

n)
2(ν2θ − ω2

n)

)}
,

(4.39)
while the integration measure becomes

∫
Dαn · · · =

∞∏
θ=1

(
N−1

∞∫
−∞

dαθ
n · · ·

)
. (4.40)

Here N is a constant independent of ωn which arises from the Jacobian of the
transformation in Eq. (4.38). From the Eqs. (4.39) and (4.40), it can be seen
that the functional integral factorizes into regular Gaussian integrals over the
Fourier components αθ

n which can be done separately. We then have

fn(t) =

∫
Dαn exp

{
i

�

t∫
0

ds

(
1

2
mnα̇n

2 − ω2
nα

2
n

)}
= C

∞∏
θ=1

(
1− ω2

n

ν2θ

)−1/2

.

(4.41)
The constant C has all the factors independent of ωn. Using the mathematical
identity

∞∏
θ=1

(
1− ω2

n

ν2θ

)
=

sin(ωnt)

ωnt
, (4.42)

we get

fn(t) = C

(
ωnt

sin(ωnt)

)1/2

. (4.43)

The constant C can be determined by evaluating the Jacobian of the transfor-
mation, Eq. (4.38). Another way of doing this is by comparing Eq. (4.41) with
the corresponding result for the case of a free particle, see Chapter 2.

fn(t, ω = 0) = C =

(
mn

2πi�t

)1/2

. (4.44)

74 Influence Functional Approach to Open Quantum Systems



Using Eqs. (4.44), (4.43) and the result obtained by substituting the RHS of
Eq. (4.36) in the RHS of Eq. (4.37), we get

F̃n[x,qnf
,qni

] =

(
mnωn

2πi� sin(ωnt)

)1/2

exp

{
i

�
Φn(x,qnf

,qni
)

}
, (4.45)

where

Φn(x,qnf
,qni

) =
mnωn

2 sin(ωnt)

{
(q2ni

+ q2nf
) cos(ωnt)− 2qni

qnf

}

+
qnicn

sin(ωnt)

t∫
0

ds sin(ωn(t− s))x(s) +
qnf

cn

sin(ωnt)

t∫
0

ds sin(ωns)x(s)

− c2n
mnωn sin(ωnt)

t∫
0

ds

s∫
0

du sin(ωn(t− s)) sin(ωnu)x(s)x(u)

− c2n
2mnω2

n

t∫
0

dsx2(s). (4.46)

Using Eq. (4.45) and its conjugate in Eq. (4.24) along with the initial state
of the reservoir

ρR(qi,q
′
i, 0) =

[
1− exp

(−�ω

kBT

)]∑
n

exp

(−n�ω

kBT

)
|n〉〈n|, (4.47)

i.e., a thermal density matrix at temperature T, given here in the representa-
tion of the Fock basis, and doing the Gaussian integrals over the intermediate
coordinates qni

, q′ni
and qnf

, the IF becomes

F [x, y] = e−
i
�
Φ̃(x,y), (4.48)

where

Φ̃(x, y) =

t∫
0

ds

s∫
0

du(x(s)− y(s))

{
K(s− u)x(u)−K∗(s− u)y(u)

}

+i

t∫
0

ds
μ

2
(x2(s)− y2(s)), (4.49)

K(s) =
N∑

n=1

c2n
2mnωn

cosh
[
ωn

�β
2 − is

]
sinh( 12ωn�β)

, (4.50)
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μ =
N∑

n=1

c2n
2mnωn

. (4.51)

It should be noted that the pre-exponential factors in Eq. (4.45), its complex
conjugate and the partition function of the unperturbed reservoir combine with
the coupling-independent factors arising from the Gaussian integrals over qni

,
q′ni

and qnf
to give 1. This is consistent with the fact that the influence func-

tional should be 1 for vanishing coupling. In general, the influence functional
is a highly nonlocal object. Not only does it depend on the time history, it
also irreducibly mixes the two sets of histories in the path integral represent-
ing the propagator, see Eq. (4.133). Note that the histories x and x′ could be
interpreted as moving forward and backward in time, respectively.

4.3.2 Basis Independent Derivation of IF

We discussed in detail the derivation of the QBM influence functional in the
representation or basis dependent form, Eq. (4.9). Now, we present a novel
basis independent derivation of the influence functional. This would provide a
broader view to the subject and at the same time illustrate how a number of
concepts originally developed in a different setup are all brought together to
address the problem in hand. This method is also powerful enough to treat
the problem of parametric QBM, i.e., with time dependent couplings and has
been applied to problems dealing with quantum statistical mechanics, quantum
optics and cosmology [99], thereby highlighting the ubiquity of the technique
as well as the subject under study.

We take the following model Hamiltonian

H = HS +HE +HSE , (4.52)

where

HS =
1

2
M

[
ẋ2 +Ω2x2

]
(4.53)

is the system Hamiltonian,

HE =
N∑

n=1

1

2
mn

[
q̇n

2 + ω2
nq

2
n

]
(4.54)

is the environment (reservoir) Hamiltonian, and

HSE =
N∑

n=1

[cnxqn] (4.55)

is the system-environment interaction Hamiltonian. This is a simplified form of
a linear QBM Hamiltonian [48]. Here, as in the rest of this book, we will stick
to the factorizable initial condition

ρ(0) = ρS(0)ρE(0). (4.56)
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where
ρE(0) = Ŝ(r,Φ)ρ̂thŜ

†(r,Φ), (4.57)

i.e., we have a squeezed thermal initial state. The squeezed thermal state gen-
eralizes the usual thermal state in that it reduces to the thermal state when the
squeezing parameters r and Φ are set to zero. Squeezing, a concept introduced
in quantum optics [29], is a form of a quantum correlation and has the potential
to enhance the performance of quantum operations in the presence of external
noise [110]. Here

ρ̂th =
∏
k

[
1− e−β�ωk

]
e−β�ωk b̂

†
k b̂k (4.58)

is the density matrix of the thermal bath, and

Ŝ(rk,Φk) = exp

[
rk

(
b̂2k
2
e−i2Φk − b̂†2k

2
ei2Φk

)]
(4.59)

is the squeezing operator with rk, Φk being the squeezing parameters [90].
The IF for the linear QBM, discussed here, is

F [x, x′] =
∏
n

Fn [x, x
′] , (4.60)

i.e., it can be written as a product over the contributions from the n environ-
mental harmonic oscillators. From now we will take the case of a single mode.
The IF for a single mode is

Fn[x, x
′] =

∞∫
−∞

dqf

∞∫
−∞

dqi

∞∫
−∞

dq′i

qf∫
qi

Dq

qf∫
qi

Dq′

× exp

[
i

�
{SE [q] + SSE [x, q]− SE [q

′]− SSE [x
′, q′]}

]
ρE(qi, q

′
i, 0)

= exp

[
i

�
δA[x, x′]

]
(4.61)

where δA[x, x′] is the influence action. Here we have suppressed the index n
from the subscript of the environmental oscillators q.

The actions SE , SSE come from the corresponding Hamiltonians in Eqs.
(4.54), (4.55), respectively. The IF can be written in the representation inde-
pendent form as

Fn[x, x
′] = Tr[Û(t, 0)ρ̂E(0)Û

′†(t, 0)], (4.62)

where Û(t) and Û ′(t) are quantum propagators for the actions SE [q]+SSE [x, q]
and SE [q] + SSE [x

′, q], respectively. This is the key observation behind the
present method. It can be easily deduced from the conventional form of the IF,
Eq. (4.9), where the IF can be seen to involve the environment and system-
environment interaction actions, the initial environment density matrix and a
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trace is made over the environment (reservoir) coordinates. We will use the
above form to evaluate the IF.

SE [q] + SSE [x, q] =

t∫
0

ds

[∑
n

{
1

2
m[q̇2 − ω2q2]

}

+
∑
n

(−)cx(s)q(s)

]
. (4.63)

It should be reiterated that here we have suppressed the subscript denoting the
oscillator index, since we are working with a single mode. The Lagrangian L
for the above action is

L =
1

2
m[q̇2 − ω2q2]− cx(t)q(t). (4.64)

The canonical momentum is

pc =
∂L

∂q̇
= mq̇. (4.65)

Thus the Hamiltonian is

H(t) = pcq̇ − L(t) =
p2c
2m

+
1

2
mω2q2 + cx(t)q(t). (4.66)

This equation is quantized by promoting q, pc to operators obeying the com-
mutation relation

[q̂, p̂c] = i�, (4.67)

where

q̂ =

√
�

2κ
(â+ â†), p̂c = i

√
�κ

2
(â† − â). (4.68)

The κ appearing in the above equation is given by mω. Using Eq. (4.68) in
(4.66) we have

Ĥ(t) = f(t)Â+ f∗(t)Â† + h(t)B̂ + d(t)â+ d∗(t)â† + g(t), (4.69)

where

f(t) = f∗(t) =
�

2

{
mω2

κ
− κ

m

}
, (4.70)

h(t) =
�

2

{
mω2

κ
+

κ

m

}
, (4.71)

d(t) =

√
�

2κ
cx(t), (4.72)
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g(t) = 0, (4.73)

Â =
â2

2
, Â† =

â†2

2
, B̂ = â†â+

1

2
. (4.74)

As shown in [111] the ansatz

Û(t, 0) = ex(t)B̂ ey(t)Â ez(t)Â
†

eq(t)â ep(t)â
†

er(t) (4.75)

for the time-evolution operator generated by Eq. (4.69) is global. Now using
Eqs. (4.69) and (4.75) in

Ĥ(t)Û(t, 0) = i�
∂

∂t
Û(t), (4.76)

we get
f = i�[ẏe−2x + ży2e−2x], (4.77)

f∗ = i�[że2x], (4.78)

h = i�[ẋ+ ży], (4.79)

d = i�[q̇(1− yz)e−x + ṗye−x], (4.80)

d∗ = i�[ṗex − q̇zex], (4.81)

g = i�[ṗq + ṙ]. (4.82)

Using

x = lnα, y = −βx, z =
β∗

α
, α = e−iθ cosh(r), β = −e−i2ϕ sinh(r), (4.83)

Eq. (4.75) can be written as

Û(t, 0) = Ŝ(r,Φ) R̂(θ) eqâ epâ
†
er, (4.84)

where

2Φ = 2ϕ− θ, R̂(θ) = e−iθB̂ , Ŝ(r,Φ) = exp

[
r

(
Âe−i2Φ − Â†ei2Φ

)]
. (4.85)

Here Ŝ and R̂ are the squeeze and rotation operators, respectively. These op-
erators play an important role in many aspects of quantum optics [29]. They
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also generate canonical transformations [112], i.e., transformations preserving
the canonical commutation relations.

Now substituting Eq. (4.83) in Eqs. (4.77) to (4.82) we have

�α̇ = −if∗β − ihα, (4.86)

�β̇ = −ihβ + ifα, (4.87)

�ṗ = −i(dβ∗ + d∗α∗), (4.88)

q̇ = −ṗ∗, (4.89)

�ṙ = −ig − �ṗq. (4.90)

Using the Campbell-Baker-Hausdorff identity [29] we have

Û(t, 0) = Ŝ(r,Φ)R̂(θ)D̂(p)e−pp∗/2er, (4.91)

where

D̂(p) = exp[pâ† − p∗â] (4.92)

is the displacement operator,

p(t, 0) = − i

�

t∫
0

ds

[
d(s)β∗(s) + d∗(s)α∗(s)

]
, (4.93)

r(t, 0) =

t∫
0

ds ṗ(s)p∗(s). (4.94)

From this we find that the evolution operator can be written as

Û(t, 0) = Ŝ(r,Φ)R̂(θ)D̂(p) exp

[
− pp∗

2
+

t∫
0

ds

s∫
0

ds′ ṗ(s) ṗ∗(s′)

]
. (4.95)
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Substituting Eq. (4.95) into Eq. (4.62) we have the IF for a single mode as

Fn[x, x
′] = Tr

[
Ŝ R̂ D̂(p) exp

{
− pp∗

2
+

t∫
0

ds

s∫
0

ds′ṗ(s)ṗ∗(s′)

}

× ρ̂E(0)D̂
†(p′)R̂′†Ŝ′† exp

{
− p′p′∗

2
+

t∫
0

ds

s∫
0

ds′ p′(s)ṗ′∗(s′)

}]

= Tr

[
Ŝ R̂ D̂(p) ρ̂E(0)D̂

†(p′)R̂† Ŝ†
]

× exp

{
− pp∗

2
− p′p′∗

2

}
exp

{ t∫
0

ds

s∫
0

ds′
[
ṗ(s)ṗ∗(s′) + ṗ′(s)ṗ′∗(s′)

]}
(4.96)

where Ŝ′† = Ŝ† and R̂′† = R̂†, since Ŝ and R̂ are independent of the coordinate.
By a straightforward application of the Campbell-Baker-Hausdorff iden-

tity, we see that

D̂(p)D̂(p′) = D̂(p+ p′) exp

[
1

2
(pp′∗ − p∗p′)

]
. (4.97)

Problem 1: Prove the above identity.

From this,

Fn[x, x
′] = Tr[ρ̂E(0)D̂(p− p′)]

× exp

[
1

2

t∫
0

ds

s∫
0

ds′
{
[ṗ(s)− ṗ′(s)][ṗ′∗(s′)

+ṗ∗(s′)] + [ṗ(s′) + ṗ′(s′)][ṗ′∗(s)− ṗ∗(s)]

}]
. (4.98)

Here we have made use of the following functional integral identity∫ n

m

dt α(t)

∫ n

m

dt β(t) =

∫ n

m

∫ t

m

dt′dt [α(t)β(t′) + β(t′)α(t)]. (4.99)

Problem 2: Prove the above identity.

For the squeezed thermal initial state of the reservoir, we have
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ρ̂E(0) = Ŝ(r,Φ)ρ̂thŜ
†(r,Φ), (4.100)

where

ρ̂th =

[
1− exp

(
− �ω

2kBT

)]∑
n

exp

(
− n�ω

kBT

)
|n〉〈n|, (4.101)

and

Ŝ(r,Φ) = exp

[
r(Âe−i2Φ − Â†ei2Φ)

]
. (4.102)

The terms are as explained before. Now

Tr[ρ̂E(0)D̂(p− p′)] = Tr[Ŝ(r,Φ)ρ̂thŜ
†(r,Φ)D̂(p− p′)]

= Tr[ρ̂thŜ
†(r,Φ)D̂(p− p′)Ŝ(r,Φ)]. (4.103)

Using Eq. (4.85) and the Campbell-Baker-Hausdorff identity , we have

Ŝ†(r,Φ)D̂(p)Ŝ(r,Φ) = D̂

(
p cosh(r) + p∗ sinh(r)ei2Φ

)
. (4.104)

Problem 3: Prove the above identity.

Using a very useful identity regarding trace with respect to thermal reser-
voirs, which we have encountered earlier in Chapter 2,

Tr

[
ρ̂th exp(xâ

† + yâ)

]
= exp

[
xy

2
coth

(
�ω

2kBT

)]
, (4.105)

we get
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Tr

[
ρ̂E(0)D̂(p− p′)

]
= exp

{
− 1

2
coth

(
�ω

2kBT

)
(4.106)

× |(p− p′) cosh(r) + (p− p′)∗ sinh(r)ei2Φ|2
}

= exp

{
− 1

2�2
coth

(
�ω

2kBT

) t∫
0

ds

s∫
0

ds′ (4.107)

×
{
cosh(2r)

[
U(s)U∗(s′)

+ U∗(s)U(s′)

]
− sinh(2r)e−i2ΦU(s)U(s′)

− sinh(2r)ei2ΦU∗(s)U∗(s′)

}
Δ(s)Δ(s′)

}

= exp

{
− 1

�

t∫
0

ds

s∫
0

ds′ Δ(s)ν(s, s′)Δ(s′)

}
. (4.108)

Problem 4: Derive the above equation.

Here

Δ(s) = [x(s)− x′(s)], (4.109)

and we have used

p(s) = − i

�

s∫
0

du [U(u)x(u)]. (4.110)

Using Eq. (4.72) in Eq. (4.93) and comparing with Eq. (4.110) we have

U(s) = [uβ∗(s) + u∗α∗(s)], (4.111)

with

u =

√
�

2κ
c. (4.112)

The argument in the exponential on the RHS of Eq. (4.98) is

4.3 Influence Functionals: An Explicit Evaluation 83



−2i

�

t∫
0

ds

s∫
0

ds′
(

i

2�

)[
U(s)U∗(s′)− U(s′)U∗(s)

]
Δ(s)Σ(s′)

= −2i

�

t∫
0

ds

s∫
0

ds′ Δ(s)μ(s, s′)Σ(s′),

(4.113)

where

Σ(s) =
1

2
[x(s) + x′(s)]. (4.114)

Using Eq. (4.113) and Eq. (4.108) in Eq. (4.98) we have the IF for a single
mode n, reverting back to the mode subscripts in the notation,

Fn[x, x
′] = exp

[
− 2i

�

∫ t

0

ds

∫ s

0

ds′Δ(s)μn(s, s
′)Σ(s′)

− 1

�

∫ t

0

ds

∫ s

0

ds′Δ(s)νn(s, s
′)Δ(s′)

]
. (4.115)

The full IF is then obtained by substituting Eq. (4.115) in Eq. (4.60). We get

F [x, x′] = exp

[
− 2i

�

∫ t

0

ds

∫ s

0

ds′Δ(s)μ(s, s′)Σ(s′)

− 1

�

∫ t

0

ds

∫ s

0

ds′Δ(s)ν(s, s′)Δ(s′)

]
, (4.116)

where

μ(s, s′) = −
∫ ∞

0

dω I(ω)× sin(ω(s− s′)), (4.117)

is the dissipation kernel,

ν(s, s′) =

∫ ∞

0

dω I(ω) coth(
�ω

2kBT
){cosh(2r(ω)) cos[ω(s− s′)]

− sinh(2r(ω)) cos[ω(s+ s′)− 2Φ(ω)] (4.118)

is the noise kernel, and

I(ω) =
∑
n

c2n
2κn

δ(ω − ωn) (4.119)

is the spectral density of the reservoir. Note that the idea behind the Eq.
(4.119) is based on the fact that the environment (reservoir) is composed of
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a large number of oscillators such that within the time scales of interest, the
information that escapes the system into the environment does not return back
to it; hence the irreversibility. Thus in the dissipation and noise kernels, which
involve summation of the reservoir oscillator frequencies and square of the cou-
pling constants over all the reservoirs, the summations can be converted into
integrals, in the mathematical limit of an infinite number of reservoir oscil-
lators. The spectral density (4.119) characterizes this transition. In practical
calculations, the reservoir is handled by assuming phenomenological forms of
the spectral density, a very well known form being the Ohmic density which
has a linear frequency dependence. We will make use of the spectral density in
a number of model calculations in this book.

Note that the second term on the RHS of the noise kernel (4.118) has
a non-stationary contribution. This is a result of the squeezing inherent in
the bath initial conditions and can lead to interesting physical consequences
such as preservation of quantum coherences for a longer time [113]. In the long
time limit these non-stationary contributions are washed out leading towards a
thermal distribution. From the above expressions the corresponding expressions
for simpler cases can be obtained. For example, the situation where we have a
thermal reservoir instead of a squeezed thermal reservoir is obtained by setting
r and Φ to zero. In Eq. (4.116),

Δ(s) = [x(s)− x′(s)] , Σ(s) =
1

2
[x(s) + x(s′)] , (4.120)

the well known center of mass and relative co-ordinates.

4.3.3 Semiclassical Interpretation of the Influence Functional

It is fruitful to consider the semi-classical behaviour of the open quantum sys-
tem represented by the IF, Eq. (4.116). This would be useful for elucidating
the meaning of the dissipation and noise kernels in (4.116). Consider an action
that generates the same IF as in Eq. (4.116)

S =

∫ t

0

ds [L(x, ẋ, s) + xζ(s)], (4.121)

where ζ(s) is a Gaussian stochastic force with a non-zero mean. This generates
the IF

F [Σ,Δ] =

〈
exp

[
i

�

∫ t

0

ds ζ(s)Δ(s)

]〉
. (4.122)

Here Σ, Δ are as in Eq. (4.120) and the average is a functional integral over ζ(s)
which is distributed according to a normalized probability density functional
P [ζ(s),Σ(s)]. The averaging can be performed to yield

F [Σ,Δ] = exp

[
i

�

∫ t

0

ds Δ(s)〈ζ(s)〉 − 1

�2

∫ t

0

ds

∫ s

0

ds′Δ(s)Δ(s′)C2(s, s
′)
]
.

(4.123)
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Here C2(s, s
′) is the second cumulant of the stochastic force ζ. The equation of

motion generated by Eq. (4.121) is

∂L
∂x

− d

dt

∂L
∂ẋ

+ 〈ζ(t)〉 = −ζ(t). (4.124)

Here ζ(t) is a Gaussian stochastic force with zero mean and 〈ζ(t)ζ(t′)〉 =
C2(t, t

′). By comparing Eq. (4.123) with Eq. (4.116), we find that

〈ζ(t)〉 ≡ −2

∫ s

0

ds′ μ(s, s′)Σ(s′), C2(s, s
′) ≡ �ν(s, s′). (4.125)

On substituting Eq. (4.125) in Eq. (4.124), we find the equation of motion, in
the semi-classical limit, to be

∂L
∂x

− d

dt

∂L
∂ẋ

− 2

∫ t

0

ds μ(t, s)x(s) = −ζ(t), (4.126)

with 〈ζ(t)ζ(t′)〉 = �ν(t, t′). In some special cases μ becomes the derivative of a
delta function. Then the above equation of motion becomes a typical dissipative
evolution equation, generating local dissipation. In general, we have non-local
dissipation along with noise ν.

Problem 5: Do the Gaussian integration to derive Eq. (4.123) from the
Eq. (4.122).

4.4 Propagator for linear Quantum Brownian Motion

Having discussed the influence functional for QBM in some detail, we use it to
get to the next step, i.e., the propagator. The bath is assumed to have started in
a special initial state called the squeezed thermal state which can have tangible
physical consequences. We take the problem of linear QBM , depicted by the
Hamiltonians in Eqs. (4.52) to (4.55) with the initial states being defined by
Eqs. (4.56) and (4.57).

We are interested in the reduced dynamics of the ‘open’ system of interest
S, which is obtained by tracing over the bath degrees of freedom. For this we
need the propagator which can be written as:

Jr(xf , x
′
f , t;xi, x

′
i, 0) =

xf∫
xi

x′
f∫

x′
i

Dx Dx′ exp

[
i

�
{SS [x]− SS [x

′]}
]
F [x, x′]

=

xf∫
xi

x′
f∫

x′
i

Dx Dx′ exp

[
i

�
A[x, x′]

]
(4.127)
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where F [x, x′] is the influence functional (IF), and A[x, x′] is the effective ac-
tion of the open system. As explained above, the IF can be written in the
representation independent form as

F [x, x′] = Tr[Û(t, 0)ρ̂E(0)Û
′†(t, 0)], (4.128)

where Û(t) and Û ′(t) are quantum propagators for the actions SE [q]+SSE [x, q]
and SE [q] + SSE [x

′, q] respectively. We will use the above form to evaluate the
IF. In the above equation:

SE [q] + SSE [x, q] =

t∫
0

ds

[∑
n

{
1

2
m[q̇2 − ω2q2]

}

+
∑
n

(−)cx(s)q(s)

]
. (4.129)

Here we have suppressed the subscript denoting the oscillator index. For the
Hamiltonians in Eqs. (4.52) to (4.55), the IF (4.128) can be evaluated, for the
initial conditions given by Eqs. (4.56, 4.57), see Eq. (4.116). Using the IF we
obtain the propagator as

Jr(Σf ,Δf , t; Σi,Δi, 0) =

∫ Σf

Σi

DΣ

∫ Δf

Δi

DΔ exp
{ i

�
A[Σ(s),Δ(s)]

}
, (4.130)

where the action

A[Σ(s),Δ(s)] =

∫ t

0

ds[M Σ̇(s)Δ̇(s)−MΩ2Σ(s)Δ(s)

−2

∫ s

0

ds′ Δ(s)μ(s, s′)Σ(s′) + i

∫ s

0

ds′ Δ(s)ν(s, s′)Δ(s′)]

=

∫ t

0

ds L. (4.131)

Here L stands for the Lagrangian. By tracing over the bath we obtain the
reduced density matrix of the system which is encapsulated in the propagator.
The procedure to solve the functional integral in Eq. (4.130) is similar to the
ones adapted earlier to workout the functional integral, Eq. (4.32), see also Eqs.
(4.33) and (4.34). The functional integrals being Gaussian, we can expand the
paths Σ(s) and Δ(s) about the stationary paths Σcl(s) and Δcl(s), see Eqs.
(5.98) and (5.99) below,

Σ(s) = Σcl(s) + α+(s)

Δ(s) = Δcl(s) + α−(s), (4.132)

where α±(s) are the quantum corrections. Using Eq. (4.132) in Eq. (4.130), we
get

Jr(Σf ,Δf , t; Σi,Δi, 0) = N(t, ti) exp

{
i

�
A[Σcl(s),Δcl(s)]

}
. (4.133)
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N(t, ti) is part of the functional containing quantum fluctuations around the
classical paths and is

N(t, ti) =

∫ α+=0;t

α+=0;ti

Dα+

∫ α−=0;t

α−=0;ti

Dα− exp
{ i

�
A[α+(s), α−(s)]

− 1

�

∫ t

ti

ds

∫ t

ti

ds′[α−(s)Δcl(s)ν(s, s
′)]

}
. (4.134)

Using Eqs. (4.133) and (4.134), we get, for ti = 0

Jr(Σf ,Δf , t; Σi,Δi, 0) = N(t, 0) exp

[
i

�
{b1ΣfΔf − b2ΣfΔi + b3ΣiΔf − b4ΣiΔi}

]

× exp

[−1

�
{a11Δ

2
i + a12ΔiΔf + a22Δ

2
f}

]
, (4.135)

where
b1(t) = Mu̇2(t), b2(t) = Mu̇2(0), (4.136)

b3(t) = Mu̇1(t), b4(t) = Mu̇1(0), (4.137)

amn(t) =
1

1 + δmn

∫ t

0

ds

∫ t

0

ds′ vm(s)ν(s, s′)vn(s′). (4.138)

The factor N(t, 0), in Eq. (4.134), can be obtained by the method adapted
earlier, see for example, the solution of the integrand in the second term in
the RHS of Eq. (4.34). Another, straightforward way, to do this would be to
obtain this factor from the normalization of the reduced density matrix, see
Eq. (4.146) below.

N(t, 0) =
b2(t)

2π�
. (4.139)

Problem 6: Do this.

In Eqs. (4.136) to (4.138), u1, u2, v1, v2 come from the solutions of the
equations

Σ̈cl(s) + Ω2Σcl(s) +
2

M

∫ s

0

ds′ μ(s, s′)Σcl(s
′) = 0, (4.140)

and

Δ̈cl(s) + Ω2Δcl(s) +
2

M

∫ t

s

ds′ μ(s′, s)Δcl(s
′) = 0, (4.141)

with I(ω) being the bath spectral density. Now the solutions of the equations
(4.140), (4.141) can be parametrized in terms of u and v as

Σcl(s) = Σiu1(s) + Σfu2(s), (4.142)

Δcl(s) = Δiv1(s) + Δfv2(s), (4.143)
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where in order that the classical solutions satisfy proper boundary conditions
we have

u1(0) = 1 = u2(t), u1(t) = 0 = u2(0), (4.144)

v1(0) = 1 = v2(t), v1(t) = 0 = v2(0). (4.145)

Problem 7: Consider the evolution of the reduced density matrix

ρSr (x, x
′, t) =

∫
dxidx

′
i J(x, x

′, t;xix
′
i, 0)ρ

S(xi, x
′
i, 0),

where the propagator J is given by Eq. (4.135). Assuming that the system
harmonic oscillator starts from the Gaussian state

ρS(xi, x
′
i, 0) = C̃e−ξx2

i+χxix
′
i−ξ∗x

′2
i ,

find out the final system state ρSr (x, x
′, t) at time t. Here ξ, χ are arbitrary

complex numbers and use may be made of Eq. (4.120).

4.5 Master Equation for Quantum Brownian Motion

The next step in the sequel is to obtain the master equation for a damped
harmonic oscillator , a paradigm model of QBM, starting from a separable
initial condition. This will unravel the physics behind QBM and also shed light
on the subject of quantum dissipation, in general.

The state of the system at any time t is given by

ρSr (xf , x
′
f , t) =

∫
dxidx

′
i Jr(xf , x

′
f , t;xi, x

′
i, 0)ρ

S(xi, x
′
i, 0). (4.146)

The following, introduced in [114], illustrates a neat way to get the master
equation, without having to solve Eq. (4.146). The basic idea is to differentiate
both sides of (4.146), making use of Eq. (4.135) to get

ρ̇Sr (Σf ,Δf , t) =

[
Ż

Z
+

i

�
ḃ1ΣfΔf − ȧ22

�
Δ2

f

]
ρSr (Σf ,Δf , t)

+
i

�
ḃ3Δf

∫
dΔidΣi ΣiJrρ

S
r (Σi,Δi, 0)

−1

�
(iḃ2Σf + ȧ12Δf )

∫
dΔidΣi ΔiJrρ

S
r (Σi,Δi, 0)

− i

�
ḃ4

∫
dΔidΣi ΣiΔiJrρ

S
r (Σi,Δi, 0)

− ȧ11
�

∫
dΔidΣi Δ

2
iJrρ

S
r (Σi,Δi, 0). (4.147)
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Now we express, in the above equation, terms inside the integrals and
depending upon the initial conditions, as differentials of the final conditions
which would enable them to be taken out of the integrand. Thus we have

ΔiJr =
i�

b2

∂Jr
∂Σf

+
b1
b2
ΔfJr, (4.148)

ΣiJr = − i

b3

[
�
∂Jr
∂Δf

+ (Δia12 + 2Δfa22)Jr

]
− b1

b3
ΣfJr, (4.149)

ΣiΔiJr = −
(
i�

b2

∂

∂Σf
+

b1
b2
Δf

)(
i�

b3

∂

∂Δf
+

i

b3

[
Δia12 + 2Δfa22

]
+

b1
b3
Σf

)
Jr,

(4.150)

Δ2
iJr = −�

2

b22

∂2Jr
∂Σ2

f

+ 2i�
b1
b22
Δf

∂Jr
∂Σf

+
b21
b22
Δ2

fJr. (4.151)

Using these we get the master equation as

i�
∂

∂t
ρSr (x, x

′, t) =
{−�

2

2M

(
∂2

∂x2
− ∂2

∂x′2

)
+

M

2
Ω2

ren(t)(x
2 − x′2)

}
ρSr (x, x

′, t)

− i�Γ(t)(x− x′)
(

∂

∂x
− ∂

∂x′

)
ρSr (x, x

′, t)

+ iDpp(t)(x− x′)2ρSr (x, x
′, t)

− �(Dxp(t) +Dpx(t))(x− x′)
(

∂

∂x
+

∂

∂x′

)
ρSr (x, x

′, t)

− i�2Dxx(t)

(
∂

∂x
+

∂

∂x′

)2

ρSr (x, x
′, t). (4.152)

Here we have reverted back to the original coordinates and the coefficients
are
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Ω2
ren(t) =

b1ḃ3
Mb3

− ḃ1
M

, (4.153)

Γ(t) =
−1

2

(
ḃ3
b3

− ḃ2
b2

)
, (4.154)

Dpp(t) =
b21
b2

(
a12
M

− ȧ11
b2

)
+

2b1
M

a22 − ȧ22 +
2ḃ3
b3

a22 + a12
b1ḃ3
b2b3

− ȧ12
b1
b2
,

(4.155)

Dxp(t) = Dpx(t) =
−1

2

[
ȧ12
b2

− 2a22
M

− ḃ3
b3b2

a12 − 2b1
b2

(
a12
M

− ȧ11
b2

)]
,

(4.156)

Dxx(t) =
1

b2

(
a12
M

− ȧ11
b2

)
. (4.157)

Here Γ(t) is the dissipation term, Dpp(t) is the term responsible for de-
coherence in x, Dxp(t), Dpx(t) are the so called anomalous diffusion terms
(important in low temperature regimes) and Dxx(t) causes decoherence in p.
This term (Dxx(t)) is entirely due to the non-stationary effects introduced by
the squeezing in the bath and would be absent in a master equation describing
an evolution due to a thermal bath, such as in Halliwell and Yu [115]. The
coefficients of the master equation (4.152) are in general time-dependent in-
dicative of the non-Markovian nature of the problem. This equation therefore
describes the physics of linear QBM in a compact fashion. The master equation
(4.152) is a generalization of the well-known Caldeira Leggett master equation
for quantum dissipation [48], in that it includes the anomalous diffusion terms
as well as the Dxx(t) term.

Another useful equation that can be obtained from the master equation is
the Wigner equation [19]. The Wigner equation may be employed for calculation
of various correlation functions in a quasiclassical manner. The Wigner equation
serves as a starting point of a number of investigations in transport theory [92].
Also, it has been used to establish the quantum-classical connection, see for e.g.
[116, 117, 118, 119]. The Wigner equation is obtained from the master equation
(4.152) by the prescription

∂

∂t
W (p, x, t) =

1

2π�

∞∫
−∞

dy e
i
�
py

〈
x− 1

2
y

∣∣∣∣∣ ∂∂tρSr
∣∣∣∣∣x+

1

2
y

〉
. (4.158)
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Using this and Eq. (4.152) we get

∂W

∂t
= − 1

M

∂

∂x
pW +MΩ2

ren(t)
∂

∂p
xW + 2Γ(t)

∂

∂p
pW

− �Dpp(t)
∂2

∂p2
W − � (Dxp(t) +Dpx(t))

∂2

∂x∂p
W

− �Dxx(t)
∂2

∂x2
W. (4.159)

Problem 8: Derive the Eq. (4.159) from Eq. (4.152).

The Eq. (4.152) is the generalization of the equation obtained by [115]
using a thermal bath and reduces to it by setting the squeezing parameters to
zero.

4.6 Guide to advanced literature

In this Chapter, after introducing the general framework of IFs for both sep-
arable as well as correlated initial conditions, we have worked out in detail
the problem of linear QBM starting from separable initial conditions. However,
there has been a number of advances over these simple cases. Thus, there have
been studies where the problem of IF for the QBM starting from non-separable
initial conditions have been considered [1, 10, 95, 117, 116, 118, 119]. These
involve, along with the real time path integrals studied here, imaginary time
path integrals. Also, the problem of non-linear QBM, with non-linear system-
reservoir couplings, have also been considered [98, 118]. Getting a firm grip
of the techniques discussed in this chapter would enable the reader to tackle
these, more advanced, applications of the IF technique easily. Bounds on the
low energy spectral behavior of the system-bath coupling comes from the van
Hove bound, see for e.g., [120].
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Chapter 5

Dissipative Harmonic Oscillator

5.1 Introduction

This chapter is devoted to the dissipative harmonic oscillator, a paradigm model
of open quantum systems. We present two well known approaches to this prob-
lem, viz., the semigroup or the Lindbladian approach and the quantum Brow-
nian approach. The physical conditions under which each regime is operational
are spelled out. The models are developed in detail. A brief comparison is made
with other master equations studied in the literature. The problem of quantum
Brownian motion is tackled both in the perturbative as well as in the non-
perturbative regimes. The well known Caldeira-Leggett model is retrieved. An
explicit calculation is made of the diagonalization of the dissipative harmonic
oscillator, in the non-perturbative quantum Brownian regime. The fluctuation-
dissipation theorem is spelled out. The last part of the chapter is devoted to
the application of the dissipative harmonic oscillator to foundational issues,
such as quantum phase distribution and complementarity between number and
phase. In this context, an operator solution of the Lindbladian master equation
is presented.

5.2 Lindbladian Approach to the Damped Oscillator

We have already discussed the LGKS master equation in Chapter 3. The stan-
dard form of the Lindblad equation, derived there, can be also expressed as

dρS(t)

dt
= LρS(t), (5.1)

where

LρS(t) = − i

�
[H, ρS(t)] +

1

2�

∑
j=1

([
Bjρ

S(t), B†
j

]
+

[
Bj , ρ

S(t)B†
j

])
. (5.2)

To make contact with the earlier notation, the operators Bj here are related to
the operators Aj , there, by Bj = γjAj . Also, in our earlier discussion of this
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equation we had set � to one. Note that the first term on the RHS of Eq. (5.2) is
the von Neumann term responsible for unitary evolution while the second term
depicts dissipation and decoherence or dephasing, both irreversible processes.
Markovian master equations have, modulo some rearrangements, the form as
in Eq. (5.2), even for unbounded generators, as would be the case for harmonic
oscillators. In this context, a general construction of the Bj operators can be
affected by assuming that they are functions of x and p, position and momentum
operators of the system, such that [x, p] = i�. Thus, we can assume Bj and H to
be at most first and second degree polynomials in the noncommuting operators
x and p, respectively [57, 77]. As a matter of fact, a linear space spanned by
such polynomials is invariant under the action of the completely dissipative
mapping L, Eq. (5.2). Hence, in general we have

Bi = αip+ βix, i = 1, 2 (5.3)

where αi, βi are complex numbers. Also,

H =
1

2m
p2 +

mω2

2
x2 +

χ

2
(px+ xp). (5.4)

With this parametrization, LρS(t) (5.2) can be written as

LρS(t) = − i

�
[H0, ρ

S(t)]− i

2�
(λ+ χ)[x, (ρS(t)p+ pρS(t))]

+
i

2�
(λ− χ)[p, (ρS(t)x+ xρS(t))]− Dpp

�2
[x, [x, ρS(t)]]

− Dxx

�2
[p, [p, ρS(t)]] +

Dpx

�2
[x, [p, ρS(t)]] +

Dxp

�2
[p, [x, ρS(t)]]. (5.5)

Here

H0 =
1

2m
p2 +

mω2

2
x2, Dxx =

�

2

2∑
i=1

|αi|2, Dpp =
�

2

2∑
i=1

|βi|2,

Dpx = Dxp = −�

2
Re

2∑
i=1

α∗
i βi, λ = Im

2∑
i=1

α∗
i βi. (5.6)

The master equation (5.1) with RHS given by Eq. (5.5) includes within its
ambit, the dissipative interaction of the harmonic oscillator with a squeezed
thermal bath, to which we will get familiar with in Chapter 8. Using the x, p
commutation relations, the Eq. (5.5) can be rearranged and expressed as

LρS(t) = − i

�
[H0, ρ

S(t)]− i

2�
(λ− χ)[ρS(t), (px+ xp)]− i

�
λ[x, (pρS(t)

+ ρS(t)p)]− Dpp

�2
[x, [x, ρS(t)]]− Dxx

�2
[p, [p, ρS(t)]] (5.7)

+
(Dpx +Dxp)

�2
[p, [x, ρS(t)]]. (5.8)
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Problem 1: Derive Eqs. (5.5) and (5.8).

The diffusion coefficients Dxx, Dpp and Dxp satisfy certain constraints,
that is,

(a). Dxx > 0, (5.9)

(b). Dpp > 0, (5.10)

(c). Dxx Dpp −D2
px ≥ λ2

�
2/4. (5.11)

The Eqs. (5.9) and (5.10) follow in a straightforward manner from Eqs. (5.6).
Eq. (5.11) follows from Eq. (5.6) and the Schwartz inequality

(
Re

2∑
i=1

α∗
i βi

)2

+

(
Im

2∑
i=1

α∗
i βi

)2

≤
2∑

i=1

|αi|2
2∑

i=1

|βi|2. (5.12)

Problem 2: Derive Eq. (5.11).

Eqs. (5.5) or (5.8) have been used in the literature in various guises [121].
The master equation for the damped harmonic oscillator, discussed in [19], is a
particular case of this equation. There λ was equal to χ. Variants of Eq. (5.5)
have been used to study collective modes in inelastic collisions of heavy ions,
see for example, [122, 123, 124]. The evolution of a general electromagnetic
field mode coupled to a squeezed thermal bath, of great relevance to studies
in quantum optics and information, and to which we shall return to later in
Chapter 8, has been derived and analyzed in [125, 126]. This equation is a
simplified version of Eq. (5.5). The damping of a harmonic oscillator, in the
context of quantum Brownian motion [127, 128] as well as the damping of
quantum coherence [129] have been addressed using master equations that are
subsets of Eqs. (5.5) or (5.8), with λ = χ = γ, Dxx = Dxp = Dpx = 0 and
Dpp = 2γ(Nth + 1/2)mω�. Here γ is the damping constant, its meaning will
become clearer shortly, and Nth is the Planck distribution giving the number of
thermal photons at a particular frequency, see for example, below Eq. (96) in
Chapter 3. Further, in [130], a variant was applied to lasers. Among the models
discussed here, there are some which satisfy the constraints laid down in Eqs.
(5.9) to (5.11) and others which do not. Those which do satisfy belong to the
category of Lindblad evolution while the others do not strictly belong to the
Lindblad category.
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Now we will use Eq. (5.5) to study the behaviour of the mean and variances
of x and p. The quantities of interest are

σx(t) = Tr

(
xρS(t)

)
,

σxx(t) = Tr

(
x2ρS(t)

)
− (σx(t))

2,

σxp(t) = Tr

((
xp + px

2

)
ρS(t)

)
− σx(t)σp(t). (5.13)

The other quantities such as σp(t), σpp(t) can be defined analogously. The
equations of motion of the above quantities can be easily derived. Thus, for
example,

dσx(t)

dt
= Tr

(
dρS(t)

dt
x

)
= Tr

(
(LρS(t))x

)
, (5.14)

dσxx(t)

dt
= Tr

(
(LρS(t))x2

)
− 2σx(t)

dσx(t)

dt
. (5.15)

The equations for the other quantities can be set up in a similar fashion. Using
Eq. (5.5) in Eq. (5.14) we get for the means

dR1(t)

dt
= M1R1(t), (5.16)

where

R1(t) =

(
σx(t)
σp(t)

)
, M1 =

(−(λ− χ) 1
m−mω2 −(λ+ χ)

)
. (5.17)

The Eq. (5.16) is a linear homogeneous matrix differential equation and has
the solution

R1(t) = V −1eMdtV R1(0), (5.18)

where M1 = V −1MdV . Here Md is the diagonal matrix.

Problem 3: Derive Eq. (5.18).

There are two cases:
(a). Overdamped Case:
Here χ > ω and

Md =

(−(λ+ ν) 0
0 −(λ− ν)

)
, (5.19)

and

V =

(
mω2 (χ+ ν)
mω2 (χ− ν)

)
, (5.20)
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with ν2 = χ2 − ω2. With these, we get from Eq. (5.18)

σx(t) = e−λt
[(

cosh(νt) +
χ

ν
sinh(νt)

)
σx(0) +

1

mω
sinh(νt)σp(0)

]
, (5.21)

σp(t) = e−λt
[
− mω2

ν
sinh(νt)σx(0) +

(
cosh(νt)− χ

ν
sinh(νt)

)
σp(0)

]
. (5.22)

Problem 4: Derive Eqs. (5.21) and (5.22).

From these solutions it is easy to see that for λ > ν, the asymptotic values
tend to zero, that is, σx(∞) = σp(∞) = 0, while for λ < ν, σx(∞) = σp(∞) =
∞.

(b). Underdamped Case:
Here χ < ω and

Md =

(−(λ+ iΩ) 0
0 −(λ− iΩ)

)
, (5.23)

and

V =

(
mω2 (χ+ iΩ)
mω2 (χ− iΩ)

)
. (5.24)

In these equations, Ω2 = ω2−χ2. With Eqs. (5.23) and (5.24), Eq. (5.18) yields

σx(t) = e−λt
[(

cos(νt) +
χ

Ω
sin(Ωt)

)
σx(0) +

1

mΩ
sin(Ωt)σp(0)

]
, (5.25)

σp(t) = e−λt
[
− mω2

Ω
sin(Ωt)σx(0) +

(
cos(Ωt)− χ

Ω
sin(Ωt)

)
σp(0)

]
. (5.26)

Note that σx(∞) = σp(∞) = 0.

Problem 5: Derive Eqs. (5.25) and (5.26).

Following a similar strategy, we use Eq. (5.5) in Eq. (5.15) and get for the
variances

dΘ(t)

dt
= M2Θ(t) + Γ, (5.27)

where

Θ(t) =

⎛⎝mωσxx(t)
1

mωσpp(t)
σpx(t)

⎞⎠ , (5.28)

M2 =

⎛⎝−2(λ− χ) 0 2ω
0 −2(λ+ χ) −2ω
−ω ω −2λ

⎞⎠ , (5.29)
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and

Γ =

⎛⎝2mωDxx
2

mωDpp

2Dpx

⎞⎠ . (5.30)

Eq. (5.27) is an inhomogeneous matrix linear differential equation and has the
solution

Θ(t) =

(
V2e

M2dtV −1
2

)
Θ(0) + V2

(
eM2dt − 1

)
M−1

2d V −1
2 Γ, (5.31)

where M2d is the diagonal matrix M2 = V2M2dV
−1
2 .

Problem 6: Derive Eq. (5.31).

Now we turn to the overdamped and underdamped cases.

(a). Overdamped:

Here χ > ω. Also,

V2 =
1

2ν

⎛⎝χ+ ν χ− ν 2ω
χ− ν χ+ ν 2ω
−ω −ω −2χ

⎞⎠ , (5.32)

M2d =

⎛⎝−2(λ− χ) 0 0
0 −2(λ+ χ) 0
0 0 −2λ

⎞⎠ . (5.33)

Here ν2 = χ2 − ω2.

(b). Underdamped:

Now χ < ω and

V2 =
1

2iΩ

⎛⎝χ+ iΩ χ− iΩ 2ω
χ− iΩ χ+ iΩ 2ω
−ω −ω −2χ

⎞⎠ , (5.34)

M2d =

⎛⎝−2(λ− iΩ) 0 0
0 −2(λ+ iΩ) 0
0 0 −2λ

⎞⎠ . (5.35)

Here Ω2 = ω2 − χ2. From Eq. (5.31) it can be seen that

Θ(∞) = −M−1
2 Γ. (5.36)

This brings out the asymptotic connection between the variances and vari-
ous diffusion constants and holds for both the overdamped and underdamped
regimes.

