Quantities, Units and Symbols in Physical Chemistry

Prepared for publication by

IAN MILLS TOMISLAV CVITAS
KLAUS HOMANN
NIKOLA KALLAY
KOZO KUCHITSU
SECOND EDITION

Quantities, Units and Symbols in Physical Chemistry

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY PHYSICAL CHEMISTRY DIVISION
COMMISSION ON PHYSICOCHEMICAL SYMBOLS, TERMINOLOGY AND UNITS

Quantities, Units and Symbols in Physical Chemistry

Prepared
for publication by
IAN MILLS
Reading
KLAUS HOMANN
Darmstadt
TOMISLAV CVITAŠ
Zagreb
NIKOLA KALLAY
Zagreb
KOZO KUCHITSU
Tokyo
SECOND EDITION

© 1993 International Union of Pure and
Applied Chemistry and published for them by
Blackwell Science Ltd
Editorial Offices:
Osney Mead, Oxford OX2 0EL
25 John Street, London WCIN 2BL
23 Ainslie Place, Edinburgh EH3 6AJ
350 Main Street, Malden
MA 02148 5018, USA
54 University Street, Carlton
Victoria 3053, Australia
10, rue Casimir Delavigne 75006 Paris, France

Other Editorial Offices:
Blackwell Wissenschafts-Verlag GmbH
Kurfürstendamm 57
10707 Berlin, Germany
Blackwell Science KK
MG Kodenmacho Building
7-10 Kodenmacho Nihombashi
Chuo-ku, Tokyo 104, Japan
The right of the Author to be identified as the Author of this Work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the copyright owner.

First published 1988
Reprinted 1988
Reprinted as paperback 1989
Russian translation 1988
Hungarian translation 1990
Indian reprint edition 1990
Japanese translation 1991
Second edition 1993
Reprinted 1995, 1996, 1998
Set by Macmillan India Ltd Printed and bound in Great Britain at the University Press, Cambridge

The Blackwell Science logo is a trade mark of Blackwell Science Ltd, registered at the United Kingdom Trade Marks Registry

DISTRIBUTORS

Marston Book Services Ltd
PO Box 269
Abingdon
Oxon OX14 4YN
(Orders: Tel: 01235465500
Fax: 01235465555)
USA and Canada
CRC Press, Inc.
2000 Corporate Blvd, NW
Boca Raton
Florida 33431
Australia
Blackwell Science Pty Ltd
54 University Street
Carlton, Victoria 3053
(Orders: Tel: 393470300
Fax: 39347 5001)
A catalogue record for this title is available from the British Library

ISBN 0-632-03583-8
Library of Congress
Cataloging in Publication Data
Quantities, units and symbols in physical chemistry/
prepared for publication by
Ian Mills...[et al.].-2nd ed.
p. cm.

At head of title: International Union
of Pure and Applied Chemistry
'International Union of Pure
and Applied Chemistry, Physical
Chemistry Division,
Commission on Physicochemical Symbols,
Terminology, and Units'-P. facing t.p.
Includes bibliographical references
and index.
ISBN 0-632-03583-8

1. Chemistry, Physical and
theoretical-Notation.
2. Chemistry,

Physical and theoretical-Terminology.
I. Mills, Ian (Ian M.)
II. International Union of Pure and Applied Chemistry.
III. International Union of Pure and Applied Chemistry.
Commission on Physicochemical Symbols,
Terminology, and Units.
QD451.5.Q36 1993
541.3'014-dc20

Contents

Preface vii
Historical introduction viii
1 Physical quantities and units 1
1.1 Physical quantities and quantity calculus 3
1.2 Base physical quantities and derived physical quantities 4
1.3 Symbols for physical quantities and units 5
1.4 Use of the words 'extensive', 'intensive', 'specific' and 'molar' 7
1.5 Products and quotients of physical quantities and units 8
2 Tables of physical quantities 9
2.1 Space and time 11
2.2 Classical mechanics 12
2.3 Electricity and magnetism 14
2.4 Quantum mechanics and quantum chemistry 16
2.5 Atoms and molecules 20
2.6 Spectroscopy 23
2.7 Electromagnetic radiation 30
2.8 Solid state 36
2.9 Statistical thermodynamics 39
2.10 General chemistry 41
2.11 Chemical thermodynamics 48
2.12 Chemical kinetics 55
2.13 Electrochemistry 58
2.14 Colloid and surface chemistry 63
2.15 Transport properties 65
3 Definitions and symbols for units 67
3.1 The international system of units (SI) 69
3.2 Definitions of the SI base units 70
3.3 Names and symbols for the SI base units 71
3.4 SI derived units with special names and symbols 72
3.5 SI derived units for other quantities 73
3.6 SI prefixes 74
3.7 Units in use together with the SI 75
3.8 Atomic units 76
3.9 Dimensionless quantities 77

4 Recommended mathematical symbols 81
4.1 Printing of numbers and mathematical symbols 83
4.2 Symbols, operators and functions 84

5 Fundamental physical constants 87
6 Properties of particles, elements and nuclides 91
6.1 Properties of some particles 93
6.2 Standard atomic weights of the elements 199194
6.3 Properties of nuclides 98

7 Conversion of units 105
7.1 The use of quantity calculus 107
7.2 Conversion tables for units 110
(Pressure conversion factors 166; Energy conversion factors inside back cover)
7.3 The esu, emu, Gaussian and atomic unit systems 117
7.4 Transformation of equations of electromagnetic theory between the SI,
the four-quantity irrational form, and the Gaussian form 122

8 Abbreviations and acronyms 125
9 References 133
9.1 Primary sources 135
9.2 IUPAC references 137
9.3 Additional references 139

Greek alphabet 141
Index of symbols 143
Subject index 151
Notes 161
Pressure conversion factors 166
Energy conversion factors inside back cover

Preface

The objective of this manual is to improve the international exchange of scientific information. The recommendations made to achieve this end come under three general headings. The first is the use of quantity calculus for handling physical quantities, and the general rules for the symbolism of quantities and units, described in chapter 1 . The second is the use of internationally agreed symbols for the most frequently used quantities, described in chapter 2. The third is the use of SI units wherever possible for the expression of the values of physical quantities; the SI units are described in chapter 3.

Later chapters are concerned with recommended mathematical notation (chapter 4), the present best estimates of physical constants (chapters 5 and 6), conversion factors between SI and non-SI units with examples of their use (chapter 7) and abbreviations and acronyms (chapter 8). References (on p. 133) are indicated in the text by numbers (and letters) in square brackets.

We would welcome comments, criticism, and suggestions for further additions to this book. Offers to assist in the translation and dissemination in other languages should be made in the first instance either to IUPAC or to the Chairman of the Commission.

We wish to thank the following colleagues, who have contributed significantly to this edition through correspondence and discussion:
R.A. Alberty (Cambridge, Mass.); M. Brezinšćak (Zagreb); P.R. Bunker (Ottawa); G.W. Castellan (College Park, Md.); E.R. Cohen (Thousand Oaks, Calif.); A. Covington (Newcastle upon Tyne); H.B.F. Dixon (Cambridge); D.H. Everett (Bristol); M.B. Ewing (London); R.D. Freeman (Stillwater, Okla.); D. Garvin (Washington, DC); G. Gritzner (Linz); K.J. Laidler (Ottawa); J. Lee (Manchester); I. Levine (New York, NY); D.R. Lide (Washington, DC); J.W. Lorimer (London, Ont.); R.L. Martin (Melbourne); M.L. McGlashan (London); J. Michl (Austin, Tex.); K. Niki (Yokohama); M. Palmer (Edinburgh); R. Parsons (Southampton); A.D. Pethybridge (Reading); P. Pyykkö (Helsinki); M. Quack (Zürich); J.C. Rigg (Wageningen); F. Rouquérol (Marseille); G. Schneider (Bochum); N. Sheppard (Norwich); K.S.W. Sing (London); G. Somsen (Amsterdam); H. Suga (Osaka); A. Thor (Stockholm); D.H. Whiffen (Stogursey).

[^0]
Historical introduction

The Manual of Symbols and Terminology for Physicochemical Quantities and Units [1.a], to which this is a direct successor, was first prepared for publication on behalf of the Physical Chemistry Division of IUPAC by M.L. McGlashan in 1969, when he was chairman of the Commission on Physicochemical Symbols, Terminology and Units (I.1). He made a substantial contribution towards the objective which he described in the preface to that first edition as being 'to secure clarity and precision, and wider agreement in the use of symbols, by chemists in different countries, among physicists, chemists and engineers, and by editors of scientific journals'. The second edition of the manual prepared for publication by M.A. Paul in 1973 [1.b], and the third edition prepared by D.H. Whiffen in 1979 [1.c], were revisions to take account of various developments in the Système International d'Unités (SI), and other developments in terminology.

The first edition of Quantities, Units and Symbols in Physical Chemistry published in 1988 [2.a] was a substantially revised and extended version of the earlier editions, with a slightly simplified title. The decision to embark on this project was taken at the IUPAC General Assembly at Leuven in 1981, when D.R. Lide was chairman of the Commission. The working party was established at the 1983 meeting in Lingby, when K. Kuchitsu was chairman, and the project has received strong support throughout from all present and past members of Commission I. 1 and other Physical Chemistry Commissions, particularly D.R. Lide, D.H. Whiffen and N. Sheppard.

The extensions included some of the material previously published in appendices [1.d-k]; all the newer resolutions and recommendations on units by the Conférence Générale des Poids et Mesures (CGPM); and the recommendations of the International Union of Pure and Applied Physics (IUPAP) of 1978 and of Technical Committee 12 of the International Organization for Standardization (ISO/TC 12). The tables of physical quantities (chapter 2) were extended to include defining equations and SI units for each quantity. The style of the manual was also slightly changed from being a book of rules towards being a manual of advice and assistance for the day-to-day use of practising scientists. Examples of this are the inclusion of extensive footnotes and explanatory text inserts in chapter 2, and the introduction to quantity calculus and the tables of conversion factors between SI and non-SI units and equations in chapter 7.

The manual has found wide acceptance in the chemical community, it has been translated into Russian [2.b], Hungarian [2.c], Japanese [2.d] and large parts of it have been reproduced in the 71st edition of the Handbook of Chemistry and Physics published by CRC Press in 1990.

The present volume is a slightly revised and somewhat extended version of the previous edition. The new revisions are based on the recent resolutions of the CGPM [3]; the new recommendations by IUPAP [4]; the new international standards ISO-31 [5, 6]; some recommendations published by other IUPAC commissions; and numerous comments we have received from chemists throughout the world.

Major changes involved the sections: 2.4 Quantum mechanics and Quantum chemistry, 2.7 Electromagnetic radiation and 2.12 Chemical kinetics, in order to include physical quantities used in the rapidly developing fields of quantum chemical computations, laser physics and molecular beam scattering. A new section 3.9 on Dimensionless quantities has been added in the present edition, as well as a Subject index and a list of Abbreviations and acronyms used in physical chemistry.

The revisions have mainly been carried out by Ian Mills and myself with substantial input from Robert Alberty, Kozo Kuchitsu and Martin Quack as well as from other members of the IUPAC Commission on Physicochemical Symbols, Terminology and Units.

Fraunhofer Institute for
Atmospheric Environmental Research
Garmisch-Partenkirchen
June 1992

Tomislav Cvitaš
Chairman
Commission on Physicochemical Symbols, Terminology and Units

The membership of the Commission during the period 1963 to 1991 , during which the successive editions of this manual were prepared, was as follows:

Titular members

Chairman: 1963-1967 G. Waddington (USA); 1967-1971 M.L. McGlashan (UK); 1971-1973 M.A. Paul (USA); 1973-1977 D.H. Whiffen (UK); 1977-1981 D.R. Lide Jr (USA); 1981-1985 K. Kuchitsu (Japan); 1985-1989 I.M. Mills (UK); 1989- T. Cvitaš (Croatia).

Secretary: 1963-1967 H. Brusset (France); 1967-1971 M.A. Paul (USA); 1971-1975 M. Fayard (France); 1975-1979 K.G. Weil (Germany); 1979-1983 I. Ansara (France); 1983-1985 N. Kallay (Croatia); 1985-1987 K.H. Homann (Germany); 1987-1989 T. Cvitaš (Croatia); 1989-1991 I.M. Mills (UK); 1991- M. Quack (Switzerland).

Members: 1975-1983 I. Ansara (France); 1965-1969 K.V. Astachov (Russia); 1963-1971 R.G. Bates (USA); 1963-1967 H. Brusset (France); 1985- T. Cvitaš (Croatia); 1963 F. Daniels (USA); 1981-1987 E.T. Denisov (Russia); 1967-1975 M. Fayard (France); 1963-1965 J.I. Gerassimov (Russia); 1979-1987 K.H. Homann (Germany); 1963-1971 W. Jaenicke (Germany); 1967-1971 F. Jellinek (Netherlands); 1977-1985 N. Kallay (Croatia); 1973-1981 V. Kellö (Czechoslovakia); 1989- I.V. Khudyakov (Russia); 1985-1987 W.H. Kirchhoff (USA); 1971-1980 J. Koefoed (Denmark); 1979-1987 K. Kuchitsu (Japan); 1971-1981 D.R. Lide Jr (USA); 1963-1971 M.L. McGlashan (UK); 1983-1991 I.M. Mills (UK); 1963-1967 M. Milone (Italy); 1967-1973 M.A. Paul (USA); 1991- F. Pavese (Italy); 1963-1967 K.J. Pedersen (Denmark); 1967-1975 A. PerezMasiá (Spain); 1987- M. Quack (Switzerland); 1971-1979 A. Schuyff (Netherlands); 1967-1970 L.G. Sillén (Sweden); 1989- H.L. Strauss (USA); 1963-1967 G. Waddington (USA); 1981-1985 D.D. Wagman (USA); 1971-1979 K.G. Weil (Germany); 1971-1977 D.H. Whiffen (UK); 1963-1967 E.H. Wiebenga (Netherlands).

Associate members

1983-1991 R.A. Alberty (USA); 1983-1987 I. Ansara (France); 1979-1991 E.R. Cohen (USA); 1979-1981 E.T. Denisov (Russia); 1987- G.H. Findenegg (Germany); 1987-1991 K.H. Homann (Germany); 1971-1973 W. Jaenicke (Germany); 1985-1989 N. Kallay (Croatia); 1987-1989 I.V. Khudyakov (Russia); 1987-1991 K. Kuchitsu (Japan); 1981-1983 D.R. Lide Jr (USA); 1971-1979 M.L. McGlashan (UK); 1991- I.M. Mills (UK); 1973-1981 M.A. Paul (USA); 1975-1983 A. Perez-Masiá (Spain); 1979-1987 A. Schuyff (Netherlands); 1963-1971 S. Seki (Japan); 1969-1977 J. Terrien (France); 1975-1979 L. Villena (Spain); 1967-1969 G. Waddington (USA); 1979-1983 K.G. Weil (Germany); 1977-1985 D.H. Whiffen (UK).

1

Physical quantities and units

Quantities, Units and Symbols in Physical Chemistry

1.1 PHYSICAL QUANTITIES AND QUANTITY CALCULUS

The value of a physical quantity can be expressed as the product of a numerical value and a unit:

$$
\text { physical quantity }=\text { numerical value } \times \text { unit }
$$

Neither the name of the physical quantity, nor the symbol used to denote it, should imply a particular choice of unit.

Physical quantities, numerical values, and units, may all be manipulated by the ordinary rules of algebra. Thus we may write, for example, for the wavelength λ of one of the yellow sodium lines:

$$
\begin{equation*}
\lambda=5.896 \times 10^{-7} \mathrm{~m}=589.6 \mathrm{~nm} \tag{1}
\end{equation*}
$$

where m is the symbol for the unit of length called the metre (see chapter 3), $n m$ is the symbol for the nanometre, and the units m and nm are related by

$$
\begin{equation*}
\mathrm{nm}=10^{-9} \mathrm{~m} \tag{2}
\end{equation*}
$$

The equivalence of the two expressions for λ in equation (1) follows at once when we treat the units by the rules of algebra and recognize the identity of nm and $10^{-9} \mathrm{~m}$ in equation (2). The wavelength may equally well be expressed in the form

$$
\begin{equation*}
\lambda / \mathrm{m}=5.896 \times 10^{-7} \tag{3}
\end{equation*}
$$

or

$$
\begin{equation*}
\lambda / \mathrm{nm}=589.6 \tag{4}
\end{equation*}
$$

In tabulating the numerical values of physical quantities, or labelling the axes of graphs, it is particularly convenient to use the quotient of a physical quantity and a unit in such a form that the values to be tabulated are pure numbers, as in equations (3) and (4).
Examples

T / K	$10^{3} \mathrm{~K} / T$	p / MPa	$\ln (p / \mathrm{MPa})$
216.55	4.6179	0.5180	-0.6578
273.15	3.6610	3.4853	1.2486
304.19	3.2874	7.3815	1.9990

Algebraically equivalent forms may be used in place of $10^{3} \mathrm{~K} / T$, such as kK / T or $10^{3}(T / \mathrm{K})^{-1}$.
The method described here for handling physical quantities and their units is known as quantity calculus. It is recommended for use throughout science and technology. The use of quantity calculus does not imply any particular choice of units; indeed one of the advantages of quantity calculus is that it makes changes between units particularly easy to follow. Further examples of the use of quantity calculus are given in chapter 7 , which is concerned with the problems of transforming from one set of units to another.

1.2 BASE PHYSICAL QUANTITIES AND DERIVED PHYSICAL QUANTITIES

By convention physical quantities are organized in a dimensional system built upon seven base quantities, each of which is regarded as having its own dimension. These base quantities and the symbols used to denote them are as follows:

Physical quantity	Symbol for quantity
length	l
mass	m
time	t
electric current	I
thermodynamic temperature	T
amount of substance	n
luminous intensity	I_{v}

All other physical quantities are called derived quantities and are regarded as having dimensions derived algebraically from the seven base quantities by multiplication and division.

Example dimension of (energy) $=$ dimension of $\left(\right.$ mass \times length ${ }^{2} \times$ time $\left.^{-2}\right)$
The physical quantity amount of substance or chemical amount is of special importance to chemists. Amount of substance is proportional to the number of specified elementary entities of that substance, the proportionality factor being the same for all substances; its reciprocal is the Avogadro constant (see sections $2.10, \mathrm{p} .46$, and $3.2, \mathrm{p} .70$, and chapter 5). The SI unit of amount of substance is the mole, defined in chapter 3 below. The physical quantity 'amount of substance' should no longer be called 'number of moles', just as the physical quantity 'mass' should not be called 'number of kilograms'. The name 'amount of substance' and 'chemical amount' may often be usefully abbreviated to the single word 'amount', particularly in such phrases as 'amount concentration' (p.42) ${ }^{1}$, and 'amount of N_{2} ' (see examples on p .46).

[^1]
1.3 SYMBOLS FOR PHYSICAL QUANTITIES AND UNITS [5.a]

A clear distinction should be drawn between the names and symbols for physical quantities, and the names and symbols for units. Names and symbols for many physical quantities are given in chapter 2; the symbols given there are recommendations. If other symbols are used they should be clearly defined. Names and symbols for units are given in chapter 3; the symbols for units listed there are mandatory.

General rules for symbols for physical quantities

The symbol for a physical quantity should generally be a single letter of the Latin or Greek alphabet (see p.143) ${ }^{1}$. Capital and lower case letters may both be used. The letter should be printed in italic (sloping) type. When no italic font is available the distinction may be made by underlining symbols for physical quantities in accord with standard printers' practice. When necessary the symbol may be modified by subscripts and/or superscripts of specified meaning. Subscripts and superscripts that are themselves symbols for physical quantities or numbers should be printed in italic type; other subscripts and superscripts should be printed in roman (upright) type.

Examples

C_{p}	for heat capacity at constant pressure
x_{i}	for mole fraction of the i th species
C_{B}	for heat capacity of substance B
E_{k}	for kinetic energy
μ_{r}	for relative permeability
$\Delta_{\mathrm{r}} H^{\circ}$	for standard reaction enthalpy
V_{m}	for molar volume

The meaning of symbols for physical quantities may be further qualified by the use of one or more subscripts, or by information contained in round brackets.

Examples

$$
\begin{aligned}
& \Delta_{\mathrm{S}} S^{\ominus}\left(\mathrm{HgCl}_{2}, \mathrm{cr}, 25^{\circ} \mathrm{C}\right)=-154.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& \mu_{i}=\left(\partial G / \partial n_{i}\right)_{T, p, n_{j+i}}
\end{aligned}
$$

Vectors and matrices may be printed in bold face italic type, e.g. $\boldsymbol{A}, \boldsymbol{a}$. Matrices and tensors are sometimes printed in bold face sans-serif type, e.g. S,T. Vectors may alternatively be characterized by an arrow, \vec{A}, \vec{a} and second rank tensors by a double arrow, \vec{S}, \vec{T}.

General rules for symbols for units

Symbols for units should be printed in roman (upright) type. They should remain unaltered in the plural, and should not be followed by a full stop except at the end of a sentence.

Example $r=10 \mathrm{~cm}$, not cm . or cms .
Symbols for units should be printed in lower case letters, unless they are derived from a personal name when they should begin with a capital letter. (An exception is the symbol for the litre which may be either L or l, i.e. either capital or lower case.)
(1) An exception is made for certain dimensionless quantities used in the study of transport processes for which the internationally agreed symbols consist of two letters (see section 2.15).

Example Reynolds number, Re

When such symbols appear as factors in a product, they should be separated from other symbols by a space, multiplication sign, or brackets.

Examples m (metre), s (second), but J (joule), Hz (hertz)
Decimal multiples and submultiples of units may be indicated by the use of prefixes as defined in section 3.6 below.

Examples nm (nanometre), kHz (kilohertz), Mg (megagram)

1.4 USE OF THE WORDS 'EXTENSIVE', ‘INTENSIVE', 'SPECIFIC' AND 'MOLAR'

A quantity whose magnitude is additive for subsystems is called extensive; examples are mass m, volume V, Gibbs energy G. A quantity whose magnitude is independent of the extent of the system is called intensive; examples are temperature T, pressure p, chemical potential (partial molar Gibbs energy) μ.

The adjective specific before the name of an extensive quantity is often used to mean divided by mass. When the symbol for the extensive quantity is a capital letter, the symbol used for the specific quantity is often the corresponding lower case letter.

Examples volume, V
specific volume, $v=V / m=1 / \rho$ (where ρ is mass density)
heat capacity at constant pressure, C_{p}
specific heat capacity at constant pressure, $c_{p}=C_{p} / m$
ISO [5.a] recommends systematic naming of physical quantities derived by division with mass, volume, area and length by using the attributes massic, volumic, areic and lineic, respectively. In addition the Clinical Chemistry Division of IUPAC recommends the use of the attribute entitic for quantities derived by division with the number of entities [8]. Thus, for example, the specific volume is called massic volume and the surface charge density areic charge.

The adjective molar before the name of an extensive quantity generally means divided by amount of substance. The subscript m on the symbol for the extensive quantity denotes the corresponding molar quantity.

Examples volume, $V \quad$ molar volume, $V_{\mathrm{m}}=V / n(\mathrm{p} .41)$
enthalpy, $H \quad$ molar enthalpy, $H_{\mathrm{m}}=H / n$
It is sometimes convenient to divide all extensive quantities by amount of substance, so that all quantities become intensive; the subscript m may then be omitted if this convention is stated and there is no risk of ambiguity. (See also the symbols recommended for partial molar quantities in section 2.11, p.49, and 'Examples of the use of these symbols', p.51.)

There are a few cases where the adjective molar has a different meaning, namely divided by amount-of-substance concentration.

```
Examples absorption coefficient, \(a\)
    molar absorption coefficient, \(\varepsilon=a / c\) (p.32)
    conductivity, \(\kappa\)
    molar conductivity, \(\Lambda=\kappa / c\) (p.60)
```


1.5 PRODUCTS AND QUOTIENTS OF PHYSICAL QUANTITIES AND UNITS

Products of physical quantities may be written in any of the ways

$$
a b \text { or } a b \text { or } a \cdot b \text { or } a \times b
$$

and similarly quotients may be written

$$
a / b \text { or } \frac{a}{b} \text { or } a b^{-1}
$$

Examples $\quad F=m a, \quad p=n R T / V$
Not more than one solidus (/) should be used in the same expression unless brackets are used to eliminate ambiguity.

Example $(a / b) / c$, but never $a / b / c$
In evaluating combinations of many factors, multiplication takes precedence over division in the sense that $a / b c$ should be interpreted as $a /(b c)$ rather than $(a / b) c$; however, in complex expressions it is desirable to use brackets to eliminate any ambiguity.

Products and quotients of units may be written in a similar way, except that when a product of units is written without any multiplication sign one space should be left between the unit symbols.

Example $\mathrm{N}=\mathrm{m} \mathrm{kg} \mathrm{s}^{-2}$, but not mkgs^{-2}

This page is intentionally blank

Tables of physical quantities

The following tables contain the internationally recommended names and symbols for the physical quantities most likely to be used by chemists. Further quantities and symbols may be found in recommendations by IUPAP [4] and ISO [5].

Although authors are free to choose any symbols they wish for the quantities they discuss, provided that they define their notation and conform to the general rules indicated in chapter 1 , it is clearly an aid to scientific communication if we all generally follow a standard notation. The symbols below have been chosen to conform with current usage and to minimize conflict so far as possible. Small variations from the recommended symbols may often be desirable in particular situations, perhaps by adding or modifying subscripts and/or superscripts, or by the alternative use of upper or lower case. Within a limited subject area it may also be possible to simplify notation, for example by omitting qualifying subscripts or superscripts, without introducing ambiguity. The notation adopted should in any case always be defined. Major deviations from the recommended symbols should be particularly carefully defined.

The tables are arranged by subject. The five columns in each table give the name of the quantity, the recommended symbol(s), a brief definition, the symbol for the coherent SI unit (without multiple or submultiple prefixes, see p.74), and footnote references. When two or more symbols are recommended, commas are used to separate symbols that are equally acceptable, and symbols of second choice are put in parentheses. A semicolon is used to separate symbols of slightly different quantities. The definitions are given primarily for identification purposes and are not necessarily complete; they should be regarded as useful relations rather than formal definitions. For dimensionless quantities a 1 is entered in the SI unit column. Further information is added in footnotes, and in text inserts between the tables, as appropriate.

2.1 SPACE AND TIME

The names and symbols recommended here are in agreement with those recommended by IUPAP [4] and ISO [5.b, c].

Name	Symbol	Definition	SI unit	Notes
cartesian space coordinates	x, y, z		m	
spherical polar coordinates	$r ; \theta ; \phi$		m, 1, 1	
cylindrical coordinates	$\rho ; \theta ; z$		$\mathrm{m}, 1, \mathrm{~m}$	
generalized coordinate	q, q_{i}		(varies)	
position vector	r	$\boldsymbol{r}=x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}$	m	
length special symbols:	l		m	
height	h			
breadth	b			
thickness	d, δ			
distance	d			
radius	r			
diameter	d			
path length	s			
length of arc	s			
area	A, A_{s}, S		m^{2}	1
volume	$V,(v)$		m^{3}	
plane angle	$\alpha, \beta, \gamma, \theta, \phi \ldots$	$\alpha=s / r$	rad, 1	2
solid angle	Ω, ω	$\Omega=A / r^{2}$	sr, 1	2
time	t		s	
period	T	$T=t / N$	s	
frequency	v, f	$\nu=1 / T$	Hz	
angular frequency, circular frequency	ω	$\omega=2 \pi \nu$	$\mathrm{rad} \mathrm{s}{ }^{-1}, \mathrm{~s}^{-1}$	2,3
characteristic time interval, relaxation time, time constant	τ, T	$\tau=\|\mathrm{d} t / \mathrm{d} \ln x\|$	s	
angular velocity	ω	$\omega=\mathrm{d} \phi / \mathrm{d} t$	$\mathrm{rad} \mathrm{s}^{-1}, \mathrm{~s}^{-1}$	2, 4
velocity	$\boldsymbol{v}, \boldsymbol{u}, \boldsymbol{w}, \boldsymbol{c}, \dot{\boldsymbol{r}}$	$v=\mathrm{dr} / \mathrm{d} t$	$\mathrm{m} \mathrm{s}^{-1}$	
speed	v, u, w, c	$v=\|\boldsymbol{v}\|$	$\mathrm{m} \mathrm{s}^{-1}$	5
acceleration	a	$\boldsymbol{a}=\mathrm{d} \boldsymbol{v} / \mathrm{d} t$	$\mathrm{m} \mathrm{s}^{-2}$	6

(1) An infinitesimal area may be regarded as a vector $\mathrm{d} \boldsymbol{A}$ perpendicular to the plane. The symbol A_{s} may be used when necessary to avoid confusion with A for Helmholtz energy.
(2) The units radian (rad) and steradian (sr), for plane angle and solid angle respectively, are described as 'SI supplementary units' [3]. Since they are of dimension 1 (i.e. dimensionless), they may be included if appropriate, or they may be omitted if clarity is not lost thereby, in expressions for derived SI units.
(3) The unit Hz is not to be used for angular frequency.
(4) Angular velocity can be treated as a vector.
(5) For the speeds of light and sound the symbol c is customary.
(6) For acceleration of free fall the symbol g is used.

2.2 CLASSICAL MECHANICS

The names and symbols recommended here are in agreement with those recommended by IUPAP [4] and ISO [5.d]. Additional quantities and symbols used in acoustics can be found in [4 and 5.h].

Name	Symbol	Definition	SI unit	Notes
mass	m		kg	
reduced mass	μ	$\mu=m_{1} m_{2} /\left(m_{1}+m_{2}\right)$	kg	
density, mass density	ρ	$\rho=m / V$	$\mathrm{kg} \mathrm{m}^{-3}$	
relative density	d	$d=\rho / \rho^{*}$	1	1
surface density	ρ_{A}, ρ_{S}	$\rho_{A}=m / A$	$\mathrm{kg} \mathrm{m}^{-2}$	
specific volume	v	$v=V / m=1 / \rho$	$\mathrm{m}^{3} \mathrm{~kg}^{-1}$	
momentum	p	$\boldsymbol{p}=m \boldsymbol{v}$	$\mathrm{kg} \mathrm{m} \mathrm{s}^{-1}$	
angular momentum, action	L	$\boldsymbol{L}=\boldsymbol{r} \times \boldsymbol{p}$	J s	2
moment of inertia	I, J	$I=\sum m_{i} r_{i}{ }^{2}$	$\mathrm{kg} \mathrm{m}{ }^{2}$	3
force	F	$\boldsymbol{F}=\mathrm{d} \boldsymbol{p} / \mathrm{d} t=m \boldsymbol{a}$	N	
torque, moment of a force	$\boldsymbol{T},(\mathrm{M})$	$\boldsymbol{T}=\boldsymbol{r} \times \boldsymbol{F}$	Nm	
energy	E		J	
potential energy	E_{p}, V, Φ	$E_{\mathrm{p}}=-\int \boldsymbol{F} \cdot \mathrm{d} \boldsymbol{s}$	J	
kinetic energy	E_{k}, T, K	$E_{\mathrm{k}}=\frac{1}{2} m v^{2}$	J	
work	W, w	$W=\int \boldsymbol{F} \cdot \mathrm{d} \boldsymbol{s}$	J	
Lagrange function	L	$L(q, \dot{q})=T(q, \dot{q})-V(q)$	J	
Hamilton function	H	$H(q, p)=\sum p_{i} \dot{q}_{i}-L(q, \dot{q})$	J	
pressure	p, P	$p=F / A$	$\mathrm{Pa}, \mathrm{N} \mathrm{m}^{-2}$	
surface tension	γ, σ	$\gamma=\mathrm{d} W / \mathrm{d} A$	$\mathrm{Nm} \mathrm{m}^{-1}, \mathrm{Jm}^{-2}$	
weight	$G,(W, P)$	$G=m g$	N	
gravitational constant	G	$F=G m_{1} m_{2} / r^{2}$	$\mathrm{Nm}^{2} \mathrm{~kg}^{-2}$	
normal stress	σ	$\sigma=F / A$	Pa	
shear stress	τ	$\tau=F / A$	Pa	
linear strain, relative elongation	ε, e	$\varepsilon=\Delta l / l$	1	
modulus of elasticity, Young's modulus	E	$E=\sigma / \varepsilon$	Pa	
shear strain	γ	$\gamma=\Delta x / d$	1	
shear modulus	G	$\boldsymbol{G}=\tau / \gamma$	Pa	
volume strain, bulk strain	θ	$\theta=\Delta V / V_{0}$	1	
bulk modulus, compression modulus	K	$K=-V_{0}(\mathrm{~d} p / \mathrm{d} V)$	Pa	

(1) Usually $\rho^{\star}=\rho\left(\mathrm{H}_{2} \mathrm{O}, 4^{\circ} \mathrm{C}\right)$.
(2) Other symbols are customary in atomic and molecular spectroscopy; see section 2.6.
(3) In general I is a tensor quantity: $I_{\alpha \alpha}=\Sigma m_{i}\left(\beta_{i}^{2}+\gamma_{i}^{2}\right)$, and $I_{\alpha \beta}=-\Sigma m_{i} \alpha_{i} \beta_{i}$ if $\alpha \neq \beta$, where α, β, γ is a permutation of x, y, z. For a continuous distribution of mass the sums are replaced by integrals.

Name	Symbol	Definition	SI unit	Notes
viscosity, dynamic viscosity	η, μ	$\tau_{x, z}=\eta\left(\mathrm{d} v_{x} / \mathrm{d} z\right)$	Pa s	
fluidity	ϕ	$\phi=1 / \eta$		$\mathrm{m} \mathrm{kg}^{-1} \mathrm{~s}$
kinematic viscosity	v	$v=\eta / \rho$	$\mathrm{m}^{2} \mathrm{~s}^{-1}$	
friction factor	$\mu,(f)$	$F_{\text {frict }}=\mu F_{\mathrm{norm}}$	1	
power	P	$P=\mathrm{d} W / \mathrm{d} t$	W	
sound energy flux	P, P_{a}	$P=\mathrm{d} E / \mathrm{d} t$	W	
acoustic factors,		$\rho=P_{\mathrm{r}} / P_{0}$	1	
reflection absorption	ρ	$\alpha_{\mathrm{a}}=1-\rho$	1	4
transmission	τ	$\tau=P_{\mathrm{tr}} / P_{0}$	1	5
dissipation	δ	$\delta=\alpha_{\mathrm{a}}-\tau$	1	4

(4) P_{0} is the incident sound energy flux, P_{r} the reflected flux and P_{tr} the transmitted flux.
(5) This definition is special to acoustics and is different from the usage in radiation, where the absorption factor corresponds to the acoustic dissipation factor.

2.3 ELECTRICITY AND MAGNETISM

The names and symbols recommended here are in agreement with those recommended by IUPAP [4] and ISO [5.f].

Name	Symbol	Definition	SI unit	Notes
quantity of electricity, electric charge	Q		C	
charge density	ρ	$\rho=Q / V$	Cm^{-3}	
surface charge density	σ	$\sigma=Q / A$	Cm^{-2}	
electric potential	V, ϕ	$V=\mathrm{d} W / \mathrm{d} Q$	V, JC^{-1}	
electric potential difference	$U, \Delta V, \Delta \phi$	$U=V_{2}-V_{1}$	V	
electromotive force	E	$E=\int(F / Q) \cdot \mathrm{d} s$	V	
electric field strength	E	$E=F / Q=-\nabla V$	$\mathrm{V} \mathrm{m}^{-1}$	
electric flux	Ψ	$\Psi=\int \boldsymbol{D} \cdot \mathrm{d} \boldsymbol{A}$	C	1
electric displacement	D	$\boldsymbol{D}=\varepsilon \boldsymbol{E}$	$\mathrm{Cm}{ }^{-2}$	
capacitance	C	$C=Q / U$	$\mathrm{F}, \mathrm{C} \mathrm{V}^{-1}$	
permittivity	ε	$\boldsymbol{D}=\varepsilon \boldsymbol{E}$	$\mathrm{Fm} \mathrm{m}^{-1}$	
permittivity of vacuum	ε_{0}	$\varepsilon_{0}=\mu_{0}^{-1} c_{0}^{-2}$	F m ${ }^{-1}$	
relative permittivity	ε_{r}	$\varepsilon_{\mathrm{r}}=\varepsilon / \varepsilon_{0}$	1	2
dielectric polarization (dipole moment per volume)	\boldsymbol{P}	$\boldsymbol{P}=\boldsymbol{D}-\varepsilon_{0} \boldsymbol{E}$	C m ${ }^{-2}$	
electric susceptibility	$\chi_{\text {e }}$	$\chi_{\mathrm{e}}=\varepsilon_{\mathrm{r}}-1$	1	
1st hyper-susceptibility	$\chi_{\mathrm{e}}{ }^{(2)}$	$\chi_{\mathrm{e}}{ }^{(2)}=\partial^{2} P / \partial E^{2}$	$\mathrm{CmJ}{ }^{-1}$	3
2nd hyper-susceptibility	$\chi_{\mathrm{e}}{ }^{(3)}$	$\chi_{\mathrm{e}}{ }^{(3)}=\partial^{3} P / \partial E^{3}$	$\mathrm{C}^{2} \mathrm{~m}^{2} \mathrm{~J}^{-2}$	3
electric dipole moment	$\boldsymbol{p}, \boldsymbol{\mu}$	$\boldsymbol{p}=\Sigma Q_{i} r_{i}$	Cm	4
electric current	I, i	$I=\mathrm{d} Q / \mathrm{d} t$	A	
electric current density	j, J	$I=\int \boldsymbol{j} \cdot \mathrm{d} \boldsymbol{A}$	Am^{-2}	1
magnetic flux density, magnetic induction	\boldsymbol{B}	$\boldsymbol{F}=\boldsymbol{Q} \boldsymbol{v} \times \boldsymbol{B}$	T	5
magnetic flux	Φ	$\Phi=\int \boldsymbol{B} \cdot \mathrm{d} \boldsymbol{A}$	Wb	1
magnetic field strength	\boldsymbol{H}	$\boldsymbol{B}=\mu \boldsymbol{H}$	Am^{-1}	

(1) $\mathrm{d} \boldsymbol{A}$ is a vector element of area.
(2) This quantity was formerly called dielectric constant.
(3) The hyper-susceptibilities are the coefficients of the non-linear terms in the expansion of the polarization \boldsymbol{P} in powers of the electric field \boldsymbol{E} :

$$
P=\varepsilon_{0}\left[\chi_{e}^{(1)} E+(1 / 2) \chi_{e}^{(2)} E^{2}+(1 / 6) \chi_{e}^{(3)} E^{3}+\ldots\right]
$$

where $\chi_{\mathrm{e}}{ }^{(1)}$ is the usual electric susceptibility χ_{e}, equal to $\varepsilon_{\mathrm{r}}-1$ in the absence of higher terms. In a medium that is anisotropic $\chi_{\mathrm{e}}{ }^{(1)}, \chi_{\mathrm{e}}^{(2)}$ and $\chi_{\mathrm{e}}{ }^{(3)}$ are tensors of rank 2, 3 and 4, respectively. For an isotropic medium (such as a liquid) or for a crystal with a centrosymmetric unit cell, $\chi_{e}^{(2)}$ is zero by symmetry. These quantities characterize a dielectric medium in the same way that the polarizability and the hyper-polarizabilities characterize a molecule (see p.22).
(4) When a dipole is composed of two point charges Q and $-Q$ separated by a distance r, the direction of the dipole vector is taken to be from the negative to the positive charge. The opposite convention is sometimes used, but is to be discouraged. The dipole moment of an ion depends on the choice of the origin.
(5) This quantity is sometimes loosely called magnetic field.

Name	Symbol	Definition	SI unit	Notes
permeability	μ	$\boldsymbol{B}=\mu \boldsymbol{H}$	$\mathrm{NA}^{-2}, \mathrm{Hm}^{-1}$	
permeability of vacuum	μ_{0}	$\mu_{0}=4 \pi \times 10^{-7} \mathrm{Hm}^{-1}$	Hm^{-1}	
relative permeability	$\mu_{\text {r }}$	$\mu_{\mathrm{r}}=\mu / \mu_{0}$	1	
magnetization (magnetic dipole moment per volume)	\boldsymbol{M}	$\boldsymbol{M}=\boldsymbol{B} / \mu_{0}-\boldsymbol{H}$	Am^{-1}	
magnetic susceptibility	$\chi, \kappa,\left(\chi_{\mathrm{m}}\right)$	$\chi=\mu_{\mathrm{r}}-1$	1	6
molar magnetic susceptibility	χ_{m}	$\chi_{\mathrm{m}}=V_{\mathrm{m}} \chi$	$\mathrm{m}^{3} \mathrm{~mol}^{-1}$	
magnetic dipole moment	$\boldsymbol{m}, \boldsymbol{\mu}$	$E_{\mathrm{p}}=-\boldsymbol{m} \cdot \boldsymbol{B}$	A m ${ }^{2}, \mathrm{~J} \mathrm{~T}^{-1}$	
electric resistance	R	$R=U / I$	Ω	7
conductance	G	$G=1 / R$	S	7
loss angle	δ	$\delta=\phi_{I}-\phi_{U}$	1, rad	8
reactance	X	$X=(U / I) \sin \delta$	Ω	
impedance, (complex impedance)	Z	$Z=R+\mathrm{i} X$	Ω	
admittance, (complex admittance)	Y	$Y=1 / Z$	S	
susceptance	B	$Y=G+\mathrm{i} B$	S	
resistivity	ρ	$\rho=E / j$	$\Omega \mathrm{m}$	9
conductivity	κ, γ, σ	$\kappa=1 / \rho$	Sm^{-1}	9
self-inductance	L	$E=-L(\mathrm{~d} I / \mathrm{d} t)$	H	
mutual inductance	M, L_{12}	$E_{1}=L_{12}\left(\mathrm{~d} I_{2} / \mathrm{d} t\right)$	H	
magnetic vector potential	\boldsymbol{A}	$B=\boldsymbol{\nabla} \times \boldsymbol{A}$	$\mathrm{Wb} \mathrm{m}^{-1}$	
Poynting vector	\boldsymbol{S}	$\boldsymbol{S}=\boldsymbol{E} \times \boldsymbol{H}$	W m ${ }^{-2}$	10

(6) The symbol χ_{m} is sometimes used for magnetic susceptibility, but it should be reserved for molar magnetic susceptibility.
(7) In a material with reactance $R=(U / I) \cos \delta$, and $G=R /\left(R^{2}+X^{2}\right)$.
(8) ϕ_{I} and ϕ_{U} are the phases of current and potential difference.
(9) These quantities are tensors in anisotropic materials.
(10) This quantity is also called the Poynting-Umov vector.

2.4 QUANTUM MECHANICS AND QUANTUM CHEMISTRY

The names and symbols for quantities used in quantum mechanics and recommended here are in agreement with those recommended by IUPAP [4]. The names and symbols for quantities used mainly in the field of quantum chemistry have been chosen on the basis of the current practice in the field.

Name	Symbol	Definition	SI unit	Notes
momentum operator	$\hat{\boldsymbol{p}}$	$\hat{p}=-\mathrm{i} \hbar \nabla$	$\mathrm{J} \mathrm{s} \mathrm{m}^{-1}$	1
kinetic energy operator	\hat{T}	$\hat{T}=-\left(\hbar^{2} / 2 m\right) \nabla^{2}$	J	1
hamiltonian operator	\hat{H}	$\hat{H}=\hat{T}+\hat{V}$	J	1
wavefunction, state function	Ψ, ψ, ϕ	$\hat{H} \psi=E \psi$	$\left(\mathrm{m}^{-3 / 2}\right)$	2,3
hydrogen-like wavefunction	$\psi_{n l m}(r, \theta, \phi)$	$\psi_{n l m}=R_{n l}(r) Y_{l m}(\theta, \phi)$	$\left(\mathrm{m}^{-3 / 2}\right)$	3
spherical harmonic function	$Y_{l m}(\theta, \phi)$	$Y_{l m}=N_{l,\|m\|} P_{l}^{\|m\|}(\cos \theta) \mathrm{e}^{\mathrm{i} m \phi}$	1	4
probability density	P	$P=\psi^{*} \psi$	$\left(\mathrm{m}^{-3}\right)$	3, 5
charge density of electrons	ρ	$\rho=-e P$	(Cm^{-3})	3, 5, 6
probability current density, probability flux	S	$\begin{aligned} \boldsymbol{S}= & -(\mathrm{i} \hbar / 2 m) \\ & \times\left(\psi^{*} \boldsymbol{\nabla} \psi-\psi \nabla \psi^{*}\right) \end{aligned}$	$\left(\mathrm{m}^{-2} \mathrm{~s}^{-1}\right)$	3
electric current density of electrons	j	$\boldsymbol{j}=-e \boldsymbol{S}$	$\left(\mathrm{Am}^{-2}\right)$	3,6
integration element	$\mathrm{d} \tau$	$\mathrm{d} \tau=\mathrm{d} x \mathrm{~d} y \mathrm{~d} z$, etc.	(varies)	
matrix element of operator \hat{A}	$A_{i j},\langle i\| A\|j\rangle$	$A_{i j}=\int \psi_{i}^{*} \hat{A} \psi_{j} \mathrm{~d} \tau$	(varies)	7
expectation value of operator \hat{A}	$\langle A\rangle, \bar{A}$	$\langle A\rangle=\int \psi^{*} \hat{A} \psi \mathrm{~d} \tau$	(varies)	7
hermitian conjugate of \hat{A}	\hat{A}^{\dagger}	$\left(A^{\dagger}\right)_{i j}=\left(A_{j i}\right)^{*}$	(varies)	7
commutator of \hat{A} and \hat{B}	$[\hat{A}, \hat{B}],[\hat{A}, \hat{B}]_{-}$	$[\hat{A}, \hat{B}]=\hat{A} \hat{B}-\hat{B} \hat{A}$	(varies)	8
anticommutator of \hat{A} and \hat{B}	$[\hat{A}, \hat{B}]_{+}$	$[\hat{A}, \hat{B}]_{+}=\hat{A} \hat{B}+\hat{B} \hat{A}$	(varies)	8

(1) The 'hat' (or circumflex), , is used to distinguish an operator from an algebraic quantity. ∇ denotes the nabla operator (see section 4.2, p.85).
(2) Capital and lower case psi are often used for the time-dependent function $\Psi(x, t)$ and the amplitude function $\psi(x)$ respectively. Thus for a stationary state $\Psi(x, t)=\psi(x) \exp (-\mathrm{i} E t / \hbar)$.
(3) For the normalized wavefunction of a single particle in three-dimensional space the appropriate SI unit is given in parentheses. Results in quantum chemistry, however, are often expressed in terms of atomic units (see section 3.8, p.76; section 7.3, p.120; and reference [9]). If distances, energies, angular momenta, charges and masses are all expressed as dimensionless ratios $r / a_{0}, E / E_{\mathrm{h}}, L / \hbar, Q / e$, and m / m_{e} respectively, then all quantities are dimensionless.
(4) $P_{l}^{|m|}$ denotes the associated Legendre function of degree l and order $|m| . N_{l,|m|}$ is a normalization constant.
(5) ψ^{*} is the complex conjugate of ψ. For an antisymmetrized n electron wavefunction $\Psi\left(r_{1}, \ldots, r_{n}\right)$, the total probability density of electrons is $\int_{2} \ldots \int_{n} \Psi^{*} \Psi \mathrm{~d} \tau_{2} \ldots \mathrm{~d} \tau_{n}$, where the integration extends over the coordinates of all electrons but one.
(6) $-e$ is the charge of an electron.
(7) The unit is the same as for the physical quantity A that the operator represents.
(8) The unit is the same as for the product of the physical quantities A and B.

Name	Symbol	Definition	SI unit	Notes
angular momentum operators spin wavefunction	-see p.26		β	1

Hückel molecular orbital theory (HMO):

atomic orbital basis function	χ_{r}		$\mathrm{m}^{-3 / 2}$	3
molecular orbital	ϕ_{i}	$\phi_{i}=\sum_{r} \chi_{r} c_{r i}$	$\mathrm{m}^{-3 / 2}$	3,10
coulomb integral	$H_{r r}, \alpha$	$H_{r r}=\int \chi_{r}^{*} \hat{H} \chi_{r} \mathrm{~d} \tau$	J	3, 10, 11
resonance integral	$H_{r s}, \beta$	$H_{r s}=\int \chi_{r}^{*} \hat{H} \chi_{s} \mathrm{~d} \tau$	J	3, 10
energy parameter	x	$x=(\alpha-E) / \beta$	1	12
overlap integral	$S_{\text {rs }}$	$S_{r s}=\int \chi_{r}^{*} \chi_{s} \mathrm{~d} \tau$	1	10
charge density	q_{r}	$q_{r}=\sum_{i}^{\text {occ }} c_{r i}{ }^{2}$	1	13
bond order	$p_{\text {rs }}$	$p_{r s}=\sum_{i}^{\text {occ }} c_{r i} c_{s i}$	1	13

(9) The spin wavefunctions of a single electron, α and β, are defined by the matrix elements of the z component of the spin angular momentum, \hat{s}_{z}, by the relations $\langle\alpha| \hat{s}_{z}|\alpha\rangle=+\frac{1}{2},\langle\beta| \hat{s}_{z}|\beta\rangle=-\frac{1}{2},\langle\alpha| \hat{s}_{z}|\beta\rangle=\langle\beta| \hat{s}_{z}|\alpha\rangle=0$. The total electron spin wavefunctions of an atom with many electrons are denoted by Greek letters α, β, γ, etc. according to the value of $\sum m_{S}$, starting from the highest down to the lowest.
(10) \hat{H} is an effective hamiltonian for a single electron, i and j label the molecular orbitals, and r and s label the atomic orbitals. In Hückel MO theory $H_{r s}$ is taken to be non-zero only for bonded pairs of atoms r and s, and all $S_{r s}$ are assumed to be zero for $r \neq s$.
(11) Note that the name 'coulomb integral' has a different meaning in HMO theory (where it refers to the energy of the orbital χ_{r} in the field of the nuclei) to Hartree-Fock theory discussed below (where it refers to a two-electron repulsion integral).
(12) In the simplest application of Hückel theory to the π electrons of planar conjugated hydrocarbons, α is taken to be the same for all C atoms, and β to be the same for all bonded pairs of C atoms; it is then customary to write the Hückel secular determinant in terms of the dimensionless parameter x.
(13) $-e q_{r}$ is the charge on atom r, and $p_{r s}$ is the bond order between atoms r and s. The sum goes over all occupied molecular spin-orbitals.

Ab initio Hartree-Fock self-consistent field theory (ab initio SCF)

Results in quantum chemistry are often expressed in atomic units (see p. 76 and p.120). In the remaining tables of this section all lengths, energies, masses, charges and angular momenta are expressed as dimensionless ratios to the corresponding atomic units, $a_{0}, E_{\mathrm{h}}, m_{e}, e$ and \hbar respectively. Thus all quantities become dimensionless, and the SI unit column is omitted.

molecular orbital	$\phi_{i}(\mu)$		14		
molecular spin-orbital	$\begin{aligned} & \phi_{i}(\mu) \alpha(\mu) ; \\ & \phi_{i}(\mu) \beta(\mu) \end{aligned}$		14		
total wavefunction	Ψ	$\Psi=(N!)^{-\frac{1}{2}}\left\\|\phi_{i}(\mu)\right\\|$	14, 15		
core hamiltonian of a single electron	$\hat{H}_{\mu}^{\text {core }}$	$\hat{H}_{\mu}=-\frac{1}{2} \nabla_{\mu}^{2}-\sum_{\mathrm{A}} Z_{\mathrm{A}} / r_{\mu \mathrm{A}}$	14,16		
one-electron integrals: expectation value of the core hamiltonian	$H_{i i}$	$H_{i i}=\int \phi_{i}^{*}(1) \hat{H}_{1}^{\text {core }} \phi_{i}(1) \mathrm{d} \tau_{1}$	14, 16		
two-electron repulsion integrals:					
coulomb integral	$J_{i j}$	$J_{i j}=\iint \phi_{i}^{*}(1) \phi_{j}^{*}(2) \frac{1}{r_{12}} \phi_{i}(1) \phi_{j}(2) \mathrm{d} \tau_{1} \mathrm{~d} \tau_{2}$	14,17		
exchange integral	$K_{i j}$	$K_{i j}=\iint \phi_{i}^{*}(1) \phi_{j}^{*}(2) \frac{1}{r_{12}} \phi_{j}(1) \phi_{i}(2) \mathrm{d} \tau_{1} \mathrm{~d} \tau_{2}$	14,17		
one-electron orbital energy ε_{i}		$\varepsilon_{i}=H_{i i}+\sum_{j}\left(2 J_{i j}-K_{i j}\right)$	14,18		
total electronic energy	E	$E=2 \sum_{i} H_{i i}+\sum_{i} \sum_{j}\left(2 J_{i j}-K_{i j}\right)$	14, 18, 19		
		$=\sum_{i}\left(\varepsilon_{i}+H_{i i}\right)$			
coulomb operator	\hat{J}_{i}	$\hat{J}_{i} \phi_{j}(2)=\left\langle\phi_{i}(1)\right\| \frac{1}{r_{12}}\left\|\phi_{i}(1)\right\rangle \phi_{j}(2)$	14		
exchange operator	\hat{K}_{i}	$\hat{K}_{i} \phi_{j}(2)=\left\langle\phi_{i}(1)\right\| \frac{1}{r_{12}}\left\|\phi_{j}(1)\right\rangle \phi_{i}(2)$	14		
Fock operator	\hat{F}	$\hat{F}=\hat{H}^{\text {core }}+\sum_{i}\left(2 \hat{J}_{i}-\hat{K}_{i}\right)$	14,20		

(14) The indices i and j label the molecular orbitals, and either μ or the numerals 1 and 2 label the electron coordinates.
(15) The double bars denote an antisymmetrized product of the occupied molecular spin-orbitals $\phi_{i} \alpha$ and $\phi_{i} \beta$ (sometimes denoted ϕ_{i} and $\bar{\phi}_{i}$); for a closed shell system Ψ would be a normalized Slater determinant. (N ! $)^{-\frac{1}{2}}$ is the normalization constant.
(16) Z_{A} is the charge number (atomic number) of nucleus A , and $r_{\mu \mathrm{A}}$ is the distance of electron μ from nucleus A . $H_{i i}$ is the energy of an electron in orbital ϕ_{i} in the field of the core.
(17) The inter-electron repulsion integrals are often written in a contracted form as follows: $J_{i j}=\left(i i^{*} \mid j j^{*}\right)$, and $K_{i j}=\left(i^{*} j \mid i j^{*}\right)$. It is conventionally understood that the first two indices within the bracket refer to the orbitals involving electron 1 , and the second two indices to the orbitals involving electron 2 . In general the functions are real and the stars * are omitted.
(18) These relations apply to closed shell systems only, and the sums extend over the occupied molecular orbitals.
(19) The sum over j includes the term with $j=i$, for which $J_{i i}=K_{i i}$, so that this term in the sum simplifies to give $2 J_{i i}-K_{i i}=J_{i i}$.
(20) The Hartree-Fock equations read $\left(\hat{F}-\varepsilon_{j}\right) \phi_{j}=0$. Note that the definition of the Fock operator involves all of its eigenfuctions ϕ_{i} through the coulomb and exchange operators, \hat{J}_{i} and \hat{K}_{i}.

Hartree-Fock-Roothaan SCF theory, using molecular orbitals expanded as linear combinations of atomic orbital basis functions (LCAO-MO theory)

Name	Symbol	Definition	Notes
atomic orbital basis function	χ_{r}		21
molecular orbital	ϕ_{i}	$\phi_{i}=\sum \chi_{r} c_{r i}$	
overlap matrix element	$S_{r s}$	$S_{r s}=\int_{r}^{r} \chi_{r}^{*} \chi_{s} \mathrm{~d} \tau, \sum_{r, s} c_{r i}^{*} S_{r s} c_{s j}=\delta_{i j}$	
density matrix element	$P_{r s}$	$P_{r s}=2 \sum_{i} c_{r i} c_{s i}^{*}$	22
integrals over the basis functions: one-electron integrals	$H_{r s}$	$H_{r s}=\int \chi_{r}^{*}(1) \hat{H}_{1}^{\text {core }} \chi_{s}(1) \mathrm{d} \tau_{1}$	
two-electron integrals	(rs\|tu)	$(r s \mid t u)=\iint \chi_{r}(1) \chi_{s}(1) \frac{1}{r_{12}} \chi_{t}(2) \chi_{u}(2) \mathrm{d} \tau_{1} \mathrm{~d} \tau_{2}$	23, 24
total electronic energy	E	$E=\sum_{r} \sum_{s} P_{r s} H_{r s}$	24
		$+\frac{1}{2} \sum_{r} \sum_{s} \sum_{t} \sum_{u} P_{r s} P_{t u}\left[(r s \mid t u)-\frac{1}{2}(r t \mid s u)\right]$	
matrix element of the Fock operator	$F_{\text {rs }}$	$F_{r s}=H_{r s}+\sum_{t} \sum_{u} P_{t u}\left[(r s \mid t u)-\frac{1}{2}(r t \mid s u)\right]$	25

(21) The indices r and s label the basis functions. In numerical computations the basis functions are either taken as Slater-type orbitals (STOs) or as gaussian type orbitals (GTOs). An STO basis function in spherical polar coordinates has the general form $\chi(r, \theta, \phi)=N r^{n-1} \exp \left(-\zeta_{n l} r\right) Y_{l m}(\theta, \phi)$, where $\zeta_{n l}$ is a shielding parameter representing the effective charge in the state with quantum numbers n and l. GTO functions are usually expressed in cartesian coordinates, in the form $\chi(x, y, z)=N x^{a} y^{b} z^{c} \exp \left(-\alpha r^{2}\right)$. Often a linear combination of two or three such functions with varying exponents α is used, in such a way as to model an STO. N denotes a normalization constant.
(22) The sum goes over all occupied molecular orbitals.
(23) The contracted notation for two-electron integrals over the basis functions, ($r s \mid t u$), is based on the same convention outlined in note (17).
(24) Here the quantities are expressed in terms of integrals over the basis functions. The matrix elements $H_{i i}$, $J_{i j}$ and $K_{i j}$ may be similarly expressed in terms of integrals over the basis functions according to the following equations:

$$
\begin{aligned}
& H_{i i}=\sum_{r} \sum_{s} c_{r i}^{*} c_{s i} H_{r s} \\
& J_{i j}=\sum_{r} \sum_{s} \sum_{t} \sum_{u} c_{r i}^{*} c_{s j}^{*} c_{t i} c_{u j}(r t \mid s u) \\
& K_{i j}=\sum_{r} \sum_{s} \sum_{t} \sum_{u} c_{r i}^{*} c_{s j}^{*} c_{t i} c_{u j}(r s \mid t u)
\end{aligned}
$$

(25) The Hartree-Fock-Roothaan SCF equations, expressed in terms of the matrix elements of the Fock operator $F_{r s}$, and the overlap matrix elements $S_{r s}$, take the form:

$$
\sum_{s}\left(F_{r s}-\varepsilon_{i} S_{r s}\right) c_{s i}=0
$$

2.5 ATOMS AND MOLECULES

The names and symbols recommended here are in agreement with those recommended by IUPAP [4] and ISO [5.j]. Additional quantities and symbols used in atomic, nuclear and plasma physics can be found in [4 and 5.k].

