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Preface

Open quantum systems is the study of quantum dynamics of the system of
interest, taking into account the effects of the ambient environment. It is ubiqg-
uitous in the sense that any system could be envisaged to be surrounded by its
environment which could naturally exert its influence on it. It traces its roots
from Quantum Optics and has found applications in diverse areas, ranging from
condensed matter to quantum cosmology. Open Quantum Systems allows for
a systematic understanding of irreversible processes such as decoherence and
dissipation, of essence in order to have a correct understanding of realistic quan-
tum dynamics and also for possible implementations. This would be essential
for a possible development of quantum technologies. Interest has been revived
in recent times due to the upsurge of theoretical and experimental progress.

We try to put down in this book, in a comprehensive manner, the basic
ideas of open quantum systems and the tools needed for the same. Emphasis is
given to both the traditional master equation as well as the functional (path)
integral approaches. In fact, this book can be used as a beginning guide for
understanding and use of path integrals. The basic paradigm of open systems,
the harmonic oscillator and the two-level system are discussed in detail. The
traditional topics of dissipation and tunneling as well as the modern field of
quantum information find a prominent place in the text.

Despite its importance, the subject of Open Quantum Systems is not
present in the curriculum of Indian Universities and Institutes; it is treated, at
best, as an abstruse subject. One of the main goals, and hopes, of this book
would be to bring a change in this scheme of things. Assuming a basic back-
ground of quantum and statistical mechanics, this book will help to familiarize
the reader with the basic tools of open quantum systems.

This book is aimed at taking a reader with a basic background of quan-
tum and statistical mechanics to the level where he/she can start appreciating
research problems of current interest. A good background of undergraduate
physics should suffice to begin with the present book. In any case, an introduc-
tory chapter on quantum statistical mechanics and path integrals are included,
with references to more advanced literature. The book aims to highlight the
ubiquity of Open Quantum Systems based on simple models and calculations.

As I reflect back, I find that there are a number of people to whom I owe
the development of this book. The first person who comes to mind is Prof. R.



2 Preface

Ramaswamy who has been a teacher and friend to me for a long time. It was his
suggestion that started this project. His constant help and advice, along with
that of Prof. Debashis Ghoshal and Mr. D. K. Jain of Hindustan Book Agency
made this book possible. If T were to trace the roots of my involvement with this
subject, then I would say that it started with the works of Profs. A. O. Caldeira
and A. J. Leggett. I also immensely benefited from the works of Prof. Vinay Am-
begaokar, with whom I was fortunate to have a brief interaction, and Profs. H.
Grabert, G. Ingold, P. Hanggi, G. S. Agarwal and B. L. Hu. My sincere thanks
to all of them. I have also benefitted very much from the classic book on the
subject by Profs. H-P. Breuer and F. Petruccione, with both of whom I have had
the opportunity of some interaction. Over the years there have been a number of
people in the scientific community to whom I have looked up to for inspiration
and this would be an appropriate juncture to thank them. They are Profs. R.
Ghosh, R. Rajaraman, (late) D. Kumar, R. Simon, J. Kupsch, G. Rajasekaran,
H. S. Mani and C. S. Seshadri. My journey in this field would not have been
possible without discussions and collaborations with a number of colleagues:
Richard Mackenzie, Andreas Buchleitner, Christophe Couteau, Sibasish Ghosh,
C. M. Chandrashekar, V. V. Sreedhar, R. Jagannathan, R. Parthasarathy, Ab-
hishek Dhar, R. Srikanth, (late) N. Kumar, Hema Ramachandran, A. R. Usha
Devi, A. K. Rajagopal, Subhash Chaturvedi, Subhasish Dutta Gupta, Arun
Jayanavar, Pankaj Agrawal, Arun Pati, Debasis Sarkar, Archan S. Majumdar,
Guruprasad Kar, Somshubhro Bandyopadhyay, Prasanta K. Panigrahi, Anir-
ban Pathak, V. Ravishankar, Sankalpa Ghosh, Sandeep Goyal, George Thomas
and S. Uma Sankar. In particular, I need to thank S. Omkar, Pradeep Ku-
mar, N. Siddharth, Javid A. Naikoo and Supriyo Dutta for their extensive help
with the numerical and formatting related issues associated with the book. I
also want to express my gratitude to my family and friends for all their help
and support. I conclude by thanking my wife Pallavi and son Shubhonkar for
making me realize there is more to life than open quantum systems.
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Chapter 1

