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Preface

The field of bioinformatics has two main objectives: the creation and mainte-
nance of biological databases and the analysis of life sciences data in order to
unravel the mysteries of biological function. Computer science methods such as
pattern recognition, machine learning, and data mining have a great deal to offer
the field of bioinformatics. The Pattern Recognition in Bioinformatics (PRIB)
meeting was established in 2006 under the auspices of the International Associ-
ation of Pattern Recognition (IAPR) to create a focus for the application and
development of computer science methods to life science data.

The 5th PRIB conference was held in Nijmegen, The Netherlands, on 22–24
September 2010. A total of 46 papers were submitted to the conference for peer
review. Of those, 38 (83%) were accepted for publication in these proceedings.
The invited speakers were Rita Casadio (Bologna Biocomputing Group, Italy),
Florence d’Alché-Buc (Université d’Evry-Val d’Essonne, France), Daniel Hu-
son (Tübingen University, Germany), and Natasa Przulj (Imperial College Lon-
don, UK). Tutorials were delivered by Concettina Guerra (Università di Padova,
Italy), Clarisse Dhaenens (Laboratoire LIFL/INRIA, France), Laetitia Jourdan
(Laboratoire LIFL/INRIA, France), Neil Lawrence (University of Manchester,
UK), and Dick de Ridder (Delft University of Technology).

We would like to thank all authors who spent time and effort to contribute to
this book and the members of the Program Committee for their evaluation of the
submitted papers. We are grateful to Nicole Messink for her administrative help
and coordination, to the co-organizers of this conference, to the machine learn-
ing group members for their assistance before and during the conference, and
to the EasyChair team (http://easychair.org) for providing the conference
review management system. We acknowledge support from the Netherlands Or-
ganization for Scientific Research (NWO), the Netherlands Bioinformatics Cen-
tre (NBIC), the Radboud University Nijmegen, the SIKS Netherlands research
School for Information and Knowledge Systems, the royal dutch science society
(KNAW) and the EU FP7 network of excellence Pascal2.

Finally, we hope that you will consider contributing to PRIB 2011.

July 2010 Tjeerd MH Dijkstra
Evgeni Tsivtsivadze

Tom Heskes
Elena Marchiori
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Sequence-Based Prediction of Protein Secretion
Success in Aspergillus niger

Bastiaan A. van den Berg1,2,4, Jurgen F. Nijkamp1,4, Marcel J.T. Reinders1,2,4,
Liang Wu3, Herman J. Pel3, Johannes A. Roubos3, and Dick de Ridder1,2,4

1 The Delft Bioinformatics Lab, Delft University of Technology, The Netherlands
2 Netherlands Bioinformatics Centre, The Netherlands

3 DSM Biotechnology Center, The Netherlands
4 Kluyver Centre for Genomics of Industrial Fermentation, The Netherlands

b.a.vandenberg@tudelft.nl

Abstract. The cell-factory Aspergillus niger is widely used for industrial

enzyme production. To select potential proteins for large-scale

production, we developed a sequence-based classifier that predicts if an

over-expressed homologous protein will successfully be produced and se-

creted. A dataset of 638 proteins was used to train and validate a classifier,

using a 10-fold cross-validation protocol. Using a linear discriminant clas-

sifier, an average accuracy of 0.85 was achieved. Feature selection results

indicate what features are mostly defining for successful protein produc-

tion, which could be an interesting lead to couple sequence characteristics

to biological processes involved in protein production and secretion.

Keywords: Aspergillus niger, protein secretion, sequence-based predic-

tion, classification.

1 Introduction

The filamentous fungus Aspergillus niger has a high secretion capacity, which
makes it an ideal cell-factory widely used for industrial production of enzymes
[11]. Selecting proteins for large-scale production requires testing for successful
over-expression and protein secretion. Because many proteins are of potential
interest, a large amount of lab work is needed. This can be reduced by developing
a software tool to prioritize proteins in advance. Such a tool might also indicate
which gene or protein characteristics influence successful over-expression and
secretion.

Various sequence-based classifiers have been developed, for example, to pre-
dict protein crystallization propensity [6], protein solubility [8], and protein sub-
cellular localization [14], [4]. Subcellular localization predictors have been used
to predict protein secretion [16], [5], but these methods predict if a protein is
inherently extracellular, whereas our aim is to predict successful secretion of a
protein after over-expression.

In this work, we present a classifier to predict if a homologous protein will
successfully be secreted after over-expression in A. niger, using 25 sequence-
based features and providing an accuracy of 0.85.

T.M.H. Dijkstra et al. (Eds.): PRIB 2010, LNBI 6282, pp. 3–14, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



4 B.A. van den Berg et al.

2 Materials and Methods

2.1 Data Set

The data set D contained 638 homologous proteins from A. niger CBS 513.88
[13] with a signal sequence predicted by SignalP [12]. For each protein, the open
reading frame (ORF) and a binary score for successful over-expression was given.
To obtain this binary success score, each protein was over-expressed through
introduction of the predicted gene using the same strong glucoamylase promoter
PGlaA. Cultures were grown in shake-flasks and the filtered broth was put on
an SDS-PAGE gel. Successful over-expression was defined as the detection of a
visible band in this gel. D contained 268 successfully detected proteins (Dpos),
and 370 unsuccessfully detected proteins (Dneg). The data set will be publicly
available soon.

2.2 Sequence-Based Features

For each item i ∈ D, a feature vector di with 39 sequence-based features was
constructed (Table 1). Next to simple compositional features, features that relate
to protein solubility and membrane binding were chosen, because it is expected
that these characteristics influence successful protein secretion. Features are cal-
culated using the entire ORF sequence and corresponding protein sequence, in-
cluding the signal peptide. A two-sample t -test with pooled variance estimation
was used as class separability criterion to evaluate the performance of each fea-
ture. Features with p-value > 0.001 (gray features in Table 1) were removed,
resulting in a set of 25 features used for classifier development.

For this set of features, a heat map of the hierarchical clustered (complete
linkage) feature matrix is shown in Fig. 1, in which each row is a protein in D
and each column is a feature. The two additional columns on the right depict the
measured and predicted class labels. They show that clustering of the proteins,
using this feature set, already provides a separation of Dpos and Dneg.

Compositional Features. Given a protein sequence, its amino acid composi-
tion is defined as the number of occurrences of the amino acid (frequency count)
divided by the sequence length, providing 20 features. The same was done for
the nucleotide composition of the coding region, providing 4 features.

Additionally, we calculated the compositions of amino acid sets that share a
common property. Given a protein sequence and an amino acid set, the amino
acid set composition is defined as the sum of the frequency counts of each of the
specified amino acids, divided by the sequence length. Eight sets were used: helix
{I,L,F,W,Y,V}, turn {N,G,P,S}, sheet {A,E,L,M}, charged {R,D,C,E,H,K,Y},
small{A,N,D,C,G,P,S,T,V}, tiny{A,G,S},basic{R,K,H},andacidic{N,D,E,Q}.
One nucleotide set was used: GC.

As final compositional feature we used the codon adaptation index (CAI)[15],
which was calculated with the codon usage index of all genes in the A. niger
genome.
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Fig. 1. Heat map of clustered feature matrix. The rows are the proteins in D
and the columns are the 25 features used for classifier development. The two columns

on the right depict the predicted and measured class labels respectively.
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Table 1. Calculated features with class separability score

guanine (2.5) GC (1.3)

Nucleotide adenine (0.4) CAI (5.3)

compositional thymine (2.3)

cytosine (2.9)

alanine (2.3) leucine (9.0) helix {I,L,F,W,Y,V} (0.4)
arginine (13.6) lysine (9.3) turn {N,G,P,S} (8.9)
asparagine (15.0) methionine (6.3) sheet {A,E,L,M} (10.8)
aspartic acid (7.2) phenylalanine (0.1) acidic {N,D,E,Q} (7.9)

Amino acid cysteine (0.2) proline (5.4) basic {R,K,H} (15.7)
compositional glutamic acid (5.6) serine (1.6) charged {R,D,C,E,H,K,Y} (5.6)

glutamine (0.2) threonine (8.3) small {A,N,D,C,G,P,S,T,V} (9.7)
glycine (9.2) tryptophan (6.3) tiny {A,G,S} (3.5)
histidine (4.2) tyrosine (13.6)

isoleucine (0.9) valine (1.9)

Signal-based hydrophobic peaks (9.1)

features hydrophilic peaks (15.5)

Global features
GRAVY (1.8)

isoelectric point (16.2)

sequence length (5.4)

Signal-based Features. Two features capture the occurrence of local hydro-
pathic peaks: hydrophobic peaks and hydrophilic peaks, both derived from a
protein hydropathicity signal [1] that was constructed using the (normalized)
hydropathicity amino acid scale of Kyte and Doolitle [7].

An amino acid scale is defined as a mapping from each amino acid to a value.
Given a protein sequence, a hydropathicity signal was obtained by replacing
each residue by its amino acid scale value (Fig. 2A). The signal was smoothed
through convolution with a triangular function (Fig. 2B). To capture the extreme
values of the smoothed signal, an upper and lower threshold were set (Fig. 2C).
Hydrophobic peaks is defined as the sum of all areas above the upper threshold
divided by the sequence length, hydrophilic peaks is defined as the sum of all
areas below the lower threshold divided by the sequence length.

The window size and edge of the triangular function (Fig. 2B), and both
thresholds (Fig. 2C) can be varied. In each CV loop of the training and val-
idation protocol (Section 2.4), an exhaustive search was applied to optimize
the features’ class separability score, using: window size = 3, 5, . . . , 21; edge =
0.0, 0.2, . . . , 1.0; threshold = 0.5, 0.54, . . . , 0.86 for hydrophobic peaks and 0.5,
0.45, . . . , 0.05 for hydrophilic peaks.

Global Features. Three global features were used: the grand average of hy-
drophobicity (GRAVY), i.e., the sum of all Kyte and Doolitle amino acid scale
values divided by the sequence length; the isoelectric point (pI), i.e., the pre-
dicted pH at which the net charge of the protein is zero; and finally the sequence
length, i.e., the number of residues in the protein sequence.
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Fig. 2. Hydropathic peaks features. A) A raw protein hydropathicity signal ob-

tained by replacing each amino acid in the sequence by its value in the normalized

Kyte and Doolitle amino acid scale. B) Triangular function used to smooth the raw

signal. C) Smoothed signal obtained by convolution of the raw signal in A with the

function in B.

WoLF PSORT. To test whether using predicted localization would improve
performance, WoLF PSORT [4] was used to predict secretion of the proteins
in D. Next to the amino acid composition and the sequence length, which we
also used as features, WoLF PSORT uses features based on sorting signals and
functional motifs. To use the prediction as feature, we assigned proteins with
intracellular localization prediction a value of 0, and proteins predicted to be
extracellular a value of 1.

2.3 Performance Evaluation

We used five measures to evaluate classification performance. Four of these are
based on the confusion matrix. This matrix contains the number of true posi-
tives (TP ), false positives (FP ), true negatives (TN), and false negatives (FN).
Let the set of positives be P = TP + FN , the set of negatives N = TN + FP ,
the set of predicted positives P ′ = TP + FP , and the set of predicted nega-
tives N ′ = TN + FN . The confusion matrix-based measures are; accuracy =
(TP +TN)/(P +N), sensitivity = TP/P , specificity = TN/N , and Matthews
correlation coefficient score MCC = (TP×TN−FP×FN)/

√
P × N × P ′ × N ′.

The MCC-score [9] is suited in case of different class sizes, which applies in
our case. The score ranges from 0 for random assignment, to 1 for perfect
prediction.

The aforementioned scores take into account only one operating point on
the receiver operating characteristic (ROC) curve. As a fifth measure, we took
the area under the ROC curve (AUC), thereby taking into account a range of
operating points. Because the goal is to reduce the amount of lab work, we are
mainly interested in low false positive rates, i.e., the left region of the ROC-
curve. Therefore, we used the AUC over the range of 0 – 0.3 false positive rate
(ROC0.3) as main performance measure.
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Fig. 3. Training and validation protocol

2.4 Training and Validation Protocol

To avoid overestimation of classification performance, a double 10-fold CV proto-
col was used, based on the protocol in [17]. We used 10-fold CV feature selection
with classifier performance as selection criterion, in which the expected error
((FP/P + FN/N)/2) was used as performance measure.

The protocol is shown in Fig. 3. The dataset D is split into ten equal-sized
random stratified sets. In each outer loop, one of the sets is used as test set,
and the remaining nine as the training set (1). An exhaustive search is done
to optimize the parameters of the hydropathic peaks features for maximal class
separability, and 10-fold CV feature selection (inner loop) is applied on the
training set to select an optimal feature set (2). As feature selection methods,
we used both forward and backward feature selection. The optimal feature set
is used to train a classifier on the entire training set (3). The resulting classifier
is applied to the test set that was not employed for training, resulting in a
performance score (4). Finally, the performance scores of the 10 CV loops are
averaged, resulting in an average performance score.

The training and validation protocol was implemented in Matlab, using the
PRTools pattern recognition toolbox [3].

2.5 Classifiers

We tested 8 classifiers: linear and quadratic normal density-based Bayes classi-
fiers (ldc, qdc); nearest mean classifier (nmc); k-nearest neighbor classifier, both
with k = 1 and with k optimized by leave-one-out CV (1nnc, knnc), naive Bayes
classifier (naivebc), Fisher’s least square linear classifier (fisherc), and a radial
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basis support vector machine (svm, γ = 1/number of features). We used libsvm
[2] for the support vector machine.

3 Results

The classifier performance scores are given in Table 2. We compared the ROC0.3
scores of the different methods using a paired t -test (p < 0.05) on the results
of the 10 CV loops. This showed that the nearest neighbor classifiers perform
significantly worse than all other methods, except for qdc with forward feature
selection. The best performance was obtained with ldc and backward feature
selection.

Table 2. Classifier performance scores

classifier ROC0.3 sensitivity specificity MCC accuracy

ldc
f1 0.232 ±0.03 0.877 ±0.08 0.819 ±0.06 0.691 ±0.08 0.843 ±0.04

b2 0.236 ±0.03 0.873 ±0.08 0.830 ±0.05 0.700 ±0.07 0.848 ±0.03

svm
f 0.228 ±0.03 0.847 ±0.08 0.857 ±0.02 0.701 ±0.07 0.853 ±0.03

b 0.232 ±0.02 0.843 ±0.08 0.854 ±0.04 0.695 ±0.09 0.850 ±0.04

fisherc
f 0.234 ±0.03 0.873 ±0.08 0.819 ±0.06 0.688 ±0.08 0.842 ±0.04

b 0.235 ±0.02 0.881 ±0.09 0.822 ±0.05 0.698 ±0.07 0.846 ±0.03

naivebc
f 0.224 ±0.03 0.854 ±0.08 0.800 ±0.05 0.649 ±0.09 0.823 ±0.04

b 0.230 ±0.03 0.888 ±0.08 0.803 ±0.03 0.684 ±0.07 0.839 ±0.03

qdc
f 0.221 ±0.03 0.877 ±0.06 0.803 ±0.04 0.674 ±0.06 0.834 ±0.03

b 0.227 ±0.03 0.884 ±0.05 0.805 ±0.04 0.682 ±0.08 0.838 ±0.04

nmc
f 0.227 ±0.03 0.910 ±0.07 0.773 ±0.04 0.678 ±0.06 0.831 ±0.02

b 0.224 ±0.02 0.899 ±0.07 0.773 ±0.04 0.666 ±0.05 0.826 ±0.02

knnc
f 0.218 ±0.03 0.858 ±0.09 0.770 ±0.06 0.624 ±0.10 0.807 ±0.05

b 0.214 ±0.02 0.862 ±0.06 0.778 ±0.06 0.635 ±0.05 0.813 ±0.03

1nnc
f 0.195 ±0.04 0.798 ±0.09 0.781 ±0.09 0.578 ±0.15 0.788 ±0.07

b 0.190 ±0.03 0.809 ±0.09 0.749 ±0.08 0.557 ±0.10 0.774 ±0.05

1 forward feature selection, 2 backward feature selection

Fig. 4 shows the ROC0.3 scores of ldcs trained on each of the 25 single features,
on all 25 features, and on features obtained by backward feature selection. The
classifiers are ordered by score. A paired t -test (p < 0.001) on the 10 CV loops
showed that all single-feature classifiers are significantly outperformed by both
multi-feature classifiers. Although using all features provides a higher average
score than using backward feature selection, the paired t -test (p < 0.05) indicates
that the difference is not significant.

Applying WoLF PSORT on our dataset provided a sensitivity of 0.96 and a
specificity of 0.49. It appears that WoLF PSORT is too optimistic, providing a
large amount of FPs. This could be explained by the difference in the problems
we address; WoLF PSORT predicts extracellular proteins, whereas our method
also includes successful protein production and secretion. This means that ex-
tracellular proteins in D, which are positives for WoLF PSORT, can be part
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Fig. 4. Single-feature and multi-feature classification scores

of Dneg because of unsuccessful protein production. We used the localization
prediction as additional feature. Using ldc with backward feature selection, no
significant improvement was observed, probably because the feature contains
redundant data.

3.1 Operating Point Example

Fig. 5A shows the ROC of the ldc with backward feature selection. One could use
this classifier to screen a set of proteins for potential over-expression candidates.
For example, if we have a set S of 100 proteins that we want to screen, containing
42 positives (Spos) and 58 negatives (Sneg) (i.e., the same fraction of positives
and negatives as D), and if we use γ as operating point, a true positive rate
of 0.8 will be obtained. In this case, the classifier will predict 34 true positives
and 6 false positives, which means that only 40 lab experiments are needed to
identify 34 positives. Without the classifier, to identify 34 positives, both the
false and the true positive rate will be 0.8 (operating point γ′). In this case, 80
lab experiments will be needed to identify 34 positives, which means that the
classifier could reduce the amount of lab work by a factor two (Fig. 5B).

3.2 Feature Optimization

Fig. 6 shows the optimal parameter settings for the hydrophilic and hydrophobic
peaks feature as obtained in one of the CV loops. For both features, the same
optimum was observed in each CV loop.



Sequence-Based Prediction of Protein Secretion 11

Fig. 5. ROC-curve. A) Average ROC curve of the ten CV loops (ldc, backward

feature selection). The light gray curves are the ROC curves of the separate CV loops.

The diagonal line illustrates the random selection ROC curve. B) Numeric example

that shows the amount of lab work that could be saved for different operating points.

Interestingly, when using the optimal parameter settings, the raw signal of the
hydrophilic peaks is not smoothed. With window size = 3 and edge = 0.0, the
value at a specific location in the sequence is simply the amino acid scale value
of the amino acid at that specific location. Therefore, the feature is actually the
same as the GRAVY feature, but using an amino acid scale in which all values
greater than the threshold are set to zero, and all other values are set to the
threshold minus the value. In this case, arginine is set to 0.1, lysine to 0.33, and
the rest of the amino acids is set to zero. From another perspective, this feature
can be seen as an amino acid set composition for the set {arginine, lysine} in
which the arginine has a higher weight.

It is questionable if the resulting feature is still related to the proteins hy-
drophilic character. Since both arginine and lysine are also basic amino acids,
it could just as well be related to the proteins basic character. Furthermore,
because of the small window size, the feature does not take into account se-
quence order. However, it could be hypothesized that hydrophilic amino acids
will mainly contribute to the proteins hydrophilic character when they have a
relatively high occurrence within a larger region.

3.3 Feature Correlation

Fig. 7 shows a heat map of the hierarchical clustered (complete linkage) feature
correlation matrix. The cluster at the top left shows relatively high correlations,
which can be explained by the fact that the features contain redundant data:
arginine is part of both basic and charged, basic is a subset of charged, the
isoelectric point is derived from a proteins charge and therefore correlated with
charged, and hydrophilic peaks takes into account the amino acids arginine and
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Fig. 6. Parameter optimization of hydropathic peaks features. A) Class sep-

arability scores for the hydrophilic peaks feature plotted against different parameter

settings. B) The same as in A, but for the hydrophobic peaks feature. Both plots show

the result for one edge value, different edge values provided similar plots. Both plots

were obtained in one of the CV loops, the same optimum was found in all CV loops.

lysine, that are both in basic and charged. There is also a high correlation between
small, turn, and tiny. This can also be explained by data redundancy: both turn
and tiny are a subset of small.

3.4 Feature Selection

Using ldc with forward feature selection, the feature selection results of the 10
CV loops showed that: asparagine was always part of the top-3 selected features
(7 times selected first), either hydrophilic peaks or basic was part of the top-3
selected features 9 times (6 times selected second), hydrophobic peaks was part
of the top-4 selected features 9 times (7 times selected third), and tyrosine was
part of the top-4 selected features 6 times (5 times selected fourth).

The high correlation between hydrophilic peaks and basic (Fig. 7), together
with the fact that both have a high class separability score (Table 1), explains
their mutual exclusive selection. In Fig. 4, the colors above the feature names
depict what features are in the same correlation cluster and the arrows indicate
what features are most often in the top-4 selected features. It shows that these
features are in different correlation clusters, and are the best performing ones
of their cluster. Therefore, feature selection seems to select individual features
that best represent an underlying cluster of related features.

4 Discussion

To be useful for large-scale production, a protein should be produced and se-
creted with high yield. We report a sequence-based approach to classify proteins
into successful or unsuccessful production, which was trained and validated on
a set of 638 proteins. We used 10-fold CV for feature selection and classifier
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Fig. 7. Heat map of clustered feature correlation matrix

training to avoid biased performance results. Since we are mostly interested in
the operating points of the first 30 percent of the ROC-curve, we used the AUC
of this region as the main performance measure.

We calculated 39 features and used the 25 with highest class separability
score for classification. We showed that both a classifier that uses all features
and a classifier trained with feature selection, outperform classifiers trained on
single features. The classifiers trained with feature selection did not significantly
outperform the classifier trained on all 25 features, indicating that all features
contribute to the result.

Furthermore, the feature selection results showed that asparagine, the set
{arginine, lysine}, and tyrosine, as well as the hydrophobic peaks feature, were
most defining in case of the linear discriminant classifier. To get more insight
into protein secretion, it would be interesting to link the biological significance
of these features to protein secretion mechanisms. For example, the asparagine
composition could be related to N-linked glycosylation, a process that in many
cases is important for protein folding and stability [10].
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Abstract. We studied 1372 LacI-family transcription factors and their

4484 DNA binding sites using machine learning algorithms and feature

selection techniques. The Naive Bayes classifier and Logistic Regression

were used to predict binding sites given transcription factor sequences.

Prediction accuracy was estimated using 10-fold cross-validation. Exper-

iments showed that the best prediction of nucleotide densities at selected

site positions is obtained using only a few key protein sequence positions.

These positions are stably selected by the forward feature selection based

on the mutual information of factor-site position pairs.

Keywords: transcription factors, naive Bayes classifier, logistic regres-

sion, mutual information.

1 Introduction

Many biological processes involve specific interaction between DNA-binding pro-
teins and DNA sites. The mechanisms of the sequence- and structure-specific
recognition remain elusive, despite some advance coming from experimental
mutagenesis studies and computational analysis of known X-ray structures of
protein-DNA complexes [1], [2]. One of the reasons for that may be lack of data.
Indeed, while many complexes are structurally resolved, one of the main results
of the analysis has been the absence of a universal protein-DNA recognition code
[3], [4], [5]. On the other hand, experimental analysis has been limited to a small
number of proteins, and again, the obtained results do not seem universal [6].

A different approach is to study the protein-DNA code within large families
of DNA-binding proteins [7], e.g. C2H2 zinc finger, homeodomain and bHLH
domains [8] or TAL receptors [9]. At that, the data may come not only from
experiment, but from comparative genomic analysis of regulatory interactions.
A rich source of such data are bacterial transcription factors, e.g. the LacI family
considered here. Given the data on sites bound by given proteins, one may study
correlations between the amino acid sequences and corresponding DNA sites,
and then to use the structures, if known, as a sanity check, verifying that the
observed positions indeed form contacts in the protein-DNA complexes.

T.M.H. Dijkstra et al. (Eds.): PRIB 2010, LNBI 6282, pp. 15–26, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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One observation coming from early studies [10] has been that the correlations
are not limited to pairs of positions in the protein and DNA alignment: in many
cases the protein preferences to a particular nucleotide at a particular site po-
sition seemed to depend on specific residues at several protein positions. This
leads to the problem of selecting the optimal model complexity. Here we address
this problem using the predictive power of pattern recognition algorithms as a
tool to determine the optimal number of the model parameters.

2 Materials and Methods

2.1 Data

The LacI-family bacterial transcription factor and their binding sites were se-
lected from the LACI DB database (O. Laikova, unpublished). The DNA-binding
domain (HTH LACI) boundaries for each protein were determined using
SMART DB [11]. The obtained sequences were aligned against the standard
HTH LACI domain alignment with minimal manual editing, resulting in an
alignment of 1372 protein sequences. The resulting alignment length was 87
positions. Sixteen positions with more than 30% gaps were removed. The sam-
ple of DNA sites contained 4484 sequences. The data may be downloaded from
the RegPrecise database [12].

Hence, we had a sample of protein-site pairs, and the aim was to predict the
probability density of nucleotides at site positions given the protein amino acid
sequence (AAS). We assumed all site positions to be mutually independent given
AAS, hence each position was predicted separately.

2.2 Cross-Validation

To estimate the prediction accuracy, the initial sample was randomly split into
ten sets, each of which was used as a testing set with training on the remaining
nine sets. Since many proteins in the sample are closely related (and have very
similar AAS) it is reasonable to require the testing set not to contain AASs
too similar to an AAS in the training set. To ensure this, we grouped similar
AASs by similarity into clusters never separated during splitting. At that, we
calculated pairwise similarity (percent of identical amino acid) for all AAS pairs.
Next, we built a full graph with AASs as vertices and edges weighted with the
similarity values, and removed all edges with weight less than a fixed threshold.
The similarity clusters were defined as maximal connected components.

For each split into test and training sets, all algorithms were trained and their
log-likelihoods on the testing set were calculated. Log-likelihood was calculated
as:

logL =

∑
i wi

∑
j P (nij |Si)∑
i wi

,

where index i runs over all AAS, index j runs over all sites of the i–th AAS,
nij is the nucleotide observed at the selected position of the j–th site of the
i–th sequence, wi is the weight of the i–th AAS. The results were averaged. The
procedure was repeated ten times for better averaging.
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2.3 Algorithms

Weighting amino acid and binding site sequences. The similarity clusters
vary in size with some sequence motifs being overpresented. To compensate for
this, protein sequences were weighted, so that closely related proteins were as-
signed smaller weights than proteins different from all others, using the Gerstein-
Sonhammer-Chotia algorithm. Each protein weight was divided equally among
all its binding sites, resulting in weights of AAS-site pairs.

These weights were used to compute amino acid residue and nucleotide fre-
quencies for building the Bayesian classifier, computation of the mutual infor-
mation, and for training the logistic regression.

Naive Bayes classifier. The Bayesian classifier [13] estimates the occurrence
probability for each nucleotide at each site position using the Bayes formula:

P (ni|S) =
P (ni)P (S|ni)∑
j P (nj)P (S|nj)

,

where ni is the i-th nucleotide, S is the amino acid sequence, P (n) is the prior
probability of nucleotide n.

The naive Bayes approach assumes all positions in AAS to be mutually inde-
pendent given site position nucleotide:

P (S|n) =
∏

i

P (ai|n) ,

where ai is the amino acid residue at position i. Probabilities P (ai|n) are es-
timated using the corresponding frequencies in the sample, with phylogenetic
weights and pseudocounts.

Logistic regression. The logistic regression [14] is a popular machine learning
algorithm for two-class classification tasks. The training objects are assumed to
be numerical feature vectors with {−1, 1} labels. The algorithm builds a linear
decision rule, weighting each numerical feature:

f(x1, . . . , xn) = sign
( n∑

i=1

αixi

)
,

or in the vector form:
f(x) = sign(〈α, x〉) ,

where αi is the weight of i-th feature, xi is the value of the i-th feature.
Learning is performed by searching for weights that optimize the quality func-

tion on the training set:

L(α) =
l∑

i=1

wi ln σ(yi〈α, xi〉) − k

n∑
i=1

α2
i → maxα ,
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where index i runs over all training objects, yi ∈ {−1, 1} is the class of the
i-th object, wi is the weight of the i-th object , σ(z) = 1

1+exp(−z) is the logistic
(sigmoid) function, k

∑n
i=1 α2

i is a regularization term, k is an a priori fixed
regularization parameter.

Class probabilities given feature vector can be estimated using the sigmoid
function:

P (y) =
1

1 + exp(−y〈α, x〉) ,

where y ∈ {−1, 1} is the class value, x is the feature vector, α is the weight
vector.

The logistic regression requires numeric features. In our case all features are
nominal. We used the standard binarization approach: each amino acid residue
ak at i-th position was mapped to an indicator binary feature:

fi(a) =

{
1, when a = ak ;
0, otherwise .

To predict four nucleotide probabilities, an individual classifier was trained for
each nucleotide. ASS-site pairs with a given nucleotide at the given site position
were used as positive training examples, all other pairs, as negative ones. The
positional probability of each nucleotide was calculated as:

P (ni|S) =
Pi(+|S)∑4

j=1 Pj(+|S)
,

where S is the AAS for which predictions are made, Pi(+|S) is the positive class
probability computed by i-th classifier.

The weights for the negative objects were set to the weight of the correspond-
ing AAS, and for positive objects, the same weight, multiplied by the frequency
of the given nucleotide at the given site position.

Feature selection using mutual information. The mutual information (MI,
[15]) of the AAS-site position pair is the measure of correlation of these positions,
allowing for a quick estimation of the predicting power of the AAS position
for the nucleotide at the site position. Calculating the MI is fast, making it
convenient for the feature selection.

To offset for unreliable estimations of the frequencies of rare residues and
nucleotides (at a given position), we used pseudocounts, adding small values for
rare events.

The effective frequency of residue a at position i was defined as:

fi(a) =
Ni(a) + k

∑
b Ni(b)P (b→a)√

N

N + k
√

N
,

where Ni(a) is the total weight of AASs with a in position i, N is the total
weight of all AASs in the sample. The transition probabilities P (b → a) were
obtained from BLOSUM60 [16].
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The effective frequency of nucleotide n at position j was:

fj(n) =
Nj(n) + k

∑
m Nj(m)P (m→n)√

N

N + k
√

N
=

Nj(n) + 0.25k
∑

m Nj(m)√
N

N + k
√

N
,

where Nj(n) is the total weight of sites with n at position j, N is the total weight
of the sample sites.

The observed effective frequency of ‘amino acid - nucleotide’ pair:

fo
ij(a, n) =

Nij(a, n) + k
√

Nf e
ij(a, n)

N + k
√

N
,

where Nij(a, n) is the total weight of pairs with a at position i of the AAS and
n at the site position j, N is the total weight of sample pairs, f e

ij(a, n) is the
expected effective frequency of pair (a, n) defined as

f e
ij(a, n) = fi(a)fj(n) ,

where fi(a) and fj(n) are the effective frequencies of residue a at position i and
nucleotide n at position j, respectively.

The mutual information was computed as

Iij =
∑

a

∑
n

fo
ij(a, n) log

fo
ij(a, n)

f e
ij(a, n)

.

Greedy forward feature selection. Another strategy for feature selection is
searching through subsets of features, training algorithms using feature subsets
on parts of the training set, estimating error on remaining objects and selecting
the subset with the minimal error.

In practice, the exhaustive search is computationally intractable, so we used
the greedy algorithm, successively adding each of the remaining features to the
current best subset and selecting the feature which provides the best classifier.
This feature then is added to the best-feature subset and the process is repeated.

The greedy strategy takes into account feature dependency, but still can lead
to suboptimal subsets. On the other hand, this strategy is the fastest after the
MI-based feature selection.

3 Results and Discussion

We report only the performance of two simple algorithms: Naive Bayes classi-
fier (NB) [13] based on amino acid frequencies estimation and logistic regression
(LR) [14] with simple AAS encoding to feature vectors. We also tried using
amino acid pairs’ frequencies (and corresponding binarisation) with these algo-
rithms, but the prediction quality was the same. The reason of this might be
the data sparseness, which makes it impossible to estimate frequencies of complex
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events robustly. We also tried linear SVMs with these feature vectors, but the
performance was poor. SVM with a linear kernel is the fastest in training SVM
algorithm, but it is very slow compared with NB and LR. Using SVMs based
on nonlinear kernels for feature selection required computational resources not
available for this study.

3.1 Selecting Site Alignment Positions

Different site positions can be predicted with different accuracy. In this study we
used those site positions, for which significantly correlated AAS positions were
found [10]. We used the mutual information to measure correlation. As one can
see in the heat map in Fig. 1, significant correlations are observed for positions
5, 6, 7, 9 and the symmetric ones. Below we consider only these four positions.

Fig. 1. Mutual information of AAS-site position pairs [10]. Light colors correspond to

significant correlations.

3.2 Selection of Significant Positions

Selection was performed using two methods. Using the MI-based selection, twenty
positions were selected for each of three site positions. Positions were selected
successively, starting from the most informative one. On each iteration, the clas-
sifiers were trained using the current position set and the prediction quality
(testing set log-likelihood) was estimated. The greedy selection was organized
in the same way, but only for ten AAS positions for each site position. In both
cases the process was repeated for different sample splits during 10-fold cross
validation (2.2).

The prediction quality values for different feature set lengths were plotted on
a graph. The selected positions were tabulated. The selected positions may vary
for different sample splits. Hence we can only report the frequencies of given
positions in position sets selected at algorithm iterations, i.e. the frequencies in
the selected sets of sizes ranging from 1 to 20. To visualize the tables, we ordered
all positions by the total frequency (the sum of frequencies in sets of all lengths)
and report the top ones.
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Only few positions are stably selected by both algorithms, i.e. these posi-
tions are selected with almost any sample split. The maxima of the test set
log-likelihood plots often correspond to these position sets. Further increase of
the position set size leads to overfitting. The selection stability and existence
of well-defined maxima on the log-likelihood plots can be treated as a proof of
connection between the selected AAS positions and the site positions.

While the prediction quality shows large variation, dependent on the split
of the data into training and test sets, the overall results from different runs
(position of the local maxima, selected positions, relative quality of predictions
by different algorithms) are consistent.

3.3 AAS-Position Selection for Position 9 of the Site Alignment

The log-likelihood values obtained on the testing set for position 9 by various
algorithms and selection strategies are plotted in Fig. 2. Well-defined maxima
are obtained on three positions by all methods.

Fig. 2. The log-likelihood values against the number of selected positions for position

9 of the site alignment

Table 1 features the most frequent positions. The column numbers are the
position numbers starting from the most frequent one. The row numbers are the
selected set sizes. The MI-based search and greedy naive Bayes search stably
select three positions 55, 15 and 5. The greedy logistic regression stably selects
the same three positions, and frequently position 27.

The maximum prediction quality is achieved by using three positions. There-
fore, positions 55, 15 and 5 of the amino acid alignment are significantly linked
to position 9 of the site alignment.

3.4 AAS-Position Selection for Position 7 of the Site Alignment

The log-likelihood values obtained on the testing set for position 7 by various
algorithms and selection strategies are plotted in Fig. 3. Well-defined maxima are
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Table 1. Frequencies of six most frequent positions in MI-selected, greedy naive Bayes

classifier (NB) and greedy logistic regression (LR) sets of varying lengths for prediction

of site position 9 (in %)

MI-selected NB LR

Set size 55 15 5 68 56 16 55 15 5 1 70 26 55 15 5 27 49 56

1 100 0 0 0 0 0 91 9 0 0 0 0 96 4 0 0 0 0

2 100 100 0 0 0 0 100 100 0 0 0 0 100 100 0 0 0 0

3 100 100 90 0 0 0 100 100 96 0 0 0 100 100 90 9 0 0

4 100 100 90 20 35 39 100 100 99 36 5 6 100 100 96 82 5 4

5 100 100 95 50 64 57 100 100 99 52 23 23 100 100 98 94 38 37

6 100 100 97 79 80 80 100 100 99 68 42 40 100 100 99 96 64 54

Fig. 3. The log-likelihood values against the number of selected positions for position

7 of the site alignment

obtained on three positions by all methods, except the greedy Bayes classifier,
which has maximum on two positions.

The most frequent positions are listed in Tab. 2, with the notation as above.
The MI-based search stably selects three positions 16, 25 and 15, and sometimes
position 68. The greedy logistic regression stably selects the same three positions,
whereas the greedy Bayes classifier based search makes a mistake on the third
step, stably selecting position 49, which, as seen on the log-likelihood plot, leads
to a dramatic decrease of the prediction quality.

The maximum prediction quality is achieved by using three positions. There-
fore, positions 16, 25 and 15 of the amino acid alignment are significantly linked
to position 7 of the site alignment.

3.5 AAS-Position Selection for Position 6 of the Site Alignment

The log-likelihood values are plotted in Fig. 4. The naive Bayes classifier with
the MI-based selection has two maxima at one and three positions, while the
greedy strategy has maxima at one and seven positions. The logistic regression



Machine Learning Study of Protein-DNA Binding 23

Table 2. Frequencies of six most frequent positions in MI-selected, greedy naive Bayes

classifier (NB) and greedy logistic regression (LR) sets of varying lengths for prediction

of site position 7 (in %)

MI-selected NB LR

Set size 16 25 15 68 5 46 16 15 49 68 50 19 16 15 25 49 68 50

1 100 0 0 0 0 0 100 0 0 0 0 0 100 0 0 0 0 0

2 100 96 4 0 0 0 100 97 0 2 0 0 100 69 30 0 3 0

3 100 100 100 0 0 0 100 97 71 11 9 2 100 99 99 0 0 0

4 100 100 100 84 5 3 100 98 89 59 33 7 100 100 100 56 20 5

5 100 100 100 94 25 18 100 98 92 94 75 12 100 100 100 78 57 16

6 100 100 100 97 38 46 100 99 93 100 86 64 100 100 100 89 84 42

Fig. 4. The log-likelihood values against the number of selected positions for position

6 of the site alignment

curves slowly grow, having many local maxima with highest values around six
and eleven positions for the greedy and MI-based search, respectively.

Table 3 features the most frequent positions. The MI-based selection has one
absolutely stable position, 16, and two additional stable positions, 25 and 15,
which are interchangeable at the second selection step. The greedy strategies
select two positions, absolutely stable 16 and strongly stable 15. Further selection
is unstable.

In prediction of position 6 in binding sites, different algorithms behave dif-
ferently: the naive Bayes classifier has two maxima, while the logistic regression
seems to overfit. However, all methods stably select position 16 of the AAS
alignment that is significantly connected with position 6 in the site alignment.

3.6 AAS-Position Selection for Position 5 of the Site Alignment

The log-likelihood values obtained on the testing set for position 5 by different
algorithms and selection strategies are plotted in Fig. 5. For the naive Bayes
classifier, both MI-based and greedy, the maximum is reached when only one
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Table 3. Frequencies of five most frequent positions in MI-selected, greedy naive Bayes

classifier and greedy logistic regression sets of varying lengths for prediction of site

position 6 (in %)

MI-selected NB LR

Set size 16 25 15 68 26 16 15 20 27 49 16 15 27 25 49

1 100 0 0 0 0 100 0 0 0 0 100 0 0 0 0

2 100 60 40 0 0 100 90 0 10 0 100 85 5 8 0

3 100 96 91 0 8 100 94 61 28 6 100 93 65 19 4

4 100 98 95 45 29 100 94 82 64 21 100 95 78 35 22

5 100 100 97 66 58 100 97 89 82 68 100 98 86 55 47

Fig. 5. The log-likelihood values against the number of selected positions for position

5 of the site alignment

Table 4. Frequencies of five most frequent positions in MI-selected, greedy naive Bayes

classifier and greedy logistic regression sets of varying lengths for prediction of site

position 5 (in %)

MI-selected NB LR

Set size 20 25 27 68 16 20 27 15 69 50 20 25 16 50 27

1 100 0 0 0 0 100 0 0 0 0 100 0 0 0 0

2 100 95 3 2 0 100 55 2 20 0 100 54 33 0 13

3 100 96 35 41 21 100 61 28 58 18 100 87 69 16 25

4 100 99 62 62 53 100 62 48 60 28 100 94 73 60 44

5 100 99 85 83 77 100 64 67 61 49 100 100 75 85 62

position is used for prediction. The logistic regression algorithm plots do not
have a marked maximum.

The most frequent positions are tabulated in Tab. 4. Position 20 is absolutely
stable, position 25 is stable for the MI-based search. Further selection is unstable.
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The maximum prediction quality is achieved by using only one position and
addition of the second position considerably decreases it. Therefore, only position
20 of the amino acid alignment is significantly connected with position 5 of the
site alignment.

4 Conclusions

Experiments showed that knowledge of only a few key protein sequence positions
is sufficient for prediction of nucleotide densities at selected site positions. These
positions form significantly correlated pairs with corresponding site alignment
positions, having high mutual information values. Moreover, the selected pairs of
positions are largely the same for different methods (for any given site position)
and correspond to the contacts in protein-DNA complexes [10]. On the other
hand, the results show that the dependencies are not limited to simple pairs of
contacting positions. Overall, these observations support the existence of protein
family-specific protein-DNA recognition code. Analysis of other transcription
factor families will show what features of this code are universal.
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Abstract. The effect of more detailed modeling of the interface between stem 
and loop in non-coding RNA hairpin structures on efficacy of covariance-
model-based non-coding RNA gene search is examined. Currently, the prior 
probabilities of the two stem nucleotides and two loop-end nucleotides at the 
interface are treated the same as any other stem and loop nucleotides 
respectively. Laboratory thermodynamic studies show that hairpin stability is 
dependent on the identities of these four nucleotides, but this is not taken into 
account in current covariance models. It is shown that separate estimation of 
emission priors for these nucleotides and joint treatment of substitution 
probabilities for the two loop-end nucleotides leads to improved non-coding 
RNA gene search. 

Keywords: Sequence analysis, RNA gene search, covariance models. 

1   Introduction 

Covariance models are an effective method of capturing the joint probability 
information inherent in the intramolecularly base-paired positions of a non-coding 
RNA molecule [1, 2]. Unlike profile hidden Markov models [3, 4], which have a set 
of four emission probabilities over the possible nucleotides at each consensus 
sequence position, covariance models allow consensus base pairs to be assigned 
sixteen joint probabilities over the possible ordered nucleotide pairs. Covariance 
models also allow the probability of insertion or deletion of a base pair to be different 
than the sum of the marginal probabilities of insertion or deletion of the individual 
nucleotides. The profile hidden Markov model can be viewed as a special form of a 
covariance model with no base pairs specified. 

Covariance models are finite state machines which require the estimation of state 
emission and state transition probabilities as well as model structure. This is normally 
done using a family of known sequences in a multiple alignment with secondary 
structure annotation. Counts of nucleotide frequencies in unpaired consensus columns 
or nucleotide pair frequencies in couples of base-paired consensus columns form the 
basis for emission probabilities. Counts of missing nucleotides in consensus columns 
and of nucleotide presence in non-consensus columns can be used to generate 
transition probabilities in and out of deletion and insertion states respectively. 
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Conceptually, estimation of emission and transition probabilities is as simple as 
calculating the observed frequency of occurrence in the multiple alignment. The 
reality is much more complex. The very small number of family sequences that most 
RNA family models are estimated from is a major problem. In the Rfam 9.1 
(December 2008) database of RNA alignments and covariance models, more than half 
of the 1371 family models are estimated from ten or fewer sequences [5, 6]. Most of 
the possible mutations, insertions, or deletions are never observed even though we 
have no particular reason to believe that they should be excluded from consideration. 
At very least pseudocounts need to be added to all possibilities such that the 
probability estimates do not outright exclude them. Pseudocounts are a form of prior 
information used in the estimation. 

Far more informative priors than simple pseudocounts are needed for effective 
estimation of family models formed from so few sequences. Generic mutation, 
insertion, and deletion probabilities are obtained via observed frequency from the 
entire database of all RNA families. The generic emission and transition probabilities 
are found separately for base-paired and non-base-paired positions and with 
dependence on whether adjacent positions are paired or not. It will be demonstrated 
that these classifications are not quite fine enough later in this paper. In order to 
automatically uncover groups of mutation, deletion, or insertion patterns that tend to 
be observed together, these generic priors are estimated as a Dirichlet mixture [7] in 
recent versions of the Infernal [8] suite of programs for covariance-model-based RNA 
family analysis and search. 

When combining the observed-frequency information from the multiple alignment 
of a specific family with the generic prior information, it is necessary to obtain a 
weighting based on our confidence in the family specific data versus our generic 
information. Having more sequences in the specific family increases our confidence 
in that data. However, simple counts of number of sequences are not very effective 
because our set of known sequences is rarely a random sample of actual sequences 
from the true complete family. We may have many sequences that are nearly identical 
and only a few with lots more diversity. This causes a simple count of number of 
sequences to overestimate the true information content. The usual solution to this 
problem is to employ entropy weighting based on the variability of the known family 
sequences [9]. 

There is a large literature on RNA secondary structure estimation based on primary 
sequence [10, 11]. Much of this literature uses the results of laboratory thermodynamic 
studies of RNA as its basis. These thermodynamic measurements are not used in 
covariance-model-based RNA family modeling. Instead, observed mutations, 
insertions, and deletions within the family or over the entire database (the priors) are 
used. However, it may be useful to study the regularities in RNA free energy 
measurements in the laboratory to guide choices in how covariance models are 
constructed. From the laboratory, we know that the identities of the nucleotides at the 
interface between the stem and the loop of a hairpin structure greatly affect 
thermodynamic stability of the hairpin structure. We also know that the length of the 
loop is a factor in stability. The mechanisms to capture these regularities are weak and 
nonexistent, respectively, in current covariance modeling practice. This paper will 
examine the stem/loop interface, but not loop length. 
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Some initial evidence that interface nucleotides and loop length might be important 
was found by Smith and Wiese [12]. This paper presents much more evidence for the 
stem/loop interface. It also looks at implementing a new type of node in the 
covariance model that can get around some of the problems encountered in tricking 
the existing Infernal program suite into handling the loop end nucleotides jointly. 

The next section will review covariance models and estimation of model 
parameters in more detail. Section 3 looks at the regularities in free energy change 
when forming RNA hairpins observed in the laboratory. Changes to covariance model 
structure and parameter estimation procedure that can capture the observed 
thermodynamic regularities is presented in Section 4. Results of computational 
experiments on data from the Rfam database are presented in Section 5, followed by 
conclusions. 

2   Covariance Model Structure and Parameter Estimation 

Covariance models are finite state machines composed of emitting and silent states 
and directed edges connecting some of the states to some of the others. There is a 
unique starting state (called the root start state) and one or more terminal states (called 
end states). Given any nucleotide sequence it is possible to find the most probable 
mapping of the sequence onto model state visits and the associated overall probability 
of this mapping. Given a family of sequences, it is possible to find a set of state 
emission and state transition probabilities such that the overall probability when 
mapping a family member to the model is high and of mapping a dissimilar sequence 
to the model is low. 

2.1   Model Structure  

The states of a covariance model and the connectivity of these states can be 
determined from a consensus secondary structure of the RNA family. RNA secondary 
structure is a listing of pairs of sequence positions that intramolecularly base pair. The 
state structure can be described at a high level through the use of node trees, where 
nodes of a given class have identical internal state structure. 

Figure 1 shows an example of a consensus secondary structure for an RNA family 
(right). The letters refer to the consensus nucleotides and the subscripts to the 
consensus sequence positions. The figure also shows the covariance model node tree 
for the same secondary structure. S, B, and E-type nodes contain no consensus 
emitting states. L and R-type nodes contain a single-emission consensus state and P-
type nodes contain a pair-emission consensus state. The model is entered at the root 
start state located in the S0 node and has two exit points at the end states contained in 
nodes E12 and E22. 

The node tree is simply a guide for constructing the underlying state model. The 
state model is the final model of interest. Figure 2 shows internal state structure of 
some of the nodes from the node tree in Figure 1. Nodes of the same type have the 
same internal structure, so constructing the state machine from the node tree is 
straightforward. There is a standard rule for how to connect edges from states in one  
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Fig. 1. An example consensus RNA secondary structure (right) and associated covariance 
model node tree (left) 

node to states in an adjacent node. Each node contains one consensus state and 
varying numbers of non-consensus states. P, L, R, IL, and IR states types are emitting 
and all others are silent. D states allow for deletions relative to the consensus and IL 
or IR states allow for insertions. 

2.2   Model Parameters 

Once we have state structure, it is necessary to estimate emission probabilities for 
emitting states and transition probabilities for each edge connecting states. These 
probabilities are converted to log-likelihood ratios so that the total (log) probability of 
a particular path can be computed as the sum of transition and emission probabilities 
along the path. Dynamic programming can then be used to find the most probable 
path for a given sequence. 

The parameters are estimated through a weighted combination of observed 
frequency of events in the family multiple alignment and the prior for the parameter. 
The priors in turn depend on the type of node holding the state and on adjacent node 
types. As an example, transition probabilities into and out of the D state in the R3 
node at the top of Figure 2 would depend in part on the count of the number of gap 
characters in the twenty-third consensus column of the family multiple alignment. 
The R state in the R3 node is the consensus state which emits a consensus U and the 
D state in the R3 node is used to bypass this emission when a sequence has a deletion 
at this position relative to the consensus. Even though U is the consensus nucleotide 
for position 23, there are actually four emission probabilities associated with the R 
state in node R3. The probability for U is simply the highest of the four. 
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Fig. 2. Internal state structure of portions of the example covariance node tree from Figure 1 

3   Thermodynamic Regularities 

The thermodynamic stability of RNA hairpins is a fairly well studied topic [13-18]. 
Using calorimetry observations of the folding of short synthetic strands of RNA, 
models of the free energy of larger hairpin structures can be inferred. These models 
are used extensively in algorithms to predict secondary structure of RNA from 
sequence. These algorithms are based on the idea that the final conformation of an 
RNA molecule will be close to that of the minimum free-energy conformation. 

Two of the major observations from the laboratory data is that hairpin stability 
depends on the number of nucleotides in the loop and on the identities of the four 
nucleotides at the stem-loop interface. The loop-length observation is relevant to 
covariance models and should be addressed, but the focus in this paper is on the stem-
loop interface observation. 

In Figure 3, the stem-loop interface is composed of the closing pair U15 and A20 
as well as the loop ends A16 and C19. Although the structure appears symmetric in 
the figure, the free energy of the structure shown for GGUAACCAUC is different 
than its mirror CUACCAAUGG. In other words, it maters which side of the  
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stem-loop interface is 5' and which is 3'. Covariance model P nodes can emit any of 
the sixteen possible ordered pairs of nucleotides.  In the middle of a stem it makes 
sense to allow all sixteen possibilities since a mutation from a Watson-Crick or 
wobble base pair (a canonical base pair) to a non-canonical pair can be held together 
by adjacent base pairs in the stem without necessarily destroying the stem. If the 
closing pair becomes non-canonical, then effectively the loop length increases by two 
and the next pair up the stem becomes the closing pair. So, there are really only six 
consensus ordered pairs to consider for the closing pair: AU, UA, CG, and GC 
(Watson-Crick) as well as the wobble pairs GU and UG. In the Rfam database, 
consensus wobble pairs are very infrequent at the closing pair position  (observed 
only about 4.1% of the time in version 8.1). 

In the work of Vecenie and Serra [13] a number of regularities are noted regarding 
the thermodynamic stability of hairpin structures when different nucleotides are 
present in the stem-loop interface. They note that if the closing pair is CG or GC and 
loop ends are GA or UU (but not AG), then the hairpin is much more stable. They 
also note that if the closing pair has a purine (A or G) on the 5' side, the GG loop ends 
are particularly stable. 

It is hypothesized here that some RNA families may not be able to function as well 
with less stability in one or more of their hairpins. If this is so, then it would be 
desirable to penalize database search scores when the database sequence implies a 
mutation away from one of the very stable consensus configurations noted above. 
Unfortunately, covariance model structure and parameter priors do not allow for these 
thermodynamic regularities to be expressed either directly or indirectly. 

 

Fig. 3. A portion of the RNA secondary structure and covariance node tree from Figure 1 
showing a single hairpin with the locations of the stem's closing pair and the loop ends labeled 

4   Changes to Model Structure and Estimation 

A major problem making expression of the thermodynamic regularities described in 
the previous section not possible is that the four nucleotides in the stem-loop interface 
are contained in three covariance model nodes with independent emission 
probabilities. Another problem is that the priors used for these emission probabilities 
are estimated as a mixture of database locations corresponding to stem-loop interfaces 
and to other structures. 
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To allow for expression of a regularity such as stable GG loop ends when the 5' 
side of a closing pair is A or G requires a new type of covariance model node. Such a 
node replaces a P node and two L nodes of a hairpin structure. In Figure 3, these are 
the P17, L18, and L21 nodes. Two hundred fifty six joint emission probabilities  
are needed for the consensus state of this node type. Since 160 of these combinations 
are not seen in practice (the combinations with non-canonical closing pairs), they can 
simply be assigned a very low probability, leaving only 104 emission probabilities 
that need to be estimated. Since wobble pairs are relatively rare, it may also be 
desirable to treat them as a class with a single emission probability (but a different 
value than for non-canonical pairs). This would leave 64 emission probabilities to be 
estimated for the Watson-Crick closing pairs. Clearly, heavy reliance on priors for 
these probabilities is needed since so few families have known sequences numbering 
in the hundreds and even fewer have enough variation in the observed stem-loop 
interface nucleotide combinations. 

Implementation of a new node type requires significant programming effort to 
rewrite program suites such as Infernal. A partial solution is to at least express the 
joint probability of the two loop end nucleotides by tricking the existing algorithms. If 
the two loop-end L nodes are replaced by a single P node modeling these loop ends, 
expression of the joint probabilities of emission is possible. In Figure 3, the L18 and 
L21 nodes would be removed and replaced by a single P18 node directly below the 
existing P17 closing-pair node. In practice this can be accomplished simply by 
marking the two loop ends as if they were consensus base pairs in the input multiple 
alignment file to the cmbuild program of the Infernal program suite. 

Using the P-node substitution trick does cause a couple of problems with priors. 
Firstly, The closing-pair P node will now use priors associated with a P node with P 
node child rather than the correct P node with L node child priors. This first problem 
can be solved by running the cmbuild program twice, once with and once without the 
loop ends marked as base paired. Then parameter estimates for the closing-pair P 
node in the second run are used in place of the estimates in the first run. The second 
problem is that the priors for the fake loop-end P node are completely wrong. The 
standard P node priors are generated from stem locations in the overall Rfam database 
with high probabilities for Watson-Crick base pairs, somewhat lower probabilities for 
wobble pairs and very low probabilities for non-canonical pairs. Instead, sets of priors 
for these loop-end P nodes are estimated on the side, one set for each possible 
consensus closing pair.  

The loop-end P-node trick allows for a one-way dependence of loop-end emission 
probabilities on consensus closing pairs. It would be possible to also regenerate 
sixteen sets of priors for closing-pair P nodes and use the one associated with a given 
family's consensus loop ends. This two-way dependence would still not be quite as 
good as full use of joint probabilities. 

5   Experimental Results 

This section looks at results of using a P-node to model loop ends with non-standard 
priors on the loop-end P node only (and not for the closing pair P node). 
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First, the entire Rfam 8.1 database was processed and all 26,644 hairpin structures 
in all the seed sequences extracted. Since some RNA families have no hairpins and 
others have multiple hairpins, this number is different than the total number of seed 
sequences in the database. Table 1 shows the raw counts of number of observed loop-
end pairs for each observed closing pair. Since wobble closing pairs are infrequent, 
they were not compiled separately, but are including the "All" column (such that the 
AU, UA, CG and GC columns do not add up to the All column). These raw counts are 
not that useful because the background frequencies of A, C, G and U are not each one 
quarter. To remedy this, Table 2 shows the same data as base-2 log-likelihood ratios. 
The log form is what is used by Infernal in order that the algorithm calculate additions 
instead of multiplications and it is visually useful since positive values are more likely 
than chance and negative less likely. 

Some of the regularities noted in section 3 are apparent in Table 2. GA and UU 
loop ends are overrepresented by a factor of four when the closing pair is GC and by a 
factor of two when the closing pair is CG (but not for AU or UA closing pairs). Some 
other combinations have deviations of up to a factor of eight (for example UG loop 
ends on a UA closing pair). 

The log-likelihood ratios of Table 2 were used as priors for loop-end P nodes on the 
fourteen shortest RNA families in the Rfam database which contained a hairpin 
without a pseudoknot. Pseudoknots are a situation where at least one pair of base pairs 
is such that neither base pair is completely between the other in sequence [19]. 
Covariance models use stochastic context-free grammars [20], which are incapable of 
describing a pseudoknot. Covariance models handle pseudoknots by treating some of 
the actually base-paired positions as if they were unpaired. Since what appears to be a 
hairpin in the node tree of pseudoknotted RNA families is actually something 
somewhat more complex, they will not be considered. The amount of computation 
time require to calculate E-values for covariance models is extremely high and goes up 
by more than the square of sequence length and short sequences are the most difficult 
to find in database search, so short sequences were chosen for this experiment. 

Table 3 shows the results of the computational experiment. The first two columns 
show the length of the consensus sequence and the number of known family 
sequences. Both the seed sequences used to construct the family models and those 
found through database search by the curators of Rfam are included in this number. E-
values are calculated by the Infernal program suite by reshuffling the known sequence 
many times (5000 times chosen for this study), scoring each reshuffled sequence 
against the family covariance model and then and fitting the resulting scores to a 
Gumble extreme value distribution [21]. The score of the unshuffled sequence is then 
used to find the probability of matching or exceeding the unshuffled score by pure 
chance. Lower E-values imply better specificity given that the threshold is set such 
that the sequence is just barely accepted as a true positive. The E-value ratios shown 
are the ratio of the E-value using the standard covariance model divided by the E-
value with the loop-end P node. Ratios greater than one mean that using the loop-end 
P node has more power than the standard model. A E-value ratio of two means that 
we expected twice as many false alarms from the standard model. 

On average, in only two cases (Rfam accession numbers RF00469 and RF00496) 
did modeling the loop ends jointly do significantly worse and in most cases it did 
quite a bit better. 
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Table 1. Counts of loop-end nucleotides in the full Rfam database (in 26,644 hairpins from all 
seed sequences from Rfam 8.1) 

Stem Closing Pair Loop 
End AU UA CG GC All 
AA   318   302 2173 1098 4054 
AC     94     25   293   147   628 
AG   113     32   694   114 1013 
AU   110     66   454   208   859 
CA   671 1269   865   163 3007 
CC   301     72   128   133   692 
CG     42   146 1099     86 1405 
CU   115   104   678   175 1133 
GA   175   182 1387 2270 4202 
GC     62     43   170     92   378 
GG     94   235   285   160   844 
GU     48     34   123   153   410 
UA   359   131   450   332 1318 
UC   174   257   238   324 1104 
UG     65     23 1158   219 1495 
UU   207   140 1204 2459 4102 
All 2948 3061 11399 8133 26644 

Table 2. Base-2 log-likelihood ratios using raw data from Table 1 (corrected for background 
frequencies of A, C, G, and U) 

Stem Closing Pair Loop 
End AU UA CG GC All 
AA   0.16   0.03   0.98   0.48   0.65 
AC  -0.93  -2.89  -1.24  -1.75  -1.36 
AG  -0.88  -2.76  -0.22  -2.33  -0.89 
AU  -1.15  -1.94  -1.06  -1.70  -1.36 
CA   1.91   2.77   0.32  -1.60   0.90 
CC   1.43  -0.69  -1.76  -1.22  -0.55 
CG  -1.64   0.11   1.12  -2.07   0.25 
CU  -0.41  -0.61   0.19  -1.27  -0.29 
GA  -0.25  -0.25   0.78    1.98   1.16 
GC  -1.07  -1.66  -1.57  -1.97  -1.64 
GG  -0.69   0.57  -1.04  -1.39  -0.70 
GU  -1.90  -2.45  -2.49  -1.69  -1.98 
UA   0.55  -0.96  -1.07  -1.02  -0.75 
UC   0.18   0.69  -1.32  -0.38  -0.33 
UG  -1.46  -3.01   0.75  -1.17  -0.11 
UU  -0.02  -0.64   0.57   2.09   1.11 
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Table 3. Ratios of E-values using stem closing pair specific priors to E-values using standard 
priors on the full set (seed plus those found by search) of sequences in 14 Rfam families 

    Family Properties                         E-value Ratios RF 
Acc. Length Number Mean Max Min 
00032    26 1046   1.64   2.20   1.02 
00037    28 318   1.91   2.25   1.58 
00453    33   30   2.67   3.60   1.81 
00196    35     8   1.21   1.83   0.75 
00180    36   30   1.82   3.01   1.08 
00469    36 344   0.24   0.34   0.16 
00385    41   41   1.66   2.42   1.09 
00496    42   13   0.86   0.97   0.75 
00164    42 302   1.32   1.91   0.87 
00207    44     6   1.41   2.20   0.86 
00617    45 426   1.47   2.43   1.16 
00197    45   25   0.99   1.13   0.87 
00500    45     5   1.58   2.63   0.66 
00522    46   63   1.63   2.91   0.94 
Mean     1.46   

6   Conclusions 

Laboratory studies indicate that there is a significant effect on RNA hairpin stability of 
the specific nucleotides at the interface between stem and loop. Covariance models as 
currently used for database non-coding RNA gene search can not capture the 
thermodynamic regularities know from these laboratory studies. Ideally, modification 
of the covariance-model-based search algorithms to jointly model the probabilities of 
the four nucleotides at the interface would solve this problem, but at the expense of 
significant programming effort. However, some of the benefits of joint modeling can 
be had by tricking the existing algorithms by using a P-type node for the loop ends and 
using a new set of priors for these nodes than depend on the consensus closing pair.  

Limited testing on the fourteen shortest Rfam families with a hairpin and without a 
pseudoknot show that specificity does seem to improve given fixed sensitivity when 
this P-node trick is employed. 

Additional testing is needed to be more conclusive. In order to make this feasible, a 
more automated way to generate parameter files for Infernal needs to be developed 
(currently, it involves manual cut and paste and running a side program). Also, access 
to a computer cluster is needed to calculate E-values for many more and much longer 
sequences. These tasks are currently being undertaken by the author. 
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Abstract. We present a structured output prediction approach for clas-

sifying potential anti-cancer drugs. Our QSAR model takes as input a

description of a molecule and predicts the activity against a set of can-

cer cell lines in one shot. Statistical dependencies between the cell lines

are encoded by a Markov network that has cell lines as nodes and edges

represent similarity according to an auxiliary dataset. Molecules are rep-

resented via kernels based on molecular graphs. Margin-based learning

is applied to separate correct multilabels from incorrect ones. The per-

formance of the multilabel classification method is shown in our experi-

ments with NCI-Cancer data containing the cancer inhibition potential

of drug-like molecules against 59 cancer cell lines. In the experiments,

our method outperforms the state-of-the-art SVM method.

1 Introduction

Machine learning has become increasingly important in drug discovery where
viable molecular structures are searched or designed for therapeutic efficacy.
In particular, Quantitative Structure-Activity Relationship (QSAR) models, re-
lating the molecular structures to bioactivity (therapeutical effect, side-effects,
toxicity, etc.) are routinely built using state-of-the-art machine learning meth-
ods. In particular, the costly pre-clinical in vitro and in vivo testing of drug
candidates can be focused to the most promising molecules, if accurate in silico
models are available [16].

Molecular classification—the task of predicing the presence or absense of the
bioactivity of interest—has been tackled with a variety of methods, including
inductive logic programming [9] and artificial neural networks [1]. During the last
decade kernel methods [11,16,4] have emerged as an computationally effective
way to handle the non-linear properties of chemicals. In numerous studies, SVM-
based methods have obtained promising results [3,16,20]. However, classification
methods focusing on a single target variable are probably not optimally suited
to drug screening applications where large number of target cell lines are to be
handled.

In this paper we propose, to our knowledge, the first multilabel learning ap-
proach for molecular classification. Our method belongs to the structured output

T.M.H. Dijkstra et al. (Eds.): PRIB 2010, LNBI 6282, pp. 38–49, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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prediction family [15,17,12,13], where graphical models and kernels have been
successfully married in recent years. In our approach, the drug targets (cancer
cell lines) are organized in a Markov network, drug molecules are represented by
kernels and discriminative max-margin training is used to learn the parameters.
Alternatively, our method can be interpreted as a form of multitask learning [5]
where the Markov network couples the tasks (cell lines) and joint features are
learned for pairs of similar tasks.

2 Methods

2.1 Structured Output Learning with MMCRF

The model used is this paper is an instantiation of the structured output predic-
tion framework MMCRF [13] for associative Markov networks and can also be
seen as a sibling method to HM3[12], which is designed for hierarchies. We give
a brief outline here, the interested reader may check the details from the above
references.

The MMCRF learning algorithm takes as input a matrix K = (k(xi, xj))
m
i,j=1

of kernel values k(xi, xj) = φ(xi)T φ(xj) between the training patterns, where
φ(x) denotes a feature description of an input pattern (in our case a poten-
tial drug molecule), and a label matrix Y = (yi)

m
i=1 containing the multilabels

yi = (y1, . . . , yk) of the training patterns. The components yj ∈ {−1, +1} of the
multilabel are called microlabels and in our case correspond to different cancer
cell lines. In addition, the algorithm assumes an associative network G = (V, E)
to be given, where node j ∈ V corresponds to the j’th component of the mul-
tilabel and the edges e = (j, j′) ∈ E correspond to a microlabel dependency
structure.

The model learned by MMCRF takes the form of a conditional random field
with exponential edge-potentials,

P (y|x) ∝
∏
e∈E

exp
(
wT

e ϕe(x,ye)
)

= exp
(
wT ϕ(x,y)

)
,

where ye = (yj , yj′) denotes the pair of microlabels of the edge e = (j, j′). A
joint feature map ϕe(x,y) = φ(x) ⊗ ψe(ye) for an edge is composed via tensor
product of input φ(x) and output feature map ψ(y), thus including all pairs
of input and output features. The output feature map is composed of indicator
functions ψu

e (y) = �ye = u� where u ranges over the four possible labelings of
an edge given binary node labels. The corresponding weights are denoted by we.
The benefit of the tensor product representation is that context (edge-labeling)
sensitive weights can be learned for input features and no prior alignment of
input and output features needs to be assumed.

The parameters are learned by maximizing the minimum loss-scaled margin
between the correct training examples (xi,yi) and incorrect pseudo-examples
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(xi,y),y 	= yi, while controlling the norm of the weight vector. The primal
soft-margin optimization problem takes the form

minimize
w,ξ≥0

1
2
||w||2 + C

m∑
i=1

ξi (1)

s.t. wT ϕ(xi,yi) − wT ϕ(xi,y) ≥ 
(yi,y) − ξi,

for all i and y,

where ξi denote the slacks allotted to each example. The effect of loss-scaling is
to push high-loss pseudo-examples further away from the correct example than
the low-loss pseudo-examples, which, intuitively, decreases the risk of incurring
high-loss. We use Hamming loss


Δ(y,u) =
∑

j

�yj 	= uj�

that is gradually increasing in the number of incorrect microlabels so that we
can make a difference between ’nearly correct’ and ’clearly incorrect’ multilabel
predictions.

The MMCRF algorithm [13] optimizes the model (1) in the so called marginal
dual form, thathas severalbenefits: theuseof kernels to representhigh-dimensional
inputs, and polynomial-size of the optimization problem with respect to the size of
the output structure. Efficient optimization is achieved via the conditional gradi-
ent algorithm [2] with feasible ascent directions found by loopy belief propagation
over the Markov network G.

2.2 Kernels for Drug-Like Molecules

A major challenge for any statistical learning model is to define a measure of sim-
ilarity. In chemical community, widely researched quantitative structure-activity
relationship (QSAR) theory asserts that compounds having similar physico-
chemical and geometric properties should have related bioactivity [7]. Various
descriptors have been used to represent molecules with fixed-length feature vec-
tors, such as atom counts, topological and shape indices, quantum-chemical and
geometric properties [19]. Kernels computed from the structured representation
of molecules extend the scope of the traditional approaches by allowing com-
plex derived features to be used (walks, subgraphs, properties) while avoiding
excessive computational cost [11].

In this paper, we experiment with a set of graph kernels designed for classi-
fication of drug-like molecules, including walk kernel [6], weighted decomposi-
tion kernel [10] and Tanimoto kernel [11]. All of them rely on representing the
molecule as a labeled graph with atoms as nodes and bonds between the atoms
as the edges.

Walk kernel. [8,6] computes the sum of matching walks (a sequence of labeled
nodes so that there exists an edge for each pair of adjacent nodes) in a pair
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of graphs. The contribution of each matching walk is downscaled exponentially
according to its length. We consider finite-length walk kernel where only walks
of length p are counted. The finite walk kernel can be efficiently computed using
dynamic programming.

Weighted decomposition kernel. [4] is an extension of the substructure kernel by
weighting identical parts in a pair of graphs based on contextual information
[4]. The kernel looks at matching subgraphs (contextor) in the neighborhood of
selector atoms.

Tanimoto kernel. [11] is a kernel computed from two molecule fingerprints by
checking the fraction of features that occur in both fingerprints of all features.
Hash fingerprints enumerates all linear fragments of a given length, while sub-
structure keys correspond to molecular substructures in a predefined set designed
by domain experts. Based on good performance in preliminary studies, in this
paper we concentrate on hash fingerprints.

2.3 Markov Network Generation for Cancer Cell Lines

In order to use MMCRF to classify drug molecules we need to build a Markov
network for the cell lines used as the output, with nodes corresponding to cell
lines and edges to potential statistical dependencies. To build the network we
used auxiliary data (e.g. mRNA and protein expression, mutational status, chro-
mosomal aberrations, DNA copy number variations, etc) available on the cancer
cell lines from NCI database1. The basic approach is to construct from this data
a correlation matrix between the pairs of cell lines and extract the Markov net-
work from the matrix by favoring high-valued pairs. The following methods of
network extraction were considered:

– Maximum weight spanning tree. Take the minimum number of edges that
make a connected network whilst maximizing the edge weights.

– Correlation thresholding. Take all edges that exceed fixed threshold. This
approach typically generates a general non-tree graph.

3 Experiments

3.1 NCI-Cancer Dataset

In this paper we use the NCI-Cancer dataset obtained through PubChem Bioas-
say2 [18] data repository. The dataset initiated by National Cancer Institute
and National Institutes of Health (NCI/NIH) contains bioactivity information
of large number of molecules against several human cancer cell lines in 9 differ-
ent tissue types, including leukemia, melanoma and cancers of the lung, colon,
brain, ovary, breast, prostate, and kidney. For each molecule tested against a
certain cell line, the dataset provide a bioactivity outcome that we use as the
classes (active, inactive).
1 http://discover.nci.nih.gov/cellminer/home.do
2 http://pubchem.ncbi.nlm.nih.gov

http://discover.nci.nih.gov/cellminer/home.do
http://pubchem.ncbi.nlm.nih.gov
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Fig. 1. Skewness of the multilabel distribution

3.2 Data Preprocessing

Currently, there are 43884 molecules in the PubChem Bioassay database together
with anti-cancer activities in 73 cell lines. 59 cell lines have screen experimental
results for most molecules and 4554 molecules have no missing data in these cell
lines, therefore these cell lines and molecules are selected and employed in our
experiments.

However, molecular activity data are highly biased over the cell lines. Fig-
ure 1 shows the molecular activity distribution over all 59 cell lines. Most of
the molecules are inactive in all cell lines, while a relatively large proportion of
molecules are active against almost all cell lines, which can be taken as toxics.
These molecules are less likely to be potential drug candidates than the ones in
the middle part of the histogram.

Figure 2 shows a heatmap of normalized Tanimoto kernel, where molecules
have been sorted by the number of cell lines they are active in. The heatmap
shows that the molecules in the two extremes of the multilabel distribution form
groups of high similarity whereas the molecules in the middle are much more
dissimilar both to each other and to the extreme groups. The result seems to
indicate that the majority of molecules in the dataset are either very specific or
very general in the targets they are active against. Other kernels mentioned in
section 2.2 produce a similar heatmap indicating that the phenomenon is not
kernel-specific.

Because of the above-mentioned skewness, we prepared different versions of
the dataset:
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Fig. 2. Heatmap of the kernel space for the molecules sorted by the multilabel distri-

bution

Full. This dataset contains all 4554 molecules in the NCI-Cancer dataset that
have their activity class (active vs. incative) recorded against all 59 cancer
cell lines.

No-Zero-Active. From this dataset, we removed all molecules that are not
active towards any of the cell lines (corresponding to the leftmost peak in
Figure 1). The remaining 2305 molecules are all active against at least one
cell line.

Middle-Active. Here, we followed the preprocessing suggested in [14], and se-
lected molecules that are active in more than 10 cell lines and inactive in
more than 10 cell lines. As a result, 544 molecules remained and were em-
ployed in our experiments.

3.3 Experiment Setup

We conducted experiments to compare the effect of various kernels, as well as
the performances of support vector machine (SVM) and MMCRF. We used the
SVM implementation of the LibSVM software package written in C++3. We
tested SVM with different margin C parameters, relative hard margin (C = 100)
emerging as the value used in subsequent experiments. The same value was used
for MMCRF classifier as well.

Because of the skewness of the multilabel distribution (c.f. 1) we used the
following stratified 5-fold cross-validation scheme in all experiments reported:

3 http://www.csie.ntu.edu.tw/~cjlin/libsvm/

http://www.csie.ntu.edu.tw/~cjlin/libsvm/


44 H. Su, M. Heinonen, and J. Rousu

we group the molecules in equivalence classes based on the number of cell lines
they are active against. Then each group is randomly split among the five folds.
This ensures that also the smaller groups have representation in all folds.

3.4 Kernel Setup

For the three kernel methods, walk kernel (WK) was constructed using param-
eters λ = 0.1 and p = 6 as recommended in [6]. The Weighted decomposition
kernel (WDK) used context radius 3 as in [4], and a single attribute (atom type)
was sufficient to give the best performance. We also used hash fragments as
molecular fingerprints generated by OpenBabel4 (using default value n = 6 for
linear structure length), which is a chemical toolbox available in public domain.
All kernels were normalized.

4 Results

4.1 Effect of Markov Network Generation Methods

We report overall prediction accuracies on the Middle-Active dataset from vari-
ous Markov networks shown in Figure 3. X-axis corresponds to different microar-
ray experiments. The accuracies from different Markov networks differ slightly.
The best accuracy was achieved by using maximum weighted spanning tree ap-
proach on RNA radiation arrays dataset, shown in Figure 4, which describes
profiles of radiation response in cell lines. This meets our expectations since
cancer cells mostly mutated from normal cells and normal cells with radiation
treatments can possibly explain the mutations.

4.2 Effect of molecule kernels

In Table 1, we report overall accuracies and microlabel F1 scores using SVM with
different kernels on the Middle-Active dataset. The results were from a five-fold
cross validation procedure. Here, the three kernel methods achieve almost the
same accuracies in SVM classifier, while Tanimoto kernel is slightly better than
others in microlabel F1 score. Thus we deemed Tanimoto kernel to be the best
kernel in this experiment and chose it for the subsequent experiments.

4.3 Effect of Dataset Versions

Figure 5 gives overall accuracy and microlabel F1 score of MMCRF versus SVM
for each cell line on the three versions of the data. Points above the diagonal
line correspond to improvements in accuracies or F1 scores by MMCRF classi-
fier. MMCRF improves the F1 score over SVM on each version of the data in
statistically significant manner, as judged by the two-tailed sign test. Accuracy
is improved in two versions, No-Zero-Actives and the Middle-Active molecules,

4 http://openbabel.org

http://openbabel.org
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Fig. 3. Effects of Markov network construction methods and type of auxiliary data

(from left to right: reverse-phase lysate arrays, cDNA arrays, Affymetric HU6800 ar-

rays, miRNA arrays, RNA radiation arrays, transporter arrays, and Affymetrix U133

arrays)

Table 1. Accuracies and microlabel F1 scores of MMCRF and SVM with different

kernels

Classifier Kernel Accuracy F1 score

SVM

WK 64.6% 49.0%

WDK 63.9% 51.6%

Tanimoto 64.1% 52.7%

MMCRF Tanimoto 67.6% 56.2%

again in statistically significant manner. Among the Middle-Active dataset, the
difference in accuracy (bottom, left of Figure 5) is sometimes drastic, around 10
percentage units in favor of MMCRF for a significant fraction of the cell lines.

4.4 Agreement of MMCRF and SVM Predictions

For a closer look at the predictions of MMCRF and SVM, Table 2 depicts the
agreement of the two models among positive and negative classes. Both models
were trained on the Full dataset. Overall, the two models agree on the label
most of the time (close to 90% of positive predictions and close to 95% of the
negative predictions). MMCRF is markedly more accurate than SVM on the
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Fig. 4. Markov network constructed from maximum weighted spanning tree method

on RNA radiation array data. The labels correspond to different cancer cell lines.

Table 2. Agreement of MMCRF and SVM on the positive (left) and negative (right)

classes

Positive class Negative class
SVM Correct SVM Incorrect SVM Correct SVM Incorrect

MMCRF Correct 48.6 ± 4.1% 7.1 ± 2.6% 88.0 ± 4.9% 2.2 ± 1.2%

MMCRF Incorrect 3.4 ± 1.3% 40.9 ± 3.4% 3.8 ± 1.7% 6.1 ± 3.0%

positive class while SVM is slightly more accurate among the negative class.
Qualitatively similar results are obtained when the zero-active molecules are
removed from the data (data not shown).

4.5 Computation Time

Besides predictive accuracy, training time of classifiers is important when a large
number of drug targets need to be processed. The potential benefit of multilabel
classification is the fact that only single model needs to be trained instead of a
bag of binary classifiers.

We compared the running time needed to construct MMCRF classifier (im-
plemented in native MATLAB) against libSVM classifier (C++). We conducted
the experiment on a 2.0GHz computer with 8GB memory. Figure 6 shows that
MMCRF scales better when training set increases.
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Fig. 5. Accuracy (left) and F1 score (right) of MMCRF vs. SVM on Full data (top),

No-Zero-Active (middle) and Middle-Active molecules (bottom)
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5 Conclusions

We presented a multilabel classification approach to drug activity classification
using the Max-Margin Conditional Random Field algorithm. In the experiments
against a large set of cancer lines the method significantly outperformed SVM
in training time and accuracy. In particular, drastic improvements could be seen
in the setup where molecules with extreme activity (active against no or a very
small fraction, or a very large fraction of the cell lines) were excluded from the
data. The remaining middle ground of selectively active molecules is in our view
more important from drug screening applications point of view, than the two
extremes.

The MMCRF software and preprocessed versions of the data are available
from http://cs.helsinki.fi/group/sysfys/software.
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Abstract. Short, linear motifs (SLiMs) play a critical role in many biological 
processes. The SLiMSearch (Short, Linear Motif Search) webserver is a 
flexible tool that enables researchers to identify novel occurrences of pre-
defined SLiMs in sets of proteins. Numerous masking options give the user 
great control over the contextual information to be included in the analyses, 
including evolutionary filtering and protein structural disorder. User-friendly 
output and visualizations of motif context allow the user to quickly gain insight 
into the validity of a putatively functional motif occurrence. Users can search 
motifs against the human proteome, or submit their own datasets of UniProt 
proteins, in which case motif support within the dataset is statistically assessed 
for over- and under-representation, accounting for evolutionary relationships 
between input proteins. SLiMSearch is freely available as open source Python 
modules and all webserver results are available for download. The SLiMSearch 
server is available at: http://bioware.ucd.ie/slimsearch.html. 

Keywords: short linear motif, motif discovery, minimotif, elm. 

1   Introduction 

The purpose of the SLiMSearch (Short, Linear Motif Search) webserver is to allow 
researchers to identify novel occurrences of pre-defined Short Linear Motifs (SLiMs) 
in a set of sequences. SLiMs, also referred to as linear motifs or minimotifs, are 
functional microdomains that play a central role in many diverse biological pathways 
[1]. SLiM-mediated biological processes include post-translational modification 
(including cleavage), subcellular localization, and ligand binding [2]. SLiMs are 
typically less than ten amino acids long and have less than five defined positions, 
many of which will be “degenerate” and incorporate some degree of flexibility in 
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terms of the amino acid at that position. Their length and degeneracy gives them an 
evolutionary plasticity which is unavailable to domains meaning that they will often 
evolve convergently, adding new functionality to proteins [1]. SLiMs hold great 
promise as future therapeutic targets, which makes their discovery of great interest 
[3-4]. 

Once a SLiM has been defined, finding matches in a given set of protein sequences 
is a fairly trivial task. Finding biological motifs is a standard pattern recognition task 
in bioinformatics. Several web-based methods to discover novel instances of known 
SLiMs are available, including ELM [2], MnM [5], SIRW [6] ScanProsite [7] and 
QuasiMotifFinder [8], which generally utilize databases of known motif patterns to 
search query protein sequences supplied by the user. Whilst finding matches is trivial, 
however, interpreting their biological significance is far from easy. The small, 
degenerate nature of SLiMs makes stochastic occurrences of motifs common; 
distinguishing real occurrences from the background of random motif hits remains the 
greatest challenge in a priori motif discovery. One approach is to simply filter out 
motifs that are likely to occur numerous times by chance – ScanProsite [7], for 
example, has an option to “Exclude motifs with a high probability of occurrence”, 
while QuasiMotifFinder [8] uses the background occurrence of motifs in PfamA 
families [9] to assess the significance of hits. These strategies work well for longer, 
family descriptor motifs (such as are found in the Prosite database [10] used by both 
ScanProsite and QuasiMotifFinder) but are not so useful for SLiMs because of their 
tendency to occur by chance. Instead, additional contextual information such as 
sequence conservation [5, 8, 11-12], structural context [5, 13] or even biological 
keywords [6] can be used to assess the likelihood of true functional significance for 
putatively functional sites.  

Most motif search tools rely on pre-existing motif libraries, such as ELM [2], 
MnM [5] or Prosite [10]. Those that permit users to define their own motifs, such as 
ScanProsite [7], are generally lacking the contextual information required to aid 
functional inference. Recent developments in de novo motif discovery has given rise 
to a number of tools that are capable of predicting entirely novel SLiMs from sets of 
protein sequences (e.g. PRATT [14], MEME [15], Dilimot [16], SLiMDisc [17] and 
SLiMFinder [18]). Although SLiMFinder [18] estimates the statistical significance of 
returned motif predictions, correcting for biases introduced by evolutionary 
relationships within the data, assessing the biological significance of predicted SLiMs 
remains challenging. On approach is to compare candidate SLiMs to existing motif 
libraries to identify similarities to previously known motifs [19].When a genuinely 
novel motif is predicted, however, knowledge of existing motifs is of limited use. 
Instead, it is useful to be able to establish the background distribution of occurrences 
of the novel motif, utilizing contextual information to help screen out the inevitable 
spurious chance matches.  

We recently made our powerful de novo SLiM discovery tool, SLiMFinder [18], 
available as a webserver [20]. To aid interpretation of SLiMFinder results, we have 
made a new tool available, SLiMSearch, which allows users to search protein datasets 
with user-defined motifs, including motif prediction output from SLiMFinder. 
SLiMSearch utilizes the same sequence context assessment as SLiMFinder, enabling 
results to be masked or ranked based on the important biological indicators of 
sequence conservation and structural disorder [12, 21]. SLiMSearch also features the 
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same SLiMChance algorithm for assessing statistical over-representation of SLiM 
occurrences, correcting for biases introduced by evolutionary relationships within the 
data. SLiMSearch is open source and freely available for download. For ease of use, 
the main SLiMSearch features have been made available as a webserver, which 
enables the user to search proteins for occurrences of user-specified motifs. Motifs 
can be searched against small custom datasets of proteins from UniProt [22]. 
Alternatively, searches can be performed against the whole human proteome, or 
defined subsets of it. Underlying methods, results formats and visualizations are fully 
compatible with our existing SLiM analysis webservers, SLiMDisc [23], 
CompariMotif [19] and SLiMFinder [20], providing a suite of integrated tools for 
analyzing these biologically important sequence features.  

2   The SLiMSearch Algorithm 

SLiMSearch performs its motif finding in three phases: (1) Input sequences are read 
and masked; (2) Motifs are searched against masked sequences using standard regular 
expression searches; (3) Motif statistics are calculated for identified motif 
occurrences. If desired, input sequences, input motifs and motif occurrences can be 
filtered based on attributes such as length, number of positions, motif conservation 
etc. SLiMs have a tendency to occur in disordered regions of proteins [24] and IUPred 
[21] protein disorder predictions can be used for input masking or ranking/filtering 
results as described further below. Conservation scoring uses the Relative Local 
Conservation (RLC) score introduced by Davey et al. [12] as implemented in 
SLiMFinder [20]. Conservation scoring can use pre-generated alignments or construct 
alignments of predicted orthology using GOPHER [23], which estimates evolutionary 
relationships using BLAST [25] to identify the closest-related orthologue in each 
species in the chosen search database. Each putative orthologue retained is: (a) more 
closely related to the query than any other protein from the same species; (b) related 
to the query through a predicted speciation event, not a duplication event.  

2.1   SLiMChance Calculations of Significance 

SLiMSearch utilizes a variation of the SLiMChance algorithm from SLiMFinder [18], 
which is based on the binomial statistics introduced by ASSET [26] and calculates the 
a priori probability of observing each motif in each sequence using the (masked) 
amino acid frequencies of input sequences. Observed support is then compared to 
expectation at two levels: (1) the total number of occurrences in all sequences; (2) the 
number of individual sequences returning the motif. This enables different questions 
to be asked of different data types. SLiMChance has an important extension over the 
statistics used by ASSET, and homologous proteins are optionally weighted (as in 
SLiMDisc [17] and SLiMFinder [18]) to account for the dependencies introduced into 
the probabilistic framework by homologous proteins; in this case, SLiMSearch will 
also assess these weighted support values. Whereas SLiMFinder is explicitly using 
over-representation to identify motifs, it is also of potential interest to see if a given 
motif has been avoided in a given dataset and is under-represented versus random 
expectation. The SLiMSearch implementation of SLiMChance therefore features an 
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additional extension where the cumulative binomial probability is used to estimate the 
probability of seeing by chance the observed support or less in addition to the 
observed support or more. 

3   The SLiMSearch Webserver 

The SLiMSearch server is available at: http://bioware.ucd.ie/slimsearch.html. The 
purpose of the webserver is to allow researchers to identify novel occurrences of pre-
defined Short Linear Motifs (SLiMs) in a set of protein sequences. Sequences are first 
masked according to user specifications before motif occurrences are identified using 
standard regular expression searches. The SLiMChance algorithm then estimates 
statistical significance of over- or under-representation of each motif searched. In 
addition to summary results for each motif, interactive output permits easy 
exploration and visualization of individual motif occurrences. The context of each 
SLiM occurrence is then calculated in terms of protein disorder and evolutionary 
conservation to help the user gain insight into the validity of a putatively functional 
motif occurrence. The webserver is powered by the same code as the standalone 
version of SLiMSearch, which can be downloaded from the server. The main features 
of the webserver are described in more detail in the following sections. 

3.1   Input 

As input, SLiMSearch needs a set of protein sequences and a set of motif definitions, 
which are selected by the user in turn (Fig. 1). Whereas the standalone SLiMSearch 
program allows searching of any protein sequences, the webserver restricts the user to 
using UniProt sequences [22]. This is because the server relies on pre-computed 
alignments to keep run times down. Using UniProt downloads also allows all the 
masking options to be utilized (e.g. sequence features). The user is presented with a 
choice of two main input types (Fig. 1): (1) a chosen set of up to 100 UniProt entries 
can be downloaded for analysis; (2) the user can select from a series of predefined 
protein datasets. Currently, the human proteome from SwissProt [22] is available, 
along with three subsets defined by their subcellular localization annotation: 
cytoplasmic proteins, nuclear proteins and transmembrane proteins. Future server 
releases will expand this to other species. When searching these large proteome 
datasets, the evolutionary filtering [18] is switched off. To search different datasets, 
including datasets over 100 proteins with evolutionary filtering, users are encouraged 
to download and install a local version of SLiMSearch. 

Once a dataset has been selected, the user must input a set of motifs to search  
(Fig. 1). The SLiMSearch server takes a list of motifs, typed or pasted directly into 
the text box. Motifs themselves are constructed from a number of regular expression 
elements, which are mostly standard but with a couple of additional elements to 
represent “3of5” motifs [27] (Table 1). SLiMSearch accepts the same input formats as 
CompariMotif [19], including a plain list of regular expressions and output from 
SLiMDisc [23] or SLiMFinder [20]. Because the focus of SLiMSearch is short linear 
motifs, the maximum number of consecutive wildcards allowed by the server is nine. 
Motifs must have at least two defined (i.e. non-wildcard) positions. 
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Fig. 1. SLiMSearch input options pages. Users must first either select a predefined human 
protein dataset, or enter a list of up to 100 UniProt IDs for a custom dataset. Clicking “submit” 
will then progress to Step 2, in which users enter a list of motifs for searching and set any 
masking options.  

Table 1. Regular expression elements recognized by SLiMSearch 

Element Description 
A Single fixed amino acid. 

[AB] Ambiguity, A or B. Any number of options may be given, e.g. 
[ABC] = A or B or C. 

<R:m:n> At least m of a stretch of n residues must match R, where R is one of 
the above regular expression elements (single or ambiguity).  

<R:m:n:B> Exactly m of a stretch of n residues must match R and the rest must 
match B, where R and B are each one of the above regular expression 
elements (single or ambiguity). E.g. <F:1:2:[DE]> will match 
[DE]F, or F[DE]. 

[^A] Not A. 

X or . Wildcard positions (any amino acid).  

.{m,n} At least m and up to n wildcards.  

R{n} n repetitions of R, where R is any of the above regular expression 
elements.  

^ Beginning of sequence 

$ End of sequence 
(R|S) Match R or S, which are both themselves recognizable regular 

expressions. These motifs are not currently supported by the 
SLiMChance statistics and, as such, any motifs in this format with be 
first split into variants, e.g. (R|S)PP would be split into RPP and 
SPP and each searched separately. 
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3.2   Masking Options 

The standalone SLiMSearch program features all the input masking options of 
SLiMFinder [18]. For simplicity, these have been pared down for the webserver to 
three sets of masking options (Fig. 1): (1) restricting searches to cytoplasmic tails and 
loops of transmembrane proteins; (2) masking out structurally ordered regions (as 
predicted by IUPred [21] with a conservative threshold of 0.2) and/or relatively 
under-conserved residues [12]; (3) masking out domains, transmembrane and/or 
extracellular regions as annotated by UniProt [22]. Any combination of these options 
is permitted; users could, for example, restrict searches to cytoplasmic tails and loops 
of transmembrane proteins and mask out regions of predicted order, under-conserved 
residues and regions annotated as domains in UniProt. 

3.3   Submitting  Jobs 

Once options have been chosen, clicking “Submit” will enter the job in the run queue. 
Run times will vary according to input data size and complexity, masking options and 
the current load of the server; the server has a maximum run time of 4 hours, after 
which jobs will be terminated. (For larger searches, users are encouraged to download 
and install a local version of SLiMSearch.) Each job is allocated a unique, randomly 
determined identifier. Users can either wait for their jobs to run, or bookmark the 
page and return to it later. Previously run job IDs can also be entered into a box on the 
SLiMSearch homepage to retrieve the run status and/or results. 

3.4   Output 

Once a job has run, the SLiMSearch results pages will open (Fig. 2). The main results 
page consists of a table of motif occurrences for each motif along with statistics for 
each occurrence including conservation (RLC) and disorder (IUPred). All fields can 
be sorted by clicking column headings and direct links to UniProt entries for each 
sequence are provided. The second primary results page consists of a summary table, 
which provides summary statistics for each motif. These include numbers of 
occurrences and SLiMChance assessments of over- or under-representation versus 
random expectation. Explanations of each field can be found in the SLiMSearch 
manual, which is available from the website. All the raw results files can also be 
downloaded for further analysis. When a user-defined dataset has been searched, 
these raw data files include the UniProt download. A key feature of SLiMSearch 
when analyzing user-defined datasets is the adjustment of the SLiMChance over- and 
under-representation statistics for evolutionary relatedness; for example, the 
probability of observing the Dynein Light Chain ligand “[KR].TQT” [28] in its 
annotated ELM proteins [2] by chance increases by eight orders of magnitude from 
5.2e-18 to 4.2e-10 when the effective dataset size is reduced from 7 to 4 due to 
evolutionary relationships (Fig. 2). Whilst, in this example, the motif is still highly 
significant (the search dataset was defined based on the presence of the motif), in 
other cases this could be the difference between non-significance and apparent 
significance. Due to the size of the datasets, SLiMChance correction for evolutionary 
relationships is not available for human proteome searches. 
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Fig. 2. SLiMSearch results pages. The main results page consists of a table of motif 
occurrences for each motif (top panel) along with statistics for each occurrence including 
conservation (RLC) and disorder (IUPred). All fields can be sorted by clicking column 
headings. Clicking sequence names will open the corresponding UniProt entry, while clicking 
“View” generates a visual representation of the motif. Clicking on different motifs in the 
smaller table on the left switches the motif being viewed. A summary table can also be viewed 
(bottom panel), which provides summary statistics for each motif. These statistics include 
SLiMChance assessments of over- or under-representation versus random expectation. 
Explanations of each field can be found in the SLiMSearch manual, which is available from the 
website. All the raw results files can also be accessed via the “Raw Data” link. 

Individual motif occurrences can also be visualized for contextual information 
(Fig. 3). The multiple sequence alignment used for evolutionary conservation 
calculations is shown, with the relative conservation and IUPred disorder scores 
plotted below. Regions predicted to be ordered (below the disorder threshold of 0.2) 
are shaded, indicating areas that were (or would be) masked with disorder masking. In 
addition to these data, additional annotation from key SLiM and Protein databases is 
added. Annotated and unannotated Regular Expression matches to SLiMs from the 
Eukaryotic Linear Motif (ELM) database [2] are displayed above the alignment; 
sequence features from UniProt [22], including annotated domains and known 
mutations, are displayed between the alignment and RLC/Disorder plots. Users can 
hover the mouse over these features for additional information. 

3.5   Getting Help 

The SLiMSearch webserver is supported by an extensive help section, including a 
quickstart guide and walkthrough with screenshots. Example input files are provided. 
Fully interactive example output (corresponding to running the example Dynein Light 
Chain ligand input with default parameters) is clearly linked from the help pages. 
Additional details of the algorithms and options can be found in the SLiMSearch 
manual, which is also clearly linked from the help pages. 
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Fig. 3. Visualization of LIG_HOMEOBOX in HXA5 containing a multiple alignment of the 
orthologs of HXA5, drawn using Clustal coloring scheme, surrounded by relevant annotation. 
The bottom section contains a graph of relative conservation (in red) and IUPred disorder (in 
blue), with regions below the disorder threshold of 0.2 shaded (in brown). Above this section 
UniProt features are plotted, for example, in the case of HXA5 the right most region contains a 
DNA-binding Homeobox domain. Above the alignment, the motif row specifies regions 
containing a known functional motif (in white) and the RE row species regions matching the 
regular expression of a known motif (in green). 

3.6   Server Limits 

The server is currently limited to jobs with a run time of fewer than 4 hours. Motifs 
must have at least two non-wildcard positions defined and individual motif occurrence 
data is restricted to motifs with no more than 2000 occurrences in the search dataset. 
Custom UniProt datasets can have no more than 100 proteins. For larger analyses, 
users must install a local copy of the SLiMSearch software. 

4   Example Analysis: HOX Ligand Motif 

Homeobox (HOX) genes are a family of transcription factors controlling organization 
of segmental identity during embryo development [29] and recognized by a 60 residue 
DNA binding domain known as a Homeodomain [30].  HOX proteins recruit another 
Homeobox-containing transcription factor, PBX, via a conserved [FY][DEP]WM 
motif (“LIG_HOMEOBOX” [2]), binding a hydrophobic pocket created upon 
association of PBX to DNA [31]. Alone, the Homeodomain has weak specificity and 
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affinity binding to the short DNA sequence TNAT, however following the formation 
of a heterodimer complex with TGAT binding PBX, bi-partite recognition increases 
specificity and allows HOX to specifically target developmental genes for expression.  

A survey of the human proteome for [FY][DEP]WM PBX-binding motifs was 
completed to illustrate the effect of masking of globular regions and under conserved 
residues on the ability of a motif discovery tool to return functional motifs. Without 
any masking, SLiMSearch returned 53 motifs in 53 proteins, including the 16 
annotated functional instances from the ELM database [2] (Supplementary Table 1). 
Of the 53 human occurrences, however, 30 were no longer returned following masking 
(IUPred masking cut-off 0.2, relative conservation filtering, domain masking and 
removal of extracellular and transmembrane regions). Of these 30, only 3 were known 
to be functional. The 23 remaining instances are all members of the Homeobox family; 
13 of these contain a known annotated PBX-binding motif; given the homology of the 
remaining non-ELM containing proteins to the proteins containing function motifs, it is 
likely that all 23 instances are functional. The HXA5 occurrence, for example, shows a 
clear conservation signal characteristic of a functional motif despite not being 
annotated in ELM (Fig. 3). 

5   Future Work 

In addition to evolutionary conservation and structural disorder, successful 
identification of novel functional motifs in proteins can benefit from keyword or GO 
term enrichment [6, 32]. We are currently working on the incorporation of GO term 
enrichment into SLiMSearch analyses for future releases of the webserver. The current 
server is also limited to the human proteome only. In future we will expand this to 
include other organisms. Initially, these will be taken from the EnsEMBL database of 
eukaryotic genomes [33] and then expanded to other taxonomic groups [34]. We 
welcome suggestions from users, however, and will work with specific interest groups 
to add proteomes from appropriate species to the webserver where possible.  

6   Conclusion 

Discovering and annotating novel occurrences of Short Linear Motifs is an important 
ongoing task in biology, which often involves motif searches combined with additional 
evolutionary analyses (e.g. [32, 35]). The SLiMSearch webserver provides the 
biological community with an important advance in this arena, allowing evolutionary 
and structural context to be automatically incorporated into motif searches and 
visualized in user-friendly output. The flexibility of input, allowing known or novel 
motifs and user-defined protein datasets, combined with the statistical framework of 
SLiMChance for assessing motif abundance, makes SLiMSearch a powerful tool that 
should ease future discoveries of functional SLiM occurrences. In addition to the 
webserver implementation, SLiMSearch is available as standalone open source Python 
code under a GNU license, making it accessible to analyses of experimental biologists 
and bioinformatics specialists alike.  
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The SLiMSearch server is available at: http://bioware.ucd.ie/slimsearch.html. 
Supplementary Table 1 can be viewed at :http://bioware.ucd.ie/~compass/Server_ 
pages/help/slimsearch/slimsearch_s1.pdf 
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Abstract. Spatial structures of transmembrane proteins are difficult

to obtain either experimentally or by computational methods. Recog-

nition of helix-helix contacts conformations, which provide structural

skeleton of many transmembrane proteins, is essential in the modeling.

Majority of helix-helix interactions in transmembrane proteins can be

accurately clustered into a few classes on the basis of their 3D shape.

We propose a Stochastic Context Free Grammars framework, combined

with evolutionary algorithm, to represent sequence level features of these

classes. The descriptors were tested using independent test sets and typi-

cally achieved the areas under ROC curves 0.60-0.70; some reached 0.77.

Keywords: stochastic context-free grammar, evolutionary algorithm,

helix-helix interaction, transmembrane protein.

1 Introduction

It has been estimated that around 30% of proteins in human body are transmem-
brane (TM) proteins [1]. Moreover, since they are more accessible to drugs than
intracellular proteins, they are prime targets for drug design. Unfortunately, the
specific environment of cell membranes, their large size and dynamic behavior
(e.g. ion channels) make them very difficult objects for current experimental tech-
niques in structural biology: fewer than 2% of currently known protein structures
are from TM proteins [2]. Thus, the lack of experimental structures cannot be
compensated by template-based modeling, i.e. homology and threading, which
would require availability of a large dataset of structures. The alternative is use of
ab initio methods, which build protein 3D models directly from their sequences.
However, these approaches have only been successful for small proteins up to
200 amino acids [3], mainly because computational power limits the size of the
conformational phase space that can be searched. Moreover, the energy func-
tion is not accurate enough to guarantee the minimum at the native state [4].
Therefore, for larger proteins, such as protein channels, which typically contain
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1000’s of amino acids, limitations of ab initio methods can only be overcome by
integrating additional knowledge in the modeling process.