Name	Symbol	Definition	SI unit	Notes
nucleon number, mass number	A		1	
proton number, atomic number	Z		1	
neutron number	N	$N=A-Z$	1	
electron rest mass	$m_{\text {e }}$		kg	1,2
mass of atom, atomic mass	m_{a}, m		kg	
atomic mass constant	m_{u}	$m_{u}=m_{\mathrm{a}}\left({ }^{12} \mathrm{C}\right) / 12$	kg	1,3
mass excess	Δ	$\Delta=m_{\mathrm{a}}-A m_{\mathrm{u}}$	kg	
elementary charge, proton charge	e		C	2
Planck constant	h		J s	
Planck constant/ 2π	\hbar	$\hbar=h / 2 \pi$	J s	2
Bohr radius	a_{0}	$a_{0}=4 \pi \varepsilon_{0} \hbar^{2} / m_{\mathrm{e}} e^{2}$	m	2
Hartree energy	$E_{\text {h }}$	$E_{\mathrm{h}}=\hbar^{2} / m_{\mathrm{e}} a_{0}{ }^{2}$	J	2
Rydberg constant	R_{∞}	$R_{\infty}=E_{\mathrm{h}} / 2 h c$	m^{-1}	
fine structure constant	α	$\alpha=e^{2} / 4 \pi \varepsilon_{0} \hbar c$	1	
ionization energy	$E_{\text {i }}$		J	
electron affinity	$E_{\text {ea }}$		J	
electronegativity	χ	$\chi=\frac{1}{2}\left(E_{\mathrm{i}}+E_{\text {ea }}\right)$	J	4
dissociation energy	$E_{\text {d }}, D$		J	
from the ground state	D_{0}		J	5
from the potential minimum	$D_{\text {e }}$		J	5

(1) Analogous symbols are used for other particles with subscripts: p for proton, n for neutron, a for atom, N for nucleus, etc.
(2) This quantity is also used as an atomic unit; see sections 3.8 and 7.3 .
(3) m_{u} is equal to the unified atomic mass unit, with symbol u, i.e. $m_{u}=1 u$ (see section 3.7). In biochemistry the name dalton, with symbol Da , is used for the unified atomic mass unit, although the name and symbol have not been accepted by CGPM.
(4) The concept of electronegativity was introduced by L. Pauling as the power of an atom in a molecule to attract electrons to itself. There are several ways of defining this quanity [49]. The one given in the table has a clear physical meaning of energy and is due to R.S. Mulliken. The most frequently used scale, due to Pauling, is based on bond dissociation energies in eV and it is relative in the sense that the values are dimensionless and that only electronegativity differences are defined. For atoms A and B

$$
\chi_{\mathrm{r}, \mathrm{~A}}-\chi_{\mathrm{r}, \mathrm{~B}}=(\mathrm{eV})^{-1 / 2} \sqrt{E_{\mathrm{d}}(\mathrm{AB})-\left[E_{\mathrm{d}}(\mathrm{AA})+E_{\mathrm{d}}(\mathrm{BB})\right]}
$$

where χ_{r} denotes the Pauling relative electronegativity. The scale is chosen so as to make the relative electronegativity of hydrogen $\chi_{\mathrm{r}, \mathrm{H}}=2.1$. There is a difficulty in choosing the sign of the square root, which determines the sign of $\chi_{\mathrm{r}, \mathrm{A}}-\chi_{\mathrm{r}, \mathrm{B}}$. Pauling made this choice intuitively.
(5) The symbols D_{0} and D_{e} are mainly used for diatomic dissociation energies.

Name	Symbol	Definition	SI unit	Notes
principal quantum number (H atom)	n	$E=-h c R / n^{2}$	1	6
angular momentum quantum numbers	see under Spectroscopy, section 2.6			
magnetic dipole moment of a molecule	$\boldsymbol{m}, \boldsymbol{\mu}$	$E_{\mathrm{p}}=-\boldsymbol{m} \cdot \boldsymbol{B}$	JT^{-1}	
magnetizability of a molecule	ξ	$\boldsymbol{m}=\boldsymbol{\xi} \boldsymbol{B}$	$\mathrm{J} \mathrm{T}^{-2}$	
Bohr magneton nuclear magneton magnetogyric ratio (gyromagnetic ratio)	$\mu_{\text {B }}$	$\mu_{\mathrm{B}}=e \hbar / 2 m_{\mathrm{e}}$	$\mathrm{J} \mathrm{T}^{-1}$	7
	μ_{N}	$\mu_{\mathrm{N}}=\left(m_{\mathrm{e}} / m_{\mathrm{p}}\right) \mu_{\mathrm{B}}$	JT^{-1}	
	γ	$\gamma=\mu / L$	$\mathrm{s}^{-1} \mathrm{~T}^{-1}$	
g-factor	g	$g=2 \mu / \mu_{\text {B }}$	1	8
nuclear g-factor	$g_{\text {N }}$	$g_{\mathrm{N}}=\mu / I \mu_{\mathrm{N}}$	1	
Larmor angular frequency	ω_{L}	$\omega_{\mathrm{L}}=(e / 2 m) B$	s^{-1}	
Larmor frequency relaxation time,	v_{L}	$\nu_{\mathrm{L}}=\omega_{\mathrm{L}} / 2 \pi$	Hz	9
longitudinal	T_{1}		s	
transverse	T_{2}		s	9
electric dipole moment of a molecule	p, μ	$E_{\mathrm{p}}=-\boldsymbol{p} \cdot \boldsymbol{E}$	Cm	10
quadrupole moment of a molecule	$\boldsymbol{Q} ; \boldsymbol{\Theta}$	$E_{\mathrm{p}}=\frac{1}{2} \boldsymbol{Q}: \boldsymbol{V}^{\prime \prime}=\frac{1}{3} \boldsymbol{\Theta}: V^{\prime \prime}$	C m ${ }^{2}$	11
quadrupole moment of a nucleus	$e Q$	$e Q=2\left\langle\Theta_{z z}\right\rangle$	C m ${ }^{2}$	12

(6) Magnetic moments of specific particles may be denoted by subscripts, e.g. $\mu_{\mathrm{e}}, \mu_{\mathrm{p}}, \mu_{\mathrm{n}}$ for an electron, a proton, and a neutron. Tabulated values usually refer to the maximum expectation value of the z component. Values for stable nuclei are given in table 6.3.
(7) μ is the magnetic moment, L the angular momentum.
(8) This quantity is commonly called Larmor circular frequency.
(9) These quantities are used in the context of saturation effects in spectroscopy, particularly spin-resonance spectroscopy (see p.25-26).
(10) See footnote 7 on p. 24.
(11) The quadrupole moment of a molecule may be represented either by the tensor \boldsymbol{Q}, defined by an integral over the charge density ρ :

$$
Q_{\alpha \beta}=\int r_{\alpha} r_{\beta} \rho \mathrm{d} V
$$

where α and β denote x, y or z, or by the traceless tensor $\boldsymbol{\Theta}$ defined by

$$
\begin{aligned}
\Theta_{\alpha \beta} & =(1 / 2) \int\left(3 r_{\alpha} r_{\beta}-\delta_{\alpha \beta} r^{2}\right) \rho \mathrm{d} V \\
& =(1 / 2)\left[3 Q_{\alpha \beta}-\delta_{\alpha \beta}\left(Q_{x x}+Q_{y y}+Q_{z z}\right)\right]
\end{aligned}
$$

$V^{\prime \prime}$ is the second derivative of the electric potential:

$$
V_{\alpha \beta}^{\prime \prime}=-q_{\alpha \beta}=\partial^{2} V / \partial \alpha \partial \beta
$$

(12) Nuclear quadrupole moments are conventionally defined in a different way from molecular quadrupole moments. Q is an area and e is the elementary charge. $e Q$ is taken to be the maximum expectation value of the $z z$ tensor element. The values of Q for some nuclei are listed in table 6.3.

Name	Symbol	Definition	SI unit	Notes
electric field gradient tensor	q	$q_{\alpha \beta}=-\partial^{2} V / \partial \alpha \partial \beta$	$\mathrm{Vm}{ }^{-2}$	
quadrupole interaction energy tensor	χ	$\chi_{\alpha \beta}=e Q q_{\alpha \beta}$	J	13
electric polarizability of a molecule	α	$\alpha_{a b}=\partial p_{a} / \partial E_{b}$	$\mathrm{C}^{2} \mathrm{~m}^{2} \mathrm{~J}^{-1}$	14
1st hyper-polarizability	$\boldsymbol{\beta}$	$\beta_{a b c}=\partial^{2} p_{a} / \partial E_{b} \partial E_{c}$	$\mathrm{C}^{3} \mathrm{~m}^{3} \mathrm{~J}^{-2}$	14
2nd hyper-polarizability	γ	$\gamma_{a b c d}=\partial^{3} p_{a} / \partial E_{b} \partial E_{c} \partial E_{d}$	$\mathrm{C}^{4} \mathrm{~m}^{4} \mathrm{~J}^{-3}$	14
activity (of a radioactive substance)	A	$A=-\mathrm{d} N_{\mathrm{B}} / \mathrm{d} t$	Bq	15
decay (rate) constant, disintegration (rate) constant	λ, k	$A=\lambda N_{\text {B }}$	s^{-1}	15
half life	$t_{\frac{1}{2}}, T_{\frac{1}{2}}$	$N_{\text {B }}\left(t_{\frac{1}{2}}\right)=N_{\text {B }}(0) / 2$	s	15, 16
mean life	τ	$\tau=1 / \lambda$	s	16
level width	Γ	$\Gamma=\hbar / \tau$	J	
disintegration energy	Q		J	
cross section (of a nuclear reaction)	σ		m^{2}	

(13) The nuclear quadrupole interaction energy tensor χ is usually quoted in MHz , corresponding to the value of $e Q q / h$, although the h is usually omitted.
(14) The polarizability α and the hyper-polarizabilities β, γ, \ldots are the coefficients in the expansion of the dipole moment \boldsymbol{p} in powers of the electric field \boldsymbol{E} according to the equation:

$$
\boldsymbol{p}=\boldsymbol{p}^{(0)}+\alpha \boldsymbol{E}+(1 / 2) \boldsymbol{\beta} \boldsymbol{E}^{2}+(1 / 6) \gamma \boldsymbol{E}^{3}+\ldots
$$

where $\alpha, \boldsymbol{\beta}$ and γ are tensors of rank 2,3 and 4 , respectively. The components of these tensors are distinguished by the subscript indices $a b c \ldots$ as indicated in the definitions, the first index a always denoting the component of p, and the later indices the components of the electric field. The polarizability and the hyper-polarizabilities exhibit symmetry properties. Thus α is usually a symmetric tensor, and all components of $\boldsymbol{\beta}$ are zero for a molecule with a centre of symmetry, etc. Values of the polarizabilities are often quoted in atomic units (see p.76), in the form $\alpha / 4 \pi \varepsilon_{0}$ in units $a_{0}{ }^{3}, \beta /\left(4 \pi \varepsilon_{0}\right)^{2}$ in units of $a_{0}{ }^{5} e^{-1}$, and $\gamma /\left(4 \pi \varepsilon_{0}\right)^{3}$ in units of $a_{0}{ }^{7} e^{-2}$, etc.
(15) N_{B} is the number of radioactive atoms B .
(16) Half lives and mean lives are often given in years (a), see p.111. $t_{\frac{1}{2}}=\tau \ln 2$ for exponential decays.

2.6 SPECTROSCOPY

This section has been considerably extended compared with the first editions of the Manual [1.a-c] and with the corresponding section in the IUPAP document [4]. It is based on the recommendations of the ICSU Joint Commission for Spectroscopy [50,51] and current practice in the field which is well represented in the books by Herzberg [52]. The IUPAC Commission on Molecular Structure and Spectroscopy has also published various recommendations which have been taken into account [10-16].

Name	Symbol	Definition	SI unit	Notes
total term	T	$T=E_{\text {tot }} / h c$	m^{-1}	1,2
transition wavenumber	$\dot{v},(v)$	$\tilde{v}=T^{\prime}-T^{\prime \prime}$	m^{-1}	1
transition frequency	v	$v=\left(E^{\prime}-E^{\prime \prime}\right) / h$	Hz	
electronic term	$T_{\text {e }}$	$T_{\mathrm{e}}=E_{\mathrm{e}} / h c$	m^{-1}	1,2
vibrational term	G	$G=E_{\text {vib }} / h c$	m^{-1}	1,2
rotational term	F	$F=E_{\text {rot }} / h c$	m^{-1}	1,2
spin-orbit coupling constant	A	$T_{\text {s.0. }}=A\langle\hat{\boldsymbol{L}} \cdot \hat{\boldsymbol{S}}\rangle$	m^{-1}	1
principal moments of inertia	$I_{A} ; I_{B} ; I_{C}$	$I_{A} \leqslant I_{B} \leqslant I_{C}$	$\mathrm{kg} \mathrm{m}{ }^{2}$	
rotational constants, in wavenumber	$\tilde{A} ; \tilde{B} ; \tilde{C}$	$\tilde{A}=h / 8 \pi^{2} c I_{A}$	m^{-1}	1,2
in frequency	$A ; B ; C$	$A=h / 8 \pi^{2} I_{A}$	Hz	
inertial defect	Δ	$\Delta=I_{C}-I_{A}-I_{B}$	$\mathrm{kg} \mathrm{m}{ }^{2}$	
asymmetry parameter	κ	$\kappa=\frac{2 B-A-C}{A-C}$	1	3
centrifugal distortion constants,				
S reduction	$D_{J} ; D_{J K} ; D_{K} ; d_{1} ; d_{2}$		m^{-1}	4
A reduction	$\Delta_{J} ; \Delta_{J K} ; \Delta_{K} ; \delta_{J} ; \delta_{K}$		m^{-1}	4
harmonic vibration wavenumber	$\omega_{e} ; \omega_{r}$		m^{-1}	5
vibrational anharmonicity constant	$\omega_{\mathrm{e}} x_{\mathrm{e}} ; x_{r s} ; g_{t t^{\prime}}$		m^{-1}	5
vibrational quantum numbers	$v_{r} ; l_{t}$		1	5

(1) In spectroscopy the unit cm^{-1} is almost always used for wavenumber, and term values and wavenumbers always refer to the reciprocal wavelength of the equivalent radiation in vacuum. The symbol c in the definition $E / h c$ refers to the speed of light in vacuum.
(2) Term values and rotational constants are sometimes defined in wavenumber units (e.g. $T=E / h c$), and sometimes in frequency units (e.g. $T=E / h$). When the symbol is otherwise the same, it is convenient to distinguish wavenumber quantities with a tilde (e.g. $\tilde{v}, \tilde{T}, \tilde{A}, \tilde{B}, \tilde{C}$ for quantities defined in wavenumber units), although this is not a universal practice.
(3) The Wang asymmetry parameters are also used: for a near prolate top $b_{\mathrm{p}}=(C-B) /(2 A-B-C)$, and for a near oblate top $b_{0}=(A-B) /(2 C-A-B)$.
(4) S and A stand for the symmetric and asymmetric reductions of the rotational hamiltonian respectively; see [53] for more details on the various possible representations of the centrifugal distortion constants.
(5) For a diatomic: $G(v)=\omega_{\mathrm{e}}\left(v+\frac{1}{2}\right)-\omega_{\mathrm{e}} x_{\mathrm{e}}\left(v+\frac{1}{2}\right)^{2}+\ldots$. For a polyatomic molecule the $3 N-6$ vibrational modes ($3 N-5$ if linear) are labelled by the indices r, s, t, \ldots, or i, j, k, \ldots. The index r is usually assigned in descending wavenumber order, symmetry species by symmetry species. The index t is kept for degenerate modes. The vibrational term formula is

$$
G(v)=\sum_{r} \omega_{r}\left(v_{r}+d_{r} / 2\right)+\sum_{r \leqslant s} x_{r s}\left(v_{r}+d_{r} / 2\right)\left(v_{s}+d_{s} / 2\right)+\sum_{t \leqslant t^{\prime}} g_{t t^{\prime}} l_{t} l_{t^{\prime}}+\cdots
$$

Name	Symbol	Definition	SI unit	Notes
Coriolis zeta constant angular momentum quantum numbers	$\zeta_{r s}{ }^{\alpha}$ see additional information below		1	
degeneracy, statistical weight	g, d, β		1	6
electric dipole moment of a molecule	p, μ	$E_{\mathrm{p}}=-\boldsymbol{p} \cdot \boldsymbol{E}$	Cm	7
transition dipole moment of a molecule	$\boldsymbol{M}, \mathrm{R}$	$\boldsymbol{M}=\int \psi^{\prime} \boldsymbol{p}^{\boldsymbol{p}} \psi^{\prime \prime} \mathrm{d} \tau$	Cm	7, 8
interatomic distances, equilibrium zero-point average ground state substitution structure	$r_{\text {e }}$		m	9, 10
	$r_{\text {z }}$		m	
	r_{0}		m	
	$r_{\text {s }}$		m	
vibrational coordinates,			(varies)	9
symmetry	S_{i}		(varies)	
normal				
mass adjusted	Q_{r}		$\mathrm{kg}^{\frac{1}{2}} \mathrm{~m}$	
dimensionless	q_{r}		1	

(6) d is usually used for vibrational degeneracy, and β for nuclear spin degeneracy.
(7) Molecular dipole moments are often expressed in the non-SI unit debye, where $\mathrm{D} \approx 3.33564 \times 10^{-30} \mathrm{C}$ m. The SI unit Cm is inconvenient for expressing molecular dipole moments, which results in the continued use of the deprecated debye (D). A convenient alternative is to use the atomic unit, ea a_{0}. Another way of expressing dipole moments is to quote the electric dipole lengths, $l_{p}=p / e$, analogous to the way the nuclear quadrupole areas are quoted (see pp. 21 and 98). This gives the distance between two elementary charges of the equivalent dipole and conveys a clear picture in relation to molecular dimensions.

Examples

	Dipole moment			Dipole length
	SI		a.u.	
	$p / \mathrm{C} \mathrm{m}$	p / D	$p / e a_{0}$	l_{p} / pm
HCl	3.60×10^{-30}	1.08	0.425	22.5
H O	6.23×10^{-30}	1.87	0.736	38.9
NaCl	4.02×10^{-29}	12.1	4.74	251

See also footnote (4) on p. 14.
(8) For quantities describing line and band intensities see section 2.7, p.33-35.
(9) Interatomic (internuclear) distances and vibrational displacements are often expressed in the non-SI unit ångström, where $\AA=10^{-10} \mathrm{~m}=0.1 \mathrm{~nm}=100 \mathrm{pm}$.
(10) The various slightly different ways of representing interatomic distances, distinguished by subscripts, involve different vibrational averaging contributions; they are discussed in [54], where the geometrical structures of many free molecules are listed. Only the equilibrium distance r_{e} is isotopically invariant. The effective distance parameter r_{0} is estimated from the rotational constants for the ground vibrational state and has only approximate physical significance for polyatomic molecules.

Name	Symbol	Definition	SI unit	Note
vibrational force constants, diatomic $f,(k)$ $f=\partial^{2} V / \partial r^{2}$				
polyatomic,				
internal coordinates	$f_{i j}$	$f_{i j}=\partial^{2} V / \partial r_{i} \partial r_{j}$	(varies)	
symmetry coordinates	$F_{i j}$	$F_{i j}=\partial^{2} V / \partial S_{i} \partial S_{j}$	(varies)	
dimensionless normal coordinates	$\phi_{\text {rst } \ldots, ., k_{\text {rst }} \ldots}$		m^{-1}	12
nuclear magnetic resonance (NMR):				
magnetogyric ratio	γ	$\gamma=\mu / I \hbar$	$\mathrm{s}^{-1} \mathrm{~T}^{-1}$	
shielding constant	σ	$B_{\text {A }}=\left(1-\sigma_{\mathrm{A}}\right) B$	1	13
chemical shift, δ scale	δ	$\delta=10^{6}\left(v-v_{0}\right) / v_{0}$	1	14
coupling constant, (indirect) spin-spin	$J_{\text {AB }}$	$\hat{H} / h=J_{\mathrm{AB}} \hat{I}_{\mathrm{A}} \cdot \hat{I}_{\mathrm{B}}$	Hz	15
reduced spin-spin	$K_{\text {AB }}$	$K_{\mathrm{AB}}=\frac{J_{\mathrm{AB}}}{h} \frac{2 \pi}{\gamma_{\mathrm{A}}} \frac{2 \pi}{\gamma_{\mathrm{B}}}$	$\mathrm{T}^{2} \mathrm{~J}^{-1}, \mathrm{NA}^{-2} \mathrm{~m}^{-3}$	16
direct (dipolar)	$D_{\text {AB }}$		Hz	17
relaxation time,				
longitudinal	T_{1}		s	18
transverse	T_{2}		s	18

(11) Force constants are often expressed in mdyn $\AA^{-1}=\mathrm{aJ} \AA^{-2}$ for stretching coordinates, mdyn $\AA=\mathrm{aJ}$ for bending coordinates, and $m d y n=a J \AA^{-1}$ for stretch-bend interactions. See [17] for further details on definitions and notation for force constants.
(12) The force constants in dimensionless normal coordinates are usually defined in wavenumber units by the equation $V / h c=\Sigma \phi_{r s t \ldots} q_{r} q_{s} q_{t} \ldots$, where the summation over the normal coordinate indices r, s, t, \ldots is unrestricted.
(13) σ_{A} and B_{A} denote the shielding constant and the local magnetic field at nucleus A .
(14) v_{0} is the resonance frequency of a reference molecule, usually tetramethylsilane for proton and for ${ }^{13} \mathrm{C}$ resonance spectra [12]. In some of the older literature proton chemical shifts are expressed on the τ scale, where $\tau=10-\delta$, but this is no longer used.
(15) \hat{H} in the definition is the spin-spin coupling hamiltonian between nuclei A and B .
(16) Whereas J_{AB} involves the nuclear magnetogyric ratios, the reduced coupling constant K_{AB} represents only the electronic contribution and is thus approximately isotope independent and may exhibit chemical trends. (17) Direct dipolar coupling occurs in solids; the definition of the coupling constant is $D_{A B}$ $=\left(\mu_{0} / 4 \pi\right) r_{\mathrm{AB}}{ }^{-3} \gamma_{\mathrm{A}} \gamma_{\mathrm{B}}(\hbar / 2 \pi)$.
(18) The longitudinal relaxation time is associated with spin-lattice relaxation, and the transverse relaxation time with spin-spin relaxation. The definitions are

$$
\mathrm{d} M_{z} / \mathrm{d} t=-\left(M_{z}-M_{z, \mathrm{e}}\right) / T_{1},
$$

and

$$
\mathrm{d} M_{x} / \mathrm{d} t=-M_{x} / T_{2},
$$

where M_{z} and M_{x} are the components of magnetization parallel and perpendicular to the static field B, and $M_{z, \mathrm{e}}$ is the equilibrium value of M_{z}.

Name	Symbol	Definition	SI unit	Notes
electron spin resonance (ESR), electron paramagnetic resonance (EPR):				
magnetogyric ratio	γ	$\gamma=\mu / \mathrm{s} \hbar$	$\mathrm{s}^{-1} \mathrm{~T}$	
g-factor	g	$h \nu=g \mu_{\mathrm{B}} B$	1	
hyperfine coupling constant,				
in liquids	a, A	$\hat{H}_{\text {nfs }} / h=a \hat{\boldsymbol{S}} \cdot \hat{\boldsymbol{I}}$	Hz	19
in solids	T	$\hat{H}_{\mathrm{hfs}} / h=\hat{\boldsymbol{S}} \cdot \boldsymbol{T} \cdot \hat{\boldsymbol{I}}$	Hz	19

(19) \hat{H}_{hfs} is the hyperfine coupling hamiltonian. The coupling constants a are usually quoted in MHz , but they are sometimes quoted in magnetic induction units (G or T) obtained by dividing by the conversion factor $g \mu_{\mathrm{B}} / h$, which has the SI unit $\mathrm{Hz} / \mathrm{T} ; g_{\mathrm{e}} \mu_{\mathrm{B}} / h \approx 28.025 \mathrm{GHz} \mathrm{T}^{-1}\left(=2.8025 \mathrm{MHz} \mathrm{G}^{-1}\right)$, where g_{e} is the g-factor for a free electron. If in liquids the hyperfine coupling is isotropic, the coupling constant is a scalar a. In solids the coupling is anisotropic, and the coupling constant is a 3×3 tensor \boldsymbol{T}. Similar comments apply to the g-factor.

Symbols for angular momentum operators and quantum numbers

In the following table, all of the operator symbols denote the dimensionless ratio (angular momentum) $/ \hbar$. (Although this is a universal practice for the quantum numbers, some authors use the operator symbols to denote angular momentum, in which case the operators would have SI units: Js.) The column heading ' Z-axis' denotes the space-fixed component, and the heading ' z-axis' denotes the molecule-fixed component along the symmetry axis (linear or symmetric top molecules), or the axis of quantization.

Angular momentum ${ }^{1}$	Operator symbol	Quantum number symbol			
		Total	Z-axis	z-axis	Notes
electron orbital	$\hat{\boldsymbol{L}}$	L	M_{L}	Λ	2
one electron only	\hat{l}	l	m_{l}	λ	2
electron spin	$\hat{\boldsymbol{S}}$	S	M_{S}	Σ	
one electron only	\hat{s}	s	m_{s}	σ	
electron orbital + spin	$\hat{\boldsymbol{L}}+\hat{\boldsymbol{S}}$			$\Omega=\Lambda+\Sigma$	2
nuclear orbital (rotational)	$\hat{\boldsymbol{R}}$	R		K_{R}, k_{R}	
nuclear spin	\hat{I}	I	M_{I}		
internal vibrational spherical top	\hat{l}	$l(l \zeta)$		K_{l}	3
other	$\hat{j}, \hat{\pi}$			$l(l \zeta)$	2, 3
sum of $R+L(+j)$	\hat{N}	N		K, k	2
sum of $N+S$	\hat{J}	J	M_{J}	K, k	2, 4
sum of $J+I$	\hat{F}	F	$M_{\text {F }}$		

(1) In all cases the vector operator and its components are related to the quantum numbers by eigenvalue equations analogous to:

$$
\hat{J}^{2} \psi=J(J+1) \psi, \hat{J}_{z} \psi=M_{J} \psi \text {, and } \hat{J}_{z} \psi=K \psi \text {, }
$$

where the component quantum numbers M_{J} and K take integral or half-odd values in the range $-J \leqslant M_{J} \leqslant+J,-J \leqslant K \leqslant+J$. (If the operator symbols are taken to represent angular momentum, rather

Symbols for symmetry operators and labels for symmetry species

(i) Symmetry operators in space-fixed coordinates [55]

identity	E
permutation	P
space-fixed inversion	E^{*}
permutation-inversion	$P^{*}\left(=P E^{*}\right)$

The permutation operation P permutes the labels of identical nuclei.
Example In the NH_{3} molecule, if the hydrogen nuclei are labelled 1, 2 and 3 , then $P=(123)$ would symbolize the permutation 1 is replaced by 2,2 by 3 , and 3 by 1 .

The inversion operation E^{*} reverses the sign of all particle coordinates in the space-fixed origin, or in the molecule-fixed centre of mass if translation has been separated. It is also called the parity operator; in field-free space, wavefunctions are either parity + (unchanged) or parity - (change sign) under E^{*}. The label may be used to distinguish the two nearly degenerate components formed by Λ-doubling (in a degenerate electronic state) or l-doubling (in a degenerate vibrational state) in linear molecules, or by K-doubling (asymmetry-doubling) in slightly asymmetric tops. For linear molecules, Λ - or l-doubled components may also be distinguished by the labels e or f [56]; for singlet states these correspond respectively to parity + or - for J even and vice versa for J odd (but see [56]). For linear molecules in degenerate electronic states the Λ-doubled levels may alternatively be labelled $\Pi\left(\mathrm{A}^{\prime}\right)$ or $\Pi\left(\mathrm{A}^{\prime \prime}\right)$ (or $\Delta\left(\mathrm{A}^{\prime}\right), \Delta\left(\mathrm{A}^{\prime \prime}\right)$, etc.) [57]. Here the labels A^{\prime} or $\mathrm{A}^{\prime \prime}$ describe the symmetry of the electronic wavefunction at high J with respect to reflection in the plane of rotation (but see [57] for further details). The A^{\prime} or $\mathrm{A}^{\prime \prime}$ labels are particularly useful for the correlation of states of molecules involved in reactions or photodissociation.

In relation to permutation inversion symmetry species the superscript + or - may be used to designate parity.

Examples: $\mathrm{A}_{1}{ }^{+}$totally symmetric with respect to permutation, positive parity $\mathrm{A}_{1}{ }^{-}$totally symmetric with respect to permutation, negative parity
The Herman-Maugin symbols of symmetry operations used for crystals are given in section 2.8 on p. 38 .

Notes (continued)

than (angular momentum) $/ \hbar$, the eigenvalue equations should read $\hat{J}^{2} \psi=J(J+1) \hbar^{2} \psi, \hat{J}_{Z} \psi=M_{J} \hbar \psi$, and $\hat{J}_{z} \psi=K \hbar \psi$.)
(2) Some authors, notably Herzberg [52], treat the component quantum numbers Λ, Ω, l and K as taking positive or zero values only, so that each non-zero value of the quantum number labels two wavefunctions with opposite signs for the appropriate angular momentum component. When this is done, lower case k is often regarded as a signed quantum number, related to K by $K=|k|$. However, in theoretical discussions all component quantum numbers are usually treated as signed, taking both positive and negative values.
(3) There is no uniform convention for denoting the internal vibrational angular momentum; j, π, p and G have all been used. For symmetric top and linear molecules the component of j in the symmetry axis is always denoted by the quantum number l, where l takes values in the range $-v \leqslant l \leqslant+v$ in steps of 2 . The corresponding component of angular momentum is actually $l \zeta \hbar$, rather than $l \hbar$, where ζ is a Coriolis coupling constant.
(4) Asymmetric top rotational states are labelled by the value of J (or N if $S \neq 0$), with subscripts K_{a}, K_{c}, where the latter correlate with the $K=|k|$ quantum number about the a and c axes in the prolate and oblate symmetric top limits respectively.
Example $J_{K_{a}, K_{c}}=5_{2,3}$ for a particular rotational level.
(ii) Symmetry operators in molecule-fixed coordinates (Schönflies symbols) [52]

identity	E
rotation by $2 \pi / n$	C_{n}
reflection	$\sigma, \sigma_{\mathrm{v}}, \sigma_{\mathrm{d}}, \sigma_{\mathrm{h}}$
inversion	i
rotation-reflection	$S_{n}\left(=C_{n} \sigma_{\mathrm{h}}\right)$

If C_{n} is the primary axis of symmetry, wavefunctions that are unchanged or change sign under the operator C_{n} are given species labels A or B respectively, and otherwise wavefunctions that are multiplied by $\exp (\pm 2 \pi \mathrm{is} / n)$ are given the species label E_{s}. Wavefunctions that are unchanged or change sign under i are labelled g (gerade) or u (ungerade) respectively. Wavefunctions that are unchanged or change sign under σ_{h} have species labels with a' or " respectively. For more detailed rules see [51,52].

Other symbols and conventions in optical spectroscopy

(i) Term symbols for atomic states

The electronic states of atoms are labelled by the value of the quantum number L for the state. The value of L is indicated by an upright capital letter: S, P, D, F, G, H, I, and K, . . , are used for $L=0$, $1,2,3,4,5,6$, and $7, \ldots$, respectively. The corresponding lower case letters are used for the orbital angular momentum of a single electron. For a many-electron atom, the electron spin multiplicity $(2 S+1)$ may be indicated as a left-hand superscript to the letter, and the value of the total angular momentum J as a right-hand subscript. If either L or S is zero only one value of J is possible, and the subscript is then usually suppressed. Finally, the electron configuration of an atom is indicated by giving the occupation of each one-electron orbital as in the examples below.
Examples $\quad \mathrm{B}:(1 \mathrm{~s})^{2}(2 \mathrm{~s})^{2}(2 \mathrm{p})^{1},{ }^{2} \mathrm{P}_{1 / 2}$
C: $(1 \mathrm{~s})^{2}(2 \mathrm{~s})^{2}(2 \mathrm{p})^{2},{ }^{3} \mathrm{P}_{0}$
$\mathrm{N}:(1 \mathrm{~s})^{2}(2 s)^{2}(2 p)^{3},{ }^{4} S$

(ii) Term symbols for molecular states

The electronic states of molecules are labelled by the symmetry species label of the wavefunction in the molecular point group. These should be Latin or Greek upright capital letters. As for atoms, the spin multiplicity $(2 S+1)$ may be indicated by a left superscript. For linear molecules the value of $\Omega(=\Lambda+\Sigma)$ may be added as a right subscript (analogous to J for atoms). If the value of Ω is not specified, the term symbol is taken to refer to all component states, and a right subscript r or i may be added to indicate that the components are regular (energy increases with Ω) or inverted (energy decreases with Ω) respectively.

The electronic states of molecules are also given empirical single letter labels as follows. The ground electronic state is labelled X , excited states of the same multiplicity are labelled A, B, C, . . , in ascending order of energy, and excited states of different multiplicity are labelled with lower case letters $\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots$. In polyatomic molecules (but not diatomic molecules) it is customary to add a tilde (e.g. $\tilde{\mathrm{X}}$) to these empirical labels to prevent possible confusion with the symmetry species label.

Finally the one-electron orbitals are labelled by the corresponding lower case letters, and the electron configuration is indicated in a manner analogous to that for atoms.
Examples The ground state of CH is $(1 \sigma)^{2}(2 \sigma)^{2}(3 \sigma)^{2}(1 \pi)^{1}, \mathrm{X}^{2} \Pi_{\mathrm{r}}$, in which the ${ }^{2} \Pi_{1 / 2}$ component lies below the ${ }^{2} \Pi_{3 / 2}$ component, as indicated by the subscript r for regular.

The ground state of OH is $(1 \sigma)^{2}(2 \sigma)^{2}(3 \sigma)^{2}(1 \pi)^{3}, \mathrm{X}^{2} \Pi_{\mathrm{i}}$, in which the ${ }^{2} \Pi_{3 / 2}$ component lies below the ${ }^{2} \Pi_{1 / 2}$ component, as indicated by the subscript i for inverted.

The two lowest electronic states of CH_{2} are $\ldots\left(2 \mathrm{a}_{1}\right)^{2}\left(1 \mathrm{~b}_{2}\right)^{2}\left(3 \mathrm{a}_{1}\right)^{2}$, $\tilde{\mathrm{a}}^{1} \mathrm{~A}_{1}$, $\ldots\left(2 a_{1}\right)^{2}\left(1 b_{2}\right)^{2}\left(3 a_{1}\right)^{1}\left(1 b_{1}\right)^{1}, \tilde{X}^{3} B_{1}$.
The ground state of $\mathrm{C}_{6} \mathrm{H}_{6}$ (benzene) is $\ldots\left(\mathrm{a}_{2 \mathrm{u}}\right)^{2}\left(\mathrm{e}_{1 \mathrm{~g}}\right)^{4}, \tilde{\mathrm{X}}^{1} \mathrm{~A}_{1 \mathrm{~g}}$.
The vibrational states of molecules are usually indicated by giving the vibrational quantum numbers for each normal mode.

Examples For a bent triatomic molecule,
$(0,0,0)$ denotes the ground state,
$(1,0,0)$ denotes the v_{1} state, i.e. $v_{1}=1$, and
$(1,2,0)$ denotes the $v_{1}+2 v_{2}$ state, etc.

(iii) Notation for spectroscopic transitions

The upper and lower levels of a spectroscopic transition are indicated by a prime ${ }^{\prime}$ and doubleprime" respectively.

Example $h v=E^{\prime}-E^{\prime \prime}$
Transitions are generally indicated by giving the excited state label, followed by the ground state label, separated by a dash or an arrow to indicate the direction of the transition (emission to the right, absorption to the left).

Examples B - A indicates a transition between a higher energy state B and a lower energy state A;
$\mathrm{B} \rightarrow \mathrm{A}$ indicates emission from B to A ;
$\mathrm{B} \leftarrow \mathrm{A}$ indicates absorption from A to B .
$(0,2,1) \leftarrow(0,0,1)$ labels the $2 v_{2}+v_{3}-v_{3}$ hot band in a bent triatomic molecule.
A more compact notation [58] may be used to label vibronic (or vibrational) transitions in polyatomic molecules with many normal modes, in which each vibration index r is given a superscript v_{r}^{\prime} and a subscript $v_{r}^{\prime \prime}$ indicating the upper and lower state values of the quantum number. When $v_{r}^{\prime}=v_{r}^{\prime \prime}=0$ the corresponding index is suppressed.

Examples 1_{0}^{1} denotes the transition $(1,0,0)-(0,0,0)$;
$2_{0}^{2} 3_{1}^{1}$ denotes the transition $(0,2,1)-(0,0,1)$.
For rotational transitions, the value of $\Delta J=J^{\prime}-J^{\prime \prime}$ is indicated by a letter labelling the branches of a rotational band: $\Delta J=-2,-1,0,1$, and 2 are labelled as the O -branch, P-branch, Q -branch, R -branch, and S -branch respectively. The changes in other quantum numbers (such as K for a symmetric top, or K_{a} and K_{c} for an asymmetric top) may be indicated by adding lower case letters as a left superscript according to the same rule.

Example ${ }^{\mathrm{p}} \mathrm{Q}$ labels a 'p-type Q -branch' in a symmetric top molecule, i.e. $\Delta K=-1, \Delta J=0$.

(iv) Presentation of spectra

It is recommended to plot both infrared and visible/ultraviolet spectra against wavenumber, usually in cm^{-1}, with decreasing wavenumber to the right (note the mnemonic 'red to the right', derived for the visible region) [10, 18]. (Visible/ultraviolet spectra are also sometimes plotted against wavelength, usually in nm , with increasing wavelength to the right.) It is recommended to plot Raman spectra with increasing wavenumber shift to the left [11].

It is recommended to plot both electron spin resonance (ESR) spectra and nuclear magnetic resonance (NMR) spectra with increasing magnetic induction (loosely called magnetic field) to the right for fixed frequency, or with increasing frequency to the left for fixed magnetic field [12, 13].

It is recommended to plot photoelectron spectra with increasing ionization energy to the left, i.e. with increasing photoelectron kinetic energy to the right [14].

2.7 ELECTROMAGNETIC RADIATION

The quantities and symbols given here have been selected on the basis of recommendations by IUPAP [4], ISO [5.g], and IUPAC [19-21] as well as by taking into account the practice in the field of laser physics.

Name	Symbol	Definition	SI unit	Notes
wavelength, speed of light	λ		m	
in vacuum	c_{0}	$c_{0}=299792458 \mathrm{~m} \mathrm{~s}^{-1}$	ms^{-1}	1
in a medium	c	$c=c_{0} / n$	ms^{-1}	
wavenumber in vacuum	\tilde{v}	$\tilde{v}=v / c_{0}=1 / n \lambda$	m^{-1}	2
wavenumber (in a medium)	σ	$\sigma=1 / \lambda$	m^{-1}	
frequency	v	$\nu=c / \lambda$	Hz	
angular frequency, pulsatance	ω	$\omega=2 \pi v$	$\mathrm{s}^{-1}, \mathrm{rads}^{-1}$	
refractive index	n	$n=c_{0} / \mathrm{c}$	1	
Planck constant	h		Js	
Planck constant/ 2π	\hbar	$\hbar=h / 2 \pi$	Js	
radiant energy	Q, W		J	3
radiant energy density	ρ, w	$\rho=Q / V$	Jm^{-3}	3
spectral radiant energy density in terms of frequency	ρ_{ν}, w_{v}	$\rho_{v}=\mathrm{d} \rho / \mathrm{d} v$	$\mathrm{Jm}^{-3} \mathrm{~Hz}^{-1}$	3
in terms of wavenumber	$\rho_{\dot{v}}, w_{\bar{v}}$	$\rho_{\tilde{v}}=\mathrm{d} \rho / \mathrm{d} \tilde{v}$	Jm^{-2}	
in terms of wavelength	$\rho_{\lambda}, w_{\lambda}$	$\rho_{\lambda}=\mathrm{d} \rho / \mathrm{d} \lambda$	Jm^{-4}	
Einstein transition probabilities, spontaneous emission	$A_{i j}$	$\mathrm{d} N_{j} / \mathrm{d} t=-\sum_{i} A_{i j} N_{j}$	s^{-1}	4,5

(1) When there is no risk of ambiguity the subscript ${ }_{0}$ denoting vacuum is often omitted.
(2) The unit cm^{-1} is generally used for wavenumber in vacuum.
(3) The symbols for the quantities radiant energy through irradiance are also used for the corresponding quantities concerning visible radiation, i.e. luminous quantities and photon quantities. Subscripts e for energetic, v for visible, and p for photon may be added whenever confusion between these quantities might otherwise occur. The units used for luminous quantities are derived from the base unit candela (cd), see chapter 3.
$\begin{array}{lll}\text { Example } & \text { radiant intensity } & I_{\mathrm{e}}, \text { SI unit: } \mathrm{W} \mathrm{sr}^{-1} \\ & \text { luminous intensity } & I_{\mathrm{v}}, \text { SI unit: } \mathrm{cd} \\ & \text { photon intensity } & I_{\mathrm{p}}, \text { SI units: } \mathrm{s}^{-1} \mathrm{sr}^{-1}\end{array}$
(4) The indices i and j refer to individual states; $E_{j}>E_{i}, E_{j}-E_{i}=h c \tilde{v}_{i j}$, and $B_{j i}=B_{i j}$ in the defining equations. The coefficients B are defined here using energy density $\rho_{\overline{\mathrm{v}}}$ in terms of wavenumber; they may alternatively be defined using energy density in terms of frequency ρ_{v}, in which case B has SI units $\mathrm{m} \mathrm{kg}^{-1}$, and $B_{v}=c_{0} B_{i v}$ where B_{v} is defined using frequency and B_{v} using wavenumber.
(5) The relation between the Einstein coefficients A and $B_{\bar{v}}$ is $A=8 \pi h c_{o} \tilde{v}^{3} B_{\tilde{v}}$. The Einstein stimulated absorption or emission coefficient B may also be related to the transition moment between the states i and j; for an electric dipole transition the relation is

$$
\left.B_{\bar{v}, i j}=\frac{8 \pi^{3}}{3 h^{2} c_{0}\left(4 \pi \varepsilon_{0}\right)} \sum_{\rho}\left|\langle i| \mu_{\rho}\right| j\right\rangle\left.\right|^{2}
$$

where the sum over ρ goes over the three space-fixed cartesian axes, and μ_{ρ} is a space-fixed component of the dipole moment operator. Again, these equations are based on a wavenumber definition of the Einstein coefficient B (i.e. B_{v} rather than B_{v}).

Name	Symbol	Definition	SI unit	Notes
Einstein transition probabilities (cont.)				4, 5
stimulated emission, induced emission	$B_{i j}$	$\mathrm{d} N_{j} / \mathrm{d} t=-\sum_{i} \rho_{\tilde{v}}\left(\tilde{v}_{i j}\right) B_{i j} N_{j}$	skg^{-1}	
absorption	$B_{j i}$	$\mathrm{d} N_{i} / \mathrm{d} t=-\sum_{j} \rho_{\bar{v}}\left(\tilde{v}_{i j}\right) B_{j i} N_{i}$	skg^{-1}	
radiant power, radiant energy per time	Φ, P	$\Phi=\mathrm{d} Q / \mathrm{d} t$	W	3
radiant intensity	I	$I=\mathrm{d} \Phi / \mathrm{d} \Omega$	W sr ${ }^{-1}$	3
radiant excitance (emitted radiant flux)	M	$M=\mathrm{d} \Phi / \mathrm{d} A_{\text {source }}$	W m ${ }^{-2}$	3
radiance	L	$L=\frac{\mathrm{d}^{2} \Phi}{\mathrm{~d} \Omega \mathrm{~d} A_{\text {source }}}$	$\mathrm{W} \mathrm{sr}^{-1} \mathrm{~m}^{-2}$	3,6
intensity, irradiance (radiant flux received)	I, E	$I=\mathrm{d} \Phi / \mathrm{d} A$	$\mathrm{W} \mathrm{m}^{-2}$	3,7
spectral intensity, spectral irradiance	$I(\tilde{v}), E(\tilde{v})$	$I(\tilde{v})=\mathrm{d} I / \mathrm{d} \tilde{v}$	W m ${ }^{-1}$	8
fluence	$F,(H)$	$F=\int I \mathrm{~d} t=\int \frac{\mathrm{d} \Phi}{\mathrm{d} A} \mathrm{~d} t$	$\mathrm{J} \mathrm{m}^{-2}$	9
emittance	ε	$\varepsilon=M / M_{\text {bb }}$	W	10
Stefan-Boltzmann constant	σ	$M_{\mathrm{bb}}=\sigma T^{4}$	W $\mathrm{m}^{-2} \mathrm{~K}^{-4}$	10
étendue (throughput, light gathering power)	E, (e)	$E=A \Omega=\Phi / L$	$\mathrm{m}^{2} \mathrm{sr}$	11
resolving power	R	$R=\tilde{v} / \delta \tilde{v}$	1	12
resolution	$\delta \tilde{v}$		m^{-1}	2, 12, 13
free spectral range	$\Delta \tilde{v}$	$\Delta \tilde{v}=1 / 2 l$	m^{-1}	2, 14
finesse	f	$f=\Delta \tilde{v} / \delta \tilde{v}$	1	14
quality factor	Q	$Q=2 \pi v \frac{W}{-\mathrm{d} W / \mathrm{d} t}$	1	14, 15

(6) The radiance is a normalized measure of the brightness of a source; it is the power emitted per area of source. per solid angle of the beam from each point of the source.
(7) The name intensity, symbol I, is usually used in discussions involving collimated beams of light, as in applications of the Lambert-Beer law for spectrometric analysis.
(8) Spectral quantities may also be defined with respect to frequency v, or wavelength λ; see spectral radiant energy density above.
(9) Fluence is used in photochemistry to specify the energy delivered in a given time interval (for instance by a laser pulse). This quantity may also be called radiant exposure.
(10) The emittance of a sample is the ratio of the flux emitted by the sample to the flux emitted by a black body at the same temperature; M_{bb} is the latter quantity.
(11) Étendue is a characteristic of an optical instrument. It is a measure of the light gathering power, i.e. the power transmitted per radiance of the source. A is the area of the source (or image stop); Ω is the solid angle accepted from each point of the source by the aperture stop.
(12) This quantity characterizes the performance of a spectrometer, or the degree to which a spectral line (or a laser beam) is monochromatic. It may also be defined using frequency v, or wavelength λ.
(13) The precise definition of resolution depends on the lineshape, but usually resolution is taken as the full line width at half maximum intensity (FWHM) on a wavenumber, $\delta \tilde{v}$, or frequency, δv, scale.
(14) These quantities characterize a Fabry-Perot cavity, or a laser cavity. l is the cavity spacing, and $2 l$ is the round-trip path length. The free spectral range is the wavenumber interval between successive longitudinal cavity modes.
(15) W is the energy stored in the cavity, and $-\mathrm{d} W / \mathrm{d} t$ is the rate of decay of stored energy. Q is also related to the linewidth of a single cavity mode: $Q=v / \delta v=\tilde{v} / \delta \tilde{v}$. Thus high Q cavities give narrow linewidths.

Name	Symbol	Definition	SI unit	Notes
first radiation constant	c_{1}	$c_{1}=2 \pi h c_{0}^{2}$	W m ${ }^{2}$	
second radiation constant	c_{2}	$c_{2}=h c_{0} / k$	K m	
transmittance, transmission factor	τ, T	$\tau=\Phi_{\text {tr }} / \Phi_{0}$	1	16,17
absorptance, absorption factor	α	$\alpha=\Phi_{\mathrm{abs}} / \Phi_{0}$	1	16,17
reflectance, reflection factor	ρ	$\rho=\Phi_{\text {refl }} / \Phi_{0}$	1	16,17
(decadic) absorbance	A_{10}, A	$A_{10}=-\lg \left(1-\alpha_{\mathrm{i}}\right)$	1	17, 18, 19
napierian absorbance	A_{e}, B	$A_{\mathrm{e}}=-\ln \left(1-\alpha_{\mathrm{i}}\right)$	1	17, 18, 19
absorption coefficient, (linear) decadic	a, K	$a=A_{10} / l$	m^{-1}	17, 20
(linear) napierian	α	$\alpha=A_{\mathrm{e}} / l$	m^{-1}	17, 20
molar (decadic)	ε	$\varepsilon=a / c=A_{10} / c l$	$\mathrm{m}^{2} \mathrm{~mol}^{-1}$	17, 20, 21
molar napierian	κ	$\kappa=\alpha / c=A_{\mathrm{e}} / c l$	$\mathrm{m}^{2} \mathrm{~mol}^{-1}$	17, 20, 21
net absorption cross section integrated absorption intensity	$\sigma_{\text {net }}$	$\sigma_{\text {net }}=\kappa / N_{\text {A }}$	m^{2}	22
-against \tilde{v}	A, \bar{A}	$A=\int \kappa(\tilde{v}) \mathrm{d} \tilde{v}$	$\mathrm{m} \mathrm{mol}^{-1}$	22, 23
	S	$S=A / N_{\text {A }}$	m	22, 23
	\bar{S}	$\bar{S}=(1 / p l) \int \ln \left(I_{0} / I\right) \mathrm{d} \tilde{v}$	$\mathrm{Pa}^{-1} \mathrm{~m}^{-2}$	22, 23, 24

(16) If scattering and luminescence can be neglected, $\tau+\alpha+\rho=1$. In optical spectroscopy internal properties (denoted by subscript i) are defined to exclude surface effects and effects of the cuvette such as reflection losses, so that if scattering and luminescence in the sample can be neglected $\tau_{i}+\alpha_{i}=1$. This leads to the customary form of the Lambert-Beer law, $\Phi_{\mathrm{tr}} / \Phi_{0}=I_{\mathrm{tr}} / I_{0}=\tau_{\mathrm{i}}=1-\alpha_{\mathrm{i}}=\exp (-\kappa c l)$.
(17) In spectroscopy all of these quantities are usually taken to be defined in terms of the spectral intensity, $I(\tilde{v})$, so that they are all regarded as functions of wavenumber \tilde{v} (or frequency v) across the spectrum. Thus, for example, the absorption coefficient $\alpha(\tilde{v})$ at wavenumber \tilde{v} defines the absorption spectrum of the sample; similarly $T(\tilde{v})$ defines the transmittance spectrum.
(18) The definitions given here relate the absorbance A_{10} or A_{e} to the internal absorptance α_{i}; see note (16). However the subscript i on the absorptance α is often omitted.
(19) In reference [19] the symbol A is used for decadic absorbance, and B for napierian absorbance.
(20) l is the absorbing path length, and c is the amount (of substance) concentration.
(21) The molar decadic absorption coefficient ε is frequently called the 'extinction coefficient' in published literature. Unfortunately numerical values of the 'extinction coefficient' are often quoted without specifying units; the absence of units usually means that the units are $\mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~cm}^{-1}$. See also [18]. The word 'extinction' should properly be reserved for the sum of the effects of absorption, scattering, and luminescence.
(22) Note that these quantities give the net absorption coefficient κ, the net absorption cross section $\sigma_{\text {net }}$, and the net values of A, S, \bar{S}, Γ, and $G_{\text {net }}$, in the sense that they are the sums of effects due to absorption and induced emission. See the discussion below on p.33-34.
(23) The definite integral defining these quantities may be specified by the limits of integration in parentheses, e.g. $G\left(\tilde{v}_{1}, \tilde{v}_{2}\right)$. In general the integration is understood to be taken over an absorption line or an absorption band. A, \bar{S}, and Γ are measures of the strength of the band in terms of amount concentration; $G_{\mathrm{net}}=\Gamma / N_{\mathrm{A}}$ and $S=A / N_{\mathrm{A}}$ are corresponding molecular quantities. For a single spectral line the relation of these quantities to the Einstein transition probabilities is discussed below on p.34. The symbol \bar{A} may be used for the integrated absorption coefficient A when there is a possibility of confusion with the Einstein spontaneous emission coefficient $A_{i j}$.

The integrated intensity of an electronic transition is often expressed in terms of the oscillator strength or ' f value', which is dimensionless, or in terms of the Einstein transition probability $A_{i j}$ between the states involved,

Name	Symbol	Definition	SI unit	Notes
Integrated absorption intensities (cont.)				
-against $\ln \tilde{v}$	Γ	$\Gamma=\int \kappa(\tilde{v}) \tilde{v}^{-1} \mathrm{~d} \tilde{v}$	$\mathrm{m}^{2} \mathrm{~mol}^{-1}$	22, 23
integrated absorption cross section	$G_{\text {net }}$	$G_{\text {net }}=\int \sigma_{\text {net }}(\tilde{v}) \tilde{v}^{-1} \mathrm{~d} \tilde{v}$	m^{2}	22, 23
absorption index	k	$k=\alpha / 4 \pi \tilde{v}$	1	25
complex refractive index	\hat{n}	$\hat{n}=n+\mathrm{i} k$	1	
molar refraction	R	$R=\left(\frac{n^{2}-1}{n^{2}+2}\right) V_{\mathrm{m}}$	$\mathrm{m}^{3} \mathrm{~mol}^{-1}$	
angle of optical rotation	α		1, rad	26
specific optical rotatory power	$[\alpha]_{\lambda}^{\theta}$	$[\alpha]_{\lambda}^{\theta}=\alpha / \gamma l$	$\mathrm{rad} \mathrm{m}{ }^{2} \mathrm{~kg}^{-1}$	26
molar optical rotatory	α_{m}	$\alpha_{\mathrm{m}}=\alpha / c l$	$\mathrm{rad} \mathrm{m}^{2} \mathrm{~mol}^{-1}$	26

power
with SI unit s^{-1}. Whereas $A_{i j}$ has a simple and universally accepted meaning (see p.30), there are differing uses of f. A common practical conversion is given by the equation

$$
f_{i j}=\left[\left(4 \pi \varepsilon_{0}\right) m_{\mathrm{e}} c_{0} / 8 \pi^{2} e^{2}\right] \lambda^{2} A_{i j}, \quad \text { or } \quad f_{i j}=\left(1.4992 \times 10^{-14}\right)\left(A_{i j} / \mathrm{s}^{-1}\right)(\lambda / \mathrm{nm})^{2},
$$

where λ is the transition wavelength, and i and j refer to individual states. For strongly allowed electronic transitions f is of the order unity.
(24) The quantity \bar{S} is only used for gases; it is defined in a manner similar to A, except that the partial pressure of gas p replaces the concentration c. At low pressures $p_{i} \approx c_{i} R T$, so that \bar{S} and A are related by the equation $\bar{S} \approx A / R T$. Thus if \bar{S} is used to report line or band intensities, the temperature should be specified.
(25) α in the definition is the napierian absorption coefficient.
(26) The sign convention for the angle of rotation is as follows: α is positive if the plane of polarization is rotated clockwise as viewed looking towards the light source. If the rotation is anticlockwise then α is negative.

The optical rotation due to a solute in solution may be specified by a statement of the type

$$
\alpha\left(589.3 \mathrm{~nm}, 20^{\circ} \mathrm{C} \text {, sucrose, } 10 \mathrm{~g} \mathrm{dm}^{-3} \text { in } \mathrm{H}_{2} \mathrm{O}, 10 \mathrm{~cm} \text { path }\right)=+0.6647^{\circ}
$$

The same information may be conveyed by quoting either the specific optical rotatory power $\alpha / \gamma l$, or the molar optical rotatory power $\alpha / c l$, where γ is the mass concentration, c is the amount (of substance) concentration, and l is the path length. Most tabulations give the specific optical rotatory power, denoted $[\alpha]_{\lambda}^{\theta}$. The wavelength of light used λ (frequently the sodium D line) and the Celsius temperature θ are conventionally written as a subscript and superscript to the specific rotatory power $[\alpha]$. For pure liquids and solids $[\alpha]_{\lambda}^{\theta}$ is similarly defined as $[\alpha]_{\lambda}^{\theta}=\alpha / \rho l$, where ρ is the mass density.

Specific optical rotatory powers are customarily called specific rotations, and are unfortunately usually quoted without units. The absence of units may usually be taken to mean that the units are $\operatorname{deg} \mathrm{cm}^{3} \mathrm{~g}^{-1} \mathrm{dm}^{-1}$ for pure liquids and solutions, or deg $\mathrm{cm}^{3} \mathrm{~g}^{-1} \mathrm{~mm}^{-1}$ for solids, where deg is used as a symbol for degrees of plane angle.

Quantities and symbols concerned with the measurement of absorption intensity

In most experiments designed to measure the intensity of spectral absorption, the measurement gives the net absorption due to the effects of absorption from the lower energy level m to the upper energy level n, less induced emission from n to m. Since the populations depend on the temperature, so will the measured net absorption. This comment applies to all the quantities defined in the table to measure absorption intensity, although for transitions where $h c_{0} \tilde{v} \gg k T$ the temperature dependence is small and for $\tilde{v}>1000 \mathrm{~cm}^{-1}$ induced emission can generally be neglected.