Introduction

Quantum theory of open systems represents a very important problem in
quantum-statistical mechanics as it attempts to provide a natural route for
reconciliation of non-unitary processes such as damping and dephasing or deco-
herence with the process of quantization [1, 2]. One starts with the conservative
composite closed system consisting of the system of interest and its environ-
ment to which the standard rules of quantization are applied. The total system,
comprising of the system of interest and its ambient environment, are evolved
via a unitary evolution and then the environmental coordinates are eliminated
to give a closed equation (reduced dynamics) for the dissipative system alone.
In this picture, friction comes about by the transfer of energy from the “small”
system (the system of interest) to the “large” environment. The energy, once
transferred, disappears into the environment and is not given back within any
time of physical relevance (but only in the so-called Poincaré recurrence time).

There are various approaches to the quantum theory of open systems.
The traditional approaches include the master equation and Langevin equation
approach [3, 4], but in a number of scenarios, it is seen that the functional
integral (path integral) approach [5] provides a practical method of description.
Quantum optics provided one of the first testing grounds for the application of
the formalism of open quantum systems [0, 7]. Application to other areas was
intensified by the works of [3, 9, 10] and [11], among others. The recent upsurge
of interest in the problem of open quantum systems is because of the spectacular
progress in manipulation of quantum states of matter, encoding, transmission
and processing of quantum information, for all of which understanding and
control of the environmental impact are essential [12, 13, 14].

There are many scenarios in nature which can be described by a system
with one or few degrees of freedom in contact with a complex environment
whose number of degrees of freedom is very large (tending to infinity). The
coupling of a system, with few quantum degrees of freedom, to a thermal reser-
voir results in fluctuating forces reflecting the characteristics of the environment
(reservoir or bath) and the coupling. In the classical regime, the dynamics of
such systems is described by a Langevin equation which is a phenomenolog-
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ical equation with a frictional force proportional to the velocity and driven
by a fluctuating force. A prototype example of this is the theory of Brownian
motion. One of the earlier reviews of this is [15].

The approaches to quantum open systems can be broadly classified into
two categories. They either modify the procedure of quantization or use the
system-plus-reservoir approach. In the context of the former approach, Kostin
[16] introduced a theory with a nonlinear Schrodinger equation. The same equa-
tion was found later in [17] using Nelson’s stochastic quantization procedure
[18]. However, besides violating the superposition principle, this theory shows
some highly controversial results such as stationary damped states. In [19] a
canonical quantization procedure was developed using complex variables. De-
spite reproducing some interesting results, such as the Fokker-Planck equation
for the Wigner transform of the density operator, the theory appears obscure
in some points such as the unphysical noise source for the equation of motion
and another one for the momentum equation. The more natural and successful
approach is the system plus reservoir method of quantum open systems [1, 2]
and will be used consistently in this book.

Another approach to open systems has been developed over the last
few decades, i.e., the Stochastic Schrodinger Equations (SSEs) approach that
evolves the wave function of the system as a vector, in the Hilbert space of the
system, following a stochastic trajectory. The resultant reduced density matrix
can be recovered as a sum of the projectors of stochastic trajectories. Depend-
ing on the method used in the derivation, there are many different SSEs that
recover the reduced density matrix of the open system and are called unravel-
ings of the reduced density matrix [20, 21]. In this book, we will not dwell on
this approach.

As stated above, the formalism of open quantum systems allows for a nat-
ural description of processes such as decoherence and dissipation, due to the
influence of the environment on the system of interest. It is ubiquitous in the
sense that any system could be envisaged to be surrounded by its environment
which could naturally exert its influence on it. This becomes clearer when we
try to gauge the range of applications of the ideas of open quantum systems,
from quantum optics to condensed matter physics and issues related to quan-
tum cosmology and quantum gravity to the recent developments in quantum
information processing; some of which will be covered, in due course, here.

