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Preface

With the recent flourishing research activities on Web search and mining, social
network analysis, information network analysis, information retrieval, link analy-
sis, and structural data mining, research on link mining has been rapidly growing,
forming a new field of data mining.

Traditional data mining focuses on “flat” or “isolated” data in which each data
object is represented as an independent attribute vector. However, many real-world
data sets are inter-connected, much richer in structure, involving objects of het-
erogeneous types and complex links. Hence, the study of link mining will have a
high impact on various important applications such as Web and text mining, social
network analysis, collaborative filtering, and bioinformatics.

As an emerging research field, there are currently no books focusing on the theory
and techniques as well as the related applications for link mining, especially from
an interdisciplinary point of view. On the other hand, due to the high popularity
of linkage data, extensive applications ranging from governmental organizations to
commercial businesses to people’s daily life call for exploring the techniques of
mining linkage data. Therefore, researchers and practitioners need a comprehensive
book to systematically study, further develop, and apply the link mining techniques
to these applications.

This book contains contributed chapters from a variety of prominent researchers
in the field. While the chapters are written by different researchers, the topics and
content are organized in such a way as to present the most important models, algo-
rithms, and applications on link mining in a structured and concise way. Given the
lack of structurally organized information on the topic of link mining, the book will
provide insights which are not easily accessible otherwise. We hope that the book
will provide a useful reference to not only researchers, professors, and advanced
level students in computer science but also practitioners in industry.

We would like to convey our appreciation to all authors for their valuable con-
tributions. We would also like to acknowledge that this work is supported by NSF
through grants IIS-0905215, IIS-0914934, and DBI-0960443.

Chicago, Illinois Philip S. Yu
Urbana-Champaign, Illinois Jiawei Han
Pittsburgh, Pennsylvania Christos Faloutsos
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Chapter 1
Machine Learning Approaches to Link-Based
Clustering

Zhongfei (Mark) Zhang, Bo Long, Zhen Guo, Tianbing Xu, and Philip S. Yu

Abstract We have reviewed several state-of-the-art machine learning approaches
to different types of link-based clustering in this chapter. Specifically, we have
presented the spectral clustering for heterogeneous relational data, the symmetric
convex coding for homogeneous relational data, the citation model for clustering
the special but popular homogeneous relational data—the textual documents with
citations, the probabilistic clustering framework on mixed membership for general
relational data, and the statistical graphical model for dynamic relational cluster-
ing. We have demonstrated the effectiveness of these machine learning approaches
through empirical evaluations.

1.1 Introduction

Link information plays an important role in discovering knowledge from data.
For link-based clustering, machine learning approaches provide pivotal strengths
to develop effective solutions. In this chapter, we review several specific machine
learning techniques to link-based clustering in two specific paradigms—the deter-
ministic approaches and generative approaches. We by no means mean that these
techniques are exhaustive. Instead, our intention is to use these exemplar approaches
to showcase the power of machine learning techniques to solve different link-based
clustering problems.

When we say link-based clustering, we mean the clustering of relational data. In
other words, links are the relations among the data items or objects. Consequently,
in the rest of this chapter, we use the terminologies of link-based clustering and
relational clustering exchangeably. In general, relational data are those that have
link information among the data items in addition to the classic attribute information
for the data items. For relational data, we may categorize them in terms of the type
of their relations [37] into homogeneous relational data (relations exist among the
same type of objects for all the data), heterogeneous relational data (relations only

Z. Zhang (B)
Computer Science Department, SUNY, Binghamton, NY, USA
e-mail: zhongfei@cs.binghamton.edu

P.S. Yu, et al. (eds.), Link Mining: Models, Algorithms, and Applications,
DOI 10.1007/978-1-4419-6515-8_1, C© Springer Science+Business Media, LLC 2010
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4 Z. Zhang et al.

exist between data items of different types), general relational data (relations exist
both among data items of the same type and between data items of different types),
and dynamic relational data (there are time stamps for all the data items with rela-
tions to differentiate from all the previous types of relational data which are static).
For all the specific machine learning approaches reviewed in this chapter, they are
based on the mathematical foundations of matrix decomposition, optimization, and
probability and statistics theory.

In this chapter, we review five specific different machine learning techniques
tailored for different types of link-based clustering. Consequently, this chapter is
organized as follows. In Section 1.2 we study the deterministic paradigm of machine
learning approaches to link-based clustering and specifically address solutions to
the heterogeneous data clustering problem and the homogeneous data clustering
problem. In Section 1.3, we study the generative paradigm of machine learning
approaches to link-based clustering and specifically address solutions to a special
but very popular problem of the homogeneous relational data clustering, i.e., the
data are the textual documents and the link information is the citation information,
the general relational data clustering problem, and the dynamic relational data clus-
tering problem. Finally, we conclude this chapter in Section 1.4.

1.2 Deterministic Approaches to Link-Based Clustering

In this section, we study deterministic approaches to link-based clustering. Specif-
ically, we present solutions to the clustering of the two special cases of the two
types of links, respectively, the heterogeneous relational clustering through spectral
analysis and homogeneous relational clustering through convex coding.

1.2.1 Heterogeneous Relational Clustering Through
Spectral Analysis

Many real-world clustering problems involve data objects of multiple types that
are related to each other, such as Web pages, search queries, and Web users in a
Web search system, and papers, key words, authors, and conferences in a scientific
publication domain. In such scenarios, using traditional methods to cluster each type
of objects independently may not work well due to the following reasons.

First, to make use of relation information under the traditional clustering frame-
work, the relation information needs to be transformed into features. In general,
this transformation causes information loss and/or very high dimensional and sparse
data. For example, if we represent the relations between Web pages and Web users as
well as search queries as the features for the Web pages, this leads to a huge number
of features with sparse values for each Web page. Second, traditional clustering
approaches are unable to tackle with the interactions among the hidden structures
of different types of objects, since they cluster data of single type based on static
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features. Note that the interactions could pass along the relations, i.e., there exists
influence propagation in multi-type relational data. Third, in some machine learning
applications, users are not only interested in the hidden structure for each type of
objects but also the global structure involving multi-types of objects. For example,
in document clustering, except for document clusters and word clusters, the rela-
tionship between document clusters and word clusters is also useful information.
It is difficult to discover such global structures by clustering each type of objects
individually.

Therefore, heterogeneous relational data have presented a great challenge for
traditional clustering approaches. In this study [36], we present a general model,
the collective factorization on related matrices, to discover the hidden structures of
objects of different types based on both feature information and relation informa-
tion. By clustering the objects of different types simultaneously, the model performs
adaptive dimensionality reduction for each type of data. Through the related factor-
izations which share factors, the hidden structures of objects of different types may
interact under the model. In addition to the cluster structures for each type of data,
the model also provides information about the relation between clusters of objects
of different types.

Under this model, we derive an iterative algorithm, the spectral relational clus-
tering, to cluster the interrelated data objects of different types simultaneously. By
iteratively embedding each type of data objects into low-dimensional spaces, the
algorithm benefits from the interactions among the hidden structures of data objects
of different types. The algorithm has the simplicity of spectral clustering approaches
but at the same time also is applicable to relational data with various structures. The-
oretic analysis and experimental results demonstrate the promise and effectiveness
of the algorithm. We also show that the existing spectral clustering algorithms can be
considered as the special cases of the proposed model and algorithm. This provides
a unified view to understanding the connections among these algorithms.

1.2.1.1 Model Formulation and Algorithm

In this section, we present a general model for clustering heterogeneous relational
data in the spectral domain based on factorizing multiple related matrices.

Given m sets of data objects, X1 = {x11, . . . , x1n1}, . . . ,Xm = {xm1, . . . , xmnm },
which refer to m different types of objects relating to each other, we are interested
in simultaneously clustering X1 into k1 disjoint clusters, . . . , and Xm into km dis-
joint clusters. We call this task as collective clustering on heterogeneous relational
data.

To derive a general model for collective clustering, we first formulate the Hetero-
geneous Relational Data (HRD) as a set of related matrices, in which two matrices
are related in the sense that their row indices or column indices refer to the same set
of objects. First, if there exist relations between Xi and X j (denoted as Xi ∼ X j ),

we represent them as a relation matrix R(i j) ∈ R
ni×n j , where an element R(i j)

pq
denotes the relation between xip and x jq . Second, a set of objects Xi may have its
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own features, which could be denoted by a feature matrix F (i) ∈ R
ni× fi , where an

element F (i)
pq denotes the qth feature values for the object xip and fi is the number

of features for Xi .
Figure 1.1 shows three examples of the structures of HRD. Example (a) refers

to a basic bi-type of relational data denoted by a relation matrix R(12), such as
word-document data. Example (b) represents a tri-type of star-structured data, such
as Web pages, Web users, and search queries in Web search systems, which are
denoted by two relation matrices R(12) and R(23). Example (c) represents the data
consisting of shops, customers, suppliers, shareholders, and advertisement media,
in which customers (type 5) have features. The data are denoted by four relation
matrices R(12), R(13), R(14) and R(15), and one feature matrix F (5).

1
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2

3 5
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1

2
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3
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3 5

f5
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(a) (b) (c)

Fig. 1.1 Examples of the structures of the heterogeneous relational data

It has been shown that the hidden structure of a data matrix can be explored
by its factorization [13, 39]. Motivated by this observation, we propose a gen-
eral model for collective clustering, which is based on factorizing the multi-
ple related matrices. In HRD, the cluster structure for a type of objects Xi

may be embedded in multiple related matrices; hence, it can be exploited
in multiple related factorizations. First, if Xi ∼ X j , then the cluster struc-
tures of both Xi and X j are reflected in the triple factorization of their rela-
tion matrix R(i j) such that R(i j) ≈ C (i) A(i j)(C ( j))T [39], where C (i) ∈
{0, 1}ni×ki is a cluster indicator matrix for Xi such that

∑ki
q=1 C (i)

pq = 1

and C (i)
pq = 1 denotes that the pth object in Xi is associated with the qth cluster.

Similarly C ( j) ∈ {0, 1}n j×k j . A(i j) ∈ R
ki×k j is the cluster association matrix such

that Ai j
pq denotes the association between cluster p of Xi and cluster q of X j . Sec-

ond, if Xi has a feature matrix F (i) ∈ R
ni× fi , the cluster structure is reflected in the

factorization of F (i) such that F (i) ≈ C (i)B(i), where C (i) ∈ {0, 1}ni×ki is a cluster
indicator matrix, and B(i) ∈ R

ki× fi is the feature basis matrix which consists of ki

basis (cluster center) vectors in the feature space.
Based on the above discussions, formally we formulate the task of collective

clustering on HRD as the following optimization problem. Considering the most
general case, we assume that in HRD, every pair of Xi and X j is related to each
other and every Xi has a feature matrix F (i).

Definition 1 Given m positive numbers {ki }1≤i≤m and HRD {X1, . . . ,Xm}, which
is described by a set of relation matrices {R(i j) ∈ R

ni×n j }1≤i< j≤m , a set of feature

matrices {F (i) ∈ R
ni× fi }1≤i≤m , as well as a set of weights w

(i j)
a , w

(i)
b ∈ R+ for
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different types of relations and features, the task of the collective clustering on the
HRD is to minimize

L =
∑

1≤i< j≤m

w
(i j)
a ||R(i j) − C (i) A(i j)(C ( j))T ||2

+
∑

1≤i≤m

w
(i)
b ||F (i) − C (i)B(i)||2, (1.1)

w.r.t. C (i) ∈ {0, 1}ni×ki , A(i j) ∈ R
ki×k j , and B(i) ∈ R

ki× fi subject to the constraints:
∑ki

q=1 C (i)
pq = 1, where 1 ≤ p ≤ ni , 1 ≤ i < j ≤ m, and || · || denotes the Frobenius

norm for a matrix.

We call the model proposed in Definition 1 as the Collective Factorization on
Related Matrices (CFRM).

The CFRM model clusters heterogeneously interrelated data objects simultane-
ously based on both relation and feature information. The model exploits the interac-
tions between the hidden structures of different types of objects through the related
factorizations which share matrix factors, i.e., cluster indicator matrices. Hence, the
interactions between hidden structures work in two ways. First, if Xi ∼ X j , the
interactions are reflected as the duality of row clustering and column clustering in
R(i j). Second, if two types of objects are indirectly related, the interactions pass
along the relation “chains” by a chain of related factorizations, i.e., the model is
capable of dealing with influence propagation. In addition to local cluster structure
for each type of objects, the model also provides the global structure information by
the cluster association matrices, which represent the relations among the clusters of
different types of objects.

Based on the CFRM model, we derive an iterative algorithm, called Spectral
Relational Clustering (SRC) algorithm [36]. The specific derivation of the algorithm
and the proof of the convergence of the algorithm refer to [36]. Further, in Long
et al. [36], it is shown that the CFRM model as well as the SRC algorithm is able to
handle the general case of heterogeneous relational data, and many existing methods
in the literature are either the special cases or variations of this model. Specifically,
it is shown that the classic k-means [51], the spectral clustering methods based on
graph partitioning [41, 42], and the Bipartite Spectral Graph Partitioning (BSGP)
[17, 50] are all the special cases of this general model.

1.2.1.2 Experiments

The SRC algorithm is evaluated on two types of HRD, bi-type relational data and
tri-type star-structured data as shown in Fig. 1.1a and b, which represent two basic
structures of HRD and arise frequently in real applications.

The data sets used in the experiments are mainly based on the 20 Newsgroups
data [33] which contain about 20,000 articles from 20 newsgroups. We pre-process
the data by removing stop words and file headers and selecting top 2000 words by
the mutual information. The word–document matrix R is based on tf.idf and each
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document vector is normalized to the unit norm vector. In the experiments the classic
k-means is used for initialization and the final performance score for each algorithm
is the average of the 20 test runs unless stated otherwise.

Clustering on Bi-type Relational Data

In this section we report experiments on bi-type relational data, word–document
data, to demonstrate the effectiveness of SRC as a novel co-clustering algorithm. A
representative spectral clustering algorithm, Normalized Cut (NC) spectral cluster-
ing [41, 42], and BSGP [17] are used for comparisons.

The graph affinity matrix for NC is RT R, i.e., the cosine similarity matrix. In NC
and SRC, the leading k eigenvectors are used to extract the cluster structure, where
k is the number of document clusters. For BSGP, the second to the (�log2 k� + 1)th
leading singular vectors are used [17]. k-means is adopted to postprocess the eigen-
vectors. Before post-processing, the eigenvectors from NC and SRC are normalized
to the unit norm vector and the eigenvectors from BSGP are normalized as described
by [17]. Since all the algorithms have random components resulting from k-means
or itself, at each test we conduct three trials with random initializations for each
algorithm and the optimal one provides the performance score for that test run. To
evaluate the quality of document clusters, we elect to use the Normalized Mutual
Information (NMI) [43], which is a standard measure for the clustering quality.

At each test run, five data sets, multi2 (NG 10, 11), multi3 (NG 1, 10, 20), multi5
(NG 3, 6, 9, 12, 15), multi8 (NG 3, 6, 7, 9, 12, 15, 18, 20), and multi10 (NG 2, 4,
6, 8, 10, 12, 14, 16, 18, 20), are generated by randomly sampling 100 documents
from each newsgroup. Here NG i means the i th newsgroup in the original order.
For the numbers of document clusters, we use the numbers of the true document
classes. For the numbers of word clusters, there are no options for BSGP, since they
are restricted to equal to the numbers of document clusters. For SRC, it is flexible to
use any number of word clusters. Since how to choose the optimal number of word
clusters is beyond the scope of this study, we simply choose one more word cluster
than the corresponding document clusters, i.e., 3, 4, 6, 9, and 11. This may not be
the best choice but it is good enough to demonstrate the flexibility and effectiveness
of SRC.

Figure 1.2a,b, and c show three document embeddings of a multi2 sample, which
is sampled from two close newsgroups, rec.sports.baseball and rec.sports.hockey.
In this example, when NC and BSGP fail to separate the document classes, SRC
still provides a satisfactory separation. The possible explanation is that the adaptive
interactions among the hidden structures of word clusters and document clusters
remove the noise to lead to better embeddings. (d) shows a typical run of the SRC
algorithm.

Table 1.1 shows NMI scores on all the data sets. We observe that SRC performs
better than NC and BSGP on all data sets. This verifies the hypothesis that benefiting
from the interactions of the hidden structures of objects with different types, the
SRC’s adaptive dimensionality reduction has advantages over the dimensionality
reduction of the existing spectral clustering algorithms.
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Fig. 1.2 (a), (b), and (c) are document embeddings of multi2 data set produced by NC, BSGP, and
SRC, respectively (u1 and u2 denote first and second eigenvectors, respectively). (d) is an iteration
curve for SRC

Table 1.1 NMI comparisons of SRC, NC, and BSGP algorithms

Data set SRC NC BSGP

multi2 0.4979 0.1036 0.1500
multi3 0.5763 0.4314 0.4897
multi5 0.7242 0.6706 0.6118
multi8 0.6958 0.6192 0.5096
multi10 0.7158 0.6292 0.5071

Clustering on Tri-type Relational Data

In this section, we report the experiments on tri-type star-structured relational data to
evaluate the effectiveness of SRC in comparison with other two algorithms for HRD
clustering. One is based on the m-partite graph partitioning, Consistent Bipartite
Graph Co-partitioning (CBGC) [23] (we thank the authors for providing the exe-
cutable program of CBGC). The other is Mutual Reinforcement K-means (MRK),
which is implemented based on the idea of mutual reinforcement clustering.

The first data set is synthetic data, in which two relation matrices, R(12) with
80 × 100 dimension and R(23) with 100 × 80 dimension, are binary matrices with
2 × 2 block structures. R(12) is generated based on the block structure

[
0.9 0.7
0.8 0.9

]
i.e.,
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the objects in cluster 1 of X (1) is related to the objects in cluster 1 of X (2) with
probability 0.9. R(23) is generated based on the block structure

[
0.6 0.7
0.7 0.6

]
. Each type

of objects has two equal size clusters. It is not a trivial task to identify the cluster
structure of this data set, since the block structures are subtle. We denote this data
set as Binary Relation Matrices (TRM) data.

Other three data sets are built based on the 20 Newsgroups data for hierarchical
taxonomy mining and document clustering. In the field of text categorization, hier-
archical taxonomy classification is widely used to obtain a better trade-off between
effectiveness and efficiency than flat taxonomy classification. To take advantage of
hierarchical classification, one must mine a hierarchical taxonomy from the data
set. We can see that words, documents, and categories formulate tri-type relational
data, which consist of two relation matrices, a word–document matrix R(12), and a
document–category matrix R(23) [23].

The true taxonomy structures for the three data sets, TM1, TM2, and TM3, are
listed in Table 1.2. For example, TM1 data set is sampled from five categories,
in which NG10 and NG11 belong to the same high-level category res.sports and
NG17, NG18, and NG19 belong to the same high-level category talk.politics. There-
fore, for the TM1 data set, the expected clustering result on categories should be
{NG10, NG11} and {NG17, NG18, NG19} and the documents should be clustered
into two clusters according to their categories. The documents in each data set are
generated by sampling 100 documents from each category.

Table 1.2 Taxonomy structures for three datasets

Data set Taxonomy structure

TM1 {NG10, NG11}, {NG17, NG18, NG19}
TM2 {NG2, NG3}, {NG8, NG9}, {NG12, NG13}
TM3 {NG4, NG5}, {NG8, NG9}, {NG14, NG15},

{NG17, NG18}

The number of the clusters used for documents and categories are 2, 3, and 4
for TM1, TM2, and TM3, respectively. For the number of word clusters, we adopt
the number of categories, i.e., 5, 6, and 8. For the weights w

(12)
a and w

(23)
a , we

simply use equal weight, i.e., w(12)
a = w

(23)
a = 1. Figure 1.3 illustrates the effects

of different weights on embeddings of documents and categories. When w
(12)
a =

w
(23)
a = 1, i.e., SRC makes use of both word–document relations and document–

category relations, both documents and categories are separated into two clusters
very well as in (a) and (b) of Fig. 1.3, respectively; when SRC makes use of only
the word–document relations, the documents are separated with partial overlapping
as in (c) and the categories are randomly mapped to a couple of points as in (d);
when SRC makes use of only the document–category relations, both documents
and categories are incorrectly overlapped as in (e) and (f), respectively, since the
document–category matrix itself does not provide any useful information for the
taxonomy structure.

The performance comparison is based on the cluster quality of documents,
since the better it is, the more accurate we can identify the taxonomy structures.
Table 1.3 shows NMI comparisons of the three algorithms on the four data sets. The



1 Machine Learning Approaches 11

−1 −0.8 −0.6 −0.4 −0.2
−1

0

1
(a)

u2

−1 −0.8 −0.6 −0.4 −0.2
u2 u2

u2 u2

u2

u 1 u 1
u 1

u 1

−1

0

1

u 1

−1

0

1

u 1

−1 −0.5 0 0.5 1
−1

−0.5
(b)

(c)

0 0.5 1
0

0.5

1
(d)

−1 −0.5 0 0.5

(e)

−1 −0.5 0 0.5
−1

0

1
(f)

Fig. 1.3 Three pairs of embeddings of documents and categories for the TM1 data set pro-
duced by SRC with different weights: (a) and (b) with w

(12)
a = 1, w(23)

a = 1; (c) and (d) with
w

(12)
a = 1, w(23)

a = 0; (e) and (f) with w
(12)
a = 0, w(23)

a = 1

Table 1.3 NMI comparisons of SRC, MRK, and CBGC algorithms

Data set SRC MRK CBGC

BRM 0.6718 0.6470 0.4694
TM1 1 0.5243 –
TM2 0.7179 0.6277 –
TM3 0.6505 0.5719 –

NMI score of CBGC is available only for BRM data set because the CBGC program
provided by the authors only works for the case of two clusters and small size matri-
ces. We observe that SRC performs better than MRK and CBGC on all data sets.
The comparison shows that among the limited efforts in the literature attempting
to cluster multi-type interrelated objects simultaneously, SRC is an effective one to
identify the cluster structures of HRD.

1.2.2 Homogeneous Relational Clustering Through
Convex Coding

The most popular way to solve the problem of clustering the homogeneous relational
data such as similarity-based relational data is to formulate it as a graph partitioning
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problem, which has been studied for decades. Graph partitioning seeks to cut a
given graph into disjoint subgraphs which correspond to disjoint clusters based on
a certain edge cut objective. Recently, graph partitioning with an edge cut objective
has been shown to be mathematically equivalent to an appropriate weighted kernel
k-means objective function [15, 16]. The assumption behind the graph partitioning
formulation is that since the nodes within a cluster are similar to each other, they
form a dense subgraph. However, in general, this is not true for relational data, i.e.,
the clusters in relational data are not necessarily dense clusters consisting of strongly
related objects.

Figure 1.4 shows the relational data of four clusters, which are of two different
types. In Fig. 1.4, C1 = {v1, v2, v3, v4} and C2 = {v5, v6, v7, v8} are two traditional
dense clusters within which objects are strongly related to each other. However,
C3 = {v9, v10, v11, v12} and C4 = {v13, v14, v15, v16} also form two sparse clusters,
within which the objects are not related to each other, but they are still “similar” to
each other in the sense that they are related to the same set of other nodes. In Web
mining, this type of cluster could be a group of music “fans” Web pages which share
the same taste on the music and are linked to the same set of music Web pages but
are not linked to each other [32]. Due to the importance of identifying this type of
clusters (communities), it has been listed as one of the five algorithmic challenges
in Web search engines [27]. Note that the cluster structure of the relation data in
Fig. 1.4 cannot be correctly identified by graph partitioning approaches, since they
look for only dense clusters of strongly related objects by cutting the given graph
into subgraphs; similarly, the pure bipartite graph models cannot correctly identify
this type of cluster structures. Note that re-defining the relations between the objects
(e.g., re-defining 1–0 and 0–1) does not solve the problem in this situation, since
there exist both dense and sparse clusters.

9 10 11

2
4

3

12

1
7

5

8

6

1413 1615

(b)(a)

Fig. 1.4 The graph (a) and relation matrix (b) of the relational data with different types of clusters.
In (b), the dark color denotes 1 and the light color denotes 0

If the homogeneous relational data are dissimilarity-based, to apply graph par-
titioning approaches to them, we need extra efforts on appropriately transforming
them into similarity-based data and ensuring that the transformation does not change
the cluster structures in the data. Hence, it is desirable for an algorithm to be able to
identify the cluster structures no matter which type of relational data is given. This
is even more desirable in the situation where the background knowledge about the
meaning of the relations is not available, i.e., we are given only a relation matrix
and do not know if the relations are similarities or dissimilarities.
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In this section, we present a general model for relational clustering based on
symmetric convex coding of the relation matrix [35]. The model is applicable to the
general homogeneous relational data consisting of only pairwise relations typically
without other knowledge; it is capable of learning both dense and sparse clusters
at the same time; it unifies the existing graph partition models to provide a gener-
alized theoretical foundation for relational clustering. Under this model, we derive
iterative bound optimization algorithms to solve the symmetric convex coding for
two important distance functions, Euclidean distance and generalized I-divergence.
The algorithms are applicable to general relational data and at the same time they
can be easily adapted to learn a specific type of cluster structure. For example, when
applied to learning only dense clusters, they provide new efficient algorithms for
graph partitioning. The convergence of the algorithms is theoretically guaranteed.
Experimental evaluation and theoretical analysis show the effectiveness and great
potential of the proposed model and algorithms.

1.2.2.1 Model Formulation and Algorithms

In this section, we describe a general model for homogeneous relational clustering.
Let us first consider the relational data in Fig. 1.4. An interesting observation is that
although the different types of clusters look so different in the graph from Fig. 1.4a,
they all demonstrate block patterns in the relation matrix of Fig. 1.4b (without loss of
generality, we arrange the objects from the same cluster together to make the block
patterns explicit). Motivated by this observation, we propose the Symmetric Convex
Coding (SCC) model to cluster relational data by learning the block pattern of a
relation matrix. Since in most applications, the relations are of non-negative values
and undirected, homogeneous relational data can be represented as non-negative,
symmetric matrices. Therefore, the definition of SCC is given as follows.

Definition 2 Given a symmetric matrix A ∈ R+, a distance function D and a posi-
tive number k, the symmetric convex coding is given by the minimization

min
C∈Rn×k+ ,B∈Rk×k+

C1=1

D(A,C BCT ). (1.2)

According to Definition 2, the elements of C are between 0 and 1 and the sum
of the elements in each row of C equals 1. Therefore, SCC seeks to use the con-
vex combination of the prototype matrix B to approximate the original relation
matrix. The factors from SCC have intuitive interpretations. The factor C is the soft
membership matrix such that Ci j denotes the weight that the i th object associates
with the j th cluster. The factor B is the prototype matrix such that Bii denotes the
connectivity within the i th cluster and Bi j denotes the connectivity between the i th
cluster and the j th cluster.

SCC provides a general model to learn various cluster structures from relational
data. Graph partitioning, which focuses on learning dense cluster structure, can be
formulated as a special case of the SCC model. We propose the following theorem
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to show that the various graph partitioning objective functions are mathematically
equivalent to a special case of the SCC model. Since most graph partitioning objec-
tive functions are based on the hard cluster membership, in the following theorem
we change the constraints on C as C ∈ R+ and CT C = Ik to make C to be the
following cluster indicator matrix,

Ci j =
{ 1

|π j |
1
2

if vi ∈ π j

0 otherwise,

where |π j | denotes the number of nodes in the j th cluster.

Theorem 1 The hard version of SCC model under Euclidean distance function and
B = r Ik for r > 0, i.e.,

min
C∈Rn×k+ ,B∈Rk×k+

CT C=Ik

||A − C(r Ik)C
T ||2 (1.3)

is equivalent to the maximization

max tr(CT AC), (1.4)

where tr denotes the trace of a matrix.

The proof of Theorem 1 may be found in [35].
Theorem 1 states that with the prototype matrix B restricted to be of the form

r Ik , SCC under Euclidean distance is reduced to the trace maximization in (1.4).
Since various graph partitioning objectives, such as ratio association [42], normal-
ized cut [42], ratio cut [8], and Kernighan–Lin objective [31], can be formulated as
the trace maximization [15, 16], Theorem 1 establishes the connection between the
SCC model and the existing graph partitioning objective functions. Based on this
connection, it is clear that the existing graph partitioning models make an implicit
assumption for the cluster structure of the relational data, i.e., the clusters are not
related to each other (the off-diagonal elements of B are zeroes) and the nodes
within clusters are related to each other in the same way (the diagonal elements of
B are r ). This assumption is consistent with the intuition about the graph partition-
ing, which seeks to “cut” the graph into k separate subgraphs corresponding to the
strongly related clusters.

With Theorem 1 we may put other types of structural constraints on B to derive
new graph partitioning models. For example, we fix B as a general diagonal matrix
instead of r Ik , i.e., the model fixes the off-diagonal elements of B as zero and learns
the diagonal elements of B. This is a more flexible graph partitioning model, since
it allows the connectivity within different clusters to be different. More generally,
we can use B to restrict the model to learn other types of the cluster structures. For
example, by fixing diagonal elements of B as zeros, the model focuses on learning
only spare clusters (corresponding to bipartite or k-partite subgraphs), which are
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important for Web community learning [27, 32]. In summary, the prototype matrix
B not only provides the intuition for the cluster structure of the data but also provides
a simple way to adapt the model to learn specific types of cluster structures.

Now efficient algorithms for the SCC model may be derived under two popular
distance functions, Euclidean distance and generalized I-divergence. SCC under the
Euclidean distance, i.e., an algorithm alternatively updating B and C until conver-
gence, is derived and called SCC-ED [35].

If the task is to learn the dense clusters from similarity-based relational data as
the graph partitioning does, SCC-ED can achieve this task simply by fixing B as the
identity matrix and updating only C until convergence. In other words, these updat-
ing rules provide a new and efficient graph partitioning algorithm, which is com-
putationally more efficient than the popular spectral graph partitioning approaches
which involve expensive eigenvector computation (typically O(n3)) and the extra
post-processing [49] on eigenvectors to obtain the clustering. Compared with the
multi-level approaches such as METIS [30], this new algorithm does not restrict
clusters to have an equal size.

Another advantage of the SCC-ED algorithm is that it is very easy for the algo-
rithm to incorporate constraints on B to learn a specific type of cluster structures.
For example, if the task is to learn the sparse clusters by constraining the diagonal
elements of B to be zero, we can enforce this constraint simply by initializing the
diagonal elements of B as zeros. Then, the algorithm automatically only updates the
off-diagonal elements of B and the diagonal elements of B are “locked” to zeros.

Yet another interesting observation about SCC-ED is that if we set α = 0 to
change the updating rule for C into the following:

C = C̃ 	
(

AC̃ B

C̃ BC̃T C̃ B

) 1
4

, (1.5)

the algorithm actually provides the symmetric conic coding. This has been touched
in the literature as the symmetric case of non-negative factorization [7, 18, 39].
Therefore, SCC-ED under α = 0 also provides a theoretically sound solution to the
symmetric non-negative matrix factorization.

Under the generalized I-divergence, the SCC objective function is given as
follows:

D
(

A||C BCT ) =
∑

i j

(

Ai j log
Ai j

[
C BCT

]
i j

− Ai j +
[
C BCT ]

i j

)

. (1.6)

Similarly, an alternative bound optimization algorithm is derived for this objec-
tive function, called SCC-GI [35], which provides another new relational cluster-
ing algorithm. Again, when applied to the similarity-based relational data of dense
clusters, SCC-GI provides another new and efficient graph partitioning algorithm.

The specific derivation of the two algorithms refers to [35], where the complexity
and the convergence issues of the algorithms are discussed.



16 Z. Zhang et al.

1.2.2.2 Experiments

This section provides empirical evidence to show the effectiveness of the SCC
model and algorithms in comparison with two representative graph partitioning
algorithms, a spectral approach, Normalized Cut (NC) [42], and a multi-level algo-
rithm, METIS [30].

Data Sets and Parameter Setting

The data sets used in the experiments include synthetic data sets with various cluster
structures and real data sets based on various text data from the 20 Newsgroups [33],
WebACE, and TREC [29].

First, we use synthetic binary relational data to simulate homogeneous relational
data with different types of clusters such as dense clusters, sparse clusters, and
mixed clusters. All the synthetic relational data are generated based on Bernoulli
distribution. The distribution parameters to generate the graphs are listed in the
second column of Table 1.4 as matrices (true prototype matrices for the data). In
a parameter matrix P , Pi j denotes the probability that the nodes in the i th cluster
are connected to the nodes in the j th cluster. For example, in data set syn3, the
nodes in cluster 2 are connected to the nodes in cluster 3 with probability 0.2 and
the nodes within a cluster are connected to each other with probability 0. Syn2 is
generated by using 1 minus syn1. Hence, syn1 and syn2 can be viewed as a pair
of similarity/dissimilarity data. Data set syn4 has 10 clusters mixing with dense
clusters and sparse clusters. Due to the space limit, its distribution parameters are
omitted here. Totally syn4 has 5000 nodes and about 2.1 million edges.

Table 1.4 Summary of the synthetic relational data

Graph Parameter n k

syn1

[
0.5 0 0
0 0.5 0
0 0 0.5

]

900 3

syn2 1− syn1 900 3

syn3

[
0 0.1 0.1

0.1 0 0.2
0.1 0.2 0

]

900 3

syn4 [0, 1]10×10 5000 10

The graphs based on the text data have been widely used to test graph partition-
ing algorithms [17, 19, 50]. Note that there also exist feature-based algorithms to
directly cluster documents based on word features. However, in this study our focus
is on the clustering based on relations instead of features. Hence graph clustering
algorithms are used in comparisons. We use various data sets from the 20 News-
groups [33], WebACE, and TREC [29], which cover data sets of different sizes,
different balances, and different levels of difficulties. We construct relational data
for each text data set such that objects (documents) are related to each other with
cosine similarities between the term-frequency vectors. A summary of all the data
sets to construct relational data used in this study is shown in Table 1.5, in which n
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Table 1.5 Summary of relational data based on text data sets

Name n k Balance Source

tr11 414 9 0.046 TREC
tr23 204 6 0.066 TREC
NG17-19 1600 3 0.5 20 Newsgroups
NG1-20 14000 20 1.0 20 Newsgroups
k1b 2340 6 0.043 WebACE
hitech 2301 6 0.192 TREC
classic3 3893 3 0.708 MEDLINE/

CISI/CRANFILD

denotes the number of objects in the relational data, k denotes the number of true
clusters, and balance denotes the size ratio of the smallest clusters to the largest
clusters.

For the number of clusters k, we simply use the number of the true clusters. Note
that how to choose the optimal number of clusters is a non-trivial model selection
problem and beyond the scope of this study. For performance measure, we elect to
use the Normalized Mutual Information (NMI) [43] between the resulting cluster
labels and the true cluster labels, which is a standard measure for the clustering
quality. The final performance score is the average of 10 runs.

Results and Discussion

Table 1.6 shows the NMI scores of the four algorithms on synthetic and real rela-
tional data. Each NMI score is the average of 10 test runs and the standard deviation
is also reported. We observe that although there is no single winner on all the data,
for most data SCC algorithms perform better than or close to NC and METIS. Espe-
cially, SCC-GI provides the best performance on 8 of the 11 data sets.

For the synthetic data set syn1, almost all the algorithms provide perfect NMI
score, since the data are generated with very clear dense cluster structures, which
can be seen from the parameter matrix in Table 1.4. For data set syn2, the

Table 1.6 NMI comparisons of NC, METIS, SCC-ED, and SCC-GI algorithms (the boldface value
indicates the best performance for a given data set)

Data NC METIS SCC-ED SCC-GI

syn1 0.9652± 0.031 1.000± 0.000 1.000± 0.000 1.000± 0.000
syn2 0.8062± 0.52 0.000± 0.00 0.9038± 0.045 0.9753± 0.011
syn3 0.636± 0.152 0.115± 0.001 0.915± 0.145 1.000± 0.000
syn4 0.611± 0.032 0.638± 0.001 0.711± 0.043 0.788± 0.041
tr11 0.629± 0.039 0.557± 0.001 0.6391± 0.033 0.661± 0.019
tr23 0.276± 0.023 0.138± 0.004 0.335± 0.043 0.312± 0.099
NG17-19 0.002± 0.002 0.091± 0.004 0.1752± 0.156 0.225± 0.045
NG1-20 0.510± 0.004 0.526± 0.001 0.5041± 0.156 0.519± 0.010
k1b 0.546± 0.021 0.243± 0.000 0.537± 0.023 0.591± 0.022
hitech 0.302± 0.005 0.322± 0.001 0.319± 0.012 0.319± 0.018
classic3 0.621± 0.029 0.358± 0.000 0.642± 0.043 0.822± 0.059
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dissimilarity version of syn1, we use exactly the same set of true cluster labels as
that of syn1 to measure the cluster quality; the SCC algorithms still provide almost
perfect NMI score; however, METIS totally fails on syn2, since in syn2 the clusters
have the form of sparse clusters; and based on the edge cut objective, METIS looks
for only dense clusters. An interesting observation is that the NC algorithm does not
totally fail on syn2 and in fact it provides a satisfactory NMI score. This is due to
that although the original objective of the NC algorithm focuses on dense clusters
(its objective function can be formulated as the trace maximization in (1.4)), after
relaxing C to an arbitrary orthonormal matrix, what NC actually does is to embed
cluster structures into the eigenspace and to discover them by post-processing the
eigenvectors. Besides the dense cluster structures, sparse cluster structures could
also have a good embedding in the eigenspace under a certain condition.

In data set syn3, the relations within clusters are sparser than the relations
between clusters, i.e., it also has sparse clusters, but the structure is more subtle
than syn2. We observe that NC does not provide a satisfactory performance and
METIS totally fails; in the mean time, SCC algorithms identify the cluster structure
in syn3 very well. Data set syn4 is a large relational data set of 10 clusters consisting
of four dense clusters and six sparse clusters; we observe that the SCC algorithms
perform significantly better than NC and METIS on it, since they can identify both
dense clusters and sparse clusters at the same time.

For the real data based on the text data sets, our task is to find dense clusters,
which is consistent with the objectives of graph partitioning approaches. Overall, the
SCC algorithms perform better than NC and METIS on the real data sets. Especially,
SCC-ED provides the best performance in most data sets. The possible reasons for
this are discussed as follows. First, the SCC model makes use of any possible block
pattern in the relation matrices; on the other hand, the edge-cut-based approaches
focus on diagonal block patterns. Hence, the SCC model is more robust to heavily
overlapping cluster structures. For example, for the difficult NG17-19 data set, SCC
algorithms do not totally fail as NC and METIS do. Second, since the edge weights
from different graphs may have very different probabilistic distributions, popular
Euclidean distance function, which corresponds to normal distribution assumption,
are not always appropriate. By Theorem 1, edge-cut-based algorithms are based on
Euclidean distance. On the other hand, SCC-GI is based on generalized I-divergence
corresponding to Poisson distribution assumption, which is more appropriate for
graphs based on text data. Note that how to choose distance functions for specific
graphs is non-trivial and beyond the scope of this study. Third, unlike METIS, the
SCC algorithms do not restrict clusters to have an equal size and hence they are
more robust to unbalanced clusters.

In the experiments, we observe that SCC algorithms perform stably and rarely
provide unreasonable solution, though like other algorithms SCC algorithms pro-
vide local optima to the NP-hard clustering problem. In the experiments, we also
observe that the order of the actual running time for the algorithms is consistent with
theoretical analysis, i.e., METIS<SCC<NC. For example, in a test run on NG1-20,
METIS, SCC-ED, SCC-GI, and NC take 8.96, 11.4, 12.1, and 35.8 s, respectively.
METIS is the best, since it is quasi-linear.
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We also run the SCC-ED algorithm on the actor/actress graph based on IMDB
movie data set for a case study of social network analysis. We formulate a graph
of 20,000 nodes, in which each node represents an actors/actresses and the edges
denote collaboration between them. The number of the cluster is set to be 200.
Although there is no ground truth for the clusters, we observe that the results consist
of a large number of interesting and meaningful clusters, such as clusters of actors
with a similar style and tight clusters of the actors from a movie or a movie serial.
For example, Table 1.7 shows Community 121 consisting of 21 actors/actresses,
which contains the actors/actresses in movie series “The Lord of Rings.”

Table 1.7 The members of cluster 121 in the actor graph

Cluster 121

Viggo Mortensen, Sean Bean, Miranda Otto,
Ian Holm, Brad Dourif, Cate Blanchett,
Ian McKellen, Liv Tyler, David Wenham,
Christopher Lee, John Rhys-Davies, Elijah Wood,
Bernard Hill, Sean Astin, Dominic Monaghan,
Andy Serkis, Karl Urban, Orlando Bloom,
Billy Boyd, John Noble, Sala Baker

1.3 Generative Approaches to Link-Based Clustering

In this section, we study generative approaches to link-based clustering. Specifically,
we present solutions to three different link-based clustering problems, the special
homogeneous relational data clustering for documents with citations, the general
relational data clustering, and the dynamic relational data clustering.

1.3.1 Special Homogeneous Relational Data—Documents
with Citations

One of the most popular scenarios for link-based clustering is document clustering.
Here textual documents form a special case of the general homogeneous relational
data scenario, in which a document links to another one through a citation. In this
section, we showcase how to use a generative model, a specific topic model, to solve
for the document clustering problem.

By capturing the essential characteristics in documents, one gives documents
a new representation, which is often more parsimonious and less noise-sensitive.
Among the existing methods that extract essential characteristics from documents,
topic model plays a central role. Topic models extract a set of latent topics from a
corpus and as a consequence represent documents in a new latent semantic space.
One of the well-known topic models is the Probabilistic Latent Semantic Index-
ing (PLSI) model proposed by Hofmann [28]. In PLSI each document is modeled
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as a probabilistic mixture of a set of topics. Going beyond PLSI, Blei et al. [5]
presented the Latent Dirichlet Allocation (LDA) model by incorporating a prior
for the topic distributions of the documents. In these probabilistic topic models,
one assumption underpinning the generative process is that the documents are inde-
pendent. However, this assumption does not always hold true in practice, because
documents in a corpus are usually related to each other in certain ways. Very often,
one can explicitly observe such relations in a corpus, e.g., through the citations and
co-authors of a paper. In such a case, these observations should be incorporated into
topic models in order to derive more accurate latent topics that better reflect the
relations among the documents.

In this section, we present a generative model [24] called the citation-topic (CT)
model for modeling linked documents that explicitly considers the relations among
documents. In this model, the content of each document is a mixture of two sources:
(1) the topics of the given document and (2) the topics of the documents that are
related to (e.g., cited by) the given document. This perspective actually reflects
the process of writing a scientific article: the authors probably first learn knowl-
edge from the literature and then combine their own creative ideas with the learned
knowledge to form the content of the paper. Furthermore, to capture the indirect
relations among documents, CT contains a generative process to select related doc-
uments where the related documents are not necessarily directly linked to the given
document. CT is applied to the document clustering task and the experimental com-
parisons against several state-of-the-art approaches that demonstrate very promising
performances.

1.3.1.1 Model Formulation and Algorithm

Suppose that the corpus consists of N documents {d j }Nj=1 in which M distinct words

{wi }Mi=1 occur. Each document d might have a set of citations Cd , and thus the
documents are linked together by these citations.

CT assumes the following generative process for each word w in the document
d in the corpus.

1. Choose a related document c from p(c|d,�), a multinomial probability condi-
tioned on the document d.

2. Choose a topic z from the topic distribution of the document c, p(z|c,�).
3. Choose a word w which follows the multinomial distribution p(w|z,�) condi-

tioned on the topic z.

As a result, one obtains the observed pair (d, w), while the latent random vari-
ables c, z are discarded. To obtain a document d, one repeats this process |d|
times, where |d| is the length of the document d. The corpus is obtained once
every document in the corpus is generated by this process, as shown in Fig. 1.5.
In this generative model, the dimensionality K of the topic variable z is assumed
known and the document relations are parameterized by an N × N matrix � where
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Fig. 1.5 CT using the plate notation

Ξl j = p(c = l|d = j), which is computed from the citation information of the
corpus.

Following the maximum likelihood principle, one estimates the parameters by
maximizing the log-likelihood function

L =∑N
j=1

∑M
i=1 n(wi , d j ) log p(wi |d j ), (1.7)

where n(wi , d j ) denotes the number of the times wi occurs in d j . According to
the above generative process, the log-likelihood function can be rewritten as the
following equation

L =
N∑

j=1

M∑

i=1

n(wi , d j ) log

{
K∑

l=1

N∑

h=1

p(wi |zl)p(zl |dh)p(dh |d j )

}

. (1.8)

The expectation–maximization (EM) algorithm can be applied to estimate the
parameters.

The document relation matrix � is computed from the citation information of
the corpus. Suppose that the document d j has a set of citations Qd j . A matrix S
is constructed to denote the direct relationships among the documents as follows:
Sl j = 1/|Qd j | for dl ∈ Qd j and 0 otherwise, where |Qd j | denotes the size of the
set Qd j . A simple method to obtain � is to set � = S. However, this strategy only
captures direct relations among the documents and overlooks indirect relationships.
To better capture this transitive property, we choose a related document by a random
walk on the directed graph represented by S. The probability that the random walk
stops at the current node (and therefore chooses the current document as the related
document) is specified by a parameter α. According to the properties of random
walk, � can be obtained by � = (1− α)(I− αS)−1. The specific algorithm refers
to [24].

1.3.1.2 Experiments

The experimental evaluations are reported on the document clustering task for a
standard data set Cora with the citation information available. Cora [40] contains
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the papers published in the conferences and journals of the different research areas
in computer science, such as artificial intelligence, information retrieval, and hard-
ware. A unique label has been assigned to each paper to indicate the research area it
belongs to. These labels serve as the ground truth in our performance studies. In the
Cora data set, there are 9998 documents where 3609 distinct words occur.

By representing documents in terms of latent topic space, topic models can assign
each document to the most probable latent topic according to the topic distributions
of the documents. For the evaluation purpose, CT is compared with the following
representative clustering methods.

1. Traditional K -means.
2. Spectral Clustering with Normalized Cuts (Ncut) [42].
3. Non-negative Matrix Factorization (NMF) [48].
4. Probabilistic Latent Semantic Indexing (PLSI) [28].
5. Latent Dirichlet Allocation (LDA) [5].
6. PHITS [11].
7. PLSI+PHITS, which corresponds to α = 0.5 in [12].

The same evaluation strategy is used as in [48] for the clustering performance.
The test data used for evaluating the clustering methods are constructed by mixing
the documents from multiple clusters randomly selected from the corpus. The evalu-
ations are conducted for different numbers of clusters K . At each run of the test, the
documents from a selected number K of clusters are mixed, and the mixed document
set, along with the cluster number K , is provided to the clustering methods. For each
given cluster number K , 20 test runs are conducted on different randomly chosen
clusters, and the final performance scores are obtained by averaging the scores over
the 20 test runs.

The parameter α is simply fixed at 0.99 for the CT model. The accuracy com-
parisons with various numbers of clusters are reported in Fig. 1.6, which shows that
CT has the best performance in terms of the accuracy and the relationships among
the documents do offer help in the document clustering.

1.3.2 General Relational Clustering Through a Probabilistic
Generative Model

In this section, as another example of a generative model in machine learning,
we present a probabilistic generative framework to the general relational cluster-
ing. As mentioned before, in general, relational data contain three types of infor-
mation, attributes for individual objects, homogeneous relations between objects
of the same type, and heterogeneous relations between objects of different types.
For example, for a scientific publication relational data set of papers and authors,
the personal information such as affiliation for authors is the attributes; the cita-
tion relations among papers are homogeneous relations; the authorship relations
between papers and authors are heterogeneous relations. Such data violate the
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Fig. 1.6 Accuracy comparisons (the higher, the better)

classic IID assumption in machine learning and statistics and present huge chal-
lenges to traditional clustering approaches. In Section 1.2.1, we have also shown
that an intuitive solution to transform relational data into flat data and then to
cluster each type of objects independently may not work. Moreover, a number of
important clustering problems, which have been of intensive interest in the lit-
erature, can be viewed as special cases of the general relational clustering. For
example, graph clustering (partitioning) [6, 8, 19, 26, 30, 42] can be viewed as
clustering on single-type relational data consisting of only homogeneous relations
(represented as a graph affinity matrix); co-clustering [1, 14] which arises in impor-
tant applications such as document clustering and micro-array data clustering can
be formulated as clustering on bi-type relational data consisting of only heteroge-
neous relations. Recently, semi-supervised clustering [3, 45] has attracted signifi-
cant attention, which is a special type of clustering using both labeled and unla-
beled data. In [37], it is shown that semi-supervised clustering can be formulated as
clustering on single-type relational data consisting of attributes and homogeneous
relations.

Therefore, relational data present not only huge challenges to traditional unsuper-
vised clustering approaches but also great need for theoretical unification of various
clustering tasks. In this section, we present a probabilistic framework for general
relational clustering [37], which also provides a principal framework to unify vari-
ous important clustering tasks including traditional attribute-based clustering, semi-
supervised clustering, co-clustering, and graph clustering. The framework seeks
to identify cluster structures for each type of data objects and interaction patterns
between different types of objects. It is applicable to relational data of various struc-
tures. Under this framework, two parametric hard and soft relational clustering algo-
rithms are developed under a large number of exponential family distributions. The
algorithms are applicable to various relational data from various applications and at
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the same time unify a number of state-of-the-art clustering algorithms: co-clustering
algorithms, the k-partite graph clustering, Bregman k-means, and semi-supervised
clustering based on hidden Markov random fields.

1.3.2.1 Model Formulation and Algorithms

With different compositions of three types of information, attributes, homogeneous
relations, and heterogeneous relations, relational data could have very different
structures. Figure 1.7 shows three examples of the structures of relational data.
Figure 1.7a refers to a simple bi-type of relational data with only heterogeneous
relations such as word–document data. Figure 1.7b represents bi-type data with
all types of information, such as actor–movie data, in which actors (type 1) have
attributes such as gender; actors are related to each other by collaboration in movies
(homogeneous relations); and actors are related to movies (type 2) by taking roles
in movies (heterogeneous relations). Figure 1.7c represents the data consisting of
companies, customers, suppliers, shareholders, and advertisement media, in which
customers (type 5) have attributes.

1

2

1

2

1

4

2

3 5

F(5)

(a) (b) (c)

F(1)

Fig. 1.7 Examples of the structures of relational data

In this study, a relational data set is represented as a set of matrices.
Assume that a relational data set has m different types of data objects, X (1) =
{x (1)

i }n1
i=1, . . . ,X (m) = {x (m)

i }nm
i=1, where n j denotes the number of objects of the j th

type and x ( j)
p denotes the name of the pth object of the j th type. The observations

of the relational data are represented as three sets of matrices, attribute matrices
{F( j) ∈ R

d j×n j }mj=1, where d j denotes the dimension of attributes for the j th type

objects and F( j)·p denotes the attribute vector for object x ( j)
p ; homogeneous relation

matrices {S( j) ∈ R
n j×n j }mj=1, where S( j)

pq denotes the relation between x ( j)
p and

x ( j)
q ; heterogeneous relation matrices {R(i j) ∈ R

ni×n j }mi, j=1, where R(i j)
pq denotes the

relation between x (i)
p and x ( j)

q . The above representation is a general formulation. In
real applications, not every type of objects has attributes, homogeneous relations,
and heterogeneous relations all together. For example, the relational data set in
Fig. 1.7a is represented by only one heterogeneous matrix R(12), and the one in
Fig. 1.7b is represented by three matrices, F(1), S(1), and R(12). Moreover, for a
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specific clustering task, we may not use all available attributes and relations after
feature or relation selection pre-processing.

Mixed membership models, which assume that each object has mixed member-
ship denoting its association with classes, have been widely used in the applications
involving soft classification [20], such as matching words and pictures [5], race
genetic structures [5, 46], and classifying scientific publications [21]. Consequently,
a relational mixed membership model is developed to cluster relational data (which
is referred to mixed membership relational clustering or MMRC throughout the rest
of the section).

Assume that each type of objects X ( j) has k j latent classes. We represent the
membership vectors for all the objects in X ( j) as a membership matrix �( j) ∈
[0, 1]k j×n j such that the sum of elements of each column �

( j)·p is 1 and �
( j)·p denotes

the membership vector for object x ( j)
p , i.e., �( j)

gp denotes the probability that object

x ( j)
p associates with the gth latent class. We also write the parameters of distributions

to generate attributes, homogeneous relations, and heterogeneous relations in matrix
forms. Let �( j) ∈ R

d j×k j denote the distribution parameter matrix for generating
attributes F( j) such that �( j)·g denotes the parameter vector associated with the gth
latent class. Similarly, �( j) ∈ R

k j×k j denotes the parameter matrix for generat-
ing homogeneous relations S( j); ϒ(i j) ∈ R

ki×k j denotes the parameter matrix for
generating heterogeneous relations R(i j). In summary, the parameters of MMRC
model are

	 =
{
{Λ( j)}mj=1, {�( j)}mj=1, {�( j)}mj=1, {ϒ(i j)}mi, j=1

}
.

In general, the meanings of the parameters, �, �, and ϒ , depend on the specific
distribution assumptions. However, in [37], it is shown that for a large number of
exponential family distributions, these parameters can be formulated as expectations
with intuitive interpretations.

Next, we introduce the latent variables into the model. For each object x j
p, a latent

cluster indicator vector is generated based on its membership parameter �( j)·p , which

is denoted as C( j)·p , i.e., C( j) ∈ {0, 1}k j×n j is a latent indicator matrix for all the j th
type objects in X ( j).

Finally, we present the generative process of observations, {F( j)}mj=1, {S( j)}mj=1,

and {R(i j)}mi, j=1 as follows:

1. For each object x ( j)
p

• Sample C( j)·p ∼ Multinomial
(
�

( j)·p , 1
)
.

2. For each object x ( j)
p

• Sample F( j)·p ∼ Pr
(

F( j)·p |�( j)C( j)·p
)
.
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3. For each pair of objects x ( j)
p and x ( j)

q

• Sample S( j)
pq ∼ Pr

(

S( j)
pq |

(
C( j)·p

)T
�( j)C( j)·q

)

.

4. For each pair of objects x (i)
p and x ( j)

q

• Sample R(i j)
pq ∼ Pr

(

R(i j)
pq |

(
C(i)·p

)T
ϒ(i j)C( j)·q

)

.

In the above generative process, a latent indicator vector for each object is generated
based on multinomial distribution with the membership vector as parameters. Obser-
vations are generated independently conditioning on latent indicator variables. The
parameters of condition distributions are formulated as products of the parameter

matrices and latent indicators, i.e., Pr
(

F( j)·p |C( j)·p ,�( j)
)
= Pr

(
F ( j)·p |�( j)C( j)·p

)
,

Pr
(

S( j)
pq |C( j)·p ,C( j)·q , �( j)

)
= Pr

(

S( j)
pq |

(
C( j)·p

)T
�( j)C( j)·q

)

, and

Pr(R(i j)
pq |C(i)·p ,C( j)·q , ϒ(i j)) = Pr

(

R(i j)
pq |

(
C(i)·p

)T
ϒ(i j)C( j)·q

)

. Under this formula-

tion, an observation is sampled from the distributions of its associated latent classes.
For example, if C(i)·p indicates that x (i)

p is with the gth latent class and C( j)·q indicates

that x ( j)
q is with the hth latent class, then

(
C(i)·p

)T
ϒ(i j)C( j)·q = ϒ

(i j)
gh . Hence, we

have Pr
(

R(i j)
pq |ϒ(i j)

gh

)
implying that the relation between x (i)

p and x ( j)
q is sampled by

using the parameter ϒ(i j)
gh .

With matrix representation, the joint probability distribution over the observa-
tions and the latent variables can be formulated as follows:

Pr(�|	) =
m∏

j=1

Pr
(

C( j)|�( j)
) m∏

j=1

Pr
(

F( j)|�( j)C( j)
)

m∏

j=1

Pr

(

S( j)|
(

C( j)
)T

�( j)C( j)
) m∏

i=1

m∏

j=1

Pr

(

R(i j)|
(

C(i)
)T

ϒ(i j)C( j)
)

,

(1.9)

where � =
{
{C( j)}mj=1, {F( j)}mj=1, {S( j)}mj=1, {R(i j)}mi, j=1

}
,

Pr
(
C( j)|�( j)

) =∏n j
p=1 Multinomial

(
�

( j)·p , 1
)

,

Pr
(
F( j)|�( j)C( j)

) =∏n j
p=1 Pr

(
F( j)·p |�( j)C( j)·p

)
,

Pr
(

S( j)| (C( j)
)T

�( j)C( j)
)
=∏n j

p,q=1 Pr

(

S( j)
pq |

(
C( j)·p

)T
�( j)C( j)·q

)

,

and similarly for R(i j).
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Based on the MMRC model, we are able to derive the soft version MMRC, the
hard version MMRC, as well as the mixed version MMRC (i.e., the combination
of the soft version and the hard version MMRC) algorithms under all the expo-
nential family functions [37]. In addition, we also show that many existing models
and algorithms in the literature are the variations or special cases of the MMRC
model. Specifically, we have demonstrated this unified view to the classic attribute-
based clustering (including the k-means), the mixture model EM clustering, semi-
supervised clustering, co-clustering, and graph clustering in the literature.

1.3.2.2 Experiments

This section provides empirical evidence to show the effectiveness of the MMRC
model and algorithms. Since a number of state-of-the-art clustering algorithms
[1–3, 10, 14, 34] can be viewed as special cases of the MMRC model and algo-
rithms, the experimental results in these efforts also illustrate the effectiveness of
the MMRC model and algorithms. Here we apply MMRC algorithms to the tasks of
graph clustering, bi-clustering, tri-clustering, and clustering on a general relational
data set of all three types of information. In the experiments, we use mixed version
MMRC, i.e., hard MMRC initialization followed by soft MMRC. Although MMRC
can adopt various distribution assumptions, due to space limit, we use MMRC under
normal or Poisson distribution assumption in the experiments. However, this does
not imply that they are optimal distribution assumptions for the data. How to decide
the optimal distribution assumption is beyond the scope of this study.

For performance measure, we elect to use the Normalized Mutual Information
(NMI) [43] between the resulting cluster labels and the true cluster labels, which
is a standard way to measure the cluster quality. The final performance score is the
average of 10 runs.

Graph Clustering

In this section, we present experiments on the MMRC algorithm under normal
distribution in comparison with two representative graph partitioning algorithms,
the spectral graph partitioning (SGP) from [41] that is generalized to work with
both normalized cut and ratio association, and the classic multi-level algorithm,
METIS [30].

The graphs based on the text data have been widely used to test graph partitioning
algorithms [17, 19, 50]. In this study, we use various data sets from the 20 News-
groups [33], WebACE, and TREC [29], which cover data sets of different sizes,
different balances, and different levels of difficulties. The data are pre-processed
by removing the stop words and each document is represented by a term-frequency
vector using TF-IDF weights. Then we construct relational data for each text data set
such that objects (documents) are related to each other with the cosine similarities
between the term-frequency vectors. A summary of all the data sets to construct
relational data used in this study is shown in Table 1.8, in which n denotes the
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Table 1.8 Summary of relational data for graph clustering

Name n k Balance Source

tr11 414 9 0.046 TREC
tr23 204 6 0.066 TREC
NG1-20 14000 20 1.0 20 Newsgroups
k1b 2340 6 0.043 WebACE

number of objects in the relational data, k denotes the number of true clusters, and
balance denotes the size ratio of the smallest clusters to the largest clusters.

For the number of clusters k, we simply use the number of the true clusters. Note
that how to choose the optimal number of clusters is a non-trivial model selection
problem and beyond the scope of this study.

Figure 1.8 shows the NMI comparison of the three algorithms. We observe that
although there is no single winner on all the graphs, overall the MMRC algorithm
performs better than SGP and METIS. Especially on the difficult data set tr23,
MMRC increases the performance about 30%. Hence, MMRC under normal distri-
bution provides a new graph partitioning algorithm which is viable and competitive
compared with the two existing state-of-the-art graph partitioning algorithms. Note
that although the normal distribution is most popular, MMRC under other distri-
bution assumptions may be more desirable in specific graph clustering applications
depending on the statistical properties of the graphs.

Bi-clustering and Tri-clustering

In this section, we apply the MMRC algorithm under Poisson distribution to clus-
tering bi-type relational data, word–document data, and tri-type relational data,

tr11 rr23 NG1−20 k1b
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Fig. 1.8 NMI comparison of SGP, METIS, and MMRC algorithms
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word–document–category data. Two algorithms, Bipartite Spectral Graph partition-
ing (BSGP) [17] and Relation Summary Network under Generalized I-divergence
(RSN-GI) [38], are used as comparison in bi-clustering. For tri-clustering, Con-
sistent Bipartite Graph Co-partitioning (CBGC) [23] and RSN-GI are used as
comparison.

The bi-type relational data, word–document data, are constructed based on var-
ious subsets of the 20-Newsgroups data. We pre-process the data by selecting the
top 2000 words by the mutual information. The document–word matrix is based
on tf.idf weighting scheme and each document vector is normalized to a unit L2
norm vector. Specific details of the data sets are listed in Table 1.9. For example,
for the data set BT-NG3 we randomly and evenly sample 200 documents from the
corresponding newsgroups; then we formulate a bi-type relational data set of 1600
documents and 2000 words.

Table 1.9 Subsets of the 20-Newsgroups data for the bi-type relational data

Number of
Dataset documents Total number
Name Newsgroups Included per group of documents

BT-NG1 rec.sport.baseball, rec.sport.hockey 200 400
BT-NG2 comp.os.ms-windows.misc, comp.windows.x,

rec.motorcycles, sci.crypt, sci.space
200 1000

BT-NG3 comp.os.ms-windows.misc,
comp.windows.x, misc.forsale,
rec.motorcycles,rec.motorcycles,sci.crypt,
sci.space, talk.politics.mideast, talk.religion.misc

200 1600

The tri-type relational data are built based on the 20 Newsgroups data for hierar-
chical taxonomy mining. In the field of text categorization, hierarchical taxonomy
classification is widely used to obtain a better trade-off between effectiveness and
efficiency than flat taxonomy classification. To take advantage of hierarchical clas-
sification, one must mine a hierarchical taxonomy from the data set. We see that
words, documents, and categories formulate a sandwich structure tri-type relational
data set, in which documents are the central-type nodes. The links between docu-
ments and categories are constructed such that if a document belongs to k categories,
the weights of links between this document and these k category nodes are 1/k (refer
to [23] for details). The true taxonomy structures for the two data sets, TP-TM1 and
TP-TM2, are documented in Table 1.10.

Table 1.10 Taxonomy structures of the two data sets for constructing tri-partite relational data

Dataset Taxonomy structure

TT-TM1 {rec.sport.baseball, rec.sport.hockey},
{talk.politics.guns, talk.politics.mideast,
talk.politics.misc}

TT-TM2 {comp.graphics, comp.os.ms-windows.misc},
{rec.autos, rec.motorcycles},
{sci.crypt, sci.electronics}
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Fig. 1.9 NMI comparison of BSGP, RSN, and MMRC algorithms for bi-type data
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Figures 1.9 and 1.10 show the NMI comparison of the three algorithms on bi-type
and tri-type relational data, respectively. We observe that the MMRC algorithm per-
forms significantly better than BSGP and CBGC. MMRC performs slightly better
than RSN on some data sets. Since RSN is a special case of hard MMRC, this
shows that mixed MMRC improves hard MMRC’s performance on the data sets.
Therefore, compared with the existing state-of-the-art algorithms, the MMRC algo-
rithm performs more effectively on these bi-clustering or tri-clustering tasks and on
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the other hand, it is flexible for different types of multi-clustering tasks which may
be more complicated than tri-type clustering.

A Case Study on Actor–movie Data

We also run the MMRC algorithm on the actor–movie relational data based on the
IMDB movie data set for a case study. In the data, actors are related to each other
by collaborations (homogeneous relations); actors are related to movies by taking
roles in the movies (heterogeneous relations); movies have attributes such as release
time and rating (note that there are no links between movies). Hence the data have
all the three types of information. We formulate a data set of 20,000 actors and
4000 movies. We run experiments with k = 200. Although there is no ground truth
for the data’s cluster structure, we observe that most resulting clusters are actors or
movies of a similar style such as actions or tight groups from specific movie serials.
For example, Table 1.11 shows cluster 23 of actors and cluster 118 of movies; the
parameter ϒ23,118 shows that these two clusters are strongly related to each other.
In fact, the actor cluster contains the actors in the movie series “The Lord of the
Rings.” Note that if we only have one type of actor objects, we only get the actor
clusters, but with two types of nodes, although there is no link between the movies,
we also get the related movie clusters to explain how the actors are related.

Table 1.11 Two clusters from actor–movie data
Cluster 23 of actors

Viggo Mortensen, Sean Bean, Miranda Otto,
Ian Holm, Christopher Lee, Cate Blanchett,
Ian McKellen, Liv Tyler, David Wenham,
Brad Dourif, John Rhys-Davies, Elijah Wood,
Bernard Hill, Sean Astin, Andy Serkis,
Dominic Monaghan, Karl Urban, Orlando Bloom,
Billy Boyd, John Noble, Sala Baker

Cluster 118 of movies

The Lord of the Rings: The Fellowship of the Ring (2001)
The Lord of the Rings: The Two Towers (2002)
The Lord of the Rings: The Return of the King (2003)

1.3.3 Dynamic Relational Data Clustering Through
Graphical Models

We have studied extensively on static relational data clustering in the previous sec-
tions. In this section, we switch our focus to dynamic scenarios. One popular exam-
ple of the dynamic scenarios is the evolutionary clustering. Evolutionary clustering
is a recently identified new and hot research topic in data mining. Evolutionary
clustering addresses the evolutionary trend development regarding a collection of
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data items that evolves over the time. From time to time, with the evolution of
the data collection, new data items may join the collection and existing data items
may leave the collection; similarly, from time to time, cluster structure and cluster
number may change during the evolution. Due to the nature of the evolution, model
selection must be solved as part of a solution to the evolutionary clustering problem
at each time. Consequently, evolutionary clustering poses a greater challenge than
the classic, static clustering problem as many existing solutions to the latter problem
typically assume that the model selection is still an open problem in the clustering
literature.

In evolutionary clustering, one of the most difficult and challenging issues is
to solve the correspondence problem. The correspondence problem refers to the
correspondence between different local clusters across the times due to the evolution
of the distribution of the clusters, resulting in cluster–cluster correspondence and
cluster transition correspondence issues. All the existing methods in the literature
fail to address the correspondence problems explicitly.

On the other hand, solutions to the evolutionary clustering problem have found a
wide spectrum of applications for trend development analysis, social network evolu-
tion analysis, and dynamic community development analysis. Potential and existing
applications include daily news analysis to observe news focus change, blog analysis
to observe community development, and scientific publications analysis to identify
the new and hot research directions in a specific area. Consequently, evolutionary
clustering has recently become a very hot and focused research topic.

In this study [47], we show a new statistical graphical model HDP-HTM that
we have developed as an effective solution to the evolutionary clustering problem.
In this new model, we assume that the cluster structure at each time is a mixture
model of the clusters for the data collection at that time; in addition, clusters at
different times may share common clusters, resulting in explicitly addressing the
cluster–cluster correspondence issue. we adopt the Hierarchical Dirichlet Processes
(HDP) [44] with a set of common clusters at the top level of the hierarchy and
the local clusters at the lower level at different times sharing the top-level clusters.
Further, data and clusters evolve over the time with new clusters and new data items
possibly joining the collection and with existing clusters and data items possibly
leaving the collection at different times, leading to the cluster structure and the
number of clusters evolving over the time. Here, we use the state transition matrix to
explicitly reflect the cluster-to-cluster transitions between different times, resulting
an explicitly effective solution to the cluster transition correspondence issue. Conse-
quently, we propose the Infinite Hierarchical Hidden Markov State model (iH2MS)
to construct the Hierarchical Transition Matrix (HTM) at different times to capture
the cluster-to-cluster transition evolution.

1.3.3.1 Infinite Hierarchical Hidden Markov State Model (iH2MS)

Here, we present a new infinite hierarchical Hidden Markov State model (iH2MS)
for Hierarchical Transition Matrix (HTM) and provide an update construction
scheme based on this model. Figure 1.11 illustrates this model.
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Fig. 1.11 The iH2MS model

Traditionally, Hidden Markov model (HMM) has a finite state space with K hid-
den states, say {1, 2, . . . K }. For the hidden state sequence {s1, s2, . . . , sT } up to
time T , there is a K by K state transition probability matrix � governed by Markov
dynamics with all the elements πi, j of each row π i summed to 1:

πi, j = p(st = j |st−1 = i).

The initial state probability for state i is p(s1 = i) with the summation of all
the initial probabilities equal to 1. For observation xt in the observation sequence
{x1, x2, . . . , xT }, given state st ∈ {1, 2, . . . , K }, there is a parameter φst drawn from
the base measure H which parameterizes the observation likelihood probability:

xt |st ∼ F(φst ).

However, when dealing with a countable infinite state space, {1, 2, . . . K , . . .},
we must adopt a new model similar to that in [4] for a state transition probability
matrix with an infinite matrix dimension. Thus, the dimension of the state transition
probability matrix now has become infinite. πi , the i th row of the transition proba-
bility matrix �, may be represented as the mixing proportions for all the next infinite
states, given the current state. Thus, we model it as a Dirichlet process (DP) with
an infinite dimension with the summation of all the elements in a row normalized to
1, which leads to an infinite number of DPs’ construction for an infinite transition
probability matrix.

With no further prior knowledge on the state sequence, a typical prior for the
transition probability may be the symmetric Dirichlet distributions. Similar to [44],
we intend to construct a hierarchical Dirichlet model to keep different rows of the
transition probability matrix to share part of the prior mixing proportions of each
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state at the top level. Consequently, we adopt a new state model, Infinite Hierar-
chical Hidden Markov State model (iH2MS), to construct the Infinite Transition
Probability Matrix which is called the Hierarchical Transition Matrix (HTM).

Similar to HDP [44], we draw a random probability measure on the infinite state
space β as the top level prior from stick(γ ) represented as the mixing proportions
of each state:

β = (βk)
∞
k=1 βk = βk

′
k−1∏

l=1

(1− βl
′) βk

′ ∼ Beta(1, γ ). (1.10)

Here, the mixing proportion of state k, βk , may also be interpreted as the prior mean
of the transition probabilities leading to state k. Hence, β may be represented as the
prior random measure of a transition probability DP.

For the i th row of the transition matrix �, πi , we sample it from D P(λ, β) with
a smaller concentration parameter λ implying a larger variability around the mean
measure β. The stick-breaking representation for πi is as follows:

πi = (πi,k)
∞
k=1 πi,k = πi,k

′
k−1∏

l=1

(1− πi,l
′) πi,k

′ ∼ Beta(1, λ). (1.11)

Specifically, πi,k is the state transition probability from the previous state i to the
current state k as p(st = k|st−1 = i).

Now, each row of the transition probability matrix is represented as a DP which
shares the same reasonable prior on the mixing proportions of the states. For a
new row corresponding to a new state k, we simply draw a transition probability
vector πk from D P(λ, β), resulting in constructing a countably infinite transition
probability matrix. The transition probability constructed by iH2MS may be further
extended to the scenario where there are more than one state at each time [47]. HTM
is estimated through the maximum likelihood principle [47].

1.3.3.2 Model Formulation and Algorithm

To capture the state (cluster) transition correspondence during the evolution at dif-
ferent times, we have proposed the HTM; at the same time, we must capture the
state–state (cluster–cluster) correspondence, which may be handled by a hierarchi-
cal model with the top level corresponding to the global states1 and the lower level
corresponding to the local states, where it is natural to model the statistical pro-
cess as HDP [44]. Consequently, we intend to combine HDP with HTM as a new
HDP-HTM model, as illustrated in Fig. 1.12.

1 Each state is represented as a distinct cluster.
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Fig. 1.12 The HDP-HTM model

Let the global state space S denote the global cluster set, which includes all
the states St ⊆ S at all the times t . The global observation set X includes all the
observations Xt at each time t , of which each data item i is denoted as xt,i .

We draw the global mixing proportion from the global states β with the stick-
breaking representation using the concentration parameter γ from (1.10). The global
measure G0 may be represented as

G0 =
∞∑

k=1

βkδφk ,

where φk is drawn from the base probability measure H with pdf h, and δφk is the
concentration measure on φk .

Different from HDP, here we must consider the evolution of the data and the
states (i.e., the clusters). The distribution of the clusters at time t is not only governed
by the global measure G0 but also controlled by the data and cluster evolution in
the history. Consequently, we make an assumption that the data and the clusters at
time t are generated from the previous data and clusters, according to the mixture
proportions of each cluster and the transition probability matrix. The global prior
mixture proportions for the clusters are β, and the state transition matrix � provides
the information of the previous state evolution in the history up to time t . Now,
the expected number of the data items generated by cluster k is proportional to
the number of data items in the clusters in the history multiplied by the transition
probabilities from these clusters to state k; specifically, the mean mixture proportion
for cluster k at time t , ωt , is defined as follows:
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ωt,k =
∞∑

j=1

β jπ j,k .

More precisely, ωt is further obtained by

ωt = β ·�. (1.12)

Clearly, by the transition probability property,
∑∞

k=1 ωt,k = 1,
∑∞

k=1 πi,k = 1,
and the stick-breaking property

∑∞
j=1 β j = 1:

∞∑

k=1

ωt,k =
∞∑

k=1

∞∑

j=1

β jπ j,k =
∞∑

j=1

β j

∞∑

k=1

π j,k =
∞∑

j=1

β j = 1.

Thus, the mean mixture proportion ωt may be taken as the new probability mea-
sure at time t on the global cluster set. With the concentration parameter α, we draw
the mixture proportion vector θt from DP(α, ωt )

θt |α,ωt ∼ DP(α, ωt ).

Now, at time t , the local measure Gt shares the global clusters parameterized by
φ = (φk)

∞
k=1 with the mixing proportion vector θt .

Gt =
∞∑

k=1

θt,kδφk

At time t , given the mixture proportion of the clusters θt , we draw a cluster indicator
zt,i for data item xt,i from a multinomial distribution:

zt,i |θt ∼ Mult(θt )

Once we have the cluster indicator zt,i , data item xt,i may be drawn from distribution
F with pdf f , parameterized by φ from the base measure H .

xt,i |zt,i , φ ∼ f (x |φzt,i )

Finally, we summarize the data generation process for HDP-HTM as follows.

1. Sample the cluster parameter vector φ from the base measure H . The number of
the parameters is unknown a priori, but is determined by the data when a new
cluster is needed.

2. Sample the global cluster mixture vector β from stick(γ ).
3. At time t , compute the mean measure ωt for the global cluster set by β and �

according to (1.12).
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4. At time t , sample the local mixture proportion θt by DP(α, ωt ).
5. At time t , sample the cluster indicator zt,i from Mult (θt ) for data item xt,i .
6. At time t , sample data item xt,i from f (x |φzt,i ) given cluster indicator zt,i and

parameter vector φ.

1.3.3.3 Experiments

We have evaluated the HDP-HTM model in an extensive scale against the state-of-
the-art literature. We compare HDP-HTM in performance with evolutionary spectral
clustering PCM and PCQ algorithms [9] and HDP [44] for the synthetic data and
the real data in the application of document evolutionary clustering; for the exper-
iments in text data evolutionary clustering, we have also evaluated the HDP-HTM
model in comparison with LDA [5, 25] in addition. In particular, the evaluations are
performed in three data sets, a synthetic data set, the 20 Newsgroups data set, and a
Google daily news data set we have collected over a period of 5 continuous days.

Synthetic Data set

We have generated a synthetic data set in a scenario of evolutionary development.
The data are a collection of mixture models with the number of the clusters unknown
a priori with a smooth transition over the time during the evolution. Specifically,
we simulate the scenario of the evolution over 10 different times with each time’s
collection according to a DP mixture model with 200 two-dimensional Gaussian
distribution points. Ten Gaussian points in N(0, 2I) are set as the 10 global clusters’
mean parameters. Then 200 Gaussian points within a cluster are sampled with this
cluster’s mean parameter and deviation parameter sampling from N(0, 0.2I), where
I is the identify matrix. After the generation of such a data set, we obtain the number
of the clusters and the cluster assignments as the ground truth. We intentionally
generate different numbers of the clusters at different times, as shown in Fig. 1.15.

In the inference process, we tune the hyperparameters as follows. In each iter-
ation, we use the vague Gamma priors [22] to update α, λ, and γ from �(1, 1).
Figure 1.13 shows an example of the clustering results between HDP-HTM and
PCQ at time 8 for the synthetic data. Clearly, HDP-HTM has a much better perfor-
mance than PCQ in these synthetic data.

For a more systematic evaluation on this synthetic data set, we use NMI (Nor-
malized Mutual Information) [43] to quantitatively compare the clustering perfor-
mances among all the four algorithms (HDP-HTM, HDP, PCM, and PCQ). NMI
measures how much information two random distribution variables (computed clus-
tering assignment and ground truth clustering assignment) share, the larger the better
with 1 as normalized maximum value. Figure 1.14 documents the performance com-
parison. From this figure, the average NMI values across 10 times for HDP-HTM
and HDP are 0.86 and 0.78, respectively, while those for PCQ and PCM are 0.70
and 0.71, respectively. HDP works worse than HDP-HTM for the synthetic data. The
reason is that HDP model is unable to capture the cluster transition correspondence
during the evolution among the data collections across the time in this case while
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Fig. 1.13 Illustrated clustering results of HDP-HTM (a) and PCQ (b) for the synthetic data
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Fig. 1.14 The NMI performance comparison of the four algorithms on the synthetic data set

HDP-HTM is able to explicitly solve for this correspondence problem; on the other
hand, HDP still performs better than PCQ and PCM as HDP is able to learn the
cluster number automatically during the evolution.

Since one of the advantages of the HDP-HTM model is to be able to learn the
number of the clusters and the clustering structures during the evolution, we report
this performance for HDP-HTM compared with HDP on this synthetic data set in
Fig. 1.15. Here, we define the expected number of the clusters at each time as the
average number of the clusters in all the posterior sampling iterations after the burn-
in period. Thus, these numbers are not necessarily integers. Clearly, both models are
able to learn the cluster numbers, with HDP-HTM having a better performance than
HDP. Since both PCQ and PCM do not have this capability, they are not included in
this evaluation.
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Fig. 1.15 The cluster number learning performance of the HDP-HTM in comparison with HDP
on the synthetic data set

Real Data Set

In order to showcase the performance of HDP-HTM model on real data applications,
we apply HDP-HTM to a subset of the 20 Newsgroups data.2 We intentionally set the
number of the clusters at each time as the same number to accommodate the com-
paring algorithms PCQ and PCM which have this assumption of the same cluster
number over the evolution. Also we select 10 clusters (i.e., topics) from the data set
(alt.atheism, comp.graphics, rec.autos, rec.sport.baseball, sci.crypt, sci.electronics,
sci.med, sci.space, soc.religion.christian, talk.politics.mideast), with each having
100 documents. To “simulate” the corresponding 5 different times, we then split
the data set into 5 different collections, each of which has 20 documents randomly
selected from the clusters. Thus, each collection at a time has 10 topics to generate
words. We have pre-processed all the documents with the standard text processing
for removing the stop words and stemming the remaining words.

To apply the HDP-HTM and HDP models, a symmetric Dirichlet distribution is
used with the parameter 0.5 for the prior base distribution H . In each iteration, we
update α, γ , and λ in HDP-HTM, from the gamma priors �(0.1, 0.1). For LDA,
α is set 0.1 and the prior distribution of the topics on the words is a symmetric
Dirichlet distribution with concentration parameter 1. Since LDA only works for
one data collection and requires a known cluster number in advance, we explicitly
apply LDA to the data collection with the ground truth cluster number as input at
each time.

Figure 1.16 reports the overall performance comparison among all the five meth-
ods using NMI metric again. Clearly HDP-HTM outperforms PCQ, PCM, HDP,

2 http:kdd.ics.uci.edu/databases/20newsgroups/

http:kdd.ics.uci.edu/databases/20newsgroups/
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Fig. 1.16 The NMI performance comparison among the five algorithms on the 20 Newsgroups
data set

and LDA at all the times; in particular, the difference is substantial for PCQ and
PCM. Figure 1.17 further reports the performance on learning the cluster numbers at
different times for HDP-HTM compared with HDP. Both models have a reasonable
performance in automatically learning the cluster number at each time in compari-
son with the ground truth, with HDP-HTM having a clearly better performance than
HDP in average.
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Fig. 1.17 Cluster number learning performance of HDP-HTM in comparison with HDP on the 20
Newsgroups data set
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In order to truly demonstrate the performance of HDP-HTM in comparison with
the state-of-the-art literature on a real evolutionary clustering scenario, we have
manually collected Google News articles for a continuous period of 5 days with
both the data items (i.e., words in the articles) and the clusters (i.e., the news topics)
evolving over the time. The evolutionary ground truth for this data set is as follows.
For each of the continuous 5 days, we have the number of the words, the number
of the clusters, the number of the documents as (6113, 5, 50), (6356, 6, 60), (7063,
5, 50), (7762, 6, 60), and (8035, 6, 60), respectively. In order to accommodate the
assumption of PCM and PCQ that the cluster number stays the same during the
evolution, but at the same time in order to demonstrate the capability of HDP-HTM
to automatically learn the cluster number at each evolutionary time, we intentionally
set the news topic number (i.e., the cluster number) at each day’s collection to have
a small variation deviation during the evolution. Again, in order to compare the text
clustering capability of LDA [5, 25] with a known topic number in advance, we
use the ground truth cluster number at each time as the input to LDA. The param-
eter tuning process is similar to that in the experiment using the 20 Newsgroups
data set.

Figure 1.18 reports the NMI-based performance evaluations among the five algo-
rithms. Again, HDP-HTM outperforms PCQ, PCM, HDP, and LDA at all the times,
especially substantially better than PCQ, PCM, and LDA. PCQ and PCM fail com-
pletely in most of the cases as they assume that the number of the clusters remains
the same during the evolution, which is not true in this scenario.

Figure 1.19 further reports the performance on learning the cluster numbers for
different times for HDP-HTM compared with HDP. In this data set, HDP-HTM has
a much better performance than HDP to learn the cluster numbers automatically at
all the times.
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Fig. 1.18 The NMI performance comparison for all the five algorithms on the Google News
data set
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Fig. 1.19 The cluster number learning performance of HDP-HTM in comparison with HDP on the
Google News data set

1.4 Conclusions

In this chapter, we have reviewed several specific machine learning techniques
used for different categories of link-based or relational data clustering in two
paradigms — deterministic approaches and generative approaches. Specifically, we
have showcased a spectral clustering technique for heterogeneous relational cluster-
ing, a symmetric convex coding technique for homogeneous relational clustering, a
citation model for the special homogeneous relational clustering — clustering tex-
tual documents with citations, a probabilistic generative model for general relational
clustering, as well as a statistical graphical model for dynamic relational clustering.
All these machine learning approaches are based on the mathematical foundation of
matrix computation theory, probability, and statistics.
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Chapter 2
Scalable Link-Based Similarity Computation
and Clustering

Xiaoxin Yin, Jiawei Han, and Philip S. Yu

Abstract Data objects in a relational database are cross-linked with each other
via multi-typed links. Links contain rich semantic information that may indicate
important relationships among objects, such as the similarities between objects. In
this chapter we explore linkage-based clustering, in which the similarity between
two objects is measured based on the similarities between the objects linked with
them. We study a hierarchical structure called SimTree, which represents similar-
ities in multi-granularity manner. This method avoids the high cost of computing
and storing pairwise similarities but still thoroughly explore relationships among
objects. We introduce an efficient algorithm for computing similarities utilizing the
SimTree.

2.1 Introduction

As a process of partitioning data objects into groups according to their similarities
with each other, clustering has been extensively studied for decades in different
disciplines including statistics, pattern recognition, database, and data mining. There
have been many clustering methods [1, 11, 15–17, 22], but most of them aim at
grouping records in a single table into clusters using their own properties.

In many real applications, linkages among objects of different types can be the
most explicit information available for clustering. For example, in a publication
database (i.e., PubDB) in Fig. 2.1a, one may want to cluster each type of objects
(authors, institutions, publications, proceedings, and conferences/journals), in order
to find authors working on different topics, or groups of similar publications, etc.
It is not so useful to cluster single type of objects (e.g., authors) based only on the
properties of them, as those properties often provide little information relevant to the
clustering task. On the other hand, the linkages between different types of objects
(e.g., those between authors, papers, and conferences) indicate the relationships
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Fig. 2.1 A publication database (PubDB). (a) Database schema; (b) An example of linked objects

between objects and can help cluster them effectively. Such linkage-based clustering
is appealing in many applications. For example, an online movie store may want to
cluster movies, actors, directors, reviewers, and renters in order to improve its rec-
ommendation systems. In bioinformatics one may want to cluster genes, proteins,
and their behaviors in order to discover their functions.

Clustering based on multi-typed linked objects has been studied in multi-
relational clustering [14, 21], in which the objects of each type are clustered based
on the objects of other types linked with them. Consider the mini-example in
Fig. 2.1b. Authors can be clustered based on the conferences where they publish
papers. However, such analysis is confined to direct links. For example, Tom pub-
lishes only SIGMOD papers, and John publishes only VLDB papers. Tom and John
will have zero similarity based on direct links, although they may actually work
on the same topic. Similarly, customers who have bought “Matrix” and those who
have bought “Matrix II” may be considered dissimilar although they have similar
interests.

The above example shows when clustering objects of one type, one needs to con-
sider the similarities between objects of other types linked with them. For example,
if it is known that SIGMOD and VLDB are similar, then SIGMOD authors and
VLDB authors should be similar. Unfortunately, similarities between conferences
may not be available, either. This problem can be solved by SimRank [13], in which
the similarity between two objects is recursively defined as the average similarity
between objects linked with them. For example, the similarity between two authors
is the average similarity between the conferences in which they publish papers. In
Fig. 2.1b “sigmod” and “vldb” have high similarity because they share many coau-
thors, and thus Tom and John become similar because they publish papers in similar
conferences. In contrast, John and Mary do not have high similarity even they are
both linked with “vldb05.”

Although SimRank provides a good definition for similarities based on linkages,
it is prohibitively expensive in computation. In [13] an iterative approach is pro-
posed to compute the similarity between every pair of objects, which has quadratic
complexity in both time and space, and is impractical for large databases.
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Is it necessary to compute and maintain pairwise similarities between objects?
Our answer is no for the following two reasons. First, hierarchy structures naturally
exist among objects of many types, such as the taxonomy of animals and hierarchical
categories of merchandise. Consider the example of clustering authors according to
their research. There are groups of authors working on the same research topic (e.g.,
data integration or XML), who have high similarity with each other. Multiple such
groups may form a larger group, such as the authors working on the same research
area (e.g., database vs. AI), who may have weaker similarity than the former. As a
similar example, the density of linkages between clusters of articles and words is
shown in Fig. 2.2 (adapted from figure 5 (b) in [5]). We highlight four dense regions
with dashed boxes, and in each dense region there are multiple smaller and denser
regions. The large dense regions correspond to high-level clusters, and the smaller
denser regions correspond to low-level clusters within the high-level clusters.

A
rt

ic
le

s

Words

Fig. 2.2 Density of linkages between articles and words

Second, recent studies show that there exist power law distributions among the
linkages in many domains, such as Internet topology and social networks [9]. Inter-
estingly, based on our observation, such relationships also exist in the similarities
between objects in interlinked environments. For example, Fig. 2.3 shows the dis-
tribution of pairwise SimRank similarity values between 4170 authors in DBLP
database (the plot shows portion of values in each 0.005 range of similarity value).
It can be seen that majority of similarity entries have very small values which lie
within a small range (0.005 – 0.015). While only a small portion of similarity entries
have significant values—1.4% of similarity entries (about 123 K of them) are greater
than 0.1, and these values will play the major role in clustering. Therefore, we want
to design a data structure that stores the significant similarity values and compresses
those insignificant ones.

Based on the above two observations, we introduce a new hierarchical strategy
to effectively prune the similarity space, which greatly speeds up the identification
of similar objects. Taking advantage of the power law distribution of linkages, this
strategy substantially reduces the number of pairwise similarities that need to be
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Fig. 2.3 Portions of similarity values

tracked, and the similarity between less similar objects will be approximated using
aggregate measures.

We introduce a hierarchical data structure called SimTree as a compact repre-
sentation of similarities between objects. Each leaf node of a SimTree corresponds
to an object, and each non-leaf node contains a group of lower level nodes that are
closely related to each other. SimTree stores similarities in a multi-granularity way
by storing similarity between each two objects corresponding to sibling leaf nodes,
and storing the overall similarity between each two sibling non-leaf nodes. Pairwise
similarity is not pre-computed or maintained between objects that are not siblings.
Their similarity, if needed, is derived based on the similarity information stored in
the tree path. For example, consider the hierarchical categories of merchandise in
Walmart. It is meaningful to compute the similarity between every two cameras,
but not so meaningful to compute that for each camera and each TV, as an overall
similarity between cameras and TVs should be sufficient.

Based on SimTree, we introduce LinkClus, an efficient and accurate approach
for linkage-based clustering. At the beginning LinkClus builds a SimTree for each
type of objects in a bottom-up manner, by finding groups of objects (or groups of
lower level nodes) that are similar to each other. Because inter-object similarity
is not available yet, the similarity between two nodes are measured based on the
intersection size of their neighbor objects. Thus the initial SimTrees cannot fully
catch the relationships between objects (e.g., some SIGMOD authors and VLDB
authors have similarity 0).

LinkClus improves each SimTree with an iterative method, following the recur-
sive rule that two nodes are similar if they are linked with similar objects. In each
iteration it measures the similarity between two nodes in a SimTree by the average
similarity between objects linked with them. For example, after one iteration SIG-
MOD and VLDB will become similar because they share many authors, which will
then increase the similarities between SIGMOD authors and VLDB authors, and
further increase that between SIGMOD and VLDB. We design an efficient algorithm
for updating SimTrees, which merges the expensive similarity computations that go
through the same paths in the SimTree. For a problem involving N objects and M
linkages, LinkClus only takes O(M(log N )2) time and O(M+N ) space (SimRank
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takes O(M2) time and O(N 2) space). Experiments on both real and synthetic data
sets show that LinkClus achieves high accuracy and efficiency.

The rest of the chapter is organized as follows. We discuss related work in Sec-
tion 2.2 and give an overview in Section 2.3. and 2.4 introduces SimTree, the hierar-
chical structure for representing similarities. The algorithms for building SimTrees
and computing similarities are described in Section 2.5. Our performance study is
reported in Section 2.6, and this study is concluded in Section 2.7.

2.2 Related Work

Clustering has been extensively studied for decades in different disciplines includ-
ing statistics, pattern recognition, database, and data mining, with many approaches
proposed [1, 11, 15–17, 22]. Most existing clustering approaches aim at grouping
objects in a single table into clusters, using properties of each object. Some recent
approaches [14, 21] extend previous clustering approaches to relational databases
and measures similarity between objects based on the objects joinable with them in
multiple relations.

In many real applications of clustering, objects of different types are given,
together with linkages among them. As the attributes of objects often provide very
limited information, traditional clustering approaches can hardly be applied, and
linkage-based clustering is needed, which is based on the principle that two objects
are similar if they are linked with similar objects.

This problem is related to bi-clustering [6] (or co-clustering [8], cross-association
[5]), which aims at finding dense submatrices in the relationship matrix of two types
of objects. A dense submatrix corresponds to two groups of objects of different
types that are highly related to each other, such as a cluster of genes and a cluster
of conditions that are highly related. Unlike bi-clustering that involves no similarity
computation, LinkClus computes similarities between objects based on their linked
objects. Moreover, LinkClus works on a more general problem as it can be applied
to a relational database with arbitrary schema, instead of two types of linked objects.
LinkClus also avoids the expensive matrix operations often used in bi-clustering
approaches.

A bi-clustering approach [8] is extended in [4], which performs agglomerative
and conglomerative clustering simultaneously on different types of objects. How-
ever, it is very expensive, —quadratic complexity for two types and cubic complex-
ity for more types.

Jeh and Widom propose SimRank [13], a linkage-based approach for comput-
ing the similarity between objects, which is able to find the underlying similari-
ties between objects through iterative computations. Unfortunately SimRank is very
expensive as it has quadratic complexity in both time and space. The authors also
discuss a pruning technique for approximating SimRank, which only computes the
similarity between a small number of preselected object pairs. In the extended
version of [13] the following heuristic is used: Only similarities between pairs
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of objects that are linked with same objects are computed. With this heuristic, in
Fig. 2.1b the similarity between SIGMOD and VLDB will never be computed. Nei-
ther will the similarity between Tom and John, Tom and Mike, etc. In general, it is
very challenging to identify the right pairs of objects at the beginning, because many
pairs of similar objects can only be identified after computing similarities between
other objects. In fact this is the major reason that we adopt the recursive definition
of similarity and use iterative methods.

A method is proposed in [10] to perform similarity searches by approximating
SimRank similarities. It creates a large sample of random walk paths from each
object and uses them to estimate the SimRank similarity between two objects when
needed. It is suitable for answering similarity queries. However, very large samples
of paths are needed for making accurate estimations for similarities. Thus it is very
expensive in both time and space to use this approach for clustering a large num-
ber of objects, which requires computing similarities between numerous pairs of
objects.

Wang et al. propose ReCom [20], an approach for clustering inter-linked objects
of different types. ReCom first generates clusters using attributes and linked objects
of each object, and then repeatedly refines the clusters using the clusters linked with
each object. Compared with SimRank that explores pairwise similarities between
objects, ReCom only explores the neighbor clusters and does not compute similar-
ities between objects. Thus it is much more efficient but much less accurate than
SimRank.

LinkClus is also related to hierarchical clustering [11, 17]. However, they are
fundamentally different. Hierarchical clustering approaches use some similarity
measures to put objects into hierarchies. While LinkClus uses hierarchical struc-
tures to represent similarities. This is related to the study in [3], which uses a tree
structure to approximate metric spaces, although we do not require the objects to be
in a metric space.

2.3 Overview

Linkage-based clustering is based on the principle that two objects are similar if they
are linked with similar objects. For example, in a publication database (Fig. 2.1b),
two authors are similar if they publish similar papers. The final goal of linkage-based
clustering is to divide objects into clusters using such similarities. Figure 2.4 shows
an example of three types of linked objects and clusters of similar objects which
are inferred from the linkages. It is important to note that objects 12 and 18 do not
share common neighbors, but they are linked to objects 22 and 24, which are similar
because of their common linkages to 35, 37, and 38.

In order to capture the inter-object relationships as in the above example, we
adopt the recursive definition of similarity in SimRank [13], in which the similarity
between two objects x and y is defined as the average similarity between the objects
linked with x and those linked with y.
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Fig. 2.4 Finding groups of similar objects

As mentioned in the introduction, a hierarchical structure can capture the hier-
archical relationships among objects and can compress the majority of similarity
values which are insignificant. Thus we use SimTree, a hierarchical structure for
storing similarities in a multi-granularity way. It stores detailed similarities between
closely related objects and overall similarities between object groups. We generalize
the similarity measure in [13] to hierarchical environments and propose an efficient
and scalable algorithm for computing similarities based on the hierarchical struc-
ture. Each node in a SimTree has at most c children, where c is a constant and
is usually between 10 and 20. Given a database containing two types of objects, N
objects of each type and M linkages between them, our algorithm takes O(Nc+M)

space and O(M(logc N )2c2) time. This is affordable for very large databases.

2.4 SimTree: Hierarchical Representation of Similarities

In this section we describe SimTree, a new hierarchical structure for representing
similarities between objects. Each leaf node of a SimTree represents an object (by
storing its ID), and each non-leaf node has a set of child nodes, which are a group of
closely related nodes of one level lower. An example SimTree is shown in Fig. 2.5a.
The small gray circles represent leaf nodes, which must appear at the same level
(which is level 0, the bottom level). The dashed circles represent non-leaf nodes.
Each non-leaf node has at most c child nodes, where c is a small constant. Between
each pair of sibling nodes ni and n j there is an undirected edge (ni , n j ). (ni , n j )

associated with a real value s(ni , n j ), which is the average similarity between all
objects linked with ni (or with its descendant objects if ni is a non-leaf node) and
those with n j . s(ni , n j ) represents the overall similarity between the two groups of
objects contained in ni and n j .

Another view of the same SimTree is shown in Fig. 2.5b, which better visualizes
the hierarchical structure. The similarity between each pair of sibling leaf nodes is
stored in the SimTree, while the similarity between two non-sibling leaf nodes is
estimated using the similarity between their ancestor nodes. For example, suppose
the similarity between n7 and n8 is needed, which is the average similarity between
objects linked with n7 and those with n8. One can see that n4 (or n5) contains a



52 X. Yin et al.

(b)

n1

n6n5n4

n9n8n7

0.9 1.0

0.90.8

0.2

0.3

0.8

0.9

(a)

n2 n3

Fig. 2.5 An example SimTree. (a) Structure of a SimTree; (b) Another view of the SimTree

small group of leaf nodes including n7 (or n8), and we have computed s(n4, n5)

which is the average similarity between objects linked with these two groups of leaf
nodes. Thus LinkClus uses s(n4, n5) as the estimated similarity between n7 and n8.
In a real application such as clustering products in Walmart, n7 may correspond to a
camera and n8 to a TV. We can estimate their similarity using the overall similarity
between cameras and TVs, which may correspond to n4 and n5, respectively. Simi-
larly when the similarity between n7 and n9 is needed, LinkClus uses s(n1, n2) as
an estimation.

Such estimation is not always accurate, because a node may have different simi-
larities to other nodes compared with its parent. LinkClus makes some adjustments
to compensate for such differences, by associating a value to the edge between
each node and its parent. For example, the edge (n7, n4) is associated with a real
value s(n7, n4), which is the ratio between (1) the average similarity between n7
and all leaf nodes except n4’s descendants and (2) the average similarity between
n4 and those nodes. Similarly we can define s(n4, n1), s(n6, n2), etc. When esti-
mating the similarity between n7 and n9, we use s(n1, n2) as a basic estimation,
use s(n4, n1) to compensate for the difference between similarities involving n4 and
those involving n1, and use s(n7, n4) to compensate for n7. The final estimation
is s(n7, n4) · s(n4, n1) · s(n1, n2) · s(n6, n2) · s(n9, n6) = 0.9 · 0.8 · 0.2 · 0.9 ·
1.0 = 0.1296.

In general, the similarity between two leaf nodes w.r.t. a SimTree is the prod-
uct of the values of all edges on the path between them. Because this similarity is
defined based on the path between two nodes, we call it path-based similarity.

Definition 1 (Path-based Node Similarity) Suppose two leaf nodes n1 and nk in a
SimTree are connected by path n1 → · · · → ni → ni+1 → · · · → nk , in which ni

and ni+1 are siblings and all other edges are between nodes and their parents. The
path-based similarity between n1 and nk is
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sim p(n1, nk) =
k−1∏

j=1

s(n j , n j+1). (2.1)

Each node has similarity 1 with itself (sim p(n, n) = 1).

Please note that within a path in Definition 1, there is only one edge that is
between two sibling nodes, whose similarity is used as the basic estimation. The
other edges are between parent and child nodes whose similarities are used for
adjustments.

2.5 Building SimTrees

The inputs to LinkClus are objects of different types, with linkages between them.
LinkClus maintains a SimTree for each type of objects to represent similarities
between them. Each object is used as a leaf node in a SimTree. Figure 2.6 shows
the leaf nodes created from objects of two types and the linkages between them.

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

l m n o p q r s t u v w x y

ST2

ST1

Fig. 2.6 Leaf nodes in two SimTrees

Initially each object has similarity 1 to itself and 0 to others. LinkClus first builds
SimTrees using the initial similarities. These SimTrees may not fully catch the real
similarities between objects, because inter-object similarities are not considered.
LinkClus uses an iterative method to improve the SimTrees, following the principle
that two objects are similar if and only if they are linked with similar objects. It
repeatedly updates each SimTree using the following rule: The similarity between
two nodes ni and n j is the average similarity between objects linked with ni and
those linked with n j . The structure of each SimTree is also adjusted during each
iteration by moving similar nodes together. In this way the similarities are refined in
each iteration, and the relationships between objects can be discovered gradually.

2.5.1 Initializing SimTrees Using Frequent Pattern Mining

The first step of LinkClus is to initialize SimTrees using the linkages as shown in
Fig. 2.6. Although no inter-object similarities are available at this time, the initial
SimTrees should still be able to group related objects or nodes together, in order to
provide a good base for further improvements.

Because only leaf nodes are available at the beginning, we initialize SimTrees
from bottom level to top level. At each level, we need to efficiently find groups of
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tightly related nodes and use each group as a node of the upper level. Consider a
group of nodes g = {n1, . . . , nk}. Let neighbor(ni ) denote the set of objects linked
with node ni . Initially there are no inter-object similarities, and whether two nodes
are similar depends on whether they are co-linked with many objects. Therefore,
we define the tightness of group g as the number of objects that are linked with all
group members, i.e., the size of intersection of neighbor(n1), . . . , neighbor(nk).

The problem of finding groups of nodes with high tightness can be reduced to
the problem of finding frequent patterns [2]. A tight group is a set of nodes that
are co-linked with many objects of other types, just like a frequent pattern is a set
of items that co-appear in many transactions. Figure 2.7 shows an example which
contains four nodes n1, n2, n3, n4 and objects linked with them. The nodes linked
with each object are converted into a transaction, which is shown on the right side. It
can be easily proved that the number of objects that are linked with all members of a
group g is equal to the support of the pattern corresponding to g in the transactions.
For example, nodes n1 and n2 are co-linked with two objects (#2 and #4), and pattern
{n1, n2} has support 2 (i.e., appear twice) in the transactions.
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Fig. 2.7 Groups of tightly related nodes

Let support (g) represent the number of objects linked with all nodes in g. When
building a SimTree, we want to find groups with high support and at least min_size
nodes. For two groups g and g′ such that g ⊂ g′ and support (g) = support (g′),
we prefer g′. Frequent pattern mining has been studied for a decade with many
efficient algorithms. We can either find groups of nodes with support greater than
a threshold using a frequent closed pattern mining approach [19], or find groups
with highest support using a top-k frequent closed pattern mining approach [12].
LinkClus uses the approach in [19] which is very efficient on large data sets.

Now we describe the procedure of initializing a SimTree. Suppose we have built
Nl nodes at level-l of the SimTree and want to build the nodes of level-(l + 1).
Because each node can have at most c child nodes, and because we want to leave
some space for further adjustment of the tree structure, we control the number of
level-(l + 1) nodes to be between Nl

c and αNl
c (1 < α ≤ 2). We first find groups

of level-l nodes with sufficiently high support. Since there are usually many such
groups, we select αNl

c non-overlapping groups with high support in a greedy way,
by repeatedly selecting the group with highest support that is not overlapped with
previously selected groups. After selecting αNl

c groups, we create a level-(l + 1)
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node based on each group. However, these groups usually cover only part of all
level-l nodes. For each level-l node ni that does not belong to any group, we want to
put ni into the group that is most connected with ni . For each group g, we compute
the number of objects that are linked with both ni and some members of g, which
is used to measure the connection between ni and g. We assign ni to the group with
highest connection to ni .

Figure 2.8 shows the two SimTrees built upon the leaf nodes in Fig. 2.6. The
dashed lines indicate the leaf nodes in ST2 that are linked with descendants of two
non-leaf nodes na and nb in ST1. After building the initial SimTrees, LinkClus
computes the similarity value associated with each edge in the SimTrees. As
defined in Section 2.4, the similarity value of edge (na, nb), s(na, nb), is the average
similarity between objects linked with descendants of na and those of nb. Because
initially the similarity between any two different objects is 0, s(na, nb) can be easily
computed based on the number of objects that are linked with both the descendants
of na and those of nb, without considering pairwise similarities. Similarly, the val-
ues associated with edges between child and parent nodes can also be computed
easily.
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Fig. 2.8 Some linkages between two SimTrees

2.5.2 Refining Similarity Between Nodes

The initial SimTrees cannot fully catch the real similarities, because similari-
ties between objects are not considered when building them. Therefore, LinkClus
repeatedly updates the SimTrees, following the principle that the similarity between
two nodes in a SimTree is the average similarity between the objects linked with
them, which is indicated by other SimTrees. This is formally defined in this
section.

We use [n ∼ n′] to denote the linkage between two nodes n and n′ in different
SimTrees. We say there is a linkage between a non-leaf node n in ST1 and a node n′
in ST2, if there are linkages between the descendant leaf nodes of n and the node n′.
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Figure 2.8 shows the linkages between na , nb, and leaf nodes in ST2. In order to
track the number of original linkages involved in similarity computation, we assign
a weight to each linkage. By default the weight of each original linkage between
two leaf nodes is 1. The weight of linkage [n ∼ n′] is the total number of linkages
between the descendant leaf nodes of n and n′.

In each iteration LinkClus updates the similarity between each pair of sibling
nodes (e.g., na and nb) in each SimTree, using the similarities between the objects
linked with them in other SimTrees. The similarity between na and nb is the aver-
age path-based similarity between the leaf nodes linked with na ({n10, n11, n12,
n16}) and those with nb ({n10, n13, n14, n17}). Because this similarity is based on
linked objects, we call it linkage-based similarity. na (or nb) may have multiple
linkages to a leaf node ni in ST2, if more than one descendants of na are linked
with ni . Thus the leaf nodes in ST2 linked with na are actually a multi-set, and
the frequency of each leaf node ni is weight ([na ∼ ni ]), which is the number of
original linkages between na and ni . The linkage-based similarity between na and
nb is defined as the average path-based similarity between these two multi-sets of
leaf nodes, and in this way each original linkage plays an equal role.

Definition 2 (Linkage-Based Node Similarity) Suppose a SimTree ST is linked
with SimTrees ST1, . . . , STK . For a node n in ST , let N BSTk (n) denote the multi-
set of leaf nodes in STk linked with n. Let wn′n′′ represent weight ([n′ ∼ n′′]).
For two nodes na and nb in ST , their linkage-based similarity siml(na, nb) is the
average similarity between the multi-set of leaf nodes linked with na and that of nb.
We decompose the definition into several parts for clarity:
(The total weights between N BSTk (na) and N BSTk (nb))

weightSTk (na, nb) =
∑

n∈N BSTk (na)

∑

n′∈N BSTk (nb)

wnan · wnbn′,

(The sum of weighted similarity between them)

sumSTk (na, nb) =
∑

n∈N BSTk (na)

∑

n′∈N BSTk (nb)

wnan · wnbn′ · sim p(n, n′),

(The linkage-based similarity between na and nb w.r.t. STk)

simSTk (na, nb) = sumSTk (na, nb)

weightSTk (na, nb)
,

(The final definition of siml(na, nb))

siml(na, nb) = 1

K

K∑

k=1

simSTk (na, nb). (2.2)
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Equation (2.2) shows that if a SimTree ST is linked with multiple SimTrees,
each linked SimTree plays an equal role in determining the similarity between
nodes in ST . The user can also use different weights for different SimTrees
according to the semantics.

2.5.3 Aggregation-Based Similarity Computation

The core part of LinkClus is how to iteratively update each SimTree by com-
puting linkage-based similarities between different nodes. This is also the most
computation-intensive part in linkage-based clustering. Definition 2 provides a
brute-force method to compute linkage-based similarities. However, it is very
expensive. Suppose each of two nodes na and nb is linked with m leaf nodes. It
takes O(m2 logc N ) to compute siml(na, nb) (logc N is the height of SimTree).
Because some high-level nodes are linked with �(N ) objects, this brute-force
method requires O(N 2 logc N ) time, which is unaffordable for large databases.

Fortunately, we find that the computation of different path-based similarities can
be merged if these paths are overlapped with each other.

Example 1 A simplified version of Fig. 2.8 is shown in Fig. 2.9, where siml(na, nb)

is the average path-based similarity between each node in {n10, n11, n12} and each in
{n13, n14}. For each node nk ∈ {n10, n11, n12} and nl ∈ {n13, n14}, their path-based
similarity sim p(nk, nl) = s(nk, n4) · s(n4, n5) · s(n5, nl). All these six path-based
similarities involve s(n4, n5). Thus siml(na, nb), which is the average of them, can
be written as

siml(na, nb) =
∑12

k=10 s(nk, n4)

3
· s(n4, n5) ·

∑14
l=13 s(nl , n5)

2
. (2.3)

Equation (2.3) contains three parts: the average similarity between na and descen-
dants of n4, s(n4, n5), and the average similarity between nb and descendants of n5.
Therefore, we pre-compute the average similarity and total weights between na , nb

and n4, n5, as shown in Fig. 2.9. (The original linkages between leaf nodes do not
affect similarities and thus have similarity 1.) We can compute siml(na, nb) using
such aggregates, i.e., siml(na, nb) = 0.9+1.0+0.8

3 × 0.2 × 0.9+1.0
2 = 0.9 × 0.2 ×

0.95 = 0.171, and this is the average similarity between 3 × 2 = 6 pairs of leaf

4 5

10 12 13 14

a b

a:(1,1)

a:(0.9,3) b:(0.95,2)

11

0.2

0.9 1.0 0.8 0.9 1.0

a:(1,1) a:(1,1) b:(1,1) b:(1,1)

The two numbers in a
bracket represent the
average similarity and
total weight of a linkage
between two nodes

ST2

ST1

Fig. 2.9 Computing similarity between nodes
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nodes. This is exactly the same as applying Definition 2 directly. But now we have
avoided the pairwise similarity computation, since only the edges between siblings
and parent–child are involved.