In a more fundamental approach one defines the pure absorption cross section $\sigma_{j i}(\tilde{v})$ for an induced radiative transition from the state i to the state j (in either absorption or emission). For an
ideal absorption experiment with only the lower state i populated the integrated absorption cross section for the transition $j \leftarrow i$ is given by

$$
G_{j i}=\int \sigma_{j i}(\tilde{v}) \tilde{v}^{-1} \mathrm{~d} \tilde{v}=\int \sigma_{j i}(v) v^{-1} \mathrm{~d} v
$$

If the upper and lower energy levels are degenerate the observed line strength is given by summing over transitions between all states i in the lower energy level m and all states j in the upper energy level n, multiplying each term by the fractional population p_{i} in the appropriate initial state. Neglecting induced emission this gives

$$
G_{\text {net }}(n \leftarrow m)=\sum_{i, j} p_{i} G_{j i}
$$

If induced emission is significant then the net integrated cross section will be

$$
G_{\text {net }}(n \leftarrow m)=\sum_{i, j}\left(p_{i}-p_{j}\right) G_{j i}=\left(p_{m} / d_{m}-p_{n} / d_{n}\right) \sum_{i, j} G_{j i}
$$

Here p_{i} and p_{j} denote the fractional populations of states i and $j\left(p_{i}=\exp \left\{-E_{i} / k T\right\} / q\right.$ in thermal equilibrium, where q is the partition function); p_{m} and p_{n} denote the corresponding fractional populations of the energy levels, and d_{m} and d_{n} the degeneracies ($p_{i}=p_{m} / d_{m}$, etc.). The absorption intensity $G_{j i}$, and the Einstein coefficients $A_{i j}$ and $B_{j i}$, are fundamental measures of the line strength between the individual states i and j; they are related to each other by the general equations

$$
G_{j i}=h B_{\tilde{v}, j i}=\left(h / c_{0}\right) B_{v, j i}=A_{i j} / 8 \pi c_{0} \tilde{v}^{3}
$$

Finally, for an electric dipole transition these quantities are related to the square of the transition moment by the equation

$$
G_{j i}=h B_{\tilde{v}, j i}=A_{i j} / 8 \pi c_{0} \tilde{v}^{3}=\frac{8 \pi^{3}}{3 h c_{0}\left(4 \pi \varepsilon_{0}\right)}\left|M_{i i}\right|^{2}
$$

where the transition moment $\boldsymbol{M}_{\boldsymbol{j i}}$ is given by

$$
\left.\left|M_{j i}\right|^{2}=\sum_{\rho}\left|\langle i| \mu_{\rho}\right| j\right\rangle\left.\right|^{2}
$$

Here the sum is over the three space-fixed cartesian axes and μ_{ρ} is a space-fixed component of the electric dipole moment. Inserting values for the fundamental constants the relation between $G_{j i}$ and $\boldsymbol{M}_{j i}$ may be expressed in practical units as

$$
\left(G_{j i} / \mathrm{pm}^{2}\right)=41.6238\left|M_{j i} / \mathrm{D}\right|^{2}
$$

where $\mathrm{D}(=$ debye $)=3.335641 \times 10^{-30} \mathrm{Cm}$.
Net integrated absorption band intensities are usually characterized by one of the quantities A, S, \bar{S}, Γ, or $G_{\text {net }}$ as defined in the table. The relation between these quantities is given by the (approximate) equations

$$
G_{\mathrm{net}}=\Gamma / N_{\mathrm{A}}=A / \tilde{v}_{0} N_{\mathrm{A}}=S / \tilde{v}_{0}=\bar{S}\left(k T / \tilde{v}_{0}\right)
$$

However, only the first equality is exact. The relation to A, \bar{S} and S involves dividing by the band centre wavenumber \tilde{v}_{0} for a band, to correct for the fact that A, \bar{S} and S are obtained by integrating over wavenumber rather than the logarithm of wavenumber used for $G_{\text {net }}$ and Γ. This correction is only approximate for a band (although negligible error is involved for single-line intensities in gases). The relation to \bar{S} involves the assumption that the gas is ideal (which is approximately true at low pressures), and also involves the temperature. Thus the quantities Γ and $G_{\text {net }}$ are most simply related to more fundamental quantities such as the Einstein transition probabilities and the transition moment, and are the preferred quantities for reporting integrated line or band intensities.

The situation is further complicated by the fact that some authors use the symbol S for any of the above quantities, particularly for any of the quantities here denoted A, S and \bar{S}. It is therefore particularly important to define quantities and symbols used in reporting integrated intensities.

For transitions between individual states any of the more fundamental quantities $G_{j i}, B_{\tilde{v}, j i}, A_{j i}$, or $\left|M_{j i}\right|$ may be used; the relations are as given above, and are exact. Note, however, that the integrated absorption coefficient A should not be confused with the Einstein coefficient $A_{j i}$ (nor with absorbance, for which the symbol A is also used). Where such confusion might arise, we recommend writing \bar{A} for the band intensity expressed as an integrated absorption coefficient over wavenumber.

The SI unit and commonly used units of A, S, \bar{S}, Γ and G are as in the table below. Also given in the table are numerical conversion factors, using the commonly used units, from A, S, \bar{S}, and Γ to $G_{\text {net }}$.

Quantity SI unit Common unit Conversion factor

A, \bar{A}	$\mathrm{~m} \mathrm{~mol}^{-1}$	$\mathrm{~km} \mathrm{~mol}^{-1}$	$\left(G / \mathrm{pm}^{2}\right)=16.60540 \frac{\left(A / \mathrm{km} \mathrm{mol}^{-1}\right)}{\left(\tilde{v}_{0} / \mathrm{cm}^{-1}\right)}$
\bar{S}	$\mathrm{~Pa}^{-1} \mathrm{~m}^{-2}$	$\mathrm{~atm}^{-1} \mathrm{~cm}^{-2}$	$\left(G / \mathrm{pm}^{2}\right)=1.362603 \times 10^{-2} \frac{\left(\bar{S} / \mathrm{am}^{-1} \mathrm{~cm}^{-2}\right)(T / \mathrm{K})}{\left(\tilde{v}_{0} / \mathrm{cm}^{-1}\right)}$
S	m	cm	$\left(G / \mathrm{pm}^{2}\right)=10^{20} \frac{(S / \mathrm{cm})}{\left(\tilde{v}_{0} / \mathrm{cm}^{-1}\right)}$
Γ	$\mathrm{m}^{2} \mathrm{~mol}^{-1}$	$\mathrm{~cm}^{2} \mathrm{~mol}^{-1}$	$\left(G / \mathrm{pm}^{2}\right)=1.660540 \times 10^{-4}\left(\Gamma / \mathrm{cm}^{2} \mathrm{~mol}^{-1}\right)$
G	$\mathrm{~m}^{2}$	pm^{2}	

Quantities concerned with spectral absorption intensity and relations among these quantities are discussed in references [59]-[61], and a list of published measurements of line intensities and band intensities for gas phase infrared spectra may be found in references [60] and [61].

2.8 SOLID STATE

The quantities and their symbols given here have been selected from more extensive lists of IUPAP [4] and ISO [5.p]. See also the International Tables for Crystallography, Volume A [62].

Name	Symbol	Definition	SI unit	Notes
lattice vector	$\boldsymbol{R}, \boldsymbol{R}_{0}$		m	
fundamental translation vectors for the crystal lattice	$\begin{gathered} \boldsymbol{a}_{1} ; \boldsymbol{a}_{2} ; \boldsymbol{a}_{3}, \\ \boldsymbol{a} ; \boldsymbol{b} ; \boldsymbol{c} \end{gathered}$	$\boldsymbol{R}=n_{1} a_{1}+n_{2} a_{2}+n_{3} a_{3}$	m	1
(circular) reciprocal lattice vector	\boldsymbol{G}	$\boldsymbol{G} \cdot \boldsymbol{R}=2 \pi m$	m^{-1}	2
(circular) fundamental translation vectors for the reciprocal lattice	$\begin{gathered} \boldsymbol{b}_{1} ; \boldsymbol{b}_{2} ; \boldsymbol{b}_{3}, \\ \boldsymbol{a}^{*} ; \boldsymbol{b}^{*} ; \boldsymbol{c}^{*} \end{gathered}$	$\boldsymbol{a}_{i} \cdot \boldsymbol{b}_{\boldsymbol{k}}=2 \pi \delta_{i k}$	m^{-1}	3
unit cell lengths	$a ; b ; c$		m	
unit cell angles	$\alpha ; \beta ; \gamma$		rad, 1	
reciprocal unit cell lengths	$a^{*} ; b^{*} ; c^{*}$		m^{-1}	
reciprocal unit cell angles	$\alpha^{*} ; \beta^{*} ; \gamma^{*}$		$\operatorname{rad}^{-1}, 1$	
fractional coordinates	$x ; y ; z$	$x=X / a$	1	4
atomic scattering factor	f	$f=E_{\text {a }} / E_{\text {e }}$	1	5
structure factor with indices h, k, l	$F(h, k, l)$	$F=\sum_{n=1}^{N} f_{n} \mathrm{e}^{2 \pi i\left(i\left(x_{n}+k y_{n}+l z_{n}\right)\right.}$	1	6
lattice plane spacing	d		m	
Bragg angle	θ	$n \lambda=2 d \sin \theta$	1, rad	
order of reflection order parameters,	n		1	
short range	σ		1	
long range	s		1	
Burgers vector	b		m	
particle position vector	r, R_{j}		m	7
equilibrium position vector of an ion	\boldsymbol{R}_{0}		m	
displacement vector of an ion	u	$\boldsymbol{u}=\boldsymbol{R}-\boldsymbol{R}_{0}$	m	
Debye-Waller factor	B, D		1	
Debye angular wavenumber	$q_{\text {D }}$		m^{-1}	
Debye angular frequency	$\omega_{\text {D }}$		s^{-1}	

(1) n_{1}, n_{2} and n_{3} are integers. a, b and c are also called the lattice constants.
(2) m is an integer.
(3) Reciprocal lattice vectors are sometimes defined by $\boldsymbol{a}_{i} \cdot \boldsymbol{b}_{\boldsymbol{k}}=\delta_{i k}$.
(4) X denotes the coordinate of dimension length.
(5) E_{a} and E_{e} denote the scattering amplitudes for the atom and the isolated electron, respectively.
(6) N is the number of atoms in the unit cell.
(7) To distinguish between electron and ion position vectors, lower case and capital letters are used respectively. The subscript j relates to particle j.

Name	Symbol	Definition	SI unit	Notes
Grüneisen parameter	γ, Γ	$\gamma=\alpha V / \kappa C_{V}$	1	8
Madelung constant	α, \mathscr{M}	$E_{\mathrm{coul}}=\frac{\alpha N_{\mathrm{A}} z_{+} z_{-} e^{2}}{4 \pi \varepsilon_{0} R_{0}}$	1	
density of states	N_{E}	$N_{E}=\mathrm{d} N(E) / \mathrm{d} E$	$\mathrm{J}^{-1} \mathrm{~m}^{-3}$	9
(spectral) density of vibrational modes	N_{ω}, g	$N_{\omega}=\mathrm{d} N(\omega) / \mathrm{d} \omega$	sm^{-3}	10
resistivity tensor	$\rho_{i k}$	$\boldsymbol{E}=\boldsymbol{\rho} \cdot \boldsymbol{j}$	$\Omega \mathrm{m}$	
conductivity tensor	$\sigma_{i k}$	$\boldsymbol{\sigma}=\boldsymbol{\rho}^{-1}$	Sm^{-1}	
thermal conductivity tensor	$\lambda_{i k}$	$J_{q}=-\lambda \cdot \operatorname{grad} T$	W m ${ }^{-1} \mathrm{~K}^{-1}$	
residual resistivity	ρ_{R}		$\Omega \mathrm{m}$	
relaxation time	τ	$\tau=l / v_{\mathbf{F}}$	s	11
Lorenz coefficient	L	$L=\lambda / \sigma T$	$\mathrm{V}^{2} \mathrm{~K}^{-2}$	
Hall coefficient	$A_{\mathrm{H}}, R_{\mathrm{H}}$	$\boldsymbol{E}=\boldsymbol{\rho} \cdot \boldsymbol{j}+\mathrm{R}_{\mathbf{H}}(\boldsymbol{B} \times \boldsymbol{j})$	$\mathrm{m}^{3} \mathrm{C}^{-1}$	
thermoelectric force	E		V	12
Peltier coefficient	Π		V	12
Thomson coefficient	$\mu,(\tau)$		V K ${ }^{-1}$	
work function	Φ	$\Phi=E_{\infty}-E_{\mathrm{F}}$	J	13
number density, number concentration	$n ; p$		m^{-3}	14
gap energy	E_{g}		J	15
donor ionization energy	$E_{\text {d }}$		J	15
acceptor ionization energy	$E_{\text {a }}$		J	15
Fermi energy	$E_{\mathrm{F}}, \varepsilon_{\mathrm{F}}$		J	15
circular wave vector, propagation vector	$\boldsymbol{k} ; \boldsymbol{q}$	$k=2 \pi / \lambda$	m^{-1}	16
Bloch function	$u_{k}(\boldsymbol{r})$	$\psi(\boldsymbol{r})=u_{\boldsymbol{k}}(\boldsymbol{r}) \exp (\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{r})$	$\mathrm{m}^{-3 / 2}$	17
charge density of electrons	ρ	$\rho(\boldsymbol{r})=-e \psi^{*}(\boldsymbol{r}) \psi(\boldsymbol{r})$	Cm^{-3}	17, 18
effective mass	m^{*}			19
mobility	μ	$\mu=v_{\text {drift }} / E$	$\mathrm{m}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$	19
mobility ratio	b	$b=\mu_{\mathrm{n}} / \mu_{\mathrm{p}}$	1	
diffusion coefficient	D	$\mathrm{d} N / \mathrm{d} t=-D A(\mathrm{~d} n / \mathrm{d} x)$	$\mathrm{m}^{2} \mathrm{~s}^{-1}$	19
diffusion length	L	$L=\sqrt{D \tau}$	m	19, 20
characteristic (Weiss) temperature	$\theta, \theta_{\mathrm{w}}$		K	
Curie temperature	$T_{\text {c }}$		K	
Néel temperature	T_{N}		K	

(8) α is the cubic expansion coefficient, V the volume, κ the isothermal compressibility, and C_{V} the heat capacity at constant volume.
(9) $N(E)$ is the total number of states of electronic energy less than E, divided by the volume.
(10) $N(\omega)$ is the total number of vibrational modes with circular frequency less than ω, divided by the volume.
(11) The definition applies to electrons in metals; l is the mean free path, and v_{F} is the electron velocity on the Fermi sphere.
(12) The substances to which the symbol applies are denoted by subscripts.
(13) E_{∞} is the electron energy at rest at infinite distance.
(14) Specific number densities are denoted by subscripts: for electrons $n_{n}, n_{-},(n)$; for holes n_{p}, n_{+}, p; for donors
n_{d}; for acceptors n_{a}; for the intrinsic number density $n_{\mathrm{i}}\left(n_{\mathrm{i}}^{2}=n_{+} n_{-}\right)$.
(15) The commonly used unit for this quantity is eV .
(16) \boldsymbol{k} is used for particles, \boldsymbol{q} for phonons.

Symbols for planes and directions in crystals

Miller indices of a crystal face, or of a single net plane
(h, k, l) or $\left(h_{1}, h_{2}, h_{3}\right)$
h, k, l or h_{1}, h_{2}, h_{3}
$\{h, k, l\}$ or $\left\{h_{1}, h_{2}, h_{3}\right\}$
$[u, v, w]$
$\langle u, v, w\rangle$
indices of the Bragg reflection from the set of parallel net planes (h, k, l) h, k, l or h_{1}, h_{2}, h_{3}
indices of a set of all symmetrically equivalent crystal faces,
$[u, v, w]$
indices of a lattice direction (zone axis)
indices of a set of symmetrically equivalent lattice directions
$\langle u, v, w\rangle$

In each of these cases, when the letter symbol is replaced by numbers it is customary to omit the commas. For a single plane or crystal face, or a specific direction, a negative number is indicated by a bar over the number.

Example ($\overline{1} 10$) denotes the parallel planes $h=-1, k=+1, l=0$.
(i) Crystal lattice symbols

primitive	P
face-centred	F
body-centred	I
base-centred	A; B;C
rhombohedral	R

(ii) Herman-Maugin symbols of symmetry operations

Operation	Symbol	Examples
n-fold rotation	n	$1 ; 2 ; 3 ; 4 ; 6$
n-fold inversion	\bar{n}	$\overline{1} ; \overline{2} ; \overline{3} ; \overline{4} ; \overline{6}$
n-fold screw	n_{k}	$2_{1} ; 3_{1} ; 3_{2} ; \ldots$
reflection	m	
glide	$a ; b ; c ; n ; d$	

[^2]
2.9 STATISTICAL THERMODYNAMICS

The names and symbols given here are in agreement with those recommended by IUPAP [4] and by ISO [5.i].

(1) n is the amount of substance or the chemical amount.
(2) If q is a length then p is a momentum as indicated by the units in parentheses. In the definition of p, L denotes the Lagrangian.
(3) β is usually used for a spin statistical weight.
(4) ε_{i} denotes the energy of the i th molecular level.

symmetry number reciprocal temperature	σ, s	$\beta=1 / k T$	1	
parameter	β		J^{-1}	
characteristic temperature	Θ, θ	K	5	
absolute activity	λ	$\lambda_{\mathrm{B}}=\exp \left(\mu_{\mathrm{B}} / R T\right)$	1	6

(5) Particular characteristic temperatures are denoted with subscripts, e.g. rotational $\Theta_{\mathrm{r}}=h c \tilde{B} / k$, vibrational $\Theta_{\mathrm{v}}=h c \tilde{v} / k$, Debye $\Theta_{\mathrm{D}}=h c \tilde{v}_{\mathrm{D}} / k$, Einstein $\Theta_{\mathrm{E}}=h c \tilde{v}_{\mathrm{E}} / k$.
(6) The definition applies to entities B. μ_{B} is the chemical potential, see p. 49 .

2.10 GENERAL CHEMISTRY

The symbols given by IUPAP [4] and by ISO [5.e, i] are in agreement with the recommendations given here.

Name	Symbol	Definition	SI unit	Notes
number of entities (e.g. molecules, atoms, ions, formula units)	N		1	
amount (of substance), chemical amount	n	$n_{\mathrm{B}}=N_{\mathrm{B}} / L$	mol	1,2
Avogadro constant	$L, N_{\text {A }}$		mol^{-1}	
mass of atom, atomic mass	m_{a}, m		kg	
mass of entity (molecule, formula unit)	m_{f}, m		kg	3
atomic mass constant	m_{u}	$m_{\mathrm{u}}=m_{\mathrm{a}}\left({ }^{12} \mathrm{C}\right) / 12$	kg	4
molar mass	M	$M_{\text {B }}=m / n_{\text {B }}$	$\mathrm{kg} \mathrm{mol}^{-1}$	2, 5
relative molecular mass, (relative molar mass, molecular weight)	$M_{\text {r }}$	$M_{\mathrm{r}}=m_{\mathrm{f}} / m_{\mathrm{u}}$	1	6
relative atomic mass, (atomic weight)	A_{r}	$A_{\mathrm{r}}=m_{\mathrm{a}} / m_{\mathrm{u}}$	1	6
molar volume	V_{m}	$V_{\mathrm{m}, \mathrm{B}}=V / n_{\mathrm{B}}$	$\mathrm{m}^{3} \mathrm{~mol}^{-1}$	2, 5
mass fraction	w	$w_{j}=m_{j} / \Sigma m_{i}$	1	7
volume fraction	ϕ	$\phi_{j}=V_{j} / \Sigma V_{i}$	1	7,8
mole fraction, amount fraction, number fraction	x, y	$x_{\mathrm{B}}=n_{\mathrm{B}} / \Sigma n_{\mathrm{A}}$	1	2,9

(1) The words 'of substance' may be replaced by the specification of the entity.

Example When the amount of O_{2} is equal to 3 moles, $n\left(\mathrm{O}_{2}\right)=3 \mathrm{~mol}$, then the amount of $\frac{1}{2} \mathrm{O}_{2}$ is equal to 6 moles, $n\left(\frac{1}{2} \mathrm{O}_{2}\right)=6 \mathrm{~mol}$. Thus $n\left(\frac{1}{2} \mathrm{O}_{2}\right)=2 n\left(\mathrm{O}_{2}\right)$. See also the discussion on p. 46 .
(2) The definition applies to entities B which should always be indicated by a subscript or in parentheses, e.g. n_{B} or $n(\mathrm{~B})$.
(3) A formula unit is not a unit but an entity specified as a group of atoms by the way the chemical formula is written. See examples on p. 45 .
(4) m_{u} is equal to the unified atomic mass unit, with symbol u, i.e. $m_{u}=1 u$ (see section 3.7). In biochemistry this unit is called the dalton, with symbol Da , although the name and symbol have not been approved by CGPM.
(5) The definition applies to pure substance, where m is the total mass and V is the total volume. However, corresponding quantities may also be defined for a mixture as m / n and V / n, where $n=\sum_{i} n_{i}$. These quantities
are called the mean molar mass and the mean molar volume respectively.
(6) For molecules M_{r} is the relative molecular mass or molecular weight; for atoms M_{r} is the relative atomic mass or atomic weight and the symbol A_{r} may be used. M_{r} may also be called the relative molar mass, $M_{\mathrm{r}, \mathrm{B}}=M_{\mathrm{B}} / M^{\ominus}$, where $M^{\ominus}=1 \mathrm{~g} \mathrm{~mol}^{-1}$. The standard atomic weights, recommended by IUPAC, are listed in table 6.2, p. 94 .
(7) The definition applies to component j.
(8) V_{j} and V_{i} are the volumes of appropriate components prior to mixing.
(9) For condensed phases x is used, and for gaseous mixtures y may be used.

Name	Symbol	Definition	SI unit	Notes
(total) pressure	p, P		Pa	10
partial pressure	$p_{\text {B }}$	$p_{\mathrm{B}}=y_{\mathrm{B}} p$	Pa	11
mass concentration, (mass density)	γ, ρ	$\gamma_{j}=m_{j} / V$	$\mathrm{kg} \mathrm{m}^{-3}$	7, 12, 13
number concentration, number density of entities	C, n	$C_{\text {B }}=N_{\text {B }} / V$	m^{-3}	2,12,14
amount concentration, concentration	c	$c_{\text {B }}=n_{\text {B }} / V$	$\mathrm{mol} \mathrm{m}{ }^{-3}$	2,12,15
solubility	s	$s_{\mathrm{B}}=c_{\mathrm{B}}$ (saturated soln)	$\mathrm{mol} \mathrm{m}^{-3}$	2
molality (of a solute)	m, b	$m_{\mathrm{B}}=n_{\mathrm{B}} / m_{\mathrm{A}}$	$\mathrm{mol} \mathrm{kg}{ }^{-1}$	2,16
surface concentration	Γ	$\Gamma_{\mathrm{B}}=n_{\mathrm{B}} / \boldsymbol{A}$	$\mathrm{mol} \mathrm{m}{ }^{-2}$	2
stoichiometric number	v		1	17

(10) Pressures are often expressed in the non-SI unit bar, where $1 \mathrm{bar}=10^{5} \mathrm{~Pa}$. The standard pressure $p^{\ominus}=1$ bar $=10^{5} \mathrm{~Pa}$ (see p.54, 112, 166). Low pressures are often expressed in millibars, where $1 \mathrm{mbar}=$ 10^{-3} bar $=100 \mathrm{~Pa}$.
(11) The symbol and the definition apply to molecules B, which should be specified. In real (non-ideal) gases there is a difficulty about defining partial pressure. Some workers regard the equation given as an operational definition; the alternative is to regard the partial pressure of B as the pressure exerted by molecules B .
(12) V is the volume of the mixture.
(13) In polymer science the symbol c is often used for mass concentration.
(14) The term number concentration and symbol C is preferred for mixtures.
(15) The unit mol dm ${ }^{-3}$ is often used for amount concentration. 'Amount concentration' is an abbreviation for 'amount-of-substance concentration'. (The Clinical Chemistry Division of IUPAC recommends that amount of substance concentration be abbreviated to 'substance concentration'.) When there is no risk of confusion the word 'concentration' may be used alone. The symbol [B] is often used for amount concentration of entities B. This quantity is also sometimes called molarity. A solution of, for example, $1 \mathrm{~mol} \mathrm{dm}^{-3}$ is often called a 1 molar solution, denoted 1 m solution. Thus M is often treated as a symbol for $\mathrm{mol} \mathrm{dm}^{-3}$.
(16) In the definition m_{B} denotes the molality of solute B , and m_{A} denotes the mass of solvent A ; thus the same symbol m is used with two different meanings. This confusion of notation may be avoided by using the symbol b for molality.

A solution of molality $1 \mathrm{~mol} / \mathrm{kg}$ is occasionally called a 1 molal solution, denoted 1 m solution; however, the symbol m should not be treated as a symbol for the unit $\mathrm{mol} \mathrm{kg}^{-1}$.
(17) The stoichiometric number is defined through the reaction equation. It is negative for reactants and positive for products. The values of the stoichiometric numbers depend on how the reaction equation is written.

Example $\quad(1 / 2) \mathrm{N}_{2}+(3 / 2) \mathrm{H}_{2}=\mathrm{NH}_{3}: v\left(\mathrm{~N}_{2}\right)=-1 / 2$,
$v\left(\mathrm{H}_{2}\right)=-3 / 2$,
$v\left(\mathrm{NH}_{3}\right)=+1$.
A symbolic way of writing a general chemical equation is

$$
0=\Sigma v_{j} \mathrm{~B}_{j}
$$

where B_{j} denotes an entity in the reaction. For multireaction systems it is convenient to write the chemical equations in matrix form

$$
A v=0
$$

where A is the conservation (or formula) matrix with elements $A_{i j}$ representing the number of atoms of the i th element in the j th reaction component (reactant or product) entity and v is the stoichiometric number matrix with elements $v_{j k}$ being the stoichiometric numbers of the j th reaction component entity in the k th reaction. When there are N_{s} reacting species involved in the system consisting of N_{e} elements \boldsymbol{A} becomes an $N_{\mathrm{e}} \times N_{\mathrm{s}}$ matrix. Its nullity, $N(\boldsymbol{A})=N_{\mathrm{s}}-\operatorname{rank}(\boldsymbol{A})$, gives the number of independent chemical reactions, N_{r}, and the $N_{\mathrm{s}} \times N_{\mathrm{r}}$ stoichiometric number matrix, \boldsymbol{v}, can be determined as the null space of \boldsymbol{A}. $\mathbf{0}$ is an $N_{\mathrm{e}} \times N_{\mathrm{r}}$ zero matrix [63].

Name	Symbol	Definition	SI unit	Notes
extent of reaction, advancement	ξ	$n_{\mathrm{B}}=n_{\mathrm{B}, 0}+v_{\mathrm{B}} \xi$	mol	2,18
degree of reaction	α		1	19

(18) $n_{\mathrm{B}, 0}$ is the amount of B when $\xi=0$. A more general definition is $\Delta \xi=\Delta n_{\mathrm{B}} / v_{\mathbf{B}}$. The extent of reaction also depends on how the reaction equation is written, but it is independent of which entity in the reaction equation is used in the definition.

Example For the reaction in footnote (17), when $\Delta \xi=2 \mathrm{~mol}, \Delta n\left(\mathrm{~N}_{2}\right)=-1 \mathrm{~mol}, \Delta n\left(\mathrm{H}_{2}\right)=-3 \mathrm{~mol}$, and $\Delta n\left(\mathrm{NH}_{3}\right)=+2 \mathrm{~mol}$.

This quantity was originally introduced as degré d'avancement by de Donder.
(19) For a specific reaction terms such as 'degree of dissociation', 'degree of ionization', etc. are commonly used.

Other symbols and conventions in chemistry

(i) Symbols for particles and nuclear reactions

neutron	n	helion	h
proton	p	alpha particle	α
deuteron	d	electron	e
triton	t	photon	γ
positive muon	μ^{+}	negative muon	μ^{-}

The electric charge of particles may be indicated by adding the superscript,+- , or $0 ;$ e.g. $\mathrm{p}^{+}, \mathrm{n}^{0}$, e^{-}, etc. If the symbols p and e are used without a charge, they refer to the positive proton and negative electron respectively.

The meaning of the symbolic expression indicating a nuclear reaction should be as follows:
initial
nuclide $\left(\begin{array}{lr}\text { incoming particles } \\ \text { or quanta } & ,\end{array} \begin{array}{l}\text { outgoing particles } \\ \text { final } \\ \text { nuclide }\end{array}\right.$

Examples $\quad \begin{array}{ll}{ }^{14} \mathrm{~N}(\alpha, \mathrm{p}){ }^{17} \mathrm{O}, & { }^{59} \mathrm{Co}(\mathrm{n}, \gamma)^{60} \mathrm{Co}, \\ & { }^{23} \mathrm{Na}(\gamma, 3 \mathrm{n})^{20} \mathrm{Na},\end{array}{ }^{31} \mathrm{P}(\gamma, \mathrm{pn})^{29} \mathrm{Si}$.

(ii) Chemical symbols for the elements

The chemical symbols of elements are (in most cases) derived from their Latin names and consist of one or two letters which should always be printed in roman (upright) type. Only for elements of atomic number greater than 103, the systematic symbols consist of three letters (see footnote U to table 6.2). A complete list is given in table 6.2, p.94. The symbol is not followed by a full stop except at the end of a sentence.

Examples I, U, Pa, C
The symbols can have different meanings:
(a) They can denote an atom of the element. For example, Cl can denote a chlorine atom having 17 protons and 18 or 20 neutrons (giving a mass number of 35 or 37), the difference being ignored. Its mass is on average 35.4527 u in terrestrial samples.
(b) The symbol may, as a kind of shorthand, denote a sample of the element. For example, Fe can denote a sample of iron, and He a sample of helium gas.

The term nuclide implies an atom of specified atomic number (proton number) and mass number (nucleon number). Nuclides having the same atomic number but different mass numbers are called isotopic nuclides or isotopes. Nuclides having the same mass number but different atomic numbers are called isobaric nuclides or isobars.

A nuclide may be specified by attaching the mass number as a left superscript to the symbol for the element. The atomic number may also be attached as a left subscript, if desired, although this is rarely done. If no left superscript is attached, the symbol is read as including all isotopes in natural abundance.

Examples ${ }^{14} \mathrm{~N},{ }^{12} \mathrm{C},{ }^{13} \mathrm{C},{ }_{8}^{16} \mathrm{O}, n(\mathrm{Cl})=n\left({ }^{35} \mathrm{Cl}\right)+n\left({ }^{37} \mathrm{Cl}\right)$
The ionic charge number is denoted by a right superscript, or by the sign alone when the charge is equal to one.

Examples $\mathrm{Na}^{+} \quad$ a sodium positive ion (cation)
${ }^{79} \mathrm{Br}^{-} \quad$ a bromine-79 negative ion (anion, bromide ion)
Al^{3+} or Al^{+3} aluminium triply positive ion
$3 \mathrm{~S}^{2-}$ or $3 \mathrm{~S}^{-2}$ three sulfur doubly negative ions (sulfide ions)
The right superscript position is also used to convey other information: excited electronic states may be denoted by an asterisk.

Examples $\mathrm{H}^{*}, \mathrm{Cl}^{*}$
Oxidation numbers are denoted by positive or negative roman numerals or by zero (see also (iv) below).

Examples $\mathrm{Mn}^{\mathrm{VII}}, \mathrm{O}^{-\mathrm{II}}, \mathrm{Ni}^{\mathbf{0}}$
The positions and meanings of indices around the symbol of the element are summarized as follows:

left superscript	mass number
left subscript	atomic number
right superscript	charge number, oxidation number, excitation symbol
right subscript	number of atoms per entity (see (iii) below)

(iii) Chemical formulae

Chemical formulae denote entities composed of more than one atom (molecules, complex ions, groups of atoms, etc.).

Examples $\mathrm{N}_{2}, \mathrm{P}_{4}, \mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{CaSO}_{4}, \mathrm{PtCl}_{4}{ }^{2-}, \mathrm{Fe}_{0.91} \mathrm{~S}$
They may also be used as a shorthand to denote a sample of the corresponding chemical substance.

Examples	$\mathrm{CH}_{3} \mathrm{OH}$	methanol
	$\rho\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$	mass density of sulfuric acid

The number of atoms in an entity is indicated by a right subscript (the numeral 1 being omitted). Groups of atoms may also be enclosed in parentheses. Entities may be specified by giving the corresponding formula, often multiplied by a factor. Charge numbers of complex ions, and excitation symbols, are added as right superscripts to the whole formula. The free radical nature of some entities may be stressed by adding a dot to the symbol.

Examples | $\mathrm{H}_{2} \mathrm{O}$ | one water molecule, water |
| :--- | :--- |
| | $\frac{1}{2} \mathrm{O}_{2}$ |
| $\mathrm{Zn}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ | half an oxygen molecule |
| | one zinc phosphate formula unit, zinc phosphate |
| $2 \mathrm{MgSO}_{4}$ | two formula units of magnesium sulfate |
| $\frac{1}{5} \mathrm{KMnO}_{4}$ | one-fifth of a potassium permanganate formula unit |
| $\frac{1}{2} \mathrm{SO}_{4}^{2-}$ | half a sulfate ion |
| $\left(\mathrm{CH}_{3}\right)^{\circ}$ | methyl free radical |
| $\mathrm{CH}_{3} \dot{\mathrm{C}} \mathrm{HCH}_{3}$ | isopropyl radical |
| $\mathrm{NO}_{2}{ }^{*}$ | electronically excited nitrogen dioxide molecule |

In the above examples, $\frac{1}{2} \mathrm{O}_{2}, \frac{1}{5} \mathrm{KMnO}_{4}$ and $\frac{1}{2} \mathrm{SO}_{4}^{2-}$ are artificial in the sense that such fractions of a molecule cannot exist. However, it may often be convenient to specify entities in this way when calculating amounts of substance; see (v) below.

Specific electronic states of entities (atoms, molecules, ions) can be denoted by giving the electronic term symbol (see section 2.6) in parentheses. Vibrational and rotational states can be specified by giving the corresponding quantum numbers.

```
Examples \(\mathrm{Hg}\left({ }^{3} \mathbf{P}_{1}\right) \quad\) a mercury atom in the triplet-P-one state
    \(\mathrm{HF}(v=2, J=6) \quad\) a hydrogen fluoride molecule in the vibrational state \(v=2\) and the
    rotational state \(J=6\)
    \(\mathrm{H}_{2} \mathrm{O}^{+}\left({ }^{2} \mathrm{~A}_{1}\right) \quad\) a water molecule ion in the doublet-A-one state
```

Chemical formulae may be written in different ways according to the information that they convey, as follows:
Formula Information conveyed Example for lactic acid

empirical	stoichiometric proportion only in accord with molecular mass molecular structural	structural arrangement of atoms

Further conventions for writing chemical formulae are described in [22, 23].
(iv) Equations for chemical reactions

Symbols connecting the reactants and products in a chemical reaction equation have the following meanings:
$\mathrm{H}_{2}+\mathrm{Br}_{2}=2 \mathrm{HBr} \quad$ stoichiometric relation
$\mathrm{H}_{2}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{HBr} \quad$ net forward reaction
$\mathrm{H}_{2}+\mathrm{Br}_{2} \leftrightarrows 2 \mathrm{HBr} \quad$ reaction, both directions
$\mathrm{H}_{2}+\mathrm{Br}_{2} \rightleftharpoons 2 \mathrm{HBr} \quad$ equilibrium

A single arrow is also used to designate an elementary reaction, such as $\mathrm{H}^{\cdot}+\mathrm{Br}_{2} \rightarrow \mathrm{HBr}+\mathrm{Br}^{\circ}$. It should therefore be made clear if this is the usage intended.

Redox equations are often written so that the absolute value of the stoichiometric number for the electrons transferred (which are normally omitted from the overall equation) is equal to one.
Example $\quad(1 / 5) \mathrm{KMn}^{\mathrm{VII}} \mathrm{O}_{4}+(8 / 5) \mathrm{HCl}=(1 / 5) \mathrm{Mn}^{\mathrm{II}} \mathrm{Cl}_{2}+(1 / 2) \mathrm{Cl}_{2}+(1 / 5) \mathrm{KCl}+(4 / 5) \mathrm{H}_{2} \mathrm{O}$
Similarly a reaction in an electrochemical cell may be written so that the charge number of the cell reaction is equal to one:
Example $\left.\quad(1 / 3) \mathrm{In}^{0}(\mathrm{~s})+(1 / 2) \mathrm{Hg}^{\mathrm{I}} \mathrm{SO}_{4}(\mathrm{~s})=(1 / 6) \mathrm{In}^{\mathrm{II}}{ }_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})+\mathrm{Hg}^{0}{ }^{(} \mathbf{l}\right)$
(the symbols in parentheses denote the state; see (vi) below).

(v) Amount of substance and the specification of entities

The quantity 'amount of substance' or 'chemical amount' ('Stoffmenge' in German) has been used by chemists for a long time without a proper name. It was simply referred to as the 'number of moles'. This practice should be abandoned, because it is wrong to confuse the name of a physical quantity with the name of a unit (in a similar way it would be wrong to use 'number of metres' as a synonym for 'length'). The amount of substance is proportional to the number of specified elementary entities of that substance; the proportionality factor is the same for all substances and is the reciprocal of the Avogadro constant. The elementary entities may be chosen as convenient, not necessarily as physically real individual particles. Since the amount of substance and all physical quantities derived from it depend on this choice it is essential to specify the entities to avoid ambiguities.

```
Examples \(n_{\mathrm{Cl}}, n(\mathrm{Cl}) \quad\) amount of Cl , amount of chlorine atoms
    \(n\left(\mathrm{Cl}_{2}\right)\)
    \(n\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)\)
    \(n\left(\frac{1}{5} \mathrm{KMnO}_{4}\right)\)
    \(M\left(\mathrm{P}_{4}\right)\)
    \(c_{\mathrm{HCl}}, c(\mathrm{HCl}),[\mathrm{HCl}]\)
    \(\Lambda\left(\mathrm{MgSO}_{4}\right)\)
\(\Lambda\left(\frac{1}{2} \mathrm{MgSO}_{4}\right)\)
\(n\left(\frac{1}{5} \mathrm{KMnO}_{4}\right)=5 n\left(\mathrm{KMnO}_{4}\right)\)
\(\lambda\left(\frac{1}{2} \mathrm{Mg}^{2+}\right)=\frac{1}{2} \lambda\left(\mathrm{Mg}^{2+}\right)\)
\(\left[\frac{1}{2} \mathrm{H}_{2} \mathrm{SO}_{4}\right]=2\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]\)
```

(See also examples in section 3.2, p.70.)
Note that 'amount of sulfur' is an ambiguous statement, because it might imply $n(\mathbf{S}), n\left(\mathbf{S}_{8}\right)$, or $n\left(\mathbf{S}_{2}\right)$, etc. In some cases analogous statements are less ambiguous. Thus for compounds the implied entity is usually the molecule or the common formula entity, and for solid metals it is the atom.
Examples '2 moles of water' implies $n\left(\mathrm{H}_{2} \mathrm{O}\right)=2 \mathrm{~mol}$; 0.5 moles of sodium chloride' implies $n(\mathrm{NaCl})$ $=0.5 \mathrm{~mol}$; ' 3 millimoles of iron' implies $n(\mathrm{Fe})=3 \mathrm{mmol}$, but such statements should be avoided whenever there might be ambiguity.

However, in the equation $p V=n R T$ and in equations involving colligative properties, the entity implied in the definition of n should be an individually translating particle (a whole molecule for a gas), whose nature is unimportant.

(vi) States of aggregation

The following one-, two- or three-letter symbols are used to represent the states of aggregation of chemical species [1.j]. The letters are appended to the formula symbol in parentheses, and should be printed in roman (upright) type without a full stop (period).

g	gas or vapour	vit	vitreous substance
1	liquid	a, ads	species adsorbed on a substrate
s	solid	mon	monomeric form
cd	condensed phase	pol	polymeric form
	(i.e. solid or liquid)	sln	solution
fl	fluid phase	(i.e. gas or liquid)	aq, ∞
aqueous solution			
cr	crystalline		infinite dilution at
lc	liquid crystal	am	amorphous solid

Examples $\mathrm{HCl}(\mathrm{g}) \quad$ hydrogen chloride in the gaseous state
C_{V} (fi) heat capacity of a fluid at constant volume
$V_{\mathrm{m}}(\mathrm{lc}) \quad$ molar volume of a liquid crystal
$U(\mathrm{cr}) \quad$ internal energy of a crystalline solid
$\mathrm{MnO}_{2}(\mathrm{am}) \quad$ manganese dioxide as an amorphous solid
$\mathrm{MnO}_{2}(\mathrm{cr}, \mathrm{I}) \quad$ manganese dioxide as crystal form I
$\mathrm{NaOH}(\mathrm{aq}) \quad$ aqueous solution of sodium hydroxide
$\mathrm{NaOH}(\mathrm{aq}, \infty) \quad \ldots$ as above, at infinite dilution
$\Delta_{\mathrm{f}} H^{\ominus}\left(\mathrm{H}_{2} \mathrm{O}, 1\right) \quad$ standard enthalpy of formation of liquid water
The symbols g , 1 , to denote gas phase, liquid phase, etc., are also sometimes used as a right superscript, and the Greek letter symbols α, β, may be similarly used to denote phase α, phase β, etc., in a general notation.

Examples $\quad V_{\mathrm{m}}{ }^{1}, V_{\mathrm{m}}{ }^{\mathrm{s}}$ molar volume of the liquid phase, \ldots of the solid phase
$S_{\mathrm{m}}{ }^{\alpha}, S_{\mathrm{m}}{ }^{\beta}$ molar entropy of phase α, \ldots of phase β

2.11 CHEMICAL THERMODYNAMICS

The names and symbols of the more generally used quantities given here are also recommended by IUPAP [4] and by ISO [5.e, i]. Additional information can be found in [1.d, j and 24]

Name	Symbol	Definition	SI unit	Notes
heat	q, Q		J	1
work	w, W		J	1
internal energy	U	$\Delta U=q+w$	J	1
enthalpy	H	$H=U+p V$	J	
thermodynamic temperature	T		K	
Celsius temperature	θ, t	$\theta /{ }^{\circ} \mathrm{C}=T / \mathrm{K}-273.15$	${ }^{\circ} \mathrm{C}$	2
entropy	S	$\mathrm{d} S=\mathrm{d} q_{\mathrm{rev}} / T$	JK^{-1}	
Helmholtz energy, (Helmholtz function)	A	$A=U-T S$	J	3
Gibbs energy, (Gibbs function)	G	$G=H-T S$	J	
Massieu function	J	$J=-A / T$	JK^{-1}	
Planck function	Y	$Y=-G / T$	$\mathrm{J}^{\mathbf{- 1}}$	
surface tension	γ, σ	$\gamma=\left(\partial G / \partial A_{\mathrm{s}}\right)_{T, p}$	$\mathrm{Jm}^{-2}, \mathrm{Nm}^{-1}$	
molar quantity X	$X_{\mathrm{m}},(\bar{X})$	$X_{\mathrm{m}}=X / n$	(varies)	4,5
specific quantity X	x	$x=X / m$	(varies)	4, 5
pressure coefficient	β	$\beta=(\partial p / \partial T)_{V}$	PaK^{-1}	
relative pressure coefficient	α_{p}	$\alpha_{p}=(1 / p)(\partial p / \partial T)_{V}$	K^{-1}	
compressibility, isothermal	κ_{T}	$\kappa_{T}=-(1 / V)(\partial V / \partial p)_{T}$	Pa^{-1}	
isentropic	κ_{s}	$\kappa_{S}=-(1 / V)(\partial V / \partial p)_{S}$	Pa^{-1}	
linear expansion coefficient	α_{l}	$\alpha_{l}=(1 / l)(\partial l / \partial T)$	K^{-1}	
cubic expansion coefficient	$\alpha, \alpha_{\nu}, \gamma$	$\alpha=(1 / V)(\partial V / \partial T)_{p}$	K^{-1}	6
heat capacity, at constant pressure	C_{p}	$C_{p}=(\partial H / \partial T)_{p}$	JK^{-1}	
at constant volume	C_{V}	$C_{V}=(\partial U / \partial T)_{V}$	$\mathrm{J}^{\mathbf{- 1}}$	
ratio of heat capacities	$\gamma,(\kappa)$	$\gamma=C_{p} / C_{V}$	1	
Joule-Thomson coefficient	$\mu, \mu_{\text {JT }}$	$\mu=(\partial T / \partial p)_{H}$	$\mathrm{K} \mathrm{Pa}^{-1}$	

(1) Both $q>0$ and $w>0$ indicate an increase in the energy of the system; $\Delta U=q+w$. The given equation is sometimes written as $\mathrm{d} U=đ q+đ w$, where $đ$ denotes an inexact differential.
(2) This quantity is sometimes misnamed 'centigrade temperature'.
(3) It is sometimes convenient to use the symbol F for Helmholtz energy in the context of surface chemistry, to avoid confusion with A for area.
(4) The definition applies to pure substance. However, the concept of molar and specific quantities (see section 1.4, p.7) may also be applied to mixtures.
(5) X is an extensive quantity. The unit depends on the quantity. In the case of molar quantities the entities should be specified.

Example molar volume of $\mathrm{B}, V_{\mathrm{m}}(\mathrm{B})=V / n_{\mathrm{B}}$
(6) This quantity is also called the coefficient of thermal expansion, or the expansivity coefficient.
virial coefficient,

second	B	$\left\{p V_{\mathrm{m}}=R T\left(1+B / V_{\mathrm{m}}\right.\right.$	$\mathrm{m}^{3} \mathrm{~mol}^{-1}$	
third	C	$\left\{\begin{array}{l}\text { d } \\ \left.\quad+C / V_{\mathrm{m}}{ }^{2}+\ldots\right)\end{array}\right.$	$\mathrm{m}^{6} \mathrm{~mol}^{-2}$	
van der Waals	a	$\left(p+a / V_{\mathrm{m}}^{2}\right)\left(V_{\mathrm{m}}-b\right)=\mathrm{RT}$	$\mathrm{J} \mathrm{m}^{3} \mathrm{~mol}^{-2}$	7
coefficients	b		$\mathrm{m}^{3} \mathrm{~mol}^{-1}$	7
compression factor, (compressibility factor)	Z	$Z=p V_{\mathrm{m}} / R T$	1	
partial molar quantity X	$X_{\mathrm{B}},\left(\bar{X}_{\mathrm{B}}\right)$	$X_{\mathbf{B}}=\left(\partial X / \partial n_{\mathrm{B}}\right)_{T, p, n_{j \neq \mathrm{B}}}$	(varies)	8
chemical potential, (partial molar Gibbs energy)	μ	$\mu_{\mathrm{B}}=\left(\partial G / \partial n_{\mathrm{B}}\right)_{T, p, n_{j \neq \mathrm{B}}}$	$\mathrm{J} \mathrm{mol}^{-1}$	9
standard chemical potential	$\mu^{\oplus}, \mu^{\circ}$		$\mathbf{J} \mathrm{mol}^{-1}$	10
absolute activity	λ	$\lambda_{\mathrm{B}}=\exp \left(\mu_{\mathrm{B}} / R T\right)$	1	9
(relative) activity	a	$a_{\mathrm{B}}=\exp \left[\frac{\mu_{\mathrm{B}}-\mu_{\mathrm{B}}{ }^{\bullet}}{R T}\right]$	1	9,11
standard partial molar enthalpy	$H_{\text {B }}{ }^{\text {a }}$	$H_{\mathrm{B}}{ }^{\ominus}=\mu_{\mathrm{B}}{ }^{\ominus}+T S_{\mathrm{B}}{ }^{\ominus}$	$\mathbf{J} \mathrm{mol}^{-1}$	9,10
standard partial molar entropy	$S_{\text {B }}{ }^{\text {a }}$	$S_{\mathrm{B}}{ }^{\ominus}=-\left(\partial \mu_{\mathrm{B}}{ }^{\ominus} / \partial T\right)_{p}$	$\mathbf{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$	9,10
standard reaction Gibbs energy (function)	$\Delta_{\mathrm{r}} G^{\ominus}$	$\Delta_{\mathrm{r}} G^{\ominus}=\sum_{\mathrm{B}} \nu_{\mathrm{B}} \mu_{\mathrm{B}}{ }^{\ominus}$	$\mathrm{J} \mathrm{mol}^{-1}$	$\begin{aligned} & 10,12, \\ & 13,14 \end{aligned}$
affinity of reaction	$A,(\mathscr{A})$	$A=-(\partial G / \partial \xi)_{p, T}$	$\mathrm{J} \mathrm{mol}^{-1}$	13

(7) For a gas satisfying the van der Waals equation of state, given in the definition, the second virial coefficient is related to the parameters a and b in the van der Waals equation by

$$
B=b-a / R T
$$

(8) The symbol applies to entities B which should be specified. The bar may be used to distinguish partial molar X from X when necessary.
Example The partial molar volume of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ in aqueous solution may be denoted $\bar{V}\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right.$, aq), in order to distinguish it from the volume of the solution $V\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right.$, aq).
(9) The definition applies to entities B which should be specified.
(10) The symbol ${ }^{\ominus}$ or ${ }^{\circ}$ is used to indicate standard. They are equally acceptable. Definitions of standard states are discussed below (p.53). Whenever a standard chemical potential μ^{\ominus} or a standard equilibrium constant K^{\ominus} or other standard quantity is used, the standard state must be specified.
(11) In the defining equation given here the pressure dependence of the activity has been neglected as is often done for condensed phases at atmospheric pressure.

An equivalent definition is $a_{\mathbf{B}}=\lambda_{\mathbf{B}} / \lambda_{\mathbf{B}}{ }^{\ominus}$, where $\lambda_{\mathbf{B}}{ }^{\ominus}=\exp \left(\mu_{\mathrm{B}}{ }^{\ominus} / R T\right)$. The definition of μ^{\ominus} depends on the choice of the standard state; see Section (iv) on p. 53.
(12) The symbol r indicates reaction in general. In particular cases r can be replaced by another appropriate subscript, e.g. $\Delta_{\mathrm{f}} H^{\ominus}$ denotes the standard molar enthalpy of formation; see p .51 below for a list of subscripts.
(13) The reaction must be specified for which this quantity applies.
(14) Reaction enthalpies (and reaction energies in general) are usually quoted in $\mathrm{kJ} \mathrm{mol}^{-1}$. In older literature $\mathrm{kcal} \mathrm{mol}{ }^{-1}$ is also common, where $1 \mathrm{kcal}=4.184 \mathrm{~kJ}$ (see p.112).

Name	Symbol	Definition	SI unit	Notes
standard reaction enthalpy	$\Delta_{\mathrm{r}} H^{\text {e }}$	$\Delta_{\mathrm{r}} H^{\ominus}=\sum_{\mathrm{B}} \nu_{\mathrm{B}} H_{\mathrm{B}}{ }^{\text {a }}$	$\mathrm{J} \mathrm{mol}^{-1}$	$\begin{aligned} & 10,12, \\ & 13,14 \end{aligned}$
standard reaction entropy	$\Delta_{\mathrm{r}} S^{*}$	$\Delta_{\mathrm{r}} S^{*}=\sum_{\mathrm{B}} v_{\mathrm{B}} \mathrm{S}_{\mathrm{B}}{ }^{\text {e }}$	$\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$	10,12,13
reaction quotient	Q	$Q=\prod_{\mathrm{B}} a_{\text {B }}{ }^{v_{\mathrm{B}}}$	1	15
equilibrium constant equilibrium constant,	K^{\ominus}, K	$K^{\bullet}=\exp \left(-\Delta_{\mathrm{r}} G^{\bullet} / R T\right)$	1	10,13,16
pressure basis	K_{p}	$K_{p}=\prod_{\mathrm{B}} p_{\mathrm{B}}{ }^{\nu_{\mathrm{B}}}$	$\mathrm{Pa}^{\text {² }}$	13,17
concentration basis	K_{c}	$K_{c}=\prod_{\mathrm{B}} c_{\mathrm{B}}{ }^{v_{B}}$	$\left(\mathrm{mol} \mathrm{m}^{-3}\right)^{\Sigma v}$	13,17
molality basis	K_{m}	$K_{m}=\prod_{\mathrm{B}}^{\mathrm{B}} m_{\mathrm{B}}{ }^{\nu_{\mathrm{B}}}$	$\left(\mathrm{mol} \mathrm{kg}^{-1}\right)^{\Sigma v}$	13,17
fugacity	f, \tilde{p}	$f_{\mathrm{B}}=\lambda_{\mathrm{B}}^{\mathrm{b}} \lim _{p \rightarrow 0}\left(p_{\mathrm{B}} / \lambda_{\mathrm{B}}\right)_{T}$	Pa	9
fugacity coefficient	ϕ	$\phi_{\mathrm{B}}=f_{\mathrm{B}} / p_{\mathrm{B}}$	1	
Henry's law constant	$k_{\text {H }}$	$\begin{aligned} k_{\mathrm{H}, \mathrm{~B}} & =\lim _{x_{\mathrm{B}} \rightarrow 0}\left(f_{\mathrm{B}} / x_{\mathrm{B}}\right) \\ & =\left(\partial f_{\mathrm{B}} / \partial x_{\mathrm{B}}\right)_{x_{\mathrm{B}}}=0 \end{aligned}$	Pa	9, 18
activity coefficient				
referenced to Raoult's law referenced to Henry's law	f	$f_{\mathrm{B}}=a_{\mathrm{B}} / x_{\mathrm{B}}$	1	9,19
molality basis	γ_{m}	$a_{m, \mathrm{~B}}=\gamma_{m, \mathrm{~B}} m_{\mathrm{B}} / m^{\ominus}$	1	9, 20
concentration basis	γ_{c}	$a_{c, \mathbf{B}}=\gamma_{c, \mathbf{B}} c_{\mathrm{B}} / c^{*}$	1	9, 20
mole fraction basis	γ_{x}	$a_{x, \mathbf{B}}=\gamma_{x, \mathbf{B}} \chi_{\mathbf{B}}$	1	9, 20
ionic strength,				
concentration basis	I_{c}, I	$I_{\text {c }}=\frac{1}{2} \Sigma c_{\mathrm{B}} z_{\mathrm{B}}{ }^{2}$	$\mathrm{mol} \mathrm{m}{ }^{-3}$	

(15) This quantity applies in general to a system which is not in equilibrium.
(16) This quantity is equal to the value of Q in equilibrium, when the affinity is zero. It is dimensionless and its value depends on the choice of standard state, which must be specified. ISO [5.i] and the IUPAC Thermodynamics Commission [24] recommend the symbol K^{\ominus} and the name 'standard equilibrium constant', but some thermodynamicists prefer the symbol K and the name 'thermodynamic equilibrium constant'.
(17) These quantities are not in general dimensionless. One can define in an analogous way an equilibrium constant in terms of fugacity K_{f}, etc. At low pressures K_{p} is approximately related to K^{\ominus} by the equation $K^{\ominus} \approx K_{p} /\left(p^{\ominus}\right)^{\Sigma v}$, and similarly in dilute solutions K_{c} is approximately related to K^{\ominus} by $K^{\ominus} \approx K_{c} /\left(c^{\ominus}\right)^{\Sigma v}$; however, the exact relations involve fugacity coefficients or activity coefficients [24].

The equilibrium constant of dissolution of an electrolyte (describing the equilibrium between excess solid phase and solvated ions) is often called a solubility product, denoted $K_{\text {sol }}$ or K_{s} (or $K_{\mathrm{sol}}^{\ominus}$ or K_{s}^{\ominus} as appropriate). In a similar way the equilibrium constant for an acid dissociation is often written K_{a}, for base hydrolysis K_{b}, and for water dissociation K_{w}.
(18) Henry's law is sometimes expressed in terms of molalities or concentrations and then the corresponding units of the Henry's law constant are $\mathrm{Pa} \mathrm{kg} \mathrm{mol}{ }^{-1}$ or $\mathrm{Pa} \mathrm{m}^{3} \mathrm{~mol}^{-1}$, respectively.
(19) This quantity applies to pure phases, substances in mixtures, or solvents.
(20) This quantity applies to solutes.

Name	Symbol	Definition	SI unit	Notes
osmotic coefficient,				
molality basis	ϕ_{m}	$\phi_{m}=\frac{\mu_{\mathrm{A}}{ }^{*}-\mu_{\mathrm{A}}}{R T M_{\mathrm{A}} \Sigma m_{\mathrm{B}}}$	1	
mole fraction basis	ϕ_{x}	$\phi_{x}=\frac{\mu_{\mathrm{A}}-\mu_{\mathrm{A}}{ }^{*}}{R T \ln x_{\mathrm{A}}}$	1	
osmotic pressure	Π	$\Pi=c_{\mathrm{B}} R T$	Pa	21

(21) The defining equation applies to ideal dilute solutions. The entities B are individually moving solute molecules, ions, etc. regardless of their nature. Their amount is sometimes expressed in osmoles (meaning a mole of osmotically active entities), but this use is discouraged.

Other symbols and conventions in chemical thermodynamics

A more extensive description of this subject can be found in [24].
(i) Symbols used as subscripts to denote a chemical process or reaction

These symbols should be printed in roman (upright) type, without a full stop (period).

vaporization, evaporation (liquid \rightarrow gas)	vap
sublimation (solid \rightarrow gas)	sub
melting, fusion (solid \rightarrow liquid)	fus
transition (between two phases)	trs
mixing of fluids	mix
solution (of solute in solvent)	sol
dilution (of a solution)	dil
adsorption	ads
displacement	dpl
immersion	imm
reaction in general	r
atomization	at
combustion reaction	c
formation reaction	f

(ii) Recommended superscripts

standard	\bullet, \circ
pure substance	$*$
infinite dilution	∞
ideal	id
activated complex, transition state	\ddagger
excess quantity	E

(iii) Examples of the use of these symbols

The subscripts used to denote a chemical process, listed under (i) above, should be used as subscripts to the Δ symbol to denote the change in an extensive thermodynamic quantity associated with the process.