Contact maps have been shown to be promising constraints. It was estimated
that as few as one contact in every eight residues would be sufficient to find
the correct fold of a single domain protein [5]. Moreover, even the prediction
of a few contacts is useful to constrain conformational searches in ab initio
prediction [6]. Recent study also suggests that some contacts are structurally
more significant than others [7]. Consequently, the prediction of intramolecular
contacts has become an active field of research. According to [4] homologous
template approaches achieve the highest accuracy (up to 50%). However, they
are not suitable for TM proteins, since very few templates are available. As
correlated mutations methods have the lowest accuracy (around 20%), machine
learning methods seem to be the most appropriate.

Over 80% of known TM structures are classified as alpha-helical [2]. In these
proteins, molecular contacts between helices are crucial as they provide a struc-
tural skeleton. A stable interaction between two helices requires that several
residues from each helix are involved in the helix-helix contact. We call this
structure a helix-helix (H-H) interface and define it more precisely later in the
paper. A recent study by Walters and DeGrado [8] on helix packing motifs has
revealed that 90% of known configurations of H-H interactions in TM proteins
can be accurately represented using only a set of 8 3D templates (Fig. 2,3 in
[8]). In their research, helix pairs were clustered according to the 3D similarity
(RMSD ≤ 1.5 A) of their fragments involved in the H-H contact. Their study
also highlighted position-specific sequence propensities of amino-acids and the
occurrence of the well known [GAS]-X-X-X-[GAS] motif [9].

The problem of H-H interaction prediction was addressed in [3] by creating
sequence profiles from a library of helix pairs whose spatial configurations were
known. In their method a helix pair in the query was compared to helix pairs
in the library by calculating profile-profile scores between the pairs. While the
overall accuracy of helix packing prediction was rather low, it was sufficient
to constrain ab initio prediction of TM protein structures. Significantly, this
approach does not model interactions between contacting residues from the two
helices since this would require a more complex model than sequence profiles.
Waldispuehl and Steyaert [10] proposed a multi-tape S-attributed grammar to
represent helix bundles in TM proteins. In their model, a single pair of helices is
described by a set of grammar rules of a non-probabilistic context-free language.
At each stage of processing of a sequence, a value or attribute that reflects folding
cost is calculated. The authors report that the predictive power gained from the
ability to represent long range dependencies between contact residues allowed
their method to outperform the best TM helix prediction software.

There are two main approaches for learning grammar rules: Maximum A
Posteriori (MAP) Expectation-Maximization algorithms (EM) and evolutionary
methods (Genetic Algorithms (GA) [11,12,13] or Genetic Programming (GP)
[14]). Both EM and GP approaches managed to, respectively, learn probabilities
of Stochastic Context-Free Grammars (SCFG) for RNA structure prediction
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[15,16,17] and derive non-probabilistic CFGs for non-biological problems [18].
Successful applications of evolutionary algorithms to SCFG [19,20,21] include
our earlier research on SCFGs for protein binding sites [22]. Since, unlike EM
techniques, GA-based grammar inference allows introducing pressure towards
more compact grammars (see Methods) and is less dependent on initial estimates
of rule parameters [20], we choose this approach for learning grammar rules.

In this work we exploit the expressive power of Stochastic Context-Free Gram-
mars to represent the subtle and complex sequence motifs underlying H-H inter-
actions in TM proteins. The aim is to facilitate sequence based classification of
helix pairs regarding their three-dimensional configuration. As a result, a class
template can be assigned to a pair of helices with high accuracy. This would
be extremely valuable to constrain ab initio protein structure predictions or for
threading refinement.

2 Materials and Methods

2.1 Datasets

The first dataset was created on the basis of Walters and DeGrado (WDG)
dataset [8]. It includes fragments of helix sequences that are in contact. We
consider only the 4 most populous contact types (classes 1-4). Unlike the original
set where lengths of fragments varied from 10 to 14, we kept only the 10 residues
which provided the closest match with a class template. The second dataset is
based on the non-redundant set of alpha-helical chains from PDBTM database
[2] as of 30th November 2009. Then TM alpha helices with at least one contact
residue according to Promotif3 [23] were extracted. RMSD to the representatives
of the 4 WDG classes were calculated. A helix pair was assigned to a certain class
if its RMSD was lower than the highest RMSD in the class of the original WDG
set, i.e. 0.66, 0.93, 0.76 and 1.11A for classes 1 to 4 respectively. As a result,
the PDBTM set comprises 641 helix pairs with a population of 174, 107, 64 and
69 assigned to classes 1 to 4, respectively. For training, each class used the 20
fragments which were the closest to their representative (PDBTM20). Finally,
homologous sequences (40%) were removed using PAM250 matrix [24] from our
combined training and test sets so that both sets were mutually independent.
As result, the processed WDG test sets (WDGNR) contained 92, 49, 37 and 27
helix pair fragments for classes 1 to 4 respectively.

2.2 Principles and Formal Definitions

Amino-acid interactions between helices are subtle and complex in comparison to
intra-helical interactions. Moreover, they display either parallel or anti-parallel
topologies. Methods typically used for the purpose of protein pattern detection,
Profile HMMs [25], cannot express these dependencies. Therefore, to classify the
contact type class, we use a SCFG, which, not only, is capable of representing
anti-parallel dependencies, but also can be induced automatically from a set
of unrelated protein sequences which share common features [22]. The formal
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definition of a context-free grammar G is the following [26]: G =< V, T, P, S >,
where V is a finite set of non-terminal (NT) symbols, T is a finite set of terminal
symbols, P is a finite set of production rules and S is a special start symbol
(S ∈ V ). The sets V and T are mutually exclusive. Each rule from the set P has
the form: A → X , where A ∈ V and X ∈ (V ∪ T )∗. For a SCFG, probabilities
are attributed to each rule. Usually, probabilities of all productions for one Left-
Hand Side (LHS) symbol sum to one; the SCFG is then called proper.

Helix interface is defined as a set of residues which are in contact with residues
from the other helix, i.e. distance between residues in contact cannot be greater
than the sum of van der Waals radii of their atoms enlarged by 0.6A [27]. The
residues of the inner or contact face of a helix are separated by either 1 or 2
residues of the outer face so that an average helix periodicity of 3.6 residue is
preserved. Two helices are separated by a coil. In the anti-parallel configuration
these can be described schematically by context-free grammar rules, such as [10]:

Interface -> InsideRes1 Outerface InsideRes2 | Turn
Outerface -> OutsideRes1 Interface OutsideRes2 | Turn

More specifically, we modified a non-probabilistic CFG proposed in [10] to obtain
a grammar that imposes helix periodicity (3-4 residues) and is manageable within
our probabilistic scheme (i.e. not extending ca. 200 rules):

Start -> [ Whatever OuterfaceP Whatever }
| [ Whatever InterfaceP Whatever }
OuterfaceP -> TwoRes InterfaceP TwoRes | OneRes InterfaceL TwoRes
| TwoRes InterfaceR OneRes | OneRes InterfaceB OneRes | Turn
OuterfaceL -> TwoRes InterfaceP TwoRes
| TwoRes InterfaceR OneRes | Turn
OuterfaceR -> TwoRes InterfaceP TwoRes
| OneRes InterfaceL TwoRes | Turn
OuterfaceB -> TwoRes InterfaceP TwoRes | Coil
InterfaceP -> TwoRes OuterfaceP TwoRes | OneRes OuterfaceL TwoRes
| TwoRes OuterfaceR OneRes | OneRes OuterfaceB OneRes | Turn
InterfaceL -> TwoRes OuterfaceP TwoRes
| TwoRes OuterfaceR OneRes | Turn
InterfaceR -> TwoRes OuterfaceP TwoRes
| OneRes OuterfaceL TwoRes | Turn
InterfaceB -> TwoRes OuterfaceP TwoRes | Turn
Turn -> Whatever ] { Whatever
Whatever -> X Whatever | empty
TwoRes -> OneRes OneRes

where the symbols ’[’, ’]’, ’{’ and ’}’ refer to the beginning and end of he-
lix 1 and helix 2 respectively. Four Outer-face and Interface NT symbols
(marked with suffixed P, L, R, B) ensure that each complete helix turn is 3
or 4 amino-acids long, e.g. if Outer-faceP is one-residue long, it can only
be followed by InterfaceB which is always two-residue long. Production rule
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Turn → Whatever]{Whatever imposes helix boundaries on parser by using ]
and { terminal symbols. Moreover, the Whatever non-terminal allows to deal
with parts of the helix that are not involved in the contact and thus do not share
contact pattern.

2.3 Representation of Amino-Acid Properties

OneRes symbol refers to one amino-acid in a sequence. However, instead of using
the amino-acid identity, which would make the grammar induction intractable,
information about the level of a physio-chemical property (described later in
this section) of a residue is carried. More specifically, OneRes can be one of
three NT symbols that represent low, medium and high level of the property
of interest, e.g. van der Waals volume: OneRes ≡ Low|Medium|High. The ra-
tionale behind this representation is to integrate quantitative information about
amino-acid properties into our stochastic framework. An important advantage
of this method is that it reduces the number of possible combinations of the
Right-Hand Side (RHS) symbols in production rules. Therefore, a number of
rules, which is maintainable in the learning process, is kept without losing gen-
erality of the grammar in the beginning of induction. For each given property,
our method relies on defining all the terminal rules in the form:

Low -> amino-acid identity 1..20
Medium -> amino-acid identity 1..20
High -> amino-acid identity 1..20

and associating them with proper probabilities which are calculated using the
known quantitative values associated to the amino acid identities. Since all ter-
minal rules are fixed with given probabilities, unlike probabilities of all other
rules, they do not need to be induced during the learning process. Moreover, to
avoid trivial solutions, non-terminals which are Left-Hand Side (LHS) symbols
in the terminal rules are prohibited from being LHS non-terminals of the other
rules. We use the 5 categories of amino-acids from AAindex [28] as suggested in
[22]: beta propensity, alpha and turn propensity, composition, physio-chemical
properties and hydrophobicity.

2.4 Parsing

We use an implementation of the stochastic Earley parser [29]. In our framework
Baum-Welch style Earley algorithm, where a probability for a certain node is
calculated as a sum of probabilities of all sub trees, is used for training during
grammar induction. This helps avoiding rapid convergence to trivial local minima
in the absence of a negative training set. On the other hand, Viterbi style Earley
algorithm is used for scanning, where a probability for any node in the parse
tree is calculated as a maximal probability from all sub trees. According to
our previous experiments, the Viterbi algorithm produces better discrimination
between positive and negative samples and therefore it is more appropriate for
scanning. Moreover [15,22] suggest that for a correctly induced grammar, the
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most likely parse tree could reflect structural features of a molecule. The output
of the stochastic parser is the log probability of the couple of residues involved
in a long range helix contact of a certain type, so it is a similarity measure,
which estimates how the sequence of interest matches the rules associated to the
interaction class.

2.5 Learning Method for Stochastic Context-Free Grammars

In order to generate interface specific descriptors using the rules described in
the previous section, a training set composed of positive examples of sequence
fragments containing the interface is used to infer rule weights. The general prin-
ciple behind our framework is to start the learning process with the complete set
of rules expressing prior knowledge of the intra-helix interaction. Then, during
training, rule probabilities are inferred to express contact type specific dependen-
cies. Although this approach leads to quite large sets of rules even for moderate
alphabets, it avoids bias which would be introduced by additional constraints.
In this work, induction is performed by a genetic algorithm.

Similarly to [22] in this work a single individual in GA represents a whole
grammar. The genotype is coded with real numbers (< 0, 1 >) linked to rule
probabilities. The original population of size 200 is initialized randomly and
then iteratively subjected to evaluation, reproduction, genomic operators and
finally succession. The objective function of the GA is defined as an arithmetic
average of logs of probabilities returned by the parsing algorithm for all positive
training samples. The reproduction step of the GA uses the tournament method
with 2 competitors [30], which ensures that the selective pressure is held at the
same level during the whole induction process. In addition, the diversity pressure
is kept by using a sharing function that decreases fitness score of individuals on
the basis of their similarity to other individuals in the population. The distance
between individuals takes into account that probability of a rule depends not
only on its own gene but also on all genes referring to rules with the same LHS
non-terminal [22]. In each GA epoch (generation of individuals), only the poorer
50% of the population is substituted by new individuals to ensure the stability
of the GA algorithm. Offspring are produced by averaging genetic information
of two individuals with some random distortion in order to enhance exploratory
capabilities of the algorithm. Subsequently, a classical one point mutation op-
erator is used to mutate randomly chosen genes. The probabilities of crossover
and mutation are 0.9 and 0.01 respectively. The algorithm stops when there is
no further significant improvement in the best scores (ratio 1.001 over 100 it-
erations). The implementation of our grammar induction algorithm is based on
M. Wall’s GAlib library which provides a set of C++ genetic algorithm objects
[22].

A new genotype to phenotype function f2 = phene(gene(W → XY Z)) was
designed to facilitate rapid convergence and enhance exploring capabilities of the
genetic algorithm. Let A → BCD is a context-free rule with LHS non-terminal
A, gene(A → BCD) is a real number from range 0 to 1 linked with A → BCD
rule and geneavg(A) is a mean value of all genes associated with rules that
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start with LHS non-terminal A. Then tmpval(A → BCD) is calculated in the
following way:

if gene(A->BCD)>2*geneavg(A)
then tmpval(A->BCD)=gene(A->BCD)
else tmpval(A->BCD)=gene(A->BCD)^10/(2*geneavg(A))^9.

Finally, normalization is carried out to obtain proper probabilities for each rule:

phene(A->BCD) = tmpval(A->BCD)/sum(XYZ){tmpval(A->XYZ)}.

Thus, phene(A → BCD) is the proper probability of the rule A → BCD. The
function assures that for a certain range of gene values, even small variations
lead to significant changes in the phenotype. It reduces the number of active
rules, since many of them have a near zero probability from the beginning of the
induction. Thus, it speeds up the processing of each individual. The definition
of the f2 function is consistent with a natural trend during grammar evolution
where probabilities of unnecessary rules are reduced. This is an inherent property
of proper stochastic grammars: distributions of probabilities with a small number
of rules, which express well the pattern of interest, give better scores than even
distributions of probabilities for all possible rules. After grammar induction, the
final set of rules can be pruned to omit those which have a limited impact on
the overall score of a scanned sequence.

Although genetic algorithms converge whatever their initial population [30],
they may not find the global optimal solution. Therefore, for each grammar gen-
eration, we produced several grammars and selected the best one. Time needed
for producing a grammar could take up to ca. 20 hours using Intel Xeon 2.4GHz
quad-core processor systems at Wroclaw Centre for Networking and Supercom-
puting. The scanning took approximately one minute for parsing the whole test
set by one grammar.

2.6 Protocol for Evaluation of Transmembrane H-H Interaction
Prediction

For each of the four H-H interaction classes, 3 grammars were generated using
PDBTM20 training set for each of the 6 selected amino-acid properties. The
sequences of helix pair fragments from the WDGNR dataset were parsed for
the four classes using all grammars. As a result, logs of probability that a se-
quence could have been generated by a given grammar were assigned to each
H-H contact. The scores for positive and negative validation sets were analyzed
by means of Receiver Operator Characteristics (ROC) methodology. The Area
Under ROC Curve (AUC ROC) was used for general assessment of classifier
quality and selection of the best grammar. In addition, Specificity and Sensi-
tivity measures were calculated. Although for many applications it is desirable
to maintain high Specificity or Sensitivity, we assume that the highest value of
their product marks the optimal threshold for the parse score. For this threshold,
Accuracy is provided.
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3 Results and Discussion

3.1 Performance of Classifiers on Independent Test Set

The performance of grammar descriptors was assessed in a series of class-by-class
classifications using WDGNR independent test set. On the basis of AUC ROC
results for each class against other 3 classes, the properties, which lead to best
scoring grammars, were selected. These were accessibility for class 1, van der
Waals (vdW) volume for classes 2 and 3 and beta/turn propensity for class 4
(Tab. 1). The overall quality of classifiers measured by the Area under ROC curve

Table 1. H-H contact fragments classification performance using independent test set

Trained for Using property Tested against AUCROC Sensitivity Specificity Accuracy

c1 accessibility c2 0.61 0.65 0.55 0.62

c3 0.63 0.51 0.73 0.57

c4 0.55 0.62 0.56 0.61

c2+c3+c4 0.60 0.67 0.52 0.59

c2 van der Waals c1 0.70 0.78 0.63 0.68

volume c3 0.59 0.73 0.51 0.64

c4 0.77 0.58 0.74 0.76

c1+c3+c4 0.68 0.78 0.61 0.65

c3 van der Waals c1 0.71 0.62 0.78 0.74

volume c2 0.59 0.49 0.76 0.64

c4 0.73 0.54 0.89 0.69

c1+c2+c4 0.68 0.54 0.79 0.75

c4 beta-sheet c1 0.56 0.67 0.48 0.52

propensity c2 0.52 0.56 0.51 0.53

c3 0.73 0.63 0.81 0.73

c1+c2+c3 0.59 0.67 0.50 0.52

Table 2. Properties used by best class-by-class classifiers. Class-by-class classification

of helix-helix pair contact fragments performance measured by Area and ROC curve

using independent test set.

c1 c2 c3 c4

c1 accessibility 0.61 accessibility 0.63 frequency 0.57

c2 VdW volume 0.70 frequency 0.64 vdW volume 0.77

c3 vdW volume 0.71 vdW volume 0.59 vdW volume 0.73

c4 beta prop. 0.56 accessibility 0.59 beta prop. 0.73

varied from 0.59 for c4 to 0.68 for c2 and c3. The optimal thresholds for scores
yielded in different balances between Sensitivity and Specificity. More precise
evaluation of the classifiers is possible by analysis of their ROC curves (Fig. 1).
There is a shift towards Sensitivity for c2 and a shift towards Specificity c3 vdW
volume grammars. Typically, the relatively worst performance was obtained in
classification of c1 vs. c4 or c2 vs. c3 classes. This is, however, consistent with
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Fig. 1. ROC curves for H-H contact fragment classifiers: c1 accessibility-based (A), c2

vdW volume-based (B), c3 vdW volume-based (C) and c4 beta propensity-based (D)

the fact that these pairs of classes are similar in terms of RMSD. They differ in
relative direction of helices (anti-parallel for c1 and c2, parallel for c3 and c4).

Representatives of 5 categories of amino-acid properties were utilized for gram-
mar training resulting in varying robustness for different class-by-class compar-
isons. The properties that were used in best scoring grammars are presented in
Table 2. In general, area under ROC curve values of the best grammars, for each
class-by-class classification, were in the range from 0.56 to 0.77. Accessibility
and vdW volume were most useful for distinguishing between classes unrelated
in terms of their 3D shape. Frequency and beta-sheet propensity were the prop-
erties that allow for classification between anti-parallel and parallel versions of
classes that share similar spatial configurations.

3.2 Analysis of Classifiers Features

Our analysis details the features of the SCFG classifiers, which contribute to
the overall performance of the method. Our findings suggest that the difference
in sequence composition, in terms of the property underlying the grammar, is
the main factor. However, in a few cases descriptors that performed better than
expected, according to sequence composition comparison, were obtained. Such
examples include classifications between: c1 and c2 using grammar based on
accessibility, c3 and c1+c4 using grammar based on van der Waals volume and c4
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Fig. 2. Parse trees that would give maximum scores for (A) c1 accessibility grammar,

(B) c4 accessibility grammar and (C) c3 vdW volume grammar. H, M, L are property

level NTs, which refer to high, medium, low level of a given property. X is any amino-

acid (probability of 1/20 to each amino-acid type). S is a start symbol. Subsets of

NTs T,U,V,W and O,P,Q,R are designated to model Inter- and Outer-face of the helix

pair (order of subsets is arbitrary). The sans-serif font for property level NTs for (B)

indicates a modified method of assignment of probabilities to the rules started with

those symbols (in text).

and c1 using grammar based on accessibility. The last was obtained in a scheme
that included modified training and test sets. Moreover, property levels were
related to the average property level in a training set, instead of the average over
20 amino-acids as utilized in the basic scheme. In Fig. 2, example of parse trees
that would give maximum scores for these grammars are shown. Although they
would not necessarily result in maximal parse scores for individual sequences,
their structure is very likely to be found in real parses. It would be difficult at this
stage of study to induce relations between parse tree structures and biological
features of helix pairs, especially for classes 3 and 4, which are parallel. However,
the analysis of the parse trees suggests that grammar classifiers can benefit from
representation of dependencies between helices. For example, in (C) the most
probable rules typically require that amino-acids from two helices have similar
size at each stage of derivation. These results confirm the value of a strategy
which uses amino-acid properties instead of amino-acid identities for modeling
non-homologous helix pair sequences. However, the exact assignment of amino-
acid to property levels remains an issue. We noticed that non-terminals related
to property levels underrepresented in H-H bundles were rarely used in induced
grammars, which hampered the capability of representing class defining patterns.

4 Conclusions

Our SCFG framework produced sequence-based descriptors, which represent
classes of transmembrane helix-helix interaction configurations. The grammar
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descriptors were tested using independent test sets. Amino-acid properties most
relevant to each class-by-class classification were selected. Areas under ROC
curves obtained for best classifiers were typically between 0.60 to 0.70 and in
some cases higher. This shows that amino-acid sequence based descriptors can
be used for prediction of H-H interaction structural class, for a pair of H-H
sequences. Thus, they can be used to constrain the search space of an ab ini-
tio prediction method for transmembrane proteins. Another strategy could be
use of predicted conformations of H-H interactions to deprive sets of structures
modeled in the process of ab initio prediction of low quality items.

At this stage of research, the predictive power of the classifiers is mainly
grounded in differences in amino-acid composition of H-H pairs in terms of the
amino-acid properties. However, some grammar descriptors perform above ex-
pected level, based on sequence composition. This suggests that capability of
CFG to represent higher level (anti-parallel) dependencies between interacting
helices can contribute to the classification. Currently, we investigate the influence
of several factors, including choice of the class representatives and the training
sets, definition of the amino-acid property levels and design of the initial gram-
mar structure. We also research the hypothesis that there are subclasses within
WDG classes of H-H sequences more prone to structural description than others.

The other factor, important for the procedure of training, is the selection
of the training set. According to recent publications [3,8], the optimal length of
a helix fragment is from 10 to 14 residues. However the position of cutting of
fragments could potentially have an impact on the quality of prediction. Finally,
the clustering of H-H interfaces is still an open problem. The numbers of PDBTM
sequences assigned to each WDG class representative were linearly correlated to
the cut-off levels. This suggests, that the level of RMSD around 1.50 A prohibits
the classes from overlapping but only conveys a limited biological meaning.
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ence and Higher Education of Poland (N N519 401537), British Council Young
Scientists Programme (WAR/324/108) and MLODA KADRA Programme.
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Abstract. Recent studies show that copy number polymorphisms (CNPs), 
defined as genome segments that are polymorphic with regard to genomic copy 
number and segregate at greater than 1% frequency in the populations, are 
associated with various diseases. Since rare copy number variations (CNVs) 
and CNPs bear different characteristics, the problem of discovering CNPs 
presents opportunities beyond what is available to algorithms that are designed 
to identify rare CNVs. We present a method for identifying and genotyping 
common CNPs. The proposed method, POLYGON, produces copy number 
genotypes of the samples at each CNP and fine-tunes its boundaries by framing 
CNP identification and genotyping as an optimization problem with an 
explicitly formulated objective function. We apply POLYGON to data from 
hundreds of samples and demonstrate that it significantly improves the 
performance of existing single-sample CNV identification methods. We also 
demonstrate its superior performance as compared to two other CNP 
identification/genotyping methods.  

Keywords: CNV, CNP, optimization. 

1   Introduction 

Genetic differences that can be identified with single nucleotide polymorphism (SNP) 
microarrays include SNPs [1] and copy number variants (CNVs) [2]. CNVs are 
defined as chromosomal segments of at least 1000 bases (1 kb) in length that vary in 
number of copies from human to human. To date, several methods have been 
proposed for inferring CNVs from SNP array data [3-6]. In a recent study [7], we 
have formulated CNV identification as an optimization problem with an explicitly 
designed objective function that is characterized by several adjustable parameters. 
Our method, ÇOKGEN, efficiently identifies CNVs using a variant of the well-known 
simulated annealing heuristic.  

All of these approaches are specifically designed for identifying rare or de novo 
CNVs by individually searching a sample’s genome for regions in which evidence of 
copy number deviation exists. On the other hand, recent genome-wide association 
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studies (GWAS) have underscored the importance of identifying common CNPs, 
associating them with several complex disease phenotypes [8-11]. Although these 
results highlight the need for dedicated methods for common CNP identification, 
most of the methods for CNV identification have not yet separated the ideas of 
identification and genotyping of common CNPs from discovery of rare CNVs. 

In this paper, we present a method for identifying common copy number 
polymorphisms. The proposed method, POLYGON, takes as input the copy number 
variants identified by a single-sample CNV identification algorithm (e.g., ÇOKGEN 
[7], PennCNV [6], Birdseye [4]) and implements a computational framework to (i) 
identify CNVs in different samples that might correspond to the same variant in the 
population (candidate CNPs), (ii) adjust the boundaries of these candidate CNPs by 
drawing strength from raw copy number data from multiple samples, and (iii) 
determine copy number genotypes in the study. The key ingredient of this 
computational framework is an explicitly formulated objective function that takes into 
account several criteria, which are carefully designed to quantify the desirability of a 
CNP genotype with respect to various biological insights and experimental 
considerations. Namely, these criteria include minimizing variability in raw copy 
numbers of markers that are assigned to the same copy number class across samples, 
and maximizing raw copy number differences between samples that are assigned 
different copy numbers. We then develop algorithms that find copy number genotypes 
that optimize this function for fixed boundaries, and use this algorithm in a 
hierarchical manner to precisely adjust the boundaries of each CNP. Our performance 
analysis shows that POLYGON dramatically improves the performance of single 
sample methods in terms of Mendelian concordance and provides a moderate 
improvement in terms of sensitivity. Furthermore, we demonstrate its superior 
performance when compared to two other recurrent CNP detection algorithms 
presented in [12]. 

In the next section, we describe the general algorithmic framework for 
POLYGON, formulate CNP identification and genotyping as an optimization problem 
and present algorithms to solve this problem. Subsequently, in Section 3, we provide 
comprehensive experimental results on the performance of POLYGON in inferring 
CNPs from CNVs identified by three state-of-the-art CNV identification algorithms; 
ÇOKGEN, PennCNV, and Birdseye. We also compare the performance of our 
method to two other multi sample methods, COMPOSITE and COVER [12]. Finally, 
in Section 4, we discuss these results. 

2   Methods 

POLYGON first uses an existing algorithm to identify CNVs in each sample. The 
output of this step generates a list of CNVs for each sample, which may correspond to 
CNPs, rare/de novo CNVs, or false positives. Copy number genotypes for these CNVs 
are not required by POLYGON. Subsequently, POLYGON reconciles these CNVs in 
two phases:  

(i) Clustering of identified CNVs to obtain an initial set of candidate CNPs (clusters 
of CNVs that potentially correspond to the same event). 
(ii) Fine tuning of the boundaries of candidate CNPs and precise estimation of number 
of copies in each sample. 
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In the remainder of this section, we explain the algorithmic details of these two 
phases. 

2.1   Problem Definition 

Consider a study in which a set N of samples are screened via SNP microarray 
technology to obtain raw copy number estimates for a set M of markers on a single 
chromosome (we formulate the problem in the context of a single chromosome since 
each chromosome can be processed separately).  The HapMap [1] dataset contains 
270 samples and a total of approximately 1.8 million markers (for Affymetrix 6.0 
SNP array) over 23 chromosomes. The objective of the CNP identification and 
genotyping problem is to assign a copy number to all markers in all samples such that 
copy number assignment is smooth across markers and consistent across samples. 
Formally, we are seeking a mapping S: N x M → C, where C = {0, 1, 2, 3, 4} denotes 
the set of possible copy numbers and 0, 1, 2, 3, and 4, respectively denote 
homozygous deletion, hemizygous deletion, normal copy number, hemizygous 
duplication, and homozygous duplication (some samples may contain more than four 
copies, but all such cases are encapsulated into copy number class 4 to have a 
compact set of copy number classes). To find the mapping, POLYGON uses two data 
types:  

(i) The set V = {v1, v2, ... vK} of CNV calls provided by a single-sample algorithm. 
Each CNV v ∈ V is a pair (sv, ev) where sv and ev denote the start and end markers of 
the region v, and Mv={i: sv ≤ i ≤ ev} defines the set of markers flanked by the pair. The 
length of CNV v is defined as lv = |Mv| = ev−sv+1. 
(ii) For each sample marker (n, m) ∈ N x M, the raw copy number estimate Rn,m. 
These estimates are also provided by the single-sample algorithms which are utilized 
for CNV identification.  

POLYGON implements a two-phase algorithm to call CNPs from these raw copy 
numbers and initial set of CNVs. The aim of the first phase is to obtain a set, W ={w1, 
w2, .., wt}, of candidate CNPs by clustering CNVs identified on different samples 
according to their chromosomal coordinates. Each candidate w ∈ W is defined by the 
pair (sw, ew) where sw and ew represent the start and end markers of the region. Similar 
to Mv, Mw={i: sv ≤ i ≤ ev} defines the set of markers in CNP w. Based on the definition 
of w, we reduce the CNP genotyping problem to finding a set of functions Sw: N → C 
for all w ∈ W where Sw determines the genotype of each sample at CNP w. Then, for 
each (n, m) ∈ N x M, S(n, m) is defined as Sw(n) if  m ∈ Mw and 2 otherwise for all w 
∈ W. 

Thus, in the second phase, we utilize an optimization based framework to find the 
optimal Sw for each w ∈ W (hence we obtain the optimal genotyping of all CNPs 
which implies optimal S), while fine-tuning its boundaries. 

2.2   Identification of Candidate CNPs 

In the first phase, POLYGON clusters individual CNVs based on the start and end 
markers to obtain the candidate CNPs that represent “similar” CNVs on different 
samples. To assess the similarity between two CNVs, we use the minimum reciprocal 
overlap (MRO) measure. For two CNVs v1 and v2, let 

21
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Fig. 1. Algorithmic workflow of POLYGON. (a) The raw copy estimates as provided by the 
single-sample CNV detection algorithms. (b) Our agglomerative CNV clustering algorithm 
takes as input the CNVs identified by the single-sample CNV detection algorithms, to obtain a 
set of candidate CNPs. Here, the algorithm is illustrated on a toy example set of CNVs, V = {v1, 
v2, v3, v4, v5, v6, v7, v8, v9}, obtaining the set of candidate CNPs W={w1, w2}. (c) For each w ∈ 
W, to obtain the optimal copy number genotyping in each sample for given candidate 
boundaries of w, the samples are sorted with respect to average copy number within these 
boundaries. Subsequently, high gradient points in this ordering are identified to segregate 
samples into copy number classes. The sorted mean raw copy numbers and the associated 
genotypes are for a real w identified by POLYGON in the HapMap dataset, and are not related 
to the toy example of (b). The samples genotyped with copy number classes 0, 1 and 2 are 
shown with colors yellow, orange and red, respectively. (d) The heat map displays the matrix 
colored according to the values of the objective function f(Mw

(a,b), Sw
(a,b)) at the optimal 

genotype solution for each candidate boundary (a,b)  as computed by the procedure in (c). Note 
that the coordinates on the horizontal and vertical axis correspond to the start and end 
coordinates of candidate boundaries for w, and that for demonstration purposes they have been 
re-centered so that the initial boundaries are at (0,0). Once this heatmap is obtained, the optimal 
boundaries of the CNP are set to (a, b) that correspond to the minimum value in this matrix and 
the copy number genotypes are given by the optimal assignment for those boundaries (as 
computed in (c)). 
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size of the overlap between v1 and v2. Then the minimum reciprocal overlap of v1 and 
v2 is defined as 
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Using this similarity measure, POLYGON agglomeratively clusters CNVs using a 
conservative complete-linkage based criterion to measure the similarity between 
groups of CNVs. We use  Π = {ρ1,  ρ2, ..., ρt} to denote a set of CNV clusters where 
each ρi ∈ Π represents a set of CNVs. At the beginning of clustering, each CNV 
constitutes a cluster by itself, i.e., Π(0) = {{vi}: vi ∈ V}. At each iteration, two 
candidate CNV clusters with maximum similarity are merged, where the similarity 
between CNV clusters ρi  and ρj is defined as 
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This process continues until the similarity between any two clusters goes below a 
predefined threshold. The set obtained through the clustering process Π = {ρ1, ρ2, ..., 
ρt} is then used to obtain the candidate CNP set W = {w1, w2, .., wt}, where each 
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= . In this study, we have chosen the 

overlap threshold as 0.5, which guarantees that all the CNVs that correspond to a 
single candidate CNP have at least 50% mutual overlap in terms of markers that they 
span. Note that we do not take into consideration the type of the CNV (e.g., deletion 
vs. insertion) while clustering CNVs. Therefore, it is possible that a loss and a gain 
can be represented by the same candidate CNP as long as they share at least 50% of 
their markers. The motivation behind this approach is that both gain and loss events 
were reported for the same region in different samples in previous research [13].  In 
Figure 1(b), this process is illustrated with a toy example.  

The next phase of POLYGON processes each candidate CNP individually and 
determines the CNP genotype of each sample, while fine tuning its boundaries. 

2.3   Identifying CNP Genotypes and Fine-Tuning of CNP Boundaries 

Once the set of candidate CNPs are obtained, for each CNP region w, we select a 
window of markers to be searched exhaustively to fine-tune the boundaries of w.  The 
initial boundaries of the window containing w are extended to allow consideration of 
the markers bordering initially identified w for enlarging, shrinking or shifting its 
markers. We define the search window for w ∈ W as the set of markers Ωw = {i: 
sw− ⎡ ⎤2wl  ≤ i ≤ ew+ ⎡ ⎤2wl }. 

In order to assess the quality of the boundaries of a CNP and the genotype calls in 
each sample, we formulate an objective function that brings together multiple 
quantitative criteria that gauge the suitability of CNP genotype calls based on 
observed array intensities of all the samples. This objective function takes into 
account the smoothness of raw copy number estimates over contiguous markers that 
are declared to have identical copy numbers, as well as consistency of genotype calls 
of the same CNP across samples.  

We define objective function f (Mw, Sw) as a combination of the following objective 
criteria: 
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• Variation in raw copy numbers within each copy number class should be 
minimized. Ideally, the raw copy number estimates (i.e., Rn,m) for markers that are 
assigned identical copy numbers should be similar. For a given CNP w and copy 
number assignment Sw, let the set of samples assigned to class c ∈ C be 

})(:N{)( cnSnc w =∈=Ψ . The mean raw copy number for class c can be computed as 

follows: 
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The mean raw copy number values for aberrant copy number classes are simply 
calculated by averaging the raw copy estimates in region Mw across all samples 
genotyped with the specified copy number class. However, for the “normal” copy 
number class, this computation is slightly more complicated since the markers in all 
samples that are outside the boundaries of w also contribute to the mean of the 
“normal” copy number class. Then, the total intra-class variability induced by Sw is 
given by 

.)2()2()( ),(
)2(

,
2\ )( \

,, ∑ ∑∑ ∑ ∑∑
Ψ∈ Ω∈∈ Ψ∈ Ω∈∈

−+
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−+−=

n m
mn

Cc cn Mm
mn

Mm
mnww

wwww

RRcRSM μμμσ  

Consequently, a desirable combination of Mw and Sw is expected to minimize 
),( ww SMσ  (subject to other constraints). Note that this formulation does not make any 

assumption about the expected raw copy numbers at the markers and therefore is 
robust to any systematic bias that might be encountered in measurement and 
normalization of the Rm,n. 
 
• Variation in raw copy numbers across different copy number classes should be 
maximized. The criterion formulated above focuses on the internal variation in a 
copy number class. However, it is also important to accurately separate different copy 
number classes from each other, since the number of variants in the sample is 
unknown and intra-class variation can be minimized by artificially increasing the 
number of genotype classes across samples. For this reason, we formulate an 
objective criterion that penalizes excessive copy number classes.  Formally, we define 
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as an objective criterion to be minimized. Here I(.) denotes the indicator function (i.e., 
it is equal to 1 if the statement being evaluated is true, and 0 otherwise). Observe that 
this function grows exponentially with the reciprocal of the difference between the 
mean raw copy numbers of markers assigned to consecutive copy number classes, and 
is therefore minimized when similar raw copy numbers are assigned to the same class. 
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• Filtering out noise by eliminating smaller regions. Longer CNPs indicate higher 
confidence as it can be statistically argued that shorter sequences of markers with 
deviant raw copy numbers are more likely to be observed due to noise. Thus, we 
explicitly consider CNP length as an additional objective criterion. We then define 

wl
wM

2

1
)( =λ  as an objective criterion that penalizes shorter CNPs. 

 

• The optimal CNP identification and genotyping problem. We use a linear 
combination of the criteria above as an objective function to assess the quality of a 
CNP region and assignment of copy number genotypes. Namely, for a given 
candidate CNP w, an assignment of markers Mw to w, and assignment Sw of copy 
numbers to these markers in each sample is defined as 

)(),(),(),( wwwwwww MkSMkSMkSMf λχσ λχσ ++=  

The objective of the CNP identification and genotyping problem is to find Mw and Sw 
that together minimize f(Mw, Sw.). Here, the tunable coefficients λχσ kkk ,,  adjust the 

relative importance of the objective criteria with respect to each other. In our 
experiments, we use a prohibitively large value for λk  to eliminate CNP instance calls 

on smaller regions that are likely to be false positives. The parameters σk  and χk  are 

used to adjust the apparent trade-off between the intra-class and the inter-class 
variation. Without loss of generality, we require that 1=+ χσ kk  so that the parameters 

can be adjusted in an interpretable way. For our experimental evaluations reported in 
this paper, we use 5.0=σk  and 5.0=χk . Note also that, for a given Mw and Sw, the 

computation of f(Mw, Sw) requires O(|N||Ωw|) time. 

2.4   Algorithms for Optimal CNP Identification and Copy Number Genotyping 

We now describe the algorithm we use to find the objective function minimum, 
thereby solving the CNP identification and genotyping problem. A solution to a given 
instance of the problem is characterized by assignment of marker boundaries to the 
CNP (Mw) along with the copy number genotyping Sw(n) for each sample n ∈ N. 
Consequently, an optimal solution to the problem can be determined by finding an 
optimal Sw for each possible Mw and choosing the best among these solutions across 
all possible assignments of Mw. Since a CNP region is by definition composed of 
contiguous markers and the problem is defined within a fixed segment of markers Ωw, 
there are |Ωw|(|Ωw|+1)/2 possibilities for Mw, making such an exhaustive search 
feasible. Motivated by this insight, we now discuss how an optimal assignment of Sw 
can be found for fixed Mw. 

(i) Optimal CNP genotyping for fixed CNP boundaries. When the boundaries of 
the CNP are fixed, the solution to the CNP genotyping problem is uniquely 
determined by the assignment of each sample to a copy number class for the CNP 
region at hand. To find an optimal solution to this problem, POLYGON uses a top-
down approach that starts from a conservative solution that assigns all samples to the 
same class and iteratively improves this solution by dividing samples into separate 
classes as necessary.  Initially, all samples are assigned to the “normal” class, i.e., 
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Sw
(0)(n) = 2 for all n ∈ N. At each step of the algorithm, samples that are assigned to 

the same copy number class are iteratively considered to check whether it is possible 
to further improve the solution by dividing this partition of samples into two sub 
partitions with different copy number classes. To find the best possible partitioning of 
the samples in a group, we use the mean raw copy number of markers within Mw on 
each sample, computed as:   
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Assume, without loss of generality, that the samples are ordered according to µ(n, 
Mw). That is, µ(n, Mw) ≤ µ(n+1, Mw) for all i = 1, …, |N|-1. The aim of our algorithm 
is to divide the ordered of set samples in up to five partitions such that each partition 
corresponds to the set of samples with a copy number class and the objective function 
f is minimized for the given class assignments. It can be shown that the optimal copy 
number genotype assignment must preserve the µ(n, Mw) ordering. Based on this 
observation, we develop a heuristic based on the notion that a sample at which the 
copy number genotype change is most likely to happen is the one at which the 
maximum increase is observed in between µ(n, Mw) and µ(n+1, Mw) values.  

Our algorithm is executed using a series of splits dividing one copy number class 
into two at each stage. Let Sw

(i) denote the solution after the ith split where 0 ≤ i ≤ 4 
(since there can be at most 5 copy number class partitions) and Ψ(i)(c) denotes the set 
of samples in the partition for copy number class c ∈ C after the ith split. In each 
round, our algorithm introduces a new copy number class partition by splitting an 
already existing copy number class partition c. This is done by choosing a sample n*, 
and then either moving all samples n ≤ n* in n*’s copy number class c to copy 
number class c-1, or moving all samples n > n* in n*’s copy number class to copy 
number class c+1.  We call n* a split sample. However, if the algorithm tries to split a 
copy number class partition by re-introducing an already existing copy number class 
partition (i.e., if copy number c-1 or c+1 is already assigned to some samples), this 
split becomes invalid and our algorithm tries another n* for this round of split 
procedure. Let Q(i) denote the set of candidate split samples, i.e., samples that are not 
used in one of the previous splits or are skipped by the algorithm . Initially, we have 
Sw

(0)(n) = 2 for all n ∈ N , Ψ (0)(2) = N and Ψ (0)(c) = ∅ for c ∈ C \ 2, and Q(0) = N. 
For each sample 1 ≤ n ≤ |N|−1, let Δ(n) = µ(n+1, Mw) − µ(n, Mw) denote the 

gradient of mean copy numbers at sample n. At each round of the algorithm, the 
sample n* =argmaxn ∈Q

(i){Δ(n)} is selected as the splitting sample, since it would 
yield the highest inter-class variance for the new class partitions being created. 
Assume that  n* is assigned copy number c at this point. One of the sub-partitions 
that can be obtained by splitting the partition c will obviously be the old partition c. 
In order to determine whether the other sub-partition will be c-1 or c+1, we check 
the similarity of the mean raw copy number of each sub-partition to that of the 
original partition. To do so, the mean raw copy number for each sub-partition is 
computed as: 
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There are two cases to be considered. 

Case 1:  ″−≤′− cccc μμμμ  

In this case, the samples in the lower sub-partition have more similar mean raw 
copy number to that of the samples in the original partition. Therefore, the newly 
introduced copy number class partition should be c+1 and the samples from 
min(Ψ(c)) to n* will remain in partition c and samples from n*+1 to max(Ψ(c)) will 
be assigned to partition c+1 in the new solution, i.e.,  
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Case 2:  ″−>′− cccc μμμμ   

In this case, the upper sub-partition is more similar to the original partition in terms 
of mean raw copy number. Thus, the newly introduced copy number class partition 
should be c-1 and the samples from n*+1 to max(Ψ(c)) will be assigned to class c and 
samples from min(Ψ(c)) to n* will be assigned to class c-1 in the new solution, i.e.,  
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Note that splits in cases 1 and 2 are invalid if Ψ(i)(c+1) ≠ ∅ and Ψ(i)(c-1) ≠ ∅, 
respectively (i.e., the split is trying to introduce a copy number class partition that 
already exists). In that case, the algorithm updates the set of candidate split samples as 
Q(i) = Q(i) \ n*, and repeats the procedure for finding a split sample for the current Sw

(i) 
as described above. In the case of a valid split, it checks whether the new solution 
Sw

(i+1) improves the current solution Sw
(i) in terms of the objective function (i.e., if 

f(Mw, Sw
(i+1)) < f(Mw, Sw

(i))). If so, the algorithm sets Q(i+1) = Q(i) \ n*, updates Ψ(i+1) 
according to Sw

(i+1), and moves to the next splitting round. The algorithm will stop if 
the number of  copy number class partitions reaches five, the set of candidate split 
samples becomes empty (i.e., Q(i) = ∅), or the new solution Sw

(i+1) does not improve 
the current solution Sw

(i) in terms of the objective function. In these cases, Sw
(i) is 

reported as the optimal solution. Note that the running time of this algorithm is 
O(|N||Ωw|), since the dominant computation throughout the course of the algorithm is 
the computation of f  for a constant number of times. 

In Figure 1(c), for a CNP w, the ordered samples and the corresponding mean raw 
copy numbers µ(n, Mw) for each sample n ∈ {1, 2,.., 270} are shown. As evident in 
the plot, the top candidate split samples are those where the biggest jumps occur 
between consecutive µ  values. After applying the above procedure, we find that the 
CNP w manifests itself in three different copy number classes across the sample set N. 
The samples genotyped with copy number 0, 1 and 2 classes are colored with yellow, 
orange and red, respectively. 
 
(ii) Finding the optimal boundaries of a candidate CNP. The above procedure 
gives a solution to the optimal CNP assignment problem for fixed CNP boundaries 
(Mw). Recall that for each CNP w, an initial estimate of its boundaries is available 
from the first phase of POLYGON. We exhaustively search all possible sub-windows 
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[a, b] within Ωw (where sw− ⎡ ⎤2wl  ≤ a ≤ b ≤ ew+ ⎡ ⎤2wl ), finding the optimal CNP 

genotyping Sw
(a,b) for each candidate boundary Mw

(a,b). Finally, the Mw
(a,b) and Sw

(a,b) 
that minimize f(Mw

(a,b), Sw
(a,b)) are returned as the optimal CNP assignment for CNP w. 

This procedure is illustrated in Figure 1(d). From the heat map in the figure, it can be 
observed that the optimal boundaries obtained after this method is applied are 
different from the initial boundaries of w. The total runtime of this algorithm is 
O(|N||Ωw|3), which is reasonable in practical cases since the size of region Ωw does not 
exceed several hundred markers for majority of the CNPs discovered by our method. 

3   Results 

We apply our algorithm to Affymetrix 6.0 SNP array data from 270 HapMap 
individuals. We use three different algorithms, ÇOKGEN [7], PennCNV [6] and 
Birdseye [4] to detect the initial set of CNVs that serve as input to POLYGON.  

3.1   Methods Used for Comparison 

There are few CNP identification methods available for SNP array platforms. Here we 
compare POLYGON with two methods, COMPOSITE and COVER, which were 
published quite recently [12].  Similar to POLYGON, these two methods use CNVs 
identified by other methods to call common CNPs. Thus, they utilize the same type of 
data (CNVs mined on the Affymetrix 6.0 SNP array by PennCNV and an annotation 
file containing the genomic coordinates of the markers) and produce the same type of 
output with POLYGON. It should be noted that there exists another method, Canary 
[4], for genotyping CNPs. However, it is designed to genotype the CNP maps given 
by [13] and is not a CNP discovery method per se. For this reason, we do not include 
Canary in our comparisons. 

To simplify the discordance and sensitivity analysis and to be consistent with the 
results of the single-sample based CNV identification algorithms, a CNP genotyped by 
POLYGON, COMPOSITE or COVER is treated as a single gain or loss CNV event in 
the analyses reported here. For the discordance and sensitivity analysis, we use the 
MRO measure (as defined in Section 2.2) with a threshold of 0.5 to decide whether two 
CNVs identified in two different individuals correspond to the same event. 

3.2   Trio Discordance Comparison across Methods 

The 60 mother-father-child trios in the HapMap data set were used to assess the 
accuracy of CNV genotyping algorithms by measuring the rate of Mendelian 
concordance. A gain or loss in a trio child is said to be Mendelian concordant if it 
appears in at least one of the parents. Unless the CNV is de novo, any discordance is 
either the result of a false positive call in the child or a false negative call in one of the 
parents. 

For all of the single-sample CNV identification methods, POLYGON greatly 
improves trio discordance. POLYGON reduces ÇOKGEN’s trio discordance from 
30.8% to 20.1%. Similarly, it reduces PennCNV’s trio discordance from 32.9% to 
16.2%. On the other hand, both COMPOSITE and COVER reduce PennCNV’s trio 
discordance rate to around 26%. These results demonstrate the superior ability of 
POLYGON for CNP identification and copy number genotyping across samples. 
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3.3   Sensitivity Comparison across Methods 

A recent study [14] assembled a “stringent dataset”, which contains CNVs identified 
by at least two independent algorithms. The data set contains a total of 808 autosomal 
CNV regions reported to be harbored in at least one of the 270 HapMap individuals. 
We use this as a “gold standard” data set on which to evaluate the sensitivity of our 
method. 

POLYGON improves the sensitivity of two single-sample based CNV 
identification methods. While ÇOKGEN achieves a sensitivity of 86%, POLYGON 
improves this to 88.3%. Similarly, sensitivity increases from 84.7% to 89.9% when 
POLYGON is run with CNVs obtained by Birdseye. Interestingly, on the other hand, 
PennCNV and POLYGON on PennCNV achieve the same sensitivity rate of 88.6%. 
These figures are clearly superior to the sensitivity of both COMPOSITE (62.8%) and 
COVER (40.2%). 

 

Fig. 2. Sensitivity of different algorithms. Each bar represents the sensitivity of the associated 
method in the specified frequency stratum. 

In Figure 2, we compare the sensitivity of the methods stratified by the gain/loss 
frequencies of the CNVs. The purpose of this analysis is to see whether an algorithm 
that explicitly targets common CNPs is more successful in calling common CNPs 
accurately (as compared to rare CNVs). Indeed, as seen in the figure, POLYGON 
improves the sensitivity of all  CNV identification methods for gains/losses existing 
in more than 20 samples, demonstrating that POLYGON is well-suited to detect 
common CNPs. Furthermore, for gains/losses that occur in at least 30 samples, 
POLYGON consistently achieves sensitivity above 98%, regardless of the algorithm 
that is used to identify the initial set of CNVs. This observation suggests that 
POLYGON is also quite robust against changes in the input set of CNVs. 

4   Conclusion 

We have presented a method to detect and genotype germline copy number 
polymorphisms (CNPs) from SNP array data and a set of CNVs. Our approach will be 
useful for researchers querying constitutional DNA for association of CNP alleles 
with disease. Indeed, CNPs are emerging as important factors in a growing number of 
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diseases. POLYGON’s ability to identify recurrent variants is particularly crucial in 
GWAS, as variations frequently observed in a significant proportion of the population 
may have a significant impact on human disease.  

The current work shows that the problem of detecting CNPs may be recast as an 
optimization problem with an explicit objective function. The objective function 
chosen here is quite simple and intuitive, but its effectiveness is clear. With detailed 
experimental studies on the HapMap dataset, we have demonstrated its sensitivity to 
identify especially common CNPs, while keeping a low false positive rate, as 
demonstrated by high Mendelian consistency in trios. 
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Abstract. Measurements in biology are made with high throughput

and high resolution techniques often resulting in data in multiple reso-

lutions. Currently, available standard algorithms can only handle data

in one resolution. Generative models such as mixture models are often

used to model such data. However, significance of the patterns gener-

ated by generative models has so far received inadequate attention. This

paper analyses the statistical significance of the patterns preserved in

sampling between different resolutions and when sampling from a gener-

ative model. Furthermore, we study the effect of noise on the likelihood

with respect to the changing resolutions and sample size. Finite mixture

of multivariate Bernoulli distribution is used to model amplification pat-

terns in cancer in multiple resolutions. Statistically significant itemsets

are identified in original data and data sampled from the generative mod-

els using randomization and their relationships are studied. The results

showed that statistically significant itemsets are effectively preserved by

mixture models. The preservation is more accurate in coarse resolution

compared to the finer resolution. Furthermore, the effect of noise on data

on higher resolution and with smaller number of sample size is higher

than the data in lower resolution and with higher number of sample size.

Keywords: Multiresolution data, statistical significance, frequent item-

set, mixture modelling.

1 Introduction

Biological experiments performed with high throughput and high resolutions
techniques often produce data in multiple resolutions. Furthermore, Interna-
tional System for human Cytogenetic Nomenclature (ISCN) has defined five
different resolutions of the chromosome band: 300, 400, 550, 700 and 850[1]. In
other words, chromosomes are divided into 862 regions in resolution 850 (fine
resolution) and 393 regions in resolution 400 (coarse resolution). Thus, data are
available in different resolutions and methods needs to be devised to work with
multiple resolutions of the data. However, current standard algorithms only work
with a single resolution of data. So, sampling in different resolutions possesses
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c© Springer-Verlag Berlin Heidelberg 2010



Preservation of Statistically Significant Patterns in Multiresolution 0-1 Data 87

high importance. In this paper, we model multiresolution data and use statisti-
cal significance testing on data generated by generative models. Finite mixture
models are generative models [2,3] able to generate the potentially observable
data. Over the years, finite mixture models have been extensively used in many
application domains including model based clustering, classification, image anal-
ysis, and collaborative filtering in analysis of high dimensional data because of
their versatility and flexibility. In spite of the wide application areas of mixture
models, the evaluation of mixture models are often based on the likelihood of the
model on the original data, not by testing the data generated by the generative
models.

In [4], the authors used HMO (Hypothetical Mean Organism) motivated from
Bacteriology [5] and maximal frequent itemsets[6] to define the data to the do-
main experts in a compact and understandable manner. Furthermore, in [7], the
authors also compared the frequent itemsets [8,9] extracted from each cluster
to that extracted globally showing that the frequent itemsets were significantly
different. However, the authors failed to consider the significance of the itemsets
and their preservation by generative models. Study of patterns generated by
the generated models has received little interest. However, preserving patterns
from the original data should be essentially an important property of mixture
models and if properly designed can be one of the benchmarks for selecting bet-
ter mixture models. In this paper, we experiment with finite mixture models of
multivariate Bernoulli distribution to test whether the statistically significant
itemsets are preserved by mixture models. We also extend the ideas in [10] to
observe if the significant itemsets are preserved by the sampling in different
resolutions.

Novelties in this paper are determination of presence of statistically signifi-
cant itemsets with respect to sampling different resolutions and especially by the
data generated through the generative mixture models. Furthermore, we exper-
iment the mixture model with different levels of noise showing that the trained
mixture models are robust to noise in lower resolution and when there is sig-
nificant amount of data to train and constrain the mixture model thus showing
the importance of working in multiple resolutions which is useful for database
integration.

Rest of the paper is organized as follows: Section 2 presents the dataset used
in the experiments. Section 3 reviews the theoretical framework for experiments
including sampling, randomization and mixture modelling. Section 4 explicates
the experiments performed on the data and discusses the obtained results. Sec-
tion 5 draws conclusions from the experimental results.

2 DNA Copy Number Amplification Dataset

The dataset used in the experiments defines DNA amplifications in different
chromosomes. Amplification is the special case of duplication where the copy
number increases more than 5 [11]. The data was collected by bibliomics survey
of 838 journal articles during 1992-2002 by hand without using state-of-the-art
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Fig. 1. DNA copy number amplifications in chromosome-17, resolution 850. X = (Xij),

Xij ∈ {0, 1} . Each row represents one sample of the amplification pattern for a patient

and each column represents one of the chromosome bands.

text mining techniques [4,12]. The dataset contained information about the am-
plification patterns of 4590 cancer patients in resolution 400. There was another
set of similar data but in resolution 850 with higher sample size. The dataset
shown in Figure 1 contains the original data in resolution 850, the randomized
version and sampled from the mixture model. Each row describes one sample of
cancer patient while each column identifies one chromosome band(region). The
amplified chromosome regions were marked with 1 while the value 0 defines that
the chromosome band is not amplified. Patients whose chromosomal band had
not shown any amplification for specific chromosome were not included in the
experiments since we are interested in modelling the amplifications, not their
absence.

3 Theoretical Framework

Determining the significance of the results obtained by any algorithm or method
is an actively researched area. Statistical significance testing have often been
implemented to determine the significance of the results. In this paper, we im-
plement our statistical significance testing on data in multiple resolutions and
data generated by mixture models.

3.1 Sampling Resolutions

We have recently in [10] suggested three downsampling and a simple upsampling
technique for 0-1 data and performed experiments on them showing that the
methods are fairly similar. Upsampling is the process of changing the resolution
of data from coarse resolution to finer resolution and downsampling is the pro-
cess of changing the resolution of data from fine resolution to coarse resolution.
Upsampling makes multiple copies of similar chromosome bands in higher res-
olution. Downsampling, in turn, proceeds with one of three different methods:
OR-function, Majority decision and Weighted Downsampling. In OR-function
downsampling, a cytogenetic band in lower resolution is amplified if any of the
bands in higher resolution which combines to form the cytogenetic band in the
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lower resolution is amplified. In majority decision downsampling method, the
cytogenetic band in lower resolution is amplified if majority of the cytogenetic
band in higher resolution are amplified. In weighted downsampling method, the
length of the cytogenetic bands are considered. The cytogenetic band in lower
resolution is amplified if the total length of amplified band is higher than that
of the unamplified band.

3.2 Randomization

Statistical significance testing on datasets are not trivial as the data belongs
to a class of empirical distributions thus integrating over the PDF(Probability
Density Function) to calculate the p−values is often not possible. Furthermore,
given the data set D, its PDF or true generating model is often unknown. It is
trivial to integrate over the empirical distribution where a null distribution can
be fixed and samples can be drawn from the null distribution. Randomization [13]
is one of the method to sample from null distribution and it has been proposed
with some plausible results and implemented in various application areas such as
redescription mining [14]. Comparing segmentations of genomic sequences [15]
among many others.

Consider a 0-1 dataset, D with m rows and n columns. Let D1,D2 . . .Dn

be the randomized data produced using the randomization approach repeated
n times. Also, consider a data mining algorithm A, for instance frequent set
mining and mixture modelling in our case which is run on the data D with the
result A(D). The result A(D) determines the structural measure of the dataset
D, the frequencies of frequent itemset and likelihood in our case. The randomized
datasets D1,D2 . . .Dn are also subjected to the algorithm A producing results
A(D1),A(D2) . . .A(Dn). The task is then to determine whether the result on
the original data is different from the results on the randomized data. Empirical
p−values can be used for the same purpose.

Null Distribution: Given a binary dataset D, the null distribution considered
in the paper are all the datasets satisfying all the following properties:

1. The dataset of the same size i.e. number of rows and columns of randomized
data is equal to the number of rows and columns of the original data.

2. The dataset with same row and column margins. Margins here describes
the sums. Thus, row and column sums are exactly fixed. This automatically
preserves the number of ones in the dataset i.e. the number of amplifications.

As the the constraints discussed above increases, the randomization is becomes
more conservative. However, the main focus is to compare the results obtained
with the original dataset with closely related datasets. Furthermore, the number
of datasets satisfying the above constraints are still significantly high. Generally,
the application area determines the constraints of the randomization. Main-
taining row and column margins in this case is adapted from the idea in [13]
which seems relevant in our case considering the fact that most of the binary
datasets especially in the field of biology such as the amplification data dis-
cussed in Section 2 are often spatially dependent and sparse. On the other hand,
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if the randomization is not subjected to the constraints discussed above then any
result of an algorithm turns out to be relevant. With lesser constraints, the num-
ber of randomized datasets to sample for convergence discussed in Section 4.1
increases which consequently increases the computational complexity of the ap-
proach. Experimental results in [13] have shown that complexity of using a data
mining algorithm A on a dataset has significantly higher computational com-
plexity compared to the generation of randomized dataset under the constraints
discussed above. Similar to [13], the data is randomomized in the with repeated
0-1 swaps until convergence. The null hypothesis H0 throughout this paper is
that for all datasets D that satisfies the given constraints, the test statistic fol-
lows the same distribution. Test statistic used here is frequency or the support
(α) in case of frequent itemset and sample likelihood in case of mixture models.

p−Values: p-value can be defined as probability of obtaining a test statistic at
least as extreme as the one that was actually observed, assuming that the null
hypothesis is true [16,17]. Let D̂ = {D1,D2,Dk} be the randomized versions,
sampled i.i.d from the null distribution, of the original data D. The one-tailed
empirical p−value of A(D) for A(D) being large is

p̃ =
1

n + 1

(
n∑

i=1

I(A(Di) ≥ A(D)) + 1

)
, (1)

where i ∈ {1, 2 . . . k} and I is the indicator variable.
The Equation 1 gives the fraction of randomized dataset whose structural

measure, itemset frequency (support) in case of frequent itemset and sample
likelihood in case of mixture models, is greater than the original data A(D). In
one-tailed p−value small value of A(D) are interesting and can be defined simi-
larly for the two-tailed test. In this paper the randomized datasets are produced
using Markov Chain Monte Carlo(MCMC) approach. The samples produced by
MCMC are not independent thus diminishing the reliability of the p−values. To
mitigate this problem and guarantee the ex-changeability of samples, we imple-
ment forward-backward approach discussed in [18]. The basic idea is to run the
chain, a number of defined steps, say J backwards and forward after reaching
J. In other words, given the original dataset D, a dataset D̂ is obtained such
that the path length between D and D̂ is J. The desired number of K samples of
randomized data is obtained by running the chain J steps forward and obtaining
the samples D̂i thus producing D, D̂1 . . . D̂k as the set of exchangeable samples.
Furthermore, the p−values were adjusted for multiple hypothesis testing using
the Holm-Bonferroni test correction[19].

3.3 Mixture Models of Multivariate Bernoulli Distribution

Cancer is not a single disease but a collection of several diseases. Furthermore,
the amplification data discussed in Section 2 being high dimensional binary data,
finite mixtures of multivariate Bernoulli distribution was selected as the model
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to model the amplification data. The finite mixture of multivariate Bernoulli
distributions is defined as:

p(D|Θ) =
J∑

j=1

πj

d∏
i=1

θxi

ji (1 − θji)1−xi , (2)

where the data is assumed to originate from the known number of components J .
The mixture proportions πj satisfy the properties such as convex combination

such that πj ≥ 0 and
J∑

j=1

πj = 1, ∀j = 1, . . . J . The model parameters Θ is

composed of θ1, θ2, θ3 . . . θd for each component distribution.
Model selection in finite mixture modelling refers to the process of selecting

number of mixture components, J in the data. 10-fold cross-validation [20,21]
is used to select the optimal number of components taking parsimony into ac-
count. The process of model selection employed is similar to [4,10,22]. Since the
mixture models are complex and sample size of data was small to constrain it,
chromosome-wise mixture modelling was performed for data in different resolu-
tions. Expectation Maximization algorithm [23,24] was used to train the mixture
models using BernoulliMix[25] which is an open source program package for finite
mixture modelling of multivariate Bernoulli distribution.

4 Experiments

4.1 Convergence Analysis of the Swaps

In order to determine the optimal number of swaps to be performed, convergence
test for the randomized data was performed. In our experiments, the process of
randomization is said to converge when the distance between the the original
data and the randomized data changes the least with respect to the predefined
difference measure. Similar to [13] and [26], the distance measure used here is
the Frobenius norm between the original and the randomized matrix. In order
to test the convergence, first the number of attempted swaps is fixed to 1 and
increased by the step size of 1. The approach used here differs from [13] and [26]
because they set the initialization point to K equal to the number of ones in
the data and increase the number of attempts in multiples of K. Such approach
could prove beneficial in large datasets but since amplification dataset is small,
it was very easy to compute the swaps thus making it easier to initialize number
of attempted swaps to 1. Furthermore, similar dataset was available in resolution
850 with higher sample size. Thus, the convergence test was performed for both
the data and their upsampled and downsampled versions as shown in Figure 2.
Ten different instances of the swaps are performed and the mean of the results
is taken as the final convergence test. Similar, convergence analysis was also
performed for combined data and the sampled data. Convergence of sampled
data was similar to the original data from which the model was trained. However,
in case of combined data, convergence required relatively higher number of swaps
i.e. 700000 swaps. Figure 2 shows that the swap converges when the number of
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Fig. 2. Convergence analysis for randomization with respect to 0-1 swaps

attempted swaps is approximately 16000 for original data in resolution 400. From
the Figure 2 it can also be seen that the Frobenius norm increases rapidly until
certain number of attempted swaps and then tends to stabilize. The stabilizing
point is taken as the convergence. As discussed in Section 2, the sample size of
data in resolution 850 was high thus taking longer time to converge. The number
of swap attempted to get the randomized data in this case is 600000.

4.2 Model Selection in Mixture Model

Model selection in the context of mixture modelling is the selection of number
of components of the mixture model. It is often recommended to repeat cross-
validation technique a number of times, at least 10, because a 10-fold cross-
validation can be seen as a “standard” measure of the performance whereas ten
10-fold cross-validations would be a “precise” measure of performance[27]. In
addition, EM-algorithm is highly sensitive to initializations and the global op-
timum is not often guaranteed [28]. Therefore, the cross-validation procedure
was repeated 50 times. Since the analysis was performed chromosome-wise, the
data dimension was relatively less. Thus, the number of mixture components
were varied between 2 and 20. Using higher number components can overfit the
data. Furthermore, our major goal, as in [4], was to generate compact and par-
simonious models. The log-likelihood was averaged for each component and the
interquartile range(IQR) was calculated. Furthermore, the model selection pro-
cedure was also performed for the randomized data. In Figure 3a, both training
and validation likelihood are smoothly increasing curves with low variation in
IQR. The number of components selected in this case is 7, taking the parsimony
into account. We also performed similar model selection procedure on the ran-
domized data as shown in Figure 3b. It was found that there is no well defined
clustering structure present in the data with respect to the mixture models.
Furthermore, the results on randomized data also proves that the data is not
a random data but there is a well-defined structure present in the data which
mixture model is able to extract.
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Fig. 3. Model Selection procedure and Model visualization: Example case in combined

data of Chromosome-17 in resolution-400 and its corresponding randomized version.

Corresponding IQR (Inter Quartile Range) for each training and validation run has

also been plotted.
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Fig. 4. Two different models for the combined data trained in resolution 400 and 850

After selecting the number of components, ten different models were trained to
convergence and best of the trained models were used to calculate the likelihood
on data as shown Figure 5b. The model was also used to sample the data to
calculate the significant itemsets in the sampled data. Figures 4a and 4b are the
final models trained to convergence for combined data in resolution 400 and 850
respectively. Similarity of the models can be tracked visually from the model
visualization as in Figure 4. For example, component 6 in Figure 4a corresponds
to component 1 in 4b.

4.3 Significance of Frequent Itemsets and Data Samples

In the experimental setup, first the frequencies of the itemsets of the size two were
determined from the original data. The itemsets of size three and above were dis-
carded from the experiments for simplicity and space constraints for explaining
the results. However, results in [10] has shown that generally the frequent itemsets
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in the amplification data discussed in Section 2 are large and consecutive. The
core of the work was to determine if the statistically significant itemsets were
preserved in different resolutions and by the generative mixture model. First the
itemsets of size two which had a frequency or support(α ≈ 0.5) were determined
and the original data was then subjected to randomization. Randomization pro-
duces 100000 samples of randomized dataset. Larger number of random samples
are chosen because Holm-Bonferroni [19] used to correct for multiple hypothesis
requires higher number of samples for plausible results. The structural measure
used to calculate the p−values in our case is the support or the frequency of the
itemsets. The choice of frequency or support(α ≈ 0.5) is arbitrary but motivated
by majority voting protocol and constraining the number of frequent itemsets
thus making it easier to interpret and report. Furthermore, itemsets with very
low support but statistically significant are not highly interesting. The samples
of data were generated equal to the number of samples in the original data. Sim-
ilarly, the data generated from the trained mixture models were also subjected
to randomization to determine the statistically significant itemsets.

Table 1. Itemsets of size 2 with their frequency (support) in original as well as sampled

resolution. Results of Downsampling have been omitted because of space constraints.

The symbol item
n C item

r suggests combination where subscript n and r determines n
choose r in the combination and superscript determines the item to start and end the

combination.

Significant itemsets of Size 2 at α = 0.05

Data Support Original Data Model Sampled

Original 393 .4 {9,10}, {11,12} {9,10}, {11,12}
Upsampled 850 .4 10

5 C14
2 , 15

4 C18
2 , 19

6 C24
2

10
5 C14

2 , 19
6 C24

2

Combined 393 .6 { 5, 7}, { 5, 12}, 8
6C

12
2 { 5, 7}, { 5, 12}, { 7, 12},

8
6C

12
2

Combined 850 .6 10
6 C15

2 , {12,16}, {12,17},
{12,18}, {13,16}, {13,17},
{13,18}, {14,16}, {14,17},
{14,18}, 15

10C
24
2

10
6 C15

2 , {12,16}, {12,17},
{12,18}, {12,20}, {13,16},
{13,17}, {13,18}, {13,20},
{14,16}, {14,17}, {14,18},
{14,20}, 15

10C
24
2

The p−values were calculated to test the significance of the itemsets. The
statistically significant itemsets computed at significance level (α)= 0.05 in the
original data and the sampled data from the model is compared and analyzed.
Table 1 shows that significant itemsets are approximately but not exactly pre-
served by the generative mixture model as well as the sampling of resolutions.
Difference is subtle in higher resolution. The itemsets in lower resolution corre-
spond to itemsets in higher resolution. For example, itemset {11,12} in resolution
400 corresponds to itemset 19

6 C24
2 in resolution 850. It is to be noted that not all

frequent itemsets are significant and not all significant itemset are frequent. For
example, in case of combined resolution 400, itemset {1,2} is significant where
as it is not frequent. Furthermore, itemset {7,12} is frequent but not significant.
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We also determined the number of significant data samples in different resolu-
tions and from the sampled model. Figure 5a suggests that numbers of significant
data vectors are preserved in the generative models. During our experiments, we
also determined the indices of the significant data vectors and it was seen that
indices of the significant vectors are not preserved i.e. generated of samples of
data are not arranged in similar manner to original data. Furthermore, it was
also seen that finer resolution has higher number of significant data samples be-
cause with increasing dimension the uniqueness of the rows increases and the 0-1
swap strategy used in the randomization ceases to function properly. However,
this has little or no significance because of i.i.d assumption for each data sample.

4.4 Effect of Noise on the Likelihood
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Fig. 5. Ratio of significant data samples to the number of samples in the left panel

and effect of noise and resolution on the likelihood in right panel

We added random noise to the data. Since the data was binary data, adding
noise is simply flipping the bits i.e. changing ones to zeros and zeros to ones.
Addition of 5% noise means that 5% of total data items in the dataset are
flipped. Figure 5b shows that the effect of noise will be significantly higher for
data in finer resolution than the data in the lower resolution. Furthermore, when
the number of samples is low (Cases: Original 400 and Upsampled to 850),
the difference in the likelihood is large because the number of samples are too
low to constrain the mixture model. However, when the number of samples are
increased, as in case of combined datasets, the variation in likelihood is not
significant. Nevertheless, likelihood for the data in the higher resolution deviates
significantly even when the sample size is increased.

5 Summary and Conclusions

We use statistical significance testing on data in different resolutions and on
data generated by the generative mixture models using randomization. From
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the experiments we conclude that finite mixtures of multivariate Bernoulli dis-
tribution retains the significant itemsets and the significant data vectors in the
original data even when the mixture model is trained parsimoniously. Further-
more, experiments with different levels of noise on the data shows that models
parsimonious models in coarse resolution are more robust to noise. Nevertheless,
when there is adequate amount of data to constrain the mixture model, the effect
of noise diminishes significantly even in higher resolution.
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Abstract. MHC class I molecules are key players in the human immune

system. They bind small peptides derived from intracellular proteins and

present them on the cell surface for surveillance by the immune system.

Prediction of such MHC class I binding peptides is a vital step in the

design of peptide-based vaccines and therefore one of the major problems

in computational immunology. Thousands of different types of MHC class

I molecules exist, each displaying a distinct binding specificity. The lack

of sufficient training data for the majority of these molecules hinders the

application of Machine Learning to this problem.

We propose two approaches to improve the predictive power of kernel-

based Machine Learning methods for MHC class I binding prediction:

First, a modification of the Weighted Degree string kernel that allows for

the incorporation of amino acid properties. Second, we propose an en-

hanced Multitask kernel and an optimization procedure to fine-tune the

kernel parameters. The combination of both approaches yields improved

performance, which we demonstrate on the IEDB benchmark data set.

1 Introduction

Despite the success of traditional whole-organism vaccines in the last century
there is still a lack of effective vaccines for many diseases, for example AIDS and
cancer. A fairly new approach to vaccination, the peptide-based vaccines, shows
great promise here. Peptide-based vaccines utilize peptides, i.e. small protein
fragments, derived from, e.g., viral proteins to induce immunity. In order for a
peptide to trigger an immune response from inside a host’s cell, it has to bind
to a major histocompatibility complex class I (MHC-I) molecule. The resulting
peptide/MHC-I complex will be transported to the cell surface where it can be
recognized by specific immune system cells, the T cells (Fig. 1A), and thereby
induce an immune response. Thus, MHC-I binding is a prerequisite for pep-
tide immunogenicity. Furthermore, identifying peptides with a high affinity to
� Authors contributed equally.
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MHC-I molecules is generally considered the best way to identify immunogenic
peptides. Since only immunogenic peptides are suitable candidates for inclusion
in a peptide-based vaccine, the prediction of peptides binding to MHC-I is of
great interest in the field of vaccine design.

Fig. 1. Peptide/MHC-I complex. A) An MHC-I molecule presents an immunogenic

peptide on the cell surface where it is recognized by a T cell. B) The structure of a

nonameric peptide complexed with an MHC-I molecule. The binding groove is closed

at both ends and the peptide is bound in an extended conformation. (PDB-ID: 3L3D

(http://www.pdb.org) [2], plotted with BALLView [11])

MHC-I molecules are membrane-bound proteins with a closed binding groove
that holds peptides in an extended conformation (Fig. 1B). They typically bind
peptides that contain eight to ten amino acids (AAs) with a preference for nine
AAs. The corresponding gene complex is highly polymorphic. As of today, more
than 3,000 different MHC-I alleles are known,each coding for an MHC-I molecule
binding a specific range of peptides. Any human has up to six different types
of MHC-I molecules. This implies that a peptide that is capable of inducing an
immune response in one individual might never be presented on the cell surface
in another. In order to design vaccines effective for a given population, it is
therefore necessary to accurately predict MHC-I binding for a wide range of
different MHC alleles [22].

Many computational methods for the classification of peptides into MHC-I
binders or non-binders have been proposed: ranging from matrices [14, 17] to
machine learning [3, 1].All of these methods require a certain amount of ex-
perimental binding data for each allele under consideration. However, a major
problem in MHC-I binding prediction is the lack of data: for the vast majority
of the known alleles there is no or only little experimental binding data available
yielding the development of accurate prediction methods for most alleles rather
challenging. In 2008, Laurent and Vert [8] proposed a kernel-based approach
that tries to overcome the lack of training data by sharing binding information
across alleles.

In this work, we propose two approaches to improve MHC-I binding predic-
tion. First, we consider an improved string kernel, which takes AA properties
into account and thereby allows more accurate predictions for alleles with little
binding data. Second, we consider an enhanced Multitask learning algorithm,



100 C. Widmer et al.

which can be used to improve prediction performance for an allele by utilizing
binding data of similar alleles. We are able to show that the combination of both
approaches outperforms existing methods.

2 Improved String Kernels for MHC-I Binding Prediction

Background. String kernels are a very powerful tool for machine learning in
bioinformatics due to their capability to exploit the sequential structure of AA or
nucleotide sequences. They have been successfully applied to various problems in
computational biology, ranging from protein remote homology detection [10],to
gene identification [16,20], to drug design [8].

MHC-I molecules bind peptides in an extended conformation (Fig. 1B). Within
the complex the peptide’s side chains interact with surrounding side chains of
the MHC and also with each other. Each of the peptide’s side chains contributes
to the binding affinity. The respective contribution is influenced by the position
of a side chain within the peptide sequence as well as by the AA types of its
neighboring side chains. A string kernel is very well suited to handle such data
is the Weighted Degree (WD) kernel [15]. The WD kernel considers sequences of
fixed length L and counts co-occurring substrings in both sequences at the same
position. It is defined as

Kwd
� (x, z) =

�∑
d=1

βd

L−d+1∑
i=1

I
(
x[i:i+d] = z[i:i+d]

)
(1)

where βd = 2 �−d+1
�2+� is the weighting of the substring lengths.

A major downside to using string kernels on AA sequences is that prior knowl-
edge on properties of individual AAs, e.g., their size, hydrophobicity, charge,
cannot be easily incorporated. Especially when dealing with small training data
sets as common in MHC-I-binding prediction, inclusion of this information in
the sequence representation would be beneficial.

A straightforward approach to utilizing this knowledge is to consider a rep-
resentation of the sequence as vector of the physico-chemical properties of all
sequence elements, i.e. AAs. One may then use a standard kernel to compute
sequence similarities, as, e.g., done in [24, 13]. This approach, however, ignores
the sequential nature of the underlying data.

Here, we propose to combine the benefits of standard string kernels with the
ones of physico-chemical descriptors for AAs.

Idea. As string kernels in general, the WD kernel (1) compares substrings of
length 
 between the input sequences x and z. We can rewrite the corresponding
term I(x = z) as:

I(x = z) = 〈Φ�(x), Φ�(z)〉 ,

where x, z ∈ Σ� and Φ� : Σ� → R|Σ�|.
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Φ�(x) can be indexed by a substring s ∈ Σ� and is defined as Φ�(x)s = 1, if
s = x, and 0 otherwise. Using Φ1 : Σ �→ {0, 1}, a simple encoding of the letters
into |Σ|-dimensional unit vectors, the substring comparison can be rewritten as

I(x = z) =
�∏

l=1

〈Φ1(xl), Φ1(zl)〉 ,

Φ1 ignores the relations between the letters in the alphabet. Since this is a
problem when considering AAs, we replace Φ1 with a feature map Ψ that takes
relations between the AAs into account. This leads to the following kernel on
AA substrings:

KΨ
� (x, z) =

�∏
l=1

〈Ψ(xl), Ψ(zl)〉 . (2)

Using the feature representation corresponding to this kernel, we can now recog-
nize sequences of AAs that have certain properties (e.g. first AA: hydrophobic,
second AA: large, third AA: positively charged, etc.): For every combination of
products of features involving exactly one AA property per substring position,
there is one feature induced in the kernel. A richer feature space including com-
binations of several properties from every position can be obtained using the
following two formulations. The first is based on the polynomial kernel:

KΨ
�,d(x, z) =

(
�∑

l=1

〈Ψ(xl), Ψ(zl)〉
)d

, (3)

and the second on the RBF kernel:

KΨ
�,σ(x, z) = exp

(
−
∑�

l=1 ‖Ψ(xl) − Ψ(zl)‖2

σ2

)
. (4)

Improved WD Kernel. Replacing the substring comparison I(x = z) in (1) with
one of the formulations in (2), (3), or (4) together with a set of features Ψ(a) for
each letter a ∈ Σ (i.e. for each AA), directly leads to a generalized form of the
WD kernel:

Kwd,Ψ
� (x, z) =

�∑
d=1

βd

L−d+1∑
i=1

KΨ
d (x[i:i+d], z[i:i+d]). (5)

Kwd,Ψ
� is a linear combination of kernels and therefore a valid kernel [18]. It can

be computed efficiently, with a complexity comparable to that of the original
WD kernel.

The combination of the WD kernel with the RBF substring kernel (4) is
particularly interesting:

Kwd,Ψ
�,σ (x, z) =

�∑
d=1

βd

L−d+1∑
i=1

exp

(
−
∑d

j=1 ‖Ψ(xj) − Ψ(zj)‖2

σ2

)
. (6)
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For a bijective encoding Ψ and σ → 0, this WD-RBF kernel corresponds to the
WD kernel: the RBF substring kernel will be one only for identical substrings,
otherwise it will be zero. Thus, employing the WD-RBF kernel will, at least in
theory, always yield equal or better performances than the original WD kernel.

3 A New Multitask Kernel for MHC-I Binding Prediction

We will build upon a kernel-based formulation of Multitask Learning, as pro-
posed by [4]:

max
α

− 1
2

n∑
i=1

n∑
j=1

αiαjyiyjK̃((xi, s), (xj , t)) +
n∑

i=1

αi (7)

s.t. αT y = 0, 0 ≤ αi ≤ C ∀i ∈ {1, n},

where s and t correspond to the tasks associated with examples xi and xj ,
respectively.

K̃ ((xi, s), (xj , t)) = K(xi, xj) + Kdirac(s, t) · K(xi, xj), (8)

where K denotes the base kernel that captures the interactions between examples
from all tasks and Kdirac(s, t) is defined as

Kdirac(s, t) =
{

1, if t = s
0, else . (9)

It was shown in previous work [7] that it pays off to use multitask learning
methods for the problem of MHC-I binding prediction. In particular, a multi-
task kernel based on the product of allele (i.e. task) similarity and peptide (i.e.
instance) similarity was used:

KMT((x, s), (z, t)) = Kall(s, t) · Kpep(x, z),

which is a generalization of the kernel presented in Equation (8). Here, the
similarity between tasks is explicitly taken into account, instead of solely setting
a higher default similarity for in-domain comparisons. In the case of MHC-I
molecules, the pseudo sequence (i.e. the AAs in the binding groove of the MHC
that interact with the bound peptide) is used as task-feature. Clearly, the more
similar the pseudo sequences are the more similar we expect the tasks to be.
Furthermore, [8] considered several combinations of kernels for Kall and Kpep.
The best performing combination employed a polynomial kernel on top of a
string kernel of degree d = 1 for both, Kall and Kpep.

We now aim at improving the above multitask kernel KMT as follows. First,
we introduce additional parameters, that allow the specialization of the trade-
off between the in-domain kernel components (i.e. s = t) and the out-of-domain
kernel components (i.e. s 	= t) dependent on the task.
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While KMT is captures how closely related two tasks are, according to some
task kernel Kall, it does not take into account how well information from the
other tasks boosts performance. Clearly, transferring information from other
tasks will become increasingly relevant if only little training data is available.
If there is an abundance of training data for a particular task, it is most likely
sufficient to set a stronger focus on in-domain data.

The above leads us to the following kernel formulation, which introduces a
new multitask kernel composed of a linear combination of two multitask kernels
with two mixing coefficients βs,1 and βs,2 that have to be adjusted for each task
s independently. Details on how the βs,k are tuned are given in the following
section.

KMT-WD((x, s), (z, t)) =βs,1K
WD(s, t) · KWD(x, z)+ (10)

βs,2K
dirac(s, t) · KWD(x, z)

Finally, by combining both lines of work, we propose a multitask kernel that
uses the enhanced WD Kernel KWD-RBF (see Equation 6) from the previous
section to compute the similarity between instances. We arrive at the following
formulation:

KMT-WD-RBF((x, s), (z, t)) =βs,1K
WD(s, t) · KWD-RBF(x, z)+ (11)

βs,2K
dirac(s, t) · KWD-RBF(x, z)

In summary, the new kernel formulation consists of three parts. First, we formu-
late the kernel as a combination of a task specific component and a multitask
kernel component. Second, we introduce task-specific parameters that can be
tuned for each task independently. Third, we combine the previous two ideas
with the novel WD-RBF kernel.

4 Fine Tuning the Kernel with Multiple Kernel Learning

We propose to use Multiple Kernel Learning (MKL) [9] to learn the weights
βs,k of the individual components (see Equation 11) along with the respective
classifiers. In particular, we employ a variant of MKL, which was shown to work
well in the domain of computer vision [5]. Here, the setup is slightly different
from standard MKL, as we first obtain one classifier fi for each kernel Ki (i.e.
fi(x) =

∑
j αjyjKi(x, xj)) and then find an optimal linear combination of the

learned functions in a second step (i.e. f(x, s) =
∑

i βs,ifi(x)). In [5], the authors
propose to use LPBoost for the combination of classifiers. However, LPBoost
yields a sparse solution in terms of kernel weights, which is not what we are
interested in. Therefore, we propose a formulation based on the nu-SVM [19] to
combine the classifiers fi.
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min
β,ξ,ρ

1
2
‖β − 1‖2 +

N∑
i=1

ξi − ρν (12)

s.t. yi

M∑
j=1

βjfj(xi) + ξi ≥ ρ ∀i ∈ [1, .., N ],

βi ≥ 0 ∀i ∈ [1, .., M ]
ξi ≥ 0 ∀i ∈ [1, .., N ]

From preliminary experiments, we observed that βs,k = 1 ∀s∀k often yields a
good solution. We use this as prior knowledge by regularizing the parameter
vector β to be close to a vector of ones 1. Intuitively speaking, only the training
error measured by the loss term will cause the βs,k to differ from 1.

For the training procedure, the training data is split into two parts. The
first part containing 3

4 of training examples is used to obtain the initial fi.
Subsequently, the second part of the training data is used in the loss term of
Equation (12), which is solved for each task s individually. After having obtained
the β, we retrain the fi on the entire training data set and use the determined
β for the final linear combination f(x, s) =

∑2
i=1 βs,ifi(x).

5 Experimental Methods

Data. The IEDB benchmark data set from Peters et al. [12] contains quantitative
binding data (IC50 values) for various MHC alleles, including 35 human MHC
alleles. Splits for a 5-fold cross-validation are given. We evaluate the performance
of the proposed methods on a subset of this data set: binding data of nonameric
peptides with respect to human MHC. Peptides with IC50 values greater than
500 nM were considered non-binders, all others binders.

Amino acid descriptors. A wide range of physico-chemical and other descriptors
of AAs have been published. Within this work we use encode each AA by 20
descriptors corresponding to the respective entries of the Blosum50 substitution
matrix [6].

Performance evaluation procedure. For performance evaluation we employ a two
times nested 5-fold cross-validation, i.e. two nested cross-validation loops. The
inner loop is used for model selection (kernel and regularization parameters) and
the outer loop for performance estimation. Performance is measured by averaging
the area under the ROC curve (auROC).

Learning curve analysis. To assess the performance dependence on the amount
of training data, WD kernel and WD-RBF kernel performances were analyzed
on allele A*0201 in 100 cross-validation runs to average over different data splits
to reduce random fluctuations of the performance values. In each run, 30% of
the available data was used for testing. From the remaining data, training sets
of different sizes (20, 31, 50, 80, 128, 204, 324, 516, 822, 1,308) were selected
randomly.
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Performance analysis of the improved WD kernel. Performances of the WD and
the WD-RBF kernel were analyzed on all 35 human MHC alleles contained in
the IEDB benchmark.

Performance analysis of the multitask kernel approach. Performances of three
multitask learning approaches using a) the WD kernel, b) the WD-RBF ker-
nel, and c) the WD-RBF kernel with an additional optimization step were also
analyzed on all 35 human MHC alleles contained in the IEDB benchmark.

SVM computations. We used the freely available large scale machine learning
toolbox Shogun [21] for all SVM computations. All used kernels are implemented
as part of the toolbox and will be part of Shogun-0.9.3.

Results and Discussion

The main goal of this work is to present novel ideas for kernel-based MHC-I
binding prediction, namely an enhanced string kernel [23] and a refined model
for multitask learning.

Improved WD Kernel

The more data is available, the easier it will be to infer the relation of the AAs
from the sequences in the training data alone. Therefore, the incorporation of
additional information can be expected to especially improve prediction accu-
racy in cases where less training data is available. We chose the allele with the
highest number of peptides, A*0201, to perform a learning curve analysis for
WD and WD-RBF. Mean auROCs with confidence intervals (σ/

√
n) over 100

cross-validation runs are shown in Figure 2. It can clearly be seen, that the
fewer examples are available for learning, the stronger is the improvement of the
WD-RBF over the WD kernel.

In a more comprehensive comparison, we assessed the performance of WD
and WD-RBF kernels on all 35 human MHC alleles from the IEDB benchmark.
WD-RBF outperforms WD for 24 alleles (Fig. 3). This is significant with respect
to the binomial distribution: Assuming equal performance of WD and WD-RBF,
the probability of WD-RBF outperforming WD 24 out of 35 times is ≈ 0.01.

Improved Multitask Learning Kernel

From the results in Figure 4, we can make several important observations. First,
in accordance with the results of [7], we clearly see that multitask learning MTL
(WD) greatly improves performance compared to learning individual models
Plain (WD). Second, we observe a slightly improved performance of Plain, when
using the WD-RBF instead of the WD, which is consistent with the results
from the previous section. In accordance with Figure 2, improvements using
the new kernel are rather small as this dataset contains relatively many exam-
ples. Third, Figure 4 shows that employing the enhanced multitask Kernel MTL
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Fig. 2. Learning curve analysis on MHC allele A*0201. Shown are areas under the

ROC curves averaged over 100 different test splits (30%) and for increasing numbers

of training examples (up to 70%). The training part was used for training and model

selection using 5-fold cross-validation.

Fig. 3. Performance of WD and WD-RBF kernels on human MHC alleles from the

IEDB benchmark data set: The pie chart displays the number of alleles for which the

WD (green) and the WD-RBF (red) performed best, respectively, and the number of

alleles for which they performed equally (blue).

(WD-RBF) introduced in Equation (11) improves performance compared to the
regular multitask learning kernel using the WD kernel. Note, that here, the βs,k

(see Equation 11) are all set to βs,k = 1. Lastly, we observe that the tuning the
βs,k using Equation 12 further improves performance up to auROC = 0.909,
leaving us with the best performing method in our experiments, which slightly
outperforms the method presented in [7], who reported auROC = 0.903 for this
dataset.

We would like to point out that while the improvement over this previous
method is rather small (0.6% auROC), the ideas presented in this paper have the
potential to contribute to greater improvements for two reasons. First, [7] used
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Fig. 4. Performance (averaged over alleles) measured on the IEDB benchmark data set

for several methods. In Plain (WD)/(WD-RBF) classifiers are trained individually for

each task using the WD kernel, or the WD-RBF, respectively. MTL (WD) employs a

multitask kernel based on the WD, MTL (WD-RBF) compares instances using the WD-

RBF and MTL-B (WD-RBF) employs an additional optimization step (see Equation

12) to fine tune kernel components.

a different base kernel. Finding out, whether using this kernel as starting point
to our proposed improvements further boosts performance is subject to future
experiments. Second, the formulation presented in Equation 12 is extensible to
an arbitrary number of kernel components. With more insight into the problem
domain, it might be possible to carefully engineer a multitask kernel with more
than two meaningful components, which could then be tuned using the proposed
formulation.

6 Conclusion

We have proposed two approaches to improve kernel-based Machine Learn-
ing methods for MHC class I binding prediction. First, a modification of the
Weighted Degree string kernel that allows for the incorporation of amino acid
properties. Second, we present an improved multitask learning approach based
on a new multitask kernel. Finally, we combine these two approaches, which
gives rise to further improvements.

Due to their high dimensional feature space, string kernels require a sufficient
number of examples during training to learn relationships between amino acids.
Standard kernels employing physico-chemical descriptors of amino acids, on the
other hand, cannot exploit the sequential structure of the input sequences and
implicitly generate many features, numerous of which will be biologically im-
plausible. Here, one also needs many examples to learn the subset of features
that is needed for accurate discrimination. The lack of training data for a large
fraction of all known MHC class I alleles, however, calls for approaches that
perform well even when training data is scarce. We could show, that incorpora-
tion of physico-chemical amino acid descriptors into the Weighted Degree kernel
yields significant improvements in the prediction of MHC-binding peptides. This
improvement is particularly strong when data is less abundant.
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We confirmed that multitask learning methods are beneficial for MHC class I
binding prediction. Furthermore, we presented an enhanced multitask kernel that
incorporates the improved WD kernel and that has additional hyper-parameters,
which are in turn tuned using a variant of the nu-SVM.

Our results show that incorporation of prior knowledge of amino acid prop-
erties as well as a sophisticated approach to fine tuning the multitask kernel
yields improvements in kernel-based MHC-I binding prediction. While this work
focused on the classification into binders and non-binders, the proposed meth-
ods show promise also for the quantitative prediction of peptide/MHC class I
binding affinity.
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Abstract. A major challenge facing metagenomics is the development

of tools for the characterization of functional and taxonomic content

of vast amounts of short metagenome reads. In this paper, we present

a two pass semi-supervised algorithm, SimComp, for soft clustering of

short metagenome reads, that is a hybrid of comparative and compo-

sition based methods. In the first pass, a comparative analysis of the

metagenome reads against BLASTx extracts the reference sequences

from within the metagenome to form an initial set of seeded clusters.

Those reads that have a significant match to the database are clustered

by their phylogenetic provenance. In the second pass, the remaining frac-

tion of reads are characterized by their species-specific composition based

characteristics. SimComp groups the reads into overlapping clusters, each

with its read leader. We make no assumptions about the taxonomic dis-

tribution of the dataset. The overlap between the clusters elegantly han-

dles the challenges posed by the nature of the metagenomic data. The

resulting cluster leaders can be used as an accurate estimate of the phy-

logenetic composition of the metagenomic dataset. Our method enriches

the dataset into a small number of clusters, while accurately assigning

fragments as small as 100 base pairs.

1 Introduction

Metagenomics is defined as the study of genomic content of microbial commu-
nities in their natural environments, bypassing the need for isolation and lab-
oratory cultivation of individual species[1]. Its importance arises from the fact
that over 99% of the species yet to be discovered are resistant to cultivation[2].
Metagenomics promises to enable scientists to study the full diversity of the
microbial world, their functions and evolution, in their natural environments.

Metagenomics projects collect DNA from environments that are characterized
by large disparity in sequence coverage and abundance of species distribution.
Sequencing technologies are used to survey the metagenomic content. The re-
cent ultra-high throughput sequencing technologies [3] produce relatively short
reads, 25-400 base pairs(bp), and enormous datasets, thereby creating new com-
putational challenges for metagenomics. It is critical that we develop fast and
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accurate tools for assembling and characterizing the phylogenetic provenance
and the relative abundance of different species in a metagenomic sample. Clus-
tering of metagenome reads is one such tool that provides deeper insight into
the structure of the community and hence, can be used to model the ecological
and population parameters. This pre-processing step can lead to faster and more
robust assembly by reducing the search space[14].

2 Related Work

Methods for clustering reads proposed so far in literature can be categorized into
two main approaches; comparative(or similarity) and composition based. Com-
parative based methods align metagenomic sequences to close phylogenetic neigh-
bors in existing databases and hence depend on the availability of closely related
genomes in the database[7,6,11]. Such methods fail to find any homologs for new
families. Composition based methods, on the other hand, distinguish between
clades by using intrinsic features of reads such as oligomer frequencies[10,12,13],
codon usage preferences[17] or GC content[16]. The strength of this approach is
that no reference database is required. However, oligomer composition of reads
shorter than 1 kbp carry insufficient signal to be able to differentiate between
species. Composition based clustering of metagenome reads complements the
comparative analysis[12].

The last decade has seen an explosion in the computational methods developed
to analyze metagenomic data. A number of methods for classifying(as opposed
to clustering) metagenome reads into taxon-specific bins have been proposed
in literature. Phylopythia[10] is a supervised composition based classification
method that trains a support vector machine to classify sequences of length
greater than 1 kbp. Phymm uses interpolated markov models to characterize
variable length DNA sequences into their phylogenetic groups[12]. Its accuracy
of assignment drops drastically for short reads and reads from unknown species.
Nasser et al.[14] demonstrated that a k-means based fuzzy classifier, trained us-
ing a maximal order markov chain, can separate 1kbp reads with a high accuracy
at phylum level. All the above supervised methods depend on the availability of
reference data for training. These methods assume the prior knowledge of the
number of classes. A metagenomic dataset may contain reads from unexplored
phyla which cannot be labeled into one of the existing classes.

Li et al. propose a composition based leader clustering algorithm that clus-
ters highly homologous sequences in order to condense a large database[9]. More
recently, Chan et al. developed a semi-supervised seeded growing self-organizing
map to cluster metagenomic sequences[18]. It extracts 8-13 kbp of flanking se-
quences of highly conserved 16S rRNA from the metagenome and uses them as
seeds to assign the remaining reads using composition based clustering. Com-
postBin uses weighted PCA to project the DNA composition data into lower-
dimensional space, and then uses the normalized cut clustering to classify reads
into taxon-specific bins[20]. Likely-Bin is an unsupervised method for binning
short reads by taxonomy on the basis of their k-mer distributions[21].
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MEGAN, a metagenome analysis software system [11], on the other hand, uses
sequence homology to assign reads to common ancestors based on best match as
given by BLAST(Basic Local Alignment Search Tool)[19]. As most of the extant
databases are highly biased in their representation of true diversity, methods
such as MEGAN fail to find any homologs for new families. Most metagenomic
analysis methods until now have been relatively inaccurate in classifying reads
as short as 100 base pairs.

Increased amounts of polymorphism and horizontal gene transfer in
metagenome reads leads to conflicts in assembly and taxonomic analysis. Reads
from closely related species will most likely have homologous sequences shared
between clusters that fuzzify the cluster boundaries[18]. Another characteristic
of these datasets is the incomplete and fragmentary nature of the metagenome
reads that reduces the quality of annotation. However, clipping low quality reads
such as chimeras can exclude potentially useful sequences. Hence, in light of the
new data, we need to adapt the traditional approaches to metagenome analysis.
Overlapping clusters generated by a soft clustering algorithm such as the one
proposed in this paper elegantly handle the problems associated with the nature
of metagenomic data while providing tolerance for the noise due to errors in
sequencing and fragmentation. The soft boundaries between clusters provide the
flexibility to capture the misplacements of reads due to polymorphism or over
representation of conserved regions, thereby providing interesting insights into
the data.

Our work is inspired by the works of Dalevi et al.[6] and Folino et al.[7]. In
[6], the authors propose a method for clustering reads based on a set of pro-
teins, called proxygenes. The protein hits are obtained by BLASTx (specialized
nucleotide-protein BLAST) of the reads against a reference proteome database.
Their work is extended in [7], where a method based on weighted proteins is
used to cluster the reads, resulting in overlapping clusters, each represented by
a proxygene. The underlying basis of the above methods is that a high sequence
similarity between the read and the proxygene implies phylogenetic proximity
of the organisms from which they originated [6]. Consequently, the taxonomic
annotation of the proxygene can be used in assessing that of the reads in the
cluster. Both the methods use the comparative approach and hence rely on the
use of a reference database that contains closely related genomes. However, in a
typical metagenome dataset, majority of the reads may exhibit no similarity to
any known sequence in the database. In such a scenario, these methods will fail
to assign these reads to any cluster.

In this paper, we propose a two pass semi-supervised algorithm for soft clus-
tering of short metagenome reads. We call our method SimComp; a hybrid of
similarity and composition based methods. The objective of our method is to
enrich the dataset into a small number of clusters such that reads within a
cluster are phylogenetically closer than reads from different clusters. Each clus-
ter is defined by a core consisting of reads that definitely belong to the cluster
and a fringe that has reads which may overlap with other clusters. We make
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no assumptions about the taxonomic distribution of the metagenome dataset.
SimComp makes use of a reference database, however is not dependent on it.

In the first pass, a comparative analysis of the metagenome reads against an
existing database, using BLASTx, extracts reference sequences from within the
dataset to form an initial set of seeded clusters. Reads that have a significant
match to the database are clustered by their phylogenetic provenance. In the
second pass, the global clade-specific characteristics(e.g. oligomer frequency) are
used to cluster the remaining reads by a soft leader clustering algorithm de-
scribed in [1]. Our algorithm groups the reads into overlapping clusters, each
with its read leader. The fringes of the clusters accomodate the ambiguity asso-
ciated with reads in the dataset. It automatically performs the selection of the
number of clusters. Essentially, the comparative analysis of reads avails apriori
biological knowledge in existing protein database to form initial set of seeded
clusters.Then, the composition based characterization of remaining fraction of
reads, thereby facilitating a means of exploring novel species.

3 An Overview of Methods and Algorithm

SimComp is based on the Adaptive Rough Fuzzy Leader Clustering presented by
Asharaf et al.[8]. The authors use rough set theory to define the clusters. Each
cluster has a core(lower bound) and a fringe(upper bound) and is represented
by a read leader. The core contains all the reads that definitely belong to the
cluster. Reads in the core are mutually exclusive between the clusters. There can
be an overlap in the fringes of two or more clusters.

3.1 Comparative Clustering

In the comparative pass of the algorithm, as in [7,6], we associate a list of protein
hits with each read, identified by BLASTx. Each hit consists of one protein, two
score values called bits and identities which describe the significance of read-
protein alignment, and a confidence value called E-value which describes the
likelihood that the sequence will occur in the database by chance. We further
use the measure defined in [7] (explained in the Appendix) for assigning weights
to the each of the proteins, such that proteins that cover more reads are assigned
smaller weights. Proteins that are below a predefined protein threshold form
the proxygenes, the rest are discarded. The proxygenes are clustered with the
corresponding best hit reads(as identified by BLASTx). For each cluster thus
formed, the most representative read is chosen as the leader(seed of a cluster).