This mini-example shows the basic idea of computing linkage-based similarities.
In a real problem na and nb are often linked with many leaf nodes lying in many
different branches of the SimTrees, which makes the computation much more com-
plicated. The basic idea is still to merge computations that share common paths in
SimTrees.

To facilitate our discussion, we introduce a simple data type called simweight,
which is used to represent the similarity and weight associated with a linkage. A
simweight is a pair of real numbers 〈s, w〉, in which s is the similarity of a linkage
and w is its weight. We define two operations of simweight that are very useful in
LinkClus.

Definition 3 (Operations of simweight) The operation of addition is used to com-
bine two simweights corresponding to two linkages. The new similarity is the
weighted average of their similarities, and the new weight is the sum of their
weights:

〈s1, w1〉 + 〈s2, w2〉 =
〈

s1 · w1 + s2 · w2

w1 + w2
, w1 + w2

〉

. (2.4)

The operation of multiplication is used to compute the weighted average similar-
ity between two sets of leaf nodes. The new weight w1 · w2 represents the number
of pairs of leaf nodes between the two sets.

〈s1, w1〉 × 〈s2, w2〉 = 〈s1 · s2, w1 · w2〉. (2.5)

Lemma 1 The laws of commutation, association, and distribution hold for the oper-
ations of simweight.

LinkClus uses a simweight to represent the relationship between two nodes in
different SimTrees. We use N BST (n) to denote the multi-set of leaf nodes in ST
linked with node n. For example, in Fig. 2.8 N BST2(na) ={n10, n11, n12, n16} and
N BST2(nb) ={n10, n13, n14, n17}.

We first define the weight and similarity of a linkage between two non-leaf nodes
in two SimTrees. A non-leaf node represents the set of its child nodes. Therefore,
for a node na in ST1 and a non-leaf node ni in ST2, the weight and similarity of
linkage [na ∼ ni ] is the sum of weights and weighted average similarity between
their child nodes. Furthermore, according to Definition 1, the similarity between two
non-sibling nodes ni and n j on the same level of ST2 can be calculated as

sim p(ni , n j ) =
s(ni , parent (ni )) · sim p(parent (ni ), parent (n j )) · s(n j , parent (n j )).
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Thus we also incorporate s(ni , parent (ni )) (i.e., the ratio between average sim-
ilarity involving ni and that involving parent (ni )) into the definition of linkage
[na ∼ ni ]. We use swnani to denote the simweight of [na ∼ ni ].
Definition 4 Let na be a node in SimTree ST1 and ni be a non-leaf node in ST2.
Let children(ni ) be all child nodes of ni . The simweight of linkage [na ∼ ni ] is
defined as

swnani =
∑

n̂∈children(ni )

〈s(n̂, ni ), 1〉 × swnan̂ . (2.6)

(In (2.6) we use 〈x, 1〉 × 〈s, w〉 as a convenient notation for 〈x · s, w〉. Figures 2.9
and 2.10 shows swnani and swnbni for each node ni in ST2.)

Using Definition 4, we formalize the idea in Example 1 as follows.

Lemma 2 For two nodes na and nb in SimTree ST1, and two sibling non-leaf nodes
ni and n j in ST2, the average similarity and total weight between the descendant
objects of ni linked with na and those of n j linked with nb is

swnani × 〈s(ni , n j ), 1〉 × swnbn j .

(This corresponds to (2.3) if i = 4 and j = 5.)

We outline the procedure for computing the linkage-based similarity between na

and nb (see Fig. 2.10). siml(na, nb) is the average similarity between N BST2(na)

and N BST2(nb). We first compute the aggregated simweights swnan and swnbn for
each node n in ST2, if n is an ancestor of any node in N BST2(na) or N BST2(nb),
as shown in Fig. 2.10. Consider each pair of sibling nodes ni and n j in ST2 (e.g.,
n4 and n5), so that ni is linked with na and n j with nb. According to Lemma 1,
the average similarity and total weight between the descendant objects of ni linked
with na and those of n j linked with nb is swnani × 〈s(ni , n j ), 1〉 × swnbn j . For
example, swnan4 = 〈0.9, 3〉 (where the weight is 3 as na can reach n4 via n10, n11,
or n12), swnbn5 = 〈0.95, 2〉, and s(n4, n5) = 0.2. Thus swnan4 × 〈s(n4, n5), 1〉 ×
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swnbn5 = 〈0.171, 6〉 (as in Example 1), which represents the average similarity and
total weights between {n10, n11, n12} and {n13, n14}. We note that the weight is 6
as there are 6 paths between leaf nodes under n4 linked with na and those under n5
linked with nb.

From the above example it can be seen that the effect of similarity between every
pair leaf nodes in ST2 will be captured when evaluating their ancestors that are
siblings. For any two leaf nodes n̂i and n̂ j in ST2, there is only one ancestor of n̂i

and one of n̂ j that are siblings. Thus every pair of n̂i , n̂ j (n̂i ∈ N BST2(na), n̂ j ∈
N BST2(nb)) is counted exactly once, and no redundant computation is performed.
In general, siml(na, nb) can be computed using Theorem 1.

Theorem 1 (Sibling-Pair Based Similarity Computation) Suppose na and nb are
two nodes in SimTree ST1. Let N BST2(na) and N BST2(nb) be the multi-sets of leaf
nodes in SimTree ST2 linked with na and nb, respectively.

〈siml(na, nb), weight is ignored〉 =
∑

n∈ST2

∑

ni ,n j∈children(n),ni �=n j

swnani × 〈s(ni , n j ), 1〉 × swnbn j

+
∑

ni∈N BST2 (na)
⋂

N BST2 (nb)

swnani × swnbni . (2.7)

The first term of (2.7) corresponds to similarities between different leaf nodes.
For all leaf nodes under ni linked with na and those under n j linked with nb, the
effect of pairwise similarities between them is aggregated together as computed
in the first term. The second term of (2.7) corresponds to the leaf nodes linked
with both na and nb. Only similarities between sibling nodes are used in (2.7), and
thus we avoid the tedious pairwise similarity computation in Definition 2. In order
to compute the linkage-based similarities between nodes in ST1, it is sufficient to
compute aggregated similarities and weights between nodes in ST1 and nodes in
other SimTrees. This is highly efficient in time and space as shown in Section 2.5.5.

Now we describe the procedure of computing siml(na, nb) based on Theorem 1.

Step 1: Attach the simweight of each original linkage involving descendants of
na or nb to the leaf nodes in ST2.

Step 2: Visit all leaf nodes in ST2 that are linked with both na and nb to compute
the second term in (2.7).

Step 3: Aggregate the simweights on the leaf nodes to those nodes on level-1.
Then further aggregate simweights to nodes on level-2 and so on.

Step 4: For each node ni in ST2 linked with na and each sibling of ni that is
linked with nb (we call it n j ), add swnani ×〈s(ni , n j ), 1〉× swnbn j to the
first term of (2.7).

Suppose na is linked with m leaf nodes in ST2 and nb is linked with O(m · c)
ones. It is easy to verify that the above procedure takes O(mc logc N ) time.
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2.5.4 Iterative Adjustment of SimTrees

After building the initial SimTrees as described in Section 2.5.1, LinkClus needs
to iteratively adjust both the similarities and structure of each SimTree. In Sec-
tion 2.5.3 we have described how to compute the similarity between two nodes using
similarities between their neighbor leaf nodes in other SimTrees. In this section we
will introduce how to restructure a SimTree so that similar nodes are put together.

The structure of a SimTree is represented by the parent–child relationships, and
such relationships may need to be modified in each iteration because of the modified
similarities. In each iteration, for each node n, LinkClus computes n’s linkage-based
similarity with parent (n) and the siblings of parent (n). If n has higher similarity
with a sibling node ň of parent (n), then n will become a child of ň, if ň has less than
c children. The moves of low-level nodes can be considered as local adjustments
on the relationships between objects and the moves of high-level nodes as global
adjustments on the relationships between large groups of objects. Although each
node can only be moved within a small range (i.e., its parent’s siblings), with the
effect of both local and global adjustments, the tree restructure is often changed
significantly in an iteration.

The procedure for restructuring a SimTree is shown in Algorithm 1 (Fig. 2.11).
LinkClus tries to move each node n to be the child of a parent node that is most
similar to n. Because each non-leaf node ň can have at most c children, if there are
more than c nodes that are most similar to ň, only the top c of them can become
children of ň, and the remaining ones are reassigned to be children of other nodes
similar to them.

After restructuring a SimTree ST , LinkClus needs to compute the value associ-
ated with every edge in ST . For each edge between two sibling nodes, their simi-
larity is directly computed as in Section 2.5.3. For each edge between a node n and
its parent, LinkClus needs to compute the average similarity between n and all leaf
nodes except descendants of parent (n) and that for parent (n). It can be proved
that the average linkage-based similarity between n and all leaf nodes in ST except
descendants of a non-leaf node n′ is

sumSTk (n, root (ST ))− sumSTk (n, n′))
weightSTk (n, root (ST ))− weightSTk (n, n′))

. (2.8)

Please note that (2.8) uses notations in Definition 2. With (2.8) we can compute
the similarity ratio associated with each edge between a node and its parent. This
finishes the computation of the restructured SimTree.

2.5.5 Complexity Analysis

In this section we analyze the time and space complexity of LinkClus. For simplic-
ity, we assume there are two object types, each having N objects, and there are M
linkages between them. Two SimTrees ST1 and ST2 are built for them. If there are
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Fig. 2.11 Algorithm Restructure SimTree

more object types, the similarity computation between each pair of linked types can
be done separately.

When a SimTree is built, LinkClus limits the number of nodes at each level.
Suppose there are Nl nodes on level-l. The number of nodes on level-(l + 1) must
be between Nl

c and αNl
c (α ∈ [1, 2] and usually c ∈ [10, 20]). Thus the height of a

SimTree is O(logc N ).
In each iteration, LinkClus restructures each SimTree using similarities between

nodes in the other SimTree and then updates the values associated with edges in
each SimTree. When restructuring ST1, for each node n in ST1, LinkClus needs
to compute its similarity to its parent and parent’s siblings, which are at most c
nodes. Suppose n is linked with m leaf nodes in ST2. As shown in Section 2.5.3,
it takes O(mc logc N ) time to compute the n’s similarity with its parent or each of
its parent’s siblings. Thus it takes O(mc2 logc N ) time to compute the similarities
between n and these nodes.

There are N leaf nodes in ST1, which have a total of M linkages to all leaf nodes
in ST2. In fact all nodes on each level in ST1 have M linkages to all leaf nodes in
ST2, and there are O(logc N ) levels. Thus it takes O(Mc2(logc N )2) time in total
to compute the similarities between every node in ST1 and its parent and parent’s
siblings.
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In the above procedure, LinkClus processes nodes in ST1 level by level. When
processing the leaf nodes, only the simweights of linkages involving leaf nodes and
nodes on level-1 of ST1 are attached to nodes in ST2. There are O(M) such linkages,
and the simweights on the leaf nodes in ST2 require O(M) space. In ST2 LinkClus
only compares the simweights of sibling nodes, thus it can also process the nodes
level by level. Therefore, the above procedure can be done in O(M) space. Each
SimTree has O(N ) nodes, and it takes O(c) space to store the similarity between
each node and its siblings (and its parent’s siblings). Thus the space requirement is
O(M + Nc).

It can be easily shown that the procedure for restructuring a SimTree (Algo-
rithm 1) takes O(Nc) space and O(Nc log c) time, which is much faster than com-
puting similarities.

After restructuring SimTrees, LinkClus computes the similarities between each
node and its siblings. This can be done using the same procedure as computing
similarities between each node and its parent’s siblings. Therefore, each iteration of
LinkClus takes O(Mc2(logc N )2) time and O(M + Nc) space. This is affordable
for very large databases.

2.6 Empirical Study

In this section we report experiments to examine the efficiency and effectiveness
of LinkClus. LinkClus is compared with the following approaches: (1) SimRank
[13], an approach that iteratively computes pairwise similarities between objects;
(2) ReCom [20], an approach that iteratively clusters objects using the cluster labels
of linked objects; (3) SimRank with fingerprints [10] (we call it F-SimRank), an
approach that pre-computes a large sample of random paths from each object and
uses the samples of two objects to estimate their SimRank similarity; (4) SimRank
with pruning (we call it P-SimRank) [13], an approach that approximates SimRank
by only computing similarities between pairs of objects reachable within a few
links.

SimRank and F-SimRank are implemented strictly following their papers. (We
use decay factor 0.8 for F-SimRank, which leads to highest accuracy in DBLP
database.) ReCom is originally designed for handling web queries and con-
tains a reinforcement clustering approach and a method for determining author-
itativeness of objects. We only implement the reinforcement clustering method,
because it may not be appropriate to consider authoritativeness in clustering. Since
SimRank, F-SimRank, and P-SimRank only provide similarities between objects,
we use CLARANS [16], a k-medoids clustering approach, for clustering using such
similarities. CLARANS is also used in ReCom since no specific clustering method
is discussed in [20]. We compare LinkClus using both hierarchical clustering and
CLARANS.

All experiments are performed on an Intel PC with a 3.0 GHz P4 processor, 1GB
memory, running Windows XP Professional. All approaches are implemented using



64 X. Yin et al.

Visual Studio.Net (C#). In LinkClus, α is set to
√

2. We will discuss the influences
of c (maximum number of children of each node) on accuracy and efficiency in the
experiments.

2.6.1 Evaluation Measures

Validating clustering results is crucial for evaluating approaches. In our test
databases there are predefined class labels for certain types of objects, which are
consistent with our clustering goals. Jaccard coefficient [18] is a popular measure
for evaluating clustering results, which is the number of pairs of objects in same
cluster and with same class label, over that of pairs of objects either in same cluster
or with same class label. Because an object in our databases may have multiple
class labels but can only appear in one cluster, there may be many more pairs of
objects with same class label than those in same cluster. Therefore we use a variant
of Jaccard coefficient. We say two objects are correctly clustered if they share at
least one common class label. The accuracy of clustering is defined as the number
of object pairs that are correctly clustered over that of object pairs in same cluster.
Higher accuracy tends to be achieved when number of clusters is larger. Thus we let
each approach generate the same number of clusters.

2.6.2 DBLP Database

We first test on the DBLP database, which contains the following relations:
(1) Authors, (2) Publications, which contains the publication title and the pro-
ceeding it is in, (3) Publish, which records which author publishes which publica-
tion, (4) Proceedings, which contains the proceeding title and which conferences it
belongs to, and (5) Conferences. It is extracted from the XML data of DBLP [7]. We
want to focus our analysis on the productive authors and well-known conferences,1

and group them into clusters so that each cluster of authors (or conferences) are
in a certain research area. We first select conferences that have been held for at
least eight times. Then we remove conferences that are not about computer sci-
ence or are not well known, and there are 154 conferences left. We select 4170
most productive authors in those conferences, each having at least 12 publications.
The Publications relation contains all publications of the selected authors in the
selected conferences. There are three types of objects to be clustered: 4170 authors,
2517 proceedings, and 154 conferences. Publications are not clustered because too
limited information is known for them (about 65% of publications are associated
with only one selected author).

1 Here conferences refer to conferences, journals, and workshops. We are only interested in pro-
ductive authors and well-known conferences because it is easier to determine the research fields
related to each of them, from which the accuracy of clustering will be judged.
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We manually label the areas of the most productive authors and conferences to
measure clustering accuracy. The following 14 areas are considered: theory, AI,
operating system, database, architecture, programming languages, graphics, net-
working, security, HCI, software engineering, information retrieval, bioinformatics,
and CAD. For each conference, we study its historical call for papers to decide its
area. Ninety percent of conferences are associated with a single area. The other 10%
are associated with multiple areas, such as KDD (database and AI). We analyze
the research areas of 400 most productive authors. For each of them, we find her
home page and infer her research areas from her research interests. If no research
interests are specified, we infer her research areas from her publications. On average
each author is interested in 2.15 areas. In the experiments each type of objects are
grouped into 20 clusters, and the accuracy is tested based on the class labels.

We perform 20 iterations for SimRank, P-SimRank, ReCom, and LinkClus2 (not
including the initialization process of each approach). In F-SimRank we draw a
sample of 100 paths (as in [10]) of length 20 for each object, so that F-SimRank
can use comparable information as SimRank with 20 iterations. The accuracies of
clustering authors and conferences of each approach are shown in Fig. 2.12 (a) and
(b), in which the x-axis is the index of iterations.
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Fig. 2.12 Accuracy on DBLP. (a) DBLP.Authors; (b) DBLP.Conferences

From Fig. 2.12 one can see that SimRank is most accurate, and LinkClus
achieves similar accuracy as SimRank. The accuracies of ReCom and F-SimRank
are significantly lower. The error rates (i.e., 1 − accuracy) of ReCom and
F-SimRank are about twice those of SimRank and LinkClus on authors, and 1.5
times those of them on conferences. One interesting observation is that more

2 Since no frequent patterns of conferences can be found using the proceedings linked to them,
LinkClus uses authors linked with conferences to find frequent patterns of conferences, in order to
build the initial SimTree for conferences.



66 X. Yin et al.

iterations do not necessarily lead to higher accuracy. This is probably because cluster
labels are not 100% coherent with data. In fact this is common for iterative clustering
algorithms.

In the above experiment, LinkClus generates 20 clusters directly from the
SimTrees: Given a SimTree, it first finds the level in which the number of nodes is
most close to 20. Then it either keeps merging the most similar nodes if the number
of nodes is more than 20, or keeps splitting the node with most descendant objects
if otherwise, until 20 nodes are created. We also test LinkClus using CLARANS
with the similarities indicated by SimTrees. The maximum accuracies and running
time of different approaches are shown in Table 2.1. (The running time per iteration
of F-SimRank is its total running time divided by 20.) One can see that the accu-
racy of LinkClus with CLARANS is slightly higher than that of LinkClusand is
close to that of SimRank. While SimRank is much more time consuming than other
approaches.

Table 2.1 Performances on DBLP without keywords

Maximum accuracy Time/iteration (s)

Authors Conferences

LinkClus 0.9574 0.7229 76.74
LinkClus-Clarans 0.9529 0.7523 107.7
SimRank 0.9583 0.7603 1020
ReCom 0.9073 0.4567 43.1
F-SimRank 0.9076 0.5829 83.6

In many methods of linkage-based clustering there is a trade-off between
accuracy and efficiency. This trade-off is shown in Fig. 2.13, which contains the
“accuracy vs. time” plots of SimRank, ReCom, LinkClus with different c’s (8–22,
including c = 16 with CLARANS), and F-SimRank with sample size of 50, 100,
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Fig. 2.13 Accuracy vs. time on DBLP w/o keywords. (a) DBLP.Authors; (b) DBLP.Conferences
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200, and 400. It also includes SimRank with pruning (P-SimRank), which uses the
following pruning method: For each object x , we only compute its similarity with
the top-k objects that share most common neighbors with x within two links (k
varies from 100 to 500). In these two plots, the approaches in the top-left region are
good ones as they have high accuracy and low running time. It can be clearly seen
that LinkClus greatly outperforms the other approaches, often in both accuracy and
efficiency. In comparison, pruning technique of SimRank does not improve much on
efficiency, because it requires using hashtables to store similarities, and an access to
a hashtable is 5–10 times slower than that to a simple array.

2.6.3 Synthetic Databases

In this section we test the scalability and accuracy of each approach on syn-
thetic databases. Figure 2.14 shows an example schema of a synthetic database,
in which R1, R2, R3, R4 contain objects, and R5, R6, R7, R8 contain linkages. We
use RxT yCzSw to represent a database with x relations of objects, each having y
objects which are divided into z clusters, and each object has w linkages to objects
of another type (i.e., selectivity is w). In each relation of objects Ri , the x objects
are randomly divided into z clusters. Each cluster is associated with two clusters
in each relation of objects linked with Ri . When generating linkages between two
linked relations Ri and Ri%4+1, we repeat the following procedure for x · w times:
Randomly select an object o in Ri and find the two clusters in Ri%4+1 associated
with the cluster of o. Then generate a linkage between o and a randomly selected
object in these two clusters with probability (1 − noise_ratio) and generate a
linkage between o and a randomly selected object with probability noise_ratio.
The default value of noise_ratio is 20%. It is shown in previous experiments that
in most cases each approach can achieve almost the highest accuracy in 10 iterations,
we use 10 iterations in this section. We let each approach generate z clusters for a
database RxT yCzSw. For LinkClus we use c = 16 and do not use CLARANS.

R1

R8

R4 R7

R5 R2

R6

R3

Fig. 2.14 The schema of a synthetic database

We first test scalability w.r.t. the number of objects. We generate databases with
5 relations of objects, 40 clusters in each of them, and selectivity 10. The number of
objects in each relation varies from 1000 to 5000. The running time and accuracy
of each approach are shown in Fig. 2.15. The time/iteration of F-SimRank is the
total time divided by 10. With other factors fixed, theoretically the running time of
LinkClus is O(N (log N )2), that of Sim Rank is O(N 2), and those of ReCom and
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Fig. 2.15 Performances on R5T*C40S10. (a) Time/iteration; (b) Accuracy

F-SimRank are O(N ). We also show the trends of these bounds and one can see
that the running time of the approaches are consistent with theoretical derivations.
LinkClus achieves highest accuracy, followed by ReCom and then SimRank, and
F-SimRank is least accurate. The possible reason for LinkClus and ReCom achiev-
ing high accuracy is that they group similar objects into clusters (or tree nodes) in
the clustering process. Because clusters are clearly generated in data, using object
groups in iterative clustering is likely to be beneficial.

In the last experiment the accuracy of each approach keeps decreasing as the
number of objects increases. This is because the density of linkages decreases as
cluster size increases. In R5T1000C40S10, each cluster has only 25 objects, each
having 10 linkages to the two related clusters (50 objects) in other relations. In
R5T5000C40S10, each cluster has 125 objects and the two related clusters have
250 objects, which makes the linkages much sparser. In the second experiment we
increase the number of objects and clusters together to keep density of linkages
fixed. Each cluster has 100 objects, and the number of objects per relation varies
from 500 to 20000. In the largest database there are 100 K objects and 1 M link-
ages. The running time and accuracy of each approach are shown in Fig. 2.16.3

ReCom and F-SimRank are unscalable as their running time is proportional to the
number of objects times the number of clusters, because they compute similari-
ties between each object and each cluster medoid. The accuracies of LinkClus and
SimRank do not change significantly, even the numbers of objects and clusters grow
40 times.

Then we test each approach on databases with different selectivities, as shown
in Fig. 2.17. We generate databases with five relations of objects, each having 4000
objects and 40 clusters. The selectivity varies from 5 to 25. The running time of
LinkClus grows linearly and that of SimRank quadratically with the selectivity, and

3 We do not test SimRank and F-SimRank on large databases because they consume too much
memory.
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Fig. 2.16 Performances on R5T*C*S10. (a) Time/iteration; (b) Accuracy
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Fig. 2.17 Performances on R5T4000C40S*. (a) Time/iteration; (b) Accuracy

those of ReCom and F-SimRank are only slightly affected. These are consistent with
theoretical derivations. The accuracies of LinkClus, SimRank, and ReCom increase
quickly when selectivity increases, showing that density of linkages is crucial for
accuracy. The accuracy of F-SimRank remains stable because it does not use more
information when there are more linkages.

Finally, we test the accuracy of each approach on databases with different noise
ratios, as shown in Fig. 2.18. We change noise ratio from 0 to 0.4. The accuracies
of LinkClus, SimRank, and F-SimRank decrease with a stable rate when noise ratio
increases. ReCom is most accurate when noise ratio is less than 0.2, but is least
accurate when noise ratio is greater than 0.2. It shows that LinkClus and SimRank
are more robust than ReCom in noisy environments.
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Fig. 2.18 Accuracy vs. noise ratio on R5T4000C40S10

2.7 Conclusions

In this chapter we propose a highly effective and efficient approach of linkage-based
clustering, LinkClus, which explores the similarities between objects based on the
similarities between objects linked with them. We propose similarity-based hierar-
chical structure called SimTree as a compact representation for similarities, and
propose an efficient algorithm for computing similarities, which avoiding pairwise
computations by merging similarity computations that go through common paths.
Experiments show LinkClus achieves high efficiency, scalability, and accuracy in
clustering multi-typed linked objects.
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Chapter 3
Community Evolution and Change Point
Detection in Time-Evolving Graphs

Jimeng Sun, Spiros Papadimitriou, Philip S. Yu, and Christos Faloutsos

Abstract How can we find communities in dynamic networks of social interac-
tions, such as who calls whom, who emails whom, or who sells to whom? How
do we store a large volume of IP network source–destination connection graphs,
which grow over time? In this chapter, we study these two fundamental problems
on time-evolving graphs and exploit the subtle connection between pattern mining
and compression. We propose a pattern mining method, GraphScope, that automati-
cally reveals the underlying communities in the graphs, as well as the change points
in time. Our method needs no human intervention, and it is carefully designed to
operate in a streaming fashion. Moreover, it is based on lossless compression princi-
ples. Therefore, in addition to revealing the fundamental structure of the graphs, the
discovered patterns naturally lead to an excellent storage scheme for graph streams.
Thus, our proposed GraphScope method unifies and solves both the mining and the
compression problem (1) by producing meaningful time-evolving patterns agreeing
with human intuition and (2) by identifying key change points in several real large
time-evolving graphs. We demonstrate its efficiency and effectiveness on real data
sets from several domains.

3.1 Introduction

Graphs and networks arise naturally in a wide range of disciplines and applica-
tion domains, since they capture the general notion of an association between
two entities. However, the aspect of time has only recently begun to receive
some attention [19, 26]. Some examples of the time-evolving graphs include the
following: (a) Network packets indicate ongoing communication between source
and destination hosts like the NETWORK data set in our experiment; (b) Email
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networks associate a sender and a recipient at a given date, like the ENRON data
set (http://www.cs.cmu.edu/enron/) that we use in the experiment; (c) Call detail
records in telecommunications networks associate a caller with a callee. The set
of all conversation pairs over each week forms a graph that evolves over time,
like the publicly available “CELLPHONE” data set of MIT users calling each other
(http://reality.media.mit.edu/download.php); (d) Transaction data: in a financial
institution, who accessed what account, and when; (e) In a database compliance
setting [2], again we need to record which user accessed what data item and when;
and (f) Market-basket transaction data, which associate customers with products
purchased at one visit to the store.

To complicate matters further, large amounts of data such as those in the above
examples are continuously collected. Therefore, batch methods for pattern discov-
ery are not sufficient. Additionally, the volume of the data poses significant chal-
lenges on storing such data. In summary, there are two key problems that need to be
addressed:

(P1) Mining: Which groups or communities of nodes are associated to each other
and how do these relationships evolve over time? Moreover, we want to
answer these questions (a) without requiring any user-defined parameters, and
(b) in a stream fashion.

(P2) Compression: How can such dynamically evolving streams of pairwise rela-
tionships be efficiently stored, without any loss of information?

For example, we want to answer questions such as: How do the network hosts inter-
act with each other? What kind of host groups are there, e.g., inactive/active hosts;
servers; scanners? Who emails whom? Do the email communities in a organization
such as ENRON remain stable, or do they change between workdays (e.g., business-
related) and weekends (e.g., friend and relatives), or during major events (e.g., the
FBI investigation and the CEO resignation)? Which types of customers buy which
kinds of products? Are there seasonal patterns in these relationships (e.g., winter
and summer, or Thanksgiving and Christmas)? Additionally, we want to efficiently
store data of such interactions, losslessly.

We propose GraphScope, which addresses both of the above problems simul-
taneously. More specifically, GraphScope is an efficient, adaptive compression
scheme on time-evolving graphs. Unlike many existing techniques, it requires
no user-defined parameters, and it operates completely automatically, based on
the Minimum Description Length (MDL) principle. Furthermore, it adapts to the
dynamic environment by automatically finding the communities and determining
good change-points in time.

In this chapter we consider bipartite graphs, which treat source and destination
nodes separately (see example in Fig. 3.2). As will become clear later, we discover
separate source and destination partitions, which are desirable in several application
domains. Nonetheless, our methods can be easily modified to deal with unipartite
graphs, by constraining the source partitions to be the same with the destination
partitions, as was done in [5].
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The main insight of dealing with such graphs is to group “similar” sources
together into source groups (or row groups), and also “similar” destinations together,
into destination groups (or column groups). Figure 3.3 shows how much more
orderly (and easier to compress) the adjacency matrix of a graph is, after we strate-
gically re-order its rows and columns. The exact definition of “similar” is actually
simple, and rigorous: the most similar source partitions for a given source node is
the one that leads to best compression. See Section 3.4 for more details.

Furthermore, if these communities (source- and destination partitions) do not
change much over time, consecutive snapshots of the evolving graphs have similar
descriptions and can also be grouped together into a time segment, to achieve better
compression. Whenever a new graph snapshot cannot fit well into the old segment
(in terms of compression), GraphScope introduces a change point, and starts a new
segment at that timestamp. Those change points often detect drastic discontinuities
in time. For example on the ENRON data set, the change points all coincide with
important events related to the ENRON company, as shown in Fig. 3.1 (more details
in Section 3.6.2).
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Fig. 3.1 ENRON data set (best viewed in color). Relative compression cost versus time. Large cost
indicates change points, which coincide with the key events; E.g., at time-tick 140 (Feb 2002),
CEO Ken Lay was implicated in fraud
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Contributions: Our proposed approach, GraphScope, provides a unified treatment
of the two fundamental problems of mining and compression of evolving graphs,
and it has the following key properties:

– Adaptivity: It can effectively track communities over time, discovering both com-
munities as well as change points in time, that agree with human intuition.

– Streaming ability: It is fast, incremental and scalable for the streaming environ-
ment.

– Space efficiency: It provides a lossless storage scheme which achieves very high
compression ratios (20:1), on all the real data sets in our experiments.

– Parameter-free: This is the major point of difference with all other community-
tracking methods: GraphScope is completely automatic, requiring no parame-
ters from the user (like number of communities, thresholds to assess community
drifts). Instead, it is based on sound information theory principles, specifically,
the MDL idea.

We demonstrate the efficiency and effectiveness of our approach in both compress-
ing evolving graphs as well as discovering and tracking the key patterns in the real
data from several domains.

The rest of the chapter is organized as follows: Section 3.2 reviews the related
work. Section 3.3 introduces some necessary definitions and formalizes the prob-
lem. Section 3.4 presents the compression objective function. Section 3.5 presents
our proposed method for finding optimal solution, Section 3.6 shows the experimen-
tal evaluation and Section 3.7 concludes.

3.2 Related Work

Here we discuss related work from three areas: mining static graphs, mining
dynamic graphs, and stream mining.

3.2.1 Mining Static Graphs

Graph mining has been a very active area in data mining community. From the
exploratory aspect, Faloutsos et al. [11] have shown the power law distribution
on the Internet graph. Kumar et al. [18] discovered the bow tie model for web
graphs.

From the algorithmic aspect, graph partitioning has attracted much interest, with
prevailing methods being METIS [16] and spectral partitioning [23]. Even in these
top-performing methods, users must specify the number of partitions k. Moreover,
they typically also require a measure of imbalance between the two pieces of
each cut.
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Information-theoretic co-clustering (ITCC) [9] performs simultaneously clus-
tering rows and columns of a normalized contingency table or a two-dimensional
probability distribution, where the number of clusters have to be specified. The
cross-association method (CA) [6] formulates the co-clustering problem as a binary
matrix compression problem.

Since common representation of a graph is sparse matrix (adjacency list), the
sparse iterative methods such as Lanczos algorithm are especially relevant [14]. Col-
umn selection methods [10, 17] provide an alternative way of summarizing graphs.
Namely, they choose a subset of columns as bases and summarize the rest columns
as linear combinations of the selective columns.

All these methods deal with static matrices or graphs, while GraphScope is
designed to work with dynamic streams. Moreover, most of methods except for
cross-association require some user-defined parameters, which may be difficult to
set and which may dramatically affect the final result as observed in [17].

3.2.2 Mining Dynamic Graphs

From the exploratory viewpoint, Leskovec et al. [19] discover the shrinking diam-
eter phenomena on time-evolving graphs. Backstrom et al. [4] study community
evolution in social networks.

From the algorithmic aspect, Sun et al. [26] present dynamic tensor analy-
sis which incrementally summarizes tensor streams (high-order graph streams) as
smaller core tensor streams and projection matrices. This method still requires user-
defined parameters (like the size of the core tensor). Moreover, it gives lossy com-
pression. Aggarwal and Yu [1] propose a method (1) to selectively store a subset of
graphs to approximate the entire graph stream and (2) to find community changes
in time-evolving graphs based on the user specified time interval and the number
of communities. Lin et al. [20, 21] provide a series of dynamic soft clustering tech-
niques that allow nodes to belong to multiple clusters with different probability.

Again, our GraphScope avoids all these user-defined parameters.

3.2.3 Stream Mining

Data streams have been extensively studied in recent years. The goal is to process the
incoming data efficiently without recomputing from scratch and without buffering
much historical data. The two surveys [3, 22] discuss many data streams algorithms.
Among them, “Sketches” is a powerful technique that uses a compact structure to
estimate many important statistics, such as the Lp-norm [7, 15] of an unbounded
stream. Garofalakis and Gibbons [13] proposed single-pass algorithms for approxi-
mating the largest wavelet coefficients using “Sketches.”
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Ganti et al. [12] propose a generic framework for stream mining. For multi-
ple streams, statStream [28] uses the DFT to summarize streams within a finite
window and then compute the highest pairwise correlations among all pairs of
streams, at each timestamp. SPIRIT [24] applies incremental SVD to summarize
multiple streams into a small number of hidden variables.

All the stream mining works deal with time-series type of streams, while we
focus on graph streams.

3.3 Problem Definition

In this section, we formally introduce the notation and formulate the problems.

3.3.1 Notation and Definition

Let’s start with some definitions and naming conventions. Calligraphic letters
always denote graph streams or graph stream segments (consisting of one or
more graph snapshots), while individual graph snapshots are denoted by non-
calligraphic, upper case letters. Superscripts in parentheses denote either times-
tamps t or graph segment indices s, accordingly. Similarly, subscripts denote either
individual nodes i, j or node partitions p, q. All notations are described in Table 3.1.

Table 3.1 Definitions of symbols

Sym. Definition

G, G(s) Graph stream, Graph segment
t Timestamp, t ≥ 1
m, n Number of source (destination) nodes
G(t) Graph at time t (m × n adjacency matrix)
i, j Node indices, 1 ≤ i ≤ m, 1 ≤ j ≤ n

G(t)
i, j Indicator for edge (i, j) at time t

s Graph segment index, s ≥ 1.
ts Starting time of sth segment
ks ,�s Number of source (dest.) partitions for segment s
p, q Partition indices, 1 ≤ p ≤ ks , 1 ≤ q ≤ �s

I (s)p Set of sources belonging to the pth partition, during the sth segment
J (s)

q Similar to I (s)p , but for destination nodes
m(s)

p Source partition size, m(s)
p ≡ |I (s)p |, 1 ≤ p ≤ ks

n(s)
p Dest. partition size, n(s)

p ≡ |J (s)
p |, 1 ≤ p ≤ �s

G(s)
p,q Subgraphs induced by pth and qth partitions of segment s, i.e., subgraph segment
|G(s)

p,q | Size of subgraphs segment, |G(s)
p,q | := m(s)

p n(s)
q (ts+1 − ts)

|E |(s)p,q Number of edges in G(s)
p,q

ρ
(s)
p,q Density of G(s)

p,q ,
|E |(s)p,q

|G(s)
p,q |

H(.) Shannon entropy function
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Definition 1 (Graph stream) A graph stream G is a sequence of graphs G(t), i.e.,

G := {G(1), G(2), . . . , G(t), . . .},

which grows indefinitely over time. Each of these graphs links m source nodes to n
destination nodes.

For example in Fig. 3.2, the first row plots first three graphs in a graph stream, where
m = 4 and n = 3. Furthermore, the graphs are represented in sparse matrices as
shown in the bottom of Fig. 3.2 (a black entry is 1 which indicates an edge between
the corresponding nodes; likewise, a white entry is 0).

In general, each graph may be viewed as an m × n binary adjacency matrix,
where rows 1 ≤ i ≤ m correspond to source nodes and columns 1 ≤ j ≤ n
correspond to destination nodes. We use sparse representation of the matrix (i.e.,
only non-zero entries are stored) whose space consumption is similar to adjacency
list representation. For the convenience of presentation, we assume the same m and
n for all graphs in the graph stream G. However, our algorithms also apply for the
graphs with different size by essentially setting some rows and columns to be all
zeros in the adjacency matrices.

One of our goals is to track how the structure of the graphs G(t), t ≥ 1, evolves
over time. To that end, we will group consecutive timestamps into segments.

Fig. 3.2 Notation illustration: A graph stream with three graphs in two segments. First graph seg-
ment consisting of G(1) and G(2) has two source partitions I (1)1 = {1, 2}, I (1)2 = {3, 4}; two

destination partitions J (1)
1 = {1}, J (1)

2 = {2, 3}. Second graph segment consisting of G(3) has three

source partitions I (2)1 = {1}, I (2)2 = {2, 3}, I (2)3 = {4}; three destination partitions J (2)
1 = {1},

J (2)
2 = {2}, J (2)

2 = {3}
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Definition 2 (Graph stream segment) The set of graphs between timestamps ts and
ts+1 − 1 (inclusive) consist the sth segment G(s), s ≥ 1, which has length ts+1 − ts ,

G(s) := {G(ts ), G(ts+1), . . . , G(ts+1−1)}.

Intuitively, a “graph stream segment” (or just “graph segment”) is a set of con-
secutive graphs in a graph stream. For example in Fig. 3.2, G(1) is a graph segment
consisting of two graph G(1) and G(2).

Next, within each segment, we will partition the source and destination nodes
into source partitions and destination partitions, respectively.

Definition 3 (Graph segment partitions) For each segment s ≥ 1, we partition
source nodes into ks source partitions and destination nodes into �s destination
partitions. The set of source nodes that are assigned into the pth source partition
1 ≤ p ≤ ks is denoted by I (s)p . Similarly, the set of destination nodes assigned to

the qth destination partition is denoted by J (s)
q , for 1 ≤ q ≤ �s .

The sets I (s)p partition the source nodes, in the sense that I (s)p ∩ I (s)p′ = ∅ for p �=
p′, while

⋃
p I (s)p = {1, . . . ,m}. Similarly, the sets J (s)

q partition the destination

nodes. For example in Fig. 3.2, the first graph segment G(1) has source partitions
I (1)1 = {1, 2}, I (1)2 = {3, 4}, and destination partitions J (1)

1 = {1}, J (1)
2 = {2, 3}

(k1 = 2,�1 = 2). Similarly, we can define source and destination partition for the
second graph segment G(2) (k2 = 3,�2 = 3).

3.3.2 Problem Formulation

In this chapter, the ultimate goals are to find communities on the time-evolving
graph (along with the change points, if any), as well as to compress them incremen-
tally. To achieve that, the following two problems need to be addressed.

Problem 1 (PartitionIdentification) Given a graph stream segment G(s), how to find
the optimal partitions of source and destination nodes such that the encoding cost
for G(s) is minimized.

To achieve this objective, two important sub-questions need to be answered (see
Section 3.5.1):

– How to assign the m source and n destination nodes into ks source and �s desti-
nation partitions?

– How to determine the ks and �s?

Problem 2 (TimeSegmentation) Given a graph stream G, how can we incrementally
construct graph segments such that the encoding cost for G is small?
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Section 3.5.2 presents the algorithms, where for every new graph G(t) it compares
the encoding cost of including G(t) into the current segment vs. that of starting a
new segment from timestamp t . We name the whole analytic process, GraphScope.

Next, we will present how to solve both the mining and compression problems
on time-evolving graphs using the MDL principle. More specifically, Section 3.4
introduces the encoding objective function; then Section 3.5 presents the algorithm
to optimize the proposed objective.

3.4 GraphScope Compression Objective

In this section, we present the encoding scheme of the graph stream and the parti-
tions, which can give us an objective measure of how well a particular compression
scheme performs. That is, we assume that we are given some change-points, and
the source and destination partitions for each graph segment, and we show how to
estimate the compression cost.

3.4.1 Graph Encoding

In this chapter, we represent a graph as a m-by-n binary matrix, where every row or
column corresponds to a source or destination node. For example in Fig. 3.2, G(1)

is represented as

G(1) =

⎛

⎜
⎜
⎝

1 0 0
1 0 0
0 1 1
0 0 1

⎞

⎟
⎟
⎠ . (3.1)

For a given binary matrix, we can store them as a binary string with the length
mn along with the two integers m and n. For example, (3.1) can be stored as
1100,0010,0011 (in the column major order) along with two integers 4 and 3.

To further save space, we can adopt some standard lossless compression scheme
(such as Huffman coding, arithmetic coding [8]) to encode the binary string, which
formally can be viewed as a sequence of realizations of a binomial random variable
X . The code length for that is estimated as mnH(X) where H(X) is the entropy
of variable X . For notational convenience, we also write that as mnH(G(t)). Addi-
tionally, three integers need to be stored: the matrix sizes m and n, the number of
ones in matrix |E | (the number of edges in the graph). The cost for storing three
integers is log� |E | + log� m + log� n bits, where log� is the universal code length
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for an integer.1 Notice that this scheme can be extended to multiple graphs with
minor modifications.

More generally, if the random variable X can take values from the set M , with
the size |M | (a multinomial distribution), the entropy of X is

H(X) = −
∑

x∈M

p(x) log p(x),

where p(x) is the probability that X = x . Moreover, the maximum of H(X) is
log |M | when p(x)= 1

|M| for all x ∈ M (pure random, most difficult to compress);
the minimum is 0 when p(x) = 1 for a particular x ∈ M (deterministic, easiest to
compress). For the binomial case, if all symbols are all 0 or all 1 in the string, we
do not have to store anything because by knowing the number of ones in the string
and the sizes of matrix, the receiver is already able to decode the data completely.

With this observation in mind, the goal is to organize the matrix (graph) into
some homogeneous sub-matrices with low entropy and compress them separately
as we will describe next.

3.4.2 Graph Segment Encoding

Given a graph stream segment G(s) and its partition assignments, we can precisely
compute the cost for transmitting the segment as two parts: (1) Partition encoding
cost: the model complexity for partition assignments, (2) Graph encoding cost: the
actual code for the graph segment.

3.4.2.1 Partition Encoding Cost

The description complexity for transmitting the partition assignments for graph seg-
ment G(s) consist of the following terms:

First, we need to send the number of source and destination nodes m and n using
log� m + log� n bits. Note that, this term is constant, which has no effect on the
choice of final partitions.

Second, we shall send the number of source and destination partitions which is
log� ks + log� �s .

Third, we shall send the source and destination partition assignments. To exploit
the non-uniformity across partitions, the encoding cost is m H(P)+ nH(Q) where

P is a multinomial random variable with the probability pi = m(s)
i

m

(
m(s)

i is the size
of i th source partition, 1 ≤ i ≤ ks

)
; Q is another multinomial random variable with

qi = n(s)
i
n

(
n(s)

i is the size of i th destination partition, 1 ≤ i ≤ �s
)
.

1 To encode a positive integer x , we need log� x ≈ log2 x + log2 log2 x + · · · , where only the
positive terms are retained and this is the optimal length, if the range of x is unknown [25]
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For example in Fig. 3.2, the partition sizes for first segment G(1) are m(1)
1 =

m(1)
2 = 2, n(1)

1 = 1, and n(1)
2 = 2; the partition assignments for G(1) costs

−4
( 2

4 log
( 2

4

)+ 2
4 log

( 2
4

))− 3
( 1

3 log
( 1

3

)+ 2
3 log

( 2
3

))
.

In summary, the partition encoding cost for graph segment G(s) is

C (s)
p := log� m + log� n + log� ks + log� �s (3.2)

+m H(P)+ nH(Q),

where P and Q are multinomial random variables for source and destination parti-
tions, respectively.

3.4.2.2 Graph Encoding Cost

After transmitting the partition encoding, the actual graph segment G(s) is transmit-
ted as ks�s subgraph segments. To facilitate the discussion, we define the entropy
term for a subgraph segment G(s)

p,q as

H
(
G(s)

p,q

) = −(ρ(s)
p,q log ρ(s)

p,q +
(
1− ρ(s)

p,q

)
log

(
1− ρ(s)

p,q

))
, (3.3)

where ρ
(s)
p,q = |E |

(s)
p,q

|G(s)
p,q |

is the density of subgraph segment G(s)
p,q . Intuitively, it quanti-

fies how difficult it is to compress the subgraph segment G(s)
p,q . In particular, if the

entire subgraph segment is all 0 or all 1 (the density is exactly 0 or 1), the entropy
term becomes 0.

With this, the graph encoding cost is

C (s)
g :=

ks∑

p=1

�s∑

q=1

(|E |(s)p,q + |G(s)
p,q | · H

(
G(s)

p,q

))
, (3.4)

where |E |(s)p,q is the number of edges in the (p, q) subgraphs of segment s; |G(s)
p,q | is

the size of subgraph segment, i.e., m(s)
p n(s)

q (ts+1 − ts), and H
(
G(s)

p,q
)

is the entropy
of the subgraph segment defined in (3.3).

In the subgraph segment G(1)
2,2 of Fig. 3.2, the number of edges |E |(1)2,2 = 3+4,

G(1)
2,2 has the size |G(1)

2,2|=2× 2×2, the density ρ
(1)
2,2= 7

8 , and the entropy H
(
G(1)

2,2

)=
−( 7

8 log 7
8+ 1

8 log 1
8

)
.

Putting everything together, we obtain the segment encoding cost as the follow-
ing:

Definition 4 (Segment encoding cost)

C (s) := log�(ts+1 − ts)+ C (s)
p + C (s)

g , (3.5)
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where ts+1−ts is the segment length, C (s)
p is the partition encoding cost, C (s)

g is the
graph encoding cost.

3.4.3 Graph Stream Encoding

Given a graph stream G, we partition it into a number of graph segments G(s)(s ≥ 1)
and compress each segment separately such that the total encoding cost is small.

Definition 5 (Total cost) The total encoding cost is

C :=
∑

s

C (s), (3.6)

where C (s) is the encoding cost for sth graph stream segment.

For example in Fig. 3.2, the encoding cost C up to timestamp 3 is the sum of the
costs of two graph stream segments G(1) and G(2).

Having defined the objective precisely in (3.3) and (3.4), the next step is to search
for the optimal partitions and time segmentation. However, finding the optimal solu-
tion for this problem is simply NP-hard [9]. Next, we present a heuristic-based
search method, GraphScope in Section 3.5 which guarantees to lead to a local
optima. From our experiments it often lead to a global optimal solution.

3.5 GraphScope

In this section we describe our method, GraphScope by solving the two problems
proposed in Section 3.3.2.

The goal is to find the appropriate number and position of change points, and the
number and membership of source and destination partitions so that the cost of (3.6)
is minimized. Exhaustive enumeration is prohibitive, and thus we resort to heuristics
that we describe next. Note that we drop the subscript s on ks and �s whenever it is
clear in context.

Specifically, we have three steps: (a) how to find good communities (source and
destination partitions), for a given set of (similar) graph snapshots, when we have
decided the number of partitions k and l, (b) how to find good values for k and l,
and (c) when to declare a time-tick as a change point and start a new graph segment.
We describe each next.

3.5.1 Partition Identification

Here we explain how to find source and destination partitions for a given graph
segment G(s). In order to do that, we need to answer the following two questions:
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– How to find the best partitions given the number of source and destination parti-
tions?

– How to search for the right number of source and destination partitions?

Next, we present the solution for each step.

3.5.1.1 Finding the Best Partitions

Given the number of the best source and destination partitions k and �, we want to
regroup sources and destinations into the better partitions. Typically this regrouping
procedure is alternating between source and destination nodes. Namely, we update
the source partitions with respect to the current destination partitions, and vice versa.
More specifically, we alternate the following two steps until it converges:

– Update source partitions: for each source (a row of the graph matrix), consider
assigning it to the source partition that incurs smallest encoding cost.

– Update destination partitions: Once done with a pass over each row, similarly,
for each destination (column), consider assigning it to the destination partition
that yields the best compression.

The cost of assigning a row to a row group is discussed later (see (3.8)). The
pseudocode is listed in Algorithm 1. The complexity of each iteration is either
O(kn) for column regrouping or O(lm) for row regrouping. Note that this com-
plexity is independent to the number of graphs in a graph segment. That means as
the graph segment grows in time, the computation cost for regrouping remains more
or less constant.

Algorithm 1 REGROUP (Graph Segment G(s); partition size k,�; initial
partitions I (s), J (s))

Compute density ρ
(s)
p,q for all p, q based on I (s), J (s). repeat1

forall source s in G(s) do2
// assign s to the most similar partition
c is split in � parts3
compute source density pi for each part4
assign s to source partition with the minimal encoding cost (Equation 3.8).5

Update destination partitions similarly6

until no change ;7

Figure 3.3 illustrates the algorithm in action. The graph consists of two square
sub-matrices with the size 150 and 50 plus 1% noise. For k = � = 2, the algorithm
identified the correct partitions in one pass. Notice that the algorithm progressively
finds better partitions. The initialization of Algorithm 1 is a crucial step which is
discussed separately in Section 3.5.3.
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Fig. 3.3 Alternating partition on source and destination nodes on a graph with two communities
with size 150 and 50 plus 1% noise. For k = � = 2, the correct partitions are identified after one
pass

3.5.1.2 Determining the Number of Partitions

Given two different k and �, we can easily run Algorithm 1 and choose the ones
with a smaller encoding cost. However, the search space for the right k and � is still
too large to perform exhaustive tests. We experimented with a number of different
heuristics for quickly adjusting k and � and obtained good results with Algorithm 2.
The central idea is to do local search around some a priori partition assignments and
adjust the number of partitions k and � as well as partition assignments based on the
encoding cost. Figure 3.4 illustrates the search process in action. Starting the search
with k = � = 1, it successfully finds the correct number of partitions for this graph
with three sub-matrices with size 100, 80, and 20.
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Algorithm 2 SEARCHKL (Graph Segment G(s); initial partition size k,�; initial
partitions I (s), J (s))

repeat1
// try to merge source partitions
repeat2

Find the source partition pair (x, y) s.t. merging x and y gives smallest encoding3

cost for G(s).
if total encoding decrease then merge x ,y4

until no more merge ;5
// try to split source partition
repeat6

Find source partition x with largest average entropy per node.7
foreach source s in x do8

if average entropy reduces without s then9
assign s to the new partition10

ReGroup(G(s), updated partitions)11

until no decrease in encoding cost ;12
Search destination partitions similarly13

until no changes ;14

3.5.1.3 Cost Computation for Partition Assignments

Here we present the details of how to compute the encoding cost of assigning a node
to a particular partition. Our discussion focuses on assigning of a source node to a
source partition, while the assignment for a destination node is simply symmetric.

Recall a graph segment G(s) consists of (ts+1 − ts) graphs, G(ts ), . . . , G(ts+1−1).
For example in Fig. 3.2, G(1) consists of two graphs, G(1) and G(2). Likewise, every
source node in a graph segment G(s) consists (ts+1 − ts) sets of edges to these
(ts+1 − ts) graphs. Therefore, the total number of possible edges out of one source
node in G(s) is (ts+1 − ts)n.

Furthermore, the destination partitions J (s)
i split the destination nodes into � dis-

joint sets with size n(s)
i (1 ≤ i ≤ �,

∑
i n(s)

i = n). For example, G(1) of Fig. 3.2 has

two destination partitions (� = 2), where the first destination partition J (1)
1 = {1}

and the second destination partition J (1)
2 = {2, 3}.

Similarly, all the edges from a single source node in graph segment G(s) are also
split into these � sets. In G(1) of Fig. 3.2, the edges from the 4th source node are
split into two sets, where the first set J (1)

1 consists of 0 edges and the second set J (1)
2

consists of 3 edges.2

More formally, the edge pattern out of a source node is generated from � binomial
distributions pi (1 ≤ i ≤ �) with respect to � destination partitions. Note that pi (1) is
just the density of the edges from that source node to the destination partition J (s)

i ,

2 One edge from 4 to 3 in G(1), two edges from 4 to 2 and 3 in G(2) in Fig. 3.2.
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Fig. 3.4 Search for best k and � for a graph with three communities with size 100, 80, 20 plus 1%
noise. The algorithm progressively improves the partition quality (reduces the compression cost)
by changing the k and �

and pi (0) = 1− pi (1). In G(1) of Fig. 3.2, the 4th source node has p1(1) = 0 since
there are 0 edges from 4 to J (1)

1 = {1}, and p1(1) = 3
4 since 3 out of 4 possible

edges from 4 to J (2)
1 = {2, 3}.

Using this “true” distribution, the encoding cost of the source node in the graph
segment G(s) is

C(p) = (ts+1 − ts)n
�∑

i=1

H(pi ), (3.7)
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where (ts+1 − ts) is the number of graphs in the graph segment, n is the
number of possible edges out of a source node for each graph,3 H(pi ) =∑

x={0,1} pi (x) log pi (x) is the entropy for the given source node.

In G(1) of Fig. 3.2, the number of graphs is ts+1− ts = 3−1= 2; the number of
possible edges out of the 4th source node n = 3; therefore, the 4th source node costs
2×3×(0 + 3

4 log 3
4+ 1

4 log 1
4

) = 2.25. Unfortunately, this is not practical to do so
for every source node, because the model complexity is too high. More specifically,
we have to store additional m� integers in order to decode all source nodes.

The practical option is to group them into a handful number of source partitions
and to encode/decode one partition at a time instead of one node at a time. Similar
to a source node, the edge pattern out of a source partition is also generated from �

binomial distributions qi (1 ≤ i ≤ �). Now we encode the i th source node based on
the distribution qi for a partition instead of the “true” distribution pi for the node.
The encoding cost is

C(p,q) = (ts+1 − ts)m
�∑

i=1

H(pi ,qi ), (3.8)

where H(pi ,qi ) = ∑
x={0,1} pi (x) log qi (x) is the cross-entropy. Intuitively, the

cross-entropy is the average encoding cost when using the distribution qi instead of
the “true” distribution pi . In G(1) of Fig. 3.2, the cost of assigning the 4th node to
second source partition I (1)2 is 2×3×(0+3

4 log 7
8+1

4 log 1
8

) = 2.48 which is slightly
higher than using the true distribution that we just computed (2.25). However, the
model complexity is much lower, i.e., k� integers are needed instead of m�.

3.5.2 Time Segmentation

So far, we have discussed how to partition the source and destination nodes given a
graph segment G(s). Now we present the algorithm how to construct the graph seg-
ments incrementally when new graph snapshots arrive every time-tick. Intuitively,
we want to group “similar” graphs from consecutive timestamps into one graph
segment and encode them altogether. For example, in Fig. 3.2, graphs G(1), G(2)

are similar (only one edge difference), and therefore we group them into one graph
segment, G(1). On the other hand, G(3) is quite different from the previous graphs,
and hence we start a new segment G(2) whose first member is G(3).

The driving force here is still the compression cost. More specifically, the algo-
rithm will combine the incoming graph with the current graph segment if there is a
compression benefit, otherwise we start a new segment with that graph. The meta-
algorithm is listed in Algorithm 3. Figure 3.5 illustration the algorithm in action. A
graph stream consists of three graphs, where G(1) and G(2) have two groups of size

3 (ts+1 − ts)n is the total number of possible edges of a source node in the graph segment



90 J. Sun et al.

Algorithm 3 GRAPHSCOPE (Graph Segment G(s); Encoding cost co; New
Graph G(t)

output: updated graph segment, new partition assignment I (s), J (s)

Compute new encoding cn of G(s) ⋃{G(t)}1

Compute encoding cost c for just G(t)2
// check if there is any compression benefit
if cn − co < c then3

// add G(t) in G(s)

G(s) ← G(s) ⋃{G(t)}4

searchKL for updated G(s)5

else6

// start a new segment from G(t)

G(s+1) := {G(t)}7

searchKL for new G(s+1)8
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Fig. 3.5 A graph stream with three graphs: The same communities appear in graph G(1) and G(2);
therefore, they are grouped into the same graph segment. However, G(3) has different community
structure, therefore, a new segment starts from G(3)

150 and 50, G(3) three groups of size 100, 80 and 20, and every graph contains 1%
noise. The algorithm decides to group G(1), G(2) into the first graph segment, and
put G(3) into another. During this process, the correct partitions are also identified
as show in the bottom of Fig. 3.5. Furthermore, within each segment, the correct
partition assignments are identified.
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3.5.3 Initialization

Once we decide to start a new segment, how should we initialize the parame-
ters of our algorithms? There are several ways to do the initialization. Trading-
off convergence speed versus compression quality, we propose and study two such
heuristics:

Fresh-Start: One option is to start from a small k and �, typically, k = 1 and � = 1,
and progressively increase them as well as regroup sources and destinations into
proper partitions. From our experiments, this scheme is very effective in leading to
a good result. In terms of computational cost, it is relatively fast since we start with
small k and �.

Another option is to start with large k and � and to try to merge them. However,
there are two big disadvantages for doing that: (1) computationally expensive since
the number of partitions are large to start with; (2) local minimum, starting with
large number of partitions often lead to complex search space and local minimum.
For these reasons, we recommend to search from small k and �.

Resume: For time-evolving graphs, consecutive graphs often have a strong simi-
larity. We can leverage this similarity into the search process by starting from old
partitions. More specifically, we initialize the ks+1 and �s+1 with the ks and �s .
Additionally, we assign I (s+1) and J (s+1) as I (s) and J (s). The Resume scheme
often lead to much faster convergence when the consecutive graphs are similar as
shown in Section 3.6.

3.6 Experiment Evaluation

In this section, we will evaluate both mining and compression aspects of Graph-
Scope using several real, large graph datasets. We first describe the data set speci-
fication in Section 3.6.1. Then we present our experiments, which are designed to
answer the following questions, for both our variations fresh-start and resume :

– Mining Quality: How good is our method in terms of finding meaningful change
points and communities (Section 3.6.2).

– Compression: What is the compression ratio it can achieve (Section 3.6.3).
– Speed: How fast is it, and how does it scaleup (Section 3.6.4).

Finally, we present some additional mining observations that our method leads
to. Notice that we do not compare with other methods for two reasons: First, to
the best of our knowledge, there are no clustering methods with the MDL princi-
ple for time-evolving graphs, which make it unfair to compare with other meth-
ods on compression cost. Second, most published methods are not parameter-free,
and it is unclear how we should choose their parameters (number of partitions,
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threshold for graph similarity and so on). This is actually one of the strong points of
GraphScope, because it is fully automatic, and, as we show, still able to find mean-
ingful communities and change points.

3.6.1 Data Sets

In this section, we describe all the data sets in our experiments (Table 3.2).

Table 3.2 Data set summary

name m-by-n avg.|E | time T

NETWORK 29K-by-29K 12K 1, 222
ENRON 34k-by-34k 15K 165
CELLPHONE 97-by-3764 430 46
DEVICE 97-by-97 689 46
TRANSACTION 28-by-28 132 51

3.6.1.1 The NETWORK Flow Data Set

The traffic trace consists of TCP flow records collected at the backbone router of a
class-B university network. Each record in the trace corresponds to a directional
TCP flow between two hosts with timestamps indicating when the flow started
and finished. With this traffic trace, we use a window size of 1 h to construct the
source–destination graph stream. Each graph is represented by a sparse adjacency
matrix with the rows and the columns corresponding to source and destination IP
addresses, respectively. The edge in a graph G(t) means that there exists TCP flows
(packets) sent from the i th source to the j th destination during the t th hour. The
graphs involve m = n = 21,837 unique campus hosts (the number of source and
destination nodes) with an average over 12 K distinct connections (the number of
edges). The total number of timestamps T is 1,222. Figure 3.6a shows an exam-
ple of superimposing4 all source–destination graphs in one time segment of 18 h.
Every row/column corresponds to a source/destination; the dot there indicates there
is at least a packet from the source to the destination during that time segment. The
graphs are correlated, with most of the traffic to or from a small set of server-like
hosts.

GraphScope automatically exploits the sparsity and correlation by organizing the
sources and destinations into homogeneous groups as shown in Fig. 3.6b.

3.6.1.2 The ENRON Email Data Set

This consists of the email communications in Enron Inc. from January 1999 to July
2002 (http://www.cs.cmu.edu/enron/). We construct sender-to-recipient graphs on a

4 Two graphs are superimposed together by taking the union of their edges.



3 Community Evolution and Change Point Detection in Time-Evolving Graphs 93

(a) (b)

Fig. 3.6 NETWORK before and after GraphScope for the graph segment between January 7 1:00,
2005 and January 7 19:00, 2005. GraphScope successfully rearrange the sources and destinations
such that the sub-matrices are much more homogeneous. (a) before; (b) after

weekly basis. The graphs have m = n = 34,275 senders/recipients (the number of
nodes) with an average 1,479 distinct sender–receiver pairs (the number of edges)
every week.

Like the NETWORK data set, the graphs in ENRON are also correlated, where
GraphScope can significantly compress the data by reorganizing the graph into
homogeneous partitions (see the visual comparison in Fig. 3.7).

(a) (b)

Fig. 3.7 ENRON before and after GraphScope for the graph segment of week 35, 2001, to week 38,
2001. GraphScope can achieve significant compression by partitioning senders and recipients into
homogeneous groups. (a) before; (b) after
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3.6.1.3 The Cellphone Communication Data Set

The CELLPHONE data set records the cellphone activity for m = n = 97 users from
two different labs in MIT (http://reality.media.mit.edu/download.php). Each graph
snapshot corresponds to a week, from January 2004 to May 2005. We thus have T
= 46 graphs, one for each week, excluding weeks with no activity.

We plot the superimposed graphs of 38–42 weeks in 2004 at Fig. 3.8a, which
looks much more random than NETWORK and ENRON. However, GraphScope is still
able to extract the hidden structure from the graph as shown in Fig. 3.8b, which
looks much more homogeneous (more details in Section 3.6.2).
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Fig. 3.8 CELLPHONE before and after GraphScope, for the period of week 38–42 in 2004. (a) before;
(b) after

3.6.1.4 The Bluetooth Device Communication Data Set

DEVICE data set is constructed on the same 97 users whose cellphones perform
periodic Bluetooth scan for nearby phones and computers. The goal is to under-
stand people’s behavior from their proximity information to others. Figure 3.9a
plots the superimposed user-to-user graphs for one time segment where every dot
indicates that the two corresponding users are physically near to each other. Note
that first row represents all the other devices that do not belong to the 97 users
(mainly laptop computers, PDAs, and other people’s cellphone). Figure 3.9b shows
the resulting users clusters of that time segment, where cluster structure is revealed
(see Section 3.6.2 for details).
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Fig. 3.9 DEVICE before and after GraphScope for the time segment between week 38, 2004 and
week 42, 2004. Interesting communities are identified. (a) before; (b) after

3.6.1.5 The Financial Transaction Data Set

The TRANSACTION data set has m = n = 28 accounts of a company, over 2,200 days.
An edge indicates that the source account had funds transferred to the destination
account. Each graph snapshot covers transaction activities over a window of 40 days,
resulting in T = 51 time-ticks for our data set.

Figure 3.10a shows the transaction graph for one timestamp. Every black square
at the (i, j) entry in Fig. 3.10a indicates there is at least one transaction debiting the
i th account and crediting the j th account. After applying GraphScope on that times-
tamp (see Fig. 3.10b), the accounts are organized into very homogeneous groups
with some exceptions (more details in Section 3.6.2).

3.6.2 Mining Case Studies

Now we qualitatively present the mining observation on all the data sets. More
specifically, we illustrate that (1) source and destination groups correspond to
semantically meaningful clusters; (2) the groups evolve over time; (3) time segments
indicate interesting change points

3.6.2.1 NETWORK: Interpretable Groups

Despite the bursty nature of network traffic, GraphScope can successfully cluster
the source and destination hosts into meaningful groups. Figure 3.11a,b show the
active source and destination nodes organized by groups for two different time
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Fig. 3.10 TRANSACTION before and after GraphScope for a time segment of 5 months. GraphScope
is able to group accounts into partitions based on their types. (a) before; (b) after

(a) (b)

Fig. 3.11 NETWORK zoom-in (log–log plot): (a) Source nodes are grouped into active hosts and
security scanning program; destination nodes are grouped into active hosts, clusters, web servers,
and mail servers. (b) On a different time segment, a group of unusual scanners appears, in addition
to the earlier groups

segments. Note that Fig. 3.11 is plotted in log–log scale in order to visualize those
small partitions. For example, source nodes are grouped into (1) active hosts which
talk to a small number of hosts, (2) P2P hosts that scan a number of hosts, and
(3) security scanning hosts5 which scans many hosts. Similarly, destination hosts
are grouped into (1) active hosts, (2) cluster servers at which many students login

5 The campus network is constantly running some port-scanning program to identify potential
vulnerability of the in-network hosts.
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remotely to work on different tasks, (3) Web servers which hosts the Web sites of
different schools, and (4) mail servers that have the most incoming connections. The
main difference between Fig. 3.11a and b is that a source group of unusual scanners
emerges in (b), where GraphScope can automatically identify the change and decide
to split into two time segments.

3.6.2.2 CELLPHONE: Evolving Groups

As in NETWORK, we also observe meaningful groups in CELLPHONE. Figure 3.12 a
illustrate the calling patterns in fall semester 2004, where two strong user parti-
tions (G1 and G2) exist, the dense small partition G3 is the service call in campus.
Figure 3.12b illustrate the calling patterns changed from fall semester to winter
break.
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Fig. 3.12 CELLPHONE: (a) Two calling groups appear during the fall semester; (b) Call groups
changed in the winter break. The change point corresponds to the winter break

3.6.2.3 DEVICE: Evolving Groups

Similarly, the group evolving behavior is also observed in the DEVICE data set. In
particular, two dense partitions appear in Fig. 3.13a: after inspecting the user ids and
their attributes, we found that the users in group U1 are all from the same school
with similar schedule, probably taking the same class; the users in U2 all work in
the same lab. In a later time segment (see Fig. 3.13b), the partition U1 disappeared,
while the partition U2 is unchanged.

3.6.2.4 TRANSACTION

As shown in Fig. 3.10b, GraphScope successfully organizes the 28 accounts
into 3 different partitions; after closer inspection, these groups correspond to the
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Fig. 3.13 DEVICE: (a) Two groups are prominent. Users in U1 are all from the same school with
similar schedule possibly taking the same class; Users in U2 are all working in the same lab.
(b) U1 disappears in the next time segment, while U2 remains unchanged

different functional groups of the accounts (like “marketing”, “sales”).6 In
Fig. 3.10b, the interaction between first source partition (first row) and second
destination partition (second column) correspond to mainly the transactions from
assets accounts to liability and revenue accounts, which obeys the common business
practice.

3.6.2.5 ENRON: Change Point Detection

The source and destination partitions usually correspond to meaningful clusters for
the given time segment. Moreover, the time segments themselves usually encode
important information about changes. Figure 3.1 plots the encoding cost difference
between incorporating the new graph into the current time segment vs. starting
a new segment. The vertical lines on Fig. 3.1 are the top 10 splits with largest
cost savings when starting a new segment, which actually correspond to the key
events related to Enron Inc. Moreover, the intensity in terms of magnitude and
frequency dramatically increases around January 2002 which coincides with sev-
eral key incidents such as the investigation on document shredding and the CEO
resignation.

6 Due anonymity requirements, the account types are obfuscated.
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3.6.3 Compression Evaluation

Methods for Comparison: For comparison of the space savings, we consider the
following methods:

– Original: the space for the original graphs, uncompressed graphs, stored as edges
– Compression: global compression estimate for the original graphs, i.e.,

mnH(G(t))

– Resume: the encoding cost using GraphScope with the resume heuristics
– Fresh-Start: the encoding cost using resume GraphScope with the fresh restart

heuristics

Performance Metrics: The performance metrics is Relative Encoding cost: the ratio
of the encoding cost of a graph vs. the space for storing that graph in sparse matrix.

Compression Benefit: We compare two versions of GraphScope, “fresh-start” and
“resume,” against the global compression estimate and the space requirement for the
original graphs stored as sparse matrices. Figure 3.14 shows that both fresh-start and
resume GraphScope achieve great compression gain (less than 4% of the original
space), which is even better than the global compression on the graphs (the 3rd bar
for each data set). Our two variations require about the same space.
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Fig. 3.14 Relative encoding cost: Both resume and fresh-start methods give over an order of mag-
nitude space saving compared to the raw data and are much better than global compression on the
raw data



100 J. Sun et al.

3.6.4 Speed and Scalability

For the CPU time comparison, we include fresh-start and resume. The performance
metrics is relative CPU cost which is the ratio between CPU cost of the resume
method vs. that of the fresh-start method.

As shown in Fig. 3.15a for NETWORK (similar result are achieved for the other data
sets, hence omitted), the CPU cost per timestamp/graph is stable over time for both
fresh-start and resume GraphScope, which suggests that both proposed methods are
scalable for streaming environments.
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Fig. 3.15 CPU cost: (a) The CPU costs for both resume and fresh start GraphScope are stable over
time; (b) resume GraphScope is much faster than fresh start GraphScope on the same data sets (the
error bars give 25 and 75% quantiles)

Furthermore, resume GraphScope is much faster than the fresh-start one as plot-
ted in Fig. 3.15b, especially for large graphs such as in NETWORK. There, resume
GraphScope only uses 10% of CPU time compared to fresh-start one.

3.6.5 Additional Observations

3.6.5.1 Partition Changing Rate

We define a pair of nodes (i, j) as inconsistent if i and j belong to the same par-
tition in G(t) but not in G(t+1). The changing rate between G(t) and G(t+1) is the
percentage of inconsistent pairs between two graphs.

Figure 3.16 shows the average changing rate of source and destination partitions
for both fresh-start and resume GraphScope, respectively. Note that the average
changing rate is small between two consecutive timestamps, which confirms the
heuristics used for resume GraphScope, i.e., using the previous partition assignment
as initialization for the current graph.
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Fig. 3.16 Group changing rate: Overall, the partitions change relatively small for all 5 data sets
which explains the benefit for using resume GraphScope

3.6.5.2 Time Evolving Aspect

Encoding cost of time segments can illustrate different dynamics in the real graph
streams. For example, Fig. 3.17a,d and e show more or less constant trends with
stochastic variation, while Fig. 3.17b, and c show higher intensity in the middle of
time intervals. In particular, The high intensity in Fig. 3.17b is due to the highly
volatile communication in ENRON during that period (the end of 2001 and early
2002).

3.7 Discussion and Conclusion

We propose GraphScope, a system to mine and compress streams of graphs. Our
method has all the desired properties:

– It is rigorous and automatic, with no need for user-defined parameters, like num-
bers of communities, thresholds of similarities. Instead, it uses lossless compres-
sion and the Minimum Description Language (MDL) principle to decide how to
form communities and when to modify them.

– It achieves excellent compression ratios.
– It is fast and scalable, carefully designed to work for a streaming setting.



102 J. Sun et al.

0 200 400 600 800 1000
0

0.02

0.04

0.06

0.08

0.1

0.12

timestamp (hour)

ra
tio

 to
 o

rig
in

al
 d

at
a

resume
fresh−start
Compression

0 50 100 150
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

timestamp (week)

ra
tio

 to
 o

rig
in

al
 d

at
a

0 10 20 30 40
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

timestamp (week)

ra
tio

 to
 o

rig
in

al
 d

at
a

0 10 20 30 40
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

timestamp (week)

ra
tio

 to
 o

rig
in

al
 d

at
a

0 10 20 30 40 50
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

timestamp (day)

ra
tio

 to
 o

rig
in

al
 d

at
a

resume
fresh−start
Compression

resume
fresh−start
Compression

resume
fresh−start
Compression

resume
fresh−start
Compression

(a) NETWORK (b) ENRON (c) CELLPHONE

(d) PEOPLE (e) TRANSACTION

Fig. 3.17 Relative encoding cost over time. (a) NETWORK; (b) ENRON (c) CELLPHONE
(d) PEOPLE (e) TRANSACTION

– It is effective, discovering meaningful communities and meaningful transition
points, as shown on our multiple, real data sets, like the major timestamps in the
ENRON data set.

The complexity of GraphScope is linear to the number of nodes in the graphs,
and independent to the number of timestamps in a graph segment, which means the
running will not increase as the graph segment grows. GraphScope treats source and
destination node independently in order to provide a framework to deal with more
general graphs. However, if the data have the same source and destination nodes, a
simple constraint can be enforced to put the corresponding source/destination node
to the same cluster.

We also present experiments on several real data sets, spanning 500 GB (200 MB
after processing). The data sets were from diverse applications (university network
traffic, email from the Enron company, Cellphone call logs, and Bluetooth connec-
tions from MIT). Because of its generality and its careful theoretical underpinnings,
GraphScope is able to find meaningful groups and patterns in all the above settings,
without any specific fine-tuning on our side.

Future research directions include extensions to create hierarchical groupings,
both of the communities and of the time segments. GraphScope currently does the
time segmentation in a simple online fashion, which does not guarantee the opti-
mality. However, if the streaming constraint is relaxed, a dynamic programming
algorithm can be developed to generate the optimal segmentation.
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Chapter 4
A Survey of Link Mining Tasks for Analyzing
Noisy and Incomplete Networks

Galileo Mark Namata, Hossam Sharara, and Lise Getoor

Abstract Many data sets of interest today are best described as networks or graphs
of interlinked entities. Examples include Web and text collections, social networks
and social media sites, information, transaction and communication networks, and
all manner of scientific networks, including biological networks. Unfortunately,
often the data collection and extraction process for gathering these network data
sets is imprecise, noisy, and/or incomplete. In this chapter, we review a collection
of link mining algorithms that are well suited to analyzing and making inferences
about networks, especially in the case where the data is noisy or missing.

4.1 Introduction

A key emerging challenge for data mining is tackling the problem of mining richly
structured, heterogeneous data sets. These kinds of data sets are best described as
networks or graphs, where the nodes can be of different types, and the edges (or
hyperedges) can represent different kinds of links. As evidenced by this volume,
there has been a growing interest in methods which can mine and make inferences
about such data (see also an earlier survey article and special issue issue of KDD
Explorations [41]).

In the context of network data, statistical inference can be used in a variety of
ways. Two of the most common are for inferring missing information and identify-
ing (and correcting) incorrect network data. Furthermore, one way of understanding
the different inference tasks in network data is according to whether they predict (or
correct) information associated with nodes, edges, or larger subgraphs of the net-
work. The inference task may be about inferring missing values (such as the label or
attribute values for a node or edge), reasoning about the existence of nodes and edges
(such as predicting whether two nodes should be merged because they refer to the
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same underlying entity, predicting whether a relationship exists), or reasoning about
the existence of groupings of nodes and edges (group or community detection).

Examples of work applying statistical inference to infer missing or incorrect net-
work data can be found in various domains. For example, in the social sciences,
there is interest in studying human interaction from large online social networks
[69, 113]. In these large online networks, individuals may own multiple accounts
which need to be resolved to get an accurate count of the individuals in the network.
Furthermore, the relationships (e.g., unspecified friends), attributes (e.g., gender),
and membership in social groups (e.g., political affiliation) of the individuals of
interest may not be given and need to be inferred. Similarly, in biology, there is
interest in gaining new insight into biological processes by studying protein–protein
interaction (PPI) networks [50, 107, 118]. The high-throughput methods typically
used to create and annotate these networks are notoriously noisy and incomplete.
Even the proteins of the most studied organisms, yeast, are not completely anno-
tated with their functions and complex memberships and it is estimated that up to
52% the interactions for the current yeast PPI are spurious [50]. Analysis of these
PPI networks requires applying statistical inference to infer the missing and correct
function, interaction, and complex membership of proteins. As a final example, in
computer networks, there is work in creating a map of the Internet to understand
its vulnerabilities and limitations [105]. While some ISPs and research networks
publish high-level topologies, in general the information about the topology and
attributes of a large part of the Internet are privately owned and rarely published.
Consequently, research in mapping the Internet mainly relies on inexact techniques
which can only give a partial view of the global picture. Inference needs to be
applied to the noisy and incomplete map to resolve IP addresses to routers and
autonomous systems (AS), predict the existence and type of links between AS, and
discover well-connected (and poorly connected) parts of the Internet.

All of the above examples require data mining and machine learning algorithms
which can help to clean and improve the quality of the networks, before they are
analyzed. In this chapter, we survey a subset of the inference tasks that are par-
ticularly useful in dealing with noisy and incomplete network data. We begin with
some notation and then describe methods for collective classification (Section 4.3),
link prediction (Section 4.4), entity resolution (Section 4.5), and group detection
(Section 4.6).

Fig. 4.1 Example of a collective classification problem. Nodes with a question mark are nodes
whose labels are unknown. Collective classification uses the attributes and labels of neighboring
nodes. Ann Smith, for example, is likely to have the same research area as her co-authors, Robert
Cole and Mark Taylor
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4.2 Terminology and Notation

We begin by introducing some general notation and terminology used through this
chapter. First, let G(V, E) denote a graph G with nodes v ∈ V and edges e ∈ E .
|V | and |E | are used to denote the size of the node and edge sets in the graph,
respectively. We describe an edge and the nodes on that edge as incident to each
other. Also, we refer to nodes which share an edge as adjacent to each other. For this
document, whenever we use the term graph, we normally refer to either a directed
graph (where each edge, e ∈ E , consists of an ordered pair of vertices) or undirected
graph (where each edge, e ∈ E , consists of an unordered pair of vertices); in both
cases, the edges are incident to exactly two nodes (i.e., e = (vi , v j )). In some cases,
we refer to a bipartite graph, where the nodes can be divided into two disjoint sets,
V1, V2 ⊂ V , so that every edge has one node in each of the two sets (i.e., vi ∈ Vi ,
v j ∈ Vj ). Although we mainly use the terms graph, nodes, and edges in this chapter,
we note that graphs are often used to represent networks, and the terms edges, link,
and relationships are often used interchangeably.

Finally, throughout this chapter, we use a simple author collaboration network to
illustrate the different inference tasks (shown in Figs. 4.1, 4.2, 4.3, and 4.4). In the
collaboration network figures, the nodes represent authors and the edges between the
authors indicate that the authors have co-authored at least one paper together. The
shading of the nodes indicates the research area of the authors; to make it simple,
here we assume there are just two areas, shown either in white (i.e., theory) or gray
(i.e., systems), if observed, and as a “?” if it is unobserved. The bounded areas (as
shown in Fig. 4.4) indicate group structure.

4.3 Collective Classification

A traditional problem in machine learning is to classify objects: given a corpus of
documents classify each according to its topic label; given a collection of email
communications determine which are not spam; given individuals in a collaboration
network determine a characteristic of that individual; given a sentence, determine
the part of speech for each word, etc. In networks, the problem of inferring labels
has traditionally been applied to the nodes of the graph. Initial work in classification
makes an independent and identically distributed (IID) assumption where the class
label of each object is made in isolation. In graphs, however, studies have shown
that predicting the labels of nodes can benefit by using autocorrelations between
the node label and the attributes of related nodes. For example, in the collaboration
network in Fig. 4.1, nodes with a question mark represent authors whose research
areas are unknown. While we can use attributes of the author (e.g., titles of their
papers) to predict the label, we can also use the research areas of the other authors
they share a co-authorship edge with. The author, Ann Smith, for one is likely to
work in theory given she has only co-authored with individuals in the theory field.

In the past decade there have been a number of approaches proposed which
attempt to classify nodes in a joint or collective manner instead of treating each
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in isolation. In the following sections, we formally define the problem of collective
classification and introduce several types of approaches that have been proposed to
address it.

4.3.1 Definition

Collective classification is an optimization problem where we are given the set of
nodes, V = {v1, v2, ..., vn}, over a graph G(V, E), with a set of pre-defined labels,
L = {l1, l2, ..., lq}. Each node v ∈ V can take exactly one value from the set of
labels in L , denoted as v.L . Moreover, V is divided into two sets of nodes: Vk , the
nodes for which we know the correct labels and Vu , the nodes whose labels need to
be determined. We are also given a neighborhood function, N , over the nodes where
Ni ⊆ V \ vi , which captures the relationships of a node, vi . The task of collective
classification is to infer the values of the labels v.L for the nodes v ∈ Vu .

4.3.2 Approaches

In this section, we describe the three main categories of collective classification
algorithms which vary based on their mathematical underpinnings as well as how
they exploit the relationships between the nodes.

4.3.2.1 Relational Classifiers

Traditional classification concentrates on classifying a given node using only the
observed attributes of that node. Relational classifiers [104] go beyond that by also
considering the observed attributes of related nodes. For instance, when classify-
ing authors, not only would we use the words present in their papers, we would
also look at the authors who they have co-authored with and their word usage and
research area (if known) to arrive at the correct class label. One relational classifier,
popular due to its simplicity, is the relational classifier proposed by Macskassy and
Provost [73]. Their classifier makes two assumptions: some node labels are known
and related nodes are likely to have the same labels. The classifier assigns a label to
a node, vi , by looking at the labels of related nodes whose label values are known,
Ni∩Vu , and taking the weighted proportion of neighbors for each possible label. The
label with largest weighted proportion among neighbors is the predicted label of vi .
Although relational classifiers have been shown to perform well in some domains,
overall the results have been mixed. For instance, although there have been reports
of classification accuracy gains using such techniques over traditional classification,
in certain cases, these techniques can harm classification accuracy [22].

4.3.2.2 Approaches Based on Local Conditional Classifiers

A source of information in collective classification is to use not only the attributes
and the known labels of related nodes, but also the predicted labels of other nodes
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whose labels are unobserved. For instance, going back to the classification example
in Fig. 4.1, authors which share a co-authorship edge to other authors predicted to
have a certain research area, are likely to work in the same area. In this section, we
look at this source of information and exploit it using local conditional classifiers.
Chakrabarti et al. [22] illustrated the use of this approach and reported impressive
classification accuracy gains for labeling Web pages. Neville and Jensen [81] further
developed the approach as an iterative classification algorithm (ICA) and studied the
conditions under which it improved classification performance [57].

We provide pseudocode for a simple variant of ICA in Algorithm 1. The basic
premise behind ICA is simple. Consider a node vi ∈ V whose label needs to be
determined. Suppose we know the attributes and labels of related nodes, Ni , ICA
assumes that we are given a local classifier f that takes the attributes and labels
of the nodes in Ni and returns the most likely value of vi .L . This makes the local
classifier f an extremely flexible function and we can use popular classifiers like
decision trees [95] and SVM [58] in its place. However, since Ni may contain nodes
whose labels we also need to predict, we need to repeat the process iteratively where
in each iteration, we label each vi .L using the current best estimates of Ni and
classifier f . We continue to do so until the assignments to the labels stabilize or
some stopping criterion is met.

Algorithm 1 Iterative Classification Algorithm
Iterative Classification Algorithm (ICA)

for each node vi ∈ V do {bootstrapping}
{c}ompute label using only observed nodes in Ni
compute ai using only Vk ∩ Ni
vi .L ← f (ai )

end for
repeat {iterative classification}

generate ordering O over nodes in Vu
for each node vi ∈ O do

{c}ompute new estimate of vi .L
compute ai using current assignments to Ni
vi .L ← f (ai )

end for
until all class labels have stabilized or a threshold number of iterations have elapsed

A number of aspects of the iterative approach have been studied. An important
aspect is how to use the values provided by NI in f [70]. Most classifiers are defined
as functions with a fixed-length vector of attribute values as arguments while the
number of nodes in Ni may vary for different vi . A common approach to address
this is to use an aggregation operator such as count, mode, or prop, which measures
the proportion of neighbors with a given label. In Algorithm 1, we use ai to denote
the vector encoding the values in Ni obtained after aggregation. Another aspect
to consider is the choice of the local classifier f . Classifiers used include naive
Bayes [22, 81], logistic regression [70], decision trees [57], and weighted-vote [73].
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There is some evidence to indicate that discriminately trained local classifiers such
as logistic regression tend to produce higher accuracies than others [101].

Previous work has also looked at different ways of ordering and updating the
labels in ICA. While there is some evidence which shows ICA is fairly robust to
simple ordering strategies such as random ordering, visiting nodes in ascending
order of diversity of its neighborhood class labels or labeling nodes in descending
order of label confidence [40], strategies which vary what labels are updated at each
iteration have been shown to improve accuracies [76].

Extensions have also been proposed for the ICA algorithm. Researchers in col-
lective classification [73, 76, 82] have extended the simple algorithm described in
Algorithm 1 and developed a version of Gibbs sampling that is easy to implement
and faster than traditional Gibbs sampling approaches. The basic idea behind this
algorithm is to assume, just like in the case of ICA, that we have access to a local
classifier f that can sample for the best label estimate for vi .L given all the values
for the nodes in Ni . We keep doing this repeatedly for a fixed number of iterations
(a period known as burn-in). After that, not only do we sample for labels for each
vi ∈ Vu , but we also maintain count statistics as to how many times we sampled
a give label for node vi . After collecting a predefined number of such samples, we
output the best label assignment for node vi by choosing the label that was assigned
the maximum number of times to vi during the sampling.

4.3.2.3 Approaches Based on Global Formulations

In addition to the local conditional classifier approaches discussed in
Section 4.3.2.2, another approach to collective classification is to represent the
problem with a high-level global graphical model and then using the learning and
inference techniques for the graphical modeling approach to arrive at the correct
classification. Graphical models which have been used include both directed [43]
and undirected [62, 109] models. While these techniques can use both the labels
and attributes of related nodes, we note that these techniques tend to be less efficient
and scalable than the iterative collective classification techniques.

A common way of defining such a global model is by using a pairwise Markov
random field (pairwise MRF) [109]. Let G(V, E) denote a random variable graph
where V consists of the two types of random variables: the unobserved, Y , which
need to be assigned from a label set L, and observed variables, X , whose labels are
known. Let � denote a set of clique potentials which contain three distinct types of
functions. First, for each Yi ∈ E , ψi ∈ Ψ is a mapping ψi : L → R ≥ 0, where
R ≥ 0 is the set of non-negative real numbers. Next, for each (Yi ,X j ) ∈ E , ψi j ∈ �

is a mapping ψi j : L → R ≥ 0. The last type of function is for each (Yi ,Y j ) ∈ E ,
ψi j ∈ � is a mapping ψi j : L × L → R ≥ 0.

Let x denote the values assigned to all the observed variables in G and let xi

denote the value assigned to Xi . Similarly, let y denote any assignment to all the
unobserved variables in G and let yi denote a value assigned to Yi . For brevity of
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notation we will denote by φi the clique potential obtained by computing φi (yi ) =
ψ(yi )

∏
(Yi ,X j )∈E ψi j(yi ). A pairwise MRF can then be defined as follows:

Definition 1 A pairwise Markov random field (pairwise MRF) is given by a pair
〈G, �〉 where G is a graph and � is a set of clique potentials with φi and ψi j as
defined above. Given an assignment y to all the unobserved variables Y, the pairwise
MRF is associated with the probability distribution:

P(y|x) = 1

Z(x)

∏

Yi∈Y
φi (yi )

∏

(Yi ,Y j )∈E
ψi j (yi , y j )

where x denotes the observed values of X and

Z(x) =
∑

y′

∏

Yi∈Y
φi (y′i )

∏

(Yi ,Y j )∈E
ψi j (y′i , y′j ).

Given a pairwise MRF, it is conceptually simple to extract the best assignments
to each unobserved variable in the network. For instance, we may adopt the crite-
rion that the best label value for Yi is simply the one corresponding to the highest
marginal probability obtained by summing over all other variables from the proba-
bility distribution associated with the pairwise MRF. Computationally, however, this
is difficult to achieve since computing one marginal probability requires summing
over an exponentially large number of terms. Hence, approximate inference algo-
rithms are typically employed, the two most common being loopy belief propagation
(LBP) and mean-field relaxation labeling. A comparison of these two approaches are
given in [90, 101].

Fig. 4.2 Example of a link prediction problem. The graph on the left represents a collaboration
network at time t , and the graph on the right represents the predicted collaboration network at time
t + 1. Predicted collaboration edges are highlighted using a dashed line

4.4 Link Prediction

In this section, we change our focus from inferring information about the nodes of
a network to inferring information about the links or edges between them. Inferring
the existences of edges between nodes has traditionally been referred to as link
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prediction [69, 110]. We provide a formal definition of the problem of link predic-
tion, as well as discuss variants and closely related problems in Section 4.4.1.

Link prediction is a challenging problem that has been studied in various guises
in different domains. For example, in social network analysis, there is work on pre-
dicting friendship links [119], event participation links (i.e., co-authorship [89]),
communication links (i.e., email [89]), and links representing semantic relation-
ships (i.e., advisor of [110] and subordinate manager [30]). In bioinformatics,
there is interest in predicting the existence of edges representing physical protein–
protein interactions [50, 107, 118], domain–domain interactions [29], and reg-
ulatory interactions [4]. Similarly, in computer network systems there is work
in inferring unobserved connections between routers, and inferring relationships
between autonomous systems and service providers [105]. There is also work on
using link prediction to improve recommender systems [36, 51], Web site navigation
[120], surveillance [52], and automatic document cross-referencing [77].

4.4.1 Definition

We begin with some basic definitions and notation. We refer to the set of possible
edges in a graph as potential edges. The set of potential edges depends on the graph
type and how the edges for the graph are defined. For example, in a directed graph,
the set of potential edges consists of all edges e = (v1, v2) where v1 and v2 are
any two nodes V in the graph (i.e., the number of potential edges is |V | × |V |).
In an undirected bipartite graph with two subsets of nodes (V1, V2 ∈ V ), while the
edges still consist of a pair of nodes, e = (v1, v2), there is an added condition such
that one node must be from V1 and the other node must be from V2; this results in
|V1|×|V2| potential edges. Next, we refer to set of “true” edges in a graph as positive
edges, and we refer to the “true” non-edges in a graph (i.e., pairs of nodes without
edges between them) as negative edges. For a given graph, typically we only have
information about a subset of the edges; we refer to this set as the observed edges.
The observed edges can include both positive and negative edges, though in many
formulations there is an assumption of positive-only information. We can view link
prediction as a probabilistic inference problem, where the evidence includes the
observed edges, the attribute values of the nodes involved in the potential edge, and
possibly other information about the network, and for any unobserved, potential
edge, we want to compute the probability of it’s existing. This can be reframed as
a binary classification problem by choosing some probability threshold and con-
cluding that potential edges with existence probability above the threshold are true
edges, and those below the threshold are considered false edges (more complex
schemes are possible as well).

The earliest and most cited formulation of the link prediction problem was pro-
posed by Liben-Nowell and Kleinberg [69]. Liben-Nowell and Kleinberg [69] pro-
posed a temporal formulation defined over a dynamic network where given a graph
Gt (Vt , Et ) at time t, infer the set of edges at the next time step t+1. More formally,
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the objective is to infer a set of edges Enew where Et+1 = Et
⋃

Enew. In this chap-
ter, we use a more general definition of link prediction proposed by Taskar et al.
[110] where given a graph G and the set of potential edges in G, denoted P(G), the
problem of link prediction is to predict for all p ∈ P(G) whether p exists or does
not exists, remaining agnostic on whether G is a noisy graph with missing edges or
a snapshot of a dynamic graph at a particular time point.

In addition to the definition of link prediction discussed above, it is also impor-
tant to mention four closely related problems: random graph models, link com-
pletion, leak detection, and anomalous link discovery, whose objectives are dif-
ferent but very similar to link prediction. The first related research area, random
graph models, is the problem of defining models for generating random graphs
which capture the properties of graphs found in real networks [11, 33, 65, 66, 86].
Properties include scale-free degree distributions [1, 11, 35], the small-world phe-
nomenon [11, 114], and densification and shrinking diameters of dynamic net-
works over time [66]. An important aspect of these models is modeling how to
randomly generate edges between the nodes of the graph to capture these prop-
erties. The preferential attachment model [11], for example, creates edges based
on the degree of nodes (i.e., higher degree nodes are more likely to be incident to
more edges). The Forest Fire model [66], on the other hand, generates edges for
nodes in an epidemic fashion, growing outward from some initial set of neighboring
nodes.

The next two related problems, link completion [10, 21, 45] and leak detection
[10, 20, 60], are a variation of link prediction over hypergraphs. A hypergraph is a
graph where the edges (known as hyperedges) can connect any number of nodes.
For example, in a hypergraph representing an email communication networks, a
hyperedge may connect nodes representing email addresses that are recipients of
a particular email communication. In link completion, given the set of nodes that
participate in a particular hyperedge, the objective is to infer nodes that are miss-
ing. For our email communication network example, link completion may involve
inferring which email address nodes need to be added to the hyperedge represent-
ing the recipients list of an email communication. Conversely, in leak detection,
given the set of nodes participating in a particular hyperedge, the objective is to
infer which nodes should not be part of that hyperedge. For example, in email
communications, leak detection will attempt to infer which email address nodes
are incorrectly part of the hyperedge representing the recipient list of the email
communication.

The last problem, anomalous link discovery [53, 96], has been proposed as
an alternate task to link prediction where the existence of the edges are assumed
to be observed, and the objective is to infer which of the observed links are
anomalous or unusual. Specifically, anomalous link discovery identifies which
links are statistically improbable with the idea that these may be of interest for
those analyzing the network. Rattigan and Jensen [96] show that some methods
which perform poorly for link prediction can still perform well for anomalous link
discovery.
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4.4.2 Approach

In this section, we discuss the two general categories of the current link pre-
diction models: topology-based approaches and node attribute-based approaches.
Topology-based approaches are methods which rely solely on the topology of the
network to infer edges. Node attribute-based approaches make predictions based on
the attribute values of the nodes incident to the edges. In addition, there are models
which make use of both structure and attribute values.

4.4.2.1 Topology-Based Approaches

A number of link prediction models have been proposed which rely solely on the
topology of the network. These models typically rely on some notion of structural
proximity, where nodes which are close are likely to share an edge (e.g., sharing
common neighbors, nodes with a small shortest path distance between). The ear-
liest topological approach for link prediction was proposed by [69]. In this work,
Liben-Nowell and Kleinberg proposed various structure-based similarity scores and
applied them over the unobserved edges of an undirected graph. They then use a
threshold k and only predict edges with the top k scores as existing. A variety of
similarity scores were proposed, given two nodes v1 and v2, including graph dis-
tance (the negated shortest path between v1 and v2), common neighbors (the size
of the intersection of the sets of neighbors of v1 and v2), and more complex mea-
sures such as the Katz measure (the sum of the lengths of the paths between v1 and
v2 exponentially damped by length to count short paths more heavily). Evaluating
over a co-authorship network, the best performing proximity score measure was the
Katz measure; however, the simple measures, which rely only on the intersection
of the set of nodes adjacent to both nodes, performed surprisingly well. A related
approach was proposed by [118] which applies the link prediction problem to pre-
dicting missing protein–protein interactions (PPI) from PPI networks generated by
high-throughput methods. This work assumes that interacting proteins tend to form
a clique. Thus, missing edges can be predicted by predicting the existence of edges
which will create cliques in the network. More recent work by [24] has tried to go
beyond predicting edges between neighboring nodes. In their problem domain of
food webs, for example, pairs of predators often prey on a shared prey species but
rarely prey on each other. Thus, in these networks, predicting “predator–prey” edges
need to go beyond proximity. For this, they propose a “hierarchical random graph”
approach which fits a hierarchical model to all possible dendrograms of a given
network. The model is then used to calculate the likelihood of an edge existing in
the network.

4.4.2.2 Node Attribute-Based Approaches

Although topology has been shown useful in link prediction, topology-based
approaches ignore an important source of information in networks, the attributes
of nodes. Often there are correlations in the attributes of nodes which share an
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edge with each other. One approach which exploits this correlation was proposed by
Taskar et al. [110]. In this approach, a relational Markov network (RMN) framework
was applied to predicting the existence and class of edges between Web sites. They
exploit the fact that certain links can only exist between nodes of the appropriate
type. For example, an “advisor” edge can only exist between a student and a faculty
nodes. Another approach which uses node attributes was proposed by [94]. In that
approach, they used a structured logistic regression model over learned relational
features to predict citation edges in a citation network. Their relational features
are built over attributes such as the words used in the paper nodes. O’Madadhain
et al. [89] also proposed an attribute based approach, constructing local conditional
probability models based on the attributes such as node attribute similarity, topic
distribution, and geographical location in predicting “co-participation” edges in an
email communication network. More recently, there is work on exploiting other
node attributes like the group membership of the nodes. Zheleva et al. [119] showed
that membership in family groups are very useful in predicting friendship links in
social networks. Similarly, [106] showed that using protein complex information
can be useful in predicting protein–protein interactions. Finally, we note that in link
prediction, as in classification, the quality of predictions can be improved by making
the predictions collectively. Aside from the relational Markov network approach by
[110] mentioned earlier, Markov Logic networks [98] and Probabilistic Relational
models [42] have also been proposed for link prediction and are capable of perform-
ing joint inference.

4.4.3 Issues

There are a number of challenges which make link prediction very difficult. The
most difficult challenge is the large class skew between the number of edges which
exist and the number of edges which do not. To illustrate, consider directed graph
denoted by G(V, E). While the number of edges |E | is often O(|V |), the number
of edges which do not exist is often O(|V |2). Consequently, the prior probability
edge existence is very small. This causes many supervised models, which naively
optimize for accuracy, to learn a trivial model which always predicts that a link does
not exist. A related problem in link prediction is the large number of edges whose
existence must be considered. The number of potential edges is O(|V |2) and this
limits the size of the data sets which can be considered.

In practice, there are general approaches to addressing these issues either prior
to or during the link prediction. With both large class skew and number of edges to
contend with, the general approach is to make assumptions which reduce the number
of edges to consider. One common way to do this is to partition the set of nodes
where we only consider potential edges between nodes of the same partition; edges
between partitions are not explicitly modeled and are assumed not to exist [2, 118].
This is useful in many domains where there is some sort of natural partition among
the nodes available (e.g., geography in social networks, location of proteins in a
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cell) which make edges across partitions unlikely. Another way is to define some
simple, computationally inexpensive distance measure such that only edges whose
nodes are within some distance are considered [30, 69].

Another practical issue in link prediction is that while real-world data often indi-
cates which edges exist (positive examples), the edges which do not exist (negative
examples) are rarely annotated for use by link prediction models. In bioinformatics,
for example, the protein–protein interaction network of yeast, the most and anno-
tated studied organism, is annotated with thousands of observed edges (physical
interactions) between the nodes (proteins) gathered from numerous experiments
[13]. There are currently, however, no major data sets available which indicate which
proteins definitely do not physically interact. This is an issue not only in creating and
learning models for link prediction but also an issue with evaluating them. Often,
it is unclear whether a predicted edge which is not in our ground truth data is an
incorrectly predicted edge or an edge resulting from incomplete data.

Fig. 4.3 Example of a entity resolution problem. In this example, the nodes on the left are ambigu-
ous due to variations in the spelling of their names. While attributes may suffice to resolve the
entities in some cases (e.g., Juan Hernandez and J. Hernandez are likely the same person due to
the similarity in their names), some cases (e.g., J. Phillips can refer to either Jane or John Phillips)
it may not. However, if we use the edges (i.e., both Jane Phillips and J. Phillips have collaborated
with Larry Jones), we are able to improve our predictions

4.5 Entity Resolution

Many networks have uncertain and imprecise references to real-world entities. The
absence of identifiers for the underlying entities often results in noisy networks
which contain multiple references to the same underlying entity. In this section,
we look at the problem of resolving which references refer to the same entity, a
problem known as entity resolution.

Examples of entity resolution problems can be found in many domains, often
under different names. The earliest applications of entity resolution is on medical
data [37, 83, 84, 117]. In this work, in a problem they referred to as record linkage,
the goal was to identify which medical records refer to the same individual or family.
Later, in computer vision, entity resolution was applied in identifying which regions
in the same image are part of the same object (the correspondence problem). Also,
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in natural language processing, there is interest in determining which noun phrases
refer to the same underlying entity (coreference resolution, object consolidation).
The problems of deduplication and data integration, determining when two tuples
in or across databases refer to the same entity, can also be seen as entity resolution.

4.5.1 Definition

We begin by introducing some additional notation. For a graph G(V, E) we are
given a set of reference nodes R ⊆ V where the reference nodes correspond to
some set of unknown entity nodes E . We introduce the notation r.E to refer to the
entity to which r corresponds. Formally, the general goal of entity resolution is to
recover the hidden set of entities E and the entity labels r.E for all the reference
nodes.

We note that there are two commonly used interpretations of entity resolution and
which is more natural depends on the algorithm chosen. First, entity resolution can
be viewed as a pairwise classification problem, where for each pair of references,
ri , r j ∈ R, we are interested in determining whether ri and r j are co-referent (i.e.,
ri .E = r j .E). Note the similarity here with link prediction; in fact, many of the
challenges of link prediction (class skew and scaling) are issues in entity resolution
as well. The second view is as a clustering problem, where the goal is to assign the
reference nodes to clusters C ∈ C. The subset of reference nodes in each cluster are
assumed to be co-referent to each other (i.e., ∀ri , r j ∈ C, ri .E = r j .E).

4.5.2 Approach

In this section, we survey existing entity resolution approaches. We distinguish
between three categories of approaches: attribute-based, naive relational, and col-
lective relational. Attribute-based approaches are the traditional approaches to entity
resolution which rely solely on the attributes of the reference nodes. More recently,
naive and collective relational approaches have been proposed which take the
edges between these nodes into consideration. The naive relational approaches con-
sider the attribute similarity of related reference node. The collective relational
approaches, on the other hand, use the edges to make decisions jointly.

4.5.2.1 Attribute-Based Entity Resolution

The attribute-based approach to entity resolution typically uses the pairwise for-
mulation of the entity resolution problem [26, 37, 48]. Given two reference nodes,
ri , r j ∈ R, the attribute-based approaches generally make use of a similarity mea-
sure, sim A(ri , r j ), or a weighted combination of multiple similarity measures, over
the attributes of the reference nodes. Several sophisticated similarity measures have
been proposed for use in entity resolution based on the types of features and domain
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knowledge. For example, there are string similarity measures used commonly over
the names of an entity such as

• Jaccard [54]: the size of the intersection among the characters divided by the size
of the union of the characters occurring.

• Jaro and Jaro-Winker [56, 117]: string similarity scores which attempt to take into
account typical spelling deviation by looking at the similarity within a certain
neighborhood of the string characters; the Jaro-Winkler score is based on Jaro
and weights matches at the beginning more highly.

• Levenshtein (edit distance) [67]: the minimum number of insertions, deletions,
and substitutions required to transform one string to the other.

• Monge-Elkan [78]: recursive subcomponent matching algorithm which looks at
matching subcomponents of the strings; it is good at finding swapped fields, such
as first and last names.

Approaches have also been proposed which learn a string similarity measure
from labeled data [18]. Pairs of nodes whose similarity is above a certain threshold
are predicted as co-referent. Transitivity may also be enforced such that if ri and
r j are predicted co-referent and r j and rk predicted co-referent, ri and rk are also
predicted co-referent.

4.5.2.2 Naive Relational Entity Resolution

While attribute-based approaches have been shown to do well in some domains,
work in relational data has focused on incorporating links, in particular, co-
occurrence information. The earliest work using links for entity resolution was
explored in the database community. Ananthakrishna et al. [6] introduce a method
for deduplication using edges in data warehouse applications where there is a
dimensional hierarchy over the link relations. Kalashnikov et al. [59] proposed
the Relationship-based Data Cleaning (RelDC) approach which uses graph theo-
retic techniques to discover and analyze relationships, such as affiliation and co-
authorship, that exist between reference nodes.

4.5.2.3 Collective Relational Entity Resolution

Although the approaches in Section 4.5.2.2 consider the edges for entity resolution,
only the attributes of linked references are considered and the different resolution
decisions are still taken independently. Work in collective relational entity reso-
lution addresses this by using the edges between nodes to establish dependencies
in the resolution decisions. In databases, for example, approaches have been pro-
posed [14, 32] where one resolution decision affects another if they are linked.
Bhattacharya and Getoor [14, 17] propose different measures for edge similarity
and show how those can be combined with attribute similarity iteratively to perform
entity resolution on collaboration networks. Dong et al. [32] collectively resolve



4 A Survey of Link Mining Tasks for Analyzing Noisy and Incomplete Networks 121

entities of multiple types by propagating evidence along the links in a dependency
graph. In machine learning, probabilistic models have also been proposed to con-
sider the interactions between the different entity resolution decisions. McCallum
and Wellner [75] use conditional random fields for noun coreference and use clique
templates with tied parameters to capture repeated relational structure. Singla and
Domingos [103] use the idea of merging evidence to allow the flow of reason-
ing between different pairwise decisions over multiple entity types. Markov logic
networks have also been applied for collective entity resolution [93, 103]. Pasula
et al. [92] propose a generic probabilistic relational model framework for perform-
ing entity resolution on citations. Li et al. [68] propose a probabilistic generative
model which captures a joint distribution over pairs of entities in terms of co-
mentions in documents. Similarly, Bhattacharya and Getoor [16] proposed a genera-
tive group model by extending the Latent Dirichlet Allocation model for documents
and topics.

4.5.3 Issues

A major issue in entity resolution is that it is a known hard problem computation-
ally; a naive algorithm is O(N 2), which for very large data sets is not feasible. For
many networks, it is infeasible to compare all pairs of references for approaches
which use expensive similarity measures. Similarly, for many probabilistic models,
it is infeasible to explicitly represent all the variables required for the inference.
Thus, efficiencies have long been a focus for research in entity resolution. One
mechanism for doing this involves computing the matches efficiently and employing
techniques commonly called “blocking” to place nodes into disjoint “blocks” using
cheap and index-based similarity computations [49, 79]. The number of potential
pairs is greatly reduced by assuming that only pairs of nodes in the same block
can be co-referent pairs. Another mechanism, proposed by McCallum et al. [74],
relaxes the use of disjoint blocks and places nodes into possibly overlapping subsets
called “canopies”. Potential co-referent pairs are then restricted only to pairs of
nodes which share at least one common canopy.

Fig. 4.4 Example of a group detection problem. The goal of group detection is to predict the
underlying groups which the nodes, and/or edges, participate in. The three regions surrounded
with a rounded rectangle represent the affiliations of our authors
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Another issue in entity resolution is referred to a “canonicalization” [27, 116].
Once the reference nodes have been resolved to their corresponding entities, there
is the problem of constructing a standard representation of the entity from the
attributes of those references. In particular, canonicalization resolves the inconsis-
tencies in the attributes among the reference nodes. Simple heuristics for determin-
ing the appropriate values for the attributes and edges of an entity based on the
attributes of the references are possible; often these amount to choosing the longest
string, or the most recently updated value. Such approaches, however, are not robust
to noisy and incomplete attributes. Another approach is, instead of returning a single
value for an attribute, keeping all the values, returning a ranked list of the possible
values and edges [7, 111]. When there are a large number of references, however,
the ranked list may be too long. Culotta et al. [27] addresses this by using adaptive
similarity measures to select values in order to create a standard representation most
similar to each of the different records. A unified approach was also proposed by
Wick et al. [116] which performs entity resolution and canonicalization jointly using
discriminatively trained model.

4.6 Group Detection

Another common problem that often occurs in reasoning about network data is
inferring the underlying hidden groups or community structures of the nodes in the
network. This problem is strongly related to data clustering; a traditional unsuper-
vised learning problem in data mining. In cluster analysis, data points are organized
in different groups based on the similarity of their feature values [55], where points
in the same cluster are more similar to each other than points in different clusters
according to a specific similarity measure. Similarly, a community in a network can
be defined as a group of nodes that share dense connections among each other, while
being less tightly connected to nodes in different communities in the network.

The importance of identifying the communities in networks lies in the fact that
they can often be closely related to functional units of the system, e.g., groups of
individuals interacting with each other in a society [8, 44, 71], WWW pages related
to similar topics [38], compartments in food webs [61], or proteins responsible for
similar biological functions [23]. Furthermore, analyzing the community structure
itself provides insight into understanding the various roles of different nodes in their
corresponding groups. For instance, by studying the structural properties of commu-
nities, one can distinguish between the functions of the central nodes in the group
and the ones at the periphery.