Example $\Delta_{\text {vap }} H=H(\mathrm{~g})-H(\mathrm{l})$, for the enthalpy of vaporization, an extensive quantity proportional to the amount of substance vaporized.

The more useful quantity is usually the change divided by the amount of substance transferred, which should be denoted with an additional subscript m.

Example $\Delta_{\mathrm{vap}} H_{\mathrm{m}}$ for the molar enthalpy of vaporization.
However, the subscript m is frequently omitted, particularly when the reader may tell from the units that a molar quantity is implied.

Example $\quad \Delta_{\text {vap }} H=40.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for $\mathrm{H}_{2} \mathrm{O}$ at 373.15 K and 1 atm .
The subscript specifying the change is also sometimes attached to the symbol for the quantity rather than the Δ, so that the above quantity is denoted $\Delta H_{\text {vap, m }}$ or simply $\Delta H_{\text {vap }}$, but this is not recommended.

The subscript r is used to denote changes associated with a chemical reaction. Although symbols such as $\Delta_{\mathrm{r}} H$ should denote the integral enthalpy of reaction, $\Delta_{\mathrm{r}} H=H\left(\xi_{2}\right)-H\left(\xi_{1}\right)$, in practice this symbol is usually used to denote the change divided by the amount transferred, i.e. the change per extent of reaction, defined by the equation

$$
\Delta_{\mathrm{r}} H=\sum_{\mathbf{B}} v_{\mathrm{B}} H_{\mathrm{B}}=(\partial H / \partial \xi)_{T, p}
$$

It is thus essential to specify the stoichiometric reaction equation when giving numerical values for such quantities in order to define the extent of reaction ξ and the values of the stoichiometric numbers v_{B}.

$$
\begin{array}{lll}
\text { Example } \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})=2 \mathrm{NH}_{3}(\mathrm{~g}), & \Delta_{\mathrm{r}} H^{\ominus}=-92.4 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \Delta_{\mathrm{r}} S^{\ominus}=-199 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}
\end{array}
$$

The mol^{-1} in the units identifies the quantities in this example as the change per extent of reaction. They may be called the molar enthalpy and entropy of reaction, and a subscript may be added to the symbol, to emphasize the difference from the integral quantities if required.

The standard reaction quantities are particularly important. They are defined by the equations

$$
\begin{aligned}
& \Delta_{\mathrm{r}} H^{\ominus}\left(=\Delta_{\mathrm{r}} H_{\mathrm{m}}{ }^{\ominus}=\Delta H_{\mathrm{m}}{ }^{\ominus}\right)=\sum_{\mathbf{B}} v_{\mathrm{B}} H_{\mathrm{B}}^{\ominus} \\
& \Delta_{\mathrm{r}} S^{\ominus}\left(=\Delta_{\mathrm{r}} S_{\mathrm{m}}{ }^{\ominus}=\Delta S_{\mathrm{m}}^{\ominus}\right)=\sum_{\mathbf{B}} v_{\mathrm{B}} S_{\mathrm{B}}^{\ominus} \\
& \Delta_{\mathrm{r}} G^{\ominus}\left(=\Delta_{\mathrm{r}} G_{\mathrm{m}}^{\ominus}=\Delta G_{\mathrm{m}}{ }^{\ominus}\right)=\sum_{\mathbf{B}} v_{\mathrm{B}} \mu_{\mathrm{B}}^{\ominus}
\end{aligned}
$$

The symbols in parentheses are alternatives. In view of the variety of styles in current use it is important to specify notation with care for these symbols. The relation to the affinity of the reaction is

$$
-A=\Delta_{\mathrm{r}} G=\Delta_{\mathrm{r}} G^{\ominus}+R T \ln \left(\prod_{\mathrm{B}} a_{\mathrm{B}}^{v_{\mathrm{B}}}\right),
$$

and the relation to the standard equilibrium constant is $\Delta_{\mathrm{r}} G^{\ominus}=-R T \ln K^{\ominus}$.
The term combustion and symbol c denote the complete oxidation of a substance. For the definition of complete oxidation of substances containing elements other than C, H and O see [64]. The corresponding reaction equation is written so that the stoichiometric number v of the substance is -1 .

Example The standard enthalpy of combustion of gaseous methane is $\Delta_{\mathrm{c}} H^{\ominus}\left(\mathrm{CH}_{4}, \mathrm{~g}, 298.15 \mathrm{~K}\right)=$ $-890.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$, implying the reaction $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$.

The term formation and symbol f denote the formation of the substance from elements in their reference state (usually the most stable state of each element at the chosen temperature and standard pressure). The corresponding reaction equation is written so that the stoichiometric number v of the substance is +1 .
Example The standard entropy of formation of crystalline mercury II chloride is $\Delta_{\mathrm{f}} S^{\ominus}\left(\mathrm{HgCl}_{2}, \mathrm{cr}\right.$, $298.15 \mathrm{~K})=-154.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$, implying the reaction $\mathrm{Hg}(\mathrm{l})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{HgCl}_{2}(\mathrm{cr})$.

The term atomization, symbol at, denotes a process in which a substance is separated into its constituent atoms in the ground state in the gas phase. The corresponding reaction equation is written so that the stoichiometric number v of the substance is -1 .
Example The standard (internal) energy of atomization of liquid water is $\Delta_{\mathrm{at}} U^{\ominus}\left(\mathrm{H}_{2} \mathrm{O}, 1\right)$ $=625 \mathrm{~kJ} \mathrm{~mol}^{-1}$, implying the reaction $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{H}(\mathrm{g})+\mathrm{O}(\mathrm{g})$.

(iv) Standard states [1.j, 24]

The standard chemical potential of substance B at temperature $T, \mu_{\mathrm{B}}{ }^{\circ}(T)$, is the value of the chemical potential under standard conditions, specified as follows. Three differently defined standard states are recognized.

For a gas phase. The standard state for a gaseous substance, whether pure or in a gaseous mixture, is the (hypothetical) state of the pure substance \mathbf{B} in the gaseous phase at the standard pressure $p=p^{\text {e }}$ and exhibiting ideal gas behaviour. The standard chemical potential is defined as

$$
\mu_{\mathrm{B}}{ }^{\otimes}(T)=\lim _{p \rightarrow 0}\left[\mu_{\mathrm{B}}\left(T, p, y_{\mathrm{B}}, \ldots\right)-R T \ln \left(y_{\mathrm{B}} p / p^{\otimes}\right)\right]
$$

For a pure phase, or a mixture, or a solvent, in the liquid or solid state. The standard state for a liquid or solid substance, whether pure or in a mixture, or for a solvent, is the state of the pure substance B in the liquid or solid phase at the standard pressure $p=p^{\ominus}$. The standard chemical potential is defined as

$$
\mu_{\mathrm{B}}{ }^{\ominus}(T)=\mu_{\mathrm{B}}^{*}\left(T, p^{\ominus}\right)
$$

For a solute in solution. For a solute in a liquid or solid solution the standard state is referenced to the ideal dilute behaviour of the solute. It is the (hypothetical) state of solute B at the standard molality m^{\ominus}, standard pressure p^{\ominus}, and exhibiting infinitely diluted solution behaviour. The standard chemical potential is defined as

$$
\mu_{\mathrm{B}}{ }^{\ominus}(T)=\left[\mu_{\mathrm{B}}\left(T, p^{\ominus}, m_{\mathrm{B}}, \ldots\right)-R T \ln \left(m_{\mathrm{B}} / m^{\ominus}\right)\right]^{\infty} .
$$

The chemical potential of the solute \mathbf{B} as a function of the molality m_{B} at constant pressure $p=p^{*}$ is then given by the expression

$$
\mu_{\mathbf{B}}\left(m_{\mathbf{B}}\right)=\mu_{\mathbf{B}}{ }^{\ominus}+R T \ln \left(m_{\mathbf{B}} \gamma_{m, \mathbf{B}} / m^{\ominus}\right)
$$

Sometimes (amount) concentration c is used as a variable in place of molality m; both of the above equations then have c in place of m throughout. Occasionally mole fraction x is used in place of m; both of the above equations then have x in place of m throughout, and $x^{\ominus}=1$. Although the standard state of a solute is always referenced to ideal dilute behaviour, the definition of the standard state and the value of the standard chemical potential μ^{\ominus} are different depending on whether molality m, concentration c, or mole fraction x is used as a variable.
(v) Standard pressures, molality, and concentration

In principle one may choose any values for the standard pressure p^{\ominus}, the standard molality m^{\ominus}, and the standard concentration c^{\ominus}, although the choice must be specified. For example, in tabulating data appropriate to high pressure chemistry it may be convenient to choose a value of $p^{*}=1 \mathrm{kbar}$.

In practice, however, the most common choice is

$$
\begin{aligned}
& p^{\ominus}=10^{5} \mathrm{~Pa}(=1 \mathrm{bar}) \\
& m^{\bullet}=1 \mathrm{~mol} \mathrm{~kg}^{-1} \\
& c^{\bullet}=1 \mathrm{~mol} \mathrm{dm}^{-3}
\end{aligned}
$$

These values for m^{\ominus} and c^{\ominus} are universally accepted. The value for $p^{\ominus}, 10^{5} \mathrm{~Pa}$, is the IUPAC recommendation since 1982 [1.j], and is recommended for tabulating thermodynamic data. Prior to 1982 the standard pressure was usually taken to be $p^{\ominus}=101325 \mathrm{~Pa}$ ($=1 \mathrm{~atm}$, called the standard atmosphere). In any case, the value for p^{*} should be specified.

The conversion of values corresponding to different p^{*} is described in [65]. The newer value of $p^{\theta}=10^{5} \mathrm{~Pa}$ is sometimes called the standard state pressure.
(vi) Thermodynamic properties

Values of many thermodynamic quantities represent basic chemical properties of substances and serve for further calculations. Extensive tabulations exist, e.g. [66-68]. Special care has to be taken in reporting the data and their uncertainties [25, 26].

2.12 CHEMICAL KINETICS

The recommendations given here are based on previous IUPAC recommendations [1.c, k and 27], which are not in complete agreement. Recommendations regarding photochemistry are given in [28] and for recommendations on reporting of chemical kinetics data see also [69].

Name	Symbol	Definition	SI unit	Notes
rate of change of quantity X	\dot{X}	$\dot{X}=\mathrm{d} X / \mathrm{d} t$	(varies)	1
rate of conversion	ζ	$\dot{\xi}=\mathrm{d} \xi / \mathrm{d} t$	mol s ${ }^{-1}$	2
rate of concentration change (due to chemical reaction)	$r_{B}, v_{\text {B }}$	$r_{\mathrm{B}}=\mathrm{d} \mathrm{c}_{\mathrm{B}} / \mathrm{d} t$	$\mathrm{mol} \mathrm{m}{ }^{-3} \mathrm{~s}^{-1}$	3, 4
rate of reaction (based on amount concentration)	v	$\begin{aligned} v & =\dot{\xi} / V \\ & =v_{\mathrm{B}}{ }^{-1} \mathrm{~d} c_{\mathrm{B}} / \mathrm{d} t \end{aligned}$	$\mathrm{mol} \mathrm{m}{ }^{-3} \mathrm{~s}^{-1}$	2, 4
partial order of reaction	n_{B}, m_{B}	$v=k \prod c_{\mathrm{B}}{ }^{\mathrm{B}_{\mathrm{B}}}$	1	5
overall order of reaction	n, m	$n=\sum n_{\text {B }}$	1	
rate constant, rate coefficient	k	$v=k \prod c_{\text {B }}{ }^{n_{\mathrm{B}}}$	$\left(\mathrm{m}^{3} \mathrm{~mol}^{-1}\right)^{n-1} \mathrm{~s}^{-1}$	6
Boltzmann constant	$k, k_{\text {B }}$		J^{-1}	
half life	$t_{\frac{1}{2}}$	$c\left(t_{\frac{1}{2}}\right)=c(0) / 2$	s	
relaxation time	τ		s	7
(Arrhenius) activation energy	$E_{\mathrm{a}}, E_{\mathrm{A}}$	$E_{\mathrm{a}}=R T^{2} \mathrm{~d} \ln k / \mathrm{d} T$	$\mathrm{J} \mathrm{mol}^{-1}$	8

(1) E.g. rate of change of pressure $\dot{p}=\mathrm{d} p / \mathrm{d} t$, for which the SI unit is Pas^{-1}.
(2) The reaction must be specified for which this quantity applies.
(3) The symbol and the definition apply to entities B.
(4) Note that r_{B} and v can also be defined on the basis of partial pressure, number concentration, surface concentration, etc., with analogous definitions. If necessary differently defined rates of reaction can be distinguished by a subscript, e.g. $v_{p}=v_{\mathrm{B}}{ }^{-1} \mathrm{~d} p_{\mathrm{B}} / \mathrm{d} t$, etc. Note that the rate of reaction can only be defined for a reaction of known and time-independent stoichiometry, in terms of a specified reaction equation; also the second equation for the rate of reaction follows from the first only if the volume V is constant. The derivatives must be those due to the chemical reaction considered; in open systems, such as flow systems, effects due to input and output processes must also be taken into account.
(5) The symbol applies to reactant B. The symbol m may be used when confusion with n for amount of substance occurs.
(6) Rate constants k and pre-exponential factors A are usually quoted in either $\left(\mathrm{dm}^{3} \mathrm{~mol}^{-1}\right)^{n-1} \mathrm{~s}^{-1}$ or on a molecular scale in $\left(\mathrm{cm}^{3}\right)^{n-1} \mathrm{~s}^{-1}$ or $\left(\mathrm{cm}^{3} \text { molecule }{ }^{-1}\right)^{n-1} \mathrm{~s}^{-1}$. Note that 'molecule' is not a unit, but is often included for clarity. Rate constants are frequently quoted as decadic logarithms.
Example For a second order reaction $\quad k=10^{8.2} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ or $\lg \left(k / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}\right)=8.2$ or alternatively $\quad k=10^{-12.6} \mathrm{~cm}^{3} \mathrm{~s}^{-1} \quad$ or $\lg \left(k / \mathrm{cm}^{3} \mathrm{~s}^{-1}\right)=-12.6$.
(7) τ is defined as the time in which a concentration perturbation falls to $1 / \mathrm{e}$ of its initial value.
(8) Note that the term Arrhenius activation energy is to be used only for the empirical quantity defined in the table. Other empirical equations with different 'activation energies', such as $k(T)=A^{\prime} T^{n} \exp \left(-E_{\mathrm{a}}^{\prime} / R T\right)$, are also being used.

The term activation energy is also used for an energy threshold appearing in the electronic potential (the height of the electronic energy barrier). For this 'activation energy' the symbol E_{0} and the term threshold energy is preferred, but E_{a} is also commonly used. Furthermore, E_{0} may or may not include a correction for zero point energies of reactants and the transition states.

It is thus recommended to specify in any given context exactly which activation energy is meant and to reserve (Arrhenius) activation energy only and exactly for the quantity defined in the table.
pre-exponential factor, frequency factor
volume of activation hard sphere radius collision diameter collision cross section mean relative speed between A and B
collision frequency of A with A
of A with B
collision density, collision number of A with A of A with B
collision frequency factor mean free path
impact parameter
scattering angle
differential cross section
total cross section
scattering matrix
transition probability
standard enthalpy of activation
$A \quad k=A \exp \left(-E_{\mathrm{a}} / R T\right) \quad\left(\mathrm{m}^{3} \mathrm{~mol}^{-1}\right)^{n-1} \mathrm{~s}^{-1}$
$\Delta^{\ddagger} V, \Delta V^{\ddagger} \quad \Delta^{\ddagger} V=-R T(\partial \ln k / \partial T) \mathrm{m}^{3} \mathrm{~mol}^{-1}$

r	m	
d	$d_{A B}=r_{A}+r_{B}$	m

$d \quad d_{\mathrm{AB}}=r_{\mathrm{A}}+r_{\mathrm{B}} \quad \mathrm{m}$
$\sigma \quad \sigma=\pi d_{\mathrm{AB}}{ }^{2} \quad \mathrm{~m}^{2}$
$\bar{c}_{\mathrm{AB}} \quad \bar{c}_{\mathrm{AB}}=(8 k T / \pi \mu)^{1 / 2} \quad \mathrm{~m} \mathrm{~s}^{-1}$
9

$z_{\mathrm{A}}(\mathrm{A})$	$z_{\mathrm{A}}(\mathrm{A})=\sqrt{2} C_{\mathrm{A}} \sigma \bar{c}$	$\mathrm{~s}^{-1}$	10
$z_{\mathrm{A}}(\mathrm{B})$	$z_{\mathrm{A}}(\mathrm{B})=C_{\mathrm{B}} \sigma \bar{c}_{\mathrm{AB}}$	s^{-1}	10

Z_{AA}	$Z_{\mathrm{AA}}=C_{\mathrm{A}} z_{\mathrm{A}}(\mathrm{A})$	$\mathrm{s}^{-1} \mathrm{~m}^{-3}$	11
Z_{AB}	$Z_{\mathrm{AB}}=C_{\mathrm{A}} z_{\mathrm{A}}(\mathrm{B})$	$\mathrm{s}^{-1} \mathrm{~m}^{-3}$	11
z_{AB}	$z_{\mathrm{AB}}=Z_{\mathrm{AB}} / L c_{\mathrm{A}} c_{\mathrm{B}}$	$\mathrm{m}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$	11
λ	$\lambda=\bar{c} / z_{\mathrm{A}}$	m	
b		m	12
θ		$1, \mathrm{rad}$	13
$I_{j i}$	$I_{j i}=\mathrm{d} \sigma_{j i} / \mathrm{d} \Omega$	$\mathrm{m}^{2} \mathrm{sr}^{-1}$	14
$\sigma_{j i}$	$\sigma_{j i}=\int I_{j i} \mathrm{~d} \Omega$	$\mathrm{~m}^{2}$	14
S		1	15
$P_{j i}$	$P_{j i}=\left\|S_{j i}\right\|^{2}$	1	14,15
$\Delta^{\ddagger} H^{\ominus}, \Delta H^{\ddagger}$		J mol	

(9) μ is the reduced mass.
(10) C denotes the number concentration.
(11) Z_{AA} and Z_{AB} are the total number of AA or AB collisions per time and volume in a system containing only A molecules, or containing two types of molecules A and B. Three-body collisions can be treated in a similar way.
(12) The impact parameter b characterizes an individual collision between two particles; it is defined as the distance of closest approach that would result if the particle trajectories were undeflected by the collision.
(13) $\theta=0$ implies no deflection.
(14) In all these matrix quantities the first index refers to the final and the second to the initial channel. i and j denote reactant and product channels, respectively, and Ω denotes solid angle; $\mathrm{d} \sigma_{j i} / \mathrm{d} \Omega=$ (scattered particle current per solid angle)/(incident particle current per area). Elastic scattering implies $i=j$. Both $I_{j i}$ and $\sigma_{j i}$ depend on the total energy of relative motion, and may be written $I_{j i}(E)$ and $\sigma_{j i}(E)$.
(15) The scattering matrix S is used in quantum discussions of scattering theory; $S_{j i}$ is equal to the ratio (total probability current scattered in channel j)/(total probability current incident in channel i). \boldsymbol{S} is a unitary matrix $\boldsymbol{S S}{ }^{\dagger}=1 . P_{j i}$ is the probability that collision partners incident in channel i will emerge in channel j.
(16) The quantities $\Delta^{\ddagger} H^{\ominus}, \Delta^{\ddagger} U^{\ominus}, \Delta^{\ddagger} S^{\ominus}$ and $\Delta^{\ddagger} G^{\ominus}$ are used in the transition state theory of chemical reaction. They are normally used only in connection with elementary reactions. The relation between the rate constant k and these quantities is

$$
k=\kappa\left(k_{\mathrm{B}} T / h\right) \exp \left(-\Delta^{\ddagger} G^{\ominus} / R T\right),
$$

where k has the dimensions of a first-order rate constant and is obtained by multiplication of an n th-order rate constant by $\left(c^{\ominus}\right)^{n-1} . \kappa$ is a transmission coefficient, and $\Delta^{\ddagger} G^{\ominus}=\Delta^{\ddagger} H^{\ominus}-T \Delta^{\ddagger} S^{\ominus}$. Unfortunately the standard symbol ${ }^{\ominus}$ is usually omitted, and these quantities are usually written $\Delta H^{\ddagger}, \Delta U^{\ddagger}, \Delta S^{\ddagger}$ and ΔG^{\ddagger}.

standard internal energy	$\Delta^{\ddagger} U^{\ominus}, \Delta U^{\ddagger}$	$\mathrm{J} \mathrm{mol}^{-1}$	16
of activation	$\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$	16	
standard entropy of activation	$\Delta^{\ddagger} S^{\ominus}, \Delta S^{\ddagger}$	$\mathrm{J} \mathrm{mol}^{-1}$	16
standard Gibbs energy of activation	$\Delta^{\ddagger} G^{\ominus}, \Delta G^{\ddagger}$	1	17
quantum yield, photochemical yield	ϕ, Φ		

(17) The quantum yield ϕ is defined in general by [28]

$$
\phi=\frac{\text { number of defined events }}{\text { number of photons absorbed }}
$$

For a photochemical reaction it can be defined as

$$
\phi=\frac{\text { rate of conversion }}{\text { rate of photon absorption }}=\frac{\mathrm{d} \xi / \mathrm{d} t}{\mathrm{~d} n_{\gamma} / \mathrm{d} t}
$$

2.13 ELECTROCHEMISTRY

Electrochemical concepts, terminology and symbols are more extensively described in [1.i]. For the field of semiconductor electrochemistry and photoelectrochemical energy conversion see [29] and for corrosion nomenclature [30].

Name	Symbol	Definition	SI unit	Notes
elementary charge, (proton charge)	e		C	
Faraday constant	F	$F=e L$	Cmol^{-1}	
charge number of an ion ionic strength,	z	$z_{\mathrm{B}}=Q_{\mathrm{B}} / e$	1	1
molality basis	I_{m}, I	$I_{m}=\frac{1}{2} \sum m_{i} z_{i}{ }^{2}$	mol kg ${ }^{-1}$	
concentration basis	I_{c}, I	$I_{c}=\frac{1}{2} \sum c_{i} z_{i}{ }^{2}$	molm^{-3}	2
mean ionic activity	$a_{ \pm}$	$a_{ \pm}=m_{ \pm} \gamma_{ \pm} / m^{*}$	1	3,4
activity of an electrolyte	$a\left(\mathrm{~A}_{v_{+}} \mathrm{B}_{v_{-}}\right)$	$a\left(\mathrm{~A}_{v_{+}} \mathrm{B}_{v_{-}}\right)=a_{ \pm}{ }^{\left(v_{+}+v_{-}\right)}$	1	3
mean ionic molality	$m_{ \pm}$	$m_{ \pm}{ }^{\left(v++v_{-}\right)}=m_{+}{ }^{v+} m_{-}{ }^{v-}$	mol kg ${ }^{-1}$	3
mean ionic activity coefficient	$\gamma_{ \pm}$	$\gamma_{ \pm}{ }^{\left(v++v_{-}\right)} \doteq \gamma_{+}{ }^{\nu+} \gamma_{-}{ }^{v-}$	1	3
charge number of electrochemical cell reaction	n, v_{e}, z		1	5
electric potential difference (of a galvanic cell)	$\Delta V, U, E$	$\Delta V=V_{\mathrm{R}}-V_{\mathrm{L}}$	V	6
emf, electromotive force	E	$E=\lim _{I \rightarrow 0} \Delta V$	V	7
standard emf, standard potential of the electrochemical cell reaction	E^{*}	$\begin{aligned} E^{\ominus} & =-\Delta_{\mathrm{r}} G^{\ominus} / n F \\ & =(R T / n F) \ln K^{\ominus} \end{aligned}$	V	4,8

(1) The definition applies to entities B.
(2) To avoid confusion with the cathodic current, symbol I_{c} (note roman subscript), the symbol I or sometimes μ (when the current is denoted by I) is used for ionic strength based on concentration.
(3) v_{+}and v_{-}are the numbers of cations and anions per formula unit of an electrolyte $A_{v+} B_{v-}$.

Example For $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}, v_{+}=2$ and $v_{-}=3$.
m_{+}and m_{-}, and γ_{+}and γ_{-}, are the separate cation and anion molalities and activity coefficients. If the molality of $\mathbf{A}_{v+} \mathbf{B}_{v-}$ is m, then $m_{+}=v_{+} m$ and $m_{-}=v_{-} m$. A similar definition is used on a concentration scale for the mean ionic concentration $c_{ \pm}$.
(4) The symbol ${ }^{\bullet}$ or ${ }^{\circ}$ is used to indicate standard. They are equally acceptable.
(5) n is he number of electrons transferred according to the cell reaction (or half-cell reactions) as written; n is a positive integer.
(6) V_{R} and V_{L} are the potentials of the electrodes shown on the right- and left-hand sides, respectively, in the diagram representing the cell. When ΔV is positive, positive charge flows from left to right through the cell, and from right to left in the external circuit, if the cell is short-circuited.
(7) The definition of emf is discussed on p. 60 . The symbol E_{MF} is no longer recommended for this quantity.
(8) $\Delta_{\mathrm{r}} G^{\ominus}$ and K^{\ominus} apply to the cell reaction in the direction in which reduction occurs at the right-hand electrode and oxidation at the left-hand electrode, in the diagram representing the cell (see p.60). (Note the mnemonic 'reduction at the right'.)

Name	Symbol	Definition	SI unit	Notes
standard electrode potential	E^{*}		V	4,9
emf of the cell, potential of the electrochemical cell reaction	E	$E=E^{\ominus}-(R T / n F) \sum v_{i} \ln a_{i}$	V	10
pH	pH	$\mathrm{pH} \approx-\lg \left[\frac{c\left(\mathrm{H}^{+}\right)}{\mathrm{moldm}^{-3}}\right]$	1	11
inner electric potential	ϕ	$\nabla \phi=-\boldsymbol{E}$	V	12
outer electric potential	ψ	$\psi=Q / 4 \pi \varepsilon_{0} r$	V	13
surface electric potential	χ	$\chi=\phi-\psi$	V	
Galvani potential difference	$\Delta \phi$	$\Delta_{\alpha}^{\beta} \phi=\phi^{\beta}-\phi^{\alpha}$	V	14
Volta potential difference	$\Delta \psi$	$\Delta_{\alpha}^{\beta} \psi=\psi^{\beta}-\psi^{\alpha}$	V	15
electrochemical potential	$\tilde{\mu}$	$\tilde{\mu}_{\mathrm{B}}{ }^{\alpha}=\left(\partial G / \partial n_{\mathrm{B}}{ }^{\alpha}\right)$	$\mathrm{J} \mathrm{mol}^{-1}$	1,16
electric current	I	$I=\mathrm{d} Q / \mathrm{d} t$	A	17
(electric) current density	j	$j=I / A$	Am^{-2}	17
(surface) charge density	σ	$\sigma=Q / A$	Cm^{-2}	
electrode reaction rate constant	k	$k_{\mathrm{ox}}=I_{\mathrm{a}} /\left(n F A \prod_{i} c_{i}^{n_{i}}\right)$	(varies)	18, 19
mass transfer coefficient, diffusion rate constant	$k_{\text {d }}$	$k_{\text {d, }}=\left\|v_{\mathrm{B}}\right\| I_{1, \mathrm{~B}} / n F c A$	ms^{-1}	1,19
thickness of diffusion layer	δ	$\delta_{\mathrm{B}}=D_{\mathrm{B}} / k_{\mathrm{d}, \mathrm{B}}$	m	1

(9) Standard potential of an electrode reaction, abbreviated as standard electrode potential, is the value of the standard emf of a cell in which molecular hydrogen is oxidized to solvated protons at the left-hand electrode. For example, the standard potential of the $\mathrm{Zn}^{2+} / \mathrm{Zn}$ electrode, denoted $E^{\ominus}\left(\mathrm{Zn}^{2+} / \mathrm{Zn}\right)$, is the emf of the cell in which the reaction $\mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{H}_{2} \rightarrow 2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Zn}$ takes place under standard conditions (see p.61). The concept of an absolute electrode potential is discussed in reference [31].
(10) $\sum v_{i} \ln a_{i}$ refers to the cell reaction, with v_{i} positive for products and negative for reactants; for the complete cell reaction only mean ionic activities $a_{ \pm}$are involved.
(11) The precise definition of pH is discussed on p .62 . The symbol pH is an exception to the general rules for the symbols of physical quantities (p .5) in that it is a two-letter symbol and it is always printed in roman (upright) type.
(12) \boldsymbol{E} is the electric field strength within the phase concerned.
(13) The definition is an example specific to a conducting sphere of excess charge Q and radius r.
(14) $\Delta \phi$ is the electric potential difference between points within the bulk phases α and β; it is measurable only if the phases are of identical composition.
(15) $\Delta \psi$ is the electric potential difference due to the charge on phases α and β. It is measurable or calculable by classical electrostatics from the charge distribution.
(16) The chemical potential is related to the electrochemical potential by the equation $\mu_{\mathrm{B}}{ }^{\alpha}=\tilde{\mu}_{\mathrm{B}}{ }^{\alpha}-z_{\mathrm{B}} F \phi^{\alpha}$. For an uncharged species, $z_{\mathrm{B}}=0$, the electrochemical potential is equal to the chemical potential.
(17) I, j and α may carry one of the subscripts: a for anodic, c for cathodic, e or o for exchange, or 1 for limiting. I_{a} and I_{c} are the anodic and cathodic partial currents. The cathode is the electrode where reduction takes place, and the anode is the electrode where oxidation takes place.
(18) For reduction the rate constant $k_{\text {red }}$ can be defined analogously in terms of the cathodic current I_{c}. For first-order reaction the SI unit is $\mathrm{m} \mathrm{s}^{-1} . n_{i}$ is the order of reaction with respect to component i.
(19) For more information on kinetics of electrode reactions and on transport phenomena in electrolyte systems see [32] and [33].

Name	Symbol	Definition	SI unit	Notes
transfer coefficient (electrochemical)	α	$\alpha_{\mathrm{c}}=\frac{-\|v\| R T}{n F} \frac{\partial \ln \left\|I_{\mathrm{c}}\right\|}{\partial E}$	1	17, 19
overpotential,	η	$\eta=E_{I}-E_{I=0}-I R_{u}$	V	19
electrokinetic potential, (zeta potential)	ζ		V	
conductivity	$\kappa,(\sigma)$	$\kappa=j / E$	Sm^{-1}	12, 20
conductivity cell constant	$K_{\text {cell }}$	$K_{\text {cell }}=\kappa R$	m^{-1}	
molar conductivity (of an electrolyte)	Λ	$\Lambda_{\mathrm{B}}=\kappa / c_{\mathrm{B}}$	$\mathrm{Sm}^{2} \mathrm{~mol}^{-1}$	1,21
electric mobility	$u,(\mu)$	$u_{\mathrm{B}}=v_{\mathrm{B}} / E$	$\mathrm{m}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$	1,22
ionic conductivity, molar conductivity of an ion	,	$\lambda_{\mathrm{B}}=\left\|z_{\mathrm{B}}\right\| F u_{\mathrm{B}}$	$\mathrm{Sm}^{2} \mathrm{~mol}^{-1}$	1,23
transport number	t	$t_{\mathrm{B}}=j_{\mathrm{B}} / \sum j_{i}$	1	1
reciprocal radius of ionic atmosphere	κ	$\kappa=\left(2 F^{2} I_{c} / \varepsilon R T\right)^{1 / 2}$	m^{-1}	24

(20) Conductivity was formerly called specific conductance.
(21) The unit $\mathrm{S} \mathrm{cm}^{2} \mathrm{~mol}^{-1}$ is often used for molar conductivity.
(22) v_{B} is the speed of entities B and E is the electric field strength within the phase concerned.
(23) It is important to specify the entity to which molar conductivity refers; thus for example $\lambda\left(\mathrm{Mg}^{2+}\right)=2 \lambda\left(\frac{1}{2} \mathrm{Mg}^{2+}\right)$. It is standard practice to choose the entity to be $1 / z_{\mathrm{B}}$ of an ion of charge number z_{B}, so that for example molar conductivities for potassium, barium and lanthanum ions would be quoted as $\lambda\left(\mathrm{K}^{+}\right), \lambda\left(\frac{1}{2} \mathrm{Ba}^{2+}\right)$, or $\lambda\left(\frac{1}{3} \mathrm{La}^{3+}\right)$.
(24) κ appears in Debye-Hückel theory. The Debye length, $L_{\mathrm{D}}=\kappa^{-1}$, appears in Gouy-Chapman theory, and in the theory of semiconductor space charge. I_{c} is the ionic strength.

Conventions concerning the signs of electric potential differences, electromotive forces, and electrode potentials ${ }^{1}$

(i) The electric potential difference for a galvanic cell

The cell should be represented by a diagram, for example:

$$
\mathrm{Zn}\left|\mathrm{Zn}^{2+}\right| \mathrm{Cu}^{2+} \mid \mathrm{Cu}
$$

A single vertical bar (|) should be used to represent a phase boundary, a dashed vertical bar (!) to represent a junction between miscible liquids, and double dashed vertical bars (!) to represent a liquid junction in which the liquid junction potential is assumed to be eliminated. The electric potential difference, denoted ΔV or E, is equal in sign and magnitude to the electric potential of a metallic conducting lead on the right minus that of a similar lead on the left. The emf (electromotive force), also usually denoted E, is the limiting value of the electric potential difference for zero current through the cell, all local charge transfer equilibria and chemical equilibria being established. Note that the symbol E is often used for both the potential difference and the emf, and this can sometimes lead to confusion.

[^3]When the reaction of the cell is written as

$$
\frac{1}{2} \mathrm{Zn}+\frac{1}{2} \mathrm{Cu}^{2+}=\frac{1}{2} \mathrm{Zn}^{2+}+\frac{1}{2} \mathrm{Cu}, \quad n=1
$$

or

$$
\mathrm{Zn}+\mathrm{Cu}^{2+}=\mathrm{Zn}^{2+}+\mathrm{Cu}, \quad n=2
$$

this implies a cell diagram drawn, as above, so that this reaction takes place when positive electricity flows through the cell from left to right (and therefore through the outer part of the circuit from right to left). In the above example the right-hand electrode is positive (unless the ratio $\left[\mathrm{Cu}^{2+}\right] /\left[\mathrm{Zn}^{2+}\right]$ is extremely small), so that this is the direction of spontaneous flow if a wire is connected across the two electrodes. If, however, the reaction is written as

$$
\frac{1}{2} \mathrm{Cu}+\frac{1}{2} \mathrm{Zn}^{2+}=\frac{1}{2} \mathrm{Cu}^{2+}+\frac{1}{2} \mathrm{Zn}, \quad n=1
$$

or

$$
\mathrm{Cu}+\mathrm{Zn}^{2+}=\mathrm{Cu}^{2+}+\mathrm{Zn}, \quad n=2
$$

this implies the cell diagram

$$
\mathrm{Cu}\left|\mathrm{Cu}^{2+}: \mathrm{Zn}^{2+}\right| \mathrm{Zn}
$$

and the electric potential difference of the cell so specified will be negative. Thus a cell diagram may be drawn either way round, and correspondingly the electric potential difference appropriate to the diagram may be either positive or negative.

(ii) Electrode potential (potential of an electrode reaction)

The so-called electrode potential of an electrode is defined as the emf of a cell in which the electrode on the left is a standard hydrogen electrode and the electrode on the right is the electrode in question. For example, for the silver/silver chloride electrode (written $\mathrm{Cl}^{-}(\mathrm{aq})|\mathrm{AgCl}| \mathrm{Ag}$) the cell in question is

$$
\mathrm{Pt}\left|\mathrm{H}_{2}\left(\mathrm{~g}, p=p^{\ominus}\right)\right| \mathrm{HCl}\left(\mathrm{aq}, a_{ \pm}=1\right)\left|\mathrm{HCl}\left(\mathrm{aq}, a_{ \pm}{ }^{\prime}\right)\right| \mathrm{AgCl} \mid \mathrm{Ag}
$$

A liquid junction will be necessary in this cell whenever $a_{ \pm}{ }^{\prime}(\mathrm{HCl})$ on the right differs from $a_{ \pm}(\mathrm{HCl})$ on the left. The reaction taking place at the silver/silver chloride electrode is

$$
\mathrm{AgCl}(\mathrm{~s})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{~s})+\mathrm{Cl}^{-}(\mathrm{aq})
$$

The complete cell reaction is

$$
\mathrm{AgCl}(\mathrm{~s})+\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{Ag}(\mathrm{~s})
$$

In the standard state of the hydrogen electrode, $p\left(\mathrm{H}_{2}\right)=p^{\ominus}=10^{5} \mathrm{~Pa}$ and $a_{ \pm}(\mathrm{HCl})=1$, the emf of this cell is the electrode potential of the silver/silver chloride electrode. If, in addition, the mean activity of the HCl in the silver/silver chloride electrode $a_{ \pm}(\mathrm{HCl})=1$, then the emf is equal to E^{\ominus} for this electrode. The standard electrode potential for $\mathrm{HCl}(\mathrm{aq})|\mathrm{AgCl}| \mathrm{Ag}$ has the value $E^{\ominus}=+0.22217 \mathrm{~V}$ at 298.15 K . For $p^{\ominus}=101325 \mathrm{~Pa}$ the standard potential of this electrode (and of any electrode involving only condensed phases) is higher by 0.17 mV ; i.e.

$$
E^{\ominus}(101325 \mathrm{~Pa})=E^{\ominus}\left(10^{5} \mathrm{~Pa}\right)+0.17 \mathrm{mV}
$$

A compilation of standard electrode potentials, and their conversion between different standard pressures, can be found in [29]. Notice that in writing the cell whose emf represents an electrode potential, it is important that the hydrogen electrode should always be on the left.
(iii) Operational definition of $\mathbf{p H}$ [36]

The notional definition of pH given in the table above is in practice replaced by the following operational definition. For a solution X the $\mathrm{emf} E(\mathrm{X})$ of the galvanic cell

| reference | $\mathrm{KCl}(\mathrm{aq}$,
 electrode | $\left.m>3.5 \mathrm{~mol} \mathrm{~kg}^{-1}\right)$ | solution X | $\mathrm{H}_{2}(\mathrm{~g})$ |
| :--- | :--- | :--- | :--- | :--- |$\quad \mathrm{Pt}$

is measured, and likewise the emf $E(\mathrm{~S})$ of the cell that differs only by the replacement of the solution X of unknown $\mathrm{pH}(\mathrm{X})$ by the solution S of standard $\mathrm{pH}(\mathrm{S})$. The unknown pH is then given by

$$
\mathrm{pH}(\mathrm{X})=\mathrm{pH}(\mathrm{~S})+\left(E_{\mathrm{S}}-E_{\mathrm{X}}\right) F /(R T \ln 10)
$$

Thus defined, pH is dimensionless. Values of $\mathrm{pH}(\mathrm{S})$ for several standard solutions and temperatures are listed in [36]. The reference value pH standard is an aqueous solution of potassium hydrogen phthalate at a molality of exactly $0.05 \mathrm{~mol} \mathrm{~kg}^{-1}:$ at $25^{\circ} \mathrm{C}(298.15 \mathrm{~K})$ this has a pH of 4.005 .

In practice a glass electrode is almost always used in place of the $\mathrm{Pt} \mid \mathrm{H}_{2}$ electrode. The cell might then take the form

reference electrode	$\begin{aligned} & \mathrm{KCl}(\mathrm{aq}, \\ & \left.m>3.5 \mathrm{~mol} \mathrm{~kg}^{-1}\right) \end{aligned}$	solution X	glass	$\mathrm{H}^{+}, \mathrm{Cl}^{-}$	AgCl	

The solution to the right of the glass electrode is usually a buffer solution of $\mathrm{KH}_{2} \mathrm{PO}_{4}$ and $\mathrm{Na}_{2} \mathrm{HPO}_{4}$, with $0.1 \mathrm{moldm}{ }^{-3}$ of NaCl . The reference electrode is usually a calomel electrode, silver/silver chloride electrode, or a thallium amalgam/thallous chloride electrode. The emf of this cell depends on $a\left(\mathrm{H}^{+}\right)$in the solution X in the same way as that of the cell with the $\mathrm{Pt} \mid \mathrm{H}_{2}$ electrode, and thus the same procedure is followed.

In the restricted range of dilute aqueous solutions having amount concentrations less than $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ and being neither strongly acidic nor strongly alkaline ($2<\mathrm{pH}<12$) the above definition is such that

$$
\begin{aligned}
\mathrm{pH} & =-\lg \left[\gamma_{ \pm} c\left(\mathrm{H}^{+}\right) /\left(\mathrm{mol} \mathrm{dm}^{-3}\right)\right] \pm 0.02, \\
& =-\lg \left[\gamma_{ \pm} m\left(\mathrm{H}^{+}\right) /\left(\mathrm{mol} \mathrm{~kg}^{-1}\right)\right] \pm 0.02,
\end{aligned}
$$

where $c\left(\mathrm{H}^{+}\right)$denotes the amount concentration of hydrogen ion H^{+}and $m\left(\mathrm{H}^{+}\right)$the corresponding molality, and $\gamma_{ \pm}$denotes the mean ionic activity coefficient of a typical uni-univalent electrolyte in the solution on a concentration basis or a molality basis as appropriate. For further information on the definition of pH see [36].

2.14 COLLOID AND SURFACE CHEMISTRY

The recommendations given here are based on more extensive IUPAC recommendations [1.e-h] and [37-39]. Catalyst characterization is described in [40] and quantities related to macromolecules in [41].

Name	Symbol	Definition	SI unit	Notes
specific surface area	a, $a_{\mathrm{s}},{ }^{\text {s }}$	$a=A / m$	$\mathrm{m}^{2} \mathrm{~kg}^{-1}$	
surface amount of B, adsorbed amount of B	$n_{B}{ }^{\text {s }}, n_{\text {B }}{ }^{\text {a }}$		mol	1
surface excess of B	$n_{B}{ }^{\text {® }}$		mol	2
surface excess concentration of B	$\Gamma_{\mathrm{B}},\left(\Gamma_{\mathrm{B}}{ }^{\text {c }}\right.$)	$\Gamma_{\mathrm{B}}=n_{\mathrm{B}}{ }^{\text {¢ }} / A$	molm ${ }^{-2}$	2
total surface excess concentration	$\Gamma,\left(\Gamma^{\sigma}\right)$	$\Gamma=\sum_{i} \Gamma_{i}$	molm ${ }^{-2}$	
area per molecule	a, σ	$a_{\mathrm{B}}=A / N_{\mathrm{B}}{ }^{\text {c }}$	m^{2}	3
area per molecule in a filled monolayer	$a_{\mathrm{m}}, \sigma_{\mathrm{m}}$	$a_{\mathrm{m}, \mathrm{B}}=A / N_{\mathrm{m}, \mathrm{B}}$	m^{2}	3
surface coverage	θ	$\theta=N_{\mathbf{B}}{ }^{\circ} / N_{\mathrm{m}, \mathrm{B}}$	1	3
contact angle	θ		1, rad	
film thickness	t, h, δ		m	
thickness of (surface or interfacial) layer	τ, δ, t		m	
surface tension, interfacial tension	γ, σ	$\gamma=\left(\partial G / \partial A_{\mathrm{s}}\right)_{T, p}$	$\mathrm{Nm}^{-1}, \mathrm{Jm}^{-2}$	
film tension	$\Sigma_{\text {f }}$	$\Sigma_{\mathrm{f}}=2 \gamma_{\mathrm{f}}$	$\mathrm{Nm}{ }^{-1}$	4
reciprocal thickness of the double layer	κ	$\kappa=\left(2 F^{2} I_{c} / \varepsilon R T\right)^{\frac{1}{2}}$	m^{-1}	
average molar masses				
number-average	M_{n}	$M_{n}=\Sigma n_{i} M_{i} / \Sigma n_{i}$	$\mathrm{kg} \mathrm{mol}^{-1}$	
mass-average	M_{m}	$M_{m}=\Sigma n_{i} M_{i}^{2} / \Sigma n_{i} M_{i}$	$\mathrm{kg} \mathrm{mol}^{-1}$	
Z-average	M_{z}	$M_{z}=\Sigma n_{i} M_{i}{ }^{3} / \Sigma n_{i} M_{i}{ }^{2}$	$\mathrm{kg} \mathrm{mol}^{-1}$	
sedimentation coefficient	s	$s=v / a$	s	5
van der Waals constant	λ		J	
retarded van der Waals constant	β, B		J	
van der Waals-Hamaker constant	A_{H}		J	
surface pressure	$\pi^{\text {s }}, \pi$	$\pi^{\text {s }}=\gamma^{0}-\gamma$	Nm^{-1}	6

(1) The value of $n_{\mathrm{B}}{ }^{\mathrm{s}}$ depends on the thickness assigned to the surface layer.
(2) The values of $n_{\mathrm{B}}{ }^{\sigma}$ and Γ_{B} depend on the convention used to define the position of the Gibbs surface. They are given by the excess amount of B or surface concentration of B over values that would apply if each of the two bulk phases were homogeneous right up to the Gibbs surface. See [1.e], and also additional recommendations on p. 64 .
(3) $N_{\mathrm{B}}{ }^{\sigma}$ is the number of adsorbed molecules $\left(N_{\mathrm{B}}{ }^{\sigma}=L n_{\mathrm{B}}{ }^{\sigma}\right.$), and $N_{\mathrm{m}, \mathrm{B}}$ is the number of adsorbed molecules in a filled monolayer. The definition applies to entities B.
(4) The definition applies only to a symmetrical film, for which the two bulk phases on either side of the film are the same, and γ_{f} is the surface tension of a film/bulk interface.
(5) In the definition, v is the velocity of sedimentation and a is the acceleration of free fall or centrifugation. The symbol for a limiting sedimentation coefficient is [s], for a reduced sedimentation coefficient $s^{\mathbf{o}}$, and for a reduced limiting sedimentation coefficient [s°]; see [1.e] for further details.
(6) In the definition, γ^{0} is the surface tension of the clean surface and γ that of the covered surface.

Additional recommendations

The superscript s denotes the properties of a surface or interfacial layer. In the presence of adsorption it may be replaced by the superscript a.

Examples Helmholtz energy of interfacial layer amount of adsorbed substance

```
A s
n
n
```

The subscript m denotes the properties of a monolayer.
Example area per molecule B in a monolayer $a_{\mathrm{m}}(\mathrm{B})$
The superscript σ is used to denote a surface excess property relative to the Gibbs surface.

Example	surface excess amount (or Gibbs surface excess of B)$n_{\mathrm{B}}{ }^{\text {g }}$

In general the values of Γ_{A} and Γ_{B} depend on the position chosen for the Gibbs dividing surface. However, two quantities, $\Gamma_{\mathrm{B}}{ }^{(\mathbf{A})}$ and $\Gamma_{\mathrm{B}}{ }^{(\mathrm{n})}$ (and correspondingly $n_{\mathrm{B}}{ }^{\sigma(\mathrm{A})}$ and $n_{\mathrm{B}}{ }^{\sigma(\mathrm{n})}$), may be defined in a way that is invariant to this choice (see [1.e]). $\Gamma_{\mathrm{B}}{ }^{(\mathrm{A})}$ is called the relative surface excess concentration of B with respect to A , or more simply the relative adsorption of B ; it is the value of Γ_{B} when the surface is chosen to make $\Gamma_{\mathrm{A}}=0 . \Gamma_{\mathrm{B}}^{(\mathrm{n})}$ is called the reduced surface excess concentration of B , or more simply the reduced adsorption of B ; it is the value of Γ_{B} when the surface is chosen to make the total excess $\Gamma=\sum_{i} \Gamma_{i}=0$.

Properties of phases (α, β, γ) may be denoted by corresponding superscript indices.
Examples surface tension of phase $\alpha \quad \gamma^{\alpha}$
interfacial tension between phases α and $\beta \quad \gamma^{\alpha \beta}$
Symbols of thermodynamic quantities divided by surface area are usually the corresponding lower case letters; an alternative is to use a circumflex.

Example interfacial entropy per area $s^{s}\left(=\hat{s}^{s}\right)=S^{s} / A$
The following abbreviations are used in colloid chemistry:
c.c.c. critical coagulation concentration
c.m.c. critical micellization concentration
i.e.p. isoelectric point
p.z.c. point of zero charge

2.15 TRANSPORT PROPERTIES

The names and symbols recommended here are in agreement with those recommended by IUPAP [4] and ISO [5.n]. Further information on transport phenomena in electrochemical systems can also be found in [32].

Name	Symbol	Definition	SI unit	Notes
flux (of a quantity X)	J_{X}, J	$J_{X}=A^{-1} \mathrm{~d} X / \mathrm{d} t$	$(\mathrm{~d} t$	
volume flow rate	q_{V}, \dot{V}	$q_{V}=\mathrm{d} V / \mathrm{d} t$	1	
mass flow rate	q_{m}, \dot{m}	$q_{m}=\mathrm{d} m / \mathrm{d} t$	$\mathrm{~m}^{3} \mathrm{~s}^{-1}$	
mass transfer coefficient	k_{d}	$\mathrm{kg} \mathrm{s}^{-1}$		
heat flow rate	Φ	$\Phi=\mathrm{d} q / \mathrm{d} t$	$\mathrm{~m} \mathrm{~s}^{-1}$	
heat flux	J_{q}	W		
thermal conductance	G	$J_{q}=\Phi / A$	$\mathrm{~W} \mathrm{~m}^{-2}$	
thermal resistance	R	$R=\Phi / \Delta T$	$\mathrm{~W} \mathrm{~K}^{-1}$	
thermal conductivity	λ, k	$R=1 / G$	$\mathrm{~K} \mathrm{~W}^{-1}$	$\mathrm{~W} \mathrm{~m}^{-1} \mathrm{~K}^{-1}$
coefficient of heat transfer	$h,(k, K, \alpha)$	$h=J_{q} /(\mathrm{d} T / \mathrm{d} l)$	$\mathrm{W} \mathrm{m}^{-2} \mathrm{~K}^{-1}$	
thermal diffusivity	a	$a=\lambda / \rho c_{p}$	$\mathrm{~m}^{2} \mathrm{~s}^{-1}$	
diffusion coefficient	D	$D=-J_{n} /(\mathrm{d} c / \mathrm{d} l)$	$\mathrm{m}^{2} \mathrm{~s}^{-1}$	

The following symbols are used in the definitions of the dimensionless quantities: mass (m), time (t), volume (V), area (A), density (ρ), speed (v), length (l), viscosity (η), pressure (p), acceleration of free fall (g), cubic expansion coefficient (α), temperature (T), surface tension (γ), speed of sound (c), mean free path (λ), frequency (f), thermal diffusivity (a), coefficient of heat transfer (h), thermal conductivity (k), specific heat capacity at constant pressure $\left(c_{p}\right)$, diffusion coefficient (D), mole fraction (x), mass transfer coefficient (k_{d}), permeability (μ), electric conductivity (κ), and magnetic flux density (B).

Name	Symbol	Definition	SI unit
Reynolds number	$R e$	$R e=\rho v l / \eta$	
Euler number	$E u$	$E u=\Delta p / \rho v^{2}$	1
Froude number	$F r$	$F r=v /(l g)^{1 / 2}$	1
Grashof number	$G r$	$G r=l^{3} g \alpha \Delta T \rho^{2} / \eta^{2}$	1
Weber number	$W e$	$W e=\rho v^{2} l / \gamma$	1
Mach number	$M a$	$M a=v / c$	1
Knudsen number	$K n$	$K n=\lambda / l$	1
Strouhal number	$S r$	$S r=l f / v$	1
Fourier number	$F o$	$F o=a t / l^{2}$	1
Péclet number	$P e$	$P e=v l a$	1
Rayleigh number	$R a$	$R a=l^{3} g \alpha \Delta T \rho / \eta a$	1
Nusselt number	$N u$	$N u=h l / k$	1

(1) The flux of molecules to a surface, J_{N}, determines either the rate at which it would be covered if each molecule stuck, or the rate of effusion through a hole in the surface. In studying the exposure, $\int J_{N} \mathrm{~d} t$, of a surface to a gas, surface scientists find it useful to use the product of pressure and time as a measure of the exposure since this product is proportional to the number flux, J_{N}, times the time $J_{N} t=(1 / 4) C \bar{u} t=(\bar{u} / 4 k T) p t$, where C is the number density of molecules, \bar{u} their average speed, k the Boltzmann constant and T the thermodynamic temperature. The unit langmuir (symbol: L) corresponds to the exposure of a surface to a gas at 10^{-6} torr for 1 second.

Name	Symbol	Definition	SI unit	Notes
Stanton number	$S t$	$S t=h / \rho v c_{p}$	1	
Fourier number for mass transfer	$F o^{*}$	$F o^{*}=D t / l^{2}$	1	2
Péclet number for mass transfer	$P e^{*}$	$P e^{*}=v l / D(\partial \rho$		
Grashof number for mass transfer	$G r^{*}$	$G r^{*}=l^{3} g\left(\frac{\partial \rho}{\partial x}\right)_{T, p}\left(\frac{\Delta x \rho}{\eta}\right)$	1	2
Nusselt number for	$N u^{*}$	$N u^{*}=k_{\mathrm{d}} l / D$	1	2
\quad mass transfer			1	2,3
Stanton number for	$S t^{*}$	$S t^{*}=k_{\mathrm{d}} / v$	1	2
\quad mass transfer	$P r$	$P r=\eta / \rho a$	1	
Prandtl number	$S c$	$S c=\eta / \rho D$	1	
Schmidt number $L e$	$L e=a / D$	1		
Lewis number	$R m, R e_{\mathrm{m}}$	$R m=v \mu \kappa l$	1	
magnetic Reynolds		$A l$	$A l=v(\rho \mu)^{\frac{1}{2}} / B$	1

(2) This quantity applies to the transport of matter in binary mixtures.
(3) The name Sherwood number and symbol Sh have been widely used for this quantity.

This page is intentionally blank

3

Definitions and symbols for units

3.1 THE INTERNATIONAL SYSTEM OF UNITS (SI)

The International System of units (SI) was adopted by the 11th General Conference on Weights and Measures (CGPM) in 1960 [3]. It is a coherent system of units built from seven SI base units, one for each of the seven dimensionally independent base quantities (see section 1.2): they are the metre, kilogram, second, ampere, kelvin, mole, and candela, for the dimensions length, mass, time, electric current, thermodynamic temperature, amount of substance, and luminous intensity, respectively. The definitions of the SI base units are given in section 3.2. The SI derived units are expressed as products of powers of the base units, analogous to the corresponding relations between physical quantities but with numerical factors equal to unity [3].

In the International System there is only one SI unit for each physical quantity. This is either the appropriate SI base unit itself (see table 3.3) or the appropriate SI derived unit (see tables 3.4 and 3.5). However, any of the approved decimal prefixes, called SI prefixes, may be used to construct decimal multiples or submultiples of SI units (see table 3.6).

It is recommended that only SI units be used in science and technology (with SI prefixes where appropriate). Where there are special reasons for making an exception to this rule, it is recommended always to define the units used in terms of SI units.

3.2 DEFINITIONS OF THE SI BASE UNITS [3]

metre: The metre is the length of path travelled by light in vacuum during a time interval of 1/299 792458 of a second (17th CGPM, 1983).
kilogram: The kilogram is the unit of mass; it is equal to the mass of the international prototype of the kilogram (3rd CGPM, 1901).
second: The second is the duration of 9192631770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium-133 atom (13th CGPM, 1967).
ampere: The ampere is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross-section, and placed 1 metre apart in vacuum, would produce between these conductors a force equal to 2×10^{-7} newton per metre of length (9th CGPM, 1948).
kelvin: The kelvin, unit of thermodynamic temperature, is the fraction $1 / 273.16$ of the thermodynamic temperature of the triple point of water (13th CGPM, 1967).
mole: The mole is the amount of substance of a system which contains as many elementary entities as there are atoms in 0.012 kilogram of carbon-12. When the mole is used, the elementary entities must be specified and may be atoms, molecules, ions, electrons, other particles, or specified groups of such particles (14th CGPM, 1971).

Examples of the use of the mole

```
    1 mol of \(\mathrm{H}_{2}\) contains about \(6.022 \times 10^{23} \mathrm{H}_{2}\) molecules, or \(12.044 \times 10^{23} \mathrm{H}\) atoms
    1 mol of HgCl has a mass of 236.04 g
    1 mol of \(\mathrm{Hg}_{2} \mathrm{Cl}_{2}\) has a mass of 472.08 g
    1 mol of \(\mathrm{Hg}_{2}{ }^{2+}\) has a mass of 401.18 g and a charge of 192.97 kC
    1 mol of \(\mathrm{Fe}_{0.91} \mathrm{~S}\) has a mass of 82.88 g
    1 mol of \(\mathrm{e}^{-}\)has a mass of \(548.60 \mu \mathrm{~g}\) and a charge of -96.49 kC
    1 mol of photons whose frequency is \(5 \times 10^{14} \mathrm{~Hz}\) has energy of about 199.5 kJ
```

See also section 2.10, p.46.
candela: The candela is the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 540×10^{12} hertz and that has a radiant intensity in that direction of $(1 / 683)$ watt per steradian (16th CGPM, 1979).

3.3 NAMES AND SYMBOLS FOR THE SI BASE UNITS

The symbols listed here are internationally agreed and should not be changed in other languages or scripts. See sections 1.3 and 1.4 on the printing of symbols for units. Recommended representations for these symbols for use in systems with limited character sets can be found in [7].