3.2 Composition Based Clustering

The reads remaining after the first pass are clustered using the soft leader clus-
tering algorithm based on sequence composition. In this pass, each unclustered
read is compared with the existing read leaders. The similarity between the read
and the leaders along with the sequence thresholds determines whether the read
gets added to the core of some cluster or fringes of one or more clusters, or the
read itself gets added as a leader. The steps in SimComp are outlined below.
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3.3 Definitions

Cluster. Each cluster consists of a read leader, representative of the set of reads
in the cluster. A cluster is defined by the following parameters:

• Protein threshold (PT ): Proteins with weight below the threshold form
proxygenes. Each proxygene is representative of a cluster with the cor-
responding reads(as identified by BLASTx). Rest of the proteins are
discarded. The weight assigned to a protein is measured by two score
values, i.e. bits and identities, and a confidence value called E-value[7].

• User defined core and fringe sequence similarity threshold for clusters
(RTC and RTF ): If the similarity between the read and its nearest leader
is greater than RTC , the read is added to the core of a cluster. Otherwise,
if the similarity between the read and the corresponding cluster leaders
is greater than RTF , the read is added to the fringes of one or more
clusters.

Sequence similarity. Each sequence is represented by a vector of oligomer
frequencies, v = (f1, f2...fq); where for each oligomer of length n, O =
(o1, o2...oq) is the set of all possible oligomers, fi is the frequency of oligomer
pattern oi in the read, q is the number of oligomer patterns of length n possi-
ble, i.e. 4n. Each vector is normalized relative to the length of the sequence.
S(x, y) gives the similarity between read x and leader y. We define sequence
similarity as the number of fixed length oligomers shared between x and y.

Fuzzy membership. Uik is the fuzzy membership of the read ri in a cluster
represented by Leader Lk.

Uik =
N∑

j=1

S(ri, Lk)
S(ri, Lj)

(1)

3.4 SIMCOMP : Outline of the Algorithm

The algorithm proceeds in two passes. Let R = (r1, r2, ...rn) , be the set of all
reads and N be the number of clusters at any point in the algorithm.

I. Comparative Clustering: In the first pass, metagenome reads are
grouped into clusters based on similarity of the reads to the proteins in
the reference database.
1. Extract all proteins that R has hits to(by BLASTx).
2. Assign weights to all the proteins based on equation described in [7] (see

Appendix). Proteins with weight below PT form proxygenes.
3. Each proxygene, along with the corresponding best hit reads (identified

by BLASTx) form a cluster.
4. For each of the clusters, find a read leader that is most representative of

the reads in the cluster, i.e. one whose sum of sequence similarity from
all the other reads in the cluster is maximum.

II. Composition Based Clustering: In the second pass, we use the simi-
larity measure based on oligomer frequency(defined above) to cluster the
remaining reads.
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1. All the reads from the original dataset that have not yet been clustered
form the remaining read set. For each read in the remaining read set,
compare the read with the existing read leaders. Depending on the value
of RTC , RTF and sequence similarity between the read and the leaders,
one of the three cases can arise for assignment of the current read:
(a) It gets added to the core of a cluster. The current read gets added to

the core of a cluster represented by leader Lp, if max(S(ri, Lk)/k =
1...N) = Dip and Dip > RTC .

(b) It gets added to the fringes of one or more clusters. ri falls into
the fringes of all the clusters Lp for which S(ri, Lp) > RTF and
S(ri, Lp) < RTC .

(c) Otherwise, ri gets added as leader since it is outside the region de-
fined by any of the existing clusters.

4 Results

We implemented our algorithm in Matlab. All experiments were run on an
IBM X3550 server with 8GB memory. We tested our method on the simulated
metagenome datasets M1, M2 and M3, introduced in [6], each at a coverage of
0.1X. These datasets were sequenced at Joint Genome Institute using the 454 py-
rosequencing platform that produces ∼100 bp reads. We present results from ex-
periments on M1 dataset only due to constraints in space. The characterization
of reads at the taxonomic level of an organism for M1 is as shown in Fig 1. We
used the default parameters of BLASTx, and NR[15] (Non-Redundant) protein se-
quence database as our reference. We have conducted experiments for varying val-
ues of user-defined thresholds(RTC , RTF ) and lengths of oligomers. Based on the
evaluation of our method on M2 and M3, we observed that proteins with weight
below the 1st percentile cover all the taxonomies that reads belong to. Therefore,
we selected the 1st percentile of weight as our protein threshold. The most time
consuming component of SimComp is generating the BLASTx output. Once this
output has been generated, the algorithm performs a single pass over the BLASTx
output and the dataset to cluster the reads and hence is very efficient.

4.1 Accuracy across Taxonomic Ranks

In this paper, we use two measures to evaluate the effectiveness of our method:
Mode Cluster Purity and Leader Cluster Purity. Mode Cluster Purity is defined
as the maximum fraction of reads in a cluster belonging to the same taxon[7]. We
define Leader Cluster Purity as the fraction of elements in the cluster belonging
to the same taxon as the read leader. This measure determines how well our
algorithm models the problem of classifying reads from species that have never
been seen before. Depending on the elements of the cluster that we evaluate
on, cluster purity can be further divided into core cluster purity(all the reads
in the core of the cluster) and total cluster purity(all the reads in the cluster).
In evaluating both the measures, we take into account only the non-singleton
clusters, as a singleton cluster has a cluster purity of 1.



SIMCOMP: A Hybrid Soft Clustering of Metagenome Reads 119

Fig. 1. Organism level characterization of M1 dataset

In Fig 2, we plot the taxonomic distribution of reads in M1 at phylum, class,
order and family level(RTC = 15 and RTF = 12 and length of oligomer = 6) as
predicted by our algorithm. To measure the taxonomic distribution, all the reads
in the cluster are assigned the same taxa as the read leader. Our method yields
satisfactory results at all ranks. Hence, leaders of the clusters can be used as an
accurate estimate of the phylogenetic composition of the metagenome. In [6,7],
only those reads that have significant hits in the BLASTx output are selected
for further clustering, the remaining reads are discarded. As opposed to this, in
our method, we cluster all the reads in the dataset, even if no significant hits to
the reference database are obtained. In Fig 3, we have plotted three measures
for dataset M1 across all taxonomic ranks. By definition, mode cluster purity is
greater than or equal to leader cluster purity. From the plot, we conclude that
the cluster purity of the core is higher than that of the entire cluster at all ranks.
This asserts our algorithms ability to filter out low quality reads into the fringe
of a cluster.

4.2 Length of Oligomer

Oligomer frequency of genomes has been shown to reflect clade-specific charac-
teristics and thus form a genome signature[4]. Teeling et al.[5] have shown that
tetranucleotide frequency has a higher discriminatory power than GC content for
phylogenetic grouping of reads. We have evaluated the accuracy of assignment
of reads to clusters for a range of oligomers varying from trimers to hexamers.
Fig 4 shows the plot of percentage of non-singleton clusters with purity values
in the range [0.1,1] for varying lengths of oligomer. From our experiments, we
conclude that hexamers have the best discriminatory power for clades at higher
taxonomic ranks. With reads as small as 100 bp, not many reads cross that
high a similarity threshold for hexamers. This explains the increase in number
of singleton clusters with the increase in read threshold.
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Fig. 2. Taxonomic Distribution Across Ranks (Phylum, Class, Order, Family
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Fig. 3. Average cluster purity across taxonomic ranks for (RTC = 15 and RTF = 12

and length of oligomer = 6, Number of Clusters = 2430)

Fig. 4. Plot of percentage of non-singleton clusters for different values of purity with

RTC = 25 and RTF = 22 and varying values of oligomers

4.3 Read Threshold

In our method, sequence similarity between two reads is measured as a function of
number of fixed length oligomers shared between the two reads. A read is added
to the core of an existing cluster only if the read similarity between the read
and the cluster leader is above a certain threshold. Fig 5 plots the mode cluster
purity for different values of read thresholds. The curve for RTC = 25 clearly
dominates the others. This is justified as clusters with large read thresholds are
smaller in size and hence are likely to have a high purity. Table.1 summarizes
the results for a fixed oligomer length of 6 and varying read thresholds. Cluster
purity increases with the increase in read thresholds, for the reasons cited above.
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Fig. 5. Plot of percentage of non-singleton clusters for different values of purity with

oligomer lenght = 6 and varying values of Read Threshold (Core, Fringe)

Table 1. Summary of the results of experiments for oligomer length = 6 and varying

Read Thresholds

RTC 10 15 20

RTF 8 12 17

Number of Clusters 1482 2430 14250

Maximum size of clusters 320 415 288

Number of singleton clusters 6 67 5865

Reduction factor 0.042 0.068 0.4

Mode Cluster Purity at Phylum level 79.93 88.14 96.95

Mode Cluster Purity at Organism level 40.88 61.75 88.41

5 Conclusion

In this paper, we proposed SimComp, a soft clustering method that allows com-
plete and accurate characterization of short metagenome reads that come from a
spectrum of known and unknown species. We clustered a simulated dataset using
a hybrid of comparative and composition based method. The overlap between
the clusters accomodates the ambiguity associated with metegenomic data. It
does not require assembled contigs or training on a reference set, nor does it
make any assumptions on the number of species or the nature of the dataset.

The oligomer composition of reads as short as 100 bp does not provide suf-
ficient signal to differentiate between species. For best results, we would like to
test our algorithm on metagenome datasets with larger read length. Phenomena
such as polymorphism and horizontal gene transfer can complicate phylogenetic
clustering. As proposed in this paper, the soft boundary between clusters has
the ability to capture such misplacements providing interesting insights into the
data. We believe soft clustering has a promising role in classifying metagenome
reads and we wish to investigate its scope in the future.
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Appendix

As in [7], from each hit that BLASTx outputs for a given read r, we extract
a 4-dimensional vector h = (p; SB; Id; E) where p is the matched protein, SB

the bit score, Id the identities score, and E the E-value of that match. For a
read r let Hitr be the sequence, sorted in increasing order of E-values, of its hits.
Denote by r1, ..., rm the set of reads r with non-empty Hitr. Let P = {p1, ..., pn}
be the set of proteins occurring in ∪m

i=1Hiti For each protein p ∈ P , the set Hp

is defined as:
Hp = {h ∈ ∪m

i=1Hiti|h(1) = p} (2)

where h(1) denotes the first component of the hit vector h. Thus Hp consists
of the selected hits containing p. We use the equation described in [7] to assign
weights to the each of the protein hits that BLASTx outputs. Weight of protein
p is defined as:

wp = 1 + � 1
|Hp|

∑
hεHp

(100
max score − SB(h)

max score − min score
+ 100 − Id(h))� (3)

where Hp consists of hits containing p, SB(h) and Id(h), the bit and identity
score of hit h respectively. For further details, we refer the reader to [7].
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Abstract. We describe herein the results of implementing an algorithm

for syntactic pattern recognition using the concept of Finite Inductive

Sequences (FI). We discuss this idea, and then provide a big O estimate

of the time to execute for the algorithms. We then provide some empir-

ical data to support the analysis of the timing. This timing is critical

if one wants to process millions of symbols from multiple sequences si-

multaneously. Lastly, we provide an example of the two FI algorithms

applied to actual data taken from a gene and then describe some results

as well as the associated data derived from this example.
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1 Introduction

Despite the fact that there has been extensive research and development within
the pattern recognition topic, new problems continue to emerge that require more
efficient revisions of existing techniques and, occasionally, new techniques to solve
existent problems. For example, the problems associated with finding motifs [1],
[2] are particularly difficult due to mutations, unknown boundaries, etc. While
many new problems continue to emerge that could potentially benefit from the
use of pattern recognition, but the current effort reported herein is an extension
with applications of previous work [3] in reference to the field of bioinformatics,
where it is often the case that genetic data is processed for a vast multitude of
diverse purposes. Regardless of the purpose of the research, bioinformatics often
entails processing genetic data in the form of strings consisting of the symbols
A, C, G, and T as well as equivalent protein sequences. This type of string is
suitable for syntactic pattern recognition using finite inductive (FI) sequences,
but again there are some issues that need to be addressed, and we will address
some of them later in this paper. It is the purpose of the FI algorithms [4] to
provide a general technique to achieve pattern recognition when comparing finite
strings in order to determine a) what patterns exist in the examined strings, and
b) whether or not subsequent strings contain similar or identical subsequences
in the same form as such exemplar substrings are known by the algorithms.

T.M.H. Dijkstra et al. (Eds.): PRIB 2010, LNBI 6282, pp. 125–136, 2010.
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2 Review of FI Algorithms and Theory

The idea [4] is to introduce a ‘ruling’ as a finite machine that can, when provided
a short driving sequence, generate a sequence that is much longer. The ‘rules’
called implicants contained within the ruling come from the processing of a
finite sequence of symbols constructed from the designated alphabet. We further
stipulate that the choice of any symbol at any particular position depends upon
only the symbols at the previous n points. The least such n is called the inductive
base (IB) for the sequence. We define an implicant as the pair (w, p) consisting
of a word w over the alphabet and a single member p of that alphabet. We
also require that w occurs at least once, and whenever w occurs, then it is
followed immediately by p. We express this relationship as w→p, and call w the
antecedent and p the consequent. We also assume w is in reduced form: there is
no proper terminal segment that is the antecedent of another implicant. We can
state the following simple properties:

– For any finite sequence, the IB is the maximum length of the antecedents in
the reduced form implicants.

– If an FI sequence has inductive base A and contains b symbols in the alpha-
bet, then the upper bound for the reduced form implicants is bA.

For purposes of simplicity, we will assume there is a distinguished symbol S that
serves as the start symbol for all FI sequences. We also state without proof that
if the original implicants (called prime implicants) generated from the sequence
have inductive bases that differ among themselves, then it is possible to reduce
the inductive base b of the implicants to a value 1 ≤ IB < b.

2.1 Generating and Applying the FI Algorithms

There are two algorithms that make up the FI system. These are called Factoring
and Following. Factoring is the process whereby a storage structure called Ruling
is generated based upon an a’priori IB, and Following is the process whereby the
ruling is applied to unknown patterns.

Example 1: Factoring. Suppose we have a sequence aactgctagt. We append
the start symbol and then begin the process of factoring, and we will allow the
IB to be as large as necessary to accommodate all of the implicants in one level
(called Prime Implicants).

Input Sequence: Saactactagt (1)

Implicants: S → a, Sa → a, aa → c, ac → t, ct → a, aacta → c, tac → t,
tacta → g, and g → t

As can be seen from the implicants, the IB is 5, and there are other implicants
with IB less than 5, so we can reduce these prime implicants to new implicants
with IB say 2. We do so in the following steps:

Step 1: We note that the following implicants meet our new IB value of 2:
S → a, Sa → a, aa → c, ct → a, ac → t, g → t (2)
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This leaves the symbols in the string from (1) as follows in (3) where the
consequents not kept (pushed out) are shown in Level 1:

Level 1 S t c a g
Level 0 S a a c t a c t a g t (3)

Step 2: We apply the same process of Step 1 to the symbols remaining in Level
1. Level 1 is called the residual for Level 0. This produces the following rules (4)
with an empty residual:

S → t, t → c, c → a, a → g (4)

From (2) and (4) we can now define the ruling with inductive base 2 for the
sequence aactactagt with driving sequence S.

Level 1 S → t t → c c →a a →g
Level 0 S → a Sa → a aa → c ct → a ac → t g → t (5)

Example 1: Following. Suppose we have a new sequence Saactggacattac and
we want to process it against our known sequence as represented by the ruling
in Example 1.

Step 1: We apply all implicants of (5) in Level 0 to see for the given antecedents
if the consequent matches. If it matches, then the consequent is deleted at the
end of the processing for this level. The symbols bolded indicate that the symbol
is deleted.

S a a c t g g a c a t t a c

Step 2: We apply the implicants of (5) in Level 1 to the residual of Step 1.

S g g a c a t t a c

This results in the residual string S g g a c t t a c. One cannot say much about
the two strings as how they relate to one another, since they do not represent
much data; but we can say in general that the two sequences are not very similar
to one another. At this stage, we could add the sequence of Example 2 to the
ruling, if it was important. In general, the Factoring process can deal with n
sequences simultaneously, so we can deal with permutations of sequences if they
are important. We can also make the rules non-deterministic.

3 Algorithm Overview

Before carrying out an empirical analysis of the implemented FI algorithms, we
first consider how the algorithms were implemented so the analysis will be un-
derstood. Implementation decisions for the general version of the algorithm were
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based on the following two principles: (1) the performance of the algorithm will
be greatly enhanced if we can ensure linear runtime, and (2) the algorithm must
be implemented so it can be applied to strings of considerable length without
causing problems related to memory consumption.

3.1 Factoring Analysis

The first step in the factoring portion of the algorithm is to read each of the
valid symbols in the alphabet from a file, store them in an array that holds
all the alphabet symbols, and assign each one a numerical value based upon the
index where the symbol was stored. The total number of symbols in the alphabet
is b, called the base, due to the fact that alphabet sequences are treated as a
numbers represented in the corresponding base number system for the purposes
of hashing. In order to implement hashing, a second array of size bIB is created
(IB again is the maximum antecedent length defined as inductive base) with
each index representing a possible rule antecedent. All indices are initialized to
a null value that indicates that the antecedent does not yet have a corresponding
consequent. Symbols from the initial string are read one at a time and placed in
a queue that maintains the previous symbols read, up to the maximum value of
inductive base.

Once the queue fills for the first time each new symbol that is read is treated
as the consequent of the antecedent that is implied by the contents of the queue.
The sequence of symbols that currently fill the queue are hashed to determine
the index of the corresponding antecedent. The current symbol is then compared
to the contents of that index; if the index is empty the consequent is placed at
the corresponding index. If the index already contains a matching consequent
no action is taken. If the index contains a consequent that does not match,
the current symbol in the index is given a special value that indicates that the
antecedent represented by that index is not a valid antecedent. The indices that
are generated by each hash are written to a temporary file each time a hash
occurs to serve as input for the next step of the process.

With every possible antecedent having been marked as empty, invalid, or
containing a valid consequent, the process of generating the residual for the next
level of processing can begin. Each hash index that was previously written to the
temporary file is read while simultaneously examining the symbol from the initial
string that was being examined when the hash occurred. If the hashed address
points to an antecedent index that has been flagged as invalid, the symbol is
written to a file as part of the string that will be factored in the next level. With
the new string generated for the next level, the remaining task is to output
the valid rules based upon the antecedents that have valid consequents in their
reduced form. In order to reduce each rule before outputting it, the task of
examining every antecedent that could keep the rule from being reduced must
be performed (i.e. the rule BA → B can be reduced to A → B as long as AA
→ B, BA → B, CA → B, and DA → B are all true or do not exist if the
input alphabet consists only of A, B, C and D). It is sufficient to state that this
can be accomplished by examining the contents of the array that symbolizes all
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antecedents once for each reduction that is to take place (i.e. a maximum IB of
length three would require two passes through this array to find any rules that
can be reduced to IB of length one). The entire process described to this point
must be repeated for each ruling level that is generated with the exception of
loading the alphabet, which occurs once.

3.2 Following Analysis

The following process is far simpler in design than factoring. The alphabet must
still be initially loaded, and the array to represent all possible antecedents must
still be initialized so that each antecedent is empty. The first ruling level is read
from a file and each valid rule that was found is processed so that the consequent
is placed in the appropriate index that corresponds to its antecedent. Once the
array of antecedents has been filled, the process of reading the target string one
symbol at a time, similar to reading the input string in factoring, is performed,
in the same manner as the factoring process. The only difference is that an
empty antecedent or one that contains a consequent that does not match the
current symbol will result in the current symbol being written to a file as a
residual for this level. Each new corresponding level requires the repetition of
this process with the ruling appropriate for that level and the new target string
that was generated by processing the previous target string using the previous
level’s ruling. Thus when the process is complete the user is left with a file that
contains all of the symbols that did not conform to any implicants in the previous
level of the ruling.

4 Performance Analysis

With a general understanding of how the factoring and following processes are
implemented, we consider the anticipated performance of the algorithm. We are
interested in determining if the algorithm as described can be processed in linear
time. The size of the input is the primary consideration, and expected runtimes
are expressed in terms of input volume.

The factoring process is the more complicated and will necessarily have the
longest performance time. The initial pass through the alphabet can be repre-
sented in terms of b, the number of valid symbols in the alphabet (also known
as the base). The size of the array to represent all possible rule antecedents,
namely bIB, must be counted each time the array is examined. This occurs once
when initializing each antecedent as empty, and once for each pass to determine
if rules can be reduced (IB - 1). Thus we can represent this element of perfor-
mance by the formulation (IB - 1) (bIB) + bIB. The length of the initial string
we will designate by N . The entire length is processed three times for each level:
once while scanning symbols to generate consequents, once while examining the
hash addresses that were output, and a third time while examining the hash
addresses. This requires 2N time. Taken together, the algorithm’s performance
for processing a single level can be described by b + bIB + (IB - 1) (bIB) +
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3N . We know this process is repeated with each ruling level L that is generated,
except when loading the alphabet. This estimate is shown in (6).

b + L[bIB + (IB − 1)(bIB) + 3N ] (6)

For following we need to determine the elements that are factors in its expected
performance. The alphabet must still be loaded, and this can again be expressed
by the variable b. The antecedent array still exists and can still be represented
by bIB; however, the number of times that this array is examined differs. The
array is still initialized once while processing the current level, but now it is only
examined one additional time as rules are expanded back into their maximum
antecedent form. This can be represented simply as 2bIB. The length of the
compared string, N , is only examined once per level in the process of following,
but we must define a new variable R that corresponds to the number of rules in
the ruling for the level, since each rule must be loaded into the antecedent array.
This yields the upper bound on time complexity of b + R + 2bIB + N for each
level and (7) for all levels.

b + L[R + 2bIB + N ] (7)

Expressing these equations in terms of Big-O notation yields the equations (8)
and (9) for the factoring and following respectively.

O(b + L[bIB + (IB − 1)(bIB) + 3N ]) (8)

O(b + L[R + 2bIB + N ]) (9)

We can substitute bIB in for R since this value is the maximum value. Next
expanding (8) yields (10), and with the substitution, (9) can be rewritten as
(11).

Ob + L[IBbIB + 3N ]) (10)

O(b + L[3bIB + N ]) (11)

While the term b is variable depending on the problem domain, the value remains
constant within any single problem domain (i.e. the algorithm is not designed
to apply rulings to strings that are formed from a different alphabet than the
string that was examined during the factoring process). Furthermore, the algo-
rithm always utilizes the same maximum IB in the following process as the one
used in the factoring process (i.e. the algorithm may be applied to strings of
any length, but the maximum IB does not vary between the factoring and fol-
lowing processes). It is therefore possible, based on these facts and the fact the
variables are independent of N , to treat these variables as constants. Removing
these variables, along with all other constants from both equations, produces the
equation (12) for both factoring and following.

O(L + LN) (12)
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The worst-case scenario of the FI Algorithm can be determined by examining
cases where the process of factoring is applied to a string that contains few
recognizable patterns or no patterns at all. In the latter case it is evident that
the only rule that can possibly be generated is the rule that defines those symbols
that start the given string. When this type of string is factored it will create a
situation where the number of levels in the ruling will be N

b bounded by N if b
is small. Knowing this fact leads to the conclusion that the worst-case scenario
of the FI Algorithm is one where the factored string is entirely random, and the
expected performance time (O(L + LN)) is quadratic (O(N + N2)). We now
show a strategy to prevent this scenario from occurring.

The expected performance of (12) for the factoring and following portions of
the algorithm can be reduced to O(N) under one of the two following conditions:
1) we can ensure that the term L remains a constant, or 2) we can ensure that L
remains an insignificant factor when compared to the variable N . It is possible
to begin to satisfy the second condition by restricting the strings being factored
by the algorithm to only those that are believed to have significant underlying
patterns. However, this is idealistic in the sense that the randomness of the
factored string would have to be determined beforehand in order to ensure that
this fact remains true. It is a simpler task to allow the user to place an upper
bound on the number of levels that can be produced by factoring the given
string, thus ensuring that L remains a constant that is equal to or less than this
upper bound; it is this strategy that is employed to ensure a linear runtime of
the proposed algorithm.

5 Empirical Performance Test

The following subsections discuss the empirical results of the experiment in order
to determine the accuracy of the predicted expectations that both processes will
perform with linear performance dependent upon the number of input symbols
N .

5.1 Experiment Design

The experiment is designed to allow for the testing of whether or not the factor-
ing and following are producing linear runtimes. In order to fulfill these testing
requirements, the processes of factoring and following have been executed in-
put data sizes increasing by an order of magnitude (i.e. string lengths of 103,
104, 105, 106, 107, and 108 symbols) using an alphabet that consists of four
symbols: A, B, C, and D. In order to determine linear performance regardless
of the maximum IB used two IBs (5 and 10). The maximum number of levels
that can be processed has been restricted to 100 levels in all cases, and each
process is implemented in C++ with the timing mechanism built into the code
itself.
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5.2 Timing Results

Ten repetitions were done for each experiment with times recorded to the near-
est millisecond. Fig. 1 and 2 provide summary results of these experiments for
factoring and following respectively. The first task in analyzing the resultant
data from the experiment is to determine if the factoring portion of the algo-
rithm is indeed producing slower execution times than the following portion of
the algorithm. The graphical data suggests that the factoring process is produc-
ing slower times compared to the following process, but the question remains as
to how much slower. In analyzing the raw data we obtained from the repeated
experiments, we can compare the performance of the factoring portion to the
following portion of the algorithm. Our empirical results show that the factoring
process required 5.82 times the execution time of the following process when we
are dealing with the longer antecedents and a value of 2.49 times for the shorter
antecedents.
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Fig. 1. Data for the Factoring process

The data recorded in both processes that correspond to a maximum IB of
length five clearly produced a linear progression (as demonstrated by Fig. 1 and
2), despite the fact that there is an increase in the slope of the line that corre-
sponds to the factoring process once the length of the target string exceeds 104

symbols. A linear progression is also reached in both processes using a maximum
IB of length ten, but the progression does not become completely linear until
the length of the target string has reached 106 and 105 symbols for factoring and
following, respectively.
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6 Application of FI Algorithm to Actual Data

Consider the nucleotide subsequence obtained from [5] shown in (13).

GTGCGATTTTTTTCTCCTCCTTTTTTTACCCTCCCGTT
TTTTTCTTTTCTTTTTTTTTTCCCTATCCTTTTTTTGT (13)

This subsequence begins at the 244th position in the sequence consisting of some
21,069 symbols. Factoring this sequence we obtained 16,916 rules, meaning that
the sequence has 4,153 nucleotides that have duplicate antecedents. This implies
20 % of the subsequences overlap at least with one other subsequence. The
ruling built consists of 18 levels, and since this percentage comes from a multi-
level ruling, this commonality between subsequences may be due to elimination
of symbols at one level producing homogeneous antecedents at the next level.
Fig. 3 shows the number of implicants by level. From Fig. 3, we see that the
number of implicants stays pretty constant through level 8, and then it grows
quickly as the levels increase. This growth can be attributed to the fact that the
sequence becomes choppier, that is, the repeated runs of patterns are removed
by level 9 and so with more disparity, fewer identical antecedents with differing
consequents contradict one another.

From Fig. 3, we see that the number of implicants stays pretty constant
through level 8, and then it grows quickly as the levels increase. This growth can
be attributed to the fact that the sequence becomes choppier, that is, the re-
peated runs of patterns are removed by level 9 and so with more disparity, fewer
identical antecedents with differing consequents contradict one another. For the
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next step, we factored the subsequence in (13) and used this as the ruling with
an inductive base of length 3, and then processed the entire sequence. Fig. 4
provides the results of this activity. The light gray cells are those that belong to
(13), and the dark gray are those symbols that have an implicant matching one
in the ruling but are not in the subsequence of interest. The basis for this type
of application is well treated in [6].

Fig. 4. Nucleotide sequence starting at position 201 and ending at position 375

Besides the subsequence in Fig. 4, there are other matches. Fig. 5 shows two of
the longer ones. The first subsequence in Fig. 5 starts at position 54 and the sec-
ond starts at position 935. Since the identification of a matching substring is not
difficult, we provide an extension to the matching under random permutations
of the subsequence being used to build the search ruling. We modified 10 % of
the symbols in the substring we were looking for and then followed the unknown
string with a ruling of inductive base 3 and another with inductive base 9. We
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Fig. 5. Two subsequences found by the ruling with white indicating no match

provide the results in Fig. 6, where we only show that portion associated with
the location of the substring we are trying to find. In Fig. 7 we show another
contiguous substring from the unknown string, so that the density of the two
areas can be compared. Comparing the results from these two test blocks, we
obtain the results shown in Table 1. We have also compared the complexity of
such nucleotide sequences by considering their representation within a ruling as
a measure not unlike Kolmogorov complexity [7].

Fig. 6. Results of Following when 10 % of the symbols are changed. White indicates no

change, dark gray are symbols recognized by ruling of IB of 9, light gray are recognized

symbols by ruling of IB 3, and 50 % gray are symbols recognized by both rulings.

Fig. 7. Results starting from position 450 in the unknown sequence where the color

key is identical to that of Fig. 6

Table 1. Comparative counts for the data of Fig. 6 and 7

IB IB

3 9 Both White

Fig. 6 22 7 26 30

Fig. 7 26 1 4 54

7 Conclusion

The results of this work have been to provide a comparative basis for the timing
of an algorithm that will recognize substrings of symbols, even under mutation.
We have shown by logical argument as well as by empirical data that the algo-
rithm operates in linear time with the size of the input data sequence being the
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driving factor. Also as shown in the last section in Table 1, the short inductive
base provides too many extraneous symbol matches, while the long inductive
base provides too few. There must be another inductive base that would be
most appropriate. But even with these two selections, and the selections were
made to first yield a ruling with only one level (IB = 9) and as many levels as we
could obtain (IB = 3), the results provide an upper and lower bound. We still
have more work to do to refine this algorithm to provide a more robust result for
processing large sequences of symbols from a small alphabet. It is clear that the
longer the sequence, the more potential there is for conflict when the inductive
base is fixed to a reasonable value, perhaps 5 to 7 symbols. We have shown that
such conflicts indeed do exist in the early levels of a ruling, limiting their growth.
Lastly, we believe that the approach of non-deterministic rulings may provide
an additional benefit for this kind of processing.
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Abstract. Sequence motifs are of greater biological importance in nu-

cleotide and protein sequences. The conserved occurrence of identical

motifs represents the functional significance and helps to classify the bi-

ological sequences. In this paper, a new algorithm is proposed to find all

identical motifs in multiple nucleotide or protein sequences. The proposed

algorithm uses the concept of dynamic programming. The application of

this algorithm includes the identification of (a) conserved identical se-

quence motifs and (b) identical or direct repeat sequence motifs across

multiple biological sequences (nucleotide or protein sequences). Further,

the proposed algorithm facilitates the analysis of comparative internal

sequence repeats for the evolutionary studies which helps to derive the

phylogenetic relationships from the distribution of repeats.

Keywords: Sequence motifs, nucleotide and protein sequences, identi-

cal motifs, dynamic programming, direct repeat and phylogenetic

relationships.

1 Introduction

A conserved pattern of a nucleotide or amino acid sequence with a specific bi-
ological function is known as a sequence motif and is becoming increasingly
important in the analysis of gene regulations [1]. Research on protein and DNA
sequences revealed that specific sequence motifs in biological sequences exhibit
important characteristics [2]. In DNA sequences, the sequence motif act as spe-
cific binding sites for proteins (nuclease, transcription factors, etc.) and RNAs
(mRNA splicing, transcription termination, etc.) [1]. Further in proteins, these
motifs act as enzyme catalytic sites, prosthetic group attachment sites (haem,
pyridoxal phosphate, biotin, etc.), metal binding amino acids, cysteines involved
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in disulfide bonds or regions involved in binding a molecule [3]. In the recent
years, due to the exponential rise in the volume of nucleotide and amino acid
sequences in their respective databases, identification of sequence motifs using
experimental methods is impossible. In addition, many newly discovered pro-
tein sequences do not share a global sequence similarity with a known protein.
However, they share a short stretch of conserved sequences which represent the
characteristics of similar domains [4]. Over the past years, these problems have
been addressed using newly developed computational methods [5],[6],[7]. To this
end, an efficient algorithm is proposed using the dynamic programming.

Earlier studies indicate that the transcription factor (TF) binding sites are
well conserved motifs of short DNA sequence stretch. The motif size ranges from
5 to 35 nucleotides long and occur in a well-ordered and regularly spaced man-
ner [8],[9]. For example, in eukaryotes the cis-regulatory module (CRMs) usually
occurs in a fixed arrangement and distributed over very large distances. Further,
the repeat occurrence of this binding site will help for the alternate modes of
binding by the same protein which leads to the regulation of transcriptional ac-
tivity. Gene duplications and recombination events are thought to be responsible
for this repeat occurrence of sequence motifs. The distribution of repeats in ar-
chaea indicates that they have an intermediate relationship between prokaryotes
and eukaryotes [10]. In DNA, these repeats are mainly classified into two groups
such as tandem and interspersed repeats. The tandem repeats are an array of
consecutive repeats and often associated with disease syndromes [11]. On the
other hand, interspersed repeats are copies of transposable elements located at
various regions in a genome. Moreover, the repeats that are separated by inter-
mediate sequences of constant length occurring in clusters are referred to short
regularly spaced repeats (SPSRs) [12]. Generally, these short repeats indicate
the position of deletion and precise removal of transposable elements [13], where
as, longer identical repeats are responsible for class switching in immunoglobu-
lins [14]. Further, tandem repeats in telomers are involved in the protection of
chromosome end and its length. In some cases, the internal sequence repeats in
proteins adopt similar three-dimensional structures [15],[16]. However, further
work is necessary to ascertain this aspect. In addition, the internal sequence
repeats are observed to be associated with structural motifs or domains in the
class of repeat protein families [17]. Further, the repeated sequence motifs play
an active role in protein and nucleotide stability, thus, not only ensuring proper
functioning [18] but some times cause malfunction and disease [19],[20].

1.1 Existing Algorithms

In the post genomic era, many algorithms are available in the literature to find
the sequence motifs and repeats in biological sequences. However, these algo-
rithms significantly vary in their methodologies. In general, the motif finding
algorithms are divided into two major groups based on their working principle.
The first group of algorithms identifies the motifs with reference to the anno-
tated motif database. For example, the programs InterProScan [5], Motif Scan
[21], ScanProsite [22] and SMART [23] search for motifs against protein profile
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database such as Prosite, Pfam, TMHMM etc. In addition, the above mentioned
programs are limited to only protein sequences. Further, the program MOTIF
[24] identifies the motif in both protein and DNA sequences using the above
profile databases as well as user defined libraries. In contrast, another set of
programs such as MEME [6], TEIRESIAS [7], ALIGN ACE [25], DILIMOT [26]
and Gibbs Sampler [27] identify the motifs without any reference database. How-
ever, they use some statistical methods to identify the motifs and represent the
conserved regions of the motifs in the form of sequence patterns using regular
expressions or sequence logos. It is to note that most of these algorithms lack in
the limitation of input sequence size (TEIRESIAS and ALIGN ACE take around
3,50,000 residues and the program MEME limits only to 60,000 residues).

The proposed algorithm has been developed by keeping the above lacuna in
mind and uses the dynamic programming method implemented earlier [28] to
identify all identical motifs present in multiple biological sequences (nucleotides
and protein). To the best knowledge of authors, there is no such algorithm exists
in the open literature. The proposed algorithm can be effectively used for the
comparative identification of direct repeat motifs in several biological sequences.
However, inorder to reduce the computational time, the total number of residues
for a single run is restricted to a maximum of 10,00,000 residues.

2 Methodology

The proposed algorithm identifies all motifs which are present in a given set
of biological sequences. Since, the problem of finding identical motifs in mul-
tiple sequences is similar to the problem of finding identical internal repeats
in a sequence, when all sequences are concatenated with a delimiter or special
character (z), where z /∈ ∑

(
∑

represents a set of alphabet characters in the
input sequences). The criteria for the identical motif should be an exact pattern
repeated more than one sequence. Thus, we will refer the identical motif as iden-
tical repeat in the following sections. The algorithm adopts the methodology of
FAIR algorithm [28]. In addition, it has been improved by using hash table to
reduce the time complexity. The working principle of the new methodology is
explained in the subsequent sections.

2.1 Pre-processing Phase

Initially, the uploaded sequences are concatenated with a delimiter at the end of
each sequence and stored in a string S. In addition, the starting position of each
input sequence in the string S is stored in an array. Further, a hash table is cre-
ated to improve the execution time during search phase and to store the positions
or occurrences of each alphabet (X) in the string S. The size of the hash table
is equal to the length of the string S. The number of entries in the hash table
varies for DNA (only four A,T,G and C) and protein (20 amino acids) sequences.
All the positions of a single character (X) present in the string S are stored in
a hash element or key (hash[X]). For example, the hash[X] represents the hash
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key of character X, the vector Voccurence[hash[X]] contains the occurences or
positions of character X in string S and referred as Voccurence[X].

2.2 Searching Phase

The proposed algorithm uses the dynamic programming method to determine
the identical repeats in the string S. The string S is aligned itself by taking the
same on both X- and Y-axes in a two-dimensional space (see Fig. 1). Instead of
creating a two-dimensional matrix for storing the match score values, the algo-
rithm uses the concept of linear space complexity deployed in FAIR algorithm
[28] by using two vectors (current and previous). The size of the current and
previous vectors is equal to N (length of the string S). While scanning, each
element (S[i]) in the Y-axis is used as a probe to search for the match along
X-axis (S[j]), where i,j ∈ 0 ≤i≤N, 0≤j≤N (see Fig. 1). During this process, when
an element S[i] from Y-axis is matched identically with the element S[j] of X-
axis, a hit value of one is added to the value of j − 1th in the previous vector
and the total is assigned to the jth position of current vector. Thus, the current
vector holds the present repeat length with respect to the character S[i] and the
previous vector holds the repeat diagonal up to S[i-1]. Whenever a match is not
found or the sequence ends (j==N), the value of the previous vector is checked
for the size greater than the minimum length of the motif, then the previous
vector value is stored as the length of the repeat (L) and the positions of i-1
and j-1 are stored as repeat end positions (Ri−1,j−1,L). The above operation
is repeated recursively till the end of i along Y-axis. The pseudo-code for the
recursive operation is given below,

IF S[i] equals to S[j] THEN

set current[j] to previous[j-1]+1;

ENDIF

ELSE

IF previous[j-1]>=minimum of motif length

set repeat length (L) to previous[j-1];

set first repeat end to i-1;

set second repeat end to j-1;

ENDIF

END ELSE

Advantage of using hash table: Since the current and previous vectors are
sparse, the recursive operation at each i (along Y-axis) and j (along X-axis)
takes more time for longer sequence. In order to optimize the execution time,
a new methodology has been implemented for scanning phase using hash table.
The above recursive operation is carried out for each i against X-axis and is
only for some j’s which are the positions of character (S[i]) in string S. i.e., Voc-
curences[S[i]] (see Fig. 1). It is explained by using the following lemma: Lemma
1 states: for each i (0≤i≤N), the algorithm checks only the positions next to
the previous repeat (see Fig. 1) and at all positions of character S[i], instead
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for all j (0≤i≤N). As a proof, there can be only three possibilities at each i, such
as: (A) any previous repeat can be continued or extended (extended repeat),
(B) previous repeat can be terminated and are needed for output (terminated
repeat) and finally (C) any new repeat can be a start (see Fig. 1). The above
three repeat possibilities are further classified in two sections: (a) for possibility
A and C, the match of S[i] and S[j] need to be identical. Further, the current
vector of jth element attains the length L > 0, represents the current repeat
(Ri,j,L). Thus, the current repeat is a start position of a repeat or in the part of
a continuous or extended repeat. (b) In case of B, termination of previous repeat
(Ri−1,j−1,L), S[i] and S[j] does not match or the length of j equal to the string
S. It means that the next position to the previous repeat does not match with
the positions of S[i] in (Voccurence[S[i]]) or the repeat is terminated at the end
of the sequence and are referred as terminated repeats (Ri−1,j−1,L). Thus, the

Fig. 1. A sample sequence is aligned along X- and Y- axes in a two-dimensional space.

The number of repeat possible (current, previous and terminated) is highlighted.

algorithm scans only in the regions of positions next to previous repeat and all
positions of character S[i]. The following steps are carried for each iteration of i
with respect to lemma 1;

1. updation of current vector due to current repeat from (a) of lemma 1.
current[j]=previous[j-1]+1; ∀ j ∈ Voccurrence[S[i]]

2. finding terminating repeat from (b) of lemma 1.
if(previous[j-1] > minimum length of repeat AND j /∈ Voccurrence[S[i]] )
then Vterminated.push(j-1); ∀ j-1 ∈ Voccurrence S[i-1]]

The Vterminated vector stores all the end positions of terminated repeats. More-
over, the algorithm performs the above two operations together by merging Voc-
curence[S[i]] and Voccurence[S[i-1]].
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Pseudo code (entire searching phase using hash table)

WHILE (m < Voccurrence[S[i]].size() && n < Voccurrence[S[i-1]].size() )

IF Voccurrence [S[i]][m]] == Voccurence [S[i-1]][n]]+1) THEN

//current repeat

set current[Voccurrence[S[i]][m]] to previous[Voccurrence [S[i-1][n]]+1;

set m to m + 1; set n to n + 1;

ENDIF

ELSE IF Voccurence[S[i]][m]] < Voccurence[S[i-1]][n]+1] THEN

//current repeat with no previous repeat found

current[Voccurence[S[i][m]]=1;

Set m to m+1;

END ELSE IF

ELSE IF Voccurence[S[i][m]] < Voccurence[S[i-1]][n]]+1 THEN

// no current repeat found and this is terminating repeat

IF previous[Voccurence[S[i-1][n]] >= minimum length of repeat THEN

Vterminated.push(Voccurence[S[i-1][n]]);

ENDIF

Set n to n+1;

END ELSEIF

ENDWHILE

2.3 Post Processing Phase

In this section, for each terminated repeat (Ri−1,j−1,L) in Vterminated vector,
the repeat length (L) is checked against the length of all the repeats in a previous
vector. If the length is greater than or equal to L (terminated repeat length),
then all such previous repeat (Ri−1,j′−1,L) positions are stored in a data structure
motif. These motif are pushed into a vector Vmotif. Further, the value of the
vector Vmotif is sorted (on the basis of repeat string) using a built-in STL
(Standard Template Library) function. Finally, unique motifs are determined
after removing all the redundant entries. The detailed output of the algorithm
contains the length of the motifs and their start and end positions.

2.4 Time Complexity

The computational or time complexity of the algorithm is explained below
based on the following; Preprocessing: In this phase, the positions of each
alphabets in the string S is identified to create a hash table and the scan-
ning process is performed in one-dimensional space with O(N) time complexity,
where N is the length of the string S. Scanning: As explained earlier, the al-
gorithm performs the scanning operations together by merging Voccurence[S[i]]
and Voccurence[S[i-1]]. Thus for each i, the scanning sequence along X-axis takes
O(2N/|∑ |) time and

∑
represents the alphabets in string S, where |∑ | repre-

sents the size of
∑

set. During each iteration along Y-axis, the value of current
vector is assigned into previous vector and the current vector is reinitialized to
zero, results in O(N/|∑ |) time complexity. In addition, the process of Vtermi-
nated repeats requires scanning along X-axis results again in O(N/|∑ |) com-
plexity. Thus, the entire scanning phase takes O(4N/|∑ |) time to find identical
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repeats in the string S. Post processing: In this section, the motif stored in
Vmotif is sorted using the STL sort function which results in (N’logN’) time com-
plexity (where N’ is number of repeats). However, the execution time of STL sort
is less compared to that of the above steps. Considering the above three cases,
the algorithm follows O(4N2/|∑ |) time complexity to find the identical repeats
using hash table. The algorithm is more effective with an increase in |∑ | and
is improved over the existing algorithm, FAIR [28].

3 Results and Discussion

3.1 Case Study 1

To test the efficiency of the proposed algorithm, a set of eight major CRISPR
(Clustered Regularly Interspaced Short Palindromic Repeats) nucleotide se-
quences is considered in this case study. The CRISPRs are direct repeats (iden-
tical repeats) with a length ranges from 24 to 48 nucleotides and the repeats in
DNA are separated by spacers of similar length. These repeats are commonly
present in many bacteria and archaea groups which help for the acquired resis-
tance against phages [29]. The CRISPR sequences used in the present study
are taken from four different species such as Salmonella typhimurium LT2,
Salmonella enteric serovar Typhi Ty2, Salmonella enteric serovar Paratyphi
A Str. AKU 12601 and Salmonella enteric Choleraesuis. The sequences are of
various lengths with a minimum and maximum of 212 and 1982 nucleotides re-
spectively. The input parameters provided for the search are: (a) the length of
motif to be searched (for example: greater than or equal to 30) and (b) the
minimum number of motif multiplicity (for example: greater than or equal to
two). The motif multiplicity is defined as the number of times a motif is re-
peated in all the given sequences. The proposed algorithm identified 118 possi-
ble motifs in all four CRISPR sequences from four different species (Salmonella
typhimuriumLT2 , Salmonella enteric serovar Typhi Ty2, Salmonella enteric
serovar Paratyphi A Str. AKU 12601 and Salmonella enteric Choleraesuis). A
sample output (only a part of the output is shown for clarity) of the result is
shown below.

----------------------------------------------------------------------

Input file name: fasta.txt

Length of motif: greater than 30

Motif multiplicity: greater than 2

Output file name: out.txt

----------------------------------------------------------------------

Motif: AACGGTTTATCCCCGCTGGCGCGGGGAACAC

Motif length: 31

Motif Occurrences :7

Present in 3 Sequences

>CRISPR-1, SALMONELLA TYPHIMURIUM LT2

Position(s): [304,334]

>CRISPR-2, SALMONELLA TYPHIMURIUM LT2
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Position(s): [427,457] [549,579]

>CRISPR-3, SALMONELLA TYPHIMURIUM LT2

Position(s): [243,273] [793,823] [1586,1616] [1891,1921]

----------------------------------------------------------------------

Motif : CGGTTTATCCCCGCTGGCGCGGGGAACACA

Motif length :30

Motif Occurrences:15

Present in 6 Sequences

>CRISPR-1, SALMONELLA TYPHIMURIUM LT2

Position(s): [306,335]

>CRISPR-2, SALMONELLA TYPHIMURIUM LT2

Position(s): [673,702]

>CRISPR-3, SALMONELLA TYPHIMURIUM LT2

Position(s): [612,641] [856,885] [1039,1068] [1100,1129]

[1405,1434] [1466,1495]

>CRISPR-2, SALMONELLA CHOLERAESUIS

Position(s): [306,335]

>CRISPR-1, SALMONELLA PARATYPHI A

Position(s): [184,213] [306,335] [367,396]

>CRISPR-1 SALMONELLA TYPHI TY2

Position(s): [62,91] [184,213] [245,274]

----------------------------------------------------------------------

Motif : GCGGTTTATCCCCGCTGGCGCGGGGAACAC

Motif length :30

Motif Occurrences :23

Present in 5 Sequences

>CRISPR-2, SALMONELLA TYPHIMURIUM LT2

Position(s): [123,152] [489,518] [611,640] [672,701] [733,762]

[795,824] [856,885]

>CRISPR-3, SALMONELLA TYPHIMURIUM LT2

Position(s): [61,90] [183,212] [611,640] [733,762] [1038,1067]

[1099,1128] [1221,1250] [1343,1372] [1709,1738]

>CRISPR-2, SALMONELLA CHOLERAESUIS

Position(s): [244,273]

>CRISPR-1, SALMONELLA PARATYPHI A

Position(s): [122,151] [183,212] [244,273] [427,456]

>CRISPR-1 SALMONELLA TYPHI TY2

Position(s): [122,151] [244,273]

----------------------------------------------------------------------

It is interesting to note that, the above motif of length 30 residues, GCG-
GTTTATCCCCGCTGGCGCGGGGAACAC, clearly shows the efficiency of the
proposed algorithm in finding the motif in all possible locations of the cho-
sen four nucleotide sequences. Firstly, the different motif locations identified in
the sequences of CRISPR-2 of Salmonella typhimurium LT2 and CRISPR-1 of
Salmnoella Paratyphi A are found to be separated by an approximate spacer of
length 32 nucleotides. Further, it is also to note that the occurrence of the motif
is nearly conserved at the same locations (123 to 152) and (244 to 273). However,
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the number of motifs in each sequence varies (minimum = 1 and maximum 9)
and represent genome variations among the four species.

3.2 Case Study 2

A total of three hexokinase-1 protein sequences from orthologous species such as
Homo Sapiens, Mus Musculus and Rattus norvegicus are considered in this case
study. The minimum length of motif to be searched is given as greater than or
equal to 5 and the motif multiplicity is given as two (by default). The proposed
algorithm identified 85 identical motifs (only part of the output is shown below)
present in all the three sequences. Interestingly, a total of 17 out of 85 identified
motifs are repeated more than once in the same protein sequence (see below for
details). A sample output of the repeat motifs (17) is shown below.

----------------------------------------------------------------------

Input file name: fasta.txt

Length of motif: greater than 5

Motif multiplicity: greater than 2

Output file name: out.txt

----------------------------------------------------------------------

Motif : FVRSIPDG

Motif length :8

Motif Occurences:4

Present in 3 Sequences

>gi|188497754|REF|NP_000179.2|[HOMO SAPIENS]

Position(s) : [67,74]

>gi|148700161|GB|EDL32108.1| [MUS MUSCULUS]

Position(s) : [66,73]

>gi|6981022|REF|NP_036866.1| [RATTUS NORVEGICUS]

Position(s) : [67,74] [515,522]

----------------------------------------------------------------------

Motif : GSGKGAA

Motif length :7

Motif Occurrences:5

Present in 3 Sequences

>gi|188497754|REF|NP_000179.2|[HOMO SAPIENS]

Position(s) : [448,454] [896,902]

>gi|148700161|GB|EDL32108.1| [MUS MUSCULUS]

Position(s) : [447,453] [895,901]

>gi|6981022|REF|NP_036866.1| [RATTUS NORVEGICUS]

Position(s) : [896,902]

----------------------------------------------------------------------

Motif : GFTFSFPC

Motif length :8

Motif Occurrences :6

Present in 3 Sequences

>gi|188497754|REF|NP_000179.2|[HOMO SAPIENS]

Position(s) : [151,158] [599,606]

>gi|148700161|GB|EDL32108.1| [MUS MUSCULUS]

Position(s) : [150,157] [598,605]
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>gi|6981022|REF|NP_036866.1| [RATTUS NORVEGICUS]

Position(s) : [151,158] [599,606]

----------------------------------------------------------------------

Motif : VAVVNDTVGTMMTC

Motif length :14

Motif Occurrences :6

Present in 3 Sequences

>gi|188497754|REF|NP_000179.2|[HOMO SAPIENS]

Position(s) : [204,217] [652,665]

>gi|148700161|GB|EDL32108.1| [MUS MUSCULUS]

Position(s) : [203,216] [651,664]

>gi|6981022|REF|NP_036866.1| [RATTUS NORVEGICUS]

Position(s) : [204,217] [652,665]

----------------------------------------------------------------------

The above results clearly show that the repeat motifs are conserved in all
three sequences used. It is interesting to note, the three-dimensional structure of
the last two motifs (GFTFSFPC and VAVVNDTVGTMMTC) repeated twice
in Homo Sapiens and are superposed well with a root mean square deviation of
0.17Å and 0.27Å [16]. Further, the above results have been compared with the
results of sequence alignment programs such as BLASTP [30] and CLUSTALW
[31]. The output (results not shown) of these programs shows that the orthol-
ogous sequences exhibit high sequence similarity of more than 95%. Thus, the
sequences are aligned end to end which leads to complexity in identifying the
repeated motifs.

4 Implementation

The algorithm requires three inputs: a file of nucleotide or protein sequences
in FASTA format, the length of the sequence motif to be searched and the
number of motif multiplicity. The proposed algorithm generates a detailed output
containing the location of motifs in each sequence. An option is also provided for
the users to remove the redundant entries from the given input sequences. For
example, only one sequence will be considered if two of the given or uploaded
input sequences are having sequence identity of more than or equal to 90%.
Due to less time complexity of proposed algorithm, there is no limitation in the
number of motifs to be identified. The proposed algorithm has been written in
C++ and successfully tested on a Linux box (Fedora core 9 and Red hat 9.0)
and Solaris (10.0) environments. A standalone version of the proposed algorithm
can be obtained upon request by sending an E-mail to the corresponding author
Dr. K. Sekar (sekar@physics.iisc.ernet.in). In the future, we also plan to create
an internet computing server for the proposed algorithm.

5 Conclusion

The algorithm finds the identical motifs in both nucleotide and proteins se-
quences. It has been developed with a broad view in mind to provide a compre-
hensive solution to the task of finding conserved as well as direct repeat motifs
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in a given multiple biological sequences. Further, the algorithm helps to analyze
the differences in repeat numbers in various genomes and provides an insight
to the horizontal gene transfer events during microbial evolution. One of the
potential applications of this work is the comparative study of transposons in
different sub species which provides a trace for the analysis of gene duplication.
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Abstract. Discovering patterns from sequence data has significant impact in 
genomics, proteomics and business. A problem commonly encountered is that 
the patterns discovered often contain many redundancies resulted from fake 
significant patterns induced by their strong statistically significant subpatterns. 
The concept of statistically induced patterns is proposed to capture these redun-
dancies. An algorithm is then developed to efficiently discover non-induced 
significant patterns from a large sequence dataset. For performance evaluation, 
two experiments were conducted to demonstrate a) the seriousness of the prob-
lem using synthetic data and b) top non-induced significant patterns discovered 
from Saccharomyces cerevisiae (Yeast) do correspond to the transcription  
factor binding sites found by the biologists. The experiments confirm the effec-
tiveness of our method in generating a relatively small set of patterns revealing 
interesting, unknown information inherent in the sequences. 

Keywords: Sequence Pattern Discovery, Statistically Induced Patterns, Suffix 
Tree. 

1   Introduction 

Sequence data is a very significant type of data in many forms: biological sequence, 
web click stream, custom purchase history, event sequence, etc. A vast amount of 
such data from the genomic, proteomic and business arenas has been collected. The 
discovery of new interesting knowledge from these data has important applications 
and great value.  

Many approaches have been developed to discover patterns from sequences. One 
common problem encountered is that the quality of the output patterns is overlooked 
resulting in an overwhelming number of output patterns [1]. To reduce the output 
size, some methods [1] [2] identify the redundancy among output patterns and dis-
cover those irredundant patterns. Others [3] [4] [5] [6] use statistical hypothesis test to 
extract and rank statistically significant patterns based on how much the frequency of 
a pattern deviates from the expected one by assuming a background random model. It 
is hoped that patterns occurring with significantly higher frequency will correspond to 
the functional units inherent in the sequences. However, some of them are fake or 
statistically redundant patterns which are considered as significant merely because 
they contain very strong subpatterns [7]. This problem is exaggerated in dense data-
sets containing many strong patterns.  
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In this paper, we present the concept of statistically induced patterns to caputure 
these fake patterns and an efficient algorithm based on generalized suffix tree to dis-
cover statistically non-induced patterns. By removing induced patterns, the quality of 
output patterns can be further improved and the ranking of important functional units 
can be elevated. Our method is scalable to handle very large sequence data rendering 
a more compact ouput. Though our method provides a general data mining frame-
work, here we focus specifically on biological data (transcription binding site data). 

2 Related Work 

Pattern discovery techniques or motif-finding algorithms have evolved in a fast pace 
in bioinformatics. This is driven by the rapid growth of available DNA and protein 
sequence database as well as the strong desire to find functional units such as regula-
tion signals embedded in biological sequences. Pattern discovery techniques are de-
veloped to reveal such conserved patterns across sequences. In motif finding, two 
main perspectives are adopted: the probabilistic and the combinatorial. The former 
uses the profile-based position weight matrix (PWM) to find the location of the motifs 
in the sequences [8] [9]. Thus, the best motif is the most probable PWM. In the latter, 
a motif is defined as a consensus that occurs repeatedly in sequences [3] [4] [5] [6] 
[10]. The problem of producing overwhelming number of patterns is often encoun-
tered in the latter approaches.  

Extracting statistically significant patterns is one way of shrinking output size. A 
linear time algorithm is presented in [4] to detect statistically significant patterns 
(overrepresented -significant patterns) which are represented by the internal nodes of 
the suffix tree. Statistics such as mean and variance are efficiently annotated to each 
node. Observing that not all nodes in the suffix tree correspond to overrepresented -
significant pattern, we develop a method to identify those that are not.  

Although extracting only statistically significant patterns greatly reduces the output 
size, often these patterns form a large set of patterns with real motifs mixed with 
many of their random variations [7]. A background model of order 3 Markov chain 
and a greedy algorithm have been proposed to separate the artifacts from the real mo-
tifs. Our definition of statistically induced patterns is a variation of Blanchette and 
Sinha's [7] artifact motifs. However, ours uses the Bernoulli scheme instead of 
markov chain and hence does not require training a complex Markov model. Further-
more, our method in discovering non-induced patterns is more efficent. 

3 Methodology 

3.1 Preliminary Definitions 

Let  be a set of distinct elements , called the alphabet, and  be its 
size. A sequence  over  is an ordered list of elements  . A pattern  is a 
short sequence  over  and  is its order. We call  a consecutive pat-
tern with no gaps. In general, the input data might come as multiple sequences 

 with lengths  respectively. Let  be their overall length.  
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The number of occurrences of  in multiple sequences is denoted by . The list 
of occurrence positions is  where the ordered pair  is a 
position denoting that  occurs at position  in sequence . The support of  denoted 
by  in the multiple sequences is the number of sequences in which  occurs at 
least once. A pattern is said to be frequent if its number of occurrences is not less than 
a specified minimum requirement . Mathematically, that is .  

3.2 Statistical Model for Input Sequences 

A background random model for determining the expected frequency of   is needed 
to define statistically significant patterns. Without being given specific domain 
knowledge for the background model, we adopt a simplest model: the Bernoulli 
scheme. With this scheme, the probability of a pattern  occurring in a position of a 
random sequence is , where . Let  be a Bernoulli vari-
able that indicates whether  occurs in position  of a random sequence. The total 
number of possible positions is , so the number of occur-
rences of  is a random variable  which follows a binominal distribu-
tion. Its expected number of occurrences is . 
 
Definition 1. Statistically significant pattern 
To measure how   of   deviates from its expected frequency if the given se-
quences are generated from the random model, we use the standard residual [11]  

 

A pattern is statistically significant or overrespresented [12] if  where  is the 
predefined minimum threshold. 
 
Definition 2. Significant representative pattern 
As observed in the paper [4] [16], patterns can be clustered into equivalence groups 

 such that patterns in the same group  have the same list of occur-
rence positions .  

Representative pattern is the pattern in the group  that has the highest statistical 
significance  or equivalently has the highest order. Significant representative pat-
tern is both statistically significant and representative. 
 
Definition 3. Statistically induced pattern 
Let  be a subpattern of . The conditional statistical significance of  given  is 
defined as 

 

where . 
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Fig. 1. Generalized suffix tree for multiple strings  and 
. The square node is the root, the solid circles are the internal nodes and the 

hollow circles denote the leaf nodes.  and  are the nodes in the suffix tree. Edges are 
labelled with substrings. The dotted arrow shows the end point “T” for a path ending inside an 
edge.  is a position. 

Given a set of significant representative patterns, a pattern  in it is said to be sta-
tistically induced if there exists a proper subpattern  of  such that  . A 
proper subpattern  is not statistically induced. 

This conditional statistical significance is used to evaluate how strongly the statis-
tical significance of a pattern is attributed by the occurrences of one of its proper sub-
patterns. Those induced patterns whose significances are due to their proper subpat-
terns by mere chance are fake patterns. Hence removing them would render a more 
succinct set of patterns.  

3.3 Characterizing Significant Representative Patterns in Generalized Suffix 
Tree 

First, we introduce the generalized suffix tree as the data structure for representing 
strings. It can be constructed in  time and space. The details of it and its linear 
time and space construction algorithms can be found in [13]. Here we establish the 
connection between consecutive patterns and path labels in the suffix tree. Finally, we 
link significant representative patterns with nodes in the suffix tee. 
 
Generalized Suffix Tree 
Given a collection of strings  over  , the generalized suffix tree  for 
these multiple strings is a rooted directed tree with the following properties: 

(1) Each leaf node is labelled by a set of positions  where  indi-
cates a suffix of string  starting at the position . 

(2) Each internal node has at least two outgoing edges each of which is labelled with 
a non-empty substring of one of the input string. No two edges out of a node can 
have the edge-label starting with the same character. 

Most often, a termination character  is appended to each string to ensure that  
exists for this set of multiple strings. Fig. 1 gives an example for two input strings. 
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Consecutive Pattern in Suffix Tree 
The label of the path from root ending at node  is the string resulted from concatena-
tion of the substrings that label the edges along that path. The label of a path from 
root ending inside an edge  , is the label of the path from the root ending at node 

, concatenating with the remaining characters of the label of the edge  down to 
the end of the path. For convenience, the label of a path ending at node  is repre-
sented by , the path label of .  In Fig. 1, the path label of node  is the substring 

 of . The label of a path ending in the middle of the edge  with end point 
indicated as “T” is the substring  of . Accordingly, a consecutive pattern 
that occurs at least once in the input strings has its unique path in suffix tree and is 
represented by the path label. 

 
Frequent Pattern in Suffix Tree 
The number of occurrences of a consecutive pattern is the number of positions found 
under its path in the suffix tree. For example, positions  are 
found under the path of pattern . By storing into each node  the number of posi-
tions  in the subtree rooted by it, the number of occurrences of a consecutive pat-
tern can be easily obtained by finding the node at or above which its path ends. For 
example, the number of occurrences of pattern  whose path ends at  is given by 

. Hence frequent patterns are represented as labels of paths that end at or 
above a node  where . 

 
Representative Pattern in Suffix Tree 
Note that the paths of representative patterns end at nodes instead of within edges. 
A pattern with path ending within an edge can be further extended by at least one 
character to the right without decreasing the number of occurrences and thus by 
definition cannot be a representative pattern. For example, the pattern , which 
ends inside the edge , has a superpattern  ending at node  with the same 
number of occurrences indicated by .  

However, it is not a one-to-one mapping; not all nodes correspond to representative 
patterns. As we might notice that the pattern associated with the path ending at the 
node  in Fig. 1, , is not a representative pattern because it has a super-
pattern  with the same number of occurrences as indicated by 

 which has higher statistical significance. Hence, we need to identify 
nodes corresponding to representative patterns in the tree. This can be efficiently 
achieved by utilizing the suffix links. A suffix link of  points to  if  is an one 
character left extension of . The node  is called the suffix node of  because 

 is the suffix of . For example,  is a string by appending  
to the left of . Only one suffix link is shown in Fig. 1.  

In summary, a representative pattern corresponds to a node  in a suffix tree that is 
not a suffix node of the other node. A representative pattern  is statistically sig-
nificant if . For example,  forms an equivalence set 
and the representative pattern is  and hence corresponds to the node  that does 
not have suffix link pointing to it.  
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3.4 Discovering Non-induced Patterns 

Although significant representative patterns contain fewer redundancies, they could 
still be too many for human experts to interpret. As noted in Definition 3, some sig-
nificant representative patterns can be statistically induced by others and should be 
removed. Here we describe an efficent algorithm to find non-induced patterns. 

If pattern  is not induced by the proper subpattern  that has the smallest condi-
tional statistical significance  among all proper subpatterns of , where we de-
notes  as the valid pattern for , then  is not statistically induced. In other word, 
if  is non-induced, then  for any proper subpattern  of it, including the 
one with smallest . Thus, we develop Algorithm 1 to efficiently discover non-
induced patterns by identifying the valid pattern for each significant representative 
pattern from the lowest to highest order. Note that each representative pattern corre-
sponds to a node in the suffix tree. 
 
Algorithm 1. Discovery of non-induced patterns 

1. Construct a generalized suffix tree  for the input sequences 
2. Annotate  the number of positions under each node  of  
3. Extract a set of nodes whose  
4. Sort the above nodes in ascending order according to order of  using counting sort. 
5. For each node  

a) Find the valid node  for  using Procedure 1 
b) If  is not a suffix node and  and  is not induced by  

               Output  
           End if 
     End for 

 
Procedure 1. Find valid node for  

1. Let  and  be the suffix node and parent node of  respectively  
2. If  is non-induced 

Let  be  
3. Else 

Let  be the valid node of  
End if 

4. If  is non-induced 
Let  be  

5. Else 
Let  be the valid node of  

End if 
6. Pick one node with the smallest conditional statistical significance out of  and  to be 

the proper node of  

 

Running time analysis for Algorithm 1. Step 1-3 can be achieved in linear time. 
Step 4 uses counting sort to sort the nodes according to the path length and can thus 
be done also in linear time. Steps 5a and 5b take constant time. Step 5 can be done in 

 time. Therefore, non-induced patterns can be found in linear time. 
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Fig. 2. Patterns reported by Method 1. Patterns ranked higher than  by standard residual are 
shown. Cond. Sig. is the short form of conditional statistical significance. 

 

Fig. 3. Highest ranking patterns discovered by Weeder and YMF. The implanted patterns are 
bolded. 

4 Experimental Results 

Two sets of experiments were conducted for performance evaluation. In both experi-
ments,  is set to 5 and the statistical threshold  is set to 3.  

4.1 Experiment on Synthetic Data 

To show that our method could remove statistically induced patterns and raise  
the ranking of the truly significant patterns, 100 random sequences of 1000 bases  
over DNA alphabet are created. Three strong patterns , 

 and  are implanted into these sequences such 
that their standard residuals ,  and  are 48, 24, and 12 respectively. We apply 
Method 1 to discover significant representative patterns and Method 2 to obtain non-
induced patterns.  

Fig. 2 shows the patterns of ,  and  and their superpatterns and subpat-
terns which are ranked higher than  according to their standard residual. Those 
patterns in italic font are superpatterns induced by ,  and  (indicated by their 
conditional statistical significance, i.e. less than the prescribed threshold of 3), 
hence they are removed by method 2. After these induced patterns are removed, the 
ranking of  according to the standard residual is raised from the 42th to the 7th. 
The number of patterns reported by method 1 is 527 while the number of patterns 
reported by method 2 is reduced to 315 with a 40.2% reduction rate. Hence, as an-
ticipated, a more compact set of patterns is obtained by ensuring that patterns are 
non-induced and the rankings of the real significant patterns are elevated. 
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Two well known motif finding tools YMF [3] and Weeder [10] are applied to the 
synthetic data respectively for comparison. For Weeder, medium mode is selected. 
For YMF, no spacers and degenerate symbols are allowed and the motif length is 
fixed to 8. Both methods require specifying the organisim from which the input se-
quences are obtained. Since the synthetic data does not come from any real organisim, 
we choose an arbitary organism Saccharomyces cerevisiae (SC) for both methods. 
The highest ranking patterns discovered by Weeder and YMF are shown in Fig. 3. 
Most discovered patterns are related to the strong implanted pattern  and can be 
considered as induced patterns.  is among the top 15 patterns from Weeder while 
YMF discovered all implanted patterns  and  within top 10 patterns. Note 
that YMF has the advantage position by knowing the pattern length in advance. Com-
pared to Weeder and YMF, our method is more general: (1) it searches for patterns 
with arbitrary length while pattern length is restricted from 6 to 10 for the other two; 
(2) it does not require background information while the others require specifiying the 
input organisim. In other words, YMF and Weeder are designed more specifically for 
TF binding site discovery. 

4.2 Experiment on Transcription Factor Binding Sites 

We next examine the capability of our method in discovering biological functional 
units, which is the foremost fundamental step towards understanding the complex 
mechanism of the gene expression regulations. We apply our method to identify tran-
scription factor (TF) binding sites on Yeast using the widely studied SCPD database 
[14] with many of its TFs known along with their regulated genes. They are from the 
upstream (promoter) regions of genes regulated by one or more TFs. Each set of 
genes is called regulon and is associated with one or more TFs. The genes are be-
lieved to be co-regulated by specific TFs and the binding sites for them are experi-
mentally determined in the database. Three conditions are imposed when choosing the 
regulon: (1) the number of genes in it should be at least three, (2) the consensus bind-
ing sites are available, and (3) the number of gaps or “don’t care” characters in the 
consensus should be at most two. The condition (3) is imposed since we discover only 
consecutive patterns in the current stage. There are totally 18 such regulons. For each 
regulon of the TF(s), the upstream sequences of genes are extracted from position +1 
to -800 relative to the ORF (translation start site). 

We design a score combining the statistical significance and support to rank the 
discovered patterns since the former is based only on its number of occurrences and 
no information of its support is used. However, to find transcription binding sites 
amongst multiple sequences, the number of supports is important. These genes are 
regulated by one or more TFs, and thus we expect that each upstream region of the 
input gene sequence contains one or more binding sites. Hence, patterns with higher 
support should be considered more important than those with less support. For exam-
ple, if we have discovered two patterns TTTAAA and CTTCCT with close statistical 
residual but different support, say 2 and 7, then the latter will be more important and 
more likely to correspond to binding sites. Hence, a combined score is defined as 

. 
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Fig. 4. Combined measures over 18 datasets 

 

Fig. 5. Number of reported patterns after removing induced patterns among significant repre-
sentative patterns 

In DNA sequences tandem, repeats are common. For example, in a sequence like 
AAAAAATTTTTT, the pattern AAAA occurs at positions 1, 2 and 3 which overlap 
multiple times. Hence, a post-processing step is applied to further remove patterns 
whose occurrences overlap in the original sequences. 

We discovered the non-induced patterns for each dataset and compared the result 
with YMF and Weeder respectively (Table 1). We ranked the discovered patterns 
according to the combined score and chose the top 15 ones for comparision. For 
YMF, we used its webserver and obtained 5 best motifs through FindExplanators [7] 
for motif length from 6 to 8 (all available parameters), resulting a total number of 15 
patterns. 0 spacers and 2 degnerate symbols are allowed in the motif definition. For 
Weeder, we downloaded the standalone platform and used the medium mode. All 
motifs recommend in the final output are used for comparison. For each motif re-
ported by Weeder, we use only the best occurrences with the percentage threshold 
greater than 90 as binding site predictions. We use the measures nSn (sensitivity), 
nPPV (positive preditive value), nPC (performance coefficient) and nCC (correlation 
coefficient) defined in [15] in comparison. 

Among the 18 datasets, our discovered patterns within rank 13 match the consen-
sus binding sites in 14 datasets and 4 of them are ranked top. The patterns in bold 
do not match the binding sites in the remaining 4 datasets CPF1, CSRE, MATal-
pha2 and SFF. The reason why our discovered patterns have no match in CPF1, 
CSRE and SFF is that their consensus binding sites have fewer than 2 occurrences. 
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As for MATalpha2, the consensus has 6 occurrences, but it has many substitutions. 
Because our program runs with   and is confined to discovering con-
secutive patterns, these consensuses are not discovered.  

The overall performances of Weeder, YMF and our method across 18 datasets are 
evaluated by the combined measures in [15] and shown in Fig. 4. It indicates that the 
overall perfromance of our method is better than YMF. Weeder does not perform well 
comparatively and the reason might be that the percentage threshold 90 is too strict. 
However, Weeder does not provide a good strategy in choosing this parameter.  

Fig. 5 shows the number of reported patterns in terms of non-induced pattern and 
significant repressentative patterns. After removing induced patterns among signifi-
cant repressentative patterns, our method produces a relative small set of patterns of 
which the number of reported patterns ranges from 8 to 67. The result shows that our 
method is able to retain those patterns associated with conserved functional units in 
the promoter regions while reducing the number of patterns.   

Table 1. Comparison of our method, YMF and Weeder on SPCD datasets (the pattern among 
the top 15 that achieves the best nSn is used for comparison).  IUPAC Nucleotide Code is used. 

TF  Motif/Pattern nSn nPPV nPC nCC Rank 
CAR1 Consensus AGCCGCCR      

 Weeder CCTAGCCG 0.23 0.09 0.07 0.14  
 YMF GCCGCCG 0.7 1 0.7 0.84  
 Our Method AGCCGCC 0.88 1 0.88 0.94 6 

CPF1 Consensus TCACGTG      
 Weeder CACGTGGC 0 0 0 -0.01  
 YMF YCACGWG 1 0.5 0.5 0.71  
 Our Method TTC 0.29 0.01 0.01 0.04 10 

CSRE Consensus YCGGAYRRAWGG      
 Weeder GCGGTCGG 0 0 0 -0.01  
 YMF CGGATRRA 0.58 0.22 0.19 0.35  
 Our Method CCGG 0.33 0.08 0.07 0.15 1 

GCN4 Consensus TGANT      
 Weeder TGACTC 0.07 0.13 0.05 0.08  
 YMF TGWCTR 0.18 0.51 0.15 0.29  
 Our Method TGACT 0.34 1 0.34 0.57 13 

GCR1 Consensus CWTCC      
 Weeder TCTGGCATCC 0.1 0.2 0.07 0.13  
 YMF TCTYCCY 0.3 0.48 0.23 0.37  
 Our Method TTCC 0.68 0.39 0.33 0.5 9 

MATalpha2 Consensus CRTGTWWWW      
 Weeder GGAAATTTAC 0.13 0.14 0.07 0.13  
 YMF ACGCGT 0 0 0 0  
 Our Method GAAAAAAG 0 0 0 -0.01 1 

MCB Consensus WCGCGW      
 Weeder AGACGCGT 0.19 0.08 0.06 0.1  
 YMF ACGCGT 0.68 1 0.68 0.82  
 Our Method ACGCGT 0.68 1 0.68 0.82 1 

MIG1 Consensus CCCCRNNWWWWW      
 Weeder CCCCAG 0.39 0.1 0.09 0.19  
 YMF CCCCRS 0.5 0.21 0.18 0.32  
 Our Method CCCCAG 0.33 0.29 0.18 0.3 2 

PDR3 Consensus TCCGYGGA      
 Weeder GTCTCCGCGG 0.32 0.14 0.11 0.19  
 YMF TCCGYGGA 1 1 1 1  
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Table 1. (continued) 

 Our Method TCCGCGGA 0.64 1 0.64 0.8 1 
PHO4 Consensus CACGTK      

 Weeder GAAACGTG 0.07 0.02 0.02 0.02  
 YMF CACGTGSR 0.71 0.75 0.58 0.73  
 Our Method CACGTG 0.71 1 0.71 0.84 1 

RAP1 Consensus RMACCCA      
 Weeder AGCACCCA 0.13 0.23 0.09 0.17  
 YMF CACCCA 0.64 0.86 0.58 0.74  
 Our Method CACCCA 0.64 0.86 0.58 0.74 8 

REB1 Consensus YYACCCG      
 Weeder ACCCGC 0.14 0.05 0.04 0.08  
 YMF TTACCCG 0.7 1 0.7 0.84  
 Our Method TTACCCG 0.7 1 0.7 0.84 7 

ROX1 Consensus YYNATTGTTY      
 Weeder CCTATTGT 0.28 0.05 0.04 0.07  
 YMF TTGTTS 0.48 0.29 0.22 0.35  
 Our Method ATTGTT 0.6 0.63 0.44 0.6 6 

SCB Consensus CNCGAAA      
 Weeder AGTCACGAAA 0.47 0.26 0.2 0.31  
 YMF CACGAA 0.61 1 0.61 0.78  
 Our Method CACGAAA 0.71 1 0.71 0.84 1 

SFF Consensus GTMAACAA      
 Weeder CTGTTTAG 0.13 0.02 0.02 0.04  
 YMF TAAWYA 0.38 0.08 0.07 0.17  
 Our Method AAAGG 0.13 0.04 0.03 0.06 2 

STE12 Consensus TGAAACA      
 Weeder ATGAAACA 0.2 0.05 0.04 0.07  
 YMF ACATGS 0.06 0.1 0.04 0.07  
 Our Method TGAAAC 0.86 0.7 0.63 0.77 3 

TBP Consensus TATAWAW      
 Weeder CCGCTG 0 0 0 -0.02  
 YMF CRCATR 0.01 0.02 0.01 0  
 Our Method ATATAAA 0.43 0.89 0.41 0.62 13 

UASPHR Consensus CTTCCT      
 Weeder TGTCAGCG 0 0 0 -0.01  
 YMF CCTCGTT 0.14 0.21 0.09 0.17  
 Our Method CTTCCTC 0.71 0.86 0.64 0.78 9 

Average Weeder  0.16 0.09 0.05 0.09  
 YMF  0.48 0.51 0.37 0.47  
 Our Method  0.54 0.65 0.44 0.56  

5 Conclusion and Future Work 

This paper presents an efficient algorithm to discover non-induced patterns from a 
large sequence data. It uses a generalized suffix tree to assist the identification of  
significant representative patterns and the removal of the induced patterns whose sta-
tistical significance is due to their strong subpatterns. By ensuring that each pattern 
discovered is non-induced, our method produces a more compact pattern set. 

The results from TF binding sites experiment confirm the algorithm’s ability to ac-
quire a relatively small set of patterns that reveal interesting, unknown information 
inherent in the sequences. While the algorithm drastically reduces the number of  
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patterns, it is still able to retain patterns associated with conserved functional units in 
the promoter regions without relying on prior knowledge. 

Our future work will advance in the following directions: (1) Extending our 
method to discover patterns with gaps; (2) Discovering distance patterns in protein 
sequences and relating the discovered patterns to three-dimensional conformation and 
low sequence similarity. 
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Abstract. The three-base periodicity usually found in exons has been

used for several purposes, as for example the prediction of potential

genes. In this paper, we use a data model, previously proposed for encod-

ing protein-coding regions of DNA sequences, to build signatures capable

of supporting the construction of meaningful dendograms. The model re-

lies on the three-base periodicity and provides an estimate of the entropy

associated with each of the three bases of the codons. We observe that

the three entropy values vary among themselves and also from species to

species. Moreover, we provide evidence that this makes it possible to as-

sociate a three-state entropy vector with each species, and we show that

similar species are characterized by similar three-state entropy vectors.

Keywords: DNA signature, DNA coding regions, DNA entropy, Markov

models.

1 Introduction

It is well-known that there are periodicities in DNA sequences, the strongest
of which is generally associated with the period three that can be found in the
exons of prokaryotes and eukaryotes [14,2]. This three-base periodicity has been
used, for example, for predicting potential protein-coding regions [4,13,6,7,15]
and for finding potential reading frame shifts in genes [5].

In a previous work [3,9], we have used this property for exploring the possi-
bility of using a three-state finite-context model with the aim of improving the
compression of the protein-coding regions of the DNA sequences. That study led
us to the conclusion that, for those protein-coding DNA regions, a model that
switches sequentially between three states provides better compression than a
model based on a single state. Moreover, the three-state model looses its efficacy
when applied to unrestricted DNA sequences, which provides additional evidence
towards the distinctive three-base periodicity of the protein-coding regions.

Besides the observation that a three-state finite-context model works better
than a single-state model in protein-coding regions, we also observed a phe-
nomenon that caught our attention. Each of the three states of the finite-context
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model can be viewed as a model of the information source associated to each
of the three nucleotides that form a codon. Since we are able to estimate the
entropy of each of the three states of our model, we are also able to estimate the
average information carried out by each of the three nucleotides. The interesting
finding that we have made was that both the absolute and the relative values of
these entropies vary among the species [3,9]. In other words, the average infor-
mation conveyed when the first, second or third bases of a codon are specified is
not the same, and the differences depend on the species.

In this paper, we further investigate this phenomenon and, particularly, we
try to find out if the differences among the values of the entropies of the three
base positions of the codon could be used as a species signature. Although still
preliminary, the results obtained suggest that this is in fact true, i.e., that we are
able to construct a low-dimensional entropy vector capable of correctly clustering
similar species. Therefore, these findings may contribute to the development of
new methods for alignment-free sequence comparison.

2 Materials and Methods

2.1 DNA Sequences

In this preliminary study, we used thirteen species, nine eukaryotes (five ani-
mals and four plants) and four prokaryotes (bacteria), listed in Table 1. When
available, we used the RNA data provided in a single file. In the other cases, we
used the data of the “.ffn” files. In the case of the Ricinus communis we used
the “.cds” data. Because the performance of the three-state model is affected by
losses of synchronization in the reading frame, i.e., it assumes that, for example,
the first base of the codon is always handled by state one of the model, we only
considered sequences whose length is a multiple of three and that do not contain
undefined symbols. Moreover, for these experiments, and also with the aim of
avoiding inconsistencies in the expected codon structure, we did not consider
those that do not start with ATG.

2.2 Finite-Context Models

Consider an information source that generates symbols, s, from the alphabet
A = {A,C,G,T}. Consider that the information source has already generated
the sequence of n symbols xn = x1x2 . . . xn, xi ∈ A. A finite-context model (see
Fig. 1) assigns probability estimates to the symbols of the alphabet, regarding
the next outcome of the information source, according to a conditioning context
computed over a finite and fixed number, k > 0, of the most recent past outcomes
c = xn−k+1 . . . xn−1xn (order-k finite-context model) [1,10,11]. Therefore, the
number of conditioning states of the model is 4k.

The probability estimates, P (Xn+1 = s|c), ∀s∈A, are usually calculated us-
ing symbol counts that are accumulated while the sequence is processed, which
makes them dependent not only of the past k symbols, but also of n. In other
words, these probability estimates will in general vary as a function of the posi-
tion along the sequence.
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Table 1. Organisms used in this study

Organism Reference

Homo sapiens (human) Build 37.1

Pan troglodytes (chimpanzee) Build 2.1

Macaca mulatta (rhesus macaque) Build 1.1

Mus musculus (mouse) Build 37.1

Rattus norvegicus (brown rat) Build 4.1

Arabidopsis thaliana (thale cress) NC003070/1/4/5/6

Populus trichocarpa (black cottonwood) Version 2.0

Vitis vinifera (grape vine) Build 1.1

Ricinus communis (castor oil plant) Release 0.1

Streptococcus pneumoniae strain ATCC 700669 NC011900

Chlamydia trachomatis strain D/UW-3/CX NC000117

Mycoplasma genitalium strain G-37 NC000908

Streptococcus mutans strain UA159 NC004350

Typically, the probability estimates produced by the finite-context model are
used to drive an arithmetic encoder, which is able to generate output bit-streams
with average bitrates almost identical to the entropy of the model [1,10,11]. The
theoretical bitrate average of the finite-context model after encoding n symbols
is given by

Hn = − 1
n

n∑
i=1

log2 P (Xi = xi|c) bpb, (1)

where c = xi−k . . . xi−2xi−1 and “bpb” stands for “bits per base”. Recall that
the entropy of any sequence of four symbols is limited to two bits per symbol, a
value that is obtained when the symbols are independent and equally likely.

The probability that the next outcome,Xn+1, is s, where s ∈ A = {A,C,G,T},
is obtained using the estimator

P (Xn+1 = s|c) =
nc

s + α
nc + α|A| , (2)

where nc
s represents the number of times that, in the past, the information source

generated symbol s having as conditioning context c = xn−k+1 . . . xn−1xn and
where

nc =
∑
s∈A

nc
s (3)

is the total number of events that has occurred so far in association with context
c. The parameter α controls how much probability is assigned to possible but
yet unseen events. In this work, we used α = 1, which transforms the estimator
into the multinomial extension of Laplace’s rule of succession [8].

Note that, initially, when all counters are zero, the symbols have probability
1/4, i.e., they are assumed equally probable. The counters are updated each time
a symbol is encoded. Since the context template is causal, the decoder is able to
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G GCAGAT... AA C T ...
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xn+1xn−4

�����

������
�����	


c

��	
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�������	

P (Xn+1 = s|c)

Fig. 1. Example of a finite-context model: the probability of the next outcome, Xn+1,

is conditioned by the k last outcomes. In this example, A = {A, C, G, T} and k = 5.

The “Encoder” block is usually an arithmetic encoder.

reproduce the same probability estimates without needing additional informa-
tion. In other words, this model is self-contained, in the sense that it is capable
of recovering the original sequence based only on the bit-stream produced by
the encoder.

2.3 The Three-State Model

Figure 2 shows the model addressed in this paper. It differs from the finite-
context model displayed in Fig. 1 by the inclusion of three internal states. Each
state is selected periodically, according to a three-base period, and comprises a
finite-context model, similar to the one presented in Fig. 1.

The three-state model, originally introduced in [3,9] with the purpose of com-
pressing protein-coding regions of DNA, is revisited in this paper with the aim
of exploring homology using the idea of a three-state entropy vector.

With this model, probabilities depend not only on the k last outcomes, but
also on the value of (n mod 3), which is used for state selectivity. In this case,
the probability estimator is given by

P (Xn+1 = s|c) =
nc,φ

s + α
nc,φ + α|A| , (4)

where
φ = n mod 3 + 1 and nc,φ =

∑
s∈A

nc,φ
s . (5)

Therefore, three different sets of counters are used, one for each state. More-
over, only the counters associated with the chosen state are updated. It is worth
noting that, in order to be able to operate, this model does not require the
knowledge of the correct reading frame. However, once a particular initial po-
sition has been chosen, the corresponding reading frame should be maintained,
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xn+1

�	
��

�����

���������
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c

Fig. 2. Three-state model, exploiting the three-base periodicity of the DNA protein-

coding regions. In this case, the probability of the next outcome, Xn+1, is conditioned

both by the k last outcomes and by the value of (n mod 3 + 1).

otherwise the statistics will become mixed and the model will not work prop-
erly. Notwithstanding, if we intend to determine the entropies associated with
each of the three base positions inside the codons, we need to know which base
position corresponds to each state of the model. Moreover, note that (1) needs
to be modified accordingly, leading to the entropies

H1
n = − 1

�n/3�
	n/3
∑
i=1

log2 P (X3i−2 = x3i−2|c), (6)

where c = x3i−k−2 . . . x3i−4x3i−3,

H2
n = − 1

�n/3�
	n/3
∑
i=1

log2 P (X3i−1 = x3i−1|c), (7)

where c = x3i−k−1 . . . x3i−3x3i−2, and

H3
n = − 1

�n/3�
	n/3
∑
i=1

log2 P (X3i = x3i|c), (8)

where c = x3i−k . . . x3i−2x3i−1.
For the cases reported in this paper we always started the model at the begin-

ning of a codon, implying that state one corresponds to the first base position
of the codon, state two to the second base position and state three to the third
base position.
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Fig. 3. Plots showing the distribution of the information among the three bases of the

codon for H. sapiens, P. troglodytes and M. mulatta

3 Results

We ran the three-state finite-context model for the DNA sequences under analy-
sis, using contexts of depths one to six, i.e., from k = 1 until k = 6. Figures 3–6
display graphics of the average number of bits per base obtained. Each graph
contains three curves, one for each of the three bases of the codon, i.e., the values
of H1

n, H2
n and H3

n after having processed the whole sequence.
As can be seen, the plots shown in Fig. 3, corresponding to the H. sapiens, P.

troglodytes and M. mulatta organisms, present a significant similarity. Moreover,
for most of the values of k (the depth of the context) the entropy associated to
the second base of the codon is the largest, followed by the first and third bases.

This behavior is also observed in the graphs of Fig. 4, where the M. musculus
and R. norvegicus organisms are addressed. However, in this case, and in contrast
to the previous one, it can be seen a clear inversion of the entropy of the first
and third bases for k = 1.

Figure 5 displays the entropy graphs for the four plants used in this prelim-
inary assessment, namely the A. thaliana, P. trichocarpa, V. vinifera and R.
communis. For these organisms, the entropy of the first base is generally larger
than that of the second one, which is larger than the entropy of the third base.
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Fig. 4. Plots showing the distribution of the information among the three bases of the

codon for the M. musculus and R. norvegicus
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Fig. 5. Plots showing the distribution of the information among the three bases of the

codon for A. thaliana, P. trichocarpa, V. vinifera and R. communis

Therefore, in comparison to the five animals, there is a change in the relative
position of the curves regarding the first and second bases of the codon.

This same ordering can be found in the curves corresponding to the S. pneu-
moniae, C. trachomatis, M. genitalium and S. mutans organisms, presented in
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Fig. 6. Plots showing the distribution of the information among the three bases of the

codon for S. pneumoniae, C. trachomatis, M. genitalium and S. mutans

Fig. 6. However, whereas for the plants the difference between the values of the
upper and lower curves is typically less than 0.05 bpb, in the case of the four
bacteria this difference is typically larger than 0.1 bpb.

In order to better understand the similarities and differences of the entropy
values among the analyzed species, we have built a dendogram (Fig. 7) with
the PHYLIP package (http://evolution.genetics.washington.edu/phylip.
html), constructed using the unweighted pair group method with arithmetic av-
erage (UPGMA), also known as average linkage method [12]. The distance matrix
was obtained by computing the Euclidean distance between vectors built from
the three-state entropy vectors corresponding to context depths from one to six.
Therefore, each organism is represented by a vector with eighteen elements, i.e.,
the concatenation of six groups of three-state entropies.

Regarding this dendogram, we have some remarks. The prokaryotes (lower
branch) are correctly separated from the eukaryotes (upper branch), except for
the bacterium C. trachomatis. Amongst the prokaryotic branch, all bacteria are
correctly grouped. The clades for the animals and plants are also well identified.
Amongst the plants, P. trichocarpa should be classified closer to R. communis,
as they belong to the same order. As for the animals, the human should be
closer to the chimpanzee, then to the Rhesus macaque, and finally to the mouse
and brown rat. Tough these minor misclassifications, this methodology correctly

http://evolution.genetics.washington.edu/phylip.html
http://evolution.genetics.washington.edu/phylip.html
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Fig. 7. Dendogram, based on UPGMA, obtained from the matrix of the Euclidean

distance between the three-state entropy vectors for context depths from one to six

identifies overall clades, making these preliminary results encouraging in the
exploration of three-state finite-context models for a meaningful classification of
organisms.

4 Conclusion

The three-base periodicity of the exons has been used since its discovery mostly
as an aid in gene finding. More recently, it was noted that the three entropy
values associated to each of the three base positions of the codon are not the
same, and that the differences vary from organism to organism. We refer to these
three entropy values as the “three-state entropy vector” of the organism.

The work presented in this paper is a start towards a deeper investigation
of the implications of this observation, particularly in what concerns its use for
species classification. The preliminary results obtained suggest that the infor-
mation gathered from the three-state entropy vector alone seems to be sufficient
for building meaningful dendograms, encouraging further study.
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Abstract. A given group of protein sequences of different lengths is con-

sidered as resulting from random transformations of independent random

ancestor sequences of the same preset smaller length, each produced in

accordance with an unknown common probabilistic profile. We describe

the process of transformation by a Hidden Markov Model (HMM) which

is a direct generalization of the PAM model for amino acids. We formu-

late the problem of finding the maximum likelihood probabilistic ancestor

profile and demonstrate its practicality. The proposed method of solv-

ing this problem allows for obtaining simultaneously the ancestor profile

and the posterior distribution of its HMM, which permits efficient deter-

mination of the most probable multiple alignment of all the sequences.

Results obtained on the BAliBASE 3.0 protein alignment benchmark

indicate that the proposed method is generally more accurate than pop-

ular methods of multiple alignment such as CLUSTALW, DIALIGN and

ProbAlign.

Keywords: Multiple alignment problem, protein sequences analysis,

EM-algorithm, HMM, common ancestor.

1 Introduction

The problem of multiple alignment of protein sequences is a fundamental prob-
lem for modern bioinformatics. It arises from applications such as secondary and
tertiary structure prediction [1], reconstructing complex evolutionary histories
[2, 3], locating conserved motifs and domains [4], and constructing phylogenetic
trees [5].

The bioinformatics literature is replete with diverse alignment methods and
tools. However, only few of them, such as multidimensional dynamic program-
ming [6], have a mathematically strict problem formulation followed by a sound
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optimization procedure. Those with mathematical formulations which try to take
into account information about protein evolution [7] are NP-hard and cannot be
applied for aligning more than a few sequences [8]. Approximations which are
not based on evolutionary trees and stars [9] and other fast heuristics, such
as approaches like those which include a large family of progressive alignments
[10, 11], are less biologically relevant.

Profile-based algorithms with iterative updating [12] and HMM-based ap-
proaches [13–16] have an essential common disadvantage: their results strongly
depend on the initial approximation. An additional problem which is typical
for HMM-based multiple alignments is that of deciding on how to select model
parameters.

In this paper, we consider a new approach to the problem of multiple align-
ment on the basis of the simplest probabilistic model of protein evolution built
as a relatively straightforward generalization of Margaret Dayhoff’s PAM model
(Point Accepted Mutation) developed for the alphabet of single amino acids
A = (α1 . . . α20) [17]. It is assumed that the amino acid sequences ωj = (ωjt ∈
A, t = 1 . . .Nj) forming the set to be processed jointly Ω∗ = {ωj , j = 1 . . .M}
are results of independent random Markov chains of insertions/substitutions ap-
plied to some unknown n-length ancestor sequences ϑj = (ϑji, i = 1 . . . n), j =
1 . . .M , specific for each ωj of greater length, n ≤ min{Nj , j = 1 . . .M}. The
elements of the hidden sequences ϑji are a priori assumed to be randomly and in-
dependently chosen by nature according to a sequence of n unknown probability
distributions over the set of 20 amino acids ϑi ∈ A.

The goal of the analysis is to estimate these probability distributions as the
sought-for n-length profile playing the role of a model of the given protein set.

Such a result is not in itself a multiple alignment, but any instance of the j-th
insertion/substitution transformation cuts out a n-length subsequence from the
corresponding amino acid sequence ωj = (. . . ω̃jt1 . . . ω̃jti . . . ω̃jtn . . . ), which is
associated with the successive elements of the supposed ancestor (1 . . . n). This
process will generate a vast diversity of versions of how these positions could be
assembled into n relatively conserved columns.

The algorithm yields the posterior distribution over the set of possible multiple
alignments relevant to the given set of proteins, covering the large variety of
versions of how these positions can lead to n relatively conserved columns. So
we can easily find the most probable multiple alignment.

2 Dayhoff’s PAM Model of Evolution within the Amino
Acid Alphabet

The formulation of the multiple alignment problem considered in the present
paper is based on the pioneering model of amino acid evolution Point Accepted
Mutation (PAM) introduced by M. Dayhoff in 1978 [17]. The PAM model rep-
resents predispositions of amino acids towards mutual mutative transformations
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as a square matrix of conditional probabilities that amino acid αi will be sub-
stituted at the next step of evolution by amino acid αj :

Ψ =
(
ψ(αj |αi), αi, αi ∈ A)(20× 20),

∑
αj∈A

ψ(αj |αi) = 1. (1)

The main probabilistic assumption underlying the PAM model is that the Markov
chain defined by the transition matrix Ψ possesses the two classical properties:

– ergodicity, namely, existence of a final probability distribution over the set
of amino acids ξ(αj) =

∑
αi∈A ξ(α

i)ψ(αj |αi),
– and reversibility ξ(αi)ψ(αj |αi) = ξ(αj)ψ(αi|αj).

3 Model of the Common Origin of a Set of Proteins

Let Ω be the set of all finite amino acid sequences ω = (ωt, t = 1, . . . , N),
ωt ∈ A = {α1, . . . , α20}. We shall use also the notation Ωn = {ω = (ωt, t =
1, . . . , N), ωt ∈ A, N = n} for the set of all sequences having a fixed
length n.

We proceed from the following probabilistic assumptions on the common ori-
gin of the proteins to be analyzed jointly Ω∗ = {ωj , Nj ≥ n, j = 1, . . . ,M}.
These assumptions are essentially based on those taken in [18], aimed at an
evolution-based pairwise comparison of proteins. On the one hand, we simplify
them, because we use here only one particular class of described in [18] random
transformations of sequences. But, on the other hand, we generalize this model
because several amino acid sequences can be jointly processed here instead of
just two.

Hypothesis 1. Each of the amino acid sequences in the given set Ω∗ = {ωj =
(ωjt, t = 1, . . . , Nj), j = 1, . . . ,M} is considered as having evolved from its spe-
cific hidden ancestor ϑj = (ϑji ∈ A, i = 1, . . . , n) ∈ Ωn through independent
known random transformations represented by the family of conditional proba-
bility distributions ϕjn(ω|ϑj) ,

∑
ω∈ΩNj

ϕjn(ω|ϑj) = 1 .

Hypothesis 2. Let the length n of the random ancestors ϑj ∈ Ωn be fixed,
and their elements ϑji be drawn from the alphabet of amino acids in accordance
with a common sequence of unknown independent probability distributions

(
βi(ϑ),

ϑ∈A), ∑ϑ∈A βi(ϑ) = 1.

Each of these distributions is completely represented by a 20-dimensional
vector of probabilities βi = (β1

i , . . . , β
20
i ) ∈ R20,

∑20
k=1 β

k
i = 1. It should be

noticed that the sequence of distributions β̄ = (βi, i = 1, . . . , n) ∈ R20n corre-
sponds to the notion of the probabilistic profile, which is commonly adopted in
bioinformatics.
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This profile is the common parameter of identical independent probability
distributions of the hidden ancestors ϑj for each of the observed amino acid
sequences :

pn(ϑj |β̄) = pn(ϑj1, . . . , ϑjn|β1, . . . ,βn) =
n∏

i=1

βi(ϑji). (2)

So, it is assumed here that the entire given set of amino acid sequences Ω∗ =
{ωj , Nj ≥ n, j = 1, . . . ,M} has evolved from the same hidden profile β̄.

Hypothesis 3. The transformation ϕNn(ω|ϑ) of the n-length ancestor ϑj ∈ Ωn

into some random protein ωj of random length Nj ≥ n is a concatenation of the
two following random mechanisms.

The first step of the transformation is a random choice of the structures
v = (1 ≤ v1 ≤ · · · ≤ vn) of transformations independently for each of the
resulting sequences ϑ → ω, vn ≤ N , namely, assigning the positions ω =
(. . . ω̄v1 . . . ω̄vi . . . ω̄vn . . . ) into which the elements of the ancestor ϑ=(ϑ1, . . . , ϑn)
will be mapped. These positions are called in [18] key positions. The apriori dis-
tributions of the respective key-position vectors qNn(v) = qNn(v1, . . . , vn) are
assumed to take into account only the gaps between the key positions vi − vi−1
and be indifferent to the lengths of both tails v1 andN−vn. Distributions qNn(v)
are necessarily specific for each of the lengths Nj , j = 1, . . . ,M , because of the
constraints vn ≤ Nj :

qNjn(v|a, b) =

⎧⎨⎩∝
n∏

i=2
g(vi − vi−1|a, b), vn ≤ Nj ,

= 0, vn > Nj ,

g(vi − vi−1|a, b) ∝
{

1, di = vi − vi−1 = 1,
exp [−c(a+ b(vi − vi−1))], di > 1,

a > 0, b > 0, c > 0.

(3)

Such a distribution ranks one long gap as more preferable than several short
ones adding up to the same length.

The second step is filling the key positions in the resulting sequences with
random amino acids in accordance with Dayhoff’s conditional mutation proba-
bilities ψ(ωvi |ϑi) (1). The structure-dependent conditional transformation dis-
tributions are assumed to be completely uniform relative to amino acids in other
positions:

ηn(ω|ϑ, v) ∝
n∏

i=1

ψ(ωvi |ϑi), (4)

where v ∈ VNn for each specific N = Nj , and VNn is the set of all n-length
transformation structures with respect to the length of the sequence 1 ≤ v1 <
· · · < vn ≤ N .
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It follows from Hypotheses 3 that each transformation ϑ → ω = ωj , N = Nj ,
is defined as the mixture

ϕNn(ω|ϑ) =
∑

v∈VNn

qNn(v)ηn(ω|ϑ,v),ω ∈ ΩN , (5)

and, in accordance with Hypotheses 2, the marginal conditional distribution of
the sequence of length N is expressed as

fN (ω|β̄) =
∑

v∈VNn

qNn(v)ζn(ω|β̄,v),ω ∈ ΩN , (6)

where
ζn(ω|β̄,v) =

∑
ϑ∈Ωn

ηn(ω|ϑ,v)pn(ϑ|β̄) (7)

is the conditional distribution of a single random sequence with respect to the
assumed structure v ∈VNn of its evolving from the unknown random ancestor
of length n.

4 Maximum-Likelihood Estimation of the Common
Profile

It follows from Hypothesis 1 that the joint distribution of independent sequences
making the given set Ω∗ = {ωj , j = 1 . . .M} is the product of individual distri-
butions (6)

F (Ω∗|β̄) =
M∏

j=1

fNj(ωj |β̄). (8)

This is, in effect, a likelihood function with respect to the sought-for profile
whose maximum-likelihood estimate will be given by the maximum point of this
function:

ˆ̄β = argmax
β̄

lnF (Ω∗|β̄) = arg max
β̄

M∑
j=1

ln
∑

v∈VNjn

qNjn(v)ζn(ωj |β̄,v). (9)

The presence of a sum within the logarithm seems to hinder the maximization.
But on the other hand, the set of sequences Ω∗ = {ωj , j = 1 . . .M} is the
observable part of the two-component random object (Ω∗, Υn) whose hidden
part Υn = (vj ∈ VNjn, j = 1 . . .M) is the collection of the sequence-specific
transformation structures.