In this section, we review some of basic methods for group detection and com-
munity discovery in network settings.

4.6.1 Definition

As before, we consider a graph G = (V, E); in the case of weighted networks,
w(vi , v j ) denotes the weight of the edge connecting nodes vi and v j . A community
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or a group C is a subgraph C(V ′, E ′) of the original graph G(V, E) whose nodes
and edges are subsets of the original graph’s nodes and edges, i.e., V ′ ⊂ V and
E ′ ⊂ E . For each node v′ in group C of G, we define an internal and an external
degree as dint(v

′) = |e′(v′, vt )|; vt ∈ V ′ and dext(v
′) = |e′(v′, vt )|; vt /∈ V ′, where

the internal degree of a node with respect to a certain group is the number of edges
connecting it to other nodes of the group, while its external degree is the number
of edges connecting it to nodes in the graph other than those in the corresponding
group. Intuitively, nodes with relatively high internal degree and low external degree
for a specific group are potentially good candidates to be included in that group. The
opposite is also true, where nodes with low internal degree and high external degree
for a specific group are candidates for removal. Throughout the discussion, the terms
group, community, and cluster are used exchangeably.

To identify communities in networks, a basic set of properties that is capable of
distinguishing a true community structure from a randomly selected set of nodes
and edges is needed. One of the important properties that can be utilized is the
graph density, which is the number of edges present in the network relative to the
total number possible. Similarly, the density of a group of nodes in the network
can be defined as the ratio between the number of edges connecting pairs of nodes
within that group and the maximum number of possible edges within the same
group:

δ(C) = |E ′|
|V ′| × (|V ′| − 1)/2

. (4.1)

A randomly selected set of nodes from a network is likely to have a density
similar to that of the global network structure. However, for community structures,
the density of a group is expected to be higher than that of the overall graph. For-
mally, for any community C in a graph G, it is expected that δ(C) > δ(G), where
δ(G) is the overall graph density. Similarly, the average density of sets of nodes
belonging to different communities, calculated using the ratio between the number
of edges emanating from a group and terminating in another, and the maximum
number possible of such edges, should generally be low. This basic idea is exploited
in many of the group detection methods described next.

4.6.2 Approaches

Beyond the intuitive definition above, precisely defining what constitutes a com-
munity involves a number of aspects: whether the definition relies on global or
local network properties, whether nodes can simultaneously belong to several com-
munities, whether link weights are utilized, and whether the definition allows for
hierarchical community structure. Global methods utilize the whole network struc-
ture for defining the communities. This can be achieved in several ways, such as
global optimization methods [87, 97], algorithms based on different global central-
ity measures [39, 44], spectral methods [9, 31], or information-theoretic methods



124 G.M. Namata et al.

[99, 100]. Local methods, on the other hand, define communities based on purely
local network structure, such as detecting cliques of different sizes [34], clique per-
colation method [91], and subgraph fitness method [63].

As mentioned above, another important aspect is whether nodes are allowed to
belong simultaneously to several communities. In general, overlapping communities
do commonly occur in natural settings, especially in social networks. Currently, only
a few methods are able to handle overlapping communities [88, 91]. Another diffi-
culty in community detection is that networks may contain hierarchical structures,
which means that communities may be parts of even larger communities. This leads
to the problem of evaluating the best partitioning among different alternatives. One
solution for evaluating the quality of a given community structure was suggested by
Girvan and Newman [87], who introduced the concept of modularity as a measure
for the goodness of a partitioning.

The methods used for community detection with respect to different perspectives
are briefly reviewed in the following sections.

4.6.2.1 Clique-Finding Techniques

Cliques are graph structures that are frequently used in local techniques for commu-
nity detection. A clique is defined as a complete subgraph {C(V ′, E ′) : ∀v1, v2 ∈
V ′, ∃(v1, v2) ∈ E ′}, where there exists an edge between every pair of nodes belong-
ing to it. In this context, communities can be considered as maximal clique, which
cannot be extended with the addition of any new nodes or edges.

One of the problems of using this approach for group detection is the fact that
finding cliques in a graph is an NP-complete problem. Another problem arises from
the interpretation of communities, especially in social networks, where we expect
different individuals to have different centrality in their corresponding groups, con-
tradicting with the degree symmetry of nodes in cliques. To overcome these draw-
backs, the notion of cliques is often relaxed to k-clique, which is a maximal sub-
graph where the distance between each pair of its nodes is not larger than k [3].

Recently, Palla et al. [91] introduced a local method for community detection
called the clique percolation method. The method is based on the observation that,
due to the high density of community structures, it is more likely that nodes within
a given community form more small-sized cliques than nodes belonging to different
communities. The clique percolation algorithm defines communities by consider-
ing overlapping chains of small cliques, which are likely to explore a significant
fraction of each community, without crossing the boundary between different com-
munities. Specifically, a community of size k is obtained by “rolling” a clique of
size k over cliques of the same size that share at least k − 1 nodes with the current
clique.

4.6.2.2 Clustering Techniques

Data clustering is one of the earliest techniques for group detection, where data
points are grouped according to a specific similarity measure over their features.



4 A Survey of Link Mining Tasks for Analyzing Noisy and Incomplete Networks 125

The main objective of traditional clustering methods is to obtain clusters or
groups of data points possessing high intra-cluster similarity and low inter-cluster
similarity. Classical data clustering techniques can be divided into partition-
based methods such as k-means clustering [72], model-based methods such as
Expectation-Maximization algorithm [28], spectral clustering algorithms [5, 115]
and hierarchical clustering methods [47] which are very popular and commonly
used in many fields.

One advantage of the hierarchical clustering techniques is that they provide the
ability to look at the groups at multiple resolutions. Hierarchical techniques are
further divided into agglomerative and divisive algorithms. The agglomerative algo-
rithm is a greedy bottom-up algorithm which starts with individual data points,
then successively merge pairs with highest similarity. At each iteration, the simi-
larities between the new cluster and each of the old clusters are recomputed and
again the maximally similar pair of clusters merged. Divisive algorithms work
in a reverse manner, where initially the whole set of points is regarded as one
cluster which is successively divided into smaller ones by splitting nodes of low-
est similarity. In both algorithms, clusters are represented as a dendrogram (see
Fig. 4.5), whose depths indicate the steps at which two clusters are joined. This
representation provides insight into the formed groups, where it is clear which com-
munities are built up from smaller modules, and how these smaller communities are
organized.

Fig. 4.5 A dendrogram resulting from a hierarchical clustering technique. Different levels in the
tree correspond to partitions of the graph into clusters
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Hierarchical clustering techniques can easily be adapted to network domains,
where data points are replaced by individual nodes in the network, and the similarity
is based on edges between them. In addition, there are other divisive algorithms
based on spectral methods and other community detection techniques, which are
discussed in the following sections.

4.6.2.3 Centrality-Based Techniques

Girvan and Newman introduced several community detection algorithms that have
received much attention. The first method [44] uses a divisive algorithm based on
the betweenness centrality of edges to be able to recover the group structure within
the network. Betweenness centrality is a measure of centrality of nodes in networks,
defined for each node as the number of shortest paths between pairs of nodes in the
network that run through it. The Girvan–Newman algorithm extended this definition
for edges in the network as well, where the betweenness centrality of an edge is
defined as the number of shortest paths between pairs of nodes that include this
edge.

The algorithm is also based on the fact that there exists denser connections
between nodes belonging to the same group structure than those in different groups.
Thus, all shortest paths between nodes from different communities should pass
along one of these sparse set of edges, increasing their edge betweenness centrality
measure. By following a divisive approach and removing edges with highest
betweenness centrality from the network successively, the underlying community
structure is revealed.

One of the drawbacks of the algorithm is its time complexity which is
O(|E |2|V |) generally, and O(|V |3) for sparse networks. However, by limiting the
re-calculations of the edge betweenness for only those affected by the prior edge
removal can be factored in, making the algorithm efficient in sparse networks with
strong community structure, but still not very efficient on dense networks. Following
the same approach, other methods based on different notions of centrality have been
introduced [64, 112].

4.6.2.4 Modularity-Based Techniques

The concept of modularity was introduced by Newman and Girvan [87] as a mea-
sure to evaluate the quality of a set of extracted communities in a network and has
become one of the most popular quality functions used for community detection.
The basic idea is utilizing a null model; a randomly rewired version of the original
network preserving the node degrees, which is expected to contain no community
structure. Modularity is then calculated by comparing the number of edges within
the extracted communities against the expected number of edges in the same com-
munities from the random network. More specifically, the modularity Q is defined
as follows:
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Q = 1

2|E |
∑

i j

[

Ai j − ki .k j

2|E |
]

δ(ci , c j ), (4.2)

where Ai j is the element of the adjacency matrix of the network denoting the num-
ber of edges between nodes i and j , ki and k j are the degrees of nodes i and j
respectively, ci and c j are the communities to which nodes i and j belong respec-
tively. The summation runs over all pairs of nodes within the same community.

Clearly, a higher modularity value indicates that the average density of the
extracted community is larger than that of the random network where no community
structure is present. Thus, modularity maximization can be used as the objective for
producing high-quality community structure. However, modularity maximization is
an NP-hard problem [19]. Nevertheless, there has been several heuristics for approx-
imate modularity maximization with reasonable time complexity.

An efficient greedy modularity maximization algorithm was introduced by New-
man [85]. The algorithm starts with individual nodes and merges them agglomera-
tively, by choosing the pair that gives the largest increase in modularity. The time
complexity of this greedy algorithm is O(|V |(|E | + |V |)) or O(|V |2) for sparse
networks, which enables users to run community detection on large networks in a
reasonable amount of time. A further speedup was achieved by Clauset et al. [25]
by utilizing specialized data structures for sparse matrices.

4.6.3 Issues

Because the majority of work on group detection in relational setting has focused
on the structural properties of the nodes and the edges in the underlying network,
the resulting communities often lack a correspondence with the actual functional
communities in the network [102]. Recently, relational clustering methods have
been introduced for combining structural information with node characteristics to
obtain better communities that are more related to the functional units in the network
[15, 80]. However, more work is needed for tying the information about the target
function with the group detection process to obtain different community structures
from the network according to the specific function that needs to be highlighted.

One of the issues that has attracted more attention lately is the fact that most
group detection methods works on single-mode networks, with less work focused
on finding groups in more complex, multi-mode settings [12, 46]. Most algorithms
deal with these types of networks by projecting them onto a series of individual
graphs for each mode, thus losing some of the information that could have been
retained by operating collectively on the original multi-modal setting.

Another issue that is gaining more interest is developing new methods for group
detection in dynamic network settings [108], where the underlying network struc-
ture changes over time. Most of the previous work on group detection mainly
focused on static networks, and handles the dynamic case by either analyzing a
snapshot of the network at a single point in time, or aggregating all interactions over
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the whole time period. Both approaches do not capture the dynamics of change in
the network structure, which can be an important factor in revealing the underlying
communities.

4.7 Conclusion

In this chapter, we have surveyed some of the common inference tasks that can
be applied to graph data. The algorithms we have presented are especially well
suited to the situation where we have noisy and incomplete observations. Some
of the methods focus on predicting attribute values, some focus on inferring the
existence of edges, and some focus on grouping nodes, either for entity resolution
or for community detection. There are many other possibilities and combinations
still to be explored, and this research area is likely to expand as we gather more and
more graph and network data from a wider variety of sources.
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Chapter 5
Markov Logic: A Language and Algorithms
for Link Mining

Pedro Domingos, Daniel Lowd, Stanley Kok, Aniruddh Nath, Hoifung Poon,
Matthew Richardson, and Parag Singla

Abstract Link mining problems are characterized by high complexity (since linked
objects are not statistically independent) and uncertainty (since data is noisy and
incomplete). Thus they necessitate a modeling language that is both probabilis-
tic and relational. Markov logic provides this by attaching weights to formulas in
first-order logic and viewing them as templates for features of Markov networks.
Many link mining problems can be elegantly formulated and efficiently solved
using Markov logic. Inference algorithms for Markov logic draw on ideas from
satisfiability testing, Markov chain Monte Carlo, belief propagation, and resolu-
tion. Learning algorithms are based on convex optimization, pseudo-likelihood, and
inductive logic programming. Markov logic has been used successfully in a wide
variety of link mining applications and is the basis of the open-source Alchemy
system.

5.1 Introduction

Most objects and entities in the world are not independent, but are instead linked to
many other objects through a diverse set of relationships: people have friends, fam-
ily, and coworkers; scientific papers have authors, venues, and references to other
papers; Web pages link to other Web pages and have hierarchical structure; proteins
have locations and functions, and interact with other proteins. In these examples, as
in many others, the context provided by these relationships is essential for under-
standing the entities themselves. Furthermore, the relationships are often worthy of
analysis in their own right. In link mining, the connections among objects are explic-
itly modeled to improve performance in tasks such as classification, clustering, and
ranking, as well as enabling new applications, such as link prediction.
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As link mining grows in popularity, the number of link mining problems and
approaches continues to multiply. Rather than solving each problem and developing
each technique in isolation, we need a common representation language for link
mining. Such a language would serve as an interface layer between link mining
applications and the algorithms used to solve them, much as the Internet serves as
an interface layer for networking, relational models serve as an interface layer for
databases, etc. This would both unify many approaches and lower the barrier of
entry to new researchers and practitioners.

At a minimum, a formal language for link mining must be (a) relational and (b)
probabilistic. Link mining problems are clearly relational, since each link among
objects can be viewed as a relation. First-order logic is a powerful and flexible way
to represent relational knowledge. Important concepts such as transitivity (e.g., “My
friend’s friend is also my friend”), homophily (e.g., “Friends have similar smoking
habits”), and symmetry (e.g., “Friendship is mutual”) can be expressed as short
formulas in first-order logic. It is also possible to represent much more complex,
domain-specific rules, such as “Each graduate student coauthors at least one publi-
cation with his or her advisor.”

Most link mining problems have a great deal of uncertainty as well. Link data
is typically very noisy and incomplete. Even with a perfect model, few questions
can be answered with certainty due to limited evidence and inherently stochastic
domains. The standard language for modeling uncertainty is probability. In partic-
ular, probabilistic graphical models have proven an effective tool in solving a wide
variety of problems in data mining and machine learning.

Since link mining problems are both relational and uncertain, they require meth-
ods that combine logic and probability. Neither one alone suffices: first-order logic
is too brittle and does not handle uncertainty; standard graphical models assume
that data points are i.i.d. (independent and identically distributed), and do not han-
dle the relational dependencies and variable-size networks present in link mining
problems.

Markov logic [7] is a simple yet powerful generalization of probabilistic graphi-
cal models and first-order logic, making it ideally suited for link mining. A Markov
logic network is a set of weighted first-order formulas, viewed as templates for con-
structing Markov networks. This yields a well-defined probability distribution in
which worlds are more likely when they satisfy a higher-weight set of ground for-
mulas. Intuitively, the magnitude of the weight corresponds to the relative strength
of its formula; in the infinite-weight limit, Markov logic reduces to first-order
logic. Weights can be set by hand or learned automatically from data. Algorithms
for learning or revising formulas from data have also been developed. Inference
algorithms for Markov logic combine ideas from probabilistic and logical infer-
ence, including Markov chain Monte Carlo, belief propagation, satisfiability, and
resolution.

Markov logic has already been used to efficiently develop state-of-the-art mod-
els for many link mining problems, including collective classification, link-based
clustering, record linkage, and link prediction, in application areas such as the Web,
social networks, molecular biology, and information extraction. Markov logic makes
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link mining easier by offering a simple framework for representing well-defined
probability distributions over uncertain, relational data. Many existing approaches
can be described by a few weighted formulas, and multiple approaches can be com-
bined by including all of the relevant formulas. Many algorithms, as well as sample
data sets and applications, are available in the open-source Alchemy system [17]
(alchemy.cs.washington.edu).

In this chapter, we describe Markov logic and its algorithms and show how they
can be used as a general framework for link mining. We begin with background on
first-order logic and Markov networks. We then define Markov logic and a few of its
basic extensions. Next, we discuss a number of inference and learning algorithms.
Finally, we show two link mining applications, each of which can be written in just
a few formulas and solved using the previous algorithms.

5.2 First-Order Logic

A first-order knowledge base (K B) is a set of sentences or formulas in first-order
logic [9]. Formulas are constructed using four types of symbols: constants, vari-
ables, functions, and predicates. Constant symbols represent objects in the domain
of interest (e.g., people: Anna, Bob, Chris). Variable symbols range over the objects
in the domain. Function symbols (e.g., MotherOf) represent mappings from tuples
of objects to objects. Predicate symbols represent relations among objects in the
domain (e.g., Friends) or attributes of objects (e.g., Smokes). An interpretation
specifies which objects, functions, and relations in the domain are represented by
which symbols. Variables and constants may be typed, in which case variables range
only over objects of the corresponding type, and constants can only represent objects
of the corresponding type. For example, the variable x might range over people (e.g.,
Anna, Bob), and the constant C might represent a city (e.g, Seattle, Tokyo).

A term is any expression representing an object in the domain. It can be a con-
stant, a variable, or a function applied to a tuple of terms. For example, Anna, x,
and GreatestCommonDivisor(x, y) are terms. An atomic formula or atom is a
predicate symbol applied to a tuple of terms (e.g., Friends(x, MotherOf(Anna))).
Formulas are recursively constructed from atomic formulas using logical connec-
tives and quantifiers. If F1 and F2 are formulas, the following are also formulas:
¬F1 (negation), which is true iff F1 is false; F1 ∧ F2 (conjunction), which is true
iff both F1 and F2 are true; F1 ∨ F2 (disjunction), which is true iff F1 or F2 is true;
F1 ⇒ F2 (implication), which is true iff F1 is false or F2 is true; F1 ⇔ F2 (equiv-
alence), which is true iff F1 and F2 have the same truth value; ∀x F1 (universal
quantification), which is true iff F1 is true for every object x in the domain; and
∃x F1 (existential quantification), which is true iff F1 is true for at least one object
x in the domain. Parentheses may be used to enforce precedence. A positive literal
is an atomic formula; a negative literal is a negated atomic formula. The formulas
in a KB are implicitly conjoined, and thus a KB can be viewed as a single large
formula. A ground term is a term containing no variables. A ground atom or ground
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predicate is an atomic formula all of whose arguments are ground terms. A possible
world (along with an interpretation) assigns a truth value to each possible ground
atom.

A formula is satisfiable iff there exists at least one world in which it is true. The
basic inference problem in first-order logic is to determine whether a knowledge
base KB entails a formula F , i.e., if F is true in all worlds where KB is true (denoted
by KB |! F). This is often done by refutation: KB entails F iff KB ∪¬F is unsatis-
fiable. (Thus, if a KB contains a contradiction, all formulas trivially follow from it,
which makes painstaking knowledge engineering a necessity.) For automated infer-
ence, it is often convenient to convert formulas to a more regular form, typically
clausal form (also known as conjunctive normal form (CNF)). A KB in clausal form
is a conjunction of clauses, a clause being a disjunction of literals. Every KB in
first-order logic can be converted to clausal form using a mechanical sequence of
steps1. Clausal form is used in resolution, a sound and refutation-complete inference
procedure for first-order logic [34].

Inference in first-order logic is only semi-decidable. Because of this, knowledge
bases are often constructed using a restricted subset of first-order logic with more
desirable properties. The most widely used restriction is to Horn clauses, which are
clauses containing at most one positive literal. The Prolog programming language
is based on Horn clause logic [20]. Prolog programs can be learned from databases
by searching for Horn clauses that (approximately) hold in the data; this is studied
in the field of inductive logic programming (ILP) [18].

Table 5.1 shows a simple KB and its conversion to clausal form. Notice that,
while these formulas may be typically true in the real world, they are not always
true. In most domains it is very difficult to come up with non-trivial formulas that
are always true, and such formulas capture only a fraction of the relevant knowl-
edge. Thus, despite its expressiveness, pure first-order logic has limited applicability
to practical link mining problems. Many ad hoc extensions to address this have

Table 5.1 Example of a first-order knowledge base and MLN. Fr() is short for Friends(), Sm()
for Smokes(), and Ca() for Cancer()

First-order logic Clausal form Weight

“Friends of friends are friends.”
∀x∀y∀z Fr(x, y) ∧ Fr(y, z)⇒ Fr(x, z) ¬Fr(x, y) ∨ ¬Fr(y, z) ∨ Fr(x, z) 0.7

“Friendless people smoke.”
∀x (¬(∃y Fr(x, y))⇒ Sm(x)) Fr(x, g(x)) ∨ Sm(x) 2.3

“Smoking causes cancer.”
∀x Sm(x)⇒ Ca(x) ¬Sm(x) ∨ Ca(x) 1.5

“If two people are friends, then either
both smoke or neither does.” ¬Fr(x, y) ∨ Sm(x) ∨ ¬Sm(y), 1.1
∀x∀y Fr(x, y)⇒ (Sm(x)⇔ Sm(y)) ¬Fr(x, y) ∨ ¬Sm(x) ∨ Sm(y) 1.1

1 This conversion includes the removal of existential quantifiers by Skolemization, which is not
sound in general. However, in finite domains an existentially quantified formula can simply be
replaced by a disjunction of its groundings.
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been proposed. In the more limited case of propositional logic, the problem is well
solved by probabilistic graphical models such as Markov networks, described in the
next section. We will later show how to generalize these models to the first-order
case.

5.3 Markov Networks

A Markov network (also known as Markov random field) is a model for the joint
distribution of a set of variables X = (X1, X2, . . . , Xn) ∈ X [27]. It is composed of
an undirected graph G and a set of potential functions φk . The graph has a node
for each variable, and the model has a potential function for each clique in the
graph. A potential function is a non-negative real-valued function of the state of the
corresponding clique. The joint distribution represented by a Markov network is
given by

P(X= x) = 1

Z

∏

k

φk(x{k}), (5.1)

where x{k} is the state of the kth clique (i.e., the state of the variables that appear in
that clique). Z , known as the partition function, is given by Z =∑

x∈X
∏

k φk(x{k}).
Markov networks are often conveniently represented as log-linear models, with each
clique potential replaced by an exponentiated weighted sum of features of the state,
leading to

P(X= x) = 1

Z
exp

⎛

⎝
∑

j

w j f j (x)

⎞

⎠ . (5.2)

A feature may be any real-valued function of the state. This chapter will focus on
binary features, f j (x) ∈ {0, 1}. In the most direct translation from the potential
function form (5.1), there is one feature corresponding to each possible state x{k}
of each clique, with its weight being logφk(x{k}). This representation is exponential
in the size of the cliques. However, we are free to specify a much smaller number
of features (e.g., logical functions of the state of the clique), allowing for a more
compact representation than the potential function form, particularly when large
cliques are present. Markov logic will take advantage of this.

5.4 Markov Logic

A first-order KB can be seen as a set of hard constraints on the set of possible
worlds: if a world violates even one formula, it has zero probability. The basic idea in
Markov logic is to soften these constraints: when a world violates one formula in the
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KB it is less probable, but not impossible. The fewer formulas a world violates, the
more probable it is. Each formula has an associated weight (e.g., see Table 5.1) that
reflects how strong a constraint it is: the higher the weight, the greater the difference
in log probability between a world that satisfies the formula and one that does not,
other things being equal.

Definition 1 [32] A Markov logic network (MLN) L is a set of pairs (Fi , wi ), where
Fi is a formula in first-order logic and wi is a real number. Together with a finite set
of constants C = {c1, c2, . . . , c|C|}, it defines a Markov network ML ,C ((5.1) and
(5.2)) as follows:

1. ML ,C contains one binary node for each possible grounding of each atom appear-
ing in L . The value of the node is 1 if the ground atom is true, and 0 otherwise.

2. ML ,C contains one feature for each possible grounding of each formula Fi in L .
The value of this feature is 1 if the ground formula is true, and 0 otherwise. The
weight of the feature is the wi associated with Fi in L .

Thus there is an edge between two nodes of ML ,C iff the corresponding ground
atoms appear together in at least one grounding of one formula in L . For exam-
ple, an MLN containing the formulas ∀x Smokes(x) ⇒ Cancer(x) (smoking
causes cancer) and ∀x∀y Friends(x, y) ⇒ (Smokes(x) ⇔ Smokes(y)) (friends
have similar smoking habits) applied to the constants Anna and Bob (or A and
B for short) yields the ground Markov network in Fig. 5.1. Its features include
Smokes(Anna) ⇒ Cancer(Anna), etc. Notice that, although the two formulas
above are false as universally quantified logical statements, as weighted features
of an MLN they capture valid statistical regularities and in fact represent a standard
social network model [43]. Notice also that nodes and links in the social networks
are both represented as nodes in the Markov network; arcs in the Markov network
represent probabilistic dependencies between nodes and links in the social network
(e.g., Anna’s smoking habits depend on her friends’ smoking habits).

An MLN can be viewed as a template for constructing Markov networks. From
Definition 1 and (5.1) and (5.2), the probability distribution over possible worlds x
specified by the ground Markov network ML ,C is given by

Cancer(A)

Smokes(A)Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

Fig. 5.1 Ground Markov network obtained by applying an MLN containing the formulas
∀x Smokes(x) ⇒ Cancer(x) and ∀x∀y Friends(x, y) ⇒ (Smokes(x) ⇔ Smokes(y)) to the
constants Anna(A) and Bob(B).
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P(X= x) = 1

Z
exp

(
F∑

i=1

wi ni (x)

)

, (5.3)

where F is the number of formulas in the MLN and ni (x) is the number of true
groundings of Fi in x . As formula weights increase, an MLN increasingly resembles
a purely logical KB, becoming equivalent to one in the limit of all infinite weights.
When the weights are positive and finite and all formulas are simultaneously sat-
isfiable, the satisfying solutions are the modes of the distribution represented by
the ground Markov network. Most importantly, Markov logic allows contradictions
between formulas, which it resolves simply by weighing the evidence on both sides.

It is interesting to see a simple example of how Markov logic generalizes
first-order logic. Consider an MLN containing the single formula ∀x R(x) ⇒
S(x) with weight w and C = {A}. This leads to four possible worlds:
{¬R(A),¬S(A)}, {¬R(A), S(A)}, {R(A),¬S(A)}, and {R(A), S(A)}. From (5.3) we
obtain that P({R(A),¬S(A)}) = 1/(3ew + 1) and the probability of each of the
other three worlds is ew/(3ew + 1). (The denominator is the partition function
Z ; see Section 5.3.) Thus, if w > 0, the effect of the MLN is to make the world
that is inconsistent with ∀x R(x) ⇒ S(x) less likely than the other three. From the
probabilities above we obtain that P(S(A)|R(A)) = 1/(1 + e−w). When w → ∞,
P(S(A)|R(A))→ 1, recovering the logical entailment.

It is easily seen that all discrete probabilistic models expressible as products
of potentials, including Markov networks and Bayesian networks, are expressible
in Markov logic. In particular, many of the models frequently used in machine
learning and data mining can be stated quite concisely as MLNs and combined and
extended simply by adding the corresponding formulas. Most significantly, Markov
logic facilitates the construction of non-i.i.d. models (i.e., models where objects are
not independent and identically distributed). The application section shows how to
describe logistic regression in Markov logic and easily extend it to perform collec-
tive classification over a set of linked objects.

When working with Markov logic, we typically make three assumptions about
the logical representation: different constants refer to different objects (unique
names), the only objects in the domain are those representable using the constant
and function symbols (domain closure), and the value of each function for each tuple
of arguments is always a known constant (known functions). These assumptions
ensure that the number of possible worlds is finite and that the Markov logic net-
work will give a well-defined probability distribution. These assumptions are quite
reasonable in most practical applications and greatly simplify the use of MLNs. We
will make these assumptions for the remainder of the chapter. See Richardson and
Domingos [32] for further details on the Markov logic representation.

Markov logic can also be applied to a number of interesting infinite domains
where some of these assumptions do not hold. See Singla and Domingos [39] for
details on Markov logic in infinite domains.

For decision theoretic problems, such as the viral marketing application we
will discuss later, we can easily extend MLNs to Markov logic decision networks



142 P. Domingos et al.

(MLDNs) by attaching a utility to each formula as well as a weight [25]. The utility
of a world is the sum of the utilities of its satisfied formulas. Just as an MLN plus
a set of constants defines a Markov network, an MLDN plus a set of constants
defines a Markov decision network. The optimal decision is the setting of the action
predicates that jointly maximizes expected utility.

5.5 Inference

Given an MLN model of a link mining problem, the questions of interest are
answered by performing inference on it. (For example, “What are the topics of these
Web pages, given the words on them and the links between them?”) Recall that an
MLN acts as a template for a Markov network. Therefore, we can always answer
queries using standard Markov network inference methods on the instantiated net-
work. Several of these methods have been extended to take particular advantage of
the logical structure in an MLN, yielding tremendous savings in memory and time.
We first provide an overview of inference in Markov networks and then describe
how these methods can be adapted to take advantage of MLN structure.

5.5.1 Markov Network Inference

The main inference problem in Markov networks is computing the probabilities
of query variables given some evidence and is #P-complete [35]. The most widely
used method for approximate inference in Markov networks is Markov chain Monte
Carlo (MCMC) [10], and in particular Gibbs sampling, which proceeds by sampling
each variable in turn given its Markov blanket. (The Markov blanket of a node is
the minimal set of nodes that render it independent of the remaining network; in a
Markov network, this is simply the node’s neighbors in the graph.) Marginal prob-
abilities are computed by counting over these samples; conditional probabilities are
computed by running the Gibbs sampler with the conditioning variables clamped to
their given values.

Another popular method for inference in Markov networks is belief propaga-
tion [46]. Belief propagation is an algorithm for computing the exact marginal
probability of each query variable in a tree-structured graphical model. The method
consists of passing messages between variables and the potential functions they par-
ticipate in. The message from a variable x to a potential function f is

μx→ f (x) =
∏

h∈nb(x)\{ f }
μh→x (x), (5.4)

where nb(x) is the set of potentials x appears in. The message from a potential
function to a variable is
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μ f→x (x) =
∑

∼{x}

⎛

⎝ f (x)
∏

y∈nb( f )\{x}
μy→ f (y)

⎞

⎠ , (5.5)

where nb( f ) are the variables in f , and the sum is over all of these except x . In
a tree, the messages from leaf variables are initialized to 1, and a pass from the
leaves to the root and back to the leaves suffices. The (unnormalized) marginal of
each variable x is then given by

∏
h∈nb(x) μh→x (x). Evidence is incorporated by

setting f (x) = 0 for states x that are incompatible with it. This algorithm can still
be applied when the graph has loops, repeating the message- passing until conver-
gence. Although this loopy belief propagation has no guarantees of convergence or
of giving accurate results, in practice it often does, and can be much more efficient
than other methods.

Another basic inference task is finding the most probable state of the world given
some evidence. This is known as MAP inference in the Markov network literature
and MPE inference in the Bayesian network literature. (MAP means “maximum a
posteriori,” and MPE means “most probable explanation.”) It is NP-hard. Notice
that MAP inference cannot be solved simply by computing the probability of each
random variable and then assigning the most probable value, because the combina-
tion of two assignments that are individually probable may itself be improbable or
even impossible. Belief propagation can also be used to solve the MAP problem,
by replacing summation with maximization in (5.5). Other popular methods include
greedy search, simulated annealing, and graph cuts.

We first look at how to perform MAP inference and then at computing probabil-
ities. In the remainder of this chapter, we assume that the MLN is in function-free
clausal form for convenience, but these methods can be applied to other MLNs as
well.

5.5.2 MAP/MPE Inference

Because of the form of (5.3) in Markov logic, the MAP inference problem reduces to
finding the truth assignment that maximizes the sum of weights of satisfied clauses.
This can be done using any weighted satisfiability solver and (remarkably) need
not be more expensive than standard logical inference by model checking. (In fact,
it can be faster, if some hard constraints are softened.) The Alchemy system uses
MaxWalkSAT, a weighted variant of the WalkSAT local-search satisfiability solver,
which can solve hard problems with hundreds of thousands of variables in min-
utes [12]. MaxWalkSAT performs this stochastic search by picking an unsatisfied
clause at random and flipping the truth value of one of the atoms in it. With a
certain probability, the atom is chosen randomly; otherwise, the atom is chosen to
maximize the sum of satisfied clause weights when flipped. This combination of
random and greedy steps allows MaxWalkSAT to avoid getting stuck in local optima
while searching. Pseudocode for MaxWalkSAT is shown in Table 5.2. DeltaCost(v)
computes the change in the sum of weights of unsatisfied clauses that results from
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Table 5.2 MaxWalkSAT algorithm for MPE inference

function MaxWalkSAT(L , tmax, fmax, target, p)
inputs: L , a set of weighted clauses

tmax, the maximum number of tries
fmax, the maximum number of flips
target, target solution cost
p, probability of taking a random step

output: soln, best variable assignment found
vars← variables in L
for i← 1 to tmax

soln← a random truth assignment to vars
cost← sum of weights of unsatisfied clauses in soln
for i← 1 to fmax

if cost ≤ target
return “Success, solution is,” soln

c← a randomly chosen unsatisfied clause
if Uniform(0,1) < p

v f ← a randomly chosen variable from c
else

for each variable v in c
compute DeltaCost(v)

v f ← v with lowest DeltaCost(v)
soln← soln with v f flipped
cost← cost + DeltaCost(v f )

return “Failure, best assignment is,” best soln found

flipping variable v in the current solution. Uniform(0,1) returns a uniform deviate
from the interval [0, 1].

MAP inference in Markov logic can also be performed using cutting plane meth-
ods [33] and others.

5.5.3 Marginal and Conditional Probabilities

We now consider the task of computing the probability that a formula holds, given
an MLN and set of constants, and possibly other formulas as evidence. For the
remainder of the chapter, we focus on the typical case where the evidence is a
conjunction of ground atoms. In this scenario, further efficiency can be gained by
applying a generalization of knowledge-based model construction [45]. This con-
structs only the minimal subset of the ground network required to answer the query
and runs MCMC (or any other probabilistic inference method) on it. The network
is constructed by checking if the atoms that appear in the query formula are in the
evidence. If they are, the construction is complete. Those that are not are added to
the network, and we in turn check the atoms they directly depend on (i.e., the atoms
that appear in some formula with them). This process is repeated until all relevant
atoms have been retrieved. While in the worst case it yields no savings, in practice it
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can vastly reduce the time and memory required for inference. See Richardson and
Domingos [32] for details.

Given the relevant ground network, inference can be performed using standard
methods like MCMC and belief propagation. One problem with this is that these
methods break down in the presence of deterministic or near-deterministic depen-
dencies. Deterministic dependencies break up the space of possible worlds into
regions that are not reachable from each other, violating a basic requirement of
MCMC. Near-deterministic dependencies greatly slow down inference, by creat-
ing regions of low probability that are very difficult to traverse. Running multiple
chains with random starting points does not solve this problem, because it does not
guarantee that different regions will be sampled with frequency proportional to their
probability, and there may be a very large number of regions.

We have successfully addressed this problem by combining MCMC with satisfi-
ability testing in the MC-SAT algorithm [28]. MC-SAT is a slice sampling MCMC
algorithm. It uses a combination of satisfiability testing and simulated annealing to
sample from the slice. The advantage of using a satisfiability solver (WalkSAT) is
that it efficiently finds isolated modes in the distribution, and as a result the Markov
chain mixes very rapidly. The slice sampling scheme ensures that detailed balance
is (approximately) preserved. MC-SAT is orders of magnitude faster than standard
MCMC methods, such as Gibbs sampling and simulated tempering, and is applica-
ble to any model that can be expressed in Markov logic.

Slice sampling [4] is an instance of a widely used approach in MCMC inference
that introduces auxiliary variables to capture the dependencies between observed
variables. For example, to sample from P(X = x) = (1/Z)

∏
k φk(x{k}), we can

define P(X = x,U = u) = (1/Z)
∏

k I[0,φk (x{k})](uk), where φk is the kth poten-
tial function, uk is the kth auxiliary variable, I[a,b](uk) = 1 if a ≤ uk ≤ b,
and I[a,b](uk) = 0 otherwise. The marginal distribution of X under this joint is
P(X = x), so to sample from the original distribution it suffices to sample from
P(x, u) and ignore the u values. P(uk |x) is uniform in [0, φk(x{k})] and thus easy
to sample from. The main challenge is to sample x given u, which is uniform among
all X that satisfies φk(x{k}) ≥ uk for all k. MC-SAT uses SampleSAT [44] to do this.
In each sampling step, MC-SAT takes the set of all ground clauses satisfied by the
current state of the world and constructs a subset, M , that must be satisfied by the
next sampled state of the world. (For the moment we will assume that all clauses
have positive weight.) Specifically, a satisfied ground clause is included in M with
probability 1− e−w, where w is the clause’s weight. We then take as the next state a
uniform sample from the set of states S AT (M) that satisfy M . (Notice that S AT (M)

is never empty, because it always contains at least the current state.) Table 5.3 gives
pseudocode for MC-SAT. US is the uniform distribution over set S. At each step,
all hard clauses are selected with probability 1, and thus all sampled states satisfy
them. Negative weights are handled by noting that a clause with weight w < 0 is
equivalent to its negation with weight−w, and a clause’s negation is the conjunction
of the negations of all of its literals. Thus, instead of checking whether the clause is
satisfied, we check whether its negation is satisfied; if it is, with probability 1− ew

we select all of its negated literals, and with probability ew we select none.
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Table 5.3 Efficient MCMC inference algorithm for MLNs

function MC-SAT(L , n)
inputs: L , a set of weighted clauses {(w j , c j )}

n, number of samples
output: {x (1), . . . , x (n)}, set of n samples

x (0) ← Satisfy(hard clauses in L)
for i ← 1 to n

M ← ∅
for all (wk , ck) ∈ L satisfied by x (i−1)

With probability 1− e−wk add ck to M
Sample x (i) ∼ US AT (M)

It can be shown that MC-SAT satisfies the MCMC criteria of detailed balance
and ergodicity [28], assuming a perfect uniform sampler. In general, uniform sam-
pling is #P-hard and SampleSAT [44] only yields approximately uniform samples.
However, experiments show that MC-SAT is still able to produce very accurate
probability estimates, and its performance is not very sensitive to the parameter
setting of SampleSAT.

5.5.4 Scaling Up Inference

5.5.4.1 Lazy Inference

One problem with the aforementioned approaches is that they require propositional-
izing the domain (i.e., grounding all atoms and clauses in all possible ways), which
consumes memory exponential in the arity of the clauses. Lazy inference meth-
ods [29, 38] overcome this by only grounding atoms and clauses as needed. This
takes advantage of the sparseness of relational domains, where most atoms are false
and most clauses are trivially satisfied. For example, in the domain of scientific
research papers, most groundings of the atom Author(person, paper) are false
and most groundings of the clause Author(p1, paper) ∧ Author(p2, paper) ⇒
Coauthor(p1, p2) are trivially satisfied. With lazy inference, the memory cost does
not scale with the number of possible clause groundings, but only with the number
of groundings that have non-default values at some point in the inference.

We first describe a general approach for making inference algorithms lazy and
then show how it can be applied to create a lazy version of MaxWalkSAT. We
have also developed a lazy version of MC-SAT. Working implementations of both
algorithms are available in the Alchemy system. See Poon et al. [29] for more
details.

Our approach depends on the concept of “default” values that occur much more
frequently than others. In relational domains, the default is false for atoms and true
for clauses. In a domain where most variables assume the default value, it is wasteful
to allocate memory for all variables and functions in advance. The basic idea is to
allocate memory only for a small subset of “active” variables and functions and
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activate more if necessary as inference proceeds. In addition to saving memory, this
can reduce inference time as well, since we do not allocate memory or compute
values for functions that are never used.

Definition 2 Let X be the set of variables and D be their domain2. The default
value d∗ ∈ D is the most frequent value of the variables. An evidence variable is a
variable whose value is given and fixed. A function f = f (z1, z2, · · · , zk) inputs
zi ’s, which are either variables or functions, and outputs some value in the range
of f .

Although these methods can be applied to other inference algorithms, we focus
on relational domains. Variables are ground atoms, which take binary values (i.e.,
D = {true, f alse}). The default value for variables is false (i.e., d∗ = f alse).
Examples of functions are clauses and DeltaCost in MaxWalkSAT (Table 5.2). Like
variables, functions may also have default values (e.g., true for clauses). The inputs
to a relational inference algorithm are a weighted KB and a set of evidence atoms
(DB). Eager algorithms work by first carrying out propositionalization and then
calling a propositional algorithm. In lazy inference, we directly work on the KB and
DB. The following concepts are crucial to lazy inference.

Definition 3 A variable v is active iff v is set to a non-default value at some point,
and x is inactive if the value of x has always been d∗. A function f is activated by
a variable v if either v is an input of f or v activates a function g that is an input
of f .

Let A be the eager algorithm that we want to make lazy. We make three assump-
tions about A:

1. A updates one variable at a time. (If not, the extension is straightforward.)
2. The values of variables in A are properly encapsulated so that they can be

accessed by the rest of the algorithm only via two methods: ReadVar(x) (which
returns the value of x) and WriteVar(x, v) (which sets the value of x to v). This is
reasonable given the conventions in software development, and if not, it is easy
to implement.

3. A always sets values of variables before calling a function that depends on those
variables, as it should.

To develop the lazy version of A, we first identify the variables (usually all) and
functions to make lazy. We then modify the value-accessing methods and replace the
propositionalization step with lazy initialization as follows. The rest of the algorithm
remains the same.

ReadVar(x): If x is in memory, Lazy-A returns its value as A; otherwise, it returns
d∗.

2 For simplicity we assume that all variables have the same domain. The extension to different
domains is straightforward.
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WriteVar(x, v): If x is in memory, Lazy-A updates its value as A. If not, and if
v = d∗, no action is taken; otherwise, Lazy-A activates (allocates memory
for) x and the functions activated by x , and then sets the value.

Initialization: Lazy-A starts by allocating memory for the lazy functions that out-
put non-default values when all variables assume the default values. It then
calls WriteVar to set values for evidence variables, which activates those
evidence variables with non-default values and the functions they activate.
Such variables become the initial active variables and their values are fixed
throughout the inference.

Lazy-A carries out the same inference steps as A and produces the same result. It
never allocates memory for more variables/functions than A, but each access incurs
slightly more overhead (in checking whether a variable or function is in memory).
In the worst case, most variables are updated, and Lazy-A produces little savings.
However, if the updates are sparse, as is the case for most algorithms in relational
domains, Lazy-A can greatly reduce memory and time because it activates and com-
putes the values for many fewer variables and functions.

Applying this method to MaxWalkSAT is fairly straightforward: each ground
atom is a variable and each ground clause is a function to be made lazy. Follow-
ing Singla and Domingos [38], we refer to the resulting algorithm as LazySAT.
LazySAT initializes by activating true evidence atoms and initial unsatisfied clauses
(i.e., clauses which are unsatisfied when the true evidence atoms are set to true and
all other atoms are set to false)3. At each step in the search, the atom that is flipped
is activated, as are any clauses that by definition should become active as a result.
While computing DeltaCost(v), if v is active, the relevant clauses are already in
memory; otherwise, they will be activated when v is set to true (a necessary step
before computing the cost change when v is set to true). Table 5.4 gives pseudocode
for LazySAT.

Experiments in a number of domains show that LazySAT can yield very large
memory reductions, and these reductions increase with domain size [38]. For
domains whose full instantiations fit in memory, running time is comparable; as
problems become larger, full instantiation for MaxWalkSAT becomes impossible.

We have also used this method to implement a lazy version of MC-SAT that
avoids grounding unnecessary atoms and clauses [29].

5.5.4.2 Lifted Inference

The inference methods discussed so far are purely probabilistic in the sense that
they propositionalize all atoms and clauses and apply standard probabilistic infer-
ence algorithms. A key property of first-order logic is that it allows lifted inference,
where queries are answered without materializing all the objects in the domain (e.g.,

3 This differs from MaxWalkSAT, which assigns random values to all atoms. However, the
LazySAT initialization is a valid MaxWalkSAT initialization, and the two give very similar results
empirically. Given the same initialization, the two algorithms will produce exactly the same results.
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Table 5.4 Lazy variant of the MaxWalkSAT algorithm

function LazySAT(KB, DB, tmax, fmax, target, p)
inputs: KB, a weighted knoweldge base

DB, database containing evidence
tmax, the maximum number of tries
fmax, the maximum number of flips
target, target solution cost
p, probability of taking a random step

output: soln, best variable assignment found

for i← 1 to tmax

active_atoms← atoms in clauses not satisfied by DB

active_clauses← clauses activated by active_atoms

soln← a random truth assignment to active_atoms

cost← sum of weights of unsatisfied clauses in soln
for i← 1 to fmax

if cost ≤ target
return “Success, solution is”, soln

c← a randomly chosen unsatisfied clause
if Uniform(0,1) < p

v f ← a randomly chosen variable from c
else

for each variable v in c

compute DeltaCost(v), using KB if v �∈ active_atoms

v f ← v with lowest DeltaCost(v)

if v f �∈ active_atoms

add v f to active_atoms

add clauses activated by v f to active_clauses

soln← soln with v f flipped
cost← cost + DeltaCost(v f )

return “Failure, best assignment is”, best soln found

resolution [34]). Lifted inference is potentially much more efficient than proposi-
tionalized inference, and extending it to probabilistic logical languages is a desirable
goal. We have developed a lifted version of loopy belief propagation (BP), building
on the work of Jaimovich et al. [11]. Jaimovich et al. pointed out that, if there is
no evidence, BP in probabilistic logical models can be trivially lifted, because all
groundings of the same atoms and clauses become indistinguishable. Our approach
proceeds by identifying the subsets of atoms and clauses that remain indistinguish-
able even after evidence is taken into account. We then form a network with supern-
odes and superfeatures corresponding to these sets and apply BP to it. This network
can be vastly smaller than the full ground network, with the corresponding efficiency
gains. Our algorithm produces the unique minimal lifted network for every inference
problem.

We begin with some necessary definitions. These assume the existence of an
MLN L , set of constants C , and evidence database E (set of ground literals). For
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simplicity, our definitions and explanation of the algorithm will assume that each
predicate appears at most once in any given MLN clause. We will then describe
how to handle multiple occurrences of a predicate in a clause.

Definition 4 A supernode is a set of groundings of a predicate that all send and
receive the same messages at each step of belief propagation, given L , C , and E .
The supernodes of a predicate form a partition of its groundings.

A superfeature is a set of groundings of a clause that all send and receive the same
messages at each step of belief propagation, given L , C , and E . The superfeatures
of a clause form a partition of its groundings.

Definition 5 A lifted network is a factor graph composed of supernodes and super-
features. The factor corresponding to a superfeature g(x) is exp(wg(x)), where w

is the weight of the corresponding first-order clause. A supernode and a superfea-
ture have an edge between them iff some ground atom in the supernode appears in
some ground clause in the superfeature. Each edge has a positive integer weight.
A minimal lifted network is a lifted network with the smallest possible number of
supernodes and superfeatures.

The first step of lifted BP is to construct the minimal lifted network. The size of
this network is O(nm), where n is the number of supernodes and m the number of
superfeatures. In the best case, the lifted network has the same size as the MLN L
and in the worst case, as the ground Markov network ML ,C .

The second and final step in lifted BP is to apply standard BP to the lifted net-
work, with two changes:

1. The message from supernode x to superfeature f becomes

μ
n( f,x)−1
f→x

∏

h∈nb(x)\{ f }
μh→x (x)

n(h,x),

where n(h, x) is the weight of the edge between h and x .
2. The (unnormalized) marginal of each supernode (and, therefore, of each ground

atom in it) is given by
∏

h∈nb(x) μ
n(h,x)
h→x (x).

The weight of an edge is the number of identical messages that would be sent from
the ground clauses in the superfeature to each ground atom in the supernode if BP
was carried out on the ground network. The n( f, x) − 1 exponent reflects the fact
that a variable’s message to a factor excludes the factor’s message to the variable.

The lifted network is constructed by (essentially) simulating BP and keeping
track of which ground atoms and clauses send the same messages. Initially, the
groundings of each predicate fall into three groups: known true, known false, and
unknown. (One or two of these may be empty.) Each such group constitutes an initial
supernode. All groundings of a clause whose atoms have the same combination of
truth values (true, false, or unknown) now send the same messages to the ground
atoms in them. In turn, all ground atoms that receive the same number of messages
from the superfeatures they appear in send the same messages and constitute a new
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supernode. As the effect of the evidence propagates through the network, finer and
finer supernodes and superfeatures are created.

If a clause involves predicates R1, . . . , Rk , and N = (N1, . . . , Nk) is a cor-
responding tuple of supernodes, the groundings of the clause generated by N are
found by joining N1, . . . , Nk (i.e., by forming the Cartesian product of the relations
N1, . . . , Nk , and selecting the tuples in which the corresponding arguments agree
with each other, and with any corresponding constants in the first-order clause).
Conversely, the groundings of predicate Ri connected to elements of a superfeature
F are obtained by projecting F onto the arguments it shares with Ri . Lifted network
construction thus proceeds by alternating between two steps:

1. Form superfeatures by doing joins of their supernodes.
2. Form supernodes by projecting superfeatures down to their predicates, and merg-

ing atoms with the same projection counts.

Pseudocode for the algorithm is shown in Table 5.5. The projection counts at con-
vergence are the weights associated with the corresponding edges.

To handle clauses with multiple occurrences of a predicate, we keep a tuple
of edge weights, one for each occurrence of the predicate in the clause. A mes-
sage is passed for each occurrence of the predicate, with the corresponding edge
weight. Similarly, when projecting superfeatures into supernodes, a separate count is

Table 5.5 Lifted network construction algorithm

function LNC(L , C , E)
inputs: L , a Markov logic network

C , a set of constants
E , a set of ground literals

output: M , a lifted network
for each predicate P

for each truth value t in {true, false, unknown}
form a supernode containing all groundings of P with truth value t

repeat
for each clause involving predicates P1, . . . , Pk

for each tuple of supernodes (N1, . . . , Nk),
where Ni is a Pi supernode
form a superfeature F by joining N1, . . . , Nk

for each predicate P
for each superfeature F it appears in

S(P, F)← projection of the tuples in F down to the variables in P
for each tuple s in S(P, F)

T (s, F)← number of F’s tuples that were projected into s
S(P)←⋃

F S(P, F)

form a new supernode from each set of tuples in S(P) with the
same T (s, F) counts for all F

until convergence
add all current supernodes and superfeatures to M
for each supernode N and superfeature F in M

add to M an edge between N and F with weight T (s, F)

return M
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maintained for each occurrence, and only tuples with the same counts for all occur-
rences are merged.

See Singla and Domingos [40] for additional details, including the proof that this
algorithm always creates the minimal lifted network.

5.6 Learning

In this section, we discuss methods for automatically learning weights, refining for-
mulas, and constructing new formulas from data.

5.6.1 Markov Network Learning

Maximum-likelihood or MAP estimates of Markov network weights cannot be com-
puted in closed form but, because the log-likelihood is a concave function of the
weights, they can be found efficiently (modulo inference) using standard gradient-
based or quasi-Newton optimization methods [26]. Another alternative is iterative
scaling [6]. Features can also be learned from data, for example, by greedily con-
structing conjunctions of atomic features [6].

5.6.2 Generative Weight Learning

MLN weights can be learned generatively by maximizing the likelihood of a rela-
tional database (5.3). This relational database consists of one or more “possible
worlds” that form our training examples. Note that we can learn to generalize from
even a single example because the clause weights are shared across their many
respective groundings. This is essential when the training data is a single network,
such as the Web. The gradient of the log-likelihood with respect to the weights is

∂

∂wi
log Pw(X= x) = ni (x)−

∑

x ′
Pw(X= x ′) ni (x

′), (5.6)

where the sum is over all possible databases x ′, and Pw(X = x ′) is P(X = x ′)
computed using the current weight vector w = (w1, . . . , wi , . . .). In other words,
the i th component of the gradient is simply the difference between the number of
true groundings of the i th formula in the data and its expectation according to the
current model. In the generative case, even approximating these expectations tends
to be prohibitively expensive or inaccurate due to the large state space. Instead, we
can maximize the pseudo-likelihood of the data, a widely used alternative [1]. If x
is a possible world (relational database) and xl is the lth ground atom’s truth value,
the pseudo-log-likelihood of x given weights w is
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log P∗w(X= x) =
n∑

l=1

log Pw(Xl= xl |M Bx (Xl)), (5.7)

where M Bx (Xl) is the state of Xl ’s Markov blanket in the data (i.e., the truth val-
ues of the ground atoms it appears in some ground formula with). Computing the
pseudo-likelihood and its gradient does not require inference and is therefore much
faster. Combined with the L-BFGS optimizer [19], pseudo-likelihood yields effi-
cient learning of MLN weights even in domains with millions of ground atoms [32].
However, the pseudo-likelihood parameters may lead to poor results when long
chains of inference are required.

In order to reduce overfitting, we penalize each weight with a Gaussian prior. We
apply this strategy not only to generative learning but to all of our weight learning
methods, even those embedded within structure learning.

5.6.3 Discriminative Weight Learning

Discriminative learning is an attractive alternative to pseudo-likelihood. In many
applications, we know a priori which atoms will be evidence and which ones will be
queried, and the goal is to correctly predict the latter given the former. If we partition
the ground atoms in the domain into a set of evidence atoms X and a set of query
atoms Y , the conditional likelihood of Y given X is

P(y|x) = 1

Zx
exp

⎛

⎝
∑

i∈FY

wi ni (x, y)

⎞

⎠ = 1

Zx
exp

⎛

⎝
∑

j∈GY

w j g j (x, y)

⎞

⎠ , (5.8)

where FY is the set of all MLN clauses with at least one grounding involving a
query atom, ni (x, y) is the number of true groundings of the i th clause involving
query atoms, GY is the set of ground clauses in ML ,C involving query atoms, and
g j (x, y) = 1 if the j th ground clause is true in the data and 0 otherwise. The
gradient of the conditional log-likelihood is

∂

∂wi
log Pw(y|x) = ni (x, y)−

∑

y′
Pw(y′|x)ni (x, y′)

= ni (x, y)− Ew[ni (x, y)]. (5.9)

In the conditional case, we can approximate the expected counts Ew[ni (x, y)] using
either the MAP state (i.e., the most probable state of y given x) or by averaging over
several MC-SAT samples. The MAP approximation is inspired by the voted percep-
tron algorithm proposed by Collins [2] for discriminatively learning hidden Markov
models. We can apply a similar algorithm to MLNs using MaxWalkSAT to find the
approximate MAP state, following the approximate gradient for a fixed number of
iterations, and averaging the weights across all iterations to combat overfitting [36].
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We get the best results, however, by applying a version of the scaled conjugate
gradient algorithm [24]. We use a small number of MC-SAT samples to approx-
imate the gradient and Hessian matrix and use the inverse diagonal Hessian as a
preconditioner. See Lowd and Domingos [21] for more details and results.

5.6.4 Structure Learning and Clustering

The structure of a Markov logic network is the set of formulas or clauses to which
we attach weights. While these formulas are often specified by one or more experts,
such knowledge is not always accurate or complete. In addition to learning weights
for the provided clauses, we can revise or extend the MLN structure with new
clauses learned from data. We can also learn the entire structure from scratch. The
problem of discovering MLN structure is closely related to the problem of finding
frequent subgraphs in graphs. Intuitively, frequent subgraphs correspond to high-
probability patterns in the graph, and an MLN modeling the domain should con-
tain formulas describing them, with the corresponding weights (unless a subgraph’s
probability is already well predicted by the probabilities of its subcomponents, in
which case the latter suffice). More generally, MLN structure learning involves dis-
covering patterns in hypergraphs, in the form of logical rules. The inductive logic
programming (ILP) community has developed many methods for this purpose. ILP
algorithms typically search for rules that have high accuracy, high coverage, etc.
However, since an MLN represents a probability distribution, much better results
are obtained by using an evaluation function based on pseudo-likelihood [13]. Log-
likelihood or conditional log-likelihood are potentially better evaluation functions,
but are much more expensive to compute. In experiments on two real-world data
sets, our MLN structure learning algorithm found better MLN rules than the stan-
dard ILP algorithms CLAUDIEN [5], FOIL [30], and Aleph [41], and than a hand-
written knowledge base.

MLN structure learning can start from an empty network or from an existing
KB. Either way, we have found it useful to start by adding all unit clauses (single
atoms) to the MLN. The weights of these capture (roughly speaking) the marginal
distributions of the atoms, allowing the longer clauses to focus on modeling atom
dependencies. To extend this initial model, we either repeatedly find the best clause
using beam search and add it to the MLN, or add all “good” clauses of length l
before trying clauses of length l + 1. Candidate clauses are formed by adding each
predicate (negated or otherwise) to each current clause, with all possible combi-
nations of variables, subject to the constraint that at least one variable in the new
predicate must appear in the current clause. Hand-coded clauses are also modified
by removing predicates.

Recently, Mihalkova and Mooney [23] introduced BUSL, an alternative, bot-
tom-up structure learning algorithm for Markov logic. Instead of blindly construct-
ing candidate clauses one literal at a time, they let the training data guide and con-
strain clause construction. First, they use a propositional Markov network structure
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learner to generate a graph of relationships among atoms. Then they generate clauses
from paths in this graph. In this way, BUSL focuses on clauses that have support in
the training data. In experiments on three data sets, BUSL evaluated many fewer
candidate clauses than our top-down algorithm, ran more quickly, and learned more
accurate models.

Another key problem in MLN learning is discovering hidden variables (or invent-
ing predicates, in the language of ILP). Link-based clustering is a special case of
this, where the hidden variables are the clusters. We have developed a number of
approaches for this problem and for discovering structure over the hidden vari-
ables [14–16]. The key idea is to cluster together objects that have similar relations
to similar objects, cluster relations that relate similar objects, and recursively repeat
this until convergence. This can be a remarkably effective approach for cleaning
up and structuring a large collection of noisy linked data. For example, the SNE
algorithm is able to discover thousands of clusters over millions of tuples extracted
from the Web and form a semantic network from them in a few hours.

5.7 Applications

Markov logic has been applied to a wide variety of link mining problems, includ-
ing link prediction (predicting academic advisors of graduate students [32]), record
linkage (matching bibliographic citations [37]), link-based clustering (extracting
semantic networks from the Web [15]), and many others. (See the repository of
publications on the Alchemy Web site (alchemy.cs.washington.edu) for a partial
list.) In this section we will discuss two illustrative examples: collective classifica-
tion of Web pages and optimizing word of mouth in social networks (a.k.a. viral
marketing).

5.7.1 Collective Classification

Collective classification is the task of inferring labels for a set of objects using their
links as well as their attributes. For example, Web pages that link to each other tend
to have similar topics. Since the labels now depend on each other, they must be
inferred jointly rather than independently. In Markov logic, collective classification
models can be specified with just a few formulas and applied using standard Markov
logic algorithms. We demonstrate this on WebKB, one of the classic collective clas-
sification data sets [3].

WebKB consists of labeled Web pages from the computer science departments
of four universities. We used the relational version of the data set from Craven and
Slattery [3], which features 4165 Web pages and 10,935 Web links. Each Web page
is marked with one of the following categories: student, faculty, professor, depart-
ment, research project, course, or other. The goal is to predict these categories from
the Web pages’ words and links.
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We can start with a simple logistic regression model, using only the words on the
Web pages:

PageClass(p,+c)
Has(p,+w)⇒ PageClass(p,+c)

The “+” notation is a shorthand for a set of rules with the same structure but different
weights: the MLN contains a rule and the corresponding weight for each possible
instantiation of the variables with a “+” sign. The first line, therefore, generates a
unit clause for each class, capturing the prior distribution over page classes. The
second line generates thousands of rules representing the relationship between each
word and each class. We can encode the fact that classes are mutually exclusive and
exhaustive with a set of hard (infinite-weight) constraints:

PageClass(p,+c1) ∧ (+c1 �= +c2)⇒ ¬PageClass(p,+c2)
∃c PageClass(p, c)

In Alchemy, we can instead state this property of the PageClass predicate in its
definition using the “!” operator: PageClass(page, class!), where page and class
are type names. (In general, the “!” notation signifies that, for each possible combi-
nation of values of the arguments without “!”, there is exactly one combination of
the arguments with “!” for which the predicate is true.)

To turn this multi-class logistic regression into a collective classification model
with joint inference, we only need one more formula:

Linked(u1, u2) ∧ PageClass(+c1, u1) ∧ PageClass(+c2, u2)

This says that linked Web pages have related classes.
We performed leave-one-out cross-validation, training these models for 500 iter-

ations of scaled conjugate gradient with a preconditioner. The logistic regression
baseline had an accuracy of 70.9%, while the model with joint inference had an
accuracy of 76.4%. Markov logic makes it easy to construct additional features as
well, such as words on linked pages and anchor text. (See Taskar et al. [42] for a
similar approach using relational Markov networks.)

5.7.2 Viral Marketing

Viral marketing is based on the premise that members of a social network influence
each other’s purchasing decisions. The goal is then to select the best set of people
to market to, such that the overall profit is maximized by propagation of influence
through the network. Originally formalized by Domingos and Richardson [8], this
problem has since received much attention, including both empirical and theoretical
results.
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A standard data set in this area is the Epinions web of trust [31]. Epinions.com
is a knowledge-sharing Web site that allows users to post and read reviews of prod-
ucts. The “web of trust” is formed by allowing users to maintain a list of peers
whose opinions they trust. We used this network, containing 75,888 users and over
500,000 directed edges, in our experiments. With over 75,000 action nodes, this is
a very large decision problem, and no general-purpose utility maximization algo-
rithms have previously been applied to it (only domain-specific implementations).

We modeled this problem as an MLDN (Markov logic decision network) using
the predicates Buys(x) (person x purchases the item), Trusts(x1, x2) (person x1
trusts person x2), and MarketTo(x) (x is targeted for marketing). MarketTo(x)
is an action predicate, since it can be manipulated directly, whereas Buys(x) and
Trusts(x1, x2) are state predicates, since they cannot. The utility function is rep-
resented by the unit clauses Buys(x) (with positive utility, representing profits from
sales) and MarketTo(x) (with negative utility, representing the cost of market-
ing). The topology of the social network is specified by an evidence database of
Trusts(x1, x2) atoms.

The core of the model consists of two formulas:

Buys(x1) ∧ Trusts(x2, x1)⇒ Buys(x2)

MarketTo(+x)⇒ Buys(x)

The weight of the first formula represents how strongly x1 influences x2, and the
weight of the second formula represents how strongly users are influenced by mar-
keting. In addition, the model includes the unit clause Buys(x) with a negative
weight, representing the fact that most users do not buy most products. The final
model is very similar to that of Domingos and Richardson [8] and yields compa-
rable results, but Markov logic makes it much easier to specify. Unlike previous
hand-coded models, our MLDN can be easily extended to incorporate customer
and product attributes, purchase history information, multiple types of relationships,
products, actors in the network, marketing actions, etc. Doing so is a direction for
future work. See Nath and Domingos [25] for additional details.

5.8 The Alchemy System

The inference and learning algorithms described in the previous sections are pub-
licly available in the open-source Alchemy system [17]. Alchemy makes it possi-
ble to define sophisticated probabilistic models over relational domains with a few
formulas, learn them from data, and use them for prediction, understanding, etc.
From the user’s point of view, Alchemy makes it easier and quicker to develop
link-mining applications by taking advantage of the Markov logic language and the
existing library of algorithms for it. From the researcher’s point of view, Alchemy
makes it possible to easily integrate new algorithms with a full complement of other
algorithms that support them or make use of them, and to make the new algorithms
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available for a wide variety of applications without having to target each one
individually.

Alchemy can be viewed as a declarative programming language akin to Prolog,
but with a number of key differences: the underlying inference mechanism is model
checking instead of theorem proving; the full syntax of first-order logic is allowed,
rather than just Horn clauses; and, most importantly, the ability to handle uncertainty
and learn from data is already built in. Table 5.6 compares Alchemy with Prolog and
BUGS [22], one of the most popular toolkits for Bayesian modeling and inference.

Table 5.6 A comparison of Alchemy, Prolog, and BUGS

Aspect Alchemy Prolog BUGS

Representation First-order logic +Markov nets Horn clauses Bayes nets
Inference SAT, MCMC, lifted BP Theorem proving MCMC
Learning Parameters and structure No Parameters
Uncertainty Yes No Yes
Relational Yes Yes No

5.9 Conclusion and Directions for Future Research

Markov logic offers a simple yet powerful representation for link mining problems.
Since it generalizes first-order logic, Markov logic can easily model the full rela-
tional structure of link mining problems, including multiple relations and attributes
of different types and arities, relational concepts such as transitivity, and background
knowledge in first-order logic. And since it generalizes probabilistic graphical mod-
els, Markov logic can efficiently represent uncertainty in the attributes, links, cluster
memberships, etc., required by most link mining applications.

The specification of standard link mining problems in Markov logic is remark-
ably compact, and the open-source Alchemy system (available at alchemy.cs.wash-
ington.edu) provides a powerful set of algorithms for solving them. We hope that
Markov logic and Alchemy will be of use to link mining researchers and practi-
tioners who wish to have the full spectrum of logical and statistical inference and
learning techniques at their disposal, without having to develop every piece them-
selves. More details on Markov logic and its applications can be found in Domingos
and Lowd [7].

Directions for future research in Markov logic include further increasing the scal-
ability, robustness and ease of use of the algorithms, applying it to new link mining
problems, developing new capabilities, etc.
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Chapter 6
Understanding Group Structures and Properties
in Social Media

Lei Tang and Huan Liu

Abstract The rapid growth of social networking sites enables people to connect to
each other more conveniently than ever. With easy-to-use social media, people con-
tribute and consume contents, leading to a new form of human interaction and the
emergence of online collective behavior. In this chapter, we aim to understand group
structures and properties by extracting and profiling communities in social media.
We present some challenges of community detection in social media. A prominent
one is that networks in social media are often heterogeneous. We introduce two types
of heterogeneity presented in online social networks and elaborate corresponding
community detection approaches for each type, respectively. Social media provides
not only interaction information but also textual and tag data. This variety of data
can be exploited to profile individual groups in understanding group formation and
relationships. We also suggest some future work in understanding group structures
and properties.

6.1 Introduction

Social media such as Facebook, MySpace, Twitter, and BlogSpot facilitates people
of all walks of life to express their thoughts, voice their opinions, and connect to
each other anytime and anywhere. For instance, popular content-sharing sites like
Del.icio.us, Flickr, and YouTube allow users to upload, tag, and comment different
types of contents (bookmarks, photos, videos). Users registered at these sites can
also become friends, a fan, or a follower of others. Social media offers rich informa-
tion of human interaction and collective behavior in a much larger scale (hundreds
of thousands or millions of actors). It is gaining increasing attention across various
disciplines including sociology, behavior science, anthropology, computer science,
epidemics, economics, marketing business, to name a few.
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With the expanded use of Web and social media, virtual communities and online
interactions have become a vital part of human experience. Members of virtual
communities tend to share similar interests or topics and connect to each other in
a community more frequently than with those outside the community. For exam-
ple, there can be two groups browsing news at a Web site, say digg.com: one is
interested in topics related to Meteorology, while the other in Politics; A blogger
(say the owner of http://hunch.net/ ) who publishes blog posts actively on “machine
learning” often has links on his/her blog site to other bloggers who concentrate
on “machine learning” as well. It would be interesting to find these like-minded
individuals for developing many other applications to enhance personal experi-
ence or to improve business intelligence. In this work, we focus on communities
(or equivalently groups) in social media. There is a wide range of applications of
discovering groups (a.k.a. community detection) based on the interactions among
actors and capturing group properties via shared topics, including visualization [8],
recommendation and classification [18, 19], influence study [1], direct marketing,
group tracking, and recommendation.

Community detection is a classical task in social network analysis. However,
some new features presented in networks of social media entail novel solutions to
handle online communities.

– Heterogeneity. Networks in social media tend to involve multiple types of entities
or interactions. For instance, in content-sharing sites like Flickr and YouTube,
multiple types of entities: users, tags, comments, and contents are intertwined
with each other. Sometimes, users at the same social network site can interact
with each other in various forms, leading to heterogeneous types of interactions
between them. It is intriguing to explore whether or not heterogeneous informa-
tion can help identify communities. It is also challenging to effectively fuse these
heterogeneous types of information.

– Large-Scale Networks. Networks in social media are typically in a much larger
scale than those in traditional social network analysis. Traditional social network
analysis relies on circulation of questionnaires or surveys to collect interaction
information of human subjects, limiting the scale of analysis to hundreds of
actors mostly. Hence, scalability is seldom a focus there. Networks in social
media, on the contrary, involve a much larger number of actors, which presents a
challenge of scalability. In addition, large-scale networks yield similar patterns,
such as power-law distribution for node degrees and small-world effect [3]. It is
yet unclear how these patterns can help or guide data mining tasks.

– Collective Intelligence. In social media, crowd wisdom, in forms of tags and
comments, is often available. Is it possible to employ collective intelligence to
help understand group structures and properties? For instance, how to charac-
terize a group? How to differentiate a group from others in social media? What
are potential causes that lead some users to form a community? With abounding
groups in social media, how can we understand the relationship among them?

– Evolution. Each day in social media, new users join the network and new connec-
tions occur between existing members, while some existing ones leave or become
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dormant. How can we capture the dynamics of individuals in networks? Can we
find the members that act like the backbone of communities? The group inter-
ests might change as well. How can we update the group interests and relations
accordingly as information evolves?

Given the features above, we will mainly discuss two research issues concern-
ing communities in social media: (1) identifying communities in social media via
the readily- available interaction information; and (2) profiling groups dynamically
using descriptive tags and taxonomy adaptation. The two research tasks are highly
related to each other. The first task identifies groups, serving as the basis for the
second one; and the second task helps understand the formation of identified groups
and unravel properties why users join together to form a group. In the following
section, we first introduce heterogeneous networks in social media and define the
problems of interest and motivations. We will then elucidate the technical details
with challenges and solutions for both tasks in the subsequent sections.

6.2 Heterogeneous Networks in Social Media

There are two types of heterogeneous networks that demand special attention. We
first illustrate the two types and then expound the necessity for considering hetero-
geneity in community detection.

6.2.1 Heterogeneous Networks

With social media, people can connect to each other more conveniently than ever. In
some social networking sites, entities other than human beings can also be involved.
For instance, in YouTube, a user can upload a video and another user can tag it.
In other words, the users, videos, and tags are weaved into the same network. The
“actors” in the network are not at all homogeneous. Furthermore, examining activi-
ties of users, we can observe different interaction networks between the same set of
actors. Take YouTube again as an example. A user can become a friend of another
user’s; he can also subscribe to another user. The existence of different relations
suggests that the interactions between actors are heterogeneous. Networks involv-
ing heterogeneous actors or interactions are referred as heterogeneous networks.
Accordingly, heterogeneous networks can be categorized in two different types:

– Multi-mode Networks [22]. A multi-mode network involves heterogeneous
actors. Each mode represents one type of entity. For instance, in the YouTube
example above, a three-mode network can be constructed, with videos, tags, and
users each representing a mode, as seen in Fig. 6.1. There are disparate interac-
tions among the three types of entities: users can upload videos. They can also
provide tags for some videos. Intuitively, two users contributing similar videos
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Fig. 6.1 A multi-mode network in YouTube

or tags are likely to share interests. Videos sharing similar tags or users are more
likely to be related. Note that in the network, both tags and videos are also consid-
ered as “actors,” though users are probably the major mode under consideration.

Other domains involving networks or interactions also encounter multi-mode
networks. An example of multi-mode network is academic publications as shown
in Fig. 6.2. Various kinds of entities (researchers, conferences/journals, papers,
words) are considered. Scientific literature connects papers by citations; papers
are published at different places (conferences, journals, workshops, thesis, etc.);
and researchers are connected to papers through authorship. Some might relate
to each other by serving simultaneously as journal editors or on conference pro-
gram committees. Moreover, each paper can focus on different topics, which
are represented by words. Words are associated to each other based on seman-
tics. At the same time, papers connect to different conferences, journals (venues
for publication). In the network, there are multiple types of entities. And enti-
ties relate to others (either the same type or different types) through different
links.

Fig. 6.2 A multi-mode network in academia

– Multi-dimensional Networks [20, 23]. A multi-dimensional network has multi-
ple types of interactions between the same set of users. Each dimension of the
network represents one type of activity between users. For instance, in Fig. 6.3,
at popular photo and video sharing sites (e.g., Flickr and YouTube), a user can
connect to his friends through email invitation or the provided “add as contacts”
function; users can also tag/comment on the social contents like photos and
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Fig. 6.3 An example of multi-dimensional network

videos; a user at YouTube can respond to another user by uploading a video;
and a user can also become a fan of another user by subscription to the user’s
contributions of social contents. A network among these users can be constructed
based on each form of activity, in which each dimension represents one facet of
diverse interaction.

Actually, directed networks can be considered as a special case of multi-
dimensional network. Take email communications as an example. People can
play two different roles in email communications: senders and receivers. These
two roles are not interchangeable. Spammers send an overwhelming number of
emails to normal users but seldom receive responses from them. The sender
and receiver roles essentially represent two different interaction patterns. A
two-dimensional network can be constructed to capture the roles of senders and
receivers. In the first dimension, two actors are deemed related if they both send
emails to the same person; in the other dimension, two actors interact if they both
receive emails from another actor. A similar idea is also adopted as “hubs” and
“authorities” on Web pages [10].

In this chapter, we do not use the notion of multi-relational network, as “multi-
relational” has been used with different connotations depending on the domains.
For example, multi-relational data mining [4], originating from the database field,
focuses on data mining tasks with multiple relational tables. This concept can be
extended to networks as well. One special case is that, each table is considered as
interactions of two types of entities, leading to a multi-mode network. Meanwhile,
social scientists [27] use multi-relational network for a different meaning. A multi-
relational network is a network in which the connections (edges) between actors
represent different type of relations, e.g., father-of, wife-of. If each type of interac-
tion in a multi-dimensional network represents one relation, the multi-dimensional
network is equivalent to a multi-relational network.

Note that the two types of heterogeneous networks (multi-mode and multi-
dimensional) mentioned above are not exclusive. A complicated network can be
both multi-mode and multi-dimensional at the same time. As presented later, tech-
niques to address these two types of networks can be fused together for community
discovery.
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6.2.2 Motivations to Study Network Heterogeneity

Social media offers an easily accessible platform for diverse online social activities
and also introduces heterogeneity in networks. Thus, it calls for solutions to extract
communities in heterogeneous networks, which will be covered in the next section.
However, it remains unanswered why one cannot reduce a heterogeneous network
to several homogeneous ones (i.e., one mode or one dimension) for investigation.

The reason is that the interaction information in one mode or one dimension
might be too noisy to detect meaningful communities. For instance, in the YouTube
example in Fig. 6.1, it seems acceptable if we only consider the user mode. In other
words, just study the friendship network. On the one hand, some users might not
have any online friends either because they are too introvert to talk to other online
users, or because they just join the network and are not ready for or not interested
in connections. On the other hand, some users might abuse connections, since it
is relatively easy to make connections in social media compared with the physical
world. As mentioned in [18], a user in Flickr can have thousands of friends. This
can hardly be true in the real world. It might be the case that two online users get
connected but they never talk to each other. Thus, these online connections of one
mode or one dimension can hardly paint a true picture of what is happening.

A single type of interaction provides limited (often sparse) information about the
community membership of online users. Fortunately, social media provides more
than just a single friendship network. A user might engage in other forms of activ-
ities besides connecting to friends. It is helpful to utilize information from other
modes or dimensions for more effective community detection. It is empirically veri-
fied that communities extracted using multi-mode or multi-dimensional information
are more accurate and robust [23].

6.3 Community Extraction in Heterogeneous Networks

We first formulate the community detection problems for multi-mode networks and
multi-dimensional networks, respectively; and then present viable solutions and
their connections.

6.3.1 Multi-mode Networks

Given an m-mode network with m types of actors

Xi =
{

xi
1, xi

2, · · · , xi
ni

}
i = 1, · · · ,m

where ni is the number of actors for Xi , we aim to find community structures in each
mode. Let Ri, j ∈ R

ni×n j denote the interaction between two modes of actors Xi and
X j , ki and k j denote the number of latent communities for Xi and X j , respectively
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Table 6.1 Notations
Symbol Representation

m number of modes in a multi-mode network
ni number of actors in mode i
ki number of communities at mode i
Ri, j interaction matrix between modes i and j
Ci community indicator matrix of mode i
Ai, j group interaction density between modes i and j
ci

st the (s, t)th entry of Ci

R a multi-dimensional network
Rd the dth dimension of multi-dimensional network
n number of actors within a multi-dimensional network
d the dimensionality of a multi-dimensional network
k number of communities within a network
C the community indicator matrix

(Table 6.1). The interactions between actors can be approximated by the interactions
between groups in the following form [12]:

Ri, j ≈ Ci Ai, j CT
j ,

where Ci ∈ {0, 1}ni×ki denotes some latent cluster membership for Xi , Ai, j the
group interaction, and T the transpose of a matrix. In other words, the group iden-
tity determines how two actors interact, essentially making a similar assumption
as that of block models [17]. The difference is that block models deal with the
problem from a probabilistic aspect and concentrate on one-mode or two-mode
networks. Here we try to identify the block structure of multi-mode networks via
matrix approximation:

min
∑

1≤i< j≤m

wi j‖Ri, j − Ci Ai, j C
T
j ‖2F , (6.1)

s.t. Ci ∈ {0, 1}ni×ki i = 1, 2, . . . ,m, (6.2)
ki∑

t=1

ci
st = 1, s = 1, 2, . . . , ni , i = 1, 2, . . . ,m, (6.3)

where wi j are the weights associated with different interactions and ci
st the (s, t)th

entry of Ci .
The constraints in (6.3) force each row of the indicator matrix to have only one

entry being 1. That is, each actor belongs to only one community. Unfortunately, the
discreteness of the constraints in (6.2) makes the problem NP-hard. A strategy that
has been well studied in spectral clustering is to allow the cluster indicator matrix
to be continuous and relax the hard clustering constraint as follows:

CT
i Ci = Iki , i = 1, 2, . . . ,m. (6.4)
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This continuous approximation of Ci can be considered as a low-dimensional
embedding such that the community structure is more prominent in these dimen-
sions. Consequently, the problem can be reformulated as

minC, A

∑

1≤i< j≤m

wi j‖Ri, j − Ci Ai, j CT
j ‖2F (6.5)

s.t. CT
i Ci = Iki , i = 1, 2, . . . ,m. (6.6)

Since the solution of Ci of the above formulation is continuous, a post-processing
step is required to obtain the disjoint partition of actors. A commonly used technique
is to treat each column of Ci as features and then conduct k-means clustering to
obtain discrete assignment of clusters [13]. Below, we briefly describe the compu-
tation of Ai, j and Ci in (6.5).

Note that the problem in (6.5) is too complicated to derive a closed-form solution.
However, it can be solved iteratively. First, we show that Ai, j has a closed-form
solution when Ci is fixed. Then, we plug in the optimal Ai, j and compute Ci via
alternating optimization. Basically, fix the community indicator at all other modes
while computing the community indicator Ci at mode i . We only include the key
proof here due to the space limit. Please refer to [12, 22] for details.

Theorem 1 Given Ci and C j , the optimal group interaction matrix Ai, j can be
calculated as

Ai, j = CT
i Ri, j C j . (6.7)

Proof Since Ai, j appears only in a single term, we can focus on the term to optimize
Ai, j .

‖Ri, j − Ci Ai, j C
T
j ‖2F

= tr

[(
Ri, j − Ci Ai, j C

T
j

) (
Ri, j − Ci Ai, j C

T
j

)T
]

= tr
[

Ri, j RT
i, j − 2Ci Ai, j C

T
j RT

i, j + Ai, j AT
i, j

]

The second equation is obtained based on the property that tr(AB) = tr(B A) and
column orthogonality of Ci and C j . Setting the derivative with respect to Ai, j to
zero, we have Ai, j = CT

i Ri, j C j . The proof is completed. �
Given the optimal Ai, j as in (6.7), it can be verified that

‖Ri, j − Ci Ai, j C
T
j ‖2F = ‖Ri, j‖2F − ‖CT

i Ri, j C j‖2F . (6.8)

Since ‖Ri, j‖2F in (6.8) are constants, we can transform the formulation in Eq. (6.5)
into the following objective:
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max
m∑

1≤i< j≤m

wi, j‖CT
i Ri, j C j‖2F (6.9)

s.t. CT
i Ci = Iki , i = 1, 2, . . . ,m (6.10)

Note that Ci is interrelated with C j ( j �= i). There is no closed-form solution in
general. However, given C j ( j �= i), the optimal Ci can be computed as follows:

Theorem 2 Given C j ( j �= i), Ci can be computed as the top left singular vectors
of the matrix Pi concatenated by the following matrices in column-wise:

Pi =
[{√

wi j Ri, j C j
}

i< j ,
{√

wki RT
k,i Ck

}

k<i

]
. (6.11)

Proof We only focus on those terms in the objective involving Ci .

L =
∑

i< j

wi j‖CT
i Ri, j C j‖2F +

∑

k<i

wki‖CT
k Rk,i Ci‖2F

=
∑

i< j

wi j tr
(

CT
i Ri, j C j C

T
j RT

i, j Ci

)
+
∑

k<i

wki tr
(

CT
i RT

k,i CkCT
k Rk,i Ci

)

= tr

⎡

⎣CT
i

⎛

⎝
∑

i< j

wi j Ri, j C j C
T
j RT

i, j +
∑

k<i

wki RT
k,i CkCT

k Rk,i

⎞

⎠Ci

⎤

⎦

= tr
(

CT
i Mi Ci

)
,

where Mi is defined as

Mi =
∑

i< j

wi j Ri, j C j C
T
j RT

i, j +
∑

k<i

wki RT
k,i CkCT

k Rk,i . (6.12)

So the problem boils down to a well-defined max-trace problem with orthogonality
constraints. The community indicator matrix Ci has a closed-form solution, which
corresponds to the subspace spanned by the top ki eigenvectors of Mi . Note that Mi

is normally a dense ni × ni matrix. Direct calculation of Mi and its eigenvectors is
expensive if ni is huge (which is typically true in social media). However, Mi can
be written as

Mi = Pi PT
i , (6.13)

where Pi is defined as in (6.11). Thus the optimal Ci , which corresponds to the top
eigenvectors of Mi can be computed as the top left singular vectors of Pi . Note that
the ordering of columns in Pi does not affect the final solution. �

As can be seen in (6.11), the clustering results of interacted entities essentially
form weighted features for clustering of the i th mode. The matrix Mi , being the
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outer product of Pi , acts like a similarity matrix for clustering. Based on Theo-
rem 2, we can update the cluster indicator matrix iteratively based on the “attributes”
obtained from the clustering results of related entities.

Once the approximate cluster indicator matrix Ci is computed, k-means can be
applied to obtain the discrete assignment of communities for actors at each mode.
The overall description of the algorithm is presented in Fig. 6.4. In the algorithm,
we specify the objective to be calculated via (6.9), as the direct calculation of the
original formation in (6.5) usually requires computation of dense matrices, which is
not applicable for large-scale multi-mode networks.

Fig. 6.4 Algorithm for community extraction in multi-mode networks

6.3.2 Multi-dimensional Networks

In a multi-dimensional network, there are multiple dimensions of interactions
between the same set of users. A latent community structure in social media exists
among these actors, indicating various interactions along different dimensions. The
goal of community extraction in a multi-dimensional network is to infer the shared
community structure. A d-dimensional network is represented as

R = {R1, R2, . . . , Rd}.

Ri represents the interactions among actors in the i th dimension. For simplicity, we
assume the interaction matrix Ri is symmetric. We use C ∈ {0, 1}n×k to denote the
community membership of each actor.

Since the goal of community extraction in multi-dimensional networks is to iden-
tify a shared community structure that explains the interaction in each dimension,
one straightforward approach is to average the interaction in each dimension, and
treat it as a normal single-dimensional network. Then, any community extraction
methods proposed for networks or graphs can be applied. This simple averaging
approach becomes problematic if the interaction in each dimension is not directly
comparable. For example, it can be the case that users interact with each other fre-
quently in one dimension (say, leave some comments on friend’s photos), whereas
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talk to each other less frequently in another dimension (say, sending emails in
Facebook). Averaging the two types of interaction might misrepresent the hidden
community information beneath the latter dimension with less frequent interactions.
One way to alleviate this problem is to assign different weights for each dimension.
Unfortunately, it is not an easy task to assign appropriate weights for effective com-
munity extraction.

Another variant is to optimize certain averaged clustering criteria. Let Qi (C)

denote the cost of community structure C on the i th dimension of interaction Ri .
We list some representative criteria in existing body of literature as follows:

– Block model approximation [28] minimizes the divergence of the interaction
matrix and block model approximation:

min Q = �
(

R;CT ΛC
)

(6.14)

where � is a loss function to measure the difference of two matrices, and Λ a
diagonal matrix roughly representing the within-group interaction density.

– Spectral clustering [13] minimizes the following cost function

min Q = tr
(

CT LC
)
, (6.15)

where L is the graph Laplacian.
– Modularity maximization [15] maximizes the modularity of a community assign-

ment:

max Q = tr
(

CT BC
)
, (6.16)

where B is a modularity matrix.

Given a multi-dimensional network, we can optimize the following cost function,

min
C

d∑

i=1

wi Qi (C). (6.17)

The weighted optimization criterion with graph Laplacian and random walk inter-
pretation are presented in [29]. Weighted modularity maximization is explored
in [23] as a baseline approach.

The drawback of the aforementioned two approaches (averaging network inter-
actions or minimize average cost) is that they can be sensitive to noisy interactions.
Assigning proper weights can help alleviate the problem, but it is equally, if not
more, difficult to choose a good heuristic of weighting scheme. Instead, an alter-
native paradigm based on structural features is proposed in [23] to overcome these
disadvantages. The basic idea is that the community structure extracted from each
dimension of the network should be similar. Hence, we can extract the “rough”
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community structure at each dimension, and then integrate them all to find out the
shared community structure. Thus, the paradigm consists of two phases: (i) struc-
tural feature extraction from each dimension and (ii) cross-dimension integration.

– Phase I: Structural Feature Extraction Structural features, which are indicative
of some community structure, are extracted based on network connectivity. Any
methods finding out a community assignment can be used to extract structural
features. Note that finding out a discrete assignment of clusters with respect to the
criteria in (6.14), (6.15), and (6.16) is NP-complete. Commonly used algorithms
are very sensitive to network topology [7] and suffer from local optima. In prac-
tice, some approximation scheme of the discrete assignment is often exploited.

One widely used relaxation, as we have done in the previous section, is to
allow C to be continuous while satisfying certain orthogonal constraints (i.e.,
CT C = Ik). This relaxation results in an approximation of C which can be con-
sidered as a lower dimensional embedding that captures the community structure.
The optimal C typically corresponds to the top eigenvectors of a certain matrix.
This relaxation is adopted in [15] for modularity maximization and many spectral
clustering approaches [13]. Note that after relaxation, the obtained community
indicator matrix C is typically globally optimal with respect to certain criteria.
This avoids the randomness of a discrete assignment due to the noise in network
connections or algorithm initialization. Hence, structural feature extraction based
on relaxed community indicator is a more favorable solution. Networks in social
media are very noisy. Extracting some prominent structural features indeed helps
remove the noise, enabling more accurate community identification in the second
stage.

– Phase II: Cross-Dimension Integration Assuming a latent community structure
is shared across dimensions in a multi-dimensional network, we expect that the
extracted structural features to be “similar.” However, dissimilar structural fea-
ture values do not necessarily indicate that the corresponding community struc-
tures are different as an orthogonal transformation or reordering of columns in C
can be “equivalent” solutions [23]. Instead, we expect the structural features of
different dimensions to be highly correlated after certain transformation. Thus,
the integration boils down to finding transformations that can be applied to the
extracted structural features to maximize the correlation.

To capture the correlations between multiple sets of variables (generalized),
canonical correlation analysis (CCA) [9] is a standard statistical technique. CCA
attempts to find a linear transformation for each set of variables such that the
pairwise correlations are maximized. It has been widely used to integrate infor-
mation from multiple different sources or views [6, 16]. Here we briefly illustrate
one scheme of generalized CCA that turns out to equal to principal component
analysis (PCA) under certain constraints.

Let Ci ∈ Rn×�i denote the �i structural features extracted from the i th dimen-
sion of the network, and wi ∈ R

�i be the linear transformation applied to the
structural features of network dimension i . The correlation between two dimen-
sions after transformation is
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(Ciwi )
T (C jw j ) = wT

i

(
CT

i C j

)
w j = wT

i Oi jw j ,

with Oi j = CT
i C j representing the covariance between the structural features

of the i th and the j th dimensions. One scheme of generalized CCA attempts to
maximize the summation of pairwise correlations in the following form:

max
d∑

i=1

d∑

j=1

wT
i Oi jw j (6.18)

s.t.
d∑

i=1

wT
i Oiiwi = 1. (6.19)

Here, the objective in (6.18) is to maximize the pairwise correlations; and the
constraints in (6.19) confine the scale of transformation. Using standard Lagrange
multiplier and setting the derivatives respect to wi to zero, we obtain the follow-
ing (where λ is a Lagrange multiplier):

⎡

⎢
⎢
⎢
⎣

O11 O12 · · · O1d

O21 O22 · · · O2d
...

...
. . .

...

Od1 Od2 · · · Odd

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

w1
w2
...

wd

⎤

⎥
⎥
⎥
⎦
= λ

⎡

⎢
⎢
⎢
⎣

O11 0 · · · 0
0 O22 · · · 0
...

...
. . .

...

0 0 · · · Odd

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

w1
w2
...

wd

⎤

⎥
⎥
⎥
⎦

(6.20)

Recall that our structural features extracted from each dimension satisfy CT
i Ci =

I . Thus, the matrix diag(O11, O22, . . . , Odd) in (6.20) becomes an identity
matrix. Hence w = [w1, w2, · · · , wd ]T corresponds the top eigenvector of the
full covariance matrix on the left-hand side in (6.20). This essentially equals to
PCA applied to data of the following form:

X = [C1,C2, . . . ,Cd ]. (6.21)

After the transformation w to the structural feature sets, the corresponding com-
munity at each dimension get aligned with each other. In order to partition the
actors into k disjoint communities, we can extract the top k − 1 dimensions such
that the community structure is most prominent. Let X = U DV T be the SVD
of X . It follows that the top (k − 1) vectors of U are the lower dimensional
embedding.

In summary, to handle multiple dimensions of network interaction, we can first
extract structural features from each dimension. Then, we concatenate all the struc-
tural features and perform PCA to find out the low-dimensional embedding. Based
on the embedding, k-means can be applied to find out the discrete community
assignment. The detailed algorithm is summarized in Fig. 6.5.
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Fig. 6.5 Algorithm for community extraction in multi-dimensional networks

Different from the two alternatives (average interaction or average criteria to
optimize), the proposed approach is more robust to noisy interactions in multi-
dimensional networks [23]. Moreover, this scheme does not require any weighting
scheme for real-world deployment.

6.3.3 Connections Between Multi-mode and Multi-dimensional
Networks

Comparing the algorithms for multi-mode networks and multi-dimensional net-
works, we can find a common component: extract structural features and con-
catenate them to form a feature-based data set of actors, and then apply SVD to
obtain the lower dimensional embedding (Steps 4 and 5 in Fig. 6.4 and Steps 2–4
in Fig. 6.5). The basic scheme is to convert the network interactions into features.
This scheme can work not only for community identification but also for relational
learning and behavior prediction [18].

A social media network can be both multi-mode and multi-dimensional. One
can combine the two algorithms to handle multi-mode and multi-dimensional chal-
lenges. The combination is straightforward: if there are within-mode interactions
that are multi-dimensional, we can simply append to Pi in (6.11) with some struc-
tural features that are indicative of the community structure. That is,

Pi =
[{√

wi j Ri, j C j
}

i< j ,
{√

wki RT
k,i Ck

}

k<i
, {Cd

i }
]
, (6.22)

where Cd
i denotes the structural features extracted from dth dimension of interac-

tion in the i th mode. In this way the presented algorithm is able to handle diverse
heterogeneous networks.

6.4 Understanding Groups

In earlier sections, we concentrate on group structures. That is, how to extract groups
from network topology. Extracting groups is the first step for further analysis to
answer questions such as why are these people connected to each other? and what
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is the relationship between different groups? In this section, we seek to capture
group profiles in terms of topics or interests they share [24]. This helps understand
group formation as well as other group related task analysis. As the total number
of groups’ interests can be huge and might change over time, a static group profile
cannot keep pace with an evolving environment. Therefore, online group profiling
based on topic taxonomy [21] is proposed to serve the need.

6.4.1 Group Profiling

While a large body of work has been devoted to discover groups based on network
topology, few systematically delve into the extracted groups to understand the for-
mation of a group. Some fundamental questions remain unaddressed:

What is the particular reason that binds the group members together?
How to interpret and understand a social structure emanated from a network?

Some work attempts to understand the group formation based on statistical struc-
tural analysis. Backstrom et al. [2] studied prominent online groups in the digital
domain, aiming at answering some basic questions about the evolution of groups,
like what are the structural features that influence whether individuals will join
communities. They found that the number of friends in a group is the most impor-
tant factor to determine whether a new user would join the group. This result is
interesting, though not surprising. It provides a global level of structural analysis to
help understand how communities attract new members. However, more efforts are
required to understand the formation of a particular group.

According to the concept of Homophily [14], a connection occurs at a higher rate
between similar people than dissimilar people. Homophily is one of the first char-
acteristics studied by early social science researchers and holds for a wide variety
of relationships [14]. Homophily is also observed in social media [5, 26]. In order
to understand the formation of a group, the inverse problem can be investigated:
Given a group of users, can we figure out why they are connected? What are their
shared similarities? Group Profiling [24], by extracting shared attributes of group
members, is one approach proposed to address the problem.

Besides understanding social structures, group profiling also helps for network
visualization and navigation. It has potential applications for event alarming, direct
marketing, or group tracking. As for direct marketing, it is possible that the online
consumers of products naturally form several groups, and each group posts different
comments and opinions on the product. If a profile can be constructed for each
group, the company can design new products accordingly based on the feedback of
various groups. Group profiles can be also used to connect dots on the Web. It is
noticed that an online network (e.g., blogosphere) can be divided into three regions:
singletons who do not interact with others, isolated communities, and a giant con-
nected component [11]. Isolated communities actually occupy a very stable portion
of the entire network, and the likelihood for two isolated communities to merge is
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very low as the network evolves. If group profiles are available, it is possible for one
group or a singleton to find other similar groups and make connections of segregated
groups of similar interests.

A set of topics can be used to describe a group. Since a group consists of people
with shared interests, one intuitive way of group profiling is to clip a group with
some topics shared by most members in the group. Luckily, social media provides
not only network connectivity but also textual information. For instance, in blo-
gosphere, bloggers upload blog posts; in content-sharing sites like Digg.com and
Del.icio.us, users post news or bookmarks. These content information essentially
represents the latent interests of individuals. Moreover, users also provide tags on
the shared content. These tags can serve as topics.

In order to achieve effective group profiling, one straightforward approach is
aggregation. For instance, if a tag is commonly used by the majority of group mem-
bers, then the tags with highest frequency can be used to describe the group. This
technique is widely used to construct tag clouds to capture the topic trend of a social
media site. However, as pointed out in [24], aggregation can lead to selection of
irrelevant tags for a group, especially those popular tags. This is even worse if the
topics are extracted from raw text such as blog posts, comments, and status updates.
Instead, to find out the description of a group, differentiation-based method can be
exploited. That is, we can treat the group as a positive class, and the remaining actors
in the network as a negative class. Then, only those features that occur frequently
in the group while rarely outside the group are selected. More interestingly, it is
empirically shown that by comparing the group with its neighboring actors (those
actors outside the group but connecting to at least one member in the group), the
extracted features are equivalently informative. Essentially, we can consider the
group as a unit and take an egocentric view. The group profiles can be extracted
by differentiate the group from their friends (denoted as ego-differentiation).

Table 6.2 shows one example of profiles extracted based on different strategies
on Blythedoll group1 of over 2000 members in a popular blog site LiveJournal.2

Blythedoll was first created in 1972 by US toy company Kenner, later it spread
out to the world. Takara, a Japanese company, is one of the most famous pro-
ducers. As seen in the table, the aggregation-based method tends to select some
popular interests such as music, photography, reading, and cats. On the contrary,
differentiation-based methods select interests that are more descriptive. This pattern
is more observable when the profiles are constructed from individual blog posts.
Aggregation reports a profile that is hardly meaningful, while differentiation still
works reasonably well. Even if we take an egocentric view for the differentiation-
based method, a similar result is observed.

1 http://community.livejournal.com/blythedoll/profile
2 http://www.livejournal.com/

http://community.livejournal.com/blythedoll/profile
http://www.livejournal.com/
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Table 6.2 Profiles constructed by various strategies for Blythedoll group in LiveJournal

Profiles based on individual interests

Aggregation Differentiation Ego-differentiation

blythe blythe blythe
photography dolls dolls
sewing sewing sewing
japan japan blythe dolls
dolls blythe dolls super dollfie
cats super dollfie japan
art hello kitty hello kitty
music knitting toys
reading toys knitting
fashion junko mizuno re-ment

Profiles based on blog posts

Aggregation Differentiation Ego-differentiation

love blythe blythe
back doll doll
ll flickr dolly
people ebay dolls
work dolls ebay
things photos sewing
thing dolly flickr
feel outfit blythes
life sell outfit
pretty vintage dollies

Each profile consists of the top 10 selected features. The
first block shows the profiles constructed based on individual
interests on user profiles and the second block based on group
members’ blog posts

6.4.2 Topic Taxonomy Adaptation

In social media, there are hundreds of thousands of online groups with diverse inter-
ests. The topics associated with different groups can be inordinate, and the total
number of topics can be huge. Moreover, the selected topics in group profiles can
be highly correlated as different users use tags or words at different granularity.
Facing a large number of topics, we need to find a more suitable representation to
understand the relationship between different groups.

Organizing the topics into a tree-structured taxonomy or hierarchy is a natural
solution, as it provides more contextual information with refined granularity com-
pared with a flat list. The left tree in Fig. 6.6 shows one simple example of a topic
taxonomy. Basically, each group is associated with a list of topics. Each topic can
be either a non-leaf (internal) node like Meteorology or Politics, or a leaf node like
Hurricane. Different groups can have shared topics. Given a topic taxonomy, it is
easy to find related or similar topics via parent, sibling, or child nodes. Taxonomies
also facilitate the visualization of relationships between different groups and the
detection of related or similar groups.
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Root

Meteorology

Hurricane
Hurricane

Politics

Root

Meteorology Politics

Fig. 6.6 “Hurricane” example

A topic taxonomy can be provided by human beings based on topic semantics or
abridged from a very large taxonomy like Yahoo! or Google directory. It is a rela-
tively stable description. However, group interests develop and change. Let us look
at an example about “Hurricane” [25]. As shown in Fig. 6.6, in a conventional topic
taxonomy, the topic Hurricane is likely to locate under Meteorology and not related
to Politics. Suppose we have two groups: one is interested in Meteorology and the
other in Politics. The two groups have their own interests. One would not expect that
“Hurricane” is one of the key topics under Politics. However, in a period of time in
2005, there was a surge of documents/discussions on “Hurricane” under Politics.
Before we delve into why this happened, this example suggests the change of group
interests and the need for corresponding change of the taxonomy. This reason for
this shift is that, a good number of online documents in topic Hurricane are more
about Politics because Hurricanes “Katrina” and “Rita” in the United States in 2005
caused unprecedented damages to life and properties; and some of the damages
might be due to the faults of federal emergency management agency in preparation
for and responding to the disasters.

This example above demonstrates some inconsistency between a stagnant taxon-
omy and changing interests of an online group. Group interests might shift and the
semantics of a topic could be changed due to a recent event. To enable a topic tax-
onomy to profile the changing group interest, we need to allow the topic taxonomy
to adapt accordingly and reflect the change. The dynamic changes of semantics are
reflected in documents under each topic, just like in the hurricane example. This
observation motivates us to adjust a given topic taxonomy in a data-driven fashion.

Figure 6.7 illustrates a typical process of topic taxonomy adaption. By observ-
ing the difference between the original taxonomy and the newly generated taxon-
omy, we notice that topics can emerge and disappear for various groups. Given
recent text data (e.g., tags, blog posts, visited web pages, submitted search queries)
extracted from social media and a given topic taxonomy, we aim to automatically
find a revised taxonomy of topics (tags) that is consistent with the data and captures
dynamic group interests.

One fundamental question is how to measure the discrepancy between the seman-
tics reflected in textual contents and a topic taxonomy. While it is a thorny challenge
to quantify the discrepancy, a surrogate measure, the classification performance
based on the topic taxonomy can be calibrated. In order to obtain the classification
performance, we can exploit the content and tag information from social media. The
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Fig. 6.7 Topic taxonomy adaptation

tags provide topic information while the shared contents act like data. With a robust
hierarchical classifier built from some collected data and an existent taxonomy, new
documents can be labeled automatically by the classifier. If the label are consis-
tent with the associated tags, the taxonomy, in a sense, captures the relationship of
tags. So the corresponding classification performance based on a taxonomy is one
effective way of indirectly measuring how good a topic taxonomy is to represent
relationships of different topics. In other words, the quality of a topic taxonomy
reduces to the classification performance (e.g. recall, precision, ROC) based on the
taxonomy.

We can change the topic taxonomy via classification learning as shown in
Fig. 6.8. Suppose a topic taxonomy is constructed based on text information from
before. The taxonomy is then adapted to maximize the classification performance
on the newly arrived texts. The basic idea is, given a predefined taxonomy, a dif-
ferent hierarchy can be obtained by performing certain operations. Then, the newly
generated hierarchy is evaluated on collected shared contents with tag information.
If the taxonomy change results in a performance improvement, it is kept; otherwise,
alternative change to the original taxonomy is explored. This process is repeated
until no more change can lead to performance improvement, ending up with a new
taxonomy which acclimatizes the taxonomic semantics according to the contents.

Fig. 6.8 Taxonomy adaptation via classification learning



182 L. Tang and H. Liu

Since a topic taxonomy does not change considerably in a short time period,
we expect only a small portion of tags change their positions in the taxonomy.
Tang et al. [21, 25] propose to adapt a provided taxonomy locally according the
classification performance on novel data. Three elementary operations are defined
to change a taxonomy locally as shown in Fig. 6.9:

– Promote: roll up one node to upper level;
– Demote: push down one node to its sibling;
– Merge: merge two sibling nodes to form a super node;

1

2 3 4

5 6

42

35 6

1

72

3 45 6

1

(H1) (H2)

(H3) (H4)

2 3 4

5

6

1

Fig. 6.9 Elementary operations. H1 is the original hierarchy. H2, H3, and H4 are obtained by
performing different elementary operations. H2: promote node 6; H3: demote node 3 under node
2; and H4: merge node 3 and node 4

Since the defined local changes can be applied to any node in a taxonomy, the
total number of operations can be abundant. Generally, the nodes at higher level play
a more important role for classification. Hence, it is proposed to follow a top-down
traversal of a hierarchy to search for applicable operations [25]. It is empirically
shown that two iterations of the traversal are often sufficient to achieve a robust
taxonomy that captures the dynamic relationship between different groups.

6.5 Summary and Future Work

Social media is replete with diverse and unique information. It provides heteroge-
neous network data as well as collective wisdom in forms of user-generated contents
and tags. In this chapter, we present important research tasks and intriguing chal-
lenges with social media and elaborate issues related to the understanding of online
group structures and properties. In particular, we discuss two aspects of the problem:
(1) how to extract communities given multi-mode and multi-dimensional data and
(2) how to dynamically capture group profiles and relationships.
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The social media networks are heterogeneous: their idiosyncratic entities and
various interactions within the same network result in multi-mode and multi-
dimensional networks, respectively. Although abundant, the information can be
sparse, noisy, and partial. Therefore, special care is required to understand group
structures and properties. We present some feasible solutions to extract reliable
community structures in both types of networks. We also show that the two algo-
rithms share a common component to extract “structural features” from each mode
or dimension and then concatenate them to find some lower dimensional embed-
ding which is indicative of some community structure. This simple scheme has
been shown effective in community extraction in social media. Another task equally
important to community extraction is to capture group interests based on textual and
tag information. We describe strategies to perform effective group profiling, as well
as topic taxonomy adaptation to capture dynamic group relationship using noisy and
time-sensitive tag and content information.

This chapter has only addressed a couple of essential issues. Many research
directions are worthy pursuing in our endeavor to understand group structures and
properties in social media. We propose the following for further research:

– How can one determine the number of communities in heterogeneous networks?
In the current models, we assume the number of communities at each mode or
dimension is fixed. Some parameter-free process will be very useful to automat-
ically determine the number of communities.

– It is interesting to study communities at different degrees of granularity in hetero-
geneous networks. One possibility is to handle heterogeneity with hierarchical
clustering.

– To deal with multi-dimensional networks, our current solution is to integrate
different dimensions of interactions globally. Since it is more likely that some
groups are more involved in one dimension than in other dimensions, can we
integrate the interactions in different dimensions differently depending on dimen-
sional intensities? It is a challenge to simultaneously discover a common com-
munity structure as well as the integration scheme for each group.

– Extracting communities in dynamic heterogeneous networks demands for effec-
tive solutions. Social media is evolving continuously, newcomers joining the net-
work, extant members generating new connections or becoming dormant. It is
imperative to efficiently update the acquired community structure. It is also inter-
esting to consider the temporal change of individuals for community detection.

– The work of group profiling only employs descriptive tags and contents to profile
groups. More can be attempted for group profiling. For example, How to integrate
the differentiation-based profiling into a taxonomy? Though the current taxon-
omy representation of topics does not allow one topic to have multiple parent
nodes (topics), tags (especially those words with multiple meanings) can relate
to different parent nodes depending on the context.

– The current scheme of group profiling is separated from group detection. If the
associated tags and contents could be considered as one mode, it may be possible
to exploit the methods developed for multi-mode networks to handle joint group
detection and profiling.
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In a nutshell, social media is a rich data source of large quantity and high vari-
ety. It is a fruitful field with many great challenges for data mining. In achieving
the understanding of group structures and properties in social media, we genuinely
expect that this line of research will help identify many novel problems as well as
new solutions in understanding social media.
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Chapter 7
Time Sensitive Ranking with Application
to Publication Search

Xin Li, Bing Liu, and Philip S. Yu

Abstract Link-based ranking has contributed significantly to the success of Web
search. PageRank and HITS are the most well-known link-based ranking algo-
rithms. These algorithms are motivated by the observation that a hyperlink from
a page to another is an implicit conveyance of authority to the target page. However,
these algorithms do not consider an important dimension of search, the temporal
dimension. These techniques favor older pages because these pages have many
in-links accumulated over time. New pages, which may be of high quality, have
few or no in-links and are left behind. Research publication search has the same
problem. This project investigates the temporal aspect of search in the framework
of PageRank with application to publication search. Existing remedies to PageRank
are mostly heuristic approaches. This project proposes a principled method based
on the stationary probability distribution of the Markov chain. The new algorithm,
TS-Rank (for Time Sensitive Rank), generalizes PageRank. Methods are also pre-
sented to rank new papers that have few or no citations. The proposed methods are
evaluated empirically; the results show the proposed methods are highly effective.

7.1 Introduction

The main task of search engines is to find the most relevant and quality pages given a
user query that reflects the user’s information needs. The most successful techniques
are those that exploit the social forces of people who present information on the
Web [22]. Two most well-known techniques are PageRank [11] and HITS [28].
These techniques are motivated by the observation that a hyperlink (or simply link
for short) from a Web page to another is an implicit conveyance of authority to the
target page. Thus, a page with more in-links (links pointing to the page) is in general
of higher quality than a page with fewer in-links. These algorithms are used to find
quality pages and to rank the pages according to their quality scores.
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However, an important aspect that is not considered by these classic techniques
is the timeliness of search results. The Web is a dynamic environment. It changes
constantly. Quality pages in the past may not be quality pages now or in the future.
In this project, we study the temporal aspect of search, which is important because
users are often interested in the latest information. Apart from well-established facts
and classics, which do not change much over time, most contents on the Web change
constantly. New pages or contents are added. (Ideally) Outdated contents and pages
are deleted. However, in practice many outdated pages and links are not deleted.
This causes problems for search engines because such outdated pages can still be
ranked high due to the fact that they have existed on the Web for a long time and
have accumulated many in-links. Those high-quality new pages with the most up-
to-date information will be ranked low because they have few or no in-links. It is
thus difficult for users to find the latest information on the Web based on the current
search technology. The problem is almost the same for publication search except that
research publications and their reference lists cannot be deleted after publication.