98 Dissipative Harmonic Oscillator



5.3 Quantum Brownian Motion

We now come to the important example of quantum Brownian motion of the
harmonic oscillator. We have encountered this before, see Eqs. (17) to (20),
Chapter 3. The total Hamiltonian is

H = HS +HR +HSR

=
p2

2m
+ Vren(x) +

∑
i

[ p2i
2mi

+
1

2
miω

2
i q

2
i

]
−

∑
i

cixqi. (5.37)

Here Vren(x) = V (x) +
∑

i
c2i

2miω2
i
x2 is the renormalization of the potential

V (x) = 1
2mω2x2 due to interaction with the bath. The term added to the

harmonic potential is sometimes called the counter-term. The study of quantum
Brownian motion can proceed depending upon the regime for which it is to be
applied. Based on this, we could have (a). weak coupling, high temperature T
master equation and (b). strong coupling, low T master equation.

5.3.1 Weak coupling, high T regime

Here we follow along the lines of the derivation of the LGKS master equation,
Section 6.1 in Chapter 4 and begin with Eq. (73) there, representing the Born-
Markov (weak coupling, memoryless) regime. Re-written in the Schrödinger
picture, we have

d

dt
ρS(t) =

−i

�

[
HS +Hcounter, ρ

S(t)
]
+ LρS(t), (5.38)

where Hcounter =
∑

i
c2i

2miω2
i
x2 is the above defined counter-term. Also, HS is

as in Eq. (5.37) and

LρS(t) = − 1

�2

∫ ∞

0

dsTrR[HSR, [HSR(−s), ρS(t)⊗ ρR]]. (5.39)

The terms appearing here are as defined in Eq. (5.37). Also, HSR(−s) repre-
sents interaction picture operator w.r.t. HS+HR. We will assume that initially
the system, here the quantum Brownian oscillator, is separated from its reser-
voir HR, of harmonic oscillators. This is often known as the separable initial
condition. Further, the reservoir is assumed to be in thermal equilibrium at a
temperature T , with the reservoir density matrix ρR being in accordance with
the canonical distribution

ρR =

(
Z
)−1

e−βHR , (5.40)

where β = 1/(kBT ) and Z = TrRe
−βHR . To proceed further, it is convenient

to define the following correlation operators

C1(s) = i〈[R(s), R(0)
]〉 = i〈[R(0), R(−s)

]〉, (5.41)

C2(s) = 〈{R(s), R(0)}〉 = 〈{R(0), R(−s)}〉. (5.42)

5.3 Quantum Brownian Motion 99



Here R =
∑

i ciqi, Eq. (5.37), is the reservoir operator. The angular brackets
in the above equation denote average w.r.t. the reservoir density matrix ρR.
Also, the curly brackets in Eq. (5.42) denote the anticommutation operation.
Defining the reservoir spectral density I(ω) as

I(ω) =
∑
i

c2i
2miωi

δ(ω − ωi). (5.43)

With this, the reservoir correlation functions C1(s) and C2(s) can be expressed
as

C1(s) = 2�

∫ ∞

0

dωI(ω) sin(ωs), (5.44)

C2(s) = 2�

∫ ∞

0

dωI(ω) coth(β�ω/2) cos(ωs). (5.45)

Let us sketch the derivation of the above equations. To begin, we note that the
reservoir operator R(s) has the form, in the interaction picture,

R(s) =
∑
i

ci

√
�

2miωi

(
e−iωitai + eiωita†i

)
, (5.46)

where we have used the standard expansion of the position operator q in terms
of the annihilation a and creation a† operators, that is,

qi =

√
�

2miωi

(
ai + a†i

)
. (5.47)

Now consider C1(s) (5.41) which becomes, using Eq. (5.46),

C1(s) = i
∑
i,j

cicj
�

2
√
miωimjωj

[
ai + a†i , eiωjsaj + e−iωjta†j

]
. (5.48)

By the linearity of the commutation operation, this yields four terms, two of
which are zero. Using

[
ai, a

†
j

]
= δij , we see that C1(s) reduces to

C1(s) = 2�
∑
i

c2i
2miωi

sin(ωis) = 2�

∫ ∞

0

dωI(ω) sin(ωs). (5.49)

In the last step we have made use of Eq. (5.43). Thus, Eq. (5.44) is recovered.
Eq. (5.45) can be obtained in a similar fashion. Here the reservoir averages
would need to be done. These can be easily done using the identity presented
in Eq. (46), Chapter 2.

Problem 7: Derive Eq. (5.45).
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Using Eqs. (5.41) and (5.42), Eq. (5.39) can be re-written as

LρS(t) = 1

2�2

∫ ∞

0

ds

(
iC1(s)

[
x,

{
x(−s), ρS(t)

}]− C2(s)
[
x,

[
x(−s), ρS(t)

]])
.

(5.50)
In order to model dissipative dynamics, an irreversible process, the reservoir
spectral density is phenomelogically modeled by a continuous distribution of
oscillator modes. Thus, the summation over discrete frequencies is replaced by
an integral over a continuous ω. A common form of the spectral density I(ω)
is the Ohmic spectrum

I(ω) =
2mγ

π
ω, (5.51)

where γ is a damping constant. Ohmic spectral density simulates what is com-
monly known as white noise. In order to control the high frequency effect of the
Ohmic spectrum, it is usually found feasible to modify it with an appropriate
upper cut-off frequency Ωc. Thus, for example, Eq. (5.51) could be modified to

I(ω) =
2mγ

π
ω

Ω2
c

Ω2
c + ω2

. (5.52)

Now we make a crucial assumption that defines the regime of quantum Brow-
nian motion and separates it from that of the LGKS master equation. Here we
assume that the system has very little time to evolve before the effect of the
environment becomes active, that is, τS � τR, where τS and τR are the typical
system and reservoir time scales, respectively. Hence, the system evolves little,
before the environmental influence takes effect. Thus, the evolution of a system
operator O is

O(t− s) ≈ O(t)− sȮ(t), (5.53)

where Ȯ(t) = − i
�

[
O(t), HS(t)

]
. We make use of this condition in Eq. (5.50),

with x(−s) ≈ x− p
ms, to get

LρS(t) = i

2�2

∫ ∞

0

ds C1(s)
[
x,

{
x, ρS

}]− i

2�2m

∫ ∞

0

ds s C1(s)
[
x,

{
p, ρS

}]
− 1

2�2

∫ ∞

0

ds C2(s)
[
x,

[
x, ρS

]]
+

1

2�2m

∫ ∞

0

ds s C2(s)
[
x,

[
p, ρS

]]
.

(5.54)

Using Eq. (5.43) we see that∫ ∞

0

ds C1(s) = 2�
∑
i

c2i
2miω2

i

. (5.55)

This enables us to express the first term on the RHS of Eq. (5.54) as i
�

[
Hc, ρ

S
]
.

This compensates the corresponding counter term on the RHS of Eq. (5.38),
resulting in the cancellation of the reservoir induced renormalization of the
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system Hamiltonian. To tackle the second term on the RHS of Eq. (5.54), we
observe that ∫ ∞

0

ds s sin(ωs) = −πδ′(ω). (5.56)

From this, using an Ohmic spectral density (5.51), it is straightforward to see
that ∫ ∞

0

ds s C1(s) = 2mγ�. (5.57)

Hence, the second term on the RHS of Eq. (5.54) is seen to be −iγ
�

[
x, {p, ρS}].

Further, ∫ ∞

0

ds C2(s) = 4mγkBT. (5.58)

The third term on the RHS of Eq. (5.54) is thus seen to be − 2mγkBT
�2

[
x,

[
x, ρS

]]
.

Similarly, the fourth term on the RHS of Eq. (5.54) can be shown to be
2γkBT
�2Ω

[
x,

[
p, ρS

]]
, where Ω is an upper cut-off frequency of the reservoir os-

cillators. This turns out to be very small compared to the third term and hence
can be neglected. Collecting all these terms, and using Eq. (5.54), the quantum
Brownian motion master equation is seen to be

d

dt
ρS(t) =

−i

�

[
HS , ρ

S(t)
]− i

γ

�

[
x, {p, ρS(t)}]− 2mγkBT

�2

[
x,

[
x, ρS(t)

]]
. (5.59)

This is sometimes called the Caldeira Leggett master equation [131]. Note that
since this master equation is derived by invoking the approximation τS � τR,
which is opposite to the rotating wave approximation regime, see Chapter 3.6,
it is not surprising that Eq. (5.59) is not of the Lindblad type.

Mean and second moments:
Using Eq. (5.59), the equations of motion of the mean and variance are

d〈x〉
dt

=
1

m
〈p〉, (5.60)

d〈p〉
dt

= −〈dV (x)

dx
〉 − 2γ〈p〉, (5.61)

d〈x2〉
dt

=
1

m
〈px+ xp〉, (5.62)

d〈px+ xp〉
dt

=
2

m
〈p2〉 − 2〈xdV (x)

dx
〉 − 2γ〈px+ xp〉, (5.63)

d〈p2〉
dt

= −〈pdV (x)

dx
+

dV (x)

dx
p〉 − 4γ〈p2〉+ 4mγkBT. (5.64)

For a harmonic potential, dV (x)
dx = mω2x. For the case of a free particle un-

dergoing Brownian motion, V (x) = 0. Then Eqs. (5.60) and (5.61) yield, in a
trivial manner,

〈x(t)〉 = 〈x(0)〉+ 1

2mγ

(
1− e−2γt

)〈p(0)〉, (5.65)

〈p(t)〉 = e−2γt〈p(0)〉. (5.66)
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Similarly the second moments can be seen to be

σ2
x(t) = σ2

x(0) +

(
1− e−2γt

2γ

)2σ2
p(0)

m2
+

1− e−2γt

2mγ
σpx(0)

+
kBT

mγ2

[
γt− (

1− e−2γt
)
+

1

4

(
1− e−4γt

)]
, (5.67)

σ2
p(t) = e−4γtσ2

p(0) +mkBT
(
1− e−4γt

)
, (5.68)

σ2
px(t) = e−2γtσ2

px(0) +
1

mγ

(
1− e−2γt

)
e−2γtσ2

p(0)

+
kBT

γ

(
1− e−2γt

)2
. (5.69)

Note that the symbols of the mean and the second moments are as defined in
Eq. (5.13). From these expressions it is easily seen that, in the long time limit,
σ2
x(t) → kBT

mγ t, that is, it shows diffusive behaviour, while the corresponding
variance in momentum approaches the stationary value of mkBT .

Problem 8: Derive Eqs. (5.65) to (5.69). Also, find out the mean position
and momentum for the case of a Brownian particle moving in a harmonic
potential V (x) = 1

2mω2x2.

Equations of Motion Approach:

The equations of motion approach is based on the study of evolution of
the operators, in the Heisenberg picture and compliments the master equation
approach, which is basically in the Schrödinger picture, discussed above. Given
the Hamiltonian, Eq. (5.37), the equations of motion of the system S and the
reservoir operators are

ẋ(t) =
i

�

[
H,x(t)

]
=

1

m
p, (5.70)

q̇i(t) =
i

�

[
H, qi(t)

]
=

1

mi
pi, (5.71)

ṗ(t) =
i

�

[
H, p(t)

]
= −dVren(x(t))

dx
+

∑
i

ciqi(t), (5.72)

ṗi(t) =
i

�

[
H, pi(t)

]
= −miω

2
i qi(t) + cix(t). (5.73)

From these equations, it is easy to see that the equations of motion of the
system and reservoir coordinates are

mẍ(t) +
dVren(x(t))

dx
−

∑
i

ciqi(t) = 0, (5.74)

mq̈i(t) +miω
2
i qi(t)− cix(t) = 0. (5.75)
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In order to obtain the solution of the system coordinate, the strategy would be
to solve Eq. (5.75) and substitute it into Eq. (5.74). The solution of Eq. (5.75)
is

qi(t) =

√
�

2miωi

(
e−iωitai + eiωita†i

)
+

ci
miωi

∫ t

0

du sin
(
ωi(t− u)

)
x(u). (5.76)

Here use is made of Eq. (5.47). Eq. (5.76) is now substituted into Eq. (5.74)
such that we obtain the equation of motion of the Brownian system coordinate

ẍ(t) +
1

m

dVren(x(t))

dx
− 1

�m

∫ t

0

duC1(t− u)x(u) =
1

m
F(t). (5.77)

Here C1(t) is as defined in Eq. (5.44) and F(t) is the interaction picture operator

F(t) =
∑
i

ci

√
�

2miωi

(
e−iωitai + eiωita†i

)
. (5.78)

Its Schrödinger picture counterpart is
∑

i ciqi(0). In the present context, it is
convenient to express the dissipation kernel C1(u) in terms of the damping
kernel γ, such that

d

dt
γ(t− u) = − 1

�m
C1(t− u). (5.79)

This has the advantage that the integral of the dissipation kernel, in Eq. (5.77),
is split into two parts

− 1

�m

∫ t

0

duC1(t− u)x(u) =
d

dt

∫ t

0

duγ(t− u)x(u)− γ(0)x(t). (5.80)

The last term in the RHS of the above equation takes care of the counterterm in
the potential Vren(x) in Eq. (5.77) such that the Heisenberg equation of motion
can be reexpressed as

ẍ(t) +
1

m

dV (x(t))

dx
+

d

dt

∫ t

0

duγ(t− u)x(u) =
1

m
F(t). (5.81)

This has the form of a stochastic differential equation with damping γ(t − u)
and fluctuation determined by F(t), which in turn depend upon the initial
distribution of the reservoir oscillators, Eq. (5.78). For the case of a harmonic
potential V (x) = 1

2mω2x2, Eq. (5.81) becomes

ẍ(t) + ω2x(t) +
d

dt

∫ t

0

duγ(t− u)x(u) =
1

m
F(t). (5.82)

This equation can be easily solved to yield

x(t) = G1(t)x(0) +G2(t)ẋ(0) +
1

m

∫ t

0

duG2(t− u)F(u). (5.83)
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Here G1 and G2 are Green’s functions providing the solutions of the homoge-
neous part of Eq. (5.82) [10].

Problem 9: Prove Eq. (5.83).

5.3.2 Strong coupling regime

For the problem of quantum Brownian motion of a harmonic oscillator system,
the problem of dissipation can be easily studied in the strong coupling regime
as well. For this we resort to the technique of Path Integration, in particular,
the influence functionals studied in the previous chapter. This enables a non-
perturbative solution to the problem. For convenience, we recapitulate some of
the material required for our present purpose. The Hamiltonian is

H = HS +HR +HSR, (5.84)

where

HS =
1

2
M

[
ẋ2 +Ω2x2

]
(5.85)

is the system Hamiltonian,

HR =
N∑

n=1

1

2
mn

[
q̇n

2 + ω2
nq

2
n

]
(5.86)

is the environment (reservoir) Hamiltonian, and

HSR = −
N∑

n=1

[cnxqn] + x2
N∑

n=1

c2n
2mnω2

n

(5.87)

is the system-environment interaction Hamiltonian. We use separable initial
conditions, i.e.,

ρ(0) = ρS0 ρ
R
0 , (5.88)

where
ρ̂R(0) = Ŝ(r,Φ)ρ̂thŜ

†(r,Φ). (5.89)

Here we have a squeezed thermal initial state, see for example, Chapter 4,
Section 3.2. Further,

ρ̂th =

[
1− exp

(−�ω

kBT

)]∑
n

exp

(−n�ω

kBT

)
|n〉〈n|, (5.90)

i.e., a thermal density matrix at temperature T and

Ŝ(r,Φ) = exp
[
r(B̂e−i2Φ − B̂†ei2Φ)

]
, (5.91)
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i.e., a squeeze operator [132]. Also,

B̂ =
b̂2

2
, B̂† =

b̂†
2

2
, (5.92)

and r, Φ are the squeeze parameters. By tracing over the bath we obtain the
reduced density matrix of the system which is encapsulated in the propagator

Jr(Σf ,Δf , t; Σi,Δi, 0) = Z(t, 0) exp

[
i

�
{b1ΣfΔf − b2ΣfΔi + b3ΣiΔf − b4ΣiΔi}

]

× exp

[−1

�
{a11Δ

2
i + a12ΔiΔf + a22Δ

2
f}

]
, (5.93)

where
b1(t) = Mu̇2(t), b2(t) = Mu̇2(0), (5.94)

b3(t) = Mu̇1(t), b4(t) = Mu̇1(0), (5.95)

amn(t) =
1

1 + δmn

∫ t

0

ds

∫ t

0

ds′ vm(s)ν(s, s′)vn(s′), (5.96)

and

Z(t, 0) =
b2(t)

2π�
. (5.97)

Here u1, u2, v1, v2 come from the solutions of the equations

Σ̈cl(s) + Ω̃2Σcl(s) +
2

M

∫ s

0

ds′ μ(s, s′)Σcl(s
′) = 0, (5.98)

and

Δ̈cl(s) + Ω̃2Δcl(s) +
2

M

∫ t

s

ds′ μ(s′, s)Δcl(s
′) = 0, (5.99)

where

Ω̃2 = Ω2 +
2

M

∫ ∞

0

dω
I(ω)

ω
, (5.100)

with I(ω) being the bath spectral density. The second term in the above equa-
tion arises as a result of the interaction of the system with the bath. In the
above equations

μ(s, s′) = −
∫ ∞

0

dω I(ω) sinω(s− s′) (5.101)

is the dissipation kernel and,

ν(s, s′) =
1

2

∫ ∞

0

dω I(ω) coth(
�ω

2kBT
){cosh(2r(ω))2 cosω(s− s′)

− sinh(2r(ω))e−i2Φ(ω)eiω(s+s′)

− sinh(2r(ω))ei2Φ(ω)e−iω(s+s′)} (5.102)
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is the noise kernel. The solutions of the equations (5.98), (5.99) can be
parametrized in terms of u and v as

Σcl(s) = Σiu1(s) + Σfu2(s), (5.103)

Δcl(s) = Δiv1(s) + Δfv2(s), (5.104)

where in order that the classical solutions satisfy proper boundary conditions
we have

u1(0) = 1 = u2(t), u1(t) = 0 = u2(0), (5.105)

v1(0) = 1 = v2(t), v1(t) = 0 = v2(0). (5.106)

In the above equations, v1(s) = u2(t − s) and v2(s) = u1(t − s). The state of
the system at any time t is given by

ρSr (xf , x
′
f , t) =

∫
dxidx

′
i Jr(xf , x

′
f , t;xi, x

′
i, 0)ρ

S(xi, x
′
i). (5.107)

Starting with a Gaussian initial state

ρS(xi, x
′
i, 0) = C̃e−ξx2

i+χxix
′
i−ξ∗x

′2
i , (5.108)

we obtain

ρSr (xf , x
′
f , t) = 2

√
C

π
e−AΔ2

f−2iBΔfΣf−4CΣ2
f , (5.109)

where

A =
a22
�

+
1

D

(
b23
�2

[
(2ξr + χ)

4
+

a11
�

]
+ (2ξi +

b4
�
)a12b3 − a212

�2
(2ξr − χ)

)
,

(5.110)

B =
−b1
2�

+
1

�2D

[
(ξi +

b4
2�

)b2b3 − (2ξr − χ)a12b2

]
, (5.111)

C =
1

4�2D
[2ξr − χ] b22, (5.112)

D = 4|ξ|2 − χ2 +
4

�
(2ξr − χ)a11 +

4

�
ξib4 +

b24
�2

. (5.113)

Here Δf = xf −x′
f , Σf = 1

2 (xf +x′
f ) and ξ = ξr + iξi. Now we diagonalize Eq.

(5.109). We have the following eigenvalue equation∫ ∞

−∞
dx′

f ρSr (xf , x
′
f , t)ϕn(x

′
f ) = pnϕn(xf ). (5.114)

We use the ansatz

ϕn(x) = NHn

[
2(AC)

1
4x

]
e−[2(AC)

1
2 +iB]x2

, (5.115)
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where Hn is the Hermite polynomial. Substituting Eq. (5.115) in Eq. (5.114)
and using∫ ∞

−∞
dt e−(t−z)2Hn(αt) = π

1
2 (1− α2)

n
2 Hn

(
α

(1− α2)
1
2

z

)
, (5.116)

we see that the eigenvalue equation is satisfied by

pn =
2
√
C

(
√
A+

√
C)

(√
A−√

C√
A+

√
C

)n

. (5.117)

Using this, we can calculate the von Neumann and linear entropies as

Svon = −trρS(t) ln(ρS(t)) = −
∑
n

pn ln pn

= − ln p0 − q

p0
ln q, (5.118)

where pn = p0q
n with p0 = 2

√
C

(
√
A+

√
C)

and q =
(√

A−√
C√

A+
√
C

)
. Also,

Slin = 1− trρS
2

(t) = 1−
∑
n

p2n

= 1−
√

C

A
. (5.119)

This could serve as a starting point for studying the approach to equilibrium
of a dissipative harmonic oscillator.

5.3.3 Fluctuation-Dissipation Theorem

Consider the standard Brownian motion scenario, a harmonic oscillator acted
upon by a force F (t). Then the response of the coordinate x to the force is

〈x〉t =
∫ t

0

dsχ(t− s)F (s). (5.120)

Here, as usual, the angular brackets signify average over an appropriate distri-
bution. Along similar lines the equilibrium autocorrelation function is

C(t) = 〈x(t)x〉. (5.121)

The structure of C(t) is such that it can be written as

C(t) = S(t) + iA(t), (5.122)

that is, split into a real S(t) = 1/2〈x(t)x + xx(t)〉 and imaginary A(t) =
1/(2i)〈x(t)x− xx(t)〉 part, the symmetric and anti-symmetric parts of the au-
tocorrelation function, respectively [10]. The anti-symmetric part is directly
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related to the response function as A(t) = −�/2χ(t). The symmetric and anti-
symmetric parts are themselves not independent. Their dependence is the for-
mal statement of fluctuation-dissipation theorem and can be expressed as

S(ω) = � coth(
β�ω

2
)χ̃(ω). (5.123)

Here S(ω) is the Fourier transform of S(t), that is, S(ω) =
∫∞
−∞ dtS(t)eiωt and

χ̃(ω) = i
2

[
χ̂(iω)−χ̂(−iω)

]
, where χ̂(ω) =

∫∞
0

e−ωtχ(t) is the Laplace transform
of χ(t). The statement of the fluctuation-dissipation theorem presented in Eq.
(5.123) is valid for arbitrary strong coupling of the linear harmonic oscillator
with its reservoir.

5.4 Foundational Issues

The problem of dissipative harmonic oscillator, as should be evident by now, is
ubiquitous to physics in general and open quantum systems in particular. Now
we will use the theory developed so far to some pertinent problems that fall
in the realms of foundational issues. The first will be the problem of phases in
the context of quantum mechanics. This will be followed by the closely related
problem of number, phase complementarity. These studies will be made in the
backdrop of the Lindbladian theory of dissipative harmonic oscillators.

5.4.1 Quantum Phase Distribution

One of the earliest investigations in this direction was made by Dirac [133]. In
a similar spirit, Pegg and Barnett [134], carried out a polar decomposition of
the annihilation operator and defined a Hermitian phase operator in a finite-
dimensional Hilbert space. However, there are some technical issues in trying
to define a Hermitian phase operator in an infinite-dimensional Hilbert space
[135, 136]. To circumvent this problem, the concept of phase distribution for
the quantum phase was introduced [135, 137]. Here, a phase distribution is
associated to a given state such that the average of a function of the phase
operator in the state, computed with the phase distribution, reproduces the
results of Pegg and Barnett.

We start by taking the harmonic oscillator to be the system of our interest
S with the Hamiltonian

HS = �ω

(
a†a+

1

2

)
. (5.124)

The number states {|n〉} serve as an appropriate basis for the system Hamilto-
nian and the system energy eigenvalue (5.124) in this basis is

En = �ω(n+
1

2
), (5.125)
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i.e., HS |n〉 = En|n〉. A phase distribution P(θ) for a given density operator ρ̂
associated with a state |θ〉 was defined as [137]

P(θ) =
1

2π
〈θ|ρ|θ〉, 0 ≤ θ ≤ 2π,

=
1

2π

∞∑
m,n=0

ρm,ne
i(n−m)θ, (5.126)

where the states |θ〉 are the analogues of the Susskind-Glogower [138] phase
operator and are defined in terms of the number states |n〉 as

|θ〉 =
∞∑

n=0

einθ|n〉. (5.127)

The sum in Eq. (5.126) is assumed to converge and the phase distribution
normalized to unity.

Now we will obtain the quantum phase distribution of a harmonic-
oscillator, Hs = �ω(a†a + 1

2 ), in a dissipative interaction with a squeezed
thermal bath. The reduced density matrix operator of the system S, in the
interaction picture, is given by [29, 2]

d

dt
ρs(t) = γ0(N + 1)

(
aρs(t)a† − 1

2
a†aρs(t)− 1

2
ρs(t)a†a

)
+ γ0N

(
a†ρs(t)a− 1

2
aa†ρs(t)− 1

2
ρs(t)aa†

)
+ γ0M

(
a†ρs(t)a† − 1

2
(a†)2ρs(t)− 1

2
ρs(t)(a†)2

)
+ γ0M

∗
(
aρs(t)a− 1

2
(a)2ρs(t)− 1

2
ρs(t)(a)2

)
. (5.128)

This is an extension of the master equation in Eq. (97), Chapter 3 to include
effects of reservoir squeezing and belongs to the family of master equations
represented by Eq. (5.1) with the RHS given by Eq. (5.5). In the above equation,
N , M are bath parameters, given below and γ0 is a parameter which depends
upon the system-bath coupling strength. The Eq. (5.128) can be solved using
a variety of methods (cf. [2], [29]). However, the solutions obtained thus are
not amenable to treatment of the quantum phase distribution by use of Eq.
(5.126). For this purpose we again briefly detail the solution of Eq. (5.128) in
an operator form [139, 140]. The following transformations are introduced [141]:

ρ
′s(t) = S†(ζ)ρs(t)S(ζ), a

′
= S†(ζ)aS(ζ), (5.129)

where

S(ζ) = e
1
2 (ζ

∗a2−ζa†2). (5.130)
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Using Eqs. (5.129) we get

a
′
= cosh(|ζ|)a− ζ

|ζ| sinh(|ζ|)a
†. (5.131)

Using Eqs. (5.129) and (5.131), Eq. (5.128) gets transformed to

d

dt
ρ

′s(t) =
[
αK+ + βK− + (α+ β)K0 +

γ0
2

]
ρ

′s(t), (5.132)

where

α = γ0N cosh(2|ζ|) + γ0 cosh
2(|ζ|)− γ0

2|ζ| sinh(2|ζ|)(Mζ∗ +M∗ζ),

β = γ0N cosh(2|ζ|) + γ0 sinh
2(|ζ|)− γ0

2|ζ| sinh(2|ζ|)(Mζ∗ +M∗ζ). (5.133)

The parameters involved in the above equation need to satisfy the following
consistency condition:

|ζ|
ζ
M coth(|ζ|) + ζ

|ζ|M
∗ tanh(|ζ|) = 2N + 1. (5.134)

It can be seen that

M =
1

2
sinh(2r)(2Nth + 1)eiΦ,

N = Nth(cosh
2(r) + sinh2(r)) + sinh2(r),

Nth =
1

e
�ω

kBT − 1
, ζ = reiΦ, (5.135)

satisfy Eq. (5.134). In Eq. (5.132), K+, K− and K0 are superoperators, i.e.,
operators in the space of operators, satisfying the following rules:

K+ρ
′s = aρ

′sa†, K−ρ
′s = a†ρ

′sa,K0ρ
′s = −1

2
(a†aρ

′s + ρ
′sa†a+ ρ

′s). (5.136)

These superoperators can be seen to satisfy:

[K−,K+] ρ
′s = 2K0ρ

′s, [K0,K±] ρ
′s = ±K±ρ

′s, (5.137)

which coincides with the commutation relations of the su(1, 1) Lie algebra.
This brings out the intimate connection between the solutions of the master
equation (5.128) and the generators of the su(1, 1) Lie algebra. Using the dis-
entangling theorems of the su(1, 1) Lie algebra, basically an application of the
BCH identities discussed in Chapter 2, Eq. (5.132) can be solved to yield:

ρ
′s(t) = e

γ0t
2 ey−(t)K−eln(y0(t))K0ey+(t)K+ρ

′s(0), (5.138)
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where

y0(t) =

(
αe

γ0t
2 − βe−

γ0t
2

γ0

)2

,

y+(t) =
α(e−γ0t − 1)

(βe−γ0t − α)
,

y−(t) =
β(e−γ0t − 1)

(βe−γ0t − α)
. (5.139)

Using Eqs. (5.138), (5.129), the solution of Eq. (5.128) can be written as

ρs(t) = S(ζ)
{
e

γ0t
2 ey−(t)K−eln(y0(t))K0ey+(t)K+S†(ζ)ρs(0)S(ζ)

}
S†(ζ). (5.140)

This is the form of solution of the master equation appropriate for investigation
of the quantum phase distribution. We will use a special initial state of the
system, the squeezed coherent state,

ρs(0) = |ζ, η〉〈η, ζ|, (5.141)

where

|ζ, η〉 = S(ζ)D(η)|0〉. (5.142)

Here |0〉 is the vacuum state and D(η) is the standard displacement operator.
Substituting Eq. (5.141) in Eq. (5.140), the solution of the Eq. (5.128) starting
from the initial state (5.141) is obtained as [140]

ρs(t) =
1

(1 + β̃(t))
e−β̃(t)|η̃(t)|2

∞∑
k=0

(
β̃(t)

(1 + β̃(t))

)k
1

k!

×
k∑

l,p=0

(
k
l

)(
k
p

)√
l!p!(η̃∗(t))k−l(η̃(t))k−p|ζ, η̃(t), l〉〈p, η̃(t), ζ|,

(5.143)

where

|ζ, η̃(t), l〉 = S(ζ)|η̃(t), l〉 = S(ζ)D(η̃(t))|l〉, (5.144)

and

β̃(t) =
β

γ0
(1− e−γ0t), η̃(t) = η

e−
γ0t
2

(1 + β̃(t))
. (5.145)

Here β is given by Eq. (5.133). In Eq. (5.144), D(η̃(t)) = eη̃(t)a
†−η̃∗(t)a and

D(η̃(t))|l〉 is known as the generalized coherent state (GCS) [142, 143] and thus
the state |ζ, η̃(t), l〉 would be the generalized squeezed coherent state (GSCS)
[143]. It can be seen from Eqs. (5.143) and (5.141) that under the action of the
master equation (5.128), a harmonic oscillator starting in a squeezed coherent
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state ends in a mixture that can be expressed as a sum over GSCS. Thus the
above case can be thought of as a concrete physical realization of GSCS.

Making use of the Fock-space representation of GCS [142]

|n, α(t)〉 = e−
|α(t)|2

2

∞∑
l=0

(
n!

l!

) 1
2

Ll−n
n (|α(t)|2)[α(t)]l−n|l〉, (5.146)

where Ll−n
n (x) is the generalized Laguerre polynomial, and substituting Eq.

(5.143) in Eq. (5.126), reverting back to the Schrödinger picture, we obtain the
quantum phase distribution of a dissipative harmonic oscillator starting in a
squeezed coherent state (5.141) as

P(θ) =
1

2π
e−|η̃(t)|2 e

−β̃(t)|η̃(t)|2

(1 + β̃(t))

∑
m,n

e−iω(m−n)tei(n−m)θ

×
∑
u,v,k

G∗
u,m(ζ)Gv,n(ζ)

(
β̃(t)

(1 + β̃(t))

)k
1

k!

k∑
l,p=0

(
k
l

)(
k
p

)

× l!p!√
(u!v!)

(η̃∗(t))v−p+k−l(η̃(t))u−l+k−pLu−l
l (|η̃(t)|2)L∗v−p

p (|η̃(t)|2).

(5.147)

In the above equation, Gm,n(ζ) = 〈m|S(ζ)|n〉 and is explicitly given, with
ζ = r1e

iφ, as [143]

G2m,2p =
(−1)p

(p)!(m)!

(
(2p)!(2m)!

cosh(r1)

) 1
2

exp (i(m− p)φ)

×
(
tanh(r1)

2

)(m+p)

F 2
1

[
−p,−m;

1

2
;− 1

(sinh(r1))2

]
. (5.148)

Similarly G2m+1,2p+1(ζ) is given by

G2m+1,2p+1 =
(−1)p

(p)!(m)!

(
(2p+ 1)!(2m+ 1)!

cosh3(r1)

) 1
2

exp (i(m− p)φ)

×
(
tanh(r1)

2

)(m+p)

F 2
1

[
−p,−m;

3

2
;− 1

(sinh(r1))2

]
. (5.149)

Gm,n is nonzero only for either m,n both even or both odd. For convenience it
is sometimes assumed that φ is zero and z = r1 is real. Here r1 = r, due to the
initial condition (5.141) and F 2

1 is the Gauss hypergeometric function [144].
In Fig. (5.1), we depict the quantum phase distributions P(θ) for a har-

monic oscillator system starting in a squeezed coherent state (5.141), for dis-
sipative system-bath interaction (Eq. (5.147)). The phase distribution is nor-
malized.
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Figure 5.1: Quantum phase distributions P(θ), for a harmonic oscillator system
starting in a squeezed coherent state, for dissipative system-bath interaction
(Eq. (5.147)). Temperature (in units where � ≡ kB ≡ 1) T = 0, the squeezing
parameters r = r1 = 1, bath exposure time t = 0.1, γ0 = 0.025, ω = 1 and
Φ = 0.

5.4.2 Number-Phase Complementarity

Two observables A and B of a d-level system are called complementary if knowl-
edge of the measured value of A implies maximal uncertainty of the measured
value of B, and vice versa [145]. Complementarity is an aspect of the Heisenberg
uncertainty principle, which says that for any state ψ, the probability distri-
butions obtained by measuring A and B cannot both be arbitrarily peaked if
A and B are sufficiently non-commuting. Expressed in terms of measurement
entropy the Heisenberg uncertainty principle takes the form:

H(A) +H(B) ≥ log d, (5.150)

where H(A) and H(B) are the Shannon entropy of the measurement outcomes
of a d-level quantum system [38, 146, 147].

An extension of Eq. (5.150) to the case where A or B is not discrete is
considered in [148]. The problem that Shannon entropy of a continuous ran-
dom variable may be negative is circumvented by using relative entropy (also
called Kullbäck-Leibler divergence, which is always positive) [149] with respect
to a uniform distribution. This quantity is a measure of knowledge [148]. This
generalization of the entropic uncertainty principle to cover discrete-continuous
systems still suffers from the restriction that the system must be finite dimen-
sional, since in the case of an infinite-dimensional system, such as an oscillator,
entropic knowledge of the number distribution can diverge, making it unsuitable
for infinite-dimensional systems. Therefore to set up an entropic version of the
uncertainty principle, that unifies and is applicable to all systems, including in-
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finite dimensional and/or continuous-variable systems, it may be advantageous
to use a combination of entropy and knowledge, in particular, the difference
between entropy of the discrete, infinite observable and between phase knowl-
edge.

We have already discussed the quantum phase distribution, Eq. (5.126).
Its complementary number distribution is

p(m) = 〈m|ρ|m〉, (5.151)

where |m〉 is the number (Fock) state.
We define entropic knowledge R[f ] of random variable f as its relative

entropy with respect to the uniform distribution 1
d , i.e.,

R[f ] ≡ S

(
f(j)||1

d

)
=

∑
j

f(j) log(df(j)). (5.152)

This enables the recasting of the Heisenberg uncertainty principle in terms of
entropy H and knowledge R, as

X(A,B) ≡ H(A)−R(B) ≥ 0. (5.153)

Here A and B are two Hermitian observables w.r.t. which we wish to study
the complementary behaviour. X(A,B) could be called the entropy excess. For
an infinite dimensional system such as a harmonic oscillator, the problem of
interest here would be to study the entropy excess of the harmonic oscillator
undergoing a dissipative interaction. To this effect we define entropic knowledge
by the functional [140]

R[P(θ)] =

∫ 2π

0

dθ P(θ) log[2πP(θ)], (5.154)

where the log(·) refers to the binary base.
It is at first not obvious that Eq. (5.153) holds for infinite dimensional

systems. Based on a result due to [150] for an oscillator system, which in turn
uses the concept of the (p, q)-norm of the Fourier transformation [151] for all
values of p, for an oscillator system, it can be shown that it is indeed the case.
In particular,

−
∫ π

−π

dθP (θ) log(P (θ))−
∞∑

m=0

pm log(pm) ≥ log(2π). (5.155)

Setting the ‘number variable’ m in Eq. (5.155) as A, and the phase variable
θ as B, and noting that the first term in the L.H.S of Eq. (5.155), using Eq.
(5.154), is just log(2π)−R[P (θ)], we obtain

X[m, θ] ≡ H[m]−R[θ] ≥ 0. (5.156)
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Hence, X ≥ 0 is a description of the Heisenberg uncertainty relation applied to
an infinite-dimensional system.

Principle of entropy excess applied to a dissipative harmonic oscillator:
The initial state of the system is a superposition of coherent states which

are 180◦ out of phase with respect to each other [152].

|ψ〉 = A1/2(|α〉+ eiφ| − α〉), (5.157)

where α = |α|eiφ0 and

A =
1

2
[1 + cos(φ)e−2|α|2 ]−1. (5.158)

The state |ψ〉 for φ = 0 would be an even coherent state and for φ = π would
be an odd coherent state. The reduced density matrix can be shown to have
the following form [153]

ρ(t) =

∞∑
n,m=0

ρn,m(t)|n〉〈m|, (5.159)

where

ρn,m(t) =
A

N(t) + 1

(
e−γ0t/2

N(t) + 1

)m+n

QnQmei(n−m)φ0

×
∞∑
l=0

(
1− e−γ0t/2

N(t) + 1

)l |α|2l
l!

(
1 + (−1)n+m + (−1)l[(−1)neiφ + (−1)me−iφ]

)

× F 2
1

[−m,−n; l + 1; 4N(t)(N(t) + 1)(sinh(γ0t/2))
2] . (5.160)

Here F 2
1 is the Gauss hypergeometric function [144], γ0 is a parameter which

depends upon the system-reservoir coupling strength,

Qn =
|α|n√
n!

e−
|α|2
2 , (5.161)

and,

N(t) = Nth(1− e−γ0t), Nth =
(
e

�ω
kBT − 1

)−1

. (5.162)

The phase distribution is given by

P(θ) =
1

2π

∞∑
m,n=0

ρm,ne
i(n−m)θ, (5.163)

where ρm,n can be obtained from Eq. (5.160).
The corresponding complementary number distribution is obtained, using

Eq. (5.151), as
p(m) = ρm,m(t), (5.164)
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Figure 5.2: Plot of number entropy H[m] (dot-dashed line), phase knowledge
R[θ] (dashed line) and entropy excess X[m, θ] (bold line) for a harmonic os-
cillator, initially in a coherent state superposition (5.157), as a function of the
state parameter φ (5.157). Figure (a) pertains to the pure state case. Figure
(b) represents the system subjected to a dissipative interaction with the envi-
ronment for an evolution time t = 0.1 and temperature T = 2. The parameters
used are ω = 1.0, γ0 = 0.026, |α|2 = 2.2, φ0 (5.157) = 0.

where ρm,m is as in Eq. (5.160).

Using P(θ) (5.163) in Eq. (5.154) to get the phase knowledge, p(m) (5.164)
to get the number entropy and using these in Eq. (5.156) we get the entropy
excess which are plotted in Figs. (5.2). Figure (5.2) (a), pertains to unitary
evolution, and depicts the variation of number entropy, phase knowledge and
entropy excess as a function of the parameter φ ranging from the even cat
(coherent) state (φ = 0), to the odd cat (coherent) state (φ = π). The Fig.
(5.2) (b) shows that the effect of the dissipative environment causes phase to
become randomized, leading to an increased entropy excess at all φ (5.157).
The principle of entropy excess, Eq. (5.156), is clearly seen to be satisfied, for
both unitary as well as dissipative evolution [140].
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5.5 Guide to advanced literature

In this chapter we have studied the problem of dissipative harmonic oscillator.
This is one of the workhorses of open quantum systems. As already pointed
out, this problem is of relevance to a large number of investigations spanning
many domains in physics, from nuclear to atomic physics and quantum optics.
It is also very pertinent to the study of mesoscopic phenomena. The interested
reader can, after digesting the material in this chapter, go on to any specific
subject of his/her liking. Most books on quantum optics give a detailed exposure
to Lindbladian master equations and various techniques for handling them, see
for e.g., [29]. Two very good references in this regard would be [2, 1]. The later
book [1] is particularly suited for someone interested in pursuing the relevance
of the problem studied in this chapter to the mesoscopic regime.
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Chapter 6

Dissipative Two-State System

6.1 Introduction

A number of phenomena in nature can be explained by means of a two-state
model wherein a particle tunnels between two different localized states. Such a
system is usually strongly affected by the ambient environment. The existence
of two-level systems in glasses was proposed in [154, 155] in order to help
understand low temperature anomalies of specific heat in them. The problem
discussed in this chapter has relevance to the tunneling of light particles in
solids. It is also relevant to studies related to the Kondo effect [156] which
points out the anomalous temperature dependence of muon diffusion in host
metals at low temperatures. Electron transfer reactions [157] are abundant in
chemical and biological systems. An electron localized at a donor site tunnels to
the acceptor site. This is influenced by the environment and can be described by
a variant of the spin-Boson model, the subject of this chapter. Further examples
where the discussions in this chapter would be of relevance are the inversion
resonance of the NH3 molecule, strangeness oscillations of neutral K meson, a
topic to which we will return to in a later chapter, rf SQUID ring threaded by
an external flux near half a flux quantum. The last example has been used to
discuss macroscopic quantum coherence [68].

In this chapter, we take up the problem of the dissipative two-level sys-
tem. This is sometimes known as the spin-Boson problem. After introducing the
spin-Boson model we take up examples of two-state systems, qubits, based on
Josephson tunnel junctions. We then discuss the thermodynamics and subse-
quently the dynamics of the spin-Boson model. Here we principally use influence
functional techniques, introduced earlier in Chapter IV. We also discuss, briefly,
an approximation of the exact dynamics, the noninteracting-blip approxima-
tion. A quantum mechanical model for electron transfer using a two-level sys-
tem coupled to an intermediate harmonic oscillator, representing the reaction
coordinate, which in turn is coupled to a bath of harmonic oscillators is then
discussed with a specific example worked out. This is then used to obtain the
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analytical expression of the asymptotic value of the operator corresponding to
the population.

6.2 Spin-Boson Model

Two-level models find many applications in the natural sciences and are ex-
tensively studied in the literature [1]. The system is described by a generalized
co-ordinate, for example, a spin, in an effective potential energy with two sep-
arate minima, say in a double-well system, hence the nomenclature two-state
system (TSS). For thermal energy lesser than the spacing between the states,
only the ground states of the two wells are involved, resulting in the dynamics
taking place in a two-dimensional (2-d) Hilbert space. The TSS is frequently
used to exhibit quantum interference effects and the dissipative TSS model has
been used to understand the concept of macroscopic quantum coherence [68].

In the nomenclature of quantum information [38], a two-level system is
called a qubit and could be envisaged as a particle of spin-1/2. A realistic
scenario would involve its interaction with the ambient environment, the subject
we are dealing with in this book. In a number of cases, the environment can be
thought of as a bosonic bath of harmonic oscillators. Then, the model describing
the dynamics of the TSS with a bosonic bath (environment/reservoir) is called
the spin-Boson model [158].

6.2.1 Hamiltonian

The problem under consideration could be thought of as truncation of a spa-
tially extended double-well system to a TSS, see Fig. (6.1). In the figure, ζ
and Δ0 denote the detuning energy, characterizing the asymmetric (biased)
double-well, and tunnel splitting, of the symmetric double-well, respectively. In
the semiclassical limit, the tunnel splitting is determined by the action com-
ing from the instanton path. The notion of instanton is introduced in the next
chapter where it is seen to play a crucial role in quantum tunneling. Further de-
tails of this method can be obtained from [159, 160]. For a standard double-well

potential of the quartic form V (x) =
Mω2

0

2x2
0

(
x2−x2

0/4
)2
/2x2

0, the tunnel splitting

term Δ0 can be shown to depend on the barrier height Vb = Mω2
0x

2
0/32. For

Vb � �ω0 � �Δ0, �|ζ|, kBT, (6.1)

the system gets effectively restricted to a 2 − d Hilbert space spanned by, for
example, the basis {|±〉} ≡ {|R〉, |L〉}, i.e., states localized in the right and
left wells, respectively. Since the Pauli matrices, along with identity operator,
form a natural basis for a 2 − d Hilbert space, it is natural to express the
corresponding Hamiltonian of the TSS in terms of the Pauli matrices, in the
computational basis [38], as

HTSS = −�

2
Δ0σx − �

2
ζσz =

�

2

( −ζ −Δ0

−Δ0 ζ

)
. (6.2)
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Figure 6.1: Double Well representing the TSS; (a). Symmetric, (b). Asymmetric
Well. Figure adapted from [1].