We try to put down in this book, in a comprehensive manner, the basic
ideas of open quantum systems and the tools needed for the same. Emphasis
is given to both the traditional master equation as well as the functional in-
tegral approaches. The basic paradigm of open systems, and perhaps of all of
physics, the harmonic oscillator is studied in detail from a number of different
perspectives. The other paradigm model of open quantum systems is the two-
level system, also called, in the parlance of quantum information processing,
the qubit. This is studied using path integral methods. As a matter of fact,
this book can be used as a beginning guide for understanding and use of path
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integrals, needless to say, appropriately supplemented by a number of great
books on the subject, some of which find their place in the bibliography.

This book has been written keeping in mind an advanced undergraduate
or a graduate student wanting to learn about open quantum systems. For this
reason, an introduction is made to the various tools of quantum statistical me-
chanics and path integrals. This is followed by a discussion of master equations
and the influence functional approach, a path integral method used here. These
form the core required for a coherent understanding of the rest of the material
presented. The tools developed are next applied to the two paradigm models of
open systems, viz. the dissipative harmonic oscillator and the dissipative two-
level system. The dissipative harmonic oscillator is studied using both master
equation and path integral techniques. Discussion of the dissipative two-level
system follows naturally into the problem of quantum tunneling, which is stud-
ied here using path integral techniques. As we have had occasion to remark
earlier, the field of quantum information provides a natural breeding ground
for ideas of open quantum systems. This endeavor is thus undertaken next.
The book culminates with a brief discussion of some modern trends in the use
of open system ideas. A number of results obtained with the help of different
colleagues appear in this book. They follow naturally from the formalism de-
veloped. Problems are given intermittently and serve the purpose of further
sharpening the arguments presented.

In the process of elucidating various aspects of open quantum systems, well
known models from different fields of study, such as the Lindblad evolution
and dissipative Jaynes-Cummings model, of importance in quantum optics,
Caldeira-Leggett and the spin-Boson models are also discussed. Applications
of open quantum systems to quantum optics, quantum information, condensed
matter and high energy physics can easily be gleaned from the material. This
should, hopefully, serve to highlight the ubiquity of open quantum systems. So
without further ado, let us begin our journey.
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Chapter 2

A Primer on Quantum Statistical
Mechanics and Path Integrals

2.1 Introduction

In this chapter, we will focus on some of the basic tools of quantum statistical
mechanics as well as get introduced to the subject of path integration. These
are vast enterprises in themselves and are needed to have an understanding
of the subject of open quantum systems. Here we introduce some of the basic
concepts in quantum statistical mechanics and path integration. The harmonic
oscillator, which has a ubiquitous presence in all realms of physics, will be
discussed in detail, both from the perspective of quantum statistical mechanics
as well as path integration. One of the themes pursued in this chapter is to
discuss concepts from dual point of views, that is, using ideas of (conventional)
quantum statistical mechanics as well as by using path integration. For example,
we discuss the partition function as well as the evolution of the density matrix
from this perspective. This, we believe, would encourage the reader to develop a
global viewpoint on the issues studied. Reference is made to advanced literature
on the subject in the end.

2.2 Quantum Statistical Mechanics

Statistical mechanics is about trying to find how macrosystems emerge from
their microscopic origins. Often, this requires also the application of the laws
of quantum physics. The amalgamation of statistical and quantum mechan-
ical ideas is quantum statistical mechanics. As the title of this chapter sug-
gests, what we will discuss here will be the bare rudiments of this vast subject.
However, we feel that the topics discussed are suffice to give the reader an
appreciation of the subject. Thus, we talk about the basic setup of quantum
mechanics; how states and operators are defined, their transformations, the
various pictures used in different contexts. We then discuss the Baker Camp-
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bell Hausdorff theorem, which is very useful in computations with operators;
we come across operators repeatedly in quantum statistical mechanics. The
study of open quantum systems, the principal object of this book, is basically
a theory of quantum statistical mechanics. Here we encounter mixed states fre-
quently. They are handled conveniently by density matrices. The ubiquitous
harmonic oscillator, without a discussion of which no study of quantum statis-
tical mechanics would be appropriate, is then discussed using the method of
annihilation and creation operators. We then briefly discuss the notions of the
partition function and entropy. A guide is provided to more complete literature.