We believe that dealing with the temporal dimension of search is of great impor-
tance to the development of future search technologies. Although it is possible that
current search engines have already considered the time in their ranking algorithms
(but kept secret), it is still important to thoroughly investigate the issue openly. Such
studies will enable both the research and industrial communities to have a better
understanding of the problems and to produce effective and principled solutions.
The resulting algorithms will help both future and current search engines. Recently,
several researchers have started to address this problem [4, 17, 36, 39]. We will
discuss them in the next section.

To understand the temporal issues better, let us analyze different kinds of Web
pages. We can coarsely classify Web pages into two types, old pages and new pages
for simplicity of explanation. Similarly, from the dimension of reputation/quality,
we coarsely divide the pages into quality pages and common pages. Roughly speak-
ing, quality pages are those pages that have a large number of in-links, i.e., perceived
by users to have authoritative contents. Common pages are those that do not have
many in-links.

Old pages: These are the pages that have appeared on the Web for a long time.
Let us first discuss those old quality pages, which can be further classified based on
the temporal dimension:

1. Old quality pages that are up to date: As the time goes by the authors of these
pages update their contents to reflect the latest developments. Such pages often
stay as quality pages, which are indicated by the fact that they keep receiving new
in-links over time (as more users and new generations of users are interested in
the topics). These pages are still valuable. PageRank is able to give them high
rank scores.

2. Old quality pages that are not up to date: These pages become outdated and
no longer represent the state of the art. They become common pages, which are
reflected by the fact that they receive fewer and fewer new in-links over time, and
some old links may also be deleted. However, if many Web users do not clean



7 Time Sensitive Ranking with Application to Publication Search 189

up their pages to delete outdated links, which are often the case, such pages can
still maintain sizeable sets of in-links. Then, they will still be ranked high by
PageRank although they may have little value at the present time.

Regarding old common pages, we can analyze them similarly:

1. Old common pages that remain common: Most pages on the Web are such pages.
Over time, they do not receive many in-links. They do not cause problem for
PageRank.

2. Old common pages that have become important: These pages were not important
in the past but as time goes by they become valuable pages. This transition can
be due to a number of reasons, such as fashion change, or quality contents being
added by the authors. Over time such pages receive more and more in-links.
PageRank is able to rank them high.

New pages: These are pages that appear on the Web recently. In general, they are
ranked low by PageRank because they have fewer or no in-links. However, some of
these pages may be of high quality, but PageRank is unable to rank them high.

In summary, for a ranking algorithm to consider the temporal dimension of
search, two problems need to be dealt with in page evaluation:

1. How to assign a lower importance score to an old quality page that is not up to
date or out of favor, but still has a sizeable set of old in-links.

2. How to assign a higher importance value to a new quality page that has few or
no in-links.

Both these cases present difficulties to the PageRank algorithm. In this project,
we attempt to deal with these problems. The key is to take time into consideration
in evaluating the quality of a page.

We investigate these problems in the context of research publication search due
to several reasons:

1. Results in the research publication domain can be objectively evaluated as we can
count the number of citations received by a paper in the “future” (represented by
test data) to see whether our evaluation is appropriate at the present time. Future
citation count of a paper is a commonly used indicator of quality and impact of
a research paper. Given a collection of papers and journals, all the information
required in evaluation is readily available. In contrast, on the Web, without a
search engine to constantly crawl the Web it is hard to know when a particular
hyperlink was installed, and when a page is created and published on the Web.
Unfortunately we do not have facilities for such crawling.

2. Concepts and entities in both domains are quite similar. Their effects and func-
tions in the two domains are also comparable. For example, a research paper
corresponds to a Web page, and a citation to a research paper corresponds to
a hyperlink to a Web page. We will discuss more similarities and also some
differences later in Section 7.6.
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3. Publication search is important and useful in its own right. With the popular-
ity of digital libraries on the Web, the ability to search for relevant and quality
publications is valuable for both research and education.

In this project, we perform a focused study of the citation-based evaluation of
research papers, which corresponds to the hyperlink-based evaluation of Web pages.
The publication time of each paper is explicitly integrated into the ranking model.
Although the time factor has been studied by several researchers, existing formula-
tions are mostly heuristic modifications of PageRank. This project proposes a prin-
cipled algorithm based on stationary probability distributions of Markov chains. The
new algorithm, called TS-Rank (for Time Sensitive Rank), generalizes PageRank. If
time is not considered in the algorithm, it reduces to PageRank. Source evaluations
are also studied to rank papers that have few or no in-links. The proposed technique
is evaluated empirically using a large publication collection of high-energy particle
physics of 9 years. The results show that the proposed method is highly effective
and outperforms the recently proposed method.

7.2 Related Work

Since PageRank [11] and HITS [28] were published, a large number of papers on
improvements, variations, and speed-up of the algorithms have appeared in the lit-
erature [1, 2, 6, 7, 10, 12, 15, 20–22, 27, 30, 32, 33, 35, 38]. Many applications of
the algorithms have also been reported, in both Web search and research publication
search, e.g., search engines, Web resource discovery [7, 13, 14], Web community
mining [23, 29], adaptive search [1], search considering both hyperlinks and page
contents [14, 26], and research paper search [24, 31, 34] and social network analy-
sis [30]. These works are still within the framework of the original formulation of
the algorithms and do not consider the temporal aspect. References [16, 35] study
the evolution of the Web and identify the same problem as we discussed above. A
number of interesting phenomena about the Web evolution are reported. However,
no technique was proposed to deal with the problem.

In recent years, several researchers have tried to deal with the temporal dimen-
sion of search and to study ways to promote new pages [4, 17, 36, 39]. Reference
[36] proposes a randomized ranking method to randomly promote some new pages
so that they can accumulate links quickly. Reference [17] uses the derivatives of
PageRank to forecast future PageRank values for new pages. These approaches are
quite different from ours, as we deal with both new and old pages and propose a
principled method that integrates time naturally within the ranking algorithm.

The most closely related works to ours are those in [4] and [39]. They both con-
sider time in the ranking algorithm directly. They make some heuristic modifications
to PageRank. For example, the recent method (called TPR) given in [39], which is
evaluated using research publications, attaches a weight to each PageRank score to
reduce the effect of old papers. The algorithm is
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P(xi ) = (1− d)+ d ×
∑

x j∈I N (xi )

w j × P(xj )

O j
, (7.1)

where

P(xi ) is the rank score of paper xi .
Oi is the number of out-links or references of the paper xj , i.e., the number of

references in the reference list.
IN(xi ) is the set of papers that cites xi , i.e., the in-links of xi .
d is a damping factor, ranging between 0 and 1, which is used in the original

PageRank equation.
wj is the weight to reduce the effect of old links (or citations). It is a function

of the time when the paper xj is published. The intuition is that a citation
occurred recently is more important than a citation occurred a longtime ago.

Equation (7.1) is the same as the PageRank equation in [11] except that wj are
added. The original PageRank algorithm was derived based on the Markov chain
and a random surfer. The PageRank value of each page is the stationary probability
that the random surfer will arrive at the page. A Markov chain is represented with
a stochastic transition matrix, which, in the context of the Web search, means that
at a particular page xj (or a state in the Markov chain), if the page xj has Oj out-
links, the sum of probabilities of following each link to go to another page (or state)
must be 1. This is true because PageRank gives each link a probability of 1/Oj

(i.e., (7.1) without wj ). Equation (7.1) does not meet this requirement because due
to the weight factor wj , the probabilities of going from one page to other pages
no longer sum up to 1. The sum is in fact wj , which is between 0 and 1. In [4],
three other modifications to PageRank were also suggested, but not fully evaluated.
Again, the modifications were ad hoc with little theoretical foundation. This project
corrects this situation and proposes a more principled approach to consider time in
the ranking algorithm naturally.

On publication search, [31] describes the CiteSeer system. CiteSeer is a popular
digital library on the Web for research publication search and citation analysis.
CiteSeer also uses PageRank and HITS algorithm in the system. It is thus able
to rank papers by either “hub” or “authority” score. Reference [31] mentions that
the temporal aspect should be considered in publication search. However, the topic
was not further investigated. A more recent report on CiteSeer is in [24]. In [34], a
ranking method called PopRank was proposed to rank objects on the Web and was
applied to publication search. However, the method does not consider time. Google
scholar1 is another publication search system, but we could not find any published
work on the ranking method used in it. There are also many other publication search

1 http://scholar.google.com

http://scholar.google.com
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(digital library) systems such as DBLP,2 NDLTD,3 NCSTRL,4 Cora,5 and CoRR.6

However, these systems only allow simple keyword search based on information
retrieval methods and/or the PageRank and HITS algorithms.

7.3 The Proposed TS-Rank

There are many factors that contribute to the ranking of research papers or
Web pages. Broadly speaking, we can group them into content-based factors and
reputation-based factors.

Content-based factors: These factors are related to the contents of research publi-
cations or Web pages that the user is seeking. In the context of research publications,
such factors may include how many user query words are contained in the paper and
how far these words are from each other. In this research, we do not focus on these
factors.

Reputation-based factors: Typically there are many relevant Web pages or
research publications based on contents. Reputations of papers help to determine
the ranking of the papers to be presented to the user. In the context of publication
search, reputation factors include the citation count of the paper, the reputation of its
authors, and the reputation of the journal or conference where the paper is published.

This work focuses on reputation-based factors and studies how the temporal
dimension may be integrated into the evaluation of the reputation of a research
paper.

We now switch to the domain of research publications (or papers) and use it as a
case study to show how the temporal dimension can help to improve search ranking.
However, most discussions below are also applicable to Web pages.

As indicated earlier, there are two main factors contributing to the reputation of
a paper:

1. The number of in-links of the paper, i.e., the number of citations that the paper
receives.

2. Source of the paper. There are two sources for each paper:

• the authors of the paper and
• the journal or the conference where the paper is published.

The reputations of these sources affect the reputation of the paper, especially
when the paper is new and has few or no citations.

There are two main timing factors related to a research paper.

2 http://www.informatik.uni-trier.de/∼ley/db/
3 http://www.ndltd.org/
4 http://www.ncstrl.org/
5 http://cora.whizbang.com/
6 http://xxx.lanl.gov/archive/cs/intro.html

http://www.informatik.uni-trier.de/$sim $ley/db/
http://www.ndltd.org/
http://www.ncstrl.org/
http://cora.whizbang.com/
http://xxx.lanl.gov/archive/cs/intro.html
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1. The publication date of the paper
2. The dates that the paper is cited by other papers, which are the publication dates

of these other papers

These timing factors are important because the user is usually interested in the
most recent research results. A paper published a longtime ago and has many cita-
tions accumulated a longtime ago may be less important than a quality paper that is
published recently with fewer citations.

Among the two factors above, the second factor is of primary importance because
it reflects the relevancy, importance, and timeliness of the paper as perceived by
other researchers. Although a paper may be published a longtime ago, if it still
receives a large number of recent citations, it is still relevant and important. How-
ever, if an old paper receives few recent citations, it is an indication that the paper
has become less important now.

Below, we derive the TS-Rank algorithm to consider the time explicitly in the
evaluation of the reputation of a paper.

7.3.1 The TS-Rank Algorithm

A simple way to consider time in ranking is to simply use only those in-links (cita-
tions) that are received by each paper recently (e.g., in a specific time window)
in the PageRank computation. All earlier citations received by each paper are dis-
carded. However, this approach is too crude as it may remove many older papers
from consideration completely because they may receive few or even no citations in
the recent time window. Although the topics of these papers may be out of fashion
or few researchers are still working them, they may still be interesting to some
users. When the user searches for such a topic, we still want those old important
papers ranked higher than those old common papers. It is thus desirable to use a
time decay function to weigh old citations less than new citations and to have this
done in a principled manner. Discarding old citations completely is not appropriate.
Furthermore, this simple method does not handle new papers that have few or no
citations. They will still be ranked low by PageRank.

We now derive the TS-Rank method. We use the Markov chain model and a
random reader to formulate the problem. The collection of all papers {x1, x2, . . .,
xn} is converted to a graph G = (V, E), where V is the set of papers and E is
the set of all directed links or edges (which are citations). In the Markov model, we
treat G as the Markov chain, each paper as a state, and each edge as a transition
from one state to another. The random reader browses and reads papers following
the references in the reference list of each paper. In the Markov model, we say that
the reader performs state transition. If we assume that the reader will follow each
reference uniformly at random, the probability of following each reference is 1/Oi ,
where Oi is the number of out-links or references of the paper. In the Markov chain,
1/Oi is the transition probability of moving from state to another state. Considering
all the states (papers) in the Markov chain, we have a transition probability matrix
of the chain, denoted by A. Each cell of the matrix A is defined as the following.
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Ai j =
⎧
⎨

⎩

1

Oi
if(i, j) ∈ E,

0 otherwise.
(7.2)

Since every paper has a reference list, the sum of all transition probabilities of
each state is 1, which means that A is the stochastic transition matrix of a Markov
chain, i.e.,

n∑

j=1

Ai j = 1, (7.3)

where n is total number of states (papers) in the chain. Even if a paper xi does not
have a reference list, we can easily make A a stochastic matrix by assuming that
xi cites every paper in the collection. As a notational convention, we use bold and
italic letters to represent matrices.

By the Ergodic theorem of Markov chains [37], a finite Markov chain defined by
the stochastic transition matrix A has a unique stationary probability distribution
if A is irreducible and aperiodic. The stationary probability distribution means that
after a series of transitions the probability of the random reader arriving at each
state will converge to a steady-state probability regardless of the choice of the initial
probability at each state. With all the steady-state probabilities of the states, we
have a steady-state probability distribution vector P (expressed as a column vector).
According to the Markov chain model, the following equation holds at the steady
state:

P = AT P . (7.4)

P is in fact the PageRank (column) vector containing all the PageRank values
of all the papers (states). The superscript T means the matrix transpose. P is the
principal eigenvector of AT with eigenvalue of 1. If we do not use matrix notation,
(7.4) is

P(xi ) =
n∑

j=1

A ji P(x j ). (7.5)

We now consider the other two conditions, irreducible and aperiodic. Irreducibil-
ity of A means that the citation graph G is strongly connected, i.e., for any pair of
vertices, u and v, there is a directed path from u to v. However, this does not hold
for our citation graph because older papers will not cite new papers. Thus there is
no way to transit from an older paper to a new paper.

To make A is irreducible, we can use a similar trick as in PageRank. We add
an artificial link (citation) from each state to every state and give each link a small
transition probability controlled by a time function f (t)(0 ≤ f (t) ≤ 1), where
t is the time difference between the current time and the time when the paper is
published. f (t) returns a probability that the reader will follow an actual link or
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citation in the paper. 1 − f (t) returns the probability that the reader will jump to a
random paper. Thus, at a particular paper xi , the random reader has two options:

1. With probability f (ti ), he randomly chooses a reference to follow
2. With probability 1− f (ti ), he jumps to a random page without a citation

The intuition here is that if the paper is published a longtime ago, the papers that
it cites are even older and are probably out of date. Then the 1− f (t) value for such
a paper should be large, which means that the reader will have a high probability
of jumping to a random paper. If a paper is new, then its 1 − f (t) value should be
small, which means that the reader will have a high probability to follow a reference
(citation) of the paper and a small probability of jumping to a random paper.

With the above augmentation, (7.5) becomes

PT (xi ) =
n∑

j=1

(
1− f (t j )

n
+ f (t j )A ji

)

PT (x j ), (7.6)

which is the TS-Rank of page xi denoted by PT . 1/n is the probability of going to a
random paper xj . Recall n is the total number of papers. In the matrix notation, we
have

P T = (F + H)T P T , (7.7)

where F and H are both n × n square matrices defined by

Fi j = 1− f (ti )

n
, (7.8)

Hi j =
⎧
⎨

⎩

f (ti )

Oi
if(i, j) ∈ E

0 otherwise
(7.9)

It is easy to show that (F+H) is a stochastic transition matrix of our augmented
citation Markov chain. Clearly, the matrix (F + H) is also irreducible because due
to the random jump links, the reader can go from any state to any state, i.e., the
graph is strongly connected. It is also aperiodic. A state in a Markov chain being
periodic essentially means that there exists a directed cycle that the chain has to
traverse. If none of the states in a Markov chain is periodic, then the chain is said
to be aperiodic. Again, due to the random jump links, the chain becomes aperiodic
because there is a direct link from any state to any state and does not have to follow
any fixed cycle. For formal definitions of both irreducible and aperiodic, please refer
to [37].

These conditions ensure that the Markov chain (defined by (F+H) has a unique
stationary probability distribution regardless of the choice of the initial probability
of the random reader being at each state. The stationary probability distribution is
the final TS-Rank (column) vector P T . P T is computed as the principal eigenvector
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of (F + H)T with eigenvalue of 1. To solve (7.7), the standard power iteration
method can be used [37].

The final issue is how to define f (t), which is application dependent. For differ-
ent applications, different functions are needed depending on how the time affects
the domains. For instance, in the collection of research papers of high-energy par-
ticle physics that we use for evaluation of this work, a new paper can receive many
citations within 3–4 months and the number of citations per month can stabilize in
less than 6 months because many journals in the field are published twice a month
or even more frequently, and the time period from peer review to publication is very
short (in terms of a few months). However, for computer science, the situation is
very different. Almost all conferences are held only once a year. The publication
cycle of journals from the beginning of peer review to the actual publication can
take a few years. Thus, it takes at least a year (usually longer) for papers to receive
sizable citations. Note that it is easy to see that if f (t) is a constant between 0 and
1 for every paper, TS-Rank becomes the original PageRank [11].

For our application, we use an exponential function for f (t) as exponential decay
is commonly used in time series analysis. The function performs quite well in our
experiments:

f (t) = 0.5t /x , (7.10)

where the decay parameter x is selected empirically. t is the difference in month
between the current time and the time when the paper is published. While the effect
of decay parameter x on the prediction results is further studied in Section 7.5.5,
we use decay parameter x = 3 in the following example to illustrate the concept.
For instance, in our training data (which is used to select the decay), the newest
papers are published in December 1999. Given x = 3, the citations occurred in
December 1999, September 1999, and June 1999 have the weights of 1, 0.5, and
0.25, respectively. The decay parameter can be tuned according to the nature of the
data set. When its value moves toward infinitely large, the weight decreases slowly
with time. It is more suitable for static domains. Similarly, if its value is close to 0,
it is more suitable for highly dynamic domains.

7.3.2 Source Evaluation

Although TS-Rank considers time, it is still insufficient as it is not applicable to new
papers (published recently) since they have few or no citations from other papers.
To assess the potential importance of such a new paper, two pieces of source infor-
mation are useful, the reputation of its authors and the reputation of the journal (or
conference) where the paper is published. We make use of TS-Rank to define these
two reputations.

Author evaluation: The reputation of an author is based on the research papers
that he/she published in the past. We compute author evaluation by averaging the
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TS-Rank values of his/her past papers. Let the papers that the author a j has pub-
lished be x1, x2, . . ., xm . The author score (Author) is computed with

Author(a j ) =
∑m

i=1 PT (xi )

m
, (7.11)

where PT (xi ) is the TS-Rank score of paper xi at the present time. Due to the use of
TS-Rank, this measure weighs recent citations of his/her papers more than old cita-
tions, which is reasonable as recent citations are more representative of the author’s
current reputation. Note that for an author who has never published a paper before,
we are unable to evaluate his/her reputation.

Journal evaluation: The evaluation of each journal bj , JournalEval (bj ), is done in
the same way as that of each author by considering papers published in the journal
in the past. A new journal is not evaluated.

Using the author and journal evaluations, we can estimate the importance of each
new paper. However, since a paper may be co-authored by a number of people, we
combine their author scores. Let the authors of the paper xi be a1, a2, . . ., ak . The
score of the paper based on author evaluation is given by

AuthorEval(xi ) =
∑k

j=1 (Author(a j ))
2

∑k
j=1 Author(a j )

. (7.12)

Clearly, there are other ways for these computations, e.g., maximum or mini-
mum. We found that this method performs quite well compared to other alternatives.

We can also combine author evaluation and journal evaluation to score each
paper. Assume that paper xi is published in journal bj . We can combine them by
using weighted average of JournalEval (bj ) and AuthorEval(xi ):

AJEval(xi ) = (JournalEval(bj ))
2 + (AuthorEval(xi ))

2

JournalEval(bj )+ AuthorEval(xi )
(7.13)

Note that after a paper has been published for a while, it is more effective to use
TS-Rank to score the paper. Author and journal evaluations are less effective. This
makes sense because after a paper has been published for some time, its citation
counts reflect the impact or importance of the paper better than its authors and
journal since author evaluation (or journal evaluation) is only an averaged result
of all the papers of the authors (or the journal).

7.3.3 The Trend Factor

TS-Rank only assesses the value of a paper at a particular time instance based on
past citations. In the time series domain, another important issue is the trend. If
we are interested in the potential value or importance of a paper in the future, e.g.,
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what is the likely importance or impact of the paper in the next year, we need to
consider trend, which is not directly measured by TS-Rank. We now introduce the
trend factor.

Continuing our previous example at the end of Section 7.3.1, for a paper xi ,
PT (xi ) already captures the importance at the end of 1999. How does the importance
change through the future year? We assume that this is reflected by the citation
change at the end of 1999. Therefore, we can find the past behavior of each paper
xi to compute the trend factor of xi , denoted by Trend(xi ). We define two time
periods, p1 and p2. p1 is the current time period (in our experiments, we use the
past 3 months) and p2 is the previous time period (i.e., the 4th, 5th, and 6th most
recent months). If the papers are too young, only 2 months of data are used. Let the
citation count in p1 for paper xi be n1 and the citation count in p2 for paper xi be
n2. The trend factor of xi is defined as

Trend(xi ) = n1/n2. (7.14)

Considering the trend factor, paper xi ’s final rank score is computed with

Trend(xi )× PT (xi ), (7.15)

where PT (xi ) is the TS-Rank value of paper xi . If a paper’s age is too young (e.g.,
less than 3 months), there is no sufficient data available to compute its trend ratio.
We only use source evaluation results to evaluate the paper.

7.4 Linear Regression

For comparison purposes, we also implemented a linear regression method. The
citation counts of each paper received in the latest time periods are used to perform
a linear regression to predict its citation count in the next time period. This predicted
citation count is used as the score of the paper. This is a reasonable method because
the predicted citation count reflects the predicted impact of the paper in the next
time period. The method is fairly straightforward and will not be discussed further.

As in TS-Rank, for new papers with few or no citations, we use author and journal
evaluations, which can be done by using actual citation counts of all papers of the
author or the journal in this case. Let the papers published by an author (a j ) be
x1, x2, . . ., xm . Author score is computed with

Author(a j ) =
∑m

i=1 count(xi )

m
(7.16)

where count(xi ) is the citation count of paper xi . The score of a paper based on
author evaluation is again given by (7.12). Journal evaluation can be done in the
same way. After they are computed, (7.13) is applied to combine their scores.
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It is important to note that the linear regression method based on raw citation
counts is not suitable for Web search due to link spamming, which is not a major
problem for research papers.

7.5 Empirical Evaluation

In this section, we evaluate the proposed techniques and compare them with
PageRank and the existing method TPR in [39]. We use the KDD CUP 2003
research publication data, which are also used in [39]. This data set is from an
archive of High Energy Particle Physics publications catalogued by Stanford Linear
Accelerator Center.

7.5.1 Experimental Settings

Our experiments use the standard search paradigm. That is, given a collection of
research papers and a user query, the system ranks the papers that are relevant to
the query in the collection and presents to the user. For the purpose of this research,
we assume that there is an abstract procedure that is able to determine whether a
paper is relevant to a query (which is expressed as a set of keywords). In other
words, our research focuses on citations and investigates the effect of time on the
citation-based ranking, which is the key component of Web search (recall citations
in the Web context are hyperlinks). This work does not study content-based factors
such as keyword locations, their distances in the paper. We simply assume that a
paper is relevant to a query if it contains all the query words.

Evaluation method: To evaluate the proposed techniques, we do not compare
their rankings directly, which is harder to quantify. Instead, we compare the number
of citations that the top ranking papers receive in the following year, namely, 1 year
after the user performs the search. This is an objective measure. It is also reasonable
because to a large extent the citation count of a paper reflects the importance of the
paper. If those highly cited papers in the future are ranked high by an algorithm, it
indicates that the algorithm is effective in giving users high-quality papers.

7.5.2 Experimental Results with All Papers

In this set of experiments, we use all the papers in the first 8 years (1992–1999)
to perform various evaluations for the proposed methods. Following the setting
in [39], we used the same 25 randomly selected queries as in [39] and rank the
relevant papers of each query using the evaluation results. All query keywords were
randomly selected from the set of frequent words found in the abstracts of the papers
(after stopwords have been removed). The data of year 2000 are used to test various
ranking methods.
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Table 7.1 presents the experiment results. Only the results for the top 30 papers
are given. The reason for using only top 30 ranked papers is that users seldom have
the patience to look at more than even 20 papers. This is especially true for Web
search.

The experimental results are presented in three rows. Each row gives the total
citation counts of different methods for a group of papers. The first row is for the
top 10 papers (we also call it a group of papers), where the citation count is the
sum of the citation counts of all the top ten papers over the 25 queries. Similarly, the
second row is for the top 20 papers, and so on. Below, we explain the results column
by column.

Column 1: It lists each group of top-ranked papers.
Columns 2 and 3: Column 2 gives the result for each group of top papers based

on rankings using the original PageRank algorithm, i.e., time is not consid-
ered but trend factor is used (without the trend factor, the results are much
worse). Each result here is the total number of citations of each group of
top-ranked papers for the 25 queries. Each count is obtained from citations
that the paper receives in year 2000.

Column 3 gives the ratio of the total citation count for this method and the
total citation count of the ideal ranking (called best citation count given in
Column 14), expressed as a percentage. The ideal ranking is that one that
ranks relevant papers (to a query) based on the actual number of citations
received by each paper in the following year.

Columns 4 and 5: Column 4 gives the total citation count results of TPR (the
method in [39] with the combined author and journal evaluations, and trend
factor). Column 5 gives the same ratio as in Column 3.

Columns 6 and 7: Column 6 gives the results (total citation counts) of the
TS-Rank method (with trend factor considered). Column 7 gives the same
ratio as in Column 3 (the ratio of the total citation count for TS-Rank and the
total citation count of the ideal ranking in Column 14). From Columns 6 and
7, we observe that TS-Rank’s results are significantly better than those of the
original PageRank algorithm.

Columns 8 and 9: Column 8 gives the results of TS-Rank combined with both
author and journal evaluations (AJEval). Column 9 gives the same ratio as in
column 7. The AJEval is only used when a paper is very new, i.e., with few
or no citations. In this case, we cannot use TS-Rank. Papers are regarded as
new (or very recent) if they were published less than 3 months ago. Three
months are chosen because there is no sufficient data available to compute
the trend factor for a paper younger than 3 months.
We did not list the results of author evaluation and journal evaluation indi-
vidually due to space limitations in the table. They perform slightly worse
than the combined method (see also Table 7.3).
From Columns 8 and 9, we can see that TS-Rank (AJEval) performs clearly
better than TS-Rank alone. This is because TS-Rank could not handle new
papers well.
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From Columns 4 and 5, we observe that TS-Rank outperforms the heuristic
method TPR for every group of papers.

Columns 10–13 give the corresponding results of linear regression (denoted
as LR in the table). After trying various possibilities, we found that using
2 years of data to build LR models gives the best results. When a paper is
younger than 2 years, those old months will be treated as having 0 citation.
We can see that linear regression performs reasonably well too, but worse
than TS-Rank-based methods.

Column 14: It gives the best citation count for each group of paper based on
the ideal ranking, i.e., ranking relevant papers based on the actual number of
citations received by each paper in year 2000.

To summarize, both TS-Rank and linear regression perform significantly bet-
ter than the original PageRank algorithm. The author and journal evaluations help
improve the prediction results further. TS-Rank not only is a more principled method
but also outperforms the heuristic method TPR (including author and journal evalu-
ations and the trend factor). Among all the four methods, TS-Rank with author and
journal evaluations gives the best result for every group of papers.

7.5.3 Results of Top 10 Papers

To give some indication of the effectiveness of ranking of the proposed methods, we
find the top 10 most cited papers in 2000. We then use the proposed methods to rank
all the papers that appeared from 1992 to 1999. Table 7.2 shows the ranking results.

Column 1: It shows the ranks of the top 10 papers in 2000.
Column 2: It gives the paper ID of each paper.
Column 3: It gives the rank of each paper using the original PageRank algo-

rithm. Clearly, the results are very poor.
Column 4: It gives the rank of each paper based on the existing TPR method.

Table 7.2 Ranks of the top 10 papers

Rank Paper ID PageRank TPR (AJEval) TS-Rank (AJEval) LR (AJEval)

1 9711200 19 1 1 1
2 9908142 742 8 2 5
3 9906064 613 6 6 10
4 9802150 39 2 3 2
5 9802109 46 4 4 3
6 9711162 323 11 5 7
7 9905111 576 9 8 4
8 9711165 620 20 7 14
9 9610043 17 12 14 19
10 9510017 7 13 9 8
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Column 5: It gives the rank of each paper based on TS-Rank. The new papers
are ranked using the combined author and journal evaluations. We see that
TS-Rank again clearly outperforms the TPR method.

Column 6: It gives the rank of each paper based on linear regression. The
new papers are ranked using the combined author and journal evaluations
(Section 7.4).

Table 7.2 clearly demonstrates that the ranking results of the PageRank algorithm
are very poor. In contrast, our proposed methods perform remarkably well. The set
of predicted top eight papers are the same as those in the actual rank, and all the top
10 papers are ranked very high (within top 14). Our method also performs better
than the TPR method.

7.5.4 Results on New Papers Only

In this set of experiments, we use only the new papers. That is, we only use those
papers that are published less than 3 months ago from the query time. The purpose
here is to assess the effectiveness of author and journal evaluations. Their results
cannot be seen clearly in Table 7.1 because it includes both old and new papers, and
older papers dominate in number.

This set of experiments does not directly use TS-Rank and linear regression
because these papers have few or no citations. Note also that we do not use queries
here because each query returns only a few results (papers) as the number of new
papers is small. We use the proposed methods to rank all the new papers (i.e., all
papers are considered relevant) and compare the predicted rank with the actual rank
position in 2000 of the new papers.

To measure the distance between ranks, we use the Spearman footrule distance
[19]. The Spearman footrule distance is the sum of the absolute difference between
a paper’s positions in two ranks. In our experiment, we examine the Spearman
footrule distance for the top 30 papers, as users only pay attention to the top-ranked
papers. Given two ranks R1 and R2 of size m, n papers are of our interest and
n << m, the equation of normalized Spearman footrule distance is

F(R1, R2) =
∑n

i=1 |R1(i)− R2(i)|
m × n

(7.17)

where R1(i) and R2(i) are the rank positions of paper i in rank R1 and R2

Column 1: It shows that we use Spearman footrule (SF) distance to evaluate the
source evaluation.

Column 2: It shows the SF distance for the top 30 new papers between the
actual rank and the rank predicted by the original PageRank.

Columns 3 and 4: Column 3 gives the SF distance of the TPR method without
source evaluation. Column 4 gives the SF Equations distance of the TPR
method with the combined author and journal evaluation.
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Column 5: It lists the SF distance for the top 30 new papers between the
actual rank and the rank predicted by TS-Rank with no source evaluation.
While TS-Rank tends to underestimate the new papers, the distance value of
0.0934 indicates that new papers already collected some citations. Our decay
function also helps these papers climb on the rank quickly. Therefore, using
TS-Rank alone, the ranks of top new papers are already quite close to their
actual ranks. We also see that TS-Rank outperforms PageRank dramatically
and is also better than TPR with no source evaluation.

Columns 6 and 7: They list the SF distances of TS-Rank with author and jour-
nal evaluations, respectively. The journal distance is smaller than the author
distance, which suggests that journal is a better indicator of a paper’s quality,
which is quite intuitive.

Column 8: It lists the SF distance results of TS-Rank with the combined author
and journal evaluations. We can see that this method gives the best results
on new papers. It clearly outperforms TPR when the source evaluation is
applied.

Columns 9 and 10: They list the SF distances of linear regression without and
with source evaluation, respectively. The results are much worse than those
of TS-Rank and TPR.

The source evaluation does not help improve the ranking. An explanation is that
the source evaluation over-boosted some new papers, which lowers the quality of
overall ranking. A similar ranking deterioration was also observed from the top 10
group in columns 10–13 in Table 7.1. However, as we consider more papers, it shows
that the source evaluation in linear regression does improve the overall ranking.

In summary, we can see from Table 7.3 that our new method in column 8 outper-
forms all other methods significantly.

Execution time: The time complexity of TS-Rank is the same as PageRank. How-
ever, TS-Rank takes fewer iterations to converge because the timed weight f (t) on
the citation links drops rapidly with the citation age. The smaller the timed weight,
the less the authority can be transmitted through the citation links. Thus, timed
weights restrain the accumulation of TS-Rank values. Consequently, fewer itera-
tions are needed to converge. For our problem, PageRank converges in 36 iterations,
while TS-Rank converges in 23 iterations. In each iteration, TS-Rank takes more
time due to the first matrix F (the second matrix H is similar to that in PageRank).
Since the time is discretized into months (papers appeared in the same month have
the same f (t) value), the effect of F on the computation is not large. The overall
execution times of PageRank and TS-Rank are similar.

7.5.5 Sensitivity Analysis

In the introduction of the TS-Rank concept, we pointed out that decay parameter is
tunable for a given data set to reach an optimal result. Our experiments show that
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TS-Rank(AJEval) is an effective scoring technique. Therefore, we apply a range of
decay parameter values in TS-Rank(AJEval) and study the relationship between the
scoring effectiveness and decay parameter. A set of values {1, 2, 3, 6, 12} for the
decay parameter x is experimented. A larger decay parameter corresponds to a slow
decay function. The experiment results are listed in Table 7.4.

Column 1: It lists each group of top-ranked papers.
Columns 2 and 3: Column 2 gives the results (citation counts) of the TS-

Rank(AJEval) method with the decay parameter x = 1.
Column 3 gives the ratio of the total citation count for the TS-Rank(AJEval)

method (with x = 1) and the total citation count of the ideal ranking (column
12), expressed as a percentage.

Columns 4–5, 6–7, 8–9, 10–11 have the similar meanings as columns 2–3. The
only difference is that decay parameter varies from 2 to 12 in these experi-
ments.

Columns 12 lists the same data showed in Column 14 of Table 7.1. It gives the
best citation count for each group of papers based on the ideal ranking, i.e.,
ranking relevant papers based on the actual number of citations received by
each paper in year 2000.

The results indicate that x = 3 is the optimal value for decay parameter in this
project collection. When decay parameter is smaller than 3, the system heavily
focuses on very recent citations. The consequence is that papers with less recent
citations are absent from the predicted top papers even if they might be important.
Failing to include these papers in the results lowers the overall ranking quality. On
the contrary, when decay parameter is larger than 3, the decay function became less
aggressive. Older quality papers that are not up to date will be favored because of
their longer history. As a result, some new quality papers will be excluded from the
top rank.

7.6 Discussions and Conclusions

This project studies the temporal dimension of search. It proposed a new algorithm
in the context of publication search. Empirical evaluation verified its superior per-
formance to existing methods. To conclude, we also discuss how TS-Rank may be
applied to the general Web search.

From publication search to Web search: As indicated earlier, most concepts in
research publications are parallel to the concepts in Web pages. Research papers
correspond to Web pages, and journals correspond to Web sites. The date when a
paper is published is the same as the date when a Web page is created or updated
(most recently). The references of a paper are the same as out-links of a page on the
Web. There are of course also some differences between Web pages and research
papers. For example, a Web page may be deleted, but a published paper cannot be
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deleted. Hyperlinks can also be added to and deleted from a Web page any time,
while for a research paper once published no reference or citation can be deleted or
added. To consider addition and deletion in Web pages in TS-Rank, we can take one
of the following two strategies:

Use the date of the most recent update to the page xj as the creation date of
the page (i.e., ti in (7.6)), although the page may be created much earlier. This is
reasonable as we can assume that the page owner updates all the links on the page.
We can then directly apply (7.6).

Give links appearing in the same page different transition probabilities accord-
ing to the times when they were added to the page, rather than assigning them the
uniform probability of 1/Oi . t j is still the date when the page xj is most recently
updated. Those deleted links will not be considered any more.

All the information required for TS-Rank computation can be easily collected
during Web crawling. Thus adapting TS-Rank to the Web search is fairly straightfor-
ward. In our future work, we plan to investigate and experiment with this adaptation.

Acknowledgments We thank KDD Cup 2003 organizers for making the publications and citation
data available on the Web.
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Chapter 8
Proximity Tracking on Dynamic Bipartite
Graphs: Problem Definitions and Fast Solutions

Hanghang Tong, Spiros Papadimitriou, Philip S. Yu, and Christos Faloutsos

Abstract Large bipartite graphs which evolve and grow over time (e.g., new links
arrive, old links die out, or link weights change) arise in many settings, such as
social networks, co-citations, market-basket analysis, and collaborative filtering.

Our goal is to monitor (i) the centrality of an individual node (e.g., who are
the most important authors?) and (ii) the proximity of two nodes or sets of nodes
(e.g., who are the most important authors with respect to a particular conference?).
Moreover, we want to do this efficiently and incrementally and to provide “any-
time” answers. In this chapter we propose pTrack, which is based on random walks
with restart, together with some important modifications to adapt these measures to a
dynamic, evolving setting. Additionally, we develop techniques for fast, incremental
updates of these measures that allow us to track them continuously, as link updates
arrive. In addition, we discuss variants of our method that can handle batch updates,
as well as place more emphasis on recent links. Based on proximity tracking, we
further proposed cTrack, which enables us to track the centrality of the nodes over
time. We demonstrate the effectiveness and efficiency of our methods on several real
data sets.

8.1 Introduction

Measuring proximity (a.k.a relevance) between nodes on bipartite graphs (see [18]
for the formal definition of bipartite graph) is a very important aspect in graph
mining and has many real applications, such as ranking, spotting anomaly nodes,
connection subgraphs, pattern matching (see Section 8.2 for a detailed review).

Despite their success, most existing methods are designed for static graphs. In
many real settings, the graphs are evolving and growing over time, e.g., new links
arrive or link weights change. For example, in a user–movie bipartite graph, where
the links represent movie ratings given by users, the ratings are usually associated
with time information, i.e., the date a user rated the corresponding movie. Similarly,
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in an author–conference bipartite graph, where the links are the number of papers
published by the corresponding author in the conference, the papers also have time
information, i.e., the year when the paper was published. How should we measure
the proximity in such a dynamic setting? What additional benefits can we gain by
incorporating time information in proximity measurements?

Here, we address such challenges in multiple dimensions, by focusing on the
following questions:

Q1: How to define a good proximity score in a dynamic setting?
Q2: How to incrementally track the proximity scores between nodes of interest

as edges are updated?
Q3: What data mining observations do our methods enable?

The answers to these questions are our main contributions:

1: Definitions of proximity and centrality for time-evolving graphs.
2: Two fast update algorithms (Fast-Single-Update and Fast-Batch-Update), with-

out any quality loss.
3: Two algorithms to incrementally track centrality (Track-Centrality) and proxim-

ity (Track-Proximity) in anytime fashion.
4: Extensive experimental case studies on several real data sets, showing how dif-

ferent queries can be answered, achieving up to 15∼176x speedup.

The rest of this chapter is organized as follows: we review the related work
in Section 8.2. We begin in Section 8.3 with the problem definition and in Sec-
tion 8.4, we propose our proximity definition for dynamic bipartite graphs. Then,
in Section 8.5, we study computational issues thoroughly and propose two fast
algorithms, which are the core of computing our dynamic proximity and centrality
measurements. The complete algorithms to track proximity (Track-Proximity) and
centrality (Track-Centrality) are presented in Section 8.6. In Section 8.7, we present
the experimental valuations on real data sets. Finally, we conclude this chapter in
Section 8.8.

8.2 Related Work

In this section, we review the related work, which can be categorized into two parts:
static graph mining and dynamic graph mining.

8.2.1 Static Graph Mining

There is a lot of research work on static graph mining, including pattern and law
mining [2, 5, 7, 9, 22], frequent substructure discovery [33], influence propaga-
tion [16], and community mining [10, 12, 13].
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In terms of centrality, Google’s PageRank algorithm [23] is the most related.
The proposed Track-Centrality can actually be viewed as its generalization for
dynamic bipartite graphs. As for proximity, the closest work is random walk with
restart [15, 24, 32]. The proposed Track-Proximity is its generalization for dynamic
bipartite graphs. Other representative proximity measurements on static graphs
include the sink-augmented delivered current [8], cycle-free effective conduc-
tance [17], survivable network [14], and direction-aware proximity [31]. Although
we focus on random walk with restart in this chapter, our fast algorithms can be
easily adapted to other random walk based measurements, such as [8, 31]. Also,
there are a lot of applications of proximity measurements. Representative work
includes connection subgraphs [8, 17, 29], neighborhood formation in bipartite
graphs [27], content-based image retrieval [15], cross-modal correlation discov-
ery [24], the BANKS system [1], link prediction [20], pattern matching [30], detect-
ing anomalous nodes and links in a graph [27], ObjectRank [4], and Relational-
Rank [11].

8.2.2 Dynamic Graph Mining

More recently, there is an increasing interest in mining time-evolving graphs, such as
densification laws and shrinking diameters [19], community evolution [3], dynamic
tensor analysis [28], and dynamic communities [6, 26]. To the best of our knowl-
edge, there is no previous work on proximity for time-evolving graphs. Remotely
related work in the sparse literature on the topic is [21]. However, we have a different
setting and focus compared with [21]: we aim to incrementally track the proximity
and centrality for nodes of interest by quickly updating the core matrix (as well as
the adjacency matrices), while in [21] the authors focus on efficiently using time
information by adding time as explicit nodes in the graph.

8.3 Problem Definitions

Table 8.1 lists the main symbols we use throughout the chapter. Following standard
notation, we use capital letters for matrices M and arrows for vectors. We denote the
transpose with a prime (i.e., M′ is the transpose of M), and we use parenthesized
superscripts to denote time (e.g., M(t) is the time-aggregate adjacency matrix at
time t). When we refer to a static graph or, when time is clear from the context, we
omit the superscript (t). We use subscripts to denote the size of matrices/vectors (e.g.
0n×l means a matrix of size n × l, whose elements are all zero). Also, we represent
the elements in a matrix using a convention similar to Matlab, e.g., M(i, j) is the
element at the i th row and j th column of the matrix M, and M(i, :) is the i th row
of M (i.e., M(i, :) contains all the edges from the i th type 1 object to all the type 2
objects.) Without loss of generality, we assume that the numbers of type 1 and type
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Table 8.1 Symbols

Symbol Definition and description

M(t) n × l time-aggregate adjacency matrix at time t
S(t) n × l slice matrix at time t
ΔM(t) n × l difference matrix at time t
D(t)

1 n × n out-degree matrix for type 1 object, i.e. D(t)
1 (i, i) =∑n

j=1 M(t)(i, j), and

D(t)
1 (i, j) = 0 (i �= j)

D(t)
2 l × l out-degree matrix for type 2 object, i.e.D(t)

2 (i, i) =∑n
j=1 M(t)( j, i), and

D(t)
2 (i, j) = 0 (i �= j)

I identity matrix
0 a matrix with all elements equal to 0
1 a matrix with all elements equal to 1
n, l number of nodes for type 1 and type 2 objects, respectively (n > l)
m number of edges in the bipartite graph
c (1− c) is fly-out probability for random walk with restart (set to be 0.95 in the

paper)
r (t)i, j proximity from node i to node j at time t

2 objects are fixed (i.e., n and l are constant for all time steps); if not, we can reserve
rows/columns with zero elements as necessary.

At each time step, we observe a set of new edges or edge weight updates. These
represent the link information that is available at the finest time granularity. We use
the time-slice matrix, or slice matrix for brevity, S(t) to denote the new edges and
additional weights that appear at time step t . For example, given a set of authors
and annual conferences, the number of papers that author i publishes in conference
j during year t is the entry S(t)(i, j). In this chapter, we focus only on the case
of edge additions and weight increases (e.g., authors always publish new papers,
and users always rate more movies). However, the ideas we develop can be easily
generalized to handle other types of link updates, such as links deletions or edge
weights decreases.

Given the above notion, a dynamic, evolving graph can be naturally defined as
a sequence of observed new edges and weights, S(1),S(2), . . . ,S(t), . . .. However,
the information for a single time slice may be too sparse for meaningful analysis,
and/or users typically want to analyze larger portions of the data to observe inter-
esting patterns and trends. Thus, from a sequence of slice matrices observed so far,
S( j) for 1 ≤ j ≤ t , we construct a bipartite graph by aggregating time slices. We
propose three different aggregation strategies, which place different emphasis on
edges based on their age. In all cases, we use the term time-aggregate adjacency
matrix (or adjacency matrix for short), denoted by M(t), for the adjacency matrix of
the bipartite graph at time step t . We will introduce the aggregation strategies in the
next section).

Finally, to simplify the description of our algorithms, we introduce the difference
matrix ΔM(t), which is the difference between two consecutive adjacency matrices,
i.e., ΔM(t) � M(t) − M(t−1). Note that, depending on the aggregation strategy,
difference matrix ΔM(t) may or may not be equal to the slice matrix S(t).
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An important observation from many real applications is that despite the large
size of the graphs involved (with hundreds of thousands or millions of nodes and
edges), the intrinsic dimension (or, effective rank) of their corresponding adjacency
matrices is usually relatively small, primarily because there are relatively fewer
objects of one type. For example, on the author–conference graph from the AC data
set, although we have more than 400,000 authors and about 2 million edges, there
are only ∼ 3500 conferences. In the user–movie graph from the NetFlix data set,
although we have about 2.7 million users with more than 100 million edges, there
are only 17,700 movies. We use the term skewed to refer to such bipartite graphs,
i.e., n,m & l.

With the above notation, our problems (pTrack and cTrack) can be formally
defined as follows:

Problem 1 pTrack

Given: (i) a large, skewed time-evolving bipartite graph {S(t), t = 1, 2, ...}, and
(ii) the query nodes of interest (i, j, ...)

Track: (i) the top-k most related objects for each query node at each time step and
(ii) the proximity score (or the proximity rank) for any two query nodes at
each time step.

There are two different kinds of tracking tasks in pTrack, both of which are
related to proximity. For example, in a time-evolving author–conference graph we
can track “What are the major conferences for John Smith in the past 5 years?”
which is an example of task (i); or “How much credit (importance) has John Smith
accumulated in the KDD Conference so far?” which is an example of task (ii). We
will propose an algorithm (Track-Proximity) in Section 8.6 to deal with pTrack.

Problem 2 cTrack

Given: (i) a large, skewed time-evolving bipartite graph {S(t), t = 1, 2, ...} and
(ii) the query nodes of interest (i, j, ...)

Track: (i) the top-k most central objects in the graph, for each query node and at
each time step and (ii) the centrality (or the rank of centrality), for each
query node at each time step.

In cTrack, there are also two different kinds of tracking tasks, both of which are
related to centrality. For example, in the same time-evolving author–conference
graph, we can track “How influential is author-A over the years?” which corre-
sponds to task (i) or “Who are the top-10 influential authors over the years?”
which corresponds to task (ii). Note that in task (ii) of cTrack, we do not need
the query nodes as inputs. We will propose another algorithm (Track-Centrality) in
Section 8.1.6 to deal with cTrack.

For all these tasks (pTrack and cTrack), we want to provide anytime answers.
That is, we want to quickly maintain up-to-date answers as soon as we observe a
new slice matrix S(t).
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8.4 Dynamic Proximity and Centrality: Definitions

In this section, we introduce our proximity and centrality definitions for dynamic
bipartite graphs. We begin by reviewing random walk with restart, which is a good
proximity measurement for static graphs. We then extend it to the dynamic setting
by (1) using different ways to aggregate edges from different time steps, that is to
place different emphasis on more recent links and (2) using degree-preservation to
achieve monotonicity for dynamic proximity.

8.4.1 Background: Static Setting

Among many others, one very successful method to measure proximity is random
walk with restart (RWR), which has been receiving increasing interest in recent
years—see Section 8.2 for a detailed review.

For a static bipartite graph, random walk with restart is defined as follows: Con-
sider a random particle that starts from node i . The particle iteratively transits to its
neighbors with probability proportional to the corresponding edge weights. Also at
each step, the particle returns to node i with some restart probability (1 − c). The
proximity score from node i to node j is defined as the steady-state probability ri, j

that the particle will be on node j [24]. Intuitively, ri, j is the fraction of time that
the particle starting from node i will spend on each node j of the graph, after an
infinite number of steps.

If we represent the bipartite graph as a unipartite graph with the following square
adjacency matrix W and degree matrix D:

W =
(

0n×n M
M′ 0l×l

)

D =
(

D1 0n×l

0l×n D2

)

, (8.1)

then, all the proximity scores ri, j between all possible node pairs i, j are determined
by the matrix Q:

ri, j = Q(i, j).

Q = (1− c) · (I(n+l)×(n+l) − cD−1W
)−1 (8.2)

Based on the dynamic proximity as in (8.2), we define the centrality for a given
source node s as the average proximity score from all nodes in the graph (including
s itself) to s. For simplicity, we ignore the time step superscript. That is,

centrality(s) �
∑n+l

i=1 ri,s

n + l
. (8.3)
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8.4.2 Dynamic Proximity

Since centrality is defined in terms of proximity, we will henceforth focus only on
the latter. In order to apply the random walk with restart (see (8.2)) to the dynamic
setting, we need to address two subtle but important points.

The first is how to update the adjacency matrix M(t) based on the observed
slice matrix S(t). As mentioned before, usually it is not enough to consider only
the current slice matrix S(t). For example, examining publications from conferences
in a single year may lead to proximity scores that vary widely and reflect more
“transient” effects (such as a bad year for an author), rather than “true” shifts in
his affinity to research areas (for example, a shift of interest from databases to data
mining or a change of institutions and collaborators). Similarly, examining movie
ratings from a single day may not be sufficient to accurately capture the proximity
of, say, two users in terms of their tastes. Thus, in Section 8.3.2.1, we propose three
different strategies to aggregate slices into an adjacency matrix M(t) or, equivalently,
to update M(t). Note, however, that single-slice analysis can be viewed as a special
case of the “sliding window” aggregation strategy.

The second point is related to the “monotonicity” of proximity versus time. In a
dynamic setting with only link additions and weight increases (i.e., S(t)(i, j) ≥ 0,
for all time steps t and nodes i , j), in many applications it is desirable that the
proximity between any two nodes does not drop. For example, consider an author–
conference bipartite graph, where edge weights represent the number of papers
that an author has published in the corresponding conference. We would like a
proximity measure that represents the total contribution/credit that an author has
accumulated in each conference. Intuitively, this score should not decrease over
time.

8.4.2.1 Updating the Adjacency Matrix

As explained above, it is usually desirable to analyze multiple slices together, plac-
ing different emphasis on links based on their age. For completeness, we describe
three possible aggregation schemes.

Global Aggregation. The first way to obtain the adjacency matrix M(t) is to sim-
ply add the new edges or edge weights in S(t) to the previous adjacency matrix
M(t−1) as follows:

M(t) =
t∑

j=1

S( j).

We call this scheme global aggregation. It places equal emphasis on all edges from
the beginning of time and, only in this case, ΔM(t) = S(t). Next, we define schemes
that place more emphasis on recent links. For both of these schemes, ΔM(t) �= S(t).



218 H. Tong et al.

Sliding Window. In this case, we only consider the edges and weights that arrive
in the past len time steps, where the parameter len is the length of the sliding win-
dow:

M(t) =
t∑

j=max{1, t−len+1}
S( j)

Exponential Weighting. In this case, we “amplify” the new edges and weights at
time t by an exponential factor β j (β > 1): M(t) =∑t

j=1 β
j S( j).

8.4.2.2 Fixed Degree Matrix

In a dynamic setting, if we apply the actual degree matrix D(t) to (8.2) at time t ,
the monotonicity property will not hold. To address this issue, we propose to use
degree-preservation [17, 31]. That is, we use the same degree matrix D̃ at all time
steps.

Thus, our proximity r (t)i, j from node i to node j at time step t is formally

defined as in (8.4). The adjacency matrix M(t) is computed by any update method
in the above section and the fixed degree matrix D̃ is set to be a constant (a)
times the degree matrix at the first time step—we always set a = 1000 in this
chapter.

r (t)i, j = Q(t)(i, j)

Q(t) = (1− c) · (I(n+l)×(n+l) − cD̃−1W(t))−1
.

W(t) =
(

0n×n M(t)

M′(t) 0l×l

)

D̃ = a · D(1) (8.4)

We have the following lemma for our dynamic proximity (8.4). By the lemma 1,
if the actual degree D(t)(i, i) does not exceed the fixed degree D̃(i, i) (condition
2), then the proximity between any two nodes will never drop as long as the edge
weights in adjacency matrix M(t) do not drop (condition 1).

Lemma 1 Monotonicity Property of Dynamic Proximity If (1) all elements in
the difference matrix ΔM(t) are non-negative and (2) D(t)(i, i) ≤ D̃(i, i)
(i = 1, 2, ..., (n + l)), then we have r (t)i, j ≥ r (t−1)

i, j for any two nodes (i, j).

Proof First of all, since D(t)(i, i) ≤ D̃(i, i), we have ‖cD̃−1W(t)‖k → 0 as k →∞.
Therefore, we have Q(t) = (1− c)

∑∞
k=0

(
cD̃−1W(t)

)k . On the other hand, since all
elements in the difference matrix ΔM(t) are non-negative, we have W(t)(i, j) ≥
W(t−1)(i, j) for any two nodes (i, j). Therefore, we have Q(t)(i, j) ≥ Q(t−1)(i, j)
for any two nodes (i, j), which completes the proof. �
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Finally, we should point out that a, D and the non-negativity of M are relevant
only if a monotonic score is desired. Even without these assumptions, the correct-
ness or efficiency of our proposed algorithms is not affected. If non-monotonic
scores are permissible, none of these assumptions are necessary. And also, the
lemma only applies when there is no edge deletion (since we require that the differ-
ence matrix ΔM(t) are non-negative).

8.5 Dynamic Proximity: Computations

8.5.1 Preliminaries: BB_LIN on Static Graphs

In this section, we introduce our fast solutions to efficiently track dynamic prox-
imity. We will start with BB_LIN [32], a fast algorithm for static, skewed bipartite
graphs. We then extend it to the dynamic setting.

One problem with random walk with restart is computational efficiency, espe-
cially for large graphs. According to the definition (8.4), we need to invert an
(n + l) × (n + l) matrix. This operation is prohibitively slow for large graphs.
In [32], the authors show that for skewed, static bipartite graphs, we only need to
pre-compute and store a matrix inversion of size l × l to get all possible proximity
scores (see [32] for the proof). BB_LIN, which is the starting point for our fast
algorithms, is summarized in Algorithm 1.

Algorithm 1 BB_LIN
Input: The adjacency matrix at time t , as in equation (8.1); and the query nodes i and j .
Output: The proximity ri, j from node i to node j .
1: Pre-Computation Stage(Off-Line):
2: normalize for type 1 objects: Mr = D−1

1 ·M
3: normalize for type 2 objects: Mc = D−1

2 ·M′
4: compute the core matrix: C = (I− c2Mc ·Mr)−1

5: store the matrices: Mr, Mc, and C.
6: Query Stage (On-Line):
7: Return: ri, j = GetQij(C,Mr,Mc, i, j, c)

Based on Algorithm 1, we only need to pre-compute and store a matrix inversion
C of size l × l. For skewed bipartite graphs (l ' m, n), C is much cheaper to
pre-compute and store. For example, on the entire NetFlix user–movie bipartite
graph, which contains about 2.7 M users, about 18 K movies and more than 100 M
edges (see Section 8.6 for the detailed description of the data set), it takes 1.5 h to
pre-compute the 18 K× 18 K matrix inversion C. For pre-computation stage, this is
quite acceptable.
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Algorithm 2 GetQij
Input: The core matrix C, the normalized adjacency matrices Mr (for type 1 objects), and Mc (for

type 2), and the query nodes i and j (1 ≤ i, j ≤ (n + l)).
Output: The proximity ri, j from node i to node j
1: if i ≤ n and j ≤ n then
2: q(i, j) = 1(i = j)+ c2Mr(i, :) · C ·Mc(:, j)
3: else if i ≤ n and j > n then
4: q(i, j) = cMr(i, :) · C(:, j − n)
5: else if i > n and j ≤ n then
6: q(i, j) = cC(i − n, :) ·Mc(:, j)
7: else
8: q(i, j) = C(i − n, j − n)
9: end if

10: Return: ri, j = (1− c)q(i, j)

On the other hand, in the online query stage, we can get any proximity scores
using the function GetQij.1 This stage is also cheap in terms of computation. For
example, to output a proximity score between two type 1 objects (step 2 in GetQij) ,
only one sparse vector–matrix multiplication and one vector–vector multiplication
are needed. For a proximity score between one type 1 object and one type 2 object,
only one sparse vector–vector multiplication (steps 4 and 6) is necessary. Finally, for
a proximity score between two type 2 objects (step 8), only retrieving one element in
the matrix C is needed. As an example, on the NetFlix data set, it takes less than 1 s
to get one proximity score. Note that all possible proximity scores are determined
by the matrix C (together with the normalized adjacency matrices Mr and Mc). We
thus refer to the matrix C as the the core matrix.

8.5.2 Challenges for Dynamic Setting

In a dynamic setting, since the adjacency matrix changes over time, the core matrix
C(t) is no longer constant. In other words, the steps 1–4 in Algorithm 1 themselves
become a part of the online stage since we need to update the core matrix C(t) at
each time step. If we still rely on the straightforward strategy (i.e., the steps 1–4 in
Algorithm 1) to update the core matrix (referred to as “Straight-Update”), the total
computational complexity for each time step is O(l3 + m · l). Such complexity is
undesirable for the online stage. For example, 1.5 h to recompute the core matrix for
the NetFlix data set is unacceptably long.

Thus, our goal is to efficiently update the core matrix C(t) at time step t , based
on the previous core matrix C(t−1) and the difference matrix ΔM(t). For simplicity,
we shall henceforth assume the use of the global aggregation scheme to update the

1 Note that in step 2 of GetQij, 1(.) is the indicator function, i.e. it is 1 if the condition in (.) is
true and 0 otherwise.
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adjacency matrix. However, the ideas can be easily applied to the other schemes,
sliding window and exponential weighting.

8.5.3 Our Solution 1: Single Update

Next, we describe a fast algorithm (Fast-Single-Update) to update the core matrix
C(t) at time step t , if only one edge (i0, j0) changes at time t . In other words, there is
only one non-zero element in ΔM(t): ΔM(t)(i0, j0) = w0. To simplify the descrip-
tion of our algorithm, we present the difference matrix ΔM(t) as a from-to list:
[i0, j0, w0].

The correctness of Fast-Single-Update is guaranteed by the following theorem:

Theorem 1 Correctness of Fast-Single-Update The matrix C(t) maintained by
Fast-Single-Update is exactly the core matrix at time step t, i.e., C(t) =
(
I− c2Mc(t)Mr(t)

)−1
.

Proof First of all, since only one edge (i0, j0) is updated at time t , only the i0th row
of the matrix Mr(t) and the i0th column of the matrix Mc(t) change at time t .

Let V(t) = c2Mc(t) ·Mr(t) and V(t−1) = c2Mc(t−1) ·Mr(t−1). By the spectral
representation of V(t) and V(t−1), we have the following equation:

Vt = c2
n∑

k=1

Mc(t)(:, k) ·Mr(t)(k, :),

= Vt−1 + δ (8.5)

where δ indicates the difference between V(t) and V(t−1). This gives us

δ =
1∑

s=0

(−1)s · c2Mc(t)(:, i0) ·Mr(t−s)(i0, :) = X · Y,

where the matrices X and Y are defined in steps 4–6 of Algorithm 3. Putting all the
above together, we have

Ct = (I− Vt )−1 = (I− Vt−1 − X · Y)−1. (8.6)

Applying the Sherman–Morrison lemma [25] to (8.6), we have

C(t) = C(t−1) + C(t−1) · X · L · Y · C(t−1),

where the 2 × 2 matrix L is defined in step 7 of Algorithm 3. This completes the
proof. �
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Algorithm 3 Fast-Single-Update

Input: The core matrix C(t−1), the normalized adjacency matrices Mr(t−1) (for type 1 objects)
and Mc(t−1) (for type 2 objects) at time step t − 1, and the difference list [i0, j0, w0] at the
time step t .

Output: The core matrix C(t), the normalized adjacency matrices Mr(t) and Mc(t) at time step t .
1: Mr(t) =Mr(t−1), and Mc(t) =Mc(t−1).
2: Mr(t)(i0, j0) =Mr(t)(i0, j0)+ w0

D̃(i0,i0)

3: Mc(t)( j0, i0) =Mc(t)( j0, i0)+ w0

D̃( j0+n, j0+n)
4: X = 0l×2, and Y = 02×l
5: X(:, 1) =Mc(t)(:, i0), and X( j0, 2) = w0

D̃( j0+n, j0+n)

6: Y(1, j0) = c2·w0

D̃(i0,i0)
, and Y(2, :) = c2 ·Mr(t−1)(i0, :)

7: L = (I2×2 − Y · C(t−1) · X)−1

8: C(t) = C(t−1) + C(t−1) · X · L · Y · C(t−1)

Fast-Single-Update is significantly more computationally efficient, as shown by
the next lemma. In particular, the complexity of Fast-Single-Update is only O(l2),
as opposed to O(l3 + ml) for the straightforward method.

Lemma 2 Efficiency of Fast-Single-Update The computational complexity of Fast-
Single-Update is O(l2).

Proof The computational cost for step 1 is O(l2). It is O(1) for steps 2 and 3, O(l)
for steps 4–6 and O(l2) for steps 7 and 8. Putting it together, we have that the total
cost for Fast-Single-Update is O(l2), which completes the proof. �

8.5.4 Our Solutions 2: Batch Update

In many real applications, more than one edges typically change at each time step.
In other words, there are multiple non-zero elements in the difference matrix ΔM(t).
Suppose we have a total of m̂ edge changes at time step t . An obvious choice is to
repeatedly call Fast-Single-Update m̂ times.

An important observation from many real applications is that it is unlikely these
m̂ edges are randomly distributed. Instead, they typically form a low-rank structure.
That is, if these m̂ edges involve n̂ type 1 objects and l̂ type 2 objects, we have
n̂ ' m̂ or l̂ ' m̂. For example, in an author–conference bipartite graph, we will
often add a group of m̂ new records into the database at one time step. In most cases,
these new records only involve a small number of authors and/or conferences—
see Section 8.6 for the details. In this section, we show that we can do a single
batch update (Fast-Batch-Update) on the core matrix. This is much more efficient
than either doing m̂ single updates repeatedly or recomputing the core matrix from
scratch. The main advantage of our approach lies on the observation that the differ-
ence matrix has low rank, and our upcoming algorithm needs time proportional to
the rank, as opposed to the number of changed edges m̂. This holds in real settings,
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because when a node is modified, several of its edges are changed (e.g., an author
publishes several papers in a given conference each year).

Let I = {i1, ..., in̂} be the indices of the involved type 1 objects. Similarly, let
J = { j1, ..., jl̂} be the indices of the involved type 2 objects. We can represent the

difference matrix ΔM(t) as an n̂ × l̂ matrix. In order to simplify the description of
the algorithm, we define two matrices ΔMr and ΔMc as follows:

ΔMr(k, s) = ΔM(t)(ik, js)

D̃(ik, ik)

ΔMc(s, k) = ΔM(t)( js, ik)

D̃( js + n, js + n)

(k = 1, ..., n̂, s = 1, ..., l̂). (8.7)

The correctness of Fast-Batch-Update is guaranteed by the following theorem:

Theorem 2 Delta Matrix Inversion Theorem The matrix C(t) maintained by
Fast-Batch-Update is exactly the core matrix at time step t, i.e., C(t) =
(
I− c2Mc(t)Mr(t)

)−1
.

Proof Let V(t) = c2Mc(t) ·Mr(t) and V(t−1) = c2Mc(t−1) ·Mr(t−1). Similar as the
proof for Theorem 1, we have

V(t) = V(t−1) − X · Y, (8.8)

where the matrices X and Y are defined in steps 6–21 of Algorithm 4.
Applying the Sherman–Morrison lemma [25] to (8.8), we have

C(t) = C(t−1) + C(t−1) · X · L · Y · C(t−1),

where the 2k̂×2k̂ matrix L is defined in step 22 of Algorithm 4. This completes the
proof. �

The efficiency of Fast-Single-Update is given by the following lemma. Compared
to the straightforward recomputation which is O(l3 + ml), Fast-Batch-Update is
O(min(l̂, n̂) · l2+ m̂). Since min(l̂, n̂) < l always holds, as long as we have m̂ < m,
Fast-Single-Update is always more efficient. On the other hand, if we do m̂ repeated
single updates using Fast-Single-Update, the computational complexity is O(m̂l2).
Thus, since typically min(l̂, n̂) ' m̂, Fast-Batch-Update is much more efficient in
this case.

Lemma 3 Efficiency of Fast-Batch-Update The computational complexity of Fast-
Batch-Update is O(min(l̂, n̂) · l2 + m̂).

Proof Similar as the proof for lemma 2. Note that the linear term O(m̂) comes from
(8.7), since we need to scan the non-zero elements of the difference matrix ΔM(t).
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Algorithm 4 Fast-Batch-Update

Input: The core matrix C(t−1), the normalized adjacency matrices Mr(t−1) (for type 1 objects)
and Mc(t−1) (for type 2 objects) at time step t −1, and the difference matrix ΔM(t) at the time
step t

Output: The core matrix C(t), the normalized adjacency matrices Mr(t) and Mc(t) at time step t .
1: Mr(t) =Mr(t−1), and Mc(t) =Mc(t−1).
2: define ΔMr and ΔMc as in equation (8.7)
3: Mr(t)(I,J ) =Mr(t)(I,J )+ΔMr
4: Mc(t)(J , I) =Mc(t)(J , I)+ΔMc
5: let k̂ = min(l̂, n̂). let X = 0m×2k̂ , and Y = 02k̂×m

6: if l̂ < n̂ then
7: X(:, 1 : l̂) =Mc(t−1)(:, I) ·ΔMr
8: Y(l̂ + 1 : 2l̂, :) = ΔMc ·Mr(t−1)(I, :)
9: X(J , 1 : l̂) = X(J , 1 : l̂)+ΔMc ·ΔMr

10: X(J , 1 : l̂) = X(J , 1 : l̂)+ Y(l̂ + 1 : 2l̂,J )

11: Y(l̂ + 1 : 2l̂,J ) = 0
12: for k = 1 : k̂ do
13: set Y(k, jk) = 1, and X( jk , k + k̂) = 1
14: end for
15: set X = c2 · X, and Y = c2 · Y
16: else
17: X(:, 1 : n̂) =Mc(t)(:, I)
18: X(J , n̂ + 1 : 2n̂) = ΔMc
19: Y(1 : n̂,J ) = c2 ·ΔMr
20: Y(n̂ + 1 : 2n̂, :) = c2 ·Mr(t−1)(I, :)
21: end if
22: L = (I2k̂×2k̂ − Y · C(t−1) · X)−1

23: C(t) = C(t−1) + C(t−1) · X · L · Y · C(t−1)

And the term of O(min(l̂, n̂) · l2) comes from the steps 22 and 23 of Fast-Batch-
Update. �

8.6 Dynamic Proximity: Applications

In this section, we give the complete algorithms for the two applications we posed
in Section 8.2, that is, Track-Centrality and Track-Proximity. For each case, we can
track top-k queries over time. For Track-Centrality, we can also track the centrality
(or the centrality rank) for an individual node. For Track-Proximity, we can also
track the proximity (or the proximity rank) for a given pair of nodes.

In all the cases, we first need the following function (i.e., Algorithm 5) to do
initialization. Then, at each time step, we update (i) the normalized adjacency matri-
ces, Mc(t) and Mr(t), as well as the core matrix, C(t); and we perform (ii) one or
two sparse matrix–vector multiplications to get the proper answers. Compared to
the update time (part (i)), the running time for part (ii) is always much less. So our
algorithms can quickly give the proper answers at each time step. On the other hand,
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Algorithm 5 Initialization

Input: The adjacency matrix at time step 1 M(1), and the parameter c.
Output: The fixed degree matrix D̃, the normalized matrices at time step 1 Mr(1) and Mc(1), and

the initial core matrix C(1).
1: get the fixed degree matrix D̃ as equation (8.4)
2: normalize for type 1 objects: Mr(1) = D−1

1 ·M(1)

3: normalize for type 2 objects: Mc(1) = D−1
2 ·M′(1)

4: get the core matrix: C(1) = (I− c2Mc(1) ·Mr(1))−1

5: store the matrices: Mr(1), Mc(1), and C(1).

we can easily verify that our algorithms give the exact answers, without any quality
loss or approximation.

8.6.1 Track-Centrality

Here, we want to track the top-k most important type 1 (and/or type 2) nodes over
time. For example, on an author–conference bipartite graph, we want to track the
top-10 most influential authors (and/or conferences) over time. For a given query
node, we also want to track its centrality (or the rank of centrality) over time. For
example, on an author–conference bipartite graph, we can track the relative impor-
tance of an author in the entire community.

Based on the definition of centrality (8.3) and the fast update algorithms we
developed in Section 8.4, we can get the following algorithm (Algorithm 6) to track
the top-k queries over time. The algorithm for tracking centrality for a single query
node is quite similar to Algorithm 6. We omit the details for space.

Algorithm 6 Track-Centrality (Top-k Queries)

Input: The time-evolving bipartite graphs {M(1), ΔM(t)(t ≥ 2)}, the parameters c and k
Output: The top-k most central type 1 (and type 2) objects at each time step t .
1: Initialization
2: for each time step t (t ≥ 1) do
3: x = 11×n ·Mr(t) · C(t); and y = 11×l · C(t)

4: r2
′ = c · x + y

5: r1
′ = c · r′

2 ·Mc(t)

6: output the top k type 1 objects according to r1
′ (larger value means more central)

7: output the top k type 2 objects according to r2
′ (larger value means more central)

8: Update Mr(t), Mc(t), and C(t) for t ≥ 2.
9: end for

In step 8 of Algorithm 6, we can either use Fast-Single-Update or Fast-Batch-
Update to update the normalized matrices Mr(t) and Mc(t) and the core matrix
C(t). The running time for steps 3–8 is much less than the update time (step 8).
Thus, Track-Centrality can give the ranking results quickly at each time step. On
the other hand, using elementary linear algebra, we can easily prove the correctness
of Track-Centrality:
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Lemma 4 Correctness of Track-Centrality The vectors r1
′ and r2

′ in Algorithm 6
provide a correct ranking of type 1 and type 2 objects at each time step t. That is,
the ranking is exactly according to the centrality defined in (8.3).

Proof Based on Delta Matrix Inversion Theorems (theorem 4.2), we have that step
8 of Track-Proximity maintains the correct core matrix at each time step.

Apply the Sherman–Morrison lemma [25] to (8.2), we have

Q(t) ∝
(

I+ c2Mr(t)C(t)Mc(t) cMr(t)C(t)

cC(t)Mc(t) C(t)

)

.

(8.9)

By (8.3), we have

centrality( j) ∝
n+l∑

i=1

r (t)i, j =
n+l∑

i=1

Q(t)(i, j).

Let r = [centrality( j)] j=1,...,(n+l), we have

r′ ∝ [11×n, 11×l ] ·Q(t)

∝
(

c211×nMr(t)C(t)Mc(t) + c11×lC(t)Mc(t)

c11×nMr(t)C(t) + 11×lC(t)

)′
,

=
(

c2xMc(t) + cyMc(t)

cx + y

)′

= [cr2
′Mc(t), r2

′]
= [r1

′, r2
′]

where x and y are two vectors as defined in step 3 of Track-Centrality and r1,
and r2 are two column vectors as defined in steps 4 and 5 of Track-Centrality. This
completes the proof. �

8.6.2 Track-Proximity

Here, we want to track the top-k most related/relevant type 1 (and/or type 2) objects
for object A at each time step. For example, on an author–conference bipartite graph
evolving over time, we want track “Which are the major conferences for John Smith
in the past 5 year?” or “Who are most the related authors for John Smith so far?” For
a given pair of nodes, we also want to track their pairwise relationship over time.
For example, in an author–conference bipartite graph evolving over time, we can
track “How much credit (a.k.a proximity) John Smith has accumulated in KDD?”



8 Proximity Tracking on Dynamic Bipartite Graphs 227

Algorithm 7 Track-Proximity (Top-k Queries)

Input: The time-evolving bipartite graphs {M(1), ΔM(t)(t ≥ 2)}, the parameters c and k, and the
source node s.

Output: The top-k most related type 1 (and type 2) objects for s at each time step t .
1: Initialization
2: for each time step t (t ≥ 1) do
3: for i = 1 : n do
4: rs,i = GetQij(C(t),Mr(t),Mc(t), s, i, c))
5: end for
6: let r1 = [rs,i ](i = 1, ...n)
7: for j = 1 : l do
8: rs, j = GetQij(C(t),Mr(t),Mc(t), s, j + n, c))
9: end for

10: let r2 = [rs, j ]( j = 1, ...l)
11: output the top k type 1 objects according to r1

′ (larger value means more relevant)
12: output the top k type 2 objects according to r2

′ (larger value means more relevant)
13: update Mr(t), Mc(t), and C(t) for t ≥ 2.
14: end for

The algorithm for top-k queries is summarized in Algorithm 7. The algorithm for
tracking the proximity for a given pair of nodes is quite similar to Algorithm 7. We
omit its details for space.

In Algorithm 7, again, at each time step, the update time will dominate the total
computational time. Thus by using either Fast-Single-Update or Fast-Batch-Update,
we can quickly give the ranking results at each time step. Similar to Track-Proximity,
we have the following lemma for the correctness of Track-Proximity:

Lemma 5 Correctness of Track-Proximity The vectors r1
′ and r2

′ in Algorithm 7
provide a correct ranking of type 1 and type 2 objects at each time step t. That is,
the ranking is exactly according to the proximity defined in (8.4).

Proof Based on Delta Matrix Inversion Theorems (Theorem 4.2), we have that step
13 of Track-Proximity maintains the correct core matrix at each time step. Therefore,
Algorithm 2 in step 8 always gives the correct proximity score, which completes the
proof. �

8.7 Experimental Results

In this section we present experimental results, after we introduce the data sets in
Section 8.6.1. All the experiments are designed to answer the following questions:

• Effectiveness: What is the quality of the applications (Track-Centrality and Track-
Proximity) we proposed in this chapter?

• Efficiency: How fast are the proposed algorithms (Fast-Single-Update and Fast-
Batch-Update for the update time, Track-Centrality and Track-Proximity for the
overall running time)?
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8.7.1 Data Sets

We use five different data sets in our experiments, summarized in Table 8.2. We
verify the effectiveness of our proposed dynamic centrality measures on NIPS, DM,
and AC, and measure the efficiency of our algorithms using the larger ACPost and
NetFlix data sets.

Table 8.2 Data sets used in evaluations
Name n × l Ave.m̂ Time steps

NIPS 2,037×1,740 308 13
DM 5,095× 3,548 765 13
AC 418,236×3,571 26,508 49
ACPost 418,236×3,571 1,007 1258
NetFlix 2,649,429×17,770 100,480,507 NA

The first data set (NIPS) is from the NIPS proceedings.2 The timestamps are
publication years, so each graph slice M corresponds to 1 year, from 1987 to 1999.
For each year, we have an author–paper bipartite graph. Rows represent authors and
columns represent papers. Unweighted edges between authors and papers represent
authorship. There are 2,037 authors, 1,740 papers, and 13 time steps (years) in total
with an average of 308 new edges per year.

The DM, AC, and ACPost data sets are from DBLP.3 For the first two, we use
paper publication years as timestamps, similar to NIPS. Thus each graph slice S
corresponds to 1 year.

DM uses author–paper information for each year between 1995 and 2007, from
a restricted set of conferences, namely the five major data mining conferences
(‘KDD’, ‘ICDM’, ‘SDM’, ‘PKDD’, and ‘PAKDD’). Similar to NIPS, rows rep-
resent authors, columns represent papers, and unweighted edges between them rep-
resent authorship. There are 5,095 authors, 3,548 papers, and 13 time steps (years)
in total, with an average of 765 new edges per time step.

AC uses author–conference information from the entire DBLP collection,
between years 1959 and 2007. In contrast to DM, columns represent conferences
and edges connect authors to conferences they have published in. Each edge in S
is weighted by the number of papers published by the author in the corresponding
conference for that year. There are 418,236 authors, 3,571 conferences, and 49 time
steps (years) with an average of 26,508 new edges at each time step.

ACPost is primarily used to evaluate the scalability of our algorithms. In order
to obtain a larger number of timestamps at a finer granularity, we use posting date
on DBLP (the ‘mdate’ field in the XML archive of DBLP, which represents when
the paper was entered into the database), rather than publication year. Thus, each
graph slice S corresponds to 1 day, between January 3, 2002, and August 24, 2007.
ACPost is otherwise similar to AC, with number of papers as edge weights. There

2 http://www.cs.toronto.edu/∼roweis/data.html
3 http://www.informatik.uni-trier.de/∼ley/db/
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are 418,236 authors, 3,571 conferences, and 1,258 time steps (days with at least one
addition into DBLP), with an average of 1,007 new edges per day.

The final data set, NetFlix, is from the Netflix prize.4 Rows represent users and
columns represent movies. If a user has rated a particular movie, we connect them
with an unweighted edge. This data set consists of one slice and we use it in Sec-
tion 8.6.2 to evaluate the efficiency Fast-Single-Update. In total, we have 2,649,429
users, 17,770 movies, and 100,480,507 edges.

8.7.2 Effectiveness: Case Studies

Here, we show the experimental results for the three applications on real data sets,
all of which are consistent with our intuition.

8.7.2.1 Results on Track-Centrality

We apply Algorithm 6 to the NIPS data set. We use “Global Aggregation” to update
the adjacency matrix M(t). We track the top-k (k = 10) most central (i.e.influential)
authors in the whole community. Table 8.3 lists the results for every 2 years. The
results make sense: famous authors in the NIPS community show up in the top-10
list and their relative rankings change over time, reflecting their activity/influence
in the whole NIPS community up to that year. For example, Prof. Terrence J.
Sejnowski (‘Sejnowski_T’) shows in the top-10 list from 1989 on and his ranking
keeps going up in the following years (1991, 1993). He remains number 1 from 1993
on. Sejnowski is one of the founders of NIPS, an IEEE Fellow, and the head of the
Computational Neurobiology Lab at the Salk institute. The rest of the top-placed
researchers include Prof. Michael I. Jordan (‘Jordan_M’) from UC Berkeley and
Prof. Geoffrey E. Hinton (‘Hinton_G’) from University of Toronto, well known for
their work in graphical models and neural networks, respectively. We can also track
the centrality values as well as their rank for an individual author over the years.
Figure 8.1 plots the centrality ranking for some authors over the years. Again, the

Table 8.3 Top-10 most influential (central) authors up to each year

1987 1989 1991 1993 1995 1997 1999

4 http://www.netflixprize.com/
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Fig. 8.1 The rank of centrality for some given authors in the whole NIPS data set up to each year

results are consistent with intuition. For example, Michael I. Jordon starts to have
significant influence (within top-30) in the NIPS community from 1991 on; his influ-
ence rapidly increases in the following up years (1992–1995); and stays within the
top-3 from 1996 on. Prof. Christof Koch (‘Koch_C’) from Caltech remains one of
the most influential (within top-3) authors in the whole NIPS community over the
years (1990–1999).

8.7.2.2 Results on Track-Proximity

We first report the results on the DM data set. We use “Global Aggregation” to
update the adjacency matrix at each time step. In this setting, we can track the top-k
most related papers/authors in the data mining community for a given query author
up to each year. Table 8.4 lists the top-5 most related authors for ‘Jian Pei’ over
the years (2001–2007). The results make perfect sense: (1) the top co-author (Prof.
‘Jiawei Han’) is Prof. Jian Pei’s advisor; (2) the other top collaborators are either
from SUNY-Buffalo (Prof. Aidong Zhang) or from IBM-Watson (Drs. Philip S. Yu,
Haixun Wang, Wei Wang), which is also reasonable, since Prof. Pei held a faculty
position at SUNY-Buffalo; (3) the IBM-Watson collaboration (‘Philip S. Yu’ and
‘Haixun Wang’) got stronger over time.

Table 8.4 Top-5 most related authors for ‘Jian Pei’ up to each year
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Fig. 8.2 The rank of the proximity from ‘VLDB’ to ‘KDD’ up to each year

Then, we apply Track-Proximity on the data set AC. Here, we want to track the
proximity ranking for a given pair of nodes over time. Figure 8.2 plots the rank of
proximity from the “VLDB” conference to the “KDD” conference. We use “Global
Aggregation” to update the adjacency matrix. In this way, proximity between the
“VLDB” and “KDD” conferences measures the importance/relevance of “KDD”
wrt “VLDB” up to each year. From the figure, we can see that the rank of “KDD”
keeps going up, reaching the fifth position by 2007. The other top-4 conferences for
“VLDB” by 2007 are “SIGMOD,” “ICDE,” “PODS,” and “EDBT”, in this order.
The result makes sense: with more and more multi-disciplinary authors publishing
in both communities (databases and data mining), “KDD” becomes more and more
closely related to “VLDB.”

We also test the top-k queries on AC. Here, we use “Sliding Window” (with
window length len = 5) to update the adjacency matrix. In this setting, we want to
track the top-k most related conferences/authors for a given query node in the past
5 years at each time step t . Figure 8.3 lists the top-5 conferences for Dr. “Philip S.
Yu.” The major research interest (top-5 conferences) for “Philip S. Yu” is changing
over time. For example, in the years 1988–1992, his major interest is in databases
(“ICDE” and “VLDB”), performance (“SIGMETRICS”), and distributed systems
(“ICDCS” and “PDIS”). However, during 2003–2007, while databases (“ICDE” and

Fig. 8.3 Philip S. Yu’s top five conferences at four time steps, using a window of 5 years
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“VLDB”) are still one of his major research interests, data mining became a strong
research focus (“KDD,” “SDM,” and “ICDM”).

8.7.3 Efficiency

After initialization, at each time step, most time is spent on updating the core matrix
C(t), as well as the normalized adjacency matrices. In this section, we first report
the running time for update and then give the total running time for each time step.
We use the two largest data sets (ACPost and NetFlix) to measure performance.

8.7.3.1 Update Time

We first evaluate Fast-Single-Update. Both ACPost and NetFlix are used. For each
data set, we randomly add one new edge into the graph and compute the update
time. The experiments are run multiple times. We compare Fast-Single-Update with
Straight-Update (which does l × l matrix inversion at each time step) and the result
is summarized in Fig. 8.4—Note that the y-axis is in log-scale). On both data sets,
Fast-Single-Update requires significantly less computation: on ACPost, it is 64x
faster (0.5 s vs. 32 s), while on NetFlix, it is 176x faster (22.5 s vs. 4, 313 s).
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Fig. 8.4 Evaluation of Fast-Single-Update. For both data sets, one edge changes at each time step.
The running time is averaged over multiple runs of experiments and shown in logarithmic scale

To evaluate Fast-Batch-Update, we use ACPost. From t = 2 and on, at each
time step, we have between m̂ = 1 and m̂ = 18,121 edges updated. On average,
there are 913 edges updated at each time step t (t ≥ 2). Note that despite the large
number of updated edges for some time steps, the rank of the difference matrix
(i.e., min(n̂, l̂)) at each time step is relatively small, ranging from 1 to 132 with an
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Fig. 8.5 Evaluation on Fast-Batch-Update

average of 33. The results are summarized in Fig 8.5. We plot the mean update time
vs. the number (m̂) of changed edges in Fig 8.5a and the mean update time vs. the
rank (min(n̂, l̂)) of the update matrix in Fig 8.5b. Compared to the Straight-Update,
Fast-Batch-Update is again much faster, achieving 5–32x speedup. On average, it
is 15x faster than Straight-Update.

8.7.3.2 Total Running Time

Here, we study the total running time at each time step for Track-Centrality.
The results for Track-Proximity are similar and omitted for space. For Track-
Centrality, we let the algorithm return both the top-10 type 1 objects and the top-10
type 2 objects. We use the NetFlix data set with one edge changed at each time step
and ACPost data set with multiple edges changed at each time step.

We compare our algorithms (“Track-Centrality”) with (i) the one that uses
Straight-Update in our algorithms (still referred as “Straight-Update”) and (ii) that
uses iterative procedure [27] to compute proximity and centrality at each time step
(referred as “Ite-Alg”). The results are summarized in Fig. 8.6. We can see that in
either case, our algorithm (Track-Centrality) is much faster. For example, it takes
27.8 s on average on the NetFlix data set, which is 155x faster over “Straight-
Update” (4,315 s) and is 93x faster over “Ite-Alg” (2,582 s). In either case, the
update time for Track-Centrality dominates the overall running time. For example,
on the ACPost data set, update time accounts for more than 90% of the overall
running time (2.4 s vs. 2.6 s). Thus, when we have to track queries for many nodes
of interest, the advantage of Track-Centrality over “Ite-Alg” will be even more sig-
nificant, since at each time step we only need to do update once for all queries, while
the running time of “Ite-Alg” will increase linearly with respect to the number of
queries.
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Fig. 8.6 Overall running time at each time step for Track-Centrality. For ACPost, there are multi-
ple edges changed at each time step; and for NetFlix, there is only one edge changed at each time
step. The running time is averaged in multiple runs of experiments and it is in the logarithm scale

8.8 Conclusion

In this chapter, we study how to incrementally track the node proximity as well as
the centrality for time-evolving bipartite graphs. To the best of our knowledge, we
are the first to study the node proximity and centrality in this setting. We first extend
the proximity and centrality definitions to the setting of time-evolving graphs by
degree-preserving operations. We then propose two fast update algorithms (Fast-
Single-Update and Fast-Batch-Update) that do not resort to approximation and
hence guarantee no quality loss (see Theorem 2), which are followed by two algo-
rithms to incrementally track centrality (Track-Centrality) and proximity (Track-
Proximity), in anytime fashion. We conduct extensive experimental case studies on
several real data sets, showing how different queries can be answered, achieving up
to 15∼176x speedup. We can achieve such speedups while providing exact answers
because we carefully leverage the fact that the rank of graph updates is small, com-
pared to the size of the original matrix. Our experiments on real data show that this
typically translates to at least an order of magnitude speedup.
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Chapter 9
Discriminative Frequent Pattern-Based Graph
Classification

Hong Cheng, Xifeng Yan, and Jiawei Han

Abstract Frequent graph mining has been studied extensively with many scal-
able graph mining algorithms developed in the past. Graph patterns are essential
not only for exploratory graph mining but also for advanced graph analysis tasks
such as graph indexing, graph clustering, and graph classification. In this chap-
ter, we examine the frequent pattern-based classification of graph data. We will
introduce different types of patterns used in graph classification and their efficient
mining approaches. These approaches could directly mine the most discriminative
subgraphs without enumerating the complete set of frequent graph patterns. The
application of graph classification into chemical compound analysis and software
behavior prediction will be discussed to demonstrate the power of discriminative
subgraphs.

9.1 Introduction

With enormous amounts of graph data accumulated in scientific and commercial
domains, such as biological networks, social networks, and software traces, there is
an imminent need to develop scalable methods for the analysis of the overwhelm-
ingly large and complex data. As an effective method for data analysis, classification
has been widely used to categorize unlabeled data. Classification on graph data has
many real applications, e.g., predicting whether a chemical compound has a desired
biological activity or whether a software execution is erroneous, etc. Intuitively, the
activity of a compound largely depends on its chemical structure and the arrange-
ment of different atoms in the 3D space. Similarly, the correctness of a software
execution largely depends on the control flow of the execution, which can be mod-
eled as a flow graph. As a result, an effective classifier for graphs should be able to
take into account their structural properties.
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A lot of classification algorithms have been developed in the past, such as
Decision Tree, Bayesian Network, and Support Vector Machine, most of which
assume feature vector data. Unfortunately, graph data do not have a natural feature
vector representation. Examples include chemical compounds, molecules, social
and biological networks, and program flows. A primary question is how to con-
struct discriminative and compact feature sets, on which classic vector space clas-
sifiers could be built to achieve good performance. Recent studies showed that
graph pattern mining could be a promising approach for fitting graphs to vec-
tor data. Given a set of graphs, the discovered frequent graph patterns could be
taken as features to project graphs in a vector space. For example, assume there
is a training set D = {(G1, y1), . . . , (Gn, yn)}, where Gi is a graph and yi is
the class label. Let Fs = {g1, . . . , gm} be the set of frequent patterns mined
from D. Then a training graph Gi ∈ D can be represented as a feature vector
x(Gi ) = [ f (g1, Gi ), . . . , f (gm, Gi )], where f (g j , Gi ) is the frequency of feature
g j in graph Gi . By transforming graphs to feature vectors, classifiers such as SVM
can be applied directly.

In this chapter, we introduce a discriminative frequent pattern-based classifica-
tion framework on graph data. We will first review related work [5, 7, 18, 19, 28,
30, 33] on classifying transactional data sets with discriminative frequent itemsets
or association rules. Then we will describe different types of subgraph patterns
[8, 12, 20, 29] as well as their usage in graph classification. Finally we will introduce
several efficient mining approaches [9, 16, 25, 31] which directly mine the most
discriminative subgraphs for classification. The application of graph classification
techniques into real problems including chemical compound analysis [8] and soft-
ware behavior prediction [4, 20] will also be discussed.

9.2 Problem Formulation

In graph classification, a training or test instance is represented as a labeled graph.
A labeled graph has labels associated with its vertices and edges. The vertex set of
a graph G is denoted by V (G) and the edge set by E(G). A label function, l, maps
a vertex or an edge to a label.

Definition 1 (Graph Classification) Given a training set of graphs D = {Gi , yi }ni=1,
where Gi ∈ G is a labeled graph and yi ∈ {±1} is the class label, graph classification
is to induce a mapping h(G) : G → {±1} from D.

Subgraph isomorphism and frequent subgraph are defined as follows.

Definition 2 (Subgraph Isomorphism) For two labeled graphs g and g′, a sub-
graph isomorphism is an injective function f : V (g) → V (g′), s.t., (1), ∀v ∈
V (g), l(v) = l ′( f (v)); and (2), ∀(u, v) ∈ E(g), ( f (u), f (v)) ∈ E(g′) and
l(u, v) = l ′( f (u), f (v)), where l and l ′ are the labeling functions of g and g′,
respectively. f is called an embedding of g in g′.
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Definition 3 (Frequent Subgraph) Given a labeled graph data set D =
{G1, . . . , Gn} and a subgraph g, the supporting graph set of g is Dg = {Gi |g ⊆
Gi , Gi ∈ D}. The support of g is support (g) = |Dg |

|D| . A frequent graph is a graph
whose support is no less than a minimum support threshold, min_sup.

A graph g is a subgraph of another graph g′ if there exists a subgraph isomor-
phism from g to g′, denoted by g ⊆ g′. g′ is called a supergraph of g.

9.3 Related Work

Pattern-based classification of graph data is related to associative classification on
discretized transactional data, where association rules or itemsets are generated and
analyzed for use in classification [5, 7, 18, 19, 28, 30, 33]. The basic idea is that
strong associations between frequent itemsets and class labels can be discovered for
classification. Prediction is made based on the top-ranked single rule or multiple
rules.

CBA (Classification based on Associations) was the first associative classifica-
tion method proposed by Liu et al. [19]. CBA consists of two parts, a rule gener-
ator and a classifier builder. The rule generator applies the Apriori algorithm [1]
to generate a set of class association rules according to a min_sup threshold and a
min_conf threshold. The class association rules are essentially association rules with
a set of items at the rule left-hand side and the class attribute at the rule right-hand
side. To build the best classifier out of a set of rules, one needs to evaluate all the
possible subsets of rules on the training data and select the subset which gives the
least number of errors. However, given m rules, there are 2m subsets, which are
computationally infeasible. A heuristic classifier builder is proposed in CBA. A
total order is defined on the generated rules based on rule confidence and support.
The classification rules are ranked according to the total order. Prediction is based
on the first rule whose left-hand side condition satisfies the test case.

CMAR (Classification based on Multiple Association Rules) was proposed by Li
et al. [18], which aims at improving the rule mining efficiency as well as avoiding
bias or overfitting caused by the single rule-based classification. To improve mining
efficiency, CMAR extends FP-growth and constructs a class distribution-associated
FP-tree. Each node of the FP-tree registers not only the item attribute but also the
class label distribution, for classification rule mining. To avoid classification bias
and overfitting in CMAR, classification is performed based on a weighted χ2 anal-
ysis on multiple high confidence, highly related rules.

CPAR (Classification based on Predictive Association Rules) was proposed by
Yin and Han [33] which combine the advantages of associative classification and
traditional rule-based classification. CPAR inherits the basic idea of FOIL [23] in
rule generation. When selecting a literal to construct a rule, Foil Gain is used to
measure the information gained from adding this literal to the current rule.

Instead of generating a large number of candidate rules, CPAR adopts a greedy
algorithm to generate rules directly from training data with higher quality and
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lower redundancy in comparison with associative classification. To avoid generat-
ing redundant rules, CPAR generates each rule by considering the set of “already-
generated” rules. Compared with traditional rule-based classifiers, CPAR gener-
ates and tests more rules by considering all the close-to-the-best literals, instead of
selecting only the best literal, so that important rules will not be missed. To avoid
overfitting, CPAR uses expected accuracy to evaluate each rule and uses the best k
rules in prediction.

Cong et al. [7] proposed to discover top-k covering rule groups for each row of
gene expression profiles for classification purpose. Since the gene expression data
are very high dimensional, they proposed a row enumeration technique and several
pruning strategies to make the rule mining process very efficient. Experiments on
real bioinformatics data sets show that the top-k covering rule mining algorithm is
orders of magnitude faster than traditional association rule mining algorithms. A
classifier RCBT is constructed from the top-k covering rule groups.

HARMONY [30] is another rule-based classifier which directly mines classifi-
cation rules. It uses an instance-centric rule-generation approach to assure for each
training instance that the highest confidence rule covering the instance is included in
the rule set. Several search space pruning methods based on confidence and search
strategies have been proposed, which can be pushed deeply into the rule discov-
ery process. HARMONY is shown to be more efficient and scalable than previous
rule-based classifiers.

Veloso et al. [28] proposed a lazy associative classification method, which per-
forms computation on a demand-driven basis. Starting from a test instance, the
lazy classifier projects the training data only on those features in the test instance.
From the projected data set, association rules are discovered and ranked, and the
top-ranked rule is used for prediction. This lazy classification method effectively
reduces the number of rules produced by focusing on the test instance only.

Cheng et al. [5] provided some theoretical analysis to support the principle of
frequent pattern-based classification. Reference [5] builds a connection between
pattern frequency and discriminative measures, such as information gain and Fisher
score, and shows that discriminative frequent patterns are essential for classification,
whereas inclusion of infrequent patterns may not improve the classification accuracy
due to their limited predictive power. A strategy is also proposed to set minimum
support in frequent pattern mining for generating useful patterns. A follow-up study
by Cheng et al. [6] proposed an efficient mining algorithm to directly generate the
most discriminative frequent itemsets by accurately estimating the information gain
upper bound and then integrating branch-and-bound search with FP-growth based
on the estimated bound.

9.4 Mining Subgraph Features for Classification

In recent years, a lot of studies have been carried out to solve the graph classification
problem. There are two major approaches: graph kernel-based and graph pattern-
based approaches.
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Graph kernel is an approach for graph classification without explicitly generat-
ing the subgraph patterns. It provides a way to measure the similarity between two
graphs for classification, thus bypassing graph pattern mining. Many graph kernels
have been proposed including random walk graph kernel [11, 14], optimal assign-
ment kernel [10], shortest-path graph kernel [2], and subtree pattern kernel [24].

On the other hand, the graph pattern-based approach builds graph classifiers
based on different types of graph substructure features. The basic idea is to extract
frequent substructures [8, 15, 20], local graph fragments [29], or cyclic patterns and
trees [12] and use them as descriptors to represent the graph data.

According to the performance comparison between graph kernel-based and graph
pattern-based classification methods by [8, 31], the accuracy is comparable, but the
graph kernel-based approach is much slower, since it needs to compute similarity
of O(n2) pairs of graphs. The focus of this chapter is on the graph pattern-based
classification approach. In the following, we will describe several types of graph
patterns used as classification features. We will also discuss the feature selection
issue in graph pattern-based classification.

9.4.1 Frequent Subgraph Features

Frequent subgraphs have been used as features for graph classification in [8, 15, 20].
Reference [8] presents a subgraph-based classification framework that decouples
the frequent subgraph mining process from the classification model construction
process. In the first step, frequent subgraph mining is applied to find all substruc-
tures present in the data set. Reference [8] proposed to use two types of subgraphs:
frequent topological subgraphs (as defined in Definition 3) or frequent geometric
subgraphs as graph features. The former only considers the 2D topology of a graph,
whereas the latter considers a 3D coordinate for each vertex. While frequent topo-
logical subgraphs can be discovered by existing subgraph mining algorithms, e.g.,
[17], frequent geometric subgraph mining needs some special handling to incor-
porate the 3D structural information. To facilitate the discovery of frequent geo-
metric subgraphs, a metric of average inter-atomic distance defined as the average
Euclidean distance between all pairs of atoms in a molecule is used as a geometric
signature of a graph. Hence a geometric subgraph consists of two components, a
topological subgraph and an interval of average inter-atomic distance associated
with it. A geometric graph contains this subgraph if it contains the topological
subgraph and the average inter-atomic distance of the embedding is within the
interval. The task of discovering geometric subgraphs now reduces to identifying
those geometric configurations that are frequent enough and the interval of average
inter-atomic distance is bounded by a tolerance threshold.

As the second step, feature selection is applied on top of the frequent subgraphs
based on the sequential coverage paradigm [21]. The sequential covering algorithm
takes as input a set of examples and the features discovered in these examples
and iteratively applies the feature selection step. In each step, the algorithm selects
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the feature that has the highest estimated accuracy. After selecting this feature, all
the examples containing this feature are eliminated and the feature is marked as
selected. The algorithm continues until either all the features are selected or all the
examples are eliminated. After a set of discriminative frequent subgraph features are
selected, the original labeled graphs can be represented in a vector format. Assume
the feature set Fs = {g1, g2, . . . , gm} where each subgraph gi represents a feature.
Given a graph G and a feature gi , x is the vector representing G. Then,

xi =
{

1, gi is a subgraph of G,
0, otherwise.

(9.1)

Thus, x is a binary representation of graph G. One can also use the frequency of
gi in G as the feature value. This is referred as frequency representation. Finally,
a classifier such as SVM is constructed on the feature vector representation of the
graph data.

It is worth noting that frequent subgraph features are determined by the min_sup
threshold. Therefore, the feature space can change if min_sup changes. An interest-
ing problem is how to set min_sup to get the discriminative features.

A potential problem of using frequent substructures to represent graphs is the
partial coverage problem, as pointed out in [29]. According to (9.1), if a graph G
contains a subgraph feature gi , its i th dimension has value 1 (or the number of
occurrences of gi in G), otherwise, 0. Given a set of frequent subgraphs Fs and a
graph G, if none (or a small number) of the graph patterns in Fs is a subgraph of
G, then the feature vector of G contains almost all 0s. That is, G is barely covered
by the frequent subgraphs. This is referred as partial feature coverage. As a result,
the topological property of such graphs is inadequately reflected by the frequent
substructure features. It is usually difficult to distinguish such “uncovered” graphs
from others.

9.4.1.1 Frequent Subgraph-Based Classification for Bug Localization

Liu et al. [20] modeled software executions as software behavior graphs, then built a
frequent subgraph-based classification model to distinguish buggy executions from
normal ones and used the classification result to further localize the bugs. A software
behavior graph consists of a call graph and a transition graph. A call graph Gc(α) is
a directed graph representing the function call relationship in a program execution
α. The vertex set V (Gc(α)) includes all the functions in α. An edge (vi , v j ) ∈
E(Gc(α)) if and only if function i calls function j in α. A transition graph Gt (α) is
another directed graph displaying the function transition relationship in α. An edge
(vi , v j ) ∈ E(Gt (α)) if and only if function j is called right after function i exits.
The superposition of Gc(α) and Gt (α) forms the software behavior graph G(α)

of α.
Similar with [8], Liu et al. [20] first applied closed subgraph mining [32] to gen-

erate subgraph features and then learned an SVM classifier using these features. Liu
et al. used the graph classification technique to uncover “backtrace” for noncrashing
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bugs based on the analysis of the classification accuracy boost. The basic idea is as
follows. Generally, the classification accuracy should not decrease while more and
more trace data become available; especially accuracy will improve once the execu-
tion data contain buggy behaviors. Suppose a program runs through components A,
B, and C in sequence and a noncrashing bug resides in component B. Classifier f A is
trained at the end of execution of component A. As expected, its accuracy cannot be
high since it knows few, if any, behaviors induced by the bug. In contrast, classifier
fB that is trained after component B is expected to have a much higher accuracy
than f A because it does have behavior graphs induced by the bug in incorrect runs.
Therefore, as long as fB has a classification accuracy boost in comparison with f A,
it is more likely that the bug is located in component B than component A.

Specifically, for each function, Fi , two checkpoints Bi
in and Bi

out are placed at the
entrance and the exit of Fi , respectively. At each checkpoint, a classifier is trained
using the traces running up to that point. A function with a very high accuracy boost
(accuracy at Bi

out minus accuracy at Bi
in) is likely to be bug relevant.

9.4.2 Tree and Cyclic Pattern Features

Horväth et al. [12] proposed a method which represents a graph with a set of cyclic
and tree patterns. The authors first define the set of cyclic patterns induced by the
set of simple cycles of a graph. Let G = (V, E,Σ, λ) be a graph where Σ is the set
of labels and λ is the labeling function. Let C = {v0, v1}, {v1, v2}, . . . , {vk−1, v0}
be a sequence of edges that forms a simple cycle in G. The canonical representation
of C is the lexicographically smallest string π(C) ∈ Σ∗ among the strings obtained
by concatenating the labels along the vertices and edges of the cyclic permutations
of C and its reverse. π is unique up to isomorphism, hence it indeed provides a
canonical string representation of simple cycles. The set of cyclic patterns of a graph
G, denoted by C(G) is defined by

C(G) = {π(C) : C ∈ S(G)},

where S(G) denotes the set of simple cycles of G.
Besides cyclic patterns, the method also considers the graph obtained by remov-

ing the edges of all simple cycles, or equivalently, by deleting every edge that
belongs to some of G’s biconnected components containing at least two edges. The
resulting graph is a forest of trees consisting of the set of bridges of the graph. To
assign a set of tree patterns to G, they use the forest formed by the set B(G) of
bridges of G. Similar to simple cycles, they associate each tree T with a pattern
π(T ) ∈ Σ∗ that is unique to isomorphism and define the set of tree patterns T (G)

assigned to G by

T (G) = {π(T ) : T is a connected component of B(G)}.
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The final feature space is the union of the cyclic patterns and tree patterns. The
similarity of two graphs is measured by the cardinality of the intersection of their
cyclic patterns plus the cardinality of the intersection of their tree patterns. A clas-
sifier is constructed on the training graphs based on the cyclic and tree pattern
representation.

9.4.3 Graph Fragment Features

Wale and Karypis [29] proposed to use graph fragments to represent graphs. A graph
fragment is a path, tree, or local graph structure enumerated from the graph data
up to a finite length l in terms of the number of edges. Such enumerated graph
fragments are ensured to have 100% coverage of the graph data and avoid the partial
coverage problem by frequent subgraphs, since all graph fragments of length up to l
are enumerated regardless of frequency. The graph fragments serve as classification
features to represent a graph instance in a feature space. The recursive definition of
graph fragments of length l is given by

F(G, l) =
{

∅, if G has fewer than l edges or l = 0,

eF(G\e, l − 1) ∪ F(G\e, l), otherwise.
(9.2)

In addition, [29] provided a comparison between different types of graph struc-
tures in terms of four criteria: topological complexity, generation process, precise
representation, and complete coverage. In terms of topological complexity, cyclic
and tree (CT) patterns have medium complexity, while frequent subgraphs (FS) and
graph fragments (GF) can have from low to high complexity, depending on the size
of the patterns; for generation process, all three structures are dynamically generated
from a given graph data set; all three structures have precise representation of a
graph instance; in terms of coverage, CT and GF have complete coverage of a given
graph data set while FS may have the partial coverage problem.

9.4.4 Feature Selection on Subgraph Patterns

When using frequent subgraphs as features, one usually faces a challenging problem
that the number of frequent subgraphs may grow exponentially with the size of the
training graphs, but only a few of them possess enough discriminative power to
make them useful for graph classification. Therefore, an effective and efficient fea-
ture selection strategy is very critical in frequent subgraph-based classification. Pre-
vious frequent pattern-based classification studies use different heuristic strategies
for feature selection. For example, [8] used sequential coverage paradigm [21], and
[5] proposed MMRFS based on Maximal Marginal Relevance (MMR) [3] heuristic
in information retrieval. Although these feature selection methods have been demon-
strated to be effective in previous studies, they do not provide optimality guarantees.
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A recent study by Thoma et al. [26] defined a principled, near-optimal approach
to feature selection on frequent subgraphs. The method, called CORK, selects fre-
quent subgraphs that greedily maximize a submodular quality criterion, thereby
guaranteeing that the greedy solution to the feature selection problem is close to
the globally optimal solution. Furthermore, the feature selection strategy can be
integrated into gSpan, to help prune the search space for discriminative frequent
subgraph mining.

The feature selection problem among frequent subgraphs can be cast as a combi-
natorial optimization problem. Let F denote the full set of subgraph features and T
denote a subset of F . Let q(T ) denote the relevance of a set of frequent subgraphs
T for class membership, where q is a criterion measuring the discriminative power
of T . Feature selection can then be formulated as

Fs = arg max
T ⊆F

q(T ) s.t. |T | ≤ s. (9.3)

where Fs is the set of selected features, | · | computes the cardinality of a set and s
is the maximally allowed number of selected features.

9.4.4.1 Submodularity

Assume that we measure the discriminative power q(T ) of a set of frequent sub-
graphs T in terms of a quality function q. A near-optimality solution is reached
for a submodular quality function q when used in combination with greedy feature
selection. Greedy forward feature selection iteratively picks a feature that, in union
with the features selected so far, maximizes the quality function q over the perspec-
tive feature set. In general, this strategy will not yield an optimal solution, but it can
be shown to yield a near-optimal solution if q is submodular.

Definition 4 (Submodular Set Function) A quality function q is said to be submod-
ular on a set F if for T ′ ⊂ T ⊆ F and X ∈ F ,

q(T ′ ∪ {X})− q(T ′) ≥ q(T ∪ {X})− q(T ). (9.4)

If q is submodular and we employ greedy forward feature selection, then there is
a theorem from [22] that holds.

Theorem 1 If q is a submodular, nondecreasing set function on a set F and q(φ) =
0, then greedy forward feature selection is guaranteed to find a set of feature T ⊆ F
such that

q(T ) ≥
(

1− 1

e

)

max
U⊆F :|U |=s

q(U), (9.5)

where s is the number of features to be selected.
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As a consequence, the result from greedy feature selection achieves at least
(1− 1

e ) ≈ 63% of the score of the optimal solution to the feature selection problem.
This is referred to as being near-optimal in the literature.

9.4.4.2 The Proposed Quality Criterion CORK

Definition 5 (Correspondence) A pair of data objects (v(i), v( j)) is called a corre-
spondence in a set of features indicated by indices U ⊆ {1, . . . , |F |} iff

(v(i) ∈ D+) ∧ (v( j) ∈ D−) ∧ ∀d ∈ U : (v(i)d = v
( j)
d ), (9.6)

where D+ is the set of positive training graphs and D− is the set of negative training
graphs, and F is the set of subgraph features.

Definition 6 (CORK) The proposed quality criterion q is called CORK
(Correspondence-based Quality Criterion) for a subset of features U as

q(U) = (−1)× number of correspondences in U . (9.7)

Reference [26] provided a theorem to show that CORK is submodular. Then
CORK can be used for greedy forward feature selection on a pre-mined set F of
frequent subgraphs from G and get a result set Fs ⊆ F with a guaranteed quality
bound.