The generalized position operator would be x̂ = �

2x0σz with the eigenval-
ues ± 1

2x0 corresponding to the positions of the localized states. The localized
states |R〉 and |L〉 are related to the eigenstates |e〉 (excited) and |g〉 (ground)
states of HTSS (6.2) as

|R〉 = cos
(θ
2

)|g〉+ sin
(θ
2

)|e〉,
|L〉 = sin

(θ
2

)|g〉 − cos
(θ
2

)|e〉. (6.3)

Here

sin(θ) =
Δ0

Δb
, cos(θ) =

ζ

Δb
, tan(θ) =

Δ0

ζ
. (6.4)

The tunnel splitting energy of the biased TSS is

Ee − Eg = �Δb = �

√
Δ2

0 + ζ2. (6.5)

The interaction of the above defined TSS with a bath can be modelled as

HSR = −σzP(t), P(t) =
x0

2

N∑
i=1

ciqi(t). (6.6)

Let us try to motivate the form of the above interaction. Let |ψ±〉 be the
eigenstates (up to order Δ0/ω0) in respectively the right and the left wells. As
σx and σy have only non-diagonal nonzero elements, they change |ψ±〉 to |ψ∓〉.
Thus, any interaction proportional to σx and σy will also be proportional to
the overlap of |ψ+〉 and |ψ−〉. This will be of order �Δ0 and hence relatively
small. Only the interaction containing σz is directly proportional to |ψ+〉 and
|ψ−〉.
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Here the interaction could be envisaged as a coupling of the heat bath to
the position of the TSS, represented by a collective bath mode P(t). The inter-

action with the bath results in a fluctuating force
∑N

i=1 ciqi(t) which causes a
fluctuation in the double-well bias and could be called the polarization energy
P(t). If the bath stochastics follow a Gaussian distribution then it can be mod-
elled by a Bosonic bath of harmonic oscillators, discussed in detail in the earlier
chapters. The Hamiltonian of the TSS coupled to its bath via the interaction
term in Eq. (6.6) is

H = −�

2
Δ0σx − �

2
ζσz − σzP(t) +HR

= −�

2
Δ0σx − �

2
ζσz +

1

2

∑
i

(
p2i
mi

+miω
2
i q

2
i − x0σzciqi

)
. (6.7)

This Hamiltonian is known as the spin-Boson Hamiltonian. Here HR is the
usual bath of harmmonic oscillators. In the eigenbasis of the TSS Hamiltonian
(6.2), this can be expressed as

H = −�

2
Δbσz +

(
cos(θ)σz − sin(θ)σx

)P(t) +HR. (6.8)

In this form it is clear that the system-bath coupling has a transverse and a
longitudnal part, i.e., the terms proportional to sin(θ) and cos(θ), respectively.
Due to the nature of the Pauli operators, only the transverse part can induce
spin flips. Resorting to second quantization of the harmonic oscillator, i.e.,
expressing the harmonic oscillator coordinates in terms of the creation and
annihilation operators, see Chapter II (Section 5), the spin-Boson Hamiltonian
can be expressed as

H = HTSS − 1

2
σz

N∑
i=1

�λi(ai + a†i ) +
N∑
i=1

�ωia
†
iai. (6.9)

The effect of the bath is quantified by the spectral density of the coupling ISB

ISB(ω) =
N∑
i=1

λ2
i δ(ω − ωi) =

x2
0

2�

N∑
i=1

c2i
miωi

δ(ω − ωi) =
x2
0

π�
I(ω). (6.10)

Here I(ω) is the usual spectral density of a continuous model of the environ-
ment.

6.2.2 Shifted Oscillators

In the adiabatic limit, the modes of heat bath instantaneously adapt to the
position of the particle. Thus, the oscillator part of the spin-Boson Hamiltonian,
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Eq. (6.7), for σz = ±1 becomes

Hosc± =
1

2

∑
i

(
p2i
mi

+miω
2
i q

2
i ∓ x0ciqi

)
=

∑
i

(
�ωia

†
iai ∓

1

2
�λi(ai + a†i )

)
. (6.11)

The relation between λi and ai can be easily seen from Eq. (6.10). Introducing
the shifted operators

a±,i = ai ∓ λi

2ωi
, (6.12)

the terms linear in the creation and annihilation operators, in Eq. (6.11), cancel
and Hosc± can be written in a normal ordered form as

Hosc± =
∑
i

H±,i with H±,i = �

(
ωia

†
±,ia±,i − λ2

i

4ωi

)
. (6.13)

As the shifted operators obey the same commutation relations as the original
ones, these are examples of canonical transformations [161, 162]. The vacuum
of H±,i can be transformed into each other via

|0±,i〉 = eiΩ∓,i |0∓,i〉 with Ω∓,i = ±i
λi

ωi

(
a†∓,i − a∓,i

)
. (6.14)

By making use of the commutation relation between a±,i and a†±,i, the vacuum
of one shifted oscillator can be seen to be related to the coherent state [29] of
the other shifted oscillator

|0±,i〉 = exp

(
− λ2

i

2ω2
i

) ∞∑
n=0

(±1)n√
n!

(
λi

ωi

)n

|n∓,i〉. (6.15)

Problem 1: Derive Eq. (6.15).

This relation is useful as it enables the computation of useful quantities.
Thus, for e.g., the probability to excite n Bosons with energy �ωi in a sudden
transition from the ground state at σz = −1 to the state σz = 1 is given by

pn,i = |〈0−,i|n+,i〉|2 = exp

(
− λ2

i

ω2
i

)
1

n!

(
λi

ωi

)2n

. (6.16)

This is a Poissonian distribution with mean particle number
∑

i npn,i = λ2
i /ω

2
i .
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6.2.3 Polaron Transformation

In a number of applications , it is useful to transform the spin-Boson Hamilto-
nian to a basis of dressed states. This is effected by a unitary transformation

U = exp

(
− 1

2
iσzΩ

)
, where Ω = i

∑
i

λi

ωi

(
a†i − ai

)
. (6.17)

The polaron transformation H̃ = U †HU diagonalizes the last three terms in
the Hamiltonian Eq. (6.9) resulting in

H̃ = −�Δ

2

(
|R〉〈L|eiΩ + |L〉〈R|e−iΩ

)
− �ζ

2
σz +

∑
i

�ωia
†
iai. (6.18)

Here |R〉 and |L〉 are as in Eq. (6.3). Instead of transforming the Hamiltonian
one may transform instead the tunneling operator as σ̃x = UσxU

†. Physically,
this transformation entails the transformation of the particle from one localized
state to the other and the reservoir oscillators get shifted by x0ci/miω

2
i . In the

dressed basis, the particle could be imagined to drag behind it a polaronic
cloud.

6.3 Examples of two-state systems based on Josephson tunnel

junctions

Superconducting circuits [163] based on the Josephson tunnel junctions could
be considered as building blocks of quantum computing devices as well as for
probing into issues related to macroscopic quantum coherence. This is a vast
field in its own right and we will be able to provide here only a very rudimentary
treatment. Qubits are quantum mechanical systems where a particular degree
of freedom can be tuned in such a way that the system can be effectively treated
as a TSS (the quantum equivalent of the classical ‘on’ and ‘off’ states). In the
case of superconducting circuits, there are three degrees of freedom that can
be used to make different qubits,

• Charge in the superconducting island of a cooper pair box,

• Flux enclosed in a superconducting loop,

• Phase difference across a Josephson junction.

Corresponding to these degrees of freedom there are three types of supercon-
ducting qubits:

i Charge Qubit,

ii Flux Qubit,

iii Phase Qubit.
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Figure 6.2: Circuit representations of the CPB.

The circuits are tuned in specific ways in order to use these different degrees
of freedom; these tuning conditions are specified in terms of the unit energy
parameters EC and EJ , the single electron charging energy and the Josephson
coupling energy, respectively. The basic features of these qubits are outlined
below with one simple implementation of each qubit.

6.3.1 Charge Qubit

The charge qubit is the first superconducting qubit to have been implemented.
The charge qubit is implemented on a Cooper pair box (CPB) circuit, see Fig.
(6.2). The qubit Hamiltonian can be arrived at using the quantized version of
the classical Hamiltonian. The classical Hamiltonian is given by,

H(δ, p∗) =
1

2CΣ

( q

�

)2

p2∗ − EJ cos δ. (6.19)

Here,

p∗ =
�CΣ

q

(
�

q
δ̇ − Cg

CΣ
Vg

)
, and can be rewritten as

p∗ = � (n̂− ng) ; where the gate charge ng =
�

q
CgVg.

Further, q is the electron charge, CΣ = C + Cg, see Fig. (6.2), δ is the phase
difference of the Cooper pair wave function across the junction and n̂ is the
number operator of excess Cooper pair charges on the island, conjugate to the
phase δ. The quantized Hamiltonian can now be written as,

ĤCPB(δ, n) = EC(n̂− ng)
2 − EJ cos δ. (6.20)

Here EC and EJ are the charging energy of the junction and Josephson energy,
respectively. n̂ is a number operator and hence can take only integral eigenval-
ues. Let |n〉 denote the eigenstate corresponding to the eigenvalue n : ∀n ∈ Z.
Also, for a shift in phase of the state by 2π , the state should not change. The pe-
riodicity condition implies that the wave function belongs to the Hilbert space
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L2(0, 2π). Normalizing the wave function over this space allows the eigenstates
to be represented as

|n〉 =
1√
2π

einδ. (6.21)

It can be observed that under the condition that EC � EJ , for the value of
ng = 0.5, the energy of states |0〉 and |1〉 are almost equal, i.e.,

ĤCPB |0〉 =
(
EC(0− 0.5)2 − EJ cos δ

) |0〉 ≈ 1

4
EC |0〉 ,

ĤCPB |1〉 =
(
EC(1− 0.5)2 − EJ cos δ

) |1〉 ≈ 1

4
EC |1〉 .

This implies that |0〉 and |1〉 form a stable, degenerate two-state system (TSS)
and hence froms a qubit. Therefore, evluating the projected Hamiltonian of the
Cooper pair box (CPB) on the space V = {|0〉 , |1〉}, we find that the projected
Hamiltonian PHCPB

takes the following form

PHCPB
=

1

4
EC

[
1 0
0 1

]
+

[
EC(ng − 0.5) − 1

2EJ

− 1
2EJ EC(ng − 0.5)

]
.

The first term being the degenerate energy of the two states, the effective
Hamiltonian can be written in terms of the Pauli spin matrices as,

P̄HCPB
= EC(ng − 0.5)σz − 1

2
EJσx. (6.22)

This is formally equivalent to the two-state Hamiltonian in Eq. (6.2). Here the
Pauli matrices are defined as

σx =

(
0 1
1 0

)
; σy =

(
0 −i
i 0

)
; σz =

(
1 0
0 −1

)
.

The major disadvantage of the charge qubit system is that it is extremely
sensitive to charge noise, i.e., the noise of the biasing voltage. The major source
of decoherence is the low frequency 1/f noise. This problem is overcome by
working in the EC ≥ EJ limit, and has been achieved in the quantronium
qubit.

6.3.2 Flux Qubit

As the name suggests, the flux qubit uses the fact that the flux through a
superconducting loop is quantized and the two-state system in this case is in
the eigenstates of the flux values. The flux qubit is implemented through an
rf(ac)-SQUID circuit, see Fig. (6.3). The quantized version of the rf-SQUID
Hamiltonian is

ĤrfS = EC n̂2 − EJ cos δ + EL
(δ − δe)

2

2
. (6.23)
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Figure 6.3: Circuit representations of the rf-SQuID.

Here EL is the energy in the inductor while (δ − δe) is related to the
current through the inductor IL as IL = �

q (δ − δe). Also, δe = q
�
Φe is the

phase corresponding to the external flux Φe through the loop. The flux cutting
through the ring should obey the following relation due to the phenomena of
flux quantization in a superconducting loop(

Φo

2π

)
δ +Φe +Φind = mΦo.

Here e and ind stand for external and induced, respectively, and Φo = 2π�
q

is the basic quanta of flux through a superconducting loop. In the limit that
EJ � EL the effect of the offset charges can be neglected. When the value of
δe is at π, the effective Hamiltonian (the last two terms of the Hamiltonian)
span over two-states of minimum energy that are almost degenerate in energy.
These correspond to the two states when the current is flowing in clockwise
and counter-clockwise directions.

However, the major difficulty with such a system is that for the system to
be close to degeneracy, the value of EJ of the Josephson junction and the value
of the self Inductance L should be very high. This will, in turn, make tunnelling
between the two states difficult. Also, large inductance implies large magnetic
fields which are extremely liable to couple to the environment and hence lead to
dephasing of the system. This problem could be overcome by replacing a single
rf-SQUID by a loop containing three rf-SQUIDs. Such a structure leads to an
energy profile where tunnelling can be made easy, the environmental coupling
low and hence to long coherence times.

6.3.3 Phase Qubit

The phase qubit is formed from a simple current biased Josephson junction,
see Fig. (6.4). It works in the same limit as that of the flux qubit, EJ � EC .
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Figure 6.4: Circuit representations of the current-biased Josephson junction.

The quantized version of the corresponding Hamiltonian is

ĤCBJJ = EC n̂2 + EJ cos δ − �

q
Ibias δ

= EC n̂2 + EJ

(
cos δ − Ibias

Io
δ

)
. (6.24)

For Ibias > Io, the resistive component of the circuit dominates and the
system becomes dissipative with a non-zero value for 〈δ̇〉. However, in the sub-
critical domain Ibias ≈ 0.95Io, the potential follows a washboard potential with
a few quantum levels at each minima. Along with this if the phase difference
is around π/2, the potential energy of the system can be approximated by a
cubic oscillator. Then the effective Hamiltonian reduces to a spin- 12 field in the
z- direction.

ĤPB = −�ω01

2
σz. (6.25)

The most significant advantage of the phase qubit is its simplicity of design and
scalability. Though it is insensitive to both charge and flux noise, it is sensitive
to low frequency noise in the bias and critical current values.

6.4 Thermodynamics

In the spin-Boson model, the transitions between the two states are sudden.
Thus, the spin path x(τ) = 1

2x0σ(τ) for the TSS jumps between ±x0/2. There-
fore, the path σ(τ) jumps between the values ±1. A very useful representation
of the path for 2n alternating spin orientations, consisting of n kink-anti-kink
pairs, is

σ(n)(τ) = 1 + 2
2n∑
i=1

(−1)iΘ(τ − si). (6.26)
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Here Θ is the step function and the path centers are in chronological order,
i.e., si+1 > si. Substituting the spin path x(τ) = 1

2x0σ(τ) into the (ther-
mal/imaginary time) Euclidean influence functional FE(σ), see Eq. (23) in
Chapter IV, we find

FE(σ) = exp

{
− 1

2

∫
�β

0

dτ

∫ τ

0

dτ ′K(τ − τ ′)
(
σ(τ)− σ(τ ′)

)2
/4

}
, (6.27)

where

K(τ) =
x2
0

�
K(τ), and K(τ) =

1

π

∫ ∞

0

dωI(ω)Gω(τ). (6.28)

Here I(ω) is the bath spectral density and Gω(τ) is the thermal Green function

Gω(τ) =
1

�β

∞∑
n=−∞

2ω

ν2n + ω2
eiνnτ , (6.29)

with νn = 2πn
�β being the Bosonic Matsubara frequency. Substituing the repre-

sentation of the spin path (6.26) into Eq. (6.27), the time integrals can be done
resulting in, for a path with n kink-anti-kink pairs, the Euclidean influence
functional,

FE
n = exp

{ 2n∑
j=2

j−1∑
i=1

(−1)i+jΞ(sj − si)

}
, (6.30)

where Ξ(τ) would be the kink interaction term, representing the interaction
between two charges,

Ξ(τ) =

∫ ∞

0

dω
I(ω)

ω2

(
Gω(0)−Gω(τ)

)
. (6.31)

Here I(ω) is the spectral density of the spin-Boson model and is given in Eq.
(6.10). Eqs. (6.27) and (6.30) are the state and charge representations of the
influence functional, respectively. Thus, the influence functional, in the form
presented in Eq. (6.30), represents the influence of the sum of all pair interac-
tions of the 2n alternating charges.

6.4.1 Partition Function

We have already encountered the partition function in Chapter II, where we
saw that having the partition function for a model enables the calculation
of a number of useful thermodynamic properties characterizing the system.
The partition function of the spin-Boson model is dominated by sequences of
separated kinks or instantons. As discussed above, a given path of 2n transitions
can be grouped into n kink-anti-kink pairs, also known as bounces, see for
example, the next chapter where we discuss instantons. It is convenient to
express the length of the bounces by φj = s2j − s2j−1 and intervals between
the bounces by ψj = s2j+1 − s2j , where (j = 1, . . . , n). Also, s0 = 0 and
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s2n+1 = �β. In the charge picture, φj and ψj are the intra- and inter-dipole
lengths, respectively. As each kink-anti-kink pair or dipole contributes a factor
Δ2/4 to the partition function, the contribution to the partition function from
the right or left well for positive bias is

ZR/L =
∞∑

n=0

(
Δ

2

)2n ∫
�β

0

ds2n

∫ s2n

0

ds2n−1 . . .

∫ s2

0

ds1B
(E)
R/L,n({sj})F (E)

n ({sj}).
(6.32)

Here Δ is the renormalized tunnel splitting element [1] and sj , the kink centers
(charge positions), are the collective coordinates. Also,

B
(E)
R/L,n({sj}) = exp

(
± 1

2
�βζ ∓ ζ

n∑
j=1

φj

)
, (6.33)

and F
(E)
n ({sj}) is as in Eq. (6.30). The Eq. (6.32) together with Eqs. (6.33)

and (6.30) is also known as the Coulomb gas representation of the spin-Boson
partition function. It is possible to express the time-ordered expression in Eq.
(6.32) as a Laplace integral in order to obtain an exact formal solution of the
spin-Boson partition function Z = ZR(ζ) + ZL(ζ) [1].

The partition function can be used to compute useful quantities such as
the probability of occupation of the right (left) well in thermal equilibrium as
PR/L = ZR/L/Z, yielding for the thermal average of σz

〈σz〉 = 1

ZTr{σze
−βH} =

ZR −ZL

Z . (6.34)

This in turn is useful for computing thermodynamic quantities such as suscep-
tibility.

6.5 Dynamics

Here we study the dynamics of the spin-Boson model. The principal tool used
in this context is the IF approach, developed in Chapter IV. The formal exact
series solutions obtained below will be seen to be very cumbersome. This evokes
the question whether some suitable approximations can be made. This is indeed
so and led to the development of the noninteracting blip approximation (NIBA).

6.5.1 Exact Solution

The approach used in studying the spin-Boson real time dynamics heavily re-
lies on the Influence Functional (IF) techniques discussed in Chapter IV. We
will, for simplicity, stick to the case of separable initial conditions, i.e., at the
starting point of the evolution, the system, here the TSS, and the reservoir are
uncorrelated. Assuming that the system starts out in the right well |R〉, the
initial system-reservoir density matrix is

ρ(t = 0, C) = |R〉〈R| ⊗ exp
{− β

[
HR − CP(t = 0)

]}
/ZR. (6.35)
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Here HR and P are as in Eq. (6.7). Also, C is control parameter determining
the shift of the reservoir in the initial state at time t = 0. The dynamics of the
system starting from Eq. (6.35) can be studied conveniently using the Feynman-
Vernon IF, discussed in detail in Chapter IV. Substituting the spin path (6.26)
into Eq. (49), Chapter IV, observing that the last term does not contribute
here since σ2(t) = σ

′2(t), the IF is seen to be

F
[
σ, σ′; t0

]
= exp

{
− x2

0

4�

∫ t

t0

dt′
∫ t′

t0

dt′′(σ(t′)

− σ′(t′))
(
K(t′ − t′′)σ(t′′)−K∗(t′ − t′′)σ′(t′′)

)}
. (6.36)

Here t0 is the time at which the dynamics is started and could be zero. The
choice of C = 0 or 1 determines the particular type of separable initial condition.
They can be combined together in the single relation [1]

FC [σ, σ′] = FC=0[σ, σ
′] exp

{
i
C
2

∫ t

0

dt′(σ(t′)− σ′(t′))Ċ ′′(t′)
}
. (6.37)

Here C ′′(t) is the imaginary part of C(t) which is defined as the imaginary
time continuation of ξ(τ), i.e., C(t) = Ξ(τ = it). The term Ξ(τ), Eq. (6.31), is
in turn defined as Ξ̈(τ) = −K(τ), where K(τ) is as in Eq. (6.28). The explicit
form of C(t) can be seen to be

C(t) =

∫ ∞

0

dω
ISB(ω)

ω2

cosh(βω/2)− cosh[ω(β/2− it)]

sinh(βω/2)
. (6.38)

Here ISB is the spin-Boson spectral density, Eq. (6.10). Thus, the effect of
the state preparation could be thought of as a particular time-dependent bias
CĊ ′′(t).

Given the IF, we can obtain the propagator and thence the reduced density
matrix of the system. All information of the TSS can be obtained from its
reduced density matrix with the diagonal elements denoting the population
and the off-diagonals, coherence. Thus, for e.g., the average values of the Pauli
matrices, the so called Bloch vectors, are related to the components of the
reduced density matrix as

〈σx(t)〉 = ρ1,−1(t) + ρ−1,1(t),

〈σy(t)〉 = iρ1,−1(t)− iρ−1,1(t),

〈σz(t)〉 = ρ1,1(t)− ρ−1,−1(t). (6.39)

The quantity σz(t) describes the population difference of the two localized states
and is directly relevant to studies of macroscopic quantum coherence (MQC).
The spin-Boson dynamics can be expressed in terms of the two-time conditional
propagator J(ξ, t; ξ0, t0), see Eqs. (7)-(9) in Chapter IV. Here ξ is a two-variable
label ξ = (η, ϑ), characterizing the TSS and η(t′) and ϑ(t′) are symmetric and
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antisymmetric paths

η(t′) =
1

2

[
σ(t′) + σ′(t′)

]
and ϑ(t′) =

1

2

[
σ(t′)− σ′(t′)

]
. (6.40)

The TSS system can be in one of the four states, denoted by the diagonal terms
RR ≡ η = 1, LL ≡ η = −1, the so called sojourn states [158], and the off-
diagonal terms RL ≡ ϑ = 1, LR ≡ ϑ = −1, known as the blip states. During a
sojourn, ϑ(τ) = 0, while during a blip, η(τ) = 0. Here R, L refer to the right
and left wells, respectively. The paths of the TSS, σ(t′), σ′(t′) jump between
the two discrete values ±1.

These paths are piecewise constant with sudden jumps in between. Keep-
ing this in mind, the IF in Eq. (6.36) can be put, by performing integration by
parts, in the form

F
[
σ, σ′; t0

]
= exp

{∫ t

t0

dt′
∫ t′

t0

dt′′
(
ϑ̇(t′)C ′(t′−t′′)ϑ̇(t′′)+iϑ̇(t′)C ′′(t′−t′′)η̇(t′′)

)}
,

(6.41)
where C(t) = C ′(t) + iC ′′(t) is as defined above.

Let the sojourn length be sj = t2j+1 − t2j and the blip length be τj =
t2j− t2j−1. Here we assume that the TSS starts from a sojourn state. A general
sojourn-to-sojourn path making 2n transitions at intermediate times tj , j =
1, 2, . . . , 2n is parametrized by

η(n)(t′) =
n∑

j=0

ηj
[
Θ(t′ − t2j)−Θ(t′ − t2j+1)

]
,

ϑ(n)(t′) =
n∑

j=1

ϑj

[
Θ(t′ − t2j−1)−Θ(t′ − t2j)

]
. (6.42)

This path represents a sequence of sojourn and blip dipoles because the system,
after every second transition, is again in a sojourn or blip state. Thus, for e.g.,
ηj = 1 and ϑj = 1 correspond to (+,−) dipoles, while ηj = −1 and ϑj = −1
correspond to (−,+) dipoles. Defining the bath correlations between the blip-
pair by Λj,k and that between the sojourn k and a later blip j by κj,k

Λj,k = C ′
2j,2k−1 + C ′

2j−1,2k − C ′
2j,2k − C ′

2j−1,2k−1,

κj,k = C ′′
2j,2k+1 + C ′′

2j−1,2k − C ′′
2j,2k − C ′′

2j−1,2k+1, (6.43)

the IF, Eq. (6.41), for the path defined in Eq. (6.42) becomes

F (n) = AnBn,

An = exp
{
−

n∑
j=1

C ′
2j,2j−1

}
exp

{
−

n∑
j=2

j−1∑
k=1

ϑjϑkΛj,k

}
,

Bn = exp
{
i

n∑
j=1

j−1∑
k=0

ϑjκj,kηk

}
. (6.44)
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Here Λj,k and κj,k represents the dipole-dipole interaction between two blips
or between a sojourn and succeeding blip dipole, respectively. The blip interac-
tions are in the equation for the real function An with the first term reflecting
the intrablip or intradipole interactions, while the second term contains the
interblip correlations. The form of An brings out the point that long blips are
suppressed. This in turn implies that TSS is favoured to spend time in the
sojourn state. The weight to switch per unit time from a diagonal state η to
an off-diagonal state ϑ and vice versa is −iϑηΔ/2. This could be understood
by invoking the spin-Boson Hamiltonian Eq. (6.7) wherein it is clear that the
spin flip term is associated with the tunneling element, here we take the renor-
malized version, Δ/2. Hence, there would be a factor of −iΔ/2 for transitions
between (RL), (RR) and between (LL), (LR), while the factor is iΔ/2 for
transitions between (RL), (LL) and between (RR), (LR). The weight to stay
in the sojourn is unity while that to stay in the jth blip is exp(iζϑjτj). The
blip factor for n blip states can be written as an overall bias factor

Kn = exp
(
iζ

n∑
j=1

ϑjτj
)
. (6.45)

From the IF, the propagator J can be obtained, see Chapter IV. The quantities
of interest, such as the Bloch vectors, can be obtained from the propagator as

〈σz(t)〉 =
∑
η=±1

ηJ(η, t; η0 = 1, 0),

〈σx(t)〉 =
∑
ϑ=±1

J(ϑ, t; η0 = 1, 0),

〈σy(t)〉 = i
∑
η=±1

ϑJ(ϑ, t; η0 = 1, 0). (6.46)

Here we assume that the TSS starts from the diagonal state η0 = 1. Collecting
the various weight factors, discussed above, the propagator for a sojourn as
final state is

J(η, t; η0, 0) = δη,η0
+ηη0

∞∑
m=1

(−1)m

22m

∫ t

0

D2m,0{tj}
∑

{ϑj=±1}
AmKm

∑
{ηj=±1}′

Bm,

(6.47)
while for a blip final state

J(ϑ, t; η0, 0) = −iϑη0

∞∑
m=1

(−1)m−1

22m−1

∫ t

0

D2m−1,0{tj}
∑

{ϑj=±1}′
AmKm

∑
{ηj=±1}′

Bm.

(6.48)

In the above equations
∫ t

0
D is a compact notation for the integration over

the time-ordered jump times tj , including the tunneling matrix element Δ.
The various summations in the above equations for the propagators denote
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the sum over all paths, i.e., the sum over the intermediate sojourn and blip
states visited by the paths with a given number of transitions, and sum over
the possible number of transitions the system may make. Further, the prime
in {ηj = ±1}′ and {ϑj = ±1}′ indicates that the initial sojourn and the final
sojourn or blip states are fixed.

We are now in a position to compute the various Bloch vectors. Substitut-
ing Eq. (6.47) into Eq. (6.46) and summing over the intermediate sojourn states
{ηj = ±1}, the exact series expression of the population 〈σz(t)〉 = PR(t)−PL(t),
where PR/L(t) are the occupation probabilities for the right and left wells, re-
spectively, is obtained as

〈σz(t)〉 = 1 +
∞∑

m=1

(−1)m
∫ t

0

D2m,0{tj} 1

2m

∑
{ϑj=±1}

(
M (+)

m K(s)
m −M (−)

m K(a)
m

)
.

(6.49)
Here the bias ζ dependence is in

K(s)
m = cos

(
ζ
∑

ϑjτj
)
, and K(a)

m = sin
(
ζ
∑

ϑjτj
)
, (6.50)

while the environmental effect is encoded in

M (+)
m = Am

m−1∏
k=0

cos(φk,m), and M (−)
m = Am sin(φ0,m)

m−1∏
k=1

cos(φk,m). (6.51)

Also,

φk,m =
m∑

j=k+1

ϑjκj,k, (6.52)

indicates the environmental correlations between the k th sojourn and them−k
suceeding blips. In Eq. (6.49),

∑
{ϑj=±1} runs over all intermediate blip states

{ϑj = ±1}.
When the damping persists till infinity, i.e., for asymptotic large time, the

system is ergodic and reaches thermal equilibrium. Then, the average popula-
tion 〈σz(t → ∞)〉 = 〈σz〉∞, using Eq. (6.49), becomes

〈σz〉∞ = lim
t→∞

∞∑
m=1

(−1)m−1

∫ t

0

D2m,0{tj} 1

2m

∑
{ϑj=±1}

M (−)
m K(a)

m . (6.53)

Note that this equilibrium probability distribution has been obtained using
dynamical quantities. It can also be obtained from pure thermodynamic quan-
tities, such as the partition function, and for ergodic systems, the two computa-
tions would agree with each other. In a similar fashion, the exact formal series
solutions for the coherences 〈σx(t)〉 and 〈σy(t)〉 can be obtained, by substituting
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Eq. (6.48) in Eqs. (6.46), as

〈σx(t)〉 =
∞∑

m=1

(−1)m−1

∫ t

0

D2m−1,0{tj} 1

2m

∑
{ϑj=±1}

ϑm

(
M (+)

m K(a)
m +M (−)

m K(s)
m

)
,

(6.54)

〈σy(t)〉 =
∞∑

m=1

(−1)m−1

∫ t

0

D2m−1,0{tj} 1

2m

∑
{ϑj=±1}

(
M (+)

m K(s)
m −M (−)

m K(a)
m

)
.

(6.55)

Keeping in mind that any TSS can be expressed as ρ(t) = 1
2

(I +∑3
j=1〈σj(t)〉σj

)
, Eqs. (6.54), (6.55) and (6.49) together determine the complete

spin-Boson dynamics.

6.5.2 Noninteracting-Blip Approximation

An important approximation made in the study of the dynamics of the spin-
Boson model is the noninteracting-blip approximation (NIBA) [158]. The basic
assumption made is that the average time spent by the system in a diagonal
state is much more than that spent in the off-diagonal state; this could be
appreciated from the comment below Eq. (6.44) to the effect that long blips
are suppressed. The NIBA involves two technical assumptions:

(a). The sojourn-blip correlation factors κj,k are set to zero for j �= k+1.
Thus, from Eq. (6.43), we see that κk+1,k = C ′′(t2k+2−t2k+1). The correlations
between a sojourn k and the subsequent blips becomes ϑk+1C

′′(τk+1);
(b). The interblip correlations in An, Eq. (6.44), are neglected, i.e., Λj,k

are set to zero.
With these approximations, it is easy to see from Eq. (6.44) that the IF

reduces to

F
(n)
NIBA =

n∏
j=1

exp
{
− C ′(τj) + iϑjηj−1C

′′(τj)
}
. (6.56)

For an Ohmic spectral density, where the upper cutoff frequency of the reservoir
ωc → ∞, the assumption (a) is exact. Here, NIBA implies neglect of interblip
interactions Λj,k. The NIBA can be justified in the following limiting cases [1]:
(i). weak coupling and zero bias, (ii). for bath spectral density I(ω) ∝ ωs, with
s > 1 for zero temperature and with s > 2 for finite temperatures, and (iii).
long blips are suppressed for sub-Ohmic s < 1 damping at zero temperature
and for s < 2 for finite temperatures.

The NIBA corresponds to an expansion in terms of the tunneling matrix
element Δ0, which can also be performed with projection-operator techniques
[164]. As a result, the evolution of 〈σz(t)〉 becomes

d〈σz(t)〉
dt

= −
∫ t

−∞
ds f(t− s)〈σz(s)〉. (6.57)
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Here

f(s) = Δ2
0 cos(T1(s)/π�)e

−T2(s)/π�, (6.58)

with

T1(s) =

∫ ∞

0

dω

ω2
I(ω) sin(ωs), (6.59)

T2(s) =

∫ ∞

0

dω

ω2
I(ω) coth

(β�ω
2

)
(1− cos(ωs)). (6.60)

This result was obtained, in a different manner, in [165], by making use of the
polaron transformation, discussed above.

6.6 Coupling to Reservoir via an Intermediate Harmonic

Oscillator

The spin-Boson model has been put to use in many scenarios. In the case of
electron transfer in biomolecules, an electron can travel between two localized
sites, say in the same or different molecules. In many situations, the distance
between the localized sites is small. This allows for almost free electron transfer
between the sites. However, there could be the scenario wherein the sites are
separated by larger distances. Then the tunneling process has to be taken into
account. A nuclear reaction coordinate is coupled to other nuclear or solvent
coordinates. This coupling, which leads to friction, if strong enough, has a
tendency to slow down motion along the reaction coordinate. This vitiates the
assumption of electron transfer being nonadiabatic with respect to the nuclei.
A quantum mechanical model for electron transfer using a TSS coupled to an
intermediate harmonic oscillator, representing the reaction coordinate, which
in turn is coupled to a bath of harmonic oscillators was introduced in [166].

The donor and the acceptor sites of the electron can be considered as a TSS
where these two states are identified with the eigenvalues ±1 of σz, respectively.
Let the two corresponding positions be ±q0. The possibility of tunneling is
associated with a matrix-element, defined, as above, by �Δ/2, hence the term
�Δσx/2 in the Hamiltonian. The reaction coordinate is modelled by a harmonic
oscillator with the kinetic energy p2y/2M . The coupling to the TSS is included
in the potential term of the oscillator as

V (y, σz) =
1

2
Mω2(y + y0σz)

2 +
1

2
ζσz. (6.61)

Here ζ is the detuning energy defined before. The reaction coordinate is turn
connected in a linear manner to a bath of harmonic oscillators as

HR +HyR =
∑
i

[ p2i
2mi

+
1

2
miω

2
i

(
xi +

ci
miω2

i

y
)2]

. (6.62)
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In the above equation, the term
c2i

miω2
i
y2 has the effect of setting the minimum

of the oscillator bath to zero. We now collect all the above terms to set the
electron transfer Hamiltonian as

Het =
�Δ

2
σx +

p2y
2M

+ V (y, σz) +
∑
i

[ p2i
2mi

+
1

2
miω

2
i

(
xi +

ci
miω2

i

y
)2]

. (6.63)

By transforming to the normal modes, the quadratic part of the Hamiltonian,
Eq. (6.63), can be brought to a form similar to the spin-Boson Hamiltonian, Eq.
(6.7). Most of the tunneling occurs within a length of order lLZ , the Landau-
Zener length, defined as

lLZ =
�Δ

|F+ − F−| , (6.64)

where F± = −
(

∂V (y;±)
∂y

)
y=y∗

. Here y∗ is a point between ±y0 such that

V (y∗,+) = V (y∗,−) and is the crossing point. If the temperature is high
enough, the friction is relatively small and the tunneling electron will pass
the Landau-Zener region in one time. In this case the probability of tunneling
is a small quantity, which could be calculated. If the temperature is low, the
friction is relatively large that the electron can stay in the Landau-Zener region
and make many transitions. In this case, coherence between the states will get
lost in due time.

6.6.1 Effective Spectral Density

We will now introduce a technique which is very useful in the study of the above
problem, viz. the effective spectral density [167]. The TSS and the reaction
coordinate are influenced by the bath through the spectral density

I(ω) =
π

2

∑
i

c2i
miωi

δ(ω − ωi). (6.65)

For normal velocity dependent friction, this takes the Ohmic form I(ω) =
ηωe−ω/ωc , where ωc is an upper cutoff frequency of the reservoir. Instead of this
spectral density we use an effective spectral density Ieff (ω) that describes how
the TSS is influenced by the reaction coordinate and bath together. This Ieff (ω)
is the same as the one that controls the dynamics of a continuous variable q,
of mass μ, moving in a potential V (q) coupled to the reaction coordinate and
the bath in the same way as the TSS is coupled. Consider the Hamiltonian

Hq =
p2q
2μ

+ V (q) +
P 2
y

2M
+

1

2
Mω2(y+ q)2 +

∑
i

[ p2i
2mi

+
1

2
miω

2
i

(
xi +

ci
miω2

i

y
)2]

.

(6.66)
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The Hamiltonian equations of motion are

μq̈ = −V ′(q)−Mω2(y + q), (6.67)

Mÿ = −Mω2(y + q)−
∑
i

cixi − y
∑
i

c2i
miω2

i

, (6.68)

miẍi = −miω
2
i xi − ciy. (6.69)

Next, we Fourier transform the Eqs. (6.67) to (6.69):

(− μz2 +Mω2
)
q(z) +Mω2y(z) = −V ′

z (q), (6.70)(
−Mz2 +Mω2 +

∑
i

c2i
miω2

i

)
y(z) +

∑
i

cixi(z) = −Mω2q(z), (6.71)

xi(z) = − ci
mi(ω2

i − z2)
y(z).

(6.72)

Here q(z), y(z), xi(z) and V ′
z (q) denote the Fourier transforms of q, y, xi and

V ′(q), i.e., f(z) =
∫∞
−∞ dte−iztf(t), with Im(z) < 0 for analytic convergence.

Substituting Eq. (6.72) into Eq. (6.71), we obtain

y(z) =
−Mω2

Mω2 + L(z)
q(z). (6.73)

Here

L(z) = −z2
[
M +

∑
i

c2i
miω2

i (ω
2
i − z2)

]
. (6.74)

Next, if we insert Eq. (6.73) into Eq. (6.70), we get, in compact notation

K(z)q(z) = −V ′
z (q), (6.75)

where

K(z) = −μz2 +
Mω2L(z)

Mω2 + L(z)
. (6.76)

Problem 2: Derive Eqs. (6.73) and (6.75).
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In what follows we would need to compute K(z). To do that we start by
calculating L(z).

L(z) = −z2

[
M +

∑
i

c2i
miω2

i (ω
2
i − z2)

]

= −z2

[
M +

2

π

π

2

∫ ∞

0

dω′
(

1

ω′(ω′2 − z2)

∑
i

c2i
miωi

δ(ω′ − ωi)

)]

= −z2

[
M +

2

π

∫ ∞

0

dω′ I(ω′)
ω′(ω′2 − z2)

]

= −z2

[
M +

2η

π

∫ ∞

0

dω′ e−ω′/ωc

(ω′2 − z2)

]
. (6.77)

Here we have made use of the spectral density, Eq. (6.65), and in the last line
the Ohmic form of the spectrum. Noting that here Im(z) < 0, the integral in
the above equation can be easily computed by the method of residues to yield

L(z) = −Mz2 + iηz. (6.78)

The effective sepctral density Ieff (ω) can now be found as [167]

Ieff (ω) = lim
ε→0+

Im
[
K(ω − iε)

]
. (6.79)

Substituting Eq. (6.78) in Eq. (6.76) and then in Eq. (6.79), we get the following
effective spectral density

Ieff (ω̃) =
ηω̃ω4

(ω2 − ω̃2)2 + 4γ2ω̃2
. (6.80)

Here γ = η/2M has been used.

Problem 3: Derive Eq. (6.80) and compare it with the Ohmic spectral
density.

6.6.2 Application of the Effective Spectrum Method: Asymptotic be-

havior of the Spin-Boson Model

Here we will apply the effective spectral method to obtain the asymptotic be-
havior of P (t) = 〈σz(t)〉, i.e., 〈σz〉∞. Even though the formal exact solution
is available to us, Eq. (6.53), for practical applications it would be useful to
resort to meaningful approximations. The simplest approximation is that of
the NIBA, discussed above. Here we will work within this approximation. The
desired asymptotic behavior can of course be obtained from the expressions of
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the IF derived above. However, here we will make use of the intermediate oscil-
lator formalism, enunciated above, to obtain this result [168]. Further, this will
serve as a brief introduction to the field of driven dissipative quantum tunneling
[169].

We consider the problem of a TSS driven by a periodic driving field
− 1

2�ζ̂ cos(Ωdrt)σz. This has the effect of periodically modulating the bias en-
ergy of the undriven system. It can be shown [170, 1] that the Laplace transform
of P (t), P̂ (λ) =

∫∞
0

e−λtP (t), obeys the following generalized master equation

λP̂ (λ) = 1 +

∫ ∞

0

dte−λt
[
K̂−

λ (t)− K̂+
λ (t)P (t)

]
. (6.81)

For periodic driving, as considered here, the kernels K̂±
λ (t) can be expanded in

a Fourier series as

K̂±
λ (t) =

∞∑
j=−∞

k±j (λ)e
−ijΩdrt. (6.82)

This makes it possible to solve Eq. (6.81) recursively. The asymptotic dynamics
is periodic with period 2π/Ωdr determined by the driving field and

lim
t→∞P (t) = P∞ =

∞∑
j=−∞

pje
−ijΩdrt, (6.83)

where

p0 =
k−o (0)
k+o (0)

−
∑
j 
=0

k+j (0)

k+o (0)
pj , (6.84)

and

pj =
i

jΩdr

(
k−j (−ijΩdr)−

∑
r

k+j−r(−ijΩdr)pr

)
, (6.85)

for j �= 0. Here i stands for the usual complex number
√−1. Let us take up the

case of high frequency driving, i.e., Ωdr � {Γ, ζ,Δ0}, where Γ−1 is the mean
decay time after which the spin-Boson attains equilibrium and ζ, Δ0 are the
detuning and tunnel splitting terms of the TSS, respectively. This would be
appropriate to use in the context of control of chemical reactions. In this case,
the asymptotic value P∞ is given by [169]

P∞ =
k−o (0)
k+o (0)

. (6.86)

In the above equation,

k−o (0) = Δ2
0

∫ ∞

0

dth−(t) sin(ζt)J0

(
ζ̂

Ωdr
sin

(Ωdrt

2

))
,

k+o (0) = Δ2
0

∫ ∞

0

dth+(t) cos(ζt)J0

(
2ζ̂

Ωdr
sin

(Ωdrt

2

))
. (6.87)
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Here

h−(t) = e−C′(t) sin(C ′′(t)),

h+(t) = e−C′(t) cos(C ′′(t)), (6.88)

and J0 is the Bessel function of order zero

J0(x) =
∞∑
j=0

(−1)j

(j!)2

(
x

2

)2j

. (6.89)

C ′(t) and C ′′(t) are, as described before, the real and imaginary parts of C(t),
Eq. (6.38).

We now use the intermediate oscillator, of frequency Ω, approach. To this
effect C(t), Eq. (6.38), is computed with the effective spectral density (6.80)

Ieff (ω) =
ηωΩ4

(Ω2 − ω2)2 + 4γ2ω2
. (6.90)

Then C(t) can be expressed as

C(t) =
1

2

∫ ∞

−∞
dωCa(ω)Cb(ω, t), (6.91)

where

Ca(ω) =
ηΩ4

ω
[
(Ω2 − ω2)2 + 4γ2ω2

] ,
Cb(ω, t) =

cosh(βω/2)− cosh[ω(β/2− it)]

sinh(βω/2)
. (6.92)

The integrals can be performed using contour integration [168] to yield

k±0 (0) =
∞∑

m=−∞

∞∑
n=−∞

Δ2

∫ ∞

0

dte−C′
1(t)g±mn(t). (6.93)

Here

g+mn(t) = Re
[
c+mn(t) cos(ζmnt) + c−mn(t) sin(ζmnt)

]
,

g−mn(t) = Im
[
c−mn(t) cos(ζmnt)− c+mn(t) sin(ζmnt)

]
, (6.94)

c+mn(t) = J2
n

( ζ̂
Ω

)
Jm(e−γtω1) cos(mφ)(−i)me−iA1 ,

c−mn(t) = J2
n

( ζ̂
Ω

)
Jm(e−γtω1) sin(mφ)(−i)me−iA1 . (6.95)
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The terms in these equations are

ζmn = ζ0 −mΩ̄− nΩdr,

ω1 =
√
(A1 − iB1)2 + (A2 − iB2)2,

tan(φ) = −A2 − iB2

A1 − iB1
. (6.96)

Further, Ω̄2 = Ω2 − γ2, and

C ′
1(t) = B1 +

sinh(βΩ̄)/Ω̄ + sin(βγ)/γ

cosh(βΩ̄) + cos(βγ)

πηΩ2t

4
− πηΩ4

β

∞∑
n=1

(e−νnt − 1)/νn + t

(Ω2 + ν2n)
2 − 4γ2ν2n

,

νn =
2πin

β
,

A1 =
πη

2
,

A2 = −πη

4

Ω̄2 − γ2

Ω̄γ
,

B1 =
A2 sinh(βΩ̄)−A1 sin(βγ)

cosh(βΩ̄) + cos(βγ)
,

B2 =
A1 sinh(βΩ̄)−A2 sin(βγ)

cosh(βΩ̄) + cos(βγ)
. (6.97)

Also, η, γ are as in Eq. (6.90).
For γ/Ω � 1 implying Ω̄ ≈ Ω and for not too large temperature T ,

cos(βγ) � cosh(βΩ), sin(βγ) � sinh(βΩ). Also, tan(mφ) ≈ i tanh(mβΩ
2 ). Us-

ing this in Eq. (6.95), we get

i tanh

(
mβΩ

2

)
c+mn(t) = c−mn(t). (6.98)

If the integrand in Eq. (6.87) is not damped too fast and ζmn = 0, Eq. (6.96),
then the summation in Eq. (6.93) would be dominated by the coefficient of the
cosine term. This implies that, for those integers,

g+mn(t) ≈ Re
[
c+mn(t)

]
,

g−mn(t) ≈ tanh

(
mβΩ

2

)
Re

[
c+mn(t)

]
. (6.99)

It follows that for that specific integer m the asymptotic value of P (t) is

P∞ = tanh

(
mβΩ

2

)
. (6.100)

6.7 Guide to Advanced Literature

What has been discussed in this chapter is just the tip of the iceberg. However,
just as the tip can identify the iceberg, the tools and techniques laid down here

142 Dissipative Two-State System



could be used profitably to explore new avenues. We studied the partition func-
tion of the spin-Boson model. This can be used to understand the equilibrium
properties of open TSS. The formal expressions of the partition function can
be used to establish relationships between the Ohmic spin-Boson model with
variants of the Kondo model [158] and the Ising model with ferromagnetic 1/r2

interaction [171].
We have seen that the exact formal expressions of the spin-Boson dynamics

are very cumbersome. Therefore from a practical perspective, it is highly desir-
able to develop appropriate approximation schemes. The simplest such scheme
is the NIBA, which was discussed above. There are approximation schemes that
go beyond the NIBA, as would be required for tunneling systems with higher de-
fect concentration. For example, some applications require taking into account
the interblip correlations to first order in the coupling strength. In the interact-
ing blip chain approximation the nearest neighbour correlations between blips
and phase correlations between neighbouring sojourn-blip pairs is taken into
account [1, 172].