2.2.1 States, Operators, Evolutions and Transformations

A quantum mechanical system lives, mathematically, in a Hilbert space H.
This is a complex, complete, linear vector space equipped with a positive semi-
definite inner product [22, 23]. A very convenient representation of quantum
states, and one which we will follow consistently in this book, is the Dirac bra
and ket formalism [24]. In this, a state is represented by ¢}, called ket psi and is
a column vector whose entries are, in general, complex numbers. Its Hermitian
conjugate is (1|, called bra psi. As an example, the states of a two-level system,
also called qubit in the parlance of quantum information, are

m=(o). w=(9)- 1)

A complex, linear vector space is a set of elements (vectors), which are closed
under addition and admit multiplication with complex scalars, which is linear
and associative [23, 25]. Further, there exists a unique zero and identity. An
important concept in these issues is the notion of an inner product. Given two
states |¢) and |¢), the inner product between them can be defined by (¢|®).

A vector space which is equipped with an inner product is called an inner
product space. The inner product obeys the properties of Hermiticity, that is,
it is equal to its transposed conjugate counterpart and linearity. Further, the
notion of an inner product allows for the definition of a distance function on
the state space. Thus, we have that (¥|¢) > 0, with equality if |¢)) = 0. This is
the property of positive semi-definiteness of the inner product. The length or
the norm of a vector |¢) is

[1)]] = v/ewre. (2:2)

Thus we see that the length of a vector is related to its inner product. Another
important concept is that of a basis. A basis is a set of vectors which is linearly
independent and complete. This implies that if a vector space V is spanned by
a basis, say for example {|¢;)}, ¢ = 1,---n, then any vector [¢)) in V can be
expressed as a linear combination of the basis, that is, [¢)) = Y. |¢;), where n
is the number of elements or vectors in V. Another crucial concept, related to
the basis, is its completeness, which implies that > |¢;)(¢;| = 1. When the
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basis spanning the vector space is both linearly independent and complete, it
follows that the number of elements of the basis is equal to the dimension of
the vector space.

An operator can be represented conveniently by an outer product, for ex-
ample, given two vectors |¢) and |¢), an operator can be constructed as [¢){¢],
which from simple matrix multiplication can be seen to have the form of a
matrix, in contrast to an inner product, which would be a number. The general
definition of an operator is that it acts on a vector to produce another vector

(12401 o) = (@) = elw), (2.3)

where c is a complex number. The form of the matrix representing an operator
depends upon the basis chosen to represent the matrix elements. The basis
in which the matrix representation of the operator is diagonal is called the
diagonal basis. In another basis, the matrix may not be diagonal. The sum of
diagonal elements of a matrix representation of an operator is called its trace.
The trace operation is independent of the basis chosen to represent the operator
and is cyclic. Given two operators A and B,

Tr(AB) = Tr(BA). (2.4)

This can be proved as follows:

Te(AB) = ) (ilABli) =) (ilAlj)(j|Bli)

i 2,7

DBl 1AL) = D _{iIBALj)

,J J

— Ti(BA). (2.5)

Here we have made use of the completeness of basis ), |i)(i| = 1 and the fact
that an inner product is an ordinary ¢ number and can be moved in any order.
Trace is used to compute the average of an operator in a given state <A>|¢> as

(D) = WIA[Y) = Tr(Aly){]). (2.6)

Problem 1: Prove that for operators A, B and C, the following holds:
Tr(ABC) = Tr(BCA) = Tr(CAB).