This fact suggests the application of the Expectation-Maximization (EM)
principle, which results, in this case, in the following iterative procedure s =
1, 2, 3, . . . , starting with an initial approximation β̄0 = (β1,0, . . . ,βn,0) ⊆ R

20n.
Let β̄s = (β1,s, . . . ,βn,s) be approximation at step s, and

pit(β̄s,ωj) = P (vij = t|β̄s,ωj) (10)
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be the a posteriori probability of the event vij = t in the transformation structure
vj = (1 ≤ vj1 < · · · < vjn) , which means that the i-th element βi,s of the
profile β̄s = (β1,s, . . . ,βn,s) is associated with the t-th element ωjt of the j-th
sequence ωj = (ωj1, . . . , ωjNj ). The next value of the i-th element of the profile
βi,s+1 = (β1

i,s+1, . . . , β
20
i,s+1) ∈ R20 is defined as⎧⎪⎪⎨⎪⎪⎩

(β1
i,s+1, . . . , β

20
i,s+1) = arg max

(β1
i ,...,β20

i )∈R20

20∑
l=1
hl

i ln
20∑

k=1
ψ(αl|αk)βk

i ,

n∑
k=1
βk

i = 1, βk
i ≥ 0, k = 1, . . . , 20,

(11)

where hl
i =

M∑
j=1

Nj∑
t=1
I[ωjt = αl]pit(β̄s,ωj) , and indicator function I[ωjt = αl] = 1

if the condition ωjt = αl is met, or 0 if not. Solving this problem is provided by
the well-known gradient projection algorithm.

Theorem 1. The choice of β̄s+1 = (β1,s+1 . . .βn,s+1) in accordance with (11)
provides that the inequality F (Ω∗|β̄s+1) > F (Ω∗|β̄s) holds true at each step s
while ∇β̄F (Ω∗|β̄s) �= 0 ; if ∇β̄F (Ω∗|β̄s) = 0 then F (Ω∗|β̄s+1) = F (Ω∗|β̄s) .

Proof. The proof directly follows from the standard derivation and reasoning for
EM algorithms.

Computation of posterior probabilities (10) is also a standard problem, in this
case, in the theory of hidden Markov models, because the random transformation
structure v = (1 ≤ v1 < · · · < vn) with independent gaps defined by (3) is a
Markov process for each amino acid sequence in the data set under analysis
Ω∗ = {ωj , j = 1, . . . ,M}.

5 Choosing Main Parameters of the Algorithm

The main parameters of the proposed algorithm are the length n of the common
profile β̄ = (β1, . . . ,βn) and the initial approximation for the profile β̄0 =
(β0,1, . . . ,β0,n).

These parameters can be chosen by a number of different ways. For example
it appears reasonable to take the value n which provides the minimum average
entropy of the profile columns:

n̂ = argmin
n

(
− 1
n

n∑
i=1

n∑
k=1

βk
i lnβk

i

)
. (12)

This criterion satisfies the requirement of the final goal of the analysis, which is
understood as finding the most conserved columns of amino acids in the given
set of proteins.

When the likelihood function (8) has only one maximum, i.e., the set of its
stationary points {β̄ : ∇β̄F (Ω∗|β̄) = 0} ⊆ R

20n is convex, the choice of the
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initial approximation β̄0 = (β0,1, . . . ,β0,n) is not too significant. For instance,
it is enough to take the sequence of uniform distributions over the set of amino
acids β0,i = (1/20, ..., 1/20) ∈ R20, i = 1, . . . , n.

However, when the sequences under analysis Ω∗ = {ωj , j = 1 . . .M} have
low identity, the likelihood function has a tendency to be not unimodal. In this
paper, we choose both parameters n and β̄0 ∈ R

20n at once by computing them
using the multiple alignment obtained by some different method, for example
ProbAlign. The number of columns without gaps in this alignment defines the
length of the common profile n, and the distributions of amino acids in these
columns are taken as the initial distributions β0,1, . . . ,β0,n. The efficiency of
such approach is confirmed by results of experiments.

6 The Most Probable Multiple Alignment

The n-column profile ˆ̄β found as the maximum-likelihood estimate (9) of the
fuzzy common subsequence of the assumed preset length n in the given set of
proteins may be considered as the goal of their joint analysis. But the final
a posteriori probabilities pit(ˆ̄β,ωj) = P (vij = t|ˆ̄β,ωj) (10) of the positions
associated with each of the single amino acid sequences for successive elements
of the supposed common ancestor (1, . . . , n) show a vast variety of versions of
how these positions could be assembled into relatively conserved columns. This
is the posterior distribution over the set of possible multiple alignments relevant
to the given set of proteins.

The a posteriori most probable one will be given by the solutions of separate
optimization problems corresponding to single proteins ωj , j = 1 . . .M :⎧⎨⎩vj = arg max

v1,...,vn

n∏
i=1
pivi(

ˆ̄β,ωj),

vji ≥ vj,i−1, i = 2 . . . n.
(13)

This is a standard dynamic programming problem.

7 Experimental Results and Discussion

7.1 Characteristic Features of the Proposed Alignment and Its
Visual Representation

It should be noted, that the form of multiple alignment obtained in accordance
with (13) is different from the most conventional form of multiple alignment. The
proposed approach actually produces only n columns without gaps, each of which
corresponds to the respective i-th (i = 1 . . . n) element of the alleged common
ancestor of the sequences. Other amino acids are not aligned. An example of a
visual representation of a multiple alignment produced in accordance with our
approach is presented in Figure 1,b. In contrast, Figure 1,a shows the traditional
form of the benchmark multiple alignment produced by biologists.
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The main part of our alignment in Figure 1,b is separated from the rest at
the left and at the right by three empty columns, each of which contains only
gaps. Left fragments of the sequences, which precede the main part, are flushed
right, whereas right fragments, following the main part, are flushed left. Amino
acids located between the ungapped aligned columns are conventionally flushed
to the centers of idle intervals.

Fig. 1. Examples of multiple alignments: (a) manually-refined benchmark alignment

and (b) alignment produced by the proposed approach

7.2 Alignment Benchmark

We tested our approach on a subset of BAliBASE 3.0 [20], which is the database
of manually-refined multiple sequence alignments specifically designed for the
evaluation and comparison of multiple sequence alignment programs.

For our tests we used families of short proteins from 3 different
sets of BALiBase RV11, RV12 and RV20. The set RV11 contains equidistant
families with sequence identity less than 20%, while RV12 contains equidistant
families with sequence identity between 20% and 40%. Both of these sets lack
sequences with large internal insertions (> 35 residues). The set RV20 contains
families with > 40% similarity and an orphan sequence which shares less than
20% similarity with the rest of the family.

The main characteristics of the tested families are presented in Table 1.

7.3 Determining Prediction Accuracy

Given a true and an estimated multiple sequence alignment, the accuracy of
the estimated alignment is usually computed using two measures: the sum-of-
pairs (SP) and the true column (TC) scores. The SP score is a measure of
the number of correctly aligned residue pairs divided by the number of aligned
residue pairs in the true alignment, and TC is the number of correctly aligned
columns divided by the number of columns in the true alignment. Both of them
are standard measures of computing alignment accuracy. The source code of a
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Table 1. Characteristics of the considered families

Set Family

name

Description Number of

sequences

Lengths Number of

columns with-

out gaps in

benchmark

R
V

1
1

1aab high mobility group protein 4 83 − 91 76

1aboA SH3 8 52 − 193 47

1bbt3 foot-and-mouth disease virus 6 186 − 283 150

1csy SH2 4 104 − 540 91

1dox ferredoxin [2fe-2s] 4 97 − 337 78

R
V

1
2

1axo toxin II 8 58 − 85 51

1fj1A homeodomain 9 49 − 254 49

1hfh factor h 4 118 − 129 115

1hpi high-potential iron-sulfur protein 6 71 − 85 65

1krn serine protease 5 79 − 475 78

R
V

2
0

1idy myb dna-binding domain 38 54 − 256 45

1pamA cyclodextrin 16 247 − 527 215

1pgtA glutathione 31 202 − 244 175

1tvxA pertussis toxin 29 64 − 167 50

1ubi ubiquitin 47 76 − 155 67

program for computing these scores is available for download at the BALiBase
site [20]. However, this program is not accurate enough, it has a tendency to
overstate the TC and SP scores and, moreover, to give values greater then 1,
which is impossible given the definition of these scores.

In this connection, we use our implementation of the procedure for computing
Bali-scores. It should be noticed that our procedure, in contrast to the original
one, takes into account only pairs of amino acids which belong to the columns
without gaps. This approach is much more appropriate for the principle of mul-
tiple alignment proposed in this paper but, as a rule, yields smaller values of
scores.

7.4 Experimental Setup and Results

For each family under consideration, four multiple alignments were computed.
Three of them were produced by the popular multiple alignment tools
CLUSTALW, DI-ALIGN and ProbAlign, which were run on their respective
servers. The value of the constant for the ProbAlign algorithm, called ”the ther-
modynamic temperature”, was chosen to be 5 as the most reasonable value
according to publications [14]. The remaining parameters of this and other al-
gorithms were set at their default values.

Finally, the 4-th alignment was produced in accordance with the proposed
approach, started from the resulting alignment of ProbAlign as initial approxi-
mation.

The four-way comparison of SP and TC scores is presented in Table 2. The
best values of scores are highlighted in bold font.
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Table 2. Results of comparing multiple alignment procedures. TC/SP scores of mul-

tiple alignments produced by different algorithms.

Set Family CLUSTALW DIALIGN ProbAlign The proposed

approach

R
V

1
1

1aab 0.92/0.96 0.91/0.93 0.83/0.87 0.99/0.99
1aboA 0.00/0.38 0.00/0.00 0.00/0.54 0.00/0.45
1bbt3 0.00/0.20 0.00/0.00 0.29/0.42 0.28/0.36
1csy 0.37/0.42 0.31/0.37 0.46/0.56 0.51/0.56
1dox 0.00/0.24 0.40/0.46 0.62/0.71 0.64/0.75

R
V

1
2

1axo 0.29/0.54 0.54/0.64 0.69/0.87 0.87/0.93
1fj1A 1.00/1.00 0.69/0.76 0.79/0.84 1.00/1.00
1hfh 0.68/0.78 0.39/0.53 0.78/0.85 0.75/0.85
1hpi 0.59/0.72 0.37/0.57 0.40/0.55 0.75/0.82
1krn 0.53/0.69 0.47/0.68 0.60/0.75 0.79/0.88

R
V

2
0

1idy 0.00/0.62 0.00/0.00 0.00/0.33 0.00/0.60
1pamA 0.43/0.77 0.29/0.58 0.74/0.84 0.69/0.83
1pgtA 0.47/0.49 0.14/0.52 0.26/0.69 0.27/0.68
1tvxA 0.00/0.64 0.00/0.00 0.00/0.41 0.00/0.46
1ubi 0.00/0.68 0.00/0.03 0.09/0.49 0.08/0.48

mean 0.35/0.61 0.30/0.41 0.44/0.65 0.51/0.71

As can be seen, in more than half of all the above cases our proposed approach
yields the best results. The greatest success is achieved for families of the set
RV12. But also for other families, the TC and SP scores of our approach are
larger, in many cases, than scores of the main competitor ProbAlign. As a result,
the average scores for the proposed approach are the best.

In addition, some interesting statistics computed from Table 2 are presented
in Table 3 for comparing the proposed approach with the ProbAlign.

Table 3. Statistics computed from Table 2 for comparing the proposed approach with

the ProbAlign

TC / SP

The number of cases when our proposed approach

is better or equal

11(73%) / 10(67%)

The mean increment of scores 0.112 / 0.127

The mean percentage increment of scores 23% / 21%

The mean decrement of scores 0.025 / 0.036

The mean percentage decrement of scores 6% / 7.1%

8 Conclusions

In this paper we have proposed and tested a new formulation of the multiple
alignment problem. It is based on a deliberately simplified model of proteins
evolution, which is a direct generalization of the PAM model for amino acids. For
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solving the respective optimization problem we have used an iterative procedure
based on the EM-algorithm.

The first experiments show that the proposed approach outperforms other
methods of multiple alignment by mean values of TC and SP scores. It does not
yield the best scores for all considered cases, but it can be seen that, as a rule,
our method shows small decreasing and large increasing of scores in contrast to
other methods.
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Abstract. Supertree methods allow to reconstruct large phylogenetic

trees by combining smaller trees with overlapping leaf sets, into one, more

comprehensive supertree. The most commonly used supertree method,

matrix representation with parsimony (MRP), produces accurate su-

pertrees but is rather slow due to the underlying hard optimization prob-

lem. In this paper, we present an extensive simulation study comparing

the performance of MRP and the polynomial supertree methods Min-
Cut Supertree, Modified MinCut Supertree, Build-with-distances, PhySIC,

and PhySIC IST. We consider both quality and resolution of the recon-

structed supertrees. Our findings illustrate the trade-off between accu-

racy and running time in supertree construction, as well as the pros and

cons of voting- and veto-based supertree approaches.

1 Introduction

In recent years, supertree methods have become a familiar tool for building
large phylogenetic trees. Supertree approaches combine input trees with over-
lapping taxa sets into one large and more comprehensive tree. Since the in-
troduction of the term supertree and the first formal supertree method [1],
there has been a continuous development of supertree methods, see e.g. [2]. The
supertree approach has certain advantages over standard phylogenetic recon-
struction methods, both on the theoretical and practical side [3]: It allows to
combine heterogeneous data sources, such as DNA hybridization data, morpho-
logical data, and protein sequences. Furthermore, it enables inference for groups
where most species are represented by very few genes and sequences, and the
major part of sequences is available only for few species, which makes deriving a
balanced molecular phylogeny difficult. On the theoretical side, it is well known
that inferring optimal trees from sequences is a computationally hard problem
under the maximum likelihood (ML) [4] and the maximum parsimony (MP)
criterion [5], so we have to rely on heuristics that cannot guarantee to find the
optimal solution. Even for a moderate number of species, the sheer size of tree
space prohibits to search for optimal trees under these criteria. Current supertree
methods can roughly be subdivided into two major families: matrix representa-
tion (MR) and polynomial, mostly graph-based methods. The former encode the
inner vertices of all input trees as partial binary characters in a matrix, which is
analyzed using an optimization or agreement criterion to yield the supertree. Ma-
trix representation with parsimony (MRP) [6,7], the first matrix-based method,

T.M.H. Dijkstra et al. (Eds.): PRIB 2010, LNBI 6282, pp. 183–194, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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is still by far the most widely used supertree method today. Other variants have
been proposed using different optimization criteria, e.g. matrix representation
with flipping (MRF) [8] or matrix representation with compatibility (MRC) [9].
All MR methods have in common that the underlying optimization problems
are computationally hard, and heuristic search strategies have to be used. As for
ML and MP, it is unclear how close the resulting tree is to the optimal one.

Graph-based methods make use of a graph to encode the topological informa-
tion given by the input trees. This graph is used as a guiding structure to build
the supertree top-down from the root to the leaves. The MinCut Supertree algo-
rithm (MC) [10] and a modified version, Modified MinCut Supertree (MMC) [11],
use a minimum-cut approach to construct a supertree if the input trees are con-
flicting. The Build-with-distances algorithm (BWD) [12] is the first graph-based
method that uses branch length information from the input trees to build the
supertree. Ranwez et al. [13] presented a new graph-based method, the PhySIC
algorithm. The method ensures that the reconstructed supertree satisfies two
properties: it contains no clade that directly or indirectly contradicts the input
trees and each clade in the supertree is present in an input tree, or is collectively
induced by several input trees. Supertree methods guaranteeing the first prop-
erty are called veto methods, that, in case of highly conflicting and/or poorly
overlapping input trees, tend to produce unresolved supertrees. Scornavacca et
al. [14] presented a modified version of PhySIC, PhySIC IST, that tries to over-
come this drawback by proposing non-plenary supertrees (i.e. supertrees that
do not necessarily contain all taxa from the input trees), while still assuring
the properties mentioned above. PhySIC IST works in a stepwise fashion, iter-
atively adding leaves to a starting tree consisting of two nodes. In contrast to
MR methods, the MC, MMC, BWD, PhySIC and PhySIC IST algorithms have
polynomial running time.

As an increasing number of supertree methods is available, simulation stud-
ies are needed to compare the behavior and performance of the methods under
various conditions. The advantage of simulation studies is that the results of
different methods can be compared to a known model tree and thus the meth-
ods can be compared at an absolute scale. Although several simulation studies
focusing on different aspects of the investigated supertree have been carried out
(e.g. [15], [16]), they have only just begun to provide useful comparisons of al-
ternative methods. This paper focuses a special subset of supertree construction
methods: we are in particular interested in the comparison of the accuracy of
the MRP method as exponent of the MR based family of supertree methods, for
which it has been shown that they are accurate and highly resolved but require
long running times, and the mentioned polynomial supertree methods, which are
swift but possibly less accurate and in case of PhySIC and PhySIC IST, also
possibly less resolved. Here, we present a large-scale simulation study conducted
to compare the accuracy and the resolution of MRP, MC, MMC, BWD, PhySIC,
and PhySIC IST supertrees. Additionally, we explore new variations of BWD,
trying to improve its performance. Our simulation study follows the established
general scheme to assess the performance of supertree methods: (1) Construction
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of a model tree under a Yule process, (2) simulation of DNA alignments along
that tree, (3) random deletion of a proportion of taxa (4) reconstruction of trees
by ML, (5) construction of supertree from the inferred ML trees, and, finally (6)
comparison of the supertree to the model tree using distance and similarity mea-
sures and evaluation of its resolution. Our results demonstrate that the BWD
and the PhySIC IST method perform significantly better than MC and MMC,
and are, with respect to the accuracy of the reconstructed supertree, sometimes
even comparable with MRP. Moreover, as we also consider the resolution of the
supertrees, our findings illuminate the trade-off between accuracy and running
time in supertree construction, as well as the pros and cons of voting and veto
approaches.

2 Methods under Consideration

Build and MinCut supertrees. The first graph-based supertree method is the
Build algorithm [17], an all-or-nothing approach that encodes the input trees
into a graph structure and returns a supertree only if the input trees are com-
patible. The MinCut Supertree algorithm (MC) [10] was the first extension of
Build capable of returning a supertree if the input trees are not compatible.
The incompatibilities are resolved by deleting a minimal amount of information
present in the input trees in order to allow the algorithm to proceed. Page [11]
presented a modified version of MC that uses more information from the input
trees. By using a variation of the underlying graph structure, the Modified Min-
Cut Supertree (MMC) algorithm ensures to incorporate all clades from the input
trees with which no single tree directly disagrees.

Build-with-distances supertrees. Willson [12] presented another extension of Build,
the Build-with-distances (BWD) algorithm that, in addition to the branching
information in the input trees, uses branch lengths to build the supertree. Basi-
cally, the method follows the same recursive schema as Build, MC, and MMC.
The main observation underlying the BWD algorithm is that branch lengths
may carry phylogenetic information, such as an estimated number of mutations.
Clearly, the use of branch length is only justified if these are comparable amongst
the input trees, i.e. the input to the method has to be carefully selected, or the
branch lengths have to be reconciled or normalized in some way. The BWD algo-
rithm incorporates branch lengths from the input trees to add more information
to the used graph. BWD uses different support functions, which basically esti-
mate the evidence that two taxa should be in the same clade of the supertree.
We find that in our simulation study using the accumulated confirmed support
function (SAC) consistently outperforms other support functions. Hence, we will
concentrate on SAC in our evaluations as well as a new established support func-
tion, SACmax. Details are deferred to the full version of this paper. In contrast
to the minimum-cut approach used by MC and MMC, Willson uses the bisection
method to deal with incompatible input trees.
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PhySIC and PhySIC IST supertrees. Unlike all methods mentioned before, the
PhySIC algorithm [13] applies a veto philosophy. Following Ranwez et al. [13],
supertree methods are either voting or veto procedures. A characteristic of the
voting approach is that the input trees are asked to vote for clades in the phy-
logeny to be inferred; the most frequent alternatives are chosen. Voting methods
resolve conflicts by using an optimization criterion in order to select between
different possible topologies [18]. When input trees conflict, voting methods as
MRP can infer supertrees in which clades are present that are contradicted by
each of the input trees (e.g. [19]). In contrast to voting methods, the veto ap-
proach is more conservative in handling conflicts among the input trees: the
inferred supertree has to respect the phylogenetic information of each source
tree and is not allowed to contain any clade that is contradicted by one or more
of the input trees. Thus, conflicts among the input trees are removed [18], for ex-
ample by proposing multifurcations in the supertree or by pruning rogue taxa.
Scornavacca et al. [14] presented PhySIC IST, a modification of the PhySIC
algorithm, aiming to circumvent a main drawback of veto supertree methods:
These tend to return highly unresolved supertrees if the input trees imply a high
degree of incompatibility, or do not have a high degree of overlap. To overcome
this shortcoming, PhySIC IST modifies the original approach non-plenary su-
pertrees (i.e. supertrees that do not necessarily contain all taxa present in the
input trees) and by using a preprocessing step called STC (Source tree correc-
tion), which analyzes and modifies the input trees concerning the conflicts they
contain. Basically, it removes parts of each source tree that significantly conflict
with other source trees.

Matrix Representation with Parsimony (MRP). MRP encodes the inner vertices
of all input trees as partial binary characters in a matrix, which is analyzed using
the parsimony criterion as objective function. Two different coding schemes have
been suggested to decompose trees into an matrix representation: the Baum-
Ragan (BR) and the Purvis (PU) coding scheme. Furthermore, two kinds of
parsimony can be used: reversible Fitch parsimony and irreversible Camin-Sokal
parsimony. MRP with BR and Fitch is commonly used and generally accepted
as standard method for supertree construction.

3 Simulation Study

In this section we present a large scale simulation study conducted to evaluate the
accuracy and resolution of the methods MRP, MC, MMC, PhySIC, PhySIC IST,
and BWD (with modifications). An overview of the simulation layout can be
found in Figure 1. Each step is described in detail below.

Generating Model Trees and DNA Sequences. We generated model trees ac-
cording to a stochastic Yule birth process using the default parameters of the
YULE C procedure from the program r8s [20] with either 48, 96 and 144 taxa.
For each model tree size we generated 100 different model tree replicates. By
the use of the program Seq-gen v1.3.2 [21], nucleotide sequences were simulated
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Fig. 1. Simulation pipeline overview
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along each of the model trees according to the general time reversible process
(GTR) model [22] with parameters Lset Base = (0.3468 0.3594 0.0805), Rmat =
(0.6750 27.9597 1.1677 0.4547 20.8760), gamma rate heterogeneity α = 1.1999
and PINVAR = 0.4954, taken from [23]. For each model tree we generated se-
quences ranging from 2000 to 20000 base pairs in steps of 2000, yielding in ten
different sequence alignments per model tree.

Generating Input Trees. All models of molecular substitution implemented in
Seq-Gen assume evolution is independent and identical at each site. Hence, con-
tiguous blocks of sequences represent randomly subdivided data set. We par-
titioned each alignment into blocks of 1000-base pair data sets and randomly
deleted 25%, 50% and 75% of sequences from each alignment to simulate differ-
ent taxa overlaps observed in real data sets. For each resulting alignment block
we inferred a maximum likelihood tree using RAxML v 7.0.0. [24] with default
parameters. This yields in sets ranging from 2 to 20 input trees belonging to one
model tree.

Supertree construction. MRP supertrees were estimated using PAUP* 4.0b10
[25] with TBR branch swapping as heuristic search, random addition of se-
quences and a maximum 10.000 trees in memory. The search time for a single
MRP supertree run was delimited by 300 seconds. The strict consensus tree
of all most-parsimonious trees was used as final MRP tree. We computed MC
as well as the BWD supertrees using our own implementations embedded in
our software framework EPoS1. MMC trees were generated using Rod Page’s
implementation2. For the PhySIC and PhySIC IST supertrees we used the im-
plementations provided from the authors of the corresponding papers34. To test
a broader range of the PhySIC IST STC preprocess (-c option), we used 0, 0.5
and 1 as parameters. In our setting, the results for 0 and 0.5 are similar; there-
fore, only the 0 and 1 parameter results are shown. In the following we will refer
these as PhySIC IST 0 and PhySIC IST 1.

Measuring accuracy and resolution. To evaluate the accuracy of the supertrees
build by the different methods we compared the supertrees to the model trees
using different distance and similarity scores, namely the Robinson-Foulds metric
(RF distance) [26], the maximum agreement subtree score, MAST score [27], and
the triplet distance [11]. We stress that each of these methods has its particular
shortcomings, for a discussion and implementation details see the full version of
this paper. The resolution was measured as the number of clades in the inferred
supertree relative to the total number of clades on a fully binary tree of the same
size (n - 2 for an unrooted tree, where n = number of taxa). Resolution varies
between 0 and 1, where 0 indicates a unresolved bush and 1 indicates a complete
binary supertree.

1 http://bio.informatik.uni-jena.de/epos/
2 http://darwin.zoology.gla.ac.uk/~rpage/supertree/
3 http://www.atgc-montpellier.fr/physic/binaries.php
4 http://www.atgc-montpellier.fr/physic_ist/

http://bio.informatik.uni-jena.de/epos/
http://darwin.zoology.gla.ac.uk/~rpage/supertree/
http://www.atgc-montpellier.fr/physic/binaries.php
http://www.atgc-montpellier.fr/physic_ist/
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4 Results

Results of our simulation for 48 taxa are reported in Figure 2, where we plot
resolution and triplet distance against the number of input trees. In Figure 3, we
use our simulations on 96 taxa and plot MAST score and RF distance against
number of input trees. One would expect that results improve if more input data
becomes available, as this helps us to identify bogus information. Hence, triplet
distance and RF distance should decrease, whereas the MAST score should in-
crease when more input trees are available to the supertree method. We now
discuss the observed patterns in more detail.

Resolution. In our setting PhySIC mostly returns star trees. The two variations
of the BWD algorithm build the most resolved supertrees compared to all other
methods, independent from the deletion frequency the number of input trees. In
general, this also holds for MMC and MC. In case of 25% deletion frequency,
MRP behaves similar to MMC and MC, but is significantly less resolved than
all others at 75% deletion frequency. In case of 25% and 50% deletion frequency
PhySIC IST 0 produces more resolved supertrees than PhySIC IST 1. In com-
parison to all methods, the PhySIC IST 1 supertrees are least resolved. With
75% deletion frequency, the resolutions of the PhySIC IST 0 and PhySIC IST
1 supertrees are quite similar. In general, one can see that BWD as an ad-
vanced graph-based supertree method outperforms the classical parsimony ap-
proach (MRP) as well as the conservative, veto based algorithm (PhySIC IST )
in terms of resolution. The results also clearly show that the more conservative
PhySIC IST 1 produces less resolved trees than PhySIC IST 0, reflecting the
influence of the STC parameter.

Triplet Distance. In the majority of cases, MC algorithm performs worst com-
pared to all other algorithms and an increasing number input of trees has no
positive effect on the accuracy. The MMC algorithm generally performs better
than MC, but its accuracy also does not significantly increase with the number of
input trees, except for the case of 25% deletion frequency. Both BWD methods
perform better than MC/MMC but their accuracy also does not significantly
benefit from a growing number of input trees. In case of 25% and 50% deletion
frequency, PhySIC IST 1 produces less accurate supertrees with an increasing
number of input trees. This can be explained by the decreasing resolution, which
has direct impact on the number of matching triplets. In contrast, the accuracy
of PhySIC IST 0 is relatively stable and independent of the deletion frequency
and the number of input trees. MRP always performs better than the algorithms
mentioned so far. The number of input trees has in general a slight positive effect
on the accuracy.

MAST score. In general, the MC algorithm provides supertrees with the worst
MAST score compared to all other methods. Only in the case of 25% deletion
frequency MC performs slightly better than PhySIC IST 1. PhySIC IST 1 be-
haves generally like the MC algorithm. PhySIC IST 0 produces supertrees with
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Fig. 2. The left column of the figure shows the average resolution of the supertrees

constructed from model trees with 48 taxa and different taxon deletion rates (top 25%,

middle 50%, bottom 75%). The right column shows the average triplet distances of

the supertrees constructed from model trees with 48 taxa and different taxon deletion

rates (top 25%, middle 50%, bottom 75%).
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Fig. 3. The left column of the figure shows the average MAST scores of the supertrees

constructed from model trees with 96 taxa and different taxon deletion rates (top 25%,

middle 50%, bottom 75%). The right column shows the average RF-Distance of the

supertrees constructed from model trees with 145 taxa. Note that the MAST values

are similarity scores and RF values are distances.
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a considerably better MAST scores than MC and PhySIC IST 1, but the num-
ber of input trees has no significant effect on the MAST score. MMC algorithm
performs slightly better than PhySIC IST 0 and 1 as well as the MC method
in case of 25% deletion frequency With 25% deletion frequency MMC’s MAST
score increases with more input, in both other cases the score is relatively con-
stant. The MRP method performs better than all other methods in the case of
25% and 50% deletion frequency and significantly benefits from a growing num-
ber of source trees. With 75% deletion frequency the MAST score of all methods
under consideration are quite low and MRP can only outperform PhySIC IST
1, PhySIC IST 0, MC and MMC with a large number of input trees. For 75%
deletion frequency, the BWD methods outperform MRP and show an increas-
ing MAST score with an increasing number of input trees. With 25% and 50%
deletion frequency, both BWD methods are only outperformed by MRP. In both
cases the number of input trees has a positive effect on the MAST score.

RF distance. For all combinations of model tree sizes and deletion probabilities,
the MC methods performs worst compared to all other methods. As with the
triplet distance and the MAST score, MMC shows an improvement over the
original method. The PhySIC IST 1 performs generally better than MC and
MMC. The number of input trees has in general a positive effect on the RF
distance. In case of 25% and 50% deletion frequency all other methods perform
similar, although MRP produces slightly better results.

5 Conclusion

We have presented a large-scale simulation study to assess and compare the
accuracy and the resolution of polynomial supertree methods and the de facto
standard supertree method MRP. Our results show that recent, polynomial su-
pertree methods can sometimes compete with the classical MRP approach while
providing a significantly better running time (which did not exceed a few sec-
onds for all polynomial methods). The BWD method that incorporates branch
length information from the input trees, significantly enhances the graph-based
approaches concerning accuracy and resolution, without sacrificing short running
times. For example, the MAST score at 75% deletion (Fig. 3 left) is consistently
better for BWD than for MRP, for any number of input trees. Veto approach
such as PhySIC have certain appealing properties but also certain drawbacks:
the resolution of reconstructed supertree rapidly decreases when there are too
many conflicts among input trees, and/or small taxon overlap. PhySIC IST, in
combination with the STC preprocessing, significantly enhances the veto ap-
proach in terms of resolution and accuracy, but at the cost that taxa are not
included in the supertree.

For medium-sized studies with hundreds of taxa and tens of trees, we propose
to use several of the supertree methods presented here, and to manually compare
the results. But when the sheer size of the problem renders it impossible to use
matrix-representation methods such as MRP, then novel polynomial-time meth-
ods such as BWD and PhySIC IST will greatly improve the quality of results,



Polynomial Supertree Methods Revisited 193

compared to early methods such as MC or MMC. Although formal supertree
methods have been around for a quarter of a century, our simulation also show
that there is still much room for improvement, and that novel ideas and methods
can greatly improve the quality of constructed supertree.
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Abstract. Biomedical and chemical databases are large and rapidly

growing in size. Graphs naturally model such kinds of data. To fully

exploit the wealth of information in these graph databases, scientists re-

quire systems that search for all occurrences of a query graph. To deal

efficiently with graph searching, advanced methods for indexing, repre-

sentation and matching of graphs have been proposed.

This paper presents GraphGrepSX. The system implements efficient

graph searching algorithms together with an advanced filtering

technique.

GraphGrepSX is compared with SING, GraphFind, CTree and GCod-

ing. Experiments show that GraphGrepSX outperforms the compared

systems on a very large collection of molecular data. In particular, it re-

duces the size and the time for the construction of large database index

and outperforms the most popular systems.

Keywords: subgraph isomorphism, graph database search, indexing,

suffix tree, molecular database.

1 Introduction and Related Work

Application domains such as bioinformatics and cheminformatics represent data
as graphs where nodes are basic elements (i.e. proteins, atoms, etc.) and edges
model relations among them. In these domains, graph searching plays a key role.
For example, in computational biology locating subgraphs matching a specific
topology is useful to find motifs of networks that may have functional relevance.
In drug discovery, the main task is to find novel bioactive molecules, i.e., chemical
compounds that, for example, protect human cells against a virus. One way to
support the solution of this task is to analyze a database of known and tested
molecules with the aim of building a classifier which predicts whether a novel
molecule will be active or not. Future chemical tests can focus on the most
promising candidates (see Fig. 1).

The graph searching problem can be formalized as follows. Given a database
of graphs D = {G1, G2, . . . , Gn} (e.g. collection of molecules, etc.) and a query
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Fig. 1. Querying a database of graphs. Graphs represent molecules. During the match

process, edge information is ignored. Query occurrences are shown in bold. For Q2,

since query matches overlap, only one occurrence in each molecule is depicted. The

number of occurrences is also given. Molecular descriptions include hydrogen atoms

for search accuracy. In a context where hydrogen atoms are not considered, query Q2

is present 11 times in G1, 6 in G2 and 10 in G3. The approximate query specifies

any path of an unspecified length between atoms C and N . Approximate queries may

also contain atoms with unknown label (they match any atom). In this paper we do

not exploit approximate queries since the compared systems do not deal with such

scenarios.
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graph Q (e.g pattern), find all graphs in D containing Q as a subgraph. Ideally,
all occurrences of Q in those graphs should be detected. Since most of these
problems involve solutions of the graph isomorphism problem, an efficient exact
solution cannot exist. In order to make searching time acceptable, research ef-
forts have tried to reduce the search space by filtering out the graphs that do
not contain the query. After candidate graphs have been selected, an exhaustive
search on these graphs must be performed. This step is implemented either by
traditional (sub)graph-to-graph matching techniques [7,3] or by an implementa-
tion that extends the SQL algebra [8].

For a database of graphs a filter limits the search to only possible candi-
date graphs. The idea is to extract structural features of graphs and store them
in a global index. When a query graph is presented, its own structural fea-
tures are extracted and compared with the features stored in the index to check
compatibility [4,12,10]. Most existing systems use subgraphs (paths [4,12,5,6],
trees [15,1], graphs [14]) of small size (typically not larger than 10 nodes).

In order to apply such systems on large graphs, SING [5] tool stores the
starting node of each feature. This is done to capture the notion of features that
are branches of trees. The matching algorithm is also modified to start the search
on a selected node whose label is present in the query and not from a random
one.

However, even though small subgraphs are used, the size of the index and its
time construction may be high. Therefore, high-support/high-confidence mining
rules are used to index only frequent and non-redundant subgraphs (i.e. a sub-
graph is redundant when its presence in a graph can be predicted by the presence
of its subgraphs) [15,1,14]. More precisely, gIndex [14] stores, in a compact tree,
all discriminat and frequent subgraphs. FGIndex [14] uses two indexes: the first
one is stored in main memory, the second one is on disk. In order to assign a
feature to an index, the query is performed on the main-memory-resident in-
dex. If it doesn’t return any result, this index is used to identify the blocks of
the secondary memory index to be loaded. GraphFind [6] uses the low-support
data mining technique (Min-Hashing [2]) to reduce the index size. It is shown
that such a mining technique can be successfully applied to enhance other sys-
tems such as gIndex. The above tools all require an effective but expensive data
mining step.

Several indexes are based on capturing other discrimant characteristics of the
graph. CTree [9] applies a graph closure to the database graphs, aligning vertices
and edges using a fast approximate algorithm called neighbor biased mapping.
It stores an ouput synthesized graph in a R-tree-like data structure. During the
filtering phase an approximate match is executed on the closure graphs of the tree
in a top down approach. Ctree spends much of its time in this matching phase.
GCoding [16] uses graph signatures made by concatenating vertex signatures. A
vertex signature is built from its label, neighbor labels and higher eigenvalues
of the adjacency matrix of a tree representing all length n paths starting from
a random node. The signature graph set is inserted into a B-tree-like structure
index. In this way GCoding allows a compact representation of the indexes,
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but the cost of the eigenvalue computation and the high number of produced
candidates reduce the method’s efficiency.

In this paper, we propose GraphGrepSX, a novel approach inspired by the
GraphGrep ([12,6]) system. GraphGrepSX uses paths of bounded length as fea-
tures stored in a Suffix tree [13] structure. By exploiting path prefix sharing, the
algorithm reduces redundancies and achieves a more compact representation of
the index. This approach is particularly effective on graphs with a small label
space (e.g. chemical molecules). In such a case, the same partial combination of
labels could be present several times in the features of different graphs. Although
such a representation is very natural and simple, GraphGrepSX is able to speed
up both the index construction and the filtering phases. Moreover since it has a
low index loading time, it is suitable for searching on dynamic datasets. To eval-
uate the performance of GraphGrepSX, we compare it with the most prominent
graph search systems.

2 GraphGrepSX

GraphGrepSX uses paths of bounded length as features stored in a Suffix tree [13]
structure. In what follows we describe the phases of the method.

2.1 Preprocessing Phase

The preprocessing phase extracts the features from the graph database and
inserts them into the global index. Every node vj of a graph Gi of the database
is visited by a depth-first search. During this phase, all the paths of length up
to and equal to lp are extracted. Each path is represented by the labels of its
nodes. Each path (v1, v2, ..., vlp) is then mapped into its corresponding sequence
of labels (l1, l2, ..., llp). All the subpaths {(vi, ..., vj) for 1 ≤ i ≤ j ≤ lp} of a path
(v1, v2, ..., vlp) are features which will be included in the global index also.

For each extracted path, we keep track also of the number of time it appears in
every single graph of the database. All these features are then stored in a Suffix
tree. Each node of the tree represents a path obtained during the depth-first
search traversal. The path can be reconstructed using its ancestors in the Suffix
tree. Each node of the tree also stores the list of graphs containing it together
with the number of times the path appears in each graph. The construction and
update of the Suffix tree are done during the depth-first search of each graph.
GraphGrepSX implements the Suffix tree as an N-ary tree in which the children
of a node are represented by a linked list. The list of the occurrences of the
features of the graphs is stored in a binary tree indexed by a unique graph id.
The Suffix tree and the occurrences list are also stored in an archive file using a
compact representation.

The worst case cost to search the child of a given node in the Suffix-Tree is |ls|,
where |ls| is the maximum number of distinct labels in the graph Gi, because the
child list is represented as a linked list. Since the list of the feaures occurrences
is stored in a binary tree, the cost to update a value is log |D|. The cost of each
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depth-first visit is nim
lp
i , where ni and mi are respectively the number of the

nodes and the maximum valence (degree) of the nodes in the graph Gi. The
total cost to build the database index is O(

∑|D|
i (nim

lp
i |ls| log |D|)).

2.2 Filtering and Matching Phases

Given a query graph q, the filtering phase tries to filter out those graphs that
cannot match the query graph. This phase is done in two steps. In the first step,
the query graph q is processed and its features are extracted and stored in a
Suffix Tree. In contrast to the preprocessing phase, here we consider only the
maximal paths visited during the depth-first search of the query graph q. A path
is considered maximal either if its length is equal to lp or the path has length
less than lp but cannot be further extended, because the depth-first search can
not continue. The nodes of the Suffix tree storing the end-point of a maximal
path are marked. Only the occurrences of the maximal paths are stored in the
marked nodes of the index.

In the second step the pruning of the candidate graphs of the database is per-
formed by matching the query suffix tree against the suffix tree of the global in-
dex. Each marked node of the query tree representing a labeled path (l1, l2, ..., ln)
is searched in the Suffix tree of the global index. Those graphs which either do
not contain such a path or have such path with an occurrence number less than
the occurrence number of the query are discarded. Those that remain represent
the candidate set of possibly matching graphs.

The tesing of each candidate graph uses the VF2 [3] library for exhaustive
subgraph isomorphism. VF2 is a combinatorial search algorithm which induces
a search tree by branching states. It uses a set of topological feasibility rules and
a semantic feasibility rule, based on label comparison, to prune the search space.
At each state if any rule fails, the algorithm backtracks to the previous step of
the match computation.

Builds
Suffix_Tree_Query

Filter (select only candicate graphs)  
by trees matching

Run exaustive subgraph matching 
(VF2) on candidates

Load 
Suffix_Tree_GraphDatabase

Fig. 2. Figure shows the filtering phase and the candidates verification phase made by

GraphGrepSX
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Let Tq to be the query Suffix-Tree and |Tq| the number of nodes inside it.The
building cost is O(nqm

lp
q |ls|) where nq is the number of nodes in the tree, mq is

the maximum degree of a node and |ls| is the maximum number of distinct labels
in the query graph. The cost of the pruning step is given by matching time of the
query Suffix-Tree against the database index, i.e. O(|Tq||ls|), plus the average
time of the occurrences verification, i.e. O(|D| log |D|). Therefore the total time
is O(|Tq ||ls||D| log |D|) and, let C be the set of candidates graphs, the cost for
each candidate Ci verification is O(|V [Ci]|!|V [Ci]|).

2.3 Experimental Results and Biological Application

GraphGrepSX was implemented in C++ and compiled with the GNU compiler
3.3. In order to evaluate the performance of the proposed approach, it has been
compared with the main graph search systems: GraphFind [6], CTree [9], GCod-
ing [16], and SING [5]. Notice that, in what follows, we refer to GraphFind as
GraphGrep since we do not use the mining step in the index construction phase.
Moreover we do not report comparisons with gIndex [14] since GraphFind out-
performs it without using mining. The system has been tested using the Antiviral
Screen Dataset [11]. The AIDS database contains the topological structures of
42,000 chemical compounds that have been tested for evidence of anti-HIV ac-
tivity. It contains sparse graphs having from 20 to 270 nodes. The entire set was
divided into three subsets of sizes 8000, 24000 and 42000 respectively. Queries
were randomly extracted from the AIDS database selecting a vertex v from a
graph of the database and proceeding with a breath-first visit. This process gen-
erate groups of 100 queries from each database having a number of edges with
4, 8, 16, and 32 edges. Table 1 shows the index building time for each subset.

Table 1. Index building time (sec)

DB dim. GraphGrepSX GraphGrep CTree GCoding SING

8000 16.51 550.4 8.21 632.21 22
24000 38 10399.39 25.34 1956.36 66
42000 66 45600.49 42.42 2944.8 108

GraphGrepSX and CTree yield comparable index construction time and out-
perform the other approaches. The sizes of the generated indexes are shown in
table 2. Thanks to the compactness of its suffix tree structure, GraphGrephSX re-
duces the redundancy of the index. Therefore GraphGrepSX outperforms the lat-
est graph matching tools. It outperforms SING if used with dynamically changing
datasets.

In what follows we show the execution times of the filtering and verification
phases. These results report tests made on the entire 42000 AIDS molecular
dataset grouped by queries dimension. In table 3 we report the filtering time.
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Table 2. Indexes size (Kb)

DB dim. GraphGrepSX GraphGrep CTree GCoding SING

8000 3684 293992 13884 6687 8445
24000 11020 928912 41372 20088 22279
42000 18668 1577012 70208 30651 42830

Table 3. Filtering time (sec)

Query dim. GraphGrepSX GraphGrep CTree GCoding SING

4 0.05 0.012 1.34 0.0042 0.51
8 0.05 0.006 1.57 0.01 0.76

16 0.041 0.005 1.51 0.026 0.17
32 0.04 0.014 1.01 0.059 0.071

Table 4. Query time (sec)

Query dim. GraphGrepSX GraphGrep CTree GCoding SING

4 14.9 15.41 13.27 23.61 12.4
8 17.5 7.1 44.24 15.79 15.24

16 2.08 12.78 51.07 5.39 0.798
32 1.07 3.56 50.91 1.25 0.136

Table 4 shows the total time. The number of generated candidates after the
filtering step is shown in table 5. CTree and GCoding generate smaller candidates
sets. This is due to the fact that such indexes are able to capture the structure
of the graphs. Unfortunately, they require more execution time because of the
approximate match on the closure graphs and the mining operations during the
filtering step.

Table 5. Number of generated candidates

Query dim. GraphGrepSX GraphGrep CTree GCoding SING

4 26865 29196 16704 16188 23170
8 21337 13920 5840 8567 14012

16 1629 7053 289 1648 214
32 142 3193 3 142 4
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Table 6. Total time time (sec)

Query dim. GraphGrepSX SING

4 15.89 23.39
8 18.56 26.42

16 3.07 1f1.45
32 2.04 10.68

GraphGrepSX and GraphGrep uses the same matching algorithm, but the
first generates a smaller number of candidates by applying a redundant check
deletion phase.

In Table 6 we report the total time needed by GraphGrepSX and SING to
execute a single query. SING has an overhead of 10.5 seconds to load the index.
Whereas GraphGrepSX needs less than one second (0.93 seconds) to load the
index.

3 Conclusion

Indexing paths instead of subgraphs may result in more preprocessing time and
indexing space. However, paths require less filtering and querying time. Results
show that a further improvement on path-index base system is achieved by
making use of Suffix Trees. GraphGrephSX reduces the size and time needed
for the construction of large database index compared to the most prominent
graph querying systems. Furthermore, GraphGrephSX outperforms all compared
systems when the index structure needs to be rebuilt. It can be considered to be
a good compromise between preprocessing time and querying time.
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Abstract. In this paper, we present a new dimensionality reduction

(DR) method (SSGEAL) which integrates Graph Embedding (GE) with

semi-supervised and active learning to provide a low dimensional data

representation that allows for better class separation. Unsupervised DR

methods such as Principal Component Analysis and GE have previously

been applied to the classification of high dimensional biomedical datasets

(e.g. DNA microarrays and digitized histopathology) in the reduced di-

mensional space. However, these methods do not incorporate class label

information, often leading to embeddings with significant overlap be-

tween the data classes. Semi-supervised dimensionality reduction (SSDR)

methods have recently been proposed which utilize both labeled and un-

labeled instances for learning the optimal low dimensional embedding.

However, in several problems involving biomedical data, obtaining class

labels may be difficult and/or expensive. SSGEAL utilizes labels from

instances, identified as “hard to classify” by a support vector machine

based active learning algorithm, to drive an updated SSDR scheme while

reducing labeling cost. Real world biomedical data from 7 gene expres-

sion studies and 3900 digitized images of prostate cancer needle biopsies

were used to show the superior performance of SSGEAL compared to

both GE and SSAGE (a recently popular SSDR method) in terms of

both the Silhouette Index (SI) (SI = 0.35 for GE, SI = 0.31 for SSAGE,

and SI = 0.50 for SSGEAL) and the Area Under the Receiver Operating

Characteristic Curve (AUC) for a Random Forest classifier (AUC = 0.85

for GE, AUC = 0.93 for SSAGE, AUC = 0.94 for SSGEAL).

1 Introduction

Dimensionality reduction (DR) is useful for extracting a few relatively simple
patterns from more complex data. For very high dimensional data, such as gene
expression, the original feature space could potentially span up to tens of thou-
sands of features. This makes it difficult to build generalizable predictors on
account of the curse of dimensionality problem [1], where the feature space is
much larger than the number of samples available for classifier training. There-
fore, DR methods are often utilized as a precursor to classification. Predictors

T.M.H. Dijkstra et al. (Eds.): PRIB 2010, LNBI 6282, pp. 207–218, 2010.
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can then be trained on low dimensional embedded features, resulting in improved
classification accuracy while also allowing researchers to visualize and interpret
relationships between data points [1].

Most commonly used DR methods, such as Principal Component Analysis
(PCA) [2], Graph Embedding [3], or Manifold Learning [2] schemes are unsu-
pervised, meaning they do not take into account class label information. These
methods essentially use cost functions assuming that the best features lie in a
subspace of the original high dimensional space where most of the variance in
the data is centered. Supervised DR methods such as linear discriminant analy-
sis (LDA) [1] employ cost functions where class labels are incorporated to help
separate known classes in a low dimensional embedding.

LDA is one of the most popular supervised DR methods; however it does not
consider unlabeled instances [1, 4]. Blum et al. [5] suggested that incorporating
unlabeled samples in addition to labeled samples can significantly improve clas-
sification results. Subsequently, many new DR methods employ semi-supervised
(SS) or weakly labeled learning techniques which incorporate the use of both la-
beled and unlabeled data [4, 6–9]. These SSDR schemes use labeled information
in the construction of a pairwise similarity matrix, where the individual cells
are assigned weights based on class and feature-based similarity between sample
pairs. These weights can then be used to create a low dimensional mapping by
solving a simple eigen-problem, the hypothesis being that embeddings explicitly
employing label information result in greater class separation in the reduced
dimensional space.

Active Learning (AL) algorithms have been utilized to intelligently identify
hard to classify instances. By querying labels for only hard to classify instances,
and using them to train a classifier, the resulting classifier has higher classifi-
cation accuracy compared to random learning, assuming the same number of
queries are used for classifier training [10, 11]. In practice, obtaining labels for
biomedical data is often expensive. For example, in the case of digital pathology
applications, disease extent can only be reliably annotated by an expert pathol-
ogist. By employing AL, the predictive model is (a) cheaper to train and (b)
yields a superior decision boundary for improved discrimination between object
classes with fewer labeled instances.

In this paper we present Semi-Supervised Graph Embedding with Active Learn-
ing (SSGEAL), a new DR scheme for analysis and classification of high dimen-
sional, weakly labeled data. SSGEAL identifies the most difficult to classify
samples via a support vector machine based active learning scheme, which is then
used to drive a semi-supervised graph embedding algorithm. Predictors can then
be trained for object classification in the SSGEAL reduced embedding space.

2 Previous Work and Novel Contributions

2.1 Unsupervised Dimensionality Reduction

PCA is the most commonly used unsupervised DR method. However it is es-
sentially a linear DR scheme [2]. Nonlinear dimensionality reduction (NLDR)
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methods such as Isomap [2] and Locally Linear Embedding [2], are powerful due
to their ability to discover nonlinear relationships between samples. In [1], we
found that nonlinear DR schemes outperformed PCA for the problem of classi-
fying high dimensional gene- and protein-expression datasets. However, NLDR
schemes are notoriously unstable [1, 2], requiring careful tuning of a neighbor-
hood parameter to generate useful embeddings.

Graph Embedding [3], or Spectral Embedding is an alternative unsupervised
NLDR method which does not require adjusting a neighborhood parameter, and
has been found to be useful in applications involving classification of DNA mi-
croarrays, proteomic spectra, and biomedical imaging [1, 12]. Normalized cuts [3]
is one implementation of Graph Embedding, which is widely used in the area
of image segmentation. Other versions of graph embedding include Min Cut [5],
Average Cut [3], Associative Cut [3], and Constrained Graph Embedding [13].

2.2 Semi-Supervised Dimensionality Reduction

Sugiyama et al. [4] applied SS-learning to Fisher’s discriminant analysis in order
to find projections that maximize class separation. Yang et al. [8] similarly ap-
plied SS-learning toward manifold learning methods. Sun et al. [9] implemented
a SS version of PCA by exploiting between-class and within-class scatter ma-
trices. SSAGE [6] is a SS method for spectral clustering which utilizes weights
to simultaneously attract within-class samples and repel between-class samples
given a neighborhood constraint. However, these embeddings often contain un-
natural, contrived clusters on account of labeled samples. Zhang [7] uses a similar
approach to SSDR, but without utilizing neighborhood constraints.

2.3 Active Learning

Previous AL methods have looked at the variance of sample classes to identify
difficult to classify instances [14]. The Query by Committee approach [10] uses
disagreement across several weak classifiers to identify hard to classify samples.
In [15], a geometrically based AL approach utilized support vector machines
(SVMs) to identify confounding samples as those that lay closest to the deci-
sion hyperplane. SVM-based AL has previously been applied successfully to the
problem of classifying gene expression data [11]. Additionally, a clear and easily
interpretable rationale for choice of sample selection exists. All these methods
however have typically been applied to improving classification and not embed-
ding quality per se [10, 14].

2.4 Novel Contributions and Significance of SSGEAL

The primary contribution of this paper is that it merges two powerful schemes -
SSDR with Active Learning - for generating improved low dimensional embed-
ding representations, which allows for greater class separation.
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Figure 1 illustrates how Graph Embedding (GE) can be improved with SS-
learning (SSAGE), and even further using AL (SSGEAL). In Figure 1(a), a
simple RGB image consisting of ball and background pixels is shown. Follow-
ing the addition of Gaussian noise, each pixel in Figure 1a is plotted in a 3D
RGB space (Figure 1(e)). Subsequently, we reduce the 3D RGB space into a
2D embedding via GE (Figure 1(f)), SSAGE (Figure 1(g)), and SSGEAL (Fig-
ure 1(h)). Figures 1(b), 1(c), and 1(d) represent a pixel-wise binary classification
into foreground (ball) and background classes via GE, SSAGE, and SSGEAL,
respectively. These were obtained via replicated k-means clustering on the cor-
responding DR embeddings, as shown in Figures 1(f), 1(g), and 1(h).

(a) (b) (c) (d)
 

RG
 

B

Background
Ball

 

 

Background
Ball

 

 

Background
Ball

 

 

Background
Ball

(e) (f) (g) (h)

Fig. 1. (a) RGB image containing ball against colored background pixels. (e) image

pixels plotted in 3D RGB space. The binary classifications (b-d) reflect the corre-

sponding quality of embeddings obtained via DR methods (b) GE, (c) SSAGE, and

(d) SSGEAL. These were obtained via replicated k-means clustering on the reduced

embeddings by (f) GE, (g) SSAGE, and (h) SSGEAL, respectively.

Table 1. Commonly used notation in this paper

Symbol Description

X Set containing N samples

xi, xj Sample vector xi, xj ∈ X, i, j ∈ {1, 2, ..., N}, x ∈ R
n

n Number of features used to describe xi

W Dissimilarity matrix

Y (xi) Labels for samples xi, Y (xi) ∈ {+1,−1}
Z(X, Y (XTr)) Embedding Z constructed using data X and label set Y (XTr).

XTr Set of labeled training samples xi ∈ XTr

XTs Set of unlabeled testing samples XTs ⊂ X
Xa Set of ambiguous samples Xa ⊂ XTs

δ Distance to decision hyperplane F in SVM-based AL
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3 Review of SSDR and Active Learning Methods

3.1 Graph Embedding (GE)

To obtain low dimensional embedding Z, Graph Embedding [3] utilizes pairwise
similarities between objects xi and xj ∈ X to construct N ×N weighted graph

W (xi,xj) = e
‖xi−xj‖2

σ , (1)

where σ = 1. W̃ (xi,xj) = (
∑N

ii W (xii,xj)×
∑N

jj W (xi,xjj))−1W (xi,xj) is then
used to solve the eigenvalue problem (D − W̃ )z = λDz, where D is a diagonal
matrix containing the trace of W̃ , and zk are the eigenvectors. Embedding Z
is formed by taking the most dominant eigenvectors zk corresponding to the k
smallest eigenvalues λk, where k is the dimensionality of Z. In this implementa-
tion, Graph Embedding does not consider labeled information.

3.2 Semi-Supervised Agglomerative Graph Embedding (SSAGE)

By using known label information, Zhao [6], describes a method for SSDR where
the similarity weights for GE are adjusted such that Equation 1 is replaced by

W (xi,xj) =

{
(e

‖xi−xj‖2
σ )(1+e

‖xi−xj‖2
σ ), if Y (xi)=Y (xj)

(e
‖xi−xj‖2

σ )(1−e
‖xi−xj‖2

σ ), if Y (xi) �=Y (xj)

e
‖xi−xj‖2

σ , otherwise

(2)

In contrast to simple GE, in SSAGE, known labeled samples are mapped to
be closer in the embedding space Z if both samples xi and xj are of the same
class Y (xi) = Y (xj), and further apart if both samples are of different classes.

3.3 SVM-Based Active Learning to Identifying Ambiguous Samples

A labeled set XTr is first used to train the SVM. SVMs [16] project the input
training data onto a high-dimensional space using the kernel Π(xi,xj). A linear

XTr | Y(xi) = -1
XTr | Y(xi) = +1
XTs  Unlabeled

Xa Ambiguous F F*

(a) (b) (c)

Fig. 2. (a) Labeled samples xi ∈ XTr are used to train an SVM model F . (b) Unlabeled

samples xi ∈ XTs found to be mapped closest to the model hyperplane F are included

into set Xa. (c) Labels Y(xi ∈ Xa) are queried and used to improve the new SVM

model F ∗, yielding a better predictor compared to F .
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kernel, defined asΠ(xi,xj) = xT
i xj , can then be used to maximize the margins so

as to decrease prediction risk. A decision boundary F is created in the trained
feature space by maximizing the margin between classes. Unlabeled instances
xi ∈ XTs are mapped into the same feature space (Figure 2(a)).

However, instead of classifying XTs, we use boundary F to find ambiguous
samples xi ∈ Xa via measure δ, defined as the relative distance to hyperplane F .
Samples xi ∈ XTs of shortest δ represent the most ambiguous samples and are
assigned to set Xa (Figure 2(b)). Labels for Xa are queried and these ambiguous
samples are added to the subsequent training set XTr = [XTr, Xa]. Learning via
the updated labels Y (XTr) results in improved class separation (Figure 2(c)).

4 Semi-Supervised Graph Embedding with Active
Learning (SSGEAL)

4.1 Initialization with Initial Embedding Z0

The schema for SSGEAL is illustrated via the flowchart in Figure 3. Our ini-
tialization comprises of creating an initial embedding Z0 and defining the initial
training XTr for our active learning scheme within Z0. Given data set X , we use
Graph Embedding as illustrated in Section 3.1 to obtain our initial embedding
Z0(X) = [z1, ..., zk], or simply Z0.

4.2 Active Learning to Identify Ambiguous Samples Xa

SVM-based active learning (see Section 3.3) is used to identify ambiguous sam-
ples xi ∈ Xa in embedding Zq, where q represents the specific iteration of an
embedding Z. Initial labeled training samples XTr for AL are selected randomly
from X . We begin by training an SVM using Z0(XTr) and Y (XTr) to create
model F . δ(XTs) can be found using F , where the smallest δ(XTs) are selected
and assigned to set Xa. Y (Xa) is revealed and Xa is added to the training set
XTr, such that XTr = [XTr, Xa].

4.3 Semi-Supervised Graph Embedding Zq Using Updated Labels

We utilize an updated version of Zhao’s SSAGE method [6] to map a modified
similarity matrix W into Z using the GE framework discussed in Section 3.1.
This weighting only takes into account samples which are of the same class, using
a gravitation constant G > 1 to attract same-class samples closer. Weights are
adjusted such that Equation 1 is replaced by

W (xi,xj) =

{
G×e

‖xi−xj‖2
σ , if Y (xi)=Y (xj)

e
‖xi−xj‖2

σ , otherwise
(3)

Unlike the Zhao [6] and Zhang [7] implementations, instances from different
classes are not explicitly weighted to force them farther apart in SSGEAL. The
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rationale for this is that for biomedical data, certain instances within one class
may share several traits with another class. For instance, premalignant lesions
while technically benign, share several hallmarks of malignant tumors. Arti-
ficially forcing instances from different classes farther apart could result in a
pre-malignant lesion being mapped far apart from the cancer class, rather than
in an intermediate class between benign and malignant.

Labels Y (XTr) from the updated training set and current embedding Zq are
used to create embedding Zq+1. The new embedding Zq+1(Zq, Y (XTr)), or sim-
ply Zq+1, is constructed using the current embedding Zq and the exposed label
set Y (XTr). The process of obtaining new labels from AL and creating semi-
supervised embeddings continues until the stopping criterion is met.

4.4 Stopping Criterion Using Silhouette Index

The stopping criterion is set using the Silhouette Index (φSI) [17] of the revealed
labels. φSI is a cluster validity measure which captures the intra-cluster com-
pactness Ai =

∑
j,Y (xj)=Y (xi) ‖xi − xj‖2, which represents the average distance

of a point xi from other points Xj of the same class, while also taking into
account inter-cluster separation Bi =

∑
j,Y (xj) �=Y (xi) ‖xi − xj‖2, the minimum

of the average distances of a point xi from other instances in different classes.
Thus, the formulation for Silhouette Index is shown as

φSI =
N∑
i

Bi −Ai

max[Ai, Bi]
. (4)

φSI ranges from -1 to 1, where -1 is the worst, and 1 is the best possible cluster-
ing. When the change in φSI falls below threshold θ, such that |φSI

q+1−φSI
q | < θ,

the algorithm stops. The algorithm for SSGEAL is presented below.

Algorithm SSGEAL
Input: X,Y (XTr) θ, δ, q = 0
Output: Zf

begin
0. Build initial embedding Z0(X)
1. while |φSI

q+1 − φSI
q | < θ

2. Train SVM model F using XTr, Y (XTr)
3. Identify xi ∈ Xa using measure δ
4. Update XTr = [XTr, Xa]
5. Update embedding Zq+1(Zq, Y (XTr)) via Equation 3
6. Compute φSI

q using Equation 4.
7. q = q + 1
8. endwhile
9. return Zf

end
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Graph 
Embedding (Z0)

Semi-Supervised 
Embedding (Zq)

Active Learning 
XTr = [XTr, Xa]

Stopping 
Criterion

Data (X)

Final Embedding 
(Zf)

Label Query 
Y(Xa)

Fig. 3. Flowchart of SSGEAL

5 Experimental Results and Discussion

5.1 Experiments and Evaluation

Datasets. Table 2 provides an overview of the 7 publically available gene ex-
pression and digitized prostate biopsy images used to test SSGEAL.1 For the
gene expression datasets, no preprocessing or normalization of any kind was
performed prior to DR. For the Prostate Histopathology dataset, a set of 14
pixel-wise features were extracted, including first-order statistical, second-order
co-occurrence, and steerable Gabor wavelet features [10, 18] from the images,
digitized at 40x magnification. The images are then broken into 30 x 30 pixel re-
gions, each quantified by averaging the feature values in the region. We randomly
selected 3900 non-overlapping patches from within the cancer and non-cancer re-
gions (manually annotated by an expert pathologist) for purposes of evaluation.

Table 2. Datasets used in our experiments

Datasets Description

Gene Prostate Cancer 25 Tumor, 9 Normal, 12600 genes

Expression Colon Cancer 22 Tumor, 40 Normal, 2000 genes

Lung Cancer 15 MPM, 134 ADCA, 12533 genes

ALL / AML 20 ALL, 14 AML, 7129 genes

DLBCL Tumor 58 Tumor, 19 Normal, 6817 genes

Lung Cancer(Mich) 86 Tumor, 10 Normal, 7129 genes

Breast Cancer 10 Tumor, 20 Normal, 54675 genes

Imaging Prostate 1950 cancer regions, 1950 benign regions,

Histopathology 14 image textural descriptors

1 Gene expression datasets were obtained from the Biomedical Kent-Ridge Reposito-

ries at http://sdmc.lit.org.sg/GEDatasets/Datasets and

http://sdmc.i2r.a-star.edu.sg/rp

http://sdmc.lit.org.sg/GEDatasets/Datasets
http://sdmc.i2r.a-star.edu.sg/rp
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Table 3. μ(φSI), μ(φAUC), σ(φSI), and σ(φAUC) across 10 runs using different XTr

for GE, SSAGE and SSGEAL. The high mean performance and low standard deviation

of these statistics over 10 runs of SSGEAL on 8 datasets demonstrates the robustness

of the algorithm regardless of initial training set XTr . Best values are shown in bold.

For a majority of the cases, SSGEAL is shown to perform the best.

Silhouette Index Random Forest AUC

Datasets GE SSAGE SSGEAL GE SSAGE SSGEAL

Gene Prostate Cancer 0.54 0.29±0.10 0.66±0.01 1.00 0.98±0.04 1.00±0.00

Expression Colon Cancer 0.02 0.16±0.01 0.43±0.04 0.73 0.92±0.03 0.95±0.05

Lung Cancer 0.64 0.49±0.06 0.65±0.20 0.49 0.95±0.10 0.96±0.09

ALL / AML 0.42 0.24±0.04 0.47±0.05 0.95 0.96±0.03 0.97±0.04

DLBCL Tumor 0.20 0.32±0.10 0.62±0.03 0.75 0.89±0.04 0.95±0.04

Lung Cancer(Mich) 0.68 0.45±0.02 0.83±0.02 1.00 0.95±0.13 0.99±0.03

Breast Cancer 0.20 0.19±0.09 0.45±0.08 0.78 0.90±0.05 0.96±0.05

Imaging Prostate 0.35 0.36±0.00 0.35±0.00 0.85 0.93±0.00 0.93±0.00

Histopathology

Experiments. Two DR techniques were employed to compete against our al-
gorithm (SSGEAL): one which does not incorporate labels (GE) and one which
utilizes labels (SSAGE). We generated embeddings Z using DR methods GE,
SSAGE, and SSGEAL to show that (a) embeddings generated using SSGEAL
outperform those generated via GE and SSAGE, (b) steady improvement in both
classification accuracy and Silhouette index can be observed via active learning
with SSGEAL, and (c) SSGEAL is robust to initial training.

Evaluation Measures. Embeddings were evaluated both qualitatively and
quantitatively using φSI (Equation 4) and Area Under the Receiver Operating
Characteristic (ROC) Curve for Random Forest Classification φAUC . For φSI ,
all labels were used. For φAUC , a randomly selected training pool P consisting of
two-thirds of the instances in X was used, with the remaining samples reserved
for testing. 50 decision trees were trained using a 50 random subsets each con-
sisting of 2/3 of P . Predictions on the testing samples were subsequently bagged
and used to calculate the ROC curve for assessing classifier performance.

Parameter Settings. For our experiments, 2D embeddings Z = [z1, z2] are
generated for each DR method. In all cases, no neighborhood information was
used. For both SSAGE and SSGEAL, we ultimately expose 40% of the labels.
For SSGEAL, the gravitation constant G was set to 1.3 and our initial training
set XTr was set at 15% of Y (X), revealing 5% of the labels Y (XTs) at each
iteration q until 40% of the labels were revealed.

5.2 Comparing SSGEAL with GE and SSAGE via φSI and φAUC

Table 3 lists the mean and variance of φAUC and φSI values for SSGEAL, GE,
and SSAGE, over 8 dataset. The same number of labeled samples (40%) were
used for SSAGE and SSGEAL for each data set. To obtain an accurate represen-
tation of algorithm performance, we randomly selected 10 training sets XTr for
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10 runs of SSAGE and SSGEAL for the purpose of testing the robustness of the
algorithms to initial labeling. Note that GE is an unsupervised method and does
not utilize label information, hence there is no standard deviation across multi-
ple runs of GE. 2D embeddings were generated for each set XTr and evaluated
via φAUC and φSI .

For a majority of the datasets, SSGEAL outperforms both GE and SSAGE
in terms of φSI (μ(φSI) of 0.35 for GE, 0.31 for SSAGE, and 0.50 for SSGEAL)
and φAUC (μ(φAUC) of 0.85 for GE, 0.93 for SSAGE, and 0.94 for SSGEAL).
Furthermore, low standard deviation (σ(φAUC ), σ(φSI)) over the 10 runs suggest
robustness of SSGEAL to initial XTr.

Figure 4 shows qualitative illustrations of 2D embeddings for GE and SS-
GEAL over different iterations for 3 selected datasets. We can observe greater
class separation and cluster tightness with increasing iterations for SSGEAL.
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Fig. 4. Scatter plots of the 2 most dominant embedding eigenvectors z1(xi), z2(xi)

for xi ∈ X are shown for different iterations of SSGEAL (a) Z0, (b) Z2, and (c) Zf

(the final stable embedding), for the Prostate Cancer dataset. Similarly, the embedding

plots are shown for the Lung Cancer dataset for (d) Z0, (e) Z2, (f) Zf . Lastly, (g) Z0,

(h) Z2, (i) Zf are shown for the Lung Cancer(Mich) dataset. Note the manually placed

ellipses in (c) and (i) highlight what appear to be novel subclasses.
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Figures 4(a), 4(d), and 4(g) show embedding plots of GE (Z0). An intermediate
step of SSGEAL (Zq) is shown in Figures 4(b), 4(e), and 4(h) and SSGEAL
embeddings (Zf ) can be seen in Figures 4(c), 4(f), and 4(i).

6 Concluding Remarks

Semi-Supervised Graph Embedding with Active Learning (SSGEAL) represents
the first attempt at incorporating an active learning algorithm into a semi-
supervised dimensionality reduction (SSDR) framework. The inclusion of ac-
tive learning is especially important for problems in biomedical data where class
labels are often difficult or expensive to come by. Using 8 real-world gene expres-
sion and digital pathology image datasets, we have shown that SSGEAL results
in low dimensional embeddings which yield tighter, more separated class clus-
ters and result in greater class discriminability compared to GE and SSAGE, as
evaluated via the Silhouette Index and AUC measures. Furthermore, SSGEAL
was found to be robust with respect to the choice of initial labeled samples used
for initializing the active learning process. SSGEAL does however appear to be
sensitive to the value assigned to the gravitation constant G. This parameter
may be used to refine the initial graph embedding (Figure 5(a)). For the his-
tology dataset, setting G = 1.5 resulted in φSI = 0.39 and φAUC = 0.94 for
SSGEAL, compared to φSI = 0.36 and φAUC = 0.93 for SSAGE (Figure 5). In
future work we intend to extensively and quantitatively evaluate the sensitivity
of our scheme to neighborhood, gravitation, and stopping parameters.
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Fig. 5. Scatter plots of the 2 most dominant embedding eigenvectors are shown for the

Prostate Histopathology dataset. (b) and (c) show SSGEAL embeddings with gravita-

tion constants G = 1.3 and 1.5 respectively, suggesting the utility of G for improving

embeddings with large degrees of overlap between the object classes. For comparison,

the embedding graph for GE is also shown for this dataset (Figure 5(a)).
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Abstract. In the context of microarray data analysis, biclustering aims

to identify simultaneously a group of genes that are highly correlated

across a group of experimental conditions. This paper presents a Biclus-

tering Iterative Local Search (BILS) algorithm to the problem of biclus-

tering of microarray data. The proposed algorithm is highlighted by the

use of some original features including a new evaluation function, a ded-

icated neighborhood relation and a tailored perturbation strategy. The

BILS algorithm is assessed on the well-known yeast cell-cycle dataset

and compared with two most popular algorithms.

Keywords: Analysis of DNA microarray data, biclustering, evaluation

function, iterative local search.

1 Introduction

With the fast advances of DNA Microarray technologies, more and more gene
expression data are made available for analysis. In this context, biclustering
has been recognized as a remarkably effective method for discovering several
groups of subset of genes associated with a subset of conditions. These groups
are called biclusters. Biclusters can be used for various purposes, for instance,
they are useful to discover genetic knowledge, such as gene annotation or gene
interaction, and to understand various genetic diseases.

Formally, DNA microarray data is usually represented by a data matrix
M(I, J), where the ith row, i ∈ I={1, 2, . . . , n}, represents the ith gene, the kth

column, k ∈ J={1, 2, . . . ,m}, represents the kth condition and the cell M [i, k]
represents the expression level of the ith gene under the kth condition. A bicluster
of M is a couple (I ′, J ′) such that I ′ ⊆ I and J ′ ⊆ J .

The biclustering problem consists in extracting from a data matrix M(I, J) a
group of biclusters that maximize a given evaluation function. The biclustering
problem is known to be NP-hard [10,22]. In the literature there are two main
approaches for biclustering: the systematic search approach and the stochastic
search or metaheuristic approach. Notice that most of these approaches are
approximate methods.

The systematic search approach includes greedy algorithms [6,9,10,29], divide-
and-conquer algorithms [17,26] and enumeration algorithms [4,20]. The meta-
heuristic approach includes neighbourhood-based algorithms [8], GRASP [12,13]

T.M.H. Dijkstra et al. (Eds.): PRIB 2010, LNBI 6282, pp. 219–229, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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and evolutionary algorithms [15,16,23]. A recent review of various biclustering
algorithms for biological data analysis is provided in [3].

In this paper, we present a first adaptation of Iterative Local Search (ILS) to
the biclustering problem. The resulting algorithm, called BILS, integrates several
original features. BILS employs a new evaluation function for the assessment of
biclusters. In BILS, we introduce a dedicated neighborhood relation which allows
the search to improve gradually the quality of bicluters. To allow the search to
escape from local optima, BILS uses a randomized, yet guided perturbation
strategy.

To assess the performance of BILS, we applied BILS to the well-known yeast
cell-cycle dataset and validated the extracted biclusters using external biological
information by determining the functionality of the genes of the biclusters from
the Gene Ontology database [2] using GOTermFinder tool1. Genes belonging
to our biclusters were found to be significantly enriched with GO terms with
very small p-values. We also use the web tool FuncAssociate [7] to compute the
adjusted p-values. Our biclusters were found to be statistically significant with
adjusted p-values < 0.001. We also compared our algorithm with two popular
biclustering algorithms of Cheng and Church (CC) [10] and OPSM [6].

The remainder of the paper is organized as follows: In section 2, we describe
our new biclustering algorithm. In section 3, we carry out an experimental study
of BILS and assess its results using the above cited web-tools. Finally, in the last
section, we present our conclusion and perspective.

2 The BILS Algorithm

2.1 Iterated Local Search

Iterated Local Search can be described by a simple computing schema [19]. A
fundamental principle of ILS is to exploit the tradeoff between intensification and
diversification. Intensification focuses on optimizing the objective function as far
as possible within a limited search region while diversification aims to drive the
search to explore new promising regions of the search space. The diversification
mechanism of ILS–perturbation operator–has two aims: one is to jump out of the
local optimum trap; the other is to lead the search procedure to a new promising
region.

From the operational point of view, An ILS algorithm starts with an initial
solution and performs local search until a local optimum is found. Then, the
current local optimum solution is perturbed and another round of local search
is performed with the perturbed solution.

Our BILS algorithm follows this general ILS schema. It uses a Hill-climbing
(HC) algorithm as its local search procedure. In the rest of this section, we
explain the main ingredients of this HC algorithm as well as the perturbation-
based diversification strategy.

1 http://db.yeastgenome.org/cgi-bin/GO/goTermFinder
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2.2 Preprocessing Step: Construction of the Behavior Matrix

Prior to the search step using ILS, our method first uses a preprocessing step to
transform the input data matrixM to a Behavior Matrix M ′. This preprocessing
step aims to highlight the trajectory patterns of genes. Indeed, according to
[21,24,27], in microarray data analysis, genes are considered to be in the same
cluster if their trajectory patterns of expression levels are similar across a set
of conditions. In our case, each column of M ′ represents the trajectory of genes
between a pair of conditions in the data matrixM . The wholeM ′ matrix provides
useful information for the identification of related biclusters and the definition
of a meaningful neighborhood and perturbation strategy.

Formally, the Behavior Matrix M ′ is constructed progressively by merging a
pair of columns (conditions) from the input data matrixM . SinceM has n rows
and m columns, there is m(m − 1)/2 distinct combinations between columns,
represented by J ′′. So, M ′ has n rows and m(m − 1)/2 columns. M ′ is defined
as follows:

M ′[i, l] =

⎧⎨⎩
1 if M [i, k] < M [i, q]
−1 if M [i, k] > M [i, q]
0 if M [i, k] = M [i, q]

(1)

with i ∈ [1..n], l ∈[1..J ′′], k ∈[1..m− 1], q ∈[1..m] and q > k + 1.
Using M ′, we can observe the behavior of each gene through all the combined

conditions. In our case, the combination of all conditions gives useful information
since a bicluster may contains a subset of non contiguous conditions.

2.3 Initial Solutions and Basic Search Process

Given the Behavior MatrixM ′, our BILS algorithm explores iteratively different
biclusters. To do this, BILS needs an initial bicluster (call it s0) as its starting
point. This initial bicluster can be provided by any means. For instance, this can
be done randomly with a risk of starting with an initial solution of bad quality. A
more interesting strategy is to employ a fast greedy algorithm to obtain rapidly
a bicluster of reasonable quality. We use this strategy in this work and adopt
two well-known algorithms: one is presented by Cheng and Church [10] and the
other is called OPSM which is introduced in [6].

Starting from this initial solution, BILS will try to find iteratively biclusters
of better and better quality. Basically, the improvement is realized by removing
a “bad” genes from the current bicluster and adding one or more other “better”
genes. Each application of this dual drop/add operation generates a new bicluster
from the current bicluster. The way of identifying the possible genes to drop and
to add defines the so-called neighborhood which is explained in detail in section
2.6.

2.4 Solution Representation and Search Space

A candidate solution is simply a bicluster and represented by s = (I ′, J ′). As
explained in the next section, our algorithm explores different biclusters with
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variable number of genes and a fixed number of conditions. The search space is
thus determined by the number k of genes in the initial bicluster and has size of
2g where g = n− k.

2.5 Evaluation Function

For a given solution (bicluster), its quality is assessed by an evaluation function.
One of the most popular evaluation functions in the literature is called Mean
Squared Residue (MSR) [10]. MSR has been used by several biclustering algo-
rithms [9,13,23]. Yet MSR is known to be deficient to assess correctly the quality
of certain types of biclusters like multiplicative models [1,25,29,9]. Recently, Teng
and Chan [29] proposed another function for bicluster evaluation called Average
Correlation Value (ACV). However, the performance of ACV is known to be
sensitive to errors [9]. Both MSR and ACV are designed to be applied to the
initial data matrix M . In our case, since M is preprocessed to obtain M ′, the
above mentioned evaluation functions cannot be applied. For these reasons, we
propose a new evaluation function S to evaluate a bicluster.

Given a candidate solution (a bicluster) s = (I ′, J ′), the quality of s is assessed
via the following score function S(s):

S(s) =

∑
i∈I′

∑
j∈I′,j>i+1

Fij(gi, gj)

|I ′|(|I ′| − 1)/2
(2)

with Fij(., .) being defined by:

Fij(gi, gj) =

∑
l∈J′′

s0

T (M ′[i, l] =M ′[j, l])

|J ′′
s0
| (3)

where

– T (Func) is true, if and only if Func is true, and T (Func) is false otherwise.
– i ∈ I ′, j ∈ I ′ and i �= j, when F is used by S and, i ∈ I, j ∈ I and i �= j

otherwise.
– |J ′′

s0
| is the cardinality of the subset of conditions in M ′ obtained from s0,

– 0 ≤ Fij(gi, gj) ≤ 1.

In fact, each F score assesses the quality of a pair of genes (gi, gj) under the
subset of conditions of s. A high (resp. low) Fij(gi, gj) value, close to 1 (resp.
close to 0), indicates that the genes (gi, gj) (under the given conditions) are
strongly (resp. weakly) correlated.

Given two pairs of genes (gi, gj) and (g′i, g
′
j), it is then possible to compare

them: (gi, gj) is better than (g′i, g
′
j), when Fij(gi, gj) > Fij(g′i, g

′
j).

Furthermore, S(s) is an average of Fij(gi, gj) for each pair of genes in s. So,
0 ≤ S(s) ≤ 1. As Fij(gi, gj), a high (resp. low) S(s) value, close to 1 (resp. close
to 0), indicates that the solution s is strongly (resp. weakly) correlated.

Now given two candidate solutions s and s′, s is better than s′ if S(s) > S(s′).
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2.6 Move and Neighborhood

One of the most important features of a local search algorithm is its neighbor-
hood. In a local search algorithm, applying a move operator mv to a candidate
solution s leads to a new solution s′, denoted by s′ = s ⊕mv. Let Γ (s) be the
set of all possible moves which can be applied to s, then the neighborhood N(s)
of s is defined by: N(s) = {s⊕mv|mv ∈ Γ (s)}.

In our case, the move is based on the drop/add operation which removes a
gene {gi|i ∈ I ′} from the solution s and add another gene {gv|v �∈ I ′} or several
other genes {gv, . . . , gw|v �∈ I ′, . . . , w �∈ I ′} to s.

The move operator can be defined as follows. Let s = (I ′, J ′) be a solution and
let λ ∈ [0..1] be a fixed quality threshold (See Section 2.5 for quality evaluation).
For each i ∈ I ′, j ∈ I ′, r ∈ I ′ and i �= j �= r, we first choose a pair of genes (gi, gj)
such that Fij(gi, gj) < λ. Such a pair of genes shows that they contributes
negatively to the quality of the bicluster when they are associated. Now we look
for another pair of genes (gj , gr) satisfying Fjr(gj , gr) ≥ λ. By this choice, we
know that gj contributes positively to the quality of the bicluster when it is
associated with gr. Notice that for both choices, ties are broken at random in
order to introduce some diversification in the move operator.

Finally, we remove gi which is a bad gene among the genes belonging to I ′

and we add all the genes {gv, . . . , gw|v �∈ I ′, . . . , w �∈ I ′} such that the values
Frv(gr, gv), . . . ,Frw(gr, gw) are higher than or equal to λ. Such an operator
clearly help improve the quality of a bicluster, but also maximize the bicluster
size [14,23].

Applying the move operator to a solution s leads to a new bicluster s′, called
neighboring solution or simply neighbor. For a given bicluster s, all possible
neighbors define its neighborhood N(s). It is clear that a neighboring solution
s′ has at least as many genes as in the original solution s.

2.7 The General BILS Procedure

The general BILS procedure is given in Algorithm 1. Starting from an initial
solution (call it current solution s, see section 2.3), our BILS algorithm uses the
Hill-climbing strategy to explore the above neighborhood. At each iteration, we
move to an improving neighboring solution s′ ∈ N(s) according to the evalua-
tion function S(s). This Hill-climbing based intensification phase stops when no
improving neighbor can be found in the neighborhood. So, the last solution is
the best solution found and corresponds to a local optimum. At this point, BILS
triggers a diversification phase by perturbing the best solution to generate a new
starting point for the next round of the search.

Our perturbation operator changes the best local optimum by deleting ran-
domly 10% of genes of the best solution and adding 10% of genes among the
best genes that are not included in the best solution. This perturbed solution is
used by BILS as its new starting point.

The whole BILS algorithms stops when the best bicluster reaches a fixed
quality or when the best solution found is not updated for a fixed number of
perturbations.
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Algorithm 1. General BILS Procedure
1: Input: An initial bicluster s0, quality threshold λ
2: Output: The best bicluster

3: Create the Behaviour Matrix M ′

4: Compute F for all pairs of genes to create Γ (s0)

5: s = s0 // current solution

6: repeat
7: repeat
8: Choose a pair of genes (gi, gj) belonging to s such that Fij(gi, gj) < λ
9: Choose a pair of genes (gj , gr) belonging to s such that Fjr(gj , gr) ≥ λ

10: Identify all genes gv, v /∈ I ′ such that Frv(gr, gv) ≥ λ
11: Generate neighbor s′ by dropping gi from s and adding all gv

12: if (S(s′) ≥ S(s)) then s = s′

13: endif
14: until (no improving neighbor can be found in N(s))
15: Generate a new solution s by perturbing randomly 10% of the best solution

16: until (stop condition is verified)

17: Return s

3 Experimental Results

3.1 Dataset and Experimental Protocol

In order to analyze the effectiveness of the proposed algorithm, we used the
well-known yeast cell-cycle microarray dataset. The yeast cell-cycle dataset is de-
scribed in [28]. It is processed in [10] and publicly available from [11]. It contains
the expression profiles of more than 6000 yeast genes measured at 17 conditions
over two complete cell cycles. In our experiments we use 2884 genes selected by
[10].

The obtained results have been compared with two popular biclustering algo-
rithms: the one proposed by Cheng and Church (CC) [10] and OPSM described
in [6]. For these reference algorithms, we have used Biclustering Analysis Toolbox
(BicAT) which is a recent software platform for clustering-based data analysis
that integrates these biclustering algorithms [5].

For this experiment, the λ threshold of BILS is experimentally set to 0.7. In
fact, for each experiment ten values are tested between 0.1 and 1 with a stepwise
of 0.1. With λ = 0.7, we have obtained the lowest p-values. The threshold δ of
CC is selected as 300 like used in [10] and the default parameter setting is used
for OPSM. With these algorithms, we have obtained 10 biclusters for CC and 14
biclusters for OPSM. Post-filtering was applied in order to eliminate insignificant
biclusters like Cheng et al. [9]. This led to 8 biclusters CC and for 10 biclusters
for OPSM. These biclusters are used as initial solutions for BILS and we compare
the outputs of BILS with these initial biclusters.

The two web tools Funcassociate [7] and GoTermFinder2 are used to evaluate
statistically and biologically the biclusters.
2 http://db.yeastgenome.org/cgi-bin/GO/goTermFinder
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Our algorithm is run on a PC with 3.00GHz CPU and 3.25Gb RAM. Com-
puting time is not reported, but let us mention that to improve one bicluster it
takes between 3 and 11 minutes.

3.2 Statistical and Biological Significance Evaluation

Statistical significance of the biclusters is obtained by using the Funcassociate
[7] web tool to compute the p-values and the adjusted p-values.

First, we asses the quality of the group of 18 biclusters obtained by BILS
when it is applied to the 8 initial biclusters provided by CC and 10 initial biclus-
ters given by OPSM. Funcassociate is used to compute the adjusted p-values of
each of our 18 biclusters, leading always to an adjusted p-values < 0.001. This
indicates that all these biclusters are statistically significant.

Now we turn our attention to the interpretation of results using the p-values.
In fact, the p-values show how well they match with the known gene annotation.
The closer the p-value is to zero, the more significant is the association of the
particular Gene Ontology (GO) with the group of genes. For this purpose, we
decide to examine for each algorithm only two biclusters: the bicluster having
the maximum p-value and the one having the minimum p-value. Let B xxMaxP

(resp. B xxMinP ) denote these biclusters for algorithm xx = CC or xx = OPSM.
Table 1 summarizes the largest (column 2) and the smallest (column 3) p-

values of the eight biclusters obtained from CC and the ten biclusters obtained
from OPSM. The obtained biclusters from these algorithms with largest/smallest
p-values are improved with BILS (row 3 for CC and 5 for OPSM). For instance,
the element 0.000010 at row 2 and column 2 is the p-value of the bicluster
B CCMaxP of CC while the element 2.220e-17 at row 3 and column 2 is the
p-value of the improved bicluster B CCMaxP by BILS.

From the table, we see that BILS successfully improves the biclusters of CC
and OPSM. In fact, both the maximum and minimum p-values of BILS are
always better than those of CC and OPSM. This demonstrates that BILS is able
to replace bad genes of the candidate solution by good genes by applying our
move operator. Thus we can say that the biclusters of BILS are more statistically
significant than those of CC and OPSM.

Table 1. P-values of the genes of the biclusters for BILS, CC and OPSM

Algorithms Maximum p-value Minimum p-value

CC 0.000010 4.096e-40

BILS 2.220e-17 2.860e-70

OPSM 0.0000012 1.587e-13

BILS 1.156e-10 4.865e-24

In addition to the above statistical significance validation, we also apply the
GoTermFinder web tool on the biclusters used at the Table 1 to evaluate their
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biological significance, i.e., to show significant enrichment with respect to a spe-
cific GO annotation, in terms of associated biological processes, molecular func-
tions and cellular components respectively compared to CC and OPSM.

Table 2. Most significant shared GO terms (biological process, molecular function,

cellular component) of CC and BILS for two biclusters on yeast cell-cycle dataset

Algorithms Biological Process Molecular function Cellular component

CC unknown unknown Cytoplasm

(B CCMaxP ) (0.00932)

BILSCC : Maturation of SSU-rRNA structural constituent cytosolic ribosome

improved (4.54e-05) of ribosome (4.14e-17) (2.94e-21)

B CCMaxP Maturation of SSU-rRNA Structural molecule activity ribosomal subunit

by BILS from tricistronic rRNA (1.97e-15) (4.27e-17)

transcript(SSU-rRNA, 5.8S cytosolic part

rRNA, LSU-rRNA) (2.04e-16)

(0.00088)

Cell cycle (0.00107)

CC translation structural constituent cytosolic ribosome

(B CCMinP ) (8.33e-23) of ribosome (7.83e-42)

cellular protein (1.03e-36) ribosome (3.80e-36)

metabolic process structural molecule cytosolic part

(3.17e-10) activity (3.91e-28) (1.82e-35)

gene expression helicase activity

(6.48e-10) (0.00021)

BILSCC : translation structural constituent cytosolic ribosome

improved (2.86e-35) of ribosome (2.50e-70) (1.05e-76)

B CCMinP cellular protein Structural molecule activity ribosomal subunit

by BILS metabolic process (6.06e-54) (1.08e-68)

(2.59e-16) translation factor cytosolic part

cellular macromolecule activity, nucleic acid (1.01e-66)

biosynthetic process binding (0.00445)

(1.74e-15)

For this, Table 2 and 3 describe the top GO terms of the three categories with
the lowest p-values. The value within parentheses after each GO term, e.g., Table
2 second column third line, such as (4.54e-05) indicates the statistical significance
which is provided by the p-value. We observe that BILS can obtain improved
biclusters not only in terms of p-values, i.e., quality of biclusters, but also in terms
of GO annotation. For example Table 2 (resp. Table 3) shows that CC (resp.
OPSM) can not identify any biological process and molecular functions (resp.
biological process and cellular component) for the bicluster B CCMaxP (resp.
B OPSMMinP ). However, BILS can produce biclusters with all categories, i.e.,
biological processes, molecular functions and cellular components. This shows
that our algorithm is able to identify biological significant biclusters.
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Table 3. Most significant shared GO terms (biological process, molecular function,

cellular component) of OPSM and BILS for two biclusters on yeast cell-cycle dataset

Algorithms Biological Process Molecular function Cellular component

OPSM sister chromatid unknown spindle

(B OPSMMaxP ) segregation (0.00337) (0.00196)

chromosome segregation microtubule cytoskeleton

(0.00478) (0.00295)

microtubule-based process chromosomal part

(0.00588) (0.00991)

BILSOPSM : cellular component structural constituent nucleus

improved organization (1.71e-07) of cytoskeleton (3.83e-12)

B OPSMMaxP nucleic acid (0.00099) nuclear part

by BILS metabolic process (1.72e-06) RNA polymerase II (3.91e-09)

cellular nitrogen transcription factor chromosomal

compound metabolic process (0.00640) (2.26e-08)

(7.88e-06)

OPSM unknown oxidoreductase activity unknown

(B OPSMMinP ) (6.78e-06)

oxidoreductase activity,

acting on CH-OH group

of donors (0.00075)

oxidoreductase activity,

acting on peroxidase

as acceptor

(0.00078)

BILSOPSM : response to stimulus structural constituent cytosolic ribosome

improved (0.00092) of ribosome (1.09e-23)

B OPSMMinP response to stress (9.19e-24) ribosomal subunit

by BILS (0.00454) structural molecule (3.28e-23)

activity (3.78e-12) cytosolic part

oxidoreductase activity (7.35e-22)

(2.36e-05)

4 Conclusion and Future Work

In this paper, we have presented a new biclustering algorithm using Iterative Lo-
cal Search (BILS). BILS combines a dedicated Hill-climbing based local search
procedure and a perturbation strategy. For the intensification purpose, BILS
employs a new evaluation function and a dedicated neighborhood relation. We
have tested and assessed our algorithm on the yeast cell-cycle dataset. The ex-
perimental results show that the BILS algorithm can successfully improve all
biclusters of CC and OPSM according to statistical and biological evaluation
criteria.

The work reported in this paper correspond in fact to an ongoing study. Sev-
eral improvements to the proposed work can be envisaged. One immediate possi-
bility would be to study alternative neighborhoods to introduce more biological
knowledge to provide more effective guidance of the local search process. An-
other natural extension would be to reinforce the basic local search procedure by
more powerful metaheuristics such as Tabu Search. Moreover, BILS explores the
space of biclusters by changing only the subset of genes of a bicluster without
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changing the conditions of the initial bicluster. It is natural to design similar
strategies to optimize the subset of conditions of a bicluster or eventually to
optimize simultaneously both the set of genes and conditions. Finally, another
possible experimentation is to assess the algorithm on a synthetic data.
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25. Pontes, B., Divina, F., Giráldez, R., Aguilar-Ruiz, J.S.: Virtual error: A new mea-

sure for evolutionary biclustering. In: Evolutionary Computation, Machine Learn-

ing and Data Mining in Bioinformatics, pp. 217–226 (2007)

26. Prelic, A., Bleuler, S., Zimmermann, P., Buhlmann, P., Gruissem, W., Hennig,

L., Thiele, L., Zitzler, E.: A systematic comparison and evaluation of biclustering

methods for gene expression data. Bioinformatics 22(9), 1122–1129 (2006)

27. Schliep, A., Schonhuth, A., Steinhoff, C.: Using hidden Markov models to analyze

gene expression time course data. Bioinformatics 19(Suppl. 1), i255–i263 (2003)

28. Tavazoie, S., Hughes, J.D., Campbell, M.J., Cho, R.J., Church, G.M.: Systematic

determination of genetic network architecture. Nature Genetics 22, 281–285 (1999)

29. Teng, L., Chan, L.: Discovering biclusters by iteratively sorting with weighted

correlation coefficient in gene expression data. J. Signal Process. Syst. 50(3),

267–280 (2008)



Biologically-aware Latent Dirichlet Allocation
(BaLDA) for the Classification of Expression

Microarray

Alessandro Perina1, Pietro Lovato1,
Vittorio Murino1,2, and Manuele Bicego1,2,


1 University of Verona, Verona, Italy
2 Italian Institute of Technology (IIT), Genova, Italy

Tel.: +39 045 8027072, Fax: +39 045 8027968

manuele.bicego@univr.it

Abstract. Topic models have recently shown to be really useful tools

for the analysis of microarray experiments. In particular they have been

successfully applied to gene clustering and, very recently, also to sam-

ples classification. In this latter case, nevertheless, the basic assump-

tion of functional independence between genes is limiting, since many

other a priori information about genes’ interactions may be available

(co-regulation, spatial proximity or other a priori knowledge). In this

paper a novel topic model is proposed, which enriches and extends the

Latent Dirichlet Allocation (LDA) model by integrating such dependen-

cies, encoded in a categorization of genes. The proposed topic model

is used to derive a highly informative and discriminant representation

for microarray experiments. Its usefulness, in comparison with standard

topic models, has been demonstrated in two different classification tests.

1 Introduction

Microarrays represent a widely employed tool in molecular biology and genet-
ics, which have produced an enormous amount of data to be processed to infer
knowledge. Computational methodologies may be very useful in such analysis:
among others, clear examples are tools aiding the microarray probe design, im-
age processing-based techniques for the quantification of the spots, segmenta-
tion of spots/background, grid matching, noise suppression [5], methodologies
for classification or clustering [22]. In this paper we focus on this last class of
problems, and in particular on the samples classification task. In this context,
many approaches have been presented in the literature in the past, each one
characterized by different features, like computational complexity, effectiveness,
interpretability, optimization criterion and others – for a review see e.g. [13,21].

In particular, very recently, a class of approaches have shown to be useful and
discriminant in this context: the so called topic or latent models – the two most
famous examples being the Probabilistic Latent Semantic Analysis (PLSA – [10])
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and the Latent Dirichlet Allocation (LDA – [3]). These powerful approaches
have originally been introduced in the text analysis community for unsupervised
topic discovery in a corpus of documents, in order to correlate the presence of a
word to the particular topic discussed; the whole corpus of documents can then
be described in terms of these topics. These techniques have also been largely
applied in the computer vision community [4].

One of the main characteristics of this class of approaches is represented by
their interpretability [7]: they can model a dataset in terms of hidden topics
(or processes), which can reflect underlying and meaningful structures in the
problem. This characteristic may be extremely useful in bioinformatics, where
interpretability of methods and results is crucial. Topic models have already
been applied in the context of expression microarray analysis: a tailored version
of LDA (called Latent Process Decomposition – LPD), explicitly modelling ex-
pression levels, has been proposed in [19], with the aim of clustering expression
microarray data; moreover, an application of topic models to biclustering has
been recently proposed in [1].

A somehow unexplored scenario is represented by the application of such
models in the classification context – a preliminary evaluation of standard topic
models have been recently proposed in [2]. Even if supported by very promising
results, a clear drawback is represented by the underlying basic assumption that
each gene expression is independently generated given its corresponding latent
topic.

In this paper a novel topic model is proposed, which we call BaLDA
(Biologically-aware Latent Dirichlet Allocation), which starts from the Latent
Process Decomposition [19], introduced in the context of clustering, and defines
a new model able to take into account the given dependence between genes. This
dependence is introduced in the graphical model through a variable, modeling a
categorization of genes (namely a subdivision of genes in groups), which can be
inferred by a priori knowledge on the genes of the analyzed problem. As a further
refinement, a better modelling of the expression level is achieved by substituting
the Gaussian pdf – present in the LPD – with a more descriptive Mixture of
Gaussians.

We will show the usefulness of BaLDA in two classification experiments, as-
sessing the impact of the different introduced modifications; a comparison with
the LPD topic models and state of the art methods demonstrates the competi-
tiveness of the proposed approach.

The rest of the paper is organized as follows: in Sec. 2 technical prelimi-
naries about topic models are given. In Sec. 3 the model, together with learn-
ing/inference mechanism presented. An exhaustive experimental section is
presented in Sec. 4, and, finally, in Sec. 5, we draw some conclusions.

2 Background

In this section the background concepts are reviewed. In particular, after intro-
ducing the general ideas underlying the family of topic models, we will present
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Laten Dirichlet Allocation using the terminology and the notation of the docu-
ment analysis context. Then we will briefly review how these models have been
applied to the microarray scenario.

2.1 Topic Models

Topic models were introduced in the linguistic scenario, in order to describe
and model documents. The basic idea underlying these methods is that each
document is characterized by the presence of several topics (e.g. sport, finance,
politics), which induce the presence of some particular words. From a probabilis-
tic point of view, the document may be seen as a mixture of topics, each one
providing a probability distribution over words.

A variety of probabilistic topic models have been used to analyze the content
of documents and the meaning of words. In the following section we will briefly
present the LDA model, mainly to set up notations used in the remainder of the
paper.

2.2 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) was first introduced by Blei in [3]. In the
LDA model, words are the only observable variables and they implicitly reflect
a latent structure, i.e., the set of K topics used to generate the document. Gen-
erally speaking, given a set of documents, the latent topic structure lies in the
set of words itself. In generating the document, for each word-position a topic
is sampled and, conditioned from the topic, a word is selected. Each topic is
chosen on the basis of the random variable θ that is sampled for convenience
from a Dirichlet distribution p(θ|α) where α is a hyperparameter. The topic z
conditioned on θ and the word w conditioned on the topic and on β are sampled
from multinomial distributions p(zn|θ) and p(wn|zn, β) respectively. β represents
the word distribution over the topics. Given the parameters α and β, the joint
distribution of a topic mixture θ, a set of N topics zn, and a set of N words wn

that compose the document is given by

p(θ, z,w|α, β) = p(θ|α) ·
N∏

n=1

p(zn|θ) · p(wn|zn, β) (1)

where p(zn = i|θ) is simply θi for the unique i such that zi
n = 1. Integrating over

θ and summing over z, we obtain the probability of a document.

2.3 Topics Models in Bioinformatics

The representation provided by topic models has one clear advantage: each topic
is individually interpretable, providing a probability distribution over words that
picks out a coherent cluster of correlated terms, see for example [6,2,19]. This
may be really advantageous in the expression microarray context, since the final
goal is to provide knowledge about biological systems, and discover possible
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hidden correlations. In particular there is a straightforward analogy between
the pairs word-document and gene-sample: the expression level of a gene in a
sample may be easily interpreted as the level of the presence of a word in a
document (the higher the level the more present/expressed the word/gene is).
In this sense, a particular topic model assumes that microarray data (represented
as the gene-expression matrix) arises from a mixture of topics, whose number is
fixed; changing the topic allows different subsets of genes to be prominent.

A possible problem which may arise is that expression microarray data is
described with a matrix of real numbers, not as a non-negative integer matrix.
This problem has been solved in [19] by modifying the standard LDA via the
introduction of Gaussian distributions in place of word multinomial distributions
β; this results in a novel and efficient probabilistic model called Latent Process
Decomposition (LPD), where LDA topics are called “processes”. The model has
been successfully applied to clustering. Some modifications of the LPD model
have been recently introduced: in particular, an optimized training version can
be found in [23]; moreover, in [15], the LPD has been equipped with learned
hyperpriors on the gaussian word-topic distributions. A method for maximizing
lower bounds by re-estimating hyperparameters leaded to more accurate clus-
tering results.