Driven TSS and the subsequent driven quantum tunneling, which in its
simplest form would be the spin-Boson problem driven by an external laser field,
are very useful for understanding processes such as electron transfer. These
studies also play an important role in the control of the TLS dynamics via
quantum stochastic resonance, a cooperative effect of noise and periodic driving
in bistable systems. This is a vast field and is nicely reviewed in [169].

It is also possible to derive a master equation for the spin-Boson model
[173] which is valid in the (weak) strong coupling regime. The key ingredient
of such a derivation is to consider a variational polaron transformation for the
spin-Boson Hamiltonian [174].

6.7 Guide to Advanced Literature 143



Chapter 7

Quantum Tunneling

7.1 Introduction

Tunneling is a bonafide quantum mechanical effect [175, 176]. Since it involves
barrier penetration, it is also an inherently non-perturbative process. It serves
a crucial role in the test of quantum coherence in macroscopic regimes, also
known as Macroscopic Quantum Coherence (MQC) [68]. Development in tech-
nology has made the concept of tunneling crucial to the development of devices
on the nanoscopic, nanometre 10−9m range, and mesoscopic, upto a few mi-
crons μm, scales. Further, tunneling has important ramifications to almost all
branches of physics, such as atomic, molecular, condensed matter physics as
well as to quantum field theory and cosmology. A very powerful technique for
dealing with tunneling is the semiclassical approximation, which we detail be-
low. Tunneling processes can be broadly classified into two categories: coherent
and incoherent tunneling. Coherent tunneling phenomena involve the coher-
ent overlap of wavefunctions located in individual domains, such as, ground
states of potential wells, and separated by energy barriers. Incoherent tunnel-
ing involves scattering between reservoirs or decay of metastable states into the
continuum and hence no overlap of the wavefunction. Tunneling has two per-
spectives: time independent energy domain considerations and that invoking
the time dependent dynamics.

Complex systems usually carry with them the extra baggage of their am-
bient surroundings whose effect could be dissipation and is the subject of open
quantum systems. In dissipative tunneling, numerically exact treatments can
be very cumbersome as well as time consuming. Semiclassical approximations
provide a good starting point.

We make use of path integral methods throughout this chapter. We begin
with an introduction to semiclassical approximation, and the stationary phase
approximation, which has become a branch of science on in its own [159]. This
implies that the action evaluated at the classical path is much larger than �, as
a result of which the major contribution to the path integral comes from the
classical path and the paths in its neighbourhood. At the same time quantum
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effects are taken into consideration. We illustrate the notion of semiclassical
approximation by applying it on the harmonic oscillator, where it turns out
that the approximation is exact, highlighting the importance and ubiquity of
the harmonic oscillator. We make contact with the conventional WKB method.

This sets the scene for a discussion of quantum tunneling by studying the
double well potential. It is seen that evaluation of the path integrals in the
Euclidean, imaginary time, formulation is best suited for the problem at hand.
Here we see that instantons make a natural entry into the scheme of things. We
get to grips with the single instanton path integral as well as the multi-instanton
one. From this, the concept of tunneling induced splitting, a notion that was
used in the previous chapter in the context of the spin-Boson model, comes out
naturally. This chapter thus serves to also introduce instantons, which has a
huge and diverse literature [159, 177, 43, 160, 1].

Equipped with these tools we move to the topic of dissipative quantum
tunneling of a metastable state. Quantum effects are predominant in the regime
of low temperatures, i.e., temperatures low compared to the crossover temper-
ature. In these regimes, path integral methods come to the forefront and are
perhaps the natural tool for analysis. The notions of semiclassical path integrals
and instantons find a natural environment here. Another technique used in this
context, and briefly introduced here, is the imaginary free energy method, in-
troduced by Langer [178, 179]. Finally we see that using the language adopted
in this chapter, quantum tunneling in the context of open quantum systems
is a natural extension, to larger number of degrees of freedom, of the tools
developed so far. This should not come as a surprise as the notion of semiclas-
sical path integrals as applied to ordinary quantum mechanics finds a natural
extension in quantum field theory [159].

7.2 Semiclassical Approximation

As stated above, tunneling is an inherently non-perturbative process. Hence, it
is of importance to develop an understanding of approximation schemes that
would help to elucidate some aspects of its non-perturbative character. A very
prominent set of tools developed in this context is broadly called semiclassi-
cal approximation. Traditional treatments of the semiclassical approximation
(SCA) invoke the WKB approximation [23] that necessitates the matching of
semiclassical wavefunctions, a cumbersome task. Modern treatments, to which
we shall also adhere to, use the path integral formulation of quantum mechan-
ics [159, 43, 41, 180]. Within the framework of the path integral, semiclassical
methods find a natural habitat with the approximation corresponding to or-
bits minimizing the action. A further advantage of this is that excursions into
open quantum systems by the inclusion of reservoir degrees of freedom is a
straightforward extension.
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We recall that the Feynman kernel giving the quantum transition ampli-
tude, see Chapter II, Eqs. (99), (103), is

〈x′, t′|x, t〉 =
∫

Dxx,t;x′,t′ exp
[ i
�
S(x, ẋ)

]
. (7.1)

Here we have absorbed the normalization constant in the measure of the path
integral Dx. This expression tells us that the quantum mechanical amplitude
to make a transition from x at time t to x′ at time t′ is given by a path integral
over the action and involves a sum over all paths between the same beginning
and end points. The path integral formulation of the SCA involves Eq. (7.1)
and connects it to the energy levels of the system [159]. Let us denote the
eigenfunctions of the Hamiltonian by |n〉. Now the crucial point is the taking
of a trace of the evolution operator exp(−iHt/�) in two different ways; one
over eigenstates of the Hamiltonian |n〉, with the energy spectrum En as the
eigenvalue and the other over the position eigenstates |x0〉 (recall from Chapter
II that the trace can always be performed by using a complete basis set, here
the energy or the position basis)

Tr
(
exp(−iHt/�)

)
=

∑
n

exp(−iEnt/�)

=

∫ ∞

−∞
dx0〈x0| exp(−iHt/�)|x0〉

=

∫ ∞

−∞
dx0

∫
Dxx0,x0,t exp

[ i
�
S(x, ẋ)

]
. (7.2)

The basic idea is to compute the trace using the path integral, in some approxi-
mation, express it in the form of

∑
n exp(−iEnt/�) and thus extract the energy

levels En. The approximation used is the stationary phase approximation [181].
Stationary Phase Approximation:
Consider the multiple integral

I =

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2 · · ·

∫ ∞

−∞
dxNf(x) exp

(− ih(x)
)
. (7.3)

Here x is the collective symbol for {x1, x2, · · ·xN}. Now we assume that the
function h(x) has one extremum, stationary point, at x = a. Taylor expansion
of this function about a yields

h(x) = h(a) +
1

2
ζiMijζj +O(ζ3). (7.4)

Here ζi ≡ xi−ai is the deviation from the stationary point. Note that the linear
term in the expansion is absent because the expansion is around a stationary
point. The essence of the stationary phase approximation (SPA) is that if the
exponential term exp

(− ih(x)
)
oscillates rapidly compared to the other scales

in the problem, then the major contribution to the integral, Eq. (7.3), comes
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from the neighbourhood of the stationary point of h(x), i.e., around x = a.
Then, to the leading order, the terms that are of the third order and higher in
the deviation from the stationary point can be neglected. This implies that the
terms O(ζ3) in Eq. (7.4) can be neglected in this approximation. In that case
I, Eq. (7.3), becomes

I ≈ f(a) exp
(− ih(a)

) ∫
dζ1

∫
dζ2 · · ·

∫
dζN exp

(− i
1

2
ζiMijζj

)
= f(a) exp

(− ih(a)
)(2π

i

)N/2(
DetM

)−1/2
. (7.5)

The last step involves a standard Gaussian integration and DetM corresponds
to the determinant of the matrix M .

Problem 1: Do the Gaussian integration needed to achieve the last step
in Eq. (7.5).

The path integral being a multiple integral, the SPA applied to the integral
in Eq. (7.3) has a straightforward extension to it. Now the role played by h(x)
is taken over by the action S[x(t)]. Consider the Lagrangian L = 1

2 (ẋ)
2−V (x).

The functional Taylor expansion of the action, about the classical path xcl(t),
gives

S[x(t)] = S[xcl(t)] +
1

2

∫ t

0

dτζ(τ)O(τ)ζ(τ) +O(ζ3). (7.6)

Here ζ(τ) ≡ x(τ)− xcl(τ), ζ(0) = ζ(t) = 0 and

O(τ) ≡ − ∂2

∂τ2
−

(
∂2V

∂x2

)
xcl(τ)

. (7.7)

Note that the role played by the matrix Mij in Eq. (7.5) is subsumed here by
the operator O. Applying this to the path integral in Eq. (7.1) we have

〈x′, t|x, 0〉 =

∫
Dxx,0;x′,t exp

[ i
�
S(x, ẋ)

]
≈ N ′(t) exp

[ i
�
S[xcl(t)]

](
DetO(t)

)−1/2
. (7.8)

Here all the 2πi� factors have been absorbed in the measure N , see Eq. (103),
Chapter 2. It goes without further ado that Eq. (7.8) is an approximation which
involves neglecting cubic and higher order terms in ζ(t), the quantum fluctua-
tions. It implies that the action S[xcl(t)] is large compared with respect to �.
Then the exponential oscillates rapidly such that the major contribution to the
integral, in the path integral, comes from the neighbourhood of the stationary
point. The leading term of the contribution comes from the classical path xcl(t)
and the paths in its neighbourhood, hence the notation semiclassical approxi-

mation. Quantum effects are included through the terms N ′(t)
(
DetO(t)

)−1/2
.
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The method breaks down if DetO(t) = 0. This happens due some symmetry
in the problem or its spontaneous breakdown. We will have occasion to discuss
this later. If the integrand has more than one stationary point then, provided
these points are widely separated, SPA implies that each stationary path will
make a separate additive contribution.

An Illustrative Example:

We now illustrate the SPA with the ubiquitous harmonic oscillator with
V (x) = 1

2ω
2x2. Starting from Eq. (7.2) we have

Tr
(
exp(−iHt/�)

)
=

∑
n

exp(−iEnt/�)

=

∫ ∞

−∞
dx0

∫
Dxx0,x0,t exp

[ i
�

∫ t

0

dt(
1

2
(ẋ)2 − 1

2
ω2x2)

]
.

(7.9)

The classical solution xcl(t) for the harmonic oscillator from xcl(0) = x0 to
xcl(t) = x0 is well known and its action is [43]

S[xcl(t)] = −2ωx2
0

sin2(ωt/2)

sin(ωt)
. (7.10)

We implement SPA by expanding the action, about the classical path xcl(t), as
in Eq. (7.6) to get

S[x(t)] = Scl +
1

2

∫ t

0

dτζ(τ)

(
− ∂2

∂τ2
− ω2

)
ζ(τ). (7.11)

Here ζ(t) is, as defined before, the deviation from the classical path, the quan-
tum fluctuation and is zero at the end points, i.e., ζ(0) = ζ(t) = 0. Since the
harmonic oscillator is quadratic in x(t), there are no cubic or higher order terms
in ζ(t) in Eq. (7.11). Thus the SPA coincides, in this case, with the exact re-
sult. This is one of the reasons for the proliferation of the use of the harmonic
oscillator in the literature. Using Eq. (7.8) in Eq. (7.9) and making use of Eq.
(7.11) we have

∑
n

exp(−iEnt/�) =

∫ ∞

−∞
dx0 exp

[ i
�
S[xcl(t)]

] ∫
D[ζ(τ)] (7.12)

× exp

(
i

�

∫ t

0

dτ
(1
2
ζO(τ)ζ

))
=

∫ ∞

−∞
dx0 exp

[ i
�
S[xcl(t)]

](
DetO(t)

)−1/2N ′(t), (7.13)

where O(τ) = − ∂2

∂τ2 − ω2. The next task is the determination of the determi-
nant of the operator O(t). This can be achieved by considering its eigenvalue
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equation. Note that since ζ(0) = ζ(t) = 0, a suitable eigenfunction would be
sin

(
nπτ
t

)
, and the eigenvalue equation is(
− ∂2

∂τ2
− ω2

)
sin

(
nπτ

t

)
=

(
n2π2

t2
− ω2

)
sin

(
nπτ

t

)
. (7.14)

Here n are positive integers. From this, using the eigenvalues, the determinant
can be obtained as

(
DetO(t)

)−1/2
=

∞∏
n=1

(
n2π2

t2
− ω2

)−1/2

≡ α(t)
∞∏

n=1

(
1− ω2t2

n2π2

)−1/2

. (7.15)

It can be shown that the infinite product on the RHS of the above equation is

equal to
( sin(ωt)

ωt

)−1/2
[182]. Using Eq. (7.15) and Eq. (7.10), Eq. (7.13) becomes

∑
n

exp(−iEnt/�) = α(t)N ′(t)
∫

dx0 exp

(
− 2iωx2

0

sin2(ωt/2)

sin(ωt)

)(
ωt

sin(ωt)

)1/2

= α(t)N ′(t)
1

2i sin(ωt/2)
(2πi�t)1/2

= α(t)N ′(t)(2πi�t)1/2
∞∑

n=0

exp
[− i(n+

1

2
)ωt

]
. (7.16)

In the RHS of the above equation, the second line is a result of a simple Gaussian
integration and the third line is due to the following geometric series

∞∑
n=0

exp
[− i(n+

1

2
)ωt

]
=

1

2i sin(ωt/2)
. (7.17)

Problem 2: Prove the above statements.

In Eq. (7.16), we adjust the constants such that α(t)N ′(t) = (2πi�t)−1/2.
Then a comparison of the LHS with the RHS yields the familiar result

En = (n+
1

2
)�ω. (7.18)

Contact with WKB:
We now bring out the connection between the semi-classical path integral

methods, discussed above, with the traditional WKB methods. We begin with
the transition amplitude in Eq. (7.8). As seen there, the determinant in Eq.
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(7.7) needs to be evaluated. From a careful analysis, see for e.g. [177], it can be
shown that

〈x′, t|x, 0〉 ≈ N ′(t) exp
[ i
�
S[xcl(t)]

](
DetO(t)

)−1/2

=
N ′(t)√
φ
(0)
V ′′(t)

exp
[ i
�
S[xcl(t)]

]
. (7.19)

Here V ′′ = ∂2

∂x2 and φ
(0)
V ′′(t) satisfies the equation(

m
d2

dt2
+ V ′′(xcl)

)
φ
(0)
V ′′(t) = 0. (7.20)

Since the classical equations of motion, the Euler-Lagrange equations, for the
Lagrangian L = 1

2 (ẋ)
2 − V (x) is

m
d2xcl

dt2
+ V ′(xcl) = 0, (7.21)

the Eq. (7.20) can be recast in the following convenient form(
m
d2xcl

dt2
+ V ′′(xcl)

)
dxcl

dt
= 0. (7.22)

A comparison of Eqs. (7.20) and (7.22) yields

φ
(0)
V ′′(t) ∝ dxcl

dt
= p(xcl). (7.23)

Here p(xcl) is the momentum associated with xcl(t). Using Eq. (7.23) in Eq.
(7.19) we can see that the transition amplitude becomes

〈x′, t|x, 0〉 = N ′(t)√
p(x′)

exp
[ i
�
S[xcl(t)]

]
. (7.24)

This clearly brings out the desired connection between the semi-classical path
integral methods, with the traditional WKB methods [183]. As a side note, let
us revisit the wavefunction of a particle ψ(x) in a potential V (x), in the WKB
picture. It is given by

ψ(x) =
N√
p(x)

exp
[ i
�
S[xcl(t)]

]
. (7.25)

Here N is a normalization factor. From this, the probability density

ψ∗(x)ψ(x) ∝ 1

p(x)
. (7.26)

The probability density is seen to be inversely proportional to the momentum.
This is consistent with our classical intuition in that the slower the particle,
i.e., lesser velocity, the more likely it is to be found. Thus, the WKB wavefunc-
tion is consistent with our classical understanding and hence the terminology
semiclassical coined to it and to its counterparts discussed here.
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7.3 Double Well Potential

The prototype example of quantum tunneling is the double well potential. We
have been acquainted with this in the last chapter in the context of the Spin-
Boson model. Tunneling in a double well has found myriad applications in the
literature, ranging from condensed matter [1, 176] to cosmology [177, 184]. We
will give a sketch of the model, and discuss the effect of tunneling in it via WKB,
briefly, and by the method of instantons. This will also serve as an introduction
to the notion of the instanton [159, 43].

Figure 7.1: Double well potential with local minima at ∓a. Figure adapted from
[43].

Consider the motion of a particle of mass m, in one dimension, moving in
an anharmonic potential

V (x) =
α2

8

(
x2 − a2

)2
. (7.27)

Here α and a are constants. The potential V (x) has the shape of a double well
with two minima at x = ±a, see Fig. (7.1). Due to its form it is sometimes
also referred to as the Mexican Hat Potential . Note that the potential has a
local maximum at the origin x = 0, with the potential cutting the ordinate at

V (x) = α2a4

8 . Thus, the picture emerges of two wells centered around x = ±a

and separated by a wall or barrier of height α2a4

8 . This highlights the role of the
parameter α as the coupling between the two wells. For infinite large coupling
α, the potential separates into two separate symmetrical wells. A particle in one
well stays put there. From the reflection symmetry of the potential, both the
wells will have degenerate energy levels. However, when the coupling α is finite,
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there exists the possibility of tunneling between the two wells. This breaks the
energy degeneracy and results in a splitting of the energy levels. The task then
is to compute this splitting. It is quite straightforward to compute it using
standard WKB techniques leading to the splitting ΔE = E2 −E1 between the
erstwhile degenerate energy levels E1, E2, corresponding to the energy of the
symmetric and anti-symmetric combinations of the ground state wavefunction
φ0(x), respectively [183]

ΔE =
4e

π

√
�mω3/2ae−

1
�
S0 . (7.28)

The parameter ω is identified with the frequency of harmonic oscillations near

the well minima, i.e., V ′′(x = ±a) = α2a2 = mω2. Also, S0 = 2mωa2

3 = 2m2ω3

3α2 .
The damped exponential in the RHS of Eq. (7.28) is a typical signature of
tunneling.

Next we attempt the same problem using path integration. This will, as
seen in the sequel, make use of the Euclidean formulation of path integrals,
typically of use in discussions related to tunneling and have been introduced
earlier, see for e.g., Eq. (18) in Chapter 4. Further, this exercise will serve to
give a brief introduction of the concept of instantons and its uses. We begin
with the transition amplitude, Eq. (7.1), but with the initial and final times
changed to ∓ t

2 , respectively, for notational convenience

〈xf , t/2|xi,−t/2〉 = 〈xf |e− i
�
Ht|xi〉 =

∫
Dxxi,−t/2;xf ,t/2 exp

[ i
�
S(x, ẋ)

]
.

(7.29)
We will be interested in the asymptotics of the dynamics, i.e., in the limit
t → ∞. The action for the double well potential, Eq. (7.27), is

S[x] =

∫ t/2

−t/2

dτ

(
1

2
mẋ2 − α2

8

(
x2 − a2

)2)
. (7.30)

A very convenient way to evaluate path integrals is to use the Euclidean formu-
lation which implies rotation to imaginary time τ → −iτ [185]. The appearance
of imaginary time can also be motivated from the following physical grounds.
Tunneling entails particle motion under a barrier; the total energy is less than
the potential energy. If we interpret the difference as a negative kinetic energy,
it would not be difficult to imagine imaginary velocity and hence imaginary
time. Going to Euclidean space the transition amplitude assumes the form

〈xf |e− 1
�
Ht|xi〉 =

∫
Dx exp

[
− 1

�
SE(x)

]
, (7.31)

where the subscript E denotes Euclidean. It is important to note that the
Euclidean action has the form

SE [x] =

∫ t/2

−t/2

dτ

(
1

2
mẋ2 +

α2

8

(
x2 − a2

)2)
. (7.32)
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Problem 3: Derive Eq. (7.32) from Eq. (7.30).

Note that time τ in Eq. (7.32) is imaginary and ẋ denotes a derivative w.r.t
imaginary time. We now use the semiclassical path integral method, invoking
SPA, to this path integral. The classical equation of motion can be obtained
from the action, Eq. (7.32), as

mẍ− V ′(x) = 0. (7.33)

Here, as usual, dot denotes derivative w.r.t time and dash, in the superscript,
denotes a spatial derivative. Also, V (x) is as in Eq. (7.27). From Eq. (7.33),
it emerges that the Euclidean equations correspond to particle motion in an
inverted potential −V (x). The corresponding Euclidean energy is

E =
1

2
mẋ2 − V (x). (7.34)

The energy landscape now indicates hills at x = ±a and a valley in between at
x = 0. x(t) = ±a is an obvious solution of Eq. (7.33). This would correspond
to the situation, in real time, of small harmonic oscillations about the bottom
of either well. In the asymptotic, large time limit, there are further nontrivial
solutions xcl(t) of Eq. (7.33), which are in the context of quantum tunneling,
as will be seen shortly, called bounce. They can be seen to be

xcl = ±a tanh

(
ω(t− τc)

2

)
. (7.35)

Here τc is a constant denoting the time when the solution reaches the valley of
the Euclidean potential and is arbitrary, due to time translational invariance.
Further, ω is, as discussed above, identified with the harmonic oscillations fre-
quency near the well minima, i.e., V ′′(x = ±a) = α2a2 = mω2.

Problem 4: Verify that Eq. (7.35) is indeed a solution of Eq. (7.33).

It can be easily seen that the asymptotic behavior of the solutions depicted
in Eq. (7.35) are

xcl(t → ∞) = ±a,

xcl(t → −∞) = ∓a. (7.36)

These are depicted in Figs. (7.2). The solutions thus correspond to, in the
Euclidean picture, to have started from the top of one hill at t → −∞ and
going over to the other top at t → ∞. They carry the topological index [159]

Q =
1

2a

(
xcl(∞)− xcl(−∞)

)
= 1. (7.37)
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Figure 7.2: The two instanton solutions depicted in Eqs. (7.35) and (7.36).

Noting that for Eq. (7.35)

ẋcl = ±aω

2
sech2

(
ω(t− τc)

2

)
= ∓ ω

2a

(
x2
cl − a2

)
= ∓

√
2V (xcl)m, (7.38)

we see that the Euclidean energy, Eq. (7.34), for such solutions are

E =
1

2
mẋ2

cl − V (xcl) = 0. (7.39)

Hence, the nontrivial solutions, Eq. (7.35), correspond to minimum energy so-
lutions. The corresponding action is seen to be

SE [xcl] =

∫ ∞

−∞
dt

(
1

2
mẋ2

cl + V (xcl)

)
=

∫ ∞

−∞
dt mẋ2

cl = m

∫ ±a

∓a

dxcl ẋcl

=
2m2ω3

3α2
. (7.40)

The solutions in Eq. (7.35) are thus finite action classical solutions in Euclidean
space and are known as the instanton, starting from −∞ and ending up in ∞
and hence would be the analogue of kinks discussed in the last chapter in the
context of the partition function of the spin-Boson model, or the anti-instanton,
starting from ∞ and ending up in −∞, being analogous to anti-kinks. There
the kink-anti-kink pair was termed as bounce, which as will be noticed in the
discussions to follow, play a crucial role in quantum mechanical tunneling. The
corresponding Euclidean Lagrangian, cf. Eq. (7.32) is

LE =
1

2
mẋ2

cl + V (xcl)

=
ma2ω2

4
sech4

(
ω(t− τc)

2

)
. (7.41)
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The Lagrangian is thus seen to have a narrow spread around t = τc with the
width at half maximum being

Δt ∝ 1

ω
=

√
m

αa
. (7.42)

Thus, the instantons could be thought of as finite action Euclidean solutions
with a finite size of about 1

ω .
Single Instanton Path Integral:
We now proceed to evaluate the (Euclidean) path integral, which is basi-

cally Eq. (7.31) with xi and xf being replaced by ∓a, using the semiclassical
methods discussed above. As a result, we have

〈a|e− 1
�
Ht| − a〉1I =

∫
Dx exp

[
− 1

�
SE(x)

]
= N ′

E(t) exp
[
− 1

�
SE [xcl(t)]

](
DetO(t)

)−1/2
. (7.43)

The subscript 1I stands for one instanton while the subscript E stands, as
usual, for Euclidean. Here we have made use of Eq. (7.8), in the Euclidean
domain. The path integral is obtained by performing the Gaussian integration
over the quantum fluctuations ζ(τ) ≡ x(τ) − xcl(τ) with ζ(−a) = ζ(a) = 0,

with xcl = a tanh

(
ω(t−τc)

2

)
and

O(τ) ≡ − ∂2

∂τ2
+

(
∂2V

∂x2

)
xcl(τ)

. (7.44)

When the range of the parameter τ tends to infinity, the operator O(τ) will
have a zero eigenvalue. This is a consequence of the translational invariance
of the action in the τ variable. This causes a technical problem, i.e., it leads
to the divergence of Eq. (7.43). Also, the translational invariance ensures that
given a solution xcl(τ), xcl(τ − τc), for any τc, say, the center of the instan-
ton and called the collective coordinate, will also be an instanton solution and
hence will contribute to Eq. (7.43). This cumulative effect is taken care of by

multiplying Eq. (7.43) by
∫ t/2

−t/2
dτc. The way to proceed is to replace the zero

mode coordinate by the collective coordinate by a suitable change of variables.
Such an analysis on Eq. (7.43) leads to [159, 43, 177]

〈a|e− 1
�
Ht| − a〉1I = N ′

E(t)J exp
[
− 1

�
S0

](
DetO′(t)

)−1/2
∫ t/2

−t/2

dτc. (7.45)

Here J =
(
S0

m

)1/2
is the Jacobian involved in the transformation used to take

care of the collective coordinate. Also, S0 stands for SE [xcl(t)] and DetO′(t)
denotes the determinant of the operator O(t), Eq. (7.44), with the zero mode
excluded. Since the range is from −t to t, it can be broken up into sub-intervals

156 Quantum Tunneling



and the above path integral can be evaluated by evaluating the operator e−
1
�
Ht

in these sub-intervals. Baring the intervals where the instanton size differs
substantially from zero, see the discussion on its finite size above, the oper-
ator O′(t) can be approximated by a harmonic oscillator of frequency ω, i.e.,

− ∂2

∂τ2 + ∂2V
∂x2 ≈ − ∂2

∂τ2 + ω2. Thus,

(
DetO′(t)

)−1/2
=

[
Det

(
− ∂2

∂τ2
+ ω2

)]−1/2

I. (7.46)

Here I is a constant independent of t in the limit of t going to infinity and can
be shown to be [43, 177, 160]

I =

√
2mω

�
2aω

(
S0

m

)−1/2

. (7.47)

Using this, Eq. (7.45) becomes

〈a|e− 1
�
Ht|−a〉1I = N ′

E(t)JI exp
[
− 1

�
S0

][
Det

(
− ∂2

∂τ2
+ω2

)]−1/2
∫ t/2

−t/2

dτc. (7.48)

Note that N ′
E(t)

[
Det

(
− ∂2

∂τ2 + ω2

)]−1/2

is the result of the Gaussian func-

tional integral encountered before in the context of the harmonic oscillator path
integral, now analytically continued to imaginary time, i.e., t → −it. Its value,

in real time, is

(
1

2πi�t
mωt

sin(ωt)

)1/2

, see Eqs. (121) and (122) in Chapter 2. By

analytical continuation to imaginary time we see that

N ′
E(t)

[
Det

(
− ∂2

∂τ2
+ ω2

)]−1/2

=

(
1

2π�

mω

sinh(ωt)

)1/2

. (7.49)

Note that time t on the RHS of the above equation denotes imaginary time. In
the limit of time going to infinity, we get

lim
t→∞

(
1

2π�

mω

sinh(ωt)

)1/2

→
(
mω

π�

)1/2

e−ωt/2. (7.50)

Collecting these terms we have the one instanton contribution to be

lim
t→∞〈a|e− 1

�
Ht| − a〉1I = JI exp

[
− 1

�
S0

](mω

π�

)1/2

e−ωt/2

∫ t/2

−t/2

dτc. (7.51)

Since the above path integral is in the limit of infinite time t, configurations
of such instantons with arbitrarily large separations, separations much larger
than the instanton size, are favourable. The single anti-instanton, i.e., where
the solution starts from t = ∞ and goes over to t = −∞, path integral can be
seen to be the same.
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Multi-instanton Contributions and Tunneling induced Splitting:
A string of widely separated instantons and anti-instantons also satisfy

the Euclidean equations of motion, Eq. (7.33). They form what is sometimes
referred to as the dilute instanton gas. Thus their contributions to the transition
amplitudes will be multiplicative. In such a scenario we can see that the n
instanton solution, using Eq. (7.51), is(

mω

π�

)1/2

e−ωt/2 (αt)
n

n!
. (7.52)

Here α = 2
√

2m
�
(ω)3/2ae−

1
�
S0 . The factor tn is obtained by integrals, such

as
∫ t/2

−t/2
dτc, over the centers of the n instantons while n! takes care of the

indistinguishability of the n instantons. Only an even number of instantons and
anti-instantons will contribute to transition amplitudes like 〈a|e− 1

�
Ht|a〉 and

〈−a|e− 1
�
Ht|−a〉, while an odd number will contribute to terms like 〈a|e− 1

�
Ht|−

a〉 and 〈−a|e− 1
�
Ht|a〉. Adding the contributions we get, for example,

〈−a|e− 1
�
Ht| − a〉 =

∑
n

(
mω

π�

)1/2

e−ωt/2 (αt)
2n

2n!

=
1

2

(
mω

π�

)1/2(
e−(ω

2 −α)t + e−(ω
2 +α)t

)
. (7.53)

Similarly,

〈a|e− 1
�
Ht| − a〉 =

∑
n

(
mω

π�

)1/2

e−ωt/2 (αt)
2n+1

(2n+ 1)!

=
1

2

(
mω

π�

)1/2(
e−(ω

2 −α)t − e−(ω
2 +α)t

)
. (7.54)

The transition amplitude can also be expressed by inserting a complete basis
of energy eigenstates. Identifying the two low lying states, low energy levels, of
the Hamiltonian H with energy eigenvalues E± by |±〉, we have for t tending
to infinity

〈−a|e− 1
�
Ht| − a〉 ≈ 〈−a|e− 1

�
Ht|−〉〈−| − a〉+ 〈−a|e− 1

�
Ht|+〉〈+| − a〉

= e−
1
�
E−t〈−a|−〉〈−| − a〉+ e−

1
�
E+t〈−a|+〉〈+| − a〉. (7.55)

Comparing Eq. (7.55) with Eq. (7.53) we see that

E± = �

(
ω

2
± α

)
. (7.56)

The splitting of the low lying energy levels ΔE = E+ − E− is thus

ΔE = 2�α

= 4
√
2m� ω3/2a exp

[
− 1

�
S0

]
. (7.57)
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It is instructive to compare the splitting obtained by the instanton technique,
Eq. (7.57), with that using the standard WKB method, Eq. (7.28). It is worth
noting that even though the standard WKB method yields the correct exponen-
tial factor, the instanton method is more useful for estimating the coefficient of
the exponential and is also simpler to extend to the case of higher dimensions,
as could be envisaged in a quantum field theoretic or open quantum system
application [186].

7.4 Quantum Tunneling

The problem of transition by a system from one state, say a metastable state,
to another by getting over a barrier is a theme that is recurrent in many ar-
eas of physics, ranging from nuclear [187], low temperature physics [1, 188],
chemical kinetics to transport in biomolecules [189, 176]. At high temperatures
the principal escape mechanism is thermal activation, while at low tempera-
tures quantum effects start playing an important role. Thus, for example, at
zero temperature the system, localized in the metastable well ground state, can
only rely on quantum tunneling to effect an escape! The modern era of thermal
driven state transition theory could be said to have its beginning in Kramer’s
work [190] where the classical aspects of the problem in the presence of weak
and moderate to strong damping were considered. The quantum mechanical
aspects of the problem taking into account the effect of dissipation on tunnel-
ing was initiated in [188, 191] from the perspective of macroscopic quantum
coherence [68]. This was generalized in [192].

Let us visualize the following setup: a particle of mass m is moving in an
external potential V (x) = 1

2mω2
0x

2
(
1 − 2x

3xb

)
, a quadratic plus cubic potential

with a single metastable minimum zero at x = 0. The potential is such that it
is negative for x > xext, referred to as the exit point of the barrier. The barrier
height is V (b), see Fig. (7.3). A particle that moves out from the exit point is
assumed to not return in finite time. The coordinate x would be the tunneling
degree of freedom which for chemical reactions would be the reaction coordinate
[189]. Metastable nature of the state becomes pertinent when the barrier, here
V (b), is large enough such that the decay time of the metastable state is much
longer compared to the other characteristic time scales in the problem, such as
τrel, the relaxation time in the locally stable well, thermal time �β, correlation
time scale of the noise τn, and the time scales related to the potential curvature
at the minima and at the barrier top, i.e., τ0 = ω−1

0 and τb = ω−1
b , respectively.

Here ω0 =
(
V

′′
(0)/m

)1/2
and ωb =

( − V
′′
(xb)/m

)1/2
are the frequencies of

small oscillations about the well minima and unstable maxima, respectively.
Note the minus sign in ωb, which is indicative of the unstable nature of the
barrier frequency. This hinders the decay process. Weak metastability implies
Vb � kBT and Vb � �ω0. A convenient parametrization of the escape rate αe

from the metastable well is

αe = Θe−ξ. (7.58)

7.4 Quantum Tunneling 159



The quantity Θ is called the attempt frequency of the particle in the well towards
the barrier and ξ is a measure of the barrier size that needs to be overcome.

Figure 7.3: Quadratic plus cubic potential V (x) = 1
2mω2

0x
2
(
1 − 2x

3xb

)
with a

stable local minima at ω0 at x = 0, unstable local maxima at ωb at x = xb and
a barrier height of Vb.

As mentioned above, a careful study of the problem of escape over a barrier
in the presence of damping, in the classical regime, was made by Kramers [190].
He modelled the problem as a nonlinear Brownian motion and studied the
evolution of the probability density p(x, v, t) using a Fokker-Planck equation,
see Chapter 3. The result obtained for the escape rate αe is [189]

αe = Θcl e
−Vb/kBT . (7.59)

Here the classical attempt frequency Θcl = ρω0

2π , where ρ is a constant depending
upon the frequency ωb and the damping term. For large damping, the prob-
lem can be studied in a similar manner, now making use of the Smoluchowski
equation, see Chapter 3. Note the similarity between the forms of Eqs. (7.58)
and (7.59). The maximum rate of escape is achieved at a damping value inter-
mediate between the moderate to strong damping regimes [1]. For moderate
to strong damping, thermal equilibrium is established inside the well; however
this is not so for weak damping. Here the motion of the particle inside the
well is oscillatory with damping causing a gradual change in the distribution
of energy.

Quantum tunneling has a long history [193, 194]. In [187, 195] tunneling
was used to explain the radioactive decay of nuclei, in particular application of
tunneling was made to understand alpha decay. An early attempt at providing a
quantum mechanical escape rate involved the Wigner function ρW [196], a well

160 Quantum Tunneling



known quasiprobability distribution, see for e.g. [197] and references therein,

αe =
1

Z0

1

2π�

∫
dxdp

p

m
Θ(p)δ(x− xb)ρ

W (x, p). (7.60)

Here Θ(p) and δ(x − xb) are the usual step and delta functions, respectively.
Also, Z0 is the partition function of the particle inside the well. Another form
of the quantum rate expression, making use of inputs from quantum scattering,
is [198]

αe =
1

Z0
Re

{
Tr

(
e−βHFP

)}
, (7.61)

where H is the Hamiltonian and the flux operator F is

F = δ(x− xb)p/m, (7.62)

P = Θ(p). (7.63)

It would be pertinent here to note that in quantum mechanics we are dealing
with operators, hence the expressions above are operators. Using the identity

e−βH =
1

π�
lim

ε→0+
Im

∫ ∞

0

dE e−βE

∫ ∞

0

dτe(E+iε−H)τ/�, (7.64)

the quantum rate expression Eq. (7.61) becomes

αe =
1

Z0

1

2π�

∫ ∞

0

dE p(E)e−βE , (7.65)

where p(E) is the transmission probability at energy E and is given by

p(E) = lim
ε→0+

Im

∫ ∞

0

dτe(E+iε)τ/�

∫
dxδ(x− xb)|ẋ|x=xb

〈x|e−Hτ/�|x〉. (7.66)

Eq. (7.65) with Eq. (7.66) is the quantum mechanical rate function for a one-
dimensional system.

Next we use semiclassical methods to tackle Eq. (7.65). To this end re-
peated use is made of the SPA, as developed above, to the matrix element
involving e−Hτ/� and then to the time integral

∫∞
0

dτ [159]. The SPA over

e−Hτ/� gives apart from the determinant factors, the exponential e−Scl(τ)/� and
a phase factor which is a multiple of π/2. This factor is due to the singularity
of the velocity ẋ whenever the path goes through a turning point [199, 183],
also known as conjugate points [200, 201, 202]. The phase per turning point is
eiπ/2. For a path which traverses the same one-dimensional orbit n times the
phase factor is einπ, as there are two turning points per traversal. Here Scl(τ)
is the action of the extremal path in the upside down potential −V ; note that
we are using Euclidean time, i.e.,

Scl(τ) =

∫ τ

0

dτ ′
(
1

2
mẋ2(τ ′) + V (x(τ ′))

)
. (7.67)
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The SPA applied to the time integral leads to the exponential
exp−[Scl(τ)− Eτ ]/�. The stationary points are periodic orbits with energy
E in the upside-down potential −V (x). Expanding about the stationary points
and retaining terms upto the Gaussian approximation, i.e., upto the second
term in the Taylor series, we have

Scl(τ)− Eτ = W (E) +
1

2

∂2Scl

∂τ2

∣∣∣∣
τ=τst

(τ − τst)
2. (7.68)

Here τst is the Euclidean time for which the energy integral is stationary. Also,

W (E) = 2

∫ x2

x1

dx
√

2m(V (x)− E). (7.69)

The limits x1 and x2 in the above equation are the turning points, represented
by the zeros of the integrand, of the classical motion in −V (x) with total energy

E = V (x(τ))− 1

2
mẋ2(τ). (7.70)

The contribution of the periodic orbit with one cycle to the transmission prob-
ability is

p1(E) = −e−iπe−W (E)/�. (7.71)

For energy E � Vb, the path stays inside the well and bounces back from
the outer turning point x2, hence the nomenclature bounce for the periodic
path satisfying Eq. (7.70). The factor e−iπ in Eq. (7.71) is due to the conjugate
points, as discussed above. For a path with n cycles this phase factor is e−iπn =
(−1)n. Proceeding in this fashion, and assuming that the stationary points are
sufficiently separated from each other, the transmission probability becomes

p(E) =

∞∑
n=1

(−1)n−1e−nW (E)/� =
1

1 + eW (E)/�
. (7.72)

In the semiclassical limit � → 0, the Boltzmann average in the Eq. (7.65) is
dominated by the periodic orbit with one cycle of period τ = −∂W/∂E = �β,
and the quantum rate expression becomes

αe =
1

Z0

1

2π�

∫ ∞

0

dE e−(βE+W (E)/�, (7.73)

which upon using SPA yields [203]

αe = (Z0)
−1

(
2π�|τ ′B |

)−1/2
e−SB(�β)/�, T < T0, (7.74)

where

|τ ′B | =
∣∣∣∣∣∂2W (E)

∂E2

∣∣∣∣∣
E=E�β

, (7.75)
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and T0 is defined as kBT0 = �ωb

2π , with ωb being the frequency of small os-
cillations around the barrier top, see Fig. (7.3). T0 is, roughly speaking, the
crossover temperature, where the transition from the classical to quantum de-
cay occurs. Also, SB(�β) is the action, Eq. (7.67), for the bounce trajectory
with period �β and total conserved energy E = E�β . Thus,

SB(�β) = W (E�β) + E�β�β. (7.76)

The Eqs. (7.74) to (7.76) provide us with the semiclassical quantum rate in the
regime 0 ≤ kBT < �ω0, where ω0 is the frequency of small oscillations around
the potential minimum, see Fig. (7.3).

In the regime E � Vb, i.e., for T � T0, the deep quantum tunneling
regime with the thermal energy very small as compared to �ω0, the quantum
rate expression can be shown to be reduced to [1]

αe =
e−�ω0/2kBT

Z0
exp

(
α2
0

S0

�
e−�ω0/kBT

)
ψ0, (7.77)

where Z0 = (2 sinh(�βω0/2))
−1, α0 is a constant depending upon the barrier

shape, S0 is the zero energy bounce action

S0 = W (0) = 2

∫ x0

0

dx
√

2mV (x). (7.78)

A comparison of Eq. (7.78) with Eq. (7.69) makes it clear that 0 and x0 in
the above equation are the turning points, representing zeros of the quadratic
plus cubic potential V (x), Fig. (7.3), with x0 being the point where the poten-
tial again crosses the x axis in the direction taken by the particle exiting the
potential, here the right quadrature. For this potential S0 = 36Vb

5ω0
and

ψ0 = α0ω0

(
S0/2π�

)1/2
e−S0/�, (7.79)

is the probability per unit time that a particle localized in the ground state
of the metastable potential well escapes by quantum tunneling. Note that Eq.
(7.77) is obtained by taking a thermal average of the decay out of the different
energy levels En = �ω0(n+1/2) over a canonical distribution e−βEn . Thus, for
example, the rate of decay out of the nth excited state is [204]

ψn =
1

n!

(
α2
0

S0

�

)n

ψ0, (7.80)

and its average with the canonical distribution

αe =
1∑∞

j=0 e
−βEj

∞∑
i=0

ψie
−βEi . (7.81)

Substituting Eq. (7.80) in Eq. (7.81) we obtain the quantum rate expression in
Eq. (7.77).
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Imaginary Free Energy Method: A thermodynamic equilibrium approch to
the problem of quantum rate can now be discussed. This has its precussor in the
work of Langer [178, 179]. This involves the free energy, see Chapter 2, of the
metastable system. The free energy can be obtained from the partition function
which in turn is defined, for the case of metastable potentials, by an analytical
continuation from a stable to the metastable potential of interest, here the
potential depicted in Fig. (7.3). Analytical continuation leads to an imaginary
part of the free energy of the metastable state which in turn is connected to
the decay rate of the system.

Thus, for a metastable system the partition function is

Z =
∑
j

e−β(Ej−i�ψj/2). (7.82)

Here ψn is the decay rate out of the nth excited state, see Eq. (7.80). For weak
metastability Vb � �ω0, it can be readily seen that �ψn � En for all n, where
the notations have the same implications as discussed above. Hence

Z = ReZ + iImZ ≈
∑
j

e−βEj + i(�β/2)
∑
j

ψje
−βEj . (7.83)

Since the free energy F is connected to the partition function Z as F = − 1
β lnZ,

the imaginary part of the free energy, generally small compared to the real part,
is

ImF = − 1

β

ImZb

Z0
= −�

2

∑
j ψje

−βEj∑
n e

−βEn
. (7.84)

ImZb, the imaginary part of Zb, is determined by the properties of the barrier,
while Z0 is real and determined by the properties of the potential well. It should
be kept in mind that the dominant stationary point for the computation of Zb

is the periodic bounce path xB(τ), in the upside down potential −V (x), with
period �β in the regime T < T0, i.e., for temperatures less than the crossover
temperature T0, which is basically the quantum tunneling regime.

Problem 5: Using Eq. (7.83) convince yourself that Eq. (7.84) is correct.

A comparison with Eq. (7.81) yields

αe = −2

�
ImF . (7.85)

It is worth noting that Eq. (7.85) generalizes the decay rate of the ground state
at T = 0 to finite temperature T and is valid in the regime T ≤ T0. For T > T0,
the rate can be shown to be [203]

αe = −2

�

β

β0
ImF . (7.86)
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Here β and β0 correspond to the temperatures T and T0, respectively. The
physical picture that emerges is that for conditions of weak metastability, as
discussed above, the partition function is dominated by stationary points of the
action. There are three solutions, two trivial constant solutions, viz. x̄(τ) = xb

and x̄(τ) = 0, corresponding to the particle sitting at the barrier top or well
minimum, respectively and one nontrivial bounce solution xB(τ), about which
we will have more to talk on shortly. This situation is analogous to the one dis-
cussed for the solutions of Eq. (7.33). For temperatures less than the crossover
temperature T0, there always exists a periodic bounce solution, in the upside
down potential −V (x) with a period �β. The shortest period is that controlled
by the frequency of small oscillations over the barrier top, i.e., 2π/ωb. For tem-
peratures below T0, the bounce xB(τ) is usually smaller than the action of
the constant path x̄(τ) = xb. Since the constant path action has an exponential
contribution, the path integral below T0 is dominated by the bounce. At T = T0

the periodic bounce goes over to the harmonic oscillation. The respective ac-
tions are equal and also coincide with the action of the constant path x = xb.
The crossover temperature T0 varies from system to system, being quite large
for electrons and very small for tunneling in Josephson junctions [1]. It should
be noted that the imaginary free energy method is applicable when thermal
equilibrium in established inside the well. This in turn implies that the relax-
ation time scale inside the well should be short compared to the average escape
time from the well.