We have defined in Eq. (2.3), the basic action of an operator. A special
case of this is the eigenvalue equation of operators,

Alp) = Aly). (2.7)

Here, |¢)) is the eigenvector and A is the eigenvalue of the operator A. Two
kinds of operators find prominent use in quantum mechanics, viz. the Hermitian
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and Unitary operators. An operator is Hermitian if it is equal to its transpose
conjugate, also known as the adjoint of the operator and represented by the
symbol t, while the adjoint of a unitary operator yields its inverse. It can
be easily shown that the eigenvalues of a Hermitian operator are real, while
those of a unitary operator are complex, with unit modulus [23, 25]. Since the
eigenvalues of a Hermitian operator is real, it can be used to represent physical
observables, such as energy and momentum. On the other hand, the unitary
operators are used for the evolution of the state

() = U(t,0)|¢(0)). (2.8)

This implies that the unitary operator U(¢,0) evolves the state |1) from time
t = 0 to time ¢t. From this equation, it can be seen that the unitary evolution
preserves the state norm, that is,

(W@ (1)) = W(0)|[UTU[(0)) = ((0)[1(0)), (2.9)
because UTU = 7.

Problem 2: A well known matrix, for a two level system, is the Pauli

matrix:
(1 0
Oz = 0 71 .

Find the eigenvalues and eigenvectors of this matrix. This is the matrix repre-
sentation of the Pauli-Z operator in the computational basis {|0}, |1)}, given in
Eq. (2.1).

Another important transformation, effected on operators, is the similarity
transformation. In quantum mechanics, unitary operators are used to effect this
transformation. Thus, for example, given an operator R and a unitary matrix
U, built from the eigenvectors of R, the similarity transformation would be

D =U'RU, (2.10)

where D is the diagonalized form of the matrix R. We could say that D and R
are similar. Commutators and anti-commutators are very important operations
associated with operators. Given two operators A and B, their commutator

would be [A, B} = AB— BA, while their anti-commutator would be [A, B} =
+

AB+ BA. An interesting aspect of this is that if {A, B} = 0 and we assume non-

degeneracy, that is, different eigenvectors correspond to different eigenvalues,
then A and B can be measured simultaneously. We conclude this discussion
by stating a useful representation of an operator, its spectral representation.
Given an operator A, its spectral representation is given by

A:Zw)m. (2.11)
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Here \;, |i) are the eigenvalues and eigenvectors of the operator A, respectively.

Problem 3: Prove the relation in Eq. (2.11).

2.2.2 Various Pictures

In applications of quantum mechanics, we often make use of various pictures.
The most prominent among them are the Heisenberg, Schrodinger and the
interaction pictures [23, 26]. In the Heisenberg picture, the time dependence
is carried by the operators while the state vector is time independent. This is
reversed in the Schrodinger picture while the interaction picture is intermediate
between the two.
Heisenberg picture: Here the evolution of an operator O in time ¢ is given
as
O™ (t) = en O™ (0)e#11. (2.12)

Here the superscript A, on the operator O™, denotes Heisenberg. Differentiating
the equation with respect to time ¢ yields the equation of motion

0
ihaOH(t) = [O”(t),H}, (2.13)
where H is the Hamiltonian. Now O7(0) in Eq. (2.12) is the operator at time
t = 0. Also, the state vectors in this picture do not evolve with time, that is,
o, 1) = |a, 0)" = |o) ™.

Schrédinger picture: Here O% = O™(0), while

la, )8 = e~ 71, 0)5 (2.14)
where |a,0)% = |a)™. Here the superscript S, on the operator O°, denotes
Schrodinger. Differentiating this with respect to time ¢ yields

ih%\a,t}s = Hla,t)". (2.15)

Note that operator averages are unchanged, irrespective of the picture used for
computation. Thus, we have

(B,t|05|a, t)5 = (Ble#HtOS e~ #HE o) = (B|OM (t)|a) ™. (2.16)

The transformations between the two pictures is mediated by canonical trans-
formations, that is, transformations preserving commutation relations. Thus, if
[AH,BH] — C™, then [AS,BS] — 5.