9.4.4.3 Integrating CORK with gSpan to Prune Search Space

Furthermore, [26] showed that CORK can be integrated into gSpan to directly mine
a set of discriminative subgraph features. The basic idea is, from the CORK-value
of a subgraph g, an upper bound for the CORK-values of all its supergraphs can be
derived, thus allowing to prune the search space. Theorem 2 shows the upper bound
of the CORK-values for supergraphs of a given subgraph g, which is useful in a
branch-and-bound search for pruning search space in gSpan.

Theorem 2 Let g be a subgraph and g′ is a supergraph of g. Let D+(g(1)) denote
the set of graphs in the positive class that contains g, D+(g(0)) denote the set of
graphs in the positive class that does not contain g. Define D−(g(1)) and D−(g(0))

analogously. Then

q({g}) = −(|D+(g(0))| ∗ |D−(g(0))| + |D+(g(1))| ∗ |D−(g(1))|) (9.8)

and

q({g′}) ≤ q({g})+max

⎧
⎪⎨

⎪⎩

|D+(g(1))| · (|D−(g(1))| − |D−(g(0))|)
(|D+(g(1))| − |D+(g(0))|) · |D−(g(1))|

0

⎫
⎪⎬

⎪⎭
. (9.9)
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The bound in (9.9) can be extended to an upper bound over a set of selected
features to estimate the overall quality of the feature set.

9.5 Direct Mining Strategies

Many of the above introduced graph classification methods [8, 12, 20, 29] first mine
the complete set of graph substructures F wrt. a minimum support threshold or
other parameters such as subgraph size limit, then use a feature selection algorithm
to select a small set of discriminative subgraphs as features for classification. The
mining step is “uninformed” in terms of the discriminative score of generated sub-
graphs. Therefore, it usually generates a much larger set of subgraphs than what is
actually used for classification, making this method very computationally expensive.
If the input graph data set is very large or the minimum support threshold is low,
the mining step may not even be completed due to the combinatorial explosion.
As opposed to this approach, recent studies have focused on an efficient mining
approach which directly generates a compact set of discriminative subgraphs, while
avoiding generating low discriminative subgraphs. These studies usually use an
objective function to evaluate the quality of a subgraph, then search for the best
subgraph in the subgraph pattern space with different pruning strategies or models.
The CORK-based method, described in Section 9.4.4.3, is such an example. In this
section, we will introduce the mining techniques of four recent studies: gboost [16],
LEAP [31], GraphSig [25], and MbT [9].

9.5.1 gboost: A Branch-and-Bound Approach

Kudo, Maeda and Matsumoto [16] presented an application of boosting for classi-
fying labeled graphs, such as chemical compounds, natural language texts. A weak
classifier called decision stump uses a subgraph as a classification feature. Then
a boosting algorithm repeatedly constructs multiple weak classifiers on weighted
training instances. A gain function is designed to evaluate the quality of a decision
stump, i.e., how many weighted training instances can be correctly classified. Then
the problem of finding the optimal decision stump in each iteration is formulated
as mining an “optimal” subgraph pattern. gboost designs a branch-and-bound min-
ing approach based on the gain function and integrates it into gSpan to search
for the “optimal” subgraph pattern. Tsuda [27] proposed a similar pattern selection
approach, but using regularization.

9.5.1.1 A Boosting Framework

gboost uses a simple classifier, decision stump, for prediction according to a single
feature. The subgraph-based decision stump is defined as follows.

Definition 7 (Decision Stumps for Graphs) Let t and x be labeled graphs and y ∈
{±1} be a class label. A decision stump classifier for graphs is given by
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h〈t,y〉(x) =
{

y, t ⊆ x,
−y, otherwise.

The decision stumps are trained to find a rule 〈t̂, ŷ〉 that minimizes the error rate
for the given training data T = {〈xi , yi 〉}Li=1:

〈t̂, ŷ〉 = arg min
t∈F ,y∈{±1}

1

L

L∑

i=1

I (yi �= h〈t,y〉(xi ))

= arg min
t∈F ,y∈{±1}

1

2L

L∑

i=1

(1− yi h〈t,y〉(xi )). (9.10)

where F is a set of graph features (i.e., F =⋃L
i=1{t |t ⊆ xi }) and I (·) is an indicator

function. The gain function for a rule 〈t, y〉 is defined as

gain(〈t, y〉) =
L∑

i=1

yi h〈t,y〉(xi ). (9.11)

Using the gain, the search problem in (9.10) becomes equivalent to the problem:
〈t̂, ŷ〉 = arg maxt∈F ,y∈{±1} gain(〈t, y〉). Then the gain function is used instead of
error rate.

gboost then applies AdaBoost by repeatedly calling the decision stumps and
finally produces a hypothesis f , which is a linear combination of K hypotheses pro-
duced by the decision stumps f (x) = sgn(

∑K
k=1 αkh〈tk ,yk 〉(x)). In the kth iteration,

a decision stump is built with weights d(k) = (d(k)
1 , . . . , d(k)

L ) on the training data,

where
∑L

i=1 d(k)
i = 1, d(k)

i ≥ 0. The weights are calculated to concentrate more
on hard examples than easy ones. In the boosting framework, the gain function is
redefined as follows:

gain(〈t, y〉) =
L∑

i=1

yi di h〈t,y〉(xi ). (9.12)

9.5.1.2 A Branch-and-Bound Search Approach

According to the gain function in (9.12), the problem of finding the optimal rule
〈t̂, ŷ〉 from the training data set is defined as follows.

Problem 1 [Find Optimal Rule] Let T = {〈x1, y1, d1〉, . . . , 〈xL , yL , dL 〉} be train-
ing data where xi is a labeled graph, yi ∈ {±1} is a class label associated
with xi and di (

∑L
i=1 di = 1, di ≥ 0) is a normalized weight assigned to

xi . Given T , find the optimal rule 〈t̂, ŷ〉 that maximizes the gain, i.e., 〈t̂, ŷ〉 =
arg maxt∈F ,y∈{±1}

∑L
i=1 yi di h〈t,y〉, where F =⋃L

i=1{t |t ⊆ xi }.
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A naive method is to enumerate all subgraphs F and then calculate the gains
for all subgraphs. However, this method is impractical since the number of sub-
graphs is exponential to its size. To avoid such exhaustive enumeration, a branch-
and-bound algorithm is developed based on the following upper bound of the gain
function.

Lemma 1 (Upper bound of the gain) For any t ′ ⊇ t and y ∈ {±1}, the gain of
〈t ′, y〉 is bounded by μ(t) (i.e., gain(〈t ′, y〉) ≤ μ(t)), where μ(t) is given by

μ(t) = max

⎛

⎝2
∑

{i |yi=+1,t⊆xi }
di −

L∑

i=1

yi · di , 2
∑

{i |yi=−1,t⊆xi }
di +

L∑

i=1

yi · di

⎞

⎠ .

(9.13)

Figure 9.1 depicts a graph pattern search tree where each node represents a graph.
A graph g′ is a child of another graph g if g′ is a supergraph of g with one more
edge. g′ is also written as g′ = g ) e, where e is the extra edge. In order to find
the optimal rule, the branch-and-bound search in the search tree estimates the upper
bound of the gain function for all descendants below a node g. If it is smaller than
the value of the best subgraph seen so far, it cuts the search branch of that node.
Under the branch-and-bound search, a tighter upper bound is always preferred since
it means faster pruning.

...

cut
cut

search stop

...

Fig. 9.1 Branch-and-bound search

Algorithm 1 outlines the framework of branch-and-bound for searching the opti-
mal graph pattern. In the initialization, all the subgraphs with one edge are enu-
merated first and these seed graphs are then iteratively extended to large subgraphs.
Since the same graph could be grown in different ways, line 5 checks whether it
has been discovered before; if it has, then there is no need to grow it again. The
optimal gain(〈t̂, ŷ〉) among all the previously calculated gains is maintained. If
μ(t) ≤ gain(〈t̂, ŷ〉), the gain of any supergraph t ′ ⊇ t is no greater than gain(〈t̂, ŷ〉),
and therefore the branch can safely be pruned.
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Algorithm 1 Branch-and-bound
Input: Graph dataset D
Output: Optimal rule 〈t̂, ŷ〉

1: S = {1-edge graph};
2: 〈t̂, ŷ〉 = ∅; gain(〈t̂, ŷ〉) = −∞;
3: while S �= ∅ do
4: choose t from S, S = S \ {t};
5: if t was examined then
6: continue;
7: if gain(〈t, y〉) > gain(〈t̂, ŷ〉) then
8: 〈t̂, ŷ〉 = 〈t, y〉;
9: if μ(t) ≤ gain(〈t̂, ŷ〉) then
10: continue;
11: S = S ∪ {t ′|t ′ = t ) e};
12: return 〈t̂, ŷ〉;

9.5.2 LEAP: A Structural Leap Search Approach

Yan et al. [31] proposed an efficient algorithm which mines the most significant
subgraph pattern with respect to an objective function. A major contribution of this
study is the proposal of a general approach for significant graph pattern mining with
non-monotonic objective functions. The mining strategy, called LEAP (Descending
Leap Mine), explored two new mining concepts: (1) structural leap search and (2)
frequency-descending mining, both of which are related to specific properties in
pattern search space. We will describe the first strategy as well as the application of
this mining method to graph classification. Interested readers can refer to [31] for
more details.

9.5.2.1 Structural Leap Search

LEAP assumes each input graph is assigned either a positive or a negative label (e.g.,
compounds active or inactive to a virus). One can divide the graph data set into two
subsets: a positive set D+ and a negative set D−. Let p(g) and q(g) be the frequency
of a graph pattern g in positive graphs and negative graphs. Many objective functions
can be represented as a function of p and q for a subgraph pattern g, as F(g) =
f (p(g), q(g)).

Figure 9.2 shows a search space of subgraph patterns. If we examine the search
structure horizontally, we find that the subgraphs along the neighbor branches likely
have similar compositions and frequencies, hence similar objective score. Take the
branches A and B as an example. Suppose A and B split on a common subgraph
pattern g. Branch A contains all the supergraphs of g ) e and B contains all the
supergraphs of g except those of g ) e. For a graph g′ in branch B, let g′′ = g′ ) e
in branch A.
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proximity

A B

g

Fig. 9.2 Structural proximity

If in a graph data set, g ) e and g often occur together, then g′′ and g′ might also
often occur together. Hence, likely p(g′′) ∼ p(g′) and q(g′′) ∼ q(g′), which means
similar objective scores. This is resulted by the structural similarity and embedding
similarity between the starting structures g)e and g. We call it structural proximity:
Neighbor branches in the pattern search tree exhibit strong similarity not only in
pattern composition, but also in their embeddings in the graph data sets, thus having
similar frequencies and objective scores. In summary, a conceptual claim can be
drawn,

g′ ∼ g′′ ⇒ F(g′) ∼ F(g′′). (9.14)

According to structural proximity, it seems reasonable to skip the whole search
branch once its nearby branch is searched, since the best scores between neighbor
branches are likely similar. Here, we would like to emphasize “likely” rather than
“surely.” Based on this intuition, if the branch A in Fig. 9.2 has been searched, B
could be “leaped over” if A and B branches satisfy some similarity criterion. The
length of leap can be controlled by the frequency difference between two graphs g
and g ) e. The leap condition is defined as follows.

Let I (G, g, g ) e) be an indicator function of a graph G: I (G, g, g ) e) = 1,
for any supergraph g′ of g, if g′ ⊆ G, ∃g′′ = g′ ) e such that g′′ ⊆ G; otherwise
0. When I (G, g, g ) e) = 1, it means if a supergraph g′ of g has an embedding
in G, there must be an embedding of g′ ) e in G. For a positive data set D+, let
D+(g, g ) e) = {G|I (G, g, g ) e) = 1, g ⊆ G, G ∈ D+}. In D+(g, g ) e), g′ ⊃ g
and g′′ = g′ ) e have the same frequency. Define Δ+(g, g ) e) as follows,

�+(g, g ) e) = p(g)− |D+(g, g ) e)|
|D+| .

�+(g, g ) e) is actually the maximum frequency difference that g′ and g′′ could
have in D+. If the difference is smaller than a threshold σ , then leap,

2�+(g, g ) e)

p(g ) e)+ p(g)
≤ σ and

2�−(g, g ) e)

q(g ) e)+ q(g)
≤ σ. (9.15)
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σ controls the leap length. The larger σ is, the faster the search is. Structural leap
search will generate an optimal pattern candidate and reduce the need for thor-
oughly searching similar branches in the pattern search tree. Its goal is to help
a program search significantly distinct branches and limit the chance of missing
the most significant pattern. Different from the widely used branch-and-bound
search strategy which prunes the search space “vertically,” structural leap search
identifies similarly sibling branches and prunes the search space “horizontally.”
It can prune more search space and thus is more efficient. However, it may miss
the globally optimal subgraph while branch-and-bound is guaranteed to find the
best one.

Algorithm 2 outlines the pseudocode of structural leap search. The leap condition
is tested on lines 7–8.

Algorithm 2 Structural leap search: sLeap(D, σ, g�)

Input: Graph dataset D, difference threshold σ

Output: Optimal graph pattern candidate g�

1: S = {1− edge graph};
2: g� = ∅; F(g�) = −∞;
3: while S �= ∅ do
4: S = S \ {g};
5: if g was examined then
6: continue;
7: if ∃g ) e, g ) e ≺ g, 2�+(g,g)e)

p(g)e)+p(g) ≤ σ, 2�−(g,g)e)
q(g)e)+q(g) ≤ σ

8: continue;
9: if F(g) > F(g�) then
10: g� = g;
11: if F̂(g) ≤ F(g�) then
12: continue;
13: S = S ∪ {g′|g′ = g ) e};
14: return g�;

9.5.2.2 Mining Discriminative Patterns for Graph Classification

To mine discriminative subgraphs for graph classification, information gain is used
as the objective function in LEAP. As LEAP only generates the single best sub-
graph in a graph data set while multiple features are needed for classification, Yan
et al. adopted the concept of sequential coverage paradigm [21] to generate multi-
ple features to achieve a proper coverage on the training data set. It applies LEAP
iteratively to generate multiple features to cover the training graphs: given a training
graph data set D and an objective function of information gain, call LEAP to find the
subgraph g1 with the highest information gain. Then all the training graphs contain-
ing g1, i.e., T S(g1) ∈ D, are removed from further consideration. On the remaining
training set, repeat this process until D becomes empty. Algorithm 3 outlines the
graph feature mining process.
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Algorithm 3 Mining discriminative graph features with LEAP
Input: Graph dataset D, objective function F
Output: A feature set Fs = {g1, . . . , gm}

1: Fs = ∅, i = 1;
2: while D is not empty
3: gi = L E AP(D, F);
4: Fs = Fs ∪ {gi };
5: D = D − T S(gi );
6: i++;
7: end while
8: return Fs ;

9.5.2.3 Mining Discriminative Subgraphs for Bug Localization

Cheng et al. [4] formulated the bug localization problem as a discriminative graph
mining problem: given software behavior graphs (defined similarly as [20] that is
introduced in Section 9.4.1.1) of correct executions and faulty executions, apply
LEAP to extract the most discriminative subgraphs which contrast the program flow
of correct and faulty executions. Intuitively, a bug will cause structural differences
between the software behavior graphs of faulty and correct runs. Different from tra-
ditional bug localization methods pinpointing a single line of code which is likely to
contain bugs, the discriminative subgraphs serve as signatures highlighting potential
bug locations and provide informative contexts where bugs occur, which in turn help
to guide programmers in finding the source of bugs and correcting them. Formally,
the problem is defined in the LEAP framework as follows.

Definition 8 (Mining Optimal Bug Signature) Given a set of graphs with class
labels, D = {Gi , yi }ni=1, where Gi ∈ G is a software behavior graph representing
an execution and yi ∈ {±1} is the class label representing a correct or faulty status,
an objective function F , find a subgraph g∗ such that g∗ = argmaxg F(g).

Discriminative measures such as information gain, cross entropy, and Fisher
score are popularly used to evaluate the capacity of a feature in distinguishing
instances from different classes. In this work, Cheng et al. use information gain
as the objective function. According to information gain, if the frequency difference
of a subgraph in the faulty executions and the correct executions increases, the sub-
graph becomes more discriminative. A subgraph which occurs frequently in faulty
executions but rarely in correct executions will have a very large information gain
score and indicate that the corresponding partial software behavior graph is very
discriminative to differentiate faulty executions from correct ones.

In the bug localization problem, it does not suffice to report the single best loca-
tion only. Rather, it would be more informative to generate a ranked list of discrim-
inative subgraphs with descending scores which are highly indicative of bugs and
their contexts. To handle such requirements, [4] propose an extension from LEAP
to mine top-k discriminative subgraphs. Formally, the problem is defined as follows:
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Definition 9 (Mining Top-K Bug Signatures) Given a set of software behavior
graphs with class labels, D = {Gi , yi }ni=1, an objective function F , find k subgraphs

Gk = {g∗i }ki=1 from D which maximize
∑k

i=1 F(g∗i ).

Accordingly, the LEAP algorithm will be modified to generate k discriminative
subgraphs through k iterations. Initially LEAP finds the most discriminative sub-
graph g∗1 from D wrt. the objective function F and inserts it into Gk . It iteratively
finds a subgraph g∗i with the highest F function score which is also different from
all existing subgraphs in Gk . Such a subgraph g∗i is inserted into Gk and this process
is iterated for k times. Finally, Gk is returned. If there exist less than k subgraphs
from D, the search process will terminate early. The extended algorithm is called
Top-K LEAP, as shown in Algorithm 4.

Algorithm 4 Mining top-K discriminative graph patterns top-K LEAP(D, F ,
k, Gk)
Input: Graph dataset D, objective function F , subgraph number k
Output: Top-k discriminative subgraphs Gk

1: Gk = ∅;
2: for i from 1 to k
3: g∗i = LEAP(F, Gk);
4: if g∗i = ∅

5: break;
6: Gk = Gk ∪ {g∗i };
7: end for
8: return Gk ;

Experimental studies on the Siemens benchmark data sets are performed to eval-
uate the proposed subgraph mining method. Experimental results demonstrate that
it is effective in recovering bugs and their contexts. On average, it improves the
precision and recall of a recent study RAPID [13] by up to 18.1 and 32.6%, respec-
tively. In addition, the method is shown to be more efficient. It is able to complete
subgraph mining on every Siemens data set within 258 s while RAPID is not able
to complete mining some data sets even after running for hours.

9.5.3 GraphSig: A Feature Representation Approach

Ranu and Singh [25] proposed GraphSig, a scalable method to mine significant
(measured by p-value) subgraphs based on a feature vector representation of graphs.
The significant subgraphs can be used as classification features, since they are able
to describe a property where the data set deviates from expected. The first step
in the mining process is to convert each graph into a set of feature vectors where
each vector represents a region within the graph. Prior probabilities of features are
computed empirically to evaluate statistical significance of patterns in the feature
space. Following the analysis in the feature space, only a small portion of the
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exponential search space is accessed for further analysis. This enables the use
of existing frequent subgraph mining techniques to mine significant patterns in a
scalable manner even when they are infrequent. The major steps of GraphSig are
described as follows.

9.5.3.1 Sliding Window Across Graphs

As the first step, random walk with restart (abbr. RWR) is performed on each node in
a graph to simulate sliding a window across the graph. RWR simulates the trajectory
of a random walker that starts from the target node and jumps from one node to a
neighbor. Each neighbor has an equal probability of becoming the new station of the
walker. At each jump, the feature traversed is updated which can either be an edge
type or atom type. A restart probability α brings the walker back to the starting node
within approximately 1

α
jumps. The random walk iterates till the feature distribution

converges. As a result, RWR produces a continuous distribution of features for each
node where a feature value lies in the range [0, 1], which is further discretized into
10 bins. RWR can therefore be visualized as placing a window at each node of
a graph and capturing a feature vector representation of the subgraph within it.
A graph of m nodes is represented by m feature vectors. RWR inherently takes
proximity of features into account and preserves more structural information than
simply counting the occurrence of features inside the window.

9.5.3.2 Calculating p-Value of A Feature Vector

To calculate p-value of a feature vector, we model the occurrence of a feature vector
x in a random feature vector generated from a random graph. The frequency distri-
bution of a vector is generated using the prior probabilities of features obtained
empirically. Given a feature vector x = [x1, . . . , xn], the probability of x occurring
in a random feature vector y = [y1, . . . , yn] can be expressed as a joint probability

P(x) = P(y1 ≥ x1, . . . , yn ≥ xn). (9.16)

To simplify the calculation, we assume independence of the features. As a result,
(9.16) can be expressed as a product of the individual probabilities, where

P(x) =
n∏

i=1

P(yi ≥ xi ). (9.17)

Once P(x) is known, the support of x in a database of random feature vectors can be
modeled as a binomial distribution. To illustrate, a random vector can be viewed as a
trial and x occurring in it as “success.” A database consisting m feature vectors will
involve m trials for x . The support of x in the database is the number of successes.
Therefore, the probability of x having a support μ is
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P(x;μ) =
(

m

μ

)

P(x)μ(1− P(x))m−μ. (9.18)

The probability distribution function (abbr. pdf) of x can be generated from (9.18)
by varying μ in the range [0,m]. Therefore, given an observed support μ0 of x , its
p-value can be calculated by measuring the area under the pdf in the range [μ0,m],
which is

p-value(x, μ0) =
m∑

i=μ0

P(x; i). (9.19)

9.5.3.3 Identifying Regions of Interest

With the conversion of graphs into feature vectors and a model to evaluate sig-
nificance of a graph region in the feature space, the next step is to explore how
the feature vectors can be analyzed to extract the significant regions. Based on the
feature vector representation, the presence of a “common” sub-feature vector among
a set of graphs points to a common subgraph. Similarly, the absence of a “common”
sub-feature vector indicates the non-existence of any common subgraph. Mathemat-
ically, the floor of the feature vectors produces the “common” sub-feature vector.

Definition 10 (Floor of Vectors) The floor of a set of vectors {v1, . . . , vm} is a vector
v f where v fi = min(v1i , . . . , vmi ) for i = 1, . . . , n. Ceiling of a set of vectors is
defined analogously.

The next step is to mine common sub-feature vectors which are also significant.
Algorithm 5 presents the FVMine algorithm which explores closed sub-vectors in a
bottom-up, depth-first manner. FVMine explores all possible common vectors sat-
isfying the significance and support constraints.

Algorithm 5 FVMine(x , S, b)

Input: Current sub-feature vector x , supporting set S of x , current starting position b
Output: The set of all significant sub-feature vectors A

1: if p-value(x) ≤ max Pvalue then
2: A← A + x ;
3: for i = b to m do
4: S′ ← {y|y ∈ S, yi > xi };
5: if |S′| < min_sup then
6: continue;
7: x ′ = f loor(S′);
8: if ∃ j < i such that x ′j > x j then
9: continue;
10: if p-value(ceiling(S′), |S′|) ≥ max Pvalue then
11: continue;
12: FV Mine(x ′, S′, i);
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With a model to measure the significance of a vector, and an algorithm to mine
closed significant sub-feature vectors, a new graph mining framework is built to
mine significant sub-feature vectors and use them to locate similar regions that are
significant. Algorithm 6 outlines the GraphSig algorithm.

Algorithm 6 GraphSig(D, min_sup, max Pvalue)

Input: Graph dataset D, support threshold min_sup, p-value threshold max Pvalue
Output: The set of all significant sub-feature vectors A

1: D′ ← ∅;
2: A← ∅;
3: for each g ∈ D do
4: D′ ← D′ + RW R(g);
5: for each node label a in D do
6: D′a ← {v|v ∈ D′, label(v) = a};
7: S← FV Mine( f loor(D′a), D′a, 1);
8: for each vector v ∈ S do
9: V ← {u|u is a node wi th label a, v ⊆ vector(u)};
10: E ← ∅;
11: for each node u ∈ V do
12: E ← E + CutGraph(u, radius);
13: A← A + Maximal_F SM(E, f req);

The algorithm first converts each graph into a set of feature vectors and puts all
vectors together in a single set D′ (lines 3–4). D′ is divided into sets, such that
D′a contains all vectors produced from RWR on a node labeled a. On each set
D′a , FVMine is performed with a user-specified support and a p-value threshold
to retrieve the set of significant sub-feature vectors (line 7). Given that each sub-
feature vector could describe a particular subgraph, the algorithm scans the database
to identify the regions where the current sub-feature vector occurs. This involves
finding all nodes labeled a and described by a feature vector such that the vector is a
super-vector of the current sub-feature vector v (line 9). Then the algorithm isolates
the subgraph centered at each node by using a user-specified radius (line 12). This
produces a set of subgraphs for each significant sub-feature vector. Next, maximal
subgraph mining is performed with a high-frequency threshold since it is expected
that all graphs in the set contain a common subgraph (line 13). The last step also
prunes out false positives where dissimilar subgraphs are grouped into a set due to
the vector representation. For the absence of a common subgraph, when frequent
subgraph mining is performed on the set, no frequent subgraph will be produced
and as a result the set is filtered out.

9.5.3.4 Application to Graph Classification

As a significant subgraph is able to describe a property where the data set deviates
from expected, it contains more distinctive information. To utilize this potential,
[25] developed a classifier built on significant patterns mined by GraphSig. The
basic idea is, given a query graph, the algorithm finds the k-closest significant
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subgraphs in the training set. The majority vote by the k-closest subgraphs decides
the classification. The significant subgraphs in the positive or negative data set rep-
resent those subgraphs that occur more often than expected in a random database of
graphs. Therefore, the occurrence of any of these subgraphs in the query acts as an
identifier of its class.

Algorithm 7 outlines the pseudocode. The feature space representation of the
query graph and sets of significant sub-feature vectors from the positive data set
D+ and negative data set D− are fed to the classifier. For each node in the query
graph, the distance to the closest sub-feature vector in the training set is calculated
and inserted into a priority queue along with the class identifier. The priority queue
keeps track of the k-closest significant sub-feature vectors for the query graph. After
all nodes are scanned, a distance-weighted score is calculated for classification. The
score calculation is similar to a distance-weighted k-NN classifier, where it not only
considers the majority vote but also the distance between the query and its neighbor.

Algorithm 7 Classify(D+, D−, g, k)

Input: A set of positive significant vectors D+, a set of negative significant vectors D−,
the vector representation of query graph g, number of neighbors k

Output: Classification of g

1: P Q ← priority queue of size k;
2: score← 0;
3: for each node n ∈ g do
4: pos Dist ← minDist (vector(n), D+);
5: negDist ← minDist (vector(n), D−);
6: if negDist < pos Dist then
7: insert (negDist , -1) into P Q;
8: else
9: insert (pos Dist , 1) into P Q;
10: for each tuple t ∈ P Q do
11: score← score + t[2]

t[1]+δ (δ is an added small value to avoid division by zero)
12: if score > 0 then
13: return “positive”;
14: else
15: return “negative”;

9.5.4 Model-Based Search Tree

Fan et al. proposed MbT (model-based search tree) [9] for classifying graph data.
It builds a decision tree that partitions the graph data onto different nodes. It starts
with the whole data set and mines a set of frequent subgraphs from the data. The
best pattern is selected according to some criterion and used to divide the data set
into two subsets, one containing this pattern and the other not. The mining and pat-
tern selection procedure is repeated on each of the subsets until the subset is small
enough or the examples in the subset have the same class label. Since the number
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of examples toward leaf level is relatively small, this approach is able to examine
patterns with extremely low global support that could not be enumerated on the
whole graph data set. After the algorithm completes, a small set of informative fea-
tures are uncovered and the corresponding model-based search tree is constructed.
The discovered feature vectors are more accurate on some graph data sets while the
total feature set size is typically 50% or smaller. Importantly, the minimum support
of some discriminative patterns can be extremely low (e.g., 0.03%). Algorithm 8
presents the recursive method that builds the model-based search tree.

Algorithm 8 Build model-based search tree
Input: Graph database D, support threshold min_sup, a pattern mining algorithm f p(),

minimum node size m
Output: A selected set of features Fs , a model-based search tree T

1: Call the frequent pattern mining algorithm which returns a set of
frequent subgraphs F = f p(D,min_sup) ;

2: Evaluate the fitness of each pattern α ∈ F ;
3: Choose the best pattern αm as the feature;
4: Fs = Fs ∪ {αm};
5: Maintain αm as the testing feature in current node of the tree T ;
6: DL = subset of examples in D containing αm ;
7: DR = D − DL ;
8: for � ∈ {L , R}
9: if |D�| ≤ m or examples in D� have the same class label
10: Make T� a leaf node;
11: else
12: Recursively construct T� with D� and min_sup;
13: Return Fs and T ;

9.5.4.1 Pattern Enumeration Scalability Analysis

For a problem of size s (the data set size) and min_sup = p, the recursive algo-
rithm enumerates O(ss(1−p)) number of subgraph patterns in total during the tree
construction process. This result can be derived based on the Master Theorem as a
recurrence problem.

It is worth noting that in the recursive algorithm, the support p is the support
at each node, i.e., support is calculated among all records falling into the node. A
subgraph pattern with support p at a node will have a global support p′, which is
much smaller than p. For example, assume that the leaf node size is 10 and p =
20%. For a problem size of 10000, the normalized support in the complete data set
is 10× 20%/10000 = 0.02%.

To find such patterns, the traditional pattern mining algorithms will return an
explosive number of patterns or fail due to resource constraints, since it will generate
O(ss(1−p′)) patterns, which is a huge number. Suppose p′ is close to 0, then 1− p′ -
1 and the subgraph mining algorithms could obtain up to ss patterns. However,
the recursive algorithm could identify such subgraph patterns without considering
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every pattern, thus will not generate an explosive number of patterns. Compared
with traditional subgraph pattern mining approaches, the “scale down” ratio of the
pattern numbers will be up to - ss(1−p)/ss = 1

ssp .

9.5.4.2 Bound on Number of Returned Features

The upper bound on the number of discriminative features returned by the recursive
method can be estimated as follows. In the worst case, the tree is complete and every
leaf node has exactly m examples, thus the upper bound is O(2logm (s)−1 − 1) <

O(s/2 − 1) = O(s) = O(n), since m > 2 and the scaled problem size is exactly
the number of examples n for the model-based search tree.

Besides theoretical analysis, experimental results demonstrate the scalability and
accuracy of the MbT method, as the model-based search tree solves the subgraph
mining problem and the graph classification problem in a divide-and-conquer way.

9.6 Conclusions

With the research achievements on frequent subgraph mining algorithms, frequent
subgraph and its variations have been used for classifying structural data. Frequent
subgraphs preserve the structural information of the underlying graph data; thus
they are good classification features. We first introduce different types of subgraph
patterns and their usage in classifying structural data. However, the inherent com-
plexity in graph data may cause the combinatorial explosion problem in frequent
subgraph mining. To avoid this problem, we further discuss several studies which
directly mine the most discriminative subgraphs for classification, while avoiding
the generation of many other subgraphs with low discriminative power. The sub-
graph pattern-based classification technique will have many real-world applications
including drug design, software reliability analysis, and spam detection.
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Chapter 10
Information Integration for Graph Databases

Ee-Peng Lim, Aixin Sun, Anwitaman Datta, and Kuiyu Chang

Abstract With increasing interest in querying and analyzing graph data from mul-
tiple sources, algorithms and tools to integrate different graphs become very impor-
tant. Integration of graphs can take place at the schema and instance levels. While
links among graph nodes pose additional challenges to graph information integra-
tion, they can also serve as useful features for matching nodes representing real-
world entities. This chapter introduces a general framework to perform graph infor-
mation integration. It then gives an overview of the state-of-the-art research and
tools in graph information integration.

10.1 Introduction

Graph is fast becoming an important data genre in today’s database and data analysis
systems and applications. Web itself is a very large graph with Web pages as nodes
and links among them as edges. The Internet that makes Web possible is also a
large graph with computers as nodes and network links as edges. The emergence
of Web 2.0 applications further creates many other graphs that associate Web users
with one another, and graphs that associate Web users with Web objects including
photos (e.g., Flickr1), videos (e.g., Youtube2), and questions/answers (e.g., Yahoo!
Answers3).

Graph is often used for data modeling or knowledge representation. Entity rela-
tionship model [6] is essentially a graph consisting of entity types and relation-
ship types as nodes and connections among them as edges. It is widely used to
design databases conceptually before the relational schemas are created. Ontology
is a another kind of graph used for sharing knowledge between applications
from the same domain [11]. Instead of keeping schema and data separate as in
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database design, ontology uses nodes to represent both schema and data objects and
edges to represent schema–level relationships (e.g., PhDStudent is a subclass of
Graduate student), schema–data relationships (e.g., John and Mary are instances
of PhDStudent), and data–level relationships (e.g., John is a friend of Mary).
With ontology graphs defined for different knowledge domains, knowledge-based
systems and applications are expected to interoperate using the same set of concepts
to describe data and to perform reasoning on them. Ontology is later adopted by
Semantic Web as an extension to the existing Web enabling machines to standardize
the description of Web objects and services so as to understand them and deploy
Web services.

Graphs also exist in relational databases although the graph structures in rela-
tional database are very much normalized. Records in a relational table can be
associated with records from another table using foreign key references or via a
relation containing many-to-many associations between record keys. For example,
Internet Movie Database (IMDb) is an online relational database of movie, actor,
and director-related data. These movie-related entities essentially form a graph if
we view them as nodes and associations among them as edges. For example, every
movie record is linked to its actors and director, and each actor is linked to all
of his or her movies. Compared to ontology, graphs that are embedded in rela-
tional data are more structured and their structures are governed by the database
schema.

Other than the above two schools of thought, schemaless graphs with nodes and
edges assigned labels have also been widely used to represent complex structures
such as protein and chemical compounds. Examples of such graph models are OEM
[5, 10, 20]. With the popularity of e-commerce, such graph models have also been
applied to modeling XML data so as to formulate and evaluate queries on XML
databases.

Information integration [13], sometimes also known as data integration and
semantic integration, refers to merging information from different data sources in
order to gain a more complete set of data for developing new applications, and for
conducting data analysis/data mining. The new applications to be developed can be
due to the demand for new functionalities or due to application, database, or even
enterprise level merger activities. Since the original databases residing at different
data sources are likely administered by different parties, information integration
has to address three major technical challenges arising from data heterogeneity
[18, 21, 22]:

– Schema-Level Heterogeneity: This refers to schema differences between two
or more databases to be integrated. Depending on the physical data models of
the original data sources, the scheme level heterogeneity may involve matching
schema elements of original databases and mapping them to the schema elements
of an integrated schema [22]. In the case of schemaless graph data, schema-level
heterogeneity does not exist as there is only a single node type and a single edge
type.
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– Instance-Level Heterogeneity: Data heterogeneity occurs at the instance level
when data instances from different data sources but describing the same real-
world entity do not look alike. The conflicts incurred can be classified into
entity identity conflicts [16] and attribute value conflicts [17]. Entity identity
conflicts refer to the difficulties in resolving records that model the same real-
world entities due to synonym and homonym problems [16]. Attribute value
conflicts refer to attribute value differences in records to be integrated together.
The tasks of resolving entity identity and attribute value conflicts are known as
entity identification (or entity resolution) and attribute value conflict resolution,
respectively.

– Federated Query Processing: Heterogeneous databases can be integrated either
physically or virtually. The former refers to migrating the original data to a cen-
tral database to be physically merged and stored there. Virtual information inte-
gration refers to developing a software layer simulating an integrated database
while keeping the original databases intact. The physical and virtual database
integration approaches are also known as the data warehousing and federated
database approaches. To evaluate queries on a federated database, one has to
determine the source databases to query and to resolve data heterogeneity during
query processing [15].

In the context of relational databases, the above challenges have been studied for
almost three decades [24] and many interesting information integration techniques
have been developed. Nevertheless, not all integration issues have be fully addressed
so far as there are often hidden semantics in the data heterogeneity that are not made
available to the information integration techniques that depend on them. Meanwhile,
the emergence of graph data will pose additional research issues to be considered in
designing information integration techniques.

This chapter will thus give an overview of information integration for graph data.
Although there are applications that require different types of integrated graph data,
the same integration framework and techniques can be applied. In Section 10.2, we
introduce a general integration framework for graph integration before describing
the techniques appropriate for the different framework components. We specifically
describe a few entity resolution approaches in Section 10.3. We will highlight two
graph information integration applications that have been reported in the research
literature in Section 10.4. and 10.5 concludes the chapter.

10.2 Framework for Graph Information Integration

Figure 10.1 depicts the framework of integrating multiple graphs together although
it is also possible to integrate two graphs at a time. The framework broadly
divides the steps into schema-level and instance-level integration. The former
addresses the heterogeneity of schemas of the original graphs by automatically or
semi-automatically deriving the mappings between the schema elements. This is
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Fig. 10.1 Graph information integration framework

also known as schema matching. Instance-level integration refers to resolving the
heterogeneity among data instances. The sub-steps include entity resolution and
relationship resolution which can be carried out either sequentially or in an iterative
manner. The entity resolution sub-step attempts to match graph nodes representing
the same entities. The relationship resolution on the other hand matches graph edges
representing the same relationships. After entity and relationship resolution, one can
conduct attribute value resolution on the matched nodes and relationships to resolve
any differences in their attributes.

The complexity involved in each integration step is correlated with the hetero-
geneity to be resolved. For example, in cases when the graphs to be integrated share
a common schema, the graph schema matching step becomes trivial. The step can,
however, be complex when (a) the underlying data models are different, (b) schemas
have very different elements (i.e., node types, edge types, node attributes, and edge
attributes) causing the mappings between them may not be 1-1, and (c) different
constraints on the node and edge types are specified for different schemas.

Graph schema matching, depending on the data model used to represent graph
instances, can be quite similar to schema matching involving relational data
instances [22]. Many techniques already developed for relational schema match-
ing are still applicable. Attribute value resolution is a step conducted on matched
entities or matched relationships and is largely not affected by the graph structures.
Again, the existing attribute value resolution techniques for relational data can be
employed. Between entity and relationship resolutions, entity resolution has been
intensively studied while relationship resolution is still a relatively less studied
problem because most of the graphs to be integrated have relationships uniquely
identified by their associated entities. This makes relationship resolution relatively
straightforward. In other words, if entities A and B are linked with a relationship
in each of two given graphs, the two relationships are identified to be the same. In
this chapter, we shall therefore focus largely on the entity resolution step and its
associated approaches.

Entity resolution for graph data is quite different from that for relational data
due to the existence of links in graphs. When two nodes are to be determined as
the same entity, one has to consider the links and even link structures connected
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to the two entities. We would ideally like the two nodes to share the same links or
link structures if they are the same entity. This is, however, impossible unless some
of the neighboring nodes have been resolved a prior. A naive approach to break
this chicken and egg situation is to ignore links and simply apply entity resolution
techniques for relational data. Such an approach is non-ideal and we thus introduce
other techniques that consider links.

10.3 Entity Resolution for Graphs

Entity resolution, sometimes also known as record linkage and entity de-duplication,
for graphs essentially identifies nodes that model same real-world entities. When
two nodes model the same real-world entity, they form a matched entity pair. There
have been many approaches proposed to determine matched entity pairs. Some of
them assume that no two nodes in the same graph model the same real-world entity.
In a more general integration setting, this assumption may not hold and one may
have to perform entity resolution on a single graph.

The general strategy of entity resolution is depicted by the following steps:

1. Compute similarities for entity pairs.
2. User(s) judge if the pairs are matched.

The first step heavily depends on the definition of inter-entity similarity. Given
two or more graphs, we can measure the inter-entity similarity using a similarity
function sim(ei , e j ). When each graph has N entities, the number of entity pairs for
similarity computation will be N 2 in the worst case. To reduce the number of entity
pairs in steps 1 and 2, a minimum similarity threshold can be introduced. Omar et al.,
in the context of relational database integration exploited properties of the matching
and merging entities to reduce the computation and judgment overheads of entity
resolution [1].

Bhattacharya and Getoor provided a comprehensive survey of entity resolution
approaches in [3]. In the following, we adopt their classification of entity resolu-
tion approaches and briefly describe them. Entity resolution can be solved in both
supervised or non-supervised approaches. The former requires training data while
the latter does not. In the research literature, there is a variety of supervised entity
resolution approaches [8, 23] but due to space constraint, we will only cover the
non-supervised ones below.

10.3.1 Attribute-Based Entity Resolution

Attribute-based entity resolution compares the attribute values of entities in order
to match them. It has been widely used in resolving entity identities in relational
databases and graphs due to its simplicity. Attributes or combinations of attributes
that can identify entities either strongly or weakly are used in attribute-based entity
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resolution approaches. Attributes or attribute combinations that strongly identify
entities are the entity identifiers, e.g., social security number (or SSN), person
name and birthdate, and mobile number. The other attributes or attribute com-
binations that increase the odds of identifying entities are then known to identify
entities weakly, e.g., birth year, land phone number, home address, and com-
pany address. According to the nature of the attributes used in entity resolu-
tion, there can be a few different ways of defining entity level similarity function
sim(ei , e j ).

The simattrib(ei , e j ) can be defined to be either 0 or 1 only depending on the
outcome of comparing the entity attributes ei .attrib and e j .attrib. For exam-
ple, the following inter-entity similarity function simSSN(ei , e j ) returns a binary
value whenever ei and e j have identical social security number. The second func-
tion simhomeaddress,birthyear(ei , e j ) returns Jaccard similarity metric value of their
home address, a value between 0 and 1, indicating how likely ei and e j are
matched entities when their birth year values are the same, and 0 when the birth
year values are different:

simSSN(ei , e j ) =
{

1 if ei .SSN = e j .SSN
0 otherwise,

simhome address,birth year(ei , e j ) =
⎧
⎨

⎩

Jaccard(ei .home address, if ei .birth year =
ej .home address) e j .birth year

0 otherwise.

The Jaccard similarity metric of two strings of word tokens si and s j is
defined by

Jaccard(si , s j ) = number of common words between si and s j

number of distinct words in si and s j
.

A survey of similarity metrics for string attributes such as Jaccard can be found in
[7]. Similarity metrics for numeric attributes include normalized difference, cosine
similarity, and euclidean distance [14]. Given that entities usually have multiple
attributes, these similarity metrics can be combined in various ways to determine
entity similarity.

10.3.2 Relational Entity Resolution

Relational entity resolution essentially involves the use of link connectivity of enti-
ties to determine how similar the entities are. Bhattacharya and Getoor proposed
several relational entity resolution approaches [3] to improve over using direct
attribute entity resolution.
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In the naïve relational entity resolution approach [3], the inter-entity similarity is
derived by applying an attribute-based similarity function sim A(ei , e j ) and another
edge-based similarity sim H (ei , e j ) on the pair of entities to be matched. The overall
inter-entity similarity is defined by

sim(ei , e j ) = (1− α) · sim A(ei , e j )+ α · sim H (ei , e j ),

where 0 ≤ α ≤ 1. The function sim H (ei , e j ) is determined by the similarity of
edges of ei and e j and can be defined as the aggregated similarity between the
edges of ei and e j (denoted by ei .edges and e j .edges respectively), i.e.,

sim H (ei , e j ) =
∑

li∈ei .edges,l j∈e j .edges

sim H (li , l j ).

The similarity between a pair of edges can then be defined by

sim H (li , l j ) = Maxes∈Ei ,et∈E j sim A(es, et ),

where Ei and E j denote the entities linked to li and l j , respectively.
In the Simrank approach proposed by Jeh and Widom [12], the inter-entity sim-

ilarity is defined by a random walk process on neighbors of entity pairs. Suppose a
graph is directed and Ii (and I j ) denotes the set of in-neighbors of ei (and e j ), the
Simrank similarity between entities ei and e j is defined by

simsimrank(ei , e j ) =
{

1 if ei = e j
C
|Ii ||I j |

∑
e′i∈Ii

∑
e′i∈Ii

simsimrank

(
e′i , e′j

)
otherwise,

where C is a decay factor constant between 0 and 1. Unlike the earlier approach,
Simrank does not use attribute-based similarity function at all. Simrank also requires
the graph to be directed. For it to work on undirected graph, a simple way is to
replace an undirected edge by two directed edges, one for each direction.

10.3.3 Collective Relational Entity Resolution

The main idea of collective relational entity resolution is to group entities into entity
clusters each representing a group of entities that model a real-world entity. The
inter-entity similarity is thus measured by a combination of how similar a pair of
entities ei and e j are by their attributes, and how similar they are by the cluster labels
of their neighbors. Bhattacharya and Getoor proposed an agglomerative clustering
algorithm that group entity clusters into larger entity clusters incrementally using
the inter-entity cluster similarity function [3]:

sim(ci , c j ) = (1− α) · sim A(ci , c j )+ α · sim R(ci , c j ),
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where sim A(ci , c j ) and sim R(ci , c j ) represent the attribute-based and relational
similarities between two entity clusters ci and c j , respectively. The former can be
determined by an aggregated attribute-based similarity between entities from ci and
c j . The latter, sim R(ci , c j ), is determined by the number of common cluster labels
among the neighbors of entities in ci and c j . This neighborhood similarity can be
measured using a variety of functions including common neighbors, jaccard simi-
larity.

Instead of agglomerative clustering, Bhattacharya and Getoor also introduced a
Latent Dirichlet Allocation (LDA) model for conducting collective relational entity
resolution for authors of a set of publications using probabilistic model [2]. Here,
author entity clusters are represented by latent authors. The observed author entities
are assumed to be generated by these latent authors. Learning the mapping from
observed author entities to latent authors is thus a problem of learning LDA model
parameters.

10.4 Example Applications

In this section, we shall describe two example applications of entity resolution to
social network analysis. The first is D-Dupe, an interactive tool for entity resolu-
tion [4]. The second is SSnetViz, an application to visualize and explore integrated
heterogeneous social networks [19].

10.4.1 D-Dupe

D-Dupe is an interactive application specially designed to resolve entity identities
for authors of publications [4]. The graphs to be integrated have authors as nodes
and co-authorships as edges. Each edge is thus associated with a set of publica-
tions between the connected authors. Figure 10.2 shows the user interface design of
D-Dupe using the Infoviz data set that comes with the application demo [9]. It con-
sists of mainly three user interface components including

– Search Panel: The search panel shows a list of entity pairs ranked by their inter-
entity similarity values. Different attribute and relational similarity metrics can
be chosen by the user. The panel also supports string search on author entities so
as to find potential duplicates of the selected authors.

– Graph Visualizer: The graph visualizer displays a subgraph with a selected can-
didate pair of duplicate authors (e.g., “Lucy Nowell” and “Lucy T. Nowell” in
the figure), their common co-authors in-between (“Deborah Hix” in the figure)
and other non-common co-authors at the sides. The purpose of graph visualizer
is to allow user to easily tell whether the candidate duplicate authors are indeed
the same author. The user can then decide whether to merge the two candidate
authors and to mark them distinct.
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Fig. 10.2 User interface of D-Dupe

– Detail Viewer: The detail viewer provides detailed views of selected author can-
didates, their co-authors’ nodes and edges in the graph visualizer.

The layout of the author graph is such that there is always some node(s) between
the selected author candidates as it is not possible to have both of them appearing in
the same publication. The size of an author node can be based on the author’s num-
ber of publications. Both nodes and edges can be filtered for clearer viewing. Once
the user selects two candidate authors to be merged together, the graph visualizer
will show the two nodes combined into one and their two sets of edges are assigned
to the new node labeled by “Lucy T. Nowell” as shown in Fig. 10.3. D-Dupe auto-
matically selects the next node most similar to the merged node, i.e., “Lucy Terry
Nowell,” as a candidate entity to be merged. The entity resolution steps can repeat
till all author entities are appropriately merged.

10.4.2 SSnetViz

SSnetViz, unlike D-Dupe, is an ongoing research project to explore and analyze
heterogeneous social networks integrated from multiple data sources [19]. A het-
erogeneous social network is one with multiple node types (or entity types) and link
types (or relationship types). In SSnetViz, nodes of the same type share the same
attribute set while links are not assigned any attributes. SSnetViz provides some
functions to integrate multiple heterogeneous social networks and data exploration
features that allow the data sources to be identified even after entities are merged.
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Fig. 10.3 After merging “Lucy Nowell” and “Lucy T. Nowell”

The design of SSnetViz is originally motivated by the need to support data
analysis of terrorism related social networks from disparate sources. The networks
SSnetViz has so far integrated come from three data sources: (a) TKBNetwork: a
terrorism network from the MIPT Terrorism Knowledge Base4 (TKB); (b) PVTR-
Network: a terrorism network created by the International Center for Political Vio-
lence and Terrorism Research (ICPVTR), a center focusing on gathering and anal-
ysis terrorism data using public domain data; and (c) WikiTerrorism: a network we
constructed using terrorism-related articles from Wikipedia. Both TKBNetwork and
PVTRNetwork are constructed by experts while WikiTerrorism represents knowl-
edge collaboratively edited by the online community.

Figure 10.4 depicts the user interface design of SSnetViz. It consists of a network
viewer that displays the entire social network graph or selected subgraph. Nodes of
different types are shown using different shapes while the different data sources are
shown using different colors. The legend of shapes and colors of nodes and links
is shown at the bottom of network viewer. For example, terrorists are shown as
oval nodes and terrorist groups are shown as rectangle nodes. Light blue and yellow
indicate the information from TKBNetwork and PVTRNetwork respectively. When
a node or link is derived by integrating two or more original networks (e.g., “Jemaah
Islamiya (JI)” node in Fig. 10.4), we assign them a distinct color representing the
overlapping data sources. The color and shape schemes can be configured by users
for easy viewing. Zooming, rotation, hyperbolic view, node expansion, node/link

4 MIPT is the acronym of Memorial Institute for the Prevention of Terrorism.
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Fig. 10.4 User interface design of SSnetViz

hiding, node search, path search, and other operations are also provided to manipu-
late and explore the social network in network viewer. Whenever a node is selected,
its attribute values divided according to the data source(s) the node is found will
be shown in the node information panel on the right side. In Fig. 10.4, “Jemaah
Islamiya (JI)” node’s attribute values from TKBNetwork and PVTRNetwork are
shown.

Since SSnetViz has to integrate social networks with heterogeneous schemas and
node/link instances, both schema-level integration and instance-level integration are
required. The integration steps depicted in Fig. 10.5 have been adopted. SSnetViz
has a generic graph schema that is capable of storing and updating social networks
with heterogeneous schemas. When two social networks are to be integrated, the
user first matches the node types of the networks using a node type matching
module. The step is performed once only and the matched node types are stored
for subsequent instance-level integration.

Instance-level integration in SSnetViz involves mainly node matching, i.e., entity
resolution. Link instances are automatically integrated if their link types are identi-
cal. Both rule based and manual node matching approaches are supported by a node
merging module shown in Fig. 10.8.
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Fig. 10.5 SSnetViz’s integration steps

For illustration, we show two social network subgraphs showing the one-hop
neighborhoods of “Jemaah Islamiyah (JI)” from TKBNetwork and PVTRNetwork
in Figs. 10.6 and 10.7 respectively. Note that the TKBNetwork and PVTRNetwork
have several discrepancies in naming their entities. We would like to match their

Fig. 10.6 Social network subgraph from TKBNetwork
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Fig. 10.7 Social network subgraph from PVTRNetwork

nodes and derive the integrated network. Table 10.1 shows a subset of matched
nodes that need to be identified. Note that some of these entities have identical
names in TKBNetwork and PVTRNetwork but others have some name differences,
e.g., “Jemaah Islamiya (JI)” and “Jemaah Islamiyah (JI).”

In general, node instances modeling the same real-world entities may have dif-
ferent attribute values. SSnetViz users can match them using user-defined match-
ing rules which specify the attribute similarity functions for generating candidate
matched node pairs (see Fig. 10.8). Among the candidate matched node pairs, the
user can manually merge the correct node pairs and mark the rest as incorrect (“no”

Table 10.1 Matched node pairs

TKBNetwork PVTRNetwork

1 Jemaah Islamiya (JI) Jemaah Islamiyah (JI)
2 Umar Patek Umar Patek
3 Noordin Mohammed Top Noordin Bin Mohd Top
4 Azahari bin Husin Azahari bin Husin
5 Dulmatin Dulmatin
6 Abu Bakar Bashir Abu Bakar Ba’asyir
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Fig. 10.8 SSnetViz’s node merging module

option in the figure) or unconfirmed. A cylindrical bar showing the numbers of
matched and unmatched node instances in each social network is also shown by
the node merging module. In cases where matching rules fail to include a matched
node pair, a manual node merging module can be used where matched node pairs
can be identified manually (see Fig. 10.9). Using these two matching approaches,
the integrated network can be derived. Fig. 10.10 shows the one-hop neighborhood
of “Jemaah Islamiyah (JI)” in the integrated network.

10.5 Conclusion

Graph information integration is an important class of data integration problem as
graph data can be found in many databases and integrated graphs are extremely
useful for complex queries, data analysis, and data mining. This chapter aims to
give an overview of the integration framework. We focus on entity resolution in
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Fig. 10.9 SSnetViz’s manual node merging module

graphs which has made significant progress in recent years. We also introduce two
example applications, D-Dupe that is specifically designed for performing interac-
tive entity resolution on graphs, and SSnetViz that integrates and manages integrated
heterogeneous social networks.

Looking ahead, there are still many interesting problems to be addressed in graph
information integration. Most of the research today has largely focused on specific
problems, e.g., entity resolution, without considering the other related integration
problems, e.g., schema integration and attribute value conflict resolution. Designing
a complete suite of solutions for all the integration problems is challenging but is
certainly the direction to pursue as the cost of data integration will only increase
with more graph data to be generated in the future.

At present, researchers in graph information integration are also struggling with
the evaluation of different graph information integration methods. This is mainly
caused by a lack of publicly available graph data sets and methodology for perfor-
mance comparison. DBLP is a good example of graph data that is publicly available.
The ground truths of its integration with other author–paper graphs are, however,
not available. Hence, it is difficult to compare accuracies of different integration
methods on the data set.
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Fig. 10.10 Integrated social network subgraph

Acknowledgments We would like to acknowledge the support by A*STAR Public Sector R&D,
Singapore, Project Number 062 101 0031 in the SSNet Project. We also thank Maureen and Nel-
man Lubis Ibrahim for implementing the SSnetViz system.

References

1. O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su, S. E. Whang, and J. Widom. Swoosh:
A generic approach to entity resolution. VLDB Journal, 18(1):255–276, 2009.

2. I. Bhattacharya and L. Getoor. A latent dirichlet model for unsupervised entity resolution. In
SIAM Conference on Data Mining, Bethesda, Maryland, USA, 2006.

3. I. Bhattacharya and L. Getoor. Collective entity resolution in relational data. ACM Transac-
tions on Knowledge Discovery from Data, 1(1), 2007.

4. M. Bilgic, L. Licamele, L. Getoor, and B. Shneiderman. D-dupe: An interactive tool for entity
resolution in social networks. In International Symposium on Graph Drawing, volume 3843
of Lecture Notes in Computer Science, pages 505–507, September 2005.

5. P. Buneman. Semistructured data. In ACM SIGACT-SIGMOD-SIGART Symposium on Prin-
ciples of Database Systems, Tucson, Arizona, 1997.

6. P. Chen. The entity-relationship model—toward a unified view of data. ACM Transactions on
Database Systems, 1(1):9–36, 1976.



10 Information Integration for Graph Databases 281

7. W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A comparison of string distance metrics for
name-matching tasks. In IJCAI Workshop on Information Integration, pages 73–78, Acapulco,
Mexico, August 2003.

8. P. Domingos. Multi-relational record linkage. In KDD-2004 Workshop on Multi-Relational
Data Mining, pages 31–48, Seattle, Washington, 2004.

9. J.-D. Fekete, G. Grinstein, and C. Plaisant. The history of infovis. In IEEE InfoVis 2004
Contest, www.cs.umd.edu/hcil/iv04contest, Austin, Texas, 2004.

10. M. Fernandez, D. Florescu, J. Kang, A. Levy, and D. Suciu. Strudel: a web site manage-
ment system. In ACM SIGMOD International Conference on Management of Data, Tucson,
Arizona, 1997.

11. N. Guarino. Formal Ontology in Information Systems, chapter Formal Ontology in Information
Systems. IOS Press, Amsterdam, 1998.

12. G. Jeh and J. Widom. Simrank: A measure of structural-context similarity. In ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 538–543, Edmon-
ton, Alberta, Canada, 2002.

13. A. Jhingran, N. Mattos, and H. Pirahesh. Information integration: A research agenda. IBM
Systems Journal, 41(4):555–562, 2002.

14. L. Jin, C. Li, and S. Mehrotra. Efficient record linkage in large data sets. In International
Conference on Database Systems for Advanced Applications, Kyoto, Japan, 2003.

15. E.-P. Lim and J. Srivastava. Query optimization and processing in federated database systems.
In ACM Conference on Information and Knowledge Management, pages 720–722, Washing-
ton D.C., 1993.

16. E.-P. Lim, J. Srivastava, S. Prabhakar, and J. Richardson. Entity identification in database
integration. In IEEE International Conference on Data Engineering, pages 294–301, Vienna,
Austria, 1993.

17. E.-P. Lim, J. Srivastava, and S. Shekhar. An evidential reasoning approach to attribute value
conflict resolution in database integration. IEEE Transactions on Knowledge and Data Engi-
neering, 8(5):707–723, 1996.

18. W. Litwin, L. Mark, and N. Roussopoulos. Interoperability of multiple autonomous databases.
ACM Computing Survey, 22(3):267–293, 1990.

19. Maureen, A. Sun, E.-P. Lim, A. Datta, and K. Chang. On visualizing heterogeneous semantic
networks from multiple data sources. In International Conference on Asian Digital Libraries,
pages 266–275, Bali, Indonesia, 2008.

20. J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: A database manage-
ment system for semistructured data. SIGMOD Record, 26(3), 1997.

21. A. Sheth and J. Larson. Federated database systems for managing distributed, heterogeneous,
and autonomous databases. ACM Computing Survey, 22(3):183–236, 1990.

22. S. Spaccapietra and C. Parent. View integration: A step forward in solving structural conflicts.
IEEE Transactions on Knowledge and Data Engineering, 6(2):258–274, 1994.

23. P. Treeratpituk and C. L. Giles. Disambiguating authors in academic publications using ran-
dom forests. In Joint Conference in Digital Libraries, Austin, Texas, June 2009.

24. P. Ziegler and K. R. Dittrich. Three decades of data integration — all problems solved? In
18th IFIP World Computer Congress (WCC 2004), pages 3–12, Toulouse, France, 2004.

www.cs.umd.edu/hcil/iv04contest


Chapter 11
Veracity Analysis and Object Distinction

Xiaoxin Yin, Jiawei Han, and Philip S. Yu

Abstract The World Wide Web has become the most important information source
for most of us. Unfortunately, there is no guarantee for the correctness of informa-
tion on the web, and different web sites often provide conflicting information on a
subject. In this section we study two problems about correctness of information on
the web. The first one is Veracity, i.e., conformity to truth, which studies how to find
true facts from a large amount of conflicting information on many subjects that is
provided by various web sites. We design a general framework for the Veracity prob-
lem, and invent an algorithm called TRUTHFINDER, which utilizes the relationships
between web sites and their information, i.e., a web site is trustworthy if it provides
many pieces of true information, and a piece of information is likely to be true if it is
provided by many trustworthy web sites. The second problem is object distinction,
i.e., how to distinguish different people or objects sharing identical names. This is
a nontrivial task, especially when only very limited information is associated with
each person or object. We develop a general object distinction methodology called
DISTINCT, which combines two complementary measures for relational similarity:
set resemblance of neighbor tuples and random walk probability, and analyze sub-
tle linkages effectively. The method takes a set of distinguishable objects in the
database as training set without seeking for manually labeled data and applies SVM
to weigh different types of linkages.

11.1 Overview

The World Wide Web has become a necessary part of our lives, and might have
become the most important information source for most people. Everyday peo-
ple retrieve all kinds of information from the web. For example, when shopping
online, people find product specifications from web sites like Amazon.com or
ShopZilla.com. When looking for interesting DVDs, they get information and read
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movie reviews on web sites such as NetFlix.com or IMDB.com. When searching
for publications of researchers, they go to DBLP or ACM Portal.

However, the World Wide Web does not always provide accurate information.
There is no guarantee for the completeness or correctness of information on the
web, and different web sites often provide conflicting information.

Example 1 (Authors of books) We tried to find out who wrote the book “Rapid
Contextual Design” (ISBN: 0123540518). We found many different sets of authors
from different online bookstores, and we show several of them in Table 11.1. From
the image of the book cover we found that A1 Books provides the most accurate
information. In comparison, the information from Powell’s books is incomplete, and
that from Lakeside books is incorrect.

Table 11.1 Conflicting information about book authors

Web site Authors

A1 Books Karen Holtzblatt, Jessamyn Burns Wendell, Shelley Wood
Powell’s books Holtzblatt, Karen
Cornwall books Holtzblatt-Karen, Wendell-Jessamyn Burns, Wood
Mellon’s books Wendell, Jessamyn
Lakeside books Wendell, Jessamynholtzblatt, Karenwood, Shelley
Blackwell online Wendell, Jessamyn, Holtzblatt, Karen, Wood, Shelley
Barnes & Noble Karen Holtzblatt, Jessamyn Wendell, Shelley Wood

1997VLDBWei Wang, Jiong
Yang, Richard Muntz

2004ICDMJinze Liu, Wei Wang

2002SIGMODHaixun Wang, Wei Wang, 
Jiong Yang, Philip S. Yu

2003CSBJiong Yang, Hwanjo Yu, 
Wei Wang, Jiawei Han

2004KDDJiong Yang, Jinze Liu, Wei Wang

2004VLDBWei Wang, Haifeng Jiang, 
Hongjun Lu, Jeffrey Yu

2005ICDEHongjun Lu, Yidong Yuan, 
Wei Wang, Xuemin Lin

2005ADMAWei Wang, Xuemin Lin

2005ICDMHaixun Wang, Wei Wang, 
Baile Shi, Peng Wang

2004KDDYongtai Zhu, Wei Wang, Jian
Pei, Baile Shi, Chen Wang

2003WWWAidong Zhang, Yuqing
Song, Wei Wang

2002CIKMWei Wang, Jian
Pei, Jiawei Han

2005ICDEJian Pei, Daxin Jiang, 
Aidong Zhang

2001ICDMJian Pei, Jiawei Han, 
Hongjun Lu, et al.

(1) Wei Wang at UNC (2) Wei Wang at UNSW, Australia
(3) Wei Wang at Fudan Univ., China (4) Wei Wang at SUNY Buffalo

(1)

(3)

(2)

(4)

Fig. 11.1 Papers by four different “Wei Wang’s”
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Example 2 (People or objects with identical names) There are more than 200 papers
in DBLP written by at least 14 different “Wei Wang”s, each having at least two
papers. A mini example is shown in Fig. 11.1, which contains some papers by four
different “Wei Wang”s and the linkages among them. Users are often unable to
distinguish them, because the same person or object may appear in very different
contexts, and there is often limited and noisy information associated with each
appearance.

In this chapter we studied two problems about the veracity of information
on the web and trustworthiness of web sites. The first problem is that, given
the conflicting information from many information providers (e.g., web sites),
how to find trustable information providers and accurate information. The sec-
ond problem is about how to distinguish different people or objects with identical
names.

11.2 Veracity Analysis of Information with Multiple Conflicting
Information Providers on the Web

The trustworthiness problem of the web has been realized by today’s Internet users.
According to a survey on credibility of web sites conducted by Princeton Survey
Research in 2005 [1], 54% of Internet users trust news web sites at least most of
time, while this ratio is only 26% for web sites that sell products and is merely 12%
for blogs.

There have been many studies on ranking web pages according to authority based
on hyperlinks, such as Authority-Hub analysis [2], PageRank [3], and more general
link-based analysis [4]. But does authority or popularity of web sites lead to accu-
racy of information? The answer is unfortunately no. For example, according to our
experiments the bookstores ranked on top by Google (Barnes & Noble and Powell’s
books) contain many errors on book author information, and many small bookstores
(e.g., A1 Books, TheSaintBookstore) provide more accurate information. Another
example is that some large movie web sites (e.g., www.movieweb.com) provide less
accurate information on movie runtime than some smaller movie web sites (e.g.,
dvddb.sparkyb.net) [5].

We propose a problem called Veracity problem, which is formulated as follows:
Given a large amount of conflicting information about many objects, which is pro-
vided by multiple web sites (or other types of information providers), how to dis-
cover the true fact about each object. We use the word “fact” to represent something
that is claimed as a fact by some web site, and such a fact can be either true or false.
There are often conflicting facts on the web, such as different sets of authors for a
book. There are also many web sites, some of which are more trustworthy than some
others. A fact is likely to be true if it is provided by trustworthy web sites (especially
if by many of them). A web site is trustworthy if most facts it provides are true.

Because of this interdependency between facts and web sites, we choose an
iterative computational method. At each iteration, the probabilities of facts being
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true and the trustworthiness of web sites are inferred from each other. This iterative
procedure shares some similarity with the Authority-Hub analysis [2], but is also
different in two ways. The first difference is in the definitions. The trustworthiness
of a web site does not depend on how many facts it provides, but on the accuracy of
those facts. Nor can we compute the probability of a fact being true by adding up the
trustworthiness of web sites providing it. These lead to non-linearity in computation.
Second and more importantly, different facts influence each other. For example, if a
web site says a book is written by “Jessamyn Wendell,” and another says “Jessamyn
Burns Wendell,” then these two web sites actually support each other although they
provide slightly different facts.

11.2.1 Problem Definitions

The input of TRUTHFINDER is a large number of facts about properties of a cer-
tain type of objects. The facts are provided by many web sites. There are usually
multiple conflicting facts from different web sites for each object, and the goal of
TRUTHFINDER is to identify the true fact among them. Figure 11.2 shows a mini
example data set. Each web site provides at most one fact for an object.

We first introduce the two most important definitions in this chapter, the confi-
dence of facts and the trustworthiness of web sites.

w1 f1

f2

f3
w2

w3

w4

f4

f5

Web sites Facts

o1

o2

Objects

Fig. 11.2 Input of TRUTHFINDER

Definition 1 (Confidence of facts) The confidence of a fact f (denoted by s( f )) is
the probability of f being correct, according to the best of our knowledge.

Definition 2 (Trustworthiness of web sites) The trustworthiness of a web site w

(denoted by t (w)) is the expected confidence of the facts provided by w.

Different facts about the same object may be conflicting. However, sometimes
facts may be supportive to each other although they are slightly different. For exam-
ple, one web site claims the author to be “Jennifer Widom” and another one claims
“J. Widom.” If one of them is true, the other is also likely to be true. In this chapter
we only study time-invariant facts.

In order to represent such relationships, we propose the concept of implica-
tion between facts. The implication from fact f1 to f2, imp( f1 → f2), is f1’s
influence on f2’s confidence, i.e., how much f2’s confidence should be increased
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(or decreased) according to f1’s confidence. It is required that imp( f1 → f2) is a
value between−1 and 1. A positive value indicates if f1 is correct, f2 is likely to be
correct. While a negative value means if f1 is correct, f2 is likely to be wrong. The
details about this will be described in Section 11.2.2.2.

Please notice that the definition of implication is domain specific. When a user
uses TRUTHFINDER on a certain domain, he should provide the definition of impli-
cation between facts. If in a domain the relationship between two facts is symmetric,
and the definition of similarity is available, the user can define imp( f1 → f2) =
sim( f1, f2) − base_sim, where sim( f1, f2) is the similarity between f1 and f2,
and base_sim is a threshold for similarity.

Based on common sense and our observations on real data, we have four basic
heuristics that serve as the bases of our computational model.

Heuristic 1: Usually there is only one true fact for a property of an object.
Heuristic 2: This true fact appears to be the same or similar on different web

sites.
Heuristic 3: The false facts on different web sites are less likely to be the same or

similar.
Heuristic 4: In a certain domain, a web site that provides mostly true facts for

many objects will likely provide true facts for other objects.

11.2.2 Computational Model

Based on the above heuristics, we know if a fact is provided by many trustworthy
web sites, it is likely to be true; if a fact is conflicting with the facts provided by
many trustworthy web sites, it is unlikely to be true. On the other hand, a web site
is trustworthy if it provides facts with high confidence. We can see that the web site
trustworthiness and fact confidence are determined by each other, and we can use an
iterative method to compute both. Because true facts are more consistent than false
facts (Heuristic 3), it is likely that we can distinguish true facts from false ones at
the end.

In this section we discuss the computational model. Section 11.2.2.1 introduces
how to infer trustworthiness of web sites and confidence of facts from each other.
Section 11.2.2.2 describes how the confidence of related facts affect each other.
Section 11.2.2.3 explains how we handle some additional subtlety.

11.2.2.1 Web Site Trustworthiness and Fact Confidence

We first discuss how to infer web site trustworthiness and fact confidence from each
other.

As defined in Definition 2, the trustworthiness of a web site is just the expected
confidence of facts it provides. For web site w, we compute its trustworthiness t (w)

by calculating the average confidence of facts provided by w:
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Table 11.2 Variables and Parameters of TRUTHFINDER

Name Description

M Number of web sites
N Number of facts
w A web site
t (w) The trustworthiness of w
τ(w) The trustworthiness score of w
F(w) The set of facts provided by w

f A fact
s( f ) The confidence of f
σ( f ) The confidence score of f
σ ∗( f ) The adjusted confidence score of f
W ( f ) The set of web sites providing f
o( f ) The object that f is about
imp( f j → fk) Implication from f j to fk
ρ Weight of objects about the same object
γ Dampening factor
δ Max difference between two iterations

t (w) =
∑

f ∈F(w) s( f )

|F(w)| , (11.1)

where F(w) is the set of facts provided by w.
In comparison, it is much more difficult to estimate the confidence of a fact.

As shown in Fig. 11.3, the confidence of a fact f1 is determined by the web sites
providing it, and other facts about the same object.

w1

f1

f2

w2 o1

t(w1) → τ(w1)

t(w2) → τ(w2)

σ( f1) → s( f1)

σ( f2)

w3

Fig. 11.3 Computing confidence of a fact

Let us first analyze the simple case where there is no related fact, and f1 is the
only fact about object o1 (i.e., f2 does not exist in Fig. 11.3). Because f1 is provided
by w1 and w2, if f1 is wrong, then both w1 and w2 are wrong. We first assume w1
and w2 are independent. (This is not true in many cases and we will compensate
for it later.) Thus the probability that both of them are wrong is (1 − t (w1)) · (1 −
t (w2)), and the probability that f1 is not wrong is 1− (1− t (w1)) · (1− t (w2)). In
general, if a fact f is the only fact about an object, then its confidence s( f ) can be
computed as

s( f ) = 1−
∏

w∈W ( f )

(1− t (w)), (11.2)
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where W ( f ) is the set of web sites providing f .
In (11.2), 1 − t (w) is usually quite small and multiplying many of them may

lead to underflow. In order to facilitate computation and veracity exploration, we
use logarithm and define the trustworthiness score of a web site as

τ(w) = − ln(1− t (w)). (11.3)

τ(w) is between and 0 and +∞, which better characterizes how accurate w is. For
example, suppose there are two web sites w1 and w2 with trustworthiness t (w1) =
0.9 and t (w2) = 0.99. We can see that w2 is much more accurate than w1, but their
trustworthiness do not differ much as t (w2) = 1.1 × t (w1). If we measure their
accuracy with trustworthiness score, we will find τ(w2) = 2× τ(w1), which better
represents the accuracy of web sites.

Similarly, we define the confidence score of a fact as

σ( f ) = − ln(1− s( f )). (11.4)

A very useful property is that the confidence score of a fact f is just the sum of
the trustworthiness scores of web sites providing f . This is shown in the following
lemma.

Lemma 1

σ( f ) =
∑

w∈W ( f )

τ (w). (11.5)

Proof According to (11.2),

1− s( f ) =
∏

w∈W ( f )

(1− t (w)).

Take logarithm on both sides and we have

ln(1− s( f )) =∑
w∈W ( f ) ln(1− t (w)),

⇐⇒ σ( f ) =∑
w∈W ( f ) τ (w).

11.2.2.2 Influences Between Facts

The above discussion shows how to compute the confidence of a fact that is the only
fact about an object. However, there are usually many different facts about an object
(such as f1 and f2 in Fig. 11.3), and these facts influence each other. Suppose in
Fig. 11.3 the implication from f2 to f1 is very high (e.g., they are very similar). If
f2 is provided by many trustworthy web sites, then f1 is also somehow supported
by these web sites, and f1 should have reasonably high confidence. Therefore, we
should increase the confidence score of f1 according to the confidence score of f2,
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which is the sum of trustworthiness scores of web sites providing f2. We define the
adjusted confidence score of a fact f as

σ ∗( f ) = σ( f )+ ρ ·
∑

o( f ′)=o( f )

σ ( f ′) · imp( f ′ → f ). (11.6)

ρ is a parameter between 0 and 1, which controls the influence of related facts.
We can see that σ ∗( f ) is the sum of confidence score of f and a portion of the
confidence score of each related fact f ′ multiplies the implication from f ′ to f .
Please notice that imp( f ′ → f ) < 0 when f is conflicting with f ′.

We can compute the confidence of f based on σ ∗( f ) in the same way as comput-
ing it based on σ( f ) (defined in (11.4)). We use s∗( f ) to represent this confidence.

s∗( f ) = 1− e−σ ∗( f ). (11.7)

11.2.2.3 Handling Additional Subtlety

One problem with the above model is we have been assuming different web sites
are independent of each other. This assumption is often incorrect because errors
can be propagated between web sites. According to the definitions above, if a fact
f is provided by five web sites with trustworthiness of 0.6 (which is quite low), f
will have confidence of 0.99. But actually some of the web sites may copy contents
from others. In order to compensate for the problem of overly high confidence, we
add a dampening factor γ into (11.7), and redefine fact confidence as s∗( f ) =
1− e−γ ·σ ∗( f ), where 0 < γ < 1.

The second problem with our model is that the confidence of a fact f can easily
be negative if f is conflicting with some facts provided by trustworthy web sites,
which makes σ ∗( f ) < 0 and s∗( f ) < 0. This is unreasonable because even with
negative evidences, there is still a chance that f is correct, so its confidence should
still be above zero. Therefore, we adopt the widely used logistic function [6], which
is a variant of (11.7), as the final definition for fact confidence:

s( f ) = 1

1+ e−γ ·σ ∗( f )
. (11.8)

When γ · σ ∗( f ) is significantly greater than zero, s( f ) is very close to s∗( f )
because 1

1+e−γ ·σ∗( f ) ≈ 1 − e−γ ·σ ∗( f ). When γ · σ ∗( f ) is significantly less than
zero, s( f ) is close to zero but remains positive, which is consistent with the real
situation. Equation (11.8) is also very similar to sigmoid function [7], which has
been successfully used in various models in many fields.

11.2.2.4 Iterative Computation

As described above, we can infer the web site trustworthiness if we know the fact
confidence and vice versa. As in Authority-hub analysis [2] and PageRank [3],
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TRUTHFINDER adopts an iterative method to compute the trustworthiness of web
sites and confidence of facts. Initially, it has very little information about the web
sites and the facts. At each iteration TRUTHFINDER tries to improve its knowl-
edge about their trustworthiness and confidence, and it stops when the computation
reaches a stable state.

We choose the initial state in which all web sites have a uniform trustworthiness
t0. (t0 is set to the estimated average trustworthiness, such as 0.9.) In each iteration,
TRUTHFINDER first uses the web site trustworthiness to compute the fact confi-
dence, and then recomputes the web site trustworthiness from the fact confidence.
It stops iterating when it reaches a stable state. The stableness is measured by the
change of the trustworthiness of all web sites, which is represented by a vector −→t .
If −→t only changes a little after an iteration (measured by cosine similarity between
the old and the new −→t ), then TRUTHFINDER will stop.

11.2.3 A Case Study on Book Authors

In this section we present experiments on a real data set, which shows the effective-
ness of TRUTHFINDER. We compare it with a baseline approach called VOTING,
which chooses the fact that is provided by most web sites. We also compare
TRUTHFINDER with Google by comparing the top web sites found by each of them.

This data set contains the authors of many books provided by many online
bookstores. It contains 1265 computer science books published by Addison Wes-
ley, McGraw Hill, Morgan Kaufmann, or Prentice Hall. For each book, we use its
ISBN to search on www.abebooks.com, which returns the book information on dif-
ferent online bookstores that sell this book. The data set contains 894 bookstores
and 34031 listings (i.e., bookstore selling a book). On average each book has 5.4
different sets of authors.

TRUTHFINDER performs iterative computation to find out the set of authors for
each book. In order to test its accuracy, we randomly select 100 books and manually
find out their authors. We find the image of each book and use the authors on the
book cover as the standard fact.

We compare the set of authors found by TRUTHFINDER with the standard fact
to compute the accuracy. For a certain book, suppose the standard fact contains
x authors, TRUTHFINDER indicates there are y authors, among which z authors
belong to the standard fact. The accuracy of TRUTHFINDER is defined as z

max(x,y) .1

Sometimes TRUTHFINDER provides partially correct facts. For example, the
standard set of authors for a book is “Graeme C. Simsion and Graham Witt,” and the
authors found by TRUTHFINDER may be “Graeme Simsion and G. Witt.” We con-
sider “Graeme Simsion” and “G. Witt” as partial matches for “Graeme C. Simsion”
and “Graham Witt,” and give them partial scores. We assign different weights to

1 For simplicity we do not consider the order of authors in this study, although TRUTHFINDER can
report the authors in correct order in most cases.
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different parts of persons’ names. Each author name has total weight 1, and the ratio
between weights of last name, first name, and middle name is 3:2:1. For example,
“Graeme Simsion” will get a partial score of 5/6 because it omits the middle name
of “Graeme C. Simsion.” If the standard name has a full first or middle name, and
TRUTHFINDER provides the correct initial, we give TRUTHFINDER half score. For
example, “G. Witt” will get a score of 4/5 with respect to “Graham Witt,” because
the first name has weight 2/5, and the first initial “G.” gets half of the score.

The implication between two sets of authors f1 and f2 is defined in a very similar
way as the accuracy of f2 with respect to f1. One important observation is that many
bookstores provide incomplete facts, such as only the first author. For example,
if a web site w1 says a book is written by “Jennifer Widom,” and another web
site w2 says it is written by “Jennifer Widom and Stefano Ceri,” then w1 actually
supports w2 because w1 is probably providing partial fact. Therefore, if fact f2
contains authors that are not in fact f1, then f2 is actually supported by f1. The
implication from f1 to f2 is defined as follows. If f1 has x authors and f2 has y
authors, and there are z shared ones, then imp( f1 → f2) = z/x − base_sim,
where base_sim is the threshold for positive implication and is set to 0.5.

Figure 11.4 shows the accuracies of TRUTHFINDER and VOTING. One can
see that TRUTHFINDER is significantly more accurate than VOTING even at the
first iteration, where all bookstores have the same trustworthiness. This is because
TRUTHFINDER considers the implications between different facts about the same
object, while VOTING does not. As TRUTHFINDER repeatedly computes the trust-
worthiness of bookstores and the confidence of facts, its accuracy increases to about
95% after the third iteration and remains stable. TRUTHFINDER takes 8.73 s to
pre-compute the implications between related facts, and 4.43 s to finish the four
iterations. VOTING takes 1.22 s.

Figure 11.5 shows the relative change of the trustworthiness vector after each
iteration, which is defined as one minus the cosine similarity of the old and new
vectors. We can see that TRUTHFINDER converges in a steady speed.

In Table 11.3 we manually compare the results of VOTING, TRUTHFINDER, and
the results of the authors provided by Barnes & Noble on its web site. We list the
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Table 11.3 Compare the results of VOTING, TRUTHFINDER, and Barnes & Noble

Type of error VOTING TRUTHFINDER Barnes & Noble

Correct 71 85 64
Miss author(s) 12 2 4
Incomplete names 18 5 6
Wrong first/middle names 1 1 3
Has redundant names 0 2 23
Add incorrect names 1 5 5
No information 0 0 2

number of books in which each approach makes each type of error. Please note that
one approach may make multiple errors for one book.

VOTING tends to miss authors because many bookstores only provide subsets
of all authors. On the other hand, TRUTHFINDER tends to consider facts with
more authors as correct facts because of our definition of implication for book
authors and thus makes more mistakes of adding in incorrect names. One may
think that the largest bookstores will provide accurate information, which is sur-
prisingly untrue. Table 11.3 shows Barnes & Noble has more errors than VOTING

and TRUTHFINDER on these 100 randomly selected books.
Finally, we perform an interesting experiment on finding trustworthy web sites.

It is well known that Google (or other search engines) is good at finding authori-
tative web sites. But do these web sites provide accurate information? To answer
this question, we compare the online bookstores that are given highest ranks by
Google with the bookstores with highest trustworthiness found by TRUTHFINDER.
We query Google with “bookstore”,2 and find all bookstores that exist in our data set
from the top 300 Google results. The accuracy of each bookstore is tested on the 100
randomly selected books in the same way as we test the accuracy of TRUTHFINDER.
We only consider bookstores that provide at least 10 of the 100 books.

Table 11.4 shows the accuracy and the number of books provided (among the
100 books) by different bookstores. TRUTHFINDER can find bookstores that pro-
vide much more accurate information than the top bookstores found by Google.

2 This query was submitted on February 7, 2007.
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Table 11.4 Accuracies of top bookstores by TRUTHFINDER and by Google

TRUTHFINDER

Bookstore Trustworthiness No. of Books Accuracy

TheSaintBookstore 0.971 28 0.959
MildredsBooks 0.969 10 1.0
alphacraze.com 0.968 13 0.947
Marando.de 0.967 18 0.947

Versandbuchhandlung
blackwell online 0.962 38 0.879
Annex Books 0.956 15 0.913
Stratford Books 0.951 50 0.857
movies with a smile 0.950 12 0.911
Aha-Buch 0.949 31 0.901
Players quest 0.947 19 0.936
Average accuracy 0.925
Google

Bookstore Google rank No. of Books Accuracy

Barnes & Noble 1 97 0.865
Powell’s books 3 42 0.654
ecampus.com 11 18 0.847
Average accuracy 0.789

TRUTHFINDER also finds some large trustworthy bookstores, such as A1 Books
(not among the top 10 shown in Table 11.4) which provides 86 of 100 books with
accuracy of 0.878. Please note that TRUTHFINDER uses no training data, and the
testing data are manually created by reading the authors’ names from book covers.
Therefore, we believe the results that suggest that there may be better alternatives
than Google for finding accurate information on the web.

11.3 Distinguishing Objects with Identical Names

People retrieve information from different databases on the web, such as DBLP,
Yahoo shopping, and AllMusic. One problem that has always been disturbing is
that different objects may share identical names. For example, there are 197 papers
in DBLP written by at least 14 different “Wei Wang”s. Another example is that
there are 72 songs and 3 albums named “Forgotten” in allmusic.com. Users are
often unable to distinguish them, because the same object may appear in very dif-
ferent contexts, and there is often limited and noisy information associated with
each appearance.

In this section we study the problem of Object Distinction, i.e., Distinguishing
Objects with Identical Names. Given a database and a set of references in it referring
to multiple objects with identical names, our goal is to split the references into clus-
ters, so that each cluster corresponds to one real object. We assume that the data are
stored in a relational database, and the objects to be distinguished reside in a table.
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At the beginning of this chapter we show an example in Fig. 11.1, which contains
some papers by four different “Wei Wang”s and the linkages among them.

This problem of object distinction is the opposite of a popular problem called
reference reconciliation (or record linkage, duplicate detection) [8], which aims at
merging records with different content referring to the same object, such as two cita-
tions referring to the same paper. There have been many record linkage approaches
[9–13]. They usually use some efficient techniques [14] to find candidates of dupli-
cate records (e.g., pairs of objects with similar names), and then check duplica-
tion for each pair of candidates. Different approaches are used to reconcile each
candidate pair, such as probabilistic models of attribute values [8, 12] and textual
similarities [10, 11].

Compared with record linkage, objection distinction is a very different prob-
lem. First, because the references have identical names, textual similarity is use-
less. Second, each reference is usually associated with limited information, and
thus it is difficult to make good judgment based on it. Third and most importantly,
because different references to the same object appear in different contexts, they
seldom share common or similar attribute values. Most record linkage approaches
[8, 10–12] are based on the assumption that duplicate records should have equal or
similar values, and thus cannot be used on this problem.

Although the references are associated with limited and possibly inconsistent
information, the linkages among references and other objects still provide crucial
information for grouping references. For example, in a publication database, dif-
ferent references to authors are connected in numerous ways through authors, con-
ferences, and citations. References to the same author are often linked in certain
ways, such as through their coauthors, coauthors of coauthors, and citations. These
linkages provide important information, and a comprehensive analysis on them may
likely disclose the identities of objects.

We develop a methodology called DISTINCT that can distinguish object identities
by fusing different types of linkages with differentiating weights, and using a com-
bination of distinct similarity measures to assess the value of each linkage. Because
the linkage information is usually sparse and intertwined, DISTINCT combines two
approaches for measuring similarities between records in a relational database. The
first is set resemblance between the neighbor tuples of two records [9] (the neigh-
bor tuples of a record are the tuples linked with it); and the second is random
walk probability between two records in the graph of relational data [13]. These
two approaches are complementary: one uses the neighborhood information and the
other uses the connection strength of linkages.

Moreover, there are many types of linkages among references, each following
a join path in the database schema. Different types of linkages have very different
semantic meanings and different levels of importance. DISTINCT uses support vector
machines (SVM) [15] to learn a model for weighing different types of linkages.

When grouping references, the references to the same object can be merged and
considered as a whole. Therefore, DISTINCT uses agglomerative hierarchical clus-
tering [16], which repeatedly merges the most similar pairs of clusters. It combines
Average-Link (average similarity between all objects in two clusters) and collective
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similarity (considering each cluster as a single object) to measure the similarity
between two clusters, which is less vulnerable to noise.

The following three subsections are organized as follows. Section 11.3.1 describes
the features we use to measure similarity between references. Section 11.3.2 intro-
duces how we use machine learning approaches to combine different features and
create a final measure of similarity, and Section 11.3.3 explains our approach for
clustering references.

11.3.1 Similarity Between References

We say a set of references are resembling if they have identical textual contents
(e.g., references to authors with identical names). Two references are equivalent if
they refer to the same object, and distinct if they do not. Our goal is to group a
set of resembling references into clusters so that there is a 1-to-1 mapping between
the clusters and the real objects. In this section we describe our similarity mea-
sure for references. Because each reference is usually associated with very limited
information, we utilize the relationships between each reference and other tuples in
the database, with the following two types of information: (1) the neighbor tuples
of each reference and (2) the linkages between different references. Based on our
observation, for two references, the more overlapping on their neighborhood, or the
stronger linkages between them, the more likely they are equivalent.

11.3.1.1 Neighbor Tuples

The neighbor tuples of a reference are the tuples joinable with it. A reference has a
set of neighbor tuples along each join path starting at the relation containing refer-
ences. The semantic meaning of neighbor tuples is determined by the join path. For
example, in the DBLP database whose schema is shown in Fig. 11.6, we study the
references to authors in Publish relation. For a particular reference in Publish rela-
tion, its neighbor tuples along join path “Publish /0 Publications /0 Publish /0
Authors” represent the authors of the paper for this reference. Because different
join paths have very different semantic meanings, we treat the neighbor tuples along
each join path separately, and will combine them later by supervised learning.

author author
paper-key

proc-key
conference

location

Authors Publish Proceedings

year

paper-key
title

Publications

proc-key

conference

Conferences

publisher

Fig. 11.6 The schema of DBLP database

Definition 3 (Neighbor tuples) Suppose the references to be resolved are stored in
relation Rr . For a reference r that appears in tuple tr , and a join path P that starts at
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Rr and ends at relation Rt , the neighbor tuples of r along join path P , N BP (r), are
the tuples in Rt joinable with tr along P .

Besides neighbor tuples of each reference, the attribute values of neighbor tuples
are also very useful for reconciling references. For example, two neighbor tuples
in Conferences relation sharing the same value on publisher attribute indicate some
relationship between these two tuples. In DISTINCT, we consider each value of each
attribute (except keys and foreign-keys) as an individual tuple. For example, each
distinct value of publisher attribute (ACM, Springer, etc.) is considered as a tuple,
and the publisher attribute in Proceedings relation is considered as a foreign-key
referring to those tuples. In this way we can use a single model to utilize both
neighbor tuples and their attribute values.

11.3.1.2 Connection Strength

For a reference r and a join path P , the strengths of relationships between r and
different tuples in N BP (r) could be very different (e.g., the different relationships
between an author and different coauthors). We use probability propagation [17]
to model the connection strength between a reference r and its neighbor tuples
N BP (r). Initially the tuple containing r has probability 1. At each step, for each
tuple t with non-zero probability, we uniformly propagate t’s probability to all tuples
joinable with t along the join path P . For each tuple t ∈ N BP (r), we compute
ProbP (r → t), the probability of reaching t from r via join path P , which is used
as the connection strength between r and t . We also compute ProbP (t → r), which
is the probability of reaching r from t via the reverse join path of P .

The computation of both types of probabilities can be done in a depth-first traver-
sal of all qualified join paths. Figure 11.7 shows the procedure of propagating prob-
abilities from a tuple in Rr to tuples in R1 and R2. The two numbers in each box are
the probability of reaching this tuple and the probability of reaching the origin from
this tuple.

0.1/0.25

0.5/0.5

0.4/0.5

0/0

R2

0.2/0.5

0.2/1

0.2/1

0.2/0.5

0.2/0.5

1/1

R1Rr
0/0

0/0

Origin of probability
propagation

Fig. 11.7 Propagating probabilities between tuples
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11.3.1.3 Set Resemblance of Neighbor Tuples

Our first measure for similarity between references is the set resemblance between
their neighbor tuples, which represents the similarity between the contexts of two
references in a relational database. The set resemblance between neighbor tuples
is defined by Jaccard coefficient [18]. Because a reference has different connection
strengths to different neighbor tuples, we use such strengths as weights in Jaccard
coefficient.

Definition 4 (Set Resemblance) The set resemblance similarity between two refer-
ences r1 and r2 with respect to join path P is defined as

Resem P (r1, r2) =
∑

t∈N BP (r1)∩N BP (r2)
min(ProbP (r1 → t), ProbP (r2 → t))

∑
t∈N BP (r1)∪N BP (r2)

max(ProbP (r1 → t), ProbP (r2 → t))
.

11.3.1.4 Random Walk Probability

Another important factor for similarity between references is the linkages between
them. We use the random walk probability model used in multi-relational record
linkage [13]. The total strength of the linkages between two references is defined as
the probability of walking from one reference to the other within a certain number
of steps. A distinguishing feature of our approach is that we compute the random
walk probability along each join path separately, so as to acknowledge the different
semantics of different join paths.

It is usually expensive to compute random walk probabilities along long join
paths. Since we have computed the probabilities of walking from references to
their neighbor tuples, and those from neighbor tuples to references, we can eas-
ily compute the probability of walking between two references by combining such
probabilities.

In general, random walk probability indicates the linkage strength between refer-
ences. It is complementary to set resemblance, which indicates the context similarity
of references. DISTINCT combines both measures to perform comprehensive analy-
sis on similarities between references.

11.3.2 Supervised Learning with Automatically Constructed
Training Set

In previous record linkages approaches that utilize relation information [9, 13], all
join paths are treated equally. However, linkages along different join paths have very
different semantic meanings, and thus should have different weights. For example,
in DBLP database two references to authors being linked by the same coauthor is a
strong indication of possible equivalence, whereas two references being linked by
the same conference is much weaker.

DISTINCT uses supervised learning to determine the pertinence of each join path
and assign a weight to it. In order to do this, a training set is needed that contains
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equivalent references as positive examples and distinct references as negative ones.
Instead of manually creating a training set which requires much labor and expert
knowledge, DISTINCT constructs the training set automatically, based on the obser-
vation that the majority of entities have distinct names in most applications. Take
the problem of distinguishing persons as an example. A person’s name consists of
the first and last names. If a name contains a rather rare first name and a rather rare
last name, this name is very likely to be unique. We can find many such names in
a database and use them to construct training sets. A pair of references to an object
with a unique name can be used as a positive example, and a pair of references to
two different objects can be used as a negative example.

Given the training examples, we use support vector machines (SVM) [15] to learn
a model based on similarities via different join paths. We introduce the learning
procedure for set resemblance similarities, and the same procedure is also applied
on random walk probabilities. Each training example (which is a pair of references)
is converted into a vector, and each dimension of the vector represents set resem-
blance similarity between the two references along a certain join path. Then SVM
with linear kernel is applied to these training sets, and the learned model is a linear
combination of similarities via different join paths. Usually some important join
paths have high positive weights, whereas others have weights close to zero and can
be ignored in further computation. Let Resem(r1, r2) be the overall set resemblance
similarity between r1 and r2:

Resem(r1, r2) =
∑

P∈P
w(P) · Resem P (r1, r2), (11.9)

where w(P) is the weight of join path P .

11.3.3 Clustering References

Given a set of references to the same name, DISTINCT tries to group them into clus-
ters, so that each cluster corresponds to a real entity. The procedure of clustering
references will be discussed in this section.

11.3.3.1 Clustering Strategy

The problem of clustering references has the following special features: (1) the ref-
erences do not lie in a Euclidean space, (2) the number of clusters is completely
unknown, and (3) equivalent references can be merged into a cluster, which still
represents a single object. Therefore, agglomerative hierarchical clustering is most
suitable for this problem, as it first uses each reference as a cluster, and then repeat-
edly merges the most similar pairs of clusters.

A most important issue is how to measure the similarity between two clusters of
references. There are different measures including Single-Link, Complete-Link, and
Average-Link [16]. Because references to the same object may form weakly linked
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partitions, Complete-Link is not appropriate. On the other hand, references to differ-
ent objects may be linked, which make Single-Link inappropriate. In comparison,
Average-Link is a reasonable measure, as it captures the overall similarity between
two clusters and is not affected by individual linkages which may be misleading.

Average-Link still suffers from the problem that references to the same object
often from weakly linked partitions. For example, in DBLP an author may col-
laborate with different groups of people when he/she is affiliated with different
institutions. When these partitions are large, the Average-Link similarity may be
small even if there are many linkages between them. To address this problem, we
combine Average-Link with the collective random walk probability between two
clusters, which is the probability of walking from one cluster of references to the
other cluster. In details, we adopt a composite similarity measure by combining
the average set resemblance similarity with the collective random walk probability
when measuring similarity between clusters. Because these two measures may have
different scales, and arithmetic average will often ignore the smaller one, we use
the geometric average of the two measures as the overall similarity between two
clusters:

Sim(C1,C2) =
√

Resem(C1,C2) ·Walk Prob(C1,C2), (11.10)

where Resem(C1,C2) is the average set resemblance similarity between references
in C1 and those in C2, and Walk Prob(C1,C2) is the collective random walk prob-
ability between them.

11.3.3.2 Computing Clusters

Initially each reference is used as a cluster, and the set resemblance similarity and
random walk probability between each pair of clusters are computed. This is usually
affordable because the number of references having identical names is seldom very
large. At each step, the two most similar clusters C1 and C2 are merged into a new
cluster C3, and we need to compute the similarity between C3 and each existing
cluster Ci . When C3 is very large, a brute-force method may consume similar
amount of time as computing pair-wise similarity during initialization, and it is
unaffordable to perform such computation at every step.

To address this problem, we design efficient methods that can incrementally com-
pute the similarity between clusters as clusters are merged. One important observa-
tion for improving efficiency is that both the average set resemblance similarity and
random walk probability between C3 and Ci can be directly computed by aggregat-
ing the similarities between C1,C2, and Ci .

11.3.4 A Case Study on Authorship on DBLP

We report our empirical study on testing the effectiveness of the proposed approach.
DISTINCT is tested on DBLP database, whose schema is shown in Fig. 11.6. First,
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authors with no more than two papers are removed, and there are 127,124 authors
left. There are about 616K papers and 1.29M references to authors in Publish rela-
tion (authorship). In DBLP we focus on distinguishing references to authors with
identical names.

When computing set resemblance of neighbor tuples (Section 11.3.1.3), we con-
sider neighbor tuples reached by join paths of at most four joins. When computing
random walk probability (Section 11.3.1.4), we consider join paths of at most eight
joins.

We first build a training set using the method in Section 11.3.2, which contains
1000 positive and 1000 negative examples. Then SVM with linear kernel is applied.
The whole process takes 62.1 s. We measure the performance of DISTINCT by pre-
cision, recall, and f -measure. Suppose the standard set of clusters is C∗ and the
set of clusters by DISTINCT is C . Let T P (true positive) be the number of pairs of
references that are in the same cluster in both C∗ and C . Let F P (false positive) be
the number of pairs of references in the same cluster in C but not in C∗, and F N
(false negative) be the number of pairs of references in the same cluster in C∗ but
not in C :

precision = T P

T P + F P
, recall = T P

T P + F N
.

f -measure is the harmonic mean of precision and recall.
We test DISTINCT on real names in DBLP that correspond to multiple authors.

Ten such names are shown in Table 11.5, together with the number of authors and
number of references. For each name, we manually divide the references into groups
according to the authors’ identities, which are determined by the authors’ home
pages or affiliations shown on the papers.3

Table 11.5 Names corresponding to multiple authors

No. of No. of No. of No. of
Name Authors References Name Authors References

Hui Fang 3 9 Bing Liu 6 89
Ajay Gupta 4 16 Jim Smith 3 19
Joseph Hellerstein 2 151 Lei Wang 13 55
Rakesh Kumar 2 36 Wei Wang 14 141
Michael Wagner 5 29 Bin Yu 5 44

We use DISTINCT to distinguish references to each name, with min-sim set to
0.0005. Table 11.6 shows the performance of DISTINCT for each name. In gen-
eral, DISTINCT successfully group references with high accuracy. There is no false
positive in seven out of ten cases, and the average recall is 83.6%. In some cases

3 References whose author identities cannot be found (e.g., no electronic version of paper) are
removed. We also remove authors with only one reference that is not related to other references by
coauthors or conferences, because such references will not affect accuracy.
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Table 11.6 Accuracy for distinguishing references

Name Precision Recall F-measure

Hui Fang 1.0 1.0 1.0
Ajay Gupta 1.0 1.0 1.0
Joseph Hellerstein 1.0 0.810 0.895
Rakesh Kumar 1.0 1.0 1.0
Michael Wagner 1.0 0.395 0.566
Bing Liu 1.0 0.825 0.904
Jim Smith 0.888 0.926 0.906
Lei Wang 0.920 0.932 0.926
Wei Wang 0.855 0.814 0.834
Bin Yu 1.0 0.658 0.794
Average 0.966 0.836 0.883

references to one author are divided into multiple groups. For example, 18 refer-
ences to “Michael Wagner” in Australia are divided into two groups, which lead to
low recall.

We compare six versions: (1) DISTINCT, (2) DISTINCT without supervised learn-
ing, and (3–6) DISTINCT using each of the two similarity measures: set-resemblance
[9] and random walk probabilities [13] (with and without supervised learning).
Note that supervised learning is not used in [9] and [13]. For each approach except
DISTINCT, we choose the min-sim that maximizes average accuracy. Figure 11.8
shows the average f -measure of each approach. DISTINCT leads by about 15%
compared with the approaches in [9] and [13]. The f -measure is improved
by more than 10% with supervised learning, and 3% with combined similarity
measure.

0.4

0.5

0.6

0.7

0.8

0.9

1

f-measure

DISTINCT

Supervised set
resemblance

Supervised random
walk

Unsupervised
combined measure

Unsupervised set
resemblance

Unsupervised
random walk

Fig. 11.8 Accuracy and f -measure on real cases

We visualize the results about “Wei Wang” in Fig. 11.9. References correspond-
ing to each author are shown in a gray box, together with his/her current affilia-
tion and number of references. The arrows and small blocks indicate the mistakes
made by DISTINCT. It can be seen that in general DISTINCT does a very good job in
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Fig. 11.9 Groups of references of “Wei Wang”

distinguishing references, although it makes some mistakes because of the linkages
between references to different authors.

11.4 Conclusions

In this chapter we study two problems about correctness of information on the web.
We first introduce and formulate the Veracity problem, which aims at resolving
conflicting facts from multiple web sites, and finding the true facts among them.
We propose TRUTHFINDER, an approach that utilizes the interdependency between
web site trustworthiness and fact confidence to find trustable web sites and true
facts.

Then we study the problem of distinguishing references to people or objects with
identical names. We develop a general methodology called DISTINCT for supervised
composition of heterogeneous link analysis that can fuse different types of linkages
and use a combination of distinct similarity measures to assess the value of each
linkage.

Our experiments show that TRUTHFINDER achieves high accuracy at finding true
facts and at the same time identifies web sites that provide more accurate informa-
tion, and DISTINCT can accurately distinguish different objects with identical names
in real databases. In general, this chapter shows that linkages can help us analyze
the veracity and identity of people, objects, and their information.

Both TRUTHFINDER and DISTINCT are limited to time-invariant data. An inter-
esting research direction is how they can be adapted to handle the changes of data
over time. It is also interesting to study how to handle entities with multiple forms
of names, which exist in many domains.
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Chapter 12
Dynamic Community Identification

Tanya Berger-Wolf, Chayant Tantipathananandh, and David Kempe

Abstract Humans and other social animals interact in diverse ways. A central prob-
lem in the study of societies is identifying core communities: sets of entities among
whom interactions are frequent and consistent. Membership in social groups often
changes, thus making it difficult to characterize a society’s community structure.
In this chapter we formalize the computational problem of dynamic community
identification and review computational methods that address the changing nature of
community membership. We discuss in detail the dynamic community identification
method by the authors which in many ways subsumes other approaches.

12.1 Introduction

Social creatures interact in diverse ways: forming groups, sending emails, sharing
ideas, and mating. Some of the interactions are accidental while others are a conse-
quence of the underlying explicit or implicit social structures [10, 15, 34]. In order
to understand social interactions, it is therefore crucial to identify these social struc-
tures or “communities,” which are loosely defined as collections of individuals who
interact unusually frequently [20, 21, 23, 25, 35, 58]. Community structure often
reveals interesting properties shared by the members, such as common hobbies,
occupations, social functions, or rank [6, 10, 15]. The importance of community
structure extends beyond social networks in the strictest sense: for instance, in
hyperlinked documents such as the World Wide Web, salient properties of “indi-
viduals” (in this case, pages) include related topics or common viewpoints. As a
result, there has been a large amount of research on identifying communities in the
web graph or similar settings (see Chapter 7).

Perhaps one of the most interesting aspects of community structure is its evo-
lution over time: how do membership and interactions change, and how does
this change correlate with properties of the individuals or events within the time
frame [2, 26, 30, 38, 45–47, 56]? Is the turnover of groups fast or slow? Do they
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assemble and disband spontaneously or over a long period of time? With improve-
ments in technology, collecting longitudinal data is becoming increasingly feasible,
in turn allowing us to begin answering these questions systematically. However, in
addition to data, this task also requires novel algorithms which can not only iden-
tify community structure but also track its changes over time. In this chapter, we
investigate models and algorithms for dynamic community identification. A partic-
ular focus will be given to recent work by the authors, which derives a measure of
parsimony of a community interpretation from first principles about the interactions
of individuals.

12.2 Static and Dynamic Networks

Community identification in static networks (that do not change over time) is a
very well studied topic. Some of the approaches date back to the 1930s [10]. With
the ascent of computation as a scientific tool, the last 10–15 years have seen an
explosion in different algorithms for community identification. These algorithms
are based on different precise formalization of the vague concept of “unusually fre-
quent interactions”; they also differ in their efficiency and many other parameters,
making them useful in different settings. For several recent comparative surveys,
see, for example, [9, 17, 18, 21, 39]. Chapter 7 specifically addresses the problem
of community identification and analysis in the web graph.

For static networks, the notion of a “community” is at least intuitively clear.
When analyzing dynamically changing networks, such as could result from a longi-
tudinal study of a population, even the very nature of what we mean by a community
becomes less clear. On the one hand, a community should be persistent, i.e., the
interactions among its members should be observed over a period of time. On the
other hand, the interactions within a community also need to be more frequent than
with the rest of the network. Clearly, these two objectives may be in conflict with
each other.

One may be tempted to leverage the vast body of work on communities in static
graphs by doing one of the following: (1) focus on one particular point in time or
(2) aggregate the sequence of observations (or a subsequence) into one graph, as a
union of edges, possibly with weights. The first approach obviously discards any
information about the evolution of relationships over time and further raises the
issue of how to choose the right point in time. The second approach, frequently
used by practitioners (e.g., [3, 4, 21, 33, 60]), has problems of its own. As an
example, consider the static network in Fig. 12.1, which was derived by aggregating
a sequence of dynamic networks. Figure 12.2 shows four possible sequences of
networks which may have yielded the network in Fig. 12.1 in this way. Any static
community detection algorithm would thus output the same communities for all
four input sequences, even though the sequences are manifestly different. Thus, it
is crucial to focus on the entire sequence, as a sequence, and discover the dynamic
change affecting the communities over time.
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Fig. 12.1 An example static (aggregated) network representation. The circles are nodes corre-
sponding to individual entities, and lines are links (or edges) connecting those entities that have
interacted at any time. The thickness of a line and numbers on each line indicate the frequency of
interaction between a joined pair

Fig. 12.2 Four out of many possible dynamic networks which when aggregated result in the same
static network of Fig. 12.1. Each panel (a–d) shows alternative possible interaction scenarios
among the same six nodes (labeled 1–6) over six time steps (t = 1, . . . , 6). In (a) and (b), the
dynamic networks are affiliation networks. The white and shaded envelopes around the nodes
indicate the groups observed at each time step. The difference between scenario (a) and scenario
(b) can be viewed as the order in which groups are observed or the rate of turnover. In (c), nodes
interact pairwise and no groups can be seen. Thus, (c) is not an affiliation network. It is, however,
regular and periodic. Network (d) is a random assignment of edges to time steps. It is not an
affiliation network since interactions are not transitive

Intuitively, when we talk about “dynamic networks,” we will consider a time
series of graphs (a more formal definition will be given in Section 12.4). A graph
in this series captures all interactions observed between the individuals over a small
time window, such as a day or an hour.1

For much of this overview, we will be focusing on a special class of social net-
works termed affiliation networks by social scientists [6]. Affiliation networks are
collapsed bipartite graphs of individuals and their affiliations. Thus, in an affiliation
network, the nodes represent individuals and the edges represent a shared affiliation,
such as membership in an organization, or a physical presence at a meeting. We
assume that at any given time, each individual can only be affiliated with one group

1 The appropriate definition of a time step is nontrivial and beyond the scope of this chapter. Yet
we note that many interaction systems lend themselves to natural time quantizations, due to the
behavioral patterns of individuals, or observational methods.
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(although affiliations can change over time). Affiliation is a transitive relationship;
therefore, all individuals sharing an affiliation form a clique.2 An affiliation network
is, thus, a collection of disjoint cliques (which may be different from the underlying
community structure). Recently, Lattanzi and Sivakumar [31] have proposed the first
computational model for a growing affiliation network.3 In the spirit of the previous
discussion, a dynamic affiliation network is a time series of affiliation networks.
Figure 12.2a–b shows two dynamic affiliation networks. Figure 12.2c–d, however,
are not affiliation networks, because interactions are not transitive.

12.3 Overview of Dynamic Community Identification Methods

In this overview, we focus on methods which aim to infer latent community structure
purely from the observed interactions, without recourse to additional information
about the individuals (such as age, gender, location, interests). Thus, the input to
these methods is a dynamic social network or a dynamic affiliation network. Differ-
ent methods take different approaches toward quantifying the relationship between
the individual interactions and the underlying community structure.

Standard definitions of communities in social networks rely on various measures
of cohesiveness [36, 58, Section 12.7.6]. Communities are loosely defined as sets
of individuals more closely affiliated with each other than with members of other
communities. Quantifying the notion of “close affiliation” over time is, however,
nontrivial. Consider the examples of Fig. 12.2: the three distinct dynamic scenarios
all lead to the same static network, the one shown in Fig. 12.1. In the static case,
any community identification method would identify only a single community. By
contrast, in the dynamic cases of (a) and (b), we can see that there exist individuals in
two groups that change over time. Two groups of individuals, starting with {1, 2, 3}
and {4, 5, 6}, exchange one individual at a time. In example (a), this exchange occurs
in each time step, while in example (b), this exchange happens only every other
time step. These examples are abstract representations of two distinct groups grad-
ually exchanging their membership, and there are many real phenomena that can be
viewed in this way. The key to the existence of two distinct communities here is the
gradual nature of exchange which ensures the continuity and persistence of each
community over time.

Perhaps the earliest method to directly address the changing nature of groups
over time is by Aggarwal and Yu [1]. They proposed a method to track groups that
change (grow or shrink) faster than their surroundings. The method does not infer
communities but rather tracks the gradual changes of a given community in time.