7.5 Transition to Open Systems

We now generalize our discussion to N +1 degrees of freedom, N for the reser-
voir and one for the system of interest. This, as should be appreciable is towards
making the transition to Open Quantum Systems. The semiclassical path in-
tegral method, discussed in this chapter, is well suited to make this transition.
This together with the thermodynamic imaginary free energy approach, intro-
duced above, is particularly suited to study tunneling in the wider context of
open systems. As a consequence of the connection of the free energy F to the
partition function Z, we will rely on the path integral of the partition func-
tion of the reduced damped system. The path integral representation of the
partition function has been introduced earlier, see Eq. (126) in conjugation
with Eq. (108), Chapter 2. Here the path integral would yield an integral of
exp{−SE

open} over all periodic paths x(τ) with period τ = �β. The superscript

E denotes Euclidean and hence the time τ is imaginary. Further, SE
open is the

Euclidean action of the dissipative open system of interest of mass m, velocity
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ẋ, moving in a potential V (x) and is

SE
open[x] =

∫
�β

0

dτ

(
1

2
mẋ2 + V (x(τ))

)
+

1

2

∫
�β

0

dτ

∫ τ

0

dτ ′K(τ − τ ′)
(
x(τ)− x(τ ′)

)2
,

=

∫
�β

0

dτ

(
1

2
mẋ2 + V (x(τ))

)
+

∫
�β

0

dτ

∫ τ

0

dτ ′k(τ − τ ′)x(τ)x(τ ′).

(7.87)

The kernel K(τ) is

K(τ) =
1

π�β

∞∑
n=−∞

∫ ∞

0

dωI(ω)
2ω

ν2n + ω2
eiνnτ , (7.88)

cf., Eqs. (28) and (29), Chapter 6. The kernel k(τ) is related to K(τ) by

k(τ) = μ : δ(τ) : −K(τ), (7.89)

where

μ =
N∑

n=1

c2n
mnω2

n

=
2

π

∫ ∞

0

dω
I(ω)

ω
, (7.90)

and : δ(τ) : is the periodically continued, in imaginary Matsubara time, δ
function

: δ(τ) :=
1

�β

∞∑
n=−∞

eiνnτ =
∞∑

n=−∞
δ(τ − n�β). (7.91)

With the help of Eqs. (7.89), (7.90) and (7.91), k(τ) can be expressed as

k(τ) =
1

π�β

∞∑
n=−∞

∫ ∞

0

dω
I(ω)

ω

2ν2n
ν2n + ω2

eiνnτ . (7.92)

Here I(ω) is the spectral density of the reservoir which phenomenologically
models the reservoir action and νn = 2πn

�β is the Bosonic Matsubara frequency.

It is worth pointing out here that Eq. (7.87) is the Euclidean action for a general
linear dissipation, i.e., where the system-reservoir interaction is linear in the
respective coordinates. As shown before, Eq. (7.33), motion in Euclidean space
corresponds to motion in an upside down potential. The N + 1 dimensional
upside down potential landscape −V (x,q), cf. Eqs. (26) to (28), Chapter 4, is

V (x,q) = V (x) +
1

2

N∑
n=1

miω
2
n

(
qn − cn

mnω2
n

x

)2

. (7.93)

The potential landscape −V (x,q) is concave up and hence stable in one direc-
tion but concave down and hence unstable in N directions. The periodic orbit,
in the partition function, is thus characterized by N stability angles.
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The tunneling contribution to the periodic orbit is dominated by the pe-
riodic orbit with period �β. At T = 0, the total energy is zero resulting in an
infinite periodicity. At finite T the period becomes �β. The periodic orbit is
referred to as the most probable escape path [1]. The turning points x1 and
x2, cf. Eq. (7.69), are now appropriate points on the potential landscape of the
inverted potential −V (x,q). The most probable escape path leaves the surface
containing the point corresponding to the turning point x1 at time −�β/2,
passes through the well of −V (x,q), hits the surface containing the turning
point x2, perpendicularly, at time zero and returns back to the starting point
at time �β/2. The projection of the most probable escape path on the x axis
is the bounce path xB(τ). This is a stationary point of the action, Eq. (7.87).
In the spirit of the semiclassical approximation, discussed in this chapter, the
quantum fluctuations about the bounce path xB(τ) will be made in the Gaus-
sian approximation. Needless to say, the zero mode, encountered before would
have to be dealt with care.

The stationary points for a stable potential are a minima of the action.
However, for a metastable potential, the action, for the stationary path, has
a saddle point in function space with an unstable direction, where the action
further reduces. This in turn implies that the potential has another local mini-
mum corresponding to negative eigenvalue. The mode with negative eigenvalue
has to be dealt with using analytical continuation, by deforming the integration
contour from the stable to the metastable situation. As a result, the partition
function acquires an exponentially small imaginary part which in turn is picked
up by the free energy, leading to the decay rate by the imaginary free energy
method. This is the essence of the approach, adopted here, to quantum tunnel-
ing for open quantum systems; making use of semiclassical methods along with
the imaginary free energy technique.

We now briefly go through the steps needed to understand quantum tun-
neling in open quantum systems. At temperatures below the crossover temper-
ature T0, the stationary point of interest is the bounce trajectory xB(τ). The
action evaluated upto the second order (Gaussian approximation) about the
path x(τ) obtained by adding the quantum fluctuations χ(τ) to the bounce,
i.e., x(τ) = xB(τ) + χ(τ) is, in the spirit of Eq. (7.11),

S[x] = SB +
m

2

∫
�β

0

dτ χ(τ)O[xB(τ)]χ(τ), (7.94)

with the fluctuation operator O[xB(τ)]

O[xB(τ)]χ(τ) =

(
− ∂2

∂τ2
+

1

m
V ′′[xB(τ)]

)
χ(τ) +

1

m

∫
�β

0

dτ ′ k(τ − τ ′)χ(τ ′). (7.95)

Here SB is basically SE
open[xB ], Eq. (7.87). Note that a comparison between

Eqs. (7.95) and (7.11), see also Eq. (7.44), reveals the similar structure of the
fluctuation operator modulo the fact that the former, Eq. (7.95), modelling an
open system has a nonlocal term, basically the kernel k(τ −τ ′), which is absent
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in the later, as that represented a single harmonic oscillator. This also serves
to illustrate the difference between a single, closed and an N + 1 dimensional,
open system.

Expanding the quantum fluctuations χ(τ) in the complete basis of the
modes φn(τ), normalized in the interval (0, �β), i.e.,

χ(τ) =
∑
n

λnφn(τ), (7.96)

the action S[x] becomes

S[x] = SB +
m

2

∑
n

On[xB ]λ
2
n. (7.97)

Here, On[xB ] are the eigenvalues of O[xB(τ)] for the periodic boundary condi-
tions. The determinant of O[xB(τ)] in the diagonal basis is

D[xB ] =
∏
n

On[xB ]. (7.98)

From the equation of motion of the bounce xB(τ), which is basically the sta-
tionary solution of the Euclidean action of linear quantum dissipation, in Eq.
(7.87), it can be shown that ẋB(τ) is an eigenmode of the operator O[xB(τ)]
with eigenvalue zero. The corresponding normalized zero mode is

φ1(τ) =

√
m

S0
ẋB(τ). (7.99)

Here S0 is the zero mode normalization factor and is

S0 = m

∫
�β

0

dτ ẋ2
B(τ). (7.100)

The mode φ1(τ) defines a time translation of the bounce, and is akin to the
time translational invariance of the instanton solution described earlier. As a
matter of fact, what we have here is the generalization of our earlier discussion
on instantons to open quantum systems. We have encountered the zero mode
solutions before, in our discussions of the single instanton solutions in a quartic
double well potential. These solutions lead to a divergence and need to be
carefully handled as, for e.g., by a suitable change of variables. In the present
context this leads to

1√O1[xB ]
→

√
S0

2π�

∫
�β

0

dτ0 =

√
S0

2π�
�β. (7.101)

The zero mode φ1(τ) has one node. This implies the existence of a nodeless
eigenmode of O[xB(τ)] with a negative eigenvalue. This negative eigenvalue
indicates an unstable mode, a trademark signature of tunneling. This happens
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because the action for the constant path x(τ) = xb, at the barrier top, is
a saddle point. The functional integral is now performed by deforming the
integration contour of the variable corresponding to the unstable mode into the
upper half of the complex plane along the direction of steepest descent [178].
This analytical continuation gives an imaginary contribution to the partition
function which in turn contributes to the imaginary part of the free energy, Eq.
(7.84), and hence to the decay rate

αe = Θqme−SB/�. (7.102)

Note the formal similarity of Eq. (7.102) with Eq. (7.58).Thus, Θqm would be
the attempt frequency of the particle in the well towards the barrier and SB/�
is the barrier dependent part of tunneling, which here is the Euclidean action
evaluated at the bounce. The attempt frequency Θqm turns out to be [189]

Θqm =

(
S0

2π�

)1/2(
D0

|D′[xB ]|
)1/2

. (7.103)

Here S0 is as in Eq. (7.100), D0 and D′[xB ] are connected with the Gaussian
fluctuations about the constant paths x(τ) = 0 and x(τ) = xb, respectively.
The prime on D′[xB ] indicates that the zero eigenvalue is omitted. The source
of the origin of the prefactor term Θqm is not difficult to fathom. We have to
keep in mind that in the problem at hand, we are dealing with the path integral
about two constant paths: (a). about the local potential mimimum x0 and (b).
about the unstable local maximum at x = xb, see Figure (7.3) where x0 = 0.
If we now apply semiclassical analysis to the path integral, c.f., Eq. (7.43), we
get our desired result, Eq. (7.102) with Eq. (7.103).

Dissipative quantum tunneling from the ground state in a metastable po-
tential was initiated in [188] and extended to finite temperatures in [205]. We
end this section with a brief discussion of the thermal enhancement of macro-
scopic quantum tunneling. The tunneling rate is enhanced by thermal effects
as finite T opens up the further avenue that the particle can now tunnel from
an excited state in the well. The leading thermal enhancement at low T comes
from the temperature dependence of the bounce action. For a spectral density
I(ω) ∝ ωs, the thermal enhancement for an undamped system is exponentially
weak, i.e., it goes as e−�ω0/kBT , while interestingly for a damped system, the
enhancement goes like a power law, i.e., proportional to T 1+s. The power law
exponent is a distinctive feature of the particular damping model employed
and is independent of the form of the metastable potential [206]. Thus a pre-
cise measurement of the power of the thermally induced algebraic enhancement
of the tunneling probability would provide valuable information regarding the
nature of the coupling to the reservoir.

7.6 Guide to further reading

Tunneling is a vast subject and has applications to many areas, besides the
ones discussed here, such as those in nuclear, atomic and molecular physics.
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As a matter of fact, there are books exclusively devoted to it [175, 176, 207].
We have, in this chapter, indicated the way to attack the problem of quantum
tunneling from a metastable well using semiclassical methods. The regime dis-
cussed is typically at temperatures much lesser than the crossover temperature.
As the crossover temperature is approached and as one goes beyond it, thermal
effects need to be carefully taken into consideration. This requires quite a bit
of analysis which, though technically not more advanced than the ones under-
taken here, are nevertheless very demanding. The reader who wishes to pursue
this further can start by going through the book by Weiss [1]. In the high tem-
perature regime, i.e., for temperatures more than the crossover temperature,
the theory is seen to naturally agree with the original analysis of Kramers.

An interesting avenue in this context is the analysis of tunneling using a
real-time description, in contrast to the imaginary time method promulgated
here [208]. To use this approach in the context of open quantum systems is one
of the problems of current research in this field. Another area worth venturing
into is the study of tunneling in the presence of external driving.
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Chapter 8

Open Quantum System at Interface
with Quantum Information

8.1 Introduction

This chapter is devoted to the interface between open system ideas and the
burgeoning field of quantum information. Quantum information [38, 209] is, as
the name suggests, the broad name given to information tasks that make use of
the laws of quantum mechanics. It encompasses within its purview, communica-
tion, computation and foundational information theoretical tasks. Information
theoretic ideas pervade the whole of physics and make inroads beyond it. As it
involves encoding, transmission and decoding of information as bits or qubits,
all of which are very sensitive to their ambient environment, they provide a
fruitful ground for the application of open system ideas. In fact, this chapter
and the next one bear testimony to this.

This chapter attempts to provide a succinct introduction to the use of the
formalism of open quantum systems to various facets of quantum information.
This involves some tools that are very suitable for the task at hand. Among
these are the notions of quantum operations, Lindblad evolutions (to which we
have been introduced before in Chapter 3), and channel-state duality. After a
discussion of these concepts, we make a foray into their application to concrete
quantum information problems. The examples chosen range from the computa-
tional to the algorithmic and purely information theoretic aspects of quantum
information. Thus, for example, evolution of quantum mechanical correlations,
including the well known entanglement, are studied along with quantum cryp-
tography. The role of open quantum systems is illustrated by applying a very
useful quantum noisy channel, the squeezed generalized amplitude damping
(SGAD) channel [140, 210], which is discussed in some detail in the early part
of the chapter, to the chosen applications. Interaction with the ambient en-
vironment causes noise and it is desirable, for the efficient implementation of
the quantum informational task, to control and correct it. Error correction is
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the name coined for efforts in this direction. We conclude the chapter by an
introduction to ideas of quantum error correction.

8.2 Role of Noise in Quantum Information: Introduction to

Tools and Techniques

We briefly review some concepts of quantum mechanics, from the perspective
of quantum information. It may be fruitful for the reader at this stage to take
another look at Chapter 2. The fundamental unit of quantum information is
the qubit, which could be any two-level quantum system with levels |0〉 and
|1〉. A classical bit string can be described as a vector over the Galois field
Z2. Analogously, string of n qubits is a vector in the Hilbert space H = H1 ⊗
H2 ⊗ · · · ⊗ Hn of dimension d = 2n over a field of complex numbers C, where
H1, . . . ,Hn represent the Hilbert space of individual qubits and ⊗ is the tensor
product. Accordingly, if |0〉 and |1〉 are the two possible states of a quantum
system, then the linear combination

|ψ〉 = α|0〉+ β|1〉, (8.1)

is also a bonafide state with α, β ∈ C. This is known as principle of superposition
in quantum mechanics. In general, pure state in an n-qubit system can be
written as the superposition

|Ψ〉 =
2n−1∑
i=0

= αi|in〉, (8.2)

where |in〉 is basis element for H and
∑2n−1

i=0 |αi|2 = 1.

Quantum entanglement A multi-particle superposition in which the state is
not factorizable as a product of states of individual particles, is referred to as
entanglement [211, 212]. Entanglement can be harnessed to create quantum
parallelism in a quantum computational task, exploiting a superposition of
evaluation of all possible inputs y to a function g(y), as

2−n/2
∑
y

|y〉|0〉 → 2−n/2
∑
i

|y〉|g(y)〉. (8.3)

Entanglement is a ubiquitous feature of quantum mechanics, and is considered
to be a powerhouse of quantum information [38]. Let |ψ〉 ∈ H1 ⊗H2 be a pure
state H1 and H2. Then |ψ〉 is said to be separable if there exist states |ψ1〉 ∈ H1

and |ψ2〉 ∈ H2 such that |ψ〉 = |ψ1〉 ⊗ |ψ2〉; else it is entangled. There are
two kinds of evolution in quantum mechanics: a continuous, norm-preserving
(i.e., unitary) Schrödinger evolution and a discontinuous, probabilistic evolution
following a measurement.
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Continuous evolution. The time evolution of a quantum state is determined
by the Shr̈odinger equation

− i�
d

dt
|ψ(t)〉 = H|ψ(t)〉, (8.4)

where H is the Hamiltonian of the system.

Measurement. Observables in quantum mechanics are represented by Hermi-
tian operators. A measurement operator

P =
2n−1∑
i=0

λi|in〉〈in|, (8.5)

updates the state |Ψ〉 to |in〉 with probability |〈in|Ψ〉|2 with the cor-
responding measurement outcome being λi. Conservation of probability

implies the completeness condition
∑2n−1

i=0 |in〉〈in| = I. For example, af-
ter measurement in the {|0〉, |1〉} basis, |ψ〉 collapses to either |0〉 or |1〉
with probability |α|2 = |〈0|ψ〉|2 or |β|2 = |〈1|ψ〉|2, respectively, with
|α|2 + |β|2 = 1. |α|2 and |β|2 can be accessed by performing measure-
ment on an ensemble of |ψ〉.

More generally, measurement can be represented by any partition of
unit operator. This constitutes a positive operator valued measurement
(POVM). Unlike projectors, POVM elements need not form an idem-
potent matrix. A projector corresponding to a degenerate eigenvalue is
sometimes called incomplete, mainly in quantum error correction where
syndrome measurements are such measurements.

Density matrix representation
When dealing with mixed states, as is often the case in the context of

open quantum systems, the object of interest is the density matrix ρ and has
been introduced earlier in Chapter 2.

Geometrically, the pure state of a qubit can be represented as a point on
the three-dimensional sphere known as Bloch sphere, while the mixed states
are points within the sphere. This can be seen by parameterizing the Eq. (8.1)
with θ and φ as

|ψ〉 = cos
θ

2
|0〉+ e−iφ sin

θ

2
|1〉, (8.6)

where the norm, cos2 θ
2 + sin2 θ

2 = 1, represents the surface of a sphere with
unit radius. The density matrix of a qubit in the Pauli basis is

ρ =
I2 + n̂ · σ

2
, (8.7)

where n̂ = {n̂x, n̂y, n̂z}, σ = {σx, σy, σz} and I2 is the 2 × 2 identity matrix.
The Bloch vector n̂ is the expectation value of ρ in the Pauli basis, i.e., n̂ ≡
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(〈σx〉, 〈σy〉, 〈σz〉). The Pauli operators are traceless and have the following well
known representation in the computational basis

σx =

(
0 1
1 0

)
; σy =

(
0 −i
i 0

)
; σz =

(
1 0
0 −1

)
. (8.8)

The computational basis vectors {|0〉, |1〉} are eigenvectors of σz. From Eq.
(8.7) Tr(ρ2) = 1 corresponds to n̂2

x + n̂2
y + n̂2

z = 1 and represents the surface
of the Bloch sphere. Further, it can be verified that for mixed states Tr(ρ2) =
n̂2
x + n̂2

y + n̂2
z < 1, representing the interior of the Bloch sphere. The completely

mixed state ρ = I2/2 is the center of the Bloch sphere which represents an
equal mixture of |0〉 and |1〉.

Operations on quantum states

Operations required for quantum information processing are known as
gates, which are unitary operations, mathematically represented by unitary
matrices U , that satisfy UU† = U†U = I. The U transforms initial state to the
required final state |ψ′〉 as,

|ψ′〉 = U |ψ〉, (8.9)

which can be read by performing a measurement. It can be observed that
〈ψ′|ψ′〉 = 1, implying that U is an isometry of the evolution, i.e., a trace preserv-
ing operation. This evolution corresponds to that described by the Schrödinger
equation, Eq. (8.4), where U = e−iHt/�. The Pauli operators are unitary and
can perform various required operations in quantum computation. The basic
gates used in quantum computation are bit-flip (σx), phase-flip (σz), combi-
nation of bit and phase flips (σy = σxσz), Hadamard and controlled NOT
(CNOT). A Hadamard gate does a π

4 -rotation on the qubit space, while a
CNOT is a two-qubit gate that flips the second qubit conditioned on the state
of the first qubit, i.e., |0〉〈0| ⊗ I + |1〉〈1| ⊗X. Using a CNOT and SU(2) (single
qubit gate) gate, any unitary quantum operation on qubits can be simulated
and hence they form a universal set of gates for quantum computation.

In general, the gates on qubits and qubits themselves would be noisy
due their unavoidable interaction with the surrounding, leading to non-unitary
evolution. We now turn to this issue.

Problem 1: Show that, using Eq. (8.9), 〈ψ′|ψ′〉 = 〈ψ|ψ〉.

Problem 2: Let 〈x|ψ〉 = ψ(x) =
(
π
a

)−1/4
e−ax2/2. Show that ΔX̂ΔP̂ =

�

2 ; where ΔX̂ =

√
〈(X̂)2〉 − (〈X̂〉)2 and P̂ = −i� ∂

∂X̂
. Note that X̂ and P̂

correspond to the position and momentum operators, respectively.

Problem 3: A quantum system is in the state:

|ψ〉 = 2i|u1〉 − 3|u2〉+ i|u3〉,
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where the |ui〉, i = 1, 2, 3, constitute an orthonormal basis. Write down the
column vector representing this vector in the given basis; do the same for the
row vector.

Problem 4: A quantum system is in the state:

|ψ〉 =
√
2

3
|φ1〉+

√
3

3
|φ2〉+ 2

3
|φ3〉,

where the |φi〉, i = 1, 2, 3, constitute an orthonormal basis. These states are
eigenvestors of a Hamiltonian operator such that: H|φ1〉 = E|φ1〉; H|φ2〉 =
2E|φ2〉; H|φ3〉 = 3E|φ3〉. Is |ψ〉 normalized? If energy is measured, what are
the probabilities of obtaining E, 2E and 3E?

Problem 5: In some orthonormal basis {|u1〉, |u2〉, |u3〉} an operator A acts
as:

A|u1〉 = 2|u1〉,
A|u2〉 = 3|u1〉 − i|u3〉,
A|u3〉 = −|u2〉.

Write the matrix representation of the operator.

Problem 6: In some orthonormal basis {|u1〉, |u2〉, |u3〉} an operator T is:
T = −|u1〉〈u1|+ |u2〉〈u2|+ 2|u3〉〈u3| − i|u1〉〈u2|+ |u2〉〈u1|. Calculate Tr(T).

8.2.1 Quantum noise

The chief barrier in realizing quantum computation, apart from the difficulty to
scale-up, is that a quantum system is rarely truly isolated; it tends to interact
with its environment (alternatively referred to as bath or reservoir) and is thus
usually open. These interactions are often unwanted (though exceptions exist
[213]) and difficult-to-eliminate. They show up as noise in quantum information
processing systems and decohere the system. Decoherence causes decay of the
quantum information about the coherence in the system in a basis determined
by the interaction Hamiltonian [214], which could be the position basis or the
eigen basis of the system Hamiltonian, leading to familiar classical behavior.
One of the first testing grounds for open system ideas was in quantum optics
[6]. Its application to other areas gained momentum from the works of Caldeira
and Leggett [215], and Zurek [216, 217], among others.

Quantum operations

Any evolution consistent with the general rules of quantum mechanics can be
described by a linear, completely positive map, called quantum operation (E)
[38].

8.2 Role of Noise in Quantum Information: Introduction to Tools and Techniques 175



A useful notion in this context is that of complete positivity. Consider any
positive map E on the system Q1; if an extra system R of arbitrary dimension-
ality is introduced, and (I⊗E)(A) is positive on any positive operator A on the
combined system RQ1, where I denotes the identity map on system R, then E
is completely positive.

A unitary evolution is a special case of a quantum operation; general
quantum operations can describe non-unitary evolutions, due to coupling with
environment. Any such quantum operation can be composed from elementary
operations:

• unitary transformations: E1(ρ) = UρU†, effected by the unitary operator
U ;

• addition of an auxiliary system: E2(ρ) = ρ⊗σ: here ρ is the original system
and σ is the auxiliary one;

• partial traces: E3(ρ) = TrB(ρ). In the context of open quantum systems,
the partial trace is usually performed over the reservoir degrees of freedom;

• projective measurements: E4(ρ) = PkρPk/Tr(Pkρ), with P 2
k = Pk. It

should be emphasized that though we talk about projective measurements
here, in general more general measurements are possible [38].

We now wish to interpret the above results in terms of familiar noisy
channels : How can these environmental effects affect quantum computing? In
operator-sum representation, the action of a superoperator E due to environ-
mental interaction is

ρ −→ E(ρ) =
∑
k

〈ek|U(ρ⊗ |f0〉〈f0|)U†|ek〉 =
∑
j

EjρE
†
j ,

where the unitary operator U represents free evolution of system, environment,
as well as the interaction between the two; |f0〉 is the environment’s initial
state and {|ek〉} is a basis for the environment. We assume, here, that the
environment-system starts in a separable state.

Ej ≡ 〈ek|U |f0〉 implements the dynamical mapping and a partition of

unity, i.e.,
∑

j E
†
jEj = I. The Ejs are known as Kraus operators, the exten-

sion of unitary operators to non-unitary evolution. Any transformation that
can be represented as an operator-sum is a completely positive (CP) map [38].
This formulation is known as the quantum operations formalism [218, 219].
The superoperator E is a map and is also interchangeably called a quantum
channel. Some familiar noise channels are the depolarizing channel, the de-
phasing channel, the amplitude damping channel and generalized amplitude
damping channel [38]. A generalization of the latter, in which the thermal bath
is squeezed, known as squeezed generalized amplitude damping channel was
introduced in [220].
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Lindblad Evolutions

An important class of noisy evolutions, used extensively in quantum optics and
quantum information, is the Lindbladian evolutions. They have been introduced
and discussed earlier in Chapter 3. Here we provide a simple, intuitive sketch
to the Lindbladian evolution.

Let us look at the dynamics of the system on a timescale δt. It should
satisfy two conditions:

(A). δt � τS : the timescale is small compared to the characteristic
timescale of the system τS , determined by, say, the natural frequency of the
system. The system density matrix evolves only a little in this time interval;

(B). δt � τB : At the same time δt is long compared to the time over
which the environment/bath forgets its information about the system τB . This
time scale would be the reservoir memory timescale and would be typically
associated with the high-frequency cutoff in the reservoir spectral density and
the time scale associated with the reservoir temperature, which measures the
relative importance of quantum to thermal effects.

Since we look for dynamics beyond time τB , the evolution through time
δt should be described by a quantum operation on the current system density
matrix. Hence,

ρS(δt) = E(ρS(0)) =
∑
k

EkρS(0)E
†
k = ρS(0) +O(δt). (8.10)

It follows that the Kraus operators should be of the form

E0 = IS + (K − i

�
H)δt,

Ek =
√
δtLk, k ≥ 1.

K, H are arbitrary Hermitian operators; Lk are also arbitrary and are called
the Lindblad operators. The normalization of Kraus operators gives

IS = IS + (2K +
∑
k

L†
kLk)δt+O((δt)2), (8.11)

implying that K = − 1
2

∑
k L

†
kLk. Therefore

ρS(δt) = ρS(0)−
{

i

�
[H, ρS ]−

∑
k

[
LkρS(0)L

†
k − 1

2
{ρS(0), L†

kLk}
]}

δt+O((δt)2).

(8.12)

Here, {A,B} = AB + BA. Taking the limit δt −→ 0, the Lindblad master
equation is obtained as

dρS
dt

=
1

i�
[H, ρS ] +

∑
k

[
LkρS(0)L

†
k − 1

2
{ρS(0), L†

kLk}
]
. (8.13)
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If the evolution were unitary, there are no Lindblad operators, then the above
master equation reduces to dρS

dt = 1
i� [H, ρS ], the usual Schrödinger-von Neu-

mann equation. This derivation gives no clue to the microscopic origins of the
Lindbladians. That would require a more detailed derivation, of the kind pre-
sented earlier in Chapter 3.

Illustrative Example:
We reconsider the example of the decay of a two-level system interacting

with a radiation field (bath) in the weak Born-Markov, rotating wave approx-
imation. It follows from Eq. (104), Chapter 3, that the Lindbladian evolution
can be expressed compactly as

d

dt
ρs(t) =

2∑
j=1

(
2Rjρ

sR†
j −R†

jRjρ
s − ρsR†

jRj

)
, (8.14)

where R1 = (γ0(Nth + 1)/2)1/2σ−, R2 = (γ0Nth/2)
1/2σ+. Note that if T = 0,

a single Lindblad operator suffices. All the other terms are as described before,
in Chapter 3. A useful tool for the solution of the above Lindblad equation is
by invoking the representation of the two-level density matrix in terms of Pauli
operators as

ρS(t) =
1

2
(I + 〈�σ(t)〉.�σ)

=

⎛⎝ (
1
2

)
(1 + 〈σz(t)〉) 〈σ−(t)〉

〈σ+(t)〉
(
1
2

)
(1− 〈σz(t)〉)

⎞⎠ .

Using, for e.g.,
d

dt
〈σz(t) = Tr

(
σz

d

dt
ρS(t)

)
, (8.15)

and likewise for the other two Pauli operators, we get three linear differential
equations which can be easily solved to yield the Bloch vectors

〈σx(t)〉 = e−
γ0
2 (2Nth+1)t〈σx(0)〉,

〈σy(t)〉 = e−
γ0
2 (2Nth+1)t〈σy(0)〉,

〈σz(t)〉 = e−γ0(2Nth+1)t〈σz(0)〉 − 1

(2Nth + 1)

(
1− e−γ0(2Nth+1)t

)
. (8.16)

Problem 7: Derive the linear differential equations for the Bloch vectors
and solve them to get Eq. (8.16).

Problem 8: The density matrix for a given state is:

ρ =

(
3/4 −i/4
i/4 1/4

)
.
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Find out the Bloch vector for this state. Is it pure or mixed? If the σz operator
is measured, find the probability of finding |1〉.

Problem 9: A density operator for some system is given by

ρ =

(
2/3 1/6− i/3
1/6 + i/3 1/3

)
.

Find out the Bloch vector for this state. Is it pure or mixed? A measurement of
spin is made in the z -direction. What is the probability that the measurement
result is spin-down? What is the probability that the measurement is spin-up?

We will next introduce and discuss a very useful technique that makes
use of the duality between the state and the corresponding channel, the Choi-
Jamiolwski isomorphism [221, 222, 223].

8.2.2 Channel-State Duality

Channel-state duality refers to the correspondence between quantum channels
and bipartite states, and finds many uses in quantum information theory. It
is sometimes referred to as the Choi-Jamiolwski isomorphism. It refers to the
statement that any channel (i.e., quantum operation, or equivalently, any lin-
ear, completely positive, trace-preserving map) from the state space of an in-
put quantum system to that of an output system corresponds to a bipartite
state of the tensor product of the two relevant systems. This correspondence
links dynamics to kinematics, and is not merely mathematical but also has a
fundamental physical meaning, profound consequences, and a plethora of ap-
plications. Thus, for example, it allows for the characterization of the channel
based on the correlations between the output system and the ancilla, used for
purifying the system [38].

Let H1 be a finite-dimensional Hilbert space and B(H)1 be the Hilbert
space of all bounded linear operators on H1 equipped with a finite Hilbert-
Schmidt inner product. Let H2 be another finite-dimensional Hilbert space
(which may or may not be identical to H1). For any linear map X : B(H)1 →
B(H)2 sending operators on H1 to operators on H2, consider the following
correspondence

χ → ρχ = I ⊗ χ
(|φ〉〈φ|) = ∑

ij

eij ⊗ χ(eij). (8.17)

Here I is the identity operation, |φ〉 = ∑
i |i〉 ⊗ |i〉 is the canonical maximally

entangled (unnormalized) state in H1 ⊗ H1 and eij = |i〉〈j|, where |i〉 is an
orthonormal basis in H1. The correspondence in Eq. (8.17) is an isomorphism
between the spaces of linear maps from B(H)1 → B(H)2 and the space of
bipartite operators onH1⊗H2. Here B(H)1, B(H)2 stand for the set of bounded
linear operators on the Hilbert spaces H1, H2, respectively. In the physically
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relevant cases, these maps are restricted to subsets of the space of general linear
maps, for example, positive maps, completely positive maps, channels. It can
be used to establish the channel-state duality. Thus, for example, if χ is a
completely positive map, then ρχ is a positive operator. This sets up a duality
between the channel, here the map χ, and state ρχ.

Applications of Channel-State Duality:
(a). Factorization law of entanglement decay
The content of this is that the evolution of entanglement in a bipartite

entangled state under a local one-sided channel can be fully characterized by
its action on a maximally entangled state [224]. The amount of entanglement
at any time t in a given initially entangled two-qubit pure state |Φ〉, under the
action of a one-sided quantum channel χ, is equal to the product of the initial
entanglement in the given state and the entanglement in the state obtained
by applying the channel on one side of a two-qubit maximally entangled state.
Thus,

C
(I ⊗ χ

)(|Φ〉〈Φ|) = C
(|Φ〉〈Φ|)C(

(I ⊗ χ)(|φ+〉〈φ+|)). (8.18)

Here |φ+〉 = 1√
d

∑d
i=1 |ii〉 is a maximally entangled state in a d⊗d Hilbert space

and C is concurrence, a useful quantitative measure of entanglement [225]. We
will have more to say on entanglement later on in this chapter. The usefulness
of the factorization law is that, using it, a study of entanglement of a general
state evolution is reduced to the concurrence in the state obtained after the
evolution of the maximally entangled state |φ+〉 [226]. For a derivation of the
factorization law of entanglement decay using channel-state duality, we refer
the reader to [224].

(b). Kraus operators of the Squeezed Generalized Amplitude Damping
Channel

The Squeezed Generalized Amplitude Damping (SGAD) channel [220],
generalizes the notion of the well known Amplitude Damping (AD) and Gen-
eralized Amplitude Damping (GAD) channels to the case of finite reservoir
squeezing. As squeezing is a quantum resource, the SGAD channel finds a
number of uses in quantum information processing, some of which will be dis-
cussed later on in this chapter. In the spirit of Eq. (8.14), the master equation
depicting the evolution of the reduced density matrix of the qubit interacting
with a squeezed thermal bath expressed in a manifestly Lindblad form has the
form [2, 220, 227]

d

dt
ρ(t) =

2∑
j=1

(
2RjρR

†
j −R†

jRjρ− ρR†
jRj

)
, (8.19)

where R1 = [γ0(Nth + 1)/2]1/2R, R2 = [γ0Nth/2]
1/2R† and R = σ− cosh(s) +

eiΦσ+ sinh(s). γ0 = (4ω3|�d|2)/(3�c3), is the spontaneous emission rate and
σ+, σ− are the standard Pauli raising and lowering operators. Also N =
Nth[cosh

2(s) + sinh2(s)] + sinh2(s), where Nth = 1/(e�ω/kBT − 1) is the Planck
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distribution giving the number of thermal photons at the frequency ω; s and
Φ are bath squeezing parameters. Eq. (8.19) guarantees that the evolution of
the density operator is completely positive (CP). If T = 0, then R2 vanishes,
and a single Lindblad operator suffices. The general map generated by the Eq.
(8.19) is the SGAD channel [220], which generalizes the notion of the AD and
GAD channels [38]. These amplitude damping class of channels are non-unital
and contractive, mapping any initial state to a unique asymptotic state; a con-
sequence of the fluctuation-dissipation theorem.

We now present a useful technique for the calculation of the Kraus op-
erators of the SGAD channel. This can be used to construct similar Kraus
operators. The technique makes essential use of the Choi-Jamiolwski isomor-
phism. Proceeding as in Eq. (8.16), the Bloch vectors for the SGAD channel,
Eq. (8.19), are [220]:

〈σx(t)〉 = A〈σx(0)〉 −B〈σy(0)〉,
〈σy(t)〉 = G〈σx(0)〉 −B〈σy(0)〉,
〈σz(t)〉 = H〈σz(0)〉 − Y, (8.20)

where

A = [1 +
1

2
(eγ0at − 1)(1 + cos(Φ))]e

−γ0(2N+1+a)t
2 ,

B = sin(Φ) sinh(
γ0at

2
)e

−γ0(2N+1)t
2 ,

G = [1 +
1

2
(eγ0at − 1)(1− cos(Φ))]e

−γ0(2N+1+a)t
2 ,

H = e−γ0(2N+1)t,

Y =
(1− e−γ0(2N+1)t)

2N + 1
. (8.21)

In Eq. (8.21), a = sinh(2s)[2Nth + 1] and all the other terms are as defined
above.

Problem 10: Derive the Eqs. (8.20).

Consider the maximally entangled (unnormalized) state |ψ̃〉 = |00〉+ |11〉.
We construct the Choi matrix of the SGAD channel from its action on ρ, the
state reconstructed from the Bloch vectors in Eq. (8.20), as

χE ≡ (I ⊗ E)|ψ̃〉〈ψ̃| =

⎛⎜⎜⎝
1+H−Y

2 0 0 A+G
2

0 1−H+Y
2

A−G
2 − iB 0

0 A−G
2 + iB 1−H−Y

2 0
A+G

2 0 0 1+H+Y
2

⎞⎟⎟⎠ .

(8.22)
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Let the spectral decomposition of this yield,

χE =

3∑
j=0

|ξj〉〈ξj |, (8.23)

where |ξj〉 are the eigenvectors normalized to the value of the eigenvalue. By
Choi’s theorem [221, 228], each |ξj〉 yields a Kraus operator obtained by folding
the d2 (here, 4) entries of the eigenvector into d× d (2× 2) matrix, essentially
by taking each sequential d-element segment of |ξj〉, writing it as a column, and
then juxtaposing these columns to form the matrix.

The eigenvectors corresponding to non-vanishing eigenvalues are found to
be

|ξ0〉 = (0, i
(
√
1−H −Ψ)(Ψ + Y )

2B + i(G−A)
,
√
1−H −Ψ, 0),

|ξ1〉 = (0, i
(
√
1−H +Ψ)(Ψ− Y )

2B + i(G−A)
,
√
1−H +Ψ, 0),

|ξ3〉 = (
−√

1 +H − η(Y + η)

A+G
, 0, 0,

√
1 +H − η),

|ξ4〉 = (
−√

1 +H + η(Y − η)

A+G
, 0, 0,

√
1 +H + η). (8.24)

From above eigenvectors we obtain the Kraus representation for the SGAD
channel [210]

J± =
1

M±

(
0

√
1−H ∓Ψ

i (
√
1−H∓Ψ)(Ψ±Y )
2B+i(G−A) 0

)
,

K± =
1

N±

(
−√

1+H∓η(Y±η)
A+G 0

0
√
1 +H ∓ η

)
,

(8.25)

where Ψ =
√

(A−G)2 + 4B2 + Y 2, η =
√

(A+G)2 + Y 2, and M± =
√
2

√
1 +

∣∣∣ ∓Y+Ψ
2B+i(G−A)

∣∣∣2,
N± =

√
2

√
1 +

∣∣∣ Y±η
A+G

∣∣∣2. It should be noted here that there are infinitely many

Kraus operator representations even within the same representation basis of
the system, depending on the choice of tracing basis {|ek} of the environment.
The different Kraus representations are connected by an appropriate unitary
transformation. This is so for the SGAD channel as well and can be seen in
[210].

Problem 11: For the bravehearts! Sketch the steps from Eq. (8.22) to finally
arive at the Kraus representation for the SGAD channel, Eq. (8.25).
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(c). Qubit Channels: Some Remarks
The channel-state duality can be used to study various quantum channels

geometrically. This provides a powerful as well as elegant tool to develop a
deeper understanding of the channels and also helps in their classification. Given
a map E that maps the algebra of m×m complex matrices to another matrix
algebra, we may define the rank of the channel as that of the matrix associated
with E [229]. Here, by virtue of the Choi isomorphism, one may associate a rank
with the channel, identified with that of the corresponding Choi matrix. From
the above analysis of the Choi matrix corresponding to the SGAD channel, it
can be shown that the rank of the SGAD channel for a qubit is either 2 or 4.
This is not a general quantum feature, and there do exist noise channels for
qubits with odd rank greater than 1. A prominent example of a rank 3 channel
is the Pauli channel with Kraus operator elements I, σx and σy with weights
p, q and r, such that p+ q + r = 1.

Using the Choi-Jamiolwski isomorphism, the set of unitaries on a qudit
maps to pure states in V , the set of two-qudit states isomorphic to CP maps
on a single qudit. The general state of a two-qubit density operator is given by:

ρ =
1

4

⎛⎝I ⊗ I +
∑
j

rjσj ⊗ I2 + sjI2 ⊗ σj +
∑
j,k

tj,kσj ⊗ σk

⎞⎠ , (8.26)

where rj , sj are the analogues of the Bloch vectors in the single qubit case and
the tensor tj,k, also called the tensor polarization [230], are generally complex
numbers subject to requirement ρ = ρ† and Tr(ρ) = 1. Letting |ψ〉 = 1√

2
(|00〉+

|11〉, we have

|ψ〉〈ψ| = 1

4
(I ⊗ I + σx ⊗ σx − σy ⊗ σy + σz ⊗ σz) = (EI ⊗ I)|ψ〉ψ| ≡ I,

(8.27)
where EI is the trivial noise, corresponding to the identity operator. Under the
Choi isomorphism, the corresponding state is therefore I.

The phase flip channel is represented by the set of Kraus operators
[
√
αI,

√
(1− α)Z], where Z stands for the Pauli operator σz and α is a real posi-

tive number such that 0 ≤ α ≤ 1. It is closely related to the phase damping chan-

nel, characterized by the Kraus-operators
[√

βI,
√
(1− β)P0,

√
(1− β)P1

]
,

where P0 = |0〉〈0| and P1 = |1〉〈1| are projectors and β is a real positive number
such that 0 ≤ β ≤ 1. The phase damping channel is strictly a subset of the phase
flip channel. The generalized depolarizing or Pauli channels have Pauli operators

(apart from a factor) as their Kraus operators, i.e.,
[√

αI,
√
βσx,

√
γσy,

√
δσz

]
,

where α, β, γ, δ ≥ 0 are real numbers satisfying α+ β + γ + δ = 1. Every Pauli
channel is a member of the polytope given by four pure points. Note that the
convex hull of a given finite number of pure points is a convex polytope. Geomet-
rically, a polytope can be visualized as an object or tile with flat sides. Using
Choi isomorphism, it can be shown [210] that the set of all Pauli channels, the
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polytope P̂, is a 3-simplex (a tetrahedron) embedded within V . The phase flip
channel F̂ corresponds to a proper subset of P̂, and the volume of phase damp-
ing channels in this set is 1

2 . This structure has been studied using affine maps
on Bloch sphere in [231], where it was shown that the fraction of the channels
that can be simulated with a one-qubit environment is 3

8 . The depolarizing chan-

nel has a Kraus representation

[√
1+3p

4 I,
√

3(1−p)
4 σx,

√
3(1−p)

4 σy,
√

3(1−p)
4 σz

]
.

The Choi matrix for this process has a convex structure which is just the two-
qubit Werner state pI⊗I+(1−p)|ψ〉〈ψ|. The set D̂ of all depolarizing channels
forms a 1-simplex embedded within P̂.

In contrast to these Pauli class of channels, the geometry of the SGAD
channel turns out to be quite different, illustrating their more complicated
nature. The entire family of amplitude damping channels, culminating in the
SGAD channel, lack a convex structure, giving a clue to why they are inherently
different from the Pauli channels [210].

8.3 Selected Applications of Open Quantum Systems to

Quantum Information Processing

Now we elucidate the role played by open system ideas to various facets of
quantum information processing by discussing selected applications.

8.3.1 Environment-Mediated Quantum Deleter

Quantum computation is well known to solve certain types of problems more
efficiently than classical computation [38]. Although quantum mechanical lin-
earity endows a quantum computer with greater-than-classical power [232], it
also imposes certain restrictions, such as the prohibition on cloning [233] and
on deleting [234]. The latter result means that quantum mechanics does not
allow us to delete a copy of an arbitrary quantum state perfectly.

Requirement of Open Quantum System

A quantum computational task can be broadly divided into three stages:

• (A). Initializing the quantum computer, by putting all qubits into a stan-
dard ‘blank state’;

• (B). Executing the unitary operation that performs the actual compu-
tation. This is the area where “decoherence” is an obstacle. A variety
of techniques, including quantum error correction [235], dynamic decou-
pling [236], fault tolerant quantum computation, decoherence-free sub-
spaces [237], among others exist to combat decoherence.

• (C). Performing measurements to read off results.
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In step (A), we must be able to erase quantum memory at the end of
a computational task, in order to prepare the state of a quantum computer
for a subsequent task. What is required is a quantum mechanism that with
high probability allows us to prepare standard ‘blank states’. It is clear that
no unitary process can achieve this, since true deletion would be irreversible,
and hence non-unitary. Further, the no-deleting theorem implies that no qubit
state can be erased against a copy [234]. A direct method for initializing the
quantum computer would be to measure all qubits in the computational basis.
This results in a statistical mixture of |0〉’s and |1〉’s, and there is no unitary
way in a closed system to convert the |1〉’s while retaining the |0〉’s. However,
open quantum systems, in particular a decohering environment, can affect non-
unitary evolution of a sub-system of interest. We are thus led to conclude that
decoherence is in fact necessary for step (A), since there would be no other way
to delete quantum information.

Here this insight is used to argue that decoherence can be useful to quan-
tum computation [213]. In particular, it is shown that a dissipative environ-
ment, the amplitude-damping channel in the parlance of quantum information
theory, can serve as an effective deleter of quantum information. Note that the
amplitude-damping channel belongs to the family of the SGAD channel dis-
cussed above and can be deduced from it by setting the reservoir temperature
T and squeezing parameters, such as s, to zero.

To illustrate our idea we discuss the fidelity as a function of temperature.
Fidelity is a measure of the closeness of the state of interest, here the reduced
density matrix of the system ρs(t), obtained by solving Eq. (8.16) and setting
T = 0, from the target state |0〉. It is defined as

f(t) =
√
〈0|ρs(t)|0〉 =

√
1− 〈σ3(t)〉

2

=
1√
2

[(
1− e−Γt〈σ3(0)〉

)
+

(
1− e−Γt

)
2N + 1

]1/2

, (8.28)

where Γ ≡ γ0(2N +1) and 〈σ3(0)〉 is the expectation value of σ3 at time t = 0.
The plot of fidelity as a function of the temperature T in Fig. (8.1) brings out
the point that under the action of the amplitude damping channel, operating
at T = 0, the final state reduces to the desired target state |0〉, corresponding
to unit fidelity.

Problem 12: Derive Eq. (8.28).