A somehow unexplored scenario is represented by the application of such
models in the classification context; only very recently PLSA and LDA have
been employed to classify expression microarray samples, with really promising
results [2]. In particular, in [2], the original topic models [3,10] have not been
changed; instead the gene expression matrix has been transformed, by a proper
scaling and shifting, to a positive integer valued matrix, thus interpretable as a
count matrix in the original LDA-PLSA formulation. Despite the method lacks
biological motivations, it yielded very good classification results.

3 Biologically-aware Latent Dirichlet Allocation
(BaLDA)

The main contribution of this paper is the definition a novel topic model for the
analysis of expression microarray data, which directly improves the one provided
in [19]. This novel topic model has two clear advantages with respect to the
Latent Process Decomposition (LPD), detailed in the following.

The first (and most important) advantage starts from the observation that
the major drawback of the PLSA, LDA and LPD models is the assumption that
each gene expression is independently generated given its corresponding latent
topic. While such representation provides an efficient computational method,
it lacks the power to describe the coherent expression of different genes in a
subset of samples, this aspect being widely known in the biology. In the proposed
approach we include a mechanism in the graphical model that permits to include
a priori knowledge on the relation between genes. This a priori information is
expressed in terms of a gene categorization, namely a subdivision of the genes in
groups of related genes based on external information, like known co-regulation,
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Fig. 1. A) Biologically-aware Latent Dirichlet Allocation Bayesian Network. Shaded/

Unshaded nodes are visible/hidden variables (v/h). The model parameters Ω are rep-

resented with a letter outside a node. B) A second version of the Biologically-aware

Latent Dirichlet Allocation. The clustering result is fed into the model by means of the

visible variable k.

spatial proximity or similarity of nucleotidic sequences to name a few. This
categorization (i.e. clustering), which may be directly fed to the model, can be
computed beforehand or can be simultaneously estimated while estimating the
topic model.

The former option result in a straightforward modification of LDA; we add a
visible variable k that influences the hidden topic variable z (see Fig. 1B). More
interesting is the latter option, which permits LDA to deal with the uncertainty
associated to the clustering. In this case (see Fig. 1A), the variable k is hidden,
and depends on the visible variable gc which represents the external information.
These variables are modelled through a set of parameters which are learned
simultaneously with the other parameters.

The second novelty of the proposed approach is related to the modelling of
the word/topic distribution: in the original Latent Dirichlet Allocation, a word is
generated by a multimodal distribution β, where βw,z represents the probability
of finding the word w when the document is “speaking” about the topic z. In
the LPD [19] the word-topic probability is modeled by a single gaussian, thus
reflecting the continuous nature of the expression level, which is not captured
with the original discrete formulation. Nevertheless, the monomodal nature of
the Gaussian may not properly capture the possibly multimodal behavior of the
gene-topic distribution: in particular, within a gene, a topic can be assigned to a
single expression level. This limitation is removed in the proposed model, where
the single Gaussian is replaced by a mixture of C Gaussians; which for large C,
goes towards the multimodal spirit of the original multinomial β, still maintain-
ing the appealing characteristic of modelling continuous expression levels.
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3.1 BaLDA

The Bayesian network of Biologically-aware Latent Dirichlet Allocation (BaLDA)
is depicted in Fig.1. The model is characterized by two observations, gc and ge
(visible variables v) which respectively govern the clustering and the topic sub-
modules.

The variable k clusters the N genes in K components, while the parameters
Λk represent the parameters of the particular probability density function cho-
sen. For microarray expression are often used gaussians, t-distributions or factor
analyzers [16]. We used gaussian clustering, so Λk = {μk, σk}

p(gc,n|k, Λ) = p(gc,n|Λk) =
1√

(2π)σ
· e

(
(gc,n−μk)2

−2σ2
k

)
(2)

The parameter πk is a multinomial distribution that represents the prior on the
cluster assignment.

Each n-th gene expression ge,n is assigned a topic zn = {1 . . . Z} evaluating
the gene-topic distribution and using a topic prior θ. We have that

p(ge,n|z, μ, σ) =
∑
[c]

p(ge,n|z, c, μ, σ) =
∑
[c]

πz,c,n · 1√
(2π)σ

·e
(

(ge,n−μz,c,n)2

−2σ2
z,c,n

)
(3)

where is now visible the mixture of Gaussians palette we introduced. With [c] we
indicate the values the variable c can assume. The prior on such topic assignment
depends on the co-regulated genes (see the link k → z in the Bayesian network).

p(z = a|θ, k) = θk,a (4)

where θk are multinomial distributions that represent the topic proportions used
to generate each sample. Each distribution θk is governed by a Dirichlet prior
p(θk|αk), where α is hyperparameter that represent the strength of a topic within
a dataset.

p({θk}|{αk}) =
∏
[k]

p(θk|αk) =
∏
[k]

( 1
Z(α)

∏
z

θαk−1
k,z

)
(5)

Again the products are taken over the values of k and z and Z(α) is Dirichlet
distribution normalization constant.

At this point we can write the joint probability which describes the generative
model as

p(gc, ge, c, k, z, θ|α, μ, σ, Λ, πc, πk) = p(c|πc) · p(k|πk) · p(θ|α)∏
n

(
p(gc,n|k, Λ) · p(ge,n|c, z, μ, σ) · p(zn|θ)

)
where each conditional distribution has already been parameterized.
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3.2 Inference and Learning

Under the model so far described, each t-th observation gt is characterized by
four hidden variables ht = {kt, ct, zt, θtk} which in turn are governed by the
following parameters Ω = {Λk, πk, μc, σc, πc, α}.

As in LDA, exact inference is intractable: we approach it using the variational
inference [12]. We introduce a tunable distribution q(h) over the hidden variables
which defines the free energy F

F =
∑

t

(∑
h

q(ht) log
q(ht)

p(gt,ht|Ω)

)
(6)

We used the following form for the approximate posterior distribution, q(ht) =
q(θt) · ∏n q(z

t
n, c

t
n) · q(kt

n) with q(θtk) being a Dirac function centered at the
optimal vectors θ̂t. After plugging the approximate posterior and the joint dis-
tribution in the free energy formulation, we can iteratively decrease F with
the Expectation-Maximization (EM) algorithm. The EM algorithm alternates
in minimizing the free energy with respect to q(h) (E-Step) and with respect
to the model parameters Ω (M-Step). When updating q, the only constraint is
that

∑
hi
q(ht) = 1 for each hidden variable h and for each sample t. The update

rules are simply obtained by setting the derivatives of F equal to zero and this
reduces to the following formulas:

q(zt
n = a, ctn = b) ∝ πb · N (ge,n;μa,b,n, σa,b,n) · e

(∑
[kn] q(kt

n)·
(
Ψ(θ̂b,a)−Ψ(

∑
[k] θ̂k,b)

))
(7)

where Ψ is the derivative of the logΓ function, computable via Taylor approx-
imation (for further details see [3]), and N is the normal probability function
(see Eq.2). The remaining updates of the E-step are

θ̂tb,a ∝ αb,a +
∑

n

q(kt
n = b) · q(zt

n = a) (8)

q(kt
n = k) ∝ πk · N (gt,n;μk, σk) (9)

In the M-step the collected posterior distributions q are used to compute an
estimate Ω̂ of the model parameters

μn,c,z =
∑

t q(zn = z) · q(ctn = c) · gt
e,n∑

t q(zn = z) · q(ctn = c)
(10)

σ2
n,c,z =

∑
t q(zn = z) · q(ctn = c) · (gt

e,n − μn,c,z)2∑
t q(zn = z) · q(ctn = c)

(11)

πc,z,n =
∑

t

q(cn = c) · q(zn = z) (12)

The appropriate update on topic proportions’ priors αk can be obtained using a
gradient descend

{α̂k,a} = arg max
∑

t

(αk,a − 1) log θk,a (13)



BaLDA for the Classification of Expression Microarray 237

subject to the appropriate normalization constraint.
We omit the update formulas for μk, σ

2
k and πk which can be computed in a

very similar fashion.

3.3 Expression Microarray Samples Classification

In general, topic models have been originally introduced for clustering sets of
documents: given the dataset, models are trained and analyzed in order to find
clusters. Nevertheless, recently, they have been also successfully employed in
the classification scenario – see for example [4,2]. The main idea is to employ
a hybrid generative-discriminative approach [11], which exploits the generative
model to extract a set of features to be classified with a discriminative classifier.
More in detail, the training phase is carried out by first learning the models
on the training set. Then a set of features is extracted from each sample; the
transformed training set is then used to train a classifier. In the testing phase,
the same feature extraction process is applied to the test sample, resulting in a
feature vector to be classified using the trained classifier. In our work we em-
ployed the scheme proposed in [4,2], i.e. we employ the mixture of topics θt as
sample descriptor. This have been demonstrated to be really discriminant [4,2].
Another benefit of this representation is that we are reducing the dimensionality
from the number of genes N to the number of topics K, with K � N – thus
providing a compact and more interpretable representation. Finally, we are de-
scribing samples with a multinomial distribution whose characteristics will be
exploited by the particular chosen classifiers.

4 Experiments

Theproposed classification schemehas been evaluatedusing twodifferent datasets,
both related to tumors. The first derives from a study of prostate cancer by
Dhanasekaran et.al [20], and consists of 54 samples with 9984 features. Such
samples are subdivided in different classes: 14 samples are labelled as benign
prostatic hyperplasia (labelled BPH), 3 as normal adjacent prostate (NAP),
1 as normal adjacent tumor (NAT), 14 as localized prostate cancer (PCA), 1
prostatitis (PRO) and 20 as metastatic tumors (MET). The 6 classes can be di-
vided in three macro-classes: non-cancer (BPH,NAP,PRO), cancer (NAT,PCA),
metastatic tumor (MET). This dataset has been also employed by the authors
of [19] in their study for LPD. The second dataset we employed contains the
expressions of 90 brain tissues used to study central nervous system embryonal
tumor [18]. Each sample is characterized by 5920 features. The 90 samples in-
clude 60 with medulloblastomas, 10 with malignant gliomas, 5 with AT/RTs, 5
with renal/extrarenal rhabdoid tumors, 6 with supratentorial PNETs, and 4 nor-
mal cerebellum (5 classes in total). As in many expression microarray analysis,
a beneficial effect may be obtained by selecting a sub group of genes, in order to
limit the dimensionality of the problem and to reduce the possible redundancy
present in the dataset. Here, as in [19], we decided to perform the experiments
filtering the genes by variance and keeping only the top 500 genes.
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In all the experiments we set gc = ge, namely we clustered the genes by looking
at their expression levels in all the samples. This choice of course does not exploit
the full potentiality of the method, but it permits to already obtain promising
results (see tables below). Currently we are planning to perform an experiment by
fully exploiting the potentialities of the model, considering different information
(like spatial proximity or sequence similarity). In all the experiments, Z, K, and
C, representing the number of topics, the number of clusters and the number of
components in the mixture of Gaussians, respectively, are set in the following
way: Z was found by applying the hold out log likelihood procedure described
in [19], K has been automatically determined using Affinity Propagation [9] and
C = 3 has been set after several tests.

In order to capture the different contributions of the two innovations of the
model, we also tested the model with i) the clustering module but with only one
Gaussian per gene (C=1), ii) the model enriched by the mixture of Gaussians
gene-topic distribution, without the clustering information (K=1). We will refer
to these two versions as BaLDA v1 and BaLDA v2 respectively.

The extracted features have been classified using Support Vector Machines
employing a variety of kernels. Beside the standard linear kernel (LI), the prob-
abilistic nature of the extracted features has been exploited by the use of differ-
ent kernels on measures – also called information theoretic kernels [14], which
provide similarity between probabilistic distributions; we employed some recent
kernels, like the Kullbach-Leibler (KL), the Jensen-Shannon (JS) and the Jeffries
kernels (JE). Finally we report also results with the K- Nearest Neighbor rule,
using an approach similar to [2].

The proposed model has been compared with [19,2]. Even if [19] was designed
for clustering data, it can be straightforwardly adapted to the classification sce-
nario, following exactly the same hybrid scheme we employed. In order to have
a fair comparison, we used the authors’ implementation. Moreover, for a given
choice of (K,Z) in BaLDA, we trained two LPD models: one with the same num-
ber of topics ZLPD = Z, and one with the same complexity ZLPD = K ·Z; this
permits to give to the LPD the same number of processes that we have in our
model. It is important to notice that the optimal Z for LPD, found by applying
to the hold out log likelihood procedure, has been used also for BaLDA. In fact
it is not obvious that the optimal ZLPD will be the optimal for BaLDA as well.
Classification errors have been computed using 10-fold cross validation (with 40
repetitions). In order to augment the statistical significance of the results, the
generative models have been trained 4 times and results averaged.

Results, for both datasets, are reported in Table 1 and 2, respectively.
From the tables it is evident the improvement obtained with the BaLDA mod-
els. In particular, in all the provided experiments the full model is performing
better than the original LPD model (except in one case), with very remarkable
improvements in the first dataset, also employed in the original paper of [19].
Moreover, by comparing the results of BaLDA v1 and BaLDA v2, we can ob-
serve that the improvement introduced by clustering the genes is more relevant
than the other; however the combination of the two eventually yielded the best
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Table 1. Results obtained from Prostate Cancer Dataset. See the text for the kernel

abbreviations. We tested [2] also using the information theoretic kernels reporting the

accuracies for the best Z.

Z K C LI KL JS JE KNN

LPD [19] 3 n.a. n.a. 65.41 66.04 68.55 68.55 77.70

LPD [19] 12 n.a. n.a. 86.16 82.39 85.53 85.53 82.22

[2] 3 n.a. n.a. 82.38 83.64 78.60 84.90 77.89

BaLDA v1 3 4 1 86.80 88.68 88.05 89.94 88.17

BaLDA v2 3 1 3 77.98 76.73 76.73 75.47 76.67

BaLDA 3 4 3 89.94 89.31 91.20 91.20 85.24

Table 2. Results obtained from Brain Tumor Dataset. On the bottom, we reported

the best accuracies of three other state of the art methods.

Z K C LI KL JS JE KNN

LPD [19] 15 n.a. n.a. 83.33 81.48 81.85 84.07 78.56

LPD [19] 90 n.a. n.a. 66.67 66.67 66.67 66.67 82.11

BaLDA v1 15 6 1 85.56 85.56 88.15 88.52 82.74

BaLDA v2 15 1 3 76.67 84.08 76.67 80.37 76.48

BaLDA 15 6 3 85.19 85.19 87.87 88.89 81.15

Comparison with the state of the art

Method Acc. Method Acc. Method Acc.

[17] 86.50 [8] 86.20 [2] 84.1

result. Considering the classifiers, it is not clear which is the best combination
of kernels and classifiers – this depending on the given dataset and on the given
generative model. As a general comment, it can be said that information theo-
retic kernels are working better than the linear one, so confirming the intuition
that exploiting the probabilistic nature of the features may be useful.

A final comment regards the interpretability of the method. Figure 2 describes
topic proportions of the different models. We can observe that the topics can
capture the different classes of the problem (with our model producing a qual-
itative better result – for more comments see the caption of the figure). This
appealing interpretability of the topic models has been recently exploited in a
biclustering scenario (see [1]).

5 Conclusions

In this paper we proposed a novel topic model, which enriches and extends the
Latent Dirichlet Allocation (LDA) model by integrating genes’ dependencies,
encoded in a categorization of genes which better models the gene-topic distri-
bution, leading to better classification of samples. The proposed model, called
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Fig. 2. Topic proportions θ of the prostate cancer dataset. We depict each of the classes

with different colors. A) By clustering the genes BaLDA is able to use different topics

to describe the 3 macroclasses; for example for the genes of the fourth cluster (K=4),

the first topic describes the non-tumoral samples, the second topic the tumoral samples

and the third the metastatic tumors. Again other clusters seem to highlight one of the

three classes (the third cluster – K=3 – highlights metastatic using topic 2, etc). B)

Comparison with [19] using a model with the same complexity. C) Comparison with

[19] using the same number of topics. D) Comparison with [19] using the optimal topic

number.

BaLDA has used to derive a highly informative and discriminant representa-
tion for microarray experiments. An experimental evaluation of the proposed
methodologies on standard datasets confirms the effectiveness of the proposed
techniques, also in comparison with other classification methodologies. Future
works will focus on the biological interpretation of the results; it is evident that
the interpretable topic representation of the expression matrix can be exploited
to highlight genes strictly involved in the biological problem of interest, e.g.
cancer or tumoral processes [1].
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Abstract. The most widespread biclustering algorithms use the Mean
Squared Residue (MSR) as measure for assessing the quality of biclus-
ters. MSR can identify correctly shifting patterns, but fails at discovering
biclusters presenting scaling patterns. Virtual Error (VE) is a measure
which improves the performance of MSR in this sense, since it is effective
at recognizing biclusters containing shifting patters or scaling patterns
as quality biclusters. However, VE presents some drawbacks when the
biclusters present both kind of patterns simultaneously. In this paper,
we propose a improvement of VE that can be integrated in any heuristic
to discover biclusters with shifting and scaling patterns simultaneously.

1 Introduction

The use of microarray techniques allows to study the activity of thousands of
genes at a time, producing in this way a huge amount of data. Usually, the re-
sulting data is organized in a matrix, called an expression matrix, where columns
may represent genes and rows represent experimental conditions. An element of
such expression matrix stands for the expression level of a given gene under a
specific condition [3,18].

The interest in discovering knowledge from gene expression data has exper-
imented an enormous increase with the development of microarray techniques.
Biclustering [12] is becoming a popular data mining technique due to its ability
to explore at the same time both dimensions of data, as opposed to clustering
techniques [19], that can only use one dimension. In this sense, microarray is
a suitable context for the application of biclustering techniques, since they can
consider both genes and experimental conditions at extracting useful knowledge.
Thus, in this context, a bicluster is a subset of genes under a subset of condi-
tions. In particular, those biclusters where the subset of genes shows a common

T.M.H. Dijkstra et al. (Eds.): PRIB 2010, LNBI 6282, pp. 242–252, 2010.
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tendency under the subset of conditions are of special interest. In general, bi-
clustering is much more complex than clustering [14]. In fact, finding significant
biclusters in microarray data has been proven to be a NP-hard problem [17].

Cheng and Church [7] were the first in applying biclustering to gene expression
data. They introduced one of the most popular biclustering algorithms that
combines a greedy search heuristic for finding biclusters with a measure for
assessing the quality of such biclusters. This measure, named Mean Squared
Residue (MSR), has been used by many researchers who have proposed different
heuristics for biclustering biological data. Aguilar et al. [2] developed an approach
based on local nearness. Yang et al. [21] proposed an iterative algorithm for
finding a predefined number of biclusters. Cano et al. [6] based their proposal on
fuzzy technology and spectral clustering. Other approaches, such as Divina and
Aguilar [10] and Bleuler et al. [4], have been based on evolutionary computation,
while Bryan et al. [5] applied simulated annealing as heuristic. Recently, MSR
has also been incorporated as cost function in multiobjective heuristics based on
Particle Swarm Optimization [13] and Artificial Immune Systems [9].

Although MSR has been used in many proposals for finding biclusters, it
nevertheless has been proven to be inefficient for finding certain types of biclus-
ters in microarray data, especially when they present strong scaling tendencies
[1]. Thus, we introduced in previous works an alternative measure named Vir-
tual Error (VE) [15]. This measure is based on the concept of behavioural pat-
terns, which aim at identifying common patterns between genes or conditions.
VE is effective at recognizing biclusters containing shifting patters or scaling
patterns as quality biclusters. However, it presents some drawbacks when both
kind of patterns are presented simultaneously in the same bicluster. In this pa-
per, we propose a novel variant of VE, called Transposed Virtual Error (VEt),
that allows to find biclusters that MSR and VE do not recognize as interesting
ones.

This paper is organized as follows. In the next section, an description of the
shifting and scaling patterns is given. We then provide a formal definition of
VEt in Section 3, followed by a formal analysis in Section 4, demonstrating its
strength with regard to the behavioural patterns. In Section 5 we discuss the
consequences of the theorems presented in this work, providing a test of the
effect of the noise on the VEt. Finally, we summarize the main conclusions in
Section 6.

2 Behavioural Patterns in Gene Expression Data

When all the genes of a bicluster follow a similar tendency under the set of condi-
tions, then such a bicluster may be potentially biologically interesting. Therefore,
it seems to be a good idea to develop a quality measure for biclusters based on
the idea of behavioural patterns for gene expression. Aguilar [1] presented an
in-depth discussion on the possible patterns in gene expression data. He de-
scribed formally two kind of patterns: shifting and scaling patterns. They have
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been defined using numerical relations among the values in a bicluster. Several
works based their principle in the pattern concept in order to mine the data.
Xu et al [20] propose a biclustering algorithm for mining shifting and scaling co-
regulation patterns on gene expression data. Nevertheless, they do not provide a
quality measure, but use a model-based heuristic instead. Furthermore, they are
only able to identify global shifting and scaling patterns, while local ones seem
to be more interesting since they depict the general situation [1]

Let B be a bicluster made up of I experimental conditions and J genes. Each
element in B is represented by bij ∈ B. This way, the bicluster B follows a perfect
shifting pattern if its values can be obtained by adding a constant-condition
number βi to a typical value for each gene (πj). βi is said to be the shifting
coefficient for condition i. In this case, the expression values in the bicluster
fulfil the following equation:

bij = πj + βi (1)

Similarly, a bicluster follows a perfect scaling pattern changing the additive value
in the former equation by a multiplicative one. This new term αi is called the
scaling coefficient, and represents a constant value for each condition. The fol-
lowing equation defines whether a bicluster follows a perfect scaling pattern or
not:

bij = πj × αi (2)

Shifting and scaling patterns may be put together in a new kind of pattern called
combined pattern. In fact, it is the most probable situation when working with
real genetic data. In this situation, the expression values can be obtained using
both coefficients, shifting and scaling coefficients. The equation that must be
fulfilled by the values in this case can be represented by merging 1 and 2:

bij = πj × αi + βi (3)

Figure 1 shows an example of a bicluster obtaining from synthetic data. This is a
typical visualization of bicluster, where conditions are represented in the x-axis,
the values of gene expression are represented in the y-axis and each line is a
gene. As we can see, there are four genes gj (with 1 ≤ j ≤ 4) and five conditions
ci (with 1 ≤ i ≤ 5). This bicluster contains both shifting and scaling patterns.
The matrices below describe the factor decomposition of the numerical values.
Having a look at figure 1 we could say that genes g1, g3 and g4 present a similar
behaviour across the conditions, although g4 has a different tendency between
the last two conditions. On the contrary, the tendency of gene g2 varies from the
other genes, since its behaviour is always increasing across all the conditions.
Gene g2 is difficult to be associated to a perfect pattern visually because its
shifting coefficients βi are closed to the product πj × αi. Therefore, identifying
biclusters with both shifting and scaling patterns might be a difficult task due
to the complexity inherent in equation 3.
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{βi} = {20 2 54 10 83}

Fig. 1. Bicluster containing perfect shifting and scaling patterns

3 Transposed Virtual Error

Virtual Error (VE) had been designed as an evaluation measure for biclusters
[15]. VE is based on the concepts of shifting and scaling patterns and is capable of
identifying both kind of patterns within biclusters, although not simultaneously.
This way, VE improves MSR effectiveness, since the last one can only recognize
shifting patterns. The basic idea behind VE is to measure the extent to which the
genes in a bicluster are similar to the general tendency. The general tendency is
represented by a Virtual Gene which is created taking into account the values for
every gene across the experimental conditions, but trying to capture the general
behaviour with independence of the concrete numerical values. VE will have a
lower value for those biclusters in which its genes are closer to the virtual gene.
This is due to the fact that VE computes the numerical differences between each
standardized gene and the standardized virtual gene. Therefore, the better a
bicluster is, the lower its VE value will be. Furthermore, it is obvious that VE
will always be greater or equal than zero.

VE has been used in various evolutionary algorithms in order to find one
hundred biclusters in several gene expression matrices [15,11]. These two previous
works have allowed us finding interesting biclusters that could not have been
obtained using MSR alone. Furthermore, the VE value for biclusters with perfect
shifting and scaling patterns seems to be very close to zero [16] (magnitude of
10−15). Nevertheless, VE cannot be proven to recognize both kind of patterns
simultaneously.
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In this work, we present an enhanced version of VE, named VEt, from Trans-
posed Virtual Error. We analytically prove that VEt is zero for those biclusters
with perfect shifting and scaling patterns. This variation of VE has been mo-
tivated by [8], where several numeric transformations have been applied to the
data in order to detect both kind of patterns.

VEt is computed similarly to VE but considering the transposed bicluster. The
idea here would be to create a Virtual Condition, instead of a virtual gene, and
measure the differences between the standardized values for every condition and
the standardized virtual condition. In the following, we explain how to create the
virtual condition for a certain bicluster B, in order to compute VEt afterwards.

Definition 1 (Virtual Condition). Given a bicluster B with I conditions and
J genes, we define its virtual condition as a collection of J elements ρj, each of
them defined as the mean of the jth column: ρj =

∑
i∈I bij

I , where bij ∈ B, 1 ≤
i ≤ I and 1 ≤ j ≤ J .
This way, each element of the virtual condition represents a meaningful value
for all the conditions, regarding each gene. Once the virtual condition has been
created, the next task would consist of quantifying the way in which all the ex-
perimental conditions in the bicluster are similar to it. In order to perform an
appropriate comparison, we first carry out a standardization of the virtual con-
dition and of every experimental condition in the bicluster. This standardization
allows us to capture the differences among the tendencies, with independence of
the numerical values.

Definition 2 (Standardization). We define the standardized bicluster B̂ from
bicluster B as a new bicluster in which its elements b̂ij are defined by b̂ij = bij−μci

σci
,

where σci and μci represent the standard deviation and the arithmetic average
of all the expression values for condition i, respectively.

It has already been said that the virtual condition needs also to be standard-
ized. Equation 4 shows how the values of the standardized virtual condition are
obtained, where ρj refers to the virtual condition value for gene j, while μρ and
σρ refer to the average and the deviation of the values of the virtual condition,
respectively.

ρ̂j =
ρj − μρ

σρ
(4)

Definition 3 (Transposed Virtual Error). Given a bicluster B, and the vir-
tual condition ρ, Transposed Virtual Error (VEt) can be defined as the mean of
the numerical differences between each standardized condition and the values of
the standardized virtual condition for each gene:

V Et(B) =
1
I · J

i=I∑
i=1

j=J∑
j=1

(b̂ij − ρ̂j) (5)

Next, we present three theorems and their proofs that demonstrate the strength
of VEt with regard to the shifting and scaling patterns.



Measuring the Quality of Shifting and Scaling Patterns in Biclusters 247

4 Analysis

This section includes formal proofs that bear out the hypothesis that VEt is zero
for those biclusters with perfect shifting and scaling patterns, either separately
or simultaneously.

Theorem 1. A bicluster presenting a perfect shifting pattern has VEt equal to
zero.

Proof. Let B be a bicluster with a perfect shifting pattern, then it is possible to
refer to its elements as bij = πj +βi. Applying two simple arithmetic properties1,
the mean and the deviation for each condition ci can be expressed by:

μci = μπ + βi ; σci = σπ

where μπ and σπ represent the mean and the deviation of the π values, respec-
tively. Using these results we obtain the standardizes values for bij :

b̂ij =
bij − μci

σci

=
πj + βi − μπ − βi

σπ
=
πj − μπ

σπ

Combining the former properties1 it is easy to express the mean and standard
deviation for the virtual condition as:

μρ = μπ + μβ ; σρ = σπ

Finally, the standardized values for the virtual condition are the following:

ρ̂j =
ρj − μρ

σρ
=
πj + μβ − μπ − μβ

σπ
=
πj − μπ

σπ
= b̂ij

As it can be seen above, the standardized virtual condition is equal to all the
real conditions after being standardized. Therefore, VEt has been proven to be
zero for those biclusters with perfect shifting patterns. �

Theorem 2. A bicluster presenting a perfect scaling pattern has VEt equal to
zero.

Proof. Let B be a bicluster following a perfect scaling pattern, then its elements
can be expressed by bij = πj × αi. Following the same reasoning that in the
former proof, the mean and deviation of each condition ci are:

μci = αi × μπ ; σci = αi × σπ

From these results we obtain the standardized values for bij :

b̂ij =
bij − μci

σci

=
πj × αi − αi × μπ

αi × σπ
=
πj − μπ

σπ

Next we obtain the mean and deviation for the values of the virtual condition:
μρ = μπ × μα ; σρ = μα × σπ

1 Being f(x) = g(x) × c1 + c2, the properties related to the arithmetic mean (μf(x))
and the standard deviation (σf(x)) of f(x) are the following: μf(x) = μg(x) × c1 + c2

and σf(x) = σg(x) × c1.
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And finally the standardized values for the virtual condition are:

ρ̂j =
ρj − μρ

σρ
=
πj × μα − μπ × μα

μα × σπ
=
πj − μπ

σπ
= b̂ij

As in the previous proof, we obtain that the standardized values for the virtual
condition are equal to de standardized values for all the real experimental con-
ditions. As a consequence, VEt will be zero for every bicluster with a perfect
scaling pattern. �

Theorem 3. A bicluster presenting a perfect combined pattern (shifting and
scaling) has VEt equal to zero.

Proof. If B contains a perfect combined pattern, its values can be represented
by bij = πj × αi + βi. Using the same arithmetic properties as in the former
proves, the mean and deviation for each condition ci are:

μci = αi × μπ + βi ; σci = αi × σπ

And the standardized values for bij can be expressed as:

b̂ij =
bij − μci

σci

=
πj × αi + βi − αi × μπ + βi

αi × σπ
=
πj − μπ

σπ

The mean and deviation for the virtual condition are the following:

μρ = μπ × μα + μβ ; σρ = μα × σπ

And the standardized values for the virtual condition:

ρ̂j =
ρj − μρ

σρ
=
πj × μα + μβ − μπ × μα − μβ

μα × σπ
=
πj − μπ

σπ
= b̂ij

Again, the standardized values for the virtual condition match up with the stan-
dardized values for the original conditions. Therefore, VEt will also be zero for
those biclusters following a perfect shifting and scaling pattern. �

These results confirm that VEt is the first measure up to the date capable of rec-
ognizing combined patterns in gene expression data. While MSR is only capable
of detecting shifting patterns, and VE cannot recognize both kind of patterns
simultaneously, VEt has been proven to go beyond the other two measures.

5 Discussion

In this section, we discuss the use of VEt for bicluster evaluation. In particular,
we study the value of VEt for those biclusters in which the presence of patterns
is not perfect. That is, when the tendency of the data in a bicluster is similar to
a perfect pattern but does not completely match with the equation 3.

In order to check the behaviour of VEt whenever a bicluster does not follow a
perfect pattern, we add an additive term εij to the combined pattern equation.
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The meaning of this new term corresponds to the error made by the assumption
that the bicluster can be represented by a perfect pattern.

bij = πj × αi + βi + εij (6)

It is possible therefore to study the variations produced to VEt depending on
the values of εij . Nevertheless, it is not so simple due to the huge amount of
situations depending on the distribution and the magnitude of the εij values in
the data matrix.

In two specific situations the value of VEt will not be affected when the errors
could be included in the former equation 6. These two cases correspond to those
in which εij values are either a constant or constants per conditions (rows). In
both cases it is possible to eliminate the term εij from the equation, since it can
be considered to be a part of βi.

Nevertheless, the cases in which εij cannot not be included in the perfect
pattern equation are very difficult to study analytically. For this reason, we have
performed a test to check the tendency of the VEt values with regard to the
error values. This test consist of the addition of random errors to a synthetic
bicluster with perfect shifting and scaling patterns. The original bicluster is the
one shown in Fig. 1. Specifically, we have generated 100 synthetic biclusters
adding random errors to the bicluster in the figure, and we have repeated this
process 200 different times, varying the amplitude of the errors from one time
to another. We start adding negative errors in the range of [−10, 0], and obtain
100 different biclusters. Then we decrease the amplitude by 0.1 and repeat the
process (range [−9.90, 0]). Once the amplitude of the errors has reached the
zero value, we start again generating biclusters with positive errors, increasing
the amplitude from 0.1 up to 10. The whole process produced 100 sets of 100
biclusters with negative errors and 100 sets of 100 biclusters with positive errors
(built using the same strategy as for negative). Therefore, the random errors have
been drawn from an uniform distribution corresponding to the ranges. Note that
the type of the error values is a double type. This introduces more diversity in
the distribution of the error data.

Within the process, we evaluate each produced bicluster using the three mea-
sures: MSR, VE and VEt. Then we obtain the mean of each measure for each
group of 100 biclusters of the same range of errors. This data has been repre-
sented in Figs. 2, 3 and 4, where the x-axis represents the mean of the error for
each amplitude (this value matches up with the value in the middle of the range
of errors) and the y-axis corresponds to the mean of the specific measure for
each figure.

From Fig. 2 it is possible to observe that VEt presents a linear decreasing
tendency in relation to the amount of error in a bicluster. In other words, the
similar a bicluster is to a perfect pattern, the lower its VEt value will be, and
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Fig. 2. VEt behaviour in biclusters with errors

Fig. 3. VE behaviour in biclusters with errors

Fig. 4. MSR behaviour in biclusters with errors
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we can establish a linear relationship between VEt and the amount of error.
Nevertheless, it is not possible to come to the same conclusion for either VE
or MSR. Figs. 3 and 4 depict the connection of the errors with VE and MSR,
respectively. Although the general tendency seems to be that both measures are
higher for biclusters with higher error values, we cannot establish any correspon-
dence between them. In both figures it is possible to see some cases in which the
mean of the biclusters with errors is lower than the original bicluster.

As a conclusion, VEt outperforms both MSR and VE efficacy for identifying
behavioural patterns in synthetic data. Our expectations are that this behaviour
would be extensive to real gene expression data.

6 Conclusions

This work introduces an enhanced version of a previous measure for evaluating
biclusters from gene expression data. This new variant, named VEt, allow finding
biclusters with both shifting and scaling patterns simultaneously in gene expres-
sion data. No previous evaluation measure for biclusters is able of identifying
this kind of pattern, for this reason we are sure VEt constitutes an important
contribution to the topic.

This paper also includes analytical proofs which demonstrate the capability
of VEt for detecting any kind of perfect pattern in gene expression data. Fur-
thermore, we have also proved that VEt presents a linear relationship with the
amount of error in a bicluster.

For future work, we have planned to use VEt together with an evolutionary
framework in order to search for biclusters in gene expression data. The obtained
results will be compared to those obtained by similar heuristics and evaluation
measures. Biological validation of the results will also be performed in order to
validate our approach.
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Abstract. We introduce a new method for the analysis of heterochrony in 
developmental biology. Our method is based on methods used in data mining 
and intelligent data analysis and applied in, e.g., shopping basket analysis, 
alarm network analysis and click stream analysis. We have transferred, so 
called, frequent episode mining to operate in the analysis of developmental 
timing of different (model) species. This is accomplished by extracting small 
temporal patterns, i.e. episodes, and subsequently comparing the species based 
on extracted patterns. The method allows relating the development of different 
species based on different types of data. In examples we show that the method 
can reconstruct a phylogenetic tree based on gene-expression data as well as 
using strict morphological characters. The method can deal with incomplete 
and/or missing data. Moreover, the method is flexible and not restricted to one 
particular type of data: i.e., our method allows comparison of species and genes 
as well as morphological characters based on developmental patterns by simply 
transposing the dataset accordingly. We illustrate a range of applications. 

Keywords: frequent episode mining, heterochrony, pattern analysis, 
developmental biology. 

1   Introduction 

The relation between evolution and development is intriguing [11,12] and considered 
essential for gaining understanding in the tree of life. Heterochrony, defined as the 
change of timing in events in development leading to changes in size and shape of 
species, facilitates analyzing differences in species. The key goal in heterochrony 
analysis is to relate evolutionary distance between species to changes in timing of 
developmental events. Tools to analyze developmental timing in a quantitative way 
have shown not to perform adequately for large datasets. In addition, for assessment, 
a relative timing is required and such is not present in existing computational 
approaches. Therefore, complementary to other methods, such as event-pairing [11] 
and Search-based Character Optimization [15], we developed a method for 
heterochrony analysis that includes efficient extraction of developmental patterns and 
at the same time allows using different types of data, e.g. morphological and gene-
expression, in a universal manner. To that end we propose an analysis of 
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developmental sequences based on, so called, episodes [13]. Episodes are small, 
partially ordered, sets of events that frequently occur in the data. A collection of 
episodes extracted from a developmental sequence provides a good basis for further 
analysis of that sequence. For our method to run efficiently a special data structure is 
required to accomplish fast updates on the extracted patterns. We, therefore, propose a 
data structure referred to as the episode tree which is specifically designed for and 
tailored to this kind of application. 

Our analysis starts with a dataset containing developmental sequences (cf. § 2.2) 
and from this dataset an episode tree is created by sliding a window over the 
developmental sequences; all episodes found in this time window are added to the 
episode tree. Subsequently, a distance measure, based on the concept of heterochrony, 
is used between the entities in our dataset (species). After computation of the 
distances and clustering based on these distances, results are obtained and visualized 
as cladogram; typically showing evolutionary distance between species. 

Experiments with artificial, morphological and gene expression datasets are used to 
illustrate the scope of this method. In each of the experiments the entities we compare 
to each other can be different, i.e. clades, species or genes. Importantly, using a gene 
expression dataset as input, results in a cladogram similar to those from biological 
literature. For our experiments we consider gene expression as extracted from patterns 
of gene expression from “in situ” hybridization, these are directly related to 
morphological characters. At this point, Micro Arrays gene expression patterns are 
not considered.  

2   Materials and Methods 

Here, we will describe the Frequent Episodes mining in Developmental Analysis 
(FEDA). The method is centered on a database (MySQL [2]) that contains the data to 
be analyzed as well as the patterns extracted. This approach facilitates the selection of 
interesting patterns for further analysis. The data were extracted from the literature 
and imported in the database (Fig. 1A). The software runs on a standard PC. 

A

 

Fig. 1. Overview of FEDA architecture centered on a database. (A) Data import in the database. 
(B) FEDA finds frequent episodes and inserts these back in database. (C &D) Visual output, like 
clustering developmental profiles (C & D) or a pattern shift diagram (E) from frequent episodes. 
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2.1   Finding the Episodes 

We propose a method for finding sequence heterochrony in developmental sequences 
(Fig. 1B). Using small frequently occurring patterns, called episodes, we try to find 
differences between developmental sequences. In order to have an unequivocal idea 
of the major concepts we define the core entities. 

Definition 1 Developmental Sequence: A developmental sequence is an ordered list 
of pairs. A pair consists of a developmental events and a timepoint. The list is ordered 
on the timepoints and describes the timing of these events within one species. 

Definition 2 Episode: An episode [13] is a small ordered set of events that is frequent 
over all developmental sequences. 

Definition 3 Frequency: The frequency of an episode is the total sum of the 
occurrences (cf. Def. 4) of this specific episode in all sequences. For each occurrence 
its size is equal to or smaller than the maximum episode size. 

Definition 4 Occurrence: For an episode to occur in a sequence, the events in this 
sequence need to be strictly ordered in the same order as the events in the episode. 
Events in between that are not part of the episode may exist. Consequently, gaps 
between events in an episode can exist; i.e., events in an occurrence do not have to be 
contiguous. 

Definition 5 Episode Size: The size of an episode occurring in a sequence s is the size 
of the smallest subsequence s' of our sequence in which the episode can still be 
matched. Such “match” is called an occurrence of the episode in s. To limit the 
amount of episodes that can be identified, the size of the episodes has been restricted. 
The maximal episode size is the upper bound on the episode size. 

FEDA uses the episode tree to store this collection of episodes together with their 
frequency.  

Definition 6 Episode Tree: An episode tree is a prefix-tree data structure on the 
episodes with the following features:  

1. consists of nodes and children 
2. the tree has an empty root node; the start of all the episodes 
3. each node has zero or more child nodes and each node contains: an event, a 

frequency and a binary list 
4. a node with no child nodes is called a leaf 

The FEDA algorithm starts with a given maximal episode size and an empty episode 
tree as parameters. FEDA processes all the sequences in the data and integrates all 
occurrences of the episodes identified in each sequence. This results in a collection of 
all episodes with the given maximal size together with their frequency. The root node 
is the empty episode from which all other episodes are extended. All children of this 
root-node are episode trees containing episodes that start with the event contained in 
this node. In addition, each of the children stores a binary list with length equal to the 
number of sequences in the dataset and it holds a 1(true) at position 1 if the episode is 
found in the first sequence. This is the same for the other sequences in the dataset. In 
an episode tree the events found in all nodes passed in the path from the root to 
another node is an episode. An example of an episode tree is depicted in Figure 2. 
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Fig. 2. An Episode Tree; the root is the start of all episodes contained in the tree. The 
highlighted path from the root to a leaf (end node) is the episode A-C-D with a frequency 1, as 
stored in the last node of the episode.  

2.2   Episodes in Heterochrony Analysis 

After computation of all the frequent episodes it is exactly known which patterns 
occurred in which developmental sequence and the frequency of each pattern in all 
the developmental sequences. From the data developmental profiles are constructed; 
these are defined as: 
 

Definition 7 Developmental Profile: A developmental profile is a vector that exactly 
shows which episodes where found in a given developmental sequence. The number 
of elements in this vector is equals the number of episodes found by FEDA. All 
episodes are indexed for the developmental profile. The value at each index is true if 
the episode was found or false if not found. 

The developmental profiles can be used in standard clustering algorithms while 
still being able to capture the temporal dependencies in the developmental sequence. 
Furthermore, filters can be used to control the size of the profiles. A possible filter is 
to use all maximal frequent episodes instead of all frequent episodes and thereby 
choose a minimal frequency as a threshold. 
 

Definition 8 Maximal Frequent Episodes: An episode is maximal frequent if it is not 
part of a larger frequent episode, i.e. a collection of maximal frequent episodes does 
not contain small episodes that are part of other larger episodes in the collection.  

2.3   Clustering of Developmental Profiles 

After the episode mining step, a developmental profile is obtained, indicating which 
episodes have been found in each of the sequences. This profile is used as a feature 
vector describing each of the sequences. The similarity/dissimilarity between 
sequences in the data is visualized by application of clustering on the developmental 
profiles (Fig. 1C). The measurement of the distance between sequences requires a 
specific distance measure that excludes, in the distance, those episodes not present in 
both of the developmental profiles. The choice of the distance measure is motivated 
by the fact that an episode not being present in both developmental profiles is not 
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contributing information on the biological difference between these two 
developmental profiles. This feature is typically expressed in the Jaccard distance [9], 
defined as: 

,],[
cba

cb
jiJaccard

++
+=  

where both i and j are developmental profiles; a is the number of episodes present in 
both i and j, b is the number of episodes present only in i, c those only in j. In 
addition, d represents the episodes in none of the two profiles, d is not used in the 
computation but completes a cross table in the analysis of the profiles (Fig. 3). It is 
easily seen that the Jaccard distance is a normalized figure; 0 for b,c=0 and 1 for a=0. 

 

 

Fig. 3. Shown from left to right: the profiles i and j; a cross table recording the number of 
episodes shared by i and j (a) all episodes possessed by only one profile (b and c) and those 
contained in none of the profiles (d); the computation of the Jaccard distance. 

In our analysis, the Jaccard distance reflects a relevance of the identified episodes. 
The Jaccard distance is used constructing a dissimilarity matrix by computing it for 
all possible pairs of two species (Fig. 3). Subsequently, this matrix is used in the 
clustering. The agglomerative hierarchical clustering with complete linkage [10] is 
used; this is an unsupervised clustering method which initiates with a cluster for each 
of the entities present [1, hclust]. Subsequently, the two clusters that are closest are 
merged in a larger cluster and merging continues until all entities are in one cluster. 
The distance between two merged clusters is computed using complete linkage; i.e., 
all distances between all pairs of entities are computed and the largest of these 
distances is considered the distance between the two clusters. From the clustering 
result a cladogram can be derived (Fig. 1D) visualizing the distances between all 
sequences in the dataset. The root of this cladogram is the point at which all species 
are joined in one large cluster whereas the leaves represent clusters containing only 
one species. 

3   Results 

As a proof of principle to show the different aspects of the method we present results 
of a number of experiments using three datasets: a small artificial dataset to 
demonstrate the method (§ 3.1), a dataset of morphological events over time (§ 3.2) 
and a gene expression dataset (§ 3.4). The data are obtained through literature 
analysis. All the experiments produce a taxonomy tree that is compared to literature. 
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3.1   Artificial Data 

We will illustrate our method with a simple dataset, obtained from the literature [15], 
consisting of 3 taxa and one outgroup. It illustrates that FEDA treats the episodes as 
dependent features and as such is not prone to errors found in event pairing [11,12] 
where events are treated independently and as a result shifts in timing cannot be 
attributed to one event. Feature dependency is preserved in the ordering of events in 
the episodes (Table 1). We start with building a list of all episodes found in this 
dataset; we adhere to only adding episodes that are found in the data instead of all 
possible combinations of events that are found in our dataset. Table 2 contains a list 
of all the episodes that were found in each sequence resulting in a developmental 
profile for all 4 sequences. In Table 2 a “1” indicates that the episode was present in 
the sequence and a “0” indicates it was absent. Next, the dissimilarity matrix between 
all sequences is computed by summing all differences between each pair of profiles. 
For taxa 1 and 2 this results in 6 differences in their profiles (AB, AC, BA, CA, ABC, 
BCA). Repeating this for all sequences in the example results in a distance matrix 
(Table 1B). This distance matrix shows that the distances between Taxa 1, 2 and 3 are 
all 0.86; the distance is computed using the Jaccard distance for all pairs of taxa. All 
pairs have 6 episodes for which the occurrence is different and 1 episode that is 
present in both taxa, resulting in a dissimilarity score of 6/7 between all the taxa, and 
a dissimilarity of 0 between the Outgroup and Taxon 1.  

Finally, agglomerative clustering with complete linkage is applied, using the 
previously obtained distance matrix. The result is presented in Figure 4. The 
cladogram is realized by starting with all taxa in different clusters at the bottom of the 
cladogram and then merging clusters of the closest taxa. At completion, we end up 
with all taxa and the outgroup in one cluster at the top of the cladogram. 

Table 1. (A) Dataset of 3 taxons and 1 outgroup (B) Distance Matrix showing the distance 
between each pair of taxa based on Jaccard distance. All taxa are equally close to one another. 

A Sequence 
Outgroup ABC 
Taxon 1 ABC 
Taxon 2 BCA 
Taxon 3 CAB  

B Out T 1 T 2 T 

Out 0    

T 1 0 0   

T 2 0.86 0.86 0  

T 3 0.86 0.86 0.86 0  
 
Table 2. Developmental Profiles recording the frequent episodes that occur in each taxon as 
well as the total number of times each episode occurs in the dataset. 

A A B B C C A B C
Outgroup 1 1 0 1 0 0 1 0 0 
Taxon 1 1 1 0 1 0 0 1 0 0 
Taxon 2 0 0 1 1 1 0 0 1 0 
Taxon 3 1 0 0 0 1 1 0 0 1 
Totals 3 2 1 3 2 1 2 1 1 
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Fig. 4. The cladogram resulting from clustering the taxa based on the in Table 1B 

3.2   Sequences of Morphological Characters in Development  

Next, we illustrate FEDA with a more complex dataset [11] containing timed 
sequences of morphological events. Each event is taken from the development of one 
species. An event happens only once in a species. The dataset contains 14 entities 
(species), and one developmental sequence containing morphological events per 
entity (Fig. 5). 

 

Fig. 5. Part of a recording of 2 developmental sequences presenting morphogical events over 
time. Here only spiny dogfish and giant salamander are depicted (dataset contains 14 species). 

 
If all frequent episodes were used in the clustering this would result in long 

runtimes and therefore the frequent episode set is reduced. Using only maximal 
frequent episodes (cf. Def. 8) in our experiments reduces the number of episodes in 
the clustering, as only the larger episodes are extracted. The window size was 
increased to obtain a sufficient number of features to cluster the data. For this 
particular dataset the parameters for FEDA were set to a window size of 8 and a 
frequency threshold of 0.05, resulting in obtaining 983 episodes. In Figure 6 the 
resulting cladogram is depicted. The clustering is almost the same as the Taxonomy 
common tree [3], only minor differences are seen in the amphibians. The results 
obtained from event-pairing on this dataset [11] show the same pattern 
acknowledging that the granularity of the dataset is, actually, insufficient.  

3.3   Relative Timescale in Development 

To allow linking patterns between different species, a relative timescale is introduced 
and used in the computations. This timescale is based on percentage of development 
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Fig. 6. Cladogram of the results computed by FEDA from a dataset of morphological events 
(right) compared to the taxonomy common tree from the NCBI (left) 

of the species under study [23] and events are linked relative to the developmental 
scale this species. E.g. gene tbx5 is active in Zebrafish in [5%  - 10%] of development 
(Fig. 7). 

 

Fig. 7. Data recording of a selection of gene expression patterns in zebrafish in a relative time 
scale:  tbx5, msxb, ssh, fgf8, hoxb9. At 10% of development 4 of the genes are expressed 
whereas at 14% development only 3 of the genes are expressed. 

3.4    Sequences of Gene Expression in Development 

Next, FEDA is applied to patterns of genes expression as found in the development of 
several model species. The clustering was performed with a window size of 4 and a 
minimal frequency of 0.04; the result corresponds with consensus in biological 
literature [14]. This result indicates that there is sufficient information in the data to 
differentiate between groups of species. The gene expression is analyzed to clades and 
therefore, subsequently, visualized as a cladogram. This cladogram is depicted in 
Figure 8. 
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Fig. 8. Cladogram computed by FEDA based on gene-expression data (right) compared to a 
phylogenetic tree taken from biological literature [14] (left) 

4   Conclusions and Discussion 

We presented a method for the discovery of frequent patterns in a group of 
developmental sequences for quantitative analysis of heterochrony. All the episodes 
found in developmental sequences are found together with their frequency and a list 
of supporting sequences. These episodes are used in further analysis, such as 
clustering. Compared to previous experiments [4] our method is considerably more 
efficient. Furthermore, we demonstrated that transpositions of the data enable 
comparing morphological characters and genes as well as species in a transparent 
way. We have illustrated that our algorithm works with artificial as well as biological 
data 

Currently, two methods are used for the analysis of developmental sequences of 
events, i.e. Event-pairing [18,11,16,17,8] and Search-Based Character Optimization 
[15]. Over Event-pairing [11] our method has two advantages. It uses the data to 
determine which pairs are the most interesting to use and the “event-pairs” can 
contain more than two events, so, in fact they are groups of developmental events that 
co-occur frequently. Groups of events found by FEDA contain more information 
about developmental sequences compared to event-pairs. 

Search-Based Character Optimization [15] shows excellent clustering results and 
can possibly also be applied in the analysis of gene expression data. Over this method 
FEDA has two advantages. It allows insight in clustering, because FEDA is based on 
frequent developmental patterns and these patterns can later on be used to obtain more 
insight into which patterns cause the tree to branch. In addition, FEDA scales better to 
the size of the dataset and the number of events used in the analysis. FEDA is only 
based on patterns that are frequent, thus allowing it to handle large amount of data 
with a large number of developmental events. This does not restrict our method to 
sequences that contain all events because in sequences with missing events we are 
still able to find developmental patterns, just not the patterns that contain this missing 
event. Furthermore, our method does not use an edit cost matrix. For long 
developmental sequences with a large number of possible events this edit cost matrix 
extends to enormous and impractical proportions. Our method has the advantage that 
no step costs have to be determined, because the distances between species are only 
based on the data and the developmental patterns found.  

The FEDA algorithm is developed to scale to larger datasets that will become 
available from genomics and developmental biology [5,6,7,19,20,21]. In that respect 
future directions for usage will extend beyond the analysis of heterochrony and 
include other aspects of computational evo-devo. 
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Abstract. Machine learning methods have been successfully applied to

the phenotype classification of many diseases based on static gene expres-

sion measurements. More recently microarray data have been collected

over time, making available datasets composed by time series of expres-

sion gene profiles. In this paper we propose a new method for time series

classification, based on a temporal extension of L1-norm support vec-

tor machines, that uses dynamic time warping distance for measuring

time series similarity. This results in a mixed-integer optimization model

which is solved by a sequential approximation algorithm. Computational

tests performed on two benchmark datasets indicate the effectiveness of

the proposed method compared to other techniques, and the general

usefulness of the approaches based on dynamic time warping for labeling

time series gene expression data.

Keywords: Time series classification, microarray data, L1-norm sup-

port vector machines, dynamic time warping.

1 Introduction

In the last decade several machine learning methods have been proposed for
the classification of gene expression data based on static datasets [1–4]. These
datasets are usually composed by a huge number of features (genes) and a rela-
tively few number of examples, and their values represent gene expression levels
observed in a snapshot under precise experimental conditions.

The analysis of microarray expression levels recorded at a single time frame
has proven to be effective for several biomedical tasks, among which the most
prominent one is the phenotype classification in the early stages of a disease.
However, it may appear inadequate to properly grasp the complex evolving in-
teractions steering the biological processes. For example, in functional genomics
studies the automatic categorization of genes based on their temporal evolution
in the cell cycle plays a primary role, since genes with similar expression profiles
are supposed to be functionally related or co-regulated [5]. As another example
consider the prediction of the clinical response to a drug [6], where patients may
exhibit different rates of disease development or treatment response. In this case,
the overall profiles of the expression levels of two patients may be similar but not
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aligned, since individuals may progress at different speed [7]. In both scenarios
it is required to analyze gene expression profiles as they evolve over time and,
consequently, to develop classification methods able to consider also the tempo-
ral dimension. Over recent years a growing number of microarray experiments
have been performed in order to collect and analyze time series gene expression
profiles. The resulting datasets then provide examples of labeled time series that
can be useful for classifying new temporal sequences whose label is unknown,
and for identifying hidden explanatory biological patterns.

More generally, time series classification is a supervised learning problem
aimed at labeling temporally structured univariate or multivariate sequences.
Several alternative paradigms for time series classification have been proposed
in the literature; see the review [8]. A common approach is based on a two-
stage procedure that first derives a rectangular representation of the time series
and then applies a classification method for labeling the data. An alternative
approach relies on the notion of dynamic time warping (DTW) distance, an ef-
fective measure of similarity between pairs of time series. This distance allows
to detect clusters and to predict with high accuracy the class of new tempo-
ral sequences by using distance-based methods, such as the k-nearest neighbor
classifier [9, 10]. Furthermore, kernels based on DTW have been devised and
incorporated within traditional support vector machines in [11–13].

In this paper we propose a new classification method based on a temporal
variant of L1-norm support vector machines (SVM), denoted as L1-TSVM. The
resulting mixed-integer optimization model, solved by a sequential approxima-
tion algorithm, takes into account the similarity among time series assigned to
the same class, by including into the objective function a term that depends
on the warping distances. A first research contribution along these lines is pre-
sented in [14], in which authors propose a temporal extension of discrete SVM,
a variant of SVM based on the idea of accurately evaluating the number of
misclassified examples instead of measuring their distance from the separating
hyperplane [15, 16]. In this paper L1-norm SVM [17–19] have been preferred as
the base classifier for incorporating the temporal extension since they are effi-
cient and well suited to deal with datasets with a high number of attributes,
particularly in presence of redundant noisy features.

A second aim of the paper is to investigate whether DTW distance can be
generally beneficial to different classifiers for labeling time series gene expression
data. To this purpose, we comparatively evaluated the performances of five alter-
native methods beside L1-TSVM: these are L1-norm SVM, L2-norm SVM with
radial basis function and DTW as kernels, and the k-nearest neighbor (k-NN)
classifier either based on Euclidean or DTW distances. Computational tests per-
formed on two datasets seem to indicate that the proposed method L1-TSVM
has a great potential to perform an accurate classification of time series gene ex-
pression profiles and that, in general, SVM techniques based upon DTW perform
rather well with respect to their non-DTW-based counterparts.

The paper is organized as follows. Section 2 defines time series classification
problems and the concept of warping distance. In section 3 a new classification
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model based on L1-norm temporal SVM is presented. In section 4 computational
experiences are illustrated. Finally, section 5 discusses some future extensions.

2 Time Series Classification and Warping Distance

In a time series classification problem we are given a set of multivariate time se-
ries {Ai}, i ∈M = {1, 2, . . . ,m}, where each Ai = [ailt] is a rectangular matrix
of size L× Ti of real numbers. Here l ∈ L = {1, 2, . . . , L} is the index associated
to the attributes of the time series, whereas t ∈ Ti = {1, 2, . . . , Ti} is the tempo-
ral index, that may vary in a different range for each Ai. Every time series is also
associated with a class label yi ∈ D. Let H denote a set of functions f : �n �→ D
that represent hypothetical relationships between {Ai} and yi. The time series
classification problem consists of defining an appropriate hypotheses space H
and a function f∗ ∈ H which optimally describes the relationship between the
time series {Ai} and their labels {yi}, in the sense of minimizing some measure
of misclassification. When there are only two classes, i.e. D = 2 and yi ∈ {−1, 1}
without loss of generality, we obtain a binary classification problem, while the
general case is termed multicategory classification.

The warping distance has proven to be an effective proximity measure for
clustering and labeling univariate time series [9, 10]. Indeed, it appears more
robust than the Euclidean metric as a similarity measure, since it can handle
sequences of variable length and automatically align the time series to identify
similar profiles with different phases.

In order to find the optimal alignment between two time series Ai and Ak,
let G = (V,E) be a directed graph whose vertices in V correspond to the pair
of time periods (r, s), r ∈ Ti, s ∈ Tk. A vertex v = (r, s) indicates that the r-th
value of the time series Ai is matched with the s-th value of Ak. An oriented
arc (u, v) connects vertex u = (p, q) to vertex v = (r, s) if and only if one of the
following mutually exclusive conditions holds

{r = p+ 1, s = q} ∨ {r = p+ 1, s = q + 1} ∨ {r = p, s = q + 1}. (1)

Consequently, each vertex u ∈ G has at most three outgoing arcs, associated
to the three conditions described in (1). The arc (u, v) connecting the vertices
u = (p, q) and v = (r, s) has length

γuv =
L∑

l=1

(ailr − akls)2, (2)

given by the sum over the attributes of the squared distances associated to the
potential alignment of period r in Ai to period s in Ak. Let also vf = (1, 1) and
vl = (Ti, Tk) be the vertices corresponding to the alignment of the first and last
periods in the two sequences, respectively.

A warping path in G is any path connecting the source vertex vf to the
destination vertex vl. It identifies a phasing and alignment between two time
series such that matched time periods are monotonically spaced in time and
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( )a

( )b

Fig. 1. Alignment of Ai and Akwith Euclidean distance (a) and DTW distance (b)

contiguous. The warping distance between time series Ai and Ak is then defined
as the length of the shortest warping path in G, and provides a measure of
similarity between two temporal sequences which is often more effective than
the Euclidean metric, as shown in Figure 1.

The warping distance between Ai and Ak can be evaluated by a dynamic opti-
mization algorithm, with time complexity O(T 2

max) (Tmax = max{Ti : i ∈M}),
based on the following recursive equation

g(r, s) = γuv + min{g(r − 1, s− 1), g(r − 1, s), g(r, s− 1)}, (3)

where g(r, s) denotes the cumulative distance of a warping path aligning the
time series through the periods going from the pair (1, 1) to the pair (r, s).

3 L1-norm Temporal Support Vector Machines

In this section we propose a new classification method based on a temporal
variant of L1-norm SVM, denoted as L1-TSVM. The resulting mixed-integer
optimization model, solved by a sequential approximation algorithm, takes into
account the similarity among time series assigned to the same class, by includ-
ing into the objective function a term that depends on the warping distances.
We confine our attention to binary classification, since multicategory classifi-
cation problems can be reduced to sequences of binary problems by means of
one-against-all or all-against-all schemes [16, 20]. By applying an appropriate
rectangularization preprocessing step, as described in section 4 for the time se-
ries considered in our tests, we may assume that the input dataset is represented
by a m× n matrix, in which each row is a vector of real numbers xi ∈ �n which
represents the corresponding time series Ai.
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A linear hypothesis for binary classification corresponds to a space H com-
posed by separating hyperplanes taking the form f(x) = sgn(w′x− b). In order
to choose the optimal parameters w and b, traditional SVM [21–23], hereafter
denoted as L2-norm SVM, resort to the solution of the quadratic minimization
problem

min
1
2
‖w‖2 + C

m∑
i=1

ξi (L2-SVM)

s. t. yi (w′xi − b) ≥ 1− ξi i ∈ M (4)
ξi ≥ 0 ∀i; w, b free.

Here the L2-norm ‖w‖2 is a regularization term, aimed at maximizing the mar-
gin of separation, whereas the second term in the objective function is a loss
function expressing the distance of the misclassified examples from the canon-
ical hyperplane delimiting the correct halfspace. The parameter C is available
for adjusting the trade-off between the two terms in the objective function of
problem L2-SVM.

The quadratic formulation L2-SVM has some advantages, which contributed
to its popularity. Among others, it admits fast solution algorithms and, through
its dual problem, it allows to implicitly apply kernel transformations for deriving
nonlinear separations in the original input space from linear separations obtained
in a high-dimensional Hilbert space.

Yet, other norms ‖w‖p have been considered in the literature as alternative
ways for expressing the margin maximization. In particular, linear formulations
have attracted much attention [17–19] since they can benefit from the high ef-
ficiency of the solution algorithms for linear optimization problems. The linear
counterpart of problem L2-SVM is given by the optimization model

min ‖w‖1 + C
m∑

i=1

ξi (L1-SVM)

s. t. yi (w′xi − b) ≥ 1− ξi i ∈ M (5)
ξi ≥ 0 ∀i; w, b free.

Although not suited to host the kernel transformations applicable to L2-SVM,
the linear problem L1-SVM has proven even more effective to achieve an accu-
rate separation directly into the input space, particularly when the number of
attributes is high and there are noisy unnecessary features.

We propose an extension of problem L1-SVM by defining a new term aimed
at improving the discrimination capability when dealing with time series clas-
sification problems. This additional term is given by the sum of the warping
distances between all pairs of time series assigned to the same class. By in-
cluding this term into the objective function we aim at deriving a separating
hyperplane which maximizes the overall similarity among time series lying in
the same halfspace.
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Let dik denote the warping distance between the pair of time series (Ai,Ak).
We have to introduce binary variables expressing the number of misclassified
examples as

pi =
{

0 if w′xi − b ≥ 1
1 otherwise . (6)

In order to determine the best separating hyperplane for time series classi-
fication, the following mixed-integer optimization problem L1-TSVM, termed
L1-norm temporal support vector machines , can be formulated

min
n∑

j=1

uj + C
m∑

i=1

ξi + δ
m∑

i=1

m∑
k=i+1

dikrik (L1-TSVM)

s. t. yi (w′xi − b) ≥ 1− ξi i ∈ M (7)
−uj ≤ wj ≤ uj j ∈ N (8)

1
S
ξi ≤ pi ≤ Sξi i ∈ M (9)

−rik ≤ yi (2pi − 1) + yk (2pk − 1) ≤ rik i, k ∈ M, i < k (10)
uj, ξi, rik ≥ 0 ∀i, j, k; pi ∈ {0, 1} ∀i; w, b free.

Here S is a sufficiently large constant; C and δ the parameters to control the
trade-off among the objective function terms. The family of continuous bounding
variables uj, j ∈ N , and the constraints (8) are introduced in order to linearize
the first term ‖w‖1 in the objective function of problem L1-SVM. Constraints (9)
are required to enforce the relationship between the slack variables ξi and the
binary misclassification variables pi. Finally, the family of continuous bounding
variables rik, i, k ∈M, together with the constraints (10), are needed to express
in linear form via the third term the inclusion of the sum of the warping distances
between the time series, as shown in [14].

For determining a feasible suboptimal solution to model L1-TSVM, we pro-
pose the following approximation procedure based on a sequence of linear opti-
mization (LO) problems. In what follows R-TSVM denotes the LO relaxation of
model L1-TSVM, and t is the iteration counter.

Procedure L1-TSVMSLO

1. Set t = 0 and consider the relaxation R-TSVM0 of L1-TSVM.
2. Solve problem R-TSVMt.
3. Suppose first that problem R-TSVMt is feasible. If its optimal solution is

integer, the procedure is stopped and the solution generated at iteration t
is retained as an approximation to the optimal solution of L1-TSVM; other-
wise, proceed to step 5.

4. Otherwise, if problem R-TSVMt is unfeasible, modify previous problem
R-TSVMt−1 by fixing to 1 all of its fractional variables. Problem R-TSVMt

redefined in this way is necessarily feasible and any of its optimal solutions
is integer. Thus, the procedure is stopped and the solution found is retained
as an approximation to the optimal solution of L1-TSVM.
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5. Next problem R-TSVMt+1 in the sequence is obtained by fixing to zero
the relaxed binary variable with the smallest fractional value in the optimal
solution of the predecessor R-TSVMt; then proceed to step 2.

4 Computational Experiments

Computational experiments were performed on two datasets both composed by
microarray time series gene expression data. As stated in the introduction our
aim was twofold; from one side, we intended to evaluate the effectiveness of
L1-TSVM and to compare it to its continuous counterpart in terms of accuracy.
From the other side, we were interested in investigating whether DTW distance
may be conveniently used in conjunction with alternative supervised learning
methods for gene expression time series classification.

The first dataset considered in our tests, denoted as Yeast1 and originally
described in [24], contains the genome characterization of the mRNA transcript
levels during the cell cycle of the yeast Saccharomyces cerevisiae. Gene expres-
sion levels were gathered at regular intervals during the cell cycle. In particular,
measurements were performed at 17 time points with an interval of ten min-
utes between each pair of recorded values. The gene expression time series of
this dataset are known to be associated to five different phases, namely Early
G1, Late G1, S, G2 and M, which represent the class values in our setting.
The second dataset, indicated as MS-rIFNβ and first analyzed in [6], contains
gene expression profiles of patients suffering from relapsing-remitting multiple
sclerosis (MS), who are classified as either good or poor responders to recombi-
nant human interferon beta (rIFNβ). The dataset is composed by the expression
profiles of 70 genes isolated from each patient at 7 time points: before the admin-
istration of the first dose of the drug (t = 0), every three months (t = 1, 2, 3, 4)
and every six months (t = 5, 6) in the first and second year of the therapy, re-
spectively. For a few patients entire profile measurements are missing at one or
two time points. From the complete MS-rIFNβ dataset we retained only twelve
genes whose expression profiles at t = 0 have shown to accurately predict the
response to rIFNβ, as described in [6]. Furthermore, for each possible number
of time points from 2 to 7 we extracted the corresponding gene expression time
series, in order to obtain six different datasets. The distinctive features of Yeast
and MS-rIFNβ in terms of number of available examples, classes and time series
length are summarized in Table 1.

Five alternative methods were considered for comparison with L1-TSVM: L1-
SVM, SVM with radial basis function (SVMRBF) and dynamic time warping
(SVMDTW) kernels, k-nearest neighbor classifier based respectively on Euclidean
distance (k-NNEucl) and dynamic warping distance (k-NNDTW). For solving L1-
TSVM and L1-SVM models we respectively employed the heuristic procedure
described in section 4 and standard LO code, both framed within the CPLEX
environment; for nonlinear kernels SVM we used the LIBSVM library [25],
extending its standard version with the DTW kernel. Among dynamic time
1 http://genomics.stanford.edu/yeast_cell_cycle/cellcycle.html

http://genomics.stanford.edu/yeast_cell_cycle/cellcycle.html
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Table 1. Summary of gene expression time series datasets

Dataset

Summary Yeast MS-rIFNβ

Examples 388 52

Classes Early G1 (67), Good responder (33),

Late G1 (136), S (77) Poor responder (19)

G2 (54), M (54)

Time series length 17 [5,7]

warping kernels we implemented the one proposed in [13], which has been proven
to be positive definite under favorable conditions. Finally, in order to perform
the classification of Y east, which represents a multicategory dataset, SVM-based
methods were framed within the all-against-all scheme.

A preprocessing step was applied on both datasets before classification. In
particular, each expression profile of Y east was normalized as described in [24].
The expression levels of MS-rIFNβ were instead standardized, by subtracting
from each value in a gene profile the mean of the values of the same gene in
temporal-homologous sequences, and dividing the result by the corresponding
standard deviation. Since all methods apart from SVMDTW and k-NNDTW are
not able to cope with sequences of variable length, we replaced missing profiles
with series of an out-of-range value, and then sequenced genes and time periods
for every patient in order to obtain a rectangular representation for each of the
six MS-rIFNβ datasets.

The accuracy of the competing methods was evaluated by applying five times
4-fold cross-validation, each time randomly dividing the dataset into four folds
for training and testing. To achieve a fair comparison we used the same folds for
all methods. Furthermore, on each training set we applied 3-fold cross-validation
in order to figure out the optimal parameters setting for all classifiers, represented
by the regularization constant C and the kernel parameter σ for L1-norm and
L2-norm SVM methods, and by the number k of neighbors for k-NN classifiers.
For L1-TSVM a further parameter to be optimized was represented by the weight
δ in the objective function, regulating the trade-off between misclassification and
the sum of time series warping distances. The values tested for each parameter
are reported in Table 2.

The results of each method are shown in Table 3 which indicates the average
accuracy values obtained by applying five times 4-fold cross-validation. These
results allow us to draw some empirical conclusions concerning the effective-
ness of the proposed method and the usefulness of DTW distance. The tem-
poral variant L1-TSVM was capable of outperforming its counterpart L1-SVM
on all datasets, achieving an increase in accuracy ranging between 0.8% and
5.4%. The novel technique appeared rather accurate also with respect to the
other classifiers, being able to provide the highest rate of correct predictions on
Y east and on most MS-rIFNβ datasets. Especially on these datasets, in which
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Table 2. Parameters values tested for each family of methods

Method Parameters values

k-NNEucl k= 2, 4, 6, 8, 10

k-NNDTW

SVMRBF C=10j , j ∈ [−1, 3]

SVMDTW σ =10j , j ∈ [−4, 2]

L1-SVM C=10j , j ∈ [−1, 3]

L1-TSVM δ =10j , j ∈ [−1, 1]

Table 3. Classification accuracy (%) on the gene expression time series datasets. In-

tervals in brackets indicate the time points considered for each MS-rIFNβ dataset.

Method

Dataset k-NNEucl k-NNDTW SVMRBF SVMDTW L1-SVM L1-TSVM

Yeast 68.5 51.8 73.3 73.7 72.4 73.9

MS-rIFNβ

t∈[0,1] 83.8 76.9 82.7 84.2 76.9 80.8

t∈[0,2] 81.9 78.9 82.7 84.6 80.0 85.4
t∈[0,3] 82.7 75.0 81.9 75.4 78.5 83.8
t∈[0,4] 76.9 73.1 76.9 71.2 79.2 80.0
t∈[0,5] 75.8 69.2 71.5 78.5 79.6 80.8
t∈[0,6] 71.2 66.9 68.5 70.8 76.5 78.8

examples are composed by sequences of variable length, also the use of DTW
as the kernel function appeared promising. Notice that the average accuracy
provided by most classifiers on MS-rIFNβ datasets decreased when more than
four expression time series were considered for each example. This phenomenon
is possibly related to the increase of missing profiles in the last measurements
which may have slightly compromised the classification results. Nevertheless,
L1-TSVM showed the mildest degradation of its classification performances with
respect to most of the other methods. On the Y east dataset the competing tech-
niques L1-TSVM and SVMDTW provided comparable results. Even in this case,
however, L1-TSVM was able to obtain the best rate of correct predictions. By
investigating the confusion matrices of all methods we observed that the higher
accuracy of L1-TSVM mainly derived from the correct classification of a greater
number of examples belonging to the classes S and M.

5 Conclusions and Future Extensions

In this paper we have proposed a new supervised learning method for time series
gene expression classification based on a temporal extension of L1-norm SVM.
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The novel technique relies on a mixed-integer optimization problem which in-
corporates in the objective function an additional term aiming at improving
the discrimination capability when dealing with the classification of time series
datasets. This term is represented by the sum of the warping distances of time se-
ries assigned to the same class, where the warping distance is used as a similarity
measure among temporal sequences. The inclusion of this term in the objective
function is aimed at deriving separating hyperplanes which are also optimal with
respect to time series similarity. In this paper we have also investigated from a
computational perspective the convenience of combining the warping distance
with alternative classification methods for time series gene profiles labeling. Ex-
periments performed on two datasets showed the effectiveness of the proposed
method and the usefulness of the warping distance when used as the kernel
function in L2-norm SVM. Future research development will be pursued along
three main directions, by testing the novel technique on a wider range of time
series gene expression classification problems, by investigating other similarity
measures to be included in the model and by studying alternative heuristic pro-
cedures for solving the resulting mixed-integer formulations.
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Abstract. The analysis of DNA microarray images is a crucial step in gene ex-
pression analysis, since any errors in early stages are propagated in future steps in
the analysis. When processing the underlying images, accurately separating the
sub-grids and spots is of extreme importance for subsequent steps that include
segmentation, quantification, normalization and clustering. We propose a fully
automatic approach that first detects the sub-grids given the entire microarray
image, and then detects the locations of the spots in each sub-grid. The approach
first detects and corrects rotations in the images by an affine transformation, fol-
lowed by a polynomial-time optimal multi-level thresholding algorithm to find
the positions of the sub-grids and spots. Additionally, a new validity index is pro-
posed in order to find the correct number of sub-grids in the microarray image,
and the correct number of spots in each sub-grid. Extensive experiments on real-
life microarray images show that the method performs these tasks automatically
and with a high degree of accuracy.

Keywords: Microarray image gridding; image analysis; multi level thresholding.

1 Introduction

Microarrays are one of the most important technologies used in molecular biology to
massively explore the abilities of the genes to express themselves into proteins and other
molecular machines responsible for different functions in an organism. These expres-
sions are monitored in cells and organisms under specific conditions, and are present in
many applications in medical diagnosis, pharmacology, disease treatment, just to men-
tion a few. We consider DNA microarrays, which are produced on a slide, typically,
in two channels. Scanning the slides at a very high resolution produces images com-
posed of sub-grids of spots. Image processing and analysis are two important aspects
of microarrays, since the aim of the whole experimental procedure is to obtain mean-
ingful biological conclusions, which depends on the accuracy of the different stages,
mainly those at the beginning of the process. The first task is gridding, which if done
correctly, helps substantially improve the efficiency of the subsequent steps that include
segmentation, quantification, normalization and data mining. When producing DNA
microarrays, many parameters are specified, such as the number and size of spots, num-
ber of sub-grids, and even their exact location. However, many physicochemical factors
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produce noise, misalignment, and even deformations in the sub-grid template that it
is virtually impossible to know the exact location of the spots after the scanning is
performed, at least with the current technology. Roughly speaking, gridding consists
of determining the spot locations in a microarray image (typically, in a sub-grid). The
gridding process requires the knowledge of the sub-girds in advance in order to proceed.

Many approaches have been proposed for sub-gridding and spot detection. The
Markov random field (MRF) is a well known approach that applies specific constraints
and heuristic criteria [11]. Another gridding method is mathematical morphology, which
represents the image as a function and applies erosion operators and morphological fil-
ters, helping remove peaks and ridges from the topological surface of the images [7].
A method for detecting spot locations based on a Bayesian model has been recently
proposed, and uses a deformable template model to fit the grid of spots in such a tem-
plate using a posterior probability model which learns its parameters by means of a
simulated-annealing-based algorithm [1,6]. Another method for finding spot locations
uses a hill-climbing approach to maximize the energy, seen as the intensities of the
spots which are fit to different probabilistic models [10]. Fitting the image to a mixture
of Gaussians is another technique that has been applied to gridding microarray images
by considering radial and perspective distortions [5]. A Radon-transform-based method
that separates the sub-grids in a DNA microarray image has been proposed in [8]. Other
approaches for DNA microarray gridding include the following. A gridding method that
performs sub-gridding and spot detection is the one proposed in [13], which performs a
series of steps including rotation detection based on a simple method that compares the
running sum of the topmost and bottommost parts of the image. This method, which
detects rotation angles with respect to one of the axes, either x or y, has not been tested
on images having regions with high noise (e.g. bottommost 1

3 of the image is quite
noisy). Another method for gridding DNA microarray images uses an evolutionary al-
gorithm to separate sub-grids and detect the positions of the spots [4]. The approach is
based on a genetic algorithm that discovers parallel and equidistant line segments that
compose the grid structure. Using maximum margin is another method for automatic
gridding of DNA microarray images based on the maximization of the margin between
the rows and columns of the spots [2]. In another approach, properties of planar (2D)
grids are addressed from a mathematical point of view and an algorithm for recognizing
distorted grids with perspective transformations is presented [5]. The approach involves
recognizing parameters of affinely distorted grids by fitting Gaussian mixture models
to grid spectrums, rebuilding the grid structures via a generating iteration based on the
acquired parameters, and eliminating nonlinear effects caused by perspective transfor-
mations with the median of infinite lines from local structures.

In this paper, we propose a fully automatic approach that first detects the sub-grids
given the entire microarray image, and then detects the locations of the spots in each
sub-grid. The method proposed here uses an optimal multi-level thresholding algorithm
to find the positions of the sub-grids in the image and the positions of the spots in
each sub-grid. Additionally, a new validity index is proposed in order to find the correct
number of sub-grids in the microarray image, and the correct number of spots in each
sub-grid.
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2 The Proposed Gridding Method

A DNA microarray image typically contains a number of sub-grids and each sub-grid
contains a number of spots arranged in rows and columns. The aim is to perform a two-
stage process in such a way that the sub-grid locations are found in first stage, and then
spot locations within a sub-grid can be found in the second stage. Consider an image
(matrix) A = {aij}, i = 1, ...., n and j = 1, ....,m, where aij ∈ Z+ and aij represents
the intensity of pixel (i,j) (usually, aij is in the range [0..65,535] in a TIFF image).
The aim of gridding is to obtain a matrix G (grid) where G = {gij}, i = 1, ...., n and
j = 1, ....,m, gij = 0 or gij = 1 (a binary image), with 0 meaning that gij belongs
to a grid separator, and 1 meaning the pixel is inside a spot region. This image could
be thought of as a “free-form” grid. However, in order to restrict our definition to a
rectangular grid, our aim is to obtain vectors v and h, v = [v1, ...vm]t, h = [h1, ...hn]t,
where vi ∈ [1,m] and hj ∈ [1, n]. Each vertical and horizontal vectors are used to
separate sub-grids and spots.

The sub-grids in a microarray image are detected by applying the Radon transform as
a preprocessing phase and then using optimal multilevel thresholding in the next stage.
By combining optimal multilevel thresholding and the β index (Eq. 13), the correct
number of thresholds (sub-grids or spots) can be found. Figure 1 depicts the process of
finding the sub-grids in a microarray image. The input for the Radon transform process
is a microarray image and the output of the whole process is the location (and parti-
tioning) of the sub-grids. Analogously, the locations of the spots in each sub-grid are
found by using optimal multilevel thresholding combined with the proposed β index
to find the best number of rows and columns of spots. The input for this process is a
sub-grid (already extracted from the sub-gridding step) and the output is given by the
partitioning of the sub-grid into spots (spot regions).

We apply the Radon transform as a preprocessing step (to the raw images) in order
to detect and correct rotations, if any, in the whole image or in a sub-grid. Rotations of
an image can be seen in two different directions, with respect to the x and y axes. The
aim is find two independent angles of rotation for an affine transformation, and for this
the Radon transform is applied. Details on the Radon transform and how to use it in
correcting rotations can be found in [8].

3 Optimal Multilevel Thresholding

Multilevel thresholding is one of the most widely-used techniques in image process-
ing, including segmentation, classification and object discrimination. Given a histogram
with frequencies or probabilities for each bin, the aim of multilevel thresholding is to
divide the histogram into a number of groups (or classes) of contiguous bins in such a
way that a criterion is optimized. In microarray image gridding, we compute the verti-
cal (or horizontal) running sum of pixel intensities, obtaining a histogram in which each
bin represents one column (or row respectively), and the running sum of intensities cor-
respond to the frequency of that bin. The frequencies are then normalized in order to
be considered as probabilities. Figure 2 depicts a typical DNA microarray image (AT-
20387-ch2, see its description in section 5) that contains 12 × 4 sub-grids, along with
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Fig. 1. Schematic representation of the process for finding sub-grids (spots) in microarray images
(detected sub-grids)

the corresponding histograms representing the horizontal and vertical running sums.
Each histogram is then processed (see below) to obtain the optimal thresholding that
will determine the locations of the lines separating the sub-grids. Analogously, we ap-
ply the same method to each sub-grid to obtain the corresponding lines separating the
spot regions.

Consider a histogram H , an ordered set {1, 2, . . . , n − 1, n}, where the ith value
corresponds to the ith bin and has a probability, pi. Given an image, A = {aij} , H
can be obtained by means of the horizontal (vertical) running sum as follows: pi =∑m

j=1 aij (pj =
∑n

i=1 aij). We also consider a threshold set T , defined as an ordered
set T = {t0, t1, . . . , tk, tk+1}, where 0 = t0 < t1 < . . . < tk < tk+1 = n and
ti ∈ {0} ∪ H . The problem of multilevel thresholding consists of finding a threshold
set, T ∗, in such a way that a function f : Hk× [0, 1]n → �

+ is maximized/minimized.
Using this threshold set,H is divided into k+1 classes: ζ1 = {1, 2, . . . , t1}, ζ2 = {t1+
1, t1+2, . . . , t2}, . . ., ζk = {tk−1+1, tk−1+2, . . . , tk}, ζk+1 = {tk+1, tk+2, . . . , n}.
The most important criteria for multilevel thresholding are the following [9]:

Between class variance:

ΨBC(T ) =
k+1∑
j=1

ωjμ
2
j (1)

where ωj =
∑tj

i=tj−1+1 pi , μj = 1
ωj

∑tj

i=tj−1+1 ipi;
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(c)

(b) (a)

Fig. 2. (a) detected sub-grids in AT-20387-ch2 microarray image, (b) vertical histogram and de-
tected valleys correspond to vertical lines, (c) horizontal histogram and detected valleys corre-
spond to horizontal lines
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Entropy-based:

ΨH(T ) =
k+1∑
j=1

Hj (2)

whereHj = −∑tj

i=tj−1+1
pi

ωj
log pi

ωj
;

Minimum error:

ΨME(T ) = 1 + 2
k+1∑
j=1

ωj(log σj − logωj) (3)

where σ2
j =

∑tj

i=tj−1+1
pi(i−μj)2

ωj
.

A dynamic programming algorithm for optimal multilevel thresholding was pro-
posed in our previous work [9], which is an extension for irregularly sampled his-
tograms. For this, the criterion has to be decomposed as a sum of terms as follows:

Ψ(T0,m) = Ψ({t0, t1, . . . , tm}) �
m∑

j=1

ψtj−1+1,tj , (4)

where 1 ≤ m ≤ k + 1 and the function ψl,r , where l ≤ r, is a real, positive func-
tion of pl, pl+1, . . . , pr, ψl,r : H2 × [0, 1]l−r+1 → �

+ ∪ {0}. If m = 0, then
Ψ ({t0}) = ψt0,t0 = ψ0,0 = 0. The thresholding algorithm can be found in [9]. In
the algorithm, a table C is filled in, where C(tj , j) contains the optimal solution for
T0,j = t0, t1, . . . , tj , Ψ∗(T0,j), which is found from min{tj} ≤ tj ≤ max{tj}. An-
other table, D(tj , j), contains the value of tj−1 for which Ψ∗(T0,j) is optimal. The
worst-case time complexity of the algorithm has been shown to be Θ(kn2).

To implement the between-class variance criterion, the functionΨBC(T ) is expressed
as: ΨBC(T ) =

∑k+1
j=1 ωjμ

2
j =

∑k+1
j=1 ψtj−1+1,tj , where ψtj+1,tj+1 = ωjμ

2
j . We con-

sider the temporary variables, a and b ,which are computed as follows:

a← ptj−1+1 +
tj∑

i=tj−1+2

pi, and (5)

b← (tj−1 + 1)ptj−1+1 +
tj∑

i=tj−1+2

ipi . (6)

Since from (5) and (6), a and b are known, then ψtj−1+2,tj , for the next step, can be
re-computed as follows in Θ(1):

a← a− ptj−1+1 , (7)

b← b − (tj−1 + 1)ptj−1+1 , and (8)

ψtj−1+2,tj ←
b2

a
. (9)

Similar decomposition allows that the minimum error and entropy-based criteria be
recomputed in Θ(1) [9].
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4 Automatic Detection of the Number of Sub-grids and Spots

Finding the correct number of sub-grids in a microarray image and number of spots
in each sub-grid is one of the most important phases in sub-grid and spot detection.
For this, we resort on validity indices used for clustering. By analyzing the traditional
indices for clustering validity, we found that combining these indices with one of our
measures, we propose a new index of validity for this specific problem. Initially, we
considered four clustering validity indices (cf. [12]) in the context of the partitioning
obtained by the multilevel thresholding method. We found that the best is the I index,
which is defined as follows:

I(K) =
(

1
K
× E1

EK
×DK

)2

, (10)

where, EK = ΣK
i=1Σ

ni

k=1pk||k − zi|| , DK =
K
max︸︷︷︸
i,j=1

||zi − zj ||, n is the total number

of points in data set, and zk is the center of the kth cluster. To find the best number of
thresholds, we perform an exhaustive search on all possible values ofK , from 2 to

√
n

[3]. The value of K for which I(K) is maximal is considered to be correct number of
clusters. We must note that the complexity of the algorithm remains Θ(kn2), since the
index I is computed for all values of K as the optimal thresholding algorithm fills in
table C.

Based on this index and another measurement (see Eq. (11) below), we propose a
new index for finding the correct number of sub-grids or spots. We consider the average
value of the thresholds in a histogram, which is computed as follows:

A(K) =
1
K

K∑
i=1

f(ti), (11)

where ti is the ith threshold found by optimal multilevel thresholding and f(ti) is its
respective value in the histogram.

The proposed index computes the value of A for different numbers of thresholds,K .
Then, the best number of thresholdsK∗ can be found as follows:

K∗ = arg min︸︷︷︸
1≤K≤δ

{
1
K
ΣK

i=1f(ti)
}

(12)

where δ is the maximum number of thresholds and equals to
√
n [3]. Based on our

experimental studies, the best results were obtained from a combination of our proposed
index (11) and the I index (10) is as follows:

β(K) =
I(K)
A(K)

(13)

For maximizing I(K) and minimizing A(K), the value of β(K) must be maximized.
Thus, the best number of thresholdsK∗ based on the β index is given by:

K∗ = arg max︸︷︷︸
1≤K≤δ

β(K) = arg max︸︷︷︸
1≤K≤δ

(
1
K × E1

EK
×DK

)2

1
KΣ

K
i=1f(ti)

(14)
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5 Experimental Results

For the experiments, two different kinds of cDNA microarray images have been used.
The images have been selected from different sources, and have different scanning res-
olutions, in order to study the flexibility of the proposed method to detect sub-grids
and spots with different sizes and features. The first set of images has been drawn from
the Stanford Microarray Database (SMD), and corresponds to a study of the global tran-
scriptional factors for hormone treatment of Arabidopsis thaliana1 samples. Ten images
were selected for testing the proposed method, and they correspond to channels 1 and
2 for experiments IDs 20385, 20387, 20391, 20392 and 20395. The images have been
named using AT (which stands for Arabidopsis thaliana), followed by the experiment
ID, and the channel number (1 or 2). The images have a resolution of 1910 × 5550
pixels and are in TIFF format. The spot resolution is 24 × 24 pixels per spot. Also,
each image contains 48 sub-grids, arranged in 12 rows and 4 columns. The second test
suite consists of a set of images from Gene Expression Omnibus (GEO) and corre-
sponds to an Atlantic salmon macrophage study 2 samples. Eight images were selected
for testing the proposed method, and they correspond to channels 1 and 2 for experi-
ments IDs GSM16101, GSM16389 and GSM16391 and also channels 1 of GSM15898
and channels 2 of GSM15898. The images have been named using GSM followed by
the experiment ID, and the channel number (1 or 2). The images have a resolution of
1900 × 5500 pixels and are in TIFF format. The spot resolution is 12 × 12 pixels per
spot. Also each image contains 48 sub-grids, arranged in 12 rows and 4 columns.

To assess the performance of the detection method, we consider the following. We
call false positive (FP) a grid line that separates an area into two different sub-areas and
at least one of them does not contain a spot or a sub-grid. Similarly, a false negative
(FN) occurs when two adjacent areas containing spots or sub-grids are not separated
by a grid line. True positives (TP) and true negatives (TN) are obtained by the corre-
sponding differences between the total number of cases minus FP or FN, respectively.
Considering N as the total number of grid lines in the image, accuracy is calculated as
(TP+TN)

N .
We have used the between-class variance as the thresholding criteria, since it is the

one that delivers the best results. Table 1 shows the results of applying the proposed
method for sub-grid and spot detection on the Thaliana dataset. All the sub-grids in
each image are detected accurately, and also spot locations in each sub-grid can be
detected efficiently with an average accuracy of 96.2% for this dataset. The same sets of
experiments were repeated for the GEO dataset and the results are shown in Table 2. The
sub-grids in each microarray image are accurately detected with a 100% accuracy and
the spot locations in each sub-grid are detected efficiently with an average performance
of 96% for this dataset. As shown in Tables 1 and 2, for all of images, in the sub-
grid detection phase, the false negative and false positive rates are both 0%, yielding
an accuracy of 100%. This means the proposed method works perfectly in sub-grid

1 The images can be downloaded from smd.stanford.edu, by searching “Hormone treatment” as
category and “Transcription factors” as subcategory.

2 The images can be downloaded from ncbi.nlm.nih.gov, by selecting “GEO Datasets” as cate-
gory and searching the name of images.
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Table 1. Accuracy results of detected sub-grids and spots for each image in the Thaliana dataset
and their respective FP and FN rates

Sub-grid Detection Spot Detection
Image False Negative False Positive Accuracy False Negative False Positive Accuracy

AT-20385-CH1 0.0% 0.0% 100% 6.5% 0.4% 93.1%
AT-20385-CH2 0.0% 0.0% 100% 3.3% 1.5% 95.4%
AT-20387-CH1 0.0% 0.0% 100% 7.4% 0.5% 92.1%
AT-20387-CH2 0.0% 0.0% 100% 0.0% 0.6% 99.4%
AT-20391-CH1 0.0% 0.0% 100% 0.0% 1.2% 98.8%
AT-20391-CH2 0.0% 0.0% 100% 3.7% 1.3% 98.8%
AT-20392-CH1 0.0% 0.0% 100% 0.7% 1.0% 95.0%
AT-20392-CH2 0.0% 0.0% 100% 3.1% 1.3% 98.3%
AT-20395-CH1 0.0% 0.0% 100% 6.5% 0.4% 95.6%
AT-20395-CH2 0.0% 0.0% 100% 6.5% 0.4% 95.7%

Table 2. Accuracy results of detected sub-grids and spots for each image in the GEO dataset and
their respective FP and FN rates

Sub-grid Detection Spot Detection
Image False Negative False Positive Accuracy False Negative False Positive Accuracy

GSM15898-CH1 0.0% 0.0% 100% 3.2% 0.1% 96.7%
GSM15899-CH2 0.0% 0.0% 100% 3.2% 0.2% 96.6%
GSM16101-CH1 0.0% 0.0% 100% 3.0% 0.0% 97.0%
GSM16101-CH2 0.0% 0.0% 100% 3.1% 0.0% 96.9%
GSM16389-CH1 0.0% 0.0% 100% 5.8% 0.0% 94.2%
GSM16389-CH2 0.0% 0.0% 100% 3.1% 0.0% 96.9%
GSM16391-CH1 0.0% 0.0% 100% 6.7% 0.0% 93.3%
GSM16391-CH2 0.0% 0.0% 100% 3.6% 0.0% 96.4%

detection. Additionally, in the spot detection phase, accuracy of the proposed method is
very high, being above 96% in both cases.

One of the reasons for the slightly lower accuracy in spot detection is that the dis-
tance between spots is smaller than the distance between sub-grids. In both datasets,
there are approximately eight pixels between adjacent spots, and approximately 30 pix-
els horizontally and 100 pixels vertically between sub-grids in the Thaliana dataset, and
200 pixels between sub-grids in the GEO dataset. Another possible reason for this be-
havior is that the number of pixels in each sub-grid is far lower than a microarray image
(around 1

50 ). Thus, existing noise affects the spot detection phase much more than the
noise present in the sub-grid extraction stage. It is important to highlight, however, that
the sub-grid detection process is not affected by the presence of noise at all.

We have also performed a visual analysis in order to obtain a different perspective of
our results. Figure 3 shows the detected sub-grids from the AT-20387-ch2 image (left)
and the detected spots in one of sub-grids (right). As shown in the figure, the proposed
method finely detects the sub-grids location at first, and in the next stage, each sub-grid
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Fig. 3. Detected sub-grids in AT-20387-ch2 microarray image (left) and detected spots in one of
sub-grids (right)

is divided nicely into the corresponding spots with the same method. The robustness of
the proposed method is so high that spots in sub-grids can be detected very well in noisy
conditions such as those observable in the selected sub-grid in Figure 3. The ability to
detect sub-grids and spots in different microarray images with different resolutions and
spacing (12× 12 pixels for each spot in GEO dataset vs 24× 24 pixels for each spot in
SMD dataset) is another important feature of the proposed method.

To visually analyze the efficiency of the proposed method to automatically detect
the correct number of spots and sub-grids, we show in Figure 4 a plot for the indices
against the number of classes (sub-grids) for AT-20387-ch2. Sub-figures (a), (b) and
(c) represent the values of the index functions for the horizontal lines for the I index,
A index and β index respectively, while (d), (e) and (f) contain the plots of the in-
dices for the vertical separating lines. We observe that it could be rather difficult to
find the correct number of classes (sub-grids) using solo the I index or the A index,
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Fig. 4. Plots of the index functions for the AT-20387-ch2 microarray image. (a),(d): I index;
(b),(e): A index; (c),(f): β index. The plots on the left correspond to the horizontal lines, while
the ones on the right correspond to the vertical lines. the x axis corresponds to the number of
classes (sub-grids).

while the β index clearly reveals the correct number of horizontal and vertical sub-grids
by producing an almost flat curve with a pronounced peak at 4 and 12 respectively. For
example, it is clearly observable in Figure 4 (a) that the I index could miss the correct
number of sub-grids, 4, by showing two peaks (local and global maxima).

6 Conclusions

A novel method for separating sub-grids and spot centers in cDNA microarray images
has been proposed. The method performs three main steps involving the Radon trans-
form for detecting rotations with respect to the x and y axes, the use of polynomial-time
optimal multilevel thresholding to find the positions of the lines separating sub-grids
and spots, and a new index for detecting the correct number of sub-grids and spots. The
proposed method has been tested on real-life, high-resolution microarray images drawn
from two sources, the SMD and GEO. The results show that (i) the rotations are effec-
tively detected and corrected by affine transformations, (ii) the sub-grids are accurately
detected in all cases, even in abnormal conditions such as extremely noisy areas present
in the images, (iii) the spots in each sub-grid are accurately detected using the same
method, and (iv) because of using an optimal and parameterless algorithm for detect-
ing threshold locations, this method can be used for microarray images with different
features, and also for images with various spot sizes and configurations effectively.
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Abstract. Cytoskeletal proteins function as dynamic and complex components in 
many aspects of cell physiology and the maintenance of cell structure. However, 
very little is known about the coordinated system of these proteins. The 
knowledge of subcellular localization of proteins is crucial for understanding how 
proteins function within a cell. We present a framework for quantification of 
cytoskeletal protein localization from high-content microscopic images. Analyses 
of high content images of cells transfected by cytoskeleton genes involve 
individual cell segmentation, intensity transformation of subcellular 
compartments, protein segmentation based on correlation coefficients, and 
colocalization quantification of proteins in subcellular components. By 
quantifying the abundance of proteins in different compartments, we generate 
colocalization profiles that give insights into the functions of different cytoskeletal 
proteins.  

Keywords: Colocalization, cytoskeletal proteins, subcellular localization, 
cytoskeleton. 

1   Introduction 

The cytoskeleton is a cellular skeleton – a dynamic structure in all eukaryotic cells 
and some of prokaryotic cells – that function dynamically in many aspects including 
the maintenance of cell shape, the protection of cells, the organization of the 
cytoplasm, the support of the cellular machinery for motility, the transportation, the 
organization of cells into tissues and the signaling. Since cytoskeletal proteins are 
involved in so many functions, they are chemically connected to the reactions of 
metabolism and to the complex functional networks of small molecules and enzymes 
that transport signals within cells [1][2]. With those signals, cytoskeletal proteins 
generate harmonious responses to the coordinated efforts of cellular networks. 
However, very little is known about the coordinated system of these proteins. 
Investigation of the exact roles of cytoskeletal proteins, therefore, has become an 
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important task that would greatly benefit many research areas including cellular 
mechanics, subcellular organization, metabolic signaling pathway modeling, early 
development of cancer, etc. 

The knowledge of subcellular location of proteins is crucial for understanding how 
proteins function within a cell. Fluorescent microscopy has been used more and more 
frequently to identify protein subcellular locations through image processing, feature 
extraction, and pattern recognition [3][4]. Machine learning methods have been 
previously applied for identifying and predicting the localization patterns of proteins 
by using training data [5][6][7][8]. But such methods were intended for single cell 
and single channel data.  

How different proteins interact with more than one subcellular compartment and 
their presence in more than one location has not been addressed. More cellular 
compartments need to be considered as predicting candidates for a protein’s location 
and prediction of a single subcellular protein pattern is not sufficient. Thus we chose 
to focus on fluorescent signal colocalization – a measurement of overlap between two 
signals. Quantifying a single colocalization parameter is necessary so that a variety of 
proteins can be quickly and easily compared without bias. Determining the 
colocalization between cytoskeletal proteins and subcellular components—such as 
nucleus, cytoplasm, plasma membrane, actin network, etc., will help to define and 
simplify the proteins’ operations and locations. 

There are two basic ways to measure the colocalization [9]: global statistical 
approaches that perform intensity correlation coefficient based analyses; and object-
based approaches. The global statistical approaches mainly use statistics to assess the 
relationship between fluorescence intensities in different compartments, including 
Pearson’s coefficient [10], overlap coefficient [10], a statistical significance algorithm 
based on Pearson’s coefficient [11], intensity correlation analysis [12], etc. However, 
the global statistical approaches rely on individual pixel coincidence analysis, 
globally providing colocalization estimation of the whole image but not of a unique 
structure. In the situation of low transfection efficiency, the cells with no or less GFP 
signals will pull down the overall colocalization estimates. Several methods of object-
based approaches have been proposed such as comparing the position of the centroids 
or intensity centers of the objects [13] and normalized mean deviation product [14]. 
But they all focus on protein-protein colocalization analysis, which is the correlation 
between two different protein channels. In the protein subcellular colocalization 
analysis, the intensities within subcellular compartments are not a major concern. For 
example, DNA is stained to represent the nucleus. The DNA intensities in nuclear 
compartment may not be uniform, but our major concern is how the protein is 
colocalized in the nucleus. Therefore, we introduce a new colocalization measurement 
inducing colocalization profiles indicating the amount of colocalization of proteins 
and subcellular compartments.  

Experiments were carried out on HeLa cell lines transfected with cytoskeletal 
protein genes. High content images of protein localization were measured and 
clolocalization profiles were generated. Statistical analysis showed that the 
cytoskeletal proteins can be clustered into several groups with similar colocalization 
patterns.  
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2   Method 

In order to quantify subcellular localization of cytoskeletal proteins with a single 
parameter, the colocalization, we developed a computational framework involving 
individual cell segmentation, protein segmentation, intensity transformation of 
subcellular compartments, and colocalization computing. In what follows, we 
describe the different steps involved in our approach.  

2.1   Cell Segmentation 

Images were segmented into small objects using a multi-resolution segmentation 
technique based on object-oriented image analysis. This method is used to create 
object primitives as the first processing step in the segmentation analysis. The 
criterion for the segmentation is that average heterogeneity of image objects weighted 
by their size in pixels should be minimized. After the primary segmentation, the 
image objects are classified as nuclear objects and cell body objects based on flexible 
thresholds of nuclei and cell intensities. The nucleus objects are used as seeds for 
region growing method for cell segmentation, on the assumption that each cell has 
only one nucleus. A rule set was then developed for cell segmentation. The cell body 
object was fused with its neighbor nucleus. When one cell body object has more than 
one neighbor nuclear object, it was fused with the nuclear object that shared the 
largest border with it. The region growing method with multi-resolution segmentation 
provided better segmentation results than other advanced segmentation algorithms 
(Fig. 1): Level set method with shape marker and marking function [15] combined 
with nuclear information and level set method with topological dependence [16].  