The notion of continuity and persistence is most directly expressed in the meta-
groups approach of Berger-Wolf and Saia [5]. The paper proposes a framework for
tracking the evolution of groups over time in a dynamic affiliation network. The

2 A clique or complete graph has an edge between every pair of nodes.
3 For models for general dynamic (longitudinal) social networks, see [24, 45–47].
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authors propose a representation by a directed multipartite graph with nodes rep-
resenting groups of affiliation in each time step and edges connecting groups that
have a significant overlap in their membership. Significance of overlap is defined
in terms of a threshold chosen by the user. The edges are oriented forward in time.
A dynamic community—also called a “metagroup” by the authors—is then a long
path in this graph. Again, the precise required length is specified by the user. With
its reliance on several user-defined parameters, the approach is again largely focused
on tracking dynamic communities rather than inferring them.

A similar approach was proposed by Spiliopoulou et al. [49]. It also assumes
as input a time series of partitions of individuals into groups and matches groups
across time steps based on membership overlap and an added notion of time decay.
However, in this model, groups are allowed to be matched to at most one (most
similar) group in a later time step. One can then again construct a graph with nodes
representing groups in adjacent time steps and edges capturing similarities between
groups. As a result, dynamic communities are, again, paths. Depending on the rel-
ative properties of the matched groups, the transitions are classified as size or com-
pactness change. A life history of a dynamic community can then be characterized
in terms of these transitions. Like the metagroups approach, the method is better
suited for tracking communities than for inferring them.

Two methods apply the idea of local matching of groups across time to gen-
eral dynamic networks. Palla et al. define a community as a set of overlapping
cliques [37] (non-disjoint affiliations). In taking the temporal information into con-
sideration, the approach finds cliques of a specific size in the union of snapshot
graphs of two consecutive time steps. Although communities found show their per-
sistence, and the members of the communities can change over time, growing or
shrinking is not allowed: each snapshot of a community has to be a clique of a
specific fixed size. Moreover, the focus on consecutive time steps is too local and
essentially memoryless. Falkowski et al. [13, 14] use the algorithm of Girvan and
Newman [23] to identify snapshot communities. They then construct a graph of
snapshot communities, where edges represent possible traces of communities. They
then apply the algorithm of Girvan and Newman once more on this graph to find
dynamic communities.

A very different approach is proposed by Sun et al. [50]. Their method uses
an information-theoretic criterion to detect dramatic changes in the time series
of graphs. In particular, the approach uses the principle of minimum description
length to compress the consecutive network snapshots. It thus identifies communi-
ties which are locally static. Although the approach in [50] detects points of dramatic
changes in community structure, it does not trace gradual changes.

Two recent methods propose a generative Markov process to model dynamic
communities and find community structure maximizing the likelihood under the
proposed model. Using a Bayesian approach, Lin et al. [32] propose FacetNet,
which models dynamic communities as a hidden Markov chain. They maximize the
posterior distribution using the EM algorithm. Yang et al. [59] propose a different
Markov process and use simulated annealing to find community structure which
maximizes the likelihood of the interaction data. Both methods take only local



312 T. Berger-Wolf et al.

changes into consideration. Neither approach uses the models of group dynamics
from social sciences [38]. A somewhat related idea is used by Tong et al. [55] who
use a low-rank approximation of adjacency matrices to infer dynamic communities.

The approach of modeling dynamic social networks via a hidden Markov model
is also taken in recent papers by Sarkar and Moore [42] and Fu et al. [22]. Both of
these papers place assumptions on the movement of individuals in a latent space and
treat the sequence of networks as a manifestation of the individuals’ positions. They
use different Bayesian inference algorithms to infer the trajectory of individuals in
the latent space and, thus, learn about the roles of individuals. While not explicitly
addressing the issue of communities and their turnovers, the individuals’ positions
can be considered indicative of community structure as well.

Much of the remainder of this survey is based on two papers by the authors
[53, 54]. The approach taken there is to derive an objective from first principles
of social behavior. Specifically, the goal is to axiomatize the persistence of social
interactions and their dynamics, in a way that explicitly draws a connection between
latent community structure and observed interactions. Based on this axiomatiza-
tion, we formulate a combinatorial optimization problem. Dynamic communities
are essentially viewed as dynamic clusters, where some notion of “social cost” is
minimized within communities. The optimization problem itself is computationally
intractable; we therefore analyze various methods for speeding up the computation,
including a recent approximation algorithm [53].

12.4 Dynamic Community Identification Problem

We now formally state the definitions and notations that will be used throughout the
chapter and define the computational dynamic community identification optimiza-
tion problem.

12.4.1 Notation and Definitions

Let X = {x1, . . . , xn} be the set of n individuals observed over T discrete time steps
t = 1, . . . , T . Let Ht =

{
g j,t

}
be a collection of groups of the individuals observed

at time t . The interpretation is that the individuals in group g j,t ⊆ X are observed
interacting among themselves at time t (i.e., forming a clique).

An interaction sequence of individuals over T time steps is H = 〈H1, H2,
. . . , HT 〉. A dynamic affiliation network (X,H) is the set of individuals and their
interaction sequence over T time steps. We use the terms “interaction sequence” and
“dynamic affiliation network” interchangeably.

We stress that in our terminology, groups and communities are different concepts:
groups are considered as observed or input data which capture only a snapshot of
interactions at one point in time, while communities are latent concepts which exist
over time and should explain many of the actual observed interactions, though not
necessarily all of them.
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12.4.2 Problem Formulation

For a society’s history of interactions, we aim to identify the most parsimonious
underlying communities. The inferred community structure should explain as many
of the observed interactions as possible. Stated conversely, we seek the community
structure that minimizes those interactions considered to be among individuals in
separate communities. This view is motivated by the intuitive understanding of a
community as a body which exists for a certain time period, during which it has
consistent membership and welcomes few outsiders.

Just as static communities are essentially clusters of individuals among
whom the social distance (as expressed by the amount and frequency of
interaction [20, 21, 23, 25, 35, 58]) is minimized, so, too, dynamic communities
can be viewed as dynamic clusters. The question, then, is how to quantify the notion
of social distance in dynamic networks. Here, we propose to measure that distance
in terms of a social cost incurred by individuals in various contexts of interactions.
Our definition of social cost is based on two explicit assumptions about individual
behavior, motivated by research in social sciences and social physiology. First, we
assume that individuals tend not to change their home community affiliation too
often [2]. Second, we assume that individuals tend to interact with their respective
home communities most of the time [58, p. 320]. In human and animal societies, indi-
viduals incur real social costs when their behavior deviates from these assumptions.
Consider the example of a typical social club. Becoming a permanent member of the
club involves a large fee and initiation rites. Attending a members-only gathering,
as an outsider, results in a higher entry fee. Once one is a member, being absent
from a meeting represents a wasted expenditure and may even bring on a penalty.
For a less formal situation, but with similar individual behavior, consider a circle of
friends. To become integrated within the circle, a newcomer typically spends time
and energy getting to know the current members. Friends enjoy being with each
other and are loath to miss a get-together.

With these intuitive examples in mind, we define three cost parameters poten-
tially incurred by an individual. First, we posit a cost for a switch of a home
community. Second, there is a cost of visiting a community of which one is
not a member. Third, in data sets for which not all individuals are observed all
the time, we have a cost of absence. This cost accounts for an individual who
is a member of a particular community, but is absent from an observed home
community gathering. Now, we can define a dynamic community, analogously to
a static one, as a series of sets of individuals among whom the overall social
cost of interacting is lower relative to the interactions among individuals across
communities.

Definition 1 Given the three costs of switching, visiting, and absence, the
DYNAMIC COMMUNITY IDENTIFICATION problem (DCI) is the problem of finding
the community structure, fitting the observed pattern of interactions, for which the
overall social cost is minimized.
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12.4.3 Dynamic Community Identification Optimization Problem

Just like there are hundreds of formulations of the classical clustering problem, there
are many ways to instantiate DYNAMIC COMMUNITY IDENTIFICATION as an opti-
mization problem. We now present one of the possible implementations which aims
to minimize the sum of non-interactions within communities and the interactions
across.4 To aid the mathematical formulation of the problem, we make the explicit
technical assumption that in each time step, every group is a representative of a
distinct community. If two groups are present at the same time, there is a reason
they are separate: they are gatherings of individuals that chose to be apart.

The DYNAMIC COMMUNITY IDENTIFICATION problem can be intuitively mod-
eled as a graph coloring problem [27] (albeit with a different objective function from
traditional graph coloring).

For a dynamic affiliation network (X,H = 〈Ht 〉), we create a cost graph G with
one individual vertex vi,t for every individual xi ∈ X and every time t = 1, . . . , T .
In addition, there is one group vertex ug,t for every group g ∈ Ht . There are three
kinds of edges:

Esw (switch): For each individual xi and time t ≤ T − 1, there is an edge
between vi,t and vi,t+1.

Evis (visit): For each individual xi ∈ g at time t , there is an edge between vi,t

and ug,t .
Eab (absence): For each individual xi ∈ X and each group g at time t such that

xi /∈ g, there is an edge between vi,t and ug,t .

Figure 12.3 shows an example of an interaction sequence (left) and the correspond-
ing graph representation (middle) with all the Esw edges and some of the Evis, Eab
edges. The fragment on the right shows the graph representation of time step T3
with all the edges Evis, Eab present. Notice that each time step t corresponds to a
complete bipartite subgraph with edges connecting only the individual vertices vi,t

and the group vertices ug,t at time t .
We investigate a restricted case of the DYNAMIC COMMUNITY IDENTIFICATION

problem. We constrain the individuals to belong to only one community at any given
time t . This is another technical constraint to aid the formulation of the problem
which should be relaxed for a general solution. Since communities are different
from groups, this restriction is not captured by the definition of affiliation networks,
where each individual belongs to only one group at any time.

Definition 2 A community interpretation of a dynamic affiliation network (X,H) is
a vertex coloring χ : V → N of the corresponding cost graph G = (V, E). The
color of an individual vertex vi,t represents the individual xi ’s community affiliation
at time t . The color of a group vertex ug,t gives the community that g represents at

4 An alternative, non-equivalent, formulation, for example, would be to maximize the interactions
within communities and non-interactions across, or some combination of those four objectives.
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time t . We say that the coloring is valid if, for every time step t , the group vertices
ug,t for all g ∈ Ht have different colors.

To measure the quality of a community interpretation χ , we use the three differ-
ent social costs, switch, visit, and absence, given as input parameters csw, cvis, and
cab. We note that costs are incurred by individuals.

Switch: A cost of csw is incurred if an individual switches community affilia-
tion; that is, χ(vi,t ) �= χ(vi,t+1). In other words, the end points of an edge in
Esw (connecting an individual to itself) have different colors.

Visit: A cost of cvis is incurred if an individual visits another community. That
is, xi ∈ g (and g ∈ Ht ), but χ(vi,t ) �= χ(ug,t ). In other words, the end
points of an edge in Evis (connecting an individual to its current group) have
different colors.

Absence: A cost of cab is incurred if an individual is absent from its community.
That is, χ(vi,t ) = χ(ug,t ) but xi /∈ g. In other words, the end points of an
edge in Eab (connecting an individual to groups other than its current within
the time step) have the same color.

Thus, if an individual xi and a group g are both present and have the same color at
time t , but xi is not a member of g at that time, then the individual incurs both the
visiting and absence costs. The first cost penalizes the individual for being different
from its current group (which is not g and, in a valid coloring, must have a different
color from g) while the second cost penalizes the individual for being absent from
its current community.

The DYNAMIC COMMUNITY IDENTIFICATION optimization problem is then to
find a valid community interpretation minimizing the total cost resulting from the
switches, visits, and absences of individuals.

Definition 3 Given a dynamic affiliation network (X,H), the social costs csw, cvis,
cab, and the corresponding cost graph G, let χ be a valid coloring of G, and let χww′
be an indicator variable which equals 1 if vertices w and w′ have the same color
in χ , and 0 otherwise. The DYNAMIC COMMUNITY IDENTIFICATION optimization
problem is then to find a valid coloring χ of G which minimizes the total cost,

csw

∑

(w,w′)∈Esw

(1− χww′)+ cvis

∑

(w,w′)∈Evis

(1− χww′)+ cab

∑

(w,w′)∈Eab

χww′ .

Once such a coloring χ has been found, we identify each community Cc with
the set of groups {g} of color χ(ug,t ) = c. In a valid coloring, a community will
contain at most one group from each time step. The community structure is the
collection C = {Cc} of all communities. Notice that we explicitly allow a com-
munity to change or evolve over time. Once we have a community structure, we
can derive from it an affiliation sequence for every individual xi , the sequence
Ai = 〈χ(vi,1), . . . , χ(vi,t )〉 of communities that xi was a member of during the
observation period. Notice that it is possible that an individual has a color that does
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not match any communities in C. The interpretation is that the individual may be
affiliated with an unknown community or not affiliated with any community at the
time. Such individuals will not incur any absence costs but will incur visiting costs
every time they are observed. This allows us to detect outliers whose affiliation
cannot be clearly inferred from the observed interactions.

12.4.4 Discussion of Social Costs

The three event costs parametrize our method and are part of the input provided
by the user based on knowledge of the social system under study. We can make
observations about some general properties of these costs.

The actual numerical values of switching and visiting costs are irrelevant to the
optimization. Only the relative values of these costs influence the optimal commu-
nity interpretation. Altering the parameters csw, cvis, cab alters the dynamic expres-
siveness of the model. If csw is very large compared to cvis and cab (such as a policy
of death for betrayal), then in the optimal solution, individuals will never switch
community affiliation, preferring to pay the visit and absence costs. At this extreme,
we recover the static community structure as a special case. As csw gets smaller,
more frequent affiliation changes are possible, and oscillating behavior between
communities or gradual changes of community structure can be inferred as an expla-
nation of the observations. If csw is very small compared to cvis and cab (as perhaps
caused by customer membership offers with switching incentives), then no visit or
absence costs will be paid in the optimum, and individuals will switch every time
they are in a group of a different community. As a result, we will obtain just the local
community structures for individual time steps. Dynamic communities in this case
are similar to those inferred by the “community tracing” methods of [5, 13, 14, 49].
Gradually changing the relative values of the costs interpolates between the local
ephemeral structure and the global static view. It also allows us to infer the roles
that individuals may play in their community. For example, individuals who rarely
switch under any cost setting may be important to the persistence of their com-
munity. Among them those who rarely visit or are absent are potentially the core
members of the community, while those who often are missing or visiting other
communities are perhaps periphery members of the community. Those who switch
very often under most cost settings are possibly the social butterflies. The choice of
the three parameters determines the boundaries of these three categories. Thus, it
is possible to systematically explore the entire range of relative cost values, in the
process recovering the roles that individuals play and delineating the core and the
periphery of communities.

Occasionally, it is possible to infer the real values of the costs explicitly. For
example, many clubs and societies have membership and guest visit fees that place
a monetary value on switches and visits. In some other cases, while it is impossible
to precisely measure the value of switch, visit, and absence costs, it is possible to
approximately measure their relative values. For instance, stress hormone profiles of
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a newcomer to a group [41] or behavioral observation of aggression and harassment
[40, 52] are fairly accurate stand-ins for costs.

Alternatively, one can view the costs of switching and visiting as probabilistic
measures of individuals’ behavior in a stochastic model that generates affiliation
networks. A maximum likelihood set of probabilities can then be estimated from the
fit of the resulting network to real data. In fact, our proposed dynamic community
identification optimization framework can be viewed as exactly such a maximum
likelihood estimator. The inferred probabilities of switching and visiting can help us
understand which factors bring individuals together and tear them apart.

For the first formulation of the problem, we assumed for tractability that the costs
are the same for all individuals and for all communities at all times. For a more real-
istic formulation of the DYNAMIC COMMUNITY IDENTIFICATION problem, this
assumption must be relaxed; this is one of the many promising avenues of future
research.

12.4.5 Complexity of the Problem

We investigate the computational complexity of the COMMUNITY INTERPRETA-
TION problem which is an instantiation of the DYNAMIC COMMUNITY IDENTIFI-
CATION optimization problem.

Unfortunately, solving the COMMUNITY INTERPRETATION problem optimally
is NP-complete and, moreover, cannot be approximated arbitrarily well. We for-
mally define the decision problem COMMUNITY INTERPRETATION as follows:
Given cost parameters csw, cvis, and cab, a set X of n individuals and a sequence
H = 〈H1, . . . , HT 〉 of observations, as well as an upper bound B on the total cost,
is there a community interpretation for (X,H) of total cost at most B?

Theorem 1 The COMMUNITY INTERPRETATION problem is NP-complete and
APX-hard.5

Proof To prove APX-hardness, we give an approximation preserving reduction
from the MINIMUM MULTIWAY CUT problem, which is known to be APX-hard [8].
We reduce from the special case of MINIMUM 3-WAY CUT (which remains APX-
hard): Given an undirected graph G = (V, E) with unit edge costs, and three distinct
terminal vertices s1, s2, s3 ∈ V as well as a bound c, is there a set C ⊆ E of at most
c edges such that all of s1, s2, s3 are disconnected from each other in the graph
(V, E \ C)?

Given a 3-WAY CUT instance, we create a COMMUNITY INTERPRETATION

instance. Let n = |V |,m = |E |. The COMMUNITY INTERPRETATION instance has
an individual for each vertex v ∈ V . During each of the first m + 1 time steps, each
of the singleton groups {s1} , {s2} , {s3} is observed (none of the other individuals

5 The fact that the problem is APX-hard means that there is a constant ε > 0 such that, unless
P=NP, no polynomial time algorithm can achieve an approximation guarantee better than 1+ ε for
the problem.
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are observed during those times). Let e1 = {v1, w1} , . . . , em = {vm, wm} be an
arbitrary ordering of the edges. During time step m + 1 + t , exactly one group
{vt , wt } is observed. That is, for each edge of G, the two endpoints are observed
together exactly once. To complete the reduction, we set csw = m + 1, cvis = 1,
and cab = 0. To prove NP-completeness, we use the decision version of the COM-
MUNITY INTERPRETATION problem, asking whether there exists a solution of cost
at most c. To prove that this is an approximation preserving reduction, we give
a cost-preserving mapping from multiway cuts to valid colorings and vice versa.
First, given a cut C , let S1, S2, S3 be the connected components containing s1, s2, s3,
respectively. Give all vertices in Si the same color in the coloring instance. For all
vertices not in any of the three components (if any), arbitrarily color them with the
same color as s1. Finally, color each group of size 1 with the color of its unique
member and each group of size 2 with the color of one of its members. First, notice
that this is a valid coloring, as in the first m+1 time steps, all singleton groups have
distinct colors, and in the remaining m time steps, there is only one group in each
time step. Because individuals never change color, no switching cost is incurred.
Thus, the only cost is cvis whenever an individual is present, but does not have the
color of its group. This never happens for groups of one individual, and happens for
groups of two individuals at time m + 1+ t if and only if the corresponding edge et

is cut. Thus, the total cost is exactly the same as the number of edges cut.
Conversely, if we have a valid coloring of the observation sequence, we notice

that without loss of generality, it does not incur any switching cost, since a cheaper
solution (of cost m) could always be obtained by simply assigning a fixed and
distinct color to each individual. Second, we notice that each of the individuals
s1, s2, s3 must have distinct colors. Otherwise, they would incur a total visiting cost
of at least m + 1 during the first m + 1 steps, and again, a cheaper solution could be
obtained trivially by assigning all vertices a fixed distinct color. Define S1, S2, S3 to
be the sets of vertices with the same color as s1, s2, s3, respectively. Let S4 be the
set of all remaining vertices (if any). Notice that we can assume, without the loss
of generality, that all remaining vertices have the same color, otherwise a cheaper
valid coloring could be obtained by coloring all of S4 with the same color. Let C be
the set of edges cut by the partition (S1, S2, S3, S4). By definition, C is a multiway
cut separating s1, s2, s3. Furthermore, the groups incurring a cost of cvis = 1 in the
coloring are exactly those corresponding to edges in C , as they are the ones with two
distinct vertex colors, meaning that one of the vertices must have a color different
from the group. (If any group of two vertices did not have the color of either of its
individuals, we could obtain a cheaper solution by recoloring that group.) Thus, we
have proved that the size of C is exactly equal to the cost of the group coloring we
started with, completing the approximation preserving reduction. �

12.5 Algorithms for Finding Communities

Since the problem of inferring community structure in dynamic networks is NP-
hard, for larger instances, we will use fast heuristics or approximation algorithms.
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We present an approximation algorithm that produces a solution whose cost is
within a constant factor of the optimum, regardless of the input size. It generates
a group coloring first and then optimally colors the individual vertices. Recall that,
for a minimization problem in general, a ρ-approximation algorithm is an algorithm
which, on all instances of the problem, produces in polynomial time a solution
whose cost is at most ρ times the cost of the optimal solution [57].

The idea behind the algorithm is to deal with one type of cost at a time. We
first consider the special case where every individual is observed at all times and
develop an algorithm based on maximum-weight bipartite matching for this sim-
pler problem. Under this strong assumption, we prove that the algorithm is a ρ1-
approximation where ρ1 = max {1, 2csw/cvis}. Hence, this algorithm always pro-
duces an optimal solution when 2csw/cvis ≤ 1, that is, when one visit costs more
than two switches.

Then, in Section 12.5.3, we consider the general problem where some individuals
might at times be unobserved. For that problem, we present an algorithm based on
the minimum-weight path cover problem and show that it is a ρ2-approximation
where ρ2 = max {2, 4csw/cvis, 2csw/cab}.

The key observation for our algorithms is that once a coloring for the group
vertices has been fixed, an optimum coloring for the individual vertices can be com-
puted in polynomial time using dynamic programming.

At the heart of the dynamic programming approach is the observation that, given
a fixed group coloring, the cost incurred by an individual does not depend on the
colors chosen for other individuals.

Lemma 1 Given a coloring of the group vertices, the minimum cost coloring of
the individual vertices consists of minimum cost colorings of the vertices of each
individual xi , independent of other individuals.

Proof The total cost is the sum of all switching, visiting, and absence costs over
all relevant edges. The switching costs occur only for edges (vi,t , vi,t+1) and thus
only depend on the colors of the corresponding individual xi . Similarly, visiting and
absence costs arise from present or absent edges (vi,t , ug,t ) and thus only depend
on the color of individual xi , for a fixed group coloring. The total cost is the sum,
over all individuals and all of their edges, of the corresponding switching, visiting,
and absence costs and is thus minimized if the sum is minimized for all individuals
xi independently. �

In Section 12.5.4, we show how to find the optimal community membership
sequence for one individual and, thus, by Lemma 1 for all individuals.

12.5.1 Group Graph

To find the group coloring, we use another auxiliary graph. The group graph of
an interaction sequence H = 〈Ht 〉 is a directed acyclic graph D = (V, E). The
vertices of this graph are groups, and the edges show the intersection in membership



320 T. Berger-Wolf et al.

of the corresponding groups. This graph represents how the individuals flow from
one group to another over time. The construction is quite similar (technically, it is
the transitive reduction or Hasse diagram) to the metagroup graph in [5] or the group
graph of [49]. Figure 12.4 shows an example group graph that corresponds to the
interaction sequence and the cost graph in Fig. 12.3.

The nodes are the group nodes ug,t from our previous graph construction, as
well as some dummy group vertices we describe below. (There are no individ-
ual vertices.) For each pair of verticesug,t , ug′,t ′ with t ′ > t , we have a directed

Fig. 12.3 An example of an interaction sequence (left) and the corresponding graph representation
(middle and right). In the interaction sequence, each row corresponds to a time step, with time
going from top to bottom. Each rectangle represents an observed group, and the circles within are
the member individuals. The circles without an enclosing rectangle are the unobserved individuals.
Similarly, in the graph representation, the squares are group vertices and the circles are individual
vertices. Not all edges or incurred costs are drawn in the middle graph for visibility. The graph on
the right shows the complete representation of time step T3. The Evis edges are shown as solid
lines and the Eab edges as dashed lines. Since individual 3 is not observed in time step T3, it only
has Eab type edges in this time step. The coloring shown is one example community interpretation.
Some of the csw, cvis, cab costs under this coloring are shown in the graph representations in the
middle and right
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Fig. 12.4 The group graph that corresponds to the interaction sequence and the cost graph in
Fig. 12.3. The edges are labeled with the individuals in λ(g, h). There are no dummy vertices since
every individual is observed at the first and last time steps
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edge (ug,t , ug′,t ′) with a label λ(ug,t , ug′,t ′) and weight w(ug,t , ug′,t ′). The label
is the set of all individuals who are in both g and g′ at the respective times
and were not observed in any group at any time between t and t ′. Formally,
λ(ug,t , ug′,t ′) =

{
xi ∈ g ∩ g′ : xi /∈ g j,t ′′, for all g j,t ′′ ∈ Ht ′′ , for all t ′′ ∈ (t, t ′)

}
.

The weight is simply the number of individuals in the label: w(ug,t , ug′,t ′) =
|λ(ug,t , ug′,t ′)|. We remove all edges whose labels are empty. If all individuals are
observed in each time step, then edges only go from vertices ug,t to vertices ug′,t+1.
That is, edges never skip time steps.

The dummy group vertices account for the individuals who were not observed in
the first or last time step. Specifically, for any group g j,t ∈ Ht , let g−j,t ⊆ g j,t be
the set of all individuals in g j,t who are not in any group g j ′,t ′ ∈ Ht ′ for any t ′ < t .
Similarly, g+j,t ⊆ g j,t denotes the set of all individuals in g j,t who are not in any

group g j ′,t ′ ∈ Ht ′ for t ′ > t . Whenever g−j,t �= ∅, we add a dummy vertex ug−j,t ,1
at

time step 1. Similarly, when g+j,t �= ∅, we add a dummy vertex ug+j,t ,T
at time step

T . The edges, labels, and weights from or to the dummy vertices are constructed as
for regular vertices. Of course, if all individuals are observed in each time step, then
no dummy vertices are constructed.

Algorithm 1 shows how to construct the group graph. The running time of Algo-
rithm 1 is �

(
T
(∑T

t=1 |Ht |
)2). This running time cannot be improved since it is

possible that every pair of groups in different time steps have at least one member
in common (i.e., w(ug,t , ug′,t ′) > 0 for every g ∈ Ht , g′ ∈ Ht ′ , and t < t ′).

Algorithm 1 CREATEGROUPGRAPH

Require: interaction sequence H = 〈Ht 〉.
1: Add dummy vertices to H1 and HT .

2: for t = 1, . . . , T − 1 do
3: for g ∈ Ht do
4: A← g
5: for t ′ = t + 1, . . . , T do
6: for g′ ∈ Ht ′ do
7: if g′ ∩ A �= ∅ then
8: E ← E ∪ {(ug,t , ug′,t ′ )

}

9: λ(ug,t , ug′,t ′ )← A ∩ g′
10: w(ug,t , ug′,t ′ )← |A ∩ g′|
11: A← A \ g′
12: return D = (V, E)

12.5.2 Approximation via Bipartite Matching

In this section, we assume that all individuals are observed at all time steps.
The algorithm, first presented in [54] without analysis, is based on finding a
maximum-weight matching on bipartite graphs, also known as the assignment
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problem. (The approach is somewhat similar to [49].) The matching problem can
be solved efficiently [29]. Once we have the matching on every bipartite subgraph
Gt , the subgraph D′ induced by the set of matched edges consists of vertex-disjoint
paths (since the edges of D′ are matched edges). For each path, coloring all groups
on that path and all individuals in these groups with the same color clearly takes
linear time. Thus, the overall time of the Algorithm MATCHING COMMUNITIES

is bounded by the time of finding the maximum-weight matchings on the bipartite
graphs. The pseudocode for the algorithm is shown as Algorithm 2.

Algorithm 2 MATCHINGCOMMUNITIES (MC)
Require: An interaction sequence H.
1: D = (V, E)← undirected version of the group graph of H, dropping edge orientations.
2: for time t = 1, . . . , T − 1 do
3: Gt ← bipartite subgraph of D induced by

⋃

g∈Ht

ug,t ∪
⋃

g∈Ht+1

ug,t+1, the sets of group

vertices at times t and t + 1.
4: M∗t ← maximum weight matching on Gt .
5: D′ = (V,∪T−1

t=1 M∗t )← the group graph D with the edge set replaced by the matched edges.
6: Color (the groups in) each connected component of D′ by a distinct color.
7: Color each individual at each time step by the same color as the group in which it was observed

so that all groups are monochromatic.

Theorem 2 For convenience, let μ1 = min
{
csw,

cvis
2

}
, ρ1 = csw

μ1
= max

{
1, 2csw

cvis

}
.

Given an interaction sequence H with all individuals present at all times, Algorithm
MC produces, in polynomial time, a coloring with cost at most ρ1 times that of the
optimum.

The proof is technical and we refer the reader to [53, Theorem 3] for details.
When 2csw ≤ cvis then ρ1 = 1 and the algorithm always produces an optimal

coloring.

12.5.3 Approximation via Path Cover

We now relax the assumption that all individuals are observed in all time steps. We
present a ρ2-approximation algorithm for the general case and analyze its perfor-
mance guarantee. Before describing the algorithm, we recall the definition of a path
cover of a graph.

12.5.3.1 Path Cover Problem

In a directed graph D = (V, E), a directed path is a sequence of distinct vertices
P = v1, . . . , vk such that (vi , vi+1) is an edge of D for every i = 1, 2, . . . , k − 1.
Two directed paths P1 and P2 are vertex-disjoint if they share no vertices. A path
cover P on D is a set of pairwise vertex-disjoint paths [11] in which every vertex
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lies on (is covered by) exactly one path in P . The MINIMUM PATH COVER problem
is to find a path cover with the minimum number of paths. The decision version of
the problem on general graphs is NP-complete [19]. However, on directed acyclic
graphs (DAGs), the problem can be solved in polynomial time via a reduction to the
matching problem in bipartite graphs [7].

12.5.3.2 Algorithm Description

The approximation algorithm works as follows: We reserve one absence color ε not
to be assigned to any group. Intuitively, individuals with color ε are considered to
be in the “missing” community at the time.

The algorithm runs in polynomial time. Furthermore, a coloring χ produced by
PCC is valid, because groups of the same color cP must lie on a common path P ,
and all edges go strictly forward in time.

Algorithm 3 PATHCOVERCOMMUNITIES (PCC)
Require: An interaction sequence H.
1: D = (V, E)←CREATEGROUPGRAPH(H)
2: P∗ ← minimum weight path cover on D.
3: for all paths P ∈ P∗ do
4: Color all real groups g with ug,t ∈ P with the same color cP (specific to path P).
5: for all edges e = (ug,t , ug′,t ′ ) ∈ P do
6: for all times t ′′ = t, . . . , t ′ do
7: Color each individual xi ∈ λ(e) at time t ′′ with the color cP .
8: Color the remaining vertices by ε.

Theorem 3 Algorithm PCC is a ρ2-approximation where

ρ2 = 2 · csw

μ2
= 2 ·max

{

1,
2csw

cvis
,

csw

cab

}

, μ2 = min
{

csw,
cvis

2
, cab

}
.

We refer the reader to [53, Theorem 6] for the proof of the theorem.

12.5.4 Optimal Individual Coloring

Although PCC has a provably good approximation guarantee, in practice, we can
easily improve the individual coloring further by optimally coloring individuals
after the group coloring is obtained. We use dynamic programming to obtain this
coloring.

Recall that by Lemma 1, it is sufficient to describe an algorithm for optimally
coloring any one individual over the T time steps since its coloring is independent
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of that for other individuals. By running this algorithm for each individual xi , we
obtain a complete optimal coloring. Let xi be one individual.

Let χg(t) be the color of the group in which xi participates at time step t , χg(t) =
ε if xi was unobserved. By this convention, an individual with color ε at time step t
is said to be unaffiliated with any communities at that time step. Let C(i) = {ε} ∪{
χg(t) : t = 1, . . . , T

}
be the set of all group colors of xi , including the absence

color ε. There is an optimal coloring for xi which uses colors in C(i); any other
color would incur more cost without any compensating benefit.

Let csw(t, p, q) be the switching cost when coloring i at time steps t and t − 1
with colors p and q, respectively. Let cvis(t, p) and cab(t, p) be the visiting cost
and absence cost, respectively, when coloring i at time step t with color p. Notice
that csw(t, p, q), cvis(t, p), and cab(t, p) can all be easily computed given the group
coloring and the parameters csw, cvis, and cab. The following recurrence computes
the minimum cost of coloring i in time step t with color p:

c(t, p) = min
q∈C(i)

{c(t − 1, q)+ csw(t, p, q)+ cvis(t, p)+ cab(t, p)} , t ≥ 2

c(1, p) = cvis(1, p)+ cab(1, p). (12.1)

Since the dynamic program explicitly optimizes over all relevant choices for time
steps t and t − 1, we obtain the following Lemma by induction.

Lemma 2 Given a group coloring, the optimal cost of coloring an individual xi at
time step t with a color p ∈ C(i) is given by Recurrence (12.1). �

Applying this lemma to the end of the time horizon T , we derive the following
theorem:

Theorem 4 Given a group coloring, the minimum cost of coloring the individual xi

is minp∈C(i) c(T, p). �

The dynamic programming approach can be implemented efficiently by noting
that only the optimal solution for the immediately preceding time step needs to be
retained at any point for computing the solution at time t . Thus, the table at step t is
of size O(C) where C is the total number of colors. We also record which coloring
gave rise to the optimal solution in each time step. Finding the optimum value for
a pair (t, p) involves trying all colors q ∈ C. Thus, each of the O(T C) entries is
computed in time O(C), for a total running time of O(T C2). Finally, the dynamic
program is run independently for each of the individuals i , giving a total running
time of O(nT C2), with a space requirement of O(T C).

The optimal individual coloring algorithm can be applied to any group coloring,
obtained by any method, including those that track community evolution [1, 5, 13,
14, 37, 49]. However, the resulting individual coloring is optimal only under the
model of social costs introduced here.
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12.6 Experimental Validation

We first show that the COMMUNITY INTERPRETATION optimization problem
produces meaningful communities by examining the optimal solution (found by
exhaustive search). We then show that the proposed approximation algorithm results
in communities similar to the optimum and thus performs well in practice. Since the
COMMUNITY INTERPRETATION problem is NP-hard, we can only find the optimal
solution for small data sets. Thus, we first validate our approach on small synthetic
and real data sets and also use those small data sets to compare the approximation
algorithm to the optimal solution. Once both the definition and the algorithm are
validated, we proceed to apply them to larger practical data sets.

We begin by inferring communities in a synthetic data set with known embedded
communities. Then, we infer communities in a well-studied benchmark data set.

12.6.1 Theseus’ Ship

The Theseus’ Ship example models communities in which small changes happen in
each time step, aggregating to a complete change in membership over longer periods
of time. Real-world examples of such communities include sports teams, students
in a department, lab, or school, casts of recurring TV shows, or cells in the human
body [48] (as well as the individual parts of the Ship of Theseus [44]). Recall that
a community is the identity of its members. Yet as the membership of a community
changes, and even completely turns over, the question then arises, “What happens
with that identity?” Does it go with the majority of its members or does it stay with
the independent concept of a community? This philosophical question, known as
the Theseus’ Ship Paradox [44], has occupied philosophers from ancient Greece to
Leibnitz. We reconcile both sides of the debate by varying the input social costs.

A generalized Theseus’ Ship has n = km individuals and m groups. In time step
t , the i th group consists of individuals (ki+ t) mod n, . . . , (ki+ t+k−1) mod n,
that is, in each time step, the lowest-numbered member of each group moves to the
next lower group (wrapping around at n). Figure 12.5 shows an example of a classic
Theseus’ Ship with n = 18 individuals and m = 2 groups.

Figure 12.5a shows the optimal coloring under the cost setting (csw, cvis, cab) =
(4, 1, 0) in which the switching cost is relatively high. Thus, individuals do not
change colors, and the identity of the community follows the majority of its mem-
bers. On the other hand, with the cost setting (csw, cvis, cab) = (1, 2, 0), the visiting
cost is high. Figure 12.5b shows that the resulting coloring has individuals change
their community membership to match their group. Thus, the community identity
of groups stays the same even as the individual members change. In the aggregate
view (Fig. 12.6) only a single community can be inferred.

12.6.2 Southern Women

Southern Women [10] is a data set collected in 1933 in Natchez, TN, by a group of
anthropologists conducting interviews and observations over a period of 9 months. It
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Fig. 12.5 Optimal colorings of the Theseus’ Ship example with costs (csw, cvis, cab) = (4, 1, 0)
and (1, 2, 0)
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Fig. 12.6 Aggregate (static) view of the Theseus’ Ship network

tracks 18 women and their participation in 14 informal social events such as garden
parties and card games. The data set has been extensively studied and used as a
benchmark for community identification methods [21]. The event participation table
is shown in Table 12.1, taken verbatim from [10]. The columns, each representing
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an event, are not ordered chronologically, but are manually arranged by the table
authors to illustrate two communities at the upper-left and lower-right corners.

A summary of the community identification results of 21 methods was performed
by Freeman [21] and is shown in Table 12.2.

In applying our method on this data set, since there is only one group being
present in each time step of the data set, it is essential that we use the absence cost
cab �= 0, otherwise the optimal solution would trivially be obtained by coloring
all groups and individuals with the same color. We consider the cost setting csw =
cvis = cab = 1. Figure 12.7a–c shows the colorings by our methods: (a) PCC alone,
(b) PCC with dynamic programming, and (c) an optimal coloring by exhaustive
search.

The structure of communities found by PCC and by the exhaustive search is
fairly similar. Many of the groups are already the same and PCC with dynamic
programming captures much of the visiting and absence information present in the
optimal solution. The application of dynamic programming decreases the cost by
approximately 40%. Dynamic programming, within the limits of the initial PCC
solution, takes the costs into consideration in the best possible way to improve the
coloring for individuals.

To compare our dynamic communities to the results of existing static commu-
nity detection algorithms, we need to aggregate them meaningfully over time. One
way to infer a static community structure from the dynamic one is to assign to an
individual the color of the community with which it is affiliated the majority of the
time. In Fig. 12.7 individuals 1–4 belong to the blue community since they were
observed in blue groups while being colored blue 4–5 times each, while individuals
11–15 belong to the yellow community by a similar argument. Individuals 5–7 were
in blue groups while being colored blue 1–3 times and were in groups of other
colors at most once, making them members of the blue community, though their
ties to the community were not as strong as those of individuals 1–4. The rest of the
population were rarely observed. Thus, their affiliations cannot be clearly inferred
from the data. Comparing to the results of the 21 static methods in Table 12.2, our
interpretation of communities is consistent with almost all of the static methods
(except method number 20 [OSB00] which identifies individuals 1–16 to be in
one big community). We do not delve into the details of the dynamic community
structure for Southern Women, since with very few observations and one group
per observation, little interesting dynamic information can be gleaned. Rather, we
use this data set as a benchmark to show that our approach recovers meaningful
communities that align with intuitive and analytical notions of a community for a
well-studied data set.

12.7 Applications to Real-World Data Sets

To test the scalability of the proposed approximation algorithm, we use several real-
world interaction data sets of various sizes as shown in Table 12.3.
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(a) PCC solution, cost 74 (b) PCC with dynamic programming solu-
tion, cost 43

(c) Optimal solution, cost 36
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Fig. 12.7 Dynamic communities inferred by PCC alone, PCC with dynamic programming, and
the optimal solution on the Southern Women data set with input costs csw = cvis = cab = 1

12.7.1 Data Sets

Our data sets fall into two categories: interactions among animals (equids, wild
zebras, and onagers) and among humans carrying mobile devices.

12.7.1.1 Animal Interactions

We consider three data sets capturing affiliations among members of three species:
equids, wild zebra, and onagers (wild asses). All three were obtained in similar
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Table 12.3 Statistics of the data sets used in testing. n is the number of individuals, T the number
of time steps, and “groups” shows the number of groups for each data set

Data set n T Groups

Grevy’s zebra 27 44 75
Onagers 29 82 308
Plains zebra 2510 1268 7907
Haggle-41 41 418 2131
Haggle-264 264 425 1411
Reality mining 96 1577 3958

ways, by observing spatial proximity of members of a population over a period
of time. Predetermined census loops were driven approximately 5 times per week.
Individual animals were identified by their unique markings such as stripe patterns
of zebras or scars and ear notches of onagers [51].

• The Grevy’s zebra (Equus grevyi) data set was collected by observing the popu-
lation over 3 months in 2002 in Kenya [51]. Zebras are uniquely identifiable by
the pattern of stripes on various parts of their bodies. The data were collected
by ecologists making visual scans of the herds, typically once a day. Each entity
in the dynamic network is a unique Grevy’s zebra, and an interaction represents
social association, as determined by spatial proximity and the domain knowledge
of ecologists.

• The onagers (Equus hemionus khur) data set was collected by observing a pop-
ulation of onagers (wild asses) in the Little Rann of Kutch desert in Gujarat,
India [51], from January to May in 2003. Individual onagers were identified
by markings on their body and, similar to zebras, the data represent visual
scans of the population by ecologists, typically once a day. An interaction
represents an association as determined by physical proximity and domain
knowledge.

• The Plains Zebra (Equus burchelli) data set was collected by observing the pop-
ulation in Kenya from 2003 until 2008 [16, 28, 51], in a manner similar to the
Grevy’s zebra data set.

12.7.1.2 Human Interactions

In addition to the animal interaction data sets, we use three networks derived from
interactions of humans carrying Bluetooth devices.

• Reality mining is one of the largest mobile phone projects attempted in academia.
The data were collected by the MIT Media Lab [12]. They consist of communi-
cation, proximity, location, and activity information from 100 subjects at MIT
over the course of the 2004–2005 academic year.

• The Haggle data set consists of social interactions among attendees of the
2005 IEEE Infocom conference, carrying a Bluetooth-enabled device for
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recording proximity over time [43]. Two separate data sets represent interac-
tions at this event. One consists only of 41 participants and the other consists
of 264 nodes, containing the 41 participants and the other devices in proximity.
The participants were tracked over the full 4 days of the conference at 10 min
intervals.

12.7.2 Results

On each data set, we infer the dynamic community structure under several cost
settings, by PCC alone and PCC with dynamic programming. The algorithms take
only a few seconds on most data sets, up to a few minutes on the largest one; we
therefore omit the precise times here. We fix cab = 1 for simplicity and compare the
cost of the communities inferred by the algorithms to the theoretical upper bound
on the worst-case performance ratio of the PCC algorithm. Most of the data sets are
too large for an exhaustive search. Therefore, we use the inverse of the worst-case
performance ratio as the lower bound on the optimum and, hence, on the algorithms’
solutions.

Figure 12.8 shows the resulting costs for the dynamic community structures
inferred by the various methods as well as the theoretical bounds.
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Fig. 12.8 Performance of the algorithms PCC alone and PCC with dynamic programming, com-
pared to a bound on optimal solution on various data sets

The performance ratios of the algorithms increase as the ratio csw/cvis increases.
Intuitively, the more expensive the switching cost, the worse the two algorithms
perform, since PCC does not take into account the ratio between csw and cvis. How-
ever, dynamic programming compensates for this shortcoming of PCC considerably
in practice. In the worst case of PCC, when csw = 3cvis, the dynamic programming
reduces the cost by approximately 63–77%. The most dramatic difference between
the two algorithms can be seen on the Plains data set. On this data set, PCC performs
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the worst, producing a coloring with cost 11.44 times the bound on the optimal
solution; dynamic programming reduces the cost to 2.62 times the bound on the
optimal solution.

Overall, remarkably, the PCC algorithm with dynamic programming finds a
community structure of social cost reasonably close to the bound on the opti-
mum. Moreover, where we could obtain the actual optimal solution, the com-
munity structure found by the algorithm is qualitatively similar to that of the
optimum.

Unfortunately, at the moment, there are no metrics for comparing two dynamic
community structures, or two dynamic clusterings, for that matter. Thus, beyond
the social cost and evaluation by domain experts, we have no basis to compare two
different structures or two different algorithms.

12.8 Conclusions

The problem of community identification in dynamic networks or, more generally,
dynamic clustering, is in the very early stages of being studied. In this chapter,
we have outlined the three major approaches of tackling the problem: (1) tradi-
tional clustering within each time step and matching those clusters across time steps
[1, 5, 14], (2) maximizing the likelihood of the inferred community structure under
some social model [32, 59], and (3) directly considering dynamic communities as
clusters over time [50, 53, 54].

Our method, outlined here in detail, is at the moment the only one that sub-
sumes all three of the above approaches. It views dynamic communities as dynamic
clusters under the distance measure of some notion of a social cost. Defined as
a combinatorial optimization problem that finds a community structure that min-
imizes the overall social cost, it turns out to be equivalent to a maximum like-
lihood community structure for a very simple Markovian model of social group
behavior. Finally, the idea of matching across time steps clusters from within
each time step is used to design a powerful, fast, and accurate approximation
algorithm.

Although our approach is capable of inferring plausible and useful community
structures in diverse dynamic social network data sets, the chapter on dynamic com-
munity inference is by no means closed. None of the existing methods can take a
large arbitrary dynamic social network and infer community structure (if one exists)
at arbitrary temporal scales. Moreover, at the moment, there are no benchmark data
sets (although some are emerging) or an agreed-upon way to generate synthetic test
data for dynamic community inference. There is no consensus on even the most
basic way to compare dynamic community structures to evaluate relative perfor-
mance of various methods or to compare them to ground truth if one exists. Thus,
we hope that this chapter will serve as a starting point and as motivation for future
research on dynamic community inference which at the moment is quite an open
problem.
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Chapter 13
Structure and Evolution of Online Social
Networks

Ravi Kumar, Jasmine Novak, and Andrew Tomkins

Abstract In this work, we consider the evolution of structure within large online
social networks. We present a series of measurements of two large real networks,
one from the friend relation within the Flickr photo sharing application and the other
from Yahoo!s 360 social network. These networks together comprise in excess of
5 million people and 10 million friendship links, and they are annotated with meta-
data capturing the time of every event in the life of the network. We show that these
networks may be segmented into three regions: singletons, who do not participate
in the network, isolated communities, which overwhelmingly display star structure,
and a giant component anchored by a well-connected core region that persists even
in the absence of stars. We give a detailed characterization of the structure and evo-
lution of these regions. We also present a simple model of network growth that
captures these aspects of component structure. The model follows our experimen-
tal results, characterizing users as either passive members of the network, inviters
who encourage offline friends and acquaintances to migrate online, and linkers who
fully participate in the social evolution of the network. We show that this simple
model with only two numerical parameters is able to produce synthetic networks
that accurately reflect the structure of both our real-world networks.

13.1 Introduction

In this work, we study the evolution of large online social networks. While there
have been studies of large social networks with fine-grained evolutionary data sub-
sequent to the first appearance of this work, to the best of our knowledge, this is the
first detailed evaluation of the growth processes that control online social networks
in the large.
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Online social networks have grown from small-scale curiosities to a global phe-
nomenon that is responsible for a significant fraction of overall Internet pageviews
and user engagement. Applications such as Flickr (flickr.com), Myspace (myspace.
com), Facebook (facebook.com), and Twitter (twitter.com) have changed the
medium through which people interact and have initiated a spirited debate about
whether the affordances of these online networks will also change the mechanisms
by which people interact. In parallel, online websites in many domains have intro-
duced social capabilities to derive competitive advantage from the massive user
populations that frequent them. Broad shopping sites like Amazon (amazon.com),
niche marketers like B&H cameras (bhphotovideo.com), auction sites like Ebay
(ebay.com) in the United States, Taobao (taobao.cn) in China, and Yahoo! Japan
auctions (auctions.yahoo.co.jp) in Japan, and many other domains all benefit from
the power of online networks. Likewise, a cornucopia of startup companies have
arisen to explore variations on the popular social networking themes, some of which
are based on the premise that one’s position in various social networks is a valuable
asset to be nurtured and grown to promote success in relationships and careers as
well as online interactions.

As social networks have grown in scale and visibility, academic interest has
kept pace. Offline networks have been the subject of intense academic scrutiny
for many decades, but performing such studies at scale is difficult and expensive.
The presence of large and easily accessible online social networks allows these
detailed offline studies to be augmented with online studies and analyses at mas-
sive scale but correspondingly lower resolving power. Initially, many studies of
online networks focused on static snapshots of large data sets. In this work, we
have access to the entire lifetime of two large social networks, with timestamps
mapping each event to the instant of time at which it occurred, and hence we are
able to study their dynamic properties at fine detail. We study the social network
of Flickr and Yahoo! 360; see Section 13.3.1 for more details about the data sets
themselves.

13.1.1 Summary of Findings

We now provide a brief summary of our findings. We begin with a study of the
overall properties of the network. We show that the density of the network, which
measures the amount of interconnection per person, follows the same unexpected
pattern in both networks: rapid growth, decline, and then slow but steady growth.
We postulate based on the timing of the events that the pattern is due to the activities
of early adopters who create significant linkages in their exploration of the system,
followed by a period of rapid growth in which new members join more quickly
than friendships can be established, settling finally into a period of ongoing organic
growth in which both membership and linkage increase.

Next, we classify members of a social network into one of three groups, the
singletons, the giant component, and the middle region, as follows:

flickr.com
myspace.com
myspace.com
facebook.com
twitter.com
amazon.com
bhphotovideo.com
ebay.com
taobao.cn
auctions.yahoo.co.jp
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Singletons. The singletons are degree-zero nodes who have joined the service
but have never made a connection with another user in the social network.
They may be viewed as loners who do not participate actively in the net-
work.

Giant component. The giant component represents the large group of people
who are connected to one another through paths in the social network.
These people find themselves connected directly or indirectly to a large
fraction of the entire network, typically containing most of the highly
active and gregarious individuals.

Middle region. The middle region is the remainder. It consists of various iso-
lated communities, small groups who interact with one another but not
with the network at large. We will show that this group may represent a
significant fraction of the total population.

We begin with a detailed study of the middle region, which represent about 1/3
of the users of Flickr and about 10% of the users of Yahoo! 360. We show first
that over significant periods of time, and significant fractions of growth in the net-
work (exceeding 10×), the fraction of users who exist in isolated communities of a
particular size remains remarkably stable, even though the particular users change
dramatically.

We study the migration patterns of isolated communities, seeking insight into
how these communities grow and merge. Our findings are quite surprising. The
likelihood that two isolated communities will merge is unexpectedly low. Evolution
in the middle region is characterized by two processes: isolated communities grow
by a single user at a time and then may eventually be merged into the giant com-
ponent; these processes capture the majority of activity within the middle region.
Furthermore, we present a structural finding showing that almost all the isolated
communities are in fact stars: a single charismatic individual (in the online sense)
linked to a varying number of other users who have very few other connections.

We study the formation of these stars and show that they grow rapidly and then
either merge into the giant component or cease growth when the individual holding
the community together loses focus on growing the network.

Next, we turn to the structure of the giant component. We show that, in this
region, the merging of stars does not represent the defining structural characteristic
of the giant component. Instead, merging stars represent a sort of outer layer of the
region, around a much more tightly connected core of active members who are the
heart of the entire social network. Removal of all stars from the giant component
has no significant impact on the connectivity of the remaining nodes.

Over time, the average distance between users in the giant component is seen to
fall. This surprising phenomenon has been observed in other settings [23]; we show
it here for online social networks.

Given these findings, we draw some high-level behavioral conclusions about the
structure and evolution of online social networks. First, there are two distinct ways
that people join the network: they may register by actively seeking out the network,
or they may be invited by a friend or colleague. The stars in the middle region are
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largely characterized by invitations, and the individuals performing the invitations
are typically motivated more by migrating and existing offline social network into
an online setting, rather than building new connections online. On the other hand,
the members of the well-connected core of the giant component are the reverse:
they are highly focused on the evolution of the internal network of which they are
perhaps the key piece.

13.1.2 Model

Based on these observations, we propose a rudimentary model of network evolution
in which we attempt to capture the salient properties of our measurements using
as small a parameter space as possible. Our model uses a notion of biased pref-
erential attachment that introduces a disparity between the relative ease of finding
potential online connections within the giant component, and the relative difficulty
of locating potential connections out in the isolated communities. The model accu-
rately reproduces the quantitatively very different component structure of Flickr and
Yahoo! 360.

13.1.3 Organization

The chapter is organized as follows. In Section 13.2, we discuss the related work
on theoretical and experimental analysis of large-scale social and other related net-
works. In Section 13.3, we describe our experiments and observations about the
Flickr and Yahoo! 360 social networks. In Section 13.4, we outline the biased pref-
erential attachment model for online social network evolution. In Section 13.5, we
discuss our findings and outline thoughts for future work. Finally, Section 13.5 con-
cludes the chapter.

13.2 Related work

13.2.1 Experimental Studies

Large real-world graphs such as the World Wide Web, Internet topology, phone call
graphs, social networks, email graphs, biological networks, and linguistic networks
have been extensively studied from a structural point of view. Typically, these stud-
ies address properties of the graph including its size, density, degree distributions,
average distance, small-world phenomenon, clustering coefficient, connected com-
ponents, and community structures. We briefly outline some of the work in this area.
Faloutsos, Faloutsos, and Faloutsos [13] made a crucial observation showing that the
degree distribution on the Internet follows a power law. Subsequently, an intense
body of work followed in both computer science and physics communities aimed at
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studying properties of large-scale real-world graphs. Power law degree distributions
were also noted on the graph defined by the World Wide Web [4, 21]. Broder et al.
[8] studied the World Wide web from a connectivity point of view and showed that
it has a large strongly connected component. Several other studies have also shown
that the average diameter of the web is quite small [3, 8]. Online friendship and
email graphs have been studied in the context of explaining and analyzing friend-
ships [18] and demonstrating the small-world and navigability properties of these
graphs [1, 9, 25]. For surveys of analysis of large graphs, the readers are referred to
[2, 10, 11, 16, 27, 30, 31].

Many of these above studies were performed on static graphs whereas most real-
world graphs are evolving in nature. In fact, there are very few papers that study
the evolution of real-world graphs; this is partly because of the difficulty in obtain-
ing temporal information about every node/edge arrival in an evolving real-world
graph. A typical way this problem is addressed is to take snapshots of the graph at
various points in time and use these snapshots to make inferences about the evolu-
tionary process. This approach was used to study the linkage pattern of blogs and
the emergence of bursty communities in the blogspace [19]. Structural properties
of different snapshots of the World Wide Web graph was studied by Fetterly et al.
and Cho et al. [14, 29]. Leskovec and Faloutsos [23] considered citation graphs and
showed that these exhibit densification and shrinking diameters over time. Recently,
Leskovec et al. [22] studied social network evolution at a microscopic level by using
the maximum likelihood method to analyze the individual node and edge arrival
events.

13.2.2 Mathematical Models

A parallel body of work is concerned with developing tractable mathematical mod-
els for massive graphs. Because of their evolutionary nature and their power law
degree distributions, these graphs cannot be modeled by traditional Erdö–Rényi
random graphs [6, 12]. However, there have been a few alternate models that are
more faithful to observed properties. One is the so-called configuration model,
which chooses a graph uniformly at random from all graphs with a prescribed degree
distribution [5, 26, 28]; the degree distribution can be set to match practical obser-
vations and is usually a power law. Another approach is to use a generative model to
describe the evolution of graphs. A typical example is the copying or the preferential
attachment model [4, 20]: nodes arrive one by one and link themselves to a pre-
existing node with probability proportional to the degree of the latter. This “rich get
richer” principle can be analytically shown to induce power law degree distributions.
Kleinberg [15, 17] proposed a model to explain the small-world phenomenon and
navigability in social networks; see also [32]. Leskovec and Faloutsos [23] proposed
a forest-fire graph model to explain the decreasing diameter phenomenon observed
in citation graphs. For a survey of mathematical analysis of some of these models,
the readers are referred to [7, 16].
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13.3 Measurements

In this section, we detail our study on two online social networks at Yahoo! Each
social network is presented as a directed time graph G = (V, E), i.e., every node
v ∈ V and directed edge et = 〈u, v〉 ∈ E in the graph G has an associated time
stamp vt and 〈u, v〉t indicating the exact moment t when the particular node v or the
edge e = 〈u, v〉 became part of the graph [19]. In particular, for any time t , there
is a natural graph Gt that comprises all the nodes and edges that have arrived up
until time t ; here we assume that the end points of an edge always arrive during or
before the edge itself. We use timegraph to refer to properties that are specific to the
evolution and use graph to refer to the graph GJan2006 as the final graph. We note
that our study of timegraphs is of much finer granularity than almost all of previous
such studies in that we know the exact moment of each node/edge arrival.

13.3.1 Data Sets

The data set consists of two online social networks at Yahoo!—Flickr and Yahoo!
360. Each of these social networks is presented as a timegraph. For privacy reasons,
all the data used in this work were provided to us after appropriate anonymization.
For confidential reasons, we do not specify the exact number of nodes or edges in
these timegraphs but only provide a ball-park estimate—this will not in any way
affect the presentation of our results or the inferences that can be drawn.

Flickr (flickr.com) is an active and popular online photo sharing and social net-
working community. Flickr users can upload and tag photos and share them with
their friends or publicly. Each user in Flickr can invite a new friend to Flickr or can
add a pre-existing Flickr user as a friend. In January 2006, the Flickr timegraph con-
sisted of around 1 million nodes and around 8 million directed edges. The data set
we used had the following anonymized information about each Flickr user: the time
when the user became a Flickr member and the list of friends he/she has on Flickr,
and for each friend, the time when the user befriended the person. Even though
we had the entire Flickr timegraph available, for our experiments, we focused only
on the evolution of the timegraph since the Flickr website was publicly launched
(February 2004); this amounted to about 100 weeks worth of data. We made this
decision in order to avoid the initial phase before the public launch when Flickr
usage was mostly limited to internal users and the user/friendship addition processes
were too skewed to lead to meaningful conclusions.

Yahoo! 360 (360.yahoo.com) is a social networking website that is part of the
Yahoo! user network. Users of Yahoo! 360 can add contacts and invite other users
to the 360 network. Yahoo! 360 is primarily used to share a blog or photo albums
among the friends of a user. In January 2006, the Yahoo! 360 timegraph consisted
of around 5 million nodes and around 7 million directed edges. As in Flickr, we
used an anonymized timegraph and as before chose to discard the initial segment of

flickr.com
360.yahoo.com
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the timegraph in order to filter out pre-launch noise/bias. This resulted in about 40
weeks worth of data.

13.3.2 Basic Timegraph Properties

In this section, we consider three basic properties of these timegraphs. The first
property we consider is the reciprocity of a directed graph, that is, the fraction of
directed edges 〈u, v〉 such that 〈v, u〉 also exists in the graph. The goal is to under-
stand the following:

Are friendships reciprocal in online social networks?

The reciprocity of the Flickr final graph is around 70.2% and that of the Yahoo!
360 final graph is around 84%. Thus, friendship edges are highly mutual. In fact,
a finer analysis shows that not only are many friendship edges reciprocal but in
fact many reciprocal edges are formed almost simultaneously. Figure 13.1 shows
for reciprocal edges 〈u, v〉t and 〈v, u〉t ′ in the Flickr final graph, the distribution
of |t − t ′|, i.e., the delay (in days) of the reciprocity. We see that an overwhelming
fraction of reciprocal edges arrive within a day of each other. A similar phenomenon
is also seen in the Yahoo! 360 final graph. From these observations, we conclude
that for the purposes of analysis and for simplicity of exposition, we can pretend
that the graph is undirected. So, for the remainder of the chapter, we deal only with
undirected graphs and treat the Flickr and Yahoo! 360 graphs to be undirected by
removing all uni-directional edges.

Next, we look at the density of these graphs, that is, the ratio of undirected edges
to nodes, of the timegraphs. In a recent work, Leskovec and Faloutsos [23] observed

Fig. 13.1 Delay (in days) of reciprocity in Flickr final graph
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that certain citation graphs became denser over time. We wish to ask a similar ques-
tion for online social networks:

How does the density of online social networks behave over time?

It turns out that the density of social networks as a function of time is non-monotone.
Figure 13.2 shows the density of the Flickr and Yahoo! 360 timegraphs. In both
the plots there are three clearly marked stages: an initial upward trend leading to
a peak, followed by a dip, and the final gradual steady increase. We believe that
this is due to the following social phenomenon. Right after the launch, there is an
initial euphoria among a few enthusiasts who join the network and frantically invite
many of their friends to join; this gives rise to the first stage that culminates in a
peak. The second stage corresponds to a natural dying-out of this euphoria and this
leads to the dip. The third stage corresponds to true organic growth of the network
(when more and more people know about the network). This growth takes over the
node/edge creation activities, slowly overwhelms the dip, and eventually leads to
a steady increase in density. To the best of our knowledge, this phenomenon has
not been observed before in real social networks (again, perhaps due to the lack of
suitable data).

Fig. 13.2 Density of Flickr and Yahoo! 360 timegraphs, by week

For completeness, we also look at the degree distribution of these graphs.
Figure 13.3 shows the degree distribution of the Flickr final graph in log–log scale.
As expected, it is a power law. The Yahoo! 360 final graph exhibits an almost iden-
tical degree distribution. It is interesting to note the non-monotone shape of this plot
for the first three values of the degree (i.e., degree = 0, 1, 2). This peak occurs
because of the “invite” option that is often used in adding new people to these
networks. Typically, many users join via invitation and arrive with a single edge
already in place. Degree-zero nodes have explicitly joined the network without an
invitation and are a smaller fraction of the total user base. We will return to this issue
in Section 13.4.
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Fig. 13.3 Degree distribution in Flickr final graph. The x-axis is the ranked degree and the y-axis
is the number of nodes at this rank

13.3.3 Component Properties

In this section, we study the component structure of the graph in detail. Our goal
is to understand the connectivity structure of the graph as it evolves over time. In
particular, we ask

What is the dynamics of component formation and evolution in social networks?

We apply a simple connected components algorithm on the timegraph by consider-
ing the instance at every week. The results for the Flickr and Yahoo! 360 timegraphs
are in Figure 13.4. This plot shows the fraction of nodes in components of various
sizes. The intervals representing various horizontal bands were chosen so that the
top band represents the largest connected component, which we will call the giant
component, while the bottom band represents the total number of singleton nodes in

Fig. 13.4 Fraction of nodes in components of various sizes within Flickr and Yahoo! 360 time-
graph, by week
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the graph, with no links in the social network at all. The rest of the bands constitute
the middle region, consisting of nodes that exist in small isolated neighborhoods.
While there are quantitative differences between the plots for Flickr and Yahoo!
360, both the plots share two particularly interesting properties.

1. The fraction of singletons, the fraction of nodes in the giant component, and
fraction of nodes in the middle region remain almost constant once a steady state
has been reached, despite significant growth of the social network during the
period of steady component structure. For example, the Flickr social network
grew by a factor of over 13× from the period x = 40 to x = 100 in Fig. 13.4,
with very little visible change in the fraction of users who occupied components
of a certain size. This steady state corresponds to the third stage observed in
Fig. 13.2.

2. In the middle region, each band of the diagram appears fairly constant. In
fact, as Fig. 13.5 shows, the component size distribution for both data sets
follows a power law with exponent −2.74 for the Flickr graph and −3.60 for
Yahoo! 360.

Fig. 13.5 Component size distribution for Flickr and Yahoo! 360 final graph

13.3.4 Structure of the Middle Region

We now proceed to investigate the formation and structure of the middle region. Our
first question was motivated by the evolutionary aspect of the timegraph:

How do components merge with each another as nodes and edges arrive in social networks?

In particular, it was our assumption when we began this experiment that the non-
giant components would grow organically, with a size 3 component linking to a size
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4 component to form a new component of size 7, and so forth. Table 13.1 shows how
component merges happen in both Flickr and Yahoo! 360 timegraphs. The (i, j)th
entry of this symmetric table gives the number of times during the evolution of the
timegraph that a component of size i merges with a component of size j .

Table 13.1 Sizes of components in Flickr and Yahoo! 360 timegraphs when merging, in thousands
of nodes

1 2 3–4 5–9 10–19 20–449 450+ 1 2 3 4 5–7 8–149 150+
1 205.1 1 584.3
2 55.9 0.8 2 126.1 5.9
3–4 64.2 0.5 0.3 3 69.2 2.6 1.2
5–9 70.8 0.4 0.3 0.2 4 43.6 1.5 0.6 0.4
10–19 43.9 0.2 0.1 0.1 0.09 5–7 66.9 2.3 1.0 0.6 0.9
20–449 2.6 0.1 0.01 0.07 0.04 0.03 8–149 72.6 2.3 1.1 0.6 0.9 1.1
450+ 315.3 11.5 7.1 5.0 2.4 1.0 0 150+ 767.3 54.9 22.4 12.2 15.7 13.0 0.1

Strikingly, almost all the mass in this table is in the bottom row and the left
column, implying that the component merges are of primarily two types:

• singletons merging with the current non-giant components and the giant compo-
nent and

• non-giant components, including singletons, merging with the giant component.

That is, it is surprisingly rare during the evolution of the timegraph that two non-
giant components merge to produce another non-giant component.

Our next goal is to understand the consequences of this observed phenomenon
and its impact on the structure of the middle region. Indeed, if most of the com-
ponent merges are characterized by the above two types, it is natural to speculate
that this is caused by some special node in the non-giant component that serves to
“attract” the incoming singleton. Notice that if this were to happen, it would lead
to many middle region stars, that is, components with a center of high degree and
many low-degree nodes connected to the center. We ask,

Do the components in the middle region have any special structure, and in particular, are
they stars?

First, to be able to observe this phenomenon, we need a reasonably robust def-
inition of a star. We define a star to be connected component with the following
two properties: it has one or two nodes (centers) that have an edge to most of the
other nodes in the component and it contains a relatively large number of nodes
that have an edge solely to one of these centers. More formally, let U be the nodes
in a connected component that is not the giant component. Trivially, U is a star if
|U | = 2. Otherwise, let C ⊆ U be the set of nodes with degree more than |U |/2 and
let T ⊆ U be the set of nodes with degree equal to one. For a parameter k ∈ (0, 1),
we define U to be a star if |C | ∈ {1, 2} and |T |/|U \ C | > k; we call C the centers
of the star and |T | the twinkles. In our experiments, we set k = 0.6 in the above
definition.
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Based on this definition of a star, we analyze the final graphs of both Flickr and
Yahoo! 360. In the Flickr final graph, 92.8% of the middle region was composed of
stars; in total there were 69,532 centers and 222,564 twinkles. In the Yahoo! 360
final graph, 88.7% of the middle region was composed of stars; there were 147,071
centers and 264,971 twinkles. Thus, there is an overwhelming number of stars in the
middle region, validating our hypothesis that each component in the middle region
has a center and the singleton node joins the center to become a twinkle. We will
make heavy use of this characterization in order to develop a generative model that
produces an appropriate middle region.

In fact, our hypothesis is further strengthened when we examine this process
more closely. Call a star non-trivial if it has more than two nodes and let u be the
center of a non-trivial star. Figure 13.6 shows the distribution of the time lag between
first twinkle u and the last twinkle u′ to join the star, i.e., the distribution of t ′ − t
(in weeks) where 〈u, v〉t is the edge that adds the first twinkle and 〈u′, v〉t ′ is the
edge that adds the last twinkle. As we see, the distribution is sharply decreasing,
suggesting that stars are formed rather quickly. We next analyze the age of stars,
which is the time since the last edge arrival in the star. Figure 13.7 shows the age
of stars in the Flickr final graph. Again, a large fraction of stars are more than 10
weeks old. This suggests that the middle section consists of stars that are formed
quickly but have not been absorbed into the giant component yet.

Similar results were also observed for Yahoo! 360 final graph. For sake of brevity,
we do not present these results.

Fig. 13.6 Distribution of time lag (in weeks) between the first and last twinkle addition to non-
trivial stars in the Flickr final graph
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Fig. 13.7 Age of non-trivial stars in the Flickr final graph

13.3.5 Structure of the Giant Component

In this section, we analyze the structure of the giant component. The most natural
question to ask is,

How does the diameter of the social network behave as a function of time?

We study the diameter of the giant component. Formally, the diameter is the maxi-
mum over all pairs in the giant component of the shortest path connecting the pair.
This measure is not robust in general, as a single long path in the component could
result in an enormous diameter. Thus, we turn instead to the average diameter,
which is defined as the length of the shortest path between a random pair of nodes.
For comparison, we also consider the effective diameter, which is defined as the
90th percentile of the shortest path lengths between all pairs of nodes; this quantity
was used in [23]. We estimate both these quantities by sampling sufficiently many
pairs of nodes in the giant component uniformly at random.

For the giant component in the Flickr final graph, we compute the average diam-
eter to be 6.01 and the effective diameter to be 7.61. For the giant component in
the Yahoo! 360 final graph, the corresponding values are 8.26 and 10.47, respec-
tively. Notice that these are slightly higher values than the one suggested by the
“six-degrees of separation” folklore. Figure 13.8 shows diameter as a function of
time in the Flickr and Yahoo! 360 timegraphs. The shape of this curve has high
correlation with that of density over time, which exhibited three distinct stages in
the evolution of the timegraph. We note that the three stages in Fig. 13.8 exactly
correspond to the three stages in Fig. 13.2. In the first stage, the diameter is almost
flat. In the next stage, where the edge density drops, the diameter grows till it reaches
a peak. In the third stage, when the edge density starts increasing, the diameter starts
decreasing.
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Fig. 13.8 Average and effective diameter of the giant component of Flickr and Yahoo! 360
timegraphs, by week

A similar phenomenon of shrinking diameter was recently observed by Leskovec
and Faloutsos [23] in citation graphs. Our study shows that diameter shrinking hap-
pens in social networks as well. Again, to the best of our knowledge, this is the first
instance of such an observation for online social networks. Well-known models of
network growth based on preferential attachment [4, 20] do not have this property
(see [7] for details).

We then investigate the structure to see if we can explain the diameter values that
were observed. In particular, we ask,

Does the giant component have a reasonably small core of nodes with high connectivity?

By computing the degree distribution of the nodes in the giant component, we
observe that in the Flickr final graph, about 59.7% of the nodes in the giant com-
ponent have degree one. The corresponding number for the Yahoo! 360 final graph
was 50.4%. These degree-one nodes therefore contribute to the increase in diameter
values. Suppose we discard these degree-one nodes in the giant component and ana-
lyze the remaining one-pruned subgraph. For the one-pruned subgraph of the Flickr
final graph, the average diameter is 4.45 and the effective diameter is 5.58. For the
one-pruned subgraph of the Yahoo! 360 final graph, the corresponding numbers are
6.52 and 7.95, respectively. This suggests that there is a subgraph inside the giant
component of extremely high connectivity.

To explore this question in more detail, we study the k-cores of the giant com-
ponent. The k-core of a graph is produced by iteratively removing all nodes with
degree less than or equal to k until no more such nodes remain. Notice that, after
removing a node, a degree-two neighbor of that node would now have degree one
and would also need to be removed, hence the iterative nature of the definition.

For each of our networks, we study the number of nodes and edges and also the
average degree of the k-core for a range of values of k. Figure 13.9 shows the size
of the resulting k-cores in nodes and edges for k ranging from 1 to 10. Node counts
are on the left axis and edge counts on the right. We begin by considering the data
for the Flickr graph, in Figure 13.9. The one-core retains around 1/3 of the nodes of
the original giant component, and even the five-core, which represents an aggressive
pruning, retains about 1/3 of the nodes of the one-core. The edges drop much more
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Fig. 13.9 Nodes and edges in k-core for Flickr and Yahoo! 360 timegraphs as a function of k
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Fig. 13.10 Average degree of k-core for Flickr and Yahoo! 360 timegraphs as a function of k

slowly: even after computing the 10-core, about 80% of the edges in the original
one-core still remain. Thus, the internal connectivity structure is extremely strong.

The Yahoo! 360 graph shows a similar pattern, but with less strong connectivity
than Flickr. The five-core shows about 18% of the nodes in the one-core remaining,
and the 10-core retains 30% of the edges of the one-core.

Figure 13.10 shows the average degree for a much broader range of values of
k. The Flickr core retains over 1000 nodes up to k = 400, showing that there is a
strong community of extremely densely connected nodes at the heart of the giant
component. The Yahoo! 360 graph fragments at k = 50, and a core of 1000 nodes
persists up to k = 45.

Stars are the dominant explanation of the structure outside the giant component.
Given the presence of this small core of well-connected nodes, one might naturally
ask the following question:

Are stars merging into the giant component also responsible for the highly connected core
of the giant component?
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We identify all stars throughout the life of the time graph and track them as
they merge into the giant component. Based on this tracking, we remove all star
centers, and both the original twinkles belonging to that star, and all new degree-one
nodes connected to that star, and ask whether any fragmentation results. In fact, the
giant component remains extremely well connected. (This phenomenon was also
independently and subsequently observed by Leskovec et al. [24].)

Thus, we conclude that the stars represent the primary form of structure outside
the giant component, but represent only a thin layer of structure at the outside of
the giant component. The true characteristic of the giant component is the well-
connected core at the center. Later we will discuss some possible implications of
this observation.

13.4 Model

In this section, we present a model of the evolution of online social networks. Our
goal in developing this model is to explain the key aspects of network growth in
as simple a manner as possible, obviating the need for more complex behavioral
explanations.

13.4.1 Desiderata

The properties we will seek to reproduce are the following.

Component structure. The model should produce an evolving component struc-
ture similar to that of Fig. 13.4. The fraction of users who are singletons,
those in the middle region, and those in the giant component should reflect
the underlying data. The non-giant component of each size should capture
a fraction of the users that matches the empirical observations and should
analytically match the observed power law.

Star structure. The non-giant components should be predominantly star-like.
Their growth rates should match the growth of the actual data.

Giant component structure. The nodes making up the giant component should
display a densely connected core and a large set of singleton hangers-on, and
the relationship between these regions should explain the average distance of
the giant component.

13.4.2 Description of the Model

Our model is generative and informally proceeds as follows. There are three types of
users: passive, linkers, and inviters. Passive users join the network out of curiosity
or at the insistence of a friend, but never engage in any significant activity. Inviters
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are interested in migrating an offline community into an online social network and
actively recruit their friends to participate. Linkers are full participants in the growth
of the online social network and actively connect themselves to other members.

At each timestep, a node arrives and is determined at birth to be passive, linker,
or inviter according to a coin toss. During the same timestep, ε edges arrive and
the following happens for each edge. The source of the edge is chosen at random
from the existing inviters and linkers in the network using preferential attachment;
that is, the probability that a particular node is chosen is proportional to its degree
plus a constant. If the source is an inviter, then it invites a non-member to join
the network, and so the destination is a new node. If the source is a linker, then
the destination is chosen from among the existing linkers and inviters, again using
preferential attachment. The parameters controlling the model are shown below.

Description of the parameter

p User type distribution (passive, inviter, linker)
γ Preference for giant component over the middle region
ε Edges per timestep

More formally, the model proceeds as follows. We incrementally build a time-
graph G = (V, E). At any point in time, let the set of passives, inviters, and linkers
be denoted by P, I , and L respectively, such that V = P ∪ I ∪ L . Let d(u) denote
the degree of node u.

At each timestep, a new node arrives and is assigned to P , I , or L according to
the probabilities in p. Let β > 0 be a parameter. We will define probability distri-
bution Dβ over V representing the probability of selecting a node u via a biased
preferential attachment, as follows:

Dβ(u) ∝
⎧
⎨

⎩

β · (d(u)+ 1) u ∈ L
d(u)+ 1 u ∈ I
0 otherwise.

Then ε undirected edges arrive, as follows. For each edge (u, v), u is chosen from
D1, where the bias parameter is set to 1. If u is an inviter, then v is a new node,
assigned to P . If u is a linker then v is chosen from Dγ . Notice that the initiator of
a link is chosen from all non-passive nodes based only on degree. However, once a
linker decides to generate a node internal to the existing network, the destination of
that node is biased toward other linkers by γ . This reflects the fact that the middle
region is more difficult to discover when navigating a social network.

13.4.3 Simulations

We now evaluate the model with respect to the three families of conditions we hope
it will fulfill. We choose suitable parameters for our model and simulate the model.
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Table 13.2 Parameter choices for Flickr and Yahoo! 360
p (passive,
inviter, linker) γ ε

Flickr (0.25, 0.35, 0.40) 15 6
Yahoo! 360 (0.68, 0.22, 0.10) 2 1

We then examine the properties of the graph created by our model and see how
closely it matches that of Flickr and Yahoo! 360 timegraphs. Table 13.2 shows the
appropriate parameter choices.

We refer to the graphs generated by simulation as Flickr.model and 360.model.
We start with the component structure of these simulations and compare them
against the actual data. The actual fraction of nodes in each of the three main regions
(0.20, 0.33, 0.47 for Flickr and 0.66, 0.09, 0.25 for Yahoo! 360) is exactly matched
in the graph obtained by simulation.

We now refine the middle region further and compare the simulated versus the
actual data. Table 13.3 shows the results. From our simulation, we see that in terms
of components and the structure of the middle region, our model can accurately
capture the properties of Flickr and Yahoo! 360 graphs, when the parameters are
well chosen.

Table 13.3 Middle region in actual and simulated data

Flickr 1 2 3–4 5–9 10–19 20–449 ≥ 450 Yahoo! 360 1 2 3 4–6 7–149 ≥ 150

Actual 0.2 0.07 0.07 0.08 0.06 0.05 0.47 Actual 0.66 0.038 0.016 0.02 0.016 0.25
Model 0.2 0.06 0.08 0.08 0.06 0.03 0.47 Model 0.66 0.04 0.02 0.02 0.01 0.25

13.5 Discussions and Future Work

There are several key takeaway points from our experiments. The first is that online
social networks often contain more than half their mass outside the giant component,
and the structure outside the giant component is largely characterized by stars. The
creation of stars is largely a result of the dynamics of invitation, in which many
people are invited to the social network, but only a small fraction choose to engage
more deeply than simply responding to an invitation from a friend.

The second key takeaway is that online social networks appear to travel through
distinct stages of growth, characterized by specific behavior in terms of density,
diameter, and regularity of component structure. We have observed these changes
by studying the time graphs of two very different social networks, but we do not
yet have a more detailed characterization of the root cause for this progression. It
would be attractive to develop a more detailed theory of the adolescence of a social
network.

Third, Fig. 13.4 shows a surprising macroscopic component structure in which
the total mass of individuals is well spread across a broad range of sizes of isolated
communities (or from a graph theoretic perspective, smaller components). We feel
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that a deeper understanding of the behavior of “middle band” activity versus “core”
activity may reveal that the dichotomy is a meaningful reflection of two active by
very different types of participants.

Finally, we have presented a simple model that is surprisingly accurate in its
ability to capture component growth. It will be interesting to do a more detailed
analysis of the model to show that it also predicts diameter of the giant compo-
nent, in addition to structure of the middle region. Similarly, the model itself is
optimized to be the simplest possible approach to reproducing particular aspects of
social network structure rather than a detailed model built from the data in order
to provide predictive power. Nonetheless, it is interesting to ask whether the best
fitting model parameters may be taken as descriptive of the social network in any
sense. For example, in the model, Yahoo! 360 displays a smaller relative fraction
of active members, compared to the Flickr community, but at the same time offers
fewer barriers to discovering isolated sub-communities and incorporating them into
the giant component. Is this representative of the underlying reality?

13.6 Conclusions

We studied the structure and evolution of two popular online social networks,
namely Flickr and Yahoo! 360. Our study analyzes these graphs from an evolu-
tionary point of view, by keeping track the precise moments when each node and
edge arrives in the graph. We show that these quantitatively different graphs share
many qualitative properties in common. In particular, we analyzed the structure and
evolution of different-sized components and showed the prevalence of “stars,” an
intriguing feature of online social networks. Based on these empirical observations,
we postulated a very simple evolving graph model for social networks and showed
by simulation that this model faithfully reflects the observed characteristics. Since
our model is fairly simple, we believe it is amenable to mathematical analyses.

Our work raises a number of questions about the behavioral characteristics of the
users who contribute to these various different network regions.
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Chapter 14
Toward Identity Anonymization in Social
Networks

Kenneth L. Clarkson, Kun Liu, and Evimaria Terzi

Abstract The proliferation of network data in various application domains has
raised privacy concerns for the individuals involved. Recent studies show that sim-
ply removing the identities of the nodes before publishing the graph/social network
data does not guarantee privacy. The structure of the graph itself, and in its basic
form the degree of the nodes, can be revealing the identities of individuals. To
address this issue, we study a specific graph-anonymization problem. We call a
graph k-degree anonymous if for every node v, there exist at least k-1 other nodes
in the graph with the same degree as v. This definition of anonymity prevents the
re-identification of individuals by adversaries with a priori knowledge of the degree
of certain nodes. We formally define the graph-anonymization problem that, given
a graph G, asks for the k-degree anonymous graph that stems from G with the
minimum number of graph-modification operations. We devise simple and efficient
algorithms for solving this problem. Our algorithms are based on principles related
to the realizability of degree sequences. We apply our methods to a large spectrum
of synthetic and real data sets and demonstrate their efficiency and practical utility.

14.1 Introduction

Social networks, online communities, peer-to-peer file sharing, and telecommu-
nication systems can be modeled as complex graphs. These graphs are of sig-
nificant importance in various application domains such as marketing, psychol-
ogy, epidemiology, and homeland security. The management and analysis of these
graphs is a recurring theme with increasing interest in the database, data mining,
and theory communities. Past and ongoing research in this direction has revealed
interesting properties of the data and presented efficient ways of maintaining,
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querying, and updating them. The proliferation of social networks has inevitably
raised issues related to privacy-preserving data analysis as illustrated in recent
papers, e.g., [2, 11, 18, 22, 23].

Compared with existing anonymization and perturbation techniques of tabular
data (see, e.g., the survey book [1]), working with graphs and networks is much
more challenging. Some aspects of graph data that enhance the challenge are the
following:

• It is difficult to model the background knowledge and the capability of an
attacker. Any topological structures of the graph can be exploited by the attacker
to derive private information. Two nodes that are indistinguishable with respect
to some structural metrics may be distinguishable by other metrics.

• It is difficult to quantify the information loss. A graph contains rich information
but there is no standard way to quantify the information loss incurred by the
changes of its nodes and edges.

• It is even difficult to devise graph-modification algorithms that balance the goals
of preserving privacy with the utility of the data. Although in tabular data where
each tuple can be viewed as an independent sample from some distribution,
the nodes and edges in a graph are all related to each other. Therefore, the
impact of a single change of an edge or a node can spread across the whole
network.

Recall that in a social network, nodes correspond to individuals or other social
entities and edges correspond to social relationships between them. The privacy
breaches in social network data can be grouped into three categories: (1) identity dis-
closure: the identity of the individual who is associated with the node is revealed; (2)
link disclosure: sensitive relationships between two individuals are disclosed; and
(3) content disclosure: the privacy of the data associated with each node is breached,
e.g., the email message sent and/or received by the individuals in an email com-
munication graph. A perfect privacy-protection system should consider all of these
issues. However, protecting against each of the above breaches may require different
techniques. For example, for content disclosure, standard privacy-preserving data
mining techniques [1], such as data perturbation and k-anonymization, can help. For
link disclosure, the various techniques studied by the link-mining community [9, 23]
can be useful.

The techniques presented in this chapter aim toward protection of identity dis-
closure of individuals in a social network. In their recent work, Backstrom et al. [2]
point out that the simple technique of anonymizing graphs by removing the iden-
tities of the nodes before publishing the actual graph does not always guarantee
privacy. It is shown in [2] that there exist adversaries that can infer, in polynomial
time, the identity of the nodes using graph-isomorphism algorithms designed for a
restricted class of graphs. However, the problem of designing techniques that could
protect individuals’ privacy has not been addressed in [2].

Motivated by [2], we focus our attention on protecting the identities of individu-
als from adversaries that have prior knowledge of the degrees of some nodes. As an
example, consider a social network graph and an adversary who connects to a node
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with a degree x that is unusually high. It would be rather unexpected for there to be
another node of degree exactly x . Now assume a “naive” privacy-protection strategy
that simply removes the names of the nodes in the network before releasing the
graph. Then it is obvious that if degree x is unique in the graph, then the adversary
can re-identify his high-degree neighbor by simply asking the query “Find all nodes
with degree x .” In this chapter we present methods that prevent this. For that we
describe a k-anonymity notion for graphs that is similar to the k-anonymity notion
introduced for tabular data [19]. In other words, this chapter describes a methodol-
ogy for answering the following question: How can a graph be minimally modified
to protect the identity of each individual involved?

The material presented here is an extension of our earlier work presented in [15].
Since the publication of our original paper, several other methods have been devel-
oped for identity anonymization on graphs. We give a summary of these methods in
the next section.

14.2 Related Work

Since the introduction of the concept of anonymity in databases [19], there has been
increasing interest in the database community in studying the complexity of the
problem and proposing algorithms for anonymizing data records under different
anonymization models [4, 16, 17]. Though much attention has been given to the
anonymization of tabular data, the privacy issues of graphs and social networks, and
the notion of anonymization of graphs, have only been recently touched.

Backstrom et al. [2] were the first to study attacks against simple privacy-
preserving methods for social networks. In their seminal paper ([2]) they show that
simply removing the identifiers of the nodes does not always guarantee privacy.
Adversaries can infer the identity of the nodes by solving a set of restricted isomor-
phism problems based on the uniqueness of small random subgraphs embedded in
a network.

As we have already discussed in the introduction, this observation gave rise to
three types of risks of challenges in privacy-preserving data mining methods: how
to prevent identity disclosure, link disclosure, and content disclosure in social net-
works. To combat these challenges, several authors have recently developed differ-
ent types of privacy models, adversaries, and graph-modification algorithms. Unfor-
tunately, none of the work is likely to solve all the problems in one shot. Protecting
against each kind of privacy breach may require different techniques or a combina-
tion of them. Below we give a list of papers dealing with these challenges. This list
should be conceived as indicative rather than complete. For a more thorough review
of the literature, see [24].

Apart from our work in [15] which we describe here, the problem of identity
anonymization in social networks has been studied in [11, 18].

Hay et al. [11] observe that the structural similarity of the nodes in the graph
determines the extent to which an individual in the network can be distinguished
from others. Based on the notion of k-anonymity [19], Hay et al. [11] proposed a
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scheme of anonymity through structural similarity. Vertices that look structurally
similar may be indistinguishable to an adversary. A strong form of structural simi-
larity between vertices is automorphism equivalence. The anonymization technique
proposed in [11] is a node-clustering approach. It generalizes an input network by
grouping vertices into partitions and publishing the number of vertices in each par-
tition along with the densities of edges within and across partitions. Data analysts
can still use the anonymized graphs to study macro-properties of the original graph.

Pei and Zhou in [18] consider yet another definition of graph anonymity: a
graph is k-anonymous if for every node there exists at least k−1 other nodes that
share isomorphic neighborhoods; in this case the neighborhood of a node is defined
by its immediate neighbors and the connections between them. This definition of
anonymity in graphs is different from ours. In a sense it is a more strict one.

Protection of links between individual graph entities has been studied in
[13, 22, 23]. Zheleva and Getoor [23] consider the problem of protecting sensi-
tive relationships among the individuals in the anonymized social network. This is
closely related to the link-prediction problem that has been widely studied in the
link-mining community [9]. In [23] simple edge-deletion and node-merging algo-
rithms are proposed to reduce the risk of sensitive link disclosure.

Sensitive link and relationship protection is also discussed by Ying and Wu [22].
They study how anonymization algorithms that are based on randomly adding and
removing edges change certain graph properties. More specifically, they focus on
the change caused in the eigenvalues (spectrum) of the network. The authors addi-
tionally explore how the randomized network can be exploited by an adversary to
gain knowledge about the existence of certain links.

Korolova et al. [13] considered the problem where an attacker wants to derive the
link structure of the entire network by collecting the neighborhood information of
some compromised users, who are either bribed or whose accounts are broken into
by the attacker. Analysis shows that the number of users needed to be compromised
in order to cover a constant fraction of the entire network drops exponentially with
increase in a lookahead parameter �. Parameter � determines if a registered user can
see all of the links and nodes within distance � from him.

Content disclosure is normally an issue when the private data associated with a
user on the network is disclosed to others. A very interesting example recently arose
from Facebook’s “Beacon” service, a “social ads” system where your own expressed
brand preferences and Internet browsing habits, and even your very identity, are used
to market goods and services to you and your friends. For example, adding the latest
season of LOST to your queue on Blockbuster.com might result in Facebook plac-
ing an ad for Blockbuster straight on your friends’ news feeds. This helps Facebook
and its partners (Blockbuster in this example) make money because, as Facebook’s
CEO Mark Zuckerberg extols, “nothing influences a person more than a recommen-
dation from a trusted friend.” This may be fine in some situations, but there may be
some things that one is not prepared to share with the entire world. From the users’
perspective, they want to ask how to avoid the disclosure of their personal private
information while still enjoying the benefit of social advertisement. Companies on
the other hand want to assure the users that their privacy is not compromised while
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doing social advertisement. Privacy concerns regarding content disclosure exist in
other application scenarios such as social recommendation. Protecting against this
kind of disclosure is an important research and engineering problem. However, the
work in the literature thus far does not take into account how graph structures
affect the content disclosure; they rather focus on standard data perturbation and
anonymization for tabular data.

14.3 Problem Definition

Let G(V, E) be a simple graph; V is a set of nodes and E the set of edges in G. We
use dG to denote the degree sequence of G. That is, dG is a vector of size n = |V |
such that dG(i) is the degree of the i th node of G. Throughout the chapter, we
use d(i), d(vi ), and dG(i) interchangeably to denote the degree of node vi ∈ V .
When the graph is clear from the context we drop the subscript and use d(i) instead.
Without loss of generality, we also assume that entries in d are in nonincreasing
order, that is, d(1) ≥ d(2) ≥ · · · ≥ d(n). Additionally, for i < j we use d[i, j] to
denote the subsequence of d that contains elements i, i + 1, . . . , j − 1, j .

Before defining the notion of a k-degree anonymous graph, we first define the
notion of a k-anonymous vector of integers.

Definition 1 A vector of integers v is k-anonymous if every distinct value in v
appears at least k times.

For example, vector v = [5, 5, 3, 3, 2, 2, 2] is 2-anonymous.

Definition 2 A graph G(V, E) is k-degree anonymous if its degree sequence dG is
k-anonymous.

Alternatively, Definition 2 implies that for every node v ∈ V there exists at
least k−1 other nodes that have the same degree as v. This property prevents the
re-identification of individuals by adversaries with a priori knowledge of the degree
of certain nodes. This echoes the observation made by Hay et al. [12].

Figure 14.1 shows two examples of degree anonymous graphs. In the graph on
the left, all three nodes have the same degree and thus the graph is 3-degree anony-
mous. Similarly, the graph on the right is 2-degree anonymous since there are two
nodes with degree 1 and four nodes with degree 2.

Degree anonymity has the following monotonicity property.

Fig. 14.1 Examples of a 3-degree anonymous graph (left) and a 2-degree anonymous graph (right)
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Proposition 1 If a graph G(V, E) is k1-degree anonymous, then it is also k2-degree
anonymous, for every k2 ≤ k1.

We use the definitions above to define the GRAPH ANONYMIZATION problem.
The input to the problem is a simple graph G(V, E) and an integer k. The require-
ment is to use a set of graph-modification operations on G in order to construct a
k-degree anonymous graph Ĝ(V̂ , Ê) that is structurally similar to G. We require
that the output graph be over the same set of nodes as the original graph, that is,
V̂ = V . Thus, we focus on two graph-modification operations: addition and dele-
tion of edges. Given two graphs G(V, E) and Ĝ(V̂ , Ê) defined over the same set of
nodes (V̂ = V ) we measure their structural similarity using two metrics: the degree
anonymization cost and the structural cost. The formal definitions of these metrics
are given below.

Definition 3 For two graphs G(V, E) and Ĝ(V̂ , Ê) with degree sequences d and d̂
defined over the same set of nodes (V = V̂ ), we define the degree anonymization
cost between G and Ĝ to be the L1-norm of the difference of their degree sequences.
That is,

DA
(

d̂,d
)
:= L1

(
d̂− d

)
:=

∑

i

∣
∣
∣̂d(i)− d(i)

∣
∣
∣. (14.1)

Definition 4 For two graphs G(V, E) and Ĝ(V̂ , Ê) defined over the same set of
nodes (V = V̂ ), we define the structural difference between G and Ĝ to be the
symmetric difference of their sets of edges. That is,

�
(

Ĝ, G
)
:=

∣
∣
∣Ê \ E

∣
∣
∣+

∣
∣
∣E \ Ê

∣
∣
∣. (14.2)

Given the above definitions we define the GRAPH ANONYMIZATION problem as
follows.

Problem 1 (GRAPH ANONYMIZATION) Given a graph G(V, E) with degree
sequence d, and an integer k, find a k-degree anonymous graph Ĝ(V, Ê) with
degree sequence d̂ such that (a) DA

(
d̂,d

)
is minimized and (b) �

(
Ĝ, G

)
is also

minimized.

Note that the above problem definition has two optimization objectives: it
requires both the degree anonymization and the structural cost of the anonymization
to be minimized. We first show that a solution to the GRAPH ANONYMIZATION

problem that is optimal with respect to the one objective is not necessarily optimal
with respect to the other. This is illustrated in the following observation.

Observation 1 Consider graph G (V, E) and G ′
(
V ′, E ′

)
with V = V ′ =

{w, x, y, z}, E = {(w, x), (y, z)}, and E ′ = {(w, z), (x, y)}. One can verify that
DA (dG ,dG ′) = 0 while �

(
G, G ′

) = 4. At the same time it is easy to construct
another graph G ′′

(
V ′′, E ′′

)
with V ′′ = {w, x, y, z} and E ′′ = {(w, x), (y, x)} such

that �
(
G, G ′′

) = 2 < �
(
G, G ′

)
. At the same time DA (dG ,dG ′′) = 2.
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One way of dealing with problems that have more than objective functions is to
define the problem as a multiple-objective optimization problem, where the goal is
to simultaneously optimize both the objectives. In this case, the situation can arise
that two graphs Ĝ and Ĝ ′ are incomparable, e.g., DA

(
dĜ ,dG

)
< DA

(
dĜ ′ ,dG

)
,

but �
(
Ĝ, G

)
> �

(
Ĝ ′, G

)
. In these cases, all one can hope for are Pareto-optimal

solutions [5]. A graph Ĝ is a Pareto-optimal solution if there does not exist another
graph Ĝ ′ that is at least as good as Ĝ in both objectives and strictly better than Ĝ
in at least one of the two. The problem of finding all (approximate) Pareto-optimal
solutions has been studied in [7].

In our case, we take a different approach: we prioritize our objectives. That is, we
first focus on minimizing degree anonymization cost; then among all those graphs
that have the same value of DA() cost, we try to pick the one with the minimum �()

cost.
Note that the GRAPH ANONYMIZATION problem always has a feasible solution.

For example, all edges not present in the input graph can be added. In this way,
the graph becomes complete and all nodes have the same degree; thus, any degree
anonymity requirement is satisfied (due to Proposition 1).

14.3.1 Restriction to Edge Additions

Problem 1 allows both for edge-addition and for edge-deletion modification oper-
ations. For the case where we focus our attention only on edge additions, the
anonymized graph Ĝ will be a supergraph of the original graph.

In this case minimizing DA
(
dĜ ,dG

)
is equivalent to minimizing �

(
Ĝ, G

)
,

because in the case of edge additions,

�
(

Ĝ, G
)
=
∣
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∣Ê \ E
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2
L1

(
d̂− d

)
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2
DA

(
dĜ ,dG

)
.

It is obvious that the case where only edge-deletion operations are allowed is
equivalent, because edge deletions can be considered as edge additions in the com-
plement of the input graph.

14.4 Overview of the Approach

We propose a two-step approach for the GRAPH ANONYMIZATION problem. For
an input graph G(V, E) with degree sequence d and an integer k, we proceed as
follows:

1. First, starting from d, we construct a new degree sequence d̂ that is k-anonymous
and such that the degree anonymization cost DA(̂d,d) is minimized.
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2. Given the new degree sequence d̂, we then construct a graph Ĝ(V, Ê) such that
�
(
Ĝ, G

)
is minimized.

These two steps give rise to two problems, which we formally define and solve
in subsequent sections. Performing step 1 translates into solving the DEGREE

ANONYMIZATION problem defined as follows.

Problem 2 (DEGREE ANONYMIZATION) Given d, the degree sequence of graph
G(V, E), and an integer k construct a k-anonymous sequence d̂ such that
DA

(
d̂,d

) = L1(̂d− d) is minimized.

Similarly, performing step 2 translates into solving the GRAPH CONSTRUCTION

problem that we define below.

Problem 3 (GRAPH CONSTRUCTION) Given a graph G(V, E) and a k-anonymous
degree sequence d̂, construct graph Ĝ(V, Ê) such that dĜ = d̂ and �

(
Ĝ, G

)
is

minimized.

In the next sections we develop algorithms for solving Problems 2 and 3.

14.5 Degree Anonymization

In this section we give algorithms for solving the DEGREE ANONYMIZATION prob-
lem. Given the degree sequence d of the original input graph G(V, E), the algo-
rithms output a k-anonymous degree sequence d̂ such that the degree anonymization
cost DA(d) = L1(̂d− d) is minimized.

We first give a dynamic-programming algorithm (DP) that solves the DEGREE

ANONYMIZATION problem optimally in time O(n2). Then, we show how to modify
it to achieve O(nk) running time, and finally, for the restricted case of edge additions
or edge deletions only, O(n) time.

Given a (sorted) input degree sequence d, let DA (d[1, i]) be the degree
anonymization cost of subsequence d[1, i]. Additionally, let I (d[i, j]) be the degree
anonymization cost when all nodes i, i + 1, . . . , j are put in the same anonymized
group. Alternatively, this is the cost of assigning to all nodes {i, . . . , j} the same
degree, d∗. That is,

I (d[i, j]) =
j∑

�=i

|d∗ − d(�)|,

where d∗ is the (integer) degree with property

d∗ = arg min
d

j∑

�=i

|d − d(�)|.

From [14] we know that d∗ is the median of the values {d(i), . . . d( j)}, and
therefore given i and j , computing I (d[i, j]) can be done optimally in O( j − i)
time (see [6] for details).
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We now construct a set of dynamic-programming equations that solve the
DEGREE ANONYMIZATION problem. For i < 2k, let

C (i) := I (d[1, i]) . (14.3)

For i ≥ 2k, let

C (i) :=min
{

I (d[1, i]) , min
k≤t≤i−k

{
C (t)+ I (d[t + 1, i]) }

}
. (14.4)

When i < 2k, it is impossible to construct two different anonymized groups each
of size k. As a result, the optimal degree anonymization of nodes 1, . . . , i consists
of a single group.

When i ≥ 2k, the degree anonymization cost for the subsequence d[1, i] is the
optimal degree anonymization cost of the subsequence d[1, t] plus the anonymiza-
tion cost incurred by putting all nodes t + 1, ..., i in the same group (provided
this group is of size k or larger). The range of variable t , as defined in (14.4), is
restricted so that all groups examined, including the first and last ones, are of size at
least k.
Running time of the DP algorithm. For an input degree sequence of size n, the
running time of the DP algorithm that implements Recursions (14.3) and (14.4) is
O(n2); first, the values of I (d[i, j]) for all i < j can be computed in an O(n2)

preprocessing step. Then, for every i the algorithm goes through at most n− 2k+ 1
different values of t for evaluating Recursion (14.4). Since there are n different
values of i , the total running time is O(n2).

In fact the running time of the DP algorithm can further improve from O(n2) to
O(nk). The core idea for this speedup lies in the following simple observation: no
anonymous group should be of size larger than 2k−1. If any group is larger than or
equal to 2k, it can be broken into two subgroups with equal or lower overall degree
anonymization cost. Using this observation, the preprocessing step that computes
the values of I (d[i, j]), does not have to consider all the combinations of (i, j)
pairs, but for every i consider only j’s such that k ≤ j − i + 1 ≤ 2k − 1. Thus, the
running time for this step drops to O(nk).

Similarly, for every i , we do not have to consider all t’s in the range k ≤ t ≤ i−k
as in Recursion (14.4), but only t’s in the range max{k, i − 2k + 1} ≤ t ≤ i − k.
Therefore, Recursion (14.4) can be replaced by

C (i) :=min
t∈Si

{
C (t)+ I (d[t + 1, i]) }, (14.5)

where

Si :={t | max{k, i − 2k + 1} ≤ t ≤ i − k}.

For this range of values of t we guarantee that the first group has size at least k,
and the last one has size between k and 2k−1. Therefore, for every i the algorithm
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goes through at most k different values of t for evaluating the new recursion. Since
there are O(n) different values of i , the overall running time of the DP algorithm is
O(nk).

Therefore, we have the following.

Theorem 1 Problem 2 can be solved in polynomial time using the DP algorithm
described above. The running time of the DP algorithm when the degrees of the
nodes can either increase or decrease is O(nk).

14.5.1 Restriction to Edge Additions

Again, if we restrict our attention to Problem 1 where only edge additions
are allowed, then the degrees of the nodes can only increase in the DEGREE

ANONYMIZATION problem. That is, if d is the original sequence and d̂ is the
k-anonymous degree sequence, then for every 1 ≤ i ≤ n we have that d̂(i) ≥ d(i).
In this case, the DP algorithm described in the previous section can solve the
DEGREE ANONYMIZATION problem. The only difference is in the evaluation of
cost I (d[i, j]) that corresponds to the L1 cost of putting all nodes i, i + 1, . . . , j in
the same anonymized group. Note that the indices correspond to the ordering of the
nodes in nonincreasing order of their degree in d. Therefore, if the degrees of the
nodes can only increase, every group will be assigned the degree of the node with
the highest degree. That is,

I
(
d
[
i, j

]) =
j∑

�=i

(d(i)− d(�)). (14.6)

In this case, the running time of the DP algorithm can be further improved as
follows.

Letting fi (t):=C (t)+ I (d[t + 1, i]), Recursion (14.5) is

C(i):=min
t∈Si

fi (t).

For given i , if fi (s) ≥ fi (t) for all t ∈ Si with t > s, then plainly fi (s) is greater
than or equal to the minimum of fi (t), taken over all t ∈ Si . So it is enough to have
the values of fi (s), for s ∈ Si such that fi (s) < fi (t) for all t ∈ Si with t > s.
Consider now such s and the next largest such s′. We have fi (s′)− fi (s) > 0, which
suggests fi+1(s′) − fi+1(s) > 0, but is this true, and what happens as i increases
further? The next lemma delimits the possibilities.

Lemma 1 For fixed s and s′ with s′ > s, let F(i) := fi (s′)− fi (s). Then

F(i + 1)− F(i) = d(s′ + 1)− d(s + 1) ≤ 0.
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This implies the following.

• Suppose d(s′ + 1) = d(s + 1). Then F(i ′) = F(i) for all i ′ ≥ i .
• Suppose d(s′ + 1) < d(s + 1). Then F(i) ≤ 0 implies F(i ′) ≤ 0 for all i ′ ≥ i . If

F(i) > 0, then F(i ′) > 0 for i ′ with i ′ < i + F(i)/(d(s + 1) − d(s′ + 1)), and
F(i ′) ≤ 0 for i ′ ≥ i + F(i)/(d(s + 1)− d(s′ + 1)).

Proof The expression for F(i+1)−F(i) follows from expanding out the definitions
and manipulating as follows. We have

fi+1(s)− fi (s) = C(d[1, s])+ I (d[s + 1, i + 1])− [C(d[1, s])+ I (d[s + 1, i])]
= I (d[s + 1, i + 1])− I (d[s + 1, i])
=

∑

s+1≤�≤i+1

(d(s + 1)− d(�))−
∑

s+1≤�≤i

(d(s + 1)− d(�))

= d(s + 1)− d(i + 1),

and so

F(i + 1)− F(i) = fi+1(s
′)− fi+1(s)− ( fi (s

′)− fi (s))

= fi+1(s
′)− fi (s

′)− ( fi+1(s)− fi (s))

= d(s′ + 1)− d(i + 1)− (d(s + 1)− d(i + 1))

= d(s′ + 1)− d(s + 1),

which proves the first claim. From this it follows immediately that F(i ′) − F(i) =
(i ′ − i)(d(s′ + 1)− d(s + 1)), implying the remaining claims. �

The discussion just before the lemma says that to compute mint∈Si fi (t) for
increasing values of i , it is enough to be able to maintain, as i goes from 1 to n,
the list of indices

Li := {s ∈ Si | fi (s) < min
s<t∈Si

fi (t)}. (14.7)

Specifically, Li is represented as a doubly linked list. How does this list change as
i increases? If s /∈ Li , then fi (s) ≥ fi (t) for some t > s, and so by the lemma,
fi ′(s) ≥ fi ′(t) for i ′ ≥ i ; that is, if s is not included now, it will not be included
later.

If Li has been maintained up to time i , then its first entry is sufficient to allow
the computation of (14.4): for given i and s < i , the value of fi (s) can be computed
in constant time, using previously computed values stored in array C and the prefix
sums

∑
�<i d(�).

To maintain the list, we will consider the “life cycle” of an entry in it. Such an
entry s is “born” at time i = s + k, when i − k is added to the end of Li . An entry
can “die,” that is, no longer qualify to be in Li , in a few ways.
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An entry can die when it gets too old, namely, when s < max{k, i − 2k+ 1}, and
so is no longer in Si .

An entry can also die when a new entry is added whose f value is less than or
equal to its f value; here if s ∈ Li dies, all t > s in Li must also die, since they have
larger fi (t) values. Thus when i−k is added, the entries s ∈ Li can be examined, in
decreasing order, to check if fi (i − k) < fi (s); as such s are found; they are deleted
from Li .

We will also make an entry die in one other way: if fi (s) and fi (s′) are consec-
utive entries in Li , so that s < s′ and fi (s) < fi (s′), then from the lemma, there
is a future time i ′ = D(s, s′) at which fi ′(s) ≥ fi ′(s′), so that s should die. We
will maintain that, for each consecutive pair s, s′ of entries in Li , there is a “death
notice” for s, at time D(s, s′). At that time, when the “death notice” is processed,
the entry for s is removed from Li (if it has not already died), and a death notice is
added for the former neighbor s′′ < s, whose new rightward neighbor is the former
rightward neighbor of s. The death notice D(s, s′) includes a pointer to the list node
for s, which has a backpointer to the death notice, so that if the node for s is removed
for other reasons, the death notice is removed also.

When an entry dies, O(1) work is done for it, including the generation of at most
one new death notice. The processing of that death notice, in the future, requires
O(1) work, so the life cycle of a node requires O(1) work.

We have proven the following theorem.

Theorem 2 Problem 2 for the restricted case of edge additions (or deletions) oper-
ations, where the degrees of the nodes can only increase (or decrease) can be solved
optimally using the DP algorithm described above in time O(n).

14.6 Graph Construction

In this section we present algorithms for solving the GRAPH CONSTRUCTION

problem. Given the original graph G(V, E) and the desired k-anonymous degree
sequence d̂ output by the DP algorithm, we construct a k-degree anonymous graph
Ĝ(V, Ê) such that �

(
Ĝ, G

)
is minimized.

14.6.1 Basics on Realizability of Degree Sequences

Before giving the actual algorithms for the GRAPH CONSTRUCTION problem, we
first present some known facts about the realizability of degree sequences for simple
graphs. Later on, we extend some of these results in our own problem setting.

Definition 5 A degree sequence d, with d(1) ≥, · · · ,≥ d(n) is called realizable if
and only if there exists a simple graph whose nodes have precisely this sequence of
degrees.

Erdös and Gallai [8] have stated the following necessary and sufficient condition
for a degree sequence to be realizable.
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Lemma 2 ([8]) A degree sequence d with d(1) ≥ · · · ≥ d(n) and
∑

i d(i) even is
realizable if and only if for every 1 ≤ � ≤ n − 1 it holds that

�∑

i=1

d(i) ≤ �(�− 1)+
n∑

i=�+1

min{�,d(i)} (14.8)

Informally, Lemma 2 states that for each subset of the � highest-degree nodes, the
degrees of these nodes can be “absorbed” within the nodes and the outside degrees.
The proof of Lemma 2 is inductive [10] and it provides a natural construction algo-
rithm, which we call ConstructGraph (see Algorithm 1 for the pseudocode).

The ConstructGraph algorithm takes as input the desired degree sequence d
and outputs a graph with exactly this degree sequence, if such graph exists. Other-
wise it outputs a “No” if such graph does not exist. The algorithm is iterative and
in each step it maintains the residual degrees of vertices. In each iteration it picks
an arbitrary node v and adds edges from v to d(v) nodes of highest residual degree,
where d(v) is the residual degree of v. The residual degrees of these d(v) nodes are
decreased by one. If the algorithm terminates and outputs a graph, then this graph
has the desired degree sequence. If at some point the algorithm cannot make the
required number of connections for a specific node, then it outputs “No” meaning
that the input degree sequence is not realizable.