Physical quantity	Name of SI unit	Symbol for SI unit
length	metre	m
mass	kilogram	kg
time	second	s
electric current thermodynamic temperature	ampere	A
amount of substance luminous intensity	mole candela	K

3.4 SI DERIVED UNITS WITH SPECIAL NAMES AND SYMBOLS

Physical quantity	Name of SI unit	Symbol for SI unit	Expressio terms of S	in base units
frequency ${ }^{1}$	hertz	Hz	s^{-1}	
force	newton	N	$\mathrm{mkg} \mathrm{s}{ }^{-2}$	
pressure, stress	pascal	Pa	Nm^{-2}	$=\mathrm{m}^{-1} \mathrm{~kg} \mathrm{~s}^{-2}$
energy, work, heat	joule	J	N m	$=\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-2}$
power, radiant flux	watt	W	$\mathrm{J} \mathrm{S}^{-1}$	$=\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-3}$
electric charge	coulomb	C	A s	
electric potential, electromotive force	volt	V	$\mathrm{J}^{\text {C }}$ -	$=\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-3} \mathrm{~A}^{-1}$
electric resistance	ohm	Ω	VA^{-1}	$=\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-3} \mathrm{~A}^{-2}$
electric conductance	siemens	S	Ω^{-1}	$=\mathrm{m}^{-2} \mathrm{~kg}^{-1} \mathrm{~s}^{3} \mathrm{~A}^{2}$
electric capacitance	farad	F	CV^{-1}	$=\mathrm{m}^{-2} \mathrm{~kg}^{-1} \mathrm{~s}^{4} \mathrm{~A}^{2}$
magnetic flux density	tesla	T	V s m ${ }^{-2}$	$=\mathrm{kg} \mathrm{s}^{-2} \mathrm{~A}^{-1}$
magnetic flux	weber	Wb	V s	$=\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~A}^{-1}$
inductance	henry	H	$\mathrm{VA}^{-1} \mathrm{~s}$	$=\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~A}^{-2}$
Celsius temperature ${ }^{2}$	degree Celsius	${ }^{\circ} \mathrm{C}$	K	
luminous flux	lumen	1 m	cd sr	
illuminance	lux	1 x	$\mathrm{cd} \mathrm{sr} \mathrm{m}{ }^{-2}$	
activity 3 (radioactive)	becquerel	Bq	s^{-1}	
absorbed dose ${ }^{3}$ (of radiation)	gray	Gy	$\mathrm{J} \mathrm{kg}^{-1}$	$=\mathrm{m}^{2} \mathrm{~s}^{-2}$
dose equivalent ${ }^{3}$ (dose equivalent index)	sievert	Sv	Jkg^{-1}	$=\mathrm{m}^{2} \mathrm{~s}^{-2}$
plane angle ${ }^{4}$	radian	rad	1	$=\mathrm{m} \mathrm{m}^{-1}$
solid angle ${ }^{4}$	steradian	sr	1	$=\mathrm{m}^{2} \mathrm{~m}^{-2}$

(1) For radial (angular) frequency and for angular velocity the unit rad s^{-1}, or simply s^{-1}, should be used, and this may not be simplified to Hz . The unit Hz should be used only for frequency in the sense of cycles per second.
(2) The Celsius temperature θ is defined by the equation

$$
\theta /{ }^{\circ} \mathrm{C}=T / \mathrm{K}-273.15
$$

The SI unit of Celsius temperature is the degree Celsius, ${ }^{\circ} \mathrm{C}$, which is equal to the kelvin, $\mathrm{K} .{ }^{\circ} \mathrm{C}$ should be treated as a single symbol, with no space between the ${ }^{\circ}$ sign and the letter C . (The symbol ${ }^{\circ} \mathrm{K}$, and the symbol ${ }^{\circ}$, should no longer be used.)
(3) The units becquerel, gray and sievert are admitted for reasons of safeguarding human health [3].
(4) The units radian and steradian are described as 'SI supplementary units' [3]. However, in chemistry, as well as in physics [4], they are usually treated as dimensionless derived units, and this was recognized by CIPM in 1980. Since they are then of dimension 1, this leaves open the possibility of including them or omitting them in expressions of SI derived units. In practice this means that rad and sr may be used when appropriate and may be omitted if clarity is not lost thereby.

3.5 SI DERIVED UNITS FOR OTHER QUANTITIES

This table gives examples of other SI derived units; the list is merely illustrative.
Physical quantity
Expression in terms of SI base units
area
volume
speed, velocity
angular velocity
acceleration
moment of force
wavenumber
density, mass density
specific volume
amount concentration ${ }^{1}$
molar volume
heat capacity, entropy
molar heat capacity,
molar entropy
specific heat capacity,
specific entropy
molar energy
specific energy
energy density
surface tension
heat flux density, irradiance
thermal conductivity
kinematic viscosity, diffusion coefficient
dynamic viscosity
electric charge density
electric current density
conductivity
molar conductivity
permittivity
permeability
electric field strength
magnetic field strength
luminance
exposure (X and γ rays)
absorbed dose rate

$$
\begin{aligned}
& \mathrm{m}^{2} \\
& \mathrm{~m}^{3} \\
& \mathrm{~m} \mathrm{~s}^{-1} \\
& \mathrm{~s}^{-1}, \mathrm{rad} \mathrm{~s}^{-1} \\
& \mathrm{~m} \mathrm{~s}^{-2} \\
& \mathrm{Nm} \quad=\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-2} \\
& \mathrm{~m}^{-1} \\
& \mathrm{~kg} \mathrm{~m}^{-3} \\
& \mathrm{~m}^{3} \mathrm{~kg}^{-1} \\
& \mathrm{~mol} \mathrm{~m}{ }^{-3} \\
& \mathrm{~m}^{3} \mathrm{~mol}^{-1} \\
& \mathrm{JKK}^{-1} \quad=\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~K}^{-1} \\
& \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \quad=\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~kg}^{-1} \quad=\mathrm{m}^{2} \mathrm{~s}^{-2} \mathrm{~K}^{-1} \\
& \mathrm{~J} \mathrm{~mol}^{-1} \quad=\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~mol}^{-1} \\
& \mathrm{~J} \mathrm{~kg}^{-1} \quad=\mathrm{m}^{2} \mathrm{~s}^{-2} \\
& \mathrm{~J} \mathrm{~m}^{-3} \quad=\mathrm{m}^{-1} \mathrm{~kg} \mathrm{~s}^{-2} \\
& \mathrm{Nm}^{-1}=\mathrm{J}_{\mathrm{m}}{ }^{-2}=\mathrm{kg} \mathrm{~s}^{-2} \\
& \mathrm{Wm}^{-2} \quad=\mathrm{kg} \mathrm{~s}^{-3} \\
& \mathrm{~W} \mathrm{~m}^{-1} \mathrm{~K}^{-1} \quad=\mathrm{m} \mathrm{~kg} \mathrm{~s}^{-3} \mathrm{~K}^{-1} \\
& \mathrm{~m}^{2} \mathrm{~s}^{-1} \\
& \mathrm{Nsm}^{-2}=\mathrm{Pas}=\mathrm{m}^{-1} \mathrm{kgs}^{-1} \\
& \mathrm{Cm}^{-3} \quad=\mathrm{m}^{-3} \mathrm{sA} \\
& \text { A } m^{-2} \\
& \mathrm{Sm}^{-1} \quad=\mathrm{m}^{-3} \mathrm{~kg}^{-1} \mathrm{~s}^{3} \mathrm{~A}^{2} \\
& \mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1} \quad=\mathrm{kg}^{-1} \mathrm{~mol}^{-1} \mathrm{~s}^{3} \mathrm{~A}^{2} \\
& \mathrm{Fm}^{-1} \quad=\mathrm{m}^{-3} \mathrm{~kg}^{-1} \mathrm{~s}^{4} \mathrm{~A}^{2} \\
& \mathrm{Hm}^{-1} \quad=\mathrm{m} \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~A}^{-2} \\
& \mathrm{Vm}^{-1} \quad=\mathrm{m} \mathrm{~kg} \mathrm{~s}^{-3} \mathrm{~A}^{-1} \\
& \text { A } \mathrm{m}^{-1} \\
& \mathrm{~cd} \mathrm{~m}^{-2} \\
& \mathrm{Ckg}^{-1} \quad=\mathrm{kg}^{-1} \mathrm{sA} \\
& \mathrm{~Gy} \mathrm{~s}^{-1} \quad=\mathrm{m}^{2} \mathrm{~s}^{-3}
\end{aligned}
$$

(1) The words 'amount concentration' are an abbreviation for 'amount-of-substance concentration'. When there is not likely to be any ambiguity this quantity may be called simply 'concentration'.

3.6 SI PREFIXES

To signify decimal multiples and submultiples of SI units the following prefixes may be used [3].

Submultiple	Prefix	Symbol	Multiple	Prefix	Symbol
10^{-1}	deci	d	10	deca	da
10^{-2}	centi	c	10^{2}	hecto	h
10^{-3}	milli	m	10^{3}	kilo	k
10^{-6}	micro	μ	10^{6}	mega	M
10^{-9}	nano	n	10^{9}	giga	G
10^{-12}	pico	p	10^{12}	tera	T
10^{-15}	femto	f	10^{15}	peta	P
10^{-18}	atto	a	10^{18}	exa	E
10^{-21}	zepto	z	10^{21}	zetta	Z
10^{-24}	yocto	y	10^{24}	yotta	Y

Prefix symbols should be printed in roman (upright) type with no space between the prefix and the unit symbol.

Example kilometre, km
When a prefix is used with a unit symbol, the combination is taken as a new symbol that can be raised to any power without the use of parentheses.

Examples $1 \mathrm{~cm}^{3}=(0.01 \mathrm{~m})^{3}=10^{-6} \mathrm{~m}^{3}$
$1 \mu \mathrm{~s}^{-1}=\left(10^{-6} \mathrm{~s}\right)^{-1}=10^{6} \mathrm{~s}^{-1}$
$1 \mathrm{~V} / \mathrm{cm}=100 \mathrm{~V} / \mathrm{m}$
$1 \mathrm{mmol} / \mathrm{dm}^{3}=1 \mathrm{molm}^{-3}$
A prefix should never be used on its own, and prefixes are not to be combined into compound prefixes.

Example pm, not $\mu \mu \mathrm{m}$
The names and symbols of decimal multiples and submultiples of the SI base unit of mass, the kg , which already contains a prefix, are constructed by adding the appropriate prefix to the word gram and symbol g .

Examples mg , not $\mu \mathrm{kg}$; Mg, not kkg

The SI prefixes are not to be used with ${ }^{\circ} \mathrm{C}$.
ISO has recommended standard representations of the prefix symbols for use with limited character sets [7].

3.7 UNITS IN USE TOGETHER WITH THE SI

These units are not part of the SI, but it is recognized that they will continue to be used in appropriate contexts. SI prefixes may be attached to some of these units, such as millilitre, ml; millibar, mbar; megaelectronvolt, MeV ; kilotonne, kt . A more extensive list of non-SI units, with conversion factors to the corresponding SI units, is given in chapter 7.

Physical quantity	Name of unit	Symbol for unit	Value in SI units
time	minute	min	60 s
time	hour	h	3600 s
time	day	d	86400 s
plane angle	degree	-	($\pi / 180$) rad
plane angle	minute		$(\pi / 10800) \mathrm{rad}$
plane angle	second	"	($\pi / 648000$) rad
length	ångström ${ }^{1}$	Å	$10^{-10} \mathrm{~m}$
area	barn	b	$10^{-28} \mathrm{~m}^{2}$
volume	litre	1, L	$\mathrm{dm}^{3}=10^{-3} \mathrm{~m}^{3}$
mass	tonne	t	$\mathrm{Mg}=10^{3} \mathrm{~kg}$
pressure	bar^{1}	bar	$10^{5} \mathrm{~Pa}=10^{5} \mathrm{Nm}^{-2}$
energy	electronvolt ${ }^{2}$	$\mathrm{eV}(=e \times \mathrm{V})$	$\approx 1.60218 \times 10^{-19} \mathrm{~J}$
mass	unified atomic mass unit ${ }^{2,3}$	$\left.\mathrm{u}\left(=m_{\mathrm{a}}{ }^{(12} \mathrm{C}\right) / 12\right)$	$\approx 1.66054 \times 10^{-27} \mathrm{~kg}$

(1) The ångström and the bar are approved by CIPM [3] for 'temporary use with SI units', until CIPM makes a further recommendation. However, they should not be introduced where they are not used at present.
(2) The values of these units in terms of the corresponding SI units are not exact, since they depend on the values of the physical constants e (for the electronvolt) and $N_{\text {A }}$ (for the unified atomic mass unit), which are determined by experiment. See chapter 5 .
(3) The unified atomic mass unit is also sometimes called the dalton, with symbol Da , although the name and symbol have not been approved by CGPM.

3.8 ATOMIC UNITS [9] (see also section 7.3, p.120)

For the purposes of quantum mechanical calculations of electronic wavefunctions, it is convenient to regard certain fundamental constants (and combinations of such constants) as though they were units. They are customarily called atomic units (abbreviated: au), and they may be regarded as forming a coherent system of units for the calculation of electronic properties in theoretical chemistry, although there is no authority from CGPM for treating them as units. They are discussed further in relation to the electromagnetic units in chapter 7, p.120. The first five atomic units in the table below have special names and symbols. Only four of these are independent; all others may be derived by multiplication and division in the usual way, and the table includes a number of examples.

The relation of atomic units to the corresponding SI units involves the values of the fundamental physical constants, and is therefore not exact. The numerical values in the table are based on the estimates of the fundamental constants given in chapter 5 . The numerical results of calculations in theoretical chemistry are frequently quoted in atomic units, or as numerical values in the form (physical quantity)/(atomic unit), so that the reader may make the conversion using the current best estimates of the physical constants.

Physical quantity	Name of unit	Symbol for unit	Value of unit in SI
mass	electron rest mass	m_{e}	$9.1093897(54) \times 10^{-31} \mathrm{~kg}$
charge	elementary charge	e	$1.60217733(49) \times 10^{-19} \mathrm{C}$
action	Planck constant $/ 2 \pi^{1}$	\hbar	$1.05457266(63) \times 10^{-34} \mathrm{~J} \mathrm{~s}$
length	bohr 1	a_{0}	$5.29177249(24) \times 10^{-11} \mathrm{~m}$
energy	hartree 1	E_{h}	$4.3597482(26) \times 10^{-18} \mathrm{~J}$
time	\hbar / E_{h}	$2.4188843341(29) \times 10^{-17} \mathrm{~s}$	
velocity		$a_{0} E_{\mathrm{h}} / \hbar$	$2.18769142(10) \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$
force	E_{h} / a_{0}	$8.2387295(25) \times 10^{-8} \mathrm{~N}$	
momentum, linear	\hbar / a_{0}	$1.9928534(12) \times 10^{-24} \mathrm{~N} \mathrm{~s}$	
electric current	$e E_{\mathrm{h}} / \hbar$	$6.6236211(20) \times 10^{-3} \mathrm{~A}$	
electric field		$E_{\mathrm{h}} / e a_{0}$	$5.1422082(15) \times 10^{11} \mathrm{~V} \mathrm{~m}^{-1}$
electric dipole moment		$e a_{0}$	$8.4783579(26) \times 10^{-30} \mathrm{Cm}^{2}$
magnetic flux density		$e \hbar / m_{0}$	$2.35051808(71) \times 10^{5} \mathrm{~T}$
magnetic dipole moment ${ }^{3}$			

(1) $\hbar=h / 2 \pi ; a_{0}=4 \pi \varepsilon_{0} \hbar^{2} / m_{\mathrm{e}} e^{2} ; E_{\mathrm{h}}=\hbar^{2} / m_{\mathrm{e}} a_{0}{ }^{2}$.
(2) The numerical value of the speed of light, when expressed in atomic units, is equal to the reciprocal of the fine structure constant $\alpha ; c /($ au of velocity $)=c \hbar / a_{0} E_{\mathrm{h}}=\alpha^{-1} \approx 137.0359895$ (61).
(3) The atomic unit of magnetic dipole moment is twice the Bohr magneton, μ_{B}.

3.9 DIMENSIONLESS QUANTITIES

Values of dimensionless physical quantities, more properly called 'quantities of dimension one', are often expressed in terms of mathematically exactly defined values denoted by special symbols or abbreviations, such as \% (percent) and ppm (part per million). These symbols are then treated as units, and are used as such in calculations.

Fractions (relative values, yields, efficiencies)

Fractions such as relative uncertainty, mole fraction x (also called amount fraction, or number fraction), mass fraction w, and volume fraction ϕ (see p. 41 for all these quantities), are sometimes expressed in terms of the symbols summarized in the table below.

Name	Symbol	Value	Examples
percent	$\%$	10^{-2}	The isotopic abundance of carbon-13 expressed as a mole fraction is $x=1.1 \%$
part per million	ppm	10^{-6}	The relative uncertainty in the Planck constant $h\left(=6.6260755(40) \times 10^{-34} \mathrm{~J} \mathrm{~s}\right)$ is 0.60 ppm
The mass fraction of impurities in a sample of copper			
was found to be less than $3 \mathrm{ppm}, w<3 \mathrm{ppm}$			

These multiples of the unit one are not part of the SI and ISO recommends that these symbols should never be used. They are also frequently used as units of 'concentration' without a clear indication of the type of fraction implied (e.g. mole fraction, mass fraction or volume fraction). To avoid ambiguity they should only be used in a context where the meaning of the quantity is carefully defined. Even then, the use of an appropriate SI unit ratio may be preferred.

Further examples: (i) The mass fraction $w=1.5 \times 10^{-6}=1.5 \mathrm{ppm}$, or $w=1.5 \mathrm{mg} / \mathrm{kg}$
(ii) The mole fraction $x=3.7 \times 10^{-2}=3.7 \%$ or $x=37 \mathrm{mmol} / \mathrm{mol}$
(iii) Atomic absorption spectroscopy shows the aqueous solution to contain a mass concentration of nickel $\rho(\mathrm{Ni})=2.6 \mathrm{mg} \mathrm{dm}^{-3}$, which is approximately equivalent to a mass fraction $w(\mathrm{Ni})=2.6 \times 10^{-6}=2.6 \mathrm{ppm}$.

Note the importance of using the recommended name and symbol for the quantity in each of the above examples. Statements such as 'the concentration of nickel was 2.6 ppm ' are ambiguous and should be avoided.

Example (iii) illustrates the approximate equivalence of $\left(\rho / \mathrm{mg} \mathrm{dm}^{-3}\right)$ and (w / ppm) in aqueous solution, which follows from the fact that the mass density of a dilute aqueous solution is always approximately $1.0 \mathrm{~g} \mathrm{~cm}^{-3}$. Dilute solutions are often measured or calibrated to a known mass concentration in $\mathrm{mg} \mathrm{dm}^{-3}$, and this unit is then to be preferred to using ppm to specify a mass fraction.

Deprecated usage

Adding extra labels to ppm and similar symbols, such as ppmv (meaning ppm by volume) should be avoided. Qualifying labels may be added to symbols for physical quantities, but never to units.

Examples: A volume fraction $\phi=2 \mathrm{ppm}$, but not a concentration of 2 ppmv .
A mass fraction $w=0.5 \%$, but not $0.5 \% \mathrm{w} / \mathrm{w}$.
The symbols \% and ppm should not be used in combination with other units. In table headings and in labelling the axes of graphs the use of $\%$ and ppm in the denominator is to be avoided. Although one would write $x\left({ }^{13} \mathrm{C}\right)=1.1 \%$, the notation $100 x$ is to be preferred to $x / \%$ in tables and graphs (see for example table 6.3 on p .98).

The further symbols listed in the table below are also to be found in the literature, but their use is to be deprecated. Note that the names and symbols for 10^{-9} and 10^{-12} in this table are based on the American system of names. In other parts of the world a billion sometimes stands for 10^{12} and a trillion for 10^{18}. Note also that the symbol ppt is sometimes used for part per thousand, and sometimes for part per trillion.

To avoid ambiguity the symbols ppb, ppt and pphm should not be used.

Name	Symbol	Value	Examples
part per hundred	pph	10^{-2}	(Exactly equivalent to percent, \%)
part per thousand	ppt	10^{-3} \}	Atmospheric carbon dioxide is depleted in
permille ${ }^{1}$	\%	10^{-3}	7 ppt) relative to ocean water
part per hundred million	pphm	10^{-8}	The mass fraction of impurity in the metal was less than 5 pphm
part per billion	ppb	10^{-9}	The air quality standard for ozone is a volume fraction of $\phi=120 \mathrm{ppb}$
part per trillion	ppt	10^{-12}	The natural background volume fraction of NO in air was found to be $\phi=140 \mathrm{ppt}$
part per quadrillion	ppq	10^{-15}	

(1) The permille is also spelled per mille, per mill, permil or pro mille.

Units of logarithmic quantities: neper, bel and decibel

In some fields, especially in acoustics, special names are given to the number 1 when expressing physical quantities defined in terms of the logarithm of a ratio. For a damped linear oscillation the amplitude of a quantity as a function of time is given by

$$
F(t)=A \mathrm{e}^{-\delta t} \cos \omega t=A \operatorname{Re}\{\exp [(-\delta+\mathrm{i} \omega) t]\}
$$

From this relation it is clear that the coherent SI unit for the damping coefficient δ and the angular frequency ω is the reciprocal second $\left(\mathrm{s}^{-1}\right)$. However, the special names neper, Np , and radian, rad (see p. 11 and p.72), are used for the units of the dimensionless products δt and ωt respectively. Similarly the quantities δ and ω may be expressed in the units Np / s and $\mathrm{rad} / \mathrm{s}$ respectively. Used in this way the neper, Np , and the radian, rad, may both be thought of as special names for the number 1 .

In the field of acoustics and signal transmission, signal power levels and signal amplitude levels (or field levels) are usually expressed as the decadic or the napierian logarithm of the ratio of the power P to a reference power P_{0}, or of the field F to a reference field F_{0}. Since power is often proportional to the square of the field or amplitude (when the field acts on equal impedances) it is convenient to define the power level and the field level to be equal in such a case. This is done by
defining the power level and the field level according to the relations

$$
L_{F}=\ln \left(F / F_{0}\right), \quad \text { and } \quad L_{P}=\frac{1}{2} \ln \left(P / P_{0}\right),
$$

so that if $\left(P / P_{0}\right)=\left(F / F_{0}\right)^{2}$ then $L_{P}=L_{F}$. The above equations may be written in the form

$$
L_{F}=\ln \left(F / F_{0}\right) \mathrm{Np}, \text { and } L_{P}=\frac{1}{2} \ln \left(P / P_{0}\right) \mathrm{Np}
$$

The bel, B, and its more frequently used submultiple the decibel, dB , are used when the field and power levels are calculated using decadic logarithms according to the relations

$$
L_{P}=\lg \left(P / P_{0}\right) \mathrm{B}=10 \lg \left(P / P_{0}\right) \mathrm{dB},
$$

and

$$
L_{F}=2 \lg \left(F / F_{0}\right) \mathrm{B}=20 \lg \left(F / F_{0}\right) \mathrm{dB}
$$

The relation between the bel and the neper follows from comparing these equations with the preceding equations. We obtain

$$
L_{F}=\ln \left(F / F_{0}\right) \mathrm{Np}=2 \lg \left(F / F_{0}\right) \mathrm{B}=\ln (10) \lg \left(F / F_{0}\right) \mathrm{Np}
$$

giving

$$
\mathrm{B}=10 \mathrm{~dB}=\frac{1}{2} \ln (10) \mathrm{Np}=1.151293 \mathrm{~Np}
$$

However the bel and the decibel should only be used when expressing power levels as a decadic logarithm, and the neper when expressing field levels using a natural logarithm. In practice the neper and the bel are hardly ever used. Only the decibel is used, to represent the decadic logarithm of a power ratio, particularly in the context of acoustics, and in labelling the controls of power amplifiers. Thus the statement $L_{P}=n \mathrm{~dB}$ implies that $10 \lg \left(P / P_{0}\right)=n$.

The quantities power level and field level, and the units bel, decibel and neper, are summarized in the table and notes that follow.

Name	Expression	Numerical value \times unit	Notes
power level	$L_{P}=\frac{1}{2} \ln \left(P / P_{0}\right)$	$=\frac{1}{2} \ln \left(P / P_{0}\right) \mathrm{Np}=\lg \left(P / P_{0}\right) \mathrm{B}=10 \lg \left(P / P_{0}\right) \mathrm{dB}$	$1-3$
field level	$L_{F}=\ln \left(F / F_{0}\right)$	$=\ln \left(F / F_{0}\right) \mathrm{Np}=2 \lg \left(F / F_{0}\right) \mathrm{B}=20 \lg \left(F / F_{0}\right) \mathrm{dB}$	$4-6$

(1) P_{0} is a reference power, which should be specified. The factor $\frac{1}{2}$ is included in the definition to make $L_{P} \approx L_{F}$.
(2) In the context of acoustics the power level is called the sound power level and given the symbol L_{W}, and the reference power $P_{0}=1 \mathrm{pW}$.
(3) For example, when $L_{P}=1 \mathrm{~B}=10 \mathrm{~dB}, P / P_{0}=10$; and when $L_{P}=2 \mathrm{~B}=20 \mathrm{~dB}, P / P_{0}=100$; etc.
(4) F_{0} is a reference field, which should be specified.
(5) In the context of acoustics the field level is called the sound pressure level and given the symbol L_{p}, and the reference pressure $p_{0}=20 \mu \mathrm{~Pa}$.
(6) For example, when $L_{F}=1 \mathrm{~Np}, F / F_{0}=\mathrm{e}=2.718281 \ldots$.

This page is intentionally blank

This page is intentionally blank

Recommended mathematical symbols

4.1 PRINTING OF NUMBERS AND MATHEMATICAL SYMBOLS [5.a]

(i) Numbers in general should be printed in roman (upright) type. The decimal sign between digits in a number should be a point (e.g. 2.3) or a comma (e.g. 2,3). ISO [5.a] recommends a comma in preference to a point for the decimal marker. To facilitate the reading of long numbers the digits may be grouped in threes about the decimal sign but no point or comma should be used except for the decimal sign. When the decimal sign is placed before the first significant digit of a number a zero should always precede the decimal sign.

Examples 2573.421736 or 2573,421736 or 0.2573×10^{4} or $0,2573 \times 10^{4}$
(ii) Numerical values of physical quantities which have been experimentally determined are usually subject to some uncertainty. The experimental uncertainty should always be specified. The magnitude of the uncertainty may be represented as follows.

$$
\text { Examples } \begin{aligned}
l & =(5.3478 \pm 0.0065) \mathrm{cm} \text { or } l=5.3478 \mathrm{~cm} \pm 0.0065 \mathrm{~cm} \\
l & =5.3478(32) \mathrm{cm} \\
l & =5.34_{8} \mathrm{~cm}
\end{aligned}
$$

In the first example the range of uncertainty is indicated directly as $a \pm b$. It is recommended that this notation should be used only with the meaning that the interval $a \pm b$ contains the true value with a high degree of certainty, such that $b \geq 2 \sigma$, where σ denotes the standard uncertainty or standard deviation.

In the second example, $a(b)$, the range of uncertainty b indicated in parenthesis is assumed to apply to the least significant digits of a. It is recommended that this notation be reserved for the meaning that b represents 1σ in the final digits of a. The third example implies a less precise estimate of uncertainty, which would be read as between 1 and 9 in the subscripted digit. In any case the convention used for uncertainties should be clearly stated.
(iii) Letter symbols for mathematical constants (e.g. e, π, $i=\sqrt{-1}$) should be printed in roman (upright) type, but letter symbols for numbers other than constants (e.g. quantum numbers) should be printed in italic (sloping) type, similar to physical quantities.
(iv) Symbols for special mathematical functions (e.g. log, lg, exp, sin, cos, $\mathrm{d}, \delta, \Delta, \nabla, \ldots$) should be printed in roman type, but symbols for a general function (e.g. $f(x), F(x, y), \ldots$) should be printed in italic type.
(v) Symbols for symmetry species in group theory (e.g. S, P, D, ..., s, p, d, ..., $\Sigma, \Pi, \Delta, \ldots, A_{1 g}$, $\mathrm{B}_{2}^{\prime \prime}, \ldots$) should be printed in roman (upright) type when they represent the state symbol for an atom or a molecule, although they are often printed in italic type when they represent the symmetry species of a point group.
(vi) Vectors and matrices should be printed in bold face italic type.

Examples force \boldsymbol{F}, electric field \boldsymbol{E}, vector coordinate \boldsymbol{r}
Ordinary italic type is used to denote the magnitude of the corresponding vector.
Example $r=|\boldsymbol{r}|$
Tensor quantities may be printed in bold face italic sans-serif type.

Examples $\boldsymbol{S}, \boldsymbol{T}$

4.2 SYMBOLS, OPERATORS AND FUNCTIONS [5.m]

(1) When multiplication is indicated by a dot, the dot should be raised: $a \cdot b$.
square root of minus one
real part of $z=a+\mathrm{i} b$
imaginary part of $z=a+\mathrm{i} b$
modulus of $z=a+\mathrm{i} b$,
absolute value of $z=a+\mathrm{i} b$
argument of $z=a+i b$
complex conjugate of $z=a+i b$
greatest integer $\leqslant x$
integer division, ent (n / m)
remainder after integer division, $n / m-\operatorname{ent}(n / m)$
change in x
infinitesimal change of f
limit of $f(x)$ as x tends to a

1st derivative of f
nth derivative of f
partial derivative of f
total differential of f
inexact differential of f (note 2)
first derivative of x with respect to time
integral of $f(x)$
Kronecker delta
Levi-Civita symbol

Dirac delta function (distribution)
unit step function, Heaviside function
gamma function
convolution of functions f and g

vectors

vector a
cartesian components of a unit vectors in cartesian axes
scalar product
vector or cross product
nabla operator, del operator
Laplacian operator
gradient of a scalar field V
divergence of a vector field A
curl of a vector field \boldsymbol{A}

matrices

matrix of elements $A_{i j}$
product of matrices \boldsymbol{A} and \boldsymbol{B}
i
$\operatorname{Re} z=a$
$\operatorname{Im} z=b$
$|z|=\left(a^{2}+b^{2}\right)^{1 / 2}$
$\arg z=\arctan (b / a)$
$z^{*}=a-\mathrm{i} b$
ent x, int x
$n \operatorname{div} m$
$n \bmod m$
$\Delta x=x($ final $)-x($ initial $)$
δf
$\lim _{x \rightarrow a} f(x)$
$\mathrm{d} f / \mathrm{d} x, \partial_{x} f, \mathrm{D}_{x} f, f^{\prime}$
$\mathrm{d}^{n} f / \mathrm{d} x^{n}, f^{\prime \prime} \cdots$
$\partial f / \partial x$
$\mathrm{d} f$
đ f
$\dot{x}, \partial x / \partial t$
$\int f(x) \mathrm{d} x, \int \mathrm{~d} x f(x)$
$\delta_{i j}=1$ if $i=j,=0$ if $i \neq j$
$\varepsilon_{i j k}=1$ if i, j, k is a cyclic permutation, $=-1$
if i, j, k is anticyclic, $=0$ otherwise.
$\delta(x), \int f(x) \delta(x) \mathrm{d} x=f(0)$
$\varepsilon(x), \mathrm{H}(x) \quad \varepsilon(x)=1$ for $x>0$, $=0$ for $x<0$
$\Gamma(x)=\int t^{x-1} \mathrm{e}^{-t} \mathrm{~d} t$ $=(x-1)!$ for integer values of x
$f * g=\int f\left(x-x^{\prime}\right) g\left(x^{\prime}\right) \mathrm{d} x^{\prime}$

$$
\begin{aligned}
& \boldsymbol{a},(\vec{a}) \\
& a_{x}, a_{y}, a_{z} \\
& \boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}, \text { or } \boldsymbol{e}_{x}, \boldsymbol{e}_{y}, \boldsymbol{e}_{z} \\
& \boldsymbol{a} \cdot \boldsymbol{b} \\
& \boldsymbol{a} \times \boldsymbol{b}, \boldsymbol{a} \wedge \boldsymbol{b} \\
& \boldsymbol{\nabla}=\boldsymbol{i} \partial / \partial x+\boldsymbol{j} \partial / \partial y+\boldsymbol{k} \partial / \partial z \\
& \nabla^{2}, \Delta=\partial^{2} / \partial x^{2}+\partial^{2} / \partial y^{2}+\partial^{2} / \partial z^{2} \\
& \operatorname{grad} V, \nabla V \\
& \operatorname{div} \boldsymbol{A}, \nabla \cdot \boldsymbol{A} \\
& \operatorname{curl} \boldsymbol{A}, \operatorname{rot} \boldsymbol{A}, \nabla \times \boldsymbol{A}
\end{aligned}
$$

(2) Notation used in thermodynamics, see p.48, note (1).
(double) scalar product of \boldsymbol{A} and \boldsymbol{B}
unit matrix
inverse of a square matrix \boldsymbol{A} transpose of matrix \boldsymbol{A}
complex conjugate of matrix \boldsymbol{A}
conjugate transpose of \boldsymbol{A}
(hermitian conjugate of \boldsymbol{A})
trace of square matrix \boldsymbol{A}
determinant of square matrix \boldsymbol{A}

logical operators

A is contained in B
union of A and B
intersection of A and B
p and q (conjunction sign)
p or q or both (disjunction sign)
x belongs to A
x does not belong to A
the set A contains x
difference of A and B
$A \subset B$
$\boldsymbol{A}: \boldsymbol{B}=\sum_{i, j} A_{i j} B_{j i}$
E,I
A^{-1}
$\boldsymbol{A}^{\mathrm{T}}, \tilde{\boldsymbol{A}}, \boldsymbol{A}^{\prime}$
\boldsymbol{A}^{*}
$\boldsymbol{A}^{\dagger},\left(A^{\dagger}\right)_{i j}=A_{j i}{ }^{*}$
$\operatorname{tr} \boldsymbol{A}, \operatorname{Tr}(A), \Sigma_{i} A_{i i}$
$\operatorname{det} \boldsymbol{A},|\boldsymbol{A}|$
$A \cup B$
$A \cap B$
$p \wedge q$
$p \vee q$
$x \in A$
$x \notin A$
A э \boldsymbol{x}
$A \backslash B$

Fundamental physical constants

This page is intentionally blank

The following values were recommended by the CODATA Task Group on Fundamental Constants in 1986 [70]. For each constant the standard deviation uncertainty in the least significant digits is given in parentheses.

Quantity
Symbol
Value
permeability of vacuum ${ }^{1}$ speed of light in vacuum permittivity of vacuum ${ }^{1}$
Planck constant
elementary charge
electron rest mass,
proton rest mass
neutron rest mass
atomic mass constant, (unified atomic mass unit)
Avogadro constant
Boltzmann constant
Faraday constant
gas constant
zero of the Celsius scale
molar volume, ideal gas,
$p=1$ bar, $\theta=0^{\circ} \mathrm{C}$
standard atmosphere
fine structure constant

Bohr radius
Hartree energy
Rydberg constant
Bohr magneton
electron magnetic moment
Landé g-factor for free electron
nuclear magneton proton magnetic moment proton magnetogyric ratio magnetic moment of protons in $\mathbf{H}_{2} \mathbf{O}, \mu_{\mathrm{p}}^{\prime}$ proton resonance frequency per field in $\mathrm{H}_{2} \mathrm{O}$
Stefan-Boltzmann constant
first radiation constant
second radiation constant gravitational constant
standard acceleration of free fall
$\mu_{0} \quad 4 \pi \times 10^{-7} \mathrm{H} \mathrm{m}^{-1}$ (defined)
$c_{0} \quad 299792458 \mathrm{~m} \mathrm{~s}^{-1}$ (defined)
$\varepsilon_{0}=1 / \mu_{0} c_{0}{ }^{2} \quad 8.854187816 \ldots \times 10^{-12} \mathrm{Fm}^{-1}$
$h \quad 6.6260755(40) \times 10^{-34} \mathrm{~J} \mathrm{~s}$
$\hbar=h / 2 \pi$
e
$m_{\text {e }}$
m_{p}
m_{n}
$m_{\mathrm{u}}=1 \mathrm{u}$
$L, N_{\text {A }}$
k
F
R
atin
$\alpha=\mu_{0} e^{2} c_{0} / 2 h$
α^{-1}
$a_{0}=4 \pi \varepsilon_{0} \hbar^{2} / m_{\mathrm{e}} e^{2}$
$E_{\mathrm{h}}=\hbar^{2} / m_{\mathrm{e}} a_{0}{ }^{2}$
$R_{\infty}=E_{\mathrm{h}} / 2 h c_{0}$
$\mu_{\mathrm{B}}=e \hbar / 2 m_{\mathrm{e}}$
μ_{e}
$g_{\mathrm{e}}=2 \mu_{\mathrm{e}} / \mu_{\mathrm{B}}$
$\mu_{\mathrm{N}}=\left(m_{\mathrm{e}} / m_{\mathrm{p}}\right) \mu_{\mathrm{B}}$
μ_{p}
γ_{p}
$\mu_{\mathrm{p}}^{\prime} / \mu_{\mathrm{B}}$
$\gamma_{\mathrm{p}}^{\prime} / 2 \pi$
$\sigma=2 \pi^{5} k^{4} / 15 h^{3} c_{0}{ }^{2}$
$c_{1}=2 \pi h c_{0}{ }^{2}$
$c_{2}=h c_{0} / k$
G
$g_{\text {n }}$
$1.05457266(63) \times 10^{-34} \mathrm{~J} \mathrm{~s}$
$1.60217733(49) \times 10^{-19} \mathrm{C}$
$9.1093897(54) \times 10^{-31} \mathrm{~kg}$
$1.6726231(10) \times 10^{-27} \mathrm{~kg}$
$1.6749286(10) \times 10^{-27} \mathrm{~kg}$
$1.6605402(10) \times 10^{-27} \mathrm{~kg}$
$6.0221367(36) \times 10^{23} \mathrm{~mol}^{-1}$
$1.380658(12) \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
$9.6485309(29) \times 10^{4} \mathrm{C} \mathrm{mol}^{-1}$
$8.314510(70) \mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
273.15 K (defined)
22.71108 (19) $\mathrm{L} \mathrm{mol}^{-1}$

101325 Pa (defined)
$7.29735308(33) \times 10^{-3}$
$137.0359895(61)$
$5.29177249(24) \times 10^{-11} \mathrm{~m}$
$4.3597482(26) \times 10^{-18} \mathrm{~J}$
$1.0973731534(13) \times 10^{7} \mathrm{~m}^{-1}$
$9.2740154(31) \times 10^{-24} \mathrm{~J} \mathrm{~T}^{-1}$
$9.2847701(31) \times 10^{-24} \mathrm{~J} \mathrm{~T}^{-1}$
$2.002319304386(20)$
$5.0507866(17) \times 10^{-27} \mathrm{~J} \mathrm{~T}^{-1}$
$1.41060761(47) \times 10^{-26} \mathrm{~J} \mathrm{~T}^{-1}$
$2.67522128(81) \times 10^{8} \mathrm{~s}^{-1} \mathrm{~T}^{-1}$
$1.520993129(17) \times 10^{-3}$
42.576375 (13) $\mathrm{MHz} \mathrm{T}^{-1}$
$5.67051(19) \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}$
$3.7417749(22) \times 10^{-16} \mathrm{~W} \mathrm{~m}^{2}$
$1.438769(12) \times 10^{-2} \mathrm{~m} \mathrm{~K}$
$6.67259(85) \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$
$9.80665 \mathrm{~m} \mathrm{~s}^{-2}$ (defined)
(1) $\mathrm{Hm}^{-1}=\mathrm{NA}^{-2}=\mathrm{Ns}^{2} \mathrm{C}^{-2} ; \mathrm{Fm}^{-1}=\mathrm{C}^{2} \mathrm{~J}^{-1} \mathrm{~m}^{-1} ; \varepsilon_{0}$ may be calculated exactly from the defined values of μ_{0} and c_{0}.
Mathematical constant Symbol Value

ratio of circumference to diameter of a circle		
base of natural logarithms	π	3.14159265359
natural logarithm of 10	e	2.71828182846

(2) A mnemonic for π, based on the number of letters in words of the English language, is:
'How I like a drink, alcoholic of course, after the heavy lectures involving quantum mechanics!'
There are similar mnemonics in poem form in French:
'Que j'aime à faire apprendre ce nombre utile aux sages!
Immortel Archimède, artiste ingénieur,
Qui de ton jugement peut priser la valeur?
Pour moi, ton problème eut de pareils avantages.'
and German:
‘Wie? O! Dies π
Macht ernstlich so vielen viele Müh'!
Lernt immerhin, Jünglinge, leichte Verselein, Wie so zum Beispiel dies dürfte zu merken sein!'.
See the Japanese [2.d] and Russian [2.b] editions for further mnemonics.

6
 Properties of particles, elements and nuclides

The symbols for particles, chemical elements and nuclides have been discussed in section 2.10. The recently recommended systematic nomenclature and symbolism for chemical elements of atomic number greater than 103 is briefly described in footnote U to table 6.2.

This page is intentionally blank

6.1 PROPERTIES OF SOME PARTICLES

The data given in the table are taken from the compilations by Cohen and Taylor [70], the Particle Data Group [71] and by Wapstra and Audi [72].

Name	$\begin{aligned} & \text { Sym- } \\ & \text { bol }^{\text {a }} \end{aligned}$	$\begin{aligned} & \text { Spin } \\ & I \end{aligned}$	Charge number z	$m / \mathrm{u} \quad$ Rest mass	$m c^{2} / \mathrm{MeV}$	Magnetic moment μ / μ_{N}	Mean life τ / s
photon	γ	1	0	0	0		
neutrino	V_{e}	1/2	0	0	0		
electron ${ }^{\text {b }}$	e	1/2	-1	$5.48579903(13) \times 10^{-4}$	$0.51099906(15)$	$1.001159652193(10)^{\text {c }}$	
muon	$\mu^{ \pm}$	1/2	± 1	0.113428913 (17)	105.658389 (34)	$1.001165923(8){ }^{\text {d }}$	$2.19703(4) \times 10^{-6}$
pion	$\pi^{ \pm}$	1	± 1	0.1498323 (8)	139.5679 (7)		$2.6030(24) \times 10^{-8}$
pion	π^{0}	1	0	0.1449008 (9)	134.9743 (8)		$8.4(6) \times 10^{-17}$
proton	p	1/2	1	1.007276470 (12)	938.27231 (28)	$2.792847386(63)$	
neutron	n	1/2	0	$1.008664904(14)$	939.56563 (28)	-1.91304275(45)	889.1 (21)
deuteron	d	1	1	2.013553214 (24)	1875.61339 (53)	0.8574376 (1)	
triton	t	1/2	1	3.01550071 (4)	2808.92178 (85)	2.978960 (1)	
helion	h	1/2	2	3.01493223 (4)	$2808.39225(85)$	-2.127624(1)	
α-particle	α	0	2	4.001506170 (50)	3727.3803 (11)	0	

(a) The Particle Data Group recommends the use of italic symbols for particles and this has been adopted by many physicists [71].
(b) The electron as β-particle is sometimes denoted by β.
(c) The value is given in Bohr magnetons $\mu / \mu_{\mathrm{B}}, \mu_{\mathrm{B}}=e \hbar / 2 m_{\mathrm{e}}$.
(d) The value is given as μ / μ_{μ} where $\mu_{\mu}=e \hbar / 2 m_{\mu}$.

In nuclear physics and chemistry the masses of particles are often quoted as their energy equivalents (usually in megaelectronvolts). The unified atomic mass unit corresponds to 931.49432 (28) MeV [70].

Atom-like pairs of a positive particle and an electron are sometimes sufficiently stable to be treated as individual entities with special names.

Examples positronium $\left(\mathrm{e}^{+} \mathrm{e}^{-}\right) \quad m\left(\mathrm{e}^{+} \mathrm{e}^{-}\right)=1.097152503(26) \times 10^{-3} \mathrm{u}$
muonium ($\mu^{+} \mathrm{e}^{-} ; \mathrm{Mu}$) $\quad m(\mathrm{Mu})=0.113977478(17) \mathrm{u}$
The positive or negative sign for the magnetic moment of a particle implies that the orientation of the magnetic dipole with respect to the angular momentum corresponds to the rotation of a positive or negative charge respectively.

6.2 STANDARD ATOMIC WEIGHTS OF THE ELEMENTS 1991

As agreed by the IUPAC Commission on Atomic Weights and Isotopic Abundances in 1979 [42] the relative atomic mass (atomic weight) of an element, E , can be defined for any specified sample. It is the average mass of its atoms in the sample divided by the unified atomic mass unit ${ }^{1}$ or alternatively the molar mass of its atoms divided by the standard molar mass $M^{\bullet}=L m_{\mathrm{u}}=1 \mathrm{~g} \mathrm{~mol}^{-1}$:

$$
A_{\mathrm{r}}(\mathrm{E})=\bar{m}_{\mathrm{a}}(\mathrm{E}) / \mathrm{u}=M(\mathrm{E}) / M^{\ominus}
$$

The variations in isotopic composition of many elements in samples of different origin limit the precision to which a relative atomic mass can be given. The standard atomic weights revised biennially by the IUPAC Commission on Atomic Weights and Isotopic Abundances are meant to be applicable for normal materials. This means that to a high level of confidence the relative atomic mass of an element in any normal sample will be within the uncertainty limits of the tabulated value. By 'normal' it is meant here that the material is a reasonably possible source of the element or its compounds in commerce for industry and science and that it has not been subject to significant modification of isotopic composition within a geologically brief period [43]. This, of course, excludes materials studied themselves for very anomalous isotopic composition.

Table 6.2 lists the relative atomic masses of the elements in the alphabetical order of chemical symbols. The values have been recommended by the IUPAC Commission on Atomic Weights and Isotopic Abundances in 1991 [44] and apply to elements as they exist naturally on earth.

The relative atomic masses of many elements depend on the origin and treatment of the materials [45]. The notes to this table explain the types of variation to be expected for individual elements. When used with due regard to the notes the values are considered reliable to \pm the figure given in parentheses being applicable to the last digit. For elements without a characteristic terrestrial isotopic composition no standard atomic weight is recommended. The atomic mass of its most stable isotope can be found in table 6.3.

Symbol	Atomic number	Name	Relative atomic mass (atomic weight)	Note
Ac	89	actinium		A
Ag	47	silver	107.8682 (2)	g
Al	13	aluminium	26.981539 (5)	
Am	95	americium		A
Ar	18	argon	39.948 (1)	g, r
As	33	arsenic	$74.92159(2)$	
At	85	astatine		A
Au	79	gold	196.96654 (3)	
B	5	boron	10.811 (5)	$\mathrm{g}, \mathrm{m}, \mathrm{r}$
Ba	56	barium	137.327 (7)	
Be	4	beryllium	9.012182 (3)	
Bi	83	bismuth	208.98037 (3)	
Bk	97	berkelium		A
Br	35	bromine	79.904(1)	
C	6	carbon	12.011 (1)	r

[^4]| Symbol | Atomic number | Name | atomic mass (atomic weight) | Note |
| :---: | :---: | :---: | :---: | :---: |
| Ca | 20 | calcium | 40.078 (4) | g |
| Cd | 48 | cadmium | 112.411 (8) | g |
| Ce | 58 | cerium | 140.115(4) | g |
| Cf | 98 | californium | | A |
| Cl | 17 | chlorine | 35.4527 (9) | m |
| Cm | 96 | curium | | A |
| Co | 27 | cobalt | 58.93320 (1) | |
| Cr | 24 | chromium | 51.9961 (6) | |
| Cs | 55 | caesium | 132.90543 (5) | |
| Cu | 29 | copper | 63.546(3) | r |
| Dy | 66 | dysprosium | 162.50(3) | g |
| Er | 68 | erbium | 167.26(3) | g |
| Es | 99 | einsteinium | | A |
| Eu | 63 | europium | 151.965(9) | g |
| F | 9 | fluorine | 18.9984032 (9) | |
| Fe | 26 | iron | 55.847 (3) | |
| Fm | 100 | fermium | | A |
| Fr | 87 | francium | | A |
| Ga | 31 | gallium | 69.723(1) | |
| Gd | 64 | gadolinium | 157.25(3) | g |
| Ge | 32 | germanium | 72.61 (2) | |
| H | 1 | hydrogen | 1.00794 (7) | $\mathrm{g}, \mathrm{m}, \mathrm{r}$ |
| He | 2 | helium | 4.002602 (2) | g, r |
| Hf | 72 | hafnium | 178.49 (2) | |
| Hg | 80 | mercury | 200.59 (2) | |
| Ho | 67 | holmium | 164.93032 (3) | |
| I | 53 | iodine | 126.90447 (3) | |
| In | 49 | indium | 114.818(3) | |
| Ir | 77 | iridium | 192.22(3) | |
| K | 19 | potassium | 39.0983 (1) | |
| Kr | 36 | krypton | 83.80(1) | g, m |
| La | 57 | lanthanum | 138.9055 (2) | g |
| Li | 3 | lithium | 6.941 (2) | $\mathrm{g}, \mathrm{m}, \mathrm{r}$ |
| Lr | 103 | lawrencium | | A |
| Lu | 71 | lutetium | 174.967(1) | g |
| Md | 101 | mendelevium | | A |
| Mg | 12 | magnesium | 24.3050 (6) | |
| Mn | 25 | manganese | 54.93805 (1) | |
| Mo | 42 | molybdenum | 95.94(1) | g |
| N | 7 | nitrogen | 14.00674 (7) | g, r |
| Na | 11 | sodium | 22.989768 (6) | |
| Nb | 41 | niobium | 92.90638 (2) | |
| Nd | 60 | neodymium | 144.24 (3) | g |
| Ne | 10 | neon | 20.1797 (6) | g, m |
| Ni | 28 | nickel | 58.34(2) | |

Symbol	Atomic number	Name	Relative atomic mass (atomic weight)	Note
No	102	nobelium		A
Np	93	neptunium		A
O	8	oxygen	15.9994 (3)	g, r
Os	76	osmium	190.23(3)	g
P	15	phosphorus	30.973762 (4)	
Pa	91	protactinium	231.03588 (2)	Z
Pb	82	lead	207.2(1)	g, r
Pd	46	palladium	106.42 (1)	g
Pm	61	promethium		A
Po	84	polonium		A
Pr	59	praseodymium	140.90765 (3)	
Pt	78	platinum	195.08(3)	
Pu	94	plutonium		A
Ra	88	radium		A
Rb	37	rubidium	85.4678 (3)	g
Re	75	rhenium	186.207(1)	
Rh	45	rhodium	$102.90550(3)$	
Rn	86	radon		A
Ru	44	ruthenium	101.07(2)	g
S	16	sulfur	32.066(6)	g, r
Sb	51	antimony	121.757(3)	g
Sc	21	scandium	44.955910 (9)	
Se	34	selenium	78.96(3)	
Si	14	silicon	28.0855 (3)	r
Sm	62	samarium	150.36(3)	g
Sn	50	tin	118.710 (7)	g
Sr	38	strontium	87.62(1)	g, r
Ta	73	tantalum	180.9479 (1)	
Tb	65	terbium	158.92534 (3)	
Tc	43	technetium		A
Te	52	tellurium	127.60(3)	g
Th	90	thorium	232.0381 (1)	g, Z
Ti	22	titanium	47.88 (3)	
Tl	81	thallium	204.3833 (2)	
Tm	69	thulium	168.93421 (3)	
U	92	uranium	238.0289 (1)	g, m, Z
Une	109	unnilennium		A, U
Unh	106	unnilhexium		A, U
Uno	108	unniloctium		A, U
Unp	105	unnilpentium		A, U
Unq	104	unnilquadium		A, U
Uns	107	unnilseptium		A, U
V	23	vanadium	50.9415 (1)	
W	74	tungsten	183.84(1)	
Xe	54	xenon	131.29 (2)	g, m
Y	39	yttrium	88.90585 (2)	

	Atomic number	Name	Relative atomic mass (atomic weight $)$	Note
Yb	70	ytterbium	$173.04(3)$	g
Zn	30	zinc	$65.39(2)$	
Zr	40	zirconium	$91.224(2)$	g

(g) geologically exceptional specimens are known in which the element has an isotopic composition outside the limits for normal material. The difference between the average relative atomic mass of the element in such specimens and that given in the table may exceed considerably the implied uncertainty.
(m) modified isotopic compositions may be found in commercially available material because it has been subjected to an undisclosed or inadvertent isotopic separation. Substantial deviations in relative atomic mass of the element from that given in the table can occur.
(r) range in isotopic composition of normal terrestrial material prevents a more precise relative atomic mass being given; the tabulated $A_{\mathrm{r}}(\mathrm{E})$ value should be applicable to any normal material.
(A) Radioactive element that lacks a characteristic terrestrial isotopic composition.
(Z) An element without stable nuclide(s), exhibiting a range of characteristic terrestrial compositions of long-lived radionuclide(s) such that a meaningful relative atomic mass can be given.
(U) The names and symbols given here are systematic and based on the atomic numbers of the elements as recommended by the IUPAC Commission on the Nomenclature of Inorganic Chemistry [22]. The names are composed of the following roots representing digits of the atomic number:

1	un,	2	bi,	3	tri,	4 quad,	5
pent,							
6	hex,	7	sept,	8	oct,	9	enn,
hen							

The ending -ium is then added to the three roots. The three-letter symbols are derived from the first letters of the corresponding roots.

6.3 PROPERTIES OF NUCLIDES

The table contains the following properties of naturally occurring and some unstable nuclides:

Column

$1 \quad Z$ is the atomic number (number of protons) of the nuclide.
2 Symbol of the element.
$3 A$ is the mass number of the nuclide. The * sign denotes an unstable nuclide (for elements without naturally occurring isotopes it is the most stable nuclide) and the \# sign a nuclide of sufficiently long lifetime to enable the determination of its isotopic abundance.
4 The atomic mass is given in unified atomic mass units, $\mathrm{u}=m_{\mathrm{a}}\left({ }^{12} \mathrm{C}\right) / 12$, together with the standard errors in parentheses and applicable to the last digits quoted. The data were extracted from a more extensive list of The 1983 Atomic Mass Evaluation by Wapstra and Audi [72].
5 Isotopic abundances are given as mole fractions, x, of the corresponding atoms in percents. They were recommended in 1989 by the IUPAC Commission on Atomic Weights and Isotopic Abundances [45] and are consistent with the standard atomic weights given in table 6.2. The uncertainties given in parentheses are applicable to the last digits quoted and cover the range of probable variations in the materials as well as experimental errors.
$6 I$ is the nuclear spin quantum number.
7 Under magnetic moment the maximum z-component expectation value of the magnetic dipole moment, m, in nuclear magnetons is given. The positive or negative sign implies that the orientation of the magnetic dipole with respect to the angular momentum corresponds to the rotation of a positive or negative charge, respectively. The data were extracted from the compilation by P. Raghavan [73]. An asterisk * indicates that more than one value is given in the original compilation. The value of highest precision or most recent date is given here.
8 Under quadrupole moment, the electric quadrupole moment area (see note 12 on p . 21) is given in units of square femtometres, $\mathrm{fm}^{2}=10^{-30} \mathrm{~m}^{2}$, although most of the tables quote them in barns (1 barn $=10^{-28} \mathrm{~m}^{2}=100 \mathrm{fm}^{2}$). The positive sign implies a prolate nucleus, the negative sign an oblate nucleus. The data for $Z \leq 20$ were taken from the compilation by P . Pyykkö [74] with values for Cl and Ca corrected by D. Sundholm (private communication), and the others from P. Raghavan [73]. An asterisk * indicates that more than one value is given in the original compilation.