             

             
                          (a)                          (b)                      (c)                       (d) 

Fig. 1. (a) Images of actin and nuclear channels, and segmentation results of (b) region growing 
with multi-resolution segmentation, (c) adaptive level set method with shape marker combined 
with nuclear information, and (d) level set method with topological dependence 
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In the experiments, cells were labeled with fluorescence to highlight nuclei, actin, 
and proteins of the cells. The green fluoresce protein (GFP) was selected to identify a 
particular protein. The nuclear and actin channels were used to identify subcellular 

compartments. Let :nf RΩ → , :af RΩ → and :gf RΩ →  represent the images 

of nuclear channel, the actin channel, and the GFP channel, respectively, 

where 2RΩ ⊂ is the 2D image domain and x ∈Ω denotes the 2-D coordinates of a 

pixel site in the image. Let iw ⊂ Ω denote the area of an individual cell, and i N∈  

be the labels of cells in one image.  

2.2   Intensity Transformation of Subcellular Compartments 

In this study, we are interested in five subcellular compartments: nucleus, cytoplasm, 
actin, plasma membrane, and cytosol. For most of the subcellular compartments, the 
intensity distributions of labeled signals were uniform, but the colocalization amounts 
of proteins were different. Thus the intensity transformations of subcellular 
compartments are performed using an intensity information of actin and nucleus 
staining as well as the position and relation information of subcellular compartments. 
Instead of computing the colocalization of the protein signal and the compartment 
signal, we compute the colocalization of the protein signal and the intensity 
transformed images of the compartments. Let a compartment be denoted by 

{ }, , , , ,c nucleus cytoplasm actin membrane cytosol= and :cf RΩ →%  denote 

the intensity transformed image in the compartment c . 

Actin: This is the compartment identified from the actin channel. A ceiling threshold 
is used to account for over-saturation and the intensity values in the actin channel 
were rescaled to the range [0, 1]. 
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where at and at′ are positive numbers representing upper and lower thresholds of the 

actin channel.  

Cytoplasm: This is the compartment identified as the non-nuclear region. The 
transformation for the cytoplasm compartment is kept uniform. 

           ( ) 1 ( ), ;cytosplasm nucleus if x f x x w= − ∈% %                                       (2) 
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Nucleus: This is the compartment identified from the nuclei channel. We keep the 
intensities of the nucleus compartment uniform:  
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%                                   (3) 

nt  represents the threshold of the nuclei channel. 

Plasma Membrane: This is the compartment identified as the border region of a cell. 
The intensities of plasma membrane were transformed using an exponential function 
of the minimum Euclidean distance to the cell border.  
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Where      ( )2
( ) min , , ;i id x x x x w x w′ ′= − ∈ ∈∂                           (5) 

and , ,m m mt t t′ ′′ are positive numbers representing the parameters of the exponential 

function with iw∂ representing the border. 

Cytosol: This is the compartment identified as cytoplasm without the components of 
actin and the plasma membrane. 

  ( ) max{0, ( ) ( ) ( )}, ;cytosol cytoplasm membrane actin if x f x f x f x x w= − − ∈% % % %    (6) 

2.3   Protein Segmentation 

In order to identify the protein localization, cells were transfected with the protein 
tagged with GFP. By localizing the scattering of GFP-tagged proteins in the cells, its 
localizations in different subcellular compartments were identified. Before identifying 
the subcellular localization of the protein, the segmentation of protein needs to be 
correctly performed. Since the GFP intensities vary in different cells and 
compartments in different images, protein segmentation becomes a crucial component 
in finding the balance between capturing most of the protein information and 
highlighting the most specific protein information. Because the protein exists as small 
units, it cannot be segmented into one connected component. Thus, classical 
segmentation algorithms, such as watershed and region growing, become unsuitable. 
An automated thresholding method of identification of colocalized pixels has been 
earlier developed for protein-protein colocalization analysis [11].  

Therefore, we develop an algorithm to segment the proteins by thresholding based 
on the correlation of its intensities with that of the responding compartment. The basic 
idea is to preserve most of the GFP pixels that are correlated with the intensities of the 
cell or its compartments, and remove the pixels that are least correlated or distributed 
almost randomly.  
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For each candidate threshold, the correlation coefficient is computed on both 
selected (intensities higher than the candidate threshold) and unselected pixels 
(intensities lower than the candidate threshold). Correlation coefficients high on 
selected pixels and low on unselected pixels indicate that the current thresholds can 
save high correlated pixels and remove low correlated pixels, respectively. Thus, we 
want to achieve the proper balance between these two thresholds.  

Several correlation coefficients were tested such as Pearson correlation coefficient 
and overlap coefficient. The intensity correlation quotient (ICQ) provided the best 

segmentation results. For one given cell image with channel 1f , 2f , and a given 

image region w , the ICQ value is based on the intensity correlation coefficient ρ  

[17]. The correlation coefficient at a pixel is: 

         1 2 1 1 2 2( , , ) ( ( ) )( ( ) ),f f x f x f x x wρ μ μ= − − ∈ ;                 (7) 

1μ and 2μ denote the mean intensities values with the region w of the two channels.  

The ICQ is defined as the ratio of the positively correlated pixels and the 
negatively correlated pixels in the region w . The correlation coefficient for two 
denoted areas is: 

                  1 2( , , ) 0.5,f f w
δρ

δ δ

+

+ −= −
+

                                            (8) 

where ( ( ) 0)
x w

xδ δ ρ+

∈

= >∑ donates the total number of positively correlated 

pixels, and ( ( ) 0)
x w

xδ δ ρ−

∈

= <∑  donates the total number of negatively correlated 

pixels. The range of ICQ falls between [-0.5 0.5]. When ICQ 0≈ , random 
correlation;   -0.5 ≤ ICQ < 0, negative correlation; 0 < ICQ ≤ 0.5, positive correlation.  

The Algorithm 1 gives a way to determine the optimum threshold for protein 

segmentation within the cell. :cellf RΩ → is the cell image obtained by combining 

the nuclei channel and the actin channel: ( ) ( ) ( ),cell a n if x f x f x x w= + ∈ . T is the 

final threshold generated for protein segmentation in this particular cell region iw . 

2.4   Colocalization 

After segmentation of proteins within the cell and intensity transformation of 
subcellular compartments, the colocalization of proteins and subcellular 
compartments is quantified by a “colocalization” measurement that gives a better 
understanding about the percentage protein localized in a compartment. The 
colocalization of a protein p in a compartment c is defined as: 
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where pW represents the set of pixels in the region occupied by the 

protein p . p ( )f x is the intensity distribution of the GFP channel highlighting protein 

p and ( )cf x% is the intensity transformation of the compartment c . 

Algorithm 1. Determination of Threshold for Protein Segmentation 
begin  

max{ ( ) : }g i
x

t f x x w= ∈  

1 2 0t t= =  

1 0r =  

2 1r =  

while 0t ≥  

{ }: ( ) ,GFP g iW x f x t x w= ≥ ∈  

{ }: ( ) ,GFP g iW x f x t x w= < ∈  

if 1( , , )cell g GFPf f W rρ <  

        1t t=  

endif 
if 2( , , )cell g GFPf f W rρ >  

        2t t=  

endif 
1t t= −  

endwhile 

1 2

2

t t
T

+=  

end 

2.5   Protein Localization Profiling 

Using a library P of GFP-tagged cytoskeletal protein constructs, we compute the 

colocalization values of the protein in the five subcellular compartments. For given 

protein p P∈ , the colocalization profile is ( ) { ( , )}Col p Coloc c p= , where 

{ }, , , , ,c nucleus cytoplasm actin membrane cytosol= we then cluster those 

protein profiles in order to find the functional proteins.  
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3   Experiments and Results 

3.1   Sample Preparation 

Eighty-nine Invitrogen GFP-tagged cytoskeletal protein constructs were transfected to 
Hela cells in two 96-well plates (2 wells per construct, some constructs are duplicated). 
Each well has about 10,000 cells before transfection. Lipofectamine2000 transfections 
were taken to each well with constructs concentration 10ng/ul. Then the cells are fixed 
and stained with Hoechst33342 (nuclei) and Texas red phalloidin (Actin). 

3.2   Imaging 

Imaging of transfected cells was performed by Cellomics vHCS: Scan V Target 
Activation application system with 20X magnification. For each image sample there 
were 96 wells containing 48 constructs transfection results; and for each well there 
were 40 fields being scanned. Thus, the number of images in this dataset is about 
7680. For each image, there are three fluorescent channels: blue (Hoechst33342) 
staining nuclei, red (Texas red - phalloidin) staining actin, and green (GFP) staining 
the particular protein.  

3.3   Image Processing 

After the high-content imaging, the images are analyzed with the computational frame 
work described in Methods section, involving individual cell segmentation, Intensity 
transformation of subcellular compartments, protein segmentation based on 
correlation coefficients, and colocalization quantification of proteins in subcellular 
components. For cell segmentation, a multi-resolution segmentation technique 
provided by Definiens Developer was used [18]. In the intensity transformation step, 

the fitting parameters for the exponential function are: mt =1.054, mt′ =1.53, 

mt′′ =2.241. 

A colocalization matrix is generated with the dimension of 89 proteins ×  5 
subcellular compartments ×  the number of cells transfected with each protein. The 
colocalization matrix went through post data analysis to generate final conclusions. 

3.4   Cell Selection 

Before clustering the proteins, we apply a cell selection procedure based on nucleus 
area to delete part of the under-segmented cells as the nucleus area should have little 
variance in normal cells. The histogram of Nucleus Area feature is represented as a 
two peak curve, one peak is relatively smaller than the other. From biology we know 
that the higher peak shows the population of the normal nucleus and the smaller peak 
appears at the position where the area is twice of the normal nucleus area, showing 
the under-segmented two-connected nuclei. A single Gaussian-fit is applied to the 
histogram of nucleus area and the interval which contains 90% of the values from the 
fitting distribution was computed. The interval is [302,997]. Although the interval still 
contains some under-segmented nuclei, it successfully removes many of the miss-
segmented cells. 
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In the current image dataset, the low transfection efficiency largely affects the final 
results of the colocalization analysis: a large number of cells are not transfected 
pulling down the total sample number; while the over-expressed ones show abnormal 
morphology and consequently abnormal colocalization results. After the transfection, 
the cytoskeletal proteins will first head to their normal subcellular locations or their 
functional locations. But in the over-expressed situation, more and more cytoskeletal 
proteins are generated and run everywhere inside the cell, which makes plenty of 
noise and reduces the significance of the functional locations of the particular 
cytoskeletal protein. Thus, we perform a GFP-intensity analysis to find the optimized 
intensity interval to eliminate abnormal-transfected cells.  

In the GFP intensity analysis, the transfected cells are clustered into several GFP-
intensity groups. By computing the colocalization values for each GFP intensity 
group, the colocalization trends along with the increasing GFP intensities are 
investigated and we concluded that the colocalization values do change greatly with 
the increasing GFP intensity. In the high GFP intensity intervals (greater than 50), we 
could find that the colocalization values in the Nucleus compartment increased, 
indicating that the over-expressed cells could round up, as dead cells or toxic cells, 
which been proved by observation. This phenomenon affects the overall 
colocalization results, especially the constructs with low transfection efficiency. To 
keep the particular colocalization pattern as well as to avoid noise, the intensity 
interval [20, 30] seems to be a good choice for the cell selection. 

3.5   Colocalization Indexing 

In order to provide a standard comparison between subcellular compartments, we 
perform k-means clustering separately on all 5 colocalization values. The sums of 
squared distances are examined to determine the best number of clusters. For each K, 
the K-means clustering is replicated 100 times to mitigate the effects of different 
initial conditions. Three is decided as the number of clusters as most of the 
colocalization values show inflection on it. The cluster labels from 1 to 3 are assigned 
to each protein to represent its colocalization degree for a specific subcellular 
compartment. 

3.6   Protein Clustering 

K-means clustering is performed again based on the cluster label of each protein for 
further protein classification. The sums of squared distances are examined to 
determine the best number of clusters. For each K, the K-means clustering is 
replicated 100 times to mitigate the effects from different initial conditions. Four is 
chosen as the number of the clusters and all the proteins are clustered into four 
clusters (Table 1): cluster 1 – 21 proteins with equally distributions within cells; 
cluster 2 – 21 proteins with high colocalization in plasma membrane; cluster 3 – 34 
proteins with high colocalization in actin and cytosol; and cluster 4 – 13 proteins 
which are toxic to cells leading to cell round up. In Table 2 all proteins in each cluster 
are listed. As cytoskeletal proteins dynamically function within cells, the 
colocalization profiles will provide a distribution ratio among the subcellular 
compartments rather than one specific compartment. Although the exact functions of 
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most of proteins remain unclear, the results can be validated with literature research. 
It is noticeable that some proteins in the same protein family are clustered together 
with similar colocalization profiles, such as TAGLN and TAGLN2, ITGB1and 
ITGB2, MYO3A and MYO1A, etc. Another validation is the comparison of reported 
functions of proteins and colocalization profiles. For example, cluster 3 shows high 
colocalization in actin compartment, and 22 of 34 proteins in this cluster are reported 
as having relative functions with the actin network.  

Table 1. Colocalization of Protein Clusters 

 

Nucleus CytoP CytoS Actin PM protein 
No. 

Cluster
1 

52.42%
±  4.54% 

47.58%
±  4.54% 

16.26%
±  3.31% 

49.40%
±  5.41% 

14.37%
±  5.81% 

21 

Cluster
2 

56.63%
±  8.48% 

43.37%
±  8.48% 

7.85% 
±  2.66% 

43.96%
±  4.66% 

37.60%
±  4.18% 

21 

Cluster
3 

34.70%
±  6.08% 

65.30%
±  6.08% 

18.62%
±  3.36% 

53.23%
±  7.53% 

20.54%
±  5.50% 

34 

Cluster
4 

75.72%
±  9.07% 

24.28%
±  9.07% 

6.81% 
±  3.07% 

45.99%
±  13.04% 

15.57%
±  7.27% 

13 

Comparing the proteins within the same cluster and in different clusters, proteins 
with similar colocalization profiles are considered to have similar functions. For 
example, a set of proteins with unclear function such as filamin A interacting protein 
1 (FILIP1) and tropomyosin 1 (TPM1), are seen to have similar profiles showing 
significantly high colocalization values in plasma membrane (cluster 2) together with 
other proteins having related functions with plasma membrane such as integrin beta 1 
(ITGB1), integrin beta 2 (ITGB2), and villin 2 (VIL2). 

Table 2. Proteins in Protein Clusters 

 

protein No. Protein Brief Name 

Cluster1 21 CORO2B,PDLIM3,DNM2,TAGLN,TNS,TEKT3,PTK9,PLS1,JAMIP2, 
ATP1B3,VAMP4,PXN,MSN,ADRM1,MRLC2,TAGLN2,ARPC5,VIM, 
NINJ2,PFN2,PARVA 

Cluster2 21 TUBA6,TGOLN2,CORO1B,ATP6V1C1,TAGLN3,VIL2,TUBD1, 
TUBGCP3,PARVG,RDX,CAPZA3,ACTG1,PTK9,TPM1,ITGB1,ITGB2, 
ADAM15,ARHGEF6,EIF2C1,WASF2,FILIP1 

Cluster3 34 DCAMKL1,WASPIP,KLHDC9,CTTN,VIL1,ACTB,WASL,ZYX,CDC42, 
CFL1,EVL,TUBE1,CLIP3,DSTN,PAK4,VASP,LPXN,KIF2C,ITGB7, 
PLS3,ARPC1B,TUBG1,GTSE1,ACTN2,MYO3A,ACTN1,ARP11,CNN3, 
LCP1,TPM2,MYO1A,ANLN,FSCN1,KRT8 

Cluster4 13 WAS,ATP5G2,ITGB3BP,FSCN3,GJB2,TUBA1B,KPTN,TEKT1,TUBB2, 
KAT5,WASF3,DCTN1,CAV3 
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4   Conclusions 

In this work, we developed a computational framework and optimized every step in 
the framework to quantify the subcellular localization of cytoskeletal proteins with a 
single colocalization measurement. The framework is applied on a two-dimensional 
image set, containing around 8000 images of cells transfected with 89 cytoskeletal 
protein constructs. The subcellular localizations of those cytoskeletal proteins are 
quantified and localization patterns are investigated to provide references in 
investigation of protein functions. Proteins with unknown functions can be 
investigated by comparing with colocalization profiles generated in a cytoskeletal 
protein library. 

For image-based subcellular localization quantification, two-dimensional analysis 
is not sufficient. In future work, the whole framework will be transferred to the three-
dimensional domain. The quantification of subcellular localization on three-
dimensional space will provide more accurate results. The quantification of 
subcellular localization will greatly benefit the investigation of functions of 
cytoskeletal proteins. 
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Abstract. In this paper we present a novel approach for image based

high–throughput analysis of zebrafish embryos. Zebrafish embryos can

be made available in high numbers; specifically in groups that have been

exposed to different treatments. Preferably, the embryos are processed in

batches. However, this complicates an automated processing as individ-

ual embryos need to be recognized. We present an approach in which the

individual embryos are recognized and counted in an image with mul-

tiple instances and in multiple orientations. The recognition results in

a mask that is used in the analysis of the images; multichannel images

with bright–field and fluorescence are used.

The pattern recognition is based on a genetic algorithm which is the

base of an optimization procedure through which the pattern is found.

The optimization is accomplished by a deformable template that is in-

corporated in the genetic algorithm. We show that this approach is very

robust and produces result fast so that it becomes very useful in a high–

throughput environment. The method is fully automated and does not

require any human intervention. We have tested our approach on both

synthetic and real life images (zebrafish embryos). The results indicate

that the method can be applied to a broad range of pattern recognition

problems that require a high–throughput approach.

1 Introduction

Retrieving location and contour of a shape is crucial to the analysis of large
image datasets in many fields, such as optical character recognition (OCR) and
bio–imaging. If the number of occurrences of an object under study is not known
beforehand, or the object we are trying to locate is subject to slight deforma-
tions extra complications arise; this is typical for life–sciences. In addition we
sometimes need to take into account partial occlusion and noise.

In the current practices segmentation is a first step to separate objects from
the background and a variety of segmentation techniques is available [8], [15]. In
this paper we want to address the problem of recognition of object localization
under different conditions of strain stress. Our specific interest is in shapes of
which a prior shape information is available. To that end we need to use an
approach that depends on the inexact predefined shape and can be subject to

T.M.H. Dijkstra et al. (Eds.): PRIB 2010, LNBI 6282, pp. 301–312, 2010.
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deformations in the input image. A deformable template [1] approach gives us
the possibility to represent an object that can be subject to certain deformations
in a compact manner. In that case object localization should be performed by
a process of matching the deformable template to the object shape in the input
image.

One approach is the free–form class [1] with the Active Contour (a.k.a. active
snake) model [9]. This method has no global template structure and needs a
starting location in the image to evolve from. Shape edges need to be connected
together for an active snake to perform correctly. If the starting location is not
known or multiple objects are present in the image this algorithm might be
hampered.

We consider the type of deformable template models of the parametric class
([1]); i.e. the template shape is predefined as a set of parameters. In most ap-
proaches [15], [3], [11] deformable template representation of a shape is a set
of points approximating the outline as obtained from a priori knowledge. In
this manner a user defined input template is represented and we adopted this
representation for our approach.

Matching a deformable template to an image can be seen as optimization
problem with some possible global maxima – in our case best solution, being
the best shape. This process is computationally expensive. A possible solution
is therefore to reduce the search space [16] by focusing only on areas containing
certain intensity (color). However, we want to base our algorithm on shape char-
acteristics only, since color information might not always be available or subject
to large variation. Genetic Algorithms (GA’s) [4], [14] are typically suitable for
solving global optimization problems, in particular if the solution space is very
large. Therefore, we consider a Genetic Algorithm for optimization.

In this paper we introduce a slice representation model (SR) of a deformable
template. Instead of considering the outline of a shape, we simplify the shape
representation by considering only certain characteristic horizontal slices and use
these for template matching. The proposed SR model is made advantageous for
efficient optimization with a Genetic Algorithm. [6], [12] also used a GA for low
parameter shape templates (circle and ellipse detection).

In the approach discussed in this paper we will use binary images as input.
Binary images are successfully used for template and polygon matching in [10]
and [7]). Whenever the images are presented as RGB or gray scale, they are
thresholded to binary, cf [13].

In addition we want to address an important feature of automatic retrieval
of multiple deformed shapes from a single image and counting the amount of
shapes.

The paper is organized as follows. In section 2 a more detailed overview of
our deformable template approach is given. Section 3 addresses the proposed
GA used for shape recognition. In Section 4 we propose the application of the
algorithm to retrieve multiple shapes in a single image. In section 5 experimental
results for an application to a real life problem are shown and they are discussed
in section 6.
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2 Deformable Template

We propose a template representation which captures both boundary and inte-
rior of the object and thereby describes the average structure of a predefined
shape. The grid of the search space is determined by the discrete pixels in a
K × L image matrix M . We take a binary image as starting point. The binary
image is obtained by thresholding. Thereby we assume a background pixel has
the value 0 and a foreground pixel value 1. In the following subsections we will
describe the template representation in more detail as well as the deformations
that a template can undergo.

2.1 Slice Representation Model

The prototype template T0 we propose is represented by the following vector:

T0 = (s0, s1, .., sn, d), (1)

where n is the number of slices; d is the distance between two slices in the
horizontal direction. Initially T0 is represented in a X(horizontal)–Y (vertical)
space in the horizontal direction, with slices being parallel to the Y –axis. This
is done for ease in the representation. A template slice itself is then represented
by the vector:

si = (wi, bi, ςi), (2)

where wi is the fixed width in pixels in the vertical direction, preferably wi =
1; where bi is the fixed width in pixels in the vertical direction of the image,
preferably bi = 0 and are located below and above the area of wi. The bi are
required to define that the area surrounding the shape is preferably empty. ςi
is the seed point of a slice; ς is needed to be able to define non symmetrical
shapes as input. This point will be used as a reference for allowed slice shifts. In
Fig. 1(a) an example slice is shown; a slice is a sample of the template always
perpendicular to the length axis.

In Fig. 1(b), 1(c), 1(d) two examples of templates are shown. The template
length is fixed according to �(v) = n∗d. For templates with horizontal symmetry
axis, ς is simply chosen as the center of each slice (cf Fig. 1(c)). For templates
having no horizontal symmetry axis, ς is chosen in such a way that all ςi are
located on the same horizontal line (cf Fig. 1(e)).

2.2 Deformations

This representation was chosen as we assumed the slices will be able to move
vertically along the template to match a deformed (slightly shifted) shape. At
template shift or slight rotation the global shape is still captured within the
template. The total length of the template is fixed in the proposed representation.

A deformed template T is derived from the prototype template T0 and is
represented as T (T0, I). A deformation I will then be encoded by a state-sequence
as follows:

I = (x, y + δ0, y + δ1, .., y + δn), (3)
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(a) (b) (c)

(d) (e)

Fig. 1. a) A single slice. The slice is always parallel to the Y –axis b) Template for a

fish shape c) Location of ς in a fish shape template d) Template for a car shape e)

Location of ς in a car shape template.

where x is the shift in the X-axis direction of ς0; y+δi is the translation measured
in the Y –axis direction of the ςi of slice i.

We assume the maximal vertical deformation between two slices is 45 degrees
(cf Fig. 2(a). As a result of this constraint |δi−1 − d| < |δi| < |δi−1 + d| applies
for two starting points of consecutive slices i and i+ 1. Then, each ςi can then
be shifted vertically within the following boundaries:

max{(ςi−1 − d, ςi+1 − d)} < ςi < min{(ςi−1 + d, ςi+1 + d)}. (4)

In Fig. 2(b) we demonstrate a possible deformation of a template representing
a fish.

(a) (b)

Fig. 2. a)Vertical shift margins allowed for slice starting point ςi, relative to ςi−1 and

ςi+1. b)A possible deformation for a fish template.

2.3 Energy Function

The energy function Φ, is a fitness function that specifies to what extent an
identified shape in the image matches the deformed template. In the literature
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the probability of a deformed template being located over a shape is referred to
as the likelihood [1].

Let us now introduce the details of the computation of Φ:
Consider the fitness φi of a single slice i. In order to find the optimum we

wish to maximize matching values (0 or 1) between pixels covered by the slice,
i.e. pixels with value 1 contained in wi and pixels (at top and bottom of the
slice) with value 0 in bi. Si[j] represents the j–th element (pixel) of slice Si, as
counted from the top of the slice.

φi =
1

wi + bi ∗ 2

wi+2∗bi∑
j=0

Hj , Hj =

{
1, if M(x, j + y + δi) = Si[j]
0, otherwise

In Fig. 3 an example of a matching is given. The location of proposed matching
is denoted in pattern. For this example:

φi =
1 + 0 + 0 + 1 + 1 + 1 + 1 + 1 + 0 + 1 + 1 + 1

12
= 0.75

Fig. 3. Example of matching a slice Si on to a location in matrix M

The deformation I consists of multiple slice shifts. Total fitness of all n slices is
given by:

Φ =
1
n

n∑
i=0

φi. (5)

3 Genetic Algorithm

In this section we discuss the major components of a Genetic Algorithm (GA),
i.e., population, evaluation, selection, crossover and mutation respectively. In a
GA, a population P (of size m) of candidate solutions is evolved toward better
solutions by introducing computer analogues for recombination, mutation and
selection.
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A candidate solution is also referred to as an individual. The outline of a
generic GA pseudo code reads:

1: t = 0
2: Initialize P (t)
3: Evaluate P (t)
4: while not terminate do
5: P ′(t) = SelectMates (P (t))
6: P ′′(t) = Crossover (P ′(t))
7: P ′′′(t) =Mutate (P ′′(t))
8: Evaluate P ′′′(t)
9: P (t+ 1) = P ′′′(t)

10: t = t+ 1
11: end while

The termination criterion can differ, depending on the problem at hand. The
details of the operators are dealt with in more detail in the following subsections.

3.1 Representation of Individuals

A shape I based on the template T0, also referred to as individual is then rep-
resented in the image as, and consists of the following genomes:

I = (x, y + δ0, y + δ1, .., y + δn). (6)

The individuals are initialized with randomly valued genomes. According to
common practice in the GA research, a population is generated with random
genome values, covering the entire range of possible solutions. For finding shapes
in images, this means random shapes are initialized on random location in the
target image with a random deformation according to Eq. 4.

3.2 Evaluation

The fitness function determines the quality of an individual and depends on
the problem at hand. Function Φ (cf. Eq.5) will serve as a fitness function for
the genome values of an individual; Φ is then used to evaluate the candidate
solutions in the selection step.

3.3 Selection

For the selection operation the, so called, tournament selection scheme [2] is
used in order to prevent premature convergence. Tournament size, i.e. ksize, was
determined through empirical testing. Consequently, comparison of high and low
ksize is given in Fig. 4. We have established ksize = 7 to be a good value for our
experiments.
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Fig. 4. Fitness comparison for different threshold values in 30 runs

3.4 Crossover

A crossover is applied with single crossover point. A random point p ∈ (0, n)
is chosen where n denotes the length of the genome. After crossover of two
individuals IJ and IK the resulting individual IL has the following form:

IL = (xK , yK , δ0K , .., δpK , δp+1J
+ a, .., δnJ + a). (7)

Variable a is needed to make sure Eq. 4 holds and is determined by:

a =

⎧⎪⎨⎪⎩
δpK − d, if(δpK − δp+1J

> d)
δpK + d, if(δpK − δp+1J

< −d)
0, otherwise

Fig. 5. Graphical representation of crossover function as derived from the data. Typical

example in zebrafish imaging.

3.5 Mutation

For the mutation operator we use standard settings commonly used for GA’s.
That is a uniform mutation, where each genome g has the probability to mutate:
1/n [14], where n is the genome length. For each genome:

g U(ḡ, g)

To make sure a uniform mutation is used we allow every slice center to mutate
anywhere within the image space. Since the constrain max{(ςi−1−d, ςi+1−d)} <
ςi < min{(ςi−1 + d, ςi+1 + d)} holds, subsequent slice centers are not allowed to
be more separated then distance d.
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4 Multiple Object Recognition

The shape under study can have multiple slightly different (deformed) instances
in one and the same image. The complete search space in this image is denoted
as M0. First the best matching shape S0 (with highest fitness) is localized. To
decrease the search space for finding the next shape instance, we set all the
elements contained within S0 ∈M0 to 0 and name the resulting image M1.

This process is repeated by iteration and in that manner Mi is reduced for
each next identified shape i. No shapes are found if fitness of the found optimum
F (Si) drops drastically; under a predefined threshold value r. The value of r
can be determined empirically from a test on similar images (acquired under the
same conditions). In Figure 6 an example of such drastic fitness drop in fitness
growth is depicted. This is a fitness plot for an image containing 3 fish shapes
(cf Fig. 8(a)).

Fig. 6. Fitness evolution of 3 fish shapes found in an image. Every 1500 generations

the found shape Si is extracted and the algorithm is restarted on Mi+1. After finding

S0, S1 and S2 with fitnesses over 0.5, at the fourth run the maximum fitness can not

get over 0.1. This is what we consider a fitness drop. For this type of images r should

be chosen somewhere between 0.1 and 0.5, e.g. 0.4 is a good value.

The pseudo code for finding multiple shapes in an image can be written as:

1: i = 0
2: S0 = GA(M0)
3: Evaluate P (t)
4: while F (Si) > r do
5: save Si as found shape
6: Mi =Mi−1 − Si

7: i = i+ 1
8: Si = GA(Mi)
9: P (t+ 1) = P ′′′(t)

10: t = t+ 1
11: end while

5 Experiments

To evaluate the performance of our template representation and GA optimization
we have designed the task of finding objects based on predefined slice templates
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in images with different type of content. An experiment was performed with
templates i.e. in synthetic as well as microscope images. With a simple interface
the user selects both input images as well as the template shape for analysis.

5.1 Testing with Synthetic Images

We have used 20 synthetic binary images of 388 × 291 pixels. We have gener-
ated the images with different shapes located at different locations in images,
slightly rotated, skewed and missing pixel data. Random noise (drawing debris)
is introduced. The images randomly contain up to 3 instances of an object.

First template used for the synthetic shapes is a template of an animal figure
presented in Fig. 7(a). We have created a synthetic binary image containing one
deformed animal shape. The result of the application of the GA optimization is
depicted in Fig. 7(c).

(a) (b) (c) (d)

Fig. 7. a)Very simple template of an animal shape (head, legs and body) b) Very

simple template of an house shape c) Result of shape localization in a synthetic image

containing a simple animal shape d) Result of shape localization in a synthetic image

containing two simple house shapes

Second template used for the synthetic shapes is a template of a house figure
presented in Fig. 7(b). We have created a synthetic binary image containing two
figures that have a deformed house shape. The result of the algorithm (imple-
mentation done in Delphi) is shown in Fig. 7(d).

5.2 Testing with Zebrafish Images

To evaluate the performance of our algorithm in a real–world imaging appli-
cation we have chosen the task of finding zebrafish embryo shapes. The task
at hand concerned using a High Throughput (HT) segmentation technique for
retrieving the location and number of zebrafish embryo objects within images
[5]. An additional requirement for this application is the need for automatic
recognition of head, body and tail of each embryo. A typical binary image as
presented for localization is shown in Fig. 8(a). This image was converted from
color scale images to binary in a preprocessing step. We use a straightforward
gradient operator (Sobel) followed by an iso–data threshold. In that way strong
edge pixels were extracted for a binary representation [13].
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(a) (b)

Fig. 8. a) Typical binary image of zebrafish embryos in a resolution of 388 × 291

pixels. b) The template T0 in a graphical representation that has been used on 100

tested images. Red lines represent wi and gray represent bi within slices. Some results

are shown in Fig. 9.

Fig. 9. Some results of shape counting and localization by our algorithm (Delphi imple-

mentation) on binary images. Rotated, slightly overlapping and bended objects could

be retrieved. The algorithm needed about 2s CPU time for the retrieval of one shape

on a Intel Dual Core 2.66Ghz, 1.00Gb.

Each image contains multiple zebrafish embryo shapes. The number of shapes
in an image is not known in advance, the shapes might be overlapping. The
shapes in all the images are assumed to be located approximately horizontal
with a maximum angle of 45 degrees; so our approach could be used. We have
applied the algorithm for a database of 100 images with the same settings for
the GA (m = 200, ksize = 7, r = 0.5). For 87 images the amount of embryos
in the image and the approximation of their shape could be retrieved correctly.
In the cases where the algorithm failed, it was mostly due to large occlusion
overlap or shapes were much longer or shorter than the proposed template. For
the small and medium occlusions and overlap the algorithm performed correctly
(cf Fig. 9). In Fig. 8(b) the template of a zebrafish used in these results is shown
in a graphical representation.
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6 Conclusions and Discussion

In this paper we have illustrated an application of a GA to optimize a deformable
template approach. This method can be used in different fields as the template
can represent different shapes. Our approach was designed for an application
in the HT screening of zebrafish embryos [5]. The optimization of template pa-
rameters is done through a Genetic Algorithm, which provides the possibility to
search for an optimal solution in large search spaces. Our approach also allows
to retrieve multiple instances of a certain object in a single image. Results indi-
cate that this approach has a low error rate while computational performance is
manageable and fast, such is, of course, very suitable for HT applications. Future
work is directed towards a further generalization of the approach and making
the template representation scalable.
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Abstract. Supervised classifiers require manually labeled training sam-

ples to classify unlabeled objects. Active Learning (AL) can be used to

selectively label only “ambiguous” samples, ensuring that each labeled

sample is maximally informative. This is invaluable in applications where

manual labeling is expensive, as in medical images where annotation of

specific pathologies or anatomical structures is usually only possible by

an expert physician. Existing AL methods use a single definition of am-

biguity, but there can be significant variation among individual meth-

ods. In this paper we present a consensus of ambiguity (CoA) approach

to AL, where only samples which are consistently labeled as ambigu-

ous across multiple AL schemes are selected for annotation. CoA-based

AL uses fewer samples than Random Learning (RL) while exploiting

the variance between individual AL schemes to efficiently label train-

ing sets for classifier training. We use a consensus ratio to determine

the variance between AL methods, and the CoA approach is used to

train classifiers for three different medical image datasets: 100 prostate

histopathology images, 18 prostate DCE-MRI patient studies, and 9,000

breast histopathology regions of interest from 2 patients. We use a Prob-

abilistic Boosting Tree (PBT) to classify each dataset as either cancer or

non-cancer (prostate), or high or low grade cancer (breast). Trained is

done using CoA-based AL, and is evaluated in terms of accuracy and area

under the receiver operating characteristic curve (AUC). CoA training

yielded between 0.01-0.05% greater performance than RL for the same

training set size; approximately 5-10 more samples were required for RL

to match the performance of CoA, suggesting that CoA is a more efficient

training strategy.
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1 Introduction

1.1 Using Consensus Methods for Certainty and Ambiguity

Ensemble classification algorithms such as bagging, boosting [1], and random
forests [2] rely on some concept of consensus among several “weak” classifiers to
generate a single “strong” result. Consensus, in the context of ensemble learning,
describes agreement among several classification algorithms. For example, given
a data object x ∈ RN belonging to one of c classes, ω1, · · · , ωc, we can construct
L classifiers Cl(x), for l ∈ {1, 2, · · · , L}. The probability that x belongs to class
ωj , for j ∈ {1, 2, · · · , c}, according to classifier l is denoted pl(ωj |x). While several
classifier ensemble strategies seek to combine the weak learners using different
rules, the underlying spirit of these methods is to assign the sample to the
class ωj for which arg maxj

[
1
L

∑L
l=1 pl(ωj |x)

]
; that is, the class predicted by

the majority of the classifiers. We refer to this as a consensus of certainty, and is
a way of exploiting the uncorrelated variance in each of the individual classifiers.

However, in some cases it is desirable to know when there is no consensus, or
more specifically when the ensemble cannot return a confident classification. Here
we are not interested in knowing whether weak learners agree or disagree about
the class of x, but rather about the degree of confidence the weak learners have
in assigning x to one of ωj , j ∈ {1, · · · , c}. The problem may be restated to ask
whether x should belong to an “ambiguous” class or not, where ambiguousness
refers to the difficulty (or lack of confidence) in classifying a sample.

1.2 Active Learning for Cost-Effective Training

Active Learning (AL) is a method of intelligently training a classifier, mitigating
several drawbacks of the more standard Random Learning (RL), where samples
are randomly selected for labeling [3]. RL assumes that large amounts of labeled
data are already available, but for biomedical domains, manual labeling is costly
and time-consuming. For example, digital images of pathology slides can be
several gigabytes in size. To build a classifier to detect disease in these images,
an expert pathologist needs to provide precise annotation of disease extent in
the image. This results in a large training cost if RL is employed. In contrast, AL
selects samples from an unlabeled pool for annotation based on the ambiguity of
a sample: samples that are difficult to classify are not currently well-represented
within the training set, so by targeting these samples, fewer training samples
are needed to achieve high accuracy. Thus by finding only the most difficult to
classify samples, we identify the most critical for labeling and inclusion in the
training set.

1.3 Current Active Learning Approaches

There are several AL methods for selecting training samples [3,4,5], each rely-
ing upon a single measurement of ambiguity. The Query-By-Committee (QBC)
method by Seung, et al. [5] trains a group of L weak learners, each of which
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votes on the class of sample x. In the two-class case, if the sample receives
approximately L

2 votes for both classes, then x is considered ambiguous (difficult
to classify). Li, et al. [4] utilized a support-vector machine approach, whereby
samples appearing close to a decision hyperplane in high-dimensional space are
considered ambiguous. There is no guarantee that each of these methods will
identify the same samples as “difficult to classify,” since samples that are close
to a decision hyperplane may still be unanimously identified as a single class by
a QBC algorithm. Thus, the set of ambiguous samples may depend heavily on
the AL method.

1.4 Novel Contributions of This Paper

In this paper, we present the concept of a consensus of ambiguity (CoA) whereby
several measures of ambiguity are combined to identify the most difficult to
classify samples from an unlabeled pool. This framework extends beyond the
traditional AL methods by identifying ambiguousness explicitly rather than as
a function of classification error. We define a consensus ratio that measures the
degree of overlap between multiple algorithms for finding ambiguity, and we
find that using multiple algorithms ensures that the overlap between methods
decreases; the use of multiple algorithms ensures that only the most difficult to
classify samples are detected by the algorithm.

We evaluate the efficacy of the algorithm by using the CoA-based AL method
to train a probabilistic boosting tree (PBT) classifier on three separate medical
image datasets. We use the performance of the PBT, measured in terms of accu-
racy and area under the receiver operating characteristic curve (AUC), to ensure
that the training set created by CoA-based AL can yield higher performance
compared to a randomly-selected training set of equal size. The three datasets
considered in this work are: (1) Digitized prostate histopathology (100 images)
are broken up into 12,000 image regions, each of which is classified as cancer
/ non-cancer using texture features. (2) 18 prostate dynamic contrast-enhanced
MRI (DCE-MRI) images (256x256 pixels) are quantified using textural and func-
tional intensity features to find cancer in a pixel-wise fashion. (3) 9,000 regions of
interest (ROIs) are extracted from two large breast histopathology patient stud-
ies, with each ROI corresponding to either high or low Bloom-Richardson cancer
grades. ROIs are quantified by graph-based nuclear architectural features. Each
of these datasets represents different modalities, tissues, and features, but all are
time-consuming and expensive to annotate; thus, we expect that AL training al-
gorithms can reduce the expense required to obtain reliable training sets versus
a random learning scheme.

2 Theory of CoA

2.1 Active Learning Strategy Overview

We denote by X a set of data containing samples x ∈ X . Each sample is as-
sociated with a class label y ∈ {ω1, ω2, · · · , ωc}. A supervised classifier is denoted
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Fig. 1. Plot of the consensus ratio R as a function of t, for t ∈ {1, 2, · · · , 100}. After

t = 50, the consensus ratio plateaus at approximately 0.2. This indicates that there is

relatively little consensus between three AL methods: Φ1 (QBC), Φ2 (BAY), and Φ3

(SVD).

C(x) ∈ {ω1, ω2, · · · , ωc}. The classifier returns a hypothesis for a sample and is
trained on a training set Str and tested on an independent testing set. The goal
of the AL algorithm is to build Str from a set of unlabeled samples in X . To do
this, a training function Φ(x) returns a measure of ambiguity for x.

Definition 1. A sample x ∈ X is considered ambiguous if a < Φ(x) < b, where
a, b are lower and upper thresholds for Φ, respectively.

2.2 Consensus of Ambiguity: Definition and Properties

The CoA approach employs multiple algorithms, Φ1, Φ2, · · · , ΦM , each of which
returns a corresponding set of ambiguous samples SE

1 , S
E
2 , · · · , SE

M .

Definition 2. Given nonempty sets of ambiguous samples, SE
i , i ∈ {1, · · · ,M},

the consensus ratio is defined as R = U
V , where U = |⋂M

i=1 S
E
i | and V =

|⋃M
i=1 S

E
i |.

Proposition 1. Given nonempty sets of ambiguous samples, SE
i , where i ∈

{1, · · · ,M}, R = 1 indicates perfect consensus and R = 0 indicates no consensus
across Φi.

Proof. In the case of absolutely no consensus (i.e. no samples are considered
ambiguous by allM algorithms), then

⋂M
i=1 S

E
i = ∅, so R = 0. Conversely, when

Φi, i ∈ {1, · · · ,M} are in perfect agreement (every algorithm identifies exactly
the same samples as ambiguous), then SE

1 = · · · = SE
M , so

⋂M
i=1 S

E
i =

⋃M
i=1 S

E
i

and R = 1. ��

Property 1. When R ≈ 0, there is low consensus and high variance among Φi,
i ∈ {1, · · · ,M}, indicating that any agreement among the algorithms will be
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highly informative and suggesting a benefit to using a consensus approach. Figure
1 shows a graph of R as a function of t, which identifies the iterations of the
AL algorithm. Beginning with t = 0, the AL algorithm grows a training set by
selecting and labeling ambiguous samples and adding them to the training set.
The process iterates for t ∈ {1, · · · , 100} times in this experiment. Three different
AL algorithms were used: QBC, BAY, and SVD (Section 3.2). After 50 iterations,
R levels off at approximately 0.2, indicating that there is little consensus among
the methods. Thus, a consensus algorithm is likely to be informative.

Definition 3. A sample x ∈ X will be considered strongly ambiguous if x ∈
ŜE =

⋂M
i=1 S

E
i ; that is, if the sample is designated as ambiguous by all Φi for

i ∈ {1, · · · ,M}.
Definition 3 is a version of strong ambiguity wherein all M algorithms must
select the sample. It is possible that, on any particular AL iteration, no samples
will satisfy this criteria. Definition 3 can easily be modified to include samples
selected by a majority of algorithms, or any sample identified by more than one
algorithm, and so on.

Proposition 2. As the number of algorithms Φi, i ∈ {1, · · · ,M}, being com-
bined increases, the consensus ratio R will monotonically decrease.

Proof. An added algorithm, denoted ΦM+1, identifies a set of samples denoted
SE

M+1. If SE
M+1 is a subset of the current set of ambiguous samples,

⋃M
i=1 S

E
i ,

then the denominator of R does not change since the union will not increase in
size. The denominator of R will decrease, since any elements in

⋂M
i=1 S

E
i that

are not found in SE
M+1 will be removed in the new intersection,

⋂M+1
i=1 SE

i . Thus
R will decrease in value.

However, if SE
M+1 contains unique samples not in the current ambiguous sam-

ple set, the union will increase in size; that is, |⋃M
i=1 S

E
i | < |

⋃M+1
i=1 SE

i |. Thus
the denominator of R will increase. The numerator of R will not change, since
any samples in SE

M+1 that are not in
⋂M

i=1 S
E
i will be removed in the new inter-

section,
⋂M+1

i=1 SE
i . In this case, R will decrease. ��

Property 2. Adding additional algorithms to the ensemble, will decrease or main-
tain R. By Property 1, ensembles with a low consensus ratio R ensure that only
samples with a very high degree of ambiguity will be identified. Thus increasing
M will ensure that only extremely ambiguous samples are included in ŜE. How-
ever, if SE

M+1 ∩ ŜE = ∅, then no samples will be considered strongly ambiguous.

3 Experimental Setup

3.1 Overview of Datasets

Experiment 1 - Prostate cancer on digitized histopathology: Over a
million annual prostate biopsies are performed in the US, each of which must
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Image data from Experiment 1. The original image (a) has a red 30-pixel

square grid superimposed, with cancer labeled in black. Texture images are extracted

corresponding to first-order greylevel statistics (b), second-order Haralick co-occurrence

features (c), and Gabor steerable filter features (d). Shown in the second row (e)-(h)

are magnified regions of the cancer region in each image.

be analyzed manually under a microscope [7]. A quantitative system capable of
automatically detecting disease can greatly increase the speed and accuracy with
which patients are diagnosed for cancer. Digitized glass slides can be over 2 GB
in size (several million pixels), with benign and cancer regions appearing close
to one another, and so annotation of these samples is difficult. The objective of
this experiment is to apply CoA-based AL to build a classifier able to distinguish
between cancerous and non-cancerous patches of biopsy tissue.

Biopsy samples are stained with Hematoxylin and Eosin (H & E) to visualize
cell cytoplasm and nuclei and digitized using a whole-slide digital scanner. For
each image, a 30x30 pixel grid is superimposed on the tissue, generating regions
of interest (ROIs) of prostate tissue. In previous work [8], we have identified
14 texture features that can easily distinguish between cancer and non-cancer
regions of tissue on a pixel-wise basis. These features include: (1) First-order
gray-level statistics quantify simple statistics calculated from pixel values in the
images [8]. (2) Second-order Haralick features [9] are based on the co-occurrence
of pixel values, and are calculated over each ROI. (3) Gabor filter features, also
known as steerable filters, operate at a specific orientation and spatial frequency
to yield a filter response from the image. Each of the 14 discriminating features
is extracted from the image, and the modal value for each 30-by-30 ROI is used
as its feature value. 100 images are used to generate 12,000 ROIs which are
classified as cancer or non-cancer tissue.
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Experiment 2 - Prostate cancer on DCE-MRI: In addition to biopsy, in
vivo imaging, particularly magnetic resonance imaging (MRI), can be mined for
quantitative diagnostic information [10,11]. Dynamic Contrast Enhanced (DCE)
MRI is a technique whereby a contrast agent is injected into a patient with
MR images taken at specific time points. The contrast agent is taken up and
removed from different tissues at different rates, indicating the presence of disease
at a pixel-wise level. A classification system for this modality could be used
for automated in vivo screening for cancer and treatment, but labeled samples
are difficult to obtain since cancer cannot be annotated directly on the MRI.
Histopathology is used to find cancer ground truth, which is mapped onto the
MR images.

We apply CoA-based AL to a dataset of 6 patients with confirmed prostate
cancer on needle biopsies. Prior to radical prostatectomy, MR imaging was per-
formed using an endorectal coil in the axial plane and included T2-w and DCE
protocols. Prostatectomy specimens were later sectioned and stained with H
& E. An expert pathologist annotated the spatial extent of prostate cancer
on the whole-mount prostatectomy sections, and identified 18 corresponding
histopathology and MRI sections. A multimodal registration scheme, COLLec-
tion of Image-derived Non-linear Attributes for Registration Using Splines (COL-
LINARUS) [12], was used to register histology sections onto the corresponding
MRI data, thus mapping the cancer ground truth onto the MR images. Struc-
tural information from T2-w MRI and functional intensity information from
DCE MRI are combined to distinguish between cancer and non-cancer pixels.

(a) (b) (c)

1 2 3 4 5 6 7
500

1000

1500

2000

2500

3000

3500

4000

Time points

In
te

ns
iti

es

(d)

Fig. 3. Examples of data from Experiment 2. Shown are (a) T2-w MRI image with

the prostate boundary in yellow, (b) the corresponding histopathology slice with cancer

mapped in blue, and (c) the cancer extent mapped onto the T2-w MRI after registration

via COLLINARUS [12]. Also shown are (d) intensity vs. time curves for dynamic

contrast; blue curves represent pixel locations in benign tissues, while red curves are

inside cancer ground truth ((c)).

Experiment 3 - Breast cancer on digitized histopathology: Breast can-
cer is the second-leading cause of cancer death in women in the United States [7].
Mammogram screening followed by a biopsy is the current standard for defini-
tive diagnosis. Similar to the motivation in Experiment 1, an automated image
analysis system can assist pathologists in detecting and diagnosing breast cancer.

Images of H & E stained breast biopsies are classified between low and high
Bloom-Richardson grades of breast cancer. Two patient studies were used to
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Examples of image data from Experiment 3, where we distinguish low-grade

breast cancer tissue ((a)-(c)) from high-grade tissue ((d)-(f)). Nuclei are detected from

breast biopsy tissue (a), (d) and used to generate graphs such as the Voronoi tesselation

(b), (e) and Delaunay triangulation (c), (f). Features from these graphs are used to

quantify each image patch.

generate 9,000 ROIs of homogeneous tissue measuring 500x500 pixels each. We
calculate features based on the architecture of the cell nuclei, in accordance
with the major indicators of breast cancer grade. Color deconvolution is used to
transform the RGB color space of the image into an alternate three-color space
to separate out the hematoxylin, eosin, and white background of the image
[13]. Using the deconvoluted image, the centroids of cell nuclei are detected,
which are used to construct a series of graphs based on the Voronoi tesselation,
Delaunay triangulation, and a minimum spanning tree. From each of these, a
set of quantitative features is extracted to characterize the cell architecture [13].
Each ROI is classified as high or low Bloom-Richardson grades of cancer, where
ground truth is determined by a pathologist.

3.2 Comparison of AL Methods

Query-By-Committee (QBC): QBC [5] involves a group of L weak classi-
fiers that produce votes for the class of an unlabeled sample x. Samples with
approximately L

2 votes are considered difficult to classify. The output of Φ1(x)
is the number of votes for the target class, and a, b represent the minimum and
maximum votes, respectively. A total of L = 10 Random Forests were generated
using C4.5 decision trees [2,1] with threshold values of a = 4 and b = 6.
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Bayes Likelihood (BAY): Bayes Theorem [14] models the likelihood of ob-
serving a class based on the feature values of sample x. A probability density
function is created for each of K features, where pk(ωj |x) denotes the likelihood
that x belongs to class ωj given feature k. Samples for which pk(ωj |x) ≈ 0.5 are
considered ambiguous. The output of Φ2(x) is 1

K

∑K
k=1 pk(ω1|x) where ω1 is the

target (cancer) class. Threshold parameters were set to a = 0.4 and b = 0.6.

Support Vector Distance (SVD): Support Vector Machines (SVMs) [15]
create a high-dimensional projection of feature data, in which a decision hy-
perplane is created via training. Samples are classified by finding the position
relative to the hyperplane. The output of Φ3(x) is the signed distance between
x and the hyperplane, where the sign indicates class membership. Parameters a
and b define the distances within which a sample is considered ambiguous. We
set a and b to ±10% of the maximum distance from the support vector.

3.3 Probabilistic Boosting Tree Classification Algorithm

CoA-based AL was used to train a probabilistic boosting tree (PBT) [16]. The
PBT combines AdaBoost [17] and decision trees [1], iteratively generating a
tree where each node is boosted with L weak classifiers and whose output is a
likelihood for the class of sample x. The PBT algorithm was chosen as a classifier
that is different from the methods used in each of the AL algorithms described
above. At each iteration of the active learning algorithm, t ∈ {1, 2, · · · , 100},
ambiguous samples found by the CoA ensemble are sampled to obtain equal
numbers of samples from both classes [6], which are used to train the PBT. For
our experiments, each iteration added two samples (one from each class) to the
growing training set. Evaluation on an independent testing set is done via area
under the receiver operating characteristic curve (AUC) and accuracy.

4 Results and Discussion

Shown in Figure 5 are examples of two datasets, prostate histopathology (top
row) and DCE-MRI (bottom row), used in this study. In the left column (Figures
5 (a), (d)) are the original images with the cancerous region delineated in a black
contour, while the results of classification with RL training are shown in the
middle column (Figures 5 (b), (e)) and training with CoA-based AL are shown
in the right column (Figures 5 (c), (f)). The images were obtained when the AL
algorithm had run for t = 50 iterations.

For histopathology, brighter regions indicate higher likelihood of cancer. The
RL-trained classifier identifies the majority of patches as cancer yielding a high
false-positive count, while the CoA-trained classifier is able to discriminate be-
tween obviously benign regions and cancerous areas. Note that we are not com-
menting here on the accuracy of the final classifier, but on the performance of
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Examples of images taken from the prostate histopathology (a) and DCE-MRI

(d) datasets, with cancer regions indicated by black contours. Also shown are the

corresponding classification results of the PBT, when using training sets built via RL

((b), (e)) and CoA-based AL ((c), (f)). Images were obtained at AL iteration t = 50.

one training method with respect to another. For the DCE images, images were
thresholded at a likelihood of 75%. Here, the RL-trained classifier yields false-
negatives with a small set of pixels classified as cancer, while the CoA-trained
classifier correctly classifies many pixels near the ground truth. Again, this in-
dicates that – given the limitations on labeling biomedical images – CoA yields
better results than random training on a limited number of training samples.

The accuracy and AUC of the PBT are plotted against the AL iteration
t ∈ {1, · · · , 100} in Figure 6. Shown are the results for the classifier trained using
the CoA algorithm (red solid) as well as random learning (blue dotted) and
each of the three AL strategies: QBC (green dot), BAY (cyan solid), and SVM
(magenta dash). Each location on the independent axis indicates a training set
size (increasing from left to right); we can see that for the majority of training
set sizes, all of the AL-trained classifiers yield better accuracy and AUC than
random learning. Additionally, AL requires fewer samples to reach that desired
performance compared with RL. We note that the individual AL algorithms
do not necessarily perform better than the CoA approach in terms of classifier
performance, but this is not an unexpected result. The goal of using the CoA
algorithm is to prune down the number of samples deemed “eligible” at each
stage; we see that by constraining our search in this way, we have a smaller pool
from which to choose labeled samples, while keeping performance the same as
an individual algorithm (which has a much wider set of “eligible” samples).
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Fig. 6. Plots of the accuracy and AUC obtained by the PBT using the training derived

from CoA Active Learning method (red solid line), which combines three AL schemes

(QBC, BAY, and SVD), and Random Learning (blue dotted line). Shown are results

for the dataset of 12,000 prostate histopathology ROIs ((a), (d)), 28,000 prostate DCE-

MRI pixel samples ((c), (f)), and 9,000 breast histopathology ROIs ((b), (e)).

5 Concluding Remarks

In this paper, we presented a CoA framework for identifying ambiguousness in
an unlabeled pool of data. The CoA approach exploits variance between different
ambiguity measurements. A consensus ratio determines the amount of variance
between multiple ambiguity methods, and by combining these algorithms, this
ratio decreases. This ensures that only the most ambiguous samples are selected
from the unlabeled data. Finally, we applied CoA to the problem of Active
Learning (AL), where ambiguous samples are selected for training a classifier. For
medical image datasets (which are time-consuming and expensive to annotate),
the CoA-trained classifier yields higher accuracy and AUC than RL for similar
training set sizes.

We observe similar classification performance using CoA versus individual AL
training schemes. However, the low consensus ratio indicates that each training
algorithm is selecting mostly unique samples. Since our goal is to improve train-
ing efficiency, we wish to explore evaluation measures besides classifier perfor-
mance. For example, it is possible that samples selected by one AL scheme are
more difficult to annotate than those selected by another, or have significantly
different feature distributions. If so, we may be able to derive an evaluation met-
ric that is divorced from classifier performance that is able to identify the most
efficient training algorithm.



324 S. Doyle and A. Madabhushi

References

1. Quinlan, J.R.: Decision trees and decision-making. IEEE Trans. Syst. Man Cy-

bern. 20(2), 339–346 (1990)

2. Brieman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001)

3. Cohn, D., Ghahramani, Z., Jordan, M.I.: Active Learning with Statistical Models.

J. of Art. Intel. Res. (4), 129–145 (1996)

4. Li, M., Sethi, I.K.: Confidence-based active learning. IEEE Trans. Patt. Anal.

Mach. Intel. 28(8), 1251–1261 (2006)

5. Seung, H.S., Opper, M., Sompolinsky, H.: Query by committee. In: 5th Annual

ACM Workshop on Computational Learning Theory, pp. 287–294. ACM, New York

(1992)

6. Doyle, S., Madabhushi, A., Feldman, M., Tomaszewski, J., Monaco, J.: A Class

Balanced Active Learning Scheme that Accounts for Minority Class Problems:

Applications to Histopathology. In: OPTIMHisE Workshiop (in conjunction with

MICCAI), pp. 19–30 (2009)

7. American Cancer Society. Cancer Facts & Figures 2010. American Cancer Society,

Atlanta (2010)

8. Doyle, S., Feldman, M., Tomaszewski, J., Madabhushi, A.: A Boosted Bayesian

Multi-Resolution Classifier for Prostate Cancer Detection from Digitized Needle

Biopsies. IEEE Transactions on Biomedical Engineering (accepted)

9. Haralick, R.M., Shanmugan, K., Dinstein, I.: Textural features for image classi-

fication. IEEE Transactions on Systems, Man, and Cybernetics SMC 3, 610–621

(1973)

10. Madabhushi, A.: Digital Pathology Image Analysis: Opportunities and Challenges.

Imaging in Medicine 1(1), 7–10 (2009)

11. Viswanath, S., Bloch, B.N., Rosen, M., Chappelow, J., Rofsky, N., Lenkinski, R.,

Genega, E., Kalyanpur, A., Madabhushi, A.: Integrating Structural and Functional

Imaging for Computer Assisted Detection of Prostate Cancer on Multi-Protocol in

vivo 3 Tesla MRI. In: SPIE Medical Imaging, vol. 7260 (2009)

12. Chappelow, J., Madabhushi, A., Bloch, B.: COLLINARUS: Collection of image-

derived non-linear attributes for registration using splines. In: Proc. SPIE: Image

Processing, vol. 7259, San Diego, CA, USA (2009)

13. Basavanhally, A.N., Ganesan, S., Agner, S., Monaco, J., Feldman, M.,

Tomaszewski, J., Bhanot, G., Madabhushi, A.: Computerized Image-Based De-

tection and Grading of Lymphocytic Infiltration in HER2+ Breast Cancer

Histopathology. IEEE Transactions on Biomedical Engineering 57(3), 642–653

(2010)

14. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley Interscience,

New York (2001)

15. Cortes, C., Vapnik, V.: Support-Vector Networks. Machine Learning 20, 273–297

(1995)

16. Tu, Z.: Probabilistic boosting-tree: Learning discriminative models for classifica-

tion, recognition, and clustering. In: 10th IEEE International Conference on Com-

puter Vision, pp. 1589–1596 (2005)

17. Freund, Y., Schapire, R.E.: Experiments with a New Boosting Algorithm. In: 13th

International Conference on Machine Learning, pp. 148–156 (1996)



Semi-supervised Learning of Sparse Linear
Models in Mass Spectral Imaging

Fabian Ojeda1,
, Marco Signoretto1, Raf Van de Plas1,3, Etienne Waelkens2,3,
Bart De Moor1,3, and Johan A.K. Suykens1

1 ESAT-SCD-SISTA, Department of Electrical Engineering, Katholieke Universiteit

Leuven, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium
2 Laboratory for Phosphoproteomics, Katholieke Universiteit Leuven, O & N,

Herestraat 49, B-3000 Leuven, Belgium
3 ProMeta, Interfaculty Centre for Proteomics and Metabolomics, Katholieke

Universiteit Leuven, O & N 2, Herestraat 49, B-3000 Leuven, Belgium

{fabian.ojeda,marco.signoretto,raf.vandeplas,bart.demoor,
johan.suykens}@esat.kuleuven.be,
etienne.waelkens@med.kuleuven.be

http://www.esat.kuleuven.be/sista

Abstract. We present an approach to learn predictive models and per-

form variable selection by incorporating structural information from Mass

Spectral Imaging (MSI) data. We explore the use of a smooth quadratic

penalty to model the natural ordering of the physical variables, that is

the mass-to-charge (m/z) ratios. Thereby, estimated model parameters

for nearby variables are enforced to smoothly vary. Similarly, to overcome

the lack of labeled data we model the spatial proximity among spectra by

means of a connectivity graph over the set of predicted labels. We explore

the usefulness of this approach in a mouse brain MSI data set.

Keywords: MSI, sparsity, ordered variables, spatial information, smooth-

ing penalty, graph Laplacian, convex optimization, regularization.

1 Introduction

Mass spectral imaging (MSI) is a developing technology that allows the detection
of biomolecules such as proteins, peptides, and metabolites from organic tissue
while retaining the spatial information intact [1]. Thus, MSI enables the study
of the spatial tissue distribution for any detectable molecule that falls within
a specified molecular mass range [2]. A typical MSI experiment consists of a
grid of measurement locations or pixels covering the tissue section, with an in-
dividual mass spectrum attached to each pixel. The resulting data structure can
be considered as three-dimensional array or tensor with two spatial dimensions
(h and w) and one mass-over-charge (m/z) dimension as shown in Fig.1.

These characteristics pose challenges in the statistical analysis of MSI data.
The high molecular specificity of MSI on one hand, delivers huge dimensional
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Fig. 1. A schematic representation of the MSI data structure. Individual mass spec-

tra are collected from the tissue area of interest retaining their spatial relationships

(h,w). The data is collected into a three-mode array where each slide corresponds to a

particular (m/z) value and every point in the grid is attached to a spectrum.

data sets with thousands of measured variables that usually exceed the number
of spectra (observations), often limited to a few hundreds. On the other hand,
the spatial coordinates (h,w) associated to each spectrum define areas of interest
and thus should be not neglected. In practice several methods have been already
applied to MSI data set including but not limited to principal component analysis
[3], clustering and multivariate analysis [4], and supervised classification [5],[6].
Besides the low number of observations, only a small fraction of them is labeled.
This hinders many statistical methods and further limits the validation of the
obtained results. Manual labeling requires dedicated expertise which can be time
consuming, costly and in some cases inaccurate.

In the present article we aim to address most of the aforementioned issues. In
a first step, we start from regularized models that impose sparsity in the solution
of coefficients. In the problem of interest variables admit a natural ordering due
to their physical meaning. Therefore we enforce that the estimated coefficients of
nearby variables should smoothly vary in terms ofm/z. Unlike the so called fused
lasso [7] where the absolute value of the differences is used, we employ a smooth
quadratic penalty. Furthermore, to overcome the lack of labeled observations we
exploit the prior assumption that nearby spectra are likely to have the same label.
This is ameaningful assumption for many type of data: for instance a tumor is more
likely to affect nearby cells than erratically affect disconnected regions of tissue.
Our approach encodes the spatial proximity among spectra by means of a graph
and hence can be seen as a semi-supervised method. The resulting proposed model
is shown to be equivalent to a lasso formulation and therefore can be efficiently
solved via the LARS (Least Angle Regression) [8] algorithm. Each component in
our optimization problemclearly embodies the structural information ofMSI data,
whereas regularization parameters trade off the complexity of the model in terms
of sparsity, smoothness and unlabeled samples.
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This paper is organized as follows. Section 2 introduces the notions about
regularized linear models and notation with respect to MSI data. The general
concept of encoding structural information via the graph Laplacian is presented
in Section 3, while Section 3.1 deals in detail with the modeling of the ordering of
them/z variables and the resulting optimization problem. Section 3.2, elaborates
on the encoding of spatial information using unlabeled samples and states the
final proposed approach. Preliminary results on a mouse brain MSI data set are
given in Section 4. Comparisons to related algorithms are reported along with
visualization and interpretation of the obtained results.

2 Notation and Preliminaries

The MSI data set can be represented by a collection of n observations (spectra)
measured over p variables (mass-to-charge ratios). The set of labeled spectra is
D� = {(xi, yi)}n

i=1, with xi ∈ IRp, yi ∈ IR, where yi is the associated label to
spectra xi ∈ IRp. Denote by xj

i the j-th component of xi ∈ IRp, therefore xj =
(xj

1, x
j
2 . . . , x

j
i , . . . , x

j
n) indicates the vector of measurements of a single variable.

We deal with the problem of predicting the response y, from a corresponding
observation x. In this setting we consider the standard linear regression model

yi =
p∑

j=1

βjx
j
i + εi , (1)

with errors εi. The variables are assumed to be standardized and the output
to be centered. The vector of coefficients β̂ = (β̂0, . . . , β̂p) ∈ IRp is usually
obtained by penalized empirical risk minimization:

β̂ = arg min
β
‖y −Xβ‖22 + λP (β) . (2)

Common examples of penalized models are ridge regression with P (β) = ‖β‖2,
or the lasso with P (β) = ‖β‖1. The lasso penalty encourages sparse solutions
while ridge regression keeps all the coefficients in the model. In general, a priori
assumptions encoded via P (·) are needed to make the problem well-posed. In
the following sections we aim to model the specific features of MSI data by
translating them into useful structural information in the general optimization
problem described in (2).

3 Structure Encoding via the Graph Laplacian

In order to incorporate structural information in our model fitting approach,
we consider an undirected connectivity graph G = (V,E), where V is the set of
nodes and E the set of edges. An edge between given nodes u and v (u ∼ v) exists
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Fig. 2. Left : First order (solid) and second order (dashed) connectivity structure over

the set of the variables. We consider first order connectivity to impose local smoothness

on the coefficients. Right : Cross-like spatial neighborhood imposed over the set of

spectra.

if the entities represented by u and v are linked. Denoting du as the degree of a
node u, the normalized Laplacian matrix L associated to the graph G is given
by [9]

L(u, v) =

⎧⎨⎩
1, if u = v and du �= 0 ,
−1/

√
dudv, if u ∼ v ,

0, otherwise .
(3)

The Laplacian is a symmetric semi-positive definite matrix which can be in-
terpreted as an operator on functions of the type f : V → IR namely vectors
indexed by elements of V . It can be shown that [9]

fLf =
∑
u∼v

(
fu√
du

− fv√
dv

)2

, (4)

and hence the quadratic term on the left-hand side of (4) can be used to define
a penalty enforcing smooth variation over neighboring nodes. We use this fact
to incorporate structural information of MSI into the learning framework.

3.1 Encoding Ordered Variables

In order to account for the natural ordering of them/z measurements, we impose
a graph Gp over the set of variables. The set of nodes are associated to the p input
variables xj , j = 1, ..., p, thus modeling neighboring variables via the Laplacian
matrix of the graph. The structure imposed can is visualized in the left panel
in Fig.2, where every m/z variable xj is connected to the preceding xj−1 and
the subsequent xj+1. One might also consider second order relationships and
so forth. By defining Lβ ∈ IRp×p as the Laplacian over the set of variables (cf.
(3)) and considering the squared norm in (4) for β, our regularized optimization
problem takes then the form:

β̂ = argmin
β
‖y −Xβ‖22 + λ1

p∑
j=1

|βj |+ λ2β
Lββ , (5)
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with λ1, λ2 > 0. While the second term enforces sparsity on the β, the last term
smooths the solution of β on the network. This is similar to the formulations
in [10] and [11]. In the case that no structure is assumed in the network, that
is taking Lβ = I, the optimization problem resorts to the elastic net approach
[12].

3.2 Encoding Prior Spatial Information

Along the same lines of reasoning, we aim at imposing also a smooth structure
on the predicted labels ŷk, k = 1, ..., ns. The spatial distribution of the spectra in
the square grid (see Fig.1) suggests that nearby spectra should correspond either
to the same tissue area or, might represent connectivity tissues. In essence our
goal is to extend the framework exposed in the previous section by incorporating
additional information about the spatial structure of the MSI data. In order
to get an empirical estimate of spectra distribution we make use of unlabeled
examples [13]. Denoting by ŷ = (ŷ1, . . . , ŷns) the vector of predicted responses
and, assigning each ŷk to a node in a graph Gs, we construct the corresponding
Laplacian matrix Ls ∈ IRns×ns using (3). The entries of Ls(h,w) are defined
according to the cross-like neighborhood pattern shown on the right hand side of
Fig.2. Likewise, we consider a similar quadratic form for the predicted responses
as in (4), that is ŷLsŷ, which is bounded by an user specific parameter ξ > 0.
Including this constraint into our optimization problem we have

β̂ =arg min
β
‖y −Xβ‖22 + λ1

p∑
j=1

|βj |+ λ2β
Lββ (6)

s.t. ŷLsŷ ≤ ξ (7)

ŷk =
p∑

j=1

βjx
j
k, k = 1, . . . , ns . (8)

Expressing the vector of equality constrains in matrix form ŷs = Xsβ, and
replacing this term in the inequality constraint we get β(Xs)Ls(Xs)β =
βGsβ. By introducing a Lagrange multiplier λ3 > 0 for the latter constraint,
we write (6) as the following unconstrained optimization problem

β̂ = argmin
β
‖y −Xβ‖22 + λ1

p∑
j=1

|βj |+ λ2β
Lββ + λ3β

Gsβ . (9)

By grouping the quadratic terms of β and defining Hλ3 = Lβ + λ3
λ2
Gs, we can

further cast the optimization problem into a lasso type formulation

β̂ = argmin
β
‖y −Xβ‖22 + |+ ‖0p×1 −

√
λ2H

1/2
λ3

β‖22 + λ1

p∑
j=1

|βj | ,

=
∥∥∥∥[ y

0p×1

]
−

[
X√
λ2H

1/2
λ3

]
β

∥∥∥∥2

2

+ λ1

p∑
j=1

|βj | . (10)
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This modified problem has dimensions (n+ p)× p, and can be solved using the
LARS (Least Angle Regression) algorithm [8] up to fixing λ2 and solving the
regularization path for the constrained version using a bound |β|1 ≤ τ instead of
λ1. This equation is our final proposed method to incorporate spatial information
and to impose neighboring structure in the ordered variables.

By setting λ3 = 0, we can relate our method to similar existing approaches.
For instance, the Elastic net [12] is obtained by setting Lβ = I. The network
constrained-regularization (NET)[10] and the multiple NET [11] are not re-
stricted to ordered variables and instead they impose prior groupings through
graphs. The fused lasso algorithm in [7] penalized the absolute difference be-
tween adjacent coefficients whereas the the group lasso [14] assumes in advance
groups of variables.

4 Experimental Results

In this section we explore the usefulness and applicability of the proposed method
to include the structural information of MSI data. While numerical validation of
the obtained results is assessed via 10-fold cross-validation, visual interpretation
and comparison appear more intuitive by translating the results into exploratory
ion images. This visual aid compensates the limited availability of ground truth
information.

4.1 Data Set

The data set, acquired at University Hospital Leuven, comes from a sagittal
section of mouse brain [15]. The spatial grid covering the tissue has 51 × 34
measurement locations (i.e. 1734 pixels). Each measurement spans a mass range
from 2800 to 25000 Dalton in 6490 mass-over-charge (m/z) bins. Therefore, the
data structure contains 1734 mass spectra measuring 6490 m/z variables per
spectrum. Partial labeling information of 279 spectra is provided by a pathologist
corresponding to four anatomical regions within the tissue. The labeled regions
are the cerebellar cortex (cc), Ammon’s horn in the hippocampus (ca), the cauda-
putamen (cp), and the lateral ventricle (vl) area. Figure 3(a) depicts the four
partially labeled regions overlaid on a gray level microscopic image of the mouse
brain section. The set of spectra is normalized with respect to the total ion
current and is baseline corrected.

4.2 Numerical Results

In order to set suitable values for the three regularization parameters, we first
define a grid of values over the parameters λ2 and λ3. Secondly, for every pair of
values we approximate the regularization path for the parameter τ (associated
to λ1) and pick the best combination via 10-fold cross-validation. In Table 1, we
report the results of the proposed approach among pairwise classes. Chosen val-
ues for the regularization parameters are reported along with the average 10-fold



Semi-supervised Learning of Sparse Linear Models in MSI 331

Table 1. Multi-class one-vs-one results of the proposed approach. Regularization

parameters associated to the quadratic penalties (λ2, λ3) are chosen from the grid

[10−3, 10−2, 10−1, 1, 10, 100]2. The regularization path for parameter τ (bound on

the L1 norm) associated to λ1 is optimized via 10-fold crossvalidation on the labeled

data.

Classes τ∗ λ∗
2 λ∗

3 Non-zero β 10-fold mse 10-fold accuracy

cc vs ca 0.165 100 0.001 64 1.0529 (0.5482) 1 (0)

cc vs cp 0.213 100 0.001 106 1.3783 (0.3739) 0.9288 (0.1076)

cc vs vl 0.249 1 0.001 56 1.7588 (0.9709) 0.8938 (0.1719)

ca vs cp 0.162 1 0.001 54 2.3778 (0.9005) 0.9758 (0.0319)

ca vs vl 0.1640 100 0.01 102 3.2342 (1.2151) 0.9446 (0.0447)

cp vs vl 0.0460 10 0.1 14 5.9332 (1.6775) 0.9288 (0.0580)

Table 2. Multi-class one-vs-one results of the LASSO (lasso) and Elastic net (enet)

algorithms

lasso enet

Classes Non-zero β τ∗ 10-fold accuracy Non-zero β τ∗ λ∗
2 10-fold accuracy

cc vs ca 14 0.29 1.0000 (0.0) 17 0.211 0.001 1.0000 (0.0)
cc vs cp 10 0.16 0.9738 (0.0532) 15 0.136 0.01 0.9905 (0.0202)
cc vs vl 34 0.374 0.9250 (0.1208) 17 0.145 0.01 0.9333 (0.1097)
ca vs cp 31 0.212 0.9740 (0.0436) 18 0.1 0.001 0.9687 (0.0477)
ca vs vl 11 0.085 0.9143 (0.0732) 19 0.076 0.1 0.9330 (0.0549)
cp vs vl 5 0.031 0.9142 (0.0739) 6 0.033 0.001 0.9123 (0.0766)

Table 3. Combined multi-class results on the MSI mouse brain rat data set

Method Avg. Non-zero βj Avg. |β|1 10-fold accuracy

lasso 17 1.0303 0.9453 (0.0690)

enet 16 0.9608 0.9563 (0.0515)

proposed 66 1.6647 0.9502 (0.0608)

cross-validation accuracy and the number of non-zero β coefficients. Similarly,
the performance of the lasso and elastic net algorithms are reported in Table 2.

Additionally, the performance for the combined one-versus-one predictions is
presented in Table 3. All the three methods perform slightly similar with appre-
ciable differences in the average number of coefficients. The proposed method
tends to select more coefficients due to the effect of the two square penalties.

4.3 Visualization

By translating the predicted labels back to their position in the spatial domain,
one can directly assess the performance of the algorithm via visual inspection.
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(a) cc (green), ca (yellow), cp

(red), vl (cyan)

(b) lasso

(c) enet (d) proposed

Fig. 3. Labeled areas and corresponding predicted labels by the algorithms

(a) m/z = 7.34 × 103 (b) m/z = 7.43 × 103 (c) m/z = 1.65 × 104

Fig. 4. Ion image visualization for the top three selected m/z variables discriminating

the (cc) and (vl) tissue regions. The first two are common to the three compared

methods, whereas the third variable at m/z = 1.65e + 4 Da that delineates the (vl)

area only appears in the proposed model.

Figure 3 displays the combined one-vs-one predicted labels corresponding to the
compared methods. All the three models effectively separate the lateral ventri-
cle (vl) and cauda-putamen (cp) from the surrounding tissue. The classification
for the ventricle area additionally draws in the elongated corpus callosum and
cerebellar nucleus regions as well, as these regions share a panel of common
molecules within the measured mass range. The cerebellar cortex (cc) label ex-
ceeds its intended boundaries due to the small number of labeled spectra (21
observations). The remaining hippocampus label (ca) extends to capture the
complete hippocampus and most of the remaining unlabeled areas of the tissue.
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Furthermore, to visualize important selected variables, we look at the top three
variables associated to the largest β coefficients. In particular we take those
differentiating the lateral ventricle (vl) from the cauda-putamen (cc). In Fig.4,
ion images highlight the presence of three of the top selected m/z in these two
anatomical regions.

5 Conclusion

In this article we have presented a methodology to learn semi-supervised sparse
linear models in MSI data. Starting from regularized learning models and struc-
tural information inherent to MSI data, we make use of the graph Laplacian to
embed first, the natural ordering of the m/z variables and, secondly the spatial
location of the spectra. Thereby, smooth quadratic penalties are imposed over
neighboring nodes representing in the first case variables and in the second one
observations. These penalties modify the standard learning algorithm resulting
in an equivalent lasso formulation that can be solved efficiently. Moreover the
lack of labeled data, typical of MSI experiments, is circumvented through mod-
eling the predicted responses via the graph Laplacian. The applicability of the
proposed approach is explored in a mouse brain MSI data set to distinguish
amongst four anatomical regions, and it is compared to other learning models
that do not, or partially, incorporate the structural information of MSI data.
The presented case study shows that sparse linear models can already provide
significant informative insight to assess tissue type, structure, and content. Addi-
tionally, our approach also holds value for more fundamental exploratory studies
of tissue as it can highlight similarity in content between different tissue areas.
Further work in this direction seems promising and should find applicability as
more MSI data sets become available.
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Abstract. In this paper we propose a novel high-performance algo-

rithm, referred to as MARSs (Matrix Algorithm for RNA Secondary

Structure Prediction), for predicting RNA Secondary Structures with or

without pseudoknots. The algorithm is capable of operating in both serial

and parallel modes. The algorithm will take complete advantage of the

explicit hardware parallelism increasingly available in todayś multi-core

processors resulting in execution speedups. Unlike Dynamic Program-

ming based algorithms, MARSs is non-recursive by design and therefore

eliminates some of the disadvantages of Dynamic Programming based

algorithms. We performed a large-scale experiment on a multi-core hard-

ware using real sequences with verified structures. We detail and discuss

the results from these experiments using metrics such as performance

gains, run-times and prediction accuracy. This is one of the first at-

tempts of its kind to provide a complete flexibility in evolving a RNA

secondary structure with or without pseudoknots using a matrix-based

approach.

Keywords: RNA secondary structure prediction, parallel computing,

high performance computing, multi-core.

1 Introduction

RNA plays several important roles in a living cell – carries genetic information,
acts as catalyst for various cellular processes and also plays a vital role in gene
expression. RNA can be represented in one of three forms - primary, secondary
and tertiary. The tertiary structure of RNA determines its function and the
RNAs secondary structure significantly affects the three dimensional shape of
the RNA. Therefore, predicting RNA secondary structures is key in determining
the 3D structure of a RNA molecule and also in inferencing the RNAś functions
and behaviors.

The research community have over several years proposed several RNA sec-
ondary strucure prediction algorithms. Many current & popular RNA secondary
structure prediction algorithms are based on Dynamic Programming derivatives.

T.M.H. Dijkstra et al. (Eds.): PRIB 2010, LNBI 6282, pp. 337–348, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Some of the well-known algorithms are as follows - Nussinov’s algorithm[1], Wa-
terman’s algorithm [2], MFOLD [3], PKNOTS [4], Akutsu’s algorithm [5], Dirks’
algorithm [6], PKNOTSRG [7], Jitender’s algorithm [8] and Ruan’s algorithm
[9]. Many Dynamic Programming based algorithms are unable to predict pseu-
doknots and restrict themselves to predicting secondary structures comprising
of only simple structural motifs.

In the last 2 decades, the computing industry has been following moore’s law
and making faster chips year-on-year basis. Traditionally, the speed gain was
obtained by increasing the clock speed of the processor core. However, during
the last few years the processor manufacturers have been adding more processing
cores instead of making a single core faster due to physical sciences limitations.
This requires redesign of current algorithms in many industries. Dynamic Pro-
gramming algorithms are recursive by design and this inhibits the algorithm
from being parallelized on a multi-core system. The primary road block being
that later iterations depend on the results from earlier iterations. This requires
the design and development of a new class of algorithm that works equal well
on single-core and multi-core architectures.

In this paper, we introduce a new algorithm for predicting RNA secondary
structures called MARSs (Matrix Algorithm for RNA Secondary Structure pre-
diction). MARSs does not use the popular dynamic programming methods and
therefore we believe it to be the first-of-its-kind. MARSs is capable of predict-
ing both Pseudoknots and Non-Pseudoknot structures with equal ease. MARSs
has been designed with parallelism in mind and can easily scale from single-core
to many-cores resulting in significant speedup and with no degradation in the
quality of output. We used MARSs to predict secondary structures of real RNA
sequences and also observed the speedup as a result of using many incremental
multi-cores system with each subsequent system have one more processing core
than the previous system. We report these results in this paper.

2 RNA Secondary Structures

RNAs are functionally important and play a key role in various cellular processes
such as ribosomal frame-shifting, control of translation and splicing [10]. RNA
primary structure is the sequence of nucleotide bases that comprise the RNA,
namely A (adenine), C (cytosine), G (guanine) and U (uracil). Base pairings
of these nucleotides are the main determinants of the secondary structures of
RNA. Stable base pairs in RNA like Watson-Crick (A-U and G-C) and Wobble
(G-U) are common, but weaker base pairs like Hogsteen (A-C) are also pos-
sible. Moreover, there are some common structural motifs that occur in RNA
Secondary structures: Double-stranded segment, Bulges, Symmetric or Asym-
metric internal loops, Hairpins, Two-stem junctions (coaxial stacks), Kissing
hairpins [11].

In addition to the above simple motifs, Pseudoknots are also a common oc-
currences in RNA. Pseudoknots are an important structural element present in
RNA secondary structures such as Ribozymes [14]. During 1980s Pseudoknots
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were described to be a section of structures in virus RNAs in plants, which re-
semble tRNAs. Several important biological processes rely on RNA molecules
with pseudoknots. For example, the RNA component of human telomerase con-
tains a pseudoknot that is critical for activity [16]. The structures formed by
pseudoknots are also crucial building block of RNA tertiary structure. Hence it
is of importance to predict not only simple motifs but also Pseudoknots.

Pseudoknots can be defined as follows: If R is an RNA sequence such that
R = r1, r2, r3, r4...rn, and (rxry) and (rprq) are two different base pairs existing
in this RNA structure (x < y and p < q), a pseudoknot is composed of these two
base pairs when 1 ≤ x < p < y < q ≤ n [13]. Simply stated, a Pseudoknot is a
nucleic acid secondary structure containing at least two stem-loop structures in
which a section of one stem is intercalated between the two sections of another
stem. Pseudoknots fold into knot-shaped three-dimensional conformations but
are not true topological knots.

3 MARSs

In this section, we will describe our MARSs algorithm from a design perspective
and contrast it with Dynamic Programming algorithms used for RNA secondary
structure prediction.

3.1 Overview

MARSs uses a top-down prediction methodology unlike Dynamic Programming
algorithms that employ a bottom-up approach. In a top-down approach motifs
are generated on a global scale and then the local regions are explored. MARSs
stores all the intermediate results, as with Dynamic Programming algorithms,
in order to prevent duplication of effort. Unlike Dynamic Programming based
algorithms MARSs does not view the secondary structure prediction as a set of
overlapping sub-problems. This key distinction makes MARSs high-scalable and
easily portable to architectures that have large number of parallel processing
units.

Given a primary RNA structure, MARSs produces several possible RNA sec-
ondary structures. This is also a key difference between MARSs and Dynamic
Programming based algorithms where the latter typically produces a single sec-
ondary structure. MARSs has several tuning parameters to its base-pair max-
imization engine that can be adjusted to produce varying number of output
structures. A bioinformatician may use these to inject knowledge from wet-lab
experiments and impact the behavior of MARSs algorithm. We believe this at-
tribute makes MARSs algorithm future-proof.

MARSs algorithm does not employ a dictionary-based approach in identifying
local structural motifs. Yet, it can predict all known RNA structural motifs and
by extension is capable of finding newer types of motifs - either composite of
known motifs or entirely newer ones.

MARSs is engineered to be parallelized and consists of several independent
processes. Therefore, unlike Dynamic Programming based algorithms, MARSs
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can be easily parallelized and significant speed up can be achieved when executed
on high performance computers with multiple cores. MARSs consistently shows
a speed up of close to N , where N is the number of cores.

MARSs also shows high levels of prediction accuracies. In our experiments
comprising of 100 real sequences with verified 2o structures, MARSs produced an
average PPV (Positive Predicted Value) of 76.46% and the average sensitivity
was 81.04%. Hence, MARSs is ready to be used with RNA sequences with
unknown 2o structures. These PPV and Sensitivity values compares well with
other State-of-the-art algorithms (see results section).

3.2 Matrices and Folding

The foundation of the MARSs algorithm is basically built upon two matrices:
namely the Base Pair matrix (or BP matrix) and the Affinity Matrix (or
AM). The BP matrix remains static throughout the running of the algorithm.
It basically represents the base-pairing affinities between all possible nucleotides.
It is a 4x4 matrix with the row and column representing known RNA alphabets.
The base pair matrix used in our experiments is shown in Figure 1.

Fig. 1. Base Pair Matrix Fig. 2. Folding across 10 and 14 and

attempted bonds

The score of each of the possible base pairs in the BP matrix are assigned
using general base pairing rules like Watson-Crick, Hogsteen, Wobble etc. In the
above case, Watson-Crick pairs ( G-C and A-U) are given a score of 2 while
Hogsteen (A-C) and Wobble (G-U) base pairs are given a score of 1. A base
pair in the BP matrix has a score of 0 when the base-pairing is not possible. The
table can be updated with precise values of bond probabilities between the base
pairs and a re-run of MARSs will predict the newer structures.

The given RNA primary structure, i.e. the nucleotide sequence, and this static
BP matrix is what is used to initially construct the AM. This AM is initialised
during runtime. For a given sequence of nucleotides, each nucleotide, from one
end to the other, are numbered from 0 to N − 1, where N is the length of the
nucleotide sequence. This numbering is like array notation in computer program-
ming languages so we can refer to any specific nucleotide in the sequence using
integers 0 to N − 1. Now we proceed to construct an NxN matrix (which is the
AM), the row and column numbers of which refer to the nucleotide numbers as
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mentioned. Each element at co-ordinates (x, y) of the AM represents the score
of a possible base pairing between nucleotide number x and nucleotide number
y. This matrix is filled by referring to the BP matrix.

In our experiments, we used real pseudoknot structures retrieved from the
pseudoknot database called Pseudobase. Let us take, for example, a pseudoknot
present in the RNA of brome mosaic virus, having a PKB-number of PKB155
in Pseudobase [14].

The AM consists of all possible interactions between nucleotides in the RNA
sequence. Hence we hypothesize that all the possible secondary structures are
present in this master matrix. By crawling this matrix in specific pre-determined
ways we can extract the correct structures of this sequence at much less com-
putational cost than dynamic programming. The RNA consists of nucleotides
which are strung together naturally in a chain. Hence base-pairing is not pos-
sible between two consecutive nucleotides in the sequence. Thus the next step
in the algorithm is to zero all the consecutive nucleotides’ interactions in the
AM, which we call the Neighbor pair rule. Mathematically, they are elements of
co-ordinates (i, i+ 1) and (i− 1, i), where 0 ≤ i ≤ N − 1.

As the RNA secondary structure is formed by the primary sequence folding
upon itself, the next step we do in our algorithm, is to fold the RNA sequence in
various ways. This initial folding can give rise to hair pin loops. The folding can
occur across any pair of nucleotides in the RNA sequence. Since all nucleotides
can pair with each other, the number of possible folds are: N(N − 1)/2. In the
AM, each element can also be considered to be a folding point. For example,
figure 2 shows the shape of the RNA after we just fold it across bases number
10 and 14, including all the attempted bonds (explained later).

3.3 Base Pairing - Symmetric Fold

The next step is to form base pairs in the exposed local regions using the first fold
as the anchor. We have added two algorithms for this purpose. The algorithms
produce secondary structure with symmetrical and asymmetrical structural mo-
tifs. In this way, we are able to generate structures that consist of all types of
known structural motifs.

The first of the two base-pairing algorithm is called S-fold (or Symmetric
Fold) base pairing. For each of the folds, we try and form bonds along bases that
are directly facing each other after the fold. For example, in Figure 2, the bases
along which the fold has been made are numbered (in this case 10 and 14), and the
orange lines are the base-pairings that our S-fold base pairing algorithm will try
to form. The bases at both ends of the primary sequence that never form bonds
with any other base, contribute to form potential dangling ends. In this case these
bases are the ones with no orange line attached to it. When no bonds can be formed
between opposing nucleotides and are surrounded by base pairs, internal loops are
born. To form a base pair, we refer to the AM element corresponding to those two
nucleotides, and if it is a value other than 0, we add the score to the score of that
structure and form a base pair. Once a base pair is formed, we also assign 0 to the
entire corresponding rows and columns in the AM of the nucleotides involved in
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the base pair. This is done as these two nucleotides cannot bond with any other
nucleotides in this particular fold. This process effectively means we are traversing
the AM along a 45 degree line, starting from the folding point and forming bonds
whenever the element has a value of greater than 0. An AM numerical representa-
tion of the folding starting from nucleotides 10 and 14 is shown in Figure 3. The
dark green shaded element is the folding point, and the blue elements are the base
pairs that are formed in case of S-fold. The grey area is the hair-pin loop. The light
brown elements are represents the dangling ends. The red, orange and yellow col-
ored elements represent strong, weak & no bonds and are not used in this level 1
secondary structure.

Fig. 3. AM representation of folding

and S-fold bonding across bases 10 and

14

Fig. 4. Base Pairs tried in A-fold

Using this method, multiple anchor folds are formed and for every anchor fold
the possible base-pairs are formed. At the end of the process, we have a set of
structures that we refer to as level 1 secondary structures. These structures do
not have pseudoknots yet, but have hair-pin loops, stems, internal loops and
possible dangling ends.

3.4 Base Pairing - Asymmetric Fold

The second scheme, Base Pairing - Asymmetric Fold scheme, can predict all
types of level 1 structural motifs that have some sort of asymmetry about them,
like bulges and asymmetric internal loops. Once the anchor fold is determined,
this base pairing algorithm using two pointers begins traversal along the two
arms about the fold. As an example, suppose a fold is determined by the folding
algorithm to be at nucleotides (say 10 and 14), then this A-fold base pairing
would place two pointers at the two folding nucleotides, as shown in Figure 4.

So in this example, let us assume that the fold is made across the orange and
blue circled bases. The circles represent the pointers, and hence the two pointers
are based at these two nucleotides. Now these two pointers try forming base
pairs in the following manner -
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Fig. 5. Level 1 structure after A-

fold base pairing across 10 and 14 of

PKB155

Fig. 6. AM representation of Level 1

A-fold structure

1. The pointer tries to make a base pair with the base of the opposite pointer
2. If the AM does not support such a base pair, it moves one base along the

opposite arm and tries again.
3. If AM still does not support such a base pair, it again moves one base, and

keeps moving till a pre-defined limit is reached. In our case we placed a limit
of 6 nucleotides, since we observed a maximum bulge of 6 nucleotides in
Pseudobase [14]. If limit is reached, then it does not form any base pair.

4. Both the pointers follow the above steps. Figure 4 shows the base pairs that
are attempted initially by the pointers in our hypothetical example.

The blue pointer tried only 2 base pairs, since the second one forms a base
pair (A-C, Watson-Crick) and hence the pointer stopped traversing. While the
orange pointer had to traverse to the limit (6 nucleotides) until it could find
a possible base pair (A-C, Watson-Crick). So, following the above procedure,
each of the two pointers will produce none or one base pair. Therefore, we need a
protocol or precedence to decide which base pair to choose if both pointers each
form one base pair? We only need to make a choice in the scenario (common)
that both pointers yield a different base pair. We follow the criteria below in
order of preference in order to decide the final base pair.

1. Choose the base pair that had to skip least number of nucleotides to form
the base pair. We call this distance.

2. If distance is same, then we pick the base pair which has more weight, ie. a
Watson-Crick base pair is chosen over a Hogsteen base pair.

3. If both the base pairs’ weight are the same, we arbitrarily choose one pointer.

If a base pair is formed, the two pointers each then move to the nucleotide next
to the base-pair just formed and if no base pair is formed the pointers move one
base away from its previous position. Then the whole process is repeated until
one of the pointers reach the end of the strand. At the end of this process, a level 1
structure is produced by A-folding. Figure 5 shows the level 1 structure produced
by A-folding for our hypothetical sequence with the anchor fold at nucleotides
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across 10 and 14. We can now observe that a bulge is formed, hence asymmetry
is introduced in this algorithm. Figure 6 shows the AM representation of this
structure. We can see that the traversal is no longer 45 degrees from the folding
point, but made of broken lines, to introduce asymmetry.

3.5 Level 2 Folding

Now the next step is to form Level 2 secondary structural elements, which is
Level 2 folding. We currently have generated N2 different level 1 structures cor-
responding to folds. As mentioned earlier, for each of these structures we change
the AM by marking the rows and columns corresponding to the nucleotides in-
volved in base-pairs in the Level 1 structure to be 0, since they can no longer
interact with other nucleotides. So now, in order to form Level 2 secondary struc-
tural elements, we fold the Level 1 structures again and run S-fold base-pairing
for each level 1 fold to find more base pairs that can cause pseudoknots or coaxial
stacks. A level 2 folding may or may not result in a pseudoknot, as shown in
Figure 7.

Fig. 7. Illustration of pseudoknots or

coaxial stacks
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Fig. 8. One predicted structure of

PKB155

Let us go back to our test case of Level 1 structure with folding across 10
and 14. After Level 2 folding, one of the high energy (16) ( and therefore more
likely secondary structure ) is as shown in Figure 8. This figure shows Level 2
(level 2 folding across 4 and 9) structures and the corresponding Level 1 [10, 14]
structure. All bonds are correctly predicted when compared to the structure in
Pseudobase [14], hence the predicted structure has a base-pair distance of 0. It
has a PPV of 100% and a sensitivity of 100%.

4 MARSs Complexity Analysis

In this section, we attempt to derive the time and space complexities of MARSs
algorithm. It should however be noted that the actual space and time com-
plexities depends on the composition of the nucleotides themselves that in turn
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affects the set of possible structures. The resource complexities also depends on
the tuning parameters that dictate the final number of secondary structures that
are desired.

Number of folds =
N(N − 1)

2

Hence, Space complexity is O(n2)

Maximum number of potential base pairs traversed in S-Fold =
N

2

Minimum number of potential base pairs traversed in S-fold = 1

Average potential base pairs traversed =
N + 2

4

TIME COMPLEXITY =
N(N − 1)

2
× N + 2

4
= O(n3)

Since A-fold base pairing simply increases the number of base pairs traversed by
a constant, hence complexity remains same.

5 Results

5.1 Accuracy Measures

As mentioned before, the accuracy measures that we use to analyze the accuracy
of a predicted structure when compared to experimentally verified structures are
Sensitivity and PPV. Positive Predictive Value (PPV) is the number of
correctly predicted base pairs as a percentage of the total number of base pairs
in the predicted structure. Its primary focus is on the accuracy of predicted base
pairs, without regard to any unpredicted base pairs. Sensitivity is the number
of correctly predicted base pairs as a percentage of the total number of base
pairs in the experimentally verified structure. Its primary focus is on predicting
base pairs present in the actual structure, without regards to the number of false
base pair predictions. These two measures are now the standards for measuring
accuracy in case of RNA secondary structure prediction [15].

PPV =
number of correctly predicted base pairs

total number of base pairs in PREDICTED STRUCTURE
× 100%

Sensitivity =
number of correctly predicted base pairs

total number of base pairs in ACTUAL STRUCTURE
× 100%

A structure can be said to be perfectly predicted, when both the PPV and sensi-
tivity values are 100%. PPV and sensitivity shows the measure of accurate base
pairs predictions relative to the predicted and the actual structure respectively.
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5.2 Accuracy of MARSs

For our analysis, we selected a set of 100 sequences from Pseudobase [14] from dif-
ferent classes as classified in the website. The average PPV of all these sequences
is 76.46% and the average sensitivity is 81.04% and the average normalized
b-p distance is 12.58%.

It can seen that the average PPV and sensitivity of the MARSs algorithm
on the randomly selected sequences is pretty good. In order to be comprehen-
sive, we also compare the predictions with a dynamic programming based RNA
secondary structure algorithm and observe the results. We ran the same se-
quences on Ruan’s server (which predicts Pseudoknots) [9] that employs the
Ruan’s algorithm as previously mentioned and also in the software PKNOT-
SRG (as previously described) [7]. Ruan’s algorithm showed an average PPV
and sensitivity of 56.8% and 58.9% respectively, while PKNOTSRG had an
average PPV and sensitivity of 70.5% and 67.8% respectively. Hence we can
see MARSs produced significantly better results.

Fig. 9. Ruan et al. and PKNOTSRG compared with MARSs

Figure 9 shows a bar chart with Ruan’s and PKNOTSRG’s accuracy pa-
rameters compared with MARSs, for RNA of different classes as classified by
Pseudobase [14]. We can see that MARSs appears to be consistently more ac-
curate than Ruan’s algorithm and PKNOTSRG in terms of all classes of RNA,
except for a few instances like Aptamers, Viral 3’ UTR and Viral Ribosomal
Frame-shifting signals. Even in those cases it is only slightly less accurate than
the other algorithms only and the difference is a very small amount.

6 Parallelization of MARSs

One of the primary design objectives of MARSs is to be easily parallelized and
take advantage of the explicit hardware parallelism available on the hosts. This
is achieved as follows. After the first Level 1 folding, we obtain a series of Level
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Fig. 10. Multi-core implementa-

tion of MARSs in Intel Quad Core

Xeon 2992.006 MHz

Fig. 11. Colour Mapped Surface for execution

times

1 structures, each having its own Affinity Matrices. Hence, when we do Level
2 folding of these structures, they are completely independent of each other.
Therefore, we can run each of the Level 2 folding activity on different cores
concurrently. The data plot in figure 10 demonstrates how the algorithm speeds
up when we run it on multiple cores, while processing different sequence lengths.
For the plot, the algorithm was run in Intel Quad Core Xeon machine with a
clock speed of 2992.006 MHz.

From figure 10, we can clearly see that as the number of cores increased,
the execution time significantly decreases. The entire set of 100 sequences from
Pseudobase [14] was then run on a second machine. This machine is a virtual
machine having 16 virtual cores being run by the software QEMU version 0.9.1.
This virtual machine is actually powered by 12 physical cores, each being Intel
Xeon CPU E7450 2.40 GHz. The graph in figure 11 shows a colour mapped
surface plot of execution time vs number of cores vs sequence length. We assigned
more colour codes for lower times, since the trend is less apparent for the subtle
change in shape of the graph. We can see the clear trend in decreasing execution
time as number of cores are increased due to parallelization, and also we can see
for smaller sequences, too high number of cores tend to slow it down. Also, for
large sequence lengths, we can see the enormous significance of decrease in run
time, as number of cores are increased.

7 Conclusion

In this paper, we have introduced a new high-performance and scalable algo-
rithm for RNA secondary structure prediction. The algorithm is designed to
be parallelized and strives to be fundamentally different when compared to the
generic class of RNA secondary structure prediction algorithms that are Dy-
namic Programming based, thus pushing the state-of-the-art to the next level.
The algorithm is shown to take complete advantage of the explicit hardware



348 S.P.T. Krishnan, M.J. Khurshid, and B. Veeravalli

parallelism available with our experiments. We have conducted experiments to
quantify the performance of the algorithm. For this, we extracted RNA sequences
with experimentally verified structures from Pseudobase and compared MARSs
predictions with actual structures. We have also conducted a 2nd experiment
with a focus on performance improvement through parallelization. For this, we
employed a 16 core Intel 64-bit server. The results indicate that the algorithm
produces much better results when compared with other algorithms and also
is scalable to use hardware parallelization features. The algorithm however is
still in its early stages and extensive experiments are to be conducted on actual
very large-scale structures to identify its limitations, if any. This would be an
immediate extension to the problem under study.