Note that the ConstructGraph algorithm is an oracle for the realizability of a
given degree sequence; if the algorithm outputs “No”, then this means that there
does not exist a simple graph with the desired degree sequence.

Algorithm 1 The ConstructGraph algorithm
Input: A degree sequence d of length n.
Output: A graph G(V, E) with nodes having degree sequence d or “No” if the input sequence
is not realizable.

1: V ← {1, . . . , n}, E ← ∅
2: if

∑
i d(i) is odd then

3: Halt and return “No”
4: while 1 do
5: if there exists d(i) such that d(i) < 0 then
6: Halt and return “No”
7: if the sequence d are all zeros then
8: Halt and return G(V, E)

9: Pick a random node v with d(v) > 0
10: d(v)← 0
11: Vd(v) ← the d(v)-highest entries in d (other than v)
12: for each node w ∈ Vd(v) do
13: E ← E ∪ (v,w)

14: d(w)← d(w)− 1

Running time of the ConstructGraph algorithm: If n is the number of nodes in the
graph and dmax = maxi d(i), then the running time of the ConstructGraph algo-
rithm is O(ndmax). This running time can be achieved by keeping an array A of size
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dmax such that A[d(i)] keeps a hash table of all the nodes of degree d(i). Updates
to this array (degree changes and node deletions) can be done in constant time. For
every node i at most dmax constant-time operations are required. Since there are n
nodes the running time of the algorithm is O(ndmax). In the worst case, dmax can be
of order O(n), and in this case the running time of the ConstructGraph algorithm
is quadratic. In practice, dmax is much less than n, which makes the algorithm very
efficient in practical settings.

Note that the random node in Step 9 of Algorithm 1 can be replaced by either
the current highest-degree node or the current lowest-degree node. When we start
with higher degree nodes, we get topologies that have very dense cores, while when
starting with lower degree nodes, we get topologies with very sparse cores. A ran-
dom pick is a balance between the two extremes. The running time is not affected
by this choice, due to the data structure A.

14.6.2 The Greedy_Swap Algorithm

Let d̂ be a k-anonymous degree sequence output by DP algorithm. Let us additionally
assume for now that d̂ is realizable so that the ConstructGraph algorithm with
input d̂ outputs a simple graph Ĝ0(V, Ê0) with degree sequence exactly d̂. Although
Ĝ0 is k-degree anonymous, its structure may be quite different from the original
graph G(V, E). The Greedy_Swap algorithm is a greedy heuristic that given Ĝ0
and G, it transforms Ĝ0 into Ĝ(V, Ê) with degree sequence dĜ = d̂ = dĜ0

such
that �

(
Ĝ, G

)
is minimized.

At every step i , the graph Ĝi−1(V, Êi−1) is transformed into the graph Ĝi (V, Ei )

such that d̂Ĝ0
= d̂Ĝi−1

= d̂Ĝi
= d̂ and �

(
Ĝi , G

)
< �

(
Ĝi−1, G

)
. The transforma-

tion is made using valid swap operations defined as follows:

Definition 6 Consider a graph Ĝi (V, Êi ). A valid swap operation is defined by four
vertices i, j, k, and l of Ĝi (V, Êi ) such that (i, k) ∈ Êi and ( j, l) ∈ Êi and (i, j) /∈
Êi and (k, l) /∈ Êi or (i, l) /∈ Êi and ( j, k) /∈ Êi . A valid swap operation transforms
Ĝi to Ĝi+1 by updating the edges as follows:

Êi+1 ← Êi \ {(i, k), ( j, l)} ∪ {(i, j), (k, l)} , or

Êi+1 ← Êi \ {(i, k), ( j, l)} ∪ {(i, l), ( j, k)} .

A visual illustration of the swap operation is shown in Fig. 14.2. It is clear that
performing valid swaps on a graph leaves the degree sequence of the graph intact.
The pseudocode for the Greedy_Swap algorithm is given in Algorithm 2. At each
iteration of the algorithm, the swappable pair of edges e1 and e2 is picked to be
swapped to edges e′1 and e′2. Swaps that can mostly reduce the structural difference
(the �() function) between the original graph and the new graph are chosen at each
iteration. The Greedy_Swap algorithm halts when there are no more valid swaps
that can decrease the �() function.
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Fig. 14.2 The swap transformation

Algorithm 2 The Greedy_Swap algorithm

Input: An initial graph Ĝ0(V, Ê0) and the input graph G(V, E).
Output: Graph Ĝ(V, Ê) with the same degree sequence as Ĝ0, such that �

(
Ĝ, G

)
is

minimized.
1: Ĝ(V, Ê)← Ĝ0(V, Ê0)

2:
(
c, (e1, e2, e′1, e′2)

) = Find_Best_Swap(Ĝ)

3: while c > 0 do
4: Ê = Ê \ {e1, e2} ∪ {e′1, e′2}
5:

(
c, (e1, e2, e′1, e′2)

) = Find_Best_Swap
6: return Ĝ

Algorithm 3 An overall algorithm for solving the GRAPH CONSTRUCTION prob-
lem; the realizable case

Input: A realizable degree sequence d̂ of length n.
Output: A graph Ĝ(V, E ′) with degree sequence d̂ and E ∩ E ′ ≈ E .

1: Ĝ0 = ConstructGraph(̂d)
2: Ĝ = Greedy_Swap(Ĝ0)

Algorithm 3 gives the pseudocode of the whole process of solving the GRAPH

CONSTRUCTION problem when the degree sequence d̂ is realizable. The first step
involves a call to the ConstructGraph algorithm, which we have described in Sec-
tion 14.6.1, Algorithm 1. The ConstructGraph algorithm will return a graph Ĝ0
with degree distribution d̂. The Greedy_Swap algorithm then takes graph Ĝ0 as
input, and then outputs a k-degree anonymous graph that has degree sequence d̂ and
large overlap in its set of edges with the original graph.

A naive implementation of the algorithm would require time O(I |Ê0|2), where
I is the number of iterations of the greedy step and |Ê0| the number of edges in
the input graph. Given that |Ê0| = O(n2), the running time of the Greedy_Swap
algorithm could be O(n4), which is daunting for large graphs. However, we employ
a simple sampling procedure that considerably improves the running time. Instead of
doing the greedy search over the set of all possible edges, we uniformly at random
pick a subset of size O(log |Ê0|) = O(log n) of the edges and run the algorithm
on those. This reduces the running time of the greedy algorithm to O(I log2 n),
which makes it efficient even for very large graphs. As we show in our experimental
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evaluation, the Greedy_Swap algorithm performs very well in practice, even in
cases where it starts with graph Ĝ0 that shares small number of edges with G.

14.6.2.1 The Probing Scheme

In the discussion above we have assumed that the degree sequence input in the
ConstructGraph algorithm is realizable. However, it might well be the case that
the ConstructGraph algorithm outputs a “No,” i.e., there does not exist a graph
with the required degree sequence. In this case we invoke a Probing scheme
described below. The Probing scheme is a randomized iterative process that tries
to slightly change the degree sequence d̂. The pseudocode of the Probing scheme
is shown in Algorithm 4.

Algorithm 4 The Probing scheme
Input: Input graph G(V, E) with degree distribution d and integer k.
Output: Graph Ĝ(V, Ê) with k-anonymous degree sequence d̂.

1: d̂ = DP(d)
2:

(
realizable, Ĝ

) = ConstructGraph(̂d)
3: while realizable = “No” do
4: d = d+ random_noise
5: d̂ = DP(d)
6:

(
realizable, Ĝ

) = ConstructGraph(̂d)
7: Return Ĝ

For input graph G(V, E) and integer k, the Probing scheme first constructs
the k-anonymous sequence d̂ by invoking the DP algorithm. If the subsequent
call to the ConstructGraph algorithm returns a graph Ĝ, then Probing outputs
this graph and halts. If ConstructGraph returns “No,” then Probing slightly
increases some of the entries in d via the addition of uniform noise – the specifics
of the noise-addition strategy is further discussed in the next paragraph. The new
noisy version of d is then fed as input to the DP algorithm again. A new version
of the d̂ is thus constructed and input to the ConstructGraph algorithm to be
checked. The process of noise addition and checking is repeated until a graph is
output by ConstructGraph. Note that this process will always terminate because
in the worst case, the noisy version of d will contain all entries equal to n − 1,
and there exists a complete graph that satisfies this sequence and is k-degree
anonymous.

Since the Probing procedure will always terminate, the key question is how
many times the while loop is executed. This depends, to a large extent, on the noise-
addition strategy. In our implementation, we examine the nodes in increasing order
of their degrees and slightly increase the degree of a single node in each iteration.
This strategy is suggested by the degree sequences of the input graphs. In most of
these graphs there is a small number of nodes with very high degrees. However,
rarely any two of these high-degree nodes share exactly the same degree. In fact,
we often observe big differences among them. On the contrary, in most graphs there
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is a large number of nodes with the same small degrees (close to 1). Given such a
graph, the DP algorithm will be forced to increase the degrees of some of the large-
degree nodes a lot, while leaving the degrees of small-degree nodes untouched. In
the anonymized sequence thus constructed, a small number of high-degree nodes
will need a large number of nodes to connect their newly added edges. However,
since the degrees of small-degree nodes do not change in the anonymized sequence,
the demand of edge end-points imposed by the high-degree nodes cannot be facil-
itated. Therefore, by slightly increasing the degrees of small-degree nodes in d we
force the DP algorithm to assign them higher degrees in the anonymized sequence d̂.
In that way, there are more additional free edges end-points to connect with the
anonymized high-degree nodes.

From our experiments on a large spectrum of synthetic and real-world data, we
observe that, in most cases, the extra edge additions incurred by the Probing pro-
cedure are negligible; that is, the degree sequences produced by the DP are almost
realizable and, more importantly, realizable with respect to the input graph G.
Therefore, the Probing is rarely invoked, and even if it is invoked, only a very
small number of repetitions are needed. We further discuss this in the experimental
section of this chapter.

14.6.3 Restriction to Edge Additions

In this section we give yet another graph construction algorithm for the case where
only edge additions are allowed to the input graph. In this case, not only do we
need to construct a graph Ĝ with a given degree sequence d̂, but we also require
that E ⊆ Ê . We capture these two requirements in the following definition of reali-
zability of d̂ subject to graph G.

Definition 7 Given input graph G(V, E), we say that degree sequence d̂ is realiz-
able subject to G, if and only if there exists a simple graph Ĝ(V, Ê) whose nodes
have precisely the degrees suggested by d̂ and E ⊆ Ê .

Given the above definition we have the following alternation of Lemma 2.

Lemma 3 Consider degree sequence d̂ and graph G(V, E) with degree sequence
d. Let vector a = d̂− d such that

∑
i a(i) is even. If d̂ is realizable subject to graph

G then

∑

i∈V�

a(i) ≤
∑

i∈V�

(
�− 1− d�(i)

)

+
∑

i∈V−V�

min{�− d�(i), a(i)}, (14.9)

where d�(i) is the degree of node i in the input graph G when counting only edges
in G that connect node i to one of the nodes in V�. Here V� is an ordered set of �
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nodes with the � largest a(i) values sorted in decreasing order. In other words, for
every pair of nodes (u, v) where u ∈ V� and v ∈ V \ V�, it holds that a(u) ≥ a(v)
and |V�| = �.

Although the proof of the lemma is omitted due to space constraints, one can see
the similarity between inequalities (14.8) and (14.9); if G is a graph with no edges
between its nodes, then a is the same as d̂, d�(i) is zero, and the two inequalities
become identical.

Lemma 3 states that inequality (14.9) is just a necessary condition for realizabil-
ity subject to the input graph G. Thus, if inequality (14.9) does not hold, we can
conclude that for input graph G(V, E), there does not exist a graph Ĝ(V, Ê) with
degree sequence d̂ such that E ⊆ Ê .

Although Lemma 3 gives only a necessary condition for realizability subject to
an input graph G, we still want to devise an algorithm for constructing a degree
anonymous graph Ĝ, a supergraph of G, if such a graph exists. We call this algo-
rithm the Supergraph, which is an extension of the ConstructGraph algorithm.
(We omit the pseudocode of Supergraph due to space limits.)

The inputs to the Supergraph are the original graph G and the desired
k-anonymous degree distribution d̂. The algorithm operates on the sequence of
additional degrees a = d̂−dG in a manner similar to the one the ConstructGraph
algorithm operates on the degrees d. However, since Ĝ is drawn on top of the orig-
inal graph G, we have the additional constraint that edges already in G cannot be
drawn again.

The Supergraph first checks whether inequality (14.9) is satisfied and returns
“No” if it does not. Otherwise it proceeds iteratively and in each step it maintains
the residual additional degrees a of the vertices. In each iteration it picks an arbi-
trary vertex v and adds edges from v to a(v) vertices of highest residual additional
degree, ignoring nodes v′ that are already connected to v in G. For every new edge
(v, v′), a(v′) is decreased by 1. If the algorithm terminates and outputs a graph, then
this graph has degree sequence d̂ and is a supergraph of the original graph. If the
algorithm does not terminate, then it outputs “Unknown,” meaning that there might
exist a graph, but the algorithm is unable to find it. Though Supergraph is similar
to ConstructGraph, it is not an oracle; that is, if the algorithm does not return a
graph Ĝ supergraph of G, it does not necessarily mean that such a graph does not
exist.

For degree sequences of length n and amax = maxi a(i) the running time of
the Supergraph algorithm is O(namax), using the same data structures as those
described in Section 14.6.1.

14.7 Experiments

In this section we evaluate the performance of the proposed graph anonymization
algorithms.
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14.7.1 Data Sets

We use both synthetic and real-world data sets. For the experiments with synthetic
data sets, we generate random, small-world, and scale-free graphs.

Random graphs: Random graphs are graphs with nodes randomly connected to
each other with probability p. Given the number of nodes n and the parameter
p, a random graph is generated by creating an edge between each pair of
nodes u and v with probability p. We use GR to denote the family of graphs
generated by this data-generation model and G R to denote a member of the
family.

Small-world graphs: A small-world graph is a type of graph in which most
nodes are not neighbors of one another, but most nodes can be reached from
every other by a small number of hops. This kind of graphs has large clus-
tering coefficient (CC) that is significantly higher than expected by random
chance and small average path length (APL) that is close to that of an equiva-
lent random graph. The average path length is defined as the average length of
the shortest path between all pairs of reachable nodes. The clustering coeffi-
cient is defined as the average fraction of pairs of neighbors of a node that are
also connected to each other. These two indices, along with the degree dis-
tribution, are considered as standard measures in graph-analysis studies. We
generate small-world graphs using the model proposed in [20]. We denote
by GW the family of graphs generated by this model and GW the members
of this family. The data-generation process is controlled by a parameter α

that determines the extent to which the graph exhibits community structure.
Values of α in the range [5, 7] generate small-world graphs. We have addi-
tionally conducted experiments with small-world graphs generated using the
alternative model proposed in [21]. However, since the results we obtained
are very similar to the results obtained by using graphs in GW , we do not
report them here due to space limitations.

Scale-free graphs: The scale-free graphs correspond to graphs with power-law
degree distribution. In a power-law graph the probability that a node has
degree d is proportional to d−γ . The power-law distribution is determined by
the exponent γ . The value of γ may vary, taking values between 2 and 3 for
most real networks. We use the model proposed by Barabási and Albert [3] to
generate scale-free graphs. The graph-generation process proceeds by insert-
ing nodes sequentially. Each new node is initially connected to � already
existing nodes with probability proportional to their degree. We use GBS

to denote the family of graphs generated by this model and GBS to denote
members of the family.

For the real-world data, we use the enron, the powergrid, and the co-authors
graphs.
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Enron graph: The Enron email graph (available at http://www.cs.cmu.edu/
enron/) is derived from a corpus of emails sent to and from managers at Enron
Corporation. This data was originally made public by the Federal Energy
Regulatory Commission. The data set contains 151 users. An edge between
two users is added if they have corresponded at least five times.

Powergrid graph: In this graph, the nodes represent generators, transformers,
and substations in a powergrid network; the edges represent high-voltage
transmission lines between them. The data set is available at http://www.cs.
helsinki.fi/u/tsaparas/MACN2006/.

Co-authors graph: The co-authors data set consists of 7955 authors of papers
in database and theory conferences and it is available at the collection of
Computer Science Bibliographies at http://liinwww.ira.uka.de/bibliography/.
The co-authors graph is constructed by creating undirected edges between
authors that have co-authored paper.

Table 14.1 summarizes the properties of the graphs we used for our experiments.
All the graphs are simple, unweighted, and undirected.

Table 14.1 Structural properties of the graphs used for the experiments

#Nodes #Edges APL CC

GW (α = 6) 1000 5000 9.15 0.77
GR 1000 5000 3.27 0.01
GBS (γ = 3) 1000 2995 3.57 0.02
enron 151 502 3.32 0.46
powergrid 4941 6594 9.12 0.10
co-authors 7955 10,055 6.00 0.64

14.7.2 Evaluating GRAPH CONSTRUCTION Algorithms

In this section we evaluate the performance of Greedy_Swap, Greedy_Swap_
Additions, and Supergraph algorithms. Since the k-degree anonymity is guar-
anteed by construction, we only need to look at the structural similarity between the
input and output graphs. We use a set of evaluation measures listed below and we
report our results for different synthetic and real-world graphs.

Anonymization cost L1(dA − d)
This is the L1 norm of the vector of differences between the k-anonymous
degree sequence obtained using algorithm Algo ∈ {Greedy_Swap, Greedy_Swap_
Additions, Supergraph} and the degree sequence of the original graph. The
smaller the value of L1(dA − d) the better the qualitative performance of the
algorithm. Figures 14.3–14.6 summarize the anonymization cost of the different
algorithms as a function of k = {5, 10, 15, 20, 25, 50, 100} for synthetic data sets
GW ∈ GW with α = 6, GBS ∈ GBS, and powergrid and co-authors data. From

http://www.cs.cmu.edu/enron/
http://www.cs.cmu.edu/enron/
http://www.cs.helsinki.fi/u/tsaparas/MACN2006/
http://www.cs.helsinki.fi/u/tsaparas/MACN2006/
http://liinwww.ira.uka.de/bibliography/
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the plots, we can observe that Greedy_Swap always has the lowest anonymization
cost. This is because Greedy_Swap allows the degrees of nodes to either increase
or decrease. On the other hand, Greedy_Swap_Additions and Supergraph have
relatively higher cost due to their increase-only nature.

If all the anonymized degree sequences are realizable, the optimal cost for both
Greedy_Swap_Additions and Supergraph should be the same. However, we note
that in the case of GBS graphs, L1(dSupergraph − d) cost is relatively high for all
values of k (see Fig. 14.4). This is due to two reasons: (1) The degrees of graphs in
GBS have a power-law distribution. This causes large differences among the degrees
of high-degree nodes, meaning that the degrees of high-degree nodes have to be
changed significantly in order to meet the degree anonymous requirement. (2) The
Supergraph algorithm constructs the degree anonymous graph by extending the
input graph, and it is the only of our proposed algorithms that tries to comply with
all the edge constraints imposed by the input graph. Therefore, it can potentially add
more noise (in the Probing phase) than other algorithms that build the graph from
scratch.

Clustering coefficient (CC)
We compare the clustering coefficients of the anonymized graphs with the clustering
coefficients of the original graphs. Figures 14.3–14.6 summarize our findings. In all
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Fig. 14.3 Synthetic data sets: small-world graphs GW ∈ GW , with α = 6. (a) L1(dA − d) as a
function of k (b) CC as a function of k (c) APL as a function of k
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Fig. 14.4 Synthetic data sets: scale-free graphs GBS ∈ GBS. (a) L1(dA − d) as a function of k
(b) CC as a function of k (c) APL as a function of k

plots, there is a constant line appearing; this corresponds to the value of the clus-
tering coefficient of the original graph, which is unaffected by the value of k. Note
that all the plots show that the values of the clustering coefficient, though different
in the degree anonymous graphs, never deviate too much from their original values;
the largest difference in the CC values from the original values is observed for the
co-author data set, where the difference is 0.24 for the degree anonymous graph
produced by the Greedy_Swap_Additions algorithm when k = 100. But even in
this case, the other two algorithms output graphs with CC almost equal to that of the
original graph. Note that there is no clear trend on how the CC changes when the
graph becomes degree anonymous. Both increments and decrements are observed;
however the changes are generally negligible.

Average path length (APL)
In Figs. 14.3–14.6 we report the values of the average path length of the degree
anonymous graphs and the original graphs. As expected, the anonymization process
of Greedy_Swap_Additions and Supergraph decreases the average path length
of the output graph since only new connections are added. The Greedy_Swap, on
the other hand, can either increase or decrease the average path length because it
simultaneously adds and deletes the edges.
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Fig. 14.5 Real data sets datasets: powergrid data. (a) L1(dA − d) as a function of k (b) CC as a
function of k (c) APL as a function of k
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Very similar results have been obtained for other data sets generated using the
random-graph model as well as the enron data set. However, we omit the corre-
sponding plots due to space constraints.

Structural difference
Recall that the structural difference between two graphs G(V, E) and Ĝ(V, Ê),
�
(
Ĝ, G

)
, is the symmetric difference of their edge sets, i.e., �

(
Ĝ, G

) := ∣
∣Ê \ E

∣
∣+∣

∣E \ Ê
∣
∣. Table 14.2 summarizes the values of �

(
Ĝ, G

)
obtained by different algo-

rithms for the co-authors data. It is interesting to observe that Supergraph con-
sistently has a low value. This is due to the reason that Supergraph constructs
the anonymized graph by only extending the input graph, and therefore,

∣
∣E \ Ê

∣
∣ is

always 0. On the other hand, both Greedy_Swap and Greedy_Swap_Additions
construct an anonymized graph from scratch and then heuristically add and delete
edges to make it more similar to the original graph. This procedure leads to higher
symmetric differences of their edge sets.

Table 14.2 Structural differences between G and Ĝ, obtained by different algorithms for the
co-authors data

Greedy_Swap Greedy_Swap_Additions Supergraph

k = 5 1714 1764 66
k = 10 1742 1904 141
k = 15 1846 2009 216
k = 20 1815 2126 300
k = 25 1868 2269 384
k = 50 2096 3068 868
k = 100 2232 4402 1868

However, readers should not be deluded by the straight numbers in the table
and reach a conclusion that Greedy_Swap and Greedy_Swap_Additions are
significantly inferior to Supergraph. In fact, we can show that the number of
edges that are added and deleted by these two greedy algorithms only accounts
for a very small portion of the overall edge sets. To illustrate this, we decom-
pose the structural difference between G and Ĝ into two normalized components:
|Ê\E|
|Ê| and |E\Ê||E | . The former gives the percentage of the edges in the anonymized

graph that are newly added, and the latter calculates the percentage of the edges
in the original graph that are deleted. The lower these two values, the better
the structure of the original graph is preserved. Figure 14.7a and 14.7b shows

the values of |Ê\E||Ê| and |E\Ê||E | obtained by different algorithm as a function of

k = {5, 10, 15, 20, 25, 50, 100} for the co-authors data. We can easily observe that
both Greedy_Swap and Greedy_Swap_Additions produce very small values of
|Ê\E|
|Ê| and |E\Ê||E | . In particular, Greedy_Swap achieves 0.12 for both components

even when k is 100, which is better than Supergraph that has a value of 0.16

for |Ê\E||Ê| .
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14.7.2.1 Exploring the Scale-Free Graphs

Previous work on the analysis of complex networks has shown that many of the real-
world graphs are scale free, i.e., their node degrees follow a power-law distribution.
In this section we demonstrate that our anonymization framework does not destroy
the power-law property of the original graph if k is not too big. That is, if the input
graph has a power-law degree distribution, so does the degree anonymous version
of it.

In Table 14.3, we report the values of the estimated exponent (γ ) of the power-
law distribution of the original co-authors data and its degree anonymous coun-
terpart. We can observe that the new γ values obtained by all three algorithms
exhibit high degree of similarity to the original one for k < 15. When k gets larger,
Greedy_Swap still preserves the γ value very well. This result is due to the fact
that the degree-sequence anonymization of Greedy_Swap minimally changes the
degree sequence of a graph. For significant large values of k (e.g., k = 100), a great
amount of the nodes in the anonymized graph will have the same degree, and the
power-law distribution will change. We claim that this is a natural result for any
degree anonymization algorithm.

Table 14.3 Real data set: co-authors graph. Value of the exponent (γ ) of the power-law
distribution of the original and the k-degree anonymous graph obtained using Greedy_Swap,
Greedy_Swap_Additions and Supergraph algorithms, for k = 10, 15, 20, 25, 50, 100

γ

Greedy_Swap Greedy_Swap_Additions Supergraph

Original 2.07 2.07 2.07
k = 10 2.45 2.26 2.26
k = 15 2.33 2.13 2.13
k = 20 2.28 1.97 1.97
k = 25 2.25 1.83 1.83
k = 50 2.05 1.57 1.57
k = 100 1.92 1.22 1.22
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14.8 Conclusions

The degree of a node in a graph, among other structural characteristics, can to a
large extent distinguish the node from other nodes. In this chapter, we focused on
a specific graph-anonymity notion that prevents the re-identification of individuals
by an attacker with certain prior knowledge of the degrees. We formally defined the
GRAPH ANONYMIZATION problem that, given an input graph, asks for the graph
modifications (in terms of additions and deletions of edges) that allow for the trans-
formation of the input to a degree anonymous graph, i.e., a graph in which every
node shares the same degree with k−1 other nodes. We showed that this problem can
be decomposed into two subproblems and proposed simple and efficient algorithms
for solving them. We also presented experiments on synthetic and real-world graph
data and demonstrated the utility of the degree anonymous graphs as well as the
efficiency of our methods.

From the material presented in this chapter as well as in the related work (pre-
sented in Section 3) it becomes apparent that privacy-preserving data analysis on
graph data raises many more challenges when compared to the challenges that arise
from anonymization and perturbation techniques in tabular data. In the latter case,
each tuple can be viewed as an independent sample from some distribution. How-
ever, in a graph, all the nodes and edges are correlated; a single change of an edge
and/or a node can spread across the whole network. Moreover, in graphs it is difficult
to model the capability of an attacker. In principle, any topological structure of the
graph can be potentially used to derive private information. Another challenge is
related to the right definition of the utility of an anonymized graph. For example, we
measured the utility using the degree anonymization and the structural cost. How-
ever, other measures that associate the structural properties of the original and the
anonymized graph can also be used. Further, these measures can be also tailored to
a particular graph-analysis task. Overall, there are many directions that need to be
explored before the research community agrees upon a unifying, theoretically and
practically sound model for privacy in social networks.
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Chapter 15
Interactive Graph Summarization

Yuanyuan Tian and Jignesh M. Patel

Abstract Graphs are widely used to model real-world objects and their relation-
ships, and large graph data sets are common in many application domains. To
understand the underlying characteristics of large graphs, graph summarization
techniques are critical. Existing graph summarization methods are mostly statistical
(studying statistics such as degree distributions, hop-plots, and clustering coeffi-
cients). These statistical methods are very useful, but the resolutions of the sum-
maries are hard to control. In this chapter, we introduce database-style operations
to summarize graphs. Like the OLAP-style aggregation methods that allow users
to interactively drill-down or roll-up to control the resolution of summarization, the
methods described in this chapter provide an analogous functionality for large graph
data sets.

15.1 Introduction

Graphs provide a powerful primitive for modeling real-world objects and the
relationships between objects. Various modern applications have generated large
amount of graph data. Some of these application domains are listed below:

• Popular social networking web sites, such as Facebook (www.facebook.com),
MySpace (www.myspace.com), and LinkedIn (www.linkedin.com), attract mil-
lions of users (nodes) connected by their friendships (edges). By April 2009, the
number of active users on Facebook has grown to 200 million, and on average
each user has 120 friends. Mining these social networks can provide valuable
information on social relationships and user communities with common inter-
ests. Besides mining the friendship network, one can also mine the “implicit”
interaction network formed by dynamic interactions (such as sending a message
to a friend).

J.M. Patel (B)
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• Coauthorship networks and citation networks constructed from DBLP
(www.informatik.uni-trier.de/∼ley/db/) and CiteSeer (citeseer.ist.psu.edu) can
help understand publication patterns of researchers.

• Market basket data, such as those produced from Amazon (www.amazon.com)
and Netflix (www.netflix.com), contain information about millions of products
purchased by millions of customers, which forms a bipartite graph with edges
connecting customers to products. Exploiting the graph structure of the market
basket data can improve customer segmentation and targeted advertising.

• The link structure of the World Wide Web can be naturally represented as a
graph with nodes representing web pages and directed edges representing the
hyperlinks. According to the estimate at www.worldwidewebsize.com, by May
15, 2009, the World Wide Web contains at least 30.05 billion webpages. The
graph structure of the World Wide Web has been extensively exploited to improve
search quality [8], discover web communities [16], and detect link spam[23].

With the overwhelming wealth of information encoded in these graphs, there is
a critical need for tools to summarize large graph data sets into concise forms that
can be easily understood.

Graph summarization has attracted a lot of interest from a variety of research
communities, including sociology, physics, and computer science. It is a very broad
research area that covers many topics. Different ways of summarizing and under-
standing graphs have been invented across these different research communities.
These different summarization approaches extract graph characteristics from differ-
ent perspectives and are often complementary to each other. Sociologists and physi-
cists mostly apply statistical methods to study graph characteristics. The summaries
of graphs are statistical measures, such as degree distributions for investigating the
scale-free property of graphs, hop-plots for studying the small world effect, and
clustering coefficients for measuring the clumpiness of large graphs. Some examples
of this approach were presented in Chapter 8. In the database research community,
methods for mining frequent subgraph patterns are used to understand the character-
istics of large graphs, which was the focus of Chapter 4. The summaries produced
by these methods are sets of frequently occurring subgraphs (in the original graphs).
Various graph clustering (or partitioning) algorithms are used to detect community
structures (dense subgraphs) in large graphs. For these methods, the summaries that
are produced are partitions of the original graphs. This topic is covered in Chap-
ters 3 and 7. Graph compression and graph visualization are also related to the graph
summarization problem. These two topics will be discussed in Section 15.7 of this
chapter.

This chapter, however, focuses on a graph summarization method that produces
small and informative summaries, which themselves are also graphs. We call them
summary graphs. These summary graphs are much more compact in size and pro-
vide valuable insight into the characteristics of the original graphs. For example, in
Fig. 15.1, a graph with 7445 nodes and 19,971 edges is shown on the left. Under-
standing this fairly small graph by mere visual inspection of the raw graph structure
is very challenging. However, the summarization method introduced in this chapter

www.informatik.uni-trier.de/
ley/db/
citeseer.ist.psu.edu
www.amazon.com
www.netflix.com
www.worldwidewebsize.com
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will generate much compact and informative graphs that summarize the high-level
structure characteristics of the original graph and the dominant relationships among
clusters of nodes. An example summary graph for the original graph is shown on the
right of Fig. 15.1. In the summary graph, each node represents a set of nodes from
the original graph, and each edge of the summary graph represents the connections
between two corresponding sets of nodes. The formal definition of summary graphs
will be introduced in Section 15.2.

Fig. 15.1 A summary graph (right) is generated for the original graph (left)

The concept of summary graph is the foundation of the summarization method
presented in this chapter. This method is very unique in that it is amenable to an
interactive querying scheme by allowing users to customize the summaries based on
user-selected node attributes and relationships. Furthermore, this method empowers
users to control the resolutions of the resulting summaries, in conjunction with an
intuitive “drill-down” or “roll-up” paradigm to navigate through summaries with
different resolution. This last aspect of drill-down or roll-up capability is inspired
by the OLAP-style aggregation methods [11] in the traditional database systems.

Note that the method introduced in this chapter is applicable for both directed
and undirected graphs. For ease of presentation, we only consider undirected graphs
in this chapter.

The remainder of this chapter is organized as follows: We first introduce the for-
mal definition of summary graph in Section 15.2, then discuss the aggregation-based
graph summarization method in Section 15.3. Section 15.4 shows an interesting
example of applying this graph summarization method to the DBLP [17] coauthor-
ship graph. Section 15.5 demonstrates the scalability of the described method. Sec-
tion 15.6 provides some discussion on the summarization method. Related topics,
such as graph compression and graph visualization are discussed in Section 15.7.
Finally, Section 15.8 concludes this chapter.
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15.2 Summary Graphs

In this chapter, we consider a general graph model where nodes in the graph have
arbitrary number of associated attributes and are connected by multiple types of
edges. More formally, a graph is denoted as G = (V, E), where V is the set of
nodes and E is the set of edges. The set of attributes associated with the nodes is
denoted as A = {a1, a2, . . . , am}. We require that each node v ∈ V has a value
for every attribute in A. The set of edge types present in the graph is denoted as
T = {t1, t2, . . . , tn}. Each edge (u, v) ∈ E can be marked by a non-trivial subset of
edge types denoted as T (u, v) (∅ ⊂ T (u, v) ⊆ T ). For example, Fig. 15.2a shows
a sample social networking graph. In this graph, nodes represent students. Each
student node has attributes such as gender and department. In addition, there are
two types of relationships present in this graph: friends and classmates. While some
students are only friends or classmates with each other, others are connected by both
relationships. Note that in this figure, only a few edges are shown for compactness.

Fig. 15.2 Graph summarization by aggregation

We can formally define summary graphs as follows: Given a graph G = (V, E),
and a partition of V , ! = {G1,G2, . . . ,Gk} (

⋃k
i=1 Gi = V and ∀i �= j Gi ∩G j = ∅),

the summary graph based on ! is S = (VS, ES), where VS = !, and ES =
{(Gi ,G j )|∃u ∈ Gi , v ∈ G j , (u, v) ∈ E}. The set of edge types for each (Gi ,G j ) ∈
ES is defined as T (Gi ,G j ) =⋃

(u,v)∈E,u∈Gi ,v∈G j
T (u, v).

More intuitively, each node of the summary graph, called a group or a supernode,
corresponds to one group in the partition of the original node set, and an edge,
called group relationships or superedges, represents the connections between two
corresponding sets of nodes. A group relationship between two groups exists if and
only if there exists at least one edge connecting some nodes in the two groups.
The set of edge types for a group relationship is the union of all the types of the
corresponding edges connecting nodes in the two groups.
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15.3 Aggregation-Based Graph Summarization

The graph summarization method we will discuss in this chapter is a database-
style graph aggregation approach [28]. This aggregation-based graph summarization
approach contains two operations.

The first operation, called SNAP (Summarization by Grouping Nodes on
Attributes and Pairwise Relationships), produces a summary graph of the input
graph by grouping nodes based on user-selected node attributes and relationships.
The SNAP summary for the graph in Fig. 15.2a is shown in Fig. 15.2b. This summary
contains four groups of students and the relationships between these groups. Stu-
dents in each group have the same gender and are in the same department, and they
relate to students belonging to the same set of groups with friends and classmates
relationships. This compact summary reveals the underlying characteristics about
the nodes and their relationships in the original graph.

The second operation, called k-SNAP, further allows users to control the resolu-
tions of summaries. This operation is pictorially depicted in Fig. 15.3. Here using
the slider, a user can “drill-down” to a larger summary with more details or “roll-up”
to a smaller summary with less details.

Fig. 15.3 Illustration of multi-resolution summaries

Next we describe the two operations in more detail and present algorithms to
evaluate the SNAP and k-SNAP operations.

15.3.1 SNAP Operation

The SNAP operation produces a summary graph through a homogeneous grouping
of the input graph’s nodes, based on user-selected node attributes and relationships.
Figure 15.2b shows an example summary graph for the original graph in Fig. 15.2a,
generated by the SNAP operation based on gender and department attributes, and
classmates and friends relationships.
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The summary graph produced by SNAP operation has to satisfy the following
three requirements:

Attributes Homogeneity: Nodes in each group have the same value for each
user-selected attribute.

Relationships Homogeneity: Nodes in each group connect to nodes belonging
to the same set of groups with respect to each type of user-selected rela-
tionships. For example, in Fig. 15.2b, every student (node) in group G2 is a
friend of some student(s) in G3, a classmate of some student(s) in G4, and has
at least a friend as well as a classmate in G1. By the definition of relationships
homogeneity, for each pair of groups in the result of the SNAP operation, if
there is a group relationship between the two, then every node in both groups
has to participate in this group relationship (i.e. every node in one group
connects to at least one node in the other group).

Minimality: The number of groups in the summary graph is the minimal among
all possible groupings that satisfy attributes homogeneity and relationships
homogeneity requirements.

There could be more than one grouping satisfying the attributes homogeneity
and relationships homogeneity requirements. In fact, the grouping in which each
node forms a group is always compatible with any given attributes and relationships
(see [28] for more details). The minimality requirement guarantees that the summary
graph is the most compact in size.

15.3.1.1 Evaluating SNAP Operation

The SNAP summary graph can be produced by the following top-down approach:

Top-down SNAP Approach

Step 1: Partition nodes based only on the user-selected attributes.
Step 2: Iteration Step

while a group breaks the relationships homogeneity requirement do
Split the group based on its relationships with other groups
end while

In the first step of the top-down SNAP approach, nodes in the original graph
are partitioned based only on the user-selected attributes. This step guarantees that
further splits of the grouping always satisfy the attributes homogeneity requirement.
For example, if nodes in a graph only have one attribute with values A, B, and
C, then the first step produces a partition of three groups with attribute values A,
B, and C, respectively, such as the example grouping shown in Fig. 15.4a. In the
iterative step, the algorithm checks whether the current grouping satisfies the rela-
tionships homogeneity requirement. If not, the algorithm picks a group that breaks
the requirement and splits this group based on how the nodes in this group connect
to nodes in other groups. In the example shown in Fig. 15.4a, group A (the group
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Fig. 15.4 An example of splitting a group based on its relationships with other groups in the
top-down SNAP approach

with attribute value A) does not satisfy the relationships homogeneity requirement:
the black nodes do not connect to any nodes in other groups, the shaded nodes only
connect to nodes in group B, while the gray nodes connect to both group B and
group C. This group is split based on how the nodes in this group connect to nodes
in other groups, which ends up with three subgroups containing black nodes, gray
nodes, and shaded nodes shown in Fig. 15.4b. In the next iteration, the algorithm
continues to check whether the new grouping satisfies the homogeneity require-
ment. If not, it selects and splits a group that breaks the requirement. The iterative
process continues until the current grouping satisfies the relationships homogeneity
requirement. It is easy to prove that the grouping resulting from this algorithm con-
tains the minimum number of groups satisfying both the attributes and relationships
homogeneity requirements.

15.3.2 k-SNAP Operation

15.3.2.1 Limitations of the SNAP Operation

The SNAP operation produces a grouping in which nodes of each group are homo-
geneous with respect to user-selected attributes and relationships. Unfortunately,
homogeneity is often too restrictive in practice, as most real life graph data are
subject to noise and uncertainty; for example, some edges may be missing, and
some edges may be spurious because of errors. Applying the SNAP operation on
noisy data can result in a large number of small groups, and, in the worst case, each
node may end up in an individual group. Such a large summary is not very useful
in practice. A better alternative is to let users control the sizes of the results to get
summaries with the resolutions that they can manage (as shown in Fig. 15.3).

The k-SNAP operation is introduced to relax the homogeneity requirement for
the relationships and allow users to control the sizes of the summaries.
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The relaxation of the homogeneity requirement for the relationships is based
on the following observation. For each pair of groups in the result of the SNAP
operation, if there is a group relationship between the two, then every node in both
groups participates in this group relationship. In other words, every node in one
group relates to some node(s) in the other group. On the other hand, if there is no
group relationship between two groups, then absolutely no relationship connects
any nodes across the two groups. However, in reality, if most (not all) nodes in the
two groups participate in the group relationship, it is often a good indication of a
“strong” relationship between the two groups. Likewise, it is intuitive to mark two
groups as being “weakly” related if only a small fraction of nodes are connected
between these groups.

Based on these observations, the k-SNAP operation relaxes the homogeneity
requirement for the relationships by not requiring that every node participates in
a group relationship. But it still maintains the homogeneity requirement for the
attributes, i.e., all the groupings should be homogeneous with respect to the given
attributes. Users control how many groups are present in the summary by specifying
the required number of groups, denoted as k. There are many different groupings of
size k, thus there is a need to measure the qualities of the different groupings. The
Δ-measure is proposed to assess the quality of a k-SNAP summary by examining
how different it is to a hypothetical “ideal summary.”

15.3.2.2 Measuring the Quality of k-SNAP Summaries

We first define the set of nodes in group Gi that participate in a group relationship
(Gi ,G j ) as PG j (Gi ) = {u|u ∈ Gi and ∃v ∈ G j s.t. (u, v) ∈ E}. Then we define the

participation ratio of the group relationship (Gi ,G j ) as pi, j = |PG j (Gi )|+|PGi (G j )|
|Gi |+|G j | .

For a group relationship, if its participation ratio is greater than 50%, we call it a
strong group relationship, otherwise, we call it a weak group relationship. Note that
in a SNAP summary, the participation ratios are either 100 or 0%.

Given a graph G, the Δ-measure of a grouping of nodes ! = {G1,G2, . . . ,Gk} is
defined as follows:

Δ(!) =
∑

Gi ,G j∈!
(δG j (Gi )+ δGi (G j )), (15.1)

where

δG j (Gi ) =
{
|PG j (Gi )| if pi, j ≤ 0.5

|Gi | − |PG j (Gi )| otherwise.
(15.2)

Note that if the graph contains multiple types of relationships, then the Δ value
for each edge type is aggregated as the final Δ value.

Intuitively, the Δ-measure counts the minimum number of differences in par-
ticipations of group relationships between the given k-SNAP grouping and a
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hypothetical ideal grouping of the same size in which all the strong relationships
have 100% participation ratio and all the weak relationships have 0% participation
ratio. The measure looks at each pairwise group relationship: If this group relation-
ship is weak (pi,k ≤ 0.5), then it counts the participation differences between this
weak relationship and a non-relationship (pi,k = 0); on the other hand, if the group
relationship is strong, it counts the differences between this strong relationship and
a 100% participation-ratio group relationship. The δ function, defined in (15.2),
evaluates the part of the Δ value contributed by a group Gi with one of its neigh-
bors G j in a group relationship. Note that δGi (Gi ) measures the contribution to the
Δ value by the connections within the group Gi itself.

Given this quality measure and the user-specified resolution k (i.e. number of
groups in the summary is k), the goal of the k-SNAP operation is to find the sum-
mary of size k with the best quality. However, this problem has been proved to be
NP-Complete [28]. Two heuristic-based algorithms are proposed to evaluate the
k-SNAP operation approximately.

Top-Down k-SNAP Approach

Similar to the top-down SNAP algorithm, the top-down k-SNAP approach also starts
from the grouping based only on attributes, and then iteratively splits existing groups
until the number of groups reaches k.

However, in contrast to the SNAP evaluation algorithm, which randomly chooses
a splittable group and splits it into subgroups based on its relationships with other
groups, the top-down approach has to make the following decisions at each iterative
step: (1) which group to split and (2) how to split it. Such decisions are critical
as once a group is split, the next step will operate on the new grouping. At each
step, the algorithm can only make the decision based on the current grouping. Each
step should make the smallest move possible, to avoid going too far away from the
right direction. Therefore, the algorithm splits one group into only two subgroups at
each iterative step. There are different ways to split one group into two. One natural
way is to divide the group based on whether nodes have relationships with nodes
in a neighbor group. After the split, nodes in the two new groups either all or never
participate in the group relationships with this neighbor group.

As discussed in Section 15.3.2.2, the k-SNAP operation tries to find the grouping
with a minimum Δ measure (see (15.1)) for a given k. The computation of the Δ

measure can be broken down into each group with each of its neighbors (see the δ

function in (15.2)). Therefore, our heuristic chooses the group that makes the most
contribution to the Δ value with one of its neighbor groups. More formally, for each
group Gi , we define CT (Gi ) as follows:

CT (Gi ) = max
G j

{δG j (Gi )}. (15.3)

Then, at each iterative step, we always choose the group with the maximum
CT value to split and then split it based on whether nodes in this group Gi have
relationships with nodes in its neighbor group Gt , where
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Gt = arg max
G j

{δG j (Gi )}.

The top-down k-SNAP approach can be summarized as follows:

Top-down k-SNAP Approach

Step 1: Partition nodes based only on the user selected attributes.
Step 2: Iteration Step

while the grouping size is less than k do
Find Gi with the maximum CT (Gi ) value
Split Gi based on its relationship with Gt = arg maxG j {δG j (Gi )}
end while

Bottom-Up k-SNAP Approach

The bottom-up approach first computes the SNAP summary using the top-down
SNAP approach. The SNAP summary is the summary with the finest resolution,
as the participation ratios of group relationships are either 100 or 0%. Starting from
the finest summary, the bottom-up approach iteratively merges two groups until the
number of groups reduces to k.

Choosing which two groups to merge in each iterative step is crucial for the
bottom-up approach. First, the two groups are required to have the same attribute
values. Second, the two groups must have similar group relationships with other
groups. Now, this similarity between two groups can be formally defined as
follows.

The two groups to be merged should have similar neighbor groups with similar
participation ratios. We define a measure called MergeDist to assess the similarity
between two groups in the merging process.

MergeDist (Gi ,G j ) =
∑

k �=i, j

|pi,k − p j,k |. (15.4)

MergeDist accumulates the differences in participation ratios between Gi

and G j with other groups. The smaller this value is, the more similar the two groups
are.

The bottom-up k-SNAP approach can be summarized as follows:

Bottom-up k-SNAP Approach

Step 1: Compute the SNAP summary using the top-down SNAP approach
Step 2: Iteration Step

while the grouping size is greater than k do
Find Gi and G j with the minimum MergeDist (Gi ,G j ) value
Merge Gi and G j

end while
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15.3.3 Top-Down k-SNAP Approach vs. Bottom-Up
k-SNAP Approach

In [28], extensive experiments show that the top-down k-SNAP approach signifi-
cantly outperforms the bottom-up k-SNAP approach in both effectiveness and effi-
ciency for small k values. In practice, users are more likely to choose small k values
to generate summaries. Therefore, the top-down approach is preferred for most prac-
tical uses.

15.4 An Example Application on Coauthorship Graphs

This section presents an example of applying the aggregation-based graph summa-
rization approach to analyze the coauthorship graph of database researchers. The
database researcher coauthorship graph is generated from the DBLP Bibliography
data [17] by collecting the publications of a number of selected journals and confer-
ences in the database area. The constructed coauthorship graph with 7445 authors
and 19,971 coauthorships is shown in Fig. 15.5. Each node in this graph represents
an author and has an attribute called PubNum, which is the number of publications
belonging to the corresponding author. Another attribute called Prolific is assigned
to each author in the graph indicating whether that author is prolific: authors with
≤ 5 papers are tagged as low prolific (LP), authors with > 5 but ≤ 20 papers are
prolific (P), and the authors with > 20 papers are tagged as highly prolific (HP).

Fig. 15.5 DBLP DB coauthorship graph
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Fig. 15.6 The SNAP result for DBLP DB coauthorship graph

The SNAP operation on the Prolific attribute and the coauthorships produces a
summary graph shown in Fig. 15.6. The SNAP operation results in a summary with
3569 groups and 11,293 group relationships. This summary is too big to analyze.
On the other hand, by applying the SNAP operation on only the Prolific attribute
(i.e., not considering any relationships in the SNAP operation), a summary with
only three groups is produced shown in the leftmost figure of Table 15.1. The bold
edges between two groups indicate strong group relationships (with more than 50%
participation ratio), while dashed edges are weak group relationships. This summary
shows that the HP researchers as a whole have very strong coauthorship with the P
group of researchers. Researchers within both groups also tend to coauthor with
people within their own groups. However, this summary does not provide a lot of
information for the LP researchers: they tend to coauthor strongly within their group
and they have some connection with the HP and P groups.

Now, making use of the k-SNAP operation, summaries with multiple resolutions
are generated. The figures in Table 15.1 show the k-SNAP summaries for k = 4, 5, 6,
and 7. As k increases, more details are shown in the summaries.

When k = 7, the summary shows that there are five subgroups of LP researchers.
One group of 1192 LP researchers strongly collaborates with both HP and P
researchers. One group of 521 only strongly collaborates with HP researchers. One
group of 1855 only strongly collaborates with P researchers. These three groups
also strongly collaborate within their groups. There is another group of 2497 LP
researchers that has very weak connections to other groups but strongly cooperates
among themselves. The last group has 761 LP researchers, who neither coauthor
with others within their own group nor collaborate strongly with researchers in other
groups. They often write single author papers.
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Now, in the k-SNAP summary for k = 7, we are curious if the average number
of publications for each subgroup of the LP researchers is affected by the coauthor-
ships with other groups. The above question can be easily answered by applying the
avg operation on the PubNum attribute for each group in the result of the k-SNAP
operation.

With this analysis, we find out that the group of LP researchers who collaborate
with both P and HP researchers has a high average number of publications: 2.24. The
group only collaborating with HP researchers has 1.66 publications on average. The
group collaborating with only the P researchers has on average 1.55 publications.
The group that tends to only cooperate among themselves has a low average number
of publications: 1.26. Finally, the group of mostly single authors has on average
only 1.23 publications. Not surprisingly, these results suggest that collaborating with
HP and P researchers is potentially helpful for the low prolific (often beginning)
researchers.

15.5 Scalability of the Graph Summarization Method

In this section, we take the top-down k-SNAP approach as an example to demon-
strate the scalability of the graph summarization method described in this chapter,
as it is more effective and efficient for most practical uses (see Section 15.3.3). More
comprehensive experimental results can be found in [28].

Most real-world graphs show power-law degree distributions and small-world
effect [20]. Therefore, the R-MAT model [9] in the GTgraph suites [2] is used
to generate synthetic graphs with power-law degree distributions and small-world
characteristics. The generator uses the default parameters values, and the average
node degree in each synthetic graph is set to 5. An attribute is also assigned to each
node in a generated graph. The domain of this attribute has five values. Each node
is assigned randomly one of the five values.

The top-down k-SNAP approach was implemented in C++ on top of
PostgreSQL(http://www.postgresql.org) and is applied to different sized synthetic
graphs with three resolutions (k values): 10, 100, and 1000. This experiment was
run on a 2.8 GHz Pentium 4 machine running Fedora 2, and equipped with a 250 GB
SATA disk. 512 MB of memory is allocated to the PostgreSQL database buffer pool,
and another 256 MB of additional memory is assigned as the working space outside
the database system.

The execution times with increasing graph sizes are shown in Fig. 15.7. When
k = 10, even on the largest graph with 1 million nodes and 2.5 million edges,
the top-down k-SNAP approach finishes in about 5 min. For a given k value, the
algorithm scales nicely with increasing graph sizes.

http://www.postgresql.org
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Fig. 15.7 Scalability experiment for synthetic data sets

15.6 Discussion

The example application and the experiments discussed above demonstrate the
effectiveness and efficiency of the SNAP/k-SNAP summarization technique. How-
ever, the SNAP/k-SNAP approach described above has limitations, which we dis-
cuss below.

Attributes with Large Value Ranges: As can be seen from the algorithms in Sec-
tion 15.3, the minimum summary size is bounded by the cardinality of the domain
of the user-selected attributes. More precisely, the summary size is bounded by the
actual number of distinct values in the graph data for the user-selected attributes.
If one of the user-selected attributes has a large number of distinct values in the
graph, then even the coarsest summary produced will be overwhelmingly large.
One approach to solving this problem is to bucketize the attribute values into a
small number of categories. One such approach is proposed in [30] to automatically
categorize attributes with large distinct values by exploiting the domain knowledge
hidden inside the node attributes values and graph link structures.

Large Number of Attributes: A related problem to the one discussed above is
when a user selects a large number of node attributes for summarization. Now the
attribute grouping in SNAP/K-SNAP has to be done over the cross-product of the
distinct values used in each attribute domain. This cross-product space can be large.
Bucketization methods can again be used in this case, though the problem is harder
than the single attribute case. This is an interesting topic for future work.

15.7 Related Topics

15.7.1 Graph Compression

The graph summarization method introduced in this chapter produces small and
informative summary graphs of the original graph. In some sense, these compact
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summary graphs can be viewed as (lossy) compressed representations of the original
graph, although the main goal of the summarization method we described is not to
reduce the number of bits needed to encode the original graph, but enabling better
understanding of the graph.

The related problem of graph compression has been extensively studied. Various
compression techniques for unlabeled planar graphs have been proposed [10, 12,
15] and are generalized to graphs with constant genus [18]. In [5], a technique is
proposed to compress unlabeled graphs based on the observation that most graphs in
practice have small separators (subgraphs can be partitioned into two approximately
equally sized parts by removing a relatively small number of vertices).

Due to the large scale of the web graph, a lot of attention has drawn to compress
the web graph. Most of the studies have focused on lossless compression of the web
graph so that the compact representation can be used to calculate measures such
as PageRank [8]. Bharat et al. [4] proposed a compression technique making use
of gaps between the nodes in the adjacency list. A reference encoding technique is
introduced in [22], based on the observation that often a new web page adds links
by copying links from an existing page. In this compression scheme, the adjacency
list of one node is represented by referencing the adjacency list of another node.
Alder and Mitzenmacher [1] proposed a minimum spanning tree-based algorithm
to find the best reference list for the reference encoding scheme. The compression
technique proposed in [27] takes advantage of the link structure of the web and
achieves significant compression by distinguishing links based on whether they are
inside or cross hosts, and by whether they are connecting popular pages or not. Boldi
and Vigna [6, 7] developed a family of simple flat codes, called ζ codes, which are
well suited for compressing power-law distributed data with small exponents. They
achieve high edge compression and scale well to large graphs.

Two recently proposed graph compression techniques that share similarities with
the graph summarization technique described in this chapter will be discussed in
detail below.

15.7.1.1 S-Node Representation of the Web Graph

The compression technique proposed in [21] compresses the web graph into a
S-Node representation. As exemplified in Fig. 15.8, the S-Node representation of
a web graph contains the following components:

SUPERNODE GRAPH: The supernode graph is essentially a summary graph of
the web graph, in which groups are called supernodes and group relation-
ships are called superedges.

INTRANODE GRAPHS: Each intranode graph (abbreviated as IN in Fig. 15.8)
characterizes the connections between the nodes inside a supernode.

POSITIVE SUPEREDGE GRAPHS: Each positive superedge graph (abbreviated
as PSE in Fig. 15.8) is a directed bipartite graph that represents the links
between two corresponding supernodes.
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Fig. 15.8 An example of S-Node representation (from [21])

NEGATIVE SUPEREDGE GRAPHS: Each negative superedge graph (abbrevi-
ated as NSE in Fig. 15.8) captures, among all possible links between two
supernodes, those that are absent from the actual web graph.

The compression technique in [21] employs a top-down approach to compute the
S-Node representation. This algorithm starts from a set of supernodes that are gen-
erated based on the URL domain names, then iteratively splits an existing supernode
by exploiting the URL patterns of the nodes inside this supernode and their links to
other supernodes. However, different from the graph summarization method intro-
duced in this chapter, this approach is specific to the web graph, thus are not directly
applicable to other problem domains. Furthermore, since this approach aims at com-
pressing the web graph, only one compressed S-Node representation is produced.
Users have no control over the resolution of the summary graph.

15.7.1.2 MDL Representation of Graphs

Similar to the S-Node method described above, the technique proposed in [19] also
compresses a graph into a summary graph. To reconstruct the original graph, a set
of edge corrections are also produced. Figure 15.9 shows a sample graph G and its
summary graph S with the set of edge corrections C .

Fig. 15.9 An example of MDL-based summary: G is the original graph, S is the summary graph,
and C is the set of edge corrections (from [25])
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The original graph can be reconstructed from the summary graph by first
adding an edge between each pair of nodes whose corresponding supernodes
are connected by an superedge, then applying the edge corrections to remove
non-existent edges from or add missing edges to the reconstructed graph. For
example, to reconstruct the original graph in Fig. 15.9, the summary graph S
is first expanded (now V = {a, b, c, d, e, f, g, h} and E = {(a, b), (a, c),
(a, h), (a, g), (b, c), (h, d), (h, e), (h, f ), (g, d), (g, e), (g, f )}), then the set of
corrections in C are applied: adding the edge (a, e) to E and removing the edge
(g, d) from E .

Essentially, this proposed representation is equivalent to the S-Node representa-
tion described above. The intranode graphs, positive superedge graphs, and neg-
ative superedge graphs in the S-Node representation, collectively, can produce
the edge corrections needed to reconstruct the original graph from the summary
graph.

Based on Rissanen’s minimum description length (MDL) principle [25], the
authors in [19] formulated the graph compression problem into an optimization
problem, which minimizes the sum of the size of the summary graph (the theory)
and the size of the edge correction set (encoding of the original graph based on the
theory). The representation with the minimum cost is called the MDL representa-
tion.

Two heuristic-based algorithms are proposed in [19] to compute the MDL repre-
sentation of a graph. Both algorithms apply a bottom-up scheme: starting from the
original graph and iteratively merging node pairs into supernodes until no further
cost reduction can be achieved. The two algorithms differ in the policy of choos-
ing which pair of nodes should merge in each iteration. The GREEDY algorithm
always chooses the node pairs that give the maximum cost reduction, while the
RANDOMIZED algorithm randomly picks a node and merges it with the best node
in its vicinity.

The MDL representation can exactly reconstruct the original graph. However, for
many applications, recreating the exact graph is not necessary. It is often adequate
enough to construct a graph that is reasonably close to the original graph. As a result,
the ε-approximate MDL representation is proposed to reconstruct the original graph
within the user-specified bounded error ε (0 ≤ ε ≤ 1).

To compute the ε-approximate MDL representation with the minimum cost,
two heuristic-based algorithms are proposed in [19]. The first algorithm, called
APXMDL, modifies the exact MDL representation by deleting corrections and
summary edges while still satisfying the approximation constraint. The second
algorithm, called APXGREEDY, incorporates the approximation constraint into the
GREEDY algorithm, and constructs the ε-approximate representation directly from
the original graph.

The key difference between this MDL-based approach and the SNAP/k-SNAP
summarization approach is that the MDL method does not consider node attributes
or multiple relationships in the summarization process and it does not allow users
to control the resolutions of summaries.
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15.7.2 Graph Visualization

Graph visualization methods are primarily designed to better layout a graph on a
computer screen so that it is easier for users to understand the graph by visual inspec-
tion. Various graph drawing techniques are surveyed in [3]. However, as graphs
become large, displaying an entire graph on the limited computer screen is challeng-
ing, both from the usability and the visual performance perspectives. To overcome
the problems raised by the large graph sizes, navigation, interaction and, summa-
rization techniques are often incorporated into graph visualization tools [13]. One
common summarization technique used in graph visualization is structure-based
clustering. Clustering provides abstraction of the original graph, and reduces the
visual complexity. Graph visualization systems, such as [14, 24, 29], have applied
clustering techniques to improve visualization clarity and at the same time increase
performance of layout and rendering. The SuperGraph approach introduced in [26]
employs a hierarchical graph partitioning technique to visualize large graphs in
different resolution. In fact, the graph summarization technique introduced in this
chapter can be coupled with visualization techniques to provide better understanding
of large graphs.

15.8 Summary

This chapter studies an aggregation-based summarization method, which produces
compact and informative graphs as the summaries of the original graphs. The sum-
mary graphs characterize the high-level structure embedded in the original graphs by
aggregating nodes and edges from the original graph into node groups (supernodes)
and group relationships (superedges), respectively. This summarization method uti-
lizes the graph structure as well as user-specified node attributes and relationships
to generate multi-resolution summaries. The users can interactively “drill-down” or
“roll-up” to navigate through summaries with different resolution. Graph summa-
rization is related to graph compression and can be coupled with graph visualization
methods to enable better understanding of large graphs.
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Chapter 16
InfoNetOLAP: OLAP and Mining
of Information Networks

Chen Chen, Feida Zhu, Xifeng Yan, Jiawei Han, Philip Yu,
and Raghu Ramakrishnan

Abstract Databases and data warehouse systems have been evolving from han-
dling normalized spreadsheets stored in relational databases to managing and ana-
lyzing diverse application-oriented data with complex interconnecting structures.
Responding to this emerging trend, information networks have been growing rapidly
and showing their critical importance in many applications, such as the analysis of
XML, social networks, Web, biological data, multimedia data, and spatiotemporal
data. Can we extend useful functions of databases and data warehouse systems to
handle network structured data? In particular, OLAP (On-Line Analytical Process-
ing) has been a popular tool for fast and user-friendly multi-dimensional analysis of
data warehouses. Can we OLAP information networks and perform mining tasks
on top of that? Unfortunately, to our best knowledge, there are no OLAP tools
available that can interactively view and analyze network structured data from dif-
ferent perspectives and with multiple granularities. In this chapter, we argue that
it is critically important to OLAP such information network data and propose a
novel InfoNetOLAP framework. According to this framework, given an information
network data set with its nodes and edges associated with respective attributes, a
multi-dimensional model can be built to enable efficient on-line analytical process-
ing so that any portions of the information networks can be generalized/specialized
dynamically, offering multiple, versatile views of the data set. The contributions of
this work are threefold. First, starting from basic definitions, i.e., what are dimen-
sions and measures in the InfoNetOLAP scenario, we develop a conceptual frame-
work for data cubes constructed on the information networks. We also look into
different semantics of OLAP operations and classify the framework into two major
subcases: informational OLAP and topological OLAP. Second, we show how an
information network cube can be materialized by calculating a special kind of mea-
sure called aggregated graph and how to implement it efficiently. This includes
both full materialization and partial materialization where constraints are enforced
to obtain an iceberg cube. As we can see, due to the increased structural complexity
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of data, aggregated graphs that depend on the underlying “graph” properties of the
information networks are much harder to compute than their traditional OLAP coun-
terparts. Third, to provide more flexible, interesting, and insightful OLAP of infor-
mation networks, we further propose a discovery-driven multi-dimensional analysis
model to ensure that OLAP is performed in an intelligent manner, guided by expert
rules and knowledge discovery processes. We outline such a framework and discuss
some challenging research issues for discovery-driven InfoNetOLAP.

16.1 Introduction

OLAP (On-Line Analytical Processing) [2, 7, 11, 12, 31] is an important notion in
data analysis. Given the underlying data, a cube can be constructed to provide a
multi-dimensional and multi-level view, which allows for effective analysis of the
data from different perspectives and with multiple granularities. The key operations
in an OLAP framework are slice/dice and roll-up/drill-down, with slice/dice focus-
ing on a particular aspect of the data, roll-up performing generalization if users only
want to see a concise overview, and drill-down performing specialization if more
details are needed.

In a traditional data cube, a data record is associated with a set of dimensional
values, whereas different records are viewed as mutually independent. Multiple
records can be summarized by the definition of corresponding aggregate measures
such as COUNT, SUM, and AVERAGE. Moreover, if a concept hierarchy is asso-
ciated with each attribute, multi-level summaries can also be achieved. Users can
navigate through different dimensions and multiple hierarchies via roll-up, drill-
down, and slice/dice operations. However, in recent years, more and more data
sources beyond conventional spreadsheets have come into being, such as chemi-
cal compounds or protein networks (chem/bio-informatics), 2D/3D objects (pattern
recognition), circuits (computer-aided design), XML (data with loose schema), and
Web (human/computer networks), where not only individual entities but also the
interacting relationships among them are important and interesting. This demands
a new generation of tools that can manage and analyze such data.

Given their great expressive power, information networks have been widely used
for modeling a lot of data sets that contain structure information. With the tremen-
dous amount of information network data accumulated in all above applications,
the same need to deploy analysis from different perspectives and with multiple
granularities exists. To this extent, our main task in this chapter is to develop an
InfoNetOLAP framework, which presents a multi-dimensional and multi-level view
over information networks.

In order to illustrate what we mean by “InfoNetOLAP” and how the OLAP glos-
sary is interpreted with regard to this new scenario, let us start from a few examples.

Example 1 (Collaboration Patterns) There are a set of authors working in a given
field: For any two persons, if they coauthor w papers in a conference, e.g.,
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SIGMOD 2004, then a link is added between them, which has a collaboration fre-
quency attribute that is weighted as w. For every conference in every year, we may
have a coauthor network describing the collaboration patterns among researchers;
each of them can be viewed as a snapshot of the overall coauthor network in a bigger
context.

It is interesting to analyze the aforementioned network data set in an OLAP
manner. First, one may want to check the collaboration patterns for a group of
conferences, say, all DB conferences in 2004 (including SIGMOD, VLDB, ICDE,
etc.) or all SIGMOD conferences since the year it was introduced. In the language
of data cube, with a venue dimension and a time dimension, one may choose to
obtain the (db-conf, 2004) cell and the (sigmod, all-years) cell, where the venue
and time dimensions have been generalized to db-conf and all-years, respectively.
Second, for the subset of snapshots within each cell, one can summarize them by
computing a measure as we did in traditional OLAP. In the InfoNetOLAP context,
this gives rise to an aggregated graph. For example, a summary network displaying
total collaboration frequencies can be achieved by overlaying all snapshots together
and summing up the respective edge weights, so that each link now indicates two
persons’ collaboration activities in the DB conferences of 2004 or during the whole
history of SIGMOD. �

The above example is simple because the measure is calculated by a simple sum
over individual pieces of information. A more complex case is presented next.

Example 2 (Maximum Flow) Consider a set of cities connected by transportation
networks. In general, there are many ways to go from one city A to another city B,
e.g., by bus, by train, by air, by water, and each is operated by multiple companies.
For example, we can assume that the capacity of company x’s air service from A
to B is cx

AB , i.e., company x can transport at most cx
AB units of cargo from A to B

using the planes it owns. Finally, we get a snapshot of capacity network for every
transportation means of every company.

Now, consider the transporting capability from a source city S to a destination
city T ; it is interesting to see how this value can be achieved by sending flows
of cargo through different paths if (1) we only want to go by air or (2) we only
want to choose services operated by company x . In the OLAP language, with a
transportation-type dimension and a company dimension, the above situations cor-
respond to the (air, all-companies) cell and the (all-types, company x) cell, while the
measure computed for a cell c is a graph displaying how the maximum flow can be
configured, which has considered all transportation means and operating companies
associated with c. Unlike Example 1, computing the aggregated graph of maximum
flow is now a much harder task; also, the semantics associated with un-aggregated
network snapshots and aggregated graphs are different: The former shows capacities
on its edges, whereas the latter shows transmitted flows, which by definition must
be smaller. �

Example 3 (Collaboration Patterns, Revisited) Usually, the whole coauthor network
could be too big for the users to comprehend, and thus it is desirable to look at a
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more compressed view. For example, one may like to see the collaboration activities
organized by the authors’ associated affiliations, which requires the network to be
generalized one step up, i.e., merging all persons in the same institution as one node
and constructing a new summary graph at the institution level. In this “general-
ized network”, for example, an edge between Stanford and University of Wisconsin
will aggregate all collaboration frequencies incurred between Stanford authors and
Wisconsin authors. Similar to Examples 1 and 2, an aggregated graph (i.e., the
generalized network defined above) is taken as the OLAP measure. However, the
difference here is that a roll-up from the individual level to the institution level
is achieved by consolidating multiple nodes into one, which shrinks the original
network. Compared to this, the graph in Examples 1 and 2 is not collapsed because
we are always examining the relationships among the same set of objects; it poses
minimum changes with regard to network topology upon generalization. �

The above examples demonstrate that OLAP provides a powerful primitive to
examine information networks. In this chapter, we will give a systematic study
on InfoNetOLAP, which is more general than the traditional OLAP: In addition
to individual entities, the mutual interactions among them are also considered in the
analytical process. Our major contributions are summarized below.

1. On conceptual modeling, an InfoNetOLAP framework is developed, which
defines dimensions and measures in the information network context, as well
as the concept of multi-dimensional and multi-level analysis over network struc-
tured data. We distinguish different semantics of OLAP operations and catego-
rize them into two major subcases: informational OLAP (as shown in Examples 1
and 2) and topological OLAP (as shown in Example 3). It is necessary since
these two kinds of OLAP demonstrate substantial differences with regard to the
construction of data cubes over information networks.

2. On efficient implementation, the computation of aggregated graphs as
InfoNetOLAP measures is examined. Due to the increased structural complex-
ity of data, calculating certain measures that are closely tied with the “graph”
properties of the information networks, e.g., maximum flow, centrality, poses
greater challenges than their traditional OLAP counterparts, such as COUNT,
SUM, and AVERAGE. We investigate this issue, categorize measures based on
the difficulty to compute them in the OLAP context, and suggest a few measure
properties that might help further optimize processings. Both full materialization
and partial materialization (where constraints are enforced to obtain an iceberg
cube) are discussed.

3. On utilizing the framework for knowledge discovery, we propose discovery-
driven InfoNetOLAP, so that interesting patterns and knowledge can be effec-
tively discovered. After presenting the general ideas, we outline a list of guiding
principles and discuss some associated research problems. Being part of an ongo-
ing project, it opens a promising path that could potentially lead to more flexible
and insightful OLAP of information networks, which we shall explore further in
future works.
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The remainder of this chapter is organized as follows. In Section 16.2, we for-
mally introduce the InfoNetOLAP framework. Section 16.3 discusses the general
hardness to compute aggregated graphs as InfoNetOLAP measures, which catego-
rizes them into three classes. Section 16.4 looks into some properties of the mea-
sures and proposes a few computational optimizations. Constraints and partial mate-
rialization are studied in Section 16.5. Discovery-driven InfoNetOLAP is covered
in Section 16.6. We report experiment results and related work in Sections 18.7 and
16.8, respectively. Section 16.9 concludes this study.

16.2 An InfoNetOLAP Framework

In this section, we present the general framework of InfoNetOLAP.

Definition 1 (Information Network Model) We model the data examined by InfoNe-
tOLAP as a collection of network snapshots G = {G1,G2, . . . ,GN }, where each
snapshot Gi = (I1,i , I2,i , . . . , Ik,i ;Gi ) in which I1,i , I2,i , . . . , Ik,i are k informa-
tional attributes describing the snapshot as a whole and Gi = (Vi , Ei ) is a graph.
There are also node attributes attached with any v ∈ Vi and edge attributes attached
with any e ∈ Ei . Note that since G1,G2, . . . ,GN only represent different observa-
tions, V1, V2, . . . , VN actually correspond to the same set of objects in real applica-
tions.

For instance, with regard to the coauthor network described in the introduction,
venue and time are two informational attributes that mark the status of individual
snapshots, e.g., SIGMOD 2004 and ICDE 2005, authorID is a node attribute indicat-
ing the identification of each node, and collaboration frequency is an edge attribute
reflecting the connection strength of each edge.

Dimension and measure are two concepts that lay the foundation of OLAP
and cubes. As their names imply, first, dimensions are used to construct a cuboid
lattice and partition the data into different cells, which act as the basis for
multi-dimensional and multi-level analysis; second, measures are calculated to
aggregate the data covered, which deliver a summarized view of it. Below, we
are going to formally re-define these two concepts concerning the InfoNetOLAP
scenario.

Let us examine dimensions at first. Actually, there are two types of dimensions
in InfoNetOLAP. The first one, as exemplified by Example 1, utilizes informational
attributes attached at the whole snapshot level. Suppose the following concept hier-
archies are associated with venue and time:

• venue: conference→ area→ all,
• time: year→ decade→ all;

the role of these two dimensions is to organize snapshots into groups based on
different perspectives, e.g., (db-conf, 2004) and (sigmod, all-years), where each of
these groups corresponds to a “cell” in the OLAP terminology. They control what
snapshots are to be looked at, without touching the inside of any single snapshot.
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Definition 2 (Informational Dimensions) With regard to the information network
model presented in Definition 1, the set of informational attributes {I1, I2, . . . , Ik}
are called the informational dimensions of InfoNetOLAP, or Info-Dims in short.

The second type of dimensions is provided to operate on nodes and edges within
individual networks. Take Example 3 for instance; suppose the following concept
hierarchy

• authorID: individual→ department→ institution→ all

is associated with the node attribute authorID, then it can be used to group authors
from the same institution into a “generalized” node, and a new network thus formed
will depict interactions among these groups as a whole, which summarizes the orig-
inal network and hides specific details.

Definition 3 (Topological Dimensions) The set of dimensions coming from the
attributes of topological elements (i.e., nodes and edges of Gi ), {T1, T2, . . . , Tl},
are called the topological dimensions of InfoNetOLAP, or Topo-Dims in short.

The OLAP semantics accomplished through Info-Dims and Topo-Dims are
rather different, and in the following we shall refer to them as informational OLAP
(abbr. I-OLAP) and topological OLAP (abbr. T-OLAP), respectively.

For roll-up in I-OLAP, the characterizing feature is that snapshots are just differ-
ent observations of the same underlying network, and thus when they are all grouped
into one cell in the cube, it is like overlaying multiple pieces of information, without
changing the objects whose interactions are being looked at.

For roll-up in T-OLAP, we are no longer grouping snapshots, and the reorgani-
zation switches to happen inside individual networks. Here, merging is performed
internally which “zooms out” the user’s focus to a “generalized” set of objects, and
a new information network formed by such shrinking might greatly alter the original
network’s topological structure.

Now we move on to measures. Remember that, in traditional OLAP, a measure
is calculated by aggregating all the data tuples whose dimensions are of the same
values (based on concept hierarchies, such values could range from the finest un-
generalized ones to “all/*”, which form a multi-level cuboid lattice); casting this to
our scenario here:

First, in InfoNetOLAP, the aggregation of graphs should also take the form of
a graph, i.e., an aggregated graph. In this sense, graph can be viewed as a special
existence, which plays a dual role: as a data source and as an aggregated measure.
Of course, other measures that are not graphs, such as node count, average degree,
diameter, can also be calculated; however, we do not explicitly include such non-
graph measures in our model, but instead treat them as derived from corresponding
graph measures.

Second, due to the different semantics of I-OLAP and T-OLAP, aggregating data
with identical Info-Dim values groups information among the snapshots, whereas
aggregating data with identical Topo-Dim values groups topological elements inside
individual networks. As a result, we will give a separate measure definition for each
case below.
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Definition 4 (I-Aggregated Graph) With regard to Info-Dims {I1, I2, . . . , Ik}, the
I-aggregated graph M I is an attributed graph that can be computed based on a set
of network snapshots G′ = {Gi1,Gi2 , . . . ,GiN ′ } whose Info-Dims are of identical
values; it satisfies the following: (1) the nodes of M I are as same as any snapshot
in G′, and (2) the node/edge attributes attached to M I are calculated as aggregate
functions of the node/edge attributes attached to Gi1 , Gi2 , . . . , GiN ′ .

The graph in Fig. 16.1 that describes collaboration frequencies among individual
authors for a particular group of conferences during a particular period of time is an
instance of I-aggregated graph, and the interpretation of classic OLAP operations
with regard to InfoNet I-OLAP is summarized as follows:

• Roll-up: Overlay multiple snapshots to form a higher-level summary via I-
aggregated graph.

• Drill-down: Return to the set of lower-level snapshots from the higher-level over-
laid (aggregated) graph.

• Slice/dice: Select a subset of qualifying snapshots based on Info-Dims.

Fig. 16.1 The OLAP scenario for Example 1
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Definition 5 (T-Aggregated Graph) With regard to Topo-Dims {T1, T2 . . . , Tl}, the
T-aggregated graph MT is an attributed graph that can be computed based on an
individual network Gi ; it satisfies the following: (1) the nodes in Gi that have iden-
tical values on their Topo-Dims are grouped, whereas each group corresponds to
a node of MT , and (2) the attributes attached to MT are calculated as aggregate
functions of the attributes attached to Gi .

The graph in Fig. 16.2 that describes collaboration frequencies among institu-
tions is an instance of T-aggregated graph, and the interpretation of classic OLAP
operations with regard to InfoNet T-OLAP is summarized as follows:

• Roll-up: Shrink the network topology and obtain a T-aggregated graph that dis-
plays compressed views. Topological elements (i.e., nodes and/or edges) are
merged and replaced by corresponding higher-level ones during the process.

• Drill-down: A reverse operation of roll-up.
• Slice/dice: Select a subgraph of the network based on Topo-Dims.

Fig. 16.2 The OLAP scenario for Example 3

16.3 Measure Classification

Now, with a clear concept of dimension, measure, and possible OLAP operations,
we are ready to discuss implementation issues, i.e., how to compute the aggregated
graph in a multi-dimensional and multi-level way.

Recall that in traditional OLAP, measures can be classified into distributive, alge-
braic, and holistic, depending on whether the measures of high-level cells can be
easily computed from their low-level counterparts, without accessing base tuples
residing at the finest level. For instance, in the classic sale(time, location) example,
the total sale of [2008, California] can be calculated by adding up the total sales
of [January 2008, California], [February 2008, California], . . ., [December 2008,
California], without looking at base data points such as [04/12/2008, Los Angeles],
which means that SUM is a distributive measure. Compared to this, AVG has been
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used to illustrate algebraic measures, which is actually a semi-distributive category
in that AVG can be derived from two distributive measures: SUM and COUNT, i.e.,
algebraic measures are functions of distributive measures.

(Semi-)distributiveness is a nice property for top-down cube computation, where
the cuboid lattice can be gradually filled up by making level-by-level aggregations.
Measures without this property is put into the holistic category, which is intuitively
much harder to calculate. Now, concerning InfoNetOLAP, based on similar criteria
with regard to the aggregated graphs, we can also classify them into three categories.

Definition 6 (Distributive, Algebraic, and Holistic) Consider a high-level cell
ch and the corresponding low-level cells it covers: c1

l , c2
l , . . .. An aggregated

graph Md is distributive if Md(ch) can be directly computed as a function of
Md(c1

l ), Md(c2
l ), . . ., i.e.,

Md(ch) = Fd
[
Md(c

1
l ), Md(c

2
l ), . . .

]
.

For a non-distributive aggregated graph Ma , if it can be derived from some other
distributive aggregated graphs M1

d , M2
d , . . ., i.e., for ∀ch ,

Ma(ch) = Fa
[
M1

d (ch), M2
d (ch), . . .

]
,

then we say that it is algebraic. Aggregated graphs that are neither distributive nor
algebraic belong to the holistic category.

If we further distinguish between I-OLAP and T-OLAP, there are actually
six classes: I-distributive, I-algebraic, I-holistic and T-distributive, T-algebraic,
T-holistic. Because of their wide differences with regard to semantics as well as
implementation, let us first focus on InfoNet I-OLAP.
I-Distributive. The I-aggregated graph describing collaboration frequency in Exam-
ple 1 is an I-distributive measure, because the frequency value in a high-level I-
aggregated graph can be calculated by simply adding those in corresponding low-
level I-aggregated graphs.
I-Algebraic. The graph displaying maximum flow configuration in Example 2 is
an I-algebraic measure based on the following reasoning. Suppose transportation
type and company comprise the two dimensions of a cube, and we generalize from
low-level cells (all-types, company 1), (all-types, company 2), . . . to (all-types, all-
companies), i.e., compute the maximum flow based on all types of transportation
operated by all companies. Intuitively, this overall maximum flow would not be a
simple sum (or other indirect manipulations) of each company’s individual max-
imum flows. For instance, company 1 may have excessive transporting capability
between two cities, whereas the same link happens to be a bottleneck for company
2: Considering both companies together for determination of the maximum flow can
enable capacity sharing and thus create a double-win situation. In this sense, maxi-
mum flow is not distributive by definition. However, as an obvious fact, maximum
flow f is decided by the network c that shows link capacities on its edges, and this
capacity graph is distributive because it can be directly added upon generalization:
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When link sharing is enabled, two separated links from A to B, which are operated
by different companies and have capacities c1

AB and c2
AB , respectively, are no differ-

ent from a single link with capacity c1
AB + c2

AB , considering their contributions to
the flow value. Finally, being a function of distributive aggregated graphs, maximum
flow is algebraic.
I-holistic. The I-holistic case involves a more complex aggregated graph, where
base-level details are required to compute it. In the coauthor network of Example
1, the median of researchers’ collaboration frequency for all DB conferences from
1990 to 1999 is holistic, similar to what we have seen in a traditional data cube.

Based on the same classification criteria, considering InfoNet T-OLAP,
T-distributive, T-algebraic, and T-holistic aggregated graphs also exist. As an exam-
ple, we will prove below that the measure graph showing degree centralities of
vertices in a social network G is T-algebraic, where the degree centrality CD(v)

of a vertex v is equivalent to the number of edges that connect v to other vertices
in G.

Suppose we are performing topological roll-up operations on the coauthor net-
work as we did in Fig. 16.2, and we are going from the individual level to the
department level and then to the institution level. Here, we count each coauthored
publication as an edge; so, if the collaboration frequency of two persons is 4, it
means that there are four edges. Now, consider a set of vertices V = {v1, v2, . . . , vs}
that belong to the same node group and thus will be merged together into a single
vertex v′ by T-OLAP operations; it is easy to verify that

CD(v′) =
∑

1≤i≤s

CD(vi )− 2|EV |,

where EV is the number of edges that have both their ends in V . Figure 16.3 is an
illustration of the computation process. In G ′′, it can be seen that CD(v′) is a total of
4, 2, 5, and 3, which is 14. We can get this number directly from the original network
G by the given formula

∑
1≤i≤s CD(vi )−2|EV | = (3+8+3+7+10+11+7+5+

6)−2(2+3+3+1+2+4+1+2+4+1) = 14, while we can also leverage results
obtained from the intermediate network G ′: (8+12+14)−2(3+1+6) = 14. Since
the computational cost is O(s + |EV |), where s = |V | is the number of vertices in
V , this example demonstrates that the computation cost can be greatly reduced by
following the top-down materialization order and taking advantage of results that
are already computed along the way, as G ′ has much less vertices than G.

16.4 Optimizations

Being (semi-)distributive or holistic tells us whether the aggregated graph computa-
tion needs to start from completely un-aggregated data or some intermediate results
can be leveraged. However, even if the aggregated graph is distributive or algebraic,
and thus we can calculate high-level measures based on some intermediate-level
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Fig. 16.3 Computing degree centrality

ones, it is far from enough, because the complexity to compute the two functions Fd

and Fa in Definition 6 is another question. Think about the maximum flow example
we just mentioned; Fa takes the distributive capacity graph as input to compute the
flow configuration, which is by no means an easy transformation.

Based on our analysis, there are mainly two reasons for such potential difficulties.
First, due to the interconnecting nature of graphs, the computation of many informa-
tion network properties is “global” as it requires us to take the whole network into
consideration. In order to make this concept of globalness clear, let us first look at a
“local” situation: For I-OLAP, aggregated graphs are built for the same set of objects
as the underlying network snapshots; now, in the aggregated graph of Example 1,
“R. Agrawal” and “R. Srikant”’s collaboration frequency for cell (db-conf, 2004)
is locally determined by “R. Agrawal” and “R. Srikant”’s collaboration frequency
for each of the DB conferences held in 2004; it does not need any information
from the other authors to fulfill the computation. This is an ideal scenario, because
the calculations can be localized and thus greatly simplified. Unfortunately, not all
measures provide such local properties. For instance, in order to calculate a maxi-
mum flow from S to T for the cell (air, all-companies) in Example 2, only knowing
the transporting capability of each company’s direct flights between S and T is not
enough, because we can always take an indirect route via some other cities to reach
the destination.

Second, the purpose for us to compute high-level aggregated graphs based on
low-level ones is to reuse the intermediate calculations that are already performed.
Taking I-OLAP for example, when computing the aggregated graph of a low-level
cell ci

l (i = 1, 2, . . .), we only had a partial view about the ci
l -portion of network
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snapshots; now, as multiple pieces of information are overlaid into the high-level
cell ch , some full-scale consolidation needs to be performed, which is very much
like the merge sort procedure, where partial ranked lists are reused but somehow
adjusted to form a full ranked list. Still, because of the structural complexity, it
is not an easy task to develop such reuse schemes for information networks, and
even if it is possible, reasonably complicated operations might be involved. Similar
problems exist for InfoNet T-OLAP as well.

Admitting the difficulties above, let us now investigate the possibility to alleviate
them. As we have seen, for some aggregated graphs, the first aspect can be helped by
their localization properties with regard to network topology. Concerning the second
aspect, the key is how to effectively reuse partial results computed for intermediate
cells so that the workload to obtain a full-scale measure is attenuated as much as
possible. In the following, we are going to examine these two directions in sequel.

16.4.1 Localization

Definition 7 (Localization in InfoNet I-OLAP) For an I-aggregated graph M I
l that

summarizes a group of network snapshots G′ = {Gi1 ,Gi2 , . . . ,GiN ′ }, if (1) we
only need to check a neighborhood of v in Gi1 , Gi2 , . . . , GiN ′ to calculate v’s
node attributes in M I

l , and (2) we only need to check a neighborhood of u, v in
Gi1 , Gi2 , . . . , GiN ′ to calculate (u, v)’s edge attributes in M I

l , then the computation
of M I

l is said to be I-OLAP localizable.

Example 4 (Common Friends) With regard to the coauthor network depicted in
Example 1, we can also compute the following aggregated graph: Given two authors
a1 and a2, the edge between them records the number of their common “friends”,
whereas in order to build such “friendship”, the total collaboration frequency
between two researchers must surpass a δc threshold for the specified conferences
and time. �

The above example provides another instance that leverages localization to pro-
mote efficient processing. Consider a cell, e.g., (db-conf, 2004), the determination
of the aggregated graph’s a1-a2 edge can be restricted to a 1-neighborhood of these
two authors in the un-aggregated snapshots of 2004’s DB conferences, i.e., we only
need to check edges that are directly adjacent to either a1 or a2, and in this way a
third person a3 can be found, if he/she publishes with both a1 and a2, while the total
collaboration frequency summed from the weights of these adjacent edges is at least
δc. Also, note that the above aggregated graph definition is based on the number of
length-2 paths like a1-a3-a2 where each edge of it represents a “friendship” relation;
now, if we further allow the path length to be at most k, computations can still be
localized in a 2 k

23-neighborhood of both authors, i.e., any relevant author on such
paths of “friendship” must be reachable from either a1 or a2 within 2 k

23 steps. This
can be seen as a situation that sits in the middle of Example 1’s “absolute locality”
(0-neighborhood) and maximum flow’s “absolute globality” (∞-neighborhood).
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There is an interesting note we want to put for the absolutely local distributive
aggregated graph of Example 1. Actually, such a 0-neighborhood localization prop-
erty degenerates the scenario to a very special case, where it is no longer necessary
to assume the underlying data as an information network: For each pair of coau-
thors, we can construct a traditional cube showing their collaboration frequency
“OLAPed” with regard to venue and time, whose computation does not depend on
anything else in the coauthor network. In this sense, we can treat the coauthor net-
work as a union of pairwise collaboration activities, whereas Example 1 can indeed
be thought as a traditional OLAP scenario disguised under its information network
appearances, because the cube we constructed here is nothing different from a col-
lection of pairwise traditional cubes. As a desirable side effect, this enables us to
leverage specialized technologies that are developed for traditional OLAP, which in
general could be more efficient. Nevertheless, the case is special, anyway: Absolute
localization would not hold for most information network measures, which is also
the reason why traditional OLAP proves to be extremely restricted when handling
network data.

The corresponding definition of localization in InfoNet T-OLAP is given as fol-
lows, and it can be easily proved that the degree centrality we have discussed above
is 1-neighborhood T-OLAP localizable.

Definition 8 (Localization in InfoNet T-OLAP) For a T-aggregated graph MT
l

where a vertex v′ of it represents a group of nodes V = {v1, v2, . . . , vs} of the
original network Gi , if (1) we only need to check a neighborhood of v1, v2, . . . in
Gi to calculate v′’s node attributes in MT

l , and (2) we only need to check a neigh-
borhood of u1, u2, . . . and v1, v2, . . . in Gi to calculate (u′, v′)’s edge attributes in
MT

l , then the computation of MT
l is said to be T-OLAP localizable.

16.4.2 Attenuation

Below, we are going to explain the idea of attenuation through examples, and the
case we pick is maximum flow. In a word, the more partial results from intermediate
calculations are utilized, the more we can decrease the cost of obtaining a full-scale
aggregated graph.

To begin with, let us first review some basic concepts, cf. [8]. Given a directed
graph G = (V, E), c : (V

2

) → R≥0 indicates a capacity for all pairs of vertices
and E is precisely the set of vertex pairs for which c > 0. For a source node s
and a destination node t , a flow in G is a function f : (V

2

) → R assigning values
to graph edges such that (i) f (u, v) = − f (v, u): skew symmetry, (ii) f (u, v) ≤
c(u, v): capacity constraint, and (iii) for each v �= s/t,

∑
u∈V f (u, v) = 0: flow

conservation. Since most maximum flow algorithms work incrementally, there is an
important lemma as follows.

Lemma 1 Let f be a flow in G and let G f be its residual graph, where residual
means that the capacity function of G f is c f = c − f ; now, f ′ is a maximum flow
in G f if and only if f + f ′ is a maximum flow in G.
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Note that the +/− notation here means edge-by-edge addition/subtraction; and
in summary, this lemma’s core idea is to look for a flow f ′ in G f and use f ′ to
augment the current flow f in G.

For the InfoNetOLAP context we consider, in order to compute the algebraic
aggregated graph displaying maximum flow, the function Fa takes a distributive
capacity graph c as its input; now, since capacity can be written as the sum of a flow
and a residual graph: c = f + c f , does this decomposition provide us some hints to
pull out the useful part f , instead of blindly taking c and starting from scratch?

Suppose that the capacity graph of cell (all-types, company 1) is c1, where
f1 is the maximum flow and c1

f1
= c1 − f1 denotes the corresponding residual

graph. Likewise, we have c2, f2, and c2
f2

for cell (all-types, company 2). Without
loss of generality, assume there are only these two companies whose transporta-
tion networks are overlaid into (all-types, all-companies), which has a capacity of
c = c1 + c2.

Claim f1 + f2 + f ′ is a maximum flow for c if and only if f ′ is a maximum flow
for c1

f1
+ c2

f2
.

Proof Since f1 and f2 are restricted to the transportation networks of company 1
and company 2, respectively, the overall capacity c = c1 + c2 must accommodate
f1 + f2, even if link sharing is not enabled. As a result of subtracting f1 + f2, the
residual graph becomes

c f1+ f2 = (c1 + c2)− ( f 1 + f 2)

= (c1 − f 1)+ (c2 − f 2) = c1
f1
+ c2

f2
.

A direct application of Lemma 1 finishes our proof. �
As it is generally hard to localize maximum flow computations with regard to

network topology, the above property is important because it takes another route,
which reuses partial results f1, f2 and attenuates the overall workload from c1+c2 to
c1

f1
+c2

f2
. By doing this, we are much closer to the overall maximum flow f1+ f2+ f ′

because a big portion of it, f1 + f2, has already been decided even before we start
an augmenting algorithm.

However, we should admit that attenuation schemes usually take widely different
forms, which might need to be developed with regard to specific aggregate measure
graphs; furthermore, as we shall see next, there do exist cases where such properties
are hard, if not impossible, to think of.

Example 5 (Centrality) Centrality is an important concept in social network anal-
ysis, which reflects how “central” a particular node’s position is in a given net-
work. One definition called betweenness centrality CB uses shortest path to model
this: Let n jk denote the number of shortest paths (as there could be equally short

ones) between two nodes j and k; for any node i ,
n jk(i)

n jk
is the fraction of shortest

paths between j, k that go through i , with CB(i) summing it up over all possible

pairs: CB(i) = ∑
j,k �=i

n jk(i)
n jk

. Intuitively, for a “star”-shaped network, all shortest
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paths must pass the network center, which makes CB achieve its maximum value
(|V | − 1)(|V | − 2)/2.

Only considering shortest paths is inevitably restrictive in many situations; and
thus, information centrality CI goes one step further by taking all paths into account.
It models any path from j to k as a signal transmission, which has a channel noise
proportional to its path length. For more details, we refer the readers to [25], which
has derived the following formula based on information theoretic analysis: Let A
be a matrix, whose ai j entry designates the interaction strength between node i and

node j ; define B = D− A+ J , where D is a diagonal matrix with Dii =∑|V |
j=1 ai j

and J is a matrix having all unit elements; now, perform an inverse operation to get
the centrality matrix C = B−1; write its diagonal sum as T =∑|V |

j=1 c j j and its row

sum as Ri =∑|V |
j=1 ci j ; the information centrality of node i is then equivalent to

CI (i) = 1

cii + (T − 2Ri )/|V | .

Now, with regard to the coauthor network described in Example 1, if we define
the interaction strength between two authors as their total collaboration frequency
for a set of network snapshots, then an aggregated graph Mcen can be defined, whose
node i is associated with a node attribute CI (i) equivalent to its information cen-
trality. �

Claim The computation of Mcen is hard to be attenuated in a level-by-level aggre-
gation scheme.

Proof As we can see, the core component of information centrality computation is
a matrix inverse. Now, given two portions of network snapshots that are overlaid,
the overall centrality matrix is

[
(D1 + D2)− (A1 + A2)+ J

]−1 = (B1 + B2 − J )−1.

From calculations performed on lower levels, we know the centrality matrices C1 =
B−1

1 and C2 = B−1
2 ; however, it seems that they do not help much to decrease the

computation cost of inverting B1 + B2 − J . �

When things like this happen, an alternative is to abandon the exactness require-
ment and use intermediate results that are readily available to bound the answer
within some range instead; as we shall elaborate in the following section, this will
become very useful if the cube construction is subject to a set of constraints.

16.5 Constraints and Partial Materialization

Above, we have focused on the computation of a full cube, i.e., each cell in each
cuboid is calculated and stored. In many cases, this is too costly in terms of both
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space and time, which might even be unnecessary if the users are not interested
in obtaining all the information. Usually, users may stick with an interestingness
function I , indicating that only those cells above a particular threshold δ make sense
to them. Considering this, all cells c with I (c) ≥ δ comprise an iceberg cube, which
represents a partial materialization of the cube’s interesting part. Taking Example
2 for instance, it is possible that people may only care about those subnetworks that
can transmit at least δ| f | units of cargo, while the other cells are discarded from
consideration, due to their limited usefulness for the overall transportation business.

Optimizations exist as to how such an iceberg cube can be calculated, i.e., how
to efficiently process constraints like I (c) ≥ δ during materialization, without gen-
erating a full cube at first. Below, we will first classify different constraints into
categories (Section 16.5.1) and then combine with some examples to see how each
category should be dealt with (Section 16.5.2).

16.5.1 Constraint Classification

Two most important categories of constraints are anti-monotone and monotone.
They relate cells on different levels of the cube together and are defined as follows.

Definition 9 A constraint C is anti-monotone, if for any high-level cell ch and
a low-level cell cl covered by ch , the following must hold: ch violates C ⇒ cl

violates C .

Definition 10 A constraint C is monotone, if for any high-level cell ch and a
low-level cell cl covered by ch , the following must hold: ch satisfies C ⇒ cl

satisfies C .

Note that, in Definition 9, “ch violates C⇒ cl violates C” is equal to “cl satisfies
C ⇒ ch satisfies C” and, in Definition 10, “ch satisfies C ⇒ cl satisfies C” is equal
to “cl violates C ⇒ ch violates C”; so, depending on whether ch or cl is computed
(and thus verified against C) first, there are different ways to make use of these
constraints, which we will demonstrate below.

16.5.2 Constraint Pushing

The anti-monotone and monotone constraints can be “pushed” deep into the compu-
tation process using the Apriori principle [30]. In general, there are two approaches
to compute a data cube over information networks, bottom-up and top-down. In
bottom-up computation, which can be contrasted with BUC [2] in traditional OLAP,
high-level cells are calculated first, before drilling down to low-level cells they
cover. In top-down computation, which can be contrasted with Multi-Way [31] in
traditional OLAP, we calculate low-level cells first, and then aggregate to high-level
cells. Finally, which approach to adopt will depend on various parameters, including
the size of the network, data sparsity, the measures to be computed, and the available
constraints.
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Now consider the bottom-up approach; on the one hand, if a high-level cell ch

does not satisfy an anti-monotone constraint, then we know that no low-level cell cl

covered by ch would satisfy it, and thus the calculation can be immediately termi-
nated, pruning cl and its descendants from the cuboid lattice; on the other hand, if
a high-level cell ch already satisfies a monotone constraint, then we no longer need
to perform checkings for any low-level cells covered by ch because they would
always satisfy it. As for top-down computations, the roles of anti-monotonicity and
monotonicity are reversed accordingly.

It is easy to see that anti-monotone and monotone properties depend on specific
analysis of measures and interestingness functions. Here, since we are working with
network data, some graph theoretic studies need to be made. Let us examine a few
examples.

Claim Suppose maximum flow is the I-OLAP measure to be calculated, regarding
its flow’s value | f | = ∑

v∈V f (s, v) = ∑
v∈V f (v, t), i.e., the highest amount

of transportation a network can carry from s to t , constraint | f | ≥ δ| f | is anti-
monotone.

Proof Intuitively, the transporting capability of one company must be smaller than
that of all companies together, since there are now more available links for the flow
to pass. In fact, as we showed in Section 16.4, the flow value of ch is no smaller than
the flow sum of all cl ’s that are covered by ch , which is a condition stronger than the
normal anti-monotonicity defined between a high-level cell and a single low-level
cell it covers. �
Claim The diameter of an information network G is designated as the maximum
shortest path length for all pairs of nodes in G. Now, denote diameter as d and let it
be the T-OLAP measure we want to calculate, constraint d ≥ δd is monotone.

Proof As we perform roll-up in InfoNet T-OLAP and shrink the network, some
nodes are merged into one during this process, which can only shorten relevant
paths. �

Because of space limit, we are not going to list more examples here. Certainly,
having the conditions on interestingness classified into anti-monotone and mono-
tone will greatly help us in constructing an iceberg graph cube. Here, combined
with top-down/bottom-up calculations, Apriori is a simple and effective principle to
align search space pruning with particular computation orders. But unfortunately,
we cannot use it to push every constraint into the mining process, as there do exist
situations that are neither anti-monotone nor monotone. To this extent, we shall
further investigate how the other kinds of more complex constraints can be nicely
handled in the future.

16.6 Discovery-Driven InfoNetOLAP

Apart from the type of data being dealt with, another important distinction of
InfoNetOLAP from the traditional one is the need for flexibility in manipulating
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information networks. Thus, in addition to the uniform drilling of traditional OLAP,
where all nodes at a given level of abstraction are simultaneously rolled up or
drilled down, e.g., from month to quarter, and then to year, InfoNetOLAP may
require selective drilling for a given node or neighborhood. For instance, in the
coauthor network example, a user could be interested in the collaborative relation-
ship between Yahoo! Labs and related individual researchers. Such an analysis may
show strong collaborations between AnHai Doan at Wisconsin and people at Yahoo!
Labs. So, if all Wisconsin researchers are merged into a single institution in the
same way as Yahoo! Labs, it would be hard to discover such a relationship since,
collectively, there would be even stronger collaborations between Wisconsin and
Berkeley (instead of Yahoo! Labs), which may overshadow AnHai’s link to Yahoo!
Labs.

Selective drilling, though promising, may generate an exponential number of
combinations, which are too costly to compute and explore. To ensure that one
can pinpoint to the “real gold” during exploration, discovery-driven InfoNetOLAP
should be adopted, i.e., rather than searching the complete cube space, one has to be
sure that the planned drilling should help the discovery of interesting knowledge.

16.6.1 Discovery-Driven: Guiding Principles

In the following, we first outline a few guiding principles for discovery-driven
InfoNetOLAP.
Discovery Driven by Rule-based Heuristics. When performing InfoNetOLAP, we
usually have some general intuition about where and when the selective drilling
should be focused and at what levels/nodes one is most likely to discover something
interesting. For instance, when studying research collaborations, it may not be wise
to quickly merge prominent researchers into groups, before exploring some interest-
ing patterns for them at first. As an example, if Raghu Ramakrishnan is merged into
an even “bigger” entity like Yahoo! Labs, it may blur the individual relationships
that can be discovered; rather, we could keep his own identity in the network, on
which clearer patterns with finer granularity are observed. Alternatively, for ordi-
nary graduate students, it seems to be more interesting to group them together or
have them absorbed by nearby “hub” nodes, because for such individuals, it is not
likely that something significant can stand out from the rest. In this sense, a rule like
delay the merge of ‘big’ or ‘distinct’ nodes could be quite simple to work out and
follow, as the system only needs to consult attributes of an entity itself (e.g., how
many papers a researcher has published) or explore some very local information
(e.g., how many persons he/she has collaborated with) for decision making.
Discovery Driven by Statistical Analysis. In many cases, it is beneficial to conduct
some global (rather than local) preliminary analysis before choosing any drilling
operation. Consider a top-down exploratory scenario where the granularity is cur-
rently set at the institution level, e.g., both Yahoo! Labs and University of Wisconsin
are treated as a whole; now, if an automatic background computation shows that
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the collaboration activities between Yahoo! Labs and AnHai Doan are significantly
higher than normal, then it is rewarding to drill-down, because the status of AnHai
is like an outlier in Wisconsin; otherwise, such drilling may not disclose anything
truly interesting. This is similar to discovery-driven OLAP proposed by [23], but in
the environment of information networks. As a simple implementation of this idea,
we may take the collaboration frequencies between Yahoo! Labs and every person
from Wisconsin, and calculate the variance: If the variance is high, one may set up
an indicator which may suggest people to click on “U. of Wisc.” and expand it to
get a refined view, which is just the situation described in Fig. 16.4. Compared to
the first guiding principle, there are no longer simple rules that stipulate whether a
drill-down or roll-up should be performed; everything depends on a global statistical
analysis about the entities in the network, which aims to find out those interesting
(or outlying) phenomena that are worthwhile to explore.
Discovery Driven by Pattern Mining. Another way for discovery-driven OLAP is
fueled by the potential to discover interesting patterns and knowledge on informa-
tion networks using data mining techniques: If splitting or merging of certain sets
of nodes may lead to the discovery of interesting clusters, frequent patterns, clas-
sification schemes, and evolution regularities/outliers, then the drilling should be
performed, with the results/patterns demonstrated to users. Otherwise, the drilling
will not be performed. Notice that, although such pattern discovery can be exe-
cuted on the fly at the time of user interaction, the discovery process could be too
time-consuming with regard to the user’s mouse clicking. Therefore, we suggest the
pre-computation of some promising drilling paths as intermediate results to speed
up interactive knowledge discovery. It is an interesting research issue to determine
the things to be computed in order to facilitate such on-line analysis.

Fig. 16.4 Discovery-driven InfoNetOLAP
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16.6.2 Network Discovery for Effective OLAP

As we discussed above, for effective discovery-driven OLAP, it is important to per-
form some essential data mining on the underlying information networks to reveal
interesting network patterns that may help us discover the hidden knowledge. Here,
we discuss some interesting network discovery procedures by taking the collabora-
tion scenario of researchers as an example.

For studying coauthor networks, it is important to distinguish different roles the
authors may play in the network. For example, based on the coauthor relationships
over time, it is possible to dig out advisor–advisee relationships. Usually, advisee is
a mediocre node in the network without many publications, who then starts to coau-
thor substantially with his prominent advisor; after graduation, he/she joins industry
or moves on to another institution, and the publishing behaviors are changed again.
Advisors can also be identified, based on his/her long-term publication history as
well as a center role of working with many junior coauthors. It is interesting to orga-
nize researchers under such a phylogeny tree and examine the interactions between
different clusters of academic “families”.

Besides some not-so-sophisticated knowledge discovery procedures, a mining
process may involve induction on the entire information networks as well. For exam-
ple, in order to partition an interconnected, heterogeneous information network into
a set of clusters and rank the nodes in each cluster, one could develop a RankClus
framework [26], which integrates clustering and ranking together to effectively
cluster information networks into multiple groups and rank nodes in each group
based on certain nice properties (such as authority). By examining authors, research
papers, and conferences, one can group conferences in the same fields together
to form conference clusters, group authors based on their publication records into
author clusters, and in the meantime rank authors and conferences based on their
corresponding authorities. Such clustering results enhanced by ranking information
would be an ideal feed into InfoNetOLAP. Interestingly, such clustering-ranking can
be performed based on the links only, without checking the citation information and
the keywords or text information contained in the conferences and/or publication
titles. The details of such techniques are beyond the discussions of this chapter, but
it sheds light on automated processes to effectively identify concept hierarchies and
important nodes for discovery-driven InfoNetOLAP.

16.7 Experiments

In this section, we present empirical studies evaluating the effectiveness and effi-
ciency of the proposed InfoNetOLAP framework. It includes two kinds of data
sets, one real data set and two synthetic data sets. All experiments are done on a
Microsoft Windows XP machine with a 3 GHz Pentium IV CPU and 1GB main
memory. Programs are compiled by Visual C++.
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16.7.1 Real Data Set

The first data set we use is the DBLP Bibliography (http://www.informatik.uni-
trier.de/∼ley/db/) downloaded in April 2008. Upon parsing the author field of
papers, a coauthor network with multiple snapshots can be constructed, where an
edge of weight w is added between two persons if they publish w papers together.
We pick a few representative conferences for the following three research areas:

• Database (DB): PODS/SIGMOD/VLDB/ICDE/EDBT
• Data Mining (DM): ICDM/SDM/KDD/PKDD
• Information Retrieval (IR): SIGIR/WWW/CIKM

and also distribute the publications into 5-year bins: (2002, 2007], (1997, 2002],
(1992, 1997],. . . . In this way, we obtain two informational dimensions: venue and
time, on which I-OLAP operations can be performed.

Fig. 16.5 A multi-dimensional view of top-10 “Central” authors

Figure 16.5 shows a classic OLAP scenario. Based on the definition in
Section 16.4, we compute the information centrality of each node in the coauthor
network and rank them from high to low. In general, people who not only publish a
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lot but also publish frequently with a big group of collaborators will be ranked high.
Along the venue dimension, we can see how the “central” authors change across dif-
ferent research areas, while along the time dimension, we can see how the “central”
authors evolve over time. In fact, what Fig. 16.5 gives is a multi-dimensional view of
the cube’s base cuboid; without any difficulty, we can also aggregate DB, DM, and
IR into a broad Database field, or generalize the time dimension to all-years, and
then compute respective I-OLAP cells. Given each author’s affiliation information,
we may conduct T-OLAP and obtain most “central” research groups and institutions
as well. The results are omitted here.

16.7.2 Synthetic Data Sets

We use synthetic data sets to demonstrate the effectiveness of the optimizations that
are proposed to efficiently perform OLAP operations over information networks.
The first test we pick is the computation of maximum flow as an InfoNetI-OLAP
measure, which has been used as an exemplifying application in our discussions.
Generator Mechanism. Since it is generally hard to get real flow data, we develop
a synthetic generator by ourselves. The data is generated as follows: The network
has a source node s and a destination node t , and in between them, there are L
intermediate layers, with each layer containing H nodes. There is a link with infinite
capacity from s to every node in layer 1, and likewise from every node in layer L to
t . Other links are added from layer i to layer i + 1 on a random basis: For the total
number of H · H choices between two layers, we pick αH2 pair of nodes and add a
link with capacity 1 between them.

For the cube we construct, there are d dimensions; each dimension has card
different values (i.e., cardinality), which can be generalized to “all/*”. For a base
cell where all of its dimensions are set on the finest ungeneralized level, we gen-
erate a snapshot of capacity network L5H1000α0.01, i.e., there are five layers of
intermediate nodes, and 0.01 ·(1000)2 = 10, 000 links are randomly added between
neighboring layers.

The algorithm we use to compute the maximum flow works in an incremental
manner. It randomly picks an augmenting path from s to t until no such paths
exist. To accommodate top-down computation, where high-level cells are com-
puted after low-level cells so that intermediate results can be utilized, we integrate
our attenuation scheme with the classic Multi-Way aggregation method for cube
computation [31].

The results are depicted in Figs. 16.6 and 16.7, with Fig. 16.6 fixing the cardi-
nality as 2 and varying d from 2, 3, . . ., up to 6, and Fig. 16.7 fixing the number
of dimensions as 2 and varying card from 2, 4 . . ., up to 8. It can be seen that
the optimization achieved through attenuation is obvious, because in effect we do
not need to compute a full-scale aggregated graph from scratch, and part of the
burden has been transferred to previous rounds of calculations. Especially, when the
dimensionality goes high in Fig. 16.6, so that more levels of cube cells are present,
the superiority of attenuation-based methods becomes more significant, and one
may reap orders of magnitude savings.
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Fig. 16.6 The effect of optimization w.r.t. number of dimensions
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Fig. 16.7 The effect of optimization w.r.t. dimension cardinality

The second test we perform is on the calculation of degree centrality with regard
to InfoNet T-OLAP.
Generator Mechanism. The synthetic data networks in this experiment are gener-
ated in the following manner: For a network G, n vertices are generated first, i.e.,
|V (G)| = n; as the next step, edges are randomly attached to vertices such that (1)
the entire network is connected, (2) the vertices have an average degree of d , and
(3) the edges have an average weight of w.