8.3.2 Geometric Phase (GP) in Open Quantum Systems

Let us begin with a brief history of GP. Pancharatnam [238] defined a phase
characterizing the interference of classical light in distinct states of polarization.
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Figure 8.1: Fidelity (f(t)) falls as a function of temperature (T , in units where
� ≡ kB ≡ 1) until it reaches the value 1/

√
2 corresponding to a maximally

mixed state. The case shown here corresponds to θ0 = 0, γ0 = 0.6, ω = 1.0
and time t = 12. Here we set the squeezing parameters s and Φ to zero. Figure
adapted from [213].

Berry [239] discovered that under cyclic adiabatic evolution, a system acquires
an extra phase over the dynamical phase, which is popularly called the Berry
phase, and which in its general perspective is referred to as the GP. Simon [240]
established the geometric nature of GP, linked to notion of parallel transport,
i.e., GP depends only on the area covered by the motion, independent of how
the motion is executed. This is a consequence of the holonomy in a line bundle
over parameter space. Generalization of GP to non-adiabatic and to non-cyclic
evolutions were made in [241], [242], respectively. That GP is a consequence
of quantum kinematics was shown in [243]. GP was defined for nondegenerate
density operators undergoing unitary evolution in [244]. A kinematic approach
to define GP in mixed states undergoing nonunitary evolution was developed
in [245], which we make use of in our study of GP in an open system model.

The geometric nature of GP implies an inherent fault tolerance and would
be useful for quantum computers. There have been proposals to observe GP in
superconducting nanocircuits [246]. Here the effect of the environment is never
negligible [247]. The above points provide a strong motivation for studying GP
in the context of Open Quantum Systems [248, 249, 250, 251]. Here we discuss,
following [249], a prototype model of GP in open quantum systems, i.e., the
GP of a two-level system or a qubit.
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Geometric Phase (GP) in a Two-Level Open System

Here we provide an example of GP, in the context of open quantum systems,
by applying the formalism of [245] to a two-level system, undergoing quantum
non-demolition (QND), see Chapter 3, Section 8, or dissipative evolution [249].

The system Hamiltonian is

HS =
�ω

2
σz. (8.29)

We assume that the system interacts with a squeezed-thermal bath via a
QND or a dissipative interaction. We have [245]

ΦGP = arg

(
N∑

k=1

√
λk(0)λk(τ)〈Ψk(0)|Ψk(τ)〉e−

∫ τ
0

dt〈Ψk(t)|Ψ̇k(t)〉
)
. (8.30)

Here λk(τ), Ψk(τ) are the eigenvalues and eigenvectors, respectively, of the
reduced density matrix of the system. We now sketch a calculation for the evo-
lution of the GP of a two-level system evolving under the influence of an SGAD
(dissipative) channel, Eq. (8.20). The nomenclature of the various terms is as
defined there. This illustrates, in a simple fashion, the influence of dissipation
on the GP of a qubit.

The reduced density matrix of the system can be written as

ρs(t) =

(
1
2 (1 +A) Be−iωt

B∗eiωt 1
2 (1−A)

)
, (8.31)

where, invoking the Bloch vector representation of the density matrix of a two-
level system,

A ≡ 〈σ3(t)〉 = e−γ0(2N+1)t〈σ3(0)〉 −
1

(2N + 1)

(
1− e−γ0(2N+1)t

)
, (8.32)

B =

[
1 +

1

2

(
eγ0at − 1

)]
e−

γ0
2 (2N+1+a)t〈σ−(0)〉

+ sinh(
γ0at

2
)eiΦ− γ0

2 (2N+1)t〈σ+(0)〉. (8.33)

For the determination of GP we need the eigenvalues and eigenvectors of the
Eq. (8.31). The eigenvalues are

λ±(t) =
1

2
(1 + ε±) , where ε± = ±

√
A2 + 4R2. (8.34)
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Here R is given by

R2 =
1

4

[
{1 + 1

2
(1 + cos(Φ))

(
eγ0at − 1

)}e− γ0
2 (2N+1+a)t〈σ1(0)〉

− sin(Φ) sinh(
γ0at

2
)e−

γ0
2 (2N+1)t〈σ2(0)〉

]2
+

1

4

[
{1 + 1

2
(1− cos(Φ))

(
eγ0at − 1

)}e− γ0
2 (2N+1+a)t〈σ2(0)〉

− sin(Φ) sinh(
γ0at

2
)e−

γ0
2 (2N+1)t〈σ1(0)〉

]2
. (8.35)

At time t = 0, λ+(0) = 1 and λ−(0) = 0, hence for the purpose of GP we need
only the eigenvalue λ+(t), and its corresponding normalized eigenvector

|Ψ+(t)〉 = sin

(
θt
2

)
|1〉+ ei(χ(t)+ωt) cos

(
θt
2

)
|0〉, (8.36)

where

sin

(
θt
2

)
=

2R√
4R2 + (ε+ −A)2

=

√
ε+ +A

2ε+
, (8.37)

and χ(t) is given by

tan(χ) =
[
{1 + 1

2
(1− cos(Φ))

(
eγ0at − 1

)}e− γ0
2 at〈σ2(0)〉

− sin(Φ) sinh(
γ0at

2
)〈σ1(0)〉

]
÷

[
{1 + 1

2
(1 + cos(Φ))

(
eγ0at − 1

)}e− γ0
2 at〈σ1(0)〉

− sin(Φ) sinh(
γ0at

2
)〈σ2(0)〉

]
. (8.38)

It can be seen that for t = 0, χ(0) = φ0, sin
(
θt
2

)
=

√
1+〈σ3(0)〉

2 ≡ cos
(
θ0
2

)
and

cos
(
θt
2

)
=

√
1−〈σ3(0)〉

2 ≡ sin
(
θ0
2

)
, as expected. Here θ0 and φ0 are the polar

and azimuthal angles of the Bloch sphere representing the two-level system,
respectively. Use of Eqs. (8.34), (8.36) in Eq. (8.30) we obtain the desired GP
as

ΦGP = arg
[
{1
2

(
1 +

√
A2(τ) + 4R2(τ)

)
} 1

2

×
{
cos

(
θ0
2

)
sin

(
θτ
2

)
+ ei(χ(τ)−χ(0)+ωτ) sin

(
θ0
2

)
cos

(
θτ
2

)}
× e−i

∫ τ
0

dt(χ̇(t)+ω) cos2(
θt
2 )

]
. (8.39)
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Figure 8.2: GP (ΦGP in radians) as function of temperature (T ) for dissipa-
tive interaction with a bath of harmonic oscillators. Here ω = 1, θ0 = π/2,
the large-dashed, dot-dashed, small-dashed and solid curves, represent, γ0 =
0.005, 0.01, 0.03 and 0.05, respectively. Fig. (A) zero squeezing, Fig. (B): squeez-
ing non–vanishing, with s = 0.4 and Φ = 0. GP falls with T . Effect of squeez-
ing: GP varies more slowly with T , by broadening peaks and flattening tails.
Counteractive action of squeezing on influence of T on GP useful for practical
implementation of GP phase gates. Figure adapted from [249].

It can be easily seen from Eq. (8.39) that if the terms determining the influence
of the environment on the two-level system, encapsulated here by the terms
γ0, a and Φ, are set to zero, we obtain for τ = 2π

ω , ΦGP = −π(1 − cos(θ0)),
the expected result for the unitary evolution of an intial pure state [252]. In a
similar fashion, the case of GP under QND evolution can be handled.

Using these, we can illustrate the effect of open systems, on the evolution
of GP. It can be shown that temperature suppresses the GP in the pure de-
phasing case. However, in the dissipative case, Fig. (8.2), interestingly, reservoir
squeezing makes the GP vary more slowly with T , by broadening the peaks and
flattening the tails. Counteractive action of squeezing on influence of T on GP
would be useful for practical implementation of GP phase gates. Of course,
asymptotically the GP falls with temperature, a signature of quantum to clas-
sical transition.

8.3.3 Classical Capacity of a Squeezed Generalized Amplitude Damp-

ing Channel

A quantum communication channel can be used to perform a number of tasks,
such as, transmitting classical or quantum information. A natural question to
ask is how information communicated over a squeezed generalized amplitude
damping channel gets degraded [213].

Consider the following situation: there is a sender A and receiver B; A
has a classical information source producing symbols X = 0, · · · , n with prob-
abilities p0, · · · , pn which are encoded as quantum states ρj (0 ≤ j ≤ n) and
communicated to B, whose optimal measurement strategy maximizes the ac-
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cessible information, which is bounded above by the Holevo bound

χ = S(ρ)−
∑
j

pjS(ρj), (8.40)

where ρ =
∑

j pjρj ; ρj are various initial states and S(ρ) is the von Neumann
entropy. Assume A encodes binary symbols of 0 and 1 in terms of pure, or-
thogonal states of the form |ψ(0)〉 = cos( θ02 )|1〉+ eiφ0 sin( θ02 )|0〉, and transmits
them over the squeezed generalized amplitude damping channel (E). Further
assume that A transmits messages as product states, i.e., without entangling
them across multiple channel use. Then, the (product state) classical capacity
C of the quantum channel is defined as the maximum of χ(E) over all ensembles
{pj , ρj} of possible input states ρj .

Figure 8.3: Holevo bound χ for a squeezed generalized amplitude damping
channel with Φ = 0, over the set {θ0, φ0}, which parametrizes the ensemble
of input states {(θ0, φ0), (θ0 + π, φ0)}, corresponding to the symbols 0 and
1, respectively, with probability of the input symbol 0 being f = 0.5. Here
temperature T = 5, γ0 = 0.1, time t = 5.0 and bath squeezing parameter
s = 1. The figure is adapted from [220].

The channel capacity C is seen, in Fig. (8.3), to correspond to the opti-
mal value of θ0 = π/2, i.e., the input states 1√

2
(|0〉 ± |1〉) for φ0 = 0. From

Fig. (8.4), it emerges that χ is maximized for states 1√
2
(|0〉 ± |1〉), when the

pair of input states are given by (θ0 = π
2 , φ0 = 0) and (θ0 = π

2 + π, φ0 = 0).
A comparison of the solid and small-dashed (small-dashed and large-dashed)
curves demonstrates the expected degrading effect on the accessible informa-
tion, of increasing the bath exposure time t (increasing T ). A comparison of
the large-dashed and dot-dashed curves demonstrates the dramatic effect of
including squeezing. In particular, whereas squeezing improves the accessible
information for the pair of input states 1√

2
(|0〉± |1〉), it is detrimental for input

states (θ0, φ0) given by (0, 0) (i.e., |1〉) and (π, 0) (i.e., |0〉).
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Figure 8.4: Optimal source coding for the squeezed amplitude damping channel,
with χ plotted against θ0 corresponding to the “0” symbol. Here Φ = 0, γ0 =
0.05 and f = 0.5. The solid and small-dashed curves represent temperature
T = 0 and bath squeezing parameter s = 0, but t = 1 and 4, respectively.
The large-dashed and dot-dashed curves represent T = 2.5 and t = 2, but with
s = 0 and 2, respectively. The figure is adapted from [220].

A comparison between the dotted and solid curves, in Fig. (8.5), shows
that squeezing can improve C. This highlights the possible usefulness of squeez-
ing to noisy quantum communication.

8.3.4 Application to Quantum Cryptography

The field of quantum cryptography could be said to have started with the
Bennett-Brassard protocol [253], usually called BB84, for quantum key dis-
tribution (QKD). In QKD two remote legitimate users (Alice and Bob) can
establish an unconditionally secure key through transmission of qubits. Since
the pioneering work of Bennett and Brassard several protocols for different
cryptographic tasks have been proposed. While most of the initial works on
quantum cryptography [253, 254, 255] were concentrated on QKD, eventually
explorations were begun in other directions [256]. A protocol for direct secure
quantum communication using entangled photon pairs was proposed in [257].
Protocols for deterministic secure quantum communication (DSQC) were later
proposed [258, 259, 260], in which the receiver can read out the secret message
only after the transmission of at least one bit of additional classical informa-
tion for each qubit. A set of protocols exist which do not require exchange of
classical information. Such protocols are generally referred to as protocols for
“quantum secure direct communication” (QSDC) [261].

DSQC and QSDC protocols are reducible to secure QKD protocols in the
sense that the former equipped with a source of quantum randomness, yield the
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Figure 8.5: Interplay of squeezing and temperature on the classical capacity C of
the squeezed amplitude damping channel (with input states 1√

2
(|0〉 ± |1〉), and

f = 1/2, corresponding to the optimal coding). Here Φ = 0 and γ0 = 0.1. The
dotted and dot-dashed curves correspond to zero squeezing s, and temperature
T = 0 and 7, respectively. The solid curve corresponds to T = 7 and s = 3.
The figure is adapted from [220].

latter. A conventional QKD protocol generates an unconditionally secure key
by quantum means but then uses classical cryptographic resources to encode
the message. No such classical means are required in DSQC and QSDC.

Let us consider a variant of a DSQC protocol based on rearrangement of
the orders of particles and dense coding [262]. It should be noted that dense
coding refers to the transmission of two bits of information using one qubit
[38]. To be precise, we study a DSQC protocol for a specific task, which may be
visualized as involving three parties, viz., Charlie as the boss who controls the
information, and Alice and Bob as his subordinates. This can also be visualized
as an application of controlled dense coding , in which the controller is Charlie,
who determines how much classical information is delivered to Bob after Alice
sends him all her dense coding qubits. Only if the 2-bit information correspond-
ing to choice of Bell state is made available by Charlie to Bob can the latter
recover Alices information. By varying the information he gives, Charlie can
continuously vary the information recovered by Bob. We study the performance
of the protocol by considering the channel of transmission of Alice to Bob to be
noisy [263], subjected to the squeezed generalized amplitude damping channel.

The model can be considered as a three-party quantum secret sharing
scenario, in which Charlie prepares a Bell state, of which he transmits one half
to Alice and the other half to Bob. From this perspective, the latter two receive
an ensemble of Bell-states:

ρAB ≡
∑
j,k

aj,k|Bj,k〉〈Bj,k|, (8.41)
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where j denotes the parity bit and k the phase bit. Also, |B0,0/1〉 ≡ 1
2 (|00〉±|11〉)

and |B1,0/1〉 = 1
2 (|01〉±|10〉). Alice encodes two bits on her qubit using the four

Pauli operators of the superdense coding protocol [262], and sends the qubit to
Bob via a possibly insecure channel.

In the noiseless case, Bob measures the two qubits in his possession to
obtain the state that corresponds to Alice’s encoding. However, Bob can decode
the full information only if Charlie shares the full classical key information κ
that would make the initial entangled state pure. More generally (as detailed
below), Bob recovers Alice’s transmitted bits depending on the key information
obtained from Charlie. Thus, Charlie acts as a cryptographic switch who can
determine the level of information Alice sends to Bob after the full transmission
of her qubit.

In this manner, we can consider a family of protocols in which the key
information κ varies continuously as 0 ≤ κ ≤ κmax = 2. There are a number
of ways to implement κ, and it is assumed that Alice, Bob and Charlie agree
upon one such convention at the start of the protocol. One such method would
be to start with the assumption that the mixed state provided by Charlie is
a Werner state [38, 264], and we parametrize the amount of key information
Charlie reveals by means of a single variable ψ. The joint state of Alice and
Bob, given by Eq. (8.41), is assumed to have the form

ρ
(0,0)
AB (ψ) = aΠ0,0 + b

∑
j,k 
=00

Πj,k, (8.42)

where Πj,k is projector to the Bell state Bj,k, a = 0.25 + 0.75 sin(ψ), b =
0.25(1− sin(ψ)) and b ≡ 1−a

3 . After transmitting the qubits to Alice and Bob,
Charlie announces the value of angle ψ over a public channel. In so doing, the
amount of information provided by him is κ = 2−H(a, b, b, b) bits, where H(·)
is Shannon entropy. If κ = 2 (a = 1), then Bob knows Charlie had sent out
a |B0,0〉 state, and can work out Alice’s encoded information. Similarly other
Werner states are possible. The maximum information Bob can extract from
this ensemble is the Holevo quantity χ for the ensemble (8.42). Figure (8.6)
shows how Bob’s information increases with key information in the noiseless
case.

As stated above, we now consider noise to be a squeezed generalized am-
plitude damping channel acting on Alice’s qubit transmission. In Fig. (8.7),
the variation of Bob’s recovered information, quantified by the Holevo quantity
χ, as a function of bath squeezing s, and Charlie’s information κ, is depicted.
The Holevo quantity χ increases with κ, but not as much as in the noiseless
case (Fig. (8.6)), because of the randomness introduced by the noise. Fig. (8.8)
depicts the effect, on the Holevo quantity, of squeezing as a function of time.
Interestingly, it is seen that squeezing can have favorable influence in some
regimes. For sufficiently early times, squeezing fights thermal effects to cause
an increase in the recovered information.

The significance of noise is that Alice and Bob may consume some of the
Bell pairs to determine the noise level, and decide whether it is too high to
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Figure 8.6: Information recovered by Bob, quantified by the Holevo quantity
χ, as a function of the key information κ communicated by Charlie, in the
noiseless case. The figure is adapted from [263].

permit secure information transfer, assuming conservatively that all the noise
is due to Eve. Further information on the influence of noise on general crypto-
graphic protocols can be had from [264, 265, 266].

Figure 8.7: Information recovered by Bob, quantified by the Holevo quantity χ,
as a function of the squeezing parameter s, coming from the SGAD Channel,
and key information κ communicated by Charlie. The time of evolution t = 0.8,
while temperature T = 0.2 (in units where � ≡ kB ≡ 1). The figure is adapted
from [263].
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Figure 8.8: Information recovered by Bob, quantified by the Holevo quantity
χ, as a function of the SGAD channel parameters s (squeezing) and t (time
of evolution), assuming Charlie communicates one bit of information. We note
that, for sufficiently early times, squeezing fights thermal effects (here T = 0.2)
to cause an increase in the recovered information. The figure is adapted from
[263].

8.3.5 Dynamics of Quantum Correlations under Open Quantum Sys-

tem evolutions

A capsule on various facets of quantum correlations

Quantum correlations is the terminology developed to address various
forms of correlations, in the quantum mechanical regime. Till the turn of the
last century, they were thought to be synonymous with entanglement, a notion
that was soon seen to be incorrect. At present, there are a number of quantum
correlations, characterized based upon some foundational or operational crite-
rion. We first provide a brief summary of some of the well known aspects of
quantum correlations. This is followed by illustrating them, dynamically, on an
open system model.

Bell inequalities

As stated above, quantum correlations are a many-faceted entity. Bell
inequalities were one of the first tools to detect entanglement. Given a pair
of qubits in the state ρ, the elements of correlation matrix T are Tmn =
Tr [ρ(σm ⊗ σn)]. If ui (i = 1, 2, 3) are the eigenvalues of the matrix T †T
then the Bell-CHSH inequality can be written M(ρ) < 1 [267, 268], where
M(ρ) = max(ui + uj) (i �= j). Violations of this inequality, i.e., M(ρ) > 1 is a
witness of the fact that the system is entangled. However, as pointed by Werner
[264], states that satisfy the inequality could also be entangled. This lead to
the development of the teleportation fidelity.

Teleportation Fidelity
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Teleportation provides an operational meaning to entanglement; whenever
Fmax > 2/3, teleportation is possible. Fmax is computed in terms of the eigen-
values {ui} of T †T . Fmax = 1

2

(
1 + 1

3N(ρ)
)
, where N(ρ) =

√
u1 +

√
u2 +

√
u3

[268]. A useful inequality involving M(ρ) and Fmax

Fmax ≥ 1

2

(
1 +

1

3
M(ρ)

)
≥ 2

3
if M(ρ) > 1. (8.43)

Concurrence
For a mixed state ρ of two qubits, the concurrence, which is a measure of

entanglement, is
C = max(λ1 − λ2 − λ3 − λ4, 0). (8.44)

Here λi are the square root of the eigenvalues, in decreasing order, of the matrix
ρ

1
2 (σy ⊗ σy)ρ

∗(σy ⊗ σy)ρ
1
2 where ρ is computed in the computational basis

{|00〉, |01〉, |10〉, |11〉} [225]. For a two-qubit system, concurrence is equivalent
to the entanglement of formation which can then be expressed as a monotonic
function of concurrence C as

EF = −1 +
√
1− C2

2
log2(

1 +
√
1− C2

2
)− 1−√

1− C2

2
log2(

1−√
1− C2

2
).

(8.45)
Discord
Quantum discord is the difference between two classically equivalent ex-

pressions for mutual information [35] when extended to the quantum regime
[269, 270]. Given the density matrix of the joint state of the systems a and b,
ρab, the two expressions of mutual information are

I(ρab) ≡ S(ρa) + S(ρb)− S(ρab),

J(ρab) ≡ S(ρa)− S(ρa|b). (8.46)

In the above equation, S(ρab) is the usual von Neumann entropy, I(ρab) is the
quantum mutual information, while S(ρa|b) is the quantum conditional entropy.
Classically, these two expressions are equal, but in the context of quantum me-
chanics, S(ρa|b) depends upon the measurement procedure and is given by
optimization over all measurements, for example, the set of projective mea-
surements {Pi} as

S(ρa|b) = min
Pi

∑
i

piS(ρ
i
ab), (8.47)

where pi is the probability that the measurement {Pi} is performed on the state
ρab resulting in the state ρiab. J(ρab) then becomes

J(ρab) = S(ρa)−min
Pi

∑
i

piS(ρ
i
ab). (8.48)

Using Eq. (8.48), quantum discord QD(ρab) is defined as

QD(ρab) = I(ρab)− J(ρab). (8.49)
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There are states that are not entangled, but have discord.

Geometric discord

Since quantum discord involves optimization, it is generally difficult to
compute. To ease the computational complexity, for the case of two qubits,
geometric discord was proposed [271, 272] and is DG(ρ) = 1

3 [‖�x‖2 + ‖T‖2 −
λmax(�x�x

† + TT †)] where T is the correlation matrix, �x is the vector whose
components are xm = Tr(ρ(σm⊗I2)), and λmax(K) is the maximum eigenvalue
of the matrix K.

Measurement induced disturbance (QMID)

QMID (QM) quantifies the quantumness of the correlation between the
quantum bipartite states shared between two parties, using popular quantum
information parlance, Alice and Rob. For the given ρ′A,R, if ρ′A and ρ′R are
the reduced density matrices, then the mutual information that quantifies the
correlation between Alice and Rob is

I = S(ρ′A) + S(ρ′R)− S(ρ′A,R), (8.50)

where S(ρ) is the von Neumann entropy. If ρ′A =
∑

i λ
i
AΠ

i
A and ρ′R =

∑
j λ

j
RΠ

j
R

denotes the spectral decomposition of ρ′A and ρ′R, respectively, then the state
ρ′A,R after measuring in the joint basis {ΠA,ΠR} is

Π(ρ′A,R) =
∑
i,j

(Πi
A ⊗Πj

R)ρ
′
A,R(Π

i
A ⊗Πj

R). (8.51)

QMID [273] is

QM(ρ′A,R) = I(ρ′A,R)− I(Π(ρ′A,R)), (8.52)

is a measure of quantumness of the correlation.

Dynamics of the Reduced Density Matrix for two-qubit Dissipative system

Consider the Hamiltonian, describing the dissipative, position dependent,
interaction of two qubits with bath (modelled as a 3-D electromagnetic field
(EMF)) via dipole interaction as [274, 275, 276]

H = HS +HR +HSR

=
N=2∑
n=1

�ωnS
z
n +

∑

ks

�ωk(b
†

ks
b
ks + 1/2)

− i�
∑

ks

N∑
n=1

[�μn.�g
ks(�rn)(S
+
n + S−

n )b
ks − h.c.].

Here, �μn represents the transition dipole moments, dependent on the different
atomic positions �rn. Also,

S+
n = |en〉〈gn|, S−

n = |gn〉〈en|, (8.53)
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are the dipole raising and lowering operators satisfying the usual commutation
relations and

Sz
n =

1

2
(|en〉〈en| − |gn〉〈gn|), (8.54)

is the energy operator of the nth atom. The creation and annihilation operators,
of the field mode (bath) �ks with the wave vector �k, frequency ωk and polar-

ization index s = 1, 2, are b†
ks, b
ks, respectively. The system-reservoir (S-R)
coupling constant

�g
ks(�rn) = (
ωk

2ε�V
)1/2�e
kse

i
k.rn , (8.55)

is seen to be dependent on the atomic position rn. Here, V denotesthe normal-
ization volume and �e
ks, unit polarization vector of the field. This leads to a
number of interesting dynamical effects. Assuming separable initial conditions,
and taking a trace over the bath, the reduced density matrix of the qubit sys-
tem in the interaction picture and in the usual Born-Markov, rotating wave
approximation (RWA) is obtained as

dρ

dt
= − i

�
[HS̃ , ρ]−

1

2

2∑
i,j=1

Γij [1 + Ñ ](ρS+
i S−

j + S+
i S−

j ρ− 2S−
j ρS+

i )

− 1

2

2∑
i,j=1

ΓijÑ(ρS−
i S+

j + S−
i S+

j ρ− 2S+
j ρS−

i )

+
1

2

2∑
i,j=1

ΓijM̃(ρS+
i S+

j + S+
i S+

j ρ− 2S+
j ρS+

i )

+
1

2

2∑
i,j=1

ΓijM̃∗(ρS−
i S−

j + S−
i S−

j ρ− 2S−
j ρS−

i ).

Here,

Ñ = Nth(cosh
2(s) + sinh2(s)) + sinh2(s), (8.56)

M̃ = −1

2
sinh(2s)eiΦ(2Nth + 1) ≡ ReiΦ(ω0), (8.57)

with

ω0 =
ω1 + ω2

2
, (8.58)

and

Nth =
1

e
�ω

kBT − 1
. (8.59)

Nth is the Planck distribution giving the number of thermal photons at the
frequency ω and s, Φ are squeezing parameters. The analogous case of a thermal
bath without squeezing can be obtained from the above expressions by setting
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these squeezing parameters to zero, while setting the temperature (T ) to zero
one recovers the case of the vacuum bath.

HS̃ = �

2∑
n=1

ωnS
z
n + �

2∑
i,j

(i 
=j)

ΩijS
+
i S−

j , (8.60)

where

Ωij =
3

4

√
ΓiΓj

[
−[1− (μ̂.r̂ij)

2]
cos(k0rij)

k0rij
+ [1− 3(μ̂.r̂ij)

2]

× [
sin(k0rij)

(k0rij)2
+

cos(k0rij)

(k0rij)3
]

]
.

In the above expressions, μ̂ = μ̂1 = μ̂2 and r̂ij are unit vectors along the atomic
transition dipole moments and �rij = �ri − �rj , respectively. Also, k0 = ω0/c,
rij = |�rij |. The wavevector k0 = 2π/λ0, λ0 being the resonant wavelength,
occurring in the term k0rij . It sets up a length scale into the problem depending
upon the ratio rij/λ0. This is thus the ratio between the interatomic distance
and the resonant wavelength, allowing for a discussion of the dynamics in two
regimes:

• localized decoherence, where k0.rij ∼ rij
λ0

≥ 1 and

• collective decoherence, where k0.rij ∼ rij
λ0

→ 0.

Localized decoherence implies that each qubit is interacting with its own
reservoir. Hence, this regime could also be called the independent decoherence
regime. Collective decoherence would arise when the qubits are close enough
for them to feel the bath collectively or when the bath has a long correlation
length (set by the resonant wavelength λ0) in comparison to the interqubit
separation rij . Ωij , Eq. (8.61), is a collective coherent effect due to the multi-
qubit interaction and is mediated via the bath through the terms

Γi =
ω3
i μ

2
i

3πε�c3
. (8.61)

The term Γi is present even in the case of single-qubit dissipative system bath
interaction and is the spontaneous emission rate, while

Γij = Γji =
√
ΓiΓjF (k0rij), (8.62)

where i �= j with

F (k0rij) =
3

2

[
[1− (μ̂.r̂ij)

2]
sin(k0rij)

k0rij
+ [1− 3(μ̂.r̂ij)

2]

× [
cos(k0rij)

(k0rij)2
− sin(k0rij)

(k0rij)3
]

]
.
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Figure 8.9: Concurrence C as a function of time of evolution t. The left figure
deals with the case of vacuum bath (T = s = 0), while the figure in the right
panel considers concurrence in the two-qubit system interacting with a squeezed
thermal bath, for a temperature T = 1 and bath squeezing parameter s equal
to 0.1. In the left figure the bold curve depicts the collective decoherence model
(k0r12 = 0.01), while the dashed curve represents the independent decoherence
model (k0r12 = 1.1). In the right figure, for the given settings, concurrence for
the collective model is depicted by the dashed curve. Here, for the independent
decoherence model, concurrence is negligible and is thus not seen. The figure
is adapted from [275].

Γij is a collective incoherent effect due to the dissipative multi-qubit interaction
with the bath. For the case of identical qubits, as considered here, Ω12 = Ω21,
Γ12 = Γ21 and Γ1 = Γ2 = Γ. Plots depicting the behavior of concurrence,
entanglement, between the two qubits as a function of the evolution time t and
inter-qubit separation r12 are depicted in figures (8.9) and (8.10), respectively.
The different effects of the collective and localized regimes on the concurrence
are clearly brought out.

Next, we made a comparative study, on states generated by the above
discussed open system two-qubit model, of various features of quantum cor-
relations like teleportation fidelity (Fmax), violation of Bell’s inequality M(ρ)
(violation takes place for M(ρ) ≥ 1), concurrence C(ρ) and discord with re-
spect to various experimental parameters like, bath squeezing parameter s,
inter-qubit spacing r12, temperature T and time of evolution t [277]. A ba-
sic motivation for this is to have realistic open system models that generate
entangled states which can be useful for teleportation, but at the same time,
not violate Bell’s inequality. We provide below some examples of such states.
Interestingly, we also find examples of states with positive discord, but zero
entanglement, reiterating the fact that entanglement is a subset of quantum
correlations.

The Figs. (8.11) and (8.12) depict the evolution of various facets of quan-
tum correlations in a two-qubit system undergoing a dissipative evolution. In
particular, they represent the evolution of concurrence, maximum teleporta-
tion fidelity Fmax, test of Bell’s inequality M(ρ), discord as a function of inter-
qubit distance r12. Here temperature T = 300, evolution time t is 0.1 and bath
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Figure 8.10: Concurrence C with respect to inter-qubit distance r12. The figure
on the left deals with the case of vacuum bath (T = s = 0), while the figure
on the right considers concurrence in the two-qubit system interacting with a
squeezed thermal bath, for T = 1, evolution time t = 1 and bath squeezing
parameter s equal to 0.2. In the left figure the oscillatory behavior of concur-
rence is stronger in the collective decoherence regime, in comparison with the
independent decoherence regime (k0r12 ≥ 1); here k0 is set equal to one. In
the right figure, the effect of finite bath squeezing and T has the effect of di-
minishing the concurrence to a great extent in comparison to the vacuum bath
case. Here the concurrence for the localized decoherence regime is negligible, in
agreement with the previous figure. The figure is adapted from [275].
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Figure 8.11: Dynamics of concurrence and maximum teleportation fidelity Fmax

as a function of the inter-qubit separation r12. The figure is adapted from [277].

squeezing parameter s = −1. From the left Fig. (8.11), we find that the two
qubit density matrix is entangled with a positive concurrence except at the
point 0.133 (approx) and for r12 ≥ 0.4. Figure (8.11), right panel, illustrates
that Fmax > 2

3 , for all values of r12 except where there is no entanglement.
However, from the left Fig. (8.12) we find that M(ρ) < 1 for all values of r12,
clearly demonstrating that the states can be useful for teleportation despite the
fact that they satisfy Bell’s inequality. Moreover, from the right Fig. (8.12), a
positive discord is seen for the complete range of r12, even in the range where
there is no entanglement. As a function of the inter-qubit distance, the vari-
ous correlation measures exhibit oscillatory behavior, in the collective regime
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Figure 8.12: Dynamics of Bell’s inequality factorM(ρ) and discord as a function
of the inter-qubit separation r12. The figure is adapted from [277].

of the model, but flatten out subsequently to attain almost constant values
in the independent regime of the model. This oscillatory behavior is due to
the strong collective behaviour exhibited by the dynamics due to the relatively
close proximity of the qubits in the collective regime.

8.3.6 Quantum Walk

Quantum walks (QWs) are the quantum analog of the classical random walks
(CRWs) [278, 279, 280, 281, 282]. The quantum features of interference and su-
perposition make the QW spread quadratically faster than the analogous CRW.
Like their classical counterpart, QWs are also widely studied in two forms,
viz., continuous-time QW (CTQW) [282] and discrete-time QW (DTQW)
[280, 281, 283, 284] and are found to be very useful from the perspective of
quantum algorithms [285, 286, 287, 288]. Experimental implementation of QWs
has been reported in nuclear magnetic resonance (NMR) systems [289, 290], in
the continuous tunneling of light fields through waveguide lattices [291], in the
phase space of trapped ions [292, 293] based on the scheme proposed by [294],
with single neutral atoms in optically trapped atoms [295], and with single
photons [296].

Decoherence, due to open system effects, in QW and the transition of QW
to CRW is important from the perspective of practical implementations, and
have been extensively studied [297, 298, 299, 300]. Here, keeping in line with the
common theme in this chapter, we study the effect of the squeezed generalized
amplitude damping (SGAD) channel [220], on the walk evolution.

Consider a particle (a qubit) which is executing a discrete time QW in
one dimension, also called the discrete time quantum walk on the line, and its
internal states |0〉 and |1〉 span Hc, which is referred as the coin Hilbert space.
The allowed position states of the particle are |x〉, which spans Hx, where x ∈ I,
the set of integers. In an n-cycle walk, there are n allowed positions, and in
addition the periodic boundary condition |x〉 = |x mod n〉 is imposed. A t step
coined QW is generated by iteratively applying a unitary operation W which
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acts on the Hilbert space Hc ⊗Hx:

|ψt〉 = W t|ψ0〉 , (8.63)

where |ψ0〉 = (cos(θ0/2)|0〉+ sin(θ0/2)e
iφ0 |1〉)|0〉 is an arbitrary initial state of

the particle and W ≡ U C(ξ, θ, ζ). The C(ξ, θ, ζ) is an arbitrary SU(2) coin toss
operation which acts on the coin space and is given by

C(ξ, θ, ζ) =
(

eiξ cos(θ) eiζ sin(θ)
e−iζ sin(θ) −e−iξ cos(θ)

)
. (8.64)

The matrix C(ξ, θ, ζ), whose elements are written as Cjk, controls the evolution
of the walk, with the Hadamard walk corresponding to C(0, 45, 0). The U is a
unitary controlled-shift operation:

U ≡ |0〉〈0| ⊗
∑
x

|x− 1〉〈x|+ |1〉〈1| ⊗
∑
x

|x+ 1〉〈x|. (8.65)

The probability to find the particle at site x after t steps is given by

p(x, t) = 〈x|trc(|ψt〉〈ψt|)|x〉. (8.66)

Variance of DTQW
Variance σ2 is an important parameter of the quantum walk. It measures

how much the walker has spread from the origin

σ2 =
n∑

i=1

pi(i− μ)2. (8.67)

Here pi is the probability of finding the walker at the ith position and μ =∑
i pixi. Figure (8.13) depicts variance as a function of time for 100 steps

of Classical Random Walk (CRW) (black solid line) and Hadamard quantum

walk (red line)
[
U
(
H ⊗ I

)]100
on a particle starting from the initial state

1√
2

(| ↑〉+ i| ↓〉). It should be noted here that H = C(0, 45, 0).
Next, we consider the evolution of the quantum walk under the influence

of the SGAD noise channel, modelled by the Kraus operators discussed earlier
in this chapter. The noise is modeled to interact with the coin. The density
operator ρc of the coin evolves according to ρc →

∑
j EjρcE

†
j , where Ej repre-

sent the relevant Kraus operators. The full evolution of the walker, described
by density operator ρ(t), is given by

∑
j Ej(Wρ(t − 1)W †)E†

j , where the Ej ’s
are understood to act only in the coin space.

Figure (8.14) depicts the gradual classicalization of a QW on a line under
the action of the SGAD noise for different channel parameters. It is seen that,
as the QW turns into a CRW, correspondingly, the probability distribution be-
comes increasingly Gaussian, causing the quadratic functional dependence of
variance on time, characteristic of quantum behavior, to become linear. This
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Figure 8.13: Variance of classical and quantum walk as a function of the time
steps. The figure is adapted from [298].

pattern of quantum-to-classical transition has also been observed experimen-
tally, in discrete-time quantum walks using a single-photon, subjected to deco-
herence of the pure dephasing type [296]. This behavior is quite generic, and
can be shown, for example, to arise under arbitrary Markovian decoherence
of a continuous-time quantum walk on a graph (cf. Fig. 3 of Ref. [301]). The
Gaussianization is directly reflected in the fall of standard deviation.

8.3.7 Quasiprobability distributions in open quantum systems

A useful concept in the analysis of the dynamics of classical systems is the no-
tion of phase space. A straightforward extension of this to quantum mechanics
is foiled due to the uncertainty principle. Despite this, it is possible to con-
struct quasiprobability distributions (QDs) for quantum mechanical systems in
analogy with their classical counterparts [303, 304, 305, 306, 307, 308]. These
QDs are very useful as they provide a quantum classical correspondence and
facilitate the calculation of quantum mechanical averages in close analogy to
classical phase space averages. Nevertheless, the QDs are not probability dis-
tributions as they can take negative values as well, a feature that could be used
for the identification of quantumness in a system.

The first QD was developed by Wigner resulting in the epithet Wigner
function (W ) [309, 310, 311, 312, 313]. Other well known examples of QDs
are the P and Q functions. The P function played a central role in the devel-
opment of the field of quantum optics and was originally developed from the
possibility of expressing any state of the radiation field in terms of a diagonal
sum over coherent states [314, 315]. The P function can become singular for
quantum states, a feature that lead to the development of other QDs such as
the Q function [316, 317, 318]. These QDs are intimately related to the prob-
lem of operator orderings. The P and Q functions are related to the normal
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Figure 8.14: The effect of increasing the environmental squeezing parameter
s of the SGAD channel, on the position probability distribution of a particle
with the initial state (1/

√
2)(|0〉 + i|1〉) ⊗ |ψ0〉 and coin toss instruction given

by B(0◦, 45◦, 0◦). Other channel parameters are fixed at T = 3, γ0 = 0.03 and
Δ = 0.2. (a) The probability distribution on a line for different values of s, at
time t = 100 steps. With increasing noise (parametrized by s), the distribution
transforms from the characteristic QW twin-peaked distribution to the classical
Gaussian. The figure is adapted from [302].

and antinormal orderings, respectively, while the W function is associated with
symmetric operator ordering. There can be other QDs, apart from the above
three, depending upon the operator ordering. However, among all the possible
QDs the above three QDs are the most widely studied. There exist several rea-
sons behind the intense interest in these QDs. Thus, for example, nonpositive
values of P function define a nonclassical state. Nonpositivity of P is a nec-
essary and sufficient criterion for nonclassicality, but other QDs provide only
sufficient criteria.

A nonclassical state can be used to perform tasks that are classically im-
possible. This fact motivated many studies on nonclassical states, for example,
studies on squeezed, antibunched and entangled states. Many of these applica-
tions make use of spin-qubit systems.

Quantum optics deals with atom-field interactions. The atoms, in their
simplest forms, are modeled as qubits (two-level systems). These are also of
immense practical importance as they can be the effective realizations of Ry-
dberg atoms [319, 320]. This evokes the question whether one could have QDs
for atomic systems as well. They are closely tied to the problem of development
of QDs for SU(2), spin-like (spin-j), systems. Such a development was made
in [321], where a QD on the sphere, naturally related to the SU(2) dynamical
group [322, 323], was obtained. There are by now a number of constructions of
spin QDs [324, 325, 326, 327, 114], among others.
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Another approach, is to make use of the connection of SU(2) geometry to
that of a sphere. This approach is used here. The spherical harmonics provide
a natural basis for functions on the sphere. This, along with the general theory
of multipole operators [328, 329], can be made use of to construct QDs of
spin (qubit) systems as functions of polar and azimuthal angles [127]. Other
constructions, in the literature, of W functions for spin-1/2 systems can be
found in [330, 331], among others. A concept that played an important role
in the above developments, was the atomic coherent state [332], which lead
to the definition of atomic P function in close analogy to their radiation field
counterparts.

The fields of quantum optics and information have matured to the point
where intense experimental investigations are being made. This motivates the
use of open system ideas on the study of quasiprobability distributions. Here
we concentrate on the spin systems, in particular, we will work out the QDs
for a single two-level system under the influence of the SGAD channel.

The Wigner function
Exploiting the connection between spin-like, SU(2), systems and the

sphere, a QD can be expressed as a function of the polar and azimuthal angles.
This expanded over a complete basis set, a convenient one being the spherical
harmonics, the W function for a single spin-j state can be expressed as [127]

W (θ, φ) =
(
2j+1
4π

)1/2 ∑
K,Q

ρKQYKQ (θ, φ) , (8.68)

where K = 0, 1, . . . , 2j, and Q = −K,−K + 1, . . . , 0, . . . ,K − 1,K, and

ρKQ = Tr
{
T †
KQρ

}
. (8.69)

Here, YKQ are spherical harmonics and TKQ are multipole operators given by

TKQ =
∑

m,m′
(−1)

j−m
(2K + 1)

1/2

(
j K j

−m Q m′

)
|j,m〉〈j,m′|,

(8.70)

where

(
j1 j2 j
m1 m2 m

)
= (−1)j1−j2−m

√
2j+1

〈j1m1j2m2|j − m〉 is the Wigner 3j

symbol [333] and 〈j1m1j2m2|j−m〉 is the Clebsh-Gordon coefficient. The mul-
tipole operators TKQ are orthogonal to each other and they form a complete

set with property T †
KQ = (−1)

Q
TK,−Q. The W function is normalized as∫

W (θ, φ) sin θdθdφ = 1,

and W ∗ (θ, φ) = W (θ, φ). Similarly, the W function of a two particle system,
each with spin-j is [127]

W (θ1, φ1, θ2, φ2) =
(
2j+1
4π

) ∑
K1,Q1

∑
K2,Q2

ρK1Q1K2Q2YK1Q1 (θ1, φ1)YK2Q2 (θ2, φ2) ,

(8.71)
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where ρK1Q1K2Q2
= Tr

{
ρT †

K1Q1
T †
K2Q2

}
. W (θ1, φ1, θ2, φ2) is also normal-

ized as ∫
W (θ1, φ1, θ2, φ2) sin θ1 sin θ2dθ1dφ1dθ2dφ2 = 1.

Further, it is known that any arbitrary operator can be mapped into the W
function or any other QD discussed here.

The P function
In analogy with the P function for continuous variable systems, the P

function for a single spin-j state is defined as [127]

ρ =

∫
dθdφP (θ, φ) |θ, φ〉〈θ, φ|, (8.72)

and can be shown to be

P (θ, φ) =
∑
K,Q

ρKQYKQ (θ, φ)
(

1
4π

)1/2
(−1)

K−Q
(

(2j−K)!(2j+K+1)!
(2j)!(2j)!

)1/2

.

(8.73)
The P function for two spin-j particles is [127, 334]

P (θ1, φ1, θ2, φ2) =
∑

K1,Q1

∑
K2,Q2

ρK1Q1K2Q2YK1Q1 (θ1, φ1)YK2Q2 (θ2, φ2)

× (−1)K1−Q1+K2−Q2

(
1

4π

)

×
(√

(2j −K1)! (2j −K2)! (2j +K1 + 1)! (2j +K2 + 1)!

(2j)! (2j)!

)
.

(8.74)

Here |θ, φ〉 is the atomic coherent state [332] and can be expressed in terms of
the Wigner-Dicke states |j,m〉, the atomic analogues of the oscillator number
states |n〉, as

|θ, φ〉 =
j∑

m=−j

(
2j

m+ j

)1/2

sinj+m

(
θ

2

)
cosj−m

(
θ

2

)
e−i(j+m)φ|j,m〉. (8.75)

The Q function
Similarly, the Q function for a single spin-j state is

Q (θ, φ) =
2j + 1

4π
〈θ, φ|ρ|θ, φ〉, (8.76)

and can be expressed as [127]

Q (θ, φ) =
∑
K,Q

ρKQYKQ (θ, φ)
(

1
4π

)1/2
(−1)K−Q (2j + 1)

(
(2j)!(2j)!

(2j−K)!(2j+K+1)!

)1/2

.

(8.77)
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It is worth noting that from Eq. (8.76), the Q function being an expectation
value is always positive. Further, the normalized Q function for a two particle
system of spin-j [127, 334] particles is

Q (θ1, φ1, θ2, φ2) =
∑

K1,Q1

∑
K2,Q2

ρK1Q1K2Q2YK1Q1 (θ1, φ1)YK2Q2 (θ2, φ2)

(
(2j + 1)2

4π

)

× (−1)K1−Q1+K2−Q2

(
(2j)! (2j)!√

(2j −K1)! (2j −K2)! (2j +K1 + 1)! (2j +K2 + 1)!

)
.

(8.78)

All the QDs discussed here are normalized to unity. They are also real functions
as they correspond to probability density functions for classical states. The
density matrix of a quantum state can be reconstructed from these QDs [308].
One can also calculate the expectation value of an operator from them [127].

For a single spin- 12 starting in the atomic coherent state, the initial density
matrix is

ρ (0) = |α, β〉〈α, β|, (8.79)

where the form of the atomic coherent state |α, β〉 is as in Eq. (8.75). For evo-
lution under an SGAD channel, making use of the appropriate Kraus operators
as well as the multipole operators, the QDs can be computed, see [335] for
details. Here we provide in Fig. (8.15), a visual depiction of the evolution of
the various QDs with time. A comparison of the Figs. (8.15 a) and (8.15 b)
brings out the effect of squeezing on the evolution of QDs. Further, it is easily
observed that with the increase in T , the quantumness reduces.