References
1. Nussinov, R., Piecznik, G., Grigg, J.R., Kleitman, D.J.: Algorithms for loop match-

ings. SIAM Journal on Applied Mathematics 35, 68–82 (1978)

2. Waterman, M.S., Smith, T.F.: Rapid dynamic programming methods for RNA

secondary structure. Adv. Appl. Math. 7, 455–464 (1986)

3. Lyngs, R., Zuker, M., Pedersen, C.: An Improved Algorithm for RNA Secondary

Structure Prediction. Tech-report BRICS RS-99-15 (1999)

4. Rivas, E., Eddy, S.: A dynamic programming algorithm for RNA structure predic-

tion including pseudoknots. J. Mol. Biol. 285(5), 2053–2068 (1999)

5. Akutsu, T.: Dynamic programming algorithms for RNA secondary structure pre-

diction with pseudoknots. Discrete Applied Mathematics 104, 45–62 (2000)

6. Dirks, R., Pierce, N.A.: A partition function algorithm for nucleic acid secondary

structure including pseudoknots. Journal of Computational Chemistry 2003 24,

1664–1677 (2003)

7. Reeder, J., Giegerich, R.: Design, implementation and evaluation of a practical

pseudoknot folding algorithm based on thermodynamics. BMC Bioinformatics 5,

104 (2004)

8. Deogun, J., Donts, R., Komina, O., Ma, F.: RNA Secondary Structure Prediction

with Simple Pseudoknots. In: APBC 2004, pp. 239–246 (2004)

9. Ruan, J., Stormo, G.D., Zhang, W.: ILM: a web server for predicting RNA sec-

ondary structures with pseudoknots. Nucleic Acids Research 32(Web Server Issue),

W146–W149 (2004)

10. Ren, J., Rastegari, B., Condon, A., Hoos, H.H.: HotKnots: Heuristic prediction of

RNA secondary structures including pseudoknots. RNA 11, 1494–1504 (2005)

11. Tian, B., Bevilacqua, P.C., Diegelman-Parente, A., Mathews, M.B.: The double-

stranded-RNA-binding motif: interference and much more. Nature Reviews Molec-

ular Cell Biology 5, 1013–1023 (2004)

12. Brion, P., Westhof, E.: Hierarchy and dynamics of RNA folding. Annu. Rev. Bio-

phys. Biomol. Struct. 26, 113–137 (1997)

13. Fu, X.Z., Wang, H., Harrison, W., Harrison, R.: RNA Pseudoknot Prediction Using

Term Rewriting. International Journal of Data Mining and Bioinformatics (2006)

14. Batenburg, F.H., Gultyaev, A.P., Pleij, C.W.: PseudoBase: structural information

on RNA pseudoknots. Nucleic Acids Research 29(1), 194–195 (2001)

15. Ding, Y., Chan, C.Y., Lawrence, C.E.: RNA secondary structure prediction by

centroids in a Boltzmann weighted ensemble. RNA 11, 1157–1166 (2005)

16. Chen, J.L., Greider, C.W.: Functional analysis of the pseudoknot structure in hu-

man telomerase RNA. Proc. Natl. Acad. Sci. USA 102(23), 8080–8085 (2005)



Exploiting Long-Range Dependencies in Protein
β-Sheet Secondary Structure Prediction

Yizhao Ni and Mahesan Niranjan

ISIS Group, School of Electronics and Computer Science

University of Southampton, U.K

Yizhao.NI@googlemail.com,

mn@ecs.soton.ac.uk

Abstract. We investigate if interactions of longer range than typically

considered in local protein secondary structure prediction methods can

be captured in a simple machine learning framework to improve the pre-

diction of β sheets. We use support vector machines and recursive feature

elimination to show that the small signals available in long range interac-

tions can indeed be exploited. The improvement is small but statistically

significant on the benchmark datasets we used. We also show that feature

selection within a long window and over amino acids at specific positions

typically selects amino acids that are shown to be more relevant in the

initiation and termination of β-sheet formation.

Keywords: Protein Secondary Structures, β-Sheet, Feature Selection,

Machine Learning.

1 Introduction

Predicting the secondary structure of proteins from their amino acid sequences
using machine learning methods has been of interest for several decades. Exam-
ples of early work in the topic include that of Qian and Sejnowski [12]. Work in
the area appears to have stabilized over the years, with the availability of several
stable web based prediction servers (e.g. JPred [2] and its previous incarnations).
An overview of development in the area approximately halfway through the pe-
riod of the above papers is given by Rost [13].

The basic strategy for prediction of secondary structure has largely been to
encode a local window of amino acids (usually 11− 15), using a one in Ω binary
coding method, where |Ω| = 20, leading to an input space of dimension in the
range 220− 300. The output space is usually three dimensional predicting if the
secondary structure at the centre of the window (namely the central residue) is
an α-helix, β-sheet or of an unspecified structure, usually referred to as coil. A
mapping between such a multivariate input and the three dimensional output
space can be learned by a machine learning technique of one’s choice, in which
artificial neural networks of the multi-layer perceptron type [11] is the most
popular in the literature.

T.M.H. Dijkstra et al. (Eds.): PRIB 2010, LNBI 6282, pp. 349–357, 2010.
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Fig. 1. Distribution of co-occurrences of secondary structures separated by a lag from

the central residue of the input window for the three secondary structure classes. Arrows

show that for the β-sheet there is some long range interaction outside the usually

considered analysis lengths.

Of the three classes usually considered for predictions in this setting, it is
known that β-sheets are the most difficult to predict. This observation is usually
attributed to the fact that sheet structures are formed by interactions of longer
range than is accommodated within the local windows. The obvious solution to
dealing with this by increasing the window length is usually not expected to
be successful because with each additional position included, we increase the
dimensionality by 20, and a corresponding increase in the amount of training
data will be required.

In this paper we explore the possibility of longer windows for β-sheet pre-
diction with feature subset selection to keep the input dimensionality low. We
first observe, using co-occurrence counts, that β-sheets contain a small amount
of long range dependencies. Fig. 1 shows this co-occurrence counts for the three
classes of secondary structures, where we plot the counts at different position
lags from the central residue to a logarithmic scale. We observe a small but
noticeable difference between the β-sheet and the other two classes. Motivated
by this observation, we show that recursive feature elimination picks up a small
subset of amino acids and their positions in the window to achieve a quantifiable
improvement in prediction accuracies.

2 Materials and Methods

2.1 Kernel Classifiers

Let us denote the protein sample pool as S = {(xi,yi)}m
i=1, where xi = (x1

i , x
2
i ,

. . . , xNi

i ) is the i-th amino acid sequence with Ni denoting the length of the
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sequence, xj
i ∈ Ω and Ω represents the set of amino acids appeared in S. Sim-

ilarly, the i-th secondary structure sequence is denoted by y = (y1i , y
2
i , . . . , y

Ni

i )
where yj

i ∈ {1,−1} with 1 representing β-sheet (E) and −1 otherwise (∼E).
Whenever this can be done without loss of clarity, each example (xj

i , y
j
i ) is also

abbreviated as (xn, yn), where the number of examples is defined by N =
m∑

i=1
Ni.

In order to solve the presented binary classification problem (i.e. E and ∼E),
the support vector machine (SVM) technique is applied. It learns a linear oper-
ator w by solving the following optimisation problem

min
w,w0,ξ

1
2w

T w + C1T ξ

s.t. yn
(
wTφ(xn) + w0

) ≥ 1− ξn n = 1, . . . , N
ξ := {ξn|ξn ≥ 0, n = 1, . . . , N}

(1)

such that a new amino acid residue x has the prediction f(x) = sgn(wTφ(x)),
where φ(x) ∈ RD is an embedding feature function which will be specified in
Section 2.2 and sgn(·) indicates the sign of the expression.

In addition, one can turn to solving the dual representation of (1)

max
α
− 1

2αT Kxyα + 1T α

s.t. yT α = 0
α = {αn|0 ≤ αn ≤ C, n = 1, . . . , N}

(2)

which allows the use of kernels

Kxy = {ykylφ(xk)Tφ(xl) : k, l = 1, . . . , N}, (3)

and it is expected to provide more flexibility in the feature expression.

2.2 Feature Extraction

Following [6,9], we consider the position-dependent residue features extracted
from the amino acid sequences. Mathematically, the feature expression is given
by the formula

φp
u(xn) = δ(xn+p, u), (4)

with the indicator function δ(·, ·), u ∈ Ω and p = {−dl, . . . , dr}. Fig. 2 illustrates
an example. To predict the secondary structure of the n-th central residue, a
windowed residue environment (xn−dl , . . . , xn+dr ) is selected, from which the
position-dependent residue features are extracted. As discussed in [6], a proper
window size can lead to good performance, because a too short residue segment
(e.g. the green box in Fig. 2) may omit some important classification information
while a too long segment (e.g. the red box in Fig. 2) may decrease signal-to-noise
ratio. Although a reasonable window size (e.g. the blue box in Fig. 2) seems to
be a perfect fit, as pointed out in [15], the β-sheets are formed between two
strings of complementary residues that maybe distantly separated in the protein
sequence, and a long segment is probably beneficial in β-sheet classification. This
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Fig. 2. Schematic diagram of encoding a window of amino acids to predict the sec-

ondary structure at the centre position (i.e. the central residue). PS and SS denote

the primary sequence and secondary structure labels respectively. A local windowed

residue environment (xn−dl , . . . , xn+dr ) is defined and the presence of each amino acid

is encoded using a one out of Ω binary coding scheme as shown. These vectors are con-

catenated to form the high dimensional input space from which predictions are made

via a classification method.

poses a dilemma for current research on predicting the secondary structure of
proteins (particularly on β-sheet classification), and more sophisticated machine
learning technologies are required. In order to capture long-range dependencies
in β-sheet secondary structures and show that they can indeed be exploited, we
compare two window size setups in the experiments: one is length-13 (i.e. dl = 6
and dr = 6) that is commonly used [6,9]; the other is length-31 (i.e. dl = 15
and dr = 15), with the intention of exploiting long-range interactions. For the
datasets we used, there are 286 features for the length-13 setup; by extending
the window size to length-31, the dimensionality of feature space increases to
682, leaving the classifier a feature exploitation challenge.

2.3 Data Sets and Experiment Setup

Two sets of non-homologous protein chains, namely RS1261 and CB5132, are stud-
ied in the experiments, where the automatic assignments of secondary structure
to experimentally determined 3D structures are performed by DSSP [7].

1 The set of 126 non-homologous globular protein chains is used in [14] and has been

tested by many current secondary structure prediction methods. It contains 23, 349
residues with 32% α-helix, 23% β-sheet, and 45% coil. Therefore, when treated as a

binary-class classification problem, the data set contains few positive examples.
2 The set of 513 protein sequences was constructed by [3], which includes almost all

the sequences in the RS126 dataset. It contains 84, 119 residues of which 22.7% are

β-sheets.
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Different from to [6,9,15], we reduced the eight classes of the DSSP assign-
ments to a binary state: E (β-sheet) and B (β-bridge) to E, and all other states to
∼E. A seven fold cross validation3 was then carried out to estimate the predictive
accuracy. Following [15], the statistical significance of differences in prediction
quality between window size setups was then evaluated by a paired t-test over
the cross-validation results. To avoid the selection of extremely biased partitions,
the RS126 (or CB513) dataset was randomly divided into seven subsets with each
subset having similar size of each type of secondary structures.

As experienced in the literature, the secondary structure prediction task tends
to be non-linear and the radial basis function (RBF) kernel is commonly used
[6,9,15]. Therefore, we also adopt the RBF kernel

K(xk, xl) = exp(−γ‖φ(xk)− φ(xl)‖2) (5)

for optimisation (2), where the parameter γ is tuned by cross-validation.
Finally, the area under the ROC curve [1] is applied to evaluate the perfor-

mance of SVM with different window size setups.

3 Results and Discussion

Tables 1 and 2 show the classification performances of linear and RBF classifiers,
and the RBF classifier working with the best selected subset of features on the
two datasets used. We first note that increasing window length improves perfor-
mance, implying that some long-range residue patterns are helpful in detecting
β-sheets. This is consistent with the postulation discussed in [15].

The classification performance of SVM with RBF kernels displayed in Table
1 and Table 2 is consistently better than SVM with linear kernels on both data
sets. Moreover, in this scenario SVM with length-13 performs better than SVM
with length-31, which is consistent with the “concern” in [6]. We believe that
this is due to interference terms of irrelevant residue patterns brought in by the
long window size. Since the feature space of the RBF kernel is of the form [8]

ϕ(x) = exp(−γ‖φ(x)‖2)
(√ (2γ)kCk

θ

k!
φ(x)θ

)∞

|θ|=k,k=0
(6)

where θ =
{
(θi)D

i=1|θi ∈ N, |θ| = θ1 + . . .+ θD = k
}
, Ck

θ = k!
θ1!...θD! and φ(x)θ =

φ1(x)θ1 · · ·φD(x)θD ; each feature would have influence on many other features.
In this case, irrelevant residue patterns can decrease the signal-to-noise ratio
severely and deteriorate performance.

In order to reduce or eliminate the influence of irrelevant features (i.e. residue
patterns at specific positions), we applied the Recursive Feature Elimination
(RFE) [5] technique to select important features (RFE-RBF). Specifically, the
length-31 features are first ranked by a linear SVM with RFE4. To speed up
3 The seven fold cross validation setup is inherited from [6,9].
4 We also tried to rank features by a RBF SVM with RFE, however, this setup biased

towards very rare features, which conversely destroyed the performance (the results

are not shown in this paper).
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Table 1. Prediction performances on the RS126 dataset, as measured by areas under

ROC curves, at two different window lengths and with feature elimination from the

longer of the windows. Performance of linear and RBF kernels are shown. P -values

of T -test for statistical significance in the differences between each method and the

RFE-RBF method (results in bold) are shown in the lower part of the table.

Window size
The area under the ROC curve
LINEAR kernel RBF kernel

length-13 75.24 ± 1.19 77.30 ± 0.83
length-31 76.22 ± 0.85 76.80 ± 0.75
RFE-RBF N/A 77.65 ± 0.75

P-value in T-test

Window size LINEAR kernel RBF kernel

length-13 3.60e − 4 3.98e − 2

length-31 1.97e − 4 3.70e − 3

Table 2. Prediction performances on the CB513 dataset. See caption of Table 1.

Window size
The area under the ROC curve
LINEAR kernel RBF kernel

length-13 75.59 ± 0.50 78.28 ± 0.64
length-31 76.96 ± 0.59 78.03 ± 0.73
RFE-RBF N/A 78.78 ± 0.73

P-value in T-test

Window size LINEAR kernel RBF kernel

length-13 7.86e − 7 1.00e − 3

length-31 1.25e − 7 4.00e − 5

the process, we eliminate 10 features each time. A proportion of the top ranked
features is then selected and the RBF kernel is constructed using these features
only. For the experiments on the RS126 dataset, the proportion is taken from
{ 1

4 ,
1
3 ,

1
2 ,

2
3} and the performance with respect to the proportion of features is

depicted in Fig. 3. We observed that when the proportion increases, the perfor-
mance first increases because of the increasing contribution of features to the
classification. But after a certain point (i.e. 1

2 in this experiment), the perfor-
mance decreases, possibly due to the influence of irrelevant features. In addition,
if we choose a proper proportion5, we are able to obtain better performance com-
pared with SVM with length-13 (see results in Table 1 and Table 2).

Fig. 4 depicts the features selected when the proportion achieved the best
performance on the RS126 dataset (i.e. using 50% of the features). It is clear
that not all the features selected are close to the central residue and certain
long distance positions (e.g. dr = 7 and dr = 15 in this experiment) are also
important for the classification. Meanwhile, when analysing the residue patterns

5 Best performance is achieved using about 50% of the features on the RS126 dataset;

while this proportion increases to 57% on the CB513 dataset.
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Fig. 3. Feature selection performance at various proportions of features used (RS126

dataset). From a window size of 31, best performance is achieved using about 50%

of the features. While the shorter window considered (length-13) is also about 50%,

feature selection selects those amino acid positions, consistent with the distribution

observed in Fig. 1.

Fig. 4. Selection of relevant residue patterns (RS126 dataset). The relevance of each

amino acid at each position with respect to the centre is shown as an intensity plot.

Automatically selected features include amino acids known to have a bias towards β-

sheet formation: D (Asp), F (Phe), G (Gly), I (Ile), L (Leu), M (Met), T (Thr), W

(Trp) and X.
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(amino acids), some patterns are shown to receive very popular votes. They are:
D (Asp), F (Phe), G (Gly), I (Ile), L (Leu), M (Met), T (Thr), W (Trp) and X
(unknown amino acids). This observation is consistent with some discussion in
[4]:

– The frequency of observation of a hydrophobic amino acid (e.g. Ile, Leu,
Met, Trp, Phe) one position before and one position after β-sheets is low.
Therefore, when they appear very close to the central residue, the central
residue is more likely to be ∼E.

– Asp and Gly tend to act as a β-sheet terminator and are therefore very
important in formatting β-sheets. In similar fashion, Thr has high propensity
for initiating a β-sheet and is also important for β-sheet formation.

In addition, another residue pattern: X (unknown amino acids) is also highly
weighted in this experiment, although it was not analysed in [4]. The reason
is that X is a rare feature, which appears only 11 times in the RS126 dataset.
Moreover, all examples containing this pattern are in class ∼E, which explains
why it is selected as an important residue pattern by RFE.

4 Conclusion and Future Work

Our observations show that some long range amino acid interactions can be cap-
tured in a feature reduction setting for improved prediction of β-sheet secondary
structures. In the feature selection process, the top ranked amino acids are those
that are specifically associated with the initiation and termination of β-sheet
formations.

In the immediate future, we will verify that the prediction advantage we found
for β-sheets is not observed when trying to classify α-helices from coil structures.
We also intend formulating the prediction problem as a structured learning prob-
lem to exploit long-range dependencies in a principled manner, as for example
in the phrase disambiguation task of machine translation [10].
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Abstract. Multiple approaches have been developed in order to predict

the protein secondary structure. In this paper, we propose an approach

to such a problem based on evolutionary computation. The proposed ap-

proach considers various amino acids properties in order to predict the

secondary structure of a protein. In particular, we will consider the hy-

drophobicity, the polarity and the charge of amino acids. In this study,

we focus on predicting a particular kind of secondary structure: α-helices.

The results of our proposal will be a set of rules that will identify the

beginning or the end of such a structure.

Keywords: Protein Secondary Structure Prediction, α-helix, Evolution-

ary Computation.

1 Introduction

Bioinformatics has been described as the science of managing, mining, and
interpreting information from biological sequences and structures [1]. Two
important fields are considered in Bioinformatics: Genomics and Proteomics.
Genomics is the study and analysis of the genomes of organisms, while
Proteomics is defined as the characterization and identification of the proteins
encoded in a genome.

Proteins are one of the basic components in all organisms. Proteins form the
basis of cellular life since they significantly affect the structural and functional
characteristics of different cells and genes. The structure of a protein is divided
into four hierarchy levels. At the first level, proteins are composed of linear
sequences of amino acids linked by natural peptide links. This is known as the
primary structure of the protein.

The change in one amino acid in a critical area of the protein may alter the
biological function, as the higher level structures of the proteins are determined
by the primary structure. The secondary structure of a protein is the consequence
of the polypeptide chain folding. At this level, some protein structures like
α-helices, β-sheets, turns and coils are present. The tertiary structure is the
three-dimensional shape of the chain, while the quaternary structure is the final
three-dimensional structure composed by all polypeptides chains that form a
protein [1,2].

T.M.H. Dijkstra et al. (Eds.): PRIB 2010, LNBI 6282, pp. 358–367, 2010.
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With the success of the genome sequence projects, the amount of available
proteins sequences has increased dramatically. However, the number of protein
structures available is relatively small. This is due to the difficulty of predicting
the structures that a protein will assume based only on its amino acid
sequence. This implies that it is crucial to develop computational methods
for automatically predict the 3D structure of proteins from their sequences.
Knowledge of protein structure has great importance to the development of new
drugs.

The problem of protein secondary structure prediction (PSSP) consists in
predicting the location of α-helices, β-sheets and turns from a sequence of amino
acids without any knowledge of the tertiary structure of the protein. PSSP has
received much attention lately, since knowledge of the location of the elements
in secondary structure could be used by approximation algorithms to obtain
the tertiary structure of the protein. Being able to predict, from the amino
acid sequence, how a protein will fold, is one of the main open problems in
computational biology.

Several methods were applied to the PSSP problem. These methods can be
divided into two categories: statistical and soft computing approaches. Statistical
methods are based on the calculation of amino acid probabilities to belong
to a secondary structure motif [3,4,5]. Soft computing provides processing
capabilities in order to solve the problem of PSSP. The most popular soft
computing paradigms for PSSP are: artificial neural networks (ANNs) [6,7,8],
evolutionary computation [9], nearest neighbors [10,11] and support vector
machines (SVMs)[12,13]. Some soft computing methods used in this problem are
focused on determining contact maps (distances) between amino acids residues
of a protein sequence. When a contact map is defined, proteins can be fold and
the tertiary structure can be obtained.

In this paper, we propose a method, based on an evolutionary algorithm
(EA), to predict α-helices from sequences of amino acids. We believe that EAs
are good candidate form tackling this problem. In fact, PSSP can be seen as a
search problem, where the search space is represented by all the possible folding
rules. Such a space is very complex, and has huge size. EAs have proven to be
particularly good in this kind of domains, due to their search ability and their
capability of escaping from local optima.

In our proposal, prediction is made ab initio, i.e., without any known protein
structure as a starting template for the search. The prediction model will consist
in rules that predict both the beginning and the end of the regions corresponding
to an α-helix. Existing methods fail in the α-helix boundaries prediction [14].
In a future development of the algorithm, we also intend to evolve rules for
predicting β-sheets.

Previously, some evolutionary approaches have been applied to secondary
structure prediction. In [15], a torsion angle representation representation was
used. Torsion angles, denoted as (Φ, Ψ ), represent the atom position of an
amino acid chain, determining the polypeptid arquitechture chain. A possible
representantion can be [(Φ1, Ψ1)...(Φn, Ψn)] where n represents the total number
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of residues in a protein. The values that Φ and Ψ can assume are limited, since
atom colissions must be avoided according to Ramachandran chart [16]. In lattice
models developed in [9], each element location can be represented as a vector
(x1, y1)...(xn, yn) where x and y are the coordinates of each amino acid in a
2-dimensional lattice (or three coordinates in a 3-dimensional lattice).

The rest of paper is organized as follow. In section 2, we discuss our
proposal to predict protein secondary structure motifs. Section 3 provides the
experimentation and the obtained results. Finally, in the last section, we draw
some conclusions and analyze possible future works.

2 Our Proposal

In this section, we present our proposal for the prediction of α-helices. An α-helix
corresponds to a subsequence of amino acids, as shown in figure 1. Each amino
acid in the sequence is identified by its position, being amino acids in positions
N-cap and C-cap those that immediately precede or follow the beginning or the
end of the structure, respectively.

NCAP N1 N2 N3 ... C3 C2 C1︸ ︷︷ ︸
α−helix

CCAP

Fig. 1. Relevant positions in an α-helix

Figure 2 represents our experimental procedure to predict protein secondary
structure. First, the α-helix sequences are obtained from the Protein Data Bank
(PDB) [17], as described in the following sections. These data constitute the
training set. Then, our EA is applied and a set of rules are generated. We generate
rules for predicting the beginning and the end of an α-helix separately. At the
end of the EA, a set of rules will be extracted.

In the following we discuss the various solutions we adopted for what regards
the fitness, the representation and the genetic operators used.

2.1 Encoding

In our approach, each individual may represent either the beginning or the
end of an α-helix. Namely, each individual represents three properties of amino
acids in positions N-cap, N1 or C1, C-cap. These are the limits of an α-helix
sequence. The represented properties are hydrophobicity, polarity and charge.
These properties have been shown to have certain relevance in PSSP [1,2]. We
use Kyte-dolitle hydropathy profile for the hydrophobicity [18]. We have selected
Grantham’s profile [19] for polarity and Klein’s scale for net charge [20]. The
values of the properties are then normalized to a range of between -1 and 1 for
hydrophobicity and polarity. Three values are used to represent the net charge
of a residue: -1 (negative charge), 0 (neutral charge) and 1 (positive charge).
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Fig. 2. Experimental and prediction procedure

P1 P2 P3 P4 P5︸ ︷︷ ︸
N−Cap

P ′
1 P ′2 P ′

3 P ′
4 P ′

5︸ ︷︷ ︸
N1

Fig. 3. Example of chromosome codification for a beginning of an α-helix

So, for instance, in figure 3, positions P1, P2, P ′
1, P ′

2 represent the
hidrophobicity values of the first and second amino acid respectively. Positions
P3, P4, P ′

3, P
′
4 represent the polarity values according to Grant scale of the first

and second amino acid respectively. Finally, positions P5 and P ′
5 represents the

net charge property values of the two amino acids.

2.2 Fitness Function

The aim of the algorithm is to find both general and precise rules for identifying
helices. To this aim, we have chosen as fitness of individuals the F-measure,
which is given by the following formula:

F = 2 · Recall · Precision
Recall+ Precision

.

The higher the fitness, the better the individual. Recall represents the proportion
of training examples that matches this rule. Precision represents the error rate.

Moreover, we also consider some physical-chemical properties (polarity and
charge) information of the amino acids in positions N-Cap, N1 or C1, C-Cap,
if the rule is relative to a beginning or an end of a helix, respectively. It has
been demonstrated that there are molecules with asymmetrical distributions of
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charge in the limits of an α-helix [21]. This means that the residues in limits of
the helix are polar, so the fitness of these individuals is increased. Moreover, in
[22,23], it has been proven that many helices present a positive charge in its last
turn and a negative charge at its first turn.

We increase the score of those individuals that fulfill one requirements in a
50%, and in a 100% for those individuals that present the two properties.

2.3 Genetic Operators

Individuals are selected with a roulette wheel mechanism. A roulette wheel is
built, where the sector associated with each individual of the population is
proportional its fitness. Individuals with higher fitnesses have more probability
of being selected, having wider sectors associated to them.

Uniform crossover is used in order to generate offsprings. Crossover is applied
with a 1.0 probability. All the offsprings are made by crossover except the
one with best score which was copied without any change (elitism). Mutation
is applied with a probability of 0.5. If mutation is applied, one gene of the
individual is randomly selected, and its value is increased or decreased by 0.01.
If the selected gene is relative to the charge of the amino acid, then its value is
randomly changed to one of the other two allowed possibilities. After that an
individual has been mutated, it is checked for validity, i.e., its values are within
the ranges allowed for each properties. If the encoded rule is not valid, then the
mutation is discarded.

The initial population is randomly initialized. After having evaluated the
initial population, the first generation is created. If the fitness of the best
individual does not increase for twenty generations, the algorithm is stopped
and a solution is provided.

We evolve two populations separately: one population contains individuals
that encode rules identifying the beginning of an α-helix, while the other
population contains individuals representing rules for the end of the helix. At
the end of the evolutionary process, the best individuals from each population
are extracted, and together they form the proposed solution.

3 Experiments and Discussion

In this section, we present the experimentation performed in order to assess the
validity of our proposal.

In order to test the proposed algorithm, we have used data obtained from
PDB. Protein secondary structure is obtained from amino acid sequences, as
well as the distances between pairs of amino acids. All this information is
included in the PDB site. The Worldwide PDB [24], is an international col-
laboration organized by the processing and distribution of the PDB file. The on-
line PDB file [17] is the repository that coordinates and related information on
nearly 65, 000 structures (65, 378 structures in May 18, 2010), including proteins,
nucleic acids and complex macromolecules that have been obtained through
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techniques of X-ray crystallography, NMR (nuclear magnetic resonance) and
electron microscope.

We have obtained a set of 12, 830 non-homologous different protein sequences
with an homology lower than 30%, using the PDB Advanced Search [25]. We have
only selected the structures which contains protein chains and not DNA or RNA
chains using the Macromolecule type option. We reject the redundant sequences.
The complete list of the 12, 830 PDB protein identifiers can be downloaded in
[26]. We parsed the required information from PDB files. At the Secondary
Structure Section of PBD, different α-helix sequences of each protein can be
obtained with the HELIX command. Once we have located the motifs in the
protein sequence, we extract from this sequence, the amino acids from N-cap to
C-cap positions of the helix (figure 1), which are relevant positions in a α-helix
[21]. We have selected a subset of 5, 000 α-helices sequences from a subset of
proteins with length less than 150 residues from these 12, 830 proteins. Each of
these 5, 000 sequences includes a begining and an end of helix. Thus, we have
5, 000 windows of two amino acids in C-cap, C1 positions and 5, 000 windows of
two amino acids in N1, N-cap positions. These sequences represent our training
data. The average size of the α-helix sequences is 9.86 residues.

A 10-fold cross-validation has been applied. The data set is divided into 10
subsets, and the holdout method is repeated 10 times. Each time, one of the 10
subsets is used as the test set and the other 9 subsets are put together to form
a training set. Then the average result across all 10 trials is computed.

For each fold, we obtained the confusion matrix. Each column of the
matrix represents the number of true or false predictions of a class, and each
row represents the number of real instances. More specifically, the matrix
contains information about the True Negatives (TN), False Positives (FP), False
Negatives (FN), and True Positives (TP). TN is the number of correct predictions
for a negative case (no ends or beginnings), FP is the number of incorrect
predictions for a positive case (ends or beginnings of an helix), FN is the number
of incorrect predictions for a negative case (no ends or beginnings) and TP is
the number of correct predictions for a positive case (ends or beginnings of an
helix).

For each fold, we compute the following results:

– Recall represents the percentage of correctly identified positive cases. In our
case, Recall indicates what percentage of motifs has been correctly identified.

Recall =
TP

TP + FN
.

– Precision is a measure of false positive rate. Precision reflects the number of
real predicted examples.

Precision =
TP

TP + FP
.

– Specificity, or True Negative Rate, measures the percentage of correctly
identified negative cases. In this case, Specificity reflects what percentage
of no motifs has been correctly identified.
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Specificity =
TN

TN + FP
.

– Accuracy is also calculated.

Accuracy =
TP + TN

TP + TN + FP + FN
.

At each execution, a model is obtained. This model consists of two rules, one
that identifies the beginning of an α-helix, and the other that identifies the end of
such a structure. Since the number of rules needed to provide the best results is
unknown, we have performed different experiments with different number of runs
of the algorithm, namely from 10 to 40. So, for instance, after the experiments
with 10 runs, a model with twenty rules is obtained, where half of the rules
represent the beggining of an α-helix and the other half represent the end.

Table 1 and 2 show the obtained results relative to the N-cap and C-cap
prediction, respectively. The first column specifies the number of execution of
the algorithm, the second column gives the average recall obtained. The third
and fourth columns provide the average specificity and precision, respectively.
The last column is relative to the average accuracy obtained. For each measure,
the standard deviation is also provided.

From tables 1 and 2, it can be noticed that the model provided by the
algorithm is always very accurate, in fact, the average accuracy obtained is
very high in all the cases, being the average 0.99. The precision of the model
is also satisfactory, with an average of 0.70. This means that model obtained
commits few classification errors. The average recall is about 0.60 for beginnings
and 0.58 for ends of helix, which represents a good result es well, and it means
that on average, 60% of the α-helices are recognized as such. We can also notice

Table 1. Average results and standard deviation obtained for different number of

executions of the algorithm for N-cap prediction

Executions Recallμ±σ Spec.μ±σ Prec.μ±σ Accuracyμ±σ

10 0.5525±0.0437 0.9895±0.0005 0.6553±0.0232 0.9935±0.0008

20 0.6212±0.1156 0.9924±0.0007 0.6857±0.0220 0.9948±0.0015

30 0.6275±0.0922 0.9948±0.0005 0.7368±0.0315 0.9940±0.0016

40 0.6025±0.0848 0.9937±0.0006 0.7320±0.0372 0.9937±0.0013

Table 2. Average results and standard deviation obtained for different number of

executions of the algorithm for C-cap prediction

Executions Recallμ±σ Spec.μ±σ Prec.μ±σ Accuracyμ±σ

10 0.5933±0.0565 0.9889±0.0005 0.6338±0.0218 0.9955±0.0007

20 0.5728±0.1185 0.9943±0.0006 0.6589±0.0250 0.9952±0.0018

30 0.5936±0.0933 0.9935±0.0006 0.6859±0.0302 0.9972±0.0020

40 0.5870±0.0848 0.9925±0.0006 0.7005±0.0450 0.9966±0.0015
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that producing a model with more rules (the more executions the more rules
will be part of the model produced) does not neccessarily help in increasing the
precision. For the rest of the measures, the results become more or less stable
after 20 executions of the algorithm.

Our algorithm is capable of producing satisfactory results using an elevated
number of sequences (5, 000 beginnings and 5, 000 ends of helix sequences). This
is, in our opinion, an important result, since the number of protein sequences
available increase by the day, and thus, having a method that is scalable would
be very important.

Other approaches were developed to predict starts of helix. The start position
are correctly predicted for approximately 30% of all predicted helices in [14].
The number of correctly predicted alpha-helix start positions was improved from
30% to 38% in [27]. These results are widely exceeded by our approach, as our
algorithm predicts about 60% of the start positions correctly. We have not found
references for the C-cap helix prediction in literature.

It is also interesting to inspect the behavior of our EA. Figure 4 shows a
graphical representation of the maximum and average fitness values at different
generations relative to a typical run. We can notice that the maximum fitness
is achieved very early, at about generation seven, and then it is stable. This
may suggest that we should try to increase the mutation probability, or apply
a mutation operator that introduces more changes in an individual, in order to
increase diversity in the population. Another estrategy, could be to apply some
local search method with a given probability. Such local search would help in
improving the fitness of the individuals.

On the other hand, the average fitness increases constantly, and tends to
converge to the maximum fitness toward the end of the run.
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4 Conclusions and Future Work

In this paper, we have proposed an evolutionary algorithm for the prediction of α-
helix motifs in protein sequences. The algorithm incorporates in the fitness three
amino acids properties: hydrophocity, polarity and net charge. These properties
have been shown to be relevant in the determination of the beginning and end
of helices, and thus they helped to improve the search process performed by the
algorithm.

We have performed experiments using a set of 5,000 α-helix sequences
extracted from a protein data set from Protein Data Bank composed by 12,830
non-redundant and non-homologous protein with an homology rate lower than
30%. To the best of our knowledge, no other approaches have used such an high
number of sequences in α-helix capping regions prediction. Results obtained on
this data set are encouraging and in particular, the accuracy characterizing the
prediction models obtained is very high independently from the number of rules
generated.

As for future development, we are analyzing different properties to be
included in the fitness function in order to increase the quality of the prediction
model. Moreover, we are studying the possibility of incorporating a local search
phase that will help to improve individuals. We also intend to extend our
experimentation to other datasets of protein sequences and we want to expand
the number of residues in the window of amino acids. Finally, we also want to
produce a model for the prediction of both α-helices and β-sheets.
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Abstract. An important unsolved problem in structural bioinformat-

ics is that of protein structure prediction (PSP), the reconstruction of

a biologically plausible three-dimensional structure for a given protein

given only its amino acid sequence. The PSP problem is of enormous

interest, because the function of proteins is a direct consequence of their

three-dimensional structure. Approaches to solve the PSP use protein

models that range from very realistic (all-atom) to very simple (on a lat-

tice). Finer representations usually generate better candidate structures,

but are computationally more costly than the simpler on-lattice ones. In

this work we propose a combined approach that makes use of a simple

and fast lattice protein structure prediction algorithm, REMC-HPPFP,

to compute a number of coarse candidate structures. These are later re-

fined by 3Distill, an off-lattice, residue-level protein structure predictor.

We prove that the lattice algorithm is able to bootstrap 3Distill, which

consequently converges much faster, allowing for shorter execution times

without noticeably degrading the quality of the predictions. This novel

method allows us to generate a large set of decoys of quality comparable

to those computed by the off-lattice method alone, but using a fraction

of the computations. As a result, our method could be used to build large

databases of predicted decoys for analysis, or for selecting the best candi-

date structures through reranking techniques. Furthermore our method

is generic, in that it can be applied to other algorithms than 3Distill.

Keywords: Protein Structure Prediction, HP model, Contact Maps,

Simulated Annealing, Replica Exchange Monte Carlo.

1 Introduction

Protein structure prediction (PSP) is the problem of inferring the tertiary struc-
ture of proteins given only information on their primary structure. This problem
is of the highest importance for several reasons: the function of a protein is
strictly tied to its three-dimensional structure, but the experimental determina-
tion of the tertiary structure is still a complex, time consuming and expensive
process. In addition, in some cases it is impossible to obtain structural infor-
mation with experimental techniques: many proteins are too large for NMR
analysis and some classes of proteins such as membrane ones are very difficult
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to crystallize for X-ray diffraction [4]. As a matter of fact, most of the known
protein sequences are not yet assigned a corresponding structure: in spite of the
long-standing community-wide effort, most known proteins still lack a resolved
structure, and of the nearly two million protein sequences currently known, fewer
than 2% have an associated structure.

Following the idea that similar sequences are bound to represent similar struc-
tures [6], at least at a local level, comparative modeling methods have been de-
veloped which exploit local homology information to compute the structure of
novel query protein sequences. Remote homology techniques are employed for
fold recognition when sequence conservation is lacking. However, when no close
or remote homologues are available, these methods cannot be applied, and de
novo structure prediction must be performed.

The current methods for de novo PSP can be split in roughly three groups.
A first group accounts for all-atom molecular simulation methods, which try to
mimic the physical folding process starting from first principles. They have huge
computational requirements and have not been very successful for realistically
sized proteins. A second group includes all those methods that search the space
of atom- or residue-level conformations for a native-like fold using some more
or less empirical energy function to assess the quality of the candidate struc-
tures. Meta-heuristic optimization algorithms are usually employed to perform
the search. These methods have had much more success than the ones in the
previous class, but they are still very computationally expensive. Finally, a third
group includes methods that rely on residue-level (or coarser) structure represen-
tations and enforce them to lie on a regular lattice, embedded in purely synthetic
force fields. Methods in this group can find a native-like decoy with relatively
less computational effort than methods in the former groups, but the resulting
structures are not as realistic. They are typically used as tools to analyze the
statistical properties of the folding landscape, rather than to generate reliable
structures.

In this work we present a novel method that combines the complementary
strengths of off-lattice empirical models and on-lattice ones, and allows to gen-
erate a large number of comparatively good quality decoys with a fraction of
the computational power required by standard methods. The underlying idea is
to combine two existing de novo PSP algorithms: a modified version of REMC-
HPPFP [15], a fast prediction method based on a very coarse structure represen-
tation, which is used to compute a first set of rough decoys; 3Distill [1], a more
realistic method that uses a finer structure representation, which is employed to
refine the decoys generated by REMC-HPPFP. Albeit based on a simple idea,
we prove that our method is indeed able to combine the features of REMC-
HPPFP and 3Distill: it generates competitive structures with much less effort.
Furthermore, the idea underlying our method is generic, meaning that it is in
no way restricted to 3Distill, and may prove useful to improve the efficiency of
other fine-grained structure prediction algorithms.

This paper is structured as follows. In Section 2 we review some of the relevant
methods for the protein structure problem. In Section 3 we describe our combined
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PSP approach and the two methods on which it is based. In Section 4 we describe
the experiments carried out to benchmark our method and compare it to the
baseline. In Section 5 we discuss the results of the experiments and show that our
method is ultimately successful in reducing the amount of computation required.
Finally, in Section 6 we draw the conclusions on this work and describe some
future research directions.

2 Related Work

De novo PSP methods include both off-lattice and on-lattice models and meth-
ods. In off-lattice models, the residues are free to be placed at arbitrary contin-
uous coordinates in the three-dimensional Euclidean space. The simplest way to
represent residues is as hard spheres of fixed radius centered on the Cα atom, but
other more complex representations are available as well. In other, intermediate
models, all the atoms of the backbone are modeled, but the side chain is repre-
sented as a hard sphere centered at the center of mass of the real side chain. It
has been noted however that the lower computational demands of coarse-grained
models does not necessarily come at the cost of inferior expressiveness [10].

In on-lattice models the protein conformation is restricted, such that each
residue occupies a different vertex on a lattice. Consecutive residues in the pri-
mary structure are placed at adjacent positions, and the protein chain becomes
itself a self-avoiding path on the lattice. Lattice models employ a variety of two-
and three-dimensional lattice: square, triangular, cubic, face-centered cubic, di-
amond, and others with very high degrees of freedom. For the representational
power of different common and less-common lattices, we refer the reader to [11].
On-lattice models have been chiefly used as tools for studying protein folding, be-
cause the simplified representation allows for an easier mathematical treatment
[10].

Common approaches to the PSP problem include the aggregation of short
structural fragments, for instance Rosetta [12], and the use of contact maps
[16,1]. We focus on the latter approach. The idea is to split the prediction task
into two simpler sub-tasks: first generate de novo an accurate, residue-by-residue
contact map from the protein sequence, and then reconstruct the protein struc-
ture from the contact map. This is a sound approach, as contact maps can be
shown to encode the same information as the structure they represent [16]. To
date, a few contact map predictors have been proposed: SVMcon [2], Xxstout [1],
and NNcon [14] among others. As for the reconstruction process itself, a popular
approach is to use some form of stochastic optimization, as in the seminal paper
by Vendruscolo et al. [16] and 3Distill [1].

3 Method

Our proposed method is based on two well known existing de novo PSP algo-
rithms: in the next couple of sections we will introduce them and explain their
pros and weaknesses.



An On/Off Lattice Approach to PSP from Contact Maps 371

3.1 3Distill

An often advocated approach to the PSP is to split the main de novo struc-
ture prediction problem into a set of simpler prediction tasks. Distill [1] is a
hierarchy of state-of-the-art prediction servers that follows this approach. The
Distill servers compute a number of one-dimensional features (such as secondary
structure, solvent accessibility, and contact density) and two-dimensional fea-
tures (such as fine and coarse contact maps, coarse protein topology). The main
idea is that all servers make use of features predicted in the lower levels of the
hierarchy, starting from the primary structure, to predict more complex features.

At the top of the hierarchy, the 3Distill server computes the protein tertiary
structure, as a residue-level Cα trace, given predicted features from all the other
servers. A preliminary implementation of 3Distill took part to the CASP 6 com-
petition [8] and was ranked among the best 20 predictors out of 181 on Novel
Fold hard targets and Near Novel Fold targets. 3Distill was chosen because it is
simple and relatively fast when compared to other de novo algorithms.

The main feature input into 3Distill is a predicted (multi-class) contact map,
which specifies a set of soft physical constraints for all pairwise inter-residue
distances. For a detailed description of contact maps, see [16]. Other input fea-
tures include a predicted per-residue secondary structure and a predicted coarse-
grained contact maps, which defines the appropriate distances between pairs of
secondary structure elements. To avoid the computational burden of all-atom
models, 3Distill relies on a reduced backbone-only protein model. Furthermore,
residues that are predicted to belong to an α-helix are modeled as rigid, ideal
helices. This solves the problem of folding the helices during the optimization
stage, and decreases the complexity of the conformational search. To mimic the
minimal observed distance between atoms of different amino acids, the volume
of each Cα is modeled as a hard sphere of radius 5.0 Å, and the distance between
consecutive residues is set to 3.8 Å. These values were rigorously inferred from
statistical analysis of real world data [1].

All candidate conformations have an associated pseudo-potential that is de-
fined in terms of the input contact maps and secondary structure. The energy
of a conformation estimates how much it violates the constraints imposed by
the given fine and coarse contact maps, while at the same time penalizing non-
physical configurations (i.e., overlapping or too far away residues). For an in
detph description, see [1].

The mechanism used by 3Distill to search for the native conformation is Sim-
ulated Annealing (SA) [7]. SA is an iterative procedure: starting from a random
candidate structure, at each iteration it perturbates the structure producing an-
other candidate configuration. The newly generated configuration replaces the
old one if it is better (has a lower energy), with probability one; or if it is worse
(higher energy) with a probability that depends on the magnitude of the en-
ergy difference. This second condition is controlled by a so called temperature
parameter: when the temperature is high, even very bad configurations have a
high probability of having accepted; when it is low, almost all worsening con-
figurations are rejected. In 3Distill the temperature decreases linearly with the
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number of iterations, meaning that as the search proceeds the temperature moves
towards zero and the probability of accepting worsening moves goes to zero as
well. For further details, we refer the reader to [7].

In 3Distill, each iteration of SA traverses the whole structure, perturbating
each residue in the order in which it appears in the protein chain. A perturbation
amounts to displacing a residue according to the following rules: (1) If the residue
is neither an endpoint nor in a helix, it is rotated by a random angle around the
segment joining its two neighboring residues. (2) If the residue is an endpoint of
the chain and not part of a helix, it is rotated at random around its only neighbor.
(3) If the residue is part of a helix, the whole helix is rotated at random. This
set of moves guarantees 3Distill to efficiently explore the conformational space.
We note that each traversal of the protein structure amounts to h perturbations,
where h is the overall number of free residues (not in a helix) and helices. The
SA algorithm stops after a given amount of traversals.

3.2 REMC-HPPFP

The Hydrophobic-Polar model (HP model for short) [3] is a very basic model of
protein folding based on a reduced, residue-level representation of the tertiary
structure. In this model, proteins are represented as backbone-only configura-
tions and the residues are forced to lie on a regular, typically cubical lattice,
with no overlap. In the HP model, each residue is either hydrophobic (H) or
polar (P). The HP model is designed to capture the fact that folding is mainly
driven by hydrophobic interactions between the residues. Following this idea,
the energy of a configuration x is defined empirically in terms of neighboring
residues: two residues are called topological neighbors if they are not consecutive
in the protein sequence and share an edge of the lattice. The energy associated
to an HP configuration is the negated number of topological neighbors that are
both hydrophobic. In other words, this energy function favors those configura-
tions containing a densely packed core of hydrophobic residues. Solving an HP
problem instance involves finding the native conformation, that is, the structure
having the lowest possible associated energy.

Despite its simplicity, the HP model has been proven to be NP-complete in
both two and three dimensions on the cubic lattice [7, 14], and NP-hard on
a general lattice [21], including the face-centered cubic and triangular lattices.
For this reason, HP model solvers usually resort to heuristic optimization al-
gorithms to search the conformational space. REMC-HPPFP [15] is one of the
state-of-the-art solvers of square and cubic lattice HP instances. It makes use
of a very effective stochastic search procedure, named Replica Exchange Monte
Carlo (REMC for short) that is especially geared towards high-dimensional op-
timization problems. REMC-HPPFP has been shown to lead to superior results
with respect to competing methods, such as PERM [5] and ACO-HPPFP-3 [13]
in a set of synthetic and on biologically-derived benchmark instances [15]. The
core features are the REMC optimization heuristic and the set of moves used to
perform the search itself. We briefly discuss them in the following, see [15] for
details.



An On/Off Lattice Approach to PSP from Contact Maps 373

The REMC search heuristic is reminiscent of Simulated Annealing, in that a
candidate protein structure is perturbated at each iteration, by applying a ran-
dom move, and the resulting structure is accepted or rejected depending on the
energy delta with respect to the old configuration. However in this case, multi-
ple configurations, called replicas, are optimized concurrently. Each configuration
has its own fixed temperature, which does not decrease with time. Replicas are
indexed from 1 to m, and the temperature of each replica is a monotonically in-
creasing function of its index. Once every k iterations, with k a fixed parameter,
the energy of adjacent replicas is compared, and if certain energy conditions are
met, the two replicas are exchanged, meaning that the ith replica will become
the (i+ 1)th and vice versa. This way the replicas change temperature based on
their energy level. The set of moves used by REMC-HPPFP to perturbate the
candidate configurations comprises a set of standard residue by residue moves,
termed VHSD moves, and the non-standard pull move [9]. This set of moves is
the most complete and efficient set of moves available to date for the HP model
on the square and cubic lattices.

3.3 On/Off Lattice Cascade

The main issue with 3Distill is that, even being one of the simplest de novo pre-
dictors proposed, the conformational space is huge and requires a large amount
of computational power to find low energy configurations. This is a common
problem for all fine-grained structure predictors. On the other hand, the REMC-
HPPFP algorithm shows very good performances on HP instances. Our primary
aim in this work is to combine the efficiency of on-lattice methods with the ac-
curacy of off-lattice models. We do so by first using a suitably modified version
of REMC-HPPFP to quickly produce a candidate on-lattice structure that (par-
tially) satisfies a given residue-level contact map, and then refining the obtained
structure by using 3Distill with the same contact map. The intermediate lattice
structures generated by the modified REMC-HPPFP can be thought as boot-
strapping 3Distill, by making it start its search from more favorable regions of
the search space.

To obtain the best results from the cooperation of REMC-HPPFP and 3Dis-
till, we had to implement a new lattice energy function. The new function defines
the fitness of a configuration in terms of how much it satisfies a given multi-class
contact map. The formal definition is as follows:

E(x;C, p, k) =
∑
i,j

E(dij ; cij , p, k)

E(dij ; cij , p, k) =

⎧⎨⎩
|dij − τc|p if dij < τc
|dij − τc+1|p if dij > τc+1
−k otherwise

where x is a candidate protein structure, C = [cij ] is a multi-class contact map,
with each class c having range [τc, τc+1], and dij is the Euclidean distance be-
tween residues i and j. The pairwise energy potential is a polynomial of the
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difference between the actual distance between residues i and j and the clos-
est threshold of the predicted contact class. The two constants p and k are
parameters used to adjust the energy function to the data at hand. In particu-
lar, k defines the net gain for a satisfied contact, and p controls the amount of
penalty for an unsatisfied contact. In this new model, structures lie on a cubic
three-dimensional lattice of fixed side 3.8 Å, the same as the default inter-residue
distance for 3Distill.

To summarize, our method consists of a modified REMC-HPPFP version that,
by virtue of a new energy function, is able to find on-lattice configurations that
best satisfy a given residue-level contact map. Aside from the new energy func-
tion, the REMC-HPPFP algorithm is unchanged. This novel method is used to
generate one or more lattice configurations, which are then refined with 3Distill;
both algorithms use the same predicted contact map. All in all, the new cascade
method requires four additional parameters to be specified: p and k shape the
energy function, the other two are T1 and T2, the number of iterations to run
the on-lattice and off-lattice algorithms for, respectively.

To allow for a common measurement unit of computation, we define the con-
cept of big iteration as a complete traversal of the protein structure by the search
algorithm. For 3Distill a big iteration involves h structure perturbations, each
requiring to compute the value of the energy function for the newly generated
configuration, for a total of h = O(n) energy computations. For REMC-HPPFP,
a big iteration equates to n×m structure perturbations, where m is the number
of replicas, again amounting to O(mn) = O(n) energy updates. The computa-
tional complexity of the two algorithms is thus O(n2) per big iteration, as both
require O(n) pseudo-instructions for each energy function evaluation.

4 Experiments

The goal of the experiments is to assess the ability of our combined method to
generate decoys of quality comparable to that of the original 3Distill algorithm,
and to evaluate the amount of computation required to attain such decoys. The
quality of the decoys is defined in terms of the TM-score [17] to the experi-
mentally determined native fold. TM-score values range in [0, 1], with all values
larger than 0.4 suggesting a topologically correct prediction, and for all scores
above 0.7 a good structural superposition between the predicted and the native
folds.

The tests are based on a dataset of 171 proteins with no detected homology,
with length between 50 and 200 residues. The contact maps were predicted by
Xxstout [1] with threshold values τ1 = 8Å, τ2 = 13Å, and τ3 = 19Å using a
recursive neural network while exploiting evolutionary information in the form
of multiple alignment profiles, plus the contact map of the nearest template when
available. All template-matching qualities and all relevant SCOP classes (all α,
all β, α/β, α+β, coiled-coil, and small) are represented in this data set. The
data was kindly provided by the Distill team.
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4.1 Selection of the Lattice Energy Function

The goal of the first batch of experiments was to tune the parameters p and k of
the new lattice energy function to maximize the TM-score of the resulting decoys
as expected. During previous experiments we observed that the quality of 3Distill
results is positively correlated to the TM-score of the inputs structures, and the
same holds for its convergence. The dataset is varied enough to guarantee that
the parameters p∗ and k∗ found are generalizable to other data sets. During these
experiments, for simplicity we kept the other parameters of the modified REMC-
HPPFP fixed to values used in the original paper for the three-dimensional lattice
[15]. In particular, the number of replicas is two.

For this set of experiments, we sampled the performance of the modified
REMC-HPPFP for (p, k) values taken from a grid in the (p, k) parameter space.
A preliminary set of runs was performed on a small subset of protein instances
to determine the extents of the grid, for a total of 10 structures for each pro-
teins, 100 iterations each. We found some reasonable values to be p ∈ [0.25, 2.25]
(at increments of 0.50) and k = {0, 10, 100, 1000}. Outside this range, the per-
formance of our method degraded quickly. The grid itself is uniform in the p
dimension and exponential in k: the reason is that p appears as an exponent
in the energy function, while k is an additive linear term. Next we performed
a thorough exhaustive search: for each (p, k) value in the grid, now with p in-
crements of 0.25, we ran our modified REMC-HPPFP on all proteins in the
dataset, 100 runs per protein, 100 iterations per run, and compared the average
TM-score of the generated decoys. Using this method, the best parameters were
found to be p∗ = 1.75 and k∗ = 0.

4.2 Behavior over Time

Given the optimal values p∗ and k∗, we evaluated the number of big iterations
(T1, T2) that our method needs to obtain results comparable to those of 3Distill
alone. To compare the performance of our combined approach to 3Distill, we
use the ratio between the TM-score reached by our algorithm and the best
TM-score obtained by 3Distill alone. We defined a uniform grid in the (T1, T2)
parameter space. The upper bound for T2 < 5000 was determined experimentally
by observing the number of big iterations needed to achieve pseudo-convergence
with 3Distill. For T1 we just used the same number of iterations defined in the
original paper, T1 < 100.

In all the runs, the lattice algorithm was run with the same parameters as
in the previous set of experiments, together with the newly found p and k. The
parameters of 3Distill were setup as in [1]. We ran the combined algorithm for
all proteins in the dataset, 100 runs for each protein, with T1 < 100 and T2 <
5000, recording the intermediate candidate structures during the optimization
procedures, so to properly fill in the (T1, T2) grid.

For every protein and (T1, T2) pair, we computed the average TM-score of
the predicted folds and normalized it with respect to the average TM-score of
the structures for the same protein found at (T1, T2) = (0, 5000). We call this
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quantity the “quality ratio”, i.e., the ratio between the TM-score for proteins
found by our method using (T1, T2) iterations, and the TM-score of the structures
predicted by 3Distill. Then for each point in the (T1, T2) grid we computed the
average of the structure quality ratio over all decoys and over all proteins.

We note that the number of energy evaluations per big iteration in 3Distill is
equal to the number of control points h, whereas for REMC-HPPFP it is equal
to the number of residues n for each replica. Despite being both asymptotically
O(n), in practice these two quantities are not identical. This makes it difficult
to experimentally compare the values of T1 and T2, because h is a structural
property depending on the predicted protein secondary structure. Hence h may
be different between proteins of the same size. To account for this fact, we split
the results by protein length in 3 different classes, with ranges from 50 to 200: the
first class contains proteins of length from 50 to 99, the second those of length
from 100 to 149, the third those of length from 150 to 200. For each class we
computed the average number of hinges ĥ and the average number of residues
n̂, and rescaled the T2 axis by n̂/ĥ. This results in 3 grids, shown in Figure 1.

5 Discussion

The main result of this paper is that, in all the plots, the combined algorithm is
shown to be able to produce structures of quality comparable to that of 3Distill
alone, but with a far smaller number of energy evaluations. Multiple combina-
tions of T1, T2 show this behavior. Generally, it can be observed that: (a) To
obtain structures of quality ratio at least 0.7, that is, structures whose quality
is comparable to that of structures found by a full run (T2 = 5000) of the costly
off-lattice algorithm, it is sufficient to use T1 = 100 and T2 ≤ 500. This amounts
to one about tenth of the energy evaluations. (b) To obtain structures of quality
ratio at least 0.9, that is, structures whose quality is indistinguishable from that
of structures found with (T1 = 0, T2 = 5000), roughly 100 on-lattice iterations
followed by 2000 off-lattice iterations are sufficient. This amounts to less than
one half of the energy evaluations. Thus employing an on-lattice search strategy
to obtain initial candidate configurations actually improves the search speed of
the off-lattice algorithm.

One surprising result, implicit in the previous discussion, is that the on-lattice
algorithm can generate structures of good quality, with respect to those found
by the off-lattice method. This can be seen by observing the curves at all grid
points with T2 = 0. It follows that despite its simplicity, the cubic lattice, when
paired with our contact map driven energy function, is able to model topolog-
ically correct, even if coarse, decoys. This seem to support the idea that the
on-lattice algorithm is able to bootstrap 3Distill in a region of the search space
that contains native-like folds.

Finally, the plots show that the quality ratios reported at the curves with
T1=fixed improve monotonically with respect to T1. This means that allowing
for increasing amounts of on-lattice search, and consequently for better initial
candidates to the off-lattice algorithm, helps the latter. This proves that it is
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Fig. 1. Each plot represents the behavior over time of our combined method. The

axes represent T1 and T2 and the height of each point represents the average solution

quality ratio (over all decoys and all proteins in the dataset) described in Section 4.2.

The upper plot refers to proteins of length 50 to 99 residues; the middle plot to proteins

of length 100-149; the last one to proteins of length 150-200.
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the on-lattice to be ultimately responsible for enhancing the convergence speed
of 3Distill, and not some random external factor such as a different distribution
of the initial configurations. The curves with T2=fixed instead appear to reach
convergence at T1 = 100. This validates our choice of T1 ≤ 100, and shows that
increasing its value would not improve the performance of the lattice algorithm
any further.

We note, however, that running the combined algorithm with both T1 and
T2 set to the maximum values does not significantly improve upon the solutions
found by the off-lattice algorithm alone. A possible explanation is that, simply,
3Distill has already reached convergence and that it would be unable to do better
than it actually is even when initialized with a good candidate structure.

Summarizing, the above results show that our novel combined on/off lat-
tice approach to protein structure prediction indeed requires potentially fewer
energy evaluations to generate good quality, low energy decoys for proteins of
length less than 200 residues. This enables for reduced execution time and an
increased throughput of structure prediction whenever a contact map is given.
The key point is that the resulting pool of structures will probably contain some
native-like folds. Ultimately, the higher throughput of our method can serve two
purposes: firstly, producing a large population of decoys for statistical analysis;
and secondly, to apply reranking techniques with an improved likelihood of find-
ing native-like structures. The ranking approach is very interesting, because it is
possible to tune our algorithm with small (T 1, T 2) values and be able to select
very good decoys with small computational effort.

6 Conclusions

In this work we presented a method that combines two existing state-of-the-
art approaches to the Protein Structure Prediction problem in a novel way by
exploiting the complementary strengths of the two. In particular, a lattice algo-
rithm is used to quickly construct a number of coarse, yet relatively good quality,
decoys from predicted contact maps; an off-lattice algorithm is later employed
to refine the search. Thanks to the lower number of degrees of freedom, the
on-lattice search effectively acts as a bootstrapping step for 3Distill, which con-
verges much faster since the starting candidate conformation is already located
in a favorable region of the search space. We proved experimentally that the
proposed method allows to generate structures of quality comparable to those
generated by 3Distill alone with a fraction of the computational effort. The im-
provement amounts to one order of magnitude less evaluations of the energy
potential, which is the most computationally intensive part of most search algo-
rithms. We stress that our approach is not restricted to 3Distill at all, and that
other fine-grained de novo algorithms could benefit from it as well. The proposed
method potentially allows to build large databases of decoys for analysis or for
the later application of reranking techniques to determine the most plausible
native folds.
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Abstract. An important issue in understanding and classifying protein-

protein interactions (PPI) is to characterize their interfaces in order

to discriminate between transient and obligate complexes. We propose

a classification approach to discriminate between these two types of

complexes. Our approach uses contact and binding free energies of the

residues present in the interaction, which are the input features for the

classifiers. A total of 282 features are extracted for each complex, and

the classification is performed via recently proposed dimensionality re-

duction (LDR) methods, including the well-know Fisher’s discriminant

analysis and two heteroscedastic approaches. The results on a standard

benchmark of transient and obligate protein complexes show that LDR

approaches achieve a very high classification accuracy (over 78%), out-

performing various support vector machines and nearest-neighbor clas-

sifiers. An additional insight on the proposed approach and experiments

on different subsets of features shows that solvation energies can be used

in the classification, leading to a performance comparable to using the

full binding free energies of the interaction.

Keywords: protein-protein interaction, classification, binding free en-

ergy, linear dimensionality reduction.

1 Introduction

Protein-protein interaction (PPI) is involved in multiple cellular processes such
as signal transduction, immune response, regulation of gene expression, and dif-
ferent processes where the oligomerization is a requirement to achieve a biolog-
ically active state. In this context, interactions can be attractive or repulsive,
which may result in the formation of intermolecular clusters or aggregates. Al-
though PPI depends on the protein surfaces and on the environmental condi-
tions, many efforts have been made to understand the factors responsible for
interactions between proteins at the atomic level [1,2,3]. PPI has been studied
from many different perspectives and for different purposes. According to [4], pre-
diction of protein interactions can be focused on three main goals: (i) predicting

T.M.H. Dijkstra et al. (Eds.): PRIB 2010, LNBI 6282, pp. 383–394, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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the interfaces involved in the interaction, (ii) predicting the spatial arrangement
of the interacting chains or molecules, and (iii) predicting the identity of the
molecules involved in the interaction. One typical case of the latter main goal is
to differentiate between specific types of PPI, namely obligate versus transient
interactions, i.e., interactions that can be identified by its duration. Character-
izing PPI in terms of specific goals including prediction of different types can be
carried out in many different ways and using many different descriptors or fea-
tures [5], including solvent accessibility, residual vicinity, shape of the structure of
the interface, secondary structure, planarity, conservation scores, physicochemi-
cal features, hydrophobicity electrostatic and solvation energies, just to mention
a few. In this work, we focus on using energetic features.

Some of the studies in PPI consider the characterization of the geometry [6],
physicochemical properties [7], the preference of residues to appear on the surface
[8], and the role of hydrogen bridges, saline bridges and hydrophobic and polar
interactions on the proteins surfaces [9]. Other studies include the analysis of
the loss of surface accessible to solvent [10] as a result of the interaction and
the analysis of the conservation of residues in the interaction surface [11]. In
an upper level, amino acids composition of protein-protein interfaces have been
studied to infer the composition of the residues at the interface, which is generally
different from the rest of the surface. A comprehensive study was conducted by
the authors of [12], who studied six types of interfaces: intra and inter domains,
homo and hetero-oligomers, and obligate and transient complexes. That study
concluded that the amino acid composition of these surfaces are different, as
there is only 1.5% of similarity between the internal and external surfaces, and
0.2% similarity between hetero surfaces belonging to obligate homo complex and
transient homo complexes. They found, on the other hand, a 16.3% similarity
between homo and hetero complexes.

To study the behavior of transient and obligate interactions, in [13], a classi-
fication of these two types of interactions was proposed, where interactions are
classified based on the lifetime of the complex. Obligate interactions are usually
more stable, while transient interactions are less stable and, hence, more diffi-
cult to discriminate and understand, due to their short life [14]. Protomers from
obligate complexes do not exist as stable structures in vivo, whereas protomers
of non-obligate complexes may dissociate from each other and stay as stable
and functional units. For these reasons, it is one of the prime importance of
proteomics to distinguish between obligate and transient complexes. Addition-
ally, in [15], it was proposed that interfaces in obligate complexes are inherently
hydrophobic. Another work that deserves attention is that of Zhu et al. [16], in
which three different types of interaction are studied, namely crystal packing,
obligate and non-obligate interactions. Their study is based on using solvent
accessible surface area, conservation scores, and shapes of the interfaces.

The interfaces of some transient complexes were also found to be with clusters
of hydrophobic residues [17]. Moreover, they are rich in aromatic residues and
arginine but depleted in other charged residues [18]. However, hydrophobicity at
the interfaces of transient complexes is not as distinguishable from the remainder
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of the surface as hydrophobicity at the interfaces of the obligate complexes [18].
As a result, it is difficult to make an accurate prediction of the interfaces of
transient complexes using a single parameter of residue interface propensity.

In [19], a research on protein-protein interactions was conducted in which
each interaction is analyzed in physical interaction, co-complex relationship and
co-member of the pathway (i.e. enzymes are involved in enzyme or metabolic
ways). This study attempted to determine the accuracy of predictions of in-
teractions, applying six different classification methods, namely random forest
(RF), RF-based k-NN, Bayes, decision trees, logistic regression, and support vec-
tor machines (SVM). RF was shown to be the most robust and efficient method
among the six aforementioned approaches for predicting protein-protein interac-
tions. While this study concluded that the co-complex relationship is the easiest
to predict, the situation could change when larger datasets are available.

Although interfaces have been the main subject of study to predict protein-
protein interactions, an accuracy of 70% has been independently achieved by
several different groups [20,21,22,23]. These approaches have been carried out
by analyzing a wide range of parameters, including solvation energies, amino
acid composition, conservation, electrostatic energies, and hydrophobicity. In a
recent work, prediction of four different PPI types has been performed, including
transient Enzyme inhibitor/Non Enzyme inhibitor and permanent homo/hetero
obligate complexes [24]. That work uses association rules to understand and
characterize the diverse kinds of interactions, and carry out experiments on 147
pre-classified complexes (a smaller set than the one used in [25], and which is
used here).

In this paper, a classification approach to predict transient and obligate
protein-protein interactions is proposed. We use heteroscedastic linear discrimi-
nant analysis as the primary classification method, which is discussed in Section
2. For each protein complex, its three-dimensional structure, obtained from the
Protein Data Bank (PDB) [26], is processed to extract binding free energies,
namely solvation and electrostatic, producing as many as 282 features. The de-
tails of this process are discussed in Section 4. Other two classifiers, namely the
k-nearest neighbor and a support vector machine, are also used for experimen-
tal comparison (briefly discussed in Section 3). Experiments on more than 400
transient and obligate complexes on two different datasets show a high accuracy
in classification, more than 78% – the discussions of these experiments are in
Section 5. Further analysis on the results demonstrate that solvation energies
are crucial in distinguishing transient and obligate complexes, and using these
features solo leads to a performance comparable to, if not better than, using the
full binding free energies of the interaction.

2 Linear Dimensionality Reduction

In this section, we discuss the homoscedastic and heteroscedastic classifiers used
in our approach. Linear dimensionality reduction (LDR) is a well-studied topic
in the field of pattern recognition. The basic idea of LDR is to represent an ob-
ject of dimension n as a lower-dimensional vector of dimension d, achieving this
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by performing a lineal transformation. The advantage of using a linear transfor-
mation is that, although the derivation of the underlying transformation may be
slower, the classification is extremely fast as it performs linear-time operations
to reduce to dimensions, typically, much lower than the original one.

We consider two classes, ω1 y ω2, represented by two normally distributed
random vectors x1 ∼ N(m1,S1) and x2 ∼ N(m2,S2), respectively, with p1
and p2 the a priori probabilities. After the LDR is applied, two new ran-
dom vectors y1 = Ax1 and y2 = Ax2, where y1 ∼ N(Am1;AS1At) and
y2 ∼ N(Am2;AS2At) with mi and Si being the mean vectors and covariance
matrices in the original space, respectively. The aim is to find a linear transfor-
mation matrix A in such a way that the new classes (yi = Axi) are as separable
as possible. Various criteria have been proposed to measure this separability
[27]. We consider three LDR methods: (a) the well-know Fisher’s discriminant
analysis (FDA) [28,29], a recently proposed heteroscedastic discriminant analysis
(HDA) approach [30], and the even more recent Chernoff discriminant analysis
(CDA) approach [27] – a brief discussion of these three follows.

Let SW = p1S1 + p2S2 and SE = (m1 −m2)(m1 −m2)t be the within-class
and between-class scatter matrices respectively. The well-known FDA criterion
consists of maximizing the Mahalanobis distance between the transformed dis-
tributions by finding A that maximizes the following function [28]:

JFDA(A) = tr
{
(ASW At)−1(ASEAt)

}
. (1)

The matrix A that maximizes (1) is obtained by finding the eigenvalue decom-
position of the matrix:

SFDA = S−1
W SE , (2)

and taking the d eigenvectors whose eigenvalues are the largest ones. Since SE

is of rank one, S−1
W SE is also of rank one. Thus, the eigenvalue decomposition of

S−1
W SE leads to only one non-zero eigenvalue, and hence FDA can only reduce

to dimension d = 1.
HDA has been recently proposed as a new LDR technique for normally dis-

tributed classes [30], which takes the Chernoff distance in the original space into
consideration to minimize the error rate in the transformed space. It can be seen
as a generalization of FDA to consider heteroscedastic classes, and the aim is to
obtain the matrix A that maximizes the function:

JHDA(A) = tr
{
(ASW At)−1 [ASEAt

−AS
1
2
W

p1 log(S
− 1

2
W S1S

− 1
2

W )+p2 log(S
− 1

2
W S2S

− 1
2

W )
p1p2

S
1
2
WAt

]}
(3)

where the logarithm of a matrix M, log(M), is defined as:

log(M) � Φ log(Λ)Φ−1 . (4)

with Φ and Λ representing the eigenvectors and eigenvalues of M, respectively.
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The solution to this criterion is given by computing the eigenvalue decompo-
sition of:

SHDA = S−1
W[

SE − S
1
2
W

p1 log(S
− 1

2
W S1S

− 1
2

W )+p2 log(S
− 1

2
W S2S

− 1
2

W )
p1p2

S
1
2
W

]
(5)

and choosing the d eigenvectors whose corresponding eigenvalues are the largest
ones.

CDA is an LDR method that has been recently proposed, and its aim is to
maximize the separability of the distributions in the transformed space measured
by the Chernoff distance between the two classes. CDA assumes that the classes
are normally distributed (in the original and transformed spaces), maximizing
the following function [27]:

JCDA(A) = tr{p1p2ASEAt(ASW At)−1

+ log(ASW At)− p1 log(AS1At)− p2 log(AS2At)} (6)

where SW = p1S1 + p2S2, SE = (m1 −m2)(m1 −m2)t.
It has been shown in [27] that for any normally distributed random vectors,

x1 and x2, there always exists an orthogonal matrix Q, where QQt = I, such
that JCDA(A) = JCDA(Q) for any A or rank d. Thus, without loss of generality,
here, we assume that A is an orthogonal matrix. In [27], a gradient-based algo-
rithm was proposed, which maximizes the function (6) in an iterative way. The
algorithm starts with an arbitrary orthogonal matrix A(1), and at step k + 1,
A(k+1) is computed as follows:

A(k+1) = A(k) + αk∇JCDA(A(k)) (7)

where the gradient for JCDA is:

∂JCDA

∂A = ∇JCDA(A) = 2p1p2
[
SEAt(ASW At)−1

−SWAt(ASW At)−1(ASEAt)(ASW At)−1
]t

+2
[
SW At(ASW At)−1 − p1S1At(AS1At)−1

−p2S2At(AS2At)−1
]t

For this gradient algorithm, a learning rate, αk needs to be computed. In order
to ensure that the gradient algorithm converges, αk needs to be maximized. In
[27], the secant method is proposed for this, and the aim is to maximize the
function:

φk(α) = JCDA(A(k) + α∇JCDA(A(k))) (8)

Starting with two initial values α(0) and α(1), the value of α(j+1) at time j + 1
is iteratively found as follows:

α(j+1) = α(j) +
α(j) − α(j−1)

dφk

dα (α(j))− dφk

dα (α(j−1))
dφk

dα
(α(j)) (9)
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where

dφk

dα
(α) = [∇JCDA(A(k) + α∇JCDA(A(k)))] · ∇JCDA(A(k)) (10)

The operator “·” is the dot product between two matrices, and is computed, for
any two matrices C and D, as C ·D = tr{C D}. The value of ∇JCDA(A(k) +
α∇JCDA(A(k))) is computed by replacing A for A+α∇JCDA(A) in the equation
(8).

Finally, with the definition of dφk

dα (α), Equation (9) can be solved, and the
gradient algorithm continues with the next iteration. The complete algorithm
can be found in [27]. One of the keys in this algorithm is the initialization of the
matrix A, and in this work, we have performed ten different initializations and
then chosen the solution for A that gives the maximum Chernoff distance.

3 Other Classifiers

In order to compare the LDR methods with other benchmarks, a classifica-
tion was performed with two other state-of-the-art classifiers: k-nearest-neighbor
(k-NN) and an SVM. For the k-NN classifier, six different distance functions were
implemented, namely angle, Chebychev, Euclidean, Manhattan, Minkowski and
Pearson correlation. For each distance function, different values of k = 1, ..., 20
were evaluated, where the maximum value of k = 20 was taken roughly from√
N with N being the total number of complexes. The resulting accuracies were

evaluated to observe the best overall performance of each distance, and hence
we chose the Euclidean distance. The resulting accuracies of k-NN with the Eu-
clidean distance, and the best value of k from 1 to 20 are reported in Section
5.

For the SVM classifier, different kernels were implemented and evaluated using
the OSU-SVM toolbox in Matlab [31]. Three different types of kernels were
implemented, namely polynomial, radial basis function (RBF), and sigmoid. For
the polynomial kernel, polynomials of degree p = 2, 3, ..., 8 were considered. For
the RBF, the parameters C and γ were optimized using grid search. As in k-
NN, these different classifiers were evaluated and the maximum accuracy for all
datasets resulted from the RBF kernel, with the parameters C and γ optimized.
These results are reported on the fifth column of both Tables.

4 Protein-Protein Interaction Classification

To begin the classification process two dataset of transient and obligate com-
plexes were obtained from previous works of [25] and [16]. Two types of com-
plexes were classified as one of two classes: transient or obligate. Each complex
is listed in the form of one or more chains for ligand and receptor respectively.
The relevant data about the structure of the complex was obtained from the
Protein Data Bank (PDB) [26]. When more than one chain are present on either
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ligand or receptor, they are merged into a single one, producing a complex with
two interacting chains, one for the ligand and another for the receptor.

Obtaining binding free energies, even for a single complex, may take a con-
siderable amount of time. Thus, for this purpose feature extraction is performed
using FastContact [32], an approach that obtains a fast estimate of the binding
free energy based on a statistically determined solvation contact potential and
Coulomb electrostatics with a distance-dependent dielectric constant. The inter-
action between two chains is estimated as the sum of the standard intermolecular
Coulombic electrostatic potential (4r used as the distance-dependent dielectric
constant), plus the most essential features of solvation free energy that includes
hydrophobic interactions. For each complex, FastContact delivers the electro-
static energy, solvation free energy, and the top 20 maximum and minimum
values (along with the corresponding residue number and amino acid) for: (i)
residues contributing to the binding free energy, (ii) ligand residues contributing
to the solvation free energy, (iii) ligand residues contributing to the electrostatic
energy, (iv) receptor residues contributing to the solvation free energy, (v) recep-
tor residues contributing to the electrostatic energy, (vi) receptor-ligand residue
solvation constants, and (vii) receptor-ligand residue electrostatic constants.

For each complex, all energy values (minimum and maximum) were obtained
as indicated in (i)-(vii). Thus, all these values (with the residue numbers) and the
total solvation and electrostatic energy values compose a total of 282 features.

Due to the large number of features present in most datasets, compared to
the number of samples, problems of dimensionality arise. More precisely, ill-
conditioned matrices would be present when applying LDR methods, and hence
principal component analysis is applied to each dataset by removing all compo-
nents which are less than 10−5 times the largest eigenvalue of the within-class
scatter of the dataset.

In order to classify each complex, first a linear algebraic operation y = Ax is
applied to the n-dimensional vector, obtaining y, a d-dimensional vector, where d
is ideally much smaller than n. The linear transformation matrix A corresponds
to the one obtained by either of the LDR methods discussed in Section 2. The
resulting vector y is then passed through a quadratic Bayesian (QB) classifier
[28], which is the optimal classifier for normal distributions.

5 Experimental Results

To create the datasets for classification, two pre-classified datasets of protein
complexes ware obtained from the studies of [25] and [16]. The first set of
proteins, Mintseris et al. dataset, contains complexes of two classes: 209 tran-
sient complexes and 115 obligate complexes. The second dataset, Zhu et al.
dataset, contains 62 transient complexes and 75 obligate complexes as two dif-
ferent classes for classification. The main datasets were created by retrieving
each complex from PDB, and then obtaining the 282 features by invoking Fast-
Contact, as discussed in Section 4.

To study the effects of the different types of energies and ligand/receptor,
we created a total of 13 different subsets of features for each dataset including:
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Table 1. Results of classification accuracy for the 13 PPI subsets extracted from

Mintseris et al. dataset [25], using different LDR methods and a comparison with k-

NN and SVM

QB

Subset n k-NN SVM FDA d∗ HDA d∗ CDA d∗

All Energetic 282 76.38 77.30 70.38 1 77.50 4 76.87 9

Binding Free Energy 40 69.94 72.09 71.86 1 75.20 6 73.33 5

Ligand Energy 80 72.70 74.54 66.58 1 76.42 8 76.44 6

Ligand Solvation 40 77.91 75.46 69.65 1 75.81 2 74.86 8

Ligand Electrostatic 40 69.33 70.86 72.09 1 72.14 7 71.84 4

Receptor Energies 80 74.54 74.23 67.17 1 76.42 6 76.74 11

Receptor Solvation 40 75.46 75.46 68.73 1 75.50 1 74.60 3

Receptor Electrostatic 40 72.09 70.55 68.47 1 69.71 3 70.31 12

Ligand-Receptor Energies 80 71.78 71.78 67.91 1 75.94 7 75.32 7

Ligand-Receptor Solv. 40 72.09 70.55 65.64 1 71.84 9 72.76 4

Ligand-Receptor Elect. 40 73.62 74.85 72.78 1 75.48 20 75.50 13

Solvation 120 78.53 76.07 65.72 1 76.70 14 76.41 11

Electrostatic 120 71.78 71.17 65.72 1 76.70 14 76.41 11

all 282 values, binding free energies, ligand/receptor solvation/electrostatic en-
ergies, ligand-receptor solvation and electrostatic energies, and solvation and
electrostatic energies. The 13 datasets along with a short description in column
one are listed in Tables 1 and 2. The second column lists the number of features
of each dataset. As discussed earlier, PCA was applied to some datasets to avoid
ill-conditioned matrices.

To study the performance of the classifiers, a 10-fold cross validation procedure
was carried out, and then the average accuracy was computed, where accuracy for
each individual fold was computed as follows: acc = (TP +TN)/Nf , where TN
and TP are the true positive (obligate) and true negative (transient) counters,
and Nf is the total number of complexes in the test set of the corresponding
fold.

For the LDR schemes, three different classifiers were implemented and eval-
uated, namely the combinations of three LDR criteria discussed in Section 2,
FDA, HDA and CDA, combined with a quadratic Bayesian (QB), implemented
as discussed in Section 4. Note that we have also tested the classification with
a linear Bayesian classifier, which yielded much lower classification accuracies
than the QB. Then, only the results for QB are reported. For each of these
classifiers reduction to dimensions d = 1, ..., 20 were performed, followed by QB.
The dimensions that resulted in the best average accuracy for the 10-fold cross
validation for each classifier are listed in the tables in the subsequent columns.
Each column reports the highest average accuracy among all possible reduced
dimensions, as well as the dimension in which the best accuracy is obtained,
namely d∗. Since the classification problem is two-class, FDA always leads to
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Table 2. Results of classification accuracy for the 13 PPI subsets extracted from Zhu

et al. dataset [16], using different LDR methods and a comparison with k-NN and SVM

QB

Subset n k-NN SVM FDA d∗ HDA d∗ CDA d∗

All Energetic 282 67.15 65.69 58.62 1 65.08 1 69.12 15

Binding Free Energy 40 64.96 59.85 55.59 1 65.74 9 63.23 7

Ligand Energy 80 68.61 69.34 60.05 1 70.60 15 72.08 5

Ligand Solvation 40 70.80 70.80 62.35 1 70.64 18 69.26 6

Ligand Electrostatic 40 64.23 62.77 49.55 1 60.51 4 59.58 3

Receptor Energies 80 65.69 67.88 52.54 1 68.86 13 72.79 19

Receptor Solvation 40 76.64 64.96 66.05 1 74.03 11 73.97 13

Receptor Electrostatic 40 61.31 64.96 54.95 1 65.48 6 67.48 5

Ligand-Receptor Energies 80 67.15 67.88 67.22 1 69.16 17 70.97 5

Ligand-Receptor Solv. 40 70.8 70.07 70.71 1 72.08 10 72.18 18

Ligand-Receptor Elect. 40 61.31 55.47 60.27 1 66.72 16 67.54 17

Solvation 120 73.72 71.53 51.41 1 65.33 6 75.41 7

Electrostatic 120 69.34 72.99 53.61 1 63.53 14 64.10 1

reducing to dimension one. The best accuracy for each method for each dataset
is underlined to indicate the classifier that performed best of all for that dataset.

For the Mintseris et al. dataset (Table 1), it is clearly observable that the best
performance was achieved by LDR methods combined with the QB classifier.
Of these, the LDR criterion that achieves the best performance is HDA in as
many as 6 out of 13 cases. Also, the classification of all LDR methods achieves the
best performance in most of the cases, 10 out of 13 cases. This demonstrates that
LDR methods perform better than k-NN and SVM. On the other hand, k-NN
achieves better performance in more cases than the SVM, even though the results
of these two are comparable in most of the cases. Regarding individual subsets,
we observe that the best overall classification performance, 78.53%, was achieved
by k-NN on Solvation energies. A comparison with other subsets, such as All
Energetic, suggests that using a subset of features, such as Solvation energies,
achieves an even better classification performance. In terms of energetic values,
solvation leads to better performance than electrostatic values. This suggests
that solvation is more important in classifying transient and obligate complexes.
Additionally, using Solvation energies from the ligand only (just 40 features)
leads to a classification accuracy of 77.91%, achieved by k-NN, which is no less
than 1% below the best overall accuracy, obtained from all solvation values.

For the Zhu et al. dataset (Table 2), we observe that the best overall perfor-
mance is delivered, again, using Solvation energies only, leading to an accuracy
of 75.41%, which is achieved by CDA. Moreover, using the Solvation energies of
the receptor only leads to an accuracy of 74.03%, slightly below that of using
all Solvation energies. For this dataset, CDA is the best performer, yielding the
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highest accuracy in 8 out of 13 subsets. Again, as in Mintseris et al. dataset,
the LDR methods perform much better than k-NN and SVM, and the Solvation
energies by themselves can differentiate between the two types of complexes.

A final analysis of the results is done on the power of dimensionality reduction
of the schemes. We observe that the best overall classification accuracy was
obtained by HDA and CDA, while reducing from dimensions 120 to 14 and
11. In Zhu et al. dataset, the best classification accuracy achieved by CDA is
75.41%, while reducing from dimension 120 to 7. This thus implies not only a
gain in classification accuracy but also in terms of classification speed. Similar
results can be observed in the other cases, and hence demonstrating the power
and simplicity of LDR schemes in this classification problem. To conclude, we
emphasize that using a subset of features tends to be more productive than
using all features, and hence demonstrating that the approach of considering
different subsets of features leads to feature selection methods, even though more
sophisticated approaches for feature selection could be used [33], a problem that
is currently being investigated.

6 Conclusion

We have proposed a classification approach for transient and obligate protein-
protein complexes. We have used linear dimensionality reduction (LDR) that
involve homoscedastic and heteroscedastic criteria coupled with a quadratic
Bayesian classifier. The results on two datasets of pre-classified complexes show
that the LDR schemes coupled with QB achieves the best overall classification
performance, even better than k-NN and an SVM with an RBF kernel. Com-
prehensive tests have been carried out in as many as 13 subsets of different
features and for each dataset, showing that the best classification performance
is achieved by using a smaller subset of features, solvation energies for the lig-
and or receptor. The results suggest that the proposed approach also performs
feature selection, a problem that is currently being investigated. Other interest-
ing problems that deserve investigation are the use of this approach in different
protein-protein interaction classification problems, including intra and inter do-
mains, homo and hetero-oligomers, and the use of other features, such as solvent
accessibility, residual vicinity, shape of the structure of the interface, secondary
structure, planarity, conservation scores, physicochemical features, hydrophobic-
ity and others.
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Abstract. Genome wide association studies (GWAS) are now allowing

researchers to probe the depths of common complex human diseases, yet

few have identified single sequence variants that confer disease suscep-

tibility. As hypothesized, this is due the fact that multiple interacting

factors influence clinical endpoint. Given the number of single nucleotide

polymorphisms (SNPs) combinations grows exponentially with the num-

ber of SNPs being analyzed, computational methods designed to detect

these interactions in smaller datasets are thus not applicable. Providing

statistical expert knowledge has exhibited an improvement in their per-

formance, and we believe biological expert knowledge to be as capable.

Since one of the strongest demonstrations of the functional relationship

between genes is protein-protein interactions, we present a method that

exploits this information in genetic analyses. This study provides a step

towards utilizing expert knowledge derived from public biological sources

to assist computational intelligence algorithms in the search for epistasis.

Keywords: GWAS, SNPs, Protien-protein interaction, Epistasis.

1 Introduction: Challenges Confronting Genome-Wide
Genetic Analysis

The field of human genetics is advancing with the advent of new and cost ef-
ficient technology that allows us to rapidly generate large amounts of genomic
data. It is now possible to measure a million or more SNPs at one time, however
researchers are lacking methods to efficiently explore their results. The etiology
of common human disease is understood to be complex, with multiple interacting
genetic factors predisposing individuals to disease risk. To detect and character-
ize these epistatic, or gene-gene, interactions that confer disease susceptibility
in such large scale studies requires the analysis of all pair-wise and higher-order
combinations of SNPs. This poses a challenge that needs to be addressed before
we are able to completely explore epistasis in GWAS in order to gain a more
coherent understanding of the genetic architecture of a complex trait and its
interacting elements [1].

T.M.H. Dijkstra et al. (Eds.): PRIB 2010, LNBI 6282, pp. 395–406, 2010.
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The critical need for statistical and computational methods that are pow-
erful enough to model the relationship between SNP interactions and disease
susceptibility has been addressed by the development of numerous statistical,
machine learning, and datamining techniques. Some programs of note are mul-
tifactor dimensionality reduction (MDR) [2], ReliefF [3] and random chemistry
[4]. Even though these methods have proven to be an effective way to model
epistasis in smaller datasets, analysis of all higher-order SNP combinations in
GWAS remains computationally infeasible.

One approach to this problem is to use computational intelligence algorithms
that are able to explore a fitness landscape that is both vast and rugged. An
important feature of this problem domain is that it is often the case that the
attributes to be detected and modeled don’t have detectable marginal effects and
thus don’t make good building blocks [5]. The use of statistical expert knowledge
has been shown to improve the ability of learning algorithm to identify and
exploit those building blocks that will yield an informative classifier Greene et
al. (2008), have previously combined the power of ant colony optimization as a
probabilistic learner with expert knowledge in the form of preprocessed ReliefF
scores that reflect attribute quality and thus provide a measure of whether a
particular attribute is a good building block [6][7]. Also Greene et al., (2009)
and Moore et al., (2008) have shown that the same statistical expert knowledge
incorporated in a computational evolution system (CES), has the same beneficial
effect. They demonstrated that the system could learn to recognize and exploit a
good source of expert knowledge from among several different options to discover
optimal solutions in this problem domain [8],
cite2greene09. While preprocessed statistical knowledge is useful, it is likely not
comprehensive in its ability to identify good building blocks. We anticipate that
biological knowledge derived from biochemical pathways or regulatory networks
of function, such as protein-protein interactions, will provide the complementary
information that is needed to maximize the ability of a computational intelligence
algorithm to identify optimal models of epistasis [10][11]. The goal of the present
study is to explore the bioinformatics methods that are necessary to extract and
utilize expert knowledge from public protein-protein interaction databases.

For this study we develop metrics derived from PPI interactions found in the
database, STRING (Search Tool for the Retrieval of Interacting Genes/Proteins).
These are based on the confidence score for each interaction in the database [12]
and used to to prioritize SNPs in a gene list that is derived from a real bladder
cancer dataset. While reducing the size of a genomic dataset using this approach
may be useful to conduct a more computationally efficient analysis, we wish to
ultimately explore how this protein interaction information can be used to guide
a computational intelligence algorithm.

2 Materials and Methods

2.1 STRING

This study aims to understand how we can utilize expert knowledge from protein-
proteins interactions to guide the search for epistasis in GWAS. We extract our
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biological expert knowledge from STRING (Search Tool for the Retrieval of In-
teracting Genes/Proteins). The newest version of STRING, 8.2, represents over
2.5 million proteins from 630 different organisms, and incorporates PPI informa-
tion from a number of interaction databases such as the Human Protein Refer-
ence Database (HPRD) , BioGrid, the Molecular Interaction Database (MINT),
the Biomolecular Interaction Network Database (BIND) which is a component of
the Biomolecular Object Network Database(BOND), the Database of Interact-
ing Proteins (DIP), and also imports known reactions from Reactome and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways. Recent additions to this
database incorporate information from IntACT, EcoCyc, NCI-Nature Pathway
Interaction Database and the Gene Ontology (GO). Automated text-mining of
PubMed abstracts, Online Mendelian Inheritance in Man (OMIM), and data
from other databases such as the Saccharomyces Genome Database, Wormbase,
and the Interactive Fly supplement this information [13]. At the time of our
study however, we utilized the then current version available for download, ver-
sion 7.0. Each interaction has a combined confidence score that ranges from 0 to
1 and are based on each source of evidence. Computing the combined confidence
score, which we use as our source of expert knowledge, is a simple expression of
the individual scores for each source of evidence. For a detailed description of
the scoring methods see (von Mering et al., 2005) [12].

2.2 Interaction Scenario Simulation

In order to develop and test our method, we identified 8 different gene-gene
interaction scenarios present in a list of genes derived from a real genetic bladder
cancer dataset. The purpose of this was to represent a range of different gene-
gene interaction scenarios that had validated interactions in STRING so that
we may determine how PPI interaction information can be used as a source of
expert knowledge should these biological interactions represent actual statistical
epistatic interactions. Therefore, these interactions represent only theoretical
statistical interactions. The original genetic data were originally collected for
the purpose of assessing genetic risk factors of bladder cancer (Andrew et al.,
2008). This dataset genotyped 491 cases and 791 controls across 1,423 SNPs
found in 394 genes [14].

The gene-gene interactions designated in each scenario were selected to repre-
sent a range of combined confidence scores. As described, von Mering et al.,(2005)
have developed the scoring system for PPIs in STRING and consider a score<0.7
and >0.4 as a medium confidence interaction [12]. The default threshold for
querying interactions in STRING is 0.4, and we kept this setting when submit-
ting the entire list of genes in our bladder cancer dataset to STRING. We chose
interactions that exhibited a range of confidence for each interaction: BARD1-
BRCA1 (confidence = 0.999), CASP3-CASP9 (confidence = 0.999), IL4R-IL6R
(confidence = 0.825), RET-ENG (confidence = 0.7), TERT-MTR (confidence
= 0.532), HSD3B1-SOD1 (confidence = 0.497), and two pairs that showed no
existence of interaction in STRING, DRD4-BIC and RERG-SCUBE2 [Table 1].
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Table 1. PPI interaction pairs represented in our bladder cancer data. The combined

confidence score from STRING for each interaction and the number of interactors for

each gene. Each of the interaction pairs was chosen to represent a range of interaction

scores and diverse interaction scenarios.

PPI Confidence Score # of Interactors ≥ 0.4

CASP9 0.999 29

CASP3 58

BARD1 0.999 17

BRCA1 71

IL6R 0.825 24

IL4R 38

ENG 0.7 12

RET 13

MTR 0.532 7

TERT 18

SOD1 0.497 15

HSD3B1 8

BIC None 0

DRD4 0

SCUBE2 None 0

RERG 0

Note that if any disease or pathway relationship exists between these genes it is
by chance, given that genes were not selected on this basis.

2.3 Metrics

Expert knowledge from protein-protein interactions was employed to develop
metrics that we used prioritize genes in a genomic dataset. The goal was to de-
termine if PPIs will provide a valuable source of expert knowledge to preprocess
data and eventually evaluate the effectiveness of this approach in a computa-
tional intelligence algorithm. The combined confidence score for protein-protein
interactions from the STRING database was used to prioritize the genes a blad-
der cancer gene list according to each metric we developed. Note that all SNPs
represented in the bladder cancer dataset that are found in the same gene are
assigned the same metric score and rank using this method.

First, all 394 genes in the bladder cancer dataset were queried to obtain the
list of combined confidence scores for all existing interactions between genes that
represent PPIs in STRING. Using this combined confidence score, metrics were
developed as follows:

For gene X that interacts with N number of genes with descending confidence
scores n1 . . . ni we computed,

Average(AVE),

AVEX =
∑

(n1 . . . ni)
N

, (1)
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the average of all confidence scores for a gene and its interaction partners, and

Sum(SUM),

SUMX =
∑

(n1 . . . ni), (2)

the sum of all confidence scores for a gene and its interaction partners.
While the maximum confidence score was evaluated as a metric, it was discov-

ered that a considerable number of genes are represented by the same maximum
confidence score. This was not useful for the individual prioritization of all genes,
thus two additional metrics, MAX-SUM and MAX-AVE were developed. In this
case, the metric score for each gene is represented by the numerical rank for that
gene in the dataset after prioritization. These were developed as follows:

For gene X1 . . . Xi, those with the same maximum confidence score are sorted
in descending order by their SUMX or by AVEX .

The MAX-SUM metric becomes the numerical rank of the gene as they are
prioritized in descending order.

To determine if using a specific cut-off of 0.4 had any effect on the metric scores
for each gene, we recalculated each metric using lower thresholds of 0.2 and 0.3,
and higher thresholds of 0.5, 0.6, 0.7, and 0.8. Metrics calculated using these
thresholds were compared with each other and also to our original metrics. The
comparison was performed using the Wilcoxon rank sum test as described in the
next section, however, significant difference was not observed after implementing
these threshold cutoffs (data not shown).

2.4 Evaluating Metrics

To evaluate these metrics, genes in the bladder cancer dataset were prioritized
by their metric score and evaluated by extent by which each metric could reduce
the entire gene list while retaining each of the 8 validated interaction pairs. This
included two scenarios where genes had no evidence of interacting in STRING.
Genes were sorted in descending order after being assigned their individual met-
ric scores. The numerical position of each gene within the prioritized list repre-
sents the rank for that gene and is expressed in terms of the number of SNPs
included in the gene. Since the actual bladder cancer dataset is comprised of
SNP data, all SNPs in one gene share this rank. This means that genes with
a higher metric score would have a smaller numerical rank. For example, the
highest scoring gene in the list would be 1, but may have 5 SNPs within that
gene, therefore making the rank for this gene, 5.

The gene list was then truncated at the lowest scoring gene in each interaction
pair so that both of these genes, inclusive of all their SNPs, were maintained in
the truncated list. For example, expressing the size of this list in terms of SNPs,
applying the AVE metric to the CASP3 - CASP9 scenario, if we truncated the
list at CASP3, this would include 315 SNPs, (315 being considered its rank) but
this would omit its interaction partner CASP9 since it had a larger numerical
rank. To include CASP9, the list had to be truncated at 599 SNPs. This larger
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numerical rank for each interaction pair was the number we used in order to
compare the metrics, not the metric score itself.

The ability of each metric to significantly reduce the gene list in each interac-
tion scenario was evaluated using a pair-wise one sided Wilcoxon rank sum test
to compare the ranks obtained by each metric.A p-value of < 0.05 was considered
to be indicate significant reduction. The non-interacting SNPs were not included
in this comparison, because it was confirmed that for all metrics, their rank was
0, and for both pairs to be included in the gene list , all 1423 SNPs had to be
considered. This was expected since these scenarios served as control to assure
that our computation and ranking system were functioning appropriately.

We also examine whether there was a correlation between the confidence score
for a given interaction and the ranking for the pairs across all metrics. To evaluate
this we performed a Spearman Rank correlation test and considered there to be
a significant correlation for p-values < 0.05.

2.5 Bladder Cancer Data

Finally, metrics were examined in the context of the actual gene-gene interac-
tions that were indentified in a variation of the bladder cancer dataset utilized
throughout this study. Andrew et al. (2008) used a multifactor analysis strat-
egy to investigate associations between DNA repair polymorphisms and bladder
cancer risk. Gene-environment and gene-gene interactions were evaluated us-
ing logistic regression, MDR, hierarchical interaction graphs, classification and
regression trees, and logic regression analyses. All methods supported an interac-
tion between DNA repair polymorphisms XRCC1-399/XRCC3-241 (p = 0.001),
and three methods identified an interaction between XRCC1-399/XPD-751 (p
= 0.008). The ranks of these gene pairs using each of our metrics were calculated
to determine if they would have been effective in this real genetic analysis.

3 Results

In total there were 357 interacting proteins within the dataset and a total of
3,921 different interactions amongst these proteins. A full list of all interactions
and their individual confidence score and the metric score for each individual
gene are available upon request.

Figure 1 demonstrates the extent to which each metric was able to reduce the
size of the gene list for each of the 6 interaction scenarios. The confidence score for
each gene pair interaction is represented on the x-axis in ascending order, and the
ranking for each of these is represented on the y-axis. This ranking represents the
extent to which the gene list could be reduced by applying each metric. Table 2
displays the individual rankings produced for each scenario after being prioritized
by each metric. In a vast majority of the cases, higher confidence interactions are
found in smaller subsets of the gene list when all metrics are applied, however
this is not a consistent trend. For example, even though HSD3B1-SOD1 has the
lowest confidence score, it is found in a smaller subset of the list than RET-ENG
(confidence=0.7) when using AVE, MAX-SUM, and MAX-AVE. Both SUM and
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AVE produce larger subsets of the gene list, except for in the case of the RET-
ENG scenario for both and also in the case of CASP9-CASP3 for SUM. The
MAX-SUM metric produces similar ranks as MAX-AVE, yet these decrease as
confidence score increases.

Fig. 1. Depicts the extent to which each metric was able to reduce the gene list for

each of the 6 functional interactions. We did not include the non interacting pairs. The

confidence score for each SNP pair interaction is represented on the x-axis in ascending

order, and the ranking for each interacting SNP pair is represented on the y-axis. The

rank is also indicative of the subset size to which the gene list was reduced.

To determine if these observations were significant, a one sided pair-wise
Wilcoxon rank sum test was used to compare each metric in terms of the gene
rankings they produced across the interaction scenarios [Table(3)]. The metric
AVE produced significantly larger ranks than SUM, MAX-SUM, and MAX-
AVE (p= 0.017, 0.031, 0.031). This means that compared to these 3 metrics,
AVE was not able to reduce the gene list as effectively as the others while re-
taining the interaction pairs. SUM showed no significant difference from MAX-
SUM, or MAX-AVE, yet as mentioned, produced smaller rankings than AVE.
MAX-SUM, however produced the lowest mean rank amongst the metrics (525)
and also had significantly lower ranks than AVE and MAX-AVE (p=0.031 and
p=0.030). When examining the individual numerical pair ranks produced by
SUM and MAX-SUM, it is clear that all the ranks for MAX-SUM are much
smaller than SUM except in the case of the rank of RET-ENG. We determined
this to be the cause of the lack of significant difference between the two met-
rics. Note that SUM showed no significant difference compared to MAX-AVE
either on account of the smaller rank score it produced for RET-ENG. Overall,
MAX-SUM was able reduce the size of the gene list to the greatest extent in a
majority of the interaction scenarios as compared to the other metrics despite
the lack of significant difference between this metric and SUM.
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Table 2. Shows the ranking for each interaction pair which is also the subset size of

the gene list after genes were prioritized by each metric. The non-interacting SNPs do

not have any interactors so therefore will only be included in the gene list as a whole

since they cannot be ranked by the metrics.

PPIs AVE SUM MAX-AVE MAX-SUM

CASP3.CASP9 599 279 313 169

BARD1.BRCA1 1032 661 374 264

IL4R.IL6R 950 491 370 239

RET.ENG 1048 811 1118 1112

TERT.MTR 931 885 632 608

HSD3B1.SOD1 1022 898 758 758

DRD4.BIC 1423 1423 1423 1423

RERG.SCUBE2 1423 1423 1423 1423

Examining the relationship between the confidence of an interaction and its
rank, it’s observed that while an interaction with a higher confidence score may
have a lower rank, this was not the case for all scenarios. However, there was a
significant relationship between the two by means of Spearman Rank Correlation
test. This showed that there was a negative correlation between the numerical
rankings produced by each metric (p < 0.05), except AVE. Rank increased as
the confidence score of the interacting pairs decreased [[Table(3)].

Table 3. Shows the metrics as compared to each other by one-sided pair-wise Wilcoxon

rank sum test. Significance is indicated by (*) and directionality listed below.

*AVE > SUM, MAXSUM, MAXAVE

*MAXSUM < AVE, MAXAVE

*MAXAVE < AVE

. AVE SUM MAX-SUM MAX-AVE Spear. P-Val. Corr. Coeff.