Interaction picture: This is intermediate between the above two pictures.
It is very suited to discuss scenarios where the total Hamiltonian can be split
up into the free Hamiltonian and an interaction Hamiltonian H = Hy + Hj.
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Here the free term is H,, while the interacting part is H;. In this picture, the
operators evolve as

Ol (t) = enflotQS = Hot (2.17)

while the state vector evolves as
o, t)] = enHot|q, 1) (2.18)

)
I _

Here the superscript I denotes the interaction picture. For Hy = 0, O (¢
O™M(t) and |a, t)! = |a)™; while for t = 0, O7(0) = O% = O*(0) and |, 0)! =
|a)* = |, 0)7. Differentiating Eq. (2.18) we get

zh%|a7t>l = Hl|o,t), (2.19)

while differentiating Eq. (2.17) we get

ih%Ol(t) - [of(t), HO} . (2.20)

Here H II is the interaction Hamiltonian in the interaction picture.

Problem 4: Derive Egs. (2.19) and (2.20).

2.2.3 Baker Campbell Hausdorff (BCH) Theorem

A crucial thing with operators, is that functions of operators cannot be fac-
torized like functions of ordinary (¢) numbers. This is captured by the BCH
theorem [27], and comes in handy in many applications. Consider the function
(&) of the parameter &:

F(&) = eAetB, (2.21)
Differentiation with respect to the parameter £ gives
gg (A+efABe 41 (9). (2.22)

In this sub-section, we will denote operators with a hat on top. The nontrivial
term in the above equation is e$4Be—¢4. If A and B had been ¢ numbers, then
this would become B. However, as we will see below, this term will have a
non-trivial expansion, due to the operator nature of A and B. In fact, it turns
out that

52

4B A = By ¢[A, B] + SIAAB)+ ... (2.23)

This can be proved as follows, using the techmque of parametric differentiation.
Let . A
9(¢) = e Be 4, §(0) = B. (2.24)
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Then,
g L. 99 h A
ag - [A,g(ﬁ)], ag £=0 [AvBL
0%g PN 0%g A aoa
— = [A,[A,q§ o= = |A,[A, B]|. 2.2
o = [AAa©D- 5| = [A148) (225)
(2.26)
Using Taylor’s expansion, we have
HE) = g &%
This proves Eq. (2.23). Setting £ = 1 in Eq. (2.23), we get
eABe~h = B+ [A,B]+ (A4 B] + ... (2.28)

Problem 5: Let A = %]373 — § and the parameter ¢ € R, such that
[G,p] = ih. Show that

erPEGe TPt = g 4 £

Thus, momentum p is the generator of displacement q.

If [/1, A, B]] =0= [B, (A, B]], this is so when [A, B] is a ¢ number, then,
from Eq. (2.23), we see that eé4 Be ¢4 = B+¢[A, B]. Parametric differentiation
of the function f(&), Eq. (2.21), gives

O = A+ B EABII©), (2.29)

It can be seen that, in the above equation, [/Al + B, A ,B]] = [ A, B]]
[B, (A, BH = 0. This allows for the factorization of (A—I—B)—i—f[fi B as ordinary
is

commuting variables. Using f(0) = 1, the solution of Eq. (2.29) is given by
F(6) = e(AtBErSIAB)
_ E(A+B) S IAB] (2.30)
Setting £ = 1 we get
eAeB = A+B) 3AB] (2.31
o(A+B)  _ A B,ZFAB] (2.32)

These are two well-known forms of the BCH theorem.
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Problem 6: Let there be two nxn matrices A and B such that [4, [A, B]] =
[B,[A, B]] = O. Show that:

1
oA+B oA eB o~ 3AB]

1
eBeAezlA Bl

2.2.4 Density Matrices

The usage of density operator is ubiquitous in studies related to Open Quantum
Systems. Here we recapitulate some common properties of density operators.

Consider the average of an operator M in Schrédinger picture (SP) (where
the state vector evolves with time, but not the operator), in the state [g(t))
as

(M) (Vs 