8.3.8 Quantum error correction

At the heart of a quantum computational task lies quantum superposition and
entanglement, which are fragile and decay due to noise arising from interactions
with the surrounding, i.e., due to open system effects. The theory of quantum
error correction and fault tolerant quantum computation deals with attempts
to overcome such obstacles.

Quantum error correction was discovered independently by Shor and
Steane. In [336] Shor introduced the 9-qubit quantum error correcting (QEC)
code that encoded a qubit and could correct an arbitrary single-qubit error in
the independent error limit, i.e., the errors on different qubits are not statis-
tically correlated. Calderbank and Shor [337], and Steane [338] independently
developed CSS class codes (named after the inventors) that encodes a qubit in 7-
qubits, for correcting arbitrary independent single-qubit errors using ideas from
the theory of classical error correction. The conditions for performing quantum
error correction were introduced independently by Bennett, Divincenzo, Smolin
and Wooters [339] and by Knill and Laflame [340], based on the work by Ekert
and Macchiavello [341]. The 5-qubit QEC was discovered by Bennett, Divin-
cenzo, Smolin and Wooters [339] and also independently by Laflame, Miquel,
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Figure 8.15: The variation of all the QDs with time (t) are depicted for a
single spin- 12 atomic coherent state in the presence of the SGAD noise for, zero
bath squeezing angle, in units of � = kB = 1, with ω = 1.0, γ0 = 0.05, and
α = π

2 , β = π
3 , θ = π

2 , φ = π
3 . In (a) the variation with time is shown for

temperature T = 5.0 in the absence of squeezing parameter, i.e., s = 0. In
(b) the effect of the change in squeezing parameter for same temperature, i.e.,
T = 5.0 is shown by using the squeezing parameter s = 1.5, keeping all the
other values as same as that used in (a). Further, in (c) keeping s = 1.5 as in
(b), the temperature is increased to T = 15 to show the effect of variation in
T. In (c) time is varied only up to t = 5 to emphasize the effect of temperature.
In all the three plots, dashed, solid and dotted lines correspond to the W , P
and Q functions, respectively. The figure is adapted from [335].

Paz and Zurek [342]. This encodes one qubit in five qubits and corrects arbi-
trary independent single-qubit errors. A stabilizer description of QEC codes
was introduced by Gottesman [343, 344]. In this method, attention is given to
operators rather than on code words (the encoding states).

Correlated errors. In [345], collective decoherence giving rise to correlated er-
rors due to quantum non-demolition (QND) interaction on a n-qubit register
was considered. In the noise model there, spatial correlation in the decoher-
ence was controlled by varying the inter-qubit distance in the register and
was described by the correlation matrix method. By applying the conventional
single-error correcting schemes the performance of codes, evaluated via fidelity,
against such noise was studied. It was found that such QEC schemes reduce the
correlated decoherence. The action of correlated errors on CSS codes was con-
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sidered in [346], where it was shown quantitatively how error correlations have
adverse effect on the performance of CSS codes. Correlated ‘semi-classical’ (i.e.,
parametric) noise described by a set of Gaussian random variables was consid-
ered in Ref. [347].

Degenerate codes The idea of degenerate codes, where more than one error
takes a QEC code to the same state and thus share the same recovery operation,
was discovered by Shor and Smolin [348]. A heuristic method to construct de-
generate codes for Pauli channels was provided in [349]. In [350], the Hamming
bound in the presence of degeneracy was discussed for the codes. A degenerate
version of Hamming bound was provided in [351] and showed that the codes
work against correlated errors by violating the usual Hamming bound.

Approximate error correcting codes It has been seen that sometimes, con-
structing channel specific QEC codes would result in better performance against
noise. Such codes were introduced in Ref. [352] for amplitude damping error. In
[353] it was shown that it is possible to have approximate quantum error cor-
recting codes for the channels that decrease the coherent information by a small
ammount. The error correcting conditions for QEC codes were generalised to
suit the approximate quantum error correction in [354, 355].

Basic Ideas

The basic idea behind the QEC is to embed a smaller dimensional space in
a larger one, such that the added redundancy gives protection against noise.
There is a suitable error operator basis, such that errors here shift the code space
to mutually orthogonal subspaces in the larger dimensional space. This ensures
that the errors can be detected and corrected by devising suitable measurements
and recovery operations. The basic ideas of QEC can be illustrated by the
following example.

3-qubit bit-flip code
The 3-qubit bit-flip code is similar to a repetition code used in classical

error correction where the bits “0” and “1” are encoded as, 0 → 000; 1 → 111.
Classically, the only possible error is bit-flip. Recovery from error consists in
outputting 0 or 1, depending on the majority of 0’s and 1’s. However, it is
apparent that the scheme decodes wrongly if the flip happens on two or more
bits. If the probability of a bit flip is p, the probability that two or more bits
are flipped is pf = 3p2(1 − p) + p3 = 3p2 − 2p3 (probability of failure). The
encoding is useful if pf < p, which happens when p < 1/2.

When trying to mimic the classical repetition to construct QEC codes for
a qubit, one faces the following difficulties:

i An arbitrary quantum state cannot be repeated, due to the no cloning
theorem.

ii Measurement performed on qubits destroys the state.
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iii A continuum of errors is possible on qubits unlike just bit flip on classical
states.

The above mentioned difficulties are surpassed by encoding a qubit |ψ〉 as
|ψL〉 ≡ α|000〉+ β|111〉, (8.80)

where the encodings are of the form

|0〉 −→ |0L〉 ≡ |000〉; |1〉 −→ |1L〉 ≡ |111〉. (8.81)

Note that the encoding, Eq. (8.80) is not a repetation of state |ψ〉. Also, error
detection should not reveal any information about |ψL〉. If a bit-flip error hap-
pens on one of the three qubits of |ψL〉, it can be detected and corrected using
the following two steps.

Error detection. To detect errors, a set of measurements are to be per-
formed on the QECC. The measurement result is called error syndrome. For a
bit-flip channel there are four error syndromes corresponding to the following
four mutually commuting measurement operators:

P1 = |000〉〈000|+ |111〉〈111|,
P2 = |100〉〈100|+ |011〉〈011|,
P3 = |010〉〈010|+ |101〉〈111|,
P4 = |001〉〈001|+ |110〉〈110|. (8.82)

Since P1, P2, P3, P4 are mutually commuting, the operator Ŝ = αP1 + βP2 +
γP3 + δP4, where the coefficients are some real numbers, can be used for syn-
drome measurement. If the outcome of Ŝ is α, then no error occurred on qubits,
while if the outcome is β, then error occurred on first qubit; if the outcome is γ,
then error occurred on second qubit and finally, if the outcome is δ, then error
occurred on the third qubit. Note that this incomplete measurement scheme
would reveal nothing about the encoded state |ψL〉.

Recovery operation. Depending upon the outcome of syndrome measure-
ment, the encoded state can be recovered by applying theX (Pauli σx) operator
on the qubit identified as erroneous. The procedure works perfectly when error
occurs at most on one qubit and the probability of not correcting the error
is 3p2 − 2p3 and is equivalent to the classical repetition code. Once p < 1/2,
the encoding and decoding improves the reliability of storing the information.
Equivalently, the errors can be determined by measuring the two commuting
observables Z1Z2 (short for Z1 ⊗ Z2 ⊗ I ) and Z2Z3 (short for I ⊗ Z2 ⊗ Z3),
where Z is Pauli σz. Each of the observables Zi has eigenvalues ±1. If Z1Z2

and Z2Z3 have measurement outcome +1, then no bit flip occurred. If Z1Z2

has measurement outcome +1 and Z2Z3 has −1, then bit flip occurred on the
third qubit. If Z1Z2 has measurement outcome −1 and Z2Z3 has +1, then
bit flip occurred on the first qubit. If both have measurement outcomes −1,
then bit flip occurred on second qubit. The recovery operation is performed as
mentioned earlier.
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To improve the error analysis, consider the fidelity which is a measure of
closeness between two given states, that may be considered to quantify code
performance. If ρ and σ are quantum states before and after the action of error
respectively, the fidelity between them is defined as

F (ρ, σ) = Tr

√√
σρ

√
σ. (8.83)

Consider the scenario where the unencoded state |ψ〉 is acted upon by bit-flip
noise X. The corrupt state is (1− p)|ψ〉〈ψ|+ pX|ψ〉〈ψ|X. The fidelity between
the corrupt and uncorrupt states is

√
(1− p) + |〈ψ|X|ψ〉|2. The minimum fi-

delity is
√
1− p (say when |ψ〉 = |0〉). Upon encoding the state as |ψL〉 = |0〉L+

|1〉L, the state after noise and error correction is ((1− p)3 + 3p(1− p)2)|ψ〉〈ψ|.
The fidelity in this case is

√
(1− p)3 + 3p(1− p)2, so that encoding of qubits

is beneficial if p ≤ 1/2.

Phase flip codes

Phase-flip error is special to quantum errors and has no classical analogue.
In this error model, with probability p, the relative phase between the states
|0〉 and |1〉 is flipped. This can be realized by applying Z (Pauli σz): Z(α|0〉+
β|1〉) = α|0〉 − β|1〉. To construct the QECC for the error, consider the states
|+〉 = 1√

2
(|0〉 + |1〉) and |−〉 = 1√

2
(|0〉 − |1〉) which are eigenstates of X (σx).

Notice that the action of Z takes |+〉 to |−〉 and vice versa. Thus, by changing
the basis from {|0〉, |1〉} to {|+〉, |−〉}, the action of Z changes from phase
flipping to bit flipping. Hence, the action of bit flip on {|+〉, |−〉} is equivalent
to phase flip on {|0〉, |1〉}. Therefore the encoding

|ψL〉 → α|0L〉+ β|1L〉 ≡ α|+++〉+ β| − −−〉, (8.84)

can protect the state |ψ〉 against phase-flip error.

For error detection, projectors P ′
j = H⊗3PjH

⊗3, rotated by the Hadamard

gate H = 1
2 (|0〉〈0|−|0〉〈1|+ |1〉〈0|+ |1〉〈1|), are employed. Equivalently, one uses

observables X1X2 and X2X3 for error detection. If X1X2 and X2X3 have mea-
surement outcome +1, then no phase-flip occurred. If X1X2 has measurement
outcome +1 andX2X3 has −1, then phase-flip occurred on third qubit. If X1X2

has measurement outcome −1 and X2X3 has +1, then phase-flip occurred on
first qubit. If both have measurement outcomes −1, then phase-flip occurred
on second qubit. For recovery, one performs Z operation on the erroneous bit.

Illustrating quantum error correction via the Shor code

The Shor code is a QEC code that encodes one qubit in 9 qubits and
provides protection against an arbitrary single-qubit error. The code is a con-
catenation of bit-flip and phase-flip codes. First, a state is encoded using the
phase-flip code: |0〉 → | + ++〉, |1〉 → | − −−〉. Then each of these states are
encoded using bit-flip codes: |+〉 → 1√

2
(|000〉+ |111〉, |−〉 → 1√

2
(|000〉 − |111〉).

212 Open Quantum System at Interface with Quantum Information



Thus, the logical states for the Shor code are

|0〉 → |0L〉 ≡ (|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉)
2
√
2

,

|1〉 → |1L〉 ≡ (|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉)
2
√
2

. (8.85)

Error detection and recovery
On the first set of the three qubits, error detection is carried out similar

to the 3-qubit bit-flip code. The same procedure is followed for the second and
the third set of qubits. For detecting the phase-errors, consider the two observ-
ables X1 = X1X2X3X4X5X6 and X2 = X4X5X6X7X8X9. If the measurement
outcomes of both X1 and X2 is +1, then no phase-flip occurred. If the mea-
surement outcome of X1 is +1 and that of X2 is −1, then phase-flip happened
on the third set of qubits. If the measurement outcome of X1 is −1 and that of
X2 is +1, then the phase of the first set of qubits flipped. If the measurement
outcomes of both X1 and X2 is −1, then phase-flip occurred on the second set
of qubits. The recovery procedure is same as the 3-qubit bit flip code for each
set of three qubits. For recovering the QECC from phase-flip errors, we follow
the 3-qubit phase-flip code.

Discretizing quantum errors
In classical communication theory, a continuum of errors is handled by

digitizing the signal which carries the data. In the case of quantum information
errors are not only bit and phase flip errors but a continuum of arbitrary errors,
for e.g., the application of a phase gate instead of a phase flip, which might at
first seem to be uncorrectable. But quantum error correction is possible essen-
tially because measurement helps discretize noise. For the analogous classical
systems, no such descretization exists.

As explained in Sec. 8.2.1, noise E on qubits has operator-sum represen-
tation with elements {Ki} which is also most convenient for QEC. The action
of noise on the QEC codes |ψL〉 is

E(|ψL〉〈ψL|) =
∑
i

Ki|ψL〉〈ψL|K†
i . (8.86)

Discretization of the continuum of errors is achieved by decomposing Ki in the
error basis Ej = {I,X, Y, Z} as

Ki = ei0I + ei1X + ei2Y + ei3Z =
∑
j

ei,jEj . (8.87)

Note that E could be a multi-qubit error acting on m-qubits of the QEC code.
In such cases the Ei is expanded in {I,X, Y, Z}⊗m. Due to discretizition, any
erroneous QEC code can be written as (apart from normalization)

Ki|ψL〉 = ei0|ψL〉+ ei1X|ψL〉+ ei2Y |ψL〉+ ei3Z|ψ〉 =
∑
j

ei,jEj |ψL〉, (8.88)

8.3 Selected Applications of Open Quantum Systems … 213



due to which Eq. (8.86) can be written as

E(|ψL〉〈ψL|) =
∑
i,j

ei,jEj |ψL〉〈ψL|E†
ke

∗
i,k =

∑
j,k

χj,kEj |ψL〉〈ψL|E†
k, (8.89)

where χi,j =
∑

i ei,je
∗
i,k is a Hermitian matrix known as the process matrix. The

subject of quantum process tomography which deals with characterizing the
quantum processes is about devising methods to determine the process matrix
χj,k. This suggests that there exists an overlap between QEC and quantum
process tomography.

By performing syndrome measurement the state is collapsed to one of
the mutually orthogonal states |ψL〉, X|ψL〉, Y |ψL〉, Z|ψL〉 which can be dis-
tinguished. For this reason, discretizing the continuum of errors works and is
central to quantum error correction. Then by performing recovery operations,
the QECC |ψL〉 is recovered.

The Theory of Quantum Error Correction

The theory of error correction generalizes the ideas introduced by the Shor code.
In quantum information processing, a QECC protects quantum information
from noise, provided the initial state |Ψ〉 is prepared within the code space
C, which satisfies suitable properties [38, 343, 340]. Let {|J〉} be a n-qubit
basis for C, encoding k-qubit states |j〉 with 0 ≤ j ≤ 2k − 1. Such a code is a
[[n, k]] QECC, where k is the code rate. In this work, we will assume that the
error basis elements are elements of the Pauli group Pn, the set of all possible
tensor products of n Pauli operators, with and without factors ±1,±i. Hence,
E†

k = Ek and (Ej)
2 = In, the identity operator over n qubits. The necessary

and sufficient conditions for quantum error correction are:

〈J |E†
mEn|K〉 = 0, (8.90a)

〈J |E†
mEn|J〉 = 〈K|E†

mEn|K〉 ∈ {0, 1}, (8.90b)

where |J〉 �= |K〉, and Em, En are two (possibly identical) basis elements of an
operator basis for the space E of allowed errors. In Eq. (8.90b), the choice 0
corresponds to the non-degenerate case.

To see why Eqs. (8.90) are necessary, suppose that the total recovery
operation is denoted by a unitary operation R. Recovery involves preparing an
ancilla in an initial state |α〉 and applying R on the joint system. We thus have
R|α〉Em|J〉 = |αm〉|J〉 and R|α〉En|K〉 = |αn〉|K〉, or

〈J |E†
m〈α|R†R|α〉En|K〉 = 〈αm|αn〉〈J |K〉

⇒ 〈J |E†
mEn|K〉 = 0,

from which Eq. (8.90a) follows. This ensures that two distinct code words are
not confused even in the presence of noise, and has an obvious counterpart in
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classical error correction. We also have

〈J |E†
m〈α|R†R|α〉En|J〉 = 〈αm|αn〉

⇒ 〈J |E†
mEn|J〉 = 〈αm|αn〉,

as also for |K〉, from which Eq. (8.90b) follows. Note that we only require for
equality between the left- and right-hand sides of Eq. (8.90b). If in addition the
LHS and RHS vanish, this would correspond to the classical requirement that
distinct errors on the same code word produce orthogonal erroneous words. In
the quantum case, however, the LHS and RHS need not vanish, and we obtain
degenerate codes, which have no classical counterpart.

To prove the sufficiency of (8.90) for quantum error correction, let the
system be in an arbitrary logical state |Ψ〉 =

∑
J αj |J〉, which encodes the

state |ψ〉 =
∑

j αj |j〉, where
∑

j |αj |2 = 1. Let the error be an incoherent
sum of Kraus operators of the form F =

∑
k βkEk, with

∑
k βk = 1. This

maps the initial state to F |Ψ〉. In the non-degenerate case, F |Ψ〉 = β0E0|Ψ〉+
· · ·β4n−1E4n−1|Ψ〉. Each of the terms Ej |Ψ〉 must be in an orthogonal space
given by (8.90). Thus, a projection to EjC, followed by an application of Ej

constitutes the required recovery R. In the degenerate case, suppose that Em

and En are degenerate. Then Em|J〉 = En|J〉, and a projection on to EmC =
EnC followed by either Em or En constitutes the required recovery R.

The conditions (8.90) can be equivalently stated as [340]:

〈Ψ|G†G|Ψ〉 = c(G), (8.91)

where the function c depends only on the error G and not the encoded state
|Ψ〉. By expanding |Ψ〉 in terms of |J〉 and G in terms of the basis elements Ej ,
we rewrite condition (8.91) as:

〈J |E†
mEn|K〉 = cm,nδJK , (8.92)

where cm,n is a Hermitian matrix of numbers that is independent of J,K.

Bounds on quantum error correcting codes

The quantum versions of the Hamming and Gilbert-Varshamov bounds were
introduced by Ekert and Macchiavello [341]. Consider a k-qubit state being
encoded into a n-qubit QEC code and at most independent single qubit errors
happen on t-qubits. The possible errors are X, Y , Z. Also there are 2k such
logical states. The total number of possible errors is

∑t
j=0

nCj3
j . For non-

degenerate codes the total number of errors must be lesser than or equal to 2n.
Thus, we have the inequality

2k
t∑

j=0

nCj3
j ≤ 2n. (8.93)

For k = 1 and t = 1 the quantum Hamming bound reduces to 2(1 + 3n) ≤ 2n.
The inequality is not satisfied for n ≤ 4, while for n ≥ 5 it is. Therefore, it
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follows that there is no code with less than five qubits which can protect a
qubit against single qubit errors.

For large n and some k there exists [n, k] code correcting errors on at most
t-qubits such that

k

n
≥ 1− 2H

(
2t

n

)
, (8.94)

where H(x) is the binary Shannon entropy and the bound is known as Gilbert-
Varshamov bound.

Stabilizer codes

A stabilizer description of error correction [344, 356] focusses attention on op-
erators, which can be compact, rather than on code words, which can be large.
A state |ψL〉 is said to be stabilized by an operator S if S|ψL〉 = |ψL〉. Let G be
a subset of n− k independent, commuting elements from Pn. A [[n, k]] QECC
is the 2k-dimensional +1-eigenspace C of the elements of G. The simultaneous
eigenbasis of the elements of G are the code words |jL〉. The set of 2n−k oper-
ators generated by G constitute the stabilizer S. The centralizer of S is the set
of all elements of Pn that commute with each member of S:

Z = {P ∈ Pn | ∀S ∈ S, [P, S] = 0}, (8.95)

while the normalizer of S is the set of all elements of Pn that conjugate the
stabilizer to itself:

N = {P ∈ Pn | PSP † = S}. (8.96)

We note that S ⊆ N because the elements of S are unitary and mutually
commute. Similarly, Z ⊆ N because elements of the centralizer are unitary and
commute with all elements of the stabilizer. To see that the converse is true,
we note that if N ∈ N then NSN† = S′, or NS = S′N . For Pauli operators,
NS = ±SN , meaning S′ = ±S. But if S′ = −S, then NSN† = −S, which
would require that both S and −S are in S. However if S ∈ S, then −S is not
in the stabilizer, so the only possibility is S′ = S, and we obtain [N,S] = 0, i.e.,
N ⊆ Z. It thus follows that here Z = N . We have SN |jL〉 = NS|jL〉 = N |jL〉,
which implies that the action of N is that of a logical Pauli operation on code
words.

A set of operators Ej ∈ Pn constitutes a basis for correctable errors if one
of the following conditions hold:

EjEk ∈ S (8.97a)

∃G ∈ G : [EjEk, G] �= 0. (8.97b)

The case (8.97a) corresponds to degeneracy. Here 〈ψL|EjEk|ψL〉 = 〈ψL|ψL〉 =
1, meaning that both errors produce the same effect, and the code space is
indifferent as to which of them happened. Thus, either error can be applied as
a recovery operation when one of them occurs. The case (8.97b) corresponds
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to E†
jEk /∈ N . In that case, ∃G ∈ G : EjEkG = −GEjEk, which ensures

that G anti-commutes with precisely one of the operators Ej and Ek. Hence,
the noisy logical states Ej |ψL〉 and Ek|ψL〉 will yield distinct eigenvalues (one
being +1 and the other −1) when G is measured. The set of n− k eigenvalues
±1 obtained by measuring the generators G forms the error syndrome. The
consolidated error correcting condition (8.97) can be stated as the requirement

EjE
†
k /∈ N − S.

Noise characterization

Characterizing the quantum dynamics forms a vital part in implementing quan-
tum computation and information physically. This provides a comparison of the
implemented quantum operations against the desired ones on the qubits and
thus helps in benchmarking the quality of gates. Principal difficulty in the re-
alization of quantum processing tasks is environmental-induced noise, which
decoheres the quantum system, resulting in the loss of quantum superposition
and entanglement. In this situation, complete or partial characterization of
noise is essential to fight against it, say by constructing appropriate quantum
error correcting codes.

Action of noise E , described by a CP map, on a quantum state ρ of dimen-
sion d can be expressed in an error basis {Ei} of d × d matrices, as described
by Eq. (8.89)

E(ρ) =
d2∑
m,n

χm,nEmρE†
n. (8.98)

The error basis {Ei} satisfies the orthogonality condition Tr(EiE
†
j ) = dδi,j ,

where δi,j is the Kronecker delta. χm,n is a Hermitian matrix, also known as
the “process matrix”, in the d2-dimensional Hilbert-Schmidt space of linear
operators acting on the system of dimension d. From the tracing preserving

property of E , we have
∑d2

m,n χm,nE
†
mEn = I, which imposes d2 conditions, so

that the matrix χ has d4−d2 independent real elements. This forces the condi-
tion

∑
j χj,j = 1, the (positive) diagonal elements of which can be interpreted

as probabilities. Here, Ej are multi-qubit Pauli operators, which is appropriate
for employing the QEC formalism.

Standard quantum process tomography
Characterization of a quantum noise is determining the elements of process

matrix χm,n. The first technique to address this was standard quantum process
tomography (SQPT) [38, 357] where a set of suitably prepared states {ρi} is
input to unknown noisy dynamics E to be characterized. The action of E on each
input state can be determined experimentally by state tomographic techniques
as

E(ρi) =
∑
k

Ci,kρk, (8.99)

where {ρk} is a basis for measurements on output states of E and Ci,k =
Tr(E(ρi)ρk) are measurement outcomes. Also, EmρiE

†
n =

∑
k β

m,n
i,k ρk, where
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βm,n
i,k is the matrix determined by the choice of {ρi}, {ρk} and {Ei}. Substi-

tuting the expression in Eq. (8.98) and comparing with Eq. (8.99) we have∑
k

∑
m,n

χm,nβ
m,n
i,k ρk =

∑
k

Ci,kρk. (8.100)

Obtaining the values of Ci,k from state tomographic measurements one can
determine the elements of the process matrix by χm,n =

∑
i,k(β

m,n
i,k )−1Ci,k. By

SQPT, one needs to perform d4 − 1 measurements which grows exponentially
with the number of qubits.

Ancilla-assisted process tomography
Another method to determine the χm,n is ancilla-assisted process tomog-

raphy (AAPT) where the principal system P and an ancillary system A are
prepared in suitable initial states. Noise to be characterized E is made to act
on P while A is required to be clean. The initial state considered in [358] was
an entangled state, not essentially maximally entangled, and later it was shown
in [359] that even a non-entangled Werner state can be used. The information
about the dynamics on P is extracted via quantum state tomography on the
joint system using separable or non-separable basis measurements. By having
the ancilla of dimension atleast equal to that of principal system it is guar-
anteed that the joint state after being subjected to noise will bear one to one
correspondence with the noise [359]. d4 − 1 measurements are needed using
separable measurements, whereas the same can be achieved by d2 with non-
separable measurements [360].

Direct methods
SQPT and AAPT are not direct methods for QPT in the sense that they

first obtain full state tomographic data of the output states of the channel E ,
and then use this exponentially large (grows with number of qubits) data to
derive χ. Subsequently, a method which bypasses the state tomography known
as direct characterization of quantum dynamics (DCQD) was introduced in
[361, 362]. DCQD uses the maximally entangled state (|00〉 + |11〉)/√2 stabi-
lized by ZZ and XX for determining the diagonal terms of χ. The detection
of error, i.e., syndrome measurement is implemented via Bell state measure-
ments. For determining the off-diagonal terms, stabilizer measurement of non-
maximally entangled states α|00〉 + β|11〉 (stabilized by ZZ), where α �= β,
is performed. The statistics of measurement outcomes can determine an offdi-
agonal term. Then on the stabilizer-measurement-collapsed states normalizer
(XX) measurement (which commutes with stabilizer) is done to get the other
offdiagonal term. The complete process matrix can be determined by using d2

different input states and single measurement on each state. Totally, d2−1 con-
figurations are needed. Other recent developments include a characterization of
noise using an efficient method for transforming a channel into a symmetrized
(i.e., having only diagonal elements in the process matrix) channel via twirling
[363], which is suitable for identifying QECCs [364]. A method similar to [363],
but extended to estimate any given off-diagonal term, was introduced in Ref.
[365].
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Characterization of quantum dynamics using quantum error correction
The methods discussed above, of characterization of quantum dynamics

(CQD), are offline, i.e., QEC and CQD are not concurrent, as they require dis-
tinct state preparations. Recently, “Quantum error correction based character-
ization of dynamics” (QECCD) was introduced [366], in which the initial state
is any element from the code space of a quantum error correcting code (QECC)
that can protect the state from arbitrary errors acting on the subsystem sub-
jected to the unknown dynamics. The statistics of stabilizer measurements,
with possible unitary pre-processing operations, are used to characterize the
noise, while the observed syndrome can be used to correct the noisy state. This
requires at most 2(d2 − 1) configurations to characterize arbitrary noise acting
on n qubits. The QECCD technique was used to characterize the dissipative
2-qubit noise due to interaction with a vacuum bath in [367].

8.4 Guide to Further Literature

We do hope that this chapter wets the appetite of at least some of the readers,
encouraging them to venture into research in this field. What is presented here is
just the tip of the proverbial iceberg! There have been extensive developments,
both on the theoretical as well as experimental fronts, in attempts to control
decoherence dynamically, see for e.g., [226] and references therein. The study
of quasiprobability distributions is naturally followed by tomography, the art
and craft of state reconstruction [357, 368, 369, 370]. Error correction is now
used for characterizing noisy channels [366, 367]. A topic conspicuous by its
absence here is quantum information in continuous variables, a veritable field
with numerous developments [371, 372]. This field bears witness to a number of
fundamental developments, such as the formulation of entanglement [373, 374],
in analogy with Wootters notion of concurrence. Further, the developments in
this chapter essentially use Markovian noise processes. The stage is now set for
a foray into non-Markovian phenomena, an endeavour we shall attempt in the
next chapter.

8.4 Guide to Further Literature 219



Chapter 9

Recent Trends

This chapter is devoted to some of the recent trends in open quantum systems
and includes a foray into relativistic phenomena such as the Unruh effect as
well as sub-atomic physics, including neutrinos and mesons. Unruh effect is the
sobriquet given to the thermal like effect due to accelerated motion and is the
flat space analogue of the celebrated Hawking effect. Unruh effect as a ther-
mal like effect suggests an open quantum system, in the language of quantum
information processing, a quantum channel, characterization of which should
elucidate the general properties of the effect. Quantum correlations have been
predominantly studied on stable electronic and photonic systems. However,
with the advent of modern experimental progress there is no reason why one
should not venture into the subatomic domains. This is taken up here in the
form of studies of open system effects on neutrinos and mesons. Such studies,
apart from their importance from the fundamental perspective could also shed
light into our understanding of the universe. Also discussed are some of the
developments into non-Markovian phenomena and quantum thermodynamics.
Non-Markovian phenomena come to the forefront when the evolution has mem-
ory and has been the torchbearer of a lot of research in recent times. Further,
with experimental progress in the quantum domain making steady inroads into
the device sector, quantum technology is expected to make its indelible mark
on society soon. In that case, the engines would be operational in the quantum
regime and the working principle behind them would be quantum thermody-
namics, the infusion of quantum mechanics into the unshakeable, solid bedrock
of thermodynamics! These are all areas of current research and their discussion
here would hopefully excite the reader.

9.1 Application of Open Quantum System to Unruh Effect and

Sub-Atomic Physics

Here we will discuss, briefly, about the interface of open system ideas to the
Unruh effect and some facets of sub-atomic physics, in particular, neutrino and
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neutral meson physics. These are modern developments, but can be followed
easily by the reader who has been patient enough to reach this stage of the
book.

9.1.1 Unruh Effect

The Unruh effect is the name coined to the surprising phenomena of an ac-
celerated observer, undergoing uniform acceleration, perceiving the Minkowski
vacuum to be endowed with a thermal spectrum. That this thermal behavior,
usually associated with a statistical phenomena, should have its origin, here,
in uniform acceleration, is what comes as a surprise [375]. It is the flat space
analog of the well known Hawking radiation [376, 377, 378], related to the
quantum thermodynamics of a black hole [379]. This opened up the field of
application of quantum field theory ideas to curved spacetime and is hoped to
be the precursor to a genuine quantum theory of gravitation [380, 381].

The thermal spectrum observed by an accelerated observer could be cod-
ified into a thermalization theorem which states that the pure state which is
the vacuum from the point of view of an inertial observer is a canonical en-
semble, hence the temperature, from the perspective of a uniformly accelerated
observer. The temperature characterizing the ensemble is proportional to the
magnitude of the observer’s acceleration. The basic idea involves quantization
in different vacua and the associated particles. Uniform acceleration is very
suitably described in the Rindler spacetime [382, 383] which divides spacetime
into two parts that are separated from each other by an event horizon. On the
other hand, in the Minkowski spacetime all parts of the spacetime are accessi-
ble. The difference in the two spacetimes lead to a difference in their respective
vacuums and hence the nature of the particle spectrum. The statistics of the
thermal distribution is bosonic or fermionic, corresponding to the vacuum of a
scalar or Fermi particle, respectively. The transformation between the Rindler
{θ, φ}, and Minkowski coordinates x(0), x(n) is

x(0) = θ sinh(φ), x(1) = θ cosh(φ). (9.1)

The remaining coordinates x(n), n > 1, are common to both the coordinate
systems. The above transformation is the Minkowski version of transformation
from Cartesian to cylindrical coordinates, θ and φ characterize the cylindrical
coordinates, in Euclidean space. Although the Unruh channel could be envis-
aged, formally, as a class of quantum noise channel, it is pertinent to point out
that it does not describe conventional quantum noise.

We make use of the tools of quantum information theory, introduced in
the previous chapter, to shed light on the Unruh effect. The Unruh effect expe-
rienced by a mode of a free Dirac field, as seen by a relativistically accelerated
observer, is treated as a noise channel, and is called the Unruh channel. We
characterize this channel by providing its operator-sum representation. We com-
pare and contrast this channel from conventional noise due to environmental
decoherence. We also discuss, briefly, the effect of various facets of quantum
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correlations under the influence of the Unruh channel. Let us begin with two
observers, Alice (A) and Rob (R) sharing a maximally entangled state of two
Dirac field modes, and thus a qubit fermionic Unruh channel, at a point in
Minkowski spacetime, of the form

|ψ〉A,R =
|00〉A,R + |11〉A,R√

2
, (9.2)

where |i〉 denote Fock states. We consider the scenario where Alice is station-
ary and Rob moves away with a uniform proper acceleration a. The effect
of constant proper acceleration is described, as discussed above, by a Rindler
spacetime, which manifests two causally disconnected regions I and II, where
region I is accessible to Rob, and separated from region II by an event horizon.

It can be shown that from Rob’s frame the Minkowski vacuum state is
seen as a two-mode squeezed state, while the excited state appears as a product
state [384]

|0〉M ≡ cos r|0〉I |0〉II + sin r|1〉I |1〉II ,
|1〉M ≡ |1〉I |0〉II , (9.3)

where ω is a Dirac particle frequency while cos r = 1√
e−

2πωc
a +1

is one of the

Bogoliubov coefficients, connecting the Minkowski, indicated by the subscript
M , and Rindler, subscripts I, II, vacua. It follows that cos r ∈ [ 1√

2
, 1] as a

ranges from ∞ to 0. Observe that the states in the left hand side of Eq. (9.3)
are single-mode states, while those in the right hand side are not!

Under the representation (9.3), the state represented in Eq. (9.2) becomes

|ψ〉A,I,II =
1√
2
(|0〉A(cos r|0〉I |0〉II + sin r|1〉I |1〉II) + |1〉A|1〉I |1〉II) . (9.4)

Tracing out mode II, which is not accessible to Rob, we obtain the following
density matrix

ρ′A,R =
1

2

[
cos2(r)|00〉〈00|+ cos r(|00〉〈11|+ |11〉〈00|) + sin2(r)|01〉〈01|+ |11〉〈11|] ,

(9.5)

where the subscript I has been replaced with subscript R, for Rindler. The
evolution of Rob’s qubit to a mixed state under the transformation EU : ρR →
ρ′R constitutes what we call the Unruh channel for a fermionic qubit.

Next, we make use of the Choi-Jamiolkowski isomorphism, introduced in
the previous chapter, to develop the Kraus operators characterizing the Unruh
channel. Consider the maximally entangled two-mode state, Eq. (9.2), in which
the second mode is Unruh accelerated. The resulting state, Eq. (9.5), is

ρU =
1

2

⎛⎜⎜⎝
cos2 r 0 0 cos r
0 sin2 r 0 0
0 0 0 0

cos r 0 0 1

⎞⎟⎟⎠ . (9.6)
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ρU is the Choi matrix
∑

j,k |j〉〈k| ⊗ EU (|j〉〈k|), modulo the factor 1/2, corre-
sponding to the Unruh channel EU . Spectral decomposition yields

ρU =
3∑

j=0

|ξj〉〈ξj |, (9.7)

where |ξj〉 are the eigenvectors normalized to the value of the eigenvalue. By
Choi’s theorem [221, 385], each |ξj〉 yields a Kraus operator obtained by folding
the d2 (here, 4) entries of the eigenvector in to d× d (2× 2) matrix, essentially
by taking each sequential d-element segment of |ξj〉, writing it as a column, and
then juxtaposing these columns to form the matrix [385].

Corresponding to the two non-vanishing eigenvalues, the two eigenvectors
are

|ξ0〉 = (cos r, 0, 0, 1),

|ξ1〉 = (0, sin r, 0, 0). (9.8)

The Kraus representation for EU is now easily seen to be

KU
1 =

(
cos r 0
0 1

)
; KU

2 =

(
0 0

sin r 0

)
. (9.9)

Hence,

EU (ρ) =
∑
j=1,2

KU
j ρ

(
KU

j

)†
, (9.10)

with the completeness condition∑
j=1,2

(
KU

j

)†
KU

j = I. (9.11)

This is formally similar to the operator elements in the Kraus representation
of an amplitude damping (AD) channel [38], which models the effect of a zero
temperature thermal bath. This is surprising as the Unruh effect corresponds
to a finite temperature and would naively be expected to correspond to the
generalized AD or squeezed generalized amplitude damping (SGAD) channels,
which are finite temperature channels. This is a pointer towards a fundamental
difference between the Unruh and the AD channel. This can be seen by studying
the behavior of the maximally mixed state under the Unruh channel. By virtue
of linearity of the map, it follows that the maximally mixed state maps to the
Bloch vector

n̂∞(I) = (0, 0,−1

2
). (9.12)

Thus the Unruh channel is non-unital and the Bloch sphere subjected to it does
not converge to a point, as it does for the AD channel [213], but contracts by a
finite factor. In fact, it can be shown [386] that the volume contraction factor
of the Bloch sphere under the relativistic channel is K ≡ 1

4 .
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Figure 9.1: Degradation of QMIDQM (dark bold line), maximum teleportation
fidelity Fmax (large dashed curve), Bell quantity M/2 (small dashed curve))
and concurrence (light bold line) C as a function of Unruh acceleration a, for
ω = 0.1 (in units where � ≡ c ≡ 1). Figure adapted from [386].

In Fig. (9.1), are depicted various facets of quantum correlations, see
Chapter 8, Sec. 3.5, under the influence of the Unruh channel. It is seen that
quantum measurement induced disturbance (QMID) QM > 0 throughout the
range considered, implying that the system remains nonclassical. In particular,
the system becomes local, i.e., the Bell quantity satisfies M < 1 at a ≈ 7, but
stays nonclassical with respect to the other parameters, such as concurrence
C > 0, maximum teleportation fidelity Fmax > 2

3 , and QMID QM > 0.
The Bloch vector formalism is very useful for understanding the Unruh

channel as well as its behavior under the influence of other noisy channels,
such as phase damping, AD, SGAD [387, 388]. Any two level system can be
represented in the Bloch vector formalism as

ρ =
1

2
(I+ �χ · σ) , (9.13)

where σ are the standard Pauli matrices and �χ is the Bloch vector.
For the initial state ρ = |0〉〈0| cos2 θ

2 + |0〉〈1|eiφ cos θ
2 sin

θ
2 +

|1〉〈0|e−iφ cos θ
2 sin

θ
2 + |1〉〈1| sin2 θ

2 , the Bloch vector is easily seen to be χ0 =
(cosφ sin θ, − sinφ sin θ, cos θ). Evolving this state under the Unruh channel,
characterized by the above Kraus operators leads to a state, which could be
called the Unruh-Dirac (UD) qubit state, whose Bloch vector is

�χ =

⎛⎜⎜⎝
cos r cosφ sin θ
− cos r sinφ sin θ

cos2 r cos θ − sin2 r

⎞⎟⎟⎠ = A�χ0 + C. (9.14)
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From this A and C can be found to be

A =

⎛⎜⎝ cos r 0 0
0 cos r 0

0 0 cos2 r

⎞⎟⎠ , C =

⎛⎜⎜⎝
0
0

− sin2 r

⎞⎟⎟⎠ . (9.15)

Problem 1: Show that for the state |ψ〉 = cos(θ/2)|0〉 + e−iφ sin(θ/2)|1〉,
the Bloch vector is χ0 = (cosφ sin θ, − sinφ sin θ, cos θ).

Problem 2: Sketch the steps leading to the Eqs. (9.14), (9.15).

The A and C matrices completely characterize the Unruh channel. Start-
ing from the UD qubit state, Eq. (9.14), application of the external noise chan-
nel results in

ρin
E(external noise)−−−−−−−−−−−→ ρnew . (9.16)

From ρnew, we get the new Bloch vector �χnew which is related to the original
state Bloch vector as

�χnew = A′�ζ + C ′ = A′(A�χ0 + C) + C ′

= AA′�χ0 + (A′C + C ′) ≡ Anew�χ0 + Cnew. (9.17)

Here �χ and �χ0 are as in Eq. (9.14). From the above equation, it can be seen
that the effect of the external noise channel on the Unruh channel is encoded
in Anew = A′A and Cnew = (A′C + C ′). Hence, the effect of the external noise
channel on the Unruh channel is reduced to the computation of A′ and C ′ for
the desired channels. This can be done in a straightforward fashion once the
Kraus operators characterizing the external channels are known [387, 388].

9.1.2 Neutrinos

Neutrinos were first postulated by Wolfgang Pauli to explain how beta decay
could conserve energy, momentum and angular momentum (spin) in the decay
of neutron n into a proton p and electron e

n → p+ e+ ν̄e.

Here ν̄e is the electron anti-neutrino. Neutrinos, as we now understand, come
in three varieties, called flavors, νe, νμ, ντ , i.e., the electron, muon and tau
neutrinos. Due to their non-zero mass, they oscillate from one flavor to another.
Neutrino oscillations are experimentally well established [389, 390, 391, 392].
Such oscillations are possible under the premise that the following conditions
are satisfied:
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• The neutrino flavour state is a linear superposition of non-degenerate mass
eigenstates.

• The time evolution of a flavour state is a coherent superposition of the
time evolution of the corresponding mass eigenstates.

Neutrinos are Left-handed, while the anti-neutrinos are Right-handed. It may
be of some interest to note that around 65 billion ( 6.5× 1010) neutrinos com-
ming from Sun’s interior pass through 1 square centimeter of area on earth per
second! Having said that, neutrinos are notoriously difficult to detect as they
interact only via weak interaction.

It is assumed that neutrinos mix via a 3 × 3 unitary matrix to form the
three mass eigenstates ν1, ν2 and ν3. Neutrino oscillations occur only if the
three corresponding masses, m1,m2 and m3, are non-degenerate. Of the three
mass-squared differences Δkj = m2

k −m2
j (where j, k = 1, 2, 3 with k > j), only

two are independent. From the oscillation data it is seen that Δ21 ≈ 0.03×Δ32,
implying that Δ31 ≈ Δ32. One of the three mixing angles parametrizing the
mixing matrix, θ13, is measured to be small (about 0.14 radians) [393, 394, 395].
Neutrino oscillations are fundamentally three flavor oscillations. However, in a
number of cases, the three flavor formula reduces to an effective two flavor
formula, if one or both of the small parameters, Δ21/Δ32 and θ13, are set equal
to zero. Some issues, related to neutrinos, that are still not clearly understood
are the neutrino mass hierarchy, i.e., whether m2

1 ≤ m2
2 ≤ m2

3 or m2
3 ≤ m2

1 ≤
m2

2. What is the absolute neutrino mass scale? What is the origin of neutrino
mass and flavor mixing? Is there CP (charge-parity) violation and what is the
value of the CP violating phase δ?

Two flavor neutrino oscillations: In the case of two flavor mixing, the
relation between the flavor and the mass eigenstates is described by a 2 × 2
rotation matrix, U(θ), where θ is the mixing angle, for example, θ23(

να
νβ

)
=

(
cos θ sin θ
− sin θ cos θ

)(
νj
νk

)
. (9.18)

Each flavor state can be expressed as a superposition of mass eigenstates,

|να〉 =
∑
j

Uαj |νj〉 , (9.19)

where α = μ or τ and j = 2, 3. The time evolution of the mass eigenstates |νj〉
is given by

|νj(t)〉 = e−iEjt |νj〉 , (9.20)

where |νj〉 are the mass states at time t = 0. Thus, we can write

|να(t)〉 =
∑
j

Uαje
−iEjt |νj〉 . (9.21)

The evolving flavor neutrino state |να〉 can also be projected on to the flavor
basis in the form

|να(t)〉 = Ũαα(t) |να〉+ Ũαβ(t) |νβ〉 , (9.22)
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where |να〉 is the flavor state at time t = 0 and |Ũαα(t)|2 + |Ũαβ(t)|2 = 1.

Problem 3: Find the explicit form of Ũαα(t) and Ũαβ(t) in Eq. (9.22).

Two flavor neutrino oscillation with matter effect: The above calculation
corresponds to the case when neutrinos travel through vacuum. But the oscil-
lation patterns can be significantly affected if neutrinos travel through a mate-
rial medium. Therefore matter effect should also be taken care of. νe interacts
with electrons (e−) present in the matter via neutral and charged current in-
teractions, while νμ and ντ interact only by neutral current interaction. The
amplitude corresponding to neutral current interactions are identical for all of
the three flavors. Therefore the amplitude corresponding to charged current
interaction of νe with e− only is considered. The equation of motion in mass
eigenstate basis is

i
d

dt

[
ν1
ν2

]
= H

[
ν1
ν2

]
, (9.23)

where

H =

[
E1 0
0 E2

]
. (9.24)

We assume that ν is emitted in plane wave state with definite momentum, i.e.,
E2

i = p2 +m2
i with ultra high relativistic approximation (p2 >>> m2

i ). Then
the Hamiltonian becomes

H =

[
p+

m2
1

2p 0

0 p+
m2

2

2p

]
. (9.25)

The Hamiltonian can also be expressed in terms of mass square difference Δ =
m2

2 −m2
1 as,

H =

[
p+

m2
1+m2

2

4p − Δ
4p 0

0 p+
m2

1+m2
2

4p + Δ
4p

]
. (9.26)

Thus, the equation of motion in flavor state basis is given by

i
d

dt

[
νe(t)
νμ(t)

]
=

[
p+

m2
1 +m2

2

4p
I +

Δ

4p
OT

(−1 0
0 1

)
O

] [
νe
νμ

]
. (9.27)

where O is the mixing matrix. Neglecting the first term and putting p ≈ E, the
above equation becomes,

i
d

dt

[
νe(t)
νμ(t)

]
=

Δ

4E

[− cos 2θ sin 2θ
sin 2θ cos 2θ

] [
νe
νμ

]
. (9.28)

The survival Pee and oscillation Peμ probabilities take the form

Pee = 1− sin2 2θ sin2
ΔL

4E�c
, (9.29)

Peμ = sin2 2θ sin2
ΔL

4E�c
.
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Since νe only interacts with matter via charged current interaction, an extra
term V , to account for the matter density potential, is added to this equation
such that,

i
d

dt

[
νe(t)
νμ(t)

]
=

[−Δcos 2θ
4E + V Δsin 2θ

4E
Δsin 2θ

4E
Δcos 2θ

4E

] [
νe
νμ

]
. (9.30)

Here V =
√
2GFNe with GF → Fermi constant, Ne → electron density. As a

consequence of this, for constant matter density, survival and oscillation prob-
abilities can be seen to be

Pee = 1− sin2 2θm sin2
ΔmL

4E�c
, (9.31)

Peμ = sin2 2θm sin2
ΔmL

4E�c
,

where θm and Δm are effective mixing angle and mass square difference, re-
spectively, and can be expressed in the form of mixing angle θ and vacuum
mass square difference Δ as

θm =
1

2
tan−1

(
tan 2θ

1− 2EV
Δcos 2θ

)
, (9.32)

Δm =

√
(Δ cos 2θ − 2EV )2 +Δ2 sin2 2θ.