AVE . . . . 0.40 -0.15

SUM 0.016* . . . 0.007* -0.9

MAX-SUM 0.031* 0.160 . . 0.05* -0.72

MAX-AVE 0.031* 0.290 0.030* . 0.05* -0.72

We applied our metrics to the bladder cancer dataset in the context of the
interactions identified by Andrew et al. (2008). These results are described in
[Table (4)]. Both interactions, XRCC1-XPD and XRCC1-XRCC3, were sup-
ported in STRING with confidence scores of 0.930 and 0.774, respectively. We
find that by applying the SUM and AVE metrics in both cases, the dataset could
be reduced to between 288 and 346 SNPs. However unlike in the simulated in-
teraction scenarios, MAX-AVE and MAX-SUM produced larger ranks for these
pairs and would have only been able to reduce the dataset to between 1126 and
1158 SNPs from the original 1423 SNPs represented.
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Table 4. Shows the pair ranking for the gene-gene interactions identified by Andrew et

al. (2008) when each metric was applied to their bladder cancer data. The interactions

identified were between SNPs in each of the DNA repair genes listed.

DNA Repair Gene Interactions AVE SUM MAX-AVE MAX-SUM

XRCC1.XRCC3 288 346 1126 1176

XRCC1.XPD 288 234 1130 1158

4 Discussion

The goal of our study was to develop metrics based on protein-protein interaction
information that would allow us to prioritize the SNPs in genomic datasets.
We consider this a first step towards understanding how we can utilize expert
knowledge derived from public biological sources, such as PPI databases, to
facilitate the search for epistasis in GWAS. We use the combined confidence
score for PPIs in STRING to develop these metrics and applied them to a real
bladder cancer dataset from which we derived different gene-gene interaction
scenarios. We found that of the four metrics that we have developed (AVE,
SUM, MAX-SUM, and MAX-AVE), MAX-SUM was able to reduce the gene
list in our datasets to the greatest extent across a majority of the interaction
scenarios. While we did see a negative correlation between ranks and confidence
score, except when AVE was used, [Table(3)]with higher confidence interactions
typically being found in smaller subsets of the gene list, we recognize that the
nature of the interaction may greatly influence this.

This was further supported by what we observed when we applied our metrics
to the real interaction scenarios identified by Andrew et al. (2008). In our sim-
ulated scenarios, SUM and AVE produced larger subset sizes than MAX-SUM
and MAX-AVE. However, it appears as though SUM and AVE would have been
ideal to apply to the bladder cancer dataset in terms of the real statistical in-
teractions that were observed. These metrics were able to reduce the dataset to
a size that was approximately four times smaller in both cases, and despite the
different confidence level of the interactions, 0.774 and 0.993. While this demon-
strates that one metric may not be particularly more useful over the others, we
show that expert knowledge from PPIs could have been applied to this study to
narrow the scope of the analysis and still obtain the results that were previously
published.

The diversity of the interaction scenarios [Table (1)] is why we do not see one
particular metric consistently reducing the gene list, and also why interaction
scenarios of higher confidence are not always included in the smaller subsets of
the gene list, such as in the case of RET-ENG.

For the RET-ENG scenario, we see that the pair is included in the largest subsets
produced by all metrics except SUM, even though it has a confidence score of 0.7.
We find that RET interacts with 13 proteins and ENG with 12. However, out of
these interactions, there are few high confidence interactions, especially for RET.
More than half of its interactions have a confidence score under 0.7. Also, RET has
a lower maximum confidence score of 0.874 which automatically ranks it as 1118
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on the entire gene list inclusive of all SNPs. As mentioned, since the pair ranks
are based on the gene with the higher numerical rank in the pair, we see this pair
included in larger subsets due to the lack of a higher maximum score for RET using
MAX-SUM and MAX-AVE. While the AVE score for its interactions might also
be fairly low, it does have a considerable number of interaction partners, allowing
for it to achieve a high metric score using SUM.

These examples and our application to the real statistical interactions exhibit
why we chose not to consider one metric as the ”best” metric, and acknowledge
that there is room for exploration concerning how the combined protein inter-
action score from STRING can be utilized as biological expert knowledge. All
metrics have the potential provide useful information to genetic studies, and we
have shown that two of our metrics would have been able to effectively reduce
the bladder cancer dataset while retaining the epistatic interactions that were
previously shown to confer disease risk.

5 Conclusion

To exhaustively search thousands to millions of SNP combinations would not
be practical due to the computational intensity involved in the process, and our
work demonstrates one method that can be used to facilitate this search. The use
of expert knowledge for these purposes is not a novel idea and has proven success-
ful in similar endeavors [15][16][17][18]. However, there are potential drawbacks
to using information from PPIs that should be acknowledged.

Certainly, there are inherent biases in any protein interaction database. This
is something that is unavoidable and partially results from the ability of different
experimental methods to capture different types of interactions. Also, a handful
of proteins may be more widely studied. These facts influence the amount of
evidence, whether it be via literature or other sources, that in turn determine
the confidence placed in an interaction. Also, some may argue that by using ex-
pert knowledge, we are biasing a study, instilling the need for a prior hypothesis.
While this may be valid, regardless we still do not have the appropriate com-
putational power to explore higher order epistatic interactions in genome-wide
datasets. By acknowledging the potential database biases, a researcher has the
power to take these biases into consideration when conducting their analysis and
understand how, if at all, this may have influenced their results.

We have shown that the protein interaction confidence score in the STRING
database can be represented in a number of ways that may indicate the validity
of an interaction as well as how central a gene is to the dataset based on the
number of interactors it has within that dataset. If this holds true and there is
biological representation of statistical results in an analysis, the application of
our methods for prioritizing SNPs and reducing the scope of the analysis has a
higher probability of retaining functional epistatic interactions after the data is
processed. The development of computational methods that aid in the discovery
and characterization of epistatic interactions in GWAS is of great importance,
and this study opens the door for the utilization of expert knowledge from PPIs
to guide these methods.
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While these metrics are useful for preprocessing GWAS data, it is possible we
may be removing potentially important information by truncating a dataset. To
this end, we additionally would like to explore how to use this form of biologi-
cal expert knowledge in the computational evolution system we have developed
(CES), that has the ability to identify complex disease-causing genetic architec-
tures in simulated data by exploiting valid sources of statistical expert knowl-
edge. Unlike preprocessed data, all SNPs in the dataset would be considered in
this case. We anticipate that this biological expert knowledge will improve the
performance of this system.

Ultimately, we hope that the use of this biological expert knowledge will pro-
vide a complement to the statistical expert knowledge that we have already
shown to be successful in such a system. This can supplement an analysis with
a foundation for interpreting epistatic models and understanding how they in-
fluence disease risk biologically.
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Abstract. An important problem in the bioinformatics field is the infer-

ence of gene regulatory networks (GRN) from temporal expression pro-

files. In general, the main limitations faced by GRN inference methods is

the small number of samples with huge dimensionalities and the noisy na-

ture of the expression measurements. In face of these limitations, alterna-

tives are needed to get better accuracy on the GRNs inference problem. In

this context, this work addresses this problem by presenting an alternative

feature selection method that applies prior knowledge on its search strat-

egy, called SFFS-MR. The proposed search strategy is based on SFFS al-

gorithm, with the inclusion of multiple roots at the beginning of the search,

which are defined by the best and worst single results of the SFS algorithm.

In this way, the search space traversed is guided by these roots in order to

find the predictor genes for a given target gene, specially to better identify

genes presenting intrinsically multivariate prediction, without worsening

the asymptotical computational cost of the SFFS. Experimental results

show that the SFFS-MR provides a better inference accuracy than SFS

and SFFS, maintaining a similar robustness of the SFS and SFFS meth-

ods. In addition, the SFFS-MR was able to achieve 60% of accuracy on

network recovery after only 20 observations from a state space of size 220,

thus presenting very good results.

Keywords: SFS, SFFS, feature selection, inference, gene networks, pat-

tern recognition, systems biology, bioinformatics.

1 Introduction

Systems biology is the study of live organisms viewed as integrated and interact-
ing networks of genes, proteins and biochemical reactions. It has been an emergent
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field of study in bioinformatics since the advent of high-throughput technologies
for extraction of gene expressions (mRNA abundances or transcripts), such as
DNA microarrays [29] or SAGE [35], and more recently RNA-Seq [36]. These
high-throughput techniques together with computational methods, make possi-
ble to analyze thousands of transcripts simultaneously. Consequently, the volume
of transcriptome data available from a multitude of species during the last ten
years increased dramatically. In this context, a big challenge that researchers
need to face is the large number of variables (thousands) for just a few experi-
ments available (dozens). In order to infer relationships among those variables,
it is needed a great effort in developing novel computational and statistical tech-
niques that are able to alleviate the intrinsic error estimation committed in the
presence of small number of samples with huge dimensionalities.

A commonly used approach to infer gene regulatory networks (GRN) is the use
of feature selection techniques [18,4,13,23,21,26,11,3,38,9]. A feature selection
method is composed by two main parts: a search algorithm and a criterion func-
tion. As far as the search algorithms are concerned, there are two main categories:
the optimal and sub-optimal algorithms. The optimal algorithms (including ex-
haustive and branch-and-bound searches) return the best feature subspace, but
their computational costs are very high to be applied in general, especially for
high dimensionality problems such as GRN inference focused in this paper. The
sub-optimal algorithms do not guarantee that the solution is optimal, but some
of them present a reasonable cost-benefit between computational cost and qual-
ity of the solution. In this work, we explore the exhaustive search (optimal), the
Sequential Forward Selection (SFS - sub-optimal) and the Sequential Forward
Floating Selection (SFFS - sub-optimal with excellent cost-benefit) [24].

The reason why efficient search algorithms such as SFS and SFFS do not
always reach the optimal solution is due to the nesting effect in which a feature
not present in the optimal solution may be included in the partial solution of
the algorithm and never be discarded, which leads to a sub-optimal solution
[32]. Such effect can be explained by the fact that two features grouped in a
pair may perform a very nice prediction of the class (or value) of the target
object, although their individual predictions about the target are bad. Such pair
of features can be even better than two other features grouped that perform
well individually. This phenomenon is called synergy or intrinsically multivariate
prediction [1, 22].

The main contribution of this work is the proposal of a new search strategy
algorithm that uses the very efficient SFFS starting from some initial features
(denominated here as “roots”). Such roots contain not only the best individual
features, but also the worst ones. This strategy tries to identify those features
that are synergetic (or intrinsically multivariate predictive) in predicting the
targets without worsening the asymptotical computational cost of the SFFS.
The focus of the experiments presented here is given on the GRN inference
application.

Next section (Section 2) will introduce a brief background on the network
inference problem. In Section 3, the feature selection problem is discussed in
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more detail, including a short description of the SFS and SFFS techniques.
Section 4 discusses the intrinsically multivariate prediction issue and how it
can affect the greedy feature selection algorithms in such way that the achieved
solution be relatively far away from the optimal. Section 5 describes our proposed
feature selection method (SFFS-MR). Section 6 shows some experimental results.
Finally, Section 7 concludes the work, discussing future perspectives.

2 GRN Inference

The inference of GRNs from temporal expression data is a great challenge. One
of the main reasons for that is the usual limitation of the data itself in which the
number of samples is not enough to infer relationships among elements present
in the biological system with a reasonable confidence [15]. Due to this fact, there
are several approaches proposed for modeling and identification of GRNs. The
main approaches for modeling of GRNs are Boolean Networks, Differential Equa-
tions and Bayesian Networks. As Boolean Networks (and its stochastic version:
Probabilistic Boolean Networks (PBN) [30]) are more suitable in situations with
limited data samples, here we concentrate the attention in the PBN model.

Considering feature selection approaches for identification of GRNs, there are
three types of criterion functions frequently used. The first one is the correla-
tion between two features, in which there is an edge between two genes if the
correlation between their expression profiles are larger than some predefined
threshold [33]. Such method considers only 1-to-1 relationships, being suitable
to identify co-regulation between genes, functional modules and clusters. Nev-
ertheless, it ignores the fact that the expression of a given target gene may be
regulated by a group of genes with multivariate interaction.

Another class of criterion functions refers to those based on the Bayesian
error estimation of the predictors in classifying the target expression. A broadly
used criterion to infer GRNs is the coefficient of non-linear determination (CoD)
[13,7,12]. With this measurement, it is possible to capture N-to-1 (multivariate)
relationships.

The information theory based (entropy, mutual information) criterion func-
tions are also commonly employed for inference of GRNs. There are several works
that use such metrics in substitution to correlation to infer 1-to-1 relationships in
GRNs [4,25,21,11,26]. However, it is possible to employ these metrics for infer-
ence of multivariate relationships [18,3,38]. Basically, the difference between the
entropy based and the Bayesian error based criteria is that the second relies on
the minimum conditional probability distributions of the target given the sub-
set of predictors, while the former relies on the uniformity of these conditional
probability distributions as a whole (larger uniformity leads to higher entropy,
which in turn leads to smaller mutual information).

The literature related to modeling and inference of GRNs is vast and continues
to grow quickly, which reflects the importance of this research field. Some reviews
on this topic can be found in [5, 16, 34, 28, 17, 14].
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3 Feature Selection

A feature selection method consists in selecting a subset of features that makes
a good representation, classification or prediction of states (or values) of the ob-
jects in study. Generally, it is composed by two main parts: a search strategy and
a criterion function that attributes a quality value to the feature subsets. Due
to the nesting effect (see Section 4), the search for the best subsets generally re-
quires the investigation of the entire space of possible subsets (exhaustive search),
although depending on some constraints of the criterion function adopted (e.g.
monotonical or U-shaped), it is possible to obtain the best subset by looking for
a restricted space of subsets employing “branch-and-bound” techniques [31,27].

As exhaustive search is computationally impractical for most “real world”
tasks, and especially for inference of GRNs which involves data with thousands
of features (genes), it is clear the existence of a trade-off between optimality
and computational cost. Next we introduce two classical heuristics for feature
selection.

3.1 Sequential Forward Selection (SFS)

The SFS algorithm starts with the empty set and adds the best feature found to
this set according to the criterion function adopted. In the next step, it adds a
second feature that, jointly with the feature already included, composes the best
feature pair. This process continues until it reaches a stop condition, commonly
based on a fixed dimension (number of features of the subset to be returned), or
based on the criterion function value variation (it stops if the criterion value does
not improve significantly from the previous to the next step). There is a variant
of this algorithm, the Sequential Backward Selection (SBS), which starts with
the complete set and successively removes the less relevant features according to
the criterion function until the stop condition be satisfied [24].

3.2 Sequential Forward Floating Selection (SFFS)

The SFS and SBS search methods present an undesirable drawback known as
nesting effect. This effect happens because the discarded features in the top-down
approach are not inserted anymore, or the inserted features in the bottom-up ap-
proach are never discarded. Section 4 presents the reason why this phenomenon
occurs, and the potential problem leaded by it in some important gene inference
situations.

In order to amenize this problem, the SFFS [24] was adopted. The SFFS al-
gorithm tries to avoid the nesting effect by allowing to insert and to exclude
features on a subset in a floating way, i.e., without defining the number of inser-
tions or exclusions. In this algorithm, SFS and SBS are successively applied. A
schematic flowchart of the SFFS algorithm is presented in Figure 1.

The aforementioned algorithm is computationally efficient and usually returns
a solution very close to the optimal, presenting excellent cost-benefit. There are
also adaptive and generalized floating methods that try to improve the SFFS



SFFS-MR: A Floating Search Strategy for GRNs Inference 411

Fig. 1. Simplified flowchart of the SFFS algorithm [19]. K refers to the size of the

current solution subset while d refers to the size of the final solution subset.

results at the expense of a significant increase on the computational cost. Nev-
ertheless, they still can not avoid the nesting effect completely [32].

4 Intrinsically Multivariate Prediction

A set of predictor features is considered intrinsically multivariate predictive with
regard to a target feature if the target behavior is strongly predicted by the whole
set of predictors, but poorly predicted by any of its proper subsets. Formally, a
set of features X is intrinsically multivariate predictive for the target feature Y
with respect to λ and δ, for 0 ≤ λ, δ ≤ 1 and λ < δ, if

max
Z�X

FY (Z) ≤ λ ∧ FY (X) ≥ δ (1)

where F is a criterion function that varies from 0 to 1 (0 meaning absence
of prediction and 1 meaning full prediction) [22]. Generally, λ has small value
(usually smaller than 0.2) and δ has a high value (usually larger than 0.6).
For a pair predictors-target (X, Y ), the largest δ for which the prediction is
intrinsically multivariate is δ = FY (X). In this way, it is possible to define a
score of intrinsically multivariate prediction (IMP score) through the maximum
value of δ − λ. Thus, the IMP score is given by

IY (X) = FY (X)−max
Z�X

FY (Z) (2)

The concept of intrinsically multivariate prediction is related to the nesting
effect that occurs when a greedy feature selection algorithm like SFS or other
sub-optimal heuristics are applied. Next we present an example that clarifies this
concept. Suppose two Boolean features X1 = x1 ∈ {0, 1}, X2 = x2 ∈ {0, 1} and
another Boolean feature Y = y ∈ {0, 1} considered as target. Also suppose the
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joint probability distributions (JPD) P (x1, x2, y) ∀{x1, x2, y} ∈ {0, 1}3 given in
Table 1. Considering the nonlinear Coefficient of Determination (CoD) as crite-
rion function defined as CoDY (X) = εY −εY (X)

εY
, where εY is the error obtained

by classifying Y in the absence of other observations (prior error) and εY (X)
is the error obtained by classifying Y based on the observation of the feature
set X [8]. Such pair predictors-target has CoDY (X1, X2) = 0.5−0.2

0.5 = 0.6. On
the other hand, if we consider X1 and X2 individually, both CoDY (X1) and
CoDY (X2) are zero, since P (X1 = x1, Y = y) = P (X2 = x2, Y = y) = 0.25
∀x1 ∈ {0, 1}, x2 ∈ {0, 1}, y ∈ {0, 1}, which implies CoDY (X1) = CoDY (X2) =
0.5−0.5

0.5 = 0. The IMP score in this case is IY (X1, X2) = 0.6− 0 = 0.6, which is
considered high (X1, X2 and Y form an IMP set).

Table 1. Example of a joint probability distribution (JPD) between the target Y and

two predictors X1 and X2 in which such features form an intrinsically multivariate

predictive set (IY (X) = 0.6 for CoD as criterion function).

X1 = x1 0 0 1 1

X2 = x2 0 1 0 1

P (X1 = x1, X2 = x2, Y = 0) 0.2 0.05 0.05 0.2

P (X1 = x1, X2 = x2, Y = 1) 0.05 0.2 0.2 0.05

It is important to notice that, in the example given above, Y is given by
a stochastic exclusive-or (XOR), i.e., argmaxy∈Y P (y|x1, x2) = 0 if x1 = x2
or argmaxy∈Y P (y|x1, x2) = 1 if x1 �= x2. According to [22], in the case of 2
binary predictors, there are 8 logics that can produce high IMP score: XOR,
NXOR (negated XOR), AND, OR, NOR, NAND, x1 ∧ x̄2 and x1 ∨ x̄2. However,
there are other properties besides prediction logic that can jointly originate IMP
sets: predictive power (defined as 1−εY (X)), covariance between predictors and
probability distribution of each isolated predictor (marginal probabilities).

Most feature selection heuristics discard features that perform bad individual
prediction about the target to compose the initial solutions. Due to the intrin-
sically multivariate prediction phenomenon, such heuristics tend to reach local
minima that sometimes are far from the optimal solution. Next section describes
the main contribution of the paper: a feature selection strategy that applies SFFS
starting not only looking for good features, but also searching for bad individual
features which can form intrinsically multivariate predictive sets.

5 SFFS with Multiple Roots (SFFS-MR)

The inference of GRNs is one of the most challenging problems of Systems Biol-
ogy in these days, mainly because of the intrinsic error estimation due to small
number of samples with huge dimensionalities and the presence of genes that
have an intrinsically multivariate prediction. In this context, we propose an al-
ternative search strategy for GRNs inference problem, called SFFS-MR, which
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extends the SFFS method by including not only the best individual features,
but also the worst ones. Algorithm 1 presents the specification of the SFFS-MR
algorithm.

Algorithm 1. SFFS-MR (Δ, d, irb, irw)
1: var list exelist, bestset, newsubset
2: var vector ibroots[irb], iwroots[irw]

3: var float bestvalue, newvalue
4: var integer k ← 1

5: bestvalue ← SFS(ibroots, iwroots, k)

6: bestset ← ibroots[1]
7: for i = 1 to irb do
8: exelist.append(ibroots[i])
9: end for

10: for i = 1 to irw do
11: exelist.append(iwroots[i])
12: end for
13: while exelist is not empty do
14: newsubset ← exelist.removefirst

15: k ← newsubset.cardinality

16: if k < d then
17: newvalue ← SFS(newsubset, ∅, k + 1)

18: if newvalue < bestvalue and (bestvalue − newvalue) > Δ then
19: newvalue ← SBS(newsubset)
20: bestvalue ← newvalue
21: bestset ← newsubset
22: end if
23: exelist.append(newsubset)
24: end if
25: end while
26: return bestset

The Algorithm 1 starts by applying the SFS (Section 3.1) in order to discover
the irb best and irw worst individual features (k = 1), which are ranked ac-
cording to the adopted criterion function. The variable bestvalue represents the
criterion function value achieved by the best feature bestset [1]. These individual
subsets are appended in an execution list (exelist). In the while loop, the first
subset in the execution list will be removed and its cardinality will be tested. If
its cardinality has not reached the limit, the SFS will increment its cardinality,
i.e., to include a new feature that jointly with the features already present in
newsubset composes the best feature subset with cardinality k + 1. The vari-
able newvalue represents the criterion function value achieved by newsubset. If
newsubset has a better criterion function value (lower or higher, depending on
the adopted criterion function), and the gain is more than Δ, then a conditional
exclusion is performed, which is represented by calling SBS function, and the
bestvalue and bestset are updated by newvalue and newsubset respectively. At
the end, newsubset will be stored in the execution list for a new attempt to
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extend. In summary, the SFFS-MR differs from SFFS (Section 3.2) because of
the exploration of multiple roots. If irb and irw (number of initial roots) are
small constant values compared to the total number of variables (order of thou-
sands for the application focused here), its asymptotical computational cost is
not worse than SFFS.

The parameter d represents the maximum cardinality of the subset of pre-
dictors. A Δ of criterion function value variation is also included. Here the Δ
value prevents that minor variations of the criterion function (≤ Δ) causes the
increase of the subset of predictors. The present paper adopted d = 5, Δ = 0.05,
irb = 1 and irw = 5.

6 Experimental Results

This section presents the experimental results obtained by considering a syn-
thetic networks approach, which was adapted from [20]. The artificial gene net-
works (AGNs) were generated by considering the uniformly-random Erdös-Rényi
(ER) [10] topology. The Probabilistic Boolean Networks (PBN) [30] approach
was applied to generate the network dynamics, i.e., the temporal expression
profiles.

For all experiments, the network model (ER) was applied with 20 vertices
(genes). The average degree 〈k〉 per gene varied from 1 to 5, and the number of
observed instants of time (signal size) varied from 5, 10, 15, 20 to 100 in steps of
20. For each gene gi of the network, its value was given by a randomly selected
function from 3 possible Boolean functions {f (i)

1 , f
(i)
2 , f

(i)
3 }, where the probabil-

ities of each function be selected are given by c(i)1 = 0.95, c(i)2 = 0.025, c(i)3 =
0.025, i = 1, . . . , 20.

In order to identify the networks, the simulated temporal expressions were
submitted to the software described in [19] which implements feature selection
methods for network inference, applying the SFS and SFFS as search strategies.
The same method and parameters (default) were kept fixed during comparative
analysis with SFFS-MR. We adopted as similarity measure between the AGN
and the inferred network, the PPV (Positive Predictive Value, also known as
accuracy or precision) and Sensitivity (or recall) measurements presented by [6],
which are widely used to compare the results of the GRNs inference methods.
The experimental results were obtained from 50 simulations of each signal size
and 〈k〉 value.

The first experiment was performed in order to compare the three methods:
SFS, SFFS and SFFS-MR with respect to the temporal expressions size. Fig. 2
presents these results, in which the PPV measure was calculated by taking into
account the average results for all variations of average degree 〈k〉.

It is possible to notice that all methods have an increase on its performance
by increasing the number of observations. However, the improvement of the
SFFS-MR was more consistent, e.g., achieving 60% of similarity against 55%
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Fig. 2. PPV measure obtained by SFS, SFFS and SFFS-MR applied to infer network

edges from different sizes of temporal expression profiles (signal size). Similarity mea-

sure represents the mean over 50 executions.
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Fig. 3. Similarity measure, SQRT(PPV*Sensitivity), obtained by SFS, SFFS and

SFFS-MR applied to infer network edges from different network complexities in terms

of average degree 〈k〉. Similarity measure represents the mean over 50 executions.

(SFFS) and 51% (SFS) after only 20 observations and getting 75% against 57%
(SFFS) and 54% (SFS) after 100 observations, even in the presence of some per-
turbations in the temporal signal, implied by the stochasticity in the application
of transition functions.
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The second experiment was performed in order to compare the robustness of
the methods by increasing the complexity of the networks in terms of its average
degree 〈k〉. The geometric mean between PPV and Sensitivity, presented in Fig.
3, was calculated by taking into account the average results for all variations of
signal size. Fig. 3 shows that the three methods were very robust to increasing
complexity of networks, presenting a soft decrease of similarity with the increase
of average degree 〈k〉. In addition, the SFFS-MR showed slightly better results
than the SFS and SFFS.

7 Conclusion

This work presents a floating search strategy for the inference of gene regulatory
networks. Given the known limitations, our focus is to bring attention to the
inclusion of prior knowledge on search methods, so that it occurs more efficiently.
The proposed strategy is based on the assumption that some genes in biological
organisms have an intrinsically multivariate prediction. The presented method
exploits this property by the inclusion of multiple roots at the beginning of
the search, which are defined by the best and worst single results of the SFS
algorithm. In this context, the search space traversed by the SFFS-MR method
is a little wider than SFS and SFFS, but does not worsen the asymptotical
computational cost of the SFFS.

The experimental results show that the SFFS-MR provides a better inference
accuracy (PPV) than SFS and SFFS, when considering small signal sizes with
15-20 time points and also with large ones, with 100 time points. In addition,
the SFFS-MR was able to achieve 60% of accuracy on network recovery after
only 20 observations from a state space of size 220, presenting very good results.

The SFFS-MR has also proved to be robust, as SFS and SFFS, when submit-
ted to the increasing complexity of the networks in terms of its average degree
〈k〉. The robustness is an important property for the inference methods, even
in the presence of some perturbations in the temporal signal, implied by the
stochasticity in the application of transition functions. Besides, the SFFS-MR
showed slightly better results than the SFS and SFFS.

A possible extension of the present work is to apply the SFFS-MR in order
to evaluate large-scale networks, as well as to compare this method to other
network inference methods based on feature selection. Also, we plan to apply
this technique to infer GRNs from real data. Another very important improve-
ment in search methods for GRNs inference would be the inclusion of topology
information, such as the small-world (WS) [37] and scale-free (BA) [2] in order
to guide the search process for the correct topology inference of these networks.
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10. Erdös, P., Rényi, A.: On random graphs. Publ. Math. Debrecen 6, 290–297 (1959)

11. Faith, J., Hayete, B., Thaden, J., Mogno, I., Wierzbowski, J., Cottarel, G., Kasif,

S., Collins, J., Gardner, T.: Large-scale mapping and validation of escherichia coli

transcriptional regulation from a compendium of expression profiles. PLoS Biol-

ogy 5(1), 259–265 (2007)

12. Ghaffari, N., Ivanov, I., Qian, X., Dougherty, E.R.: A CoD-based reduction al-

gorithm for designing stationary control policies on Boolean networks. Bioin-

formatics 26(12), 1556–1563 (2010) doi: 10.1093/bioinformatics/btq225, http://

bioinformatics.oxfordjournals.org/cgi/content/abstract/26/12/1556

13. Hashimoto, R.F., Kim, S., Shmulevich, I., Zhang, W., Bittner, M.L., Dougherty,

E.R.: Growing genetic regulatory networks from seed genes. Bioinformatics 20(8),

1241–1247 (2004)

14. Hecker, M., Lambeck, S., Toepfer, S., van Someren, E., Guthke, R.: Gene regula-

tory network inference: Data integration in dynamic models - A review. Biosys-

tems 96(1), 86–103 (2009)

15. Hovatta, I., Kimppa, K., Lehmussola, A., Pasanen, T., Saarela, J., Saarikko, I.,

Saharinen, J., Tiikkainen, P., Toivanen, T., Tolvanen, M., et al.: DNA microarray

data analysis. In: CSC, 2nd edn., Scientific Computing Ltd. (2005)

16. de Jong, H.: Modeling and simulation of genetic regulatory systems: A literature

review. Journal of Computational Biology 9(1), 67–103 (2002)

17. Karlebach, G., Shamir, R.: Modelling and analysis of gene regulatory networks.

Nat. Rev. Mol. Cell Biol. 9(10), 770–780 (2008)

18. Liang, S., Fuhrman, S., Somogyi, R.: Reveal: a general reverse engineering algo-

rithm for inference of genetic network architectures. In: Proceedings of the Pacific

Symposium on Biocomputing, pp. 18–29 (1998)

http://doi.ieeecomputersociety.org/10.1109/TCBB.2007.70247
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/26/12/1556
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/26/12/1556


418 F.M. Lopes et al.

19. Lopes, F.M., Martins Jr., D.C., Cesar Jr., R.M.: Feature selection environment for

genomic applications. BMC Bioinformatics 9(1), 451 (2008)

20. Lopes, F.M., Cesar Jr., R.M., Costa, L.d.F.: AGN simulation and validation model.

In: Bazzan, A.L.C., Craven, M., Martins, N.F. (eds.) BSB 2008. LNCS (LNBI),

vol. 5167, pp. 169–173. Springer, Heidelberg (2008)

21. Margolin, A., Basso, K.N., Wiggins, C., Stolovitzky, G., Favera, R., Califano, A.:

ARACNE: An algorithm for the reconstruction of gene regulatory networks in a

mammalian cellular context. BMC Bioinformatics 7(suppl. 1), S7 (2006)

22. Martins Jr., D.C., Braga-Neto, U., Hashimoto, R.F., Dougherty, E.R., Bittner,

M.L.: Intrinsically multivariate predictive genes. IEEE Journal of Selected Topics

in Signal Processing 2(3), 424–439 (2008)

23. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: crite-

ria of max-dependency, max-relevance, and min-redundancy. IEEE TPAMI 27(8),

1226–1238 (2005)
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Abstract. Describing macro-molecular interfaces is key to improve our

understanding of the specificity and of the stability of macro-molecular

interactions, and also to predict complexes when little structural

information is known. Ideally, an interface model should provide easy-to-

compute geometric and topological parameters exhibiting a good correla-

tion with important bio-physical quantities. It should also be parametric

and amenable to comparisons. In this spirit, we recently developed an

interface model based on Voronoi diagrams, which proved instrumental

to refine state-of-the-art conclusions and provide new insights.

This paper formally presents this Voronoi interface model. First, we

discuss its connexion to classical interface models based on distance

cut-offs and solvent accessibility. Second, we develop the geometric and

topological constructions underlying the Voronoi interface, and design

efficient algorithms based on the Delaunay triangulation and the α-

complex.

We conclude with perspectives. In particular, we expect the Voronoi

interface model to be particularly well suited for the problem of compar-

ing interfaces in the context of large-scale structural studies.

Keywords: Protein interfaces, Computational Geometry, Voronoi dia-

grams, Geometric patterns.

1 Introduction

1.1 On Classical Protein - Protein Interface Models

Modeling interfaces. Understanding the stability and the specificity of macro-
molecular interactions is a key endeavour in computational structural biology.
Such an endeavour requires on the one hand describing non-covalent interactions
for the interfaces of complexes which have been solved experimentally, and on
the other hand developing algorithms able to predict complexes when little or no
structural information on the partners is known. On a per-complex basis, inter-
face models allow one to investigate correlations between structural parameters
and key bio-physical properties such as the conservation of residues, their polar-
ity, the water dynamics at the interface, mutagenesis data, etc. For large scale
experiments in the context of proteomics, the comparison of binding patches
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associated to interface models allow, in particular, the investigation of putative
partners between orphan molecules.

Classical interface models. Classical interface models are twofold. May be the
most widely used model is the so-called geometric footprint also called distance-
based model, which consists of considering all pairs of atoms within a distance
threshold d, typically in the range 5-8Å. But as illustrated on Fig. 1, considering
all atoms of one partner which are within distance d from the second partner
results in a bias towards convex regions [GLN04]. Another very popular interface
model is that based on the Solvent Accessible Surface (SAS). Recall that the SAS
is the boundary of balls with expanded radii, i.e. Van der Walls radii expanded
by r = 1.4Å to account for a water probe. In this model, an interface atom is an
atom contributing to the SAS of its own sub-unit, but losing part of this exposed
surface in the complex. See Fig. 2. Interface atoms identified this way can further
be classified as exposed or buried, depending on whether they retain accessibility
in the complex, the former and latter making up the so-called rim and core of
the interface. But as established in [CPBJ06] and explained in section 2.1, the
SAS model actually omits privileged contacts.

Overall, a general drawback of these two models is that they do not provide
a rich framework to compute pieces of information such as volume and surface
areas, curvature information, dissection of the interface into patches. Instead,
the computation of such quantities requires running dedicated algorithms.

partner A

partner B

d

Fig. 1. Defining an interface based on

a distance threshold creates a bias to-

wards convex regions

a4

a1

a2

a3

a0

Fig. 2. Defining an interface from

atoms losing solvent accessibility. The

dashed regions are exposed in the red

and blue sub-units, but get covered in

the complex.

1.2 The Voronoi Interface

Intuitive presentation. Recall that the Euclidean Voronoi diagram of a col-
lection of sample points is the partition of the ambient space into convex cells,
such that all points in a cell have the sample associated to the cell as near-
est neighbor. In bio-chemistry, since atoms’ radii depend on their chemical type,
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one replaces the Euclidean distance by the so-called power distance1. Abusing
terminology, we still call the resulting diagram a Voronoi diagram. In the sequel,
we shall consider the Voronoi diagram of atoms with expanded radii. See Fig. 3
for a 2D illustration.

Neighbors in a Voronoi diagram are actually privileged neighbors. That is,
given two neighboring spheres Si and Sj , and for any point p found on the dual
Voronoi face, one has π(p, Si) = π(p, Sj) < π(p, Sk), ∀k �= i, j. This property
is the main incentive for using pairs of neighboring regions to report interface
neighbors. However, two atoms may share a Voronoi face, yet their relative dis-
tance might be arbitrarily large. To get around this difficulty, let a restricted
ball or restriction be the intersection of this ball with its Voronoi region, see e.g.
the red ball on Fig. 3(a). Focusing on pairs of neighboring restrictions instead
of pairs of neighboring Voronoi regions allows one to report pairs of privileged
neighbors without resorting to a distance cutoff. We illustrate this construction
to define our Voronoi interface model.

Consider a complex involving two partners A and B, and denote W the wa-
ter molecules, if any. These types are also referred to as colors. Atoms of type
A/B/W are denoted ai/bi/wi, respectively.

Let an interface water molecule be a water molecule such that its restriction
has neighboring restrictions of type A and B. Water molecules which are not
at the interface are called bulk water molecules. As illustrated on Fig. 3(a), our
interface features pairs of restrictions of type [A;B] or [A;W ] or [B;W ], with
W standing for interface water molecules. Each pair actually conveys two pieces
of information, namely the atoms associated to the restrictions, and the Voronoi
facet, also called tile, dual of this edge. As illustrated on Fig. 3(b), an interface
atom is an atom involved in at least one pair. Focusing on two types allows one
to define three bicolor interfaces. That is, tiles of type AB (AW and BW ) define
the interface AB (AW and BW respectively). Tiles of type AB define direct
contacts between the partners, while tiles of type AW and BW define contacts
between these partners which are mediated by interface water molecules. The
union of tiles AW and BW defines the AW−BW interface. The union of the
AW−BW and AB interfaces defines the ABW interface, which separates the part-
ners and gives a global overview of the interaction area, regardless of
the role played by water molecules. See Fig. 3(c,d).

Interestingly, the interface ABW can be shelled into concentric shells—
prosaically speaking the process is similar to peeling an onion from the out-
side to the inside. The process yields a integer called the Voronoi Shelling Order
or VSO to tiles and atoms. This VSO qualifies the depth of an atom at the
interface—from one for rim atoms to an integer in the range 7-10 for most com-
plexes. See Fig. 3(c,d).

Connexions to classical interface parameters. We now discuss the find-
ing made with our interface model, and note in passing that the corresponding

1 Recall that the power distance of a point p to a sphere S(ci, ri) is defined by

π(p, Si) = ‖cip‖2 − r2
i .
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software, Intervor [LC10], can be run and retrieved from http://cgal.inria.
fr/abs/Intervor, together with plugins for VMD and Pymol.

We established in [CPBJ06] that our model identifies a superset of interface
atoms losing solvent accessibility [BCR+04], which actually draws the attention
to interactions between main chain atoms upon association. (Algorithms in sec-
tion 2.1.) Interface tiles are naturally gathered into patches, which have been
shown [CPBJ06] to be coherent with those obtained with classical clustering
algorithms [CJ02]. (Algorithms in sections 2.2, 2.3 and 3.2.) Quantifying the
planarity of interfaces and patches is important, e.g. to estimate (de-)solvation
energies and also to identify putative binding regions for docking. While pre-
vious studies have used strategies based on plane fitting [JT96], the Voronoi
interface comes with a notion of discrete (mean) curvature [CPBJ06], which al-
lows to assess the curvature properties at any scale (from two tiles to the whole
interface). (Algorithms in section 2.4.) Finally, the VSO provides a discrete in-
terface depth parameterization which refines the dissection into a core and a rim
[CCJ99, BCR+04]. In [BGNC09], this parameterization allowed us to sharpen
the investigation of correlations between (i) the interface geometry, (ii) the lo-
cation of polar residues [CJ02], (iii) the location of conserved residues [GC05],
(iv) the dynamics of interfacial water [MRL07]. (Algorithms in section 3.3.)

We note in passing that another Voronoi interface definition has been proposed
in [BER04]. This interface model uses the Voronoi diagram of the Van der Walls
atoms (rather than the expanded radii), and closes small gaps at the interface
using a growth process of the atoms which consists of expanding their squared
radii by a value α. As a consequence, the atoms reported are not qualified with
respect to solvent accessibility.

2 Bicolor Voronoi Interfaces

In this section, we formally define bicolor Voronoi interfaces. We use the termi-
nology of bicolor AB interface —the interface between the two proteins A and
B, although the presentation is identical for any bicolor interface. We assume
that the reader is familiar with the α-complex of a union of balls [Ede92].

2.1 Bicolor Interface and Interface Neighbors

To account for privileged contacts in the Voronoi diagram of atomic balls, we seek
pairwise intersections of restrictions of different colors. To balls whose restrictions
intersect actually define an edge in the α-complex of the balls for α = 0, whence
the following:

Definition 1. An AB interface edge is an edge of type AB in the α-complex
of the balls Bi, with α = 0; its endpoints are called interface atoms. The inter-
face neighbors of a sphere Si are the atoms of the second molecule sphere Si is
connected to through an interface edge.

The AB interface is defined as the collection Voronoi facets dual of the AB
interface edges. A Voronoi edge bounding an interface Voronoi facet is called an
interface Voronoi edge.

http://cgal.inria.fr/abs/Intervor
http://cgal.inria.fr/abs/Intervor
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(a)

w1

a1

b1

w2

Tile dual of pair (b1, w1):
(b)

(c)

BW interface

Tile dual of pair (a1, w1) : AW interface

Tile dual of pair (a1, b1) : AB interface

(d)

Fig. 3. (a) A fictitious complex with two atoms (red and blue) and two water molecules

(in grey). The Voronoi diagram consists of the dashed-dotted line-segments. The inter-

face comprises three pairs namely [a1; b1], [a1; w1], and [b1; w1]; water w2 is not at the

interface. (b) Signal transduction complex (1tx4.pdb) : chains and interface atoms dis-

played with radii expanded by 1.4Å, with interface water molecules in grey. (c) Shelling

a fictitious 2D interface into three shells (d) Shelling the ABW interface of complex

1txa into concentric shells: transparent view of the shells.

With respect to interface atoms defined with the BSA criterion, one can prove
the following:

Observation 1. Any atom Si such that losing solvent accessibility during com-
plex formation is an interface atom by Def. 1.

However, the converse is false, as already mentioned in section 1.1, since an
interface atom by Def. 1 may not lose solvent accessibility. A sufficient—but not
necessary—condition for that is met when the atom is buried in its own sub-
unit, and a 2D illustration is provided on Fig. 4. On that figure, the maintenance
of the so-called empty ball property which characterizes Delaunay triangulations
results in the creation an edge between the buried atom centered at a0 and the
red atom centered at a4.

2.2 Topology of Bicolor Voronoi Interfaces

Consider a bicolor interface, say the AB interface. Since the interface is a subset
of the Voronoi diagram, it is a cell complex. To further qualify its topology, we
need to examine how Voronoi facets patch together. Since a facet is the dual of
a bicolor edge, we examine the tetrahedra containing this edge. We define:

Definition 2. The type of a tetrahedron featuring atoms of types A and B is
denoted by a pair (i, j) where i, j respectively count the number of atoms of each
type, and i+ j = 4. Similarly, the type of a tetrahedron featuring an additional
atomic type out of W,X is denoted by a triple (i, j, k), with k the number of
atoms of the third type, and i+ j + k = 4.
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a1

a2

a3

a0

a4

a1

a2

a3

a0

Fig. 4. In the Voronoi model, interface atoms can be buried (a) Atom centered at a0

is buried in its subunit (b) Yet, it makes an interface edge with atom centered at a4 in

the complex

A case analysis of the types of tetrahedra yields:

Observation 2. The bicolor interface has the following properties:

– A Voronoi edge bounding an AB Voronoi facet has one or two incident AB
Voronoi facets. Such a Voronoi edge is on the interface boundary iff only one
edge of its dual triangle is an interface edge of type AB.

– The neighborhood of every Voronoi vertex is either a topological disk, a half-
topological disk, or two half-topological disks pinched together at the Voronoi
vertex. This later case correspond to a tetrahedron of type (2, 2), where two
bicolor edges are interface edges, and these two edges span the four vertices
of the tetrahedron.

An interface can be connected through a pinched Voronoi vertex of a type (2, 2)
tetrahedron. For such a tetrahedron, out of the four bicolor edges, only two
actually occur in the α-complex. Phrased differently, we have two independent
bicolor pairs. See Figs. 5 and 6. Since the intersection of the corresponding
Voronoi facets does not encode a joint property of these pairs, we define:

Definition 3. Two Voronoi facets are called edge-connected if they share a
Voronoi edge. An edge-connected component of the interface is a collection of
edge-connected Voronoi facets. The closed curves bounding an edge connected
component are called the loops.

We now present the algorithms used to retrieve connected components and loops.

2.3 Computing Bicolor Interfaces and Their Boundaries

Retrieving connected components. Given an initial Voronoi facet f0 dual of an
edge e0, the exploration of the corresponding connected component requires
running a breadth-first-search (or depth-first-search) like algorithm anchored
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F2

F1

F2

e

c

2d
3d

Fig. 5. (a) Top view of a Delaunay triangle in 3d. Voronoi facets F1 and F2 meet

along the Voronoi edge dual of the triangle, and are edge-connected (b)Side view of

Delaunay tetrahedron contributing 2 bicolor interface edges. The dual Voronoi facets

F1 and F2 meet at a pinched Voronoi vertex dual of a type (2, 2) tetrahedron, and are

not edge-connected.

v1

v2

e1
e2

Fig. 6. An interface with three con-

nected components and four boundary

loops

Fig. 7. Dihedral angle between Voronoi

facets

at f0. To run such an algorithm, the only information required is the list of
Voronoi facets edge connected to a given facet f . But two edge connected Voronoi
facets are dual of edges of the same triangle. Therefore, to report the facets edge
connected to a facet f dual of an edge e, we just need to report the Delaunay
triangles (i)incident to e (ii)featuring a second bicolor edge whose type is that of
e. This is easily done by rotating around edge e in the Delaunay triangulation.

Upon completion of a connected component, we have a collection of Delaunay
edges. We record them without any additional topological information as any
such information is encoded in the Delaunay triangulation. As an example, we
present an algorithm to retrieve the cycles bounding a connected component.
This algorithm operates on the Delaunay triangulation, but takes constant time
per boundary edge.

Retrieving the cycles bounding a connected component. Starting from an initial
boundary Voronoi edge e, a given cycle (also called loop) can be computed
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by iteratively following the successor of e on the boundary of the connected
component. Assume e is oriented and denote s(e), t(e) the corresponding source
and target Voronoi vertices, and let T (v) be the tetrahedron associated with
Voronoi vertex v. The successor of edge e is one of the four Voronoi edges dual
of the facets of T (t(e)). Following observation 2, if the neighborhood of t(e) is a
half-topological disk, tetrahedron T (t(e)) has only two facets whose dual Voronoi
edges are boundary edges. Since e is one of them, extending the loop requires
retrieving and following the second one. On the other hand, if t(e) is a pinched
Voronoi vertex and if the four edges belong to the boundary of the connected
component processed, there are three potential outgoing edges, but only one
bounding the Voronoi facet which has e on its boundary. Again, extending the
loop requires finding and following this edge.

Equipped with this extension operation, computing the loop of a given edge
e0 requires picking an arbitrary orientation for e0, and following the boundary
until the Voronoi vertex T (s(e0)) is encountered again. To retrieve all the loops,
we just have to iterate over the remaining boundary edges which are not already
part of a loop.

The previous description actually eludes a difficulty, namely the way infinite
tetrahedra are handled. (Recall these are the tetrahedra featuring a triangle
of the convex hull of the Delaunay triangulation). When such a tetrahedron is
encountered during the extension of a loop, we do not report its Voronoi center
but the weighted circumcenter of the finite facet —that is the center of the
smallest sphere orthogonal to the three spheres associated with the vertices of
the facet.

2.4 Geometry of Connected Components

The most straightforward geometric statistics for an interface are its surface
area and its boundary length. Apart from these, another interesting quantity is
the interface curvature. Since a bicolor interface is a piecewise linear orientable
surface, the natural way to characterize its extrinsic curvature consists of using
the mean curvature. Notice that since we aim at studying the way a surface is
embedded in R3, the extrinsic curvature is more suited than the intrinsic Gauss
curvature, which is related to topological invariants and in particular boundary
properties —cf the Gauss-Bonnet theorem. Recall that the mean curvature of
a polyhedral surface is carried out along edges [San79], the amount of mean
curvature attached to an edge being defined by h(e) = β(e)l(e), with l(e) the
edge length and β(e) the angle between the normals to the facets incident to e,
the angle being counted positively (negatively) if e is convex (concave). We thus
define sH =

∑
e∈IVE h(e), with IVE the collection of interior Voronoi edges of

the interface.
In a bio-chemical setting, one expects dihedral angles to alternate. Therefore,

large values of sH indicate that the interface facets bend in a coherent fashion
at the interface scale. Notice that in case of interfaces with several connected
components, the components must be oriented coherently for the sum to make
sense. But since the angle between the Voronoi facets matches the angle between
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the corresponding Delaunay edges, implementing this constraint means initial-
izing the orientation of all the components in the same way —e.g. from protein
A to protein B. See Fig. 7.

2.5 On the Geometry of Interface Facets

As seen in section 1.2, bicolor edges selected from the 0-complex allow one to
report interface neighbors without resorting to a distance cutoff. Phrased differ-
ently, long edges belong to the Delaunay triangulation but not the α-complex.
This filtering mechanism avoids using explicit solvent molecules, a strategy of-
ten resorted to in applications deriving statistical potentials from the Delaunay
triangulation. However, this filtering mechanism does not provide any control
on the geometry of the interface Voronoi facets, and in particular, large facets
are expected near the convex hull of the atoms centers. In other words, interface
edges encode the topology of the interface but not its geometry.

To retrieve a relevant geometric information, we build upon the observation
that boundary atoms do not play a major role from an energetic standpoint
[BT98], so that one may discard selected boundary edges these atoms are in-
volved in. One way to discard large Voronoi facets is the following. Recall than
any simplex in the α-complex comes with a value μ which gives the weight of its
largest orthogonal ball [Ede92]. For an interface edge e, denoting we the weight
of its smallest ball, one can therefore discard the edge if μ/we ≥ M , with M
a positive number. Since weights of balls are equal to their square radii, the
condition amounts to saying that the radii of the balls are within a factor

√
M .

3 Tricolor Interfaces and Water Molecules

3.1 The AW−BW Interface

When considering an interface, an interesting question is the role played by
structural water molecules 2. As these water molecules are described from the
crystal as protein atoms are, we also expand their radius by the quantity rw .
Notice again that this expansion aims at mimicking an implicit continuous layer
of solvent molecules on the atoms found in the crystal —be they protein atoms
of water molecules.

If one has three molecular types A,B,W , one can define three types of bicolor
interfaces. But since we primarily care for the AB interface, contact of type AW
and BW are of interest only when located near the AB interface, see Fig. 8. We
therefore define:

Definition 4. An interface water molecule is a ball of type W which is the
vertex of at least one edge of type AW and at least one edge of type BW , both
edges belonging to the α-complex of the balls Bi, with α = 0. An AW (or BW )
interface edge is an edge of type AW (or BW ), with W an interface water
2 A water molecule is termed structural if it is as stable as the surrounding atoms. In

a crystal structure, this can be assessed thanks to B-factors.
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molecule. The AW (BW ) interface is defined as the collection Voronoi facets
dual of the AW (BW ) interface edges.

A further refinement consists of aggregating Voronoi facets of type AW and
BW :

Definition 5. The AW−BW interface is the collection of Voronoi facets dual
of edges of type AW or BW . A connected component of AW−BW interface is
a collection of edge-connected Voronoi facets dual of interface edges of type AW
or BW .

To study the AW or the BW or the AW−BW interface, observe that edge con-
nected Voronoi facets of types AW and BW are defined from bicolor, tricolor or
quadricolor tetrahedra. Let us analyze the last two cases. In such a tetrahedron,
we identify the labels A and B —since we do not report facets dual of such edges,
so that the configurations found are those of bicolor tetrahedra. More precisely,
a tetrahedron of type AABW where AB edges are omitted yields the same topo-
logical configurations as a bicolor (3, 1) tetrahedron for any bicolor interface. A
tricolor tetrahedron of type ABWW is similar to a bicolor (2, 2) tetrahedron for
any bicolor interface. Finally, a ABWX tetrahedron is equivalent to a (2, 1, 1)
tetrahedron for any bicolor interface.

Therefore, the AW , the BW , and the AW−BW interfaces have the same
topological properties as the AB interface i.e. are surfaces with possibly pinched
vertices.

B

A

w1 w2

w3

Fig. 8. Water molecules centered at w1

and w2 are interface water molecules;

that centered at w3 is not

AB

AW

BW

A

B

W

Fig. 9. The boundary of the union of

the AB and AW−BW interfaces may

not be a one-manifold

3.2 The ABW Interface

To assess the role of water molecules, and position relatively to one another the
connected components of the AB and AW−BW interfaces, we define:

Definition 6. TheABW interface is defined as the union of theAB andAW−BW
interfaces.
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But the topology of the union is more involved than that of the singletons. First,
non-manifold Voronoi edges may appear —if the three facets dual of the cor-
responding triangle are present in the union of the two interfaces. Second, the
boundary of the union may not be a one-manifold, and we call it a curve network
or net for short, see Fig. 9. To deal with these difficulties, it is actually sufficient
to compute the AB and AW−BW interfaces separately, run a Union-Find algo-
rithm to maintain the connected components of the edge-connected components,
and another union-find algorithm to maintain the connected components of the
boundary loops of the connected components of the union. Finding the Voronoi
edges along which connexions occur can be done while computing the interfaces,
while running m Union-Find operations on a n-element set takes O(mα(m,n)
with α(m,n) the inverse of Ackerman’s function [Tar83].

3.3 Shelling the ABW Interface

Considering the edge-connectivity of interface tiles, define the depth or the
Voronoi Shelling Order of a tile as the number of tiles visited to reach it from
the interface boundary—any tile which has a boundary edge is at depth one.
This VSO provides an integer-valued parameterization of the ABW interface,
which refines the binary core-rim model discussed in section 1.1.

4 Conclusion and Outlook

The interface model presented in this paper proved instrumental to refine our
understanding of correlations between structural properties of protein interfaces,
and important bio-physical quantities. However, the topic of modeling interfaces
remains largely open for several reasons.

First, as evidenced by the scoring round of the community-wise docking exper-
iment CAPRI, the design of scoring functions is an active area of research, and
structural parameters defined from interface models should prove instrumental
in this context.

Second, the question of precisely aligning and comparing interfaces has barely
been touched upon. The Voronoi interface model proved instrumental for the
description of bio-chemical properties, and we believe that the precise topological
and geometric information it encodes should ease the comparison of interfaces
in exhaustive structural classification studies.

Finally, while modeling single molecules and complexes is done routinely using
methods from potential theory (molecular dynamics simulations, normal modes),
we are not aware of any significant work for the problem of modeling dynamic in-
terfaces so as to possibly incorporate entropy-related terms into scoring functions.
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Abstract. Bayesian networks and their variants are widely used for

modelling gene regulatory and protein signalling networks. In many set-

tings, it is the underlying network structure itself that is the object of

inference. Within a Bayesian framework inferences regarding network

structure are made via a posterior probability distribution over graphs.

However, in practical problems, the space of graphs is usually too large

to permit exact inference, motivating the use of approximate approaches.

An MCMC-based algorithm known as MC3 is widely used for network

inference in this setting. We argue that recent trends towards larger sam-

ple size datasets, while otherwise advantageous, can, for reasons related

to concentration of posterior mass, render inference by MC3 harder. We

therefore exploit an approach known as parallel tempering to put for-

ward an algorithm for network inference which we call MC4. We show

empirical results on both synthetic and proteomic data which highlight

the ability of MC4 to converge faster and thereby yield demonstrably

accurate results, even in challenging settings where MC3 fails.

1 Introduction

Modern biochemical technologies are allowing access to ever increasing amounts
of data pertaining to cellular processes. As a result, there has been a move
away from studying molecular components in isolation towards pathway- and
network-oriented approaches. This in turn has driven much work on network
models in bioinformatics, machine learning and computational statistics. Proba-
bilistic graphical models [6,5] have emerged as a key approach. These are stochas-
tic models in which a graph is used to describe relationships between random
variables and thereby facilitate representation and inference. Directed graphical
models called Bayesian networks (BNs) are widely used in the modelling of gene
regulatory and protein signalling networks [4,1,16,19].

A BN consists of a directed acyclic graph (DAG) G which describes condi-
tional independence relationships between variables, and associated parameters.
In many bioinformatics settings, it is of interest to make inferences about the
DAG itself, a task known as structure learning or network inference.

Within a Bayesian framework, under certain assumptions, it is possible to
analytically integrate out parameters to obtain a score which is proportional

T.M.H. Dijkstra et al. (Eds.): PRIB 2010, LNBI 6282, pp. 431–442, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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to the posterior probability of a given graph G. However, since the number
of possible DAGs grows super-exponentially [15] it rapidly becomes infeasible
to characterise the posterior distribution by simply enumerating all possible
DAGs. This has motivated the use of approximate inference methods for network
inference. Markov chain Monte Carlo (MCMC) methods [7,14] in particular are
often used in this setting [4,10].

A widely-used approach is to follow [8] in using a random-walk Metropolis
type algorithm in which moves are made in the state space of DAGs via single-
edge changes (for details see Section 2 below). This scheme, known as MC3 (for
“Markov Chain Monte Carlo Model Composition”), is asymptotically guaranteed
to converge to the desired posterior distribution, but can be slow to do so, and for
large or otherwise challenging distributions can fail entirely (we show examples
below).

In recent years, there has been a drive towards larger sample-size datasets for
network inference. As the cost of array-based assays continues to fall, studies
have become wider in scope, covering a greater number of samples. At the same
time, single-cell, FACS-based platforms have also become more widely avail-
able. Clearly, this trend towards larger datasets is broadly favourable. Yet at
the same time, it can render MCMC-based network inference more challenging.
This is because as the sample size increases, the posterior mass becomes more
concentrated around fewer graphs (eventually, by consistency of Bayesian model
selection, around members of the correct, data-generating equivalence class). In
this setting, the MC3 scheme can have difficulty discovering these high-scoring
graphs, or moving between them. Figure 1 shows an empirical example of this
phenomenon. As we increase the sample-size N for a simple, four-node toy-
model, the posterior becomes progressively more concentrated on a few graphs.
(Note, locality of graphs along the axis in Figure 1 does not represent location
in graph space).
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Fig. 1. The posterior distribution of graphs P (G|X) for two lengths of data set N . As

N increases the distribution becomes more peaked on a few highly probable graphs.

The distributions shown here are over the space of 4-node DAGs; a space small enough

to permit enumeration of the true distribution.
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This ‘peakiness’ can be quantified by the information entropy

H [P (G|X)] = −
∑
G∈G

P (G|X) logP (G|X) (1)

where, P (G|X) denotes the posterior probability of a graph G given data X and
G is the whole space of DAGs. Using Bayes’ theorem we can write the posterior
as proportional to the product of a marginal likelihood, P (X|G) and a prior
distribution over graphs, P (G);

P (G|X) ∝ P (X|G)P (G). (2)

The marginal likelihood is obtained by integrating out model parameters Θ.
The likelihood P (X|G,Θ) factorises into a product of local terms in which each
variable Xi depends only on its parents in graph G, πG(i), and parameters θi.
That is, P (X|G,Θ) =

∏
i P (Xi|πG(i), θi).

EntropyH and shape of the posterior are affected by both marginal likelihood
and graph prior. The main focus of the present paper are low-entropy regimes
that are characteristic of large-sample problems. We therefore focus only on the
effect of increasing sample size and choose a uniform graph prior, P (G) = |G|−1.
H is maximal for a uniform distribution so its maximal possible value is

Hmax = log |G|. Consider the information entropy of the distributions on 4-
node DAGs shown in Figure 1; as N increases we move away from the uniform
distribution which is reflected by H decreasing from Hmax  6.3 to a lower value
of  1.5 (see Figure 2).
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Fig. 2. The information entropy H [p] (averaged over 100 subsamplings of a data set)

as a function of length of the data set N . We can see that as we increase N the

information entropy H decreases indicating that we are moving further away from the

uniform distribution.

Low-entropy regimes of this kind, which are important for the larger datasets
that are now becoming available, present special challenges for MCMC. One ap-
proach, popular in both statistical physics and Bayesian statistics, is to permit
either longer-range or, via so-called tempering algorithms, “higher temperature”
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moves around the state space. Here, we show how a form of tempering known
as parallel tempering can be used to accelerate convergence of MCMC-based
network inference. The approach has a minimum of user-set parameters and is
amenable to efficient, parallel implementation, giving effective run-times identi-
cal to MC3. We show comparative results on both synthetic data and data from
high-throughput proteomics. Since tempering approaches are often referred to
as “Metropolis-coupled”, we call our approach “MC4” for “Model Composition
by Metropolis-Coupled Markov Chain Monte Carlo”.

The remainder of the paper is organised as follows. We first introduce no-
tation and briefly review MCMC-based network inference. We then introduce
the parallel tempering scheme used and illustrate how it can help inference in
the relatively low entropy regimes of interest here. We then show empirical re-
sults comparing relative performance on both synthetic and proteomic data. We
conclude with a discussion of the work presented and ideas for future work.

2 Methods

2.1 Monte Carlo Schemes

The Monte Carlo schemes used here can be thought of as constructing a Markov
chain whose state space is the space of DAGs G and whose (unique) invariant
distribution is the posterior distribution P (G|X) of interest. For a more detailed
technical exposition of these ideas we refer the interested reader to [14] and
references therein.

Given tmax samples our estimate of the probability of a graph G is given by

P̂ (G|X) =
1
tmax

tmax∑
t=1

I(g(t) = G) (3)

where g(t) is the tth sampled graph and I(·) is the indicator function which
equals 1 if its argument is true and 0 otherwise. For MCMC schemes which
satisfy certain mild conditions we also have, by standard results:

lim
tmax→∞

1
tmax

tmax∑
t=1

I(g(t) = G) = P (G|X). (4)

The Markov Chain performs its walk by proposing a new graph from the state
space according to some ‘proposal distribution’ and then subsequently accepting
or rejecting the proposed graph according to an ‘acceptance probability’, thereby
ensuring the stationary distribution is the one desired.

MC3. Here, the proposal distribution Q involves picking so-called ‘neighbours’
with uniform probability. The neighbourhood η(G) of a graph G is defined to
be all graphs G′ which can be obtained from G by either removing, adding or
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Fig. 3. The neighbourhood η(G) of any directed acyclic graph G is defined as all acyclic

graphs which are reachable from the current graph with one of the three basic edge

operations; addition, deletion and reversal

flipping a single edge, whilst maintaining acyclicity (see Figure 3). The proposal
distribution is then

Q(G→ G′) =
{ 1

|η(G)| if G′ ∈ η(G)
0 otherwise

(5)

This proposal distribution has only short range support. It is worth noting that
this proposal distibution is not symmetric since the sizes of the neighbourhoods,
|η|, are (possibly) different for G and G′. However this is accounted for by a
corresponding factor in the acceptance probability below which ensures that
detailed balance is satisfied. This in turn is a sufficient condition to guarantee
convergence to the correct posterior distribution in the limit. Specifically, the
acceptance probability has the form A = min {1, α} where

α =
P (X|G′)P (G′)
P (X|G)P (G)

Q(G′ → G)
Q(G→ G′)

=
P (X|G′)|η(G)|
P (X|G)|η(G′)| . (6)

Here, the prior terms P (G) and P (G′) cancel since we are using a uniform prior.

MC4. In light of the concerns with MC3 highlighted in the Introduction above,
a natural idea is to consider “higher temperature” moves; a strategy which is
widely used in statistical physics. Here, we use an approach known as Parallel
Tempering (PT) to this end. PT is an MCMC-approach which aims to help the
Markov chain escape local maxima, thus aiding mixing [7,12]. PT is a natural
progression from work done by Marinari and Parisi [9] and Geyer and Thompson
[3] on so-called Simulated Tempering (ST). In this statistical application there
is no equivalent to the physical temperature, but we can introduce an analogue
by writing

α =
(
P (X|G′)P (G′)
P (X|G)P (G)

|η(G)|
|η(G′)|

)β

(7)
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Here β = T−1 is the inverse temperature. Clearly as β → 0 (infinite temperature)
α = 1 and so we have the uniform distribution one would expect. Similarly as
β →∞ (zero temperature) α = ∞ if G′ is more likely or α = 0 if G is less likely
and we recover steepest ascent.

In PT we run a collection of Markov Chains at different temperatures, oc-
casionally swapping the graphs between them. To be more concrete, we have
m chains each with an associated temperature Ti (βi). The temperatures must
obey T1 = 1 (β1 = 1) and Ti > Tj (βi < βj) for 1 ≤ j < i ≤ m. The algorithm
for updating the chains is

(1) With probability (1− pswap) conduct a parallel step;
(a) Update each graph Gi for each chain i using the MH scheme at temper-

ature βi.
(2) else conduct an exchange step;

(a) Randomly choose a neighbouring pair of chains (i,j). Propose swapping
their graphs Gi with Gj .

(b) Accept the swap with probability R = min{1, ρ}

ρ =
(P (X|Gj)P (Gj))βi (P (X|Gi)P (Gi))βj

(P (X|Gi)P (Gi))βi (P (X|Gj)P (Gj))βj
. (8)

This scheme satisfies detailed balance in the extended state space thus conver-
gence for each chain is guaranteed to the correct posterior distribution for each
temperature [3,7].

The performace of this scheme depends upon the choice of temperatures and
(somewhat more weakly) upon the exchange probability pswap. A guide for choos-
ing suitable temperatures is given in [7] as

(βi − βi+1) |Δ logP | ≈ − log pa (9)

where |Δ logP | is the typical difference in the log-posterior and pa is the desired
lower bound for the swapping acceptance probability.

Thanks to modern parallel computing facilities the updating of chains in step
(1)(a) can be carried out simultaneously meaning this scheme can be run at
effectively the same speed as the traditional MC3 scheme, so long as the number
of available processors is ≥ m. If this condition is not satisfied we must wait for
the chains to update before preceeding.

2.2 Simulation Set-Up

We run the two schemes on data simulated from the known network shown in
Figure 4(a). Since we know the underlying network structure, we are able to
assess and compare performance of the schemes.

Continuous data is generated by sampling the root nodes from a zero-mean
Gaussian. Child nodes are also Gaussian distributed, but with mean dependent
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(a) Data generating net-

work.
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Fig. 4. Simulation set-up. (a) Data generating network. (b) The cross terms in the

known model (10) approximates the !XOR Boolean function and make it tough to

infer the underlying structure (a).

on their parents in the graph. Specifically, when a node has a single parent, the
mean is simply its parent’s value. If there are two parents the mean of child
is taken to be a non-linear combination of the parents. Thus the cumulative
probabilities are defined as

P (A ≤ x) = P (B ≤ x) = Φ
(x
σ

)

P (C ≤ x|A,B) = Φ
(
x− (A+B + γAB)

σ

)
(10)

for child node C with parents A and B, where Φ(x) = 1
2 [1 + erf( x√

2
)] is the

cumulative distribution function of a standard Gaussian. The non-linear cross
term γAB in the mean is chosen in the hope of separating the peaks of the distri-
bution. If A is high and B is low (or vice versa) then C is low, if however A and
B are both high (or low) then crucially C is high. This structure (illustrated in
Figure 4) approximates the !XOR Boolean function, rendering difficult inference
of the relationship between parents A and B and child C.

In order to investigate the effects of sample size N on the two schemes, we
consider data sets with N = 500 and N = 5, 000. We consider performance over
ten MCMC runs of tmax = 50, 000 iterations each; this gives good indications of
convergence using standard diagnostics [2].

This paper concerns MCMC methods and the approaches we discuss apply to
essentially any prior specification which yields a closed-form marginal likelihood
or one which can be efficiently approximated. In all the experiments here we use
a Gaussian model. Specifically, we take Xi ∼ N (Biβi, σ

2I) where Bi is a local
design matrix (including products over parents) and βi corresponding regression
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coefficients. We use conjugate parameter priors [17,13] βi ∼ N (0, Nσ2(BT
i Bi)−1)

and σ2 ∝ 1/σ2 to obtain the following closed form marginal likelihood,

p(X|G) ∝
∏

i

(1 +N)−(2|πG(i)|−1)/2
(
Xi

TXi

− N

N + 1
Xi

TBi

(
Bi

TBi

)−1
Bi

TXi

)−N
2

.

(11)

2.3 Measuring Convergence

We are interested in the marginal posterior probabilities for individual edges.
We collect these probabilities into an “edge probability matrix” E, specifically:

Eij =
∑
G∈G

P (G|X)I(e = (i, j) ∈ G). (12)

We will also index entries in E by edge, e.g. E(e). Similarly to equation (3),
we estimate the the edge probability of edge e by counting how many times it
appears in the sampled graphs g(t),

EMC
ij =

1
tmax

tmax∑
t=1

I(e = (i, j) ∈ g(t)). (13)

If exact edge probabilities are available (as with our proteomic data study
below), they can be used in tandem with our estimated edge probabilities to
assess convergence. We use two measures of how well our Markov chains are
converging; the correlation coefficient ρ between the exact and estimated edge
probabilities and the normalised sum of absolute differences

S =
1
ν

∑
e

|EMC(e)−E(e)| (14)

where the sum runs over all possible edges and ν is the number of possible edges.

3 Results

3.1 Simulation Results

We assessed performance by thresholding posterior edge probabilities to obtain
a set of edges and comparing this set to the true data generating graph edge set.
We constructed receiver operating characteristic (ROC) curves for the MC3 and
MC4 schemes with sample sizes N = 500 and N = 5000. The ROC curves show
the number of false positives (edges obtained after thresholding that are not in
the true graph) encountered for a given number of true positives (edges obtained
after thresholding that are in the true graph). The curve is parameterised by the
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Fig. 5. Receiver operating characteristic (ROC) curves for simulated data. Number

of true positive against number of false positive edge calls, produced by thresholding

posterior edge probabilities at varying levels and comparing with the known, true data-

generating graph. Results shown for MC4 (blue solid line), MC3 (green dashed line)

and a recent deterministic constraint-based (CB) method for learning DAGs [18] (red

cross), for sample sizes N = 500 (left) and N = 5000 (right). Lower panels show detail

of corresponding upper panels. (MCMC results shown are averages over ten iterations).

threshold level. Figure 5 shows average ROC curves, produced by averaging ROC
curves obtained from ten MCMC runs.

The area under the ROC curve (AUC) gives a simple measure of performance.
Higher AUC values indicate superior accuracy. At the smaller sample size of
N = 500 we see that MC4 performs comparably with MC3. The mean AUC
value (± standard deviation) for MC4 is 0.90± 0.02 compared with 0.91± 0.02
for MC3. However, at the larger sample size of N = 5000, we see a substantial
improvement of performance with the MC4 scheme compared with MC3. The
mean AUC value for MC4 here is 0.99 ± 0.003, whereas the mean AUC value
for MC3 has decreased to 0.88± 0.13. This clearly illustrates that higher sample
sizes can have a deleterious effect on the MC3 scheme, whereas the MC4 scheme
improves dramatically in performance. At smaller sample sizes, with higher en-
tropy posterior distributions, MC3 performs well with MC4 not providing any
real gains.
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We also compared our MCMC methods to a recent deterministic, constraint-
based (CB) algorithm for learning DAGs [18] (default settings, significance level
set to 0.05). For the N = 500 case, it performs comparably with MC3 and MC4

in terms of numbers of true and false positives. However, for the large-sample,
N = 5000 case, we find that for the same number of false positives, MC4 returns
more than twice as many true positive edges as the CB algorithm.

3.2 Real Data Results

To investigate the performance of MC4 on challenging experimental data, we
make use of proteomic data from an ongoing study of cell signalling (unpub-
lished data). Here the models are dynamic Bayesian networks (DBNs) [11] with
20 nodes (and thus 400 possible edges). The true underlying networks are not
known in this case. However, by taking advantage of a certain factorisation of
the graph space we can, in this case, calculate the edge probabilities exactly. The
availability of exact results enables us to properly assess the performance of the
MCMC schemes for this problem. We note that in practice, in this particular
setting, one should use the exact calculation rather than an MCMC estimate.
However, this design provides an ideal opportunity to test the MCMC methods
on a large state-space problem based on real data but with gold-standard results
available for comparison.

When applied to the real proteomic data we can see that parallel tempering
provides a clear advantage over Metropolis-Hastings (see Figure 6). Both mea-
sures used to assess convergence are favourable for MC4; the correlation between
the exact edge probabilities and those estimated is closer to 1 for MC4 than MC3

and the per edge error as quantified by S is lower for MC4.
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Fig. 6. Average correlation 〈ρ〉 between the exact edge probabilities and estimated

edge probabilities for MC4 and MC3 (left) and the average per edge deviation error 〈S〉
(right). We can see from both measures that, in this real problem, MC4 is outperforming

MC3 in terms of convergence. The parallel tempering used here had 5 temperatures

evenly spaced between 1.0 and 2.0 with an exchange probability pswap = 0.1.
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Fig. 7. Scatterplots of the exact edge probabilities versus MCMC estimated edge prob-

abilities after T = 500, 000 iterations for the real proteomic data for both MC3 and

MC4 schemes. Notice that in the MC3 case many of the edges lie in the off-diagonal

corners (0, 1) and (1, 0), representing the most dramatic failures of the network infer-

ence. Use of the MC4 scheme has remedied this with the offending edges in MC3 being

pulled significantly closer to the line x = y.

The scatter plots shown in Figure 7 serve to further elucidate this point. If the
edges had been inferred perfectly they would lie on the line x = y (representing
S = 0), the farther points lie away from this line the worse our estimate of
their value is. This means that points lying in the off-diagonal corners, as seen
with MC3, represent dramatic failures of inference. We observe that MC4 has
remedied this defect.

4 Conclusions

We have argued that MCMC-based network inference from larger datasets poses
special problems for the widely-used MC3 algorithm. As experimental designs
become more ambitious in scope, better MCMC approaches will become ever
more crucial for robust network inference. Motivated by these concerns, and by
the increasing importance of inference in larger sample size settings, we proposed
a tempering-based approach to network inference which we called MC4.

We showed that MC4 was able to outperform MC3 in experiments on both
simulated and real data, in some cases offering dramatic gains. These results
support the idea that chains at higher temperatures can help inference in the
regimes of interest by moving more freely in the regions of low scoring graphs.
By coupling higher temperature chains to the desired target chain at T = 1,
using exchange moves, we allowed it to move between the peaks while sampling
them with the correct frequencies. In conclusion, the MC4 algorithm put forward
here is simple, requires little user-input and is demonstrably effective for network
inference.
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Abstract. We consider the problem of estimating parameters and unob-

served trajectories in nonlinear ordinary differential equations (ODEs)

from noisy and partially observed data. We focus on a class of state-

space models defined from the integration of the differential equation in

the evolution equation. Within a Bayesian framework, we derive a non-

sequential estimation procedure that infers the parameters and the initial

condition of the ODE, taking into account that both are required to fully

characterize the solution of the ODE. This point of view, new in the con-

text of state-space models, modifies the learning problem. To evaluate

the relevance of this approach, we use an Adaptive Importance Sam-

pling in a population Monte Carlo scheme to approximate the posterior

probability distribution. We compare this approach to recursive estima-

tion via Unscented Kalman Filtering on two reverse-modeling problems

in systems biology. On both problems, our method improves on classi-

cal smoothing methods used in state space models for the estimation of

unobserved trajectories.

1 Introduction

1.1 Context

In recent years, there has been a growing interest in identifying complex dy-
namical systems in biochemistry and biology [15]. In this context, Ordinary
Differential Equations (ODEs) have been widely studied for analyzing the dy-
namics of gene regulatory and signaling networks [11, 14]. They also appear as
good candidates for the reverse-modeling task. In the present work, we consider
the problem of estimating parameters and unobserved trajectories in differential
equations from experimental data. Nowadays, parameter estimation in differ-
ential equations is still considered as a challenging problem when the dynami-
cal system is only partially observed through noisy measurements and exhibit
nonlinear dynamics. This is usually the case in reverse-modeling of regulatory
and signaling networks [2, 16]. Some approaches address the estimation problem
based on a Bayesian estimation of state-space models that integrate the ODE in
the evolution equation. This framework has shown to be relevant in producing
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efficient algorithms [20, 16, 21]. However, they suffer from two drawbacks: first
they largely neglect the role of the initial condition and second, they assume
the gaussianity of the posterior probability distribution of the parameters. In
the present work, we are mainly interested in eliminating the first drawback by
taking into account that the initial condition is a key parameter of the ODE
solution. This means that we search the system parameters and the initial con-
ditions that fit the observed data and also provide a proper solution to the ODE.
Then, as a secondary contribution, we also also improve the Bayesian approach
derived in [16] and in [21] by a better approximation of the posterior probability
distribution.

1.2 Strategy

We first define the estimation task by introducing into the equations the flow
of the ordinary differential equation. The flow of an ODE puts emphasis on the
sensitivity of its solution with respect to the initial conditions. Then, we use
an augmented approach that encapsulates the initial conditions and the ODEs
parameters into the same augmented initial condition vector. Within this frame-
work, the deterministic nature of the hidden process provides a non-recursive
definition of hidden states from the augmented initial condition, with an inte-
gration of the ODE in the whole time interval of observation.

At this stage, we propose to address the problem with a Bayesian approach,
searching for the posterior probability distribution of the augmented initial con-
dition. The solutions previously proposed for recursive estimation in the case
of nonlinear systems are based on nonlinear extensions of Kalman filtering and
smoothing. We notice that procedures like Unscented Transform methods used
for computing the posterior probability of the states make a strong assumption
about the Gaussianity of the posterior distribution. Whereas particle filters do
not make this assumptions, they do not deal correctly with deterministic pro-
cesses as pointed out by the work of [13].

The idea of approximating the posterior probability by a weighted sample is
computationally attractive while being a versatile approach adapted to a large
variety of distributions. With respect to these considerations, we investigate the
use of Monte-Carlo methods [9] for the approximation of the posterior distri-
bution by a weighted sample built from an iterative importance sampling re-
sampling scheme. As recently shown by [7] and [3], this approach consists in
an adaptive selection of the importance distribution, which is crucial in high-
dimensional sampling. The updating mechanism of the importance distribution
consists in moving the population with a transition kernel (D-kernel [7]). The
non-recursive estimation of the augmented initial condition is applied on two
typical systems biology models: the α-pinene network [19] and the Repressilator
network ([8]).

The paper is organized as follows. In section 2, we introduce the new setting
of parameter estimation in terms of augmented initial condition estimation and
exploit it in the context of Bayesian estimation. In section 3, we recall the main
features of Population Monte-Carlo schemes and focus on an adaptive algorithm
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that corrects the importance distribution. Section 4 is devoted to numerical
experiments. Finally, we draw a conclusion and perspectives to this work in the
section 5.

2 The Initial Condition Learning Problem

2.1 Flow of an ODE and Statistical Modeling

We consider a biological dynamical system, for instance a gene regulatory net-
work, modeled by the following ordinary differential equation:

ẋ(t) = f(t, x(t), θ) (1)

defined on the time interval [0, T ] (T > 0). x(t) is the state vector of dimension d:
in the case of a regulatory network, it corresponds to the vector of the expression
levels of d genes. f is a (time-dependent) vector field from R

d to R
d, indexed by

a parameter θ ∈ Θ ⊂ Rp. Examples of functions f abound in the literature of
systems biology [15]: Hill kinetics, law of mass equations, . . .

A relevant way to characterize the differential equation under study is to define
its flow φθ : (t, x0) �→ φθ (t, x0) which represents the influence of x(0) = x0 on
the solution, i.e. t �→ φθ (t, x0) is the solution to (1) starting from x0. Hence,
the flow puts emphasis on the sensitivity of a solution of (1) with respect to the
initial conditions. It can also be seen as a map defined in the phase space that
shows how the points are transported by the vector field.

Now, let us introduce N noisy measurements, yn ∈ Rm, n = 0...N − 1, that
are acquired from a smooth observation function h : Rd → Rm (m ≥ 1) at N
times t0 = 0 < t1 < . . . < tN−1 = T :

yn = h(φθ (tn, x0)) + εn (2)

where the noise εn is supposed to be Gaussian and homoscedastic.
If we want to fully identify the ODE, we must estimate both the parameter

θ and the initial condition x(0) so that the solution φθ̂(·, x̂0) of the system fits
the observations y0:N−1 = (y0, . . . , yN−1). The estimation of ODE parameters
by classical approaches (such as least squares [12]) is standard but gives rise to
difficult global optimization problem [1]. To solve this kind of problem, variants
of least square methods have been recently developed and use approximations
of the solution in a spline basis (in the spirit of functional data analysis) as the
generalized smoothing proposed by Ramsay et al [17], or two-step estimators [6].
When some states are hidden (typically m < d), the estimation (optimization
step) is particularly difficult and alternative approaches have been proposed,
building on the state-space model interpretation of the couple of equations (1-
2). Indeed, Sitz et al. [20] first introduced a state-space model that encapsulates a
differential equation in the hidden process and make use of filtering algorithms for
deriving an estimate of θ. Subsequent works have exploited the same framework
[16, 21, 6], but the initial condition of the system is estimated as a by-product of
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the filtering/smoothing steps, and the estimated states are also approximations
of the solution of the ODE.

In this work, we keep the same state-space model, and we develop a Bayesian
estimator which is a quite natural in state-space models, and permits the use of
prior information for ameliorating the estimation. Moreover, our aim is to modify
the iterative approach and to show that there is a benefit in jointly estimating θ
and the initial condition x0 in this framework. A classical evaluation of the esti-
mated system ẋ(t) = f(t, x(t), θ̂) is to measure the quality of the fit between the
true sequence y0:N−1 and the predicted sequence ŷn = φ

(
tn, (θ̂, x̂0)

)
. Now this

simple evaluation requires to know the initial value x0 of the system, due to the
one-to-one relationship between the solution of an Initial Value Problem (IVP)
and an initial value x0. Hence, despite the little interest of x0 in general appli-
cations, it is in fact fundamental to estimate correctly x0 in order to disentangle
the influence of the parameter from the one of the initial value. Therefore, we
suppose that the initial condition x0 is unknown, so that we are also interested
in its estimation. Finally, we want to estimate the augmented initial condition
z0 = (x0, θ) ∈ Rd+p of the augmented state ODE model:{

ẋ(t) = f (t, x(t), θ(t))
θ̇(t) = 0

(3)

with initial condition z0 = (x0, θ). The solution is the function t �→ φ (t, z0)
from [0, T ] to Rp+d. For sake of notational simplicity, we will note again this
augmented ODE in Rp+d with the same vector field f :

ż(t) = f(t, z(t)) (4)

and z(0) = z0. Hence, the estimation of z0 consists only in estimating the initial
condition z0 in (4), from y0:N−1:

yn = h(z(tn)) + εn

where we keep the notation h for the observation function from Rp+d to Rm

h : z = (x, θ) �→ h(x). Now, the observed and discretized differential equation
(4) fits itself in the (discrete-time) framework of state-space models in Rp+d with
a deterministic hidden state evolution:{

zn+1 = zn +
∫ tn+1

tn
f(τ, z(τ), θ)dτ

yn = h(zn) + σεn
(5)

The state-space representation is usually exploited for deriving recursive esti-
mation either in Maximum Likelihood approaches or in Bayesian setting as de-
scribed in [5]. However, we notice an important feature of the last setting (5):
the deterministic evolution of the states implies that we can compute exactly the
states at each time from the initial condition (parameter) z0, and in particular
the hidden part of zn. In equation (5), the evolution equation can be replaced
by the following non-recursive definition of zn:

zn = φ(tn, z0) = z0 +
∫ tn

0
f(τ, z(τ), θ)dτ (6)
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φ, as a function of the initial state z0 is the flow of the ODE and describes the
way the differential equation move the points in the phase space: the Bayesian
estimation of z0 consists in retrieving the starting point when we observe imper-
fectly the flow at different times.

2.2 Flow-Based Bayesian Estimation

We consider the Bayesian inference framework for the estimation of the aug-
mented initial condition. We call Flow-based Bayesian Estimation (FBE), the
Bayesian approach that consists in estimating the augmented initial condition.
Since εn is Gaussian, the likelihood can be written as follows:

L(y0:N−1; z0) ∝ exp (−e(y0:N−1, z0)) (7)

where e(y0:N−1, z0) = 1
2σ2

∑N−1
n=0 ‖yn − h(φ(tn, z0))‖2 is the classical squared

error term. In the Bayesian framework, we complete the information on the
parameter by a prior distribution for z0 whose density is π−1, which gives the
following posterior distribution

πN−1(z0) = p(z0|y0:N−1) ∝ exp (−e(y0:N−1, z0))π−1(z0) (8)

As usual, the normalizing constant of the posterior distribution is unknown.
Moreover, we have the additional computational complexity due to the absence
of closed-form for the flow φ. Hence the Bayesian inference relies on the computa-
tion of a reliable approximation of πN−1(z0), from which we can derive Bayesian
estimators such as the posterior mean E(Z0|y0:N−1) or the Maximum A Pos-
teriori (MAP) estimate argmaxz0 πN−1(z0). In the MAP case, as the flow is
highly nonlinear and produces wiggly likelihood functions ([17]), the direct com-
putation of ( 8) is difficult and the corresponding global optimization algorithm
requires intensive computations. This motivates the use of fast approximate op-
timization or computation of the posterior distribution, which are widely devel-
oped for non-linear state-space models. Indeed, the computation of this posterior
probability can be done efficiently by recursive smoothing algorithms [5], such
as Extended Kalman Filtering/Smoothing (EKF/EKS) [21], Unscented Kalman
Filtering/Smoothing (UKF/UKS [20, 16] and more generally sequential Monte
Carlo methods (particle filters). These classical algorithms are based on recursive
computations of the filtering probabilities p(zn|y0:n) and several versions do ex-
ist for the computation of the smoothing probabilities p(zn|y0:N−1). However, in
these algorithms, the initial condition is estimated as an initial state and not as a
parameter of the flow. The filtering probability is even characterized by the for-
getting of the initial condition as the number of observations N tends to infinity.
This implies that the more data we observe, the less information we get on the
parameter z0. As a consequence, the use of refined smoothing strategies remains
problematic and calls for careful adaptations ([13, 10]). Moreover, the estimated
(smoothed) trajectories of the hidden states are yet not solutions of the ODE on
the whole time interval [0, T ]: the simulated trajectories may differ significantly
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from the smoothed trajectories (obtained by Kalman recursions or Particle fil-
tering). Therefore, it might be preferable to turn to a non-recursive estimation
of the augmented initial condition based on the non-recursive definition pointed
out in (6). Taking into account the flow of the differential equation, we maximize
the likelihood of exact solutions starting from different initial conditions, instead
of selecting parameters admissible for describing the local transitions (based only
the parameter θ).

3 Posterior Probability Estimation Using Population
Monte Carlo

To test our hypothesis about the potential interest of a better estimation of the
initial conditions in a Bayesian setting, we need to estimate the posterior dis-
tribution probability defined in (8). The intractability of the posterior distribu-
tion is a well-known problem in Bayesian estimation. Several general simulation
methods have been developed such as Markov Chain Monte Carlo (MCMC),
Importance Sampling (IS) and variants [18] are commonly used and both are
well-suited to the Bayesian setting. However, one difficulty of this Monte Carlo
methods is that they can be very (computationally) intensive: this is typically
the case for general Hastings-Metropolis algorithms, even if some optimization
can be performed. A challenging difficulty of ODE learning is that the evaluation
of the likelihood is costly due to the integration of the ODE. This point motivates
us to focus on importance sampling algorithms. These methods require only a
”reasonable” amount of likelihood evaluations if the importance distribution is
not too far from the true posterior distribution.The pitfalls of this method are
well-known and are recalled in the next section, but they can be reduced by
using some recently introduced adaptive schemes that we will recall.

3.1 Adaptive Importance Sampling and Population Monte-Carlo
Algorithm

The principle of importance sampling is to use a Monte Carlo approximation
derived thanks to a proposal (or importance) distribution q easier to simulate
than πN−1 and to make a change of measure by introducing the weight function
w = πN−1

q :

EπN−1(h(Z0)) = Eq(h(Z0)w(Z0))  1
M

M∑
i=1

h(ξi)w(ξi) (9)

where ξi are i.i.d. realizations of the distribution q. Hence, the importance
sampling estimators are expressed as weighted means 1

M

∑M
i=1 ωih(ξi). Since

the posterior distribution is known only up to a normalizing constant, self-
normalized importance sampling estimators are rather used i.e.

∑M
i=1 ω̃ih(ξi),

where ω̃i = ωi∑M
i=1 ωi

. The values ω̃i are called the (normalized) importance weight,
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and one can interpret identity (9) as the approximation of πN−1 by the weighted
empirical measure μ̂M (z) =

∑M
i=1 ω̃iδξi(z). Nevertheless, applications of IS can

be very delicate as a ”good” proposal distribution depends on the unknown tar-
get distribution. If the distribution q has a weak overlap with πN−1 (i.e. high
variance of the so-called importance weights w(ξi) = ωi), then the IS estimators
can be very poorly behaved. In that case, we have a so-called weight degener-
acy, which means that all the weights vanish except on. This situation can be
detected by checking the Shannon entropy of the weighted population. Another
pitfall , harder to detect, is when the samples ξi have explored insufficiently the
tails of the target distribution.

Hence a reasonable prior knowledge of the target distribution is needed to
avoid these pitfalls is needed but it remains hard to have especially when deal-
ing with posterior distribution. In order to come up with these limitations, we
propose to use the Population Monte Carlo framework developed by Cappé et
al [4] for deriving an adaptive Importance Sampling algorithm for dynamical
systems.

Population Monte Carlo algorithm. Population Monte Carlo (PMC) is a
sequential Monte Carlo method, i.e. it is an iterated Importance Sampling Re-
sampling algorithm (ISR) which sequentially moves and re-weights a population
of weighted particles (ξi, ω̃i), i = 1, . . . ,M . An essential feature of this algorithm
is the resampling step that enables to discard particles with low weights, and to
duplicate particles with high weights: this mechanism prevents then the degen-
eracy of the weights (i.e. all the weights vanish except one), as it is commonly
used in particle filtering for instance. In all generality, a PMC scheme is defined
for t = 0, 1, . . . , T and a sequence of proposal distributions qt defined on (Rd+p)

1. Generate (ξi,0)1≤i≤M ∼ qt (i.i.d sampling) and compute normalized weights
ω̃i,t,

2. Resample (ξ̃i,0)1≤i≤M by multinomial sampling with weights ω̃i,t, i=1, . . . ,M
3. Construct qt+1 from ((ξ̃i,t′ , ω̃i,t′))1≤i≤M,0≤t′≤t

The essential interest of PMC is to introduce a sequence of proposal distributions
that are allowed to depend on all the past which enables to consider adaptive
IS procedure based on the performance of the previous populations. PMC offers
then a great versatility through the construction of the sequence of distribution
qt. In that case, the PMC estimator is still unbiased and the weights depends
of step t, i.e. wi,t = πN−1(ξi,t)

qi,t(ξi,t)
. Next, we present a possible construction of a

sequence of proposal distributions.

3.2 Markovian Transition and Adaptive Kernels

A simple way to randomly perturb a population is to add an independent noise
to each particle ξi,t−1, i.e. to modify independently each particle ξi,t = ξi,t−1+εi,t
with εi,t ∼ N(0, Σt) (usually Σt = σ2

t Id+p). Then, at each iteration t, we have
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ξi,t ∼ N(ξi,t−1, Σt). General moves from ξi,t−1 to ξi,t are described with a
(Markov) transition kernel Ki,t(ξi,t−1, ·). Through the resampling mechanism,
particles moving in good regions are duplicated and particles moving to low
credibility regions do vanish which permits a global amelioration of the popu-
lation. This evolution rule described above is a simple random walk, and the
mean size of the jumps is controlled by σt. The variance of the proposal is re-
lated to the speed at which we do move from an uninteresting region a space to
an interesting one. This move is very basic, and it is interesting to propose at
least several size of jumps by using a mixture of D Gaussian transition kernels:
εi,t ∼

∑D
d=1 αdN(0, Σd,t). With such a D-kernel, the population is moved at each

iteration t at different speed Σd,t selected with probability αd. The D-kernel used
in [4] can behave in a satisfying manner, but this algorithm is not fully adaptive
as the evolution rule is not updated, whatever the success of the proposed move.
Hence a better adaptive kernel is to change the move according to the survival
rate of a given move. This problem of determining the weights of the mixture
of kernel proposals can be seen as an estimation problem where the weights αd

used are chosen for minimizing a Kullback-Leibler divergence with an EM-like
algorithm [7].

4 Experimental Results and Discussion

In this section, we compare the results provided by Unscented Kalman Smooth-
ing (UKS) and Flow-based Bayesian Estimation using the Importance Sampling
scheme (FBE-IS) and the adaptive Population Monte Carlo (FBE-PMC). We
measure the quality of the approximation (estimates of the posterior covariance
matrices) and also the quality of the reconstruction of the hidden states. In both
cases, we consider a relatively small number of observations so that the posterior
distribution is far from being approximately Gaussian. Then, we need to use ap-
proximation that can take into account multi-modality. In the cases worked out,
we have used a so-called multi-start UKS based on 50 random initializations of z0
for initiating the smoothing algorithm as described in [6]. We select the solution
with the smallest quadratic error (along a trajectory) among the 50 different
approximated posterior means and the corresponding posterior covariances. We
first present results on a nonlinear dynamical biochemical system fully observed
with noise. In this case, the state-space model reduces to the discretization of
a system of ODEs, observed with some additional gaussian noise. We use this
model to test the relevance of the FBE algorithm in a simple case. Then, we
turn to the Repressilator which is a partially observed and nonlinear model of a
gene regulatory network .

4.1 α-pinene

The α-pinene model presented here is a biochemical system of 5 interacting
chemical species. It describes the isomerization of α-pinene, and the dynamics
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of the concentrations of the 5 species involved is described through the following
time homogeneous linear ODE:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ1 = −(p1 + p2)x1
ẋ2 = p1x1
ẋ3 = p2x1 − (p3 + p4)x3 + p5x5
ẋ4 = p3x3
ẋ5 = p4x3 + p5x5

(10)

The evolution of the system is controlled by 5 rate constants θ = (p1, . . . , p5)
that we wish to estimate from noisy time series. This estimation problem is
relatively classical and it has been introduced as a benchmark for the estimation
of ODE, [19]. The system is completely observed and the number of observations
is N = 8. In [19], the parameter θ has been estimated by global optimization
of the least squares criterion. We use their estimate as a reference value (see
reference value θref in table 1) as it provides a good fit to the data. In this
case, the situation is relatively simple as the initial condition x0 is known and
equals to [100, 0, 0, 0, 0] and the system is completely observed. For the Bayesian
estimation, we use a non-informative uniform distribution for θ and defined on
[θref + 10−3]. We compare the 3 methods (UKS, FBE−IS and FBE−PMC D-
kernel) only for the estimation of the parameters, see table 1, since we can set
x0 to its true value directly in FBE−IS and FBE−PMC. Finally, we use M =
5000 particles, and the resampled population of FBE–IS is used as the starting
population for FBE–PMC. The proposal for FBE–IS is Gaussian (not centered
on θref ) and is homoskedastic with standard deviation equals to 3×10−6. We use
D = 7 kernels with different variances: σ1 = 10−11, σ2 = 10−10, σ3 = 10−9, σ4 =
10−8, σ5 = 10−7, σ6 = 10−6, σ7 = 10−5. The results in table 1 show that FBE–
PMC improves on the other estimates, as it is closer to the reference value, and it
gives also a smaller standard deviation than UKS and FBE–IS. Moreover, results
provided by FBE–PMC are more reliable than FBE–IS (or UKS), as the entropy
of the PMC population SPMC = 4.3 is bigger than the entropy of IS population
SIS = 0.15, which indicates that FBE–PMC enables to avoid degeneracy of the
population, and the weights are well scattered. Finally, at iteration t = 20 of
FBE–PMC, it remains only 1 component with variance 10−9 and a population
with entropy equals to 4.5. Finally, the reconstructed trajectories obtained by
UKS and FBEPMC show that better fitting and predicting model is provided
by FBEPMC, thanks to the initial value parametrization.

4.2 An Example of a Partially Observed System: The Repressilator
Network in E. coli

The Repressilator network was proposed in 2000 [8] to describe sustained oscilla-
tions observed in a small system in the bacterium E. coli, composed of three genes
that code for 3 proteins. The first repressor protein, LacI from E. coli, inhibits the
transcription of the second repressor gene, TetR, from the tetracycline-resistance
transposon Tn10, whose protein product in turn inhibits the expression of a third
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Table 1. Estimated parameter values with UKS, FBE–IS and FBE–PMC with stan-

dard deviation

Reference (×10−5) UKS (×10−5) FBE–IS (×10−5) FBE–PMC (D-Kernels) (×10−5)

p1 5.9259 3.66 ± 5.6 5.98 ± 1.3 × 10−2 5.93 ± 4.7 × 10−2

p2 2.9634 2.5 ± 4.8 2.92 ± 1.3 × 10−2 2.96 ± 5 × 10−2

p3 2.0473 1.78 ± 20.4 2.05 ± 5.69 × 10−2 2.06 ± 2 × 10−2

p4 27.4490 27.3 ± 31.1 26.7 ± 5.69 × 10−2 27.89 ± 10 × 10−2

p5 3.9980 4.24 ± 26 3.53 ± 13.1 × 10−2 4.11 ± 5.2 × 10−2∥∥∥θ̂ − θref
∥∥∥ 0 2.3 × 10−5 8.2 × 10−6 4.5 × 10−6

gene, CI from λ phage. Finally, CI inhibits LacI expression, completing the cy-
cle. Hill kinetics are used to model the dynamics. For sake of simplicity in nota-
tions, x1, x2, x3 denote respectively the expression of genes Lacl, TetR1, Cl and
x4, x5, x6 the concentrations of corresponding proteins. The network evolution
is described by the following ODE:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = vmax
1

kn
12

kn
12+xn

5
− kmRNA

1 x1

ẋ2 = vmax
2

kn
23

kn
23+xn

6
− kmRNA

2 x2

ẋ3 = vmax
3

kn
31

kn
31+xn

4
− kmRNA

3 x3

ẋ4 = k1x1 − kprotein
1 x4

ẋ5 = k2x2 − kprotein
2 x5

ẋ6 = k3x3 − kprotein
3 x6

(11)

In the simulations, the RNA concentrations x1, x2, x3 are supposed to be ob-
served through a noisy measurement process (modeled by a Gaussian with σ = 3)
while the proteins concentrations x4, x5, x6 are not measured. The initial values
are also supposed to be unknown, and need then to be estimated. The true
parameter values and initial conditions are available in tables (2, 3) respec-
tively. We use a Gaussian distribution centered at ztrue

0 as a prior, and the
proposal distribution q is a Gaussian distribution with a shifted mean (ztrue

0 +2)
and homoskedastic covariance (with standard deviation = 5). For measuring
the performance of the 3 estimators, we perform a Monte Carlo study with
NMC = 100 independent replicates (and we use populations of size M = 1000).
The mean results in tables (2,3) show that FBE–PMC is unbiased and gives
reliable confidence results whereas UKS provide significantly different estimates,
and important standard deviation. In the case of Importance Sampling the mean
estimates are correct, but the standard deviation are very small. This come from
the weights degeneracy of FBE–IS: indeed, in 84% of simulations, a single par-
ticle has a weight greater than 90% (the mean entropy of the weights of the IS
population is 0.12). This is not the case for FBE–PMC which avoids this curse
with T = 10 steps starting from the population used by Importance Sampling
(the mean entropy is 2.24). In particular from table 3 one can see that FBE–
PMC enables to gives more credible values for the hidden states, and guarantees
also that the corresponding solution with estimated z0 is close to the data.
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Table 2. Estimated Parameters using UKS, FBE–IS and FBE–PMC (D-kernel) T = 25

observations. Average Means and Standard Deviations computed on 100 samples.

Parameter True Parameter UKS FBE–IS FBE–PMC

vmax
1 150 147.3 ± 0.9 150.2 ± 0.09 150.0 ± 0.46

vmax
2 80 81.9 ± 1.7 80.7 ± 0.49 80.2 ± 0.66

vmax
3 100 102.2 ± 1.7 100.7 ± 0.25 100.1 ± 0.91

k1 50 53.0 ± 0.9 50.7 ± 0.05 50.1 ± 0.35

k2 30 37.1 ± 0.94 30.9 ± 0.08 29.9 ± 0.38

k3 40 47.6 ± 0.8 40.72 ± 0.03 40.0 ± 0.36

Table 3. Estimated Initial Conditions of Hidden States using UKS, FBE–IS and FBE–

PMC (D-kernel) approach T = 25 observations. Average Means and Standard Devia-

tions computed on 100 samples.

Parameter True Parameter UKS estimation FBE–IS FBE–PMC

p1(0) 1 97.8 ± 5.9 3.11 ± 0.21 2.86 ± 0.09

p2(0) 2 143.6 ± 3.0 3.83 ± 0.21 3.51 ± 0.10

p3(0) 3 148.5 ± 8.6 4.76 ± 0.17 4.75 ± 0.27

5 Conclusion and Perspective

We have proposed to learn both the initial condition and the parameters in
such a way that they convey a proper solution of the ODE. As in biological or
biochemical experiments, the initial condition vector can be fully observed, we
turn the ODE estimation problem into a state-space model estimation task where
the only parameter to estimate is an augmented initial condition. A Bayesian
approach to this problem, called FBE, has been derived using an Importance
Sampling schme (FBE–IS) and a Population Monte Carlo scheme (FBE–PMC)
for the approximation of the posterior probability. The FBE–PMC approach
overcomes classical limitations of standard estimation methods in state-space
models. The versatility of the PMC schemes gives new estimation methods, based
on the learning of proposal distribution qt that permits a better exploration of
the space. The engineering of proposal distributions adapted to the dynamical
systems remains quite unexplored and links with particle filters might be pointed
out. Finally, a promising research direction for reverse-modelling of biological
networks is to combine the augmented initial condition estimation with the graph
structure estimation in the Bayesian framework.
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