Z	Symbol	A	Atomic mass, $m_{\mathrm{a}} / \mathrm{u}$	Isotopic abundance, $100 x$	Nuclear spin, I	Magnetic moment, m / μ_{N}	Quadrupole moment, Q / fm^{2}
1	H	1	1.007825035 (12)	99.985 (1)	1/2	+2.792847386 (63)	
	(D)	2	2.014101779 (24)	0.015 (1)	1	+0.857438230(24)	+0.2860 (15)
	(T)	3*	3.01604927 (4)		1/2	+2.978962479 (68)	
2	He	3	3.01602931 (4)	0.000137 (3)	1/2	$\begin{aligned} & -2.127624848(66) \\ & 0 \end{aligned}$	
		4	4.00260324 (5)	99.999863 (3)	0		
3	Li	6	6.0151214 (7)	7.5 (2)	1	$+0.82205667(26) *$	-0.082 (4)
		7	7.0160030 (9)	92.5 (2)	3/2	+3.256462 53 (40)*	-4.01
4	Be	9	9.0121822 (4)	100	3/2	-1.177492 (17)*	+5.288 (38)
5	B	1011	$\begin{aligned} & 10.0129369 \text { (3) } \\ & 11.0093054 \text { (4) } \end{aligned}$	$\begin{aligned} & 19.9 \text { (2) } \\ & 80.1 \text { (2) } \end{aligned}$	3$3 / 2$	+1.80064475 (57)	$\begin{aligned} & +8.459(24) \\ & +4.059(10) \end{aligned}$
						+2.6886489 (10)	
6	C	12	12 (by definition)	98.90 (3)	0	0	
		13	13.003354826 (17)	1.10 (3)	1/2	+0.7024118(14)	
		14*	14.003241982 (27)		0	0	

\underline{Z}	Symbol	A	Atomic mass, $m_{\mathrm{a}} / \mathrm{u}$	Isotopic abundance, $100 x$	Nuclear spin, I	Magnetic moment, m / μ_{N}	Quadrupole moment, Q / fm^{2}
7	N	14	14.003074002 (26)	99.634 (9)	1	+0.40376100 (6)	+2.01 (2)
		15	15.00010897 (4)	0.366 (9)	1/2	-0.283188842 (45)	
8	O	16	15.99491463 (5)	99.762 (15)	0	0	-2.558(22)
		17	16.9991312 (4)	0.038 (3)	5/2	-1.89380	
		18	17.9991603 (9)	0.200 (12)	0	0	
9	F	19	18.99840322 (15)	100	1/2	+2.628868 (8)	
10	Ne	20	19.9924356 (22)	90.48 (3)	0	0	
		21	20.9938428 (21)	0.27 (1)	3/2	-0.661 797 (5)	+10.155 (75)
		22	21.9913831 (18)	9.25 (3)	0	0	
11	Na	23	22.9897677 (10)	100	3/2	+2.2176556 (6)*	+10.06 (20)
12	Mg	24	23.9850423 (8)	78.99 (3)	0	0	
		25	24.9858374 (8)	10.00 (1)	5/2	-0.855465 (8)	+19.94 (20)
		26	25.9825937 (8)	11.01 (2)	0	0	
13	Al	27	26.9815386 (8)	100	5/2	+3.641504687 (65)	+14.03(10)
14	Si	28	27.9769271 (7)	92.23 (1)	0	0	
		29	28.9764949 (7)	4.67 (1)	1/2	-0.555 29 (3)	
		30	29.9737707 (7)	3.10 (1)	0	0	
15	P	31	30.9737620 (6)	100	1/2	+1.13160 (3)	
16	S	32	31.97207070 (25)	95.02 (9)	0	0	
		33	32.97145843 (23)	0.75 (1)	3/2	+0.6438212 (14)	-6.78 (13)
		34	33.96786665 (22)	4.21 (8)	0	0	
		36	35.96708062 (27)	0.02 (1)	0	0	
17	Cl	35	34.968852721 (69)	75.77 (5)	3/2	+0.8218743 (4)	$\begin{aligned} & -8.11(8) \\ & -6.39(6) \end{aligned}$
		37	36.96590262 (11)	24.23 (5)	3/2	$+0.6841236 \text { (4) }$	
18	Ar	36	35.96754552 (29)	0.337 (3)	0	0	
		38	37.9627325 (9)	0.063 (1)	0	0	
		40	39.9623837 (14)	99.600 (3)	0	0	
19	K	39	38.9637074 (12)	93.2581 (44)	3/2	$+0.39150731(12)^{*}$	+5.9 (6)
		40	39.9639992 (12)	$0.0117 \text { (1) }$	4	$-1.2981003(34)$	$-7.3(7)$
		41	40.9618254 (12)	6.7302 (44)	3/2	$+0.21487009(22)$	$+7.2(7)$
20	Ca	40	39.9625906 (13)		0	0	
		42	41.9586176 (13)	$0.647 \text { (9) }$	0	0	
		43	42.9587662 (13)	0.135 (6)	7/2	-1.317643 (7)	-4.09 (8)
		44	43.9554806 (14)	2.086 (12)	0	0	
		46	45.953689 (4)	0.004 (4)	0	0	
		48	47.952533 (4)	0.187 (4)	0	0	
21	Sc	45	44.9559100 (14)	100	7/2	+4.7564866 (18)	-22 (1)*
22	Ti	46	45.9526294 (14)	8.0 (1)	0	0	
		47	46.9517640 (11)	7.3 (1)	5/2	-0.78848(1)	+29(1)
		48	47.9479473 (11)	73.8 (1)	0	0	
		49	$48.9478711 \text { (11) }$	$5.5(1)$	7/2	$-1.10417(1)$	+24(1)
		50	49.9447921 (12)	5.4 (1)	0	0	
23	V	50\#	49.9471609 (17)	0.250 (2)	6	+3.3456889 (14)	$\begin{array}{r} 20.9(40)^{*} \\ -5.2(10)^{*} \end{array}$
		51	50.9439617 (17)	99.750 (2)	7/2	+5.14870573(18)	
24	Cr	50	49.9460464 (17)	4.345 (13)	0	0	
		52	51.9405098 (17)	83.789 (18)	0	0	
		53	52.9406513 (17)	9.501 (17)	3/2	-0.47454 (3)	$-15(5)^{*}$
		54	53.9388825 (17)	2.365 (7)	0	0	
25	Mn	55	54.9380471 (16)	100	5/2	+3.4687190 (9)	+33 (1)*

\underline{Z}	Symbol	A	Atomic mass, $m_{\mathrm{a}} / \mathrm{u}$	Isotopic abundance, $100 x$	Nuclear spin, I	Magnetic moment, m / μ_{N}	Quadrupole moment, Q / fm^{2}
26	Fe	54	53.9396127 (15)	5.8 (1)	0	0	
		56	55.9349393 (16)	91.72 (30)	0	0	
		57	56.9353958 (16)	2.2 (1)	1/2	+0.09062300 (9)*	
		58	57.9332773 (16)	0.28 (1)	0	0	
27	Co	59	58.9331976 (16)	100	7/2	+4.627 (9)	+40.4 (40)*
28	Ni	58	$57.9353462(16)$	68.077 (9)	0	0	
		60	59.9307884 (16)	26.223 (8)	0	0	
		61	60.9310579 (16)	1.140 (1)	3/2	-0.75002 (4)	+16.2 (15)
		62	61.9283461 (16)	3.634 (2)	0	0	
		64	63.9279679 (17)	0.926 (1)	0	0	
29	Cu	63	62.9295989 (17)	69.17 (3)	3/2	+2.2273456 (14)*	-21.1 (4)*
		65	64.9277929 (20)	30.83 (3)	3/2	+2.38161 (19)*	-19.5 (4)
30	Zn	64	63.9291448 (19)	48.6 (3)	0	0	
		66	65.9260347 (17)	27.9 (2)	0	0	
		67	66.9271291 (17)	4.1 (1)	5/2	+0.875 2049 (11)*	+15.0 (15)
		68	67.9248459 (18)	18.8 (4)	0	0	
		70	69.925325 (4)	0.6 (1)	0	0	
31	Ga	69	68.925580 (3)	60.108 (9)	3/2	+2.016589 (44)	+16.8*
		71	70.9247005 (25)	39.892 (9)	3/2	+2.562 266 (18)	+ 10.6*
32	Ge	70	69.9242497 (16)	21.23 (4)	0	0	
		72	71.9920789 (16)	27.66 (3)	0	0	
		73	72.9234626 (16)	7.73 (1)	9/2	-0.8794677 (2)	-17.3(26)
		74	73.9211774 (15)	35.94 (2)	0	0	
		76	75.9214016 (17)	7.44 (2)	0	0	
33	As	75	74.9215942 (17)	100	3/2	+1.439475 (65)	+31.4 (6)*
34	Se	74	73.9224746 (16)	0.89 (2)	0	0	
		76	75.9192120 (16)	9.36 (1)	0	0	
		77	76.9199125 (16)	7.63 (6)	1/2	$+0.53507424(28) *$	
		78	77.9173076 (16)	23.78 (9)	0	0	
		80	79.9165196 (19)	49.61 (10)	0	0	
		82	81.9166978 (23)	8.73 (6)	0	0	
35	Br	79	78.9183361 (26)	50.69 (7)	3/2	+2.106400 (4)	+33.1 (4)
		81	80.916289 (6)	49.31 (7)	3/2	+2.270562 (4)	+27.6(4)
36	Kr	78	77.920396 (9)	0.35 (2)	0	0	
		80	79.916380 (9)	2.25 (2)	0	0	
		82	81.913482 (6)	11.6 (1)	0	0	
		83	82.914135 (4)	11.5 (1)	9/2	-0.970669	+25.3 (5)
		84	83.911507 (4)	57.0 (3)	0	0	
		86	85.910616 (5)	17.3 (2)	0	0	
37	Rb	85	84.911794 (3)	72.165 (20)	5/2	+1.3533515 (8)*	+22.8 (43)*
		87\#	86.909187 (3)	27.835 (20)	3/2	+2.751818(2)	+13.2 (1)
38	Sr	84	83.913430 (4)	0.56 (1)	0	0	
		86	85.9092672 (28)	9.86 (1)	0	0	
		87	86.9088841 (28)	7.00 (1)	9/2	-1.0936030 (13)*	+33.5(20)
		88	87.9056188 (28)	82.58 (1)	0	0	
39	Y	89	88.905849 (3)	100	1/2	-0.13741542 (34)*	
40	Zr	90	89.9047026 (26)	51.45 (3)	0	0	
		91	90.9056439 (26)	11.22 (4)	5/2	-1.30362 (2)	-20.6(10)
		92	91.9050386 (26)	17.15 (2)	0	0	
		94	93.9063148 (28)	17.38 (4)	0	0	
		96	95.908275 (4)	2.80 (2)	0	0	
41	Nb	93	92.9063772 (27)	100	9/2	+6.1705 (3)	-32 (2)*

\underline{Z}	Symbol	A	Atomic mass, $m_{\mathrm{a}} / \mathrm{u}$	Isotopic abundance, $100 x$	Nuclear spin, I	Magnetic moment, m / μ_{N}	Quadrupole moment, Q / fm^{2}
42	Mo	92	91.906809 (4)	14.84 (4)	0	0	
		94	93.9050853 (26)	9.25 (3)	0	0	
		95	94.9058411 (22)	15.92 (5)	5/2	-0.9142 (1)	-2.2 (1)*
		96	95.9046785 (22)	16.68 (5)	0	0	
		97	96.9060205 (22)	9.55 (3)	5/2	-0.9335 (1)	+25.5 (13)*
		98	97.9054073 (22)	24.13 (7)	0	0	
		100	99.907477 (6)	9.63 (3)	0	0	
43	Tc	98*	97.907215 (4)		6		
44	Ru	96	95.907599 (8)	5.52 (6)	0	0	
		98	97.905287 (7)	1.88 (6)	0	0	
		99	98.9059389 (23)	12.7 (1)	5/2	-0.6413 (51)*	+ 7.9 (4)
		100	99.9042192 (24)	12.6 (1)	0	0	
		101	100.9055819 (24)	17.0 (1)	5/2	$-0.7188(60)^{*}$	+45.7 (23)
		102	101.9043485 (25)	31.6 (2)	0	0	
		104	103.905424 (6)	18.7 (2)	0	0	
45	Rh	103	102.905500 (4)	100	1/2	-0.08840 (2)	
46	Pd	102	101.905634 (5)	1.02 (1)	0	0	
		104	103.904029 (6)	11.14 (8)	0	0	
		105	104.905079 (6)	22.33 (8)	5/2	-0.642 (3)	+66.0 (11)*
		106	105.903478 (6)	27.33 (3)	0	0	
		108	107.903895 (4)	26.46 (9)	0	0	
		110	109.905167 (20)	11.72 (9)	0	0	
47	Ag	107	106.905092 (6)	51.839 (7)	1/2	$-0.11367965(15)^{*}$	
		109	108.904756 (4)	48.161 (7)	1/2	$-0.13069062(22) *$	
48	Cd	106	105.906461 (7)	1.25 (4)	0	0	
		108	107.904176 (6)	0.89 (2)	0	0	
		110	109.903005 (4)	12.49 (12)	0	0	
		111	110.904182 (3)	12.80 (8)	1/2	-0.59488607 (84)*	
		112	111.902757 (3)	24.13 (28)	0	0	
		113\#	112.904400 (3)	12.22 (8)	1/2	-0.62230092 (87)	
		114	$113.903357 \text { (3) }$	28.73 (28)	0		
		116	115.904755 (4)	7.49 (12)	0	0	
49	In		112.904061 (4)	4.3 (2)	9/2	+5.5289 (2)	+79.9
		115\#	114.903882 (4)	95.7 (2)	9/2	+5.5408 (2)	+81.0*
50	Sn	112	111.904826 (5)	0.97 (1)	0	0	
		114	113.902784 (4)	0.65 (1)	0	0	
		115	114.903348 (3)	0.34 (1)	1/2	-0.91883 (7)	
		116	115.901747 (3)	14.53 (11)	0	0	
		117	116.902956 (3)	7.68 (7)	1/2	-1.00104 (7)	
		118	117.901609 (3)	24.23 (11)	0	0	
		119	118.903311 (3)	8.59 (4)	1/2	-1.04728 (7)	
		120	119.9021991 (29)	32.59 (10)	0	0	
		122	121.9034404 (30)	4.63 (3)	0	0	
		124	123.9052743 (17)	5.79 (5)	0	0	
51	Sb	121	120.9038212 (29)	57.36 (8)	5/2	+3.3634 (3)	-36 (4)*
		123	122.9042160 (24)	42.64 (8)	7/2	+2.5498 (2)	-49 (5)
52	Te	120	119.904048 (21)	0.096 (2)	0	0	
		122	121.903050 (3)	2.603 (4)	0	0	
		123	122.9042710 (22)	0.908 (2)	1/2	-0.7369478 (8)	
		124	123.9028180 (18)	4.816 (6)	0	0	
		125	124.9044285 (25)	7.139 (6)	1/2	-0.88850513 (43)*	
		126	125.9033095 (25)	18.95 (1)	0	0	
		128	127.904463 (4)	31.69 (1)	0	0	
		130	129.906229 (5)	33.80 (1)	0	0	
53	I	127	126.904473 (5)	100	5/2	+2.813273 (84)	-78.9

\underline{Z}	Symbol	A	Atomic mass, $m_{\mathrm{a}} / \mathrm{u}$	Isotopic abundance, $100 x$	Nuclear spin, I	Magnetic moment, m / μ_{N}	Quadrupole moment, Q / fm^{2}
54	Xe	124	123.9058942 (22)	0.10 (1)	0	0	
		126	125.904281 (8)	0.09 (1)	0	0	
		128	127.9035312 (17)	1.91 (3)	0	0	
		129	128.9047801 (21)	26.4 (6)	1/2	-0.7779763 (84)	
		130	129.9035094 (17)	4.1 (1)	0	0	
		131	130.905072 (5)	21.2 (4)	3/2	+0.6918619 (39)	-12.0(12)
		132	131.904144 (5)	26.9 (5)	0	0	
		134	133.905395 (8)	10.4 (2)	0	0	
		136	135.907214 (8)	8.9 (1)	0	0	
55	Cs	133	132.905429 (7)	100	7/2	+2.5820246 (34)*	-0.371 (14)*
56	Ba	130	129.906282 (8)	0.106 (2)	0	0	
		132	131.905042 (9)	0.101 (2)	0	0	
		134	133.904486 (7)	2.417 (27)	0	0	
		135	134.905665 (7)	6.592 (18)	3/2	+0.837943 (17)*	+16.0 (3)*
		136	135.904553 (7)	7.854 (36)	0	0	
		137	136.905812 (6)	11.23 (4)	3/2	+0.937365 (20)*	+24.5 (4)*
		138	137.905232 (6)	71.70 (7)	0	0	
57	La	138\#	137.907105 (6)	0.0902 (2)	5	+3.713646 (7)	+45 (2)*
		139	138.906347 (5)	99.9098 (2)	7/2	+2.7830455 (9)	+20(1)
58	Ce	136	135.907140 (50)	0.19 (1)	0	0	
		138	137.905985 (12)	0.25 (1)	0	0	
		140	139.905433 (4)	88.48 (10)	0	0	
		142	141.909241 (4)	11.08 (10)	0	0	
59	Pr	141	140.907647 (4)	100	5/2	+4.2754 (5)	-5.89 (42)
60	Nd	142	141.907719 (4)	27.13 (12)	0	0	
		143	142.909810 (4)	12.18 (6)	7/2	-1.065 (5)	-63 (6)
		144	143.910083 (4)	23.80 (12)	0	0	
		145	144.912570 (4)	8.30 (6)	7/2	-0.656 (4)	-33 (3)
		146	145.913113 (4)	17.19 (9)	0	0	
		148	147.916889 (4)	5.76 (3)	0	0	
		150	149.920887 (4)	5.64 (3)	0	0	
61	Pm	145*	144.912743 (4)		5/2		
62	Sm	144	143.911998 (4)	3.1 (1)	0	0	
		147\#	146.914894 (4)	15.0 (2)	7/2	-0.8148 (7)	-25.9 (26)
		148	147.914819 (4)	11.3 (1)	0	0	
		149	148.917180 (4)	13.8 (1)	7/2	-0.6717 (7)*	+ 7.5 (8)*
		150	149.917273 (4)	7.4 (1)	0	0	
		152	151.919728 (4)	26.7 (2)	0	0	
		154	153.922205 (4)	22.7 (2)	0	0	
63	Eu	151	150.919702 (8)	47.8 (15)	5/2	+3.4717 (6)	+90.3 (10)*
		153	152.921225 (4)	52.2 (15)	5/2	+1.5330 (8)*	+241.2 (21)*
64	Gd	152	151.919786 (4)	0.20 (1)	0	0	
		154	153.920861 (4)	2.18 (3)	0	0	
		155	154.922618 (4)	14.80 (5)	3/2	-0.25723 (35)*	+ 130 (2)*
		156	155.922118 (4)	20.47 (4)	0	0	
		157	156.923956 (4)	15.65 (3)	3/2	-0.33726 (55)*	+136 (2)*
		158	157.924019 (4)	24.84 (12)	0	0	
		160	159.927049 (4)	21.86 (4)	0	0	
65	Tb	159	158.925342 (4)	100	3/2	+2.014 (4)	+143.2 (8)
66	Dy	156	155.924277 (8)	0.06 (1)	0	0	
		158	157.924403 (5)	0.10 (1)	0	0	
		160	159.925193 (4)	2.34 (6)	0	0	
		161	160.926930 (4)	18.9 (2)	5/2	-0.4803 (25)*	+250.7 (20)*
		162	161.926795 (4)	25.5 (2)	0	0	

\underline{Z}	Symbol	A	$\begin{aligned} & \text { Atomic mass, } \\ & m_{\mathrm{a}} / \mathrm{u} \end{aligned}$	Isotopic abundance, $100 x$	Nuclear spin, I	Magnetic moment, m / μ_{N}	Quadrupole moment, Q / fm^{2}
66	Dy	163	162.928728 (4)	24.9 (2)	5/2	+0.6726 (35)	+264.8(21)
		164	163.929171 (4)	28.2 (2)	0	0	
67	Ho	165	164.930319 (4)	100	7/2	+4.173 (27)	+349 (3)*
68	Er	162	161.928775 (4)	0.14 (1)	0	0	
		164	163.929198 (4)	1.61 (1)	0	0	
		166	165.930290 (4)	33.6 (2)	0	0	
		167	166.932046 (4)	22.95 (15)	7/2	-0.56385 (12)	+356.5 (29)
		168	167.932368 (4)	26.8 (2)	0	0	
		170	169.935461 (4)	14.9 (2)	0	0	
69	Tm	169	168.934212 (4)	100	1/2	-0.2316 (15)	
70	Yb	168	167.933894 (5)	0.13 (1)	0	0	
		170	169.934759 (4)	3.05 (6)	0	0	
		171	170.936323 (3)	14.3 (2)	1/2	+0.49367 (1)*	
		172	171.936378 (3)	21.9 (3)	0	0	
		173	172.938208 (3)	16.12 (21)	5/2	-0.67989 (3)*	+280 (4)
		174	173.938859 (3)	31.8 (4)	0	0	
		176	175.942564 (4)	12.7 (2)	0	0	
71	Lu	175	174.940770 (3)	97.41 (2)	7/2	+2.2327 (11)*	+349 (2)*
		176\#	175.942679 (3)	2.59 (2)	7	+3.1692 (45)*	+492 (3)*
72	Hf	174	173.940044 (4)	0.162 (3)	0	0	
		176	175.941406 (4)	5.206 (5)	0	0	
		177	176.943217 (3)	18.606 (4)	7/2	+0.7935 (6)	+336.5 (29)*
		178	177.943696 (3)	27.297 (4)	0	0	
		179	178.9458122 (29)	13.629 (6)	9/2	-0.6409 (13)	+379.3 (33)*
		180	179.9465457 (30)	35.100 (7)	0	0	
73	Ta	180	179.947462 (4)	0.012 (2)	8		
		181	180.947992 (3)	99.988 (2)	7/2	+2.3705 (7)	+328 (6)*
74	W	180	179.946701 (5)	0.13 (4)	0	0	
		182	181.948202 (3)	26.3 (2)	0	0	
		183	182.950220 (3)	14.3 (1)	1/2	+0.11778476 (9)	
		184	$183.950928 \text { (3) }$	30.67 (15)	0	0	
		186	185.954357 (4)	28.6 (2)	0	0	
75	Re	185	184.952951 (3)	37.40 (2)	5/2	+3.1871 (3)	+218 (2)*
		187\#	186.955744 (3)	62.60 (2)	5/2	+3.2197 (3)	+207(2)*
76	Os	184	183.952488 (4)	0.02 (1)	0	0	
		186	185.953830 (4)	1.58 (30)	0	0	
		187	186.955741 (3)	1.6 (3)	1/2	+0.06465189 (6)	
		188	187.955830 (3)	13.3 (7)	0	0	
		189	188.958137 (4)	16.1 (8)	3/2	+0.659933 (4)	+85.6 (28)
		190	189.958436 (4)	26.4 (12)	0	0	
		192	191.961467 (4)	41.0 (8)	0	0	
77	Ir	191	190.960584 (4)	37.3 (5)	3/2	+0.1507 (6)*	+81.6 (9)*
		193	192.962917 (4)	62.7 (5)	3/2	+0.1637 (6)*	+75.1 (9)*
78	Pt	190	189.959917 (7)	0.01 (1)	0	0	
		192	191.961019 (5)	0.79 (6)	0	0	
		194	193.962655 (4)	32.9 (6)	0	0	
		195	194.964766 (4)	33.8 (6)	1/2	+0.609 52 (6)	
		196	195.964926 (4)	25.3 (6)	0	0	
		198	197.967869 (6)	7.2 (2)	0	0	
79	Au	197	196.966543 (4)	100	3/2	+0.148 $158(8) *$	+ 54.7 (16)*
80	Hg	196	195.965807 (5)	0.15 (1)	0	0	
		198	197.966743 (4)	9.97 (8)	0	0	

\underline{Z}	Symbol	A	Atomic mass, $m_{\mathrm{a}} / \mathrm{u}$	Isotopic abundance, $100 x$	Nuclear spin, I	Magnetic moment, m / μ_{N}	Quadrupole moment, Q / fm^{2}
80	Hg	199	198.968254 (4)	16.87 (10)	1/2	+0.50588549 (85)	
		200	199.968300 (4)	23.10 (16)	0	0	
		201	200.970277 (4)	13.18 (8)	3/2	-0.5602257 (14)*	+38.5 (40)*
		202	201.970617 (4)	29.86 (20)	0	0	
		204	203.973467 (5)	6.87 (4)	0	0	
81	Tl	203	202.972320 (5)	29.524 (14)	1/2	+1.62225787(12)	
		205	204.974401 (5)	70.476 (14)	1/2	+1.63821461 (12)	
82	Pb	204	203.973020 (5)	1.4 (1)	0	0	
		206	205.974440 (4)	24.1 (1)	0	0	
		207	206.975872 (4)	22.1 (1)	1/2	+0.582583 (9)*	
		208	207.976627 (4)	52.4 (1)	0	0	
83	Bi	209	208.980374 (5)	100	9/2	+4.1106 (2)	-37.0 (26)*
84	Po	209*	208.982404 (5)		1/2		
85	At	210*	209.987126 (12)				
86	Rn	222*	222.017571 (3)		0	0	
87	Fr	223*	223.019733 (4)		3/2	+1.17 (2)	+117(1)
88	Ra	226*	226.025403 (3)		0	0	
89	Ac	227*	227.027750 (3)		3/2	+1.1(1)	+170(20)
90	Th	232\#	232.0380508 (23)	100	0	0	
91	Pa	231*	231.035880 (3)		3/2	2.01 (2)	-172 (5)
92	U	233*	233.039628 (3)		5/2	0.59 (5)	+366.3 (8)
		234\#	234.0409468 (24)	0.0055 (5)	0	0	
		235\#	235.0439242 (24)	0.7200 (12)	7/2	-0.38 (3)*	+455 (9)*
		238\#	238.0507847 (23)	99.2745 (60)	0	0	
93	Np	237*	237.0481678 (23)		5/2	+3.14 (4)	+388.6 (6)
94	Pu	244*	244.064199 (5)		0		
95	Am	243*	243.061375 (3)		5/2	+1.61 (4)	+420 (130)
96	Cm	247*	247.070347 (5)				
97	Bk	247*	247.070300 (6)				
98	Cf	251*	251.079580 (5)				
99	Es	252*	252.082944 (23)				
100	Fm	257*	257.095099 (8)				
101	Md	258*	258.09857 (22)				
102	No	259*	259.100931 (12)				
103	Lr	260*	260.105320 (60)				
104	Unq	261*	261.10869 (22)				
105	Unp	262*	262.11376 (16)				
106	Unh	263*	263.11822 (13)				
107	Uns	262*	262.12293 (45)				
108	Uno	265*	265.13016 (99)				
109	Une	266*	266.13764 (45)				

This page is intentionally blank

7
 Conversion of units

SI units are recommended for use throughout science and technology. However, some non-SI units are in use, and in a few cases they are likely to remain so for many years. Moreover, the published literature of science makes widespread use of non-SI units. It is thus often necessary to convert the values of physical quantities between SI and other units. This chapter is concerned with facilitating this process.

Section 7.1 gives examples illustrating the use of quantity calculus for converting the values of physical quantities between different units. The table in section 7.2 lists a variety of non-SI units used in chemistry, with the conversion factors to the corresponding SI units. Conversion factors for energy and energy-related units (wavenumber, frequency, temperature and molar energy), and for pressure units, are also presented in tables inside the back cover.

Many of the difficulties in converting units between different systems are associated either with the electromagnetic units, or with atomic units and their relationship to the electromagnetic units. In sections 7.3 and 7.4 the relations involving electromagnetic and atomic units are developed in greater detail to provide a background for the conversion factors presented in the table in section 7.2.

7.1 THE USE OF QUANTITY CALCULUS

Quantity calculus is a system of algebra in which symbols are consistently used to represent physical quantities rather, than their measures, i.e. numerical values in certain units. Thus we always take the values of physical quantities to be the product of a numerical value and a unit (see section 1.1), and we manipulate the symbols for physical quantities, numerical values, and units by the ordinary rules of algebra. ${ }^{1}$ This system is recommended for general use in science. Quantity calculus has particular advantages in facilitating the problems of converting between different units and different systems of units, as illustrated by the examples below. In all of these examples the numerical values are approximate.

Example 1. The wavelength λ of one of the yellow lines of sodium is given by

$$
\lambda=5.896 \times 10^{-7} \mathrm{~m}, \quad \text { or } \quad \lambda / \mathrm{m}=5.896 \times 10^{-7}
$$

The ångström is defined by the equation (see table 7.2 , under length)

$$
1 \AA=\AA=10^{-10} \mathrm{~m}, \text { or } \mathrm{m} / \AA=10^{10}
$$

Substituting in the first equation gives the value of λ in ångström units

$$
\lambda / \AA=(\lambda / \mathrm{m})(\mathrm{m} / \AA)=\left(5.896 \times 10^{-7}\right)\left(10^{10}\right)=5896
$$

or

$$
\lambda=5896 \AA
$$

Example 2. The vapour pressure of water at $20^{\circ} \mathrm{C}$ is recorded to be

$$
p\left(\mathrm{H}_{2} \mathrm{O}, 20^{\circ} \mathrm{C}\right)=17.5 \text { Torr }
$$

The torr, the bar, and the atmosphere are given by the equations (see table 7.2 , under pressure)

$$
\begin{aligned}
& \text { Torr } \approx 133.3 \mathrm{~Pa}, \\
& \text { bar }=10^{5} \mathrm{~Pa}, \\
& \mathrm{~atm}=101325 \mathrm{~Pa} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
p\left(\mathrm{H}_{2} \mathrm{O}, 20^{\circ} \mathrm{C}\right) & =17.5 \times 133.3 \mathrm{~Pa}=2.33 \mathrm{kPa} \\
& =\left(2.33 \times 10^{3} / 10^{5}\right) \mathrm{bar}=23.3 \mathrm{mbar} \\
& =\left(2.33 \times 10^{3} / 101325\right) \mathrm{atm}=2.30 \times 10^{-2} \mathrm{~atm}
\end{aligned}
$$

Example 3. Spectroscopic measurements show that for the methylene radical, CH_{2}, the a ${ }^{1} \mathrm{~A}_{1}$ excited state lies at a wavenumber $3156 \mathrm{~cm}^{-1}$ above the $\tilde{\mathrm{X}}^{3} \mathrm{~B}_{1}$ ground state

$$
\tilde{v}(\tilde{\mathrm{a}}-\tilde{\mathrm{X}})=T_{0}(\tilde{\mathrm{a}})-T_{0}(\tilde{\mathrm{X}})=3156 \mathrm{~cm}^{-1}
$$

The excitation energy from the ground triplet state to the excited singlet state is thus

$$
\begin{aligned}
\Delta E & =h c \tilde{v}=\left(6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}\right)\left(2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}\right)\left(3156 \mathrm{~cm}^{-1}\right) \\
& =6.269 \times 10^{-22} \mathrm{~J} \mathrm{~m} \mathrm{~cm}^{-1} \\
& =6.269 \times 10^{-20} \mathrm{~J}=6.269 \times 10^{-2} \mathrm{aJ}
\end{aligned}
$$

where the values of h and c are taken from the fundamental physical constants in chapter 5 , and we

[^5]have used the relation $\mathrm{m}=100 \mathrm{~cm}$, or $\mathrm{m} \mathrm{cm}^{-1}=100$. Since the electronvolt is given by the equation (table 7.2 , under energy) $\mathrm{eV} \approx 1.6022 \times 10^{-19} \mathrm{~J}$, or aJ $\approx(1 / 0.16022) \mathrm{eV}$
$$
\Delta E=\left(6.269 \times 10^{-2} / 0.16022\right) \mathrm{eV}=0.3913 \mathrm{eV}
$$

Similarly the Hartree energy is given by (table 7.3) $E_{\mathrm{h}}=\hbar^{2} / m_{\mathrm{e}} a_{0}{ }^{2} \approx 4.3598 \mathrm{aJ}$, or aJ $\approx(1 / 4.3598) E_{\mathrm{h}}$, and thus the excitation energy is given in atomic units by

$$
\Delta E=\left(6.269 \times 10^{-2} / 4.3598\right) E_{\mathrm{h}}=1.4380 \times 10^{-2} E_{\mathrm{h}}
$$

Finally the molar excitation energy is given by

$$
\begin{aligned}
\Delta E_{\mathrm{m}} & =L \Delta E \\
& =\left(6.022 \times 10^{23} \mathrm{~mol}^{-1}\right)\left(6.269 \times 10^{-2} \mathrm{aJ}\right) \\
& =37.75 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

Also, since $\mathrm{kcal}=4.184 \mathrm{~kJ}$, or $\mathrm{kJ}=(1 / 4.184) \mathrm{kcal}$,

$$
\Delta E_{\mathrm{m}}=(37.75 / 4.184) \mathrm{kcal} \mathrm{~mol}^{-1}=9.023 \mathrm{kcal} \mathrm{~mol}^{-1}
$$

Note that in this example the conversion factors are not pure numbers, but have dimensions, and involve the fundamental physical constants $h, c, e, m_{\mathrm{e}}, a_{0}$ and L. Also in this example the necessary conversion factors could have been taken directly from the table on the inside back cover.

Example 4. The molar conductivity, Λ, of an electrolyte is defined by the equation (see p.60)

$$
\Lambda=\kappa / c
$$

where κ is the conductivity of the electrolyte solution minus the conductivity of the pure solvent and c is the electrolyte concentration. Conductivities of electrolytes are usually expressed in $\mathrm{S} \mathrm{cm}^{-1}$ and concentrations in $\mathrm{mol} \mathrm{dm}{ }^{-3}$; for example, $\kappa(\mathrm{KCl})=7.39 \times 10^{-5} \mathrm{Scm}^{-1}$ for $c(\mathrm{KCl})$ $=0.000500 \mathrm{~mol} \mathrm{dm}^{-3}$. The molar conductivity can then be calculated as follows

$$
\begin{aligned}
\Lambda & =\left(7.39 \times 10^{-5} \mathrm{~S} \mathrm{~cm}^{-1}\right) /\left(0.000500 \mathrm{~mol} \mathrm{dm}^{-3}\right) \\
& =0.1478 \mathrm{~S} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} \mathrm{dm}^{3}=147.8 \mathrm{~S} \mathrm{~mol}^{-1} \mathrm{~cm}^{2}
\end{aligned}
$$

since $\mathrm{dm}^{3}=1000 \mathrm{~cm}^{3}$. The above relationship has previously often been, and sometimes still is, written in the form

$$
\Lambda=1000 \kappa / c
$$

However, in this form the symbols do not represent physical quantities, but the numerical values of physical quantities in certain units. Specifically, the last equation is true only if Λ is the molar conductivity in $\mathrm{S} \mathrm{mol}^{-1} \mathrm{~cm}^{2}, \kappa$ is the conductivity in $\mathrm{S} \mathrm{cm}^{-1}$, and c is the concentration in mol dm ${ }^{-3}$. This form does not follow the rules of quantity calculus, and should be avoided. The equation $\Lambda=\kappa / c$, in which the symbols represent physical quantities, is true in any units. If it is desired to write the relationship between numerical values it should be written in the form

$$
\Lambda /\left(\mathrm{S} \mathrm{~mol}^{-1} \mathrm{~cm}^{2}\right)=\frac{1000 \kappa /\left(\mathrm{S} \mathrm{~cm}^{-1}\right)}{c /\left(\mathrm{mol} \mathrm{dm}^{-3}\right)}
$$

Example 5. A solution of 0.125 mol of solute B in 953 g of solvent S has a molality m_{B} given by ${ }^{2}$

$$
m_{\mathrm{B}}=n_{\mathrm{B}} / m_{\mathrm{S}}=(0.125 / 953) \mathrm{mol} \mathrm{~g}^{-1}=0.131 \mathrm{~mol} \mathrm{~kg}^{-1}
$$

(2) Note the confusion of notation: m_{B} denotes molality, and m_{S} denotes mass. However, these symbols are almost always used. See footnote (16) p. 42 .

The mole fraction of solute is approximately given by

$$
x_{\mathrm{B}}=n_{\mathrm{B}} /\left(n_{\mathrm{S}}+n_{\mathrm{B}}\right) \approx n_{\mathrm{B}} / n_{\mathrm{S}}=m_{\mathrm{B}} M_{\mathrm{S}}
$$

where it is assumed that $n_{\mathrm{B}} \ll n_{\mathrm{S}}$.
If the solvent is water with molar mass $18.015 \mathrm{~g} \mathrm{~mol}^{-1}$, then

$$
x_{\mathrm{B}} \approx\left(0.131 \mathrm{~mol} \mathrm{~kg}^{-1}\right)\left(18.015 \mathrm{~g} \mathrm{~mol}^{-1}\right)=2.36 \mathrm{~g} / \mathrm{kg}=0.00236
$$

The equations used here are sometimes quoted in the form $m_{\mathrm{B}}=1000 n_{\mathrm{B}} / m_{\mathrm{S}}$, and $x_{\mathrm{B}} \approx m_{\mathrm{B}} M_{\mathrm{S}} / 1000$. However, this is not a correct use of quantity calculus because in this form the symbols denote the numerical values of the physical quantities in particular units; specifically it is assumed that $m_{\mathrm{B}}, m_{\mathrm{S}}$ and M_{S} denote numerical values in $\mathrm{mol} \mathrm{kg}^{-1}$, g , and $\mathrm{g} \mathrm{mol}^{-1}$ respectively. A correct way of writing the second equation would, for example, be

$$
x_{\mathrm{B}}=\left(m_{\mathrm{B}} / \mathrm{mol} \mathrm{~kg}^{-1}\right)\left(M_{\mathrm{S}} / \mathrm{g} \mathrm{~mol}^{-1}\right) / 1000
$$

Example 6. For paramagnetic materials the magnetic susceptibility may be measured experimentally and used to give information on the molecular magnetic dipole moment, and hence on the electronic structure of the molecules in the material. The paramagnetic contribution to the molar magnetic susceptibility of a material, χ_{m}, is related to the molecular magnetic dipole moment m by the Curie relation

$$
\chi_{\mathrm{m}}=\chi V_{\mathrm{m}}=\mu_{0} N_{\mathrm{A}} m^{2} / 3 k T
$$

In terms of the irrational susceptibility $\chi^{(\mathrm{ir})}$, which is often used in connection with the older esu, emu, and Gaussian unit systems (see section 7.3 below), this equation becomes

$$
\chi_{\mathrm{m}}^{(\mathrm{ir})}=\chi^{(\mathrm{ir})} V_{\mathrm{m}}=\left(\mu_{0} / 4 \pi\right) N_{\mathrm{A}} m^{2} / 3 k T
$$

Solving for m, and expressing the result in terms of the Bohr magneton μ_{B},

$$
m / \mu_{\mathrm{B}}=\left(3 k / \mu_{0} N_{\mathrm{A}}\right)^{1 / 2} \mu_{\mathrm{B}}^{-1}\left(\chi_{m} T\right)^{1 / 2}
$$

Finally, using the values of the fundamental constants $\mu_{\mathrm{B}}, k, \mu_{0}$, and N_{A} given in chapter 5 , we obtain

$$
\begin{aligned}
m / \mu_{\mathrm{B}} & =0.7977\left[\chi_{\mathrm{m}} /\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)\right]^{1 / 2}[T / \mathrm{K}]^{1 / 2} \\
& =2.828\left[\chi_{\mathrm{m}}^{(\mathrm{ir})} /\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)\right]^{1 / 2}[T / \mathrm{K}]^{1 / 2}
\end{aligned}
$$

These expressions are convenient for practical calculations. The final result has frequently been expressed in the form

$$
m / \mu_{\mathrm{B}}=2.828\left(\chi_{\mathrm{m}} T\right)^{1 / 2}
$$

where it is assumed, contrary to the conventions of quantity calculus, that χ_{m} and T denote the numerical values of the molar susceptibility and the temperature in the units $\mathrm{cm}^{3} \mathrm{~mol}^{-1}$ and K respectively, and where it is also assumed (but rarely stated) that the susceptibility is defined using the irrational electromagnetic equations (see section 7.3 below).

7.2 CONVERSION TABLES FOR UNITS

The table below gives conversion factors from a variety of units to the corresponding SI unit. Examples of the use of this table have already been given in the preceding section. For each physical quantity the name is given, followed by the recommended symbol(s). Then the SI unit is given, followed by the esu, emu, Gaussian unit (Gau), atomic unit (au), and other units in common use, with their conversion factors to SI. The constant ζ which occurs in some of the electromagnetic conversion factors is the (exact) pure number $2.99792458 \times 10^{10}=c_{0} /\left(\mathrm{cm} \mathrm{s}^{-1}\right)$.

The inclusion of non-SI units in this table should not be taken to imply that their use is to be encouraged. With some exceptions, SI units are always to be preferred to non-SI units. However, since many of the units below are to be found in the scientific literature, it is convenient to tabulate their relation to the SI.

For convenience units in the esu and Gaussian systems are quoted in terms of the four dimensions length, mass, time, and electric charge, by including the franklin ($\mathrm{Fr)}$ as an abbreviation for the electrostatic unit of charge and $4 \pi \varepsilon_{0}$ as a constant with dimensions (charge) ${ }^{2} /$ (energy \times length). This gives each physical quantity the same dimensions in all systems, so that all conversion factors are pure numbers. The factors $4 \pi \varepsilon_{0}$ and the Fr may be eliminated by writing $\mathrm{Fr}=$ esu of charge $=\mathrm{erg}^{1 / 2} \mathrm{~cm}^{1 / 2}=\mathrm{cm}^{3 / 2} \mathrm{~g}^{1 / 2} \mathrm{~s}^{-1}$, and $4 \pi \varepsilon_{0}=\varepsilon_{0}^{(\mathrm{ir})}=1 \mathrm{Fr}^{2} \mathrm{erg}^{-1} \mathrm{~cm}^{-1}=1$, to recover esu expressions in terms of three base units (see section 7.3 below). The symbol Fr should be regarded as a compact representation of (esu of charge).

Conversion factors are either given exactly (when the $=$ sign is used), or they are given to the approximation that the corresponding physical constants are known (when the \approx sign is used). In the latter case the uncertainty is always less than ± 5 in the last digit quoted.

Name
Symbol Relation to SI
length, l
metre (SI unit)
centimetre (cgs unit)
bohr (au)
ångström
micron
millimicron
x unit
fermi
inch
foot
yard
mile
nautical mile
astronomical unit
parsec
light year
light second
area, A
square metre (SI unit)
barn
acre
are
hectare
m
cm
$=10^{-2} \mathrm{~m}$
$a_{0}, \mathrm{~b}$
A
μ
$\mathrm{m} \mu$
X
f, fm
in
ft
yd
mi
AU
pc
1.y.
m^{2}
b
a
ha
$=10^{-10} \mathrm{~m}$
$=\mu \mathrm{m}=10^{-6} \mathrm{~m}$
$=\mathrm{nm}=10^{-9} \mathrm{~m}$
$=\mathrm{fm}=10^{-15} \mathrm{~m}$
$=2.54 \times 10^{-2} \mathrm{~m}$
$=1852 \mathrm{~m}$
$=299792458 \mathrm{~m}$

$$
\begin{aligned}
& =10^{-28} \mathrm{~m}^{2} \\
& \approx 4046.856 \mathrm{~m}^{2} \\
& =100 \mathrm{~m}^{2} \\
& =10^{4} \mathrm{~m}^{2}
\end{aligned}
$$

$=4 \pi \varepsilon_{0} \hbar^{2} / m_{\mathrm{e}} e^{2} \approx 5.29177 \times 10^{-11} \mathrm{~m}$
$\approx 1.002 \times 10^{-13} \mathrm{~m}$
$=12 \mathrm{in}=0.3048 \mathrm{~m}$
$=3 \mathrm{ft}=0.9144 \mathrm{~m}$
$=1760 \mathrm{yd}=1609.344 \mathrm{~m}$
$=1.49600 \times 10^{11} \mathrm{~m}$
$\approx 3.08568 \times 10^{16} \mathrm{~m}$
$\approx 9.460528 \times 10^{15} \mathrm{~m}$
volume, V
cubic metre (SI unit)
litre
lambda
barrel (US)
gallon (US)
gallon (UK)
m^{3}

$1, \mathrm{~L}$	$=\mathrm{dm}^{3}=10^{-3} \mathrm{~m}^{3}$
λ	$=\mu 1=10^{-6} \mathrm{dm}^{3}$
gal (US)	$\approx 158.987 \mathrm{dm}^{3}$
gal (UK)	$=3.78541 \mathrm{dm}^{3}$
g.	$=4.54609 \mathrm{dm}^{3}$

mass, m
kilogram (SI unit)
gram (cgs unit)
electron mass (au)
unified atomic mass
unit, dalton
gamma
tonne
pound (avoirdupois)
ounce (avoirdupois)
ounce (troy)
grain
kg
g
m_{e}
u, Da
$=10^{-3} \mathrm{~kg}$
$\approx 9.10939 \times 10^{-31} \mathrm{~kg}$
u, Da
$=m_{\mathrm{a}}\left({ }^{12} \mathrm{C}\right) / 12 \approx 1.660540 \times 10^{-27} \mathrm{~kg}$
γ
$\gamma \quad=\mu \mathrm{g}$
t
lb
oz $\quad \approx 28.3495 \mathrm{~g}$
oz (troy) $\quad \approx 31.1035 \mathrm{~g}$
$\mathrm{gr} \quad=64.79891 \mathrm{mg}$
time, t
second (SI, cgs unit)
au of time
minute
hour
day ${ }^{1}$
year ${ }^{2}$
svedberg
s
$\hbar / E_{\mathrm{h}} \quad \approx 2.41888 \times 10^{-17} \mathrm{~s}$
$\mathrm{min} \quad=60 \mathrm{~s}$
$\mathrm{h} \quad=3600 \mathrm{~s}$
acceleration, a
SI unit
standard acceleration of
free fall
gal, galileo
$\mathrm{m} \mathrm{s}^{-2}$
$g_{\mathrm{n}} \quad=9.80665 \mathrm{~m} \mathrm{~s}^{-2}$
Gal $\quad=10^{-2} \mathrm{~m} \mathrm{~s}^{-2}$
(1) Note that the day is not exactly defined in terms of the second since so-called leap-seconds are added or subtracted from the day semiannually in order to keep the annual average occurrence of midnight at 24:00 on the clock.
(2) The year is not commensurable with the day and not a constant. Prior to 1967, when the atomic standard was introduced, the tropical year 1900 served as the basis for the definition of the second. For the epoch 1900.0. it amounted to $365.24219879 \mathrm{~d} \approx 31556925.975 \mathrm{~s}$ and it decreases by 0.530 seconds per century. The calender years are exactly defined in terms of the day:
Julian year $=365.25 \mathrm{~d}$
Gregorian year $=365.2425 \mathrm{~d}$.
The definition in the table corresponds to the Gregorian year. This is an average based on a year of length 365 days, with leap years of 366 days; leap years are taken either when the year is divisible by 4 but is not divisible by 100 , or when the year is divisible by 400 . Whether the year 3200 should be a leap year is still open, but this does not have to be resolved until sometime in the middle of the 32 nd century.
force, F
newton (SI unit) ${ }^{3}$
dyne (cgs unit)
au of force
kilogram-force
energy, U
joule (SI unit)
erg (cgs unit)
hartree (au)
rydberg
electronvolt
calorie, thermochemical
calorie, international
$15^{\circ} \mathrm{C}$ calorie
litre atmosphere
British thermal unit
pressure, p
pascal (SI unit)
atmosphere
bar

$$
\text { bar } \quad=10^{5} \mathrm{~Pa}
$$

torr

$$
\text { Torr } \quad=(101325 / 760) \mathrm{Pa} \approx 133.322 \mathrm{~Pa}
$$

millimetre of mercury

$$
\mathrm{mmHg} \quad=13.5951 \times 980.665 \times 10^{-2} \mathrm{~Pa} \approx 133.322 \mathrm{~Pa}
$$ (conventional)

pounds per square inch

$$
\text { psi } \quad \approx 6.894757 \times 10^{3} \mathrm{~Pa}
$$

power, P
watt (SI unit)
horse power
action, L, J (angular momentum)

SI unit
cgs unit
au of action

N
dyn
E_{h} / a_{0}
kgf

J
erg
E_{h}
Ry
eV
$\mathrm{cal}_{\mathrm{th}}$
$\mathrm{cal}_{\text {IT }}$
cal_{15}
1 atm
Btu

Pa

$$
\operatorname{atm} \quad=101325 \mathrm{~Pa}
$$

$$
\mathrm{W} \quad=\mathrm{kg} \mathrm{~m}^{2} \mathrm{~s}^{-3}
$$

$$
\mathrm{hp} \quad=745.7 \mathrm{~W}
$$

$$
\begin{array}{ll}
\mathrm{J} \mathrm{~s} & =\mathrm{kg} \mathrm{~m}^{2} \mathrm{~s}^{-1} \\
\mathrm{erg} \mathrm{~s} & =10^{-7} \mathrm{~J} \mathrm{~s} \\
\hbar & =h / 2 \pi \approx 1.05457 \times 10^{-34} \mathrm{~J} \mathrm{~s}
\end{array}
$$

dynamic viscosity, η
SI unit
poise
centipoise
kinematic viscosity, v
SI unit
stokes

Pas $\quad=\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-1}$
$\mathrm{P} \quad=10^{-1} \mathrm{Pas}$
$\mathrm{cP} \quad=\mathrm{mPa} \mathrm{s}$
(3) 1 N is approximately the force exerted by the earth upon an apple.
thermodynamic temperature, T
kelvin (SI unit) K
degree Rankine ${ }^{4} \quad{ }^{\circ} \mathbf{R}$

$$
=(5 / 9) \mathrm{K}
$$

entropy, S
heat capacity, C
SI unit
J K ${ }^{-1}$
clausius
Cl

$$
=\mathrm{cal}_{\mathbf{t h}} / \mathrm{K}=4.184 \mathrm{~J} \mathrm{~K}^{-1}
$$

molar entropy, S_{m}
molar heat capacity, C_{m}

SI unit
entropy unit
molar volume, V_{m}
SI unit
amagat ${ }^{5}$
amount density, $1 / V_{m}$
SI unit
amagat 5
plane angle, α
radian (SI unit)
degree
minute
second
grade
radioactivity, A
becquerel (SI unit)
curie
absorbed dose of radiation ${ }^{6}$
gray (SI unit)
rad
dose equivalent
sievert (SI unit)
rem
$\mathrm{m}^{3} \mathrm{~mol}^{-1}$
amagat $\quad=V_{\mathrm{m}}$ of real gas at 1 atm and 273.15 K
$\approx 22.4 \times 10^{-3} \mathrm{~m}^{3} \mathrm{~mol}^{-1}$
$\mathrm{mol} \mathrm{m}^{-3}$
amagat $\quad=1 / V_{\mathrm{m}}$ for a real gas at 1 atm and 273.15 K $\approx 44.6 \mathrm{~mol} \mathrm{~m}^{-3}$

Gy
$\mathrm{Bq} \quad=\mathrm{s}^{-1}$
$\mathrm{Ci} \quad=3.7 \times 10^{10} \mathrm{~Bq}$
$\mathbf{J ~ K}^{-1} \mathrm{~mol}^{-1}$
e.u. $\quad=\operatorname{cal}_{\mathrm{th}} \mathrm{K}^{-1} \mathrm{~mol}^{-1}=4.184 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
$=\operatorname{rad} \times 2 \pi / 360 \approx(1 / 57.29578) \mathrm{rad}$
$=$ degree $/ 60$
$=$ degree $/ 3600$
$=\mathrm{rad} \times 2 \pi / 400 \approx(1 / 63.66198) \mathrm{rad}$
grad
Jkg^{-1}
$=0.01 \mathrm{~Gy}$

Sv $\quad=\mathrm{J} \mathrm{kg}^{-1}$
rem $\quad \approx 0.01 \mathrm{~Sv}$
(4) $T /{ }^{\circ} \mathrm{R}=(9 / 5) T / \mathrm{K}$. Also, Celsius temperature θ is related to thermodynamic temperature T by the equation

$$
\theta /{ }^{\circ} \mathrm{C}=T / \mathrm{K}-273.15
$$

Similarly Fahrenheit temperature θ_{F} is related to Celsius temperature θ by the equation

$$
\theta_{\mathrm{F}} /{ }^{\circ} \mathrm{F}=(9 / 5)\left(\theta /{ }^{\circ} \mathrm{C}\right)+32
$$

(5) The name 'amagat' is unfortunately used as a unit for both molar volume and amount density. Its value is slightly different for different gases, reflecting the deviation from ideal behaviour for the gas being considered. (6) The unit röntgen, employed to express exposure to X or γ radiations, is equal to: $\mathrm{R}=2.58 \times 10^{-4} \mathrm{Ckg}^{-1}$.
electric current, I
ampere (SI unit)
esu, Gau
biot (emu)
au
electric charge, Q
coulomb (SI unit)
franklin (esu, Gau)
emu (abcoulomb)
proton charge (au)
charge density, ρ
SI unit
esu, Gau
au
electric potential, V, ϕ
volt (SI unit)
esu, Gau
' cm^{-1} ' (footnote 7)
au
mean international volt
US international volt
electric resistance, R
ohm (SI unit)
mean international ohm
US international ohm
electric field, E
SI unit
esu, Gau
' cm^{-2} ' (footnote 7)
au
electric field gradient, $E_{\alpha \beta}^{\prime}, q_{\alpha \beta}$
SI unit
esu, Gau
' cm^{-3} ' (footnote 7)
au

A

$(10 / \zeta) \mathrm{A} \quad \approx 3.33564 \times 10^{-10} \mathrm{~A}$
Bi
$e E_{\mathrm{h}} / \hbar$

$$
=10 \mathrm{~A}
$$

$$
\approx 6.62362 \times 10^{-3} \mathrm{~A}
$$

$\mathrm{C} \quad=\mathrm{As}$
Fr $\quad=(10 / \zeta) \mathrm{C} \approx 3.33564 \times 10^{-10} \mathrm{C}$
$=10 \mathrm{C}$
$e \quad \approx 1.60218 \times 10^{-19} \mathrm{C} \approx 4.80321 \times 10^{-10} \mathrm{Fr}$

$$
\begin{array}{ll}
\mathrm{C} \mathrm{~m}^{-3} & \\
\mathrm{Fr} \mathrm{~cm}^{-3} & =10^{7} \zeta^{-1} \mathrm{Cm}^{-3} \approx 3.33564 \times 10^{-4} \mathrm{Cm}^{-3} \\
e a_{0}^{-3} & \approx 1.08120 \times 10^{-12} \mathrm{Cm}^{-3}
\end{array}
$$

$$
\begin{array}{ll}
\mathrm{V} & =\mathrm{J} \mathrm{C}^{-1}=\mathrm{J} \mathrm{~A}^{-1} \mathrm{~s}^{-1} \\
\mathrm{erg} \mathrm{Fr} \\
e \mathrm{~cm}^{-1} / 4 \pi \varepsilon_{0} & \\
=\mathrm{Fr} \mathrm{~cm}^{-1} / 4 \pi \varepsilon_{0}=299.792458 \mathrm{~V} \\
e / 4 \pi \varepsilon_{0} a_{0} & =E_{\mathrm{h}} / e \approx 27.2114 \mathrm{~V} \\
& =1.00034 \mathrm{~V} \\
& =1.000330 \mathrm{~V}
\end{array}
$$

$\Omega \quad=\mathrm{VA}^{-1}=\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-3} \mathrm{~A}^{-2}$
$=1.00049 \Omega$
$=1.000495 \Omega$
$\mathrm{V} \mathrm{m}^{-1} \quad=\mathrm{J} \mathrm{C}^{-1} \mathrm{~m}^{-1}$
$\mathrm{Frcm}^{-2} / 4 \pi \varepsilon_{0}=2.99792458 \times 10^{4} \mathrm{~V} \mathrm{~m}^{-1}$
$e \mathrm{~cm}^{-2} / 4 \pi \varepsilon_{0} \quad \approx 1.43997 \times 10^{-5} \mathrm{~V} \mathrm{~m}^{-1}$
$e / 4 \pi \varepsilon_{0} a_{0}^{2} \quad \approx 5.14221 \times 10^{11} \mathrm{Vm}^{-1}$

$$
\begin{array}{ll}
\mathrm{V} \mathrm{~m}^{-2} & =\mathrm{J} \mathrm{C}^{-1} \mathrm{~m}^{-2} \\
\mathrm{Fr} \mathrm{~cm}^{-3} / 4 \pi \varepsilon_{0} & =2.99792458 \times 10^{6} \mathrm{~V} \mathrm{~m}^{-2} \\
e \mathrm{~cm}^{-3} / 4 \pi \varepsilon_{0} & \approx 1.43997 \times 10^{-3} \mathrm{Vm}^{-2} \\
e / 4 \pi \varepsilon_{0} a_{0}^{3} & \approx 9.71736 \times 10^{21} \mathrm{Vm}^{-2}
\end{array}
$$

[^6]electric dipole moment, p, μ

SI unit	C m	
esu, Gau	Fr cm	$\approx 3.33564 \times 10^{-12} \mathrm{Cm}$
debye	D	$=10^{-18} \mathrm{Fr} \mathrm{cm} \approx 3.33564 \times 10^{-30} \mathrm{Cm}$
'cm', dipole length ${ }^{7}$	$e \mathrm{~cm}$	$\approx 1.60218 \times 10^{-21} \mathrm{Cm}$
au	$e a_{0}$	$\approx 8.47836 \times 10^{-30} \mathrm{Cm}$

electric quadrupole moment,
$Q_{\alpha \beta}, \Theta_{\alpha \beta}, e Q$
SI unit
esu, Gau
'cm',

$$
\mathrm{Cm}^{2}
$$

$\mathrm{Frcm}{ }^{2}$
$\approx 3.33564 \times 10^{-14} \mathrm{Cm}^{-2}$
$e \mathrm{~cm}^{2}$
$\approx 1.60218 \times 10^{-23} \mathrm{Cm}^{2}$
quadrupole area ${ }^{7}$
au
$e a_{0}^{2}$
$\approx 4.48655 \times 10^{-40} \mathrm{Cm}^{2}$
polarizability, α
SI unit
esu, Gau, ' cm^{3} ',
$\mathrm{J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{2} \quad=\mathrm{F} \mathrm{m}^{2}$
polarizability volume ${ }^{7}$
' ${ }^{3}$ ', (footnote 7)
$4 \pi \varepsilon_{0} \mathrm{~cm}^{3} \quad \approx 1.11265 \times 10^{-16} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{2}$
au

$4 \pi \varepsilon_{0} \AA^{3}$	$\approx 1.11265 \times 10^{-40} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{2}$
$4 \pi \varepsilon_{0} a_{0}^{3}$	$\approx 1.64878 \times 10^{-41} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{2}$

electric displacement, D
(volume) polarization, P
SI unit
Cm^{-2}
esu, Gau
$\mathrm{Fr} \mathrm{cm}^{-2}$
$=\left(10^{5} / \zeta\right) \mathrm{Cm}^{-2} \approx 3.33564 \times 10^{-6} \mathrm{Cm}^{-2}$
(But note: the use of the esu or Gaussian unit for electric displacement usually implies that the irrational displacement is being quoted, $D^{(\mathrm{ir})}=4 \pi D$. See section 7.4.)
magnetic flux density, B
(magnetic field)

tesla (SI unit)	T	$=\mathrm{J} \mathrm{A}^{-1} \mathrm{~m}^{-2}=\mathrm{V} \mathrm{s} \mathrm{m}^{-2}=\mathrm{Wb} \mathrm{m}^{-2}$
gauss (emu, Gau)	G	$=10^{-4} \mathrm{~T}$
au	$\hbar / e a_{0}^{2}$	$\approx 2.35052 \times 10^{5} \mathrm{~T}$

magnetic flux, Φ
weber (SI unit)
$\mathrm{Wb} \quad=\mathrm{J} \mathrm{A}^{-1}=\mathrm{V} \mathrm{s}$
maxwell (emu, Gau)
$\mathrm{Mx} \quad=\mathrm{Gcm}^{-2}=10^{-8} \mathrm{~Wb}$
magnetic field, H
(volume) magnetization, M
SI unit
$\begin{array}{ll}\mathrm{Am}^{-1} & =\mathrm{C} \mathrm{s}^{-1} \mathrm{~m}^{-1} \\ \mathrm{Oe} & =10^{3} \mathrm{Am}^{-1}\end{array}$
oersted (emu, Gau)
(But note: in practice the oersted, Oe , is only used as a unit for $H^{(\mathrm{ir})}=4 \pi H$; thus when $H^{(\mathrm{ir})}=1 \mathrm{Oe}, H=\left(10^{3} / 4 \pi\right) \mathrm{Am}^{-1}$. See section 7.4.)
magnetic dipole moment, m, μ

SI unit
emu, Gau
Bohr magneton ${ }^{8}$
au
nuclear magneton
$\mathrm{A} \mathrm{m}^{2} \quad=\mathrm{J} \mathrm{T}^{-1}$
$\operatorname{erg~G}{ }^{-1} \quad=10 \mathrm{Acm}^{2}=10^{-3} \mathrm{~J} \mathrm{~T}^{-1}$
$\mu_{\mathrm{B}} \quad=e \hbar / 2 m_{\mathrm{e}} \approx 9.27402 \times 10^{-24} \mathrm{~J} \mathrm{~T}^{-1}$
$e \hbar / m_{\mathrm{e}} \quad=2 \mu_{\mathrm{B}} \approx 1.85480 \times 10^{-23} \mathrm{~J} \mathrm{~T}^{-1}$
$\mu_{\mathrm{N}} \quad=\left(m_{\mathrm{e}} / m_{\mathrm{p}}\right) \mu_{\mathrm{B}} \approx 5.05079 \times 10^{-27} \mathrm{~J} \mathrm{~T}^{-1}$
magnetizability, ξ
SI unit
au
magnetic susceptibility, χ, κ
SI unit
1
emu, Gau 1
(But note: in practice susceptibilities quoted in the context of emu or Gaussian units are always values for $\chi^{(\mathrm{ir})}=\chi / 4 \pi$; thus when $\chi^{(\mathrm{ir})}=10^{-6}, \chi=4 \pi \times 10^{-6}$. See section 7.3.)
molar magnetic susceptibility, χ_{m}
$\begin{array}{ll}\text { SI unit } \\ \text { emu, Gau } & \begin{array}{l}\mathrm{m}^{3} \mathrm{~mol}^{-1} \\ \mathrm{~cm}^{3} \mathrm{~mol}^{-1}\end{array}=10^{-6} \mathrm{~m}^{3} \mathrm{~mol}^{-1}\end{array}$
(But note: in practice the units $\mathrm{cm}^{3} \mathrm{~mol}^{-1}$ usually imply that the irrational molar susceptibility is being quoted, $\chi_{\mathrm{m}}{ }^{(\mathrm{ir})}=\chi_{\mathrm{m}} / 4 \pi$; thus, for example if $\chi_{\mathrm{m}}{ }^{(\mathrm{ir})}=-15 \times 10^{-6} \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$, which is often written as ' -15 cgs ppm ', then $\chi_{\mathrm{m}}=-1.88 \times 10^{-10} \mathrm{~m}^{3} \mathrm{~mol}^{-1}$. See section 7.3.)
(8) The Bohr magneton μ_{B} is sometimes denoted BM (or B.M.), but this is not recommended.