The resonance condition, i.e., 2EV = Δ cos 2θ, will cause maximal mixing. This
is the Mikheyev − Smirnov −Wolfenstein (MSW ) effect [396].

Three flavor neutrino Oscillations: To study the effect of CP violation in
neutrino oscillations (for Dirac neutrinos), one has to go through the calcula-
tion of three flavor neutrino oscillations. Applying some appropriate approxi-
mations, the mathematical picture of two flavor oscillation can be reproduced
for the three flavor case. In three flavor neutrino oscillation, the propagation
states are {|ν1〉 , |ν2〉 , |ν3〉} and the flavor states are {|νe〉 , |νμ〉 , |ντ 〉}. The
general state of a neutrino can be expressed in flavor basis as

|Ψ(t)〉 = νe(t) |νe〉+ νμ(t) |νμ〉+ ντ (t) |ντ 〉 . (9.33)

The same state in propagation basis looks like

|Ψ(t)〉 = ν1(t) |ν1〉+ ν2(t) |ν2〉+ ν3(t) |ν3〉 . (9.34)

Coefficients in the two representations are connected by a unitary matrix [396]⎛⎝νe(t)
νμ(t)
ντ (t)

⎞⎠ =

⎛⎝Ue1 Ue2 Ue3

Uμ1 Uμ2 Uμ3

Uτ1 Uτ2 Uτ3

⎞⎠⎛⎝ν1(t)
ν2(t)
ν3(t)

⎞⎠ . (9.35)

In short notation, this can be written as

να(t) = Uνi(t). (9.36)
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As in the two flavor case, the mass basis can be reexpressed in terms of the
flavor basis and the evolution, in flavor basis, would have the form

|Ψ(t)〉 = a(t) |νe〉+ b(t) |νμ〉+ c(t) |ντ 〉 . (9.37)

Assuming that the initial state was |νe〉, the survival probability is
| 〈νe|Ψ(t)〉 |2 = |a(t)|2, while the transition probability for |νe〉 oscillating to
|νμ〉 is | 〈νμ|Ψ(t)〉 |2 = |b(t)|2.

As the neutrino propagates in matter and interacts with its environment,
albeit very weakly, the interaction could lead to decoherence and dissipation;
hence the evolution, in such scenarios, need to be treated as an open quantum
system, which in the Markovian regime can be described by completely positive
linear maps acting on the system density matrices. The general form of the
evolution is

dρα(t)

dt
= −i [H, ρα(t)] + L[ρα(t)]. (9.38)

Here α = {e, μ}, i.e., we are considering, for simplicity, the two flavor scenario.
Needless to say, this is the well known Lindblad form of evolution, discussed a
number of times before in the previous chapters. The first term on the RHS of
the above equation is responsible for the coherent evolution, while the second
term is one that causes dissipation, an incoherent process. The dissipator has
the general form

L[ρα(t)] =
3∑

m,n=0

dmn

(
σnρ

ασm − 1

2
{σmσn, ρ

α}
)
. (9.39)

Here σ’s are the Pauli matrices and dmn are the coefficients that ensure com-
plete positivity of the evolution. This form of the evolution has been used to
study the geometric phase of neutrino propagating through dissipative matter
[397]. It has also been used to fit available neutrino data [398, 399].

9.1.3 Mesons

Here we consider the open system dynamics of unstable massive systems such
as correlated BB̄ and KK̄ meson systems [400]. B factories, electron-positron
colliders tailor-made to study the production and decay of B mesons, and φ
factories, which perform the same function for K mesons, provide an ideal
testing ground. After production, the B (or K) mesons fly apart and decay
on a much longer time scale. An important feature of these systems for the
study of correlations is the oscillations of the bottom and strangeness flavors
b ↔ s, giving rise to BB̄ oscillations. A decaying system is intrinsically an
open system, even without explicitly invoking an external environment, and as
a result it can have surprises not seen in its stable counterpart [387].

We make use of the probability-preserving formalism of decaying systems
[401, 402] to study various measures of quantum correlations in BB̄ and KK̄
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systems. We employ the methods of open quantum systems [2, 403], which as-
serts that any real system interacts with its environment. In this context, the
environment could be fluctuations of the quantum mechanical vacuum, result-
ing in loss of quantum coherence and the transformation from pure to mixed
states [404]. This thus brings focus to the fundamental aspects of correlated
neutral meson systems, and more generally of unstable quantum systems.

The flavor-space wave function of the correlated MM̄ meson systems
(M = K, Bd, Bs) at the initial time t = 0 is

|ψ(0)〉 = 1√
2

[|MM̄〉 − |M̄M〉] , (9.40)

where the first (second) particle in each ket is the one flying off in the left
(right) direction and |M〉 and |M̄〉 are flavor eigenstates. As seen from (9.40),
the initial state of the neutral meson system is a maximally entangled, singlet
state. The Hilbert space of a system of two correlated neutral mesons, as in
(9.40), is

H = (HL ⊕H0)⊗ (HR ⊕H0) , (9.41)

where HL,R are the Hilbert spaces of the left-moving and right-moving decay
products, each of which can be either a meson or an anti-meson, and H0 is that
of the zero-particle (vacuum) state. Thus, the total Hilbert space can be seen
to be the tensor sum of a two-particle space, two one-particle spaces, and one
zero-particle state. In order to compute quantum correlations in the resulting
system, one needs to project the evolution from the full Hilbert space H down
to the two-particle sector HL ⊗ HR. This is facilitated by the operator-sum
(Kraus) representation of the evolution, which can be show to be [387, 402]

E0 = |0〉 〈0| ,
E1 = E1+

( |B0〉 〈B0|+ |B̄0〉 〈B̄0o| )+ E1−
(p
q
|B0〉 〈B̄0|+ q

p
|B̄0〉 〈B0| ),

E2 = E2

(p+ q

2p
|0〉 〈B0|+ p+ q

2q
|0〉 〈B̄0| ),

E3 = E3+
p+ q

2p
|0〉 〈B0|+ E3−

p+ q

2q
|0〉 〈B̄0| ,

E4 = E4

( |B0〉 〈B0|+ |B̄0〉 〈B̄0|+ p

q
|B0〉 〈B̄o|+ q

p
|B̄0〉 〈B0| ),

E5 = E5

( |B0〉 〈B0|+ |B̄0〉 〈B̄0| − p

q
|B0〉 〈B̄0| − q

p
|B̄0〉 〈B0| ).

9.1 Application of Open Quantum System to Unruh Effect … 231



Here the coefficients are

E1± =
1

2

[
e−(2imL+ΓL+λ)t/2 ± e−(2imH+ΓH+λ)t/2

]
, (9.42a)

E2 =

√
Re[ p−q

p+q
]

|p|2 − |q|2
(
1− e−ΓLt − (|p|2 − |q|2)2 |1− e−(Γ+λ−iΔm)t|2

1− e−ΓH t

)
, (9.42b)

E3± =

√
Re[ p−q

p+q
]

(|p|2 − |q|2)(1− e−ΓH t)

[
1− e−ΓH t ± (1− e−(Γ+λ−iΔm)t)(|p|2 − |q|2)],

(9.42c)

E4 =
e−ΓLt/2

2

√
1− e−λt, (9.42d)

E5 =
e−ΓH t/2

2

√
1− e−λt. (9.42e)

A meson initially in state ρB0(0) = |B0〉 〈B0| or ρB̄0(0) = |B̄0〉 〈B̄0|, after time
t, evolves to

ρB0(t) =
1

2
e−Γt

⎛⎝ ach + e−λtac ( qp )
∗(−ash − ie−λtas) 0

( qp )(−ash + ie−λtas) | qp |2ach − e−λtac 0

0 0 ρ33(t)

⎞⎠ ,

(9.43)
and

ρB̄0(t) =
1

2
e−Γt

⎛⎝ |pq |2(ach − e−λtac) (pq )(−ash + ie−λtas) 0

(pq )
∗(−ash − ie−λtas) ach + e−λtac 0

0 0 ρ̃33(t)

⎞⎠ .

(9.44)
Here, ach ( ash) and ac (as) denote the hyperbolic functions cosh[ΔΓt

2 ]

(sinh [ΔΓt
2 ]) and the trigonometric functions cos [Δmt] (sin [Δmt]), respectively.

Also, p and q are the CP (charge-parity) violating parameters and satisfy the
relation |p2|+ |q|2 = 1. ΔΓ = ΓL − ΓH is the difference of the decay width ΓL

(for Bo
L ) and ΓH (for Bo

H). Γ = 1
2 (ΓL + ΓH) is the average decay width. The

mass difference Δm = mH −mL, where mH and mL are the masses of Bo
H and

Bo
L states, respectively. The strength of the interaction between the one parti-

cle system and its environment is quantified by λ, the decoherence parameter.
The elements ρ33(t) and ρ̃33(t) are known functions of B physics parameters,
which do not feature in what follows below. A similar analysis holds for the
K mesons with appropriate change in notations. The approach used here can
also be effectively applied to study observables of central importance in particle
physics [405].

Using the above constructed density matrices, Eqs. (9.43) and (9.44), we
can study the interplay of quantum correlations in meson systems. The nonclas-
sicality of quantum correlations, in the neutral mesons, can be characterized
in terms of nonlocality (which is the strongest condition), entanglement, tele-
portation fidelity or weaker nonclassicality measures like quantum discord, see
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Figure 9.2: Average correlation measures c, i.e., the various measures modu-
lated by the exponential factor e−2Γt, as a function of time t. The upper row
corresponds to the correlations of a KK̄ and BdB̄d pair, respectively, while
the correlations of BsB̄s pair is depicted in the bottom row figure; here these
pairs are created at t = 0. The four correlation measures are (top to bottom):
M(ρ) (Bell’s inequality; blue band), Fmax (teleportation fidelity; red band),
EF (entanglement of formation; grey band) and DG (geometric discord; green
band). For KK̄ pairs, left panel, time is in units of 10−10 seconds whereas for
the BdB̄d and BsB̄s pairs, time is in units of 10−12 seconds (in all cases, the
approximate lifetime of the particles). In the figures in the upper row, the bands
represent the effect of decoherence corresponding to a 3σ upper bound on the
decoherence parameter λ. The bottom row has no such bands because there is
currently no experimental evidence for decoherence in the case of Bs mesons.
Figure adapted from [387].

Chapter 8, section 3.5. The fall in the pattern of the average value of these cor-
relations, i.e., the various measures modulated by the exponential factor e−2Γt,
as displayed in Fig. (9.2), are in accord with the fact that here we are dealing
with unstable particles, which decay with time. From the left panel of Fig. (9.2),
one can see that until about 50% of the average life time of KS meson in the
presence of decoherence and about 60% in its absence, M(ρ) > 1. This means
that, in the conventional sense, until this time, the time evolution cannot be
simulated by any local realistic theory. However, we find that even for some
cases where M(ρ) exceeds one, the teleportation fidelity Fmax could be below
the classical value of 2/3. For example, from the left panel of Fig. (9.2), it is
seen that, in the absence of decoherence, Fmax drops below 2/3 as M(ρ) drops
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below 1.3, in violation of the inequality [267],

Fmax ≥ 1

2

(
1 +

1

3
M(ρ)

)
≥ 2

3
if M(ρ) > 1. (9.45)

according to which the cutoff isM(ρ) = 1. This violation is slightly reduced, but
nonetheless still occurs, even in the presence of decoherence, starting at M(ρ) �
1.2. This is consistent with the degradation of correlations with decoherence.
Hence we see that the study of quantum correlations in unstable systems is
nontrivially different from their stable counterparts.

9.2 Non-Markovian Phenomena

Though interest in non-Markovian phenomena has been there for a long time,
tracing its roots to the development of (quantum) Brownian motion [10, 406,
407, 98], it has witnessed an upsurge of interest from the perspective of quantum
information over the last decade, leading to a number of useful concepts, some
of which will be sketched here. The basic idea behind Markovain approximation
is the clean separation of the environmental time-scales from the system time-
scales [408, 174]. Current advancement in experimental techniques allows for the
possibility of getting into regimes where the reservoir (environment) effectuates
memory effects in the system dynamics, blurring the above clean separation of
system-reservoir time scales, and would be the so called non-Markovian regime.

Recent work, from a quantum information perspective, allows us to reach
the following consensus related to the information theoretic witnesses of non-
Markoviantity: (a) Information backflow, by which is meant the increase of
distinguishability with time between any two given states, as witnessed by
measures like trace distance [409, 410]; (b) The time-evolution generated by the
dynamical maps cannot be divided into intermediate maps that are completely
positive (CP-Divisiblity) [408]. In general not all given dynamics strictly satisfy
both the above conditions for it to be termed non-Markovian. Condition (a) im-
plies an increase in the distinguishability D, causing a recurrence or “backflow”
of information back from the environment into the system, while from condition
(b) one would infer that the intermediate map is non-CP (NCP), essentially
because the system-bath interaction generates system-bath entanglement.

Our strategy in this section would be to briefly discuss a few prominent
notions of non-Markovianity and illustrate them with concrete examples, from
the perspective of open quantum systems.

9.2.1 Non-Markovian Master Equations

The dynamics of the system of interest s (Markovian or non-Markovian), rep-
resented by, for example, the density matrix ρs(t), can be obtained from its dy-
namical map generated by the Kraus representation, see Section 8.2.1, provided
the map is invertible and differentiable. Let us start with the time derivative
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of the dynamical evolution of the state via the Kraus operators Ei

dρs(t)

dt
=

∑
i

(
dEi(t)

dt
ρs(0)E

†
i + Ei(t)ρs(0)

d†Ei(t)

dt

)
. (9.46)

Reversibility of the dynamical map allows us to express the initial state as

ρs(0) =
∑
n

Gn(t)ρs(t)Kn(t). (9.47)

Substituting Eq. (9.47) into Eq. (9.46), we can repackage the evolution equation
as

dρs(t)

dt
=

∑
m

Mm(t)ρs(t)N
†
m(t). (9.48)

Note that the RHS of the above equation has ρs(t) and not ρs(0). The label
m in the above equation is a collective symbol for {φ, i, n}, where φ = 1, 2
and i, n are as they appear in the above equations. Thus, we can see that
M1,i,n = {dEi(t)/dt}Gn(t), M2,i,n = Ei(t)Gn(t), N †

1,i,n = Kn(t)E
†
i (t) and

N†
2,i,n = Kn(t){dE†

i (t)/dt}.
Following [411], the system operators Mm(t) and Nm(t) are expanded in

the basis of N = d2 operators {Fi, i = 0, · · ·N − 1}. Here d is the dimension

of the system and F0 = I/√d, Fi = F †
i , TrFi = δi0 and Tr{FiFj} = δij. For a

two-level system, Fi ≡ σi, the three Pauli matrices. We have

Mm(t) =
∑
i

αim(t)Fi,

Nm(t) =
∑
j

βjm(t)Fj . (9.49)

Here αim(t) = Tr{Mm(t)Fi} and βim(t) = Tr{Nm(t)Fi}. In terms of these, the
master equation (9.48) can be expressed as

dρs(t)

dt
=

N−1∑
i,j=0

γijFiρs(t)Fj , (9.50)

where γij =
∑

m αim(t)β∗
jm(t) are elements of an N × N Hermitian matrix.

This follows from the hermiticity of ρs(t) and Fi. Separating the i, j = 0 terms,
the master equation can be written as

dρs(t)

dt
= −i[Hs(t), ρs(t)] + Γρs(t) + ρs(t)Γ

† +
N−1∑
i,j=0

γijFiρs(t)Fj . (9.51)

Here

Γ =
Is
2d

γ00 +
∑
i

γi0√
d
Fi. (9.52)
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Using conservation of trace, Γ + Γ† = −∑N−1
i,j=0 γijFjFi. The Eq. (9.51) can be

expressed in terms of combinations of Γ− Γ† and Γ + Γ† to yield

dρs(t)

dt
= −i[Hs(t), ρs(t)] +

d2−1∑
ij=1

γij(t)

(
Fiρs(t)Fj − 1

2
{FjFi, ρs(t)}

)
. (9.53)

Note that {A,B} denotes the anticommutation of operators A and B, Hs(t) =
(i/2)(Γ − Γ†) and γij is the decoherence matrix. Being Hermitian it can be
diagonalized as γij(t) =

∑
n Uin(t)Θn(t)U

∗
jn(t), where Θn(t) and Uin(t) are its

eigenvalues and eigenvectors, respectively. Defining

Γn(t) =
N−1∑
i=1

Uin(t)Fi, (9.54)

Eq. (9.53) can be rewritten as

dρs(t)

dt
= K(t)ρs(t)

= −i[Hs(t), ρs(t)] +

d2−1∑
n=1

Θn(t)

(
2Γn(t)ρs(t)Γ

†
n(t)− {Γ†

n(t)Γn(t), ρs(t)}
)
.

(9.55)

This is the non-Markovian generalization of the Lindblad equation. Complete
positivity of the resultant dynamics can be ensured only when all the Θn(t) ≥ 0,
which holds for a Markovian evolution. Note that in the standard Lindbla-
dian evolution, Θn ≥ 0 and is time independent. This lead to the defination
of a measure of non-Markovianity as a sum of all intervals where Θn(t) are
negative [411]. See also [412], where non-Markovian evolution was studied for
noninteracting bosons (fermions) linearly coupled to thermal environments of
noninteracting bosons (fermions).

9.2.2 Information backflow and breakdown of CP divisibility of the

intermediate map

Information Backflow: As we remarked above, in non-Markovian evolutions it
is possible to have situations where distance measures like the trace distance,
which quantify the closeness of two states as they evolve under the given evo-
lution and hence are connected to their distinguishability, increase with time
as compared to the monotonic fall experienced under a Markovian, for exam-
ple, Lindbladian evolution. This leads to a backflow of information from the
environment to the system, which updates the status of the system and is thus
a powerful diagnostic of non-Markovian behavior. This, in turn manifests in
the form of oscillations in correlation measures such as quantum mutual in-
formation [413], which are otherwise monotonic functions if the dynamics is
Markovian. The distance between any two quantum states defined on the space
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of density matrices is given by a metric called the trace distance D, which is
defined as

D(ρ1, ρ2) =
1

2
Tr||ρ1 − ρ2||1, (9.56)

where ||O||1 is the operator norm given by
√
O†O. The use of trace distance

is rooted in the idea of distinguishability of a pair of quantum states, which is
monotonically decreasing under completely positive (CP) maps Λ, i.e., the CP
maps are contractions for this metric,

D(Λ ρ1,Λ ρ2) ≤ D(ρ1, ρ2). (9.57)

For non-Markovian processes, due to the backflow of information from the en-
vironment to the system, there is a temporary increase in the distinguishability
of quantum states and hence the above inequality may be violated (this being
the characteristic of backflow). This idea has been exploited in an effort to
quantify non-Markovianity [409].

The connection of the problem to distinguishability can be clarified by
taking up the unbiased two state discrimination problem. Consider two parties,
Alice and Bob. Alice prepares a quantum system in one of two states ρ1 or ρ2

with probability 1
2 each, and then sends the system to Bob. It is Bob’s task

to find out by a single measurement on the system whether the system state
was ρ1 or ρ2. It turns out that Bob cannot always distinguish the states with
certainty, but there is an optimal strategy which allows him to achieve the
maximal possible success probability given by

Pmax =
1

2

[
1 +D(ρ1, ρ2)

]
. (9.58)

The trace distance D(ρ1, ρ2) = 1
2 ||ρ1 − ρ2||1 = 1

2Tr|ρ1 − ρ2| can therefore
be interpreted as a measure for the distinguishability of the quantum states ρ1

and ρ2. Here Tr|A| = Tr
√
A†A.

The trace distance between any pair of states satisfies the following prop-
erties:

(a). 0 ≤ D(ρ1, ρ2) ≤ 1.
(b). The trace distance is sub-additive with respect to tensor products of

states

D(ρ1 ⊗ σ1, ρ2 ⊗ σ2) ≤ D(ρ1, ρ2) +D(σ1, σ2). (9.59)

(c). The trace distance is invariant under unitary transformations U ,

D(Uρ1U†, Uρ2U†) = D(ρ1, ρ2). (9.60)

(d). More generally, all trace preserving and completely positive maps,
i.e., all trace preserving quantum operations Λ are contractions of the trace
distance,

D(Λρ1,Λρ2) ≤ D(ρ1, ρ2). (9.61)
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No quantum process that can be described by a family of completely
positive, trace preserving (CPT) dynamical maps can ever increase the distin-
guishability of a pair of states over its initial value. Thus, when a quantum
process reduces the distinguishability of states, information is flowing from the
system to the environment. Correspondingly, an increase of the distinguisha-
bility signifies that information flows from the environment back to the sys-
tem, i.e., information backflow is taking place. The definition for quantum non-
Markovianity, discussed here, is based on the idea that for Markovian processes
any two quantum states become less distinguishable under the dynamics, lead-
ing to a perpetual loss of information into the environment. Quantum memory
effect thus arise if there is a temporal flow of information from the environment
to the system. The information flowing back from the environment allows the
earlier open system states to have an effect on the later dynamics of the system,
which implies the emergence of memory effects [409]. As a corollary, the class of
quantum dynamical semigroups, generated by the Lindbladian evolution, which
are divisible families of dynamical maps, are Markovian.

A quantum process described in terms of a family of quantum dynamical
maps Φ(t, 0) is non-Markovian if there is a pair of initial states ρ1,2S (0) such
that the trace

σ(t, ρ1,2S (0)) ≡ d

dt
D(ρ1S(t), ρ

2
S(t)) > 0, (9.62)

where σ(t, ρ1,2S (0)) denotes the rate of change of the trace distance at time t
corresponding to the initial pair of states.

This suggests defining a measure N (Φ) for the non-Markovianity of a
quantum process through [409]

N (Φ) = max
ρ1,2
S (0)

∫
σ>0

dt σ(t, ρ1,2S (0)). (9.63)

The time integration is extended over all time intervals (ai, bi) in which σ is
positive and the maximum is taken over all pairs of initial states. The measure
can be written as

N (Φ) = max
ρ1,2(0)

∑
i

[
D(ρ1S(bi), ρ

2
S(bi))−D(ρ1S(ai), ρ

2
S(ai))

]
. (9.64)

To calculate this quantity one first determines for any pair of initial states the
total growth of the trace distance over each time interval (ai, bi) and sums up
the contribution of all intervals. N (Φ) is then obtained by determining the
maximum over all pairs of initial states.

CP Divisibility: A family of dynamical maps Φ(t, 0) is defined to be divisi-
ble if for all t2 ≥ t1 ≥ 0 there exists a CPT map Φ(t2, t1) such that the relation
Φ(t2, 0) = Φ(t2, t1)Φ(t1, 0) holds. Here, Φ(t2, t1) = Φ(t2, 0)Φ

−1(t1, 0) is the in-
termediate map whose CP behavior is an indication of whether the underlying
dynamics is Markovian, wherein the intermediate map would be CP, or not.
The simplest example of a divisible quantum process is given by a dynamical
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semigroup. For a semigroup Φ(t, 0) = exp[Lt] and divisibility is satisfied with
the CPT map Φ(t2, t1) = exp[L(t2 − t1)].

Consider now a quantum process given by the time-local master equation
with a time dependent generator. The dynamical maps can then be represented
in terms of a time-ordered exponential,

Φ(t, 0) = Texp

[∫ t

0

dt′K(t′)
]
, t ≥ 0, (9.65)

where T denotes the chronological time-ordering operator. We can also define
the maps

Φ(t2, t1) = T exp

[∫ t2

t1

dt′K(t′)
]
, t2 ≥ t1 ≥ 0, (9.66)

such that the composition law Φ(t2, 0) = Φ(t2, t1)Φ(t1, 0) holds by construction.
The maps Φ(t2, t1) are completely positive, as is required by the divisibility
condition, if and only if the decay rates Θi(t), Eq. (9.55), of the generator are
positive functions. Thus divisibility is equivalent to positive rates in the time-
local master equation [409]. It follows that non-Markovian quantum processes
could be described by time-local master equations whose generator involves at
least one temporarily negative rate Θi(t) [411], as discussed above.

In this context a characterization of non-Markovianity was given by [408]
using the Choi-Jamiolkowski isomorphism, see Chapter 8.2.2, to quantify the
degree of non-complete positiveness of the intermediate map Φ(t+ ε, t)

f(t) = limε→0+
||[Φ(t + ε, t)⊗ I](|Ψ〉〈Ψ|)||1 − 1

ε
. (9.67)

The central quantity in the above equation is
[
Φ(t+ ε, t)⊗ I](|Ψ〉〈Ψ|), where

|Ψ〉 = 1√
d

∑d−1
i=0 |i〉|i〉 is the maximally entangled state of two copies of the

system and d is the dimension. It follows from Choi’s theorem that Φ(t+ ε, t) is
CP if the matrix

[
Φ(t+ε, t)⊗I](|Ψ〉〈Ψ|) ≥ 0. Since Φ(t+ε, t) is trace preserving,

it follows that ||[Φ(t + ε, t) ⊗ I](|Ψ〉〈Ψ|)||1 is equal to one for CP Φ(t + ε, t)
and greater than one otherwise, which would be an indicator of non-Markovian
behavior. This implies that f(t) > 0, Eq. (9.67), for non-Markovian evolution.
This lead to the formulation of the following measure of non-Markovianity
M =

∫
I
dtf(t), for t ∈ I, where I is a time interval.

9.2.3 Illustrative Examples

We will now illustrate the above discussions on two open system models.

(A). Garraway Model: We make use of a model, introduced by Garraway
[414], of a two-level system decaying spontaneously into a vacuum bath. The
model is worked out under the assumption of a single excitation in the system-
bath Hilbert space.
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The system Hamiltonian is

HS = ω0σ+σ−, (9.68)

describing a two-state system (qubit) with ground state |0〉, excited state |1〉
and transition frequency ω0; σ+ = |1〉〈0| and σ− = |0〉〈1| are the raising and
lowering operators of the qubit. The Hamiltonian of the environment is

HR =
∑
k

ωkb
†
kbk, (9.69)

and represents a reservoir of harmonic oscillators with creation and annihilation
operators b†k and bk, respectively. The interaction Hamiltonian takes the form

HSR =
∑
k

(
gkσ+ ⊗ bk + g∗kσ− ⊗ b†k

)
. (9.70)

Due to the RWA, as well as the fact that the number of excitations are restricted
to one, the total number of excitations in the system,

N = σ+σ− +
∑
k

b†kbk, (9.71)

is a conserved quantity. Assuming the environment to be in the vacuum state
|0〉, it can be shown that [2]

ρ11(t) = |c(t)|2ρ11(0),
ρ00(t) = ρ00(0) + (1− |c(t)|2)ρ11(0),
ρ10(t) = c(t)ρ10(0),

ρ01(t) = c∗(t)ρ01(0), (9.72)

where the ρij(t) = 〈i|ρS(t)|j〉 denote the matrix elements of ρS(t).
The function c(t) is the solution of the integro-differential equation

d

dt
c(t) = −

∫ t

0

dt1f(t− t1)c(t1), (9.73)

corresponding to the initial condition c(0) = 1, where the kernel f(t − t1)
represents a reservoir two-point correlation function,

f(t− t1) = 〈0|O(t)O†(t1)|0〉eiω0(t−t1)

=
∑
k

|gk|2ei(ω0−ωk)(t−t1)

=

∫
dωI(ω)ei(ω0−ω)(t−t1), (9.74)

of the environmental (reservoir) operators

O(t) =
∑
k

gkbke
−iωkt. (9.75)
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Here I(ω) is the reservoir spectral density. These results hold for a generic en-
vironmental spectral density and the corresponding two-point correlation func-
tion. To make things specific, we use this on a well known model of damped
atom-photon interaction, i.e., the damped Jaynes-Cummings model. This mod-
els the coupling of a two-level atom to a single cavity mode which in turn is
coupled to a reservoir of harmonic oscillators in vacuum. Considering a single
excitation in the atom-cavity system, the cavity mode can be eliminated to give
an effective Lorentzian spectral density

I(ω) =
1

2π

Θ0χ
2

(ω0 − ω)2 + χ2
. (9.76)

Using Eq. (9.76) in Eq. (9.74), we find an exponential two-point correlation
function

f(τ) =
1

2
Θ0λe

−χ|τ |, (9.77)

where Θ0 describes the strength of the system-environment coupling and χ
the spectral width which is related to the environmental correlation time by
τR = χ−1. Using this we find

c(t) = e−χt/2

[
cosh

(
dt

2

)
+

χ

d
sinh

(
dt

2

)]
, (9.78)

where d =
√
χ2 − 2Θ0χ.

For the dissipative Jaynes-Cummings model, studied here, the generator
K(t) of the time local master equation, Eq. (9.55), is

K(t)ρS = − i

2
S(t)[σ+σ−, ρS ]

+Θ(t)

[
σ−ρSσ+ − 1

2
{σ+σ−, ρS}

]
, (9.79)

where Θ(t) = −2�
(

ċ(t)
c(t)

)
, S(t) = −2�

(
ċ(t)
c(t)

)
. The quantity S(t) plays the

role of a time-dependent frequency shift, and Θ(t) can be interpreted as a
time-dependent decay rate. Due to the time dependence of these quantities the
process does not generally represent a dynamical semigroup.

Non-Markovian behavior in the Garraway model: In the limit of small
α = Θ0/χ we may approximate c(t) ≈ e−Θ0t/2. S(t) = 0 and Θ(t) = Θ0, i.e.,
the generator K(t) assumes the form of a Lindblad generator of a quantum
dynamical semigroup. Note that α can also be written as the ratio of the en-
vironmental correlations time τR = χ−1 and the relaxation time τrel = Θ−1

0

of the system, i.e., α = τR
τrel

. Thus we see that the standard Markov condition
Θ0 � χ indeed leads to a Markovian semigroup here.

For the Garraway model, the necessary and sufficient condition for the
complete positivity of the intermediate map Φ(t2, t1), Eq. (9.66), is given by
|c(t2)| ≤ |c(t1)|. Thus the dynamical map of the model is divisible if and only
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if |c(t)| is a monotonically decreasing function of time. The rate Θ(t) can be
written as

Θ(t) = − 2

|c(t)|
d

dt
|c(t)|. (9.80)

This brings out the point that any increase of |c(t)| leads to a negative decay
rate in the corresponding generator, and illustrates the equivalence of the non-
divisibility of the dynamical map and the occurrence of a temporarily negative
rate in the time-local master equation.

Further, the time evolution of the trace distance corresponding to any pair
of initial states ρ1S(0) and ρ2S(0) is given by

D(ρ1S(t), ρ
2
S(t)) = |c(t)|

√
|c(t)|2a2 + |b|2, (9.81)

where a = ρ111(0)− ρ211(0) and b = ρ110(0)− ρ210(0). The time derivative of this
expression yields

σ(t, ρ1,2S (0)) =
2|c(t)|2a2 + |b|2√|c(t)|2a2 + |b|2

d

dt
|c(t)|. (9.82)

From this we conclude that the trace distance increases at time t if and only
if the function |c(t)| increases at this point of time. It follows that the process
is non-Markovian, N (Φ) > 0, Eq. (9.64), if and only if the dynamical map is
non-divisible, which in turn is equivalent to a temporarily negative rate γ(t).

(B). One Dimesional Quantum Walk subjected to the Random Telegraph
Noise: Next, we consider the one dimensional quantum walk, see Chapter 8.3.6,
with the coin degree of freedom being subjected to the Random Telegraph
noise (RTN) [415, 416]. Consider the time dependent stochastic Hamiltonian
describing the evolution of a single qubit [417]

H(t) = �

3∑
i=1

Vi(t)σi, (9.83)

where σi denote Pauli matrices and Vi(t) = ai(−1)ni(t) is the representation
of the RTN signal. RTN is a non-Gaussian stationary stochastic process that
fluctuates randomly between binary amplitude values ±a, following the Poisson
probability distribution realized by the random variable ni(t). An example of
this would be a two-level atom driven by a laser source with rapidly varying
phase noise. Autocorrelation function for RTN Vi(t) is

〈Vi(t)Vj(t
′)〉 = δija

2e−|t−t′|/τ . (9.84)

Here a has the significance of the strength of the system-environment
coupling and 1/τ is proportional to the fluctuation rate of the RTN. The Fourier
transform of the correlation function results in a Lorentzian power spectral
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density with peak value given by 2a2τ . The Kraus operators representing the
process are

K1 =
√
1 + Λ(ν)/2I,

K2 =
√
1− Λ(ν)/2σ3, (9.85)

satisfying the completeness relation
∑2

n=1 K
†
nKn = I. Λ(ν) represents the

damped harmonic function which encodes both the Markovian and non-
Markovian behavior of the qubit,

Λ(ν) = e−ν [cos(νμ) + sin(νμ)/μ], (9.86)

where μ =
√
( 2aγ )2 − 1 is the frequency of the harmonic oscillators and ν =

γt is the dimensionless time. γ is the fluctuation rate and is equal to 1/2τ .
The function Λ(ν) corresponds to two regimes; the purely damping regime,
where aτ < 0.25, and damped oscillations for aτ > 0.25. Corresponding to
these two regimes of Λ(ν), we observe Markovian and non-Markovian behavior,
respectively.

Non-Markovian behavior in the model: First we look at the model from the
perspective of CP divisibility; any violations from which, as indicated above,
would be signatures of non-Markovian behavior. We begin with a dynamical
map E(t2, t0) connecting the system’s density operator at times t0 and t2 > t0.
The intermediate map E IM(t2, t1) for some intermediate time t1 such that t2 >
t1 > t0, is given by:

E IM(t2, t1) = E(t2, t0)E−1(t1, t0), (9.87)

provided that the inverse map E−1(t1, t0) exists. The Choi matrix for the in-
termediate map can be obtained as:

MChoi = (E IM(t2, t1)⊗ I)|Φ+〉〈Φ+|, (9.88)

where |Φ+〉 ≡ |00〉+ |11〉. This is found to be

MChoi =

⎡⎢⎢⎢⎣
1 0 0 Λ(t2)

Λ(t1)

0 0 0 0
0 0 0 0

Λ(t2)
Λ(t1)

0 0 1

⎤⎥⎥⎥⎦ . (9.89)

The non-vanishing eigenvalues of MChoi in Eq. (9.89) are,

λ3 =

[
1− Λ(t2)

Λ(t1)

]
;λ4 =

[
1 +

Λ(t2)

Λ(t1)

]
. (9.90)

It may be checked that if 2a � γ, then Λ(t) is a monotonically decreasing
function and all eigenvalues are positive at all times, Fig. (9.3), consistent with
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Figure 9.3: The eigenvalues of the Choi matrix obtained from intermediate
dynamical map in both the Markovian and non-Markovian regime for RTN.
We can observe that the eigenvalue (λ3) of RTN become negative only in the
non-Markovian (solid line) regime indicative of NCP character, whereas in the
Markovian regime (dashed line) the eigenvalue is always positive. Note that
both the intermediate time t1 = 1 and the noise amplitude a = 0.6 is common
for both the curves. Figure adapted from [415].

Markovian behavior. On the other hand, if 2a � γ, then Λ(t) can have regions
of increase, and correspondingly, some eigenvalues can be negative, Fig. (9.3),
a clear diagnostic of non-Markovian pattern.

The Kraus operators for the intermediate map are obtained by folding the
eigenvectors of MChoi [210].

KIM
± =

√
1

2

∣∣∣∣1± Λ(t2)

Λ(t1)

∣∣∣∣( 1 0
0 ±1

)
. (9.91)

As discussed above, trace distance (TD) [409] is a measure of distinguishability
between two states. It has been used as a measure of non-Markovianity to
quantify the amount of backflow from the environment to the system. For the

RTN noise channels and initial states |±〉 = |0〉±|1〉√
2

, it is straightforward to

compute the evolution of TD, which isD(|+〉, |−〉) = Λ(t). TD measure between
the reduced coin states, obtained by tracing over the position degrees of freedom
of the quantum walk, undergo high frequency oscillation, as shown in Fig. (9.4)
(a). Such TD oscillations are a signature of non-Markovian backflow behavior
leading to non-zero value of the non-Markovian measures [418] and could be
attributed to the position environment due to tracing over the position degrees
of freedom of the walk. In addition to the oscillations present in the noiseless
evolution of quantum walk, a further oscillatory feature arises when the coin
is exposed to an external noise such as RTN in the non-Markovian regime, as
depicted in Fig. (9.4) (c). This is a signature of non-Markovian backflow of
information from the RTN environment, updating the coin dynamics.
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Figure 9.4: Plot of TD (Trace Distance) evolution under the influence of RTN,
between the initial states |ψ(±π

4 , 0)〉c. (a) Noiseless quantum walk: Oscillations
in TD are observed due to the interaction with position environment. Effect
of RTN on the QW: (b). in the Markovian regime (middle curve) damping of
the position induced oscillations is observed, while (c). in the non-Markovian
regime (right) an additional oscillatory frequency component is present due to
RTN-induced decoherence. Figure adapted from [415].

9.3 Quantum Thermodynamics

As a result of impressive progress on the experimental front, it is now considered
within the reach of experimental feasibility to envisage the existence of engines
on the nanonscale that operate within the realms of quantum mechanics. The
pertinent question to ask then would be that do the laws of thermodynamics,
as developed phenomenologically more than a century back, still hold in the
quantum regime? This is the question that is addressed by the newly developed
field of quantum thermodynamics [419, 420] and will be discussed here briefly.

Quantum mechanics infused dynamics into thermodynamics. The theory
of open quantum systems, in particular, the Lindblad, Gorini-Kossakowski-
Sudarshan (LGKS) master equation, discussed extensively in this book, plays
a key role in quantum thermodynamics. Two types of devices have been stud-
ied: (a). reciprocating engines utilizing the Otto and Carnot cycle and (b).
continuous engines resembling lasers and laser cooling devices. A reciprocating
cycle is partitioned typically into four segments; two heat transfer segments,
either isotherms, constant temperature, for the Carnot cycle or isochores, con-
stant volume, for the Otto cycle, achieved with the help of interaction of the
system with a bath using the tools of open quantum systems and two adia-
bats, where the working system is isolated from the environment. The same
cycles can also be used as models for refrigerators. A well known example of
a continuous engine would be a three-level laser. An example of a continuous
refrigerator is laser cooling, obtained by reversing the operation of a three-level
laser. In all these examples, a thermodynamic description is appropriate up
to the level of a single open quantum system. Developments in the field of
quantum thermodynamics are closely related to those in quantum information
processing.
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A generic model of a microscopic quantum engine consists of the following
elements:

(a). A working fluid, which is a microscopic quantum system S;
(b). Hot and cold reservoirs modelled by infinite quantum systems with

states at thermal equilibrium, for example, bath of harmonic oscillators;
(c). External periodic driving.
This can be treated as a model of open quantum systems. Using the first

law of thermodynamics, which is basically the conservation of energy, we have

dU

dt
=

∑
i

Ji + P. (9.92)

This formulation envisages a quantum network, which is a collection of inter-
connected quantum systems and baths at different temperatures. Here U is
the internal energy of the system, which in the present thermodynamic context
would be the working fluid S. In a simple scenario of a thermodynamic sub-
stance operating between a hot and a cold bath,

∑2
i Ji = Jh + Jc, where Jh

and Jc would be the heat currents entering the system S from the hot and cold
baths, respectively. Also, P is the power provided by external sources. Recalling
our discussion on the LGKS form of master equation, see Eq. (97) of Chapter
3, the equation of motion of an operator or a thermodynamic observable O can
be obtained from the LGKS equation in the Heisenberg picture, i.e.,

dO

dt
= i[HS , O(t)] +

∑
j=1

γj

(
AjOA†

j −
1

2
{AjA

†
j , O}

)
+

∂

∂t
O. (9.93)

The operators Aj are, as usual, the Lindblad operators. By substituting HS

for the observable O in Eq. (9.93) and keeping in mind that thermodynamic
observations are modulo averages, a comparison with Eq. (9.92) yields

Ji = 〈AjHSA
†
j −

1

2
{AjA

†
j , HS}〉, (9.94)

P = 〈 ∂
∂t

HS〉. (9.95)

Here the angular brackets indicate the operation of an average. The second law
of thermodynamics implies

dS
dt

−
∑
i

Ji

Ti
≥ 0. (9.96)

Here S is the entropy of the system S and would be the von-Neumann entropy
in the quantum mechanical case. As before, in the simple case of the engine
operating between the hot and cold baths,

∑
i
Ji

Ti
= Jh

Th
+ Jc

Tc
, where Th and Tc

are the temperatures of the hot and cold baths, respectively. The terms
∑

i
Ji

Ti

would be the entropy flows from the baths and the LHS of Eq. (9.96) indicates
positive entropy production. In the steady state regime, the entropy and energy
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averaged over a cycle, i.e., 〈S〉 and 〈U〉, respectively, are constant and the first
and the second laws assume the following forms∑

i

〈Ji〉+ 〈P〉 = 0, (9.97)

∑
i

〈J 〉i
Ti

≤ 0. (9.98)

Getting back to the case of the working fluid operating between a hot and a
cold bath, for it to operate as an engine,

〈Jc〉 < 0, 〈P〉 < 0. (9.99)

This implies that work, which is -〈P〉, performed by the engine on the external
surroundings in positive and a part of heat extracted from the hot bath must
be dumped into a cold bath. The efficiency of the engine η satisfies the bounds
set by the Carnot cyle

η =
−〈P〉
〈Jh〉 ≤ Th − Tc

Th
. (9.100)

In the refrigeration regime,

〈Jc〉 > 0, 〈P〉 > 0. (9.101)

Here heat is extracted from the cold bath, cooling, at the cost of positive work
〈P〉 supplied by the external driving. Here, the performance parameter ζ would
be

ζ =
〈Jc〉
〈P〉 ≤ Tc

Th − Tc
. (9.102)

Similarly, it is possible to show that the third law of thermodynamics implies
that at absolute zero temperature, the entropy production at the cold bath is
zero. This requirement leads to a scaling condition of the heat current. Hence,
no refrigerator can cool a system to absolute zero temperature in finite time.
Further, consistency with the third law ensures the existence of the ground
state of the model open quantum system [419].

9.4 What next?

Here we have covered, albeit briefly, some of the modern lines of research where
use is made of ideas related to open quantum systems. The readers who have
had the patience to reach upto this chapter should have no difficulty in following
the contents presented here. According to their personal interests, they can then
follow up further developments from the scientific literature. Of course, there
is a lot more that could be done but we need to draw the line somewhere and
this would be a resonable place to do so. We thus bid the readers adieu.
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[244] Erik Sjöqvist, Arun K Pati, Artur Ekert, Jeeva S Anandan, Marie Er-
icsson, Daniel KL Oi, and Vlatko Vedral. Geometric phases for mixed
states in interferometry. Physical Review Letters, 85(14):2845, 2000.
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[318] Kôdi Husimi. Some formal properties of the density matrix. Proceedings
of the Physico-Mathematical Society of Japan. 3rd Series, 22(4):264–314,
1940.

[319] Mark Saffman, Thad GWalker, and Klaus Mølmer. Quantum information
with rydberg atoms. Reviews of Modern Physics, 82(3):2313, 2010.

[320] Yevhen Miroshnychenko, Tatjana Wilk, Amodsen Chotia, Matthieu
Viteau, Daniel Comparat, Pierre Pillet, Antoine Browaeys, Philippe
Grangier, et al. Observation of collective excitation of two individual
atoms in the rydberg blockade regime. Nature Physics, 5(2):115–118,
2009.

[321] RL Stratonovich. On distributions in representation space. SOVIET
PHYSICS JETP-USSR, 4(6):891–898, 1957.

[322] AB Klimov and SM Chumakov. On the su (2) wigner function dynamics.
In Quantum Theory and Symmetries, pages 431–436. World Scientific,
2002.

[323] Sergey M Chumakov, Andrei B Klimov, and Kurt Bernardo Wolf. Con-
nection between two wigner functions for spin systems. Physical Review
A, 61(3):034101, 2000.

[324] William K Wootters. A wigner-function formulation of finite-state quan-
tum mechanics. Annals of Physics, 176(1):1–21, 1987.

[325] Apostolos Vourdas. Factorization in finite quantum systems. Journal of
Physics A: Mathematical and General, 36(20):5645, 2003.

[326] S Chaturvedi, E Ercolessi, G Marmo, G Morandi, N Mukunda, and R Si-
mon. Wigner–weyl correspondence in quantum mechanics for continuous
and discrete systemsa dirac-inspired view. Journal of Physics A: Mathe-
matical and General, 39(6):1405, 2006.

[327] Ulf Leonhardt. Discrete wigner function and quantum-state tomography.
Physical Review A, 53(5):2998, 1996.

[328] K. Blum. Density Matrix Theory and Applications. Plenum Press, New
York, 1996.

[329] Richard N Zare. Angular momentum: understanding spatial aspects in
chemistry and physics. New York, 1988.

[330] Leon Cohen and Marlan O Scully. Joint wigner distribution for spin-1/2
particles. Foundations of physics, 16(4):295–310, 1986.
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