7.3 THE esu, emu, GAUSSIAN AND ATOMIC UNIT SYSTEMS

The SI equations of electromagnetic theory are usually used with physical quantities in SI units, in particular the four units $\mathrm{m}, \mathrm{kg}, \mathrm{s}$, and A for length, mass, time and electric current. The basic equations for the electrostatic force between charges Q_{1} and Q_{2}, and for the electromagnetic force between current elements $I_{1} \mathrm{~d} l_{1}$ and $I_{2} \mathrm{~d} l_{2}$, in vacuum, are written

$$
\begin{align*}
& \boldsymbol{F}=Q_{1} Q_{2} \boldsymbol{r} / 4 \pi \varepsilon_{0} r^{3} \tag{1a}\\
& \boldsymbol{F}=\left(\mu_{0} / 4 \pi\right) I_{1} \mathrm{~d} \boldsymbol{l}_{1} \times\left(I_{2} \mathrm{~d} \boldsymbol{l}_{2} \times \boldsymbol{r}\right) / r^{3} \tag{1b}
\end{align*}
$$

The physical quantities ε_{0} and μ_{0}, the permittivity and permeability of vacuum, respectively, have the values

$$
\begin{align*}
& \varepsilon_{0}=\left(10^{7} / 4 \pi c_{0}{ }^{2}\right) \mathrm{kg}^{-1} \mathrm{~m}^{-1} \mathrm{C}^{2} \approx 8.854188 \times 10^{-12} \mathrm{C}^{2} \mathrm{~m}^{-1} \mathrm{~J}^{-1} \tag{2a}\\
& \mu_{0}=4 \pi \times 10^{-7} \mathrm{NA}^{-2} \approx 1.256637 \times 10^{-6} \mathrm{NA}^{-2} \tag{2b}
\end{align*}
$$

The value of μ_{0} results from the definition of the ampere (section 3.2), which is such as to give μ_{0} the value in (2b). The value of ε_{0} then results from the relation

$$
\begin{equation*}
\varepsilon_{0} \mu_{0}=1 / c_{0}{ }^{2} \tag{3}
\end{equation*}
$$

where c_{0} is the speed of light in vacuum.
The numerical constant 4π is introduced into the definitions of ε_{0} and μ_{0} because of the spherical symmetry involved in equations (1); in this way we avoid its appearance in later equations relating to systems with rectangular symmetry. When factors of 4π are introduced in this way, as in the SI, the equations are described as 'rationalized'. The alternative 'unrationalized' or 'irrational' form of the electromagnetic equations is discussed below.

Other systems of units and equations in common use in electromagnetic theory, in addition to the SI, are the esu system, the emu system, the Gaussian system, and the system of atomic units. The conversion from SI to these other systems may be understood in the following steps.

First, all of the alternative systems involve equations written in the irrational form, in place of the rationalized form used in the SI. This involves changes of factors of 4π, and the redefinition of certain physical quantities. Second, a particular choice of units is made in each case to give either ε_{0} or μ_{0} a simple chosen value. Third, in the case of the esu, emu, and Gaussian systems (but not in the case of atomic units) the system of four base units (and four independent dimensions) is dropped in favour of only three base units (and independent dimensions) by an appropriate choice of the definition of charge or current in terms of length, mass and time. All these changes are considered in more detail below. Finally, because of the complications resulting from the alternative choice of rational or irrational relations, and the alternative ways of choosing the base dimensions, the equations of electromagnetic theory are different in the different systems. These changes are summarized in table 7.4 which gives the conversion of equations between the SI and the alternative systems.

(i) The change to irrational quantities and equations

Equations (1) can be written in the alternative four-quantity irrational form by defining new quantities $\varepsilon_{0}{ }^{(\mathrm{ir})}$ and $\mu_{0}{ }^{(\mathrm{ir})}$, so that ($1 \mathrm{a}, \mathrm{b}$) become

$$
\begin{align*}
& \boldsymbol{F}=Q_{1} Q_{2} \boldsymbol{r} / \varepsilon_{0}^{(\mathrm{ir})} r^{3} \tag{4a}\\
& \boldsymbol{F}=\mu_{0}^{(\mathrm{ir})} I_{1} \mathrm{~d} l_{1} \times\left(I_{2} \mathrm{~d} \boldsymbol{l}_{2} \times \boldsymbol{r}\right) / r^{3} \tag{4b}
\end{align*}
$$

The new quantities are related to ε_{0} and μ_{0} by the equations

$$
\begin{align*}
& \varepsilon_{0}^{(\mathrm{ir})}=4 \pi \varepsilon_{0} \tag{5a}\\
& \mu_{0}^{(\mathrm{ir})}=\mu_{0} / 4 \pi \tag{5b}
\end{align*}
$$

When the equations of electromagnetic theory are written in this alternative irrational form, six other new quantities are defined in addition to $\varepsilon_{0}{ }^{(\mathrm{ir})}$ and $\mu_{0}{ }^{(\mathrm{irr})}$, namely $\varepsilon^{(\mathrm{ir)}}, \mu^{(\mathrm{ir})}, D^{(\mathrm{ir)}}, H^{(\mathrm{ir)}}, \chi_{\mathrm{e}}{ }^{(\mathrm{ir})}$ (the electric susceptibility), and $\chi^{(\mathrm{ir})}$ (the magnetic susceptibility). The definitions of other quantities remain unchanged. In each case we denote the new quantities by a superscript (ir) for irrational. The new quantities are defined in terms of the old quantities by the equations

$$
\begin{align*}
& \varepsilon^{(\mathrm{ir})}=4 \pi \varepsilon \tag{6a}\\
& \mu^{(\mathrm{ir})}=\mu / 4 \pi \tag{6b}\\
& D^{(\mathrm{ir})}=4 \pi D \tag{7a}\\
& H^{(\mathrm{ir})}=4 \pi \mathrm{H} \tag{7b}\\
& \chi_{\mathrm{e}}^{(\mathrm{ir})}=\chi_{\mathrm{e}} / 4 \pi \tag{8a}\\
& \chi^{(\mathrm{ir})}=\chi / 4 \pi \tag{8b}
\end{align*}
$$

All of the equations of electromagnetic theory can now be transformed from the SI into the irrational form by using equations ($5 \mathrm{a}, \mathrm{b}$), ($6 \mathrm{a}, \mathrm{b}$), ($7 \mathrm{a}, \mathrm{b}$) and ($8 \mathrm{a}, \mathrm{b}$) to eliminate $\varepsilon_{0}, \mu_{0}, \varepsilon, \mu, D, H, \chi_{\mathrm{e}}$, and χ from the SI equations in favour of the corresponding irrational quantities distinguished by a superscript (ir).

The notation of a superscript (ir), used here to distinguish irrational quantities from their rational counterparts, where the definitions differ, is clumsy. However, in the published literature it is unfortunately customary to use exactly the same symbol for the quantities $\varepsilon, \mu, D, H, \chi_{\mathrm{e}}$, and χ whichever definition (and corresponding set of equations) is in use. It is as though atomic and molecular physicists were to use the same symbol h for Planck's constant and Planck's constant $/ 2 \pi$. Fortunately the different symbols h and \hbar have been adopted in this case, and so we are able to write equations like $h=2 \pi \hbar$. Without some distinction in the notation, equations like (5), (6), (7) and (8) are impossible to write, and it is then difficult to discuss the relations between the rationalized SI equations and quantities and their irrational esu and emu equivalents. This is the reason for the rather cumbersome notation adopted here to distinguish quantities defined by different equations in the different systems.

(ii) The esu system

The esu system is based on irrational equations and quantities, and may be described either in terms of four base units and four independent dimensions or, as is more usual, in terms of three base units and three independent dimensions.

When four base units are used, they are taken to be the cm, g and s for length, mass and time, and the franklin ${ }^{1}$ (symbol Fr) for the esu of charge, 1 Fr being chosen to be of such a magnitude that $\varepsilon_{0}{ }^{(\mathrm{ir})}=1 \mathrm{Fr}^{2} / \mathrm{erg} \mathrm{cm}$. An equivalent definition of the franklin is that two charges of $1 \mathrm{Fr}, 1 \mathrm{~cm}$ apart in a vacuum, repel each other with a force of one dyne. Other units are then derived from these four by the usual rules for constructing a coherent set of units from a set of base units.

The alternative and more usual form of the esu system is built on only three base units and three independent dimensions. This is achieved by defining the dimension of charge to be the same as that of $[(\text { energy }) \times(\text { length })]^{1 / 2}$, so that $1 \mathrm{Fr}^{2}=1 \mathrm{ergcm}$. The Fr then disappears as a unit, and the constant $\varepsilon_{0}^{(\mathrm{ir})}$ is dimensionless, and equal to 1 , so that it may be omitted from all equations. Thus

[^7]equation (4a) for the force between charges in vacuum, for example, becomes simply
\[

$$
\begin{equation*}
\boldsymbol{F}=Q_{1} Q_{2} r / r^{3} \tag{9}
\end{equation*}
$$

\]

This also means that the permittivity of a dielectric medium, $\varepsilon^{(\mathrm{ir})}$, is exactly the same as the relative permittivity or dielectric constant ε_{r}, so that only one of these quantities is required-which is usually simply called the permittivity, ε. Finally, since $\varepsilon_{0}{ }^{(\text {(ir) }}=1$, equations (3) and (5) require that $\mu_{0}{ }^{(\mathrm{ir})}=1 / c_{0}{ }^{2}$.

To summarize, the transformation of equations from the four-quantity SI to the three-quantity esu system is achieved by making the substitutions $\varepsilon_{0}=1 / 4 \pi, \mu_{0}=4 \pi / c_{0}{ }^{2}, \varepsilon=\varepsilon_{\mathrm{r}} / 4 \pi, D=D^{(\mathrm{ir})} / 4 \pi$, and $\chi_{\mathrm{e}}=4 \pi \chi_{\mathrm{e}}{ }^{(\mathrm{ir})}$.

(iii) The emu system

The emu system is also based on irrational equations and quantities, and may similarly be described in terms of either four or three base units.

When described in terms of four base units, they are taken as the $\mathrm{cm}, \mathrm{g}, \mathrm{s}$, and the unit of electric current, which we call the (emu of current). This is chosen to be of such a magnitude that $\mu_{0}^{(\mathrm{ir})}=1 \mathrm{~cm} \mathrm{~g} \mathrm{~s}^{-2}$ (emu of current) $)^{-2}$. An equivalent definition of the emu of current is that the force between two parallel wires, 1 cm apart in a vacuum, each carrying 1 emu of current, is 2 dyn per cm of wire. Comparison with the definition of the ampere then shows that 1 (emu of current) $=10 \mathrm{~A}$. Other units are derived from these four by the usual rules. ${ }^{2}$

In the more usual description of the emu system only three base units and three independent dimensions are used. The dimension (electric current) is defined to be the same as that of (force) ${ }^{1 / 2}$, so that 1 (emu of current) $)^{2}=1 \mathrm{~g} \mathrm{~cm} \mathrm{~s}^{-2}=1$ dyn. The (emu of current) then disappears as a unit, and the constant $\mu_{0}{ }^{(\mathrm{ir})}$ is dimensionless and equal to 1 , so that it may be omitted from all equations. Thus equation (4b) for the force between current elements in vacuum, for example, becomes simply

$$
\begin{equation*}
\boldsymbol{F}=I_{1} \mathrm{~d} \boldsymbol{l}_{1} \times\left(I_{2} \mathrm{~d} \boldsymbol{l}_{2} \times \boldsymbol{r}\right) / \mathrm{r}^{3} \tag{10}
\end{equation*}
$$

The permeability of a magnetic medium $\mu^{(\mathrm{ir})}$ is identical to the relative permeability or magnetic constant μ_{r}, and is simply called the permeability. Finally $\varepsilon_{0}{ }^{(\mathrm{ir})}=1 / c_{0}{ }^{2}$ in the emu system.

To summarize, the transformation from the four-quantity SI to the three-quantity emu system is achieved by making the substitutions $\mu_{0}=4 \pi, \varepsilon_{0}=1 / 4 \pi c_{0}^{2}, \mu=4 \pi \mu_{\mathrm{r}}, H=H^{(\mathrm{ir})} / 4 \pi$, and $\chi=4 \pi \chi^{(\mathrm{ir})}$.

(iv) The Gaussian system

The Gaussian system is a mixture of the esu system and the emu system, expressed in terms of three base units, esu being used for quantities in electrostatics and emu for electrodynamics. It is thus a hybrid system, and this gives rise to complications in both the equations and the units.

In the usual form of the Gaussian system, the following quantities are defined as in the esu system: charge Q, current I, electric field E, electric displacement $D^{(\mathrm{ir})}$, electric potential V, polarization \boldsymbol{P}, electric dipole moment \boldsymbol{p}, electric susceptibility $\chi_{\mathrm{e}}{ }^{(\mathrm{ir})}$, polarizability $\boldsymbol{\alpha}$, and capacitance C.

The following quantities are defined as in the emu system: magnetic flux density \boldsymbol{B}, magnetic flux Φ, magnetic potential \boldsymbol{A}, magnetic field $\boldsymbol{H}^{(\mathrm{ir})}$, magnetization \boldsymbol{M}, magnetic susceptibility $\chi^{(\mathrm{ir})}$, magnetic dipole moment \boldsymbol{m}, and magnetizability ξ. Neither $\varepsilon_{0}{ }^{(\mathrm{ir})}$ nor $\mu_{0}{ }^{(\mathrm{ir})}$ appear in the Gaussian equations, both being set equal to 1 ; the permittivity $\varepsilon^{(\mathrm{ir})}=\varepsilon_{\mathrm{r}}$, and the permeability $\mu^{(\mathrm{ir})}=\mu_{\mathrm{r}}$. However, the effect of equation (3) is that each physical quantity in the esu system differs in magnitude and dimensions from the corresponding emu quantity by some power of c_{0}. Thus the conversion of each SI equation of electromagnetic theory into the Gaussian form introduces factors of c_{0}, which are required to ensure internal consistency.
(2) The name biot, symbol Bi, has been used for the (emu of current).

The transformations of the more important equations between the Gaussian system and the SI are given in table 7.4 below.
(v) Atomic units [8] (see also section 3.8, p.76)

The so-called 'atomic units' are fundamental constants (and combinations of such constants) that arise in atomic and molecular electronic structure calculations, which are conveniently treated as though they were units. They may be regarded as a coherent system of units built on the four independent dimensions of length, mass, time, and electric charge. (The remaining dimensions used in the SI do not arise in electronic structure calculations.) However atomic units are more conveniently defined by taking a different choice for the four base dimensions, namely: mass, charge, action (angular momentum), and length. We choose the base unit of mass to be the electron rest mass m_{e}, the base unit of charge to be the elementary charge e, the base unit of action to be $\hbar=h / 2 \pi$ (where h is the Planck constant), and the base unit of length a_{0} to be given by $a_{0}=4 \pi \varepsilon_{0} \hbar^{2} / m_{\mathrm{e}} e^{2}$. Taking these four units as base units, it follows that the unit of energy, called the hartree and denoted E_{h}, is given by $E_{\mathrm{h}}=\hbar^{2} / m_{\mathrm{e}} a_{0}^{2}$, and that $4 \pi \varepsilon_{0}=e^{2} / E_{\mathrm{h}} a_{0}$. (The last relation is analogous to the relation in the four-quantity esu system where $4 \pi \varepsilon_{0}=\mathrm{Fr}^{2} / \mathrm{erg} \mathrm{cm}$.)

The atomic unit of energy E_{h} the hartree, is (approximately) twice the ionisation energy of the hydrogen atom in its 1 s ground state. The atomic unit of length a_{0}, the bohr, is approximately the distance of maximum radial density from the nucleus in the 1 s orbital of a hydrogen atom. Clearly only four of the five units $m_{\mathrm{e}}, e, \hbar, E_{\mathrm{h}}$ and a_{0} are independent; useful ways of writing the interrelation are:

$$
\begin{equation*}
E_{\mathrm{h}}=\hbar^{2} / m_{\mathrm{e}} a_{0}^{2}=e^{2} / 4 \pi \varepsilon_{0} a_{0}=m_{\mathrm{e}} e^{4} /\left(4 \pi \varepsilon_{0}\right)^{2} \hbar^{2} \tag{11}
\end{equation*}
$$

Conversion factors from atomic units to the SI are included in table 7.2 (p.110), and the five atomic units which have special names and symbols (described above), as well as a number of other atomic units, are also listed in table 3.8 (p.76).

The importance of atomic units lies in the fact that ab initio calculations in theoretical chemistry necessarily give results in atomic units (i.e. as multiples of $m_{\mathrm{e}}, e, \hbar, E_{\mathrm{h}}$ and a_{0}). They are sometimes described as the 'natural units' of electronic calculations in theoretical chemistry. Indeed the results of such calculations can only be converted to other units (such as the SI) by using the current best estimates of the physical constants m_{e}, e, \hbar, etc., themselves expressed in SI units. It is thus appropriate for theoretical chemists to express their results in atomic units, and for the reader to convert to other units as and when necessary. This is also the reason why atomic units are written in italic (sloping) type rather than in the roman (upright) type usually used for units: the atomic units are physical quantities chosen from the fundamental physical constants of electronic structure calculations. There is, however, no authority from CGPM for designating these quantities as 'units', despite the fact that they are treated as units and called 'atomic units' by workers in the field.

Some authors who use atomic units use the customary symbols for physical quantities to represent the numerical values of quantities in the form (physical quantity)/(atomic unit), so that all quantities appear as pure numbers. Thus, for example, the Schrödinger equation for the hydrogen atom is written in SI in the form

$$
\begin{equation*}
-\left(\hbar^{2} / 2 m_{\mathrm{e}}\right) \nabla_{\mathrm{r}}^{2} \psi-\left(e^{2} / 4 \pi \varepsilon_{0} r\right) \psi=E \psi \tag{12}
\end{equation*}
$$

where ∇_{r} denotes derivatives with respect to r. After dividing throughout by E_{h} and making use of (11), this becomes

$$
\begin{equation*}
-\frac{1}{2} a_{0}^{2} \nabla_{r}^{2} \psi-\left(a_{0} / r\right) \psi=\left(E / E_{\mathrm{h}}\right) \psi \tag{13}
\end{equation*}
$$

If we now define $\rho=r / a_{0}$, and $E^{\prime}=E / E_{\mathrm{h}}$, so that ρ and E^{\prime} are dimensionless numbers giving the numerical values of r and E in atomic units, then (13) can be written

$$
\begin{equation*}
-\frac{1}{2} \nabla_{\rho}^{2} \psi-(1 / \rho) \psi=E^{\prime} \psi \tag{14}
\end{equation*}
$$

where ∇_{ρ} denotes derivatives with respect to ρ. Equation (14), in which each coefficient of ψ is dimensionless, is commonly described as being 'expressed in atomic units', and is the form usually adopted by theoretical chemists. Although the power of dimensional analysis is lost in this form, the symbolism has the advantage of simplicity. In using this form it is helpful to distinguish the dimensionless quantities which are here denoted ρ and E^{\prime} from the customary physical quantities r and E themselves, but many authors make no distinction in either the symbol or the name.

Some authors also use the symbol 'au' (or 'a.u.') for every atomic unit, in place of the appropriate combination of the explicit symbols $m_{\mathrm{e}}, e, \hbar, E_{\mathrm{h}}$ and a_{0}. This should be avoided. Appropriate combinations of $m_{\mathrm{e}}, e, \hbar, E_{\mathrm{h}}$ and a_{0} for the atomic units of various physical quantities are given in tables 3.8 (p.76) and 7.2 (p.110).

Examples $E=-0.345 E_{\mathrm{h}}$, not -0.345 atomic units
$r=1.567 a_{0}, \quad$ not $1.567 \mathrm{a} . \mathrm{u}$. or 1.567 au

7.4 TRANSFORMATION OF EQUATIONS OF
 ELECTROMAGNETIC THEORY BETWEEN THE SI, THE FOUR-QUANTITY IRRATIONAL FORM AND THE GAUSSIAN FORM

Note that the esu equations may be obtained from the four-quantity irrational equations by putting $\varepsilon_{0}^{(\mathrm{ir})}=1$, and $\mu_{0}^{(\mathrm{ir})}=1 / \mathcal{c}_{0}{ }^{2}$; the emu equations may be obtained by putting $\mu_{0}^{(\mathrm{ir})}=1$, and $\varepsilon_{0}{ }^{(\mathrm{ir})}=1 / \mathrm{c}_{0}{ }^{2}$.

	Four-quantity	Gaussian
SI relation	irrational relation	relation

force on a moving charge Q with velocity v :
$\boldsymbol{F}=Q(\boldsymbol{E}+\boldsymbol{v} \times \boldsymbol{B}) \quad \boldsymbol{F}=Q(\boldsymbol{E}+\boldsymbol{v} \times \boldsymbol{B}) \quad \boldsymbol{F}=Q\left(\boldsymbol{E}+\boldsymbol{v} \times \boldsymbol{B} / \boldsymbol{c}_{0}\right)$
force between charges in vacuum:
$\boldsymbol{F}=Q_{1} Q_{2} \boldsymbol{r} / 4 \pi \varepsilon_{0} r^{3}$
$F=Q_{1} Q_{2} r / \varepsilon_{0}{ }^{(\mathrm{ir})} r^{3}$
$\boldsymbol{F}=Q_{1} Q_{2} r / r^{3}$
potential around a charge in vacuum:
$V=Q / 4 \pi \varepsilon_{0} r \quad V=Q / \varepsilon_{0}{ }^{(\mathrm{ir})} r \quad V=Q / r$
relation between field and potential:
$\boldsymbol{E}=-\operatorname{grad} V \quad \boldsymbol{E}=-\operatorname{grad} V \quad \boldsymbol{E}=-\operatorname{grad} V$
field due to a charge distribution in vacuum:
$\operatorname{div} \boldsymbol{E}=\rho / \varepsilon_{0} \quad \operatorname{div} \boldsymbol{E}=4 \pi \rho / \varepsilon_{0}{ }^{(\mathrm{ir})} \quad \operatorname{div} \boldsymbol{E}=4 \pi \rho$
capacitance of a parallel plate condenser, area A, separation d :
$C=\varepsilon_{0} \varepsilon_{\mathrm{r}} A / d$
$C=\varepsilon_{0}{ }^{(\mathrm{ir})} \varepsilon_{\mathrm{r}} A / 4 \pi d$
$C=\varepsilon_{\mathrm{r}} A / 4 \pi d$
electric dipole moment of a charge distribution:
$\boldsymbol{p}=\int \rho \boldsymbol{r} V \quad \boldsymbol{p}=\int \rho \boldsymbol{d} V$
$\boldsymbol{p}=\int \rho \boldsymbol{r} \mathrm{d} V$
potential around a dipole in vacuum:
$V=\boldsymbol{p} \cdot \boldsymbol{r} / 4 \pi \varepsilon_{0} r^{3}$

$$
V=\boldsymbol{p} \cdot \boldsymbol{r} / \varepsilon_{0}{ }^{(\mathrm{ir})} r^{3}
$$

$V=\boldsymbol{p} \cdot \boldsymbol{r} / \boldsymbol{r}^{3}$
energy of a charge distribution in an electric field:
$E_{\mathrm{p}}=Q V-\boldsymbol{p} \cdot \boldsymbol{E}+\cdots$

$$
E_{\mathrm{p}}=Q V-\boldsymbol{p} \cdot \boldsymbol{E}+\cdots
$$

$E_{\mathrm{p}}=Q V-\boldsymbol{p} \cdot \boldsymbol{E}+\cdots$
electric dipole moment induced by a field:
$\boldsymbol{p}=\boldsymbol{\alpha} \boldsymbol{E}+\cdots$

$$
p=\alpha E+\cdots
$$

$\boldsymbol{p}=\alpha \boldsymbol{E}+\cdots$
relations between $\boldsymbol{E}, \boldsymbol{D}$ and \boldsymbol{P} :
$\boldsymbol{E}=(\boldsymbol{D}-\boldsymbol{P}) / \varepsilon_{0}$
$\boldsymbol{E}=\left(\boldsymbol{D}^{(\mathrm{ir})}-4 \pi \boldsymbol{P}\right) / \varepsilon_{0}{ }^{(\mathrm{ir})}$
$E=D^{(\mathrm{ir})}-4 \pi P$
$\boldsymbol{E}=\boldsymbol{D} / \varepsilon_{0} \varepsilon_{\mathrm{r}}$
$\boldsymbol{E}=\boldsymbol{D}^{(\mathrm{ir})} / \varepsilon_{0}{ }^{(\mathrm{ir})} \varepsilon_{\mathrm{r}}$
$\boldsymbol{E}=\boldsymbol{D}^{(\mathrm{ir})} / \varepsilon_{\mathrm{r}}$
relations involving the electric susceptibility:
$\varepsilon_{\mathrm{r}}=1+\chi_{\mathrm{e}}$

$\varepsilon_{\mathrm{r}}=1+4 \pi \chi_{\mathrm{e}}{ }^{(\mathrm{ir})}$
$\boldsymbol{P}=\chi_{\mathrm{e}} \varepsilon_{0} \boldsymbol{E}$
$\boldsymbol{P}=\chi_{\mathrm{e}}{ }^{(\mathrm{ir})} \varepsilon_{0}{ }^{(\mathrm{ir})} \boldsymbol{E}$
$\boldsymbol{P}=\chi_{\mathrm{e}}{ }^{(\mathrm{ir})} \boldsymbol{E}$
force between current elements in vacuum:
$\boldsymbol{F}=\frac{\mu_{0}}{4 \pi} \frac{I \mathrm{~d} \boldsymbol{l}_{1} \times\left(I \mathrm{~d} \boldsymbol{l}_{2} \times \boldsymbol{r}\right)}{r^{3}} \quad \boldsymbol{F}=\frac{\mu_{0}^{(\mathrm{ir)}} I \mathrm{~d} \boldsymbol{l}_{1} \times\left(I \mathrm{~d} \boldsymbol{l}_{2} \times \boldsymbol{r}\right)}{r^{3}} \quad \boldsymbol{F}=\frac{I d \boldsymbol{l}_{1} \times\left(I \mathrm{~d} \boldsymbol{l}_{2} \times \boldsymbol{r}\right)}{c_{0}{ }^{2} r^{3}}$
force on a current element in a field:
$\boldsymbol{F}=I \mathrm{~d} \boldsymbol{l} \times \boldsymbol{B}$
$\boldsymbol{F}=I \mathrm{~d} \boldsymbol{l} \times \boldsymbol{B}$
$\boldsymbol{F}=I \mathrm{~d} \boldsymbol{l} \times \boldsymbol{B} / c_{0}$

Four-quantity
irrational relation

Gaussian
relation
potential due to a current element in vacuum:
$\boldsymbol{A}=\left(\mu_{0} / 4 \pi\right)(I \mathrm{~d} l / r)$

$$
A=\mu_{0}^{(\mathrm{ir})} I \mathrm{~d} \boldsymbol{l} / r
$$

$$
A=I \mathrm{~d} l / c_{0} r
$$

relation between field and potential:
$\boldsymbol{B}=\operatorname{curl} \boldsymbol{A}$

$$
\boldsymbol{B}=\operatorname{curl} \boldsymbol{A}
$$

$$
\boldsymbol{B}=\operatorname{curl} \boldsymbol{A}
$$

field due to a current element in vacuum:
$\boldsymbol{B}=\left(\mu_{0} / 4 \pi\right)\left(I \mathrm{~d} \boldsymbol{l} \times \boldsymbol{r} / r^{3}\right)$
$\boldsymbol{B}=\mu_{0}{ }^{(\mathrm{ir)}} I \mathrm{~d} \boldsymbol{l} \times \boldsymbol{r} / r^{3}$
$\boldsymbol{B}=I \mathrm{~d} \boldsymbol{l} \times \boldsymbol{r} / c_{0} r^{3}$
field due to a current density \boldsymbol{j} in vacuum:
$\operatorname{curl} \boldsymbol{B}=\mu_{0} \boldsymbol{j}$
$\operatorname{curl} \boldsymbol{B}=4 \pi \mu_{0}{ }^{(\mathrm{ir})} \boldsymbol{j}$
$\operatorname{curl} B=4 \pi j / c_{0}$
magnetic dipole of a current loop of area $\mathrm{d} A$:
$\boldsymbol{m}=I \mathrm{~d} \boldsymbol{A}$

$$
\boldsymbol{m}=I \mathrm{~d} \boldsymbol{A}
$$

$$
m=I \mathrm{~d} \boldsymbol{A} / c_{0}
$$

potential around a magnetic dipole in vacuum:
$\boldsymbol{A}=\left(\mu_{0} / 4 \pi\right)\left(\boldsymbol{m} \times \boldsymbol{r} / r^{3}\right)$

$$
A=\mu_{0}{ }^{(\mathrm{ir})} \boldsymbol{m} \times \boldsymbol{r} / r^{3}
$$

$$
A=m \times r / c_{0} r^{3}
$$

energy of a magnetic dipole in a field:
$E_{\mathrm{p}}=-\boldsymbol{m} \cdot \boldsymbol{B}$

$$
E_{\mathrm{p}}=-\boldsymbol{m} \cdot \boldsymbol{B}
$$

$$
E_{\mathrm{p}}=-\boldsymbol{m} \cdot \boldsymbol{B}
$$

magnetic dipole induced by a field:
$\boldsymbol{m}=\xi \boldsymbol{B}$
$\boldsymbol{m}=\xi \boldsymbol{B}$
$\boldsymbol{m}=\xi \boldsymbol{B}$
relations between $\boldsymbol{B}, \boldsymbol{H}$ and \boldsymbol{M} :
$\boldsymbol{B}=\mu_{0}(\boldsymbol{H}+\boldsymbol{M})$
$\boldsymbol{B}=\mu_{0}{ }^{(\mathrm{ir})}\left(\boldsymbol{H}^{(\mathrm{ir})}+4 \pi \boldsymbol{M}\right)$
$\boldsymbol{B}=\mu_{0} \mu_{\mathrm{r}} \boldsymbol{H}$
$\boldsymbol{B}=\mu_{0}{ }^{(\mathrm{ir})} \mu_{\mathrm{r}} \boldsymbol{H}^{(\mathrm{ir})}$
relations involving the magnetic susceptibility:
$\mu_{\mathrm{r}}=1+\chi$
$\boldsymbol{M}=\chi \boldsymbol{B} / \mu_{0}$

$$
\mu_{\mathrm{r}}=1+4 \pi \chi^{(\mathrm{ir})}
$$

$$
\mu_{\mathrm{r}}=1+4 \pi \chi^{(\mathrm{ir})}
$$

$$
\boldsymbol{M}=\chi^{(\mathrm{ir})} \boldsymbol{B} / \mu_{0}^{(\mathrm{ir})}
$$

$$
\boldsymbol{M}=\chi^{(\mathrm{ir})} \boldsymbol{B}
$$

Curie relation:

$$
\begin{aligned}
\chi_{\mathrm{m}} & =V_{\mathrm{m}} \chi \\
& =L \mu_{0} m^{2} / 3 k T
\end{aligned}
$$

$$
\begin{aligned}
\chi_{\mathrm{m}}^{(\mathrm{ir})} & =V_{\mathrm{m}} \chi^{(\mathrm{ir})} \\
& =L \mu_{0}{ }^{(\mathrm{ir})} m^{2} / 3 k T
\end{aligned}
$$

$$
\operatorname{div} D^{(\mathrm{ir})}=4 \pi \rho \quad \operatorname{div} D^{(\mathrm{ir})}=4 \pi \rho
$$

$$
\operatorname{div} \boldsymbol{B}=0
$$

$$
\operatorname{curl} \boldsymbol{E}+\partial \boldsymbol{B} / \partial t=0
$$

$$
\operatorname{curl} \boldsymbol{H}^{(\mathrm{ir})}-\partial \boldsymbol{D}^{(\mathrm{ir})} / \partial t=0
$$

$$
\operatorname{curl} H^{(\mathrm{ir})}-\frac{1}{c_{0}} \partial D^{(\mathrm{ir})} / \partial t=0
$$

energy density of radiation:
$U / V=(\boldsymbol{E} \cdot \boldsymbol{D}+\boldsymbol{B} \cdot \boldsymbol{H}) / 2$
$U / V=\frac{\boldsymbol{E} \cdot \boldsymbol{D}^{(\mathrm{ir})}+\boldsymbol{B} \cdot \boldsymbol{H}^{(\mathrm{ir})}}{8 \pi}$
$U / V=\frac{\boldsymbol{E} \cdot \boldsymbol{D}^{(\mathrm{ir})}+\boldsymbol{B} \cdot \boldsymbol{H}^{(\mathrm{ir})}}{8 \pi}$
rate of energy flow (Poynting vector):
$\boldsymbol{S}=\boldsymbol{E} \times \boldsymbol{H}$
$\boldsymbol{S}=\boldsymbol{E} \times \boldsymbol{H}^{(\mathrm{ir})} / 4 \pi$
$\boldsymbol{S}=c_{0} \boldsymbol{E} \times \boldsymbol{H}^{(\mathrm{ir})} / 4 \pi$

This page is intentionally blank

8

Abbreviations and acronyms

Abstract

Abbreviations and acronyms (words formed from the initial letters of groups of words that are frequently repeated) should be used sparingly. Unless they are well established (e.g. NMR, IR) they should always be defined once in any paper, and they should generally be avoided in titles and abstracts. Abbreviations used to denote physical quantities should if possible be replaced by the recommended symbol for the quantity (e.g. E_{i} rather than IP for ionization energy, see. p.20; ρ rather than dens. for mass density, see p.12). For further recommendations concerning abbreviations see [46].

A list of frequently used abbreviations and acronyms is given here in order to help readers, but not necessarily to encourage their universal usage. In many cases an acronym can be found written in lower case letters and in capitals. In the list which follows only the most common usage is given. More extensive lists for different spectroscopic methods have been published by IUPAC [47, 48] and by Wendisch [75].

This page is intentionally blank

AA	atomic absorption
AAS	atomic absorption spectroscopy
ac	alternating current
ACM	adiabatic channel model
ACT	activated complex theory
A/D	analog-to-digital
ADC	analog-to-digital converter
AES	Auger electron spectroscopy
AIUPS	angle-integrated ultraviolet photoelectron spectroscopy
AM	amplitude modulated
amu	atomic mass unit (symbol: u) (see p.75)
AO	atomic orbital
APS	appearance potential spectroscopy
ARAES	angle-resolved Auger electron spectroscopy
AS	Auger spectroscopy
ATR	attenuated total (internal) reflection
AU	astronomical unit (see p. 110)
au	atomic unit (see section 7.3, p.120)
bcc	body centred cubic
BET	Brunauer-Emmett-Teller
BIS	bremsstrahlung isochromat spectroscopy
BM	Bohr magneton (symbol: $\mu_{\mathbf{B}}$, see p.116)
bp	boiling point
Btu	British thermal unit (see p.112)
CARS	coherent anti-Stokes Raman scattering
CAS	complete active space
CAS-SCF	complete active space - self consistent field
CAT	computer average of transients
CCA	coupled cluster approximation
ccp	cubic close packed
CD	circular dichroism
CEELS	characteristic electron energy loss spectroscopy
CELS	characteristic energy loss spectroscopy
CEPA	coupled electron pair approximation
cgs	centimetre-gram-second
CI	chemical ionization
CI	configuration interaction
CIDEP	chemically induced dynamic electron polarization
CIDNP	chemically induced dynamic nuclear polarization
CIMS	chemical ionization mass spectroscopy
CNDO	complete neglect of differential overlap
CSRS	coherent Stokes Raman scattering
CT	charge transfer
CVD	chemical vapour deposition
CW	continuous wave
D/A	digital-to-analog
DAPS	disappearance potential spectroscopy

dc	direct current
DLVO	Derjaguin-Landau-Verwey-Overbeek
DME	dropping mercury electrode
DRIFTS	diffuse reflectance infrared Fourier transform spectroscopy
DSC	differential scanning calorimeter
DTA	differential thermal analysis
E1	elimination unimolecular
E2	elimination bimolecular
EC	electron capture
ECD	electron capture detector
ED	electron diffraction
EDA	electron donor-acceptor [complex]
EELS	electron energy loss spectroscopy
EI	electron impact ionization
EIS	electron impact spectroscopy
EL	electroluminescence
ELDOR	electron-electron double resonance
ELEED	elastic low energy electron diffraction
emf	electromotive force
emu	electromagnetic unit (see section 7.3, p.119)
ENDOR	electron-nuclear double resonance
EPR	electron paramagnetic resonance
ESCA	electron spectroscopy for chemical applications (or analysis), see XPS
ESR	electron spin resonance
esu	electrostatic unit (see section 7.3, p.118)
ETS	electron transmission spectroscopy, electron tunnelling spectroscopy
eu	entropy unit (see p.113)
EXAFS	extended X-ray absorption fine structure
EXAPS	electron excited X-ray appearance potential spectroscopy
FAB(MS)	fast atom bombardment (mass spectroscopy)
fcc	face centred cubic
FD	field desorption
FEESP	field-emitted electron spin-polarization [spectroscopy]
FEM	field emission [electron] microscopy
FES	field emission spectroscopy
FFT	fast Fourier transform
FI	field ionization
FID	flame ionization detector
FID	free induction decay
FIM	field-ion microscopy
FIMS	field-ion mass spectroscopy
FIR	far-infrared
FM	frequency modulated
FPD	flame photometric detector
FSR	free spectral range (see p.31)
FT	Fourier transform
FTD	flame thermionic detector
FTIR	Fourier transform infrared
FWHM	full width at half maximum

GC	gas chromatography
glc	gas-liquid chromatography
GM	Geiger-Müller
GTO	Gaussian-type orbital (see p.19)
GVB	generalized valence bond
hcp	hexagonal close packed
HEED	high energy electron diffraction
HEELS	high energy electron energy loss spectroscopy
HF	Hartree-Fock (see p.17)
hfs	hyperfine structure (hyperfine splitting)
HMDE	hanging mercury drop electrode
HMO	Hückel molecular orbital (see p.17)
HOMO	highest occupied molecular orbital
HPLC	high-performance liquid chromatography
HREELS	high-resolution electron energy-loss spectroscopy
HTS	Hadamard transform spectroscopy
HWP	half-wave potential
IC	integrated circuit
ICR	ion cyclotron resonance
id	inner diameter
IEP	isoelectric point
IEPA	independent electron pair approximation
IETS	inelastic electron tunnelling spectroscopy
ILEED	inelastic low energy electron diffraction
INDO	incomplete neglect of differential overlap
INDOR	internuclear double resonance
INS	inelastic neutron scattering
I/O	input-output
IP	ionization potential (symbol: E_{i}, see p.20)
IPES	inverse photoelectron spectroscopy
IPTS	international practical temperature scale
IR	infrared
IS	ionization spectroscopy
ISS	ion scattering spectroscopy
L	ligand
LASER	light amplification by stimulated emission of radiation
LC	liquid chromatography
LCAO	linear combination of atomic orbitals
L-CCA	linear coupled-cluster approximation
LCMO	linear combination of molecular orbitals
LED	light-emitting diode
LEED	low-energy electron diffraction
LEELS	low energy electron loss spectroscopy
LEES	low-energy electron scattering
LET	linear energy transfer
LIDAR	light detection and ranging
LIF	laser induced fluorescence

LIS	laser isotope separation
LMR	laser magnetic resonance
LUMO	lowest unoccupied molecular orbital
M	central metal
MAR	magic-angle rotation
MAS	magic-angle spinning
MASER	microwave amplification by stimulated emission of radiation
MBE	molecular beam epitaxy
MBGF	many body Green's function
MBPT	many body perturbation theory
MC	Monte Carlo
MCA	multichannel analyser
MCD	magnetic circular dichroism
MCSCF	multiconfiguration self-consistent field
MD	molecular dynamics
MINDO	modified incomplete neglect of differential overlap
MIR	mid-infrared
MKSA	metre-kilogram-second-ampere
MM	molecular mechanics
MO	molecular orbital
MOCVD	metal organic chemical vapour deposition
MOMBE	metal organic molecular beam epitaxy
MORD	magnetic optical rotatory dispersion
MOS	metal oxide semiconductor
mp	melting point
MPI	multiphoton ionization
MPPT	Möller-Plesset perturbation theory
MP-SCF	Möller-Plesset self-consistent field
MRD	magnetic rotatory dispersion
MRI	magnetic resonance imaging
MS	mass spectroscopy
MW	microwave
MW	molecular weight (symbol: M_{r}, see p.41)
NCE	normal calomel electrode
NEXAFS	near edge X-ray absorption fine structure
NIR	near-infrared
NMR	nuclear magnetic resonance
NOE	nuclear Overhauser effect
NQR	nuclear quadrupole resonance
NTP	normal temperature and pressure
od	outside diameter
ODMR	optically detected magnetic resonance
ORD	optical rotatory dispersion
PAS	photoacoustic spectroscopy
PC	paper chromatography
PD	see PED

PED	photoelectron diffraction
PES	photoelectron spectroscopy
PIES	Penning ionization electron spectroscopy, see PIS
PIPECO	photoion-photoelectron coincidence [spectroscopy]
PIS	Penning ionization (electron) spectroscopy
ppb	part per billion
pphm	part per hundred million
ppm	part per million
PPP	Pariser-Parr-Pople
PS	see PES
pzc	point of zero charge
QMS	quadrupole mass spectrometer
RADAR	radiowave detection and ranging
RAIRS	reflection/absorption infrared spectroscopy
RBS	Rutherford (ion) back scattering
RD	rotatory dispersion
RDE	rotating disc electrode
RDF	radial distribution function
REM	reflection electron microscopy
REMPI	resonance enhanced multiphoton ionization
RF	radio frequency
RHEED	reflection high-energy electron diffraction
RHF	restricted Hartree-Fock
RKR	Rydberg-Klein-Rees [potential]
rms	root mean square
RRK	Rice-Ramsperger-Kassel [theory]
RRKM	Rice-Ramsperger-Kassel-Marcus [theory]
RRS	resonance Raman spectroscopy
RS	Raman spectroscopy
RSPT	Rayleigh-Schrödinger perturbation theory
S	singlet
SCE	saturated calomel electrode
SCF	self-consistent field (see p.17)
SDCI	singly and doubly excited configuration interaction
S_{E}	substitution electrophilic
SEFT	spin-echo Fourier transform
SEM	scanning [reflection] electron microscopy
SEP	stimulated emission pumping
SERS	surface-enhanced Raman spectroscopy
SESCA	scanning electron spectroscopy for chemical applications
SEXAFS	surface extended X-ray absorption fine structure
SF	spontaneous fission
SHE	standard hydrogen electrode
SI	le système international d'unités
SIMS	secondary ion mass spectroscopy
$\mathrm{S}_{\mathrm{N}} 1$	substitution nucleophilic unimolecular
$\mathrm{S}_{\mathrm{N}} 2$	substitution nucleophilic bimolecular

$\mathrm{S}_{\mathrm{N}} \mathrm{i}$	substitution nucleophilic intramolecular
SOR	synchrotron orbital radiation
SRS	synchrotron radiation source
STEM	scanning transmission [electron] microscopy
STM	scanning tunnelling (electron) microscopy
STO	Slater-type orbital (see p.19)
STP	standard temperature and pressure
T	triplet
TCC	thermal conductivity cell
TCD	thermal conductivity detector
TCF	time correlation function
TDMS	tandem quadrupole mass spectroscopy
TDS	thermal desorption spectroscopy
TEM	transmission electron microscopy
TG	thermogravimetry
TGA	thermogravimetric analysis
tlc	thin layer chromatography
TOF	time-of-flight [analysis]
TPD	temperature programmed desorption
TR ${ }^{3}$	time-resolved resonance Raman scattering
TST	transition state theory
UHF	unrestricted Hartree-Fock
UHF	ultra high frequency
UHV	ultra high vacuum
UPES	ultraviolet photoelectron spectroscopy
UPS	ultraviolet photoelectron spectroscopy
UV	ultraviolet
VB	valence bond
VCD	vibrational circular dichroism
VEELS	vibrational electron energy-loss spectroscopy
VHF	very high frequency
VIS	visible
VLSI	very large scale integration
VPC	vapour-phase chromatography
VSEPR	valence shell electron pair repulsion
VUV	vacuum ultraviolet
X	halogen
XANES	X-ray absorption near-edge structure [spectroscopy]
XAPS	X-ray appearance potential spectroscopy
XPD	X-ray photoelectron diffraction
XPES	X-ray photoelectron spectroscopy
XPS	X-ray photoelectron spectroscopy
XRD	X-ray diffraction
Y-AG	yttrium aluminium garnet
ZPE	zero point energy

This page is intentionally blank

9

References

9.1 PRIMARY SOURCES

1 Manual of Symbols and Terminology for Physicochemical Quantities and Units
(a) 1st ed., McGlashan, M.L., Pure Appl. Chem. 21 (1970) 1-38.
(b) 2nd ed., Paul, M.A., Butterworths, London 1975.
(c) 3rd ed., Whiffen, D.H., Pure Appl. Chem. 51 (1979) 1-36.
(d) Appendix I-Definitions of Activities and Related Quantities, Whiffen, D.H., Pure Appl. Chem. 51 (1979) 37-41.
(e) Appendix II-Definitions, Terminology and Symbols in Colloid and Surface Chemistry, Part I, Pure Appl. Chem. 31 (1972) 577-638.
(f) Section 1.13: Selected Definitions, Terminology and Symbols for Rheological Properties Lyklema, J. and van Olphen, H., Pure Appl. Chem. 51 (1979) 1213-1218.
(g) Section 1.14: Light scattering, Kerker, M. and Kratohvil, J.P., Pure Appl. Chem. 55 (1983) 931-941.
(h) Part II: Heterogeneous Catalysis, Burwell Jr., R.L., Pure Appl. Chem. 46 (1976) 71-90.
(i) Appendix III-Electrochemical Nomenclature, Pure Appl. Chem. 37 (1974) 499-516.
(j) Appendix IV-Notation for States and Processes, Significance of the Word "Standard" in Chemical Thermodynamics, and Remarks on Commonly Tabulated Forms of Thermodynamic Functions, Cox, J.D., Pure Appl. Chem. 54 (1982) 1239-1250.
(k) Appendix V-Symbolism and Terminology in Chemical Kinetics, Jenkins, A.D., Pure Appl. Chem. 53 (1981) 753-771.
2 (a) Mills, I., Cvitaš, T., Homann, K., Kallay, N. and Kuchitsu, K., Quantities, Units and Symbols in Physical Chemistry, 1st edn. Blackwell Scientific Publications, Oxford 1988.
(b) Nomenklaturniye pravila IUPAC po Khimii Vol. 6, Fizicheskaya Khimiya, Nacionalnii Komitet Sovetskih Khimikov, Moscow 1988.
(c) Riedel, M., A fizikai-kémiai definiciók és jelölések, Tankönyvkiadó, Budapest 1990.
(d) Kuchitsu, K., Quantities, Units and Symbols in Physical Chemistry, Kodansha, Tokyo 1991.

3 Bureau International des Poids et Mesures, Le Système International d’Unités (SI), 6th French and English Edition, BIPM, Sèvres 1991.
4 Cohen, E.R. and Giacomo, P., Symbols, Units, Nomenclature and Fundamental Constants in Physics, 1987 Revision, Document I.U.P.A.P.-25 (IUPAP-SUNAMCO 87-1) also published in: Physica 146A (1987) 1-68.
5 International Standards ISO
International Organization for Standardization, Geneva
(a) ISO 31-0: 1992, Quantities and Units-Part 0: General Principles Units and Symbols
(b) ISO 31-1: 1992, Quantities and Units-Part 1: Space and Time
(c) ISO 31-2: 1992, Quantities and Units-Part 2: Periodic and Related Phenomena
(d) ISO 31-3: 1992, Quantities and Units-Part 3: Mechanics
(e) ISO 31-4: 1992, Quantities and Units-Part 4: Heat
(f) ISO 31-5: 1992, Quantities and Units-Part 5: Electricity and Magnetism
(g) ISO 31-6: 1992, Quantities and Units-Part 6: Light and Related Electromagnetic Radiations
(h) ISO 31-7: 1992, Quantities and Units-Part 7: Acoustics
(i) ISO 31-8: 1992, Quantities and Units-Part 8: Physical Chemistry and Molecular Physics
(j) ISO 31-9: 1992, Quantities and Units-Part 9: Atomic and Nuclear Physics
(k) ISO 31-10: 1992, Quantities and Units-Part 10: Nuclear Reactions and Ionizing Radiations
(m) ISO 31-11:1992, Quantities and Units-Part 11: Mathematical Signs and Symbols for Use in the Physical Sciences and Technology
(n) ISO 31-12: 1992, Quantities and Units-Part 12: Characteristic Numbers
(p) ISO 31-13: 1992, Quantities and Units-Part 13: Solid State Physics

6 ISO1000: 1992, SI Units and Recommendations for the Use of Their Multiples and of Certain Other Units

All the standards listed here (5-6) are jointly reproduced in the ISO Standards Handbook 2, Quantities and Units, ISO, Geneva 1993.

[^8]
9.2 IUPAC REFERENCES

8 Rigg, J.C., Visser, B.F. and Lehmann, H.P., Nomenclature of Derived Quantities, Pure Appl. Chem. 63 (1991) 1307-1311.
9 Whiffen, D.H., Expression of Results in Quantum Chemistry, Pure Appl. Chem. 50 (1978) 75-79.
10 Becker, E.D., Recommendations for Presentation of Infrared Absorption Spectra in Data Collections: A-Condensed Phases, Pure Appl. Chem. 50 (1978) 231-236.
11 Becker, E.D., Durig, J.R., Harris, W.C. and Rosasco, G.J., Presentation of Raman Spectra in Data Collections, Pure Appl. Chem. 53 (1981) 1879-1885.
12 Recommendations for the Presentation of NMR Data for Publication in Chemical Journals, Pure Appl. Chem. 29 (1972) 625-628.
13 Presentation of NMR Data for Publication in Chemical Journals: B-Conventions Relating to Spectra from Nuclei other than Protons, Pure Appl. Chem. 45 (1976) 217-219.
14 Nomenclature and Spectral Presentation in Electron Spectroscopy Resulting from Excitation by Photons, Pure Appl. Chem. 45 (1976) 221-224.
15 Nomenclature and Conventions for Reporting Mössbauer Spectroscopic Data, Pure Appl. Chem. 45 (1976) 211-216.
16 Beynon, J.H., Recommendations for Symbolism and Nomenclature for Mass Spectroscopy, Pure Appl. Chem. 50 (1978) 65-73.
17 Morino, Y. and Shimanouchi, T., Definition and Symbolism of Molecular Force Constants, Pure Appl. Chem. 50 (1978) 1707-1713.
18 Lamola, A.A. and Wrighton, M.S., Recommended Standards for Reporting Photochemical Data, Pure Appl. Chem. 56 (1984) 939-944.
19 Sheppard, N., Willis, H.A. and Rigg, J.C., Names, Symbols, Definitions and Units of Quantities in Optical Spectroscopy, Pure Appl. Chem. 57 (1985) 105-120.
20 Fassel, V.A., Nomenclature, Symbols, Units and their Usage in Spectrochemical Analysis. I: General Atomic Emission Spectroscopy, Pure Appl. Chem. 30 (1972) 651-679.
21 Melmish, W.H., Nomenclature, Symbols, Units and their Usage in Spectrochemical Analysis. VI: Molecular Luminescence Spectroscopy, Pure Appl. Chem. 56 (1984) 231-245.
22 Leigh, G.J., Nomenclature of Inorganic Chemistry, Blackwell Scientific Publications, Oxford 1990.

23 Rigaudy, J. and Klesney, S.P., Nomenclature of Organic Chemistry, Sections A, B, C, D, E, F and H, Pergamon Press, Oxford 1979.
24 Ewing, M.B., Lilley, T.H., Olofsson, G.M., Rätzsch, M.T. and Somsen, G., Standard Quantities in Chemical Thermodynamics, Pure Appl. Chem. 65 (1993) in press.
25 Cali, J.P. and Marsh, K.N., An Annotated Bibliography on Accuracy in Measurement, Pure Appl. Chem. 55 (1983) 907-930.
26 Olofsson, G., Assignment and Presentation of Uncertainties of the Numerical Results of Thermodynamic Measurements, Pure Appl. Chem. 53 (1981) 1805-1825.
27 Cornish-Bowden, A., Glossary of Terms Used in Physical Organic Chemistry, Pure Appl. Chem. 55 (1983) 1281-1371.
28 Braslavsky, S.E. and Houk, K.N., Glossary of Terms Used in Photochemistry, Pure Appl. Chem. 60 (1988) 1055-1106.
29 Bard, A.J., Memming, R. and Miller, B., Terminology in Semiconductor Electrochemistry and Photoelectrochemical Energy Conversion, Pure Appl. Chem. 63 (1991) 569-596.
30 Heusler, K.E., Landolt, D. and Trasatti, S., Electrochemical Corrosion Nomenclature, Pure Appl. Chem. 61 (1989) 19-22.
31 Trasatti, S., The Absolute Electrode Potential: an Explanatory Note, Pure Appl. Chem. 58 (1986) 955-966.

32 Parsons, R., Electrode Reaction Orders, Transfer Coefficients and Rate Constants: Amplifi-
cation of Definitions and Recommendations for Publication of Parameters, Pure Appl. Chem. 52 (1980) 233-240.
33 Ibl, N., Nomenclature for Transport Phenomena in Electrolytic Systems, Pure Appl. Chem. 53 (1981) 1827-1840.

34 van Rysselberghe, P., Bericht der Kommission für elektrochemische Nomenklatur und Definitionen, Z. Electrochem. 58 (1954) 530-535.
35 Bard, A.J., Parsons, R. and Jordan, J., Standard Potentials in Aqueous Solutions, Marcel Dekker Inc., New York 1985.
36 Covington, A.K., Bates, R.G. and Durst, R.A., Definition of pH Scales, Standard Reference Values, Measurement of pH and Related Terminology, Pure Appl. Chem. 57 (1985) 531-542.
37 Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquérol, J. and Siemieniewska, T., Reporting Physisorption Data for Gas/Solid Systems Pure Appl. Chem. 57 (1985) 603-619.

38 Ter-Minassian-Saraga, L., Reporting Experimental Pressure-Area Data with Film Balances, Pure Appl. Chem. 57 (1985) 621-632.
39 Everett, D.H., Reporting Data on Adsorption from Solution at the Solid/Solution Interface, Pure Appl. Chem. 58 (1986) 967-984.
40 Haber, J., Manual on Catalyst Characterization, Pure Appl. Chem. 63 (1991) 1227-1246.
41 Metanomski, W.V., Compendium of Macromolecular Nomenclature, Blackwell Scientific Publications, Oxford 1991.
42 Holden, N.E., Atomic Weights of the Elements 1979, Pure Appl. Chem. 52 (1980) 2349-2384.
43 Peiser, H.S., Holden, N.E., de Bièvre, P., Barnes, I.L., Hagemann, R., de Laeter, J.R., Murphy, T.J., Roth, E., Shima, M. and Thode, H.G., Element by Element Review of Their Atomic Weights, Pure Appl. Chem. 56 (1984) 695-768.
44 Atomic Weights of the Elements 1991, Pure Appl. Chem. 64 (1992) 1519-1534.
45 Isotopic Compositions of the Elements 1989, Pure Appl. Chem. 63 (1991) 991-1002.
46 Lide, D., Use of Abbreviations in the Chemical Literature, Pure Appl. Chem. 52 (1980) 2229-2232.
47 Porter, H.Q. and Turner, D.W., A Descriptive Classification of the Electron Spectroscopies, Pure Appl. Chem. 59 (1987) 1343-1406.
48 Sheppard, N., English-Derived Abbreviations for Experimental Techniques in Surface Science and Chemical Spectroscopy, Pure Appl. Chem. 63 (1991) 887-893.

9.3 ADDITIONAL REFERENCES

49 Mullay, J., Estimation of atomic and group electronegativities, Structure and Bonding 66 (1987) $1-25$.
50 Jenkins, F.A., Notation for the Spectra of Diatomic Molecules, J. Opt. Soc. Amer. 43 (1953) 425-426.
51 Mulliken, R.S., Report on Notation for the Spectra of Polyatomic Molecules, J. Chem. Phys. 23 (1955) 1997-2011. (Erratum J. Chem. Phys. 24 (1956) 1118.)

52 Herzberg, G., Molecular Spectra and Molecular Structure Vol. I. Spectra of Diatomic Molecules, Van Nostrand, Princeton 1950. Vol. II. Infrared and Raman Spectra of Polyatomic Molecules, Van Nostrand, Princeton 1946. Vol. III. Electronic Spectra and Electronic Structure of Polyatomic Molecules, Van Nostrand, Princeton 1966.
53 Watson, J.K.G., Aspects of Quartic and Sextic Centrifugal Effects on Rotational Energy Levels. In: Durig, J. R. (ed), Vibrational Spectra and Structure, Vol. 6, Elsevier, Amsterdam 1977, pp 1-89.
54 (a) Callomon, J.H., Hirota, E., Kuchitsu, K., Lafferty, W.J., Maki, A.G. and Pote, C.S., Structure Data of Free Polyatomic Molecules. In: Hellwege, K.-H. and Hellwege, A.M. (eds), Landolt-Börnstein, New Series, II/7, Springer Verlag, Berlin 1976.
(b) Callomon, J. H., Hirota, E., Iijima, T., Kuchitsu, K. and Lafferty, W., Structure Data of Free Polyatomic Molecules. In: Hellwege, K.-H. and Hellwege, A.M. (eds), Landolt-Börnstein, New Series, II/15 (Supplement to II/7), Springer Verlag, Berlin 1987.
55 Bunker, P.R., Molecular Symmetry and Spectroscopy, Academic Press, New York 1979.
56 Brown, J.M., Hougen, J.T., Huber, K.-P., Johns, J.W.C., Kopp, I., Lefebvre-Brion, H., Merer, A.J., Ramsay, D.A., Rostas, J. and Zare, R.N., The Labeling of Parity Doublet Levels in Linear Molecules, J. Mol. Spectrosc. 55 (1975) 500-503.
57 Alexander, M.H., Andresen, P., Bacis, R., Bersohn, R., Comes, F.J., Dagdigian, P.J., Dixon, R.N., Field, R.W., Flynn, G.W., Gericke, K.-H., Grant, E.R., Howard, B.J., Huber, J.R., King, D.S., Kinsey, J.L., Kleinermanns, K., Kuchitsu, K., Luntz, A.C., McCaffery, A. J., Pouilly, B., Reisler, H., Rosenwaks, S., Rothe, E.W., Shapiro, M., Simons, J.P., Vasudev, R., Wiesenfeld, J.R., Wittig, C. and Zare, R.N., A Nomenclature for Λ-doublet Levels in Rotating Linear Molecules, J. Chem. Phys. 89 (1988) 1749-1753.
58 Brand, J.C.D., Callomon, J.H., Innes, K.K., Jortner, J., Leach, S., Levy, D.H., Merer, A.J., Mills, I.M., Moore, C.B., Parmenter, C.S., Ramsay, D.A., Narahari Rao, K., Schlag, E.W., Watson, J.K.G. and Zare, R.N., The Vibrational Numbering of Bands in the Spectra of Polyatomic Molecules, J. Mol. Spectrosc. 99 (1983) 482-483.
59 Quack, M., Spectra and Dynamics of Coupled Vibrations in Polyatomic Molecules, Ann. Rev. Phys. Chem. 41 (1990) 839-874.
60 Maki, A.G. and Wells, J.S., Wavenumber Calibration Tables from Heterodyne Frequency Measurements, NIST Special Publication 821, U.S. Department of Commerce, 1991.
61 (a) Pugh, L.A. and Rao, K.N., Intensities from Infrared Spectra. In: Rao, K.N. (ed), Molecular Spectroscopy: Modern Research, Vol. II, Academic Press, New York 1976, pp.165-227.
(b) Smith, M.A., Rinsland, C.P., Fridovich, B. and Rao, K.N., Intensities and Collision Broadening Parameters from Infrared Spectra. In: Rao, K.N. (ed), Molecular Spectroscopy: Modern Research, Vol. III, Academic Press, New York 1985, pp.111-248.
62 Hahn, Th. (ed), International Tables for Crystallography, Vol. A, 2nd edn: Space-Group Symmetry, Reidel Publishing Co., Dordrecht 1983.
63 Alberty, R.A., Chemical Equations are Actually Matrix Equations, J. Chem. Educ. 68 (1991) 984.

64 Domalski, E.S., Selected Values of Heats of Combustion and Heats of Formation of Organic Compounds, J. Phys. Chem. Ref. Data 1 (1972) 221-277.

65 Freeman, R.D., Conversion of Standard (1 atm) Thermodynamic Data to the New Standard State Pressure, 1 bar (105 Pa), Bull. Chem. Thermodyn. 25 (1982) 523-530, J. Chem. Eng. Data 29 (1984) 105-111, J. Chem. Educ. 62 (1985) 681-686.

66 Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Halow, I., Bailey, S.M., Churney, K.L. and Nuttall, R.L., The NBS Tables of Chemical Thermodynamic Properties, J. Phys. Chem. Ref. Data 11 Suppl. 2 (1982) 1-392.
67 Chase, M.W., Davies, C.A., Downey, J.R., Frurip, D.J., McDonald, R.A. and Syverud, A.N., JANAF Thermochemical Tables, 3rd edn. J. Phys. Chem. Ref. Data 14 Suppl. 1 (1985) 1-392.
68 Glushko, V.P. (ed), Termodinamicheskie svoistva individualnykh veshchestv, Vols. 1-4, Nauka, Moscow 1978-85.
69 CODATA Task Group on Data for Chemical Kinetics: The Presentation of Chemical Kinetics Data in the Primary Literature, CODATA Bull. 13 (1974) 1-7.
70 Cohen, E.R. and Taylor, B.N., The 1986 Adjustment of the Fundamental Physical Constants, CODATA Bull. 63 (1986) 1-49.
71 Particle Data Group, 1992 Review of Particle Properties, Phys. Rev. D45, Part 2 (1992).
72 Wapstra, A.H. and Audi, G., The 1983 Atomic Mass Evaluation. I. Atomic Mass Table, Nucl. Phys. A432 (1985) 1-54.
73 Raghavan, P., Table of Nuclear Moments, Atomic Data Nucl. Data Tab. 42 (1989) 189-291.
74 Pyykkö, P., The Nuclear Quadrupole Moments of the First 20 Elements: High Precision Calculations on Atoms and Small Molecules, Z. Naturforsch. A47 (1992) 189-196.
75 Wendisch, D.A.W., Acronyms and Abbreviations in Molecular Spectroscopy, Springer Verlag, Heidelberg 1990.

THE GREEK ALPHABET

A, α	A, α	Alpha	N, v	N, v	$N u$
B, β	B, β	Beta	Ξ, ξ	Ξ, ξ	Xi
Γ, γ	Γ, γ	Gamma	O, o	O, o	Omicron
Δ, δ	Δ, δ	Delta	Π, π	П, $п$	Pi
E, ε	E, ε	Epsilon	P, ρ	P, ρ	Rho
Z, ζ	Z, ζ	Zeta	Σ, σ	Σ, σ	Sigma
H, η	H, η	Eta	T, τ	T, τ	Tau
$\Theta, \vartheta, \theta$	$\Theta, \vartheta, \theta$	Theta	r,	$r, 0$	Upsilon
$\mathrm{I}, 1$	I,	Iota	Φ, φ, ϕ	Ф, φ, ϕ	Phi
K, x	K, к	Kappa	X, χ	X, χ	Chi
Λ, λ	ィ, λ	Lambda	Ψ, ψ	Ψ, ψ	Psi
M, μ	M, μ	Mu	Ω, ω	Ω, ω	Omega

This page is intentionally blank

Index of Symbols

This index lists symbols of physical quantities，units，some mathematical operators，states of aggregation，processes and particles．Symbols of elements are given in Section 6.2 （p．94）．Qualifying subscripts，etc．，are generally omitted from this index， so that for example E_{p} for potential energy and $E_{\text {ea }}$ for electron affinity are both indexed simply under E for energy．The Latin alphabet is indexed ahead of the Greek alphabet，lower case letters ahead of upper case，bold symbols ahead of italic，ahead of upright，and single letter symbols ahead of multiletter ones．
a
a
a^{*}
a
a
a
a
a
a
a
a_{0}
a
a
a
a
ads
am
amagat
at
atm
aq
acceleration 11
fundamental translation vector 36
$\boldsymbol{a}^{*} \quad$ reciprocal lattice vector $36 \quad b$
absorption coefficient 32
activity 49,58
hyperfine coupling constant 26
molality 42
unit cell length 36
van der Waals coefficient 49
barn，unit of area 75， 110
bohr，unit of length 110
bar，unit of pressure $54,75,112$
magnetic flux density，magnetic induction 14
Debye－Waller factor 36
Einstein transition probability 31
napierian absorbance 32
retarded van der Waals constant 63
rotational constant 23
second virial coefficient 49
susceptance 15
bel，unit of power level 79
biot，unit of electric current 114
becquerel，SI unit 72， 113
British thermal unit，unit of energy 112
fundamental translation vector 36
velocity 11,39
reciprocal lattice vector 36
amount（of substance）concentration 42
speed $11,30,39,56$
unit cell length 36
speed of light in vacuum 30,89
first radiation constant 32,89
second radiation constant 32,89
centi，SI prefix 74
combustion 51
calorie，unit of energy 112
candela，SI unit 71
condensed phase 47
crystalline 47
magnetic vector potential 15
absorbance 32
absorption intensity 32
activity（radioactive） 22
affinity of reaction 50
area 11
Einstein transition probability 30
Helmholtz energy 48
hyperfine coupling constant 26
nucleon number，mass number 20
pre－exponential factor 56
rotational constant 23
spin－orbit coupling constant 23
van der Waals－Hamaker constant 63
Hall coefficient 37
Alfvén number 66
$\begin{array}{ll}A_{\mathrm{r}} & \text { relative atomic mass } 41,94 \\ \text { A } & \text { ampere，SI unit } 71,114\end{array}$
\AA ångström，unit of length $24,75,110$
AU astronomical unit，unit of length 110

Burgers vector 36
fundamental translation vector 36
reciprocal lattice vector 36
breadth 11
impact parameter 56
mobility ratio 37

I	electric current 14, 59
I	ionic strength 51,58
I	luminous intensity 4,31
I	moment of inertia 12, 23
I	radiant intensity 31
j	angular momentum 26
j	electric current density $14,16,59$
j	unit vector 85
J	angular momentum 26
J	coulomb operator 18
J	electric current density 14
J	coulomb integral 18
J	flux 65
J	Massieu function 48
J	moment of inertia 12
J_{JB}	indirect spin-spin coupling constant 25 joule, SI unit 72,112
\boldsymbol{k}	unit vector 85
\boldsymbol{k}	wave vector 37
k	absorption index 33
k	angular momentum component quantum number 26
k	Boltzmann constant 39, 55, 89
k	coefficient of heat transfer 65
k	Miller index 38
k	rate coefficient 22,55, 59
k	thermal conductivity 65
$k_{\text {d }}$	mass transfer coefficient 59, 65
$k_{\text {H }}$	Henry's law constant 50
$k_{\text {rst }}$	vibrational force constant 25
k	kilo, SI prefix 74
kg	kilogram, SI unit 71, 111
kgf	kilogram-force, unit of force 112
K	exchange operator 18
K	absorption coefficient 32
K	angular momentum component quantum number 26
K	bulk modulus 12
K	coefficient of heat transfer 65
K	conductivity cell constant 60
K	equilibrium constant 50
K	exchange integral 18
K	kinetic energy 12
K	reduced spin-spin coupling constant 25
$K n$	Knudsen number 65
K	kelvin, SI unit 71, 113
l	electron orbital angular momentum 26
l	length 4,11
l	Miller index 38
l	vibrational quantum number 23
1	liquid 47
1	litre, unit of volume 75, 111
lb	pound, unit of mass 111
lc	liquid crystal 47
lm	lumen, SI unit 72
lx	lux, SI unit 72
l.y.	light year, unit of length 110
L	angular momentum 12, 26
L	Avogadro constant 39, 41, 89

L	inductance 15
L	Lagrange function 12
L	length 37, 60
L	Lorenz coefficient 37
L	radiance 31
Le	Lewis number 66
L	langmuir, unit of pressure-time product 65
L	litre, unit of volume 75, 111
\boldsymbol{m}	magnetic dipole moment 15, 21
m	angular momentum component quantum number 26
m	mass 4, 12, 20, 37, 41
m	molality 42,58
m	order of reaction 55
$m_{\text {e }}$	electron rest mass 20,76, 89
$m_{\text {n }}$	neutron rest mass 89
m_{p}	proton rest mass 89
m_{u}	atomic mass constant 20,89
m	metre, SI unit 71, 110
m	milli, SI prefix 74
mi	mile, unit of length 110
min	minute, unit of time 75, 111
mix	mixing 51
mmHg	millimetre of mercury, unit of pressure 112
mol	mole, SI unit 46, 71
mon	monomeric form 47
M	magnetization 15
\boldsymbol{M}	torque 12
\boldsymbol{M}	transition dipole moment 24
M	angular momentum component quantum number 26
M	molar mass 41, 63
M	mutual inductance 15
M	radiant exitance 31
\boldsymbol{M}	Madelung constant 37
Ma	Mach number 65
$M_{\text {r }}$	relative molecular mass 41
M	mega, SI prefix 74
M	molar, unit of concentration 42
Mx	maxwell, unit of magnetic flux 115
n	amount of substance, chemical amount 4,41 , 46, 63
n	charge number of electrochemical reaction 58
n	number density 37, 39, 42
n	order of (Bragg) reflection 36
n	order of reaction 55
n	principal quantum number 21
n	refractive index 30, 33
n	nano, SI prefix 74
n	neutron 43, 93
N	angular momentum 26
N	neutron number 20
N	number of entities 39,41
N	number of states 39
$N_{\text {A }}$	Avogadro constant 39, 41, 89
N_{E}	density of states 37
Nu	Nusselt number 65, 66
N_{ω}	density of vibrational modes 37
N	newton, SI unit 72, 112
Np	neper 78
oz	ounce, unit of mass 111
Oe	oerstedt, unit of magnetic field strength 115

p
p
p
p
p
p
p
pc
pH
pol
ppb
pph pphm
ppm
ppq
ppt
psi
pound per square inch, unit of pressure 112
pound per square inch, unit of pressure 112
electric dipole moment $14,21,24$
momentum 12, 16, 39
bond order 17
number density of donors 37
pressure 12, 42
pico, SI prefix 74
proton 43, 93
parsec, unit of length 110
pH 59, 61
polymeric form 47
part per billion 78
part per hundred 78
part per hundred million 78
part per million 78
part per quadrillion 78
density matrix 19
dielectric polarization 14
permutation symmetry operator 27
power 13, 31
pressure 12, 42
probability 39
probability density 16
sound energy flux 13
transition probability 56
weight 12
Péclet number 65,66
Prandtl number 66
peta, SI prefix 74
poise, unit of viscosity 112
pascal, SI unit 72, 112
electric field gradient 22
wave vector 37
charge density 17
flow rate 65
generalized coordinate 11,39
heat 48
partition function 39
vibrational normal coordinate 24
quadrupole moment 21
disintegration energy 22
electric charge 14
heat 48
partition function 39
quality factor 31
radiant energy 30
reaction quotient 50
vibrational normal coordinate 24
r position vector $11,36,39$
r interatomic distance 24
rad rad, unit of radiation dose 113
rad radian, SI unit $11,72,113$
rem rem, unit of dose equivalent 113
internal vibrational coordinate 24
radius 11,56
rate of concentration change 55
spherical coordinate 11
reaction 51
lattice vector 36
nuclear orbital angular momentum 26
\boldsymbol{R}
position vector 36
transition dipole moment 24
electric resistance 15
gas constant 39, 89
Hall coefficient 37
internal vibrational coordinate 24
molar refraction 33
position vector 36
resolving power 31
Rydberg constant 20,89
thermal resistance 65
Rayleigh number 65
Reynolds number 65,66
magnetic Reynolds number 66
röntgen, unit of exposure 113
rydberg, unit of energy 112
degree Rankine, unit of temperature 113
spin angular momentum 26
length of path, length of arc 11
long-range order parameter 36
sedimentation coefficient 63
solubility 42
symmetry number 40
second, SI unit 71, 111
solid 47
solution 47
solution 51
steradian, SI unit 11, 72
sublimation 51

Poynting vector 15
probability current density 16
scattering matrix 56
spin angular momentum 26
absorption intensity 32
area 11
entropy 48,57
overlap integral 17,19
vibrational symmetry coordinate 24
Schmidt number 66
Sherwood number 66
rotation-reflection operator 28
Strouhal number 65
Stanton number 66
siemens, SI unit 72
stokes, unit of kinematic viscosity 112
sievert, SI unit 72, 113
svedberg, unit of time 111

Celsius temperature 48
film thickness, thickness of layer 63
time 4,11
transport number 60
half life 22,55
tonne, unit of mass 75,111
triton 43, 93
transition 51
T hyperfine coupling tensor 26
$T \quad$ torque 12
kinetic energy 12,16
period, characteristic time interval 11, 22
relaxation time 21,25
thermodynamic temperature $4,37,48$
total term, electronic term 23
transmittance 32
half life 22

cartesian coordinate 11
charge number 58
collision frequency, collision frequency factor 56
cylindrical coordinate 11
fractional coordinate 36
partition function 39
zepto, SI prefix 74
collision density, collision number 56
compression factor 49
impedance 15
partition function 39
proton number, atomic number 20
zetta, SI prefix 74
electric polarizability 22
absorptance 32
absorption coefficient 32
acoustic absorption factor 13
angle of optical rotation 33
coefficient of heat transfer 65
coulomb integral 17
degree of reaction 43
(electrochemical) transfer coefficient 60
expansion coefficient 48
fine structure constant 20,89
Madelung constant 37
plane angle 11, 36
spin wave function 17
relative pressure coefficient 48
alpha-particle 43, 93
first hyper-polarizability 22
plane angle 11,36
pressure coefficient 48
reciprocal temperature parameter 40
resonance integral 17
retarded van der Waals constant 63
spin wave function 17
statistical weight 24,39
beta-particle 93

acoustic dissipation factor 13
centrifugal distortion constants 23
chemical shift 25

loss angle 15		$\boldsymbol{\mu}$
thickness 11, 59, 63		μ
Dirac delta function, Kronecker delta	85	μ
infinitesimal change 85		μ
		μ
centrifugal distortion constants 23		μ
inertial defect 23		μ
mass excess 20		μ
finite change 85		μ
		μ
		$\tilde{\mu}$
emittance 31		μ_{0}
linear strain 12		$\mu_{\text {B }}$
molar (decadic) absorption coefficient	32	$\mu_{\text {e }}$
orbital energy 18		μ_{N}
permittivity 14		$\mu_{\text {p }}$
permittivity of vacuum $14,89,117$		μ
Levi-Civita symbol 85		μ
unit step function, Heaviside function	85	μ

Coriolis coupling constant 24
electrokinetic potential 60
overpotential 60
viscosity 13

Bragg angle 36
contact angle 63
cylindrical coordinate 11
plane angle 11
scattering angle 56
spherical polar coordinate 11
surface coverage 63
temperature 37,48
vibrational internal coordinate 24
volume strain, bulk strain 12
quadrupole moment 21
asymmetry parameter 23
compressibility 48
conductivity 15,60
magnetic susceptibility 15
molar napierian absorption coefficient 32
ratio of heat capacities 48
reciprocal radius of ionic atmosphere 60
reciprocal thickness of double layer 63
transmission coefficient 56
absolute activity 40,49
angular momentum component quantum
number 26
decay constant 22
mean free path 56
molar ionic conductivity 60
thermal conductivity 37,65
van der Waals constant 63
wavelength 30
lambda, unit of volume 111
angular momentum component quantum number 26
molar ionic conductivity 60
electric dipole moment $14,21,24$
chemical potential 49,59
electric mobility 60
friction coefficient 13
Joule-Thomson coefficient 48
magnetic dipole moment 15,21
mobility 37
permeability 15
reduced mass 12
Thomson coefficient 37
viscosity 13
electrochemical potential 59
permeability of vacuum $15,89,117$
Bohr magneton 21, 89, 116
electron magnetic moment 89
nuclear magneton $21,89,116$
proton magnetic moment 89
micro, SI prefix 74
micron, unit of length 110
muon 43, 93
charge number of cell reaction 58
frequency $11,21,23,30$
kinematic viscosity 13
stoichiometric number 42
wavenumber in vacuum 23,30
neutrino 93
extent of reaction, advancement 43,55
magnetizability 21
grand partition function
angular momentum 26
surface pressure 63
circumference/diameter 90
pion 93
osmotic pressure 51
Peltier coefficient 37
product sign 84
spin component quantum number 26
film tension 63
summation sign 84
acoustic transmission factor 13
characteristic time, relaxation time $11,22,37,55$ chemical shift 25
shear stress 12
thickness of surface layer 63
Thomson coefficient 37
transmittance 32
electric potential 14
fluidity 13
fugacity coefficient 50
inner electric potential 59
molecular orbital 17,18, 19
osmotic coefficient 51
plane angle 11
quantum yield 57
spherical coordinate 11
vibrational force constant 25
volume fraction 41
wavefunction 16
heat flow rate 65
magnetic flux 14
potential energy 12
quantum yield 57
radiant power 31
work function 37
quadrupole interaction energy tensor 22
atomic orbital 17, 19
electronegativity 20
magnetic susceptibility 15
surface electric potential 59
$\chi_{\mathrm{e}} \quad$ electric susceptibility $\quad 14$
$\chi_{\mathrm{m}} \quad$ molar magnetic susceptibility 15
$\psi \quad$ outer electric potential 59
$\psi \quad$ wavefunction 16
$\Psi \quad$ electric flux $\quad 14$
$\Psi \quad$ wavefunction $\quad 16,18$
$\omega \quad$ harmonic vibration wavenumber 23
$\omega \quad$ angular frequency, angular velocity $11,21,30$, 36
statistical weight 39
solid angle 11
$\Omega \quad$ angular momentum component quantum
number 26
partition function 39
solid angle 11
volume in phase space 39
ohm 72, 114

Special symbols

\% percent 77
\% permille 78

- degree, unit of arc 75, 113
- standard 51
- standard 51
, minute, unit of arc 75, 113
" second, unit of arc 75, 113
* complex conjugate 16,85
* excitation 44
* pure substance 51
$\ddagger \quad$ activation, transition state 51,56
$\infty \quad$ infinite dilution 51
[B] concentration of B 42
$[\alpha] \quad$ specific optical rotatory power 33

This page is intentionally blank

Subject Index

When more than one page reference is given, bold print is used to indicate the most useful general reference. Greek letters are spelled out and accents are ignored in alphabetical ordering.
ab initio 17
abbreviations 125-133
abcoulomb 114
absolute activity 40, 49
absolute electrode potential 59
absorbance 32
absorbed dose of radiation 72,113
absorptance 32
absorption 29
absorption band intensity 33
absorption coefficient 32
absorption cross section 32,33
absorption factor 32
absorption index 33
absorption intensity 33,34
acceleration 11, 111
acceptor ionization energy 37
acid dissociation constant 50
acoustic factors 13
acoustics 78
acre 110
acronyms 125-133
action 12, 76, 112
activated complex 51
activation energy 55
activity
absolute 40, 49
mean ionic 58
radioactive 22, 72, 113
relative 49
admittance 15
activity coefficient 50
activity of an electrolyte 58
activity of a radioactive substance 22
adsorbed amount 63
adsorbed species 47
adsorption 51
advancement 43
affinity of reaction 50
Alfvén number 66
alpha-particle 43, 93
amagat 113
amorphous solid 47
amount, chemical 4, 41, 46, 70
amount concentration 5, 42,73
amount fraction 41
amount of substance $4,41,46,70$
ampere 70, 71, 114
amplitude levels 79
angle
Bragg 36
contact 63
loss 15
plane 11, 72, 75, 113
reciprocal unit cell 36
scattering 56
solid 11, 72
unit cell 36
angle of optical rotation 33
ångström 75, 110
angular frequency 11, 30, 72
angular momentum 12, 26, 112
angular momentum quantum numbers 26
angular velocity 11, 72
angular wave vector 37
anharmonicity constants 23
anode 59
anticommutator 16
aqueous solution 47
are 110
area 11, 75, 110
area per molecule 63
areic 7
Arrhenius activation energy 55
astronomical unit 110
asymmetry parameter 23
atmosphere 112
atomic mass 20, 41, 94
atomic mass constant 20, 41, 89
atomic mass unit $20,41,75,89,111$
atomic masses of nuclides $98-104$
atomic number 20, 44
atomic orbital basis function 17, 19
atomic scattering factor 36
atomic states 28
atomic units 76, 120
atomic weight 41, 94
atomization 51,53
attenuance 32
atto 74
average molar masses 63
average speed 39
Avogadro constant 39, 41, 89
bar 75, 112
barn 75, 110
barrel 111
base hydrolysis constant 50
base physical quantity 4
base units (SI) 69, 70, 71
becquerel 72,113
bel 78, 79
beta-particle 93
binomial coefficient 84
biot 114, 119
Bloch function 37
bohr 76, 110

Bohr magneton 21, 76, 89, 116
Bohr radius 20, 89
Boltzmann constant 39, 55, 89
bond order 17
Bragg angle 36
breadth 11
British thermal unit 112
bulk modulus 12
bulk strain 12
Burgers vector 36
calorie 112 $15^{\circ} \mathrm{C}$ calorie $\quad 112$
candela 70, 71
capacitance 14,122
cartesian space coordinates 11
cathode 59
Celsius scale zero 89
Celsius temperature 48, 72, 113
centi 74
centigrade temperature 48
centipoise 112
centrifugal distortion constants 23
CGPM viii, 69
characteristic temperature 37,40
characteristic time interval 11
charge
electric 14, 20, 76
elementary $20,58,76,89$
charge density $14,17,59,114$
charge density of electrons 16,37
charge number $44,58,93$
charge number of cell reaction 58
chemical amount $4,41,46,70$
chemical equation 42,45
elementary reaction 46
equilibrium reaction 45
general 42
net forward reaction 45
stoichiometric 42, 45, 52
chemical formulae 44
chemical kinetics 55
chemical potential 49,59
chemical reaction 51, 52
chemical shift 25
chemical thermodynamics 48
circular frequency 11
circular fundamental translation vectors 36
circular reciprocal lattice vector 36
classical mechanics 12
clausius 113
coefficient of heat transfer 65
coefficient of thermal expansion 48
collision cross section 56
collision density 56
collision diameter 56
collision frequency 56
collision frequency factor 56
collision number 56
colloid chemistry 63
combustion reaction 51,52
commutator 16
complex admittance 15
complex impedance 15
complex refractive index 33
compressibility 48
compressibility factor 49
compression factor 49
compression modulus 12
concentration
amount (of substance) 5, 42
mass 42
number 37, 39, 42
standard 54
substance 5
surface 42
surface excess 63
concentration basis 50,58
condensed 47
conductance, electric 15
conductivity $15,37,60$
conductivity cell constant 60
conjugate transpose 86
conservation matrix 42
contact angle 63
conversion factors
energy inside back cover
pressure 166
conversion of units 105, 110-116
convolution of functions 85
coordinates 11
cartesian space 11
cylindrical 11
fractional 36
generalized 11, 39
internal 24
normal 24
spherical polar 11
symmetry 24
vibrational 24
core hamiltonian 18
Coriolis zeta constant 24, 27
corrosion nomenclature 58
coulomb 72, 114
coulomb integral 17, 18
coulomb operator 18
coupling constant
Coriolis 24, 27
dipolar 25
direct 25
hyperfine 26
indirect spin-spin 25
reduced spin-spin 25
spin-orbit 23
spin-spin 25
Cowling number 66
cross section
collision 56
differential 56
integrated absorption 33, 34
net absorption 32
nuclear reaction 22
total 56
crystal directions 38
crystal lattice symbols 38
crystal planes 38
crystalline 47
cubic expansion coefficient 48
cumulative number of states 39
curie 113
Curie relation 123
Curie temperature 37
curl of a vector field 85
current density 59, 123
cylindrical coordinates 11
dalton 20, 41, 75, 111
day 75, 111
debye 24, 114
Debye angular frequency 36
Debye angular wavenumber 36
Debye length 60

Debye-Waller factor 36
deca 74
decadic absorbance 32
decadic absorption coefficient 32
decay constant 22
deci 74
decibel 78,79
degeneracy 24,39
degree (of arc) 75, 113
degree Celsius 72
degree of dissociation 43
degree Fahrenheit 113
degree of ionization 43
degree of reaction 43
degree Rankine 113
del operator 85
density 12
charge 14
collision 56
mass 12, 42
number $37,39,42$
relative 12
surface 12
surface charge 14
density matrix element 19
density of states 37, 39
deuteron 43, 93
diameter 11, 56
dielectric constant 14
dielectric polarization 14
differential cross section 56
diffusion coefficient 37, 56
diffusion length 37
diffusion rate constant 59
dilution 51
dimension one 77
dimensionless quantities 77
dipole 14
dipole length 24,115
dipole moment
electric $14,21,24,76,115,122$
magnetic $15,21,76,93,116,123$
dipole moment per volume 14
Dirac delta function 85
direct (dipolar) coupling constant 25
disintegration constant 22
disintegration energy 22
displacement 51
displacement vector 36
displayed formula 45
dissociation energy 20
distance 11, 24
divergence of a vector field 85
donor ionization energy 37
dose equivalent 72, 113
dynamic viscosity 13, 112
dyne 112
effective mass 37
efficiencies 77
Einstein transition probabilities 30,31
electric capacitance 72
electric charge 14, 72, 114
electric conductance 72
electric current $14,59,76,114,122$
electric current density $14,16,59$
electric dipole moment $14,21,24,76,115,122$
electric displacement 14, 115
electric field gradient 22,114
electric field (strength) 14, 76, 114, 122, 123
electric flux 14
electric mobility 60
electric polarizability of a molecule 22
electric potential 14,72,59,114, 122, 123
electric potential difference $14,58,60$
electric quadrupole moment 115
electric resistance 15, 72, 114
electric susceptibility $\mathbf{1 4}, 122$
electricity, quantity of 14
electrochemical potential 59
electrochemical transfer coefficient 60
electrochemistry 58
electrode potential 59,61
electrode reaction rate constant 59
electrokinetic potential 60
electromagnetic radiation 30
electromagnetic theory 122
electromotive force $14,58,59,60,72$
electron 43, 93
electron affinity 20
electron configuration 28
electron magnetic moment 89
electron paramagnetic resonance 26
electron rest mass 20,76, 89, 111
electron spin resonance 26
electronegativity 20
electronic term 23
electronic transition 33
electronvolt 75, 112
elementary charge $20,58,76,89$
elementary entity 46,70
elements
standard atomic weights of 94
symbols of 43, 94-97
elongation 12
emf $14,58,59,60,72$
emission 29
emittance 31
empirical formula 45
emu system 117, 119
energy $\mathbf{1 2}, 72,75,76,111$
(Arrhenius) activation 55
barrier 55
conversion table inside back cover
Fermi 37
gap 37
Gibbs 48, 57
Helmholtz 48
internal 48, 57
ionization 20, 37
kinetic 12
orbital 18
parameter 17
potential 12
quadrupole interaction 22
radiant 30
threshold 55
total electronic 18, 19
enthalpy 48
enthalpy of activation 56
entitic 7
entity 46
entropy 48, 112
entropy of activation 57
entropy unit 113
EPR 26, 29
equations of electromagnetic theory 122
equilibrium constant 50
equilibrium distance 24
equilibrium position vector 36
erg 112
ESR 26, 29
esu system 117, 118
étendue 31
Euler number 65
evaporation 51
exa 74
exchange integral 18
exchange operator 18
excited states 44
expansion coefficient 48
expansivity coefficient 48
expectation value 16
extensive 7
extent of reaction 43
extinction 32
extinction coefficient 32
factor
atomic scattering 36
Debye-Waller 36
structure 36
factorial 84
Fahrenheit temperature 113
farad 72
Faraday constant 58,89
femto 74
fermi 110
Fermi energy 37
field levels 79
film tension 63
film thickness 63
fine structure constant 20,89
finesse 31
first radiation constant 32,89
flow rate 65
fluence 31
fluid phase 47
fluidity 13
flux 65
Fock operator 18,19
foot 110
force $12,72,76,111$
force constants 25
formation reaction 51,53
formula matrix 42
formula unit 41
Fourier number 65, 66
fractional coordinates 36
fractions 41, 77
franklin 114, 118
free spectral range 31
frequency 11, 30, 72
frequency factor, collision 56
friction factor 13
Froude number 65
fugacity 50
fugacity coefficient 50
fundamental physical constants 87-90
fundamental translation vectors 36
fusion 51
g-factor 21, 26, 89
gal, galileo 111
gallon 111
Galvani potential difference 59
galvanic cell 60
gamma 111
gamma function 85
gap energy 37
gas 47
gas constant 39,89
gas phase 53
gauss 115
Gaussian system 117, 119
Gaussian type orbitals 19
general chemistry 41
generalized coordinates 11, 39
generalized momentum 39
Gibbs energy (function) 48
Gibbs energy of activation 57
giga 74
grade 113
gradient of a scalar field 85
grain 111
Grashof number 65, 66
gravitational constant 12,89
gray 72, 113
Greek alphabet 143
Gregorian year 111
ground state distance 24
Grüneisen parameter 37
GTO 19
gyromagnetic 21, 25, 26, 89
half life 22,55
Hall coefficient 37
Hamilton function 12
hamiltonian operator 16
hard sphere radius 56
harmonic vibration wavenumber 23
Hartmann number 66
hartree 76, 112
Hartree energy 20, 89
Hartree-Fock theory 17
Hartree-Fock-Roothaan theory 19
heat 48, 72
heat capacity 48,112
heat flow rate 65
heat flux 65
Heaviside function 85
hectare 110
hecto 74
height 11
helion 43, 93
Helmholtz energy (function) 48
henry 72
Henry's law 50
Henry's law constant 50
Herman-Maugin symbols 38
hermitian conjugate 16
hertz 72
HMO 17
horse power 112
hour 75, 111
Hückel molecular orbital theory 17
hydrogen-like wavefunction 16
hyperbolic functions 84
hyperfine coupling constant 26
hyper-polarizability 22
hyper-susceptibility 14
ideal 51
illuminance 72
immersion 51
impact parameter 56
impedance 15
inch 110
induced emission 31
inductance 72
inertial defect 23
infinite dilution 47, 51
infrared spectra 29
inner electric potential 59
integrated absorption cross section 33, 34
integrated absorption intensity 32,34
integration element 16
intensity 31
absorption 32, 33, 34
luminous 30
photon 30
radiant 30, 31
spectral 31
intensive 7
interatomic distances 24
interface properties 64
interfacial tension 63
internal absorptance 32
internal coordinates 24
internal energy 48
internal energy of activation 57
international calorie 112
International system of units 69
international volt 114
ionic conductivity 60
ionic strength 51, 58
ionization energy 20
acceptor 37
donor 37
irradiance 31
irrational 117
isentropic compressibility 48
ISO/TC 12 viii
isobars 44
isothermal compressibility 48
isotopes 44
isotopic abundances of nuclides 98-104
IUPAP viii
joule 72, 112
Joule-Thomson coefficient 48
Julian year 111
K-doubling 27
kelvin 70, 71, 113
kilo 74
kilogram 70, 71, 111
kilogram-force 112
kinematic viscosity 13, 112
kinetic energy 12, 16
kinetics, chemical 55
Knudsen number 65
Kronecker delta 85
l-doubling 27
Lagrange function 12
lambda 111
lambda-doubling 27
Landé g-factor for free electron 89
langmuir 65
Laplacian operator 85
Larmor (angular) frequency 21
lattice plane spacing 36
lattice vector 36
length 11, 75, 76, 110
Debye 60
diffusion 37
dipole 24, 115
path 11
reciprocal unit cell 36
unit cell 36
length of arc 11
level width 22
levels 79
Levi-Civita symbol 85
Lewis number 66
light gathering power 31
light second 110
light year 110
line width 31
linear decadic absorption coefficient 32
linear expansion coefficient 48
linear napierian absorption coefficient 32
linear strain 12
lineic 7
liquid 47, 53
liquid crystal 47
litre 75, 111
litre atmosphere 112
logarithmic functions 84
logarithmic quantities 78
logical operators 86
longitudinal relaxation time 21, 25
Lorenz coefficient 37
loss angle 15
lumen 72
luminous flux 72
luminous quantities 30
lux 72

Mach number 65
Madelung constant 37
magnetic (dipole) moment $15,21,76,93,116,123$
molecular 21
nuclear 21, 98-104
particle 89, 93
magnetic field 115
magnetic field strength 14
magnetic flux $14,72,115$
magnetic flux density $14,72,76,115$
magnetic induction 14
magnetic Reynolds number 66
magnetic susceptibility $\mathbf{1 5}, 109,116,123$
magnetic vector potential 15
magnetism 14
magnetizability 21, 116
magnetization 15
magnetization, (volume) 115
magnetogyric ratio 21, 25, 26, 89
mass 12, 75, 76, 111
atomic 20, 41, 94, 98-104
average molar 63
effective 37
electron rest $20,76,89,93,111$
molecular 41
neutron rest 89,93
particle rest 93
proton rest 89,93
reduced 12
relative atomic 41, 94
relative molecular 41
mass of atom 20, 41
mass average molar mass 63
mass concentration 42
mass constant 20
mass constant, atomic 41
mass density $\mathbf{1 2 , 4 2}$
mass of entity 41
mass excess 20
mass flow rate 65
mass fraction 41
mass number 20, 44
mass transfer coefficient 59,65
massic 7
Massieu function 48
mathematical constants 83,90
mathematical functions 83
mathematical operators 84
mathematical symbols 81-86
matrices 83,85
matrix element of operator 16
maxwell 115
Maxwell equations 123
mean free path 56
mean international ohm 114
mean international volt 114
mean ionic activity 58
mean ionic activity coefficient 58
mean ionic molality 58
mean life 22, 93
mean relative speed 56
mechanics
classical 12
quantum 16
mega 74
melting 51
metre 70, 71, 110
micro 74
micron 110
mile 110
Miller indices 38
milli 74
millimetre of mercury 112
minute 75,111
minute (of arc) 75, 113
mixing of fluids 51
mixture 53
mobility 37
mobility ratio 37
modulus
bulk 12
compression 12
shear 12
Young's 12
modulus of elasticity 12
molal solution 42
molality 42
molality basis $\mathbf{5 0}, 58$
molar 7
molar conductivity $\quad \mathbf{6 0}, 108$
molar decadic absorption coefficient 32
molar density 113
molar entropy 113
molar gas constant 39
molar heat capacity 113
molar magnetic susceptibility $\mathbf{1 5 , 1 1 6}$
molar mass 41, 63
molar napierian absorption coefficient 32
molar optical rotatory power 33
molar quantity 48
molar refraction 33
molar solution 42
molar volume 41, 113
molar volume of ideal gas 89
molarity 42
mole 70, 71
mole fraction 41
mole fraction basis 51
molecular formula 45
molecular geometry 24
molecular momentum 39
molecular orbital $17,18,19$
molecular position vector 39
molecular spin-orbital 18
molecular states 28
molecular velocity 39
molecular weight 41
moment of a force 12
moment of inertia 12, 23
momentum 12, 16, 39, 76
monomeric form 47
muon 43, 93
muonium 93
mutual inductance 15
nabla operator 85
nano 74
napierian absorbance 32
napierian absorption coefficient 32
nautical mile 110
Néel temperature 37
neper 78
neutrino 93
neutron 43, 93
neutron number 20
neutron rest mass 89
newton 72
NMR 25, 29
non-rational see irrational
normal coordinates 24
normal stress 12
nuclear g-factor 21
nuclear magnetic moments 98-104
nuclear magnetic resonance $\mathbf{2 5}, 29$
nuclear magneton $21,89,116$
nuclear quadrupole moments 98-104
nuclear reactions 43
nuclear spin quantum numbers $98-104$
nucleon number 20
nuclides 44,98
number
atomic 20, 44
charge $44,58,93$
collision 56
mass 20, 44
neutron 20
nucleon 20
oxidation 44
proton 20, 44
quantum 21, 23, 26, 93, 98
stoichiometric 42
symmetry 40
transport 60
number of atoms per entity 44
number average molar mass 63
number concentration $37,39,42$
number density $37,39,42$
number of entities 39, 41
number fraction 41
number of moles 46
number of states 39
numbers
printing of 83
transport 65
Nusselt number 65

Oersted 115
ohm 72, 114
one-electron integrals 18,19
one-electron orbital energy 18
operator
angular momentum 26
coulomb 18
del 85
exchange 18

Fock 18, 19
hamiltonian 16
kinetic energy 16
Laplacian 85
logical 86
mathematical 84
matrix element of 16
momentum 16
nabla 85
symmetry 27, 38
optical rotation 33
optical rotatory power 33
orbital energy 18
order of reaction 55
order of reflection 36
order parameters 36
oscillator strength 33
osmole 51
osmotic coefficient 51
osmotic pressure 51
ounce 111
outer electric potential 59
overall order of reaction 55
overlap integral 17
overlap matrix element 19
overpotential 60
oxidation number 44
parsec 110
part per billion 78
part per hundred 78
part per hundred million 78
part per million 77
part per quadrillion 78
part per thousand 78
part per trillion 78
partial molar Gibbs energy 49
partial molar quantity 49
partial order of reaction 55
partial pressure 42
particle position vector 36
particle properties 93
particle symbols 43
partition functions 39
pascal 72, 112
path length 11
Péclet number 65, 66
Peltier coefficient 37
percent 77
period 11
permeability $\mathbf{1 5 , 8 9}$
permille 78
permittivity 14,89
peta 74
pH 59, 62
photochemical yield 57
photoelectrochemical energy conversion 58
photoelectron spectra 29
photon 43, 93
photon quantities 30
physical constants, fundamental 87-90
physical quantity 3
base 4
derived 4
extensive 7
intensive 7
numerical value of 3
products of 8
quotients of 8
symbol of 5
unit of 3
pico 74
pion 93
Planck constant 20, 30, 76, 89
Planck function 48
planck angle 11, 72, 75, 113
poise 112
polarizability 22, 115
polarization, (volume) 115
polymeric form 47
position vector 11, 36, 39
positronium 93
potential difference $14,58,60$
Galvani 59
Volta 59
potential of electrochemical cell reaction 59
potential energy 12
pound 111
pounds per square inch 112
power 13, 72, 112
power levels 79
power, radiant 31
Poynting (-Umov) vector 15, 123
Prandtl number 66
pre-exponential factor 55,56
presentation of spectra 29
pressure 12, 42, 72, 75, 112, 166 osmotic 51 partial 42 standard (state) 54 surface 63 total 42
pressure basis 50
pressure coefficient 48
principal moments of inertia 23
probability 39
probability current density 16
probability density 16
probability flux 16
process symbols 51
propagation vector 37
proton 43,93
proton charge $20,58,89,93,114$
proton magnetic moment 89
proton magnetogyric ratio 89
proton number 20
proton rest mass 89,93
pulsatance 30
pure phase 53
pure substance 51
quadrupole interaction energy tensor 22
quadrupole moment
molecular 21
nuclear 21, 98-104
quality factor 31
quantity calculus 3,107
quantum chemistry 16
quantum mechanics 16
quantum number
angular momentum 26
nuclear spin, 98-104
particle spin 93
principal (H atom) 21
vibrational 23
quantum yield 57
rad 113
radian $11, \mathbf{7 2}, 113$
radiance 31
radiant energy 30
radiant energy density $\mathbf{3 0 , 1 2 3}$
radiant energy per time 31
radiant exitance 31
radiant flux 31, 72
radiant intensity 31
radiant power 31
radiant quantities 30
radiation constants 89
radioactivity 113
radius 11
radius, reciprocal 60
Raman spectra 29
Raoult's law 50
rate coefficient 55
rate constant 55
diffusion 59
electrode reaction 59
rate of change 55
rate of concentration change 55
rate of conversion 55
rate of reaction 55
ratio of heat capacities 48
rational 117
Rayleigh number 65
reactance 15
reaction equation 42,45
reaction in general 51
reaction quotient 50
reciprocal lattice vector 36
reciprocal radius of ionic atmosphere 60
reciprocal temperature parameter 40
reciprocal thickness of double layer 63
reciprocal unit cell
angle 36
length 36
reduced adsorption 64
reduced mass 12
reduced spin-spin coupling constant 25
reflectance 32
reflection factor 32
refraction
molar 33
refractive index 30
complex 33
relative activity 49
relative adsorption 64
relative atomic mass 41,94
relative density 12
relative elongation 12
relative molar mass 41
relative molecular mass 41
relative permeability 15
relative permittivity 14
relative pressure coefficient 48
relative speed 56
relative uncertainties 77
relaxation time 11,55
longitudinal 21,25
transverse 21, 25
rem 113
residual resistivity 37
resistivity $\mathbf{1 5}, 37$
resolution 31
resolving power 31
resonance integral 17
rest mass 93
electron 20,89,93
neutron 89,93
of particles 93
proton 89,93
retarded van der Waals constant 63
Reynolds number 65
röntgen 113
rotational constant 23
rotational term 23
rotational transitions 29
rotatory power 33
rydberg 112
Rydberg constant 20,89
scattering angle 56
scattering factor, atomic 36
scattering matrix 56
SCF 17, 19
Schmidt number 66
Schönflies symbols 28
second 70, 71, 111
second (of arc) 75, 113
second radiation constant 32,89
sedimentation coefficient 63
self consistent field theory 17,19
self-inductance 15
semiconductor electrochemistry 58
shear modulus 12
shear stress 12
Sherwood number 66
shielding constant 25
shielding parameter 19
SI 69
SI base units 69, 70, 71
SI derived units 69,72,73
SI prefixes 69, 74
SI supplementary units 72
siemens 72
sievert 72, 113
Slater type orbitals 19
solid 47, 53
solid angle 11, 72
solid state 36
solubility 42
solute 53
solution 47,51
solvent 53
sound energy flux 13
space 11
specific 7
specific conductance 60
specific optical rotatory power 33
specific quantity 48
specific rotation 33
specific surface area 63
specific volume 12
spectra 29
spectral density of vibrational modes 37
spectral intensity 31
spectral irradiance 31
spectral radiant energy density 30
spectroscopic transitions 29
spectroscopy 23
speed 11, 56
speed distribution function 39
speed of light $30, \mathbf{8 9}$
spherical harmonic function 16
spherical polar coordinates 11
spin angular momentum 17
spin-orbit coupling constant 23
spin-spin coupling constant 25
spin wavefunction 17
spontaneous emission 30
standard 51
standard acceleration of free fall 89
standard atmosphere 89
standard atomic weights 94
standard chemical potential
standard concentration 54 standard electrode potential 59
standard electromotive force 58
standard enthalpy of activation 56
standard entropy of activation 57
standard equilibrium constant 50
standard Gibbs energy of activation 57
standard internal energy of activation 57
standard molality 54
standard partial molar enthalpy 49
standard partial molar entropy 49
standard potential of cell reaction 58
standard pressure 54
standard pressure corrections 61
standard reaction enthalpy 50
standard reaction entropy 50
standard reaction Gibbs energy 49
standard reaction quantities 52
standard state pressure 54
standard states 53
standard thermodynamic quantities $49,50,53,54$
standard uncertainty 83
Stanton number 66
state function 16
states of aggregation 46
statistical thermodynamics 39
statistical weight 24,39
Stefan-Boltzmann constant 31,89
steradian 11, 72
stereochemical formula 45
stimulated emission 31
STO 19
Stockholm convention 60
stoichiometric number 42
stokes 112
strain 12
bulk 12
linear 12
shear 12
volume 12
stress 12, 72
Strouhal number 65
structural formula 45
structure factor 36
sublimation 51
substance concentration 5
substitution structure distance 24
sum over states 39
surface amount 63
surface charge density 14,59
surface chemistry 63
surface concentration 42
surface coverage 63
surface density 12
surface electric potential 59
surface excess 63
surface excess concentration 63
surface pressure 63
surface properties 64
surface tension $12,48,63$
susceptance 15
svedberg 111
symbols 5
for chemical reactions $42,45,51$
for elements 43, 94-97
for excited entities 44
for mathematical constants 90
for mathematical functions 84
for mathematical operators 84
for molecules 45
for nuclear reactions 43
for nuclides 44
for particles 43
for physical quantities 5
for processes 51
for radicals 44
for special functions 84
for states 28, 51
for states of aggregation 46
for symmetry operations 27, 38
for symmetry species 28
for tensors 5
for units 5
for vectors 5
symbols
crystal lattice 38
excitation 44
Herman-Maugin 38
mathematical 81-86
particle 43
Schönflies 28
term 28
symmetry coordinates 24
symmetry number 40
symmetry operators 27,38
symmetry species 27,83

temperature

Celsius 48
centigrade 48
characteristic 40
Fahrenheit 113
Rankine 113
thermodynamic 48
tensor quantities 83
tera 74
term 23
term symbols 28
tesla 72, 115
thermal conductance 65
thermal conductivity 37, 65
thermal diffusivity 65
thermal expansion coefficient 48
thermal resistance 65
thermochemical calorie 112
thermodynamic equilibrium constant 50
thermodynamic properties 54
thermodynamic temperature 48, 112
thermodynamics
chemical 48
statistical 39
thermoelectric force 37
thickness 11, 59, 63
film 63
reciprocal 63
Thomson coefficient 37
threshold energy 56
throughput 31
time 11, 75, 76, 111
time constant 11
tonne 75, 111
torque 12
torr 112
total cross section 56
total electronic energy $\mathbf{1 8}, 19$
total pressure 42
total surface excess concentration 63
total wavefunction 18
transfer coefficient 60
transition 51
transition dipole moment 24,34
transition frequency 23
transition probability 56
transition state 51
transition wavenumber 23
transitions
electronic 33
rotational 29
spectroscopic 29
vibronic 29
translation vectors 36
transmission coefficient 57
transmission factor 32
transmittance 32
transport number 60,65
transport properties 65
transverse relaxation time 21,25
trigonometric functions 84
triton 43, 93
tropical year 111
two-electron integrals 18, 19
uncertainties of measurement 54,83
unified atomic mass unit $21,41,75,89,111$
unit cell angles 36
unit cell lengths 36
unit step function 85
unit system 111
atomic 114, 120
emu 113
esu 112
Gaussian 110, 119
SI 75
units
conversion of 105
products of 8
quotients of 8
SI 69-75
SI base 69, 70, 71
SI derived 69, 72, 73
symbols for 5
US international ohm 114
US international volt 114
van der Waals coefficients 49
van der Waals constant 63
van der Waals-Hamaker constant 63
vaporization 51
vapour 47
vectors 83,85
velocity $\mathbf{1 1}, \mathbf{3 9}, 76$
velocity distribution function 39
vibrational anharmonicity constant 23
vibrational coordinates 24
vibrational force constants 25
vibrational quantum numbers 23
vibrational states 29
vibrational term 23
vibronic transitions 29
virial coefficients 49
viscosity 13
visible/ultraviolet spectra 29
vitreous substance 47
volt 72, 114
Volta potential difference 59
volume 11, 75, 111
molar 41, 89, 113
specific 12
volume of activation 56
volume flow rate 65
volume fraction 41
volume in phase space 39
volume strain 12
volumic 7

Wang asymmetry parameter 23
watt 72, 112
wave vector, angular 37
wavefunction 16
wavelength 30
wavenumber 30
weber 72, 115
Weber number 65
weight 12
Weiss temperature 37
work $12,48,72$
work function 37
x unit 110
yard 110
year 111
yield 57, 77
yocto 74
yotta 74
Young's modulus 12

Z-average molar mass 63
zepto 74
zero-point average distance 24
zeta potential 60
zetta 74

NOTES

NOTES

NOTES

NOTES

PRESSURE CONVERSION FACTORS

	Pa	kPa	bar	atm	Torr	psi
$1 \mathrm{~Pa}=1$	10^{-3}	10^{-5}	9.86923×10^{-6}	7.50062×10^{-3}	1.45038×10^{-4}	
$1 \mathrm{kPa}=$	10^{3}	1	10^{-2}	9.86923×10^{-3}	7.50062	0.145038
$1 \mathrm{bar}=$	10^{5}	10^{2}	1	0.986923	750.062	145.038
$1 \mathrm{~atm}=$	101325	101.325	1.01325	1	760	14.6959
$1 \mathrm{Torr}=$	133.322	0.133322	1.33322×10^{-3}	1.31579×10^{-3}	1	1.93367×10^{-2}
$1 \mathrm{psi}=$	6894.76	6.89476	6.89476×10^{-2}	6.80460×10^{-2}	51.71507	1

Examples of the use of this table:
$1 \mathrm{bar}=0.986923 \mathrm{~atm}$
1 Torr $=133.322 \mathrm{~Pa}$
Note: $1 \mathrm{mmHg}=1 \mathrm{Torr}$, to better than 2×10^{-7} Torr (see p.112).

ENERGY CONVERSION FACTORS

Examples of the use of this table: $1 \mathrm{aJ} \xlongequal{=} 50341 \mathrm{~cm}^{-1}$ $1 \mathrm{eV} \xlongequal{=} 96.4853 \mathrm{~kJ} \mathrm{~mol}^{-1}$

The symbol $\hat{=}$ should be read as meaning 'corresponds to' or 'is equivalent to'

Quantities, Units and Symbols in Physical Chemistry

The first IUPAC Manual of Symbols and Terminology for Physicochemical Quantities and Units (the Green Book) of which this is the direct successor, was published in 1969, with the object of 'securing clarity and precision, and wider agreement in the use of symbols, by chemists in different countries, among physicists, chemists and engineers, and by editors of scientific journals'. Subsequent revisions have taken account of many developments in the field, culminating in the major extension and revision represented by the 1988 edition under the simplified title Quantities, Units and Symbols in Physical Chemistry.

The present 1993 edition is a futher revision of the 1988 edition, incorporating the recent resolutions of the CGPM, the new international standards ISO-31, and new recommendations from IUPAP and from other IUPAC Commissions. Major additions have been made to the sections on Quantum Mechanics and Quantum Chemistry, Electromagnetic Radiation, and Chemical Kinetics, in order to include physical quantities used in the rapidly developing fields of quantum chemical computations, laser physics, and molecular beam scattering. New sections have been added on Dimensionless Quantities, and on Abbreviations and Acronyms used in chemistry, and a full subject index has been added to the previous symbol index.

Related Titles of Interest:

Quantities, Units and Symbols in Physical Chemistry (the Abbreviated List) compiled by K.H.Homann This 4 page laminated list based on the 'Green Book' is intended as a reådy reference to the symbols most frequently used by teachers and students in chemistry and related disciplines. Available only as packs of 10 or 50. Reprinted 1993.

A Guide to IUPAC Nomenclature of Organic Compounds 0632034882 1.993

Compendium of Macromolecular Nomenclature W.V. Metanomski 063202846 7, hardback 063202847 5, paperback 1991

Nomenclature of Inorganic Chemistry Recommendations 1990
 G.J. Leigh
 063202319 8, hardback
 063202494 I, paperback
 1990

Compendium of Analytical Nomenclature

 Definitive Rules 1987H. Freișer and G.H. Nancollas

063201907 7, hardback
063202589 1, paperback
1987
Compendium of Chemical Terminology
IUPAC Recommendations
V. Gold et al
063201765 1, hardback
0632017678 , paperback IUPAC Recommendations
V. Gold et al 063201765 1, hardback
063201767 , paperback

[^0]: Commission on Physicochemical Symbols, Terminology and Units

 Ian Mills
Tomislav Cvitaš
Klaus Homann
Nikola Kallay
Kozo Kuchitsu

[^1]: (1) The Clinical Chemistry Division of IUPAC recommends that 'amount-of-substance concentration' be abbreviated 'substance concentration'.

[^2]: Notes (continued)
 (17) $\psi(\boldsymbol{r})$ is a one-electron wavefunction.
 (18) The total charge density is obtained by summing over all electrons.
 (19) Subscripts n and p or - and + may be used to denote electrons and holes respectively.
 (20) D is the diffusion coefficient and τ the lifetime.

[^3]: (1) These are in accordance with the 'Stockholm Convention' of 1953 [34].

[^4]: (1) Note that the atomic mass constant, m_{u}, is equal to the unified atomic mass unit, u, and is defined in terms of the mass of the carbon- 12 atom: $m_{u}=1 u=m_{\mathrm{a}}\left({ }^{12} \mathrm{C}\right) / 12$.

[^5]: (1) A more appropriate name for 'quantity calculus' might be 'algebra of quantities', because it is the principles of algebra rather than calculus that are involved.

[^6]: (7) The units in quotation marks for electric potential through polarizability may be found in the literature, although they are strictly incorrect; they should be replaced in each case by the units given in the symbol column. Thus, for example, when a quadrupole moment is quoted in ' cm^{2} ', the correct unit is $e \mathrm{~cm}^{2}$; and when a polarizability is quoted in ' \AA^{3} ', the correct unit is $4 \pi \varepsilon_{0} \AA^{3}$.

[^7]: (1) The name 'franklin', symbol Fr , for the esu of charge was suggested by Guggenheim more than 40 years ago (Nature, 148 (1941) 751). Although it has not been widely adopted, this name and symbol are used here for convenience as a compact expression for the esu of charge. The name 'statcoulomb' has also been used for the esu of charge.

[^8]: 7 ISO2955-1983, Information Processing-Representations of SI and Other Units for Use in Systems with Limited Character Sets