Given a network G, users can choose a subset of vertices V ⊆ V (G) to merge
into a single vertex v′ and compute the T-aggregated graph for the generalized net-
work G ′. Such a roll-up operation is called a user T-OLAP request. For a network
G, we recursively partition G into π non-overlapping connected components with
equal number of vertices, e.g., suppose |V (G)| = 1024 and π = 4, we can first par-
tition G into 4 connected subgraphs with 256 vertices, and then recursively partition
these 4 subgraphs until there is only one vertex left. Finally, if we reverse the above
sequence of partitioning, a series of T-OLAP requests will be naturally formed, and
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our task next is to compute the corresponding aggregated graphs along the drilling
path.

We refer to the baseline algorithm for comparison as Naive OLAP. For each
T-OLAP request, this method would directly compute the T-aggregated graph from
the original network G. As shown in Section 16.3, degree centrality is T-algebraic:
Therefore, we can leverage the (semi-)distributiveness property and make use of the
degree centralities that have been calculated for lower-level intermediate networks,
which can offer significant efficiency boost. This computation strategy is denoted as
T-distributive OLAP.

We set the average vertex degree as d = 5, and fix the number of partitions per
step as π = 4. Figure 16.8 shows the running time comparison for the two alterna-
tive approaches as the number of vertices in G increases. Here, the running time is
the total computation cost summed over all T-OLAP requests, and it can be easily
observed that with T-distributiveness the computation cost increases much slower
than Naive OLAP. In Fig. 16.9, we fix V (G) as 4096 and vary π , which depicts how
the granularity of T-OLAP operations can affect both approaches: As π increases,
the granularity difference between adjacent levels of networks becomes larger. Since
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the computation of degree centrality is not too complex, both approaches have rather
slow increase with regard to the running time, as we can see from the picture.
However, notice that the T-distributive OLAP still features a flatter growth curve
compared with that of the Naive OLAP approach.

16.8 Related Work

OLAP (On-Line Analytical Processing) is an important notion in data mining, which
has drawn a lot of attention from the research communities. Representative stud-
ies include [7, 11], and a set of papers on materialized views and data warehouse
implementations are collected in [12]. There have been a lot of works that deal with
the efficient computation of a data cube, such as [2, 31], whereas the wealth of
literature cannot be enumerated. However, all these researches target conventional
spreadsheet data, i.e., OLAP analysis is performed on independent data tuples that
mathematically form a set. In contrast, as far as we know, ours is the first that
puts information networks in a rigid multi-dimensional and multi-level framework,
where due to the nature of the underlying data, an OLAP measure in general takes
the form of an aggregated graph.

The classification of OLAP measures into distributive, algebraic, and holistic
was introduced in the traditional OLAP arena, where we can also find related works
for iceberg cubing [9], partial materialization [17], and constraint pushing [21]. It
is important to see how these basic aspects are dealt with in the InfoNetOLAP
scenario; and as we have seen from the discussions, things become much more
complicated due to the increased structural complexity.

In InfoNetOLAP, the aggregated graph can be thought as delivering a summa-
rized view of the underlying networks based on some particular perspective and
granularity, which helps users get informative insights into the data [6]. In this sense,
concerning the generation of summaries for information networks, there have been
quite a few researches that are associated with terminologies like compression, sum-
marization, and simplification. For example, Boldi and Vigna [3, 22] study the prob-
lem of compressing large graphs, especially Web graphs; however, they only focus
on how the Web link information can be efficiently stored and easily manipulated
to facilitate computations such as PageRank and authority vectors, which do not
provide any pointers into the network structures. Similarly, Beyer and Ramakrish-
nan [2] develop statistical summaries that analyze simple characteristics like degree
distributions and hop-plots on information networks; Lu et al. [18] go one step fur-
ther by looking into the evolutionary behavior of these statistics and proposes a
generative model that helps explain the latent mechanism. These compressed views
are useful but hard to be navigated with regard to the underlying networks; also, the
multi-dimensional functionality that can conduct analysis from different angles is
missing. Another group of papers [1, 15, 19, 29] are often referred as graph simpli-
fication, e.g., Archambault et al. [1] aim to condense a large network by preserving
its skeleton in terms of topological features, and Kossinets et al. [15] try to extract
the “backbone” of a social network, i.e., the subnetwork that consists of edges on
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which information has the potential to flow the quickest. In this case, attributes on
nodes and edges are not important, and the network is indeed an unlabeled one in
its abstract form. Works on graph clustering (to partition similar nodes together),
dense subgraph detection (for community discovery, link spam identification, etc.),
graph visualization, and evolutionary pattern extraction/contrast include [20], [10],
[13, 28], and [5] respectively. They all provide some kind of summaries, but the
objective and result achieved are substantially different from those of this chapter.

With regard to summarizing attributed networks that incorporates OLAP-style
functionalities, [25] is the closet to ours in spirit. It introduces an operation called
SNAP (Summarization by grouping Nodes on Attributes and Pairwise relation-
ships), which merges nodes with identical labels (actually, it might not be necessary
to require exactly the same label for real applications, e.g., Lu et al. [18] introduce
a way to find similar groups of entities in a network, and this can be taken as the
basis to guide node merges), combines corresponding edges, and aggregates a sum-
mary graph that displays relationships for such “generalized” node groups. Users
can choose different resolutions by a k-SNAP operation just like rolling up and
drilling down in an OLAP environment. This can be seen as a special instance of
InfoNet T-OLAP that is defined in this chapter.

Sarawagi et al. [23] introduce the discovery-driven concept for traditional OLAP,
which aims at pointing out a set of direct handles or indirect paths that might lead
to the interesting/outlying cells of a data cube. Their method is statistics oriented.
As we proposed in this chapter, InfoNetOLAP can also adopt the discovery-driven
concept, but in the context of information networks, which suggests new classes of
discovery-driven methods using topological measures and network patterns. Differ-
ent from traditional OLAP, where dimensions are often globally drilled down and
rolled up, InfoNetOLAP takes selective drilling into consideration, which leverages
graph mining (e.g., [14]), link analysis (e.g., [24]), etc., and might only involve some
local portion of a big network.

16.9 Conclusions

We examine the possibility to apply multi-dimensional analysis on information
networks, and develop an InfoNetOLAP framework, which is classified into two
major subcases: informational OLAP and topological OLAP, based on the different
OLAP semantics. Due to the nature of the underlying data, an OLAP measure now
takes the form of an aggregated graph. We categorize aggregated graphs based on
the difficulty to compute them in an OLAP context and suggest two properties:
localization and attenuation, which may help speed up the processing. Both full
materialization and constrained partial materialization are discussed. Toward more
intelligent InfoNetOLAP, we further propose a discovery-driven multi-dimensional
analysis model and discuss many challenging research issues associated with it.
Experiments show insightful results on real data sets and demonstrate the efficiency
of our proposed optimizations.
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As for future works, there are a lot of directions we want to pursue on this
topic, for example, extending the current framework to heterogeneous-typed infor-
mation networks, hyper-graphs, etc., and our immediate target would be refining the
discovery-driven InfoNetOLAP idea and testing it on several interesting application
domains.
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Chapter 17
Integrating Clustering with Ranking in
Heterogeneous Information Networks Analysis

Yizhou Sun and Jiawei Han

Abstract Heterogeneous information networks, i.e., the logic networks involving
multi-typed, interconnected objects, are ubiquitous. For example, a bibliographic
information network contains nodes including authors, conferences, terms and
papers, and links corresponding to relations exiting between these objects. Extract-
ing knowledge from information networks has become an important task. Both rank-
ing and clustering can provide overall views on information network data, and each
has been a hot topic by itself. However, ranking objects globally without considering
which clusters they belong to often leads to dumb results, e.g., ranking database and
computer architecture conferences together may not make much sense. Similarly,
clustering a huge number of objects (e.g., thousands of authors) into one huge cluster
without distinction is dull as well. In contrast, a good cluster can lead to meaningful
ranking for objects in that cluster, and ranking distributions for these objects can
serve as good features to help clustering. Two ranking-based clustering algorithms,
RANKCLUS and NETCLUS, thus are proposed. RANKCLUS aims at clustering tar-
get objects using the attribute objects in the remaining network, while NETCLUS

is able to generate net-clusters containing multiple types of objects following the
same schema of the original network. The basic idea of such algorithms is that
ranking distributions of objects in each cluster should be quite different from each
other, which can be served as features of clusters and new measures of objects can
be calculated accordingly. Also, better clustering results can achieve better ranking
results. Ranking and clustering can be mutually enhanced, where ranking provides
better measure space and clustering provides more reasonable ranking distribution.
What’s more, clusters obtained in this way are more informative than other methods,
given the ranking distribution for objects in each cluster.
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17.1 Introduction

In many applications, there exist a large number of individual agents or compo-
nents interacting with a specific set of components, forming large, interconnected,
and sophisticated networks. We call such interconnected networks as information
networks, with examples including the Internet, highway networks [14], electrical
power grids, research collaboration networks [10], public health systems, and bio-
logical networks [20]. Clearly, information networks are ubiquitous and form a crit-
ical component of modern information infrastructure. Among them, heterogeneous
network is a special type of network that contains objects of multiple types. For
example, a bibliographic information network extracted from DBLP data1 contains
nodes (including authors, conferences, terms and papers), and links corresponding
to relations exiting between these objects. Formally, we can define information net-
work as follows.

Definition 1 (Information Network) Given a set of objects from T types X =
{Xt }Tt=1, where Xt is a set of objects belonging to t th type, a weighted graph
G = 〈V, E, W 〉 is called an information network on objects X , if V = X , E
is a binary relation on V , and W : E → R+ is a weight mapping from an edge
e ∈ E to a real number w ∈ R+. Specially, we call such an information network
heterogeneous network when T ≥ 2 and homogeneous network when T = 1.

A great many analytical techniques have been proposed toward a better under-
standing of information networks, though major on homogeneous information net-
works, and their properties, among which are two prominent ones: ranking and clus-
tering. On one hand, ranking evaluates objects of information networks based on
some ranking function that mathematically demonstrates characteristics of objects.
With such functions, two objects can be compared, either qualitatively or quantita-
tively, in a partial order. PageRank [4] and HITS [15], among others, are perhaps
the most renowned ranking algorithms over information networks. On the other
hand, clustering group objects based on a certain proximity measure so that similar
objects are in the same cluster, whereas dissimilar ones are in different clusters.
After all, as two fundamental analytical tools, ranking and clustering demonstrate
overall views of information networks, and hence be widely applied in different
information network settings.

Clustering and ranking are often regarded as orthogonal techniques, each of
which is applied separately to information network analysis. However, applying
either of them over information networks often leads to incomplete, or sometimes
rather biased, analytical results. For instance, ranking objects over the global infor-
mation networks without considering which clusters they belong to often leads to
dumb results, e.g., ranking database and computer architecture conferences and
authors together may not make much sense; alternatively, clustering a large number
of objects (e.g., thousands of authors) in one cluster without distinction is dull as

1 www.informatik.uni-trier.de/∼ley/db/
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well. However, combining both functions together may lead to more comprehensi-
ble results, as shown in Example 1.

Example 1 (Ranking Without/With Clustering) Consider a set of conferences from
two areas of DB/DM (i.e., Database and Data Mining) and HW/CA (i.e., Hardware
and Computer Architecture), each having 10 conferences, as shown in Table 17.1.
Then we choose 100 authors in each area from DBLP [6]. With the authority ranking
function specified in Section 17.2.2, our ranking-only algorithm gives top-10 ranked
results (Table 17.2a). Clearly, the results are rather dumb (because of the mixture of
the areas) and are biased toward (i.e., ranked higher for) the HW/CA area. What
is more, such dull or biased ranking result is caused not by the specific ranking
function we chose but by the inherent incomparability between the two areas.

Still consider the same data set, this time we picked 10 conferences in the
DB/DM area and rank them as well as the authors relative to this conference cluster.
The ranking results are shown in Table 17.2b.

Example 1 shows that good cluster indeed enhances ranking results. Moreover,
assigning ranks to objects often leads to better understanding of each cluster. Obvi-
ously, good clusters promote good ranking, but how to get good clusters? Before
answering this question, we need to first clarify the concept of clusters in heteroge-
neous networks. In this work, we are going to address two types of clusters, which
are solved by two algorithms respectively.

The first type of cluster contains a single type of objects, which are target objects.
A straightforward way to generate such clusters in a heterogeneous network is
to first evaluate similarity between objects using a link-based method, such as
SimRank [13], and then apply graph clustering methods [17, 21] or the like to
generate clusters. However, to evaluate similarity between objects in an arbitrary
multi-typed information network is a difficult and time-consuming task. Instead,

Table 17.1 A set of conferences from two research areas
DB/DM {SIGMOD, VLDB, PODS, ICDE, ICDT, KDD, ICDM, CIKM, PAKDD, PKDD}

HW/CA {ASPLOS, ISCA, DAC, MICRO, ICCAD, HPCA, ISLPED, CODES, DATE, VTS }

Table 17.2 Top-10 ranked conferences and authors without/with clustering

(a) Ranking without clustering (b) Ranking in DB/DM cluster

Rank Conf. Rank Authors Rank Conf. Rank Authors

1 DAC 1 Alberto L. Sangiovanni- 1 VLDB 1 H. V. Jagadish
Vincentelli

2 ICCAD 2 Robert K. Brayton 2 SIGMOD 2 Surajit Chaudhuri
3 DATE 3 Massoud Pedram 3 ICDE 3 Divesh Srivastava
4 ISLPED 4 Miodrag Potkonjak 4 PODS 4 Michael Stonebraker
5 VTS 5 Andrew B. Kahng 5 KDD 5 Hector Garcia-Molina
6 CODES 6 Kwang-Ting Cheng 6 CIKM 6 Jeffrey F. Naughton
7 ISCA 7 Lawrence T. Pileggi 7 ICDM 7 David J. DeWitt
8 VLDB 8 David Blaauw 8 PAKDD 8 Jiawei Han
9 SIGMOD 9 Jason Cong 9 ICDT 9 Rakesh Agrawal
10 ICDE 10 D. F. Wong 10 PKDD 10 Raghu Ramakrishnan
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RANKCLUS explores rank distribution for each cluster to generate new measures for
target objects, and then the clusters are improved under the new measure space. In
all, instead of combining ranking and clustering in a two-stage procedure like facet
ranking [5, 28], the quality of clustering and ranking can be mutually enhanced in
RANKCLUS [23].

The second type of cluster is called net-cluster. In contrast to traditional cluster
definition, net-cluster contains multiple types of objects and follows the schema of
the original heterogeneous network. A net-cluster can be viewed as a sub-network
of original network, with the meaning of a community. To detect net-clusters in
arbitrary networks is rather complex; therefore, we only address the problem in a
special type of network that with star network schema, in the work of NETCLUS

[24]. A net-cluster example is shown as in Example 2.

Example 2 (Net-Cluster of Database Area) A cluster of the database area consists
of a set of database authors, conferences, terms, and papers and can be obtained
by NETCLUS on the bibliographic network extracted from DBLP data set. NET-
CLUS also presents rank scores for authors, conferences, and terms in its own type.
With ranking distribution, users can easily grab the important objects in the area.
Table 17.3 shows the top ranked conferences, authors, and terms in the area
database, generated from a 20-conf. data set (i.e., a “four-area” data set) (see details
in Section 17.5) using NETCLUS.

Table 17.3 Ranking description for net-cluster of database research area

Conference Rank score Author Rank score Term Rank score

SIGMOD 0.315 Michael Stonebraker 0.0063 database 0.0529
VLDB 0.306 Surajit Chaudhuri 0.0057 system 0.0322
ICDE 0.194 C. Mohan 0.0053 query 0.0313
PODS 0.109 Michael J. Carey 0.0052 data 0.0251
EDBT 0.046 David J. DeWitt 0.0051 object 0.0138
CIKM 0.019 H. V. Jagadish 0.0043 management 0.0113
. . . . . . . . . . . . . . . . . .

Both algorithms are very efficient, which are linear to the links in the network.
We will introduce the two algorithms in following sections in detail.

The remainder of the paper is organized as follows. Section 17.2 introduces two
ranking functions in heterogeneous networks. The RANKCLUS algorithm and NET-
CLUS algorithm are introduced in Sections 17.3 and 17.4 respectively. Section 17.5
is the experiment. A related work introduction is given in Sections 17.6, and 17.7
concludes the discussion.

17.2 Ranking Functions

Ranking function is critical in our ranking-based clustering algorithms, which not
only provides ranking distributions for objects to distinguish their importance in a
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cluster but also serves as a new feature extraction tool to improve clustering quality.
However, current ranking functions are mostly defined on homogeneous networks,
such as PageRank and HITS. In this section, we introduce ranking functions on a
special type of heterogeneous network, bi-type network. Ranking functions on more
complex heterogeneous network are discussed in the end of this section.

Definition 2 (Ranking Distribution and Ranking Function) A ranking distribution
P(X) on a type of objects X is a discrete probability distribution, which satisfies
P(X = x) ≥ 0 (∀x ∈ X) and

∑
x∈X P(X = x) = 1. A function fX : G → P(X)

defined on an information network G is called a ranking function on type X ; if given
an information network G, it can output a ranking distribution P(X) on X .

Definition 3 (Bi-type Information Network) Given two types of object sets X and Y ,
where X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn}, graph G = 〈V, E〉 is called
a bi-type information network on types X and Y , if V = X ∪ Y and E ⊆ V × V .

Let W(m+n)×(m+n) = {woi o j } be the adjacency matrix of links, where oi , o j ∈ V ,
and woi o j equals to the weight of link 〈oi , o j 〉, which is the observation number of
the link. We also use G = 〈{X ∪Y }, W 〉 to denote this bi-type information network.
In the following, we use X and Y denoting both the object set and their type name.
For convenience, we decompose the link matrix into four blocks: WX X , WXY , WY X ,
and WY Y , each denoting a sub-network of objects between types of the subscripts.
W thus can be written as

W =
(

WX X WXY

WY X WY Y

)

.

Ranking can give people an overall view of a certain set of objects, which is
beneficial for people to grasp the most important information in a short time. More
importantly, conditional ranks of attribute types can be served as features for each
cluster, and each object in target type can be mapped into a low-dimensional mea-
sure space. In this section, we propose two ranking functions that could be used fre-
quently in bi-type network similar to conference–author network. In bibliographic
network, consider the bi-type information network composed of conferences and
authors. Let X be the type of conference, Y be the type of author, and specify con-
ference as the target type for clustering. According to the publication relationship
between conferences and authors, we define the link matrix WXY as

WXY (i, j) = pi j , for i = 1, 2, . . . ,m; j = 1, 2, . . . , n,

where pi j is the number of papers that author j published in conference i , or equally,
the number of papers in conference i that are published by author j . According to
the co-author relationship between authors, we define the matrix WY Y as

WY Y (i, j) = ai j , for i = 1, 2, . . . ,m; j = 1, 2, . . . , n,
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where ai j is the number of papers that author i and author j co-authored. The
link matrix denoting the relationship between authors and conferences WY X is
equal to W T

XY , as the relationship between authors and conferences is symmetric,
and WX X = 0 as there are no direct links between conferences. Based on this
conference-author network, we define two ranking functions: Simple Ranking and
Authority Ranking.

17.2.1 Simple Ranking

The simplest ranking of conferences and authors is based on the number of publi-
cations, which is proportional to the numbers of papers accepted by a conference or
published by an author.

Given the information network G = 〈{X ∪Y }, W 〉, simple ranking generates the
ranking score of type X and type Y as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

rX (x) =
∑n

j=1 WXY (x, j)
∑m

i=1
∑n

j=1 WXY (i, j)

rY (y) =
∑n

i=1 WXY (i, y)
∑m

i=1
∑n

j=1 WXY (i, j)
.

(17.1)

The time complexity of Simple Ranking is O(|E |), where |E | is the number of
links.

Obviously, simple ranking is only a normalized weighted degree of each object,
which considers every link equally important. In this ranking, authors publishing
more papers will have higher ranking score, even these papers are all in junk con-
ferences. In fact, simple ranking evaluates the importance of each object according
to its immediate neighborhoods.

17.2.2 Authority Ranking

A more useful ranking we propose here is authority ranking function, which gives
an object higher ranking score if it has more authority. Ranking authority merely
with publication information seems impossible at first, as citation information could
be unavailable or incomplete (such as in the DBLP data, where there is no citation
information imported from Citeseer, ACM Digital Library, or Google Scholars).
However, two simple empirical rules give us the first clues.

• Rule 1: Highly ranked authors publish many papers in highly ranked con-
ferences.

• Rule 2: Highly ranked conferences attract many papers from many highly
ranked authors.
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Notice that these empirical rules are domain dependent and are usually given by
the domain experts who know both the field and the data set well.2

From the above heuristics, we define the ranking score of authors and confer-
ences according to each other as follows.

According to Rule 1, each author’s score is determined by the number of papers
and their publication forums:

rY ( j) =
m∑

i=1

WY X ( j, i)rX (i). (17.2)

When author j publishes more papers, there are more nonzero and high weighted
WY X ( j, i), and when the author publishes papers in a higher ranked conference i ,
which means a higher rX (i), the score of author j will be higher. At the end of each
step, rY ( j) is normalized by rY ( j)← rY ( j)∑n

j ′=1 rY ( j ′) .

According to Rule 2, the score of each conference is determined by the quantity
and quality of papers in the conference, which is measured by their authors’ ranking
scores:

rX (i) =
n∑

j=1

WXY (i, j)rY ( j). (17.3)

When there are more papers appearing in conference i , there are more nonzero
and high weighted WXY (i, j); if the papers are published by higher ranked author
j , the rank score for j , which is rY ( j), is higher, and thus the higher score the
conference i will get. The score vector is then normalized by rX (i)← rX (i)∑m

i ′=1 rX (i ′) .

Notice that the normalization will not change the ranking position of an object,
but it gives a relative importance score to each object. The two formulas can be
rewritten using the matrix form:

⎧
⎪⎪⎨

⎪⎪⎩

rX = WXY rY

‖WXY rY ‖
rY = WY X rX

‖WY X rX‖ .
(17.4)

Theorem 1 The solution to rX and rY given by the iteration formula is the primary
eigenvector of WXY WY X and WY X WXY respectively.

2 For example, a statistician may want to change the rules referring to conferences to jour-
nals; whereas a bibliographic database that collects papers from all the bogus conferences may
need even more sophisticated rules (extracted from the domain knowledge) to guard the ranking
quality.
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Proof Combining Eqsuations (17.2) and (17.3), we get rX = WXY rY‖WXY rY ‖ =
WXY

WY X rX‖WY X rX ‖
‖WXY

WY X rX‖WY X rX ‖ ‖
= WXY WY X rX‖WXY WY X rX‖ . Thus, rX is the eigenvector of WXY WY X . The iter-

ative method is the power method [9] to calculate the eigenvector, which is the
primary eigenvector. Similarly, rY is the primary eigenvector of WY X WXY .

When considering the co-author information, the scoring function can be further
refined by a third rule:

• Rule 3: The rank of an author is enhanced if he or she co-authors with
many authors or many highly ranked authors.

Using this new rule, we can revise Eqsuation (17.2) as

rY (i) = α

m∑

j=1

WY X (i, j)rX ( j)+ (1− α)

n∑

j=1

WY Y (i, j)rY ( j). (17.5)

where parameter α ∈ [0, 1] determines how much weight to put on each factor
based on one’s belief.

Similarly, we can prove that rY should be the primary eigenvector of
αWY X WXY + (1−α)WY Y , and rX should be the primary eigenvector of αWXY (I −
(1 − α)WY Y )

−1WY X . Since the iterative process is a power method to calculate
primary eigenvectors, the ranking score will finally converge.

For authority ranking, the time complexity is O(t |E |), where t is the iteration
number and |E | is the number of links in the graph. Notice that, |E | = O(d|V |)'
|V |2 in a sparse network, where |V | is the number of total objects in the network
and d is the average link per each object.

Different from simple ranking, authority ranking gives importance score to each
object according to the whole network, rather than the immediate neighborhoods,
by the score propagation over the whole network.

17.2.3 Alternative Ranking Functions

Although in this section, we only illustrate two possible ranking functions, the
general ranking functions are not confined to these two types. In reality, ranking
function is not only related to the link property of an information network but also
dependent on the hidden ranking rules used by people in some specific domain.
Ranking functions should be combined with link information and user rules in
that domain. For example, in many other science fields, journals should be given
higher weight when considering an author’s rank. Second, although ranking func-
tions in this section are defined on bi-type networks, ranking function on heteroge-
neous networks with more types of objects can be similarly defined. For example,
PopRank [19] is a possible framework to deal with heterogeneous network, which
takes into account both the impact within the same type of objects and its relations
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with other types of objects. The popularity scores of objects are mutually reinforced
through the relations with each other, with different impact factors of different
types. Ranking objects in information networks, junk, or spam entities are often
ranked higher than deserved. For example, authority ranking can be spammed by
some bogus conferences that accept any submit papers due to their huge publication
number. Techniques that best use expert knowledge such as TrustRank [11] could
be used, which can semi-automatically separate reputable, good objects from spam
ones, toward a robust ranking scheme. Personalized PageRank [31] that can utilize
expert ranking as query and generate ranking distributions given such knowledge
could be another choice to integrate with expert knowledge.

17.3 RankClus

The first clustering task we are solving is to cluster one type of objects (target
objects) using other types of objects (attribute objects) and the links in the network.
For example, given a bi-typed bibliographic network containing conferences and
authors, where links exist between conferences and authors, and between authors
and authors, we are interested in clustering conferences into different clusters repre-
senting different research communities, using the authors and links in the network.
In this section, we introduce RANKCLUS algorithm based on the bi-type network
and ranking functions defined in Section 17.2.

17.3.1 Overview

The biggest difficulty in clustering target objects in a network is that the features
for those objects are not explicitly given, like in traditional attribute-based data set.
The general idea of RANKCLUS is to use ranking distribution-derived features to
represent each target object, which are low dimensional. What’s more? This feature
can be further enhanced during the iterations of the algorithms, since good clustering
leads to good ranking, and good ranking gives better ranking-based feature.

Specifically, given the bi-type network G = 〈{X ∪ Y }, W 〉, suppose that we
have a random partition on target type X already, how can we use the conditional
ranks to improve the clustering results further? Intuitively, for each conference clus-
ter, which could form a research area, the rank of authors conditional on this area
should be very distinct and quite different from the rank of authors in other areas.
Therefore, for each cluster Xk , conditional rank of Y , rY |Xk , can be viewed as a rank
distribution of Y , which in fact is a measure for cluster Xk . Then, for each object
x in X , the distribution of object y in Y can be viewed as a mixture model over K
conditional ranks of Y and thus can be represented as a K -dimensional vector in the
new measure space.

We first build the mixture model and use EM algorithm to get the component
coefficients for each object in Section 17.3.2, then propose the distance measure
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between object and cluster in Section 17.3.3, then summarize the algorithm in Sec-
tion 17.3.4, and finally give some discussions on extending RANKCLUS to arbitrary
information networks in Section 17.3.5.

17.3.2 Mixture Model of Conditional Rank Distribution

Example 3 (Conditional Rank as Cluster Feature) Conditional ranks on different
clusters are very different from each other, especially when these clusters are cor-
rectly partitioned. Still using the data of the two-research-area example proposed
in Section 17.1, we rank 200 authors based on two conference clusters, and the
two conditional rank distributions are shown in Fig. 17.1. From the figure, we can
clearly see that DB/DM authors rank high relative to DB/DM conferences, while
rank extremely low relative to HW/CA conferences. The situation is similar for
HW/CA authors.
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Fig. 17.1 Authors’ rank distribution on different clusters

From Example 3, one can see that conditional rank distributions for attribute type
on each cluster are quite different from each other and can be used as measures to
characterize each cluster. This gives us the intuition to model the distribution for
each object x in X over Y as a mixture distribution of K -conditional rank distribu-
tions over Y . Here, we only consider the simple case that there are no links between
target objects, i.e., WX X = 0, and more complex situations will be discussed in
Section 17.3.5.

17.3.2.1 Mixture Model for Each Target Object

Suppose we now know the clustering results for type X , which are
X1, X2, . . . , and X K . Also, according to some given ranking function, we
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have got conditional rank distribution over Y on each cluster Xk , which is
rY |Xk (k = 1, 2, . . . , K ), and conditional rank over X , which is rX |Xk (k =
1, 2, . . . , K ). For simplicity, we use pk(Y ) to denote rY |Xk and pk(X) to denote
rX |Xk in the following deduction. For each object xi (i = 1, 2, . . . ,m) in X , it
follows a distribution pxi (Y ) = p(Y |xi ) to generate a link between xi and y in
Y . Moreover, this distribution could be considered as a mixture model over K -
component distributions, which are attribute type’s conditional rank distributions
on K clusters. We use πi,k to denote xi ’s coefficient for component k, which in fact
is the posterior probability that xi is generated from cluster k. Thus, pxi (Y ) can be
modeled as

pxi (Y ) =
K∑

k=1

πi,k pk(Y ) and
K∑

k=1

πi,k = 1. (17.6)

πi,k in fact is the probability that object xi belongs to cluster k, p(k|xi ). Since
p(k|xi ) ∝ p(xi |k)p(k), and we have already known p(xi |k), which is the condi-
tional rank of xi in cluster k, the goal is thus to estimate the prior of p(k), which
is the probability that a link between object x and y belongs to cluster k. In DBLP
scenario, a link is a paper, and papers with the same conference and author will
be considered as the same papers (since we do not have additional information to
discriminate them). The cluster of conference, e.g., DB conferences, can induce a
sub-network of conferences and authors with the semantic meaning of DB research
area. p(k) is the proportion of papers that belong to the research area induced by
the kth conference cluster. Notice that, we can just set the priors as uniform distri-
bution, and then p(k|xi ) ∝ p(xi |k), which means the higher its conditional rank
on a cluster, the higher possibility that the object will belong to that cluster. Since
conditional rank of X is the propagation score of conditional rank of Y , we can see
that highly ranked attribute object has more impact on determining the cluster label
of target object.

To evaluate the model, we also make an independence assumption that an
attribute object y j issuing a link is independent to a target object xi accepting this
link, which is pk(xi , y j ) = pk(xi )pk(y j ). This assumption says once an author
writes a paper, he is more likely to submit it to a highly ranked conference to
improve his rank; while for conferences, they are more likely to accept papers com-
ing from highly ranked authors to improve its rank as well.

Example 4 (Component Coefficients as Object Attributes) Following Example 3,
each conference xi is decomposed as a two-dimensional vector (πi,1, πi,2), each
dimension stands for the component coefficient. Figure 17.2 is the scatter plot for
each conference’s two-component coefficients, and different shapes of points rep-
resent different areas the conferences really belong to. From the figure, we can see
that DB/DM conferences and HW/CA conferences are separated clearly under the
new attributes.
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Fig. 17.2 Conferences’ scatter plot based on two-component coefficients

17.3.2.2 Parameter Estimation Using EM Algorithm

Next, let’s address the problem to estimate the component coefficients in the mix-
ture model. Let Θ be the parameter matrix, which is an m × K matrix: Θm×K =
{πi,k}(i = 1, 2, . . . ,m; k = 1, 2, . . . , K ). Our task now is to evaluate the best Θ ,
given the links we observed in the network. For all the links WXY and WY Y , we have
the likelihood of generating all the links under parameter Θ as

L ′(Θ|WXY , WY Y ) = p(WXY |Θ)p(WY Y |Θ)

=
m∏

i=1

n∏

j=1

p(xi , y j |Θ)WXY (i, j)
n∏

j=1

n∏

j=1

p(yi , y j |Θ)WY Y (i, j),

where p(xi , y j |Θ) is the probability to generate link 〈xi , y j 〉, given current param-
eter. Since p(WY Y |Θ) does not contain variables from Θ , we only need to con-
sider maximizing the first part of the likelihood to get the best estimation of Θ . Let
L(Θ|WXY ) be the first part of likelihood. As it is difficult to maximize L directly,
we apply EM algorithm [3] to solve the problem.

The initial parameter is Θ0, which could be set as π0
i,k = 1

K , for all i and k. For

conditional distribution p(z = k|y j , xi ,Θ
0), it can be calculated using Bayesian

rule as follows:

p(z = k|y j , xi ,Θ
0) ∝ p(xi , y j |z = k,Θ0)p(z = k|Θ0) = p0

k (xi )p0
k (y j )p0(z = k)

(17.7)

Thus, integrating into Equation (17.7), we can get the new estimation for
p(z = k), given Θ0 in M-Step of EM algorithm:
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p(z = k) =
∑m

i=1
∑n

j=1 WXY (i, j)p(z = k|xi , y j ,Θ
0)

∑m
i=1

∑n
j=1 WXY (i, j)

. (17.8)

Finally, each parameter πi,k in Θ is calculated using Bayesian rule:

πi,k = p(z = k|xi ) = pk(xi )p(z = k)
∑K

l=1 pl(xi )p(z = l)
. (17.9)

By setting Θ0 = Θ , the whole process can be repeated. At each iteration, updat-
ing rules from Equations (17.7–17.9) are applied, and finally Θ will converge to a
local maximum.

17.3.3 Cluster Centers and Distance Measure

After we get the estimations for component efficient for each target object xi

by evaluating mixture models, xi can be represented as a K -dimensional vector
sxi = (πi,1, πi,2, . . . , πi,K ). The centers for each cluster can thus be calculated
accordingly, which is the mean of sxi for all xi in each cluster. Next, the distance
between an object and cluster D(x, Xk) is defined by 1 minus cosine similarity.
When initial clusters are randomly partitioned, the initial conditional ranking would
be quite similar to each other. In this case, it is possible that all the objects are
mixed together and all belong to one cluster in terms of pi,k . An example is shown
in Fig. 17.3b; conditional rank distributions on Cluster 1 and Cluster 2 are similar
to each other, and rank distribution on Cluster 2 dominates Cluster 1 in more data
points. As a result, almost every object will have a higher coefficient relative to
Cluster 2.

17.3.4 RankClus: Algorithm Summarization

The input for RANKCLUS is the bi-type information network G = 〈{X ∪ Y }, W 〉,
the ranking function f , and the cluster number K . The output is K clusters of X
with within-cluster rank scores for each x , and conditional rank scores for each
y. RANKCLUS is mainly composed of three steps, put in an iterative refinement
manner. First, rank for each cluster. Second, estimate the parameter Θ in the mixture
model, get new representations sx for each target object and sXk for each target
cluster. Third, adjust each object in type X , calculate the distance from it to each
cluster center, and assign it to the nearest cluster:

• Step 0: Initialization. In the initialization step, generate initial clusters for target
objects, i.e., assign each target object with a cluster label from 1 to K randomly.

• Step 1: Ranking for each cluster. Based on current clusters, calculate conditional
rank for types Y and X and within-cluster rank for type X . In this step, we also
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Fig. 17.3 Mutual improvement of clusters and ranking through iterations

need to judge whether any cluster is empty, which may be caused by the improper
initialization or biased running results of the algorithm. When some cluster is
empty, the algorithm needs to restart in order to generate K clusters.

• Step 2: Estimation of the mixture model component coefficients. Estimate the
parameter Θ in the mixture model and get new representations for each target
object and centers, for each target cluster: sx and sXk . In practice, the iteration
number t for calculating Θ only needs to be set to a small number. Empirically,
t = 5 can achieve best results.

• Step 3: Cluster adjustment. Calculate the distance from each object to each cluster
center and assign it to the nearest cluster.

• Repeat Steps 1, 2, and 3 until clusters change only by a very small ratio ε, or
the iteration number should be bigger than a predefined number i ter Num. In
practice, we can set ε = 0 and i ter Num = 20. Through our experiments, the
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algorithm will converge less than 5 rounds in most cases for the synthetic data
set and around 10 rounds for DBLP data.

Example 5 (Mutual Improvement of Clustering and Ranking) We now apply our
algorithm to the two-research-area example. The conditional rank and component
coefficients for each conference at each iteration of the running procedure are illus-
trated in Fig. 17.3 through (a–h). To better explain how our algorithm can work,
we set an extremely bad initial clustering as the initial state. In Cluster 1, there are
14 conferences, half from DB/DM area and half from HW/CA area. Accordingly,
Cluster 2 contains the remaining six conferences, which are ICDT, CIKM, PKDD,
ASPLOS, ISLPED, and CODES. We can see that the partition is quite unbalanced
according to the size and quite mixed according to the area. During the first itera-
tion, the conditional rank distributions for two clusters are very similar to each other
(Fig. 17.3a), and conferences are mixed up and biased to Cluster 2 (Fig. 17.3b); how-
ever, we can still adjust their cluster label according to the cluster centers, and most
HW/CA conferences become the Cluster 2 and most DB/DM conferences become
Cluster 1. At the second iteration, conditional ranking is improved a little (shown
in Fig. 17.3c) since the clustering (Fig. 17.3b) is enhanced, and this time clustering
results (Fig. 17.3d) are enhanced dramatically, although they are still biased to one
cluster (Cluster 1). At the third iteration, ranking results are improved dramatically.
Clusters and ranks are adjusted afterward, both are minor refinements.

At each iteration, the time complexity of RANKCLUS compriss three parts: rank-
ing part, mixture model estimation part, and clustering adjustment part. For clus-
tering adjustment, we need to compute the distance between each object (m) and
each cluster (K ), and the dimension of each object is K , so the time complexity for
this part is O(mK 2). For ranking, if we use simple ranking, the time complexity is
O(|E |). If we use authority ranking, the time complexity is O(t1|E |), where |E | is
the number of links, and t1 is the iteration number of ranking. For mixture model
estimation, at each round, we need to calculate O(K |E |+K+mK ) parameters. So,
overall, the time complexity is O(t (t1|E | + t2(K |E | + K + mK )+ mK 2)), where
t is the iteration number of the whole algorithm and t2 is the iteration number of the
mixture model. If the network is a sparse network, the time is almost linear with the
number of objects.

17.3.5 Discussion: Extensions to Arbitrary Multi-typed
Information Network

In the previous section, the reasoning of RANKCLUS was based on bi-type net-
works, with the constraint that there are no links between target objects (i.e.,
WX X = 0). However, RANKCLUS can be applied to other information network as
well. In this section, we introduce the basic idea to use RANKCLUS in an arbitrary
network: The key is to generate a new set of attributes from every attribute type for
each object, and the RANKCLUS algorithm proposed in Section 17.3.4 can be used
directly.
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1. One-type information network. For one-type information network G =
〈{X}, W 〉, the problem can be transformed into bi-type network settings G =
〈{X ∪ Y }, W 〉, where Y = X .

2. Bi-type information network with WX X �= 0. For bi-type information net-
work WX X �= 0, the network can be transformed into a three-type network
G = 〈{X ∪ Z ∪ Y }, W 〉, where Z = X . In this situation, two sets of parameters
ΘZ and ΘY can be evaluated separately, by considering links of WX Z and WXY

independently. Therefore, for each object x , there should be 2K parameters. The
first K parameters are its mixture model coefficients over conditional rank distri-
butions of X , while the second K parameters are its mixture model coefficients
over conditional rank distributions of Y .

3. Multi-typed information network. For multi-typed information network G =
〈{X∪Y1∪Y2∪. . .∪YN }, W 〉, the problem can be solved similar to the second case.
In this case, we need to evaluate N sets of parameters, by considering conditional
ranks from N types: Y1,Y2, . . . ,YN . So, each object can be represented as an
NK-dimensional vector.

17.4 NetClus

Among heterogeneous networks, networks with star network schema (called star
network) such as bibliographic network centered with papers and tagging network
(e.g., http://delicious.com) centered with a tagging event are popular and important.
In fact, any n-nary relation set such as records in a relational database can be mapped
into a star network, with each relation as the center object and all attribute entities
linking to it.

Definition 4 (Star Network Schema) An information network G = 〈V, E, W 〉 on
T + 1 types of objects X = {Xt }Tt=0 is called star network schema, if ∀e =
〈xi , x j 〉 ∈ E, xi ∈ X0 ∧ x j ∈ Xt (t �= 0), or vise versa. G is then called a star
network. Type X0 is called the center type. X0 is also called the target type and
Xt (t �= 0) are called attribute types.

Example 6 (Bibliographic Information Network) A bibliographic network consists
of rich information about research papers, each written by a group of authors,
using a set of terms, and published in a venue (a conference or a journal). Such a
bibliographic network is composed of four types of objects: authors, venues, terms,
and papers. Links exist between papers and authors by the relation of “write” and
“written by”, between papers and terms by the relation of “contain” and “contained
in”, between papers and venues by the relation of “publish” and “published by”.
The topological structure of a bibliographic network is shown in the left part of
Fig. 17.4, which forms a star network schema, where paper is a center type and all
other types of objects are linked via papers.

One possible way to cluster a heterogeneous network is to first extract from it
a set of homogeneous networks and then apply traditional graph clustering algo-
rithms. However, such an extraction is an information reduction process: some
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valuable information, e.g., paper title or venue published in, is lost in an extracted
co-author network. NETCLUS is designed on heterogeneous networks with star net-
work schema, which is a ranking-based iterative method following the idea proposed
in RankClus [23] that ranking is a good feature to help clustering. However different
from RankClus, NETCLUS is able to deal arbitrarily with the number of types of
objects, as long as the network is a star network, and also the clusters generated are
no more than one type of objects but a network with the same topology as the input
network. For a given star network and a specified cluster number K , NETCLUS

outputs K net-clusters. Each net-cluster is a sub-layer representing a concept of
community of the network, which is an induced network from the clustered target
objects, and attached with statistic information for each object in the network. In
our algorithm, instead of generating pairwise similarities between objects, which
is time consuming and difficult to define under heterogeneous network, NETCLUS

maps each target object, i.e., that from the center type, into a K -dimensional vec-
tor measure, where K is the cluster number specified by users. The probabilistic
generative model for the target objects in each net-cluster is ranking-based, which
factorizes a net-cluster into T independent components, where T is the number of
attribute types (non-center type).

Further, although clustering co-author network may discover author communi-
ties, a research network contains not only authors but also venues, terms, and papers.
It is important to preserve such information by directly clustering on heterogeneous
networks, which may lead to generating sub-network clusters carrying rich informa-
tion. This motivates us to develop NETCLUS, a method that discovers net-clusters,
i.e., a set of sub-network clusters induced from the original heterogeneous network
(Fig. 17.4).
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Definition 5 (Net-Cluster) Given a network G, a net-cluster C is defined as C =
〈G ′, pC 〉, where G ′ is a sub-network of G, i.e., V (G ′) ⊆ V (G), E(G ′) ⊆ E(G), and
∀e = 〈xi , x j 〉 ∈ E(G ′), W (G ′)xi x j = W (G)xi x j . Function pC : V (G ′)→ [0, 1] is
defined on V (G ′), for all x ∈ V (G ′), 0 ≤ pC (x) ≤ 1, which denotes the probability
that x belongs to cluster C , i.e., P(x ∈ C).

17.4.1 Framework of NETCLUS Algorithm

Here, we first introduce the general framework of NETCLUS, and each part of the
algorithm will be explained in detail in the following sections. The general idea
of the NETCLUS algorithm given cluster number K is composed of the following
steps:

• Step 0: Generate initial partitions for target objects and induce initial net-clusters
from the original network according to these partitions, i.e., {C0

k }Kk=1.
• Step 1: Build ranking-based probabilistic generative model for each net-cluster,

i.e., {P(x |Ct
k)}Kk=1.

• Step 2: Calculate the posterior probabilities for each target object (p(Ct
k |x)) and

then adjust their cluster assignment according to the new measure defined by the
posterior probabilities to each cluster.

• Step 3: Repeat Steps 1 and 2 until the cluster does not change significantly, i.e.,
{C∗k }Kk=1 = {Ct

k}Kk=1 = {Ct−1
k }Kk=1 .

• Step 4: Calculate the posterior probabilities for each attribute object (p(C∗k |x))
in each net-cluster.

17.4.2 Probabilistic Generative Model for Target
Objects in a Net-Cluster

According to many studies in real networks [8, 18], preferential attachment and
assortative mixing exist in many real networks, which means an object with a
higher degree (i.e., high occurrences) has more probability to be attached with an
edge, and higher occurrence objects are more likely to link to each other. As in
DBLP data set, 7.64% of the most productive authors publishes 74.2% of all the
papers, among which 56.72% papers are published in merely 8.62% of the biggest
venues, which means large size conferences and productive authors are intended to
co-appear via papers. We extend the heuristic by using ranking, which denotes the
overall importance of an object in a network, instead of degree. The intuition is that
degree may not represent global importance of an object well. Examples include
webpage spammed by many low-rank webpages linking to it (high degree but low
rank) will not have too much chance to get a link from a real important webpage,
and authors publishing many papers in junk conferences will not increase his/her
chance to publish a paper in highly ranked conferences. Under this observation,
we simplify the network structure by proposing a probabilistic generative model
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for target objects, where a set of highly ranked attribute objects are more likely to
co-appear to generate a center object. To explain this idea, we take bibliographic
information network as a concrete example and show how the model works. Biblio-
graphic information network as illustrated in Example 5.1 is formalized as follows.

• Bibliographic information network: G = 〈V, E, W 〉.
• Nodes in G: V . In bibliographic network, V is composed of four types of objects:

author set denoted as A, conference set as C , term set as T , and paper set as
D. Suppose the number of distinct objects in each type are |A|, |C |, |T |, and
|D| respectively, objects in each type are denoted as A = {a1, a2, . . . , a|A|},
C = {c1, c2, . . . , c|C|}, T = {t1, t2, . . . , t|T |}, and D = {d1, d2, . . . , d|D|}. V is
the union of all the objects in all types: V = A ∪ C ∪ T ∪ D.

• Edges in G: E and W . In bibliographic network, each paper is written by sev-
eral authors, published in one conference, and contains several terms in the title.
Titles of papers are treated as a bag of terms, in which the order of terms is
unimportant but the number of occurrence of terms is. Therefore, for each paper
di , i = 1, 2, . . . , |D|, it has three kinds of links, going to three types of attribute
objects respectively. For two objects from two arbitrary types, xi and x j , if there
is a link between them, then edge 〈xi , x j 〉 ∈ E . Notice that the graph we consider
here is an undirected graph. Also, we use wxi x j to denote the weight of the link
of edge 〈xi , x j 〉, which is defined as follows:

wxi x j =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, if xi (x j ) ∈ A ∪ C and x j (xi ) ∈ D,

and xi has link to x j

c, if xi (x j ) ∈ T and x j (xi ) ∈ D and xi (x j )

appears c times in x j (xi ),

0, otherwise.

.

In order to simplify the complex network with multiple types of objects, we try
to factorize the impact of different types of attribute objects and then model the
generative behavior of target objects. The idea of factorizing a network is as fol-
lows: we assume that given a network G, the probability to visit objects from dif-
ferent attribute types is independent of each other. Still, the probability to visit an
attribute object in G, say author ai , can be decomposed into two parts: p(ai |G) =
p(A|G) × p(ai |A, G), where the first part p(A|G) is the overall probability that
type of author will be visited in G and the second part p(ai |A, G) is the probability
that an object ai will be visited among all the authors in the network G. Generally,
given an attribute object x and its type Tx , the probability to visit x in G is defined
as in Equation (17.10):

p(x |G) = p(Tx |G)× p(x |Tx , G). (17.10)

In practice, p(Tx |G) can be estimated by the proportion of objects in Tx compared
with the whole attribute object set

⋃
Tx for all attribute types. Later we will show
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that the value of p(Tx |G) is not important and can be set to 1. How to generate
ranking distribution p(x |Tx , G) for type Tx in a given network G will be addressed
in Section 17.4.4.

Also, we make another independence assumption that within the same type of
objects, the probability to visit two different objects is independent of each other:

p(xi , x j |Tx , G) = p(xi |Tx , G)× p(x j |Tx , G),

where xi , x j ∈ Tx , and Tx are some attribute types.
Now, we build the generative model for target objects, given the ranking distri-

butions of attribute objects in the network G. Still using bibliographic network as an
example, each paper di is written by several authors, published in one conference,
and comprised of a bag of terms in the title. Therefore, a paper di is determined by
several attribute objects, say xi1, xi2, . . . , xini , where ni is the number of links di

has. The probability to generate a paper di is equivalent to generating these attribute
objects with the occurrence number indicated by the weight of the edge. Under the
independency assumptions that we have made, the probability to generate a paper
di in the network G is defined as follows:

p(di |G) =
∏

x∈NG (di )

p(x |G)Wdi ,x =
∏

x∈NG (di )

p(x |Tx , G)Wdi ,x p(Tx |G)Wdi ,x ,

where NG(di ) is the neighborhood of object di in network G, and Tx is used to
denote the type of object x . Intuitively, a paper is generated in a cluster with high
probability, if the conference it is published in, authors writing this paper, and terms
appeared in the title have high probability in that cluster.

17.4.3 Posterior Probability for Target Objects
and Attribute Objects

Once we get the generative model for each net-cluster, we can calculate posterior
probabilities for each target object. Now the problem is, suppose that we know the
generative probabilities for each target object generated from each cluster k, k =
1, 2, . . . , K , then what is the posterior probability that it is generated from cluster k?
Here, K is the cluster number given by user. As some target objects may not belong
to any of K net-cluster, we will calculate K+1 posterior probabilities for each target
object instead of K , where the first K posterior probabilities are calculated for each
real existing net-clusters C1,C2, . . . ,CK , and the last one in fact is calculated for
the original network G. Now, the generative model for target objects in G plays a
role as background model, and target objects that are not very related to any clusters
will have high posterior probability in background model. In this section, we will
introduce the method to calculate posterior probabilities for both target objects and
attribute objects.
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According to the generative model for target objects, the generative probability
for a target object d in the target type D in a sub-network Gk = G(Ck) can be cal-
culated according to the conditional rankings of attribute types in that sub-network:

p(d|Gk) =
∏

x∈NGk (d)

p(x |Tx , Gk)
Wd,x p(Tx |Gk)

Wd,x , (17.11)

where NGk (d) denotes for the neighborhood of object d in sub-network Gk . In
Equation (17.11), in order to avoid zero probabilities in conditional rankings,
each conditional ranking should be smoothed using global ranking with smoothing
parameter λS, before calculating posterior probabilities for target objects:

PS(X |TX , Gk) = (1− λS)P(X |TX , Gk)+ λS P(X |TX , G),

where λS is a parameter that denotes how much we should utilize the ranking distri-
bution from global ranking.

Smoothing [29] is a well-known technology in information retrieval. One of the
reasons that smoothing is required in the language model is to deal with the zero
probability problem for missing terms in a document. When calculating generative
probabilities of target objects using our ranking-based generative model, we meet
a similar problem. For example, for a paper in a given net-cluster, it may link to
several objects whose ranking score is zero in that cluster. However, if we simply
assign the probability of the target object as zero in that cluster, we cannot use
other informative objects to decide which cluster this target object is more likely
belonging to. In fact, in initial rounds of clustering, objects may be assigned to
wrong clusters, and if we do not use smoothing technique, they may not have the
chance to go back to correct clusters (see the case of λS = 0 in Fig. 17.8b).

Once a clustering is given on the input network G, say C1,C2, . . . ,CK , we can
calculate the probability for each target object (say paper di ), simply by Bayesian
rule: p(k|di ) ∝ p(di |k) × p(k), where p(di |k) is the probability that paper di is
generated from cluster k, and p(k) denotes the relative size of cluster k, i.e., the
probability that a paper belongs to cluster k, overall. Here, k = 1, 2, . . . , K , K + 1.
From this formula, we can see that type probability p(T |G) is just a constant for
calculating posterior probabilities for target objects and can be neglected.

In order to get the potential cluster size p(k) for each cluster k, we choose cluster
size p(k) that maximizes log-likelihood to generate the whole collection of papers
and then use the EM algorithm to get the local optimum for p(k):

log L =
|D|∑

i=1

log(p(di )) =
|D|∑

i=1

log

[
K+1∑

k=1

p(di |k)p(k)

]

. (17.12)

We use the EM algorithm to get p(k) by simply using the following two iterative
formulas, by initially setting p(0)(k) = 1

K+1 :
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p(t)(k|di ) ∝ p(di |k)p(t)(k); p(t+1)(k) =
|D|∑

i=1

p(t)(k|di )/|D|.

When posterior probability is calculated for each target object in each cluster
Ck together with the parent cluster C , where G(C) = G, each target object d can
be represented as a K -dimensional vector: v(d) = (p(1|d), p(2|d), . . . , p(K |d)).
The center for each cluster Ck can be represented using a K -dimensional vector
as well, which is the mean vector of all the target objects belonging to the clus-
ter under the new measure. Next, we calculate cosine similarity between each tar-
get object and each center of cluster and assign the target object into the cluster
with the nearest center. A new sub-network Gk can be induced by current target
objects belonging to cluster k. Following the net-cluster definition (Definition 3),
pCk (d) = 1 if object d is assigned to cluster Ck , 0 otherwise. The adjustment is an
iterative process, until target objects do not change their cluster label significantly
under the current measure. Notice that, when measuring target objects, we do not
use the posterior probability for background model. We make such choices with
two reasons: first, the absolute value of posterior probability for background model
should not affect the similarity between target objects; second, the sum of the first K
posterior probabilities reflects the importance of an object in determining the cluster
center.

The posterior probabilities for attribute objects x ∈ A ∪ C ∪ T can be cal-
culated as follows: p(k|x) = ∑

d∈NG (x) p(k, d|x) = ∑
d∈NG (x) p(k|d)p(d|x) =

∑
d∈NG (x) p(k|d) 1

|NG (x)| . It simply says, the probability of a conference belonging
to cluster Ck equals to the average posterior probability of papers published in the
conference, which is similar for authors. And pCk (x) in net-cluster definition is set
to p(k|x).
Example 7 (A Running Example of Posterior Change) In Table 17.4, we select four
objects from four types in the DBLP “four-area” data set to show their posterior
probabilities, in four net-clusters and a background model, changing along itera-
tions. Initially, net-clusters are generated from random partitions of papers, each
of which is very similar to the original network. Therefore, conditional ranking
distributions of each type in each cluster are also very similar to the original ones
(background). Thus, posterior probabilities for objects in K initial clusters are simi-
lar to each other.3 However, as similar papers under new measure given by posteriors
are grouped together, net-clusters in each area become more and more distinct and
objects are gradually assigned with a high posterior probability in the cluster that
they should belong to.

3 Initial absolute posterior prob. to background is sensitive to prior λP: the higher λP , the larger
the value. However, final posterior prob. is not significantly affected by λP.
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17.4.4 Ranking Distribution for Attribute Objects

We have introduced ranking functions in Section 17.2, and now clarify the ranking
function for the bibliographic network with star network schema, and also give some
properties of the two ranking functions for a simple three-typed star network.

17.4.4.1 Simple Ranking

Simple ranking is namely the simple occurrence counting for each object normal-
ized in its own type. Given a network G, ranking distribution for each attribute type
of objects is defined as follows:

p(x |Tx , G) =
∑

y∈NG (x) Wxy
∑

x ′∈Tx

∑
y∈NG (x ′) Wx ′y

, (17.13)

where x is an object from type Tx . For example, in bibliographic network, the rank
score for a conference using simple ranking will be proportional to the number of
its accepted papers.

17.4.4.2 Authority Ranking

Authority ranking for each object is a ranking function that considers the authority
propagation of objects in the network, thus will represent more of the visibility over
the whole network. For a general star network G, the propagation of authority score
from Type X to Type Y through the center type Z is defined as

P(Y |TY , G) = WY Z WZ X P(X |TX , G), (17.14)

where WT Z and WZ X are the weight matrices between the two types of objects as
indexed and can be normalized when necessary. Generally, authority score of one
type of objects could be a combination of scores from different types of objects, e.g.,
that proposed in [19]. It turns out that the iteration method for calculating ranking
distribution is the power method to calculate the primary eigenvector of a square
matrix denoting the strength between pairs of objects in that certain type, which can
be achieved by selecting a walking path (or a combination of multiple paths) in the
network.

In the DBLP data set, according to the rules (1) highly ranked conferences accept
many good papers published by many highly ranked authors and (2) highly ranked
authors publish many good papers in highly ranked conferences, we determine the
iteration equation as

P(C |TC , G) = WC D D−1
D AWD A P(A|TAG)

P(A|TA, G) = WAD D−1
DC WDC P(C |TC , G), (17.15)
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where DD A and DDC are the diagonal matrices with the diagonal value equaling
to row sum of WD A and WDC . Since all these matrices are sparse, in practice, the
rank scores of objects need only be calculated iteratively according to their limited
neighbors.

In both ranking functions, prior distributions for a certain type in different
clusters can be integrated. Priors for a given type X are given in the form
PP (X |TX , k), k = 1, 2, . . . , K . A user may give only a few representative objects
to serve as priors, like terms and conferences in bibliographic data. First, the prior
is propagated in the network in a Personalized PageRank [31] way, to propagate
scores to objects that are not given in the priors. Then, the propagated prior is linear
combined with the ranking functions with parameter λP ∈ [0, 1]: The bigger the
value, the more the final conditional ranking is dependent on prior.

17.4.5 Algorithm Summary and Time Complexity Analysis

Time complexity of NETCLUS is composed of the following parts. First, compu-
tational complexity for global ranking for attribute objects is O(t1|E |) and that for
global probability calculation for target objects is O(|E |), where |E | is the number
of edges in network G and t1 is the iteration number for ranking. For ranking, at each
iteration, each link will be calculated once; and for global probability calculation,
a link is still calculated once. Second, time complexity for conditional ranking for
attribute objects is O(t1|Ek |), and for conditional probability for target objects is
O(|Ek |) in each cluster k. When adding them together, for all sub-clusters, time
complexity for one iteration of clustering should be O(t1|E |+|E |). Third, time com-
plexity for calculating posterior probability for each target object is O(t2(K+1)N ),
where N is the number of target objects, and t2 is the max iteration number in the
EM algorithm. Fourth, cluster adjustment for each target object is O(K 2 N ). Since
for each target object, it has a K -dimensional measure, and we have to calculate
similarity to K clusters’ centers, which are also K -d. Fifth, time complexity for
posterior probability for each attribute object is O(K |E |). For each attribute object,
each link to target object should be used once to calculate the posterior probability
for it. Also, for each attribute type, we have to calculate a K -d measure.

In all, the time complexity for NETCLUS is O((t1 + 1)|E | + t3((t1 + 1)|E | +
t2(K + 1)N + K 2 N )+ K |E |), where t3 is max iteration number used for clustering
adjustment, which can be summarized as O(c1|E | + c2 N ). When the network is
very sparse, which is a real situation in most applications, the time complexity is
almost linear to the objects in the network.

17.5 Experiments

In this section, we study the effectiveness and efficiency of RANKCLUS and
NETCLUS respectively.
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17.5.1 RankClus

First, we will show the effectiveness and efficiency of RANKCLUS algorithm com-
pared with other linked based algorithms, based on both synthetic and real data sets.

17.5.1.1 Accuracy and Efficiency Study on Synthetic Data

In order to compare accuracy among different clustering algorithms, we generate
synthetic bi-type information networks, which follow the properties of real infor-
mation networks similar to DBLP. Please refer to [23] to see the detail of syntectic
data.

In order to evaluate the accuracy of the clustering results, we adopt Normal-
ized Mutual Information measure. For N objects, K clusters, and two cluster-
ing results, let n(i, j), i, j = 1, 2, . . . , K , the number of objects that has the
cluster label i in the first cluster and the cluster label j in the second cluster.
From n(i, j), we can define joint distribution p(i, j) = n(i, j)

N , row distribution

p1( j) = ∑K
i=1 p(i, j), and column distribution p2(i) =∑K

j=1 p(i, j). NMI is

defined as
∑K

i=1
∑K

j=1 p(i, j) log( p(i, j)
p1( j)p2(i)

)
√∑K

j=1 p1( j) log p1( j)
∑K

i=1 p2(i) log p2(i)
.

We compared RANKCLUS implemented with two ranking functions, which are
simple ranking and authority ranking, with state-of-the-art spectral clustering algo-
rithm, which is the k-way Ncut algorithm proposed in [21], implemented with two
similarity matrix generation methods, which are Jaccard coefficient and SimRank
[13]. Results for accuracy is in Fig. 17.5. For each network configuration, we gen-
erate 10 different data sets and run each algorithm 100 times. From the results,
we can see that, two versions of RANKCLUS outperform in the first four data sets.
RANKCLUS with authority ranking function is even better, since authority ranking
gives a better rank distribution, as it is able to utilize the information of the whole
network. Through the experiments, we observe that performance of two versions of
RankClus and the NCut algorithm based on Jaccard coefficient are highly depen-
dent on the data quality, in terms of cluster separateness and link density. SimRank
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Fig. 17.5 Accuracy of clustering
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has a very stable performance. Further experiments show that the performance of
SimRank will deteriorate when the data quality is rather poor (when average link
for each target object is 40, the NMI accuracy becomes as low as 0.6846).

In order to check the scalability of each algorithm, we set four different size
networks, in which both the object size and the link size are increasing by a factor
of 2. The average time used by each algorithm for each data set is summarized in
Fig. 17.6. We can see that compared with the time-consuming SimRank algorithm,
RANKCLUS is also very efficient and scalable.
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Fig. 17.6 Efficiency analysis

17.5.1.2 Case Study on the DBLP Data Set

We use the DBLP data set to generate a bi-type information network for all the
2676 conferences and 20,000 authors with most publications, from the time period
of year 1998 to year 2007. Both conference–author relationships and co-author rela-
tionships are used. We set cluster number K = 15 and apply RANKCLUS with
authority function proposed in Section 17.4.2, with α = 0.95. We then pick five
clusters and show top-10 conferences from each cluster according to within-cluster
scores. For clarify, each research area labels are added manually to each cluster. The
results are shown in Table 17.5.

Table 17.5 Top-10 conferences in five clusters using RANKCLUS

DB Network AI Theory IR

1 VLDB INFOCOM AAMAS SODA SIGIR
2 ICDE SIGMETRICS IJCAI STOC ACM Multimedia
3 SIGMOD ICNP AAAI FOCS CIKM
4 KDD SIGCOMM Agents ICALP TREC
5 ICDM MOBICOM AAAI/IAAI CCC JCDL
6 EDBT ICDCS ECAI SPAA CLEF
7 DASFAA NETWORKING RoboCup PODC WWW
8 PODS MobiHoc IAT CRYPTO ECDL
9 SSDBM ISCC ICMAS APPROX-RANDOM ECIR
10 SDM SenSys CP EUROCRYPT CIVR
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Please note that the clustering and ranking of conferences and authors shown
in Tables 17.5 and 17.1b have not used any keyword nor citation information, the
information popularly used in most bibliographic data clustering or ranking systems.
It is well recognized that citation information is crucial at judging the influence and
impact of a conference or an author in a field. However, by exploring the publication
entries only in the DBLP data, the RANKCLUS algorithm can achieve comparable
performance as citation studies for clustering and ranking conferences and authors.
This implies that the collection of publication entries without referring to the key-
word and citation information can still tell a lot about the status of conferences and
authors in a scientific field.

17.5.2 NetClus

We now study the effectiveness of NETCLUS and compare it with state-of-the-art
algorithms.

17.5.2.1 Data Set

We use real data set from DBLP and build bibliographic networks according to
Example 6. Two networks with different scales will be studied. First, a data set
(“all-area” data set) covering all the conferences, authors, papers, and terms from
DBLP will be used. Second, we also extract a small data set (“four-area” data set)
which contains four areas that are most related to data mining, which are database,
data mining, information retrieval, and machine learning. Five representative con-
ferences for each area are picked, and all authors have ever published papers on
any of the 20 conferences, all these papers and terms appeared in these titles are
included in the network. By using the smaller data set, we want to compare the
clustering accuracy with several other methods. Also, parameter study and ranking
function study will be carried on based on the “four-area” data set.

17.5.2.2 Case Study

We first show the ranking distributions in net-clusters we discovered using the “all-
area” data set, which is generated by using authority ranking for conferences and
authors, setting conference type as priors, and setting the cluster number as 8. We
show three net-clusters in Table 17.6. Also, we can recursively apply NETCLUS to
sub-networks derived from clusters and discover finer net-clusters. Top-5 authors in
a finer net-cluster about XML area, which is derived from database sub-network,
are shown in Table 17.7.

17.5.2.3 Study on Ranking Functions

In Section 17.4.4, we proposed two ranking functions, namely simple ranking and
authority ranking. Here, we study how low-dimensional measure derived from
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Table 17.6 Top-5 conferences in 3 net-clusters

Rank DB and IS Theory AI

1 SIGMOD STOC AAAI
2 VLDB FOCS UAI
3 ICDE SIAM J. Comput. IJCAI
4 SIGIR SODA Artif. Intell.
5 KDD J. Comput. Syst. Sci. NIPS

Table 17.7 Top-5 authors in “XML” net-cluster

Rank Author

1 Serge Abiteboul
2 Victor Vianu
3 Jerome Simeon
4 Michael J. Carey
5 Sophie Cluet

ranking distributions improves clustering and how clustering can improve this new
measure in turn (Fig. 17.7). Term is fixed to use simple ranking, and conference
and author are set to use either authority ranking or simple ranking as two different
settings.

First, in order to measure how dissimilar conditional ranking distributions are
among different clusters, we calculate average KL divergence, which is denoted as
avgK L(X), between each conditional ranking and global ranking for each attribute
type X : avgK L(X) = 1

K

∑K
k=1 DK L(P(X |TX , Gk)||P(X |TX , G)).

Second, in order to measure the goodness of measure generated in each round
of clustering, we use the compactness, C f , of target objects under each round of
clustering for ranking function f , which is defined as the average ratio between
within-cluster similarity and between-cluster similarity using the new measure:
C f = 1

|D|
∑K

k=1
∑|Dk |

i=1
s(dki ,ck )∑

k′ �=k s(dki ,ck′ )/(K−1) .

Third, we trace the accuracy of clustering results for target objects in each round
of iteration, which is defined as accuracy = 1

|D|
∑D

i=1 Ptrue(·|di ) · P(·|di ). However,
since |D| is very large even in four-area data set, we manually randomly label 100
papers into four clusters and use this paper set to calculate the accuracy.

Fourth, at each iteration of clustering, we calculate the posterior probability for
each paper by maximizing the log-likelihood of the whole collection. Here, we also
trace the log-likelihood log L along with the clustering iterations, which is defined
in Equation (17.12). From Fig. 17.7, we can see authority ranking is better in every
measure than simple ranking.

17.5.2.4 Study on Parameters

In our algorithm, there are two parameters: prior parameter (λP) and smoothing
parameter setting (λS). We use clustering accuracy for sampled papers to test the
impact of different settings of parameters to the algorithm. By fixing one of them,
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Fig. 17.7 The change of goodness of ranking and clustering along with the iteration number

we vary the other one. From Fig. 17.8a and b, we find that the larger the prior
parameter λP, the better the results, while when λP > 0.4, the impact becomes
more stable4; also, the impact of smoothing parameter is very stable, unless it is not
too small (less than 0.1) or too big (bigger than 0.8). The results are based on 20
runnings. Priors given for each of the four areas are around two or three terms. For
example, “database” and “system” are priors for database area, with uniform prior
distribution.

17.5.2.5 Accuracy Study

In this section, we compare our algorithm with two other algorithms. Since all of
them cannot be directly applied to heterogeneous network clustering with four types

4 Actually, the extremely poor quality when λP is very small is partially caused by the improper
accuracy measure at those occasions. When the prior is not big enough to attract the papers from
the correct cluster, the clusters generated not necessarily have the same cluster label with the priors.
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Fig. 17.8 Parameter study of λP and λS

of objects, for each algorithm, we will simplify the network when necessary to make
all the algorithms comparable. For PLSA [30], only the term type and paper type in
the network are used. Notice that we use the same term prior in both NETCLUS and
PLSA. The accuracy results for papers are in Table 17.8.

Table 17.8 Accu. of paper clustering results

NetClus PLSA
(A + C + T + D) (T + D)

Accuracy 0.7705 0.608

Since RankClus can only cluster conferences, we choose to measure the accu-
racy of conference cluster. For NETCLUS, cluster label is obtained according to the
largest posterior probability, and NMI [23] is used to measure the accuracy. The
results are shown in Table 17.9, where d(a) > n means we select authors that have
more than n publications. Since majority authors only publish a few papers, which
contains little information for disclosure of the relationship between two confer-
ences and misleads the algorithm, we run RankClus algorithm by setting different
thresholds to select subsets of authors. All the results are based on 20 runnings.

Table 17.9 Accu. of conf. clustering results

RankClus RankClus RankClus NetClus
d(a) > 0 d(a) > 5 d(a) > 10 d(a) > 0

NMI 0.5232 0.8390 0.7573 0.9753

17.6 Related Work

In information network analysis, two most important ranking algorithms are
PageRank [4] and HITS [15], both of which are successfully applied to the Internet
search. PageRank is a link analysis algorithm that assigns a numerical weight to
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each object of the information network, with the purpose of “measuring” its relative
importance within the object set. On the other hand, HITS ranks objects are based
on two scores: authority and hub. Authority estimates the value of the content of the
object, whereas hub measures the value of its links to other objects. Both PageRank
and HITS evaluate the static quality of objects in information network, which is sim-
ilar to the intrinsic meaning of our ranking methods. However, both PageRank and
HITS are designed on the network of webpages, which is a directed homogeneous
network, and the weight of the edge is binary. PopRank [19] aims at ranking popular-
ity of web objects. They have considered the role difference of different webpages,
and thus turn webpages into a heterogeneous network. They trained the propagation
factor between different types of objects according to partial ranks given by experts.
Different from their setting, we will calculate the rank for each type of objects
separately (i.e., we do not compare ranks of two objects belonging to different
types), rather than consider them in a unified framework. J. E. Hirsch [12] proposed
h-index originally in the area of physics for characterizing the scientific output of
a researcher, which is defined as the number of papers with citation number higher
or equal to h. Extended work [22] shows that it can also work well in computer
science area. However, h-index will assign an integer value h to papers, authors,
and publication forums, while our work requires that rank sores can be viewed
as a rank distribution and thus can serve as a good measure for clustering. What
is more, since there are only very limited citation information in DBLP, ranking
methods demanding citation cannot work in such kind of data. Instead of proposing
a totally new strategy for ranking, we aim at finding empirical rules in the specific
area of DBLP data set and providing ranking function based on these rules, which
works well for the specific case. The real novelty that lies in our framework is that
it tightly integrates ranking and clustering and thus offers informative summary for
heterogeneous network such as the DBLP data.

Clustering on graphs, often called graph partition, aims at partitioning a given
graph into a set of subgraphs based on different criteria, such as minimum cut,
min-max cut [7], and normalized cut [21]. Spectral clustering [13, 25] provides an
efficient method to get graph partitions which is in fact an NP-hard problem. Rather
than investigating the global structure like spectral clustering, several density-based
methods [26, 27] are proposed to find clusters in networks which utilize some neigh-
borhood information for each object. These methods are all based on the assumption
that the network is homogeneous and the adjacent matrix of the network is already
defined. SimRank [13] is able to calculate pairwise similarity between objects by
the links of a given network, which could deal with heterogeneous network, such as
bipartite network. However, when the structure of network becomes more complex,
such as network with star network schema, SimRank cannot give reasonable simi-
larity measures between objects any more. Also, high-time complexity is another
issue of SimRank, which prevents it from being applied to large-scale networks.
Without calculating the pairwise similarity between two objects of the same type,
RANKCLUS and NETCLUS use conditional ranking as the measure of clusters,
and it only needs to calculate the distances between each object and the cluster
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center. Recently, a different view of clustering on heterogeneous networks [1, 2, 16]
appears, which aims at clustering objects from different types simultaneously. Given
different cluster number needed for each type of objects, clusters for each type are
generated by maximizing some objective function. In NETCLUS, net-cluster fol-
lows the original network topology and resembles a community that is comprised
of multiple types of objects.

In web search, there exists an idea of facet ranking [5, 28], which clusters the
returned results for each query into different categories, to help users to better
retrieve the relevant documents. A commercial website that illustrates the idea is
“vivisimo.com.” 5 It may seem that facet ranking also integrates ranking with clus-
tering; however, our work is of totally different idea. First, the goal of facet ranking
is to help user to better organize the results. The meaning of ranking here is the
relevance to the query. RANKCLUS and NETCLUS aim at finding higher quality
and more informative clusters for target objects with rank information integrated in
an information network. Second, facet ranking is a two-stage methodology. In the
first stage, relevant results are collected according to the relevance of the query, and
then clustering is applied on the collection of returned documents. RANKCLUS and
NETCLUS integrate ranking and clustering tightly, which are mutually improved
during the iterations.

17.7 Conclusions

Ranking-based clustering methods RANKCLUS and NETCLUS [23, 24] are newly
proposed algorithms on heterogeneous network analysis. RANKCLUS aims at clus-
tering target objects using the attribute objects in the remaining network, while NET-
CLUS is able to generate net-clusters containing multiple types of objects following
the same schema of the original network. The basic idea of such algorithms is that
ranking distributions of objects in each cluster should be quite different from each
other. Also, there should be a clustering for target objects, such that every target
object is closest to its current cluster given the new measure defined by conditional
ranking distributions for each cluster derived from extracted sub-networks. Ranking
and clustering can be mutually enhanced, while ranking provides better measure
space and clustering provides more reasonable ranking distribution. Clusters gener-
ated using such methods are more informative, given the ranking distributions for
the objects in the cluster. There are still many research issues to be explored in the
framework. Clearly, more research is needed to further consolidate this interesting
framework and explore its broad applications.

5 http://vivisimo.com
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Chapter 18
Mining Large Information Networks
by Graph Summarization

Chen Chen, Cindy Xide Lin, Matt Fredrikson, Mihai Christodorescu,
Xifeng Yan, and Jiawei Han

Abstract Graphs are prevalent in many domains such as bioinformatics, social
networks, Web, and cybersecurity. Graph pattern mining has become an important
tool in the management and analysis of complexly structured data, where example
applications include indexing, clustering, and classification. Existing graph mining
algorithms have achieved great success by exploiting various properties in the pat-
tern space. Unfortunately, due to the fundamental role subgraph isomorphism plays
in these methods, they may all enter into a pitfall when the cost to enumerate a huge
set of isomorphic embeddings blows up, especially in large graphs. The solution
we propose for this problem resorts to reduction on the data space. For each graph,
we build a summary of it and mine this shrunk graph instead. Compared to other
data reduction techniques that either reduce the number of transactions or compress
between transactions, this new framework, called SUMMARIZE-MINE, suggests a
third path by compressing within transactions. SUMMARIZE-MINE is effective in
cutting down the size of graphs, thus decreasing the embedding enumeration cost.
However, compression might lose patterns at the same time. We address this issue
by generating randomized summaries and repeating the process for multiple rounds,
where the main idea is that true patterns are unlikely to miss from all rounds. We
provide strict probabilistic guarantees on pattern loss likelihood. Experiments on
real malware trace data show that SUMMARIZE-MINE is very efficient, which can
find interesting malware fingerprints that were not revealed previously.

18.1 Introduction

Recent years have witnessed the prevalence of graph data in many scientific and
commercial applications, such as bioinformatics, social networks, Web, and cyber-
security, partly because graphs are able to model the most complex data structures.

C. Chen (B)
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As illustrated by the enhancement made to many core tasks of these domains, e.g.,
indexing [29] and classification [6, 14], mining graph patterns that frequently occur
(for at least min_sup times) can help people get insight into the structures of data,
which is well beyond traditional exercises of frequent patterns, such as association
rules [1].

However, the emergence of bulky graph data sets places new challenges for graph
data mining. For these scenarios, the target graphs are often too large which may
severely restrict the applicability of current pattern mining technologies. For exam-
ple, one emerging application of frequent graph patterns is to analyze the behavior
graphs of malicious programs. One can instrument malicious binaries to generate
system call graphs, where each node is a system call event. By comparing the sub-
tle differences between graphs generated by malware and benign programs, it is
possible to find those graph fingerprints that are common and unique in malicious
programs [5]. Unfortunately, due to the bulkiness and complexity of system call
graphs, we found that none of the state-of-art mining algorithms can serve this new
and critical task well. Similar problems are also encountered for biological networks
and social networks.

Existing frequent subgraph mining algorithms, like those developed in [13, 15,
28], achieved great success using strategies that efficiently traverse the pattern
space; during this process, frequent patterns are discovered after checking a series
of subgraph isomorphisms against the database. However, as we argue in this paper,
these methods ignore the important fact that isomorphism tests are sometimes
expensive to perform. The key issue here is a huge set of isomorphic embeddings
that may exist. In order to check the occurrences of a pattern in a large graph, one
often needs to enumerate exponentially many subgraphs. This situation is further
worsened by the possible overlaps among subgraphs. Looking at G1, G2, . . . in
Fig. 18.1, subgraphs such as triangles might share a substantial portion in common,
while only one different node/edge would require them to be examined twice, which
quickly blows up the total cardinality.

We use a simple example to demonstrate the above scenario. Suppose we have
1,000,000 length-2 paths in a large graph and we would like to check if it has a
triangle inside. These 1 million paths have to be checked one by one because each
of them has the potential to grow into a full embedding of the triangle pattern. The
same dilemma exists for any pattern that includes a length-2 path. Such a huge num-
ber of possible embeddings become a severe bottleneck for graph pattern mining
tasks.

Now let us consider possible ways to reduce the number of embeddings. In par-
ticular, since many embeddings overlap substantially, we explore the possibility of
somehow “merging” these embeddings so that the overall cardinality is significantly
reduced. As Fig. 18.1 depicts, merging of embeddings is achieved by binding ver-
tices with identical labels into a single node and collapsing the network correspond-
ingly into a smaller version. As suggested by previous studies [3, 25], the above
process indeed provides a graph summary that generalizes our view on the data to a
higher level, which can facilitate analysis and understanding, similar to what OLAP
(On-Line Analytical Processing) does for relational databases.
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Fig. 18.1 The SUMMARIZE-MINE framework

Graph summarization leads to a dramatic cut-down of graph size as well as
the total number of embeddings, which makes subgraph isomorphism cheaper
to perform. This forms the main idea of our SUMMARIZE-MINE framework: In
Fig. 18.1, we first summarize the original graphs {G1, G2, . . .} into small sum-
maries {S1, S2, . . .}, which are then mined for frequent patterns, where state-of-art
algorithms should now perform well. However, the price paid here is the possible
loss of patterns, i.e., there could exist false positives and false negatives. For false
positives, one can always verify their frequency against the original database and
discard those failing ones (interestingly, as we shall discuss later, based on the rela-
tionship between Gi and Si , a lot of verification efforts can be transferred to the
small-sized Si , as well); for false negatives, we choose to generate summaries in
a randomized manner and repeat the process for multiple rounds. Intuitively, true
patterns are unlikely to miss from all rounds.

Recapitulating the above discussions, we outline the contributions made in this
chapter as follows.

First, a previously neglected issue in frequent graph pattern mining, i.e., the
intrinsic difficulty to perform embedding enumeration in large graphs, is examined,
which could easily block many downstream applications. Compared to previous
studies that focus on the efficient traversal of pattern space, the perspective of
this work is data space oriented, which leads to an innovative SUMMARIZE-MINE

framework. The power and efficiency of our algorithm is validated by extensive
experiments on real program analysis data, which can find interesting malware fin-
gerprints that were not revealed previously.

Second, the data reduction principle we adopt is to compress information within
transactions. It eliminates the shortcoming of lossy summarization by a random-
izing technique, which repeats the whole process for multiple rounds and achieves
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strict probabilistic guarantees. This is novel compared to other methods that either
reduce the number of transactions (e.g., sampling [26]) or compress between trans-
actions (e.g., FP-Growth [8] losslessly compresses the whole data set into an FP-tree
for frequent itemset mining).

Third, our proposed method of reducing data within transactions supplemented
by randomized mechanisms marks an additional dimension that is orthogonal to
the state-of-art pattern mining technologies. In this sense, one can freely com-
bine SUMMARIZE-MINE with other optimizations suggested in the past to further
enhance their performance, and the idea is not restricted to graphs, which can also
be extended to sequences, trees, etc.

Finally, nowadays, extremely huge networks such as those of Internet cyberat-
tacks and on-line social network websites (e.g., Facebook and MySpace) are not
uncommon; sometimes, they even cannot fit in main memory, which makes it very
hard for people to access and analyze. To this extent, the usage of SUMMARIZE-
MINE can be viewed from another perspective: Considering the increasingly impor-
tant role of summarization as a necessary preprocessing step, we have made a suc-
cessful initial attempt to analyze how this procedure would impact the underlying
patterns (frequent substructures being a special instance). It is crucial for the appli-
cations to understand when and to what degree a compressed view can represent the
original data in terms of its patterns.

The rest of this chapter is organized as follows. Preliminaries and the overall
SUMMARIZE-MINE framework are outlined in Sections 18.2 and 18.3. The major
technical investigations, including probabilistic analysis of false negatives, verifica-
tion of false positives, and iterating multiple times to ensure result completeness,
are given in Sections 18.4, 18.5 and 18.6, respectively. Section 18.7 presents experi-
mental results, Section 18.8 discusses related work, and Section 18.9 concludes this
study.

18.2 Preliminaries

In this chapter, we will use the following notations. For a graph g, V (g) is its vertex
set, E(g) ⊆ V (g)× V (g) is its edge set, and l is a label function mapping a vertex
or an edge to a label.

Definition 1 (Subgraph Isomorphism) For two labeled graphs g and g′, a sub-
graph isomorphism is an injective function f : V (g) → V (g′), such that (1)
∀v ∈ V (g), l(v) = l ′( f (v)), and (2) ∀(u, v) ∈ E(g), ( f (u), f (v)) ∈ E(g′) and
l(u, v) = l ′( f (u), f (v)), where l and l ′ are the labeling functions of g and g′,
respectively. Under these conditions, f is called an embedding of g in g′, and g is
called a subgraph of g′, denoted as g ⊆ g′.

Definition 2 (Frequent Subgraph) Given a graph database D = {G1, G2, . . . , Gn}
and a graph pattern p, let Dp be the set of graphs in D where p appears as a
subgraph. We define the support of p as sup(p) = |Dp|, whereas Dp is referred
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as p’s supporting graphs or p’s projected database. With a predefined threshold
min_sup, p is said to be frequent if sup(p) ≥ min_sup.

The problem targeted in this paper is essentially the same as that of a well-studied
graph mining task: finding all frequent subgraphs in a database D, except that the
graphs in D are now associated with large size. As we mentioned in the introduction,
our proposal is to perform summarization at first.

Definition 3 (Summarized Graph) Given a labeled graph G, suppose its vertices
V (G) are partitioned into groups, i.e., V (G) = V1(G)∪ V2(G)∪ · · · ∪ Vk(G), such
that (1) Vi (G) ∩ Vj (G) = φ (1 ≤ i �= j ≤ k), and (2) all vertices in Vi (G) (1 ≤
i ≤ k) have the same labels. Now, we can summarize G into a compressed version
S, written as S ≺ G, where (1) S has exactly k nodes v1, v2, . . . , vk that correspond
to each of the groups (i.e., Vi (G) 4→ vi ), while the label of vi is set to be the same
as those vertices in Vi (G), and (2) an edge (vi , v j ) with label l exists in S if and
only if there is an edge (u, û) with label l between some vertex u ∈ Vi (G) and some
other vertex û ∈ Vj (G).

Based on the above definition, multi-edge becomes possible for a summarized
graph, i.e., there might be more than one labeled edge that exist between two vertices
vi , v j ∈ V (S), if there is an edge (u1, û1) with label l1 and another edge (u2, û2)

with label l2 �= l1 such that u1, u2 is in the node group Vi (G) and û1, û2 is in the
node group Vj (G). To find patterns on top of such summaries, slight modifications
are needed because traditional graph mining algorithms in general assume simple
graphs (i.e., no self-loops and multi-edges). We shall get back to this issue later as
the discussion proceeds.

18.3 The SUMMARIZE-MINE Framework

Given a graph database D = {G1, G2, . . . , Gn}, if we summarize each Gi ∈ D
to Si ≺ Gi , then a summarized database D′ = {S1, S2, . . . , Sn} is generated.
Denote the collection of frequent subgraphs corresponding to D and D′ as FP(D)

and FP(D′), respectively. In this section, we are going to examine the relationship
between these two pattern sets and investigate the possibility to shift mining from
D to D′.

Intuitively, we expect that FP(D) and FP(D′) are similar to each other if the
summarization from D to D′ is properly conducted. As for the portion that is differ-
ent between them, there are two cases.

Definition 4 (False Negatives) A subgraph p frequent in D but not frequent in D′,
i.e., p ∈ FP(D) and p /∈ FP(D′), is called a false negative caused by summarization.

Definition 5 (False Positives) A subgraph not frequent in D but frequent in D′, i.e.,
p /∈ FP(D) and p ∈ FP(D′), is called a false positive caused by summarization.

For the rest of this section, we are going to discuss how these two types of errors
can be remedied, which finally gives rise to a novel SUMMARIZE-MINE framework.
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18.3.1 Recovering False Negatives

False negatives include those patterns that are missed out after we summarize the
graphs. In Fig. 18.2, we explain the reason behind. Suppose p is a graph pattern
such that p ⊆ Gi , and correspondingly f is an embedding of p in Gi . Consider the
summary Si ≺ Gi ; f will disappear if there exist two nodes u, û ∈ V (p) whose
images in V (Gi ), i.e., f (u) and f (û), are merged together as we shrink Gi into Si .
This will cause the support of p to decrease upon summarization.

Gi
Si

p u

u

Fig. 18.2 The cause of false negatives

So, how should we avoid false negatives? To begin with, it is easy to prove the
following lemma.

Lemma 1 For a pattern p, if each of its vertices bears a different label, then p’s
supporting graph set in the summarized database D′ is no smaller than that in the
original database D, i.e., D′p ⊇ Dp. �
Proof Suppose Gi ∈ Dp, i.e., p ⊆ Gi ; let f be an embedding of p in Gi . Obvi-
ously, for p’s vertices u1, . . . , um , their corresponding images f (u1), . . . , f (um)

in Gi must have different labels, and thus f (u1), . . . , f (um) should belong to m
separate groups, which end up as distinct nodes v1, . . . , vm in the summarized graph
Si ≺ Gi . Define another injective function f ′ : V (p) → V (Si ) by mapping
u j to v j (1 ≤ j ≤ m). Based on Definition 3, it is easy to verify that whenever
there is an edge (u j1, u j2) ∈ E(p) with label l, there exists a corresponding edge
(v j1 , v j2) ∈ E(Si ) bearing the same label. Now, f ′ represents a qualified embedding
of p in Si . More generally, p ⊆ Si will hold for each Gi ’s shrunk version Si if
Gi ∈ Dp, indicating that D′p is at least as large as Dp.

Based on Lemma 1, false negatives can only happen for those patterns with at
least two identically labeled vertices. Meanwhile, from the proof above, we con-
clude that even if two vertices u1, u2 ∈ V (p) possess the same label, as long as
their images f (u1), f (u2) are not merged by summarization, the embedding f is
still preserved. According to these observations, we could partition nodes into iden-
tically labeled groups on a random basis, where for those vertices with same labels
in pattern p, they have a substantial probability q(p) to stay in different groups,
which guarantees that no embeddings will be destroyed. Facing such probabilistic
pattern loss, we decide to deliberately lower the support threshold in the summarized
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database by a small margin to min_sup′ < min_sup: As we shall prove in Sec-
tion 18.4, this will then insure a high probability P for patterns to remain fre-
quent in D′. Finally, to further reduce the false-negative rate, we can perform
randomized summarization for multiple times in an independent fashion, because
the overall pattern missing probability (1 − P)t will quickly converge to 0 as the
number of iterations t increases. The details of false-negative analysis are given in
Section 18.4.

18.3.2 Discarding False Positives

Given a graph pattern p, there is also possibility for its support to increase upon
summarization. Figure 18.3 shows a “faked” embedding of p formed in the summa-
rized graph Si , where two sets of edges originally adjacent to different vertices with
label a are now attached to the same node.

Gi
Si

p

Fig. 18.3 The cause of false positives

It is much easier to deal with false positives. For false negatives, we must provide
a mechanism to recover true patterns that have disappeared after summarization,
while for false positives, we only need an efficient verification scheme to check the
result set and get rid of those entries that are actually infrequent.

A straightforward verification scheme computes the support of every p ∈ FP(D′)
in the original database D: If sup(p) is smaller than min_sup, we discard p from
the output. Interestingly, there is a better way to verify patterns by leveraging the
summaries: The embedding of p in the summarized graph actually reveals its pos-
sible locations in the original graph, which can be used to speed up the process.
Technical details will be covered in Section 18.5.

18.3.3 The Overall Algorithm Layout

With randomization and verification, the SUMMARIZE-MINE framework is outlined
as follows.

1. Summarization: For each Gi in a graph database D, randomly partition its vertex
set V (Gi ): For vertices with label l j (1 ≤ j ≤ L), where L represents the total
number of labels, we assign x j groups. This will result in x j nodes with label l j
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in the corresponding summary graph. As the application characteristics vary, we
can control the summarization process by changing x1, . . . , xL to best cope with
the situation.

2. Mining: Apply any state-of-art frequent subgraph mining algorithm on the sum-
marized database D′ = {S1, S2, . . . , Sn} with a slightly lowered support thresh-
old min_sup′, which generates the pattern set FP(D′).

3. Verification: Check patterns in FP(D′) against the original database D, remove
those p ∈ FP(D′) whose support in D is less than min_sup, and transform the
result collection into R′.

4. Iteration: Repeat steps 1–3 t times. To guarantee that the overall probability of
missing any frequent pattern is bounded up by ε, we set the number of rounds t
as � log ε

log(1−P)
�, where 1− P is the false-negative rate in one round.

5. Result combination: Let R′1, R′2, . . . , R′t be the patterns obtained from different
iterations; the final result is R′ = R′1 ∪ R′2 ∪ · · · ∪ R′t .

Compared to the true pattern set R that would be mined from the original
database D if there are enough computing resources, no false positives exist, i.e.,
R′ ⊆ R, and the probability for a pattern p ∈ R to miss from R′ is at most ε. Note
that the verification step here is put after the mining step for clarity purposes. As we
shall see later, these two steps can also be interleaved, where verifications are per-
formed on the fly: Whenever a pattern p is discovered, SUMMARIZE-MINE verifies
it immediately if p has not been discovered and verified by previous iterations.

In the following, we will start from probabilistic analysis of false negatives in
Section 18.4, followed by Section 18.5, which focuses on the verification of false
positives, and Section 18.6, which discusses iterative SUMMARIZE-MINE as well
as result combination.

18.4 Bounding the False-Negative Rate

As we proved in Lemma 1 of Section 18.3.1, for a pattern p and a graph Gi in
the original database, if p is a subgraph of Gi through embedding f , then as Gi

is summarized into Si , f disappears from Si if f (u1), . . . , f (um) are disseminated
into less than m groups and thus correspond to less than m vertices in Si . Suppose
there are m j and x j vertices with label l j in p and Si , respectively, we have the
following lemma.

Lemma 2 For a graph pattern p, if p ⊆ Gi , then p is also a subgraph of Si ≺ Gi

with probability at least

Pm1
x1 · · · PmL

xL

xm1
1 · · · xmL

L

,
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given that the grouping and merging of nodes that transform Gi into Si is performed
on a completely random basis. Here, P

m j
x j represents the number of permutations,

which is equal to
( x j

m j

)
m j !

Proof Consider an embedding f through which p is a subgraph of Gi . The proba-
bility that all m j vertices with label l j are assigned to m j different groups (and thus
f continues to exist) is

x j

x j

x j − 1

x j
· · · x j − m j + 1

x j
= P

m j
x j

x
m j
j

.

Multiplying the probabilities for all L labels (because the events are independent),
we have

Prob
[

p ⊆ Si
] ≥ Pm1

x1 · · · PmL
xL

xm1
1 · · · xmL

L

.

Here, x j must be at least as large as m j to make the product of probabili-
ties meaningful, and during implementation, there is often no problem for us to
make x j >> m j so that vertices with identical labels will not collide with high
probability. �

To simplify analysis, if we stick with a particular set of x j ’s (1 ≤ j ≤ L) when
summarizing different graphs in the database, the probability bound in Lemma 2 can
be written as q(p), since its value only depends on the label distribution of pattern
p, which holds for any Gi ∈ Dp. Now, because of those embeddings that disappear
due to summarization, it is well expected that the pattern support will experience
some drop, with Theorem 1 characterizing the probability of seeing a particular
dropping magnitude.

Theorem 1 Suppose a pattern p’s support in the original database is s, i.e., |Dp| =
s, for any s′ ≤ s, the probability that p’s support in D′ falls below s′ upon summa-
rization can be bounded as follows:

Prob
[|D′p| ≤ s′

] ≤
s′∑

T=0

(
s

T

)

q(p)T [1− q(p)]s−T .

Proof For each Gi ∈ Dp, we focus on a particular subgraph embedding fi and
define an indicator variable Ii such that Ii = 1 if fi continues to exist in Si and
Ii = 0 otherwise. Then,

Prob
[|D′p| > s′

] ≥ Prob

[ ∑

Gi∈Dp

Ii > s′
]

,
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because whenever
∑

Gi∈Dp
Ii > s′, there must be more than s′ subgraph embed-

dings that are preserved in the summarized database and thus |D′p| > s′. We have

Prob
[|D′p| ≤ s′

] ≤ Prob

[ ∑

Gi∈Dp

Ii ≤ s′
]

=
s′∑

T=0

Prob

[ ∑

Gi∈Dp

Ii = T

]

.

The difference between the left- and right-hand side probabilities is due to three
effects: (1) there could be multiple embeddings of p in Gi , so that p’s support after
summarization may not decrease even if one embedding disappears, (2) a “faked”
embedding like that depicted in Fig. 18.3 might emerge to keep p as a subgraph of
Si , and (3) “faked” embeddings can also happen for a graph G j which originally
does not contain p. Now, because events are independent,

Prob

⎡

⎣
∑

Gi∈Dp

Ii = T

⎤

⎦ =
(

s

T

)

q(p)T [1− q(p)]s−T ,

where q(p) = Prob
[
Ii = 1

]
for all i such that Gi ∈ Dp. Finally,

Prob
[|D′p| ≤ s′

] ≤
s′∑

T=0

Prob

[ ∑

Gi∈Dp

Ii = T

]

=
s′∑

T=0

(
s

T

)

q(p)T [1− q(p)]s−T

is proved. �

Corollary 1 Assume that the support threshold is min_sup, we set a new threshold
min_sup′ < min_sup for the database D′ summarized from D and mine frequent
subgraphs on D′. The probability for a pattern p to be a false negative, i.e., p is
frequent in D but not frequent in D′, is at most

min_sup′−1∑

T=0

(
min_sup

T

)

q(p)T [1− q(p)]min_sup−T .

Proof Being a false negative, we have s = |Dp| ≥ min_sup and |D′p| ≤
min_sup′ − 1. Let s′ = min_sup′ − 1; a direct application of Theorem 1
leads to
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Prob
[|D′p| < min_sup′

] ≤
min_sup′−1∑

T=0

(
s

T

)

q(p)T [1− q(p)]s−T ,

where the right-hand side corresponds to a binomial random variable B
(
s, q(p)

)
’s

cumulative distribution function (CDF) being evaluated at s′. Denote the CDF of
a binomial variable Y ∼ B(N , p) as FB(N , p; n) = Prob

[
Y ≤ n

]
, we have

FB(N , p; n) monotonically decreasing in N , because Y is the sum of N independent
Bernoulli random variables X1, . . . , X N ∼ Ber(p): When more Xi ’s get involved,
it is naturally harder to have their sum Y bounded up by some fixed number n. This
leads to FB(N1, p; n) ≥ FB(N2, p; n) if N1 ≤ N2. Finally, since s ≥ min_sup,

FB
(
s, q(p); s′) ≤ FB

(
min_sup, q(p); s′)

=
min_sup′−1∑

T=0

(
min_sup

T

)

q(p)T [1− q(p)]min_sup−T ,

which is combined with the inequality at the beginning to complete the proof.

As the SUMMARIZE-MINE framework suggests, the false-negative rate after t
iterations is (1 − P)t . To make (1 − P)t less than some small ε, one can either
increase the number of rounds t or decrease the one-round false-negative rate 1− P ,
which is achieved by lowering the support threshold min_sup′ on the summarized
database D′. Since increasing t and reducing min_sup′ will both lead to a longer
mining time, we could simultaneously control both parameters to find an optimal
trade-off point where the best efficiency is achieved. This will be tested in the exper-
iments.

18.5 Verifying False Positives

To implement SUMMARIZE-MINE, we take gSpan [28] as the skeleton of our min-
ing algorithm. The main idea of gSpan is as follows: Each labeled graph pattern
can be transformed into a sequential representation called DFS code, based on
a depth-first traversal of the pattern. With a defined lexicographical order on the
DFS code space, all subgraph patterns can be organized into a tree structure, where
(1) patterns with k edges are put on the kth level and (2) a preorder traversal of this
tree would generate the DFS codes of all possible patterns in the lexicographical
order. Figure 18.4 shows a pattern tree, where v1, v2, . . . , vn are vertex patterns, p1
is a pattern with one edge, and p1 is a subgraph of p2.

This DFS code-based pattern tree is used in SUMMARIZE-MINE. For each graph
pattern p, we conduct the following steps.

1. We decide whether the DFS code of p is minimum according to the defined lex-
icographical order. Here, patterns might have different codes in the tree because
of graph isomorphisms but we only need to examine one of them. In this sense,
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level 0

...

level 2

level 1

level k 

...

e1

e2

v1

p1

p2

v2 vn...

Fig. 18.4 A pattern tree

non-minimum DFS codes can be discarded since the corresponding minimum
ones must have been visited by the preorder traversal.

2. We check p against the summarized graphs and get p’s projected database D′p.
If |D′p| falls below min_sup′, we abort the search along this branch.

3. For each summary Si ∈ D′p, we enumerate all embeddings of p in Si and based
on that determine every possible one-edge extension that can be added to them.
These candidate patterns are inserted into the pattern tree, which will be explored
later.

4. When we drive search into a particular branch, D′p is passed down as a transac-
tion ID-list, which will help pruning since the new projected database there can
only be a subset of D′p.

If SUMMARIZE-MINE generates a pattern tree as shown in Fig. 18.4, we could
start checking false positives from big patterns so that the verification of many
smaller patterns can be avoided. Given two patterns p1 and p2, where p1 is a
subgraph of p2, there is no need to verify p1 if p2 already passes the min_sup
threshold, because sup(p1) ≥ sup(p2) ≥ min_sup. Referring to the DFS code
tree, this is done by visiting the data structure in a bottom-up manner, which can
be easily implemented through a postorder traversal. On the other hand, it seems
that adopting the opposite direction, i.e., visiting the tree in a top-down manner
through a preorder traversal, might also give us some advantages: If we verify p1
before p2, then there is no need to further try p2 if p1 already fails the test, since
min_sup > sup(p1) ≥ sup(p2). In this sense, considering the question of pick-
ing a better one from these two approaches, it really depends on how many false
positives exist in the set of patterns we want to verify, which could be data-specific.
Generally speaking, if there are not/too many false positives, the bottom-up/top-
down approach should work well.
Summary-Guided Isomorphism Checking. During the verification process, after
getting D′p, we want to check a pattern p against each Gi ∈ D and get its support
in the original database. Suppose Gi 5 Si , there are two cases: Si ∈ D′p and
Si /∈ D′p. For the first case, the embedding of p in Si could help us quickly find
its possible embeddings in Gi . Let f : V (p) → V (Si ) be the embedding of p
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in Si , where the images of p’s vertices under f are f (u1), . . . , f (um). Recall that
Gi is summarized into Si by merging a node group of Gi into a single vertex of
S; we can check whether there exists a corresponding embedding of p in Gi by
picking one node from each of the node groups that have been summarized into
f (u1), . . . , f (um) and examining their mutual connections. This should be more
efficient than blindly looking for a subgraph isomorphism of p in Gi , without any
clue about the possible locations. For the second case, there is no embedding of p
in Si to leverage, can we also confirm that p �⊆ Gi by looking at the summary only?
Let us choose a subgraph p′ ⊆ p such that each of p′’s vertices bears a different
label, and test p′ against Si ; based on Lemma 1, since the embeddings of p′ can
never be missed upon summarization, if we can confirm that p′ �⊆ Si , then it must
be true that p′ �⊆ Gi and there is no hope for p, a supergraph of p′, to exist in Gi ,
either. Concerning implementation, we can always make p′ as big as possible to
increase the pruning power. Finally, we have transformed isomorphism tests against
the original large graph Gi to its small summary Si , thus taking advantage of data
reduction.

18.6 Iterative SUMMARIZE-MINE

In this section, we combine the summarization, mining, and verification procedures
together and put them into an iterative framework. As discussed previously, adding
more iterations can surely reduce the probability of false negatives; however, it intro-
duces some problems, as well. For example, the final step of SUMMARIZE-MINE

is to merge all R′k’s (k = 1, 2, . . . , t) into a combined set R′, which requires us to
identify what the individual mining results have in common so that only one copy
is retained. Furthermore, due to the overlap among R′1, R′2, · · · , a large number of
patterns might be repeatedly discovered and verified.

One solution to this problem is to represent the patterns in each R′k by their DFS
codes, which are then sorted in lexicographical order, facilitating access and com-
parison. However, this approach is still costly. Our proposed strategy is as follows:
Since R′1, R′2, . . . are mined from successive random summarizations of the original
graph database D, it is expected that R′k’s would not be too different from each
other because they are all closely related to FP(D), the “correct” set of frequent
subgraphs that would be mined from D. This hints us to unify the mining process
of different iterations into a single data structure, i.e., use only one pattern tree T to
drive the mining ahead.

The advantages of doing so are twofold. First, if a single data structure is main-
tained, and we incrementally modify T (i.e., recover false negatives that have been
wrongly omitted by previous rounds) as the mining of multiple iterations proceeds,
then the problem of merging R′1, R′2, . . . is automatically solved, because there
is only one pattern tree, which stores the combined result. Second, in such an
integrated manner, intermediate calculations achieved in earlier rounds may help
the processing of later rounds, which cannot be achieved if consecutive iterations
are separated. The below example demonstrates this.
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Our setting is as follows: In round 1, a pattern tree holding R′1 is generated,
which is drawn on the left-hand side of Fig. 18.5, i.e., T1. Then, as we go into
round 2, some patterns missed from the first iteration will be recovered (specifically,
p3 and p4), which update T1 into a new tree T2 that is drawn on the right-hand
side.

Now, suppose we have finished round 1 and verified the patterns in R′1, e.g.,
p1, p2, by checking their support against D, the corresponding projected databases,
i.e., Dp1 , Dp2 , become known to us. These two support sets, represented as ID-lists,
are stored with tree nodes p1, p2 for later use. Note that, since ID-lists only record
integer identifiers of the transaction entries, they have moderate size and can be
easily maintained/manipulated. The same strategy has been widely used in other
graph data management tasks, e.g., indexing [29].

Moving on to round 2, we start from the tree’s root p1 (note that, although p1
has been verified and shown to be frequent by round 1, we cannot bypass it in round
2, because patterns such as p3 and p4, which are infrequent in round 1 but frequent
in round 2, have to be grown from it), where the first thing to do is checking p1’s
support against the second-round summarized database D′2 = {S2

1 , S2
2 , . . . , S2

n}.
Interestingly, it is only necessary to test p1 with regard to those graphs in Dp1 , i.e.,
what we finally obtain could be a subset of D′2p1

that is confined within Dp1 , i.e.,

D′2p1
∩ Dp1 . This turns out to be OK: For any pattern p∗ that would be subsequently

grown along the branch of p1, p1 ⊆ p∗ ⇒ Dp∗ ⊆ Dp1 because of the Apriori prin-
ciple; thus, when p∗ is finally verified against the original database D, its support

Fig. 18.5 The first two iterations of SUMMARIZE-MINE with verified ID-lists
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graphs Dp∗ will be confined within Dp1 anyway. This means that an early pruning
by the ID-list of Dp1 , which is readily available after round 1, should not have any
impact on the rest of the mining process.

We draw a few more steps in Fig. 18.5 regarding the utilization of pre-
verified ID-lists when it comes to patterns p3, p4, and the corollary below proves
that the optimizations proposed would not change any theoretical foundation of
SUMMARIZE-MINE.

Corollary 2 The probability bound developed in Corollary 1 still holds if verified
ID-lists are used to prune the mining space.

Proof Given a pattern p, the bound in Corollary 1 is directly related to whether p’s
embeddings for each of its support graphs in the original database D, i.e., Dp, would
diminish or not upon randomized summarizations. As shown above (think p as p1
in Fig. 18.5), when we utilize verified ID-lists for optimizations, entries in Dp are
not filtered out for sure, which means that all deductions made in the corresponding
proofs now continue to hold. �

The described pruning techniques should be applied as early as possible in order
to boost performance. In this sense, we shall start verification right after a new
pattern is discovered, so that its ID-list might be used even in the current itera-
tion. Putting everything together, the pseudocode of SUMMARIZE-MINE is given in
Algorithm 1.

To start Algorithm 1, we call sMine(p1, D), where p1 is the root of the pattern
tree and D includes every graph in the database. In order to grow all possible pat-
terns, p1 should be a null graph with zero vertices, as Fig. 18.4 depicts. In line 1,
we return immediately if the same p has been shown to be infrequent by previous
iterations; and the reason for setting such a flag is to guarantee that unsuccessful
verifications will not be performed repeatedly. Line 2 checks whether a given DFS
code is minimum. Lines 3 and 4 conduct a pre-pruning if p has been verified in the
past and thus an ID-list is readily available. Lines 5–7 proceed like normal frequent
subgraph mining algorithms, where support is computed by checking isomorphic
embeddings against the current projected database, and all possible one-edge exten-
sions of p are recorded during this process. If the support does not pass the low-
ered min_sup′ threshold on summarized databases, the algorithm returns imme-
diately (line 8); otherwise, we verify p (line 10) if it has not been verified so far
(line 9), mark p.err as true, and return if p cannot pass the min_sup threshold
after verification (line 11). If p indeed can pass min_sup (line 12), we store the
ID-list (line 13) and use it to immediately prune the projected database (line 14)
that will be passed on when sMine is called for those patterns grown from p (lines
15–17).

We discuss some variations of Algorithm 1 in the following. First, we have been
verifying patterns in the same order as they are mined out, which corresponds to a
top-down scheme. As we mentioned in Section 18.5, the verified ID-lists of each
node in the pattern tree can also be obtained in a bottom-up manner, while the only
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Algorithm 1 SUMMARIZE-MINE with verified ID-lists

D′k = {Sk
1 , . . . , Sk

n }: The kth-round summarized database.
p: The graph we are visiting on the pattern tree.
PD: Projected database passed from the caller.
p.err : A flag stored with p, it equals true if p has already
failed to pass a verification test in previous iterations.
p.IDs: The ID-list stored with p, it equals φ if p is discovered
for the first time and thus has not been verified.

sMine(p, PD) {
1: if p.err == true then return;
2: if p’s DFS code is not minimum then return;
3: if p.IDs �= φ then PD′ = PD ∩ p.IDs;
4: else PD′ = PD;
5: foreach graph ID i ∈ PD′ do
6: if p �⊆ Sk

i then PD′ ← PD′ − {i};
7: else enumerate the embeddings of p in Sk

i ; ∗
8: if |PD′| < min_sup′ then return;
9: else if p.IDs == φ then
10: verify p against the original database D;
11: if |Dp| < min_sup then p.err = true; return;
12: else
13: store the IDs according to Dp in p.IDs;
14: PD′ = PD′ ∩ p.IDs;
15: foreach p′ ∈ pGrow do
16: if p′ is not a child of p in T then insert p′ under p;
17: sMine(p′, PD′);
}

∗Steps 4–6 enumerate all possible one-edge extensions
that can be made to p, which we denote as pGrow.

shortcoming here is that pruning must be delayed until the next iteration, because
bottom-up checking can only happen when the whole pattern tree is ready. Second,
there are costs, as well as benefits, to calculate and store the exact IDs of every
pattern’s support graphs in D. Interestingly, suppose we choose bottom-up verifica-
tion; then for a pattern tree T , we could have only verified those leaf nodes, while
all internal nodes are guaranteed to be frequent (because they have even higher
support), without any calculations. Thus, it is not always necessary to maintain the
ID-lists.

Consider whether or not to compute verified ID-lists, plus that both top-down
and bottom-up verification schemes can be selected; there are four cases in total.

• ID-list+top-down: It corresponds to Algorithm 1.
• ID-list+bottom-up: Here, though verification result can only be used in the next

iteration, we are not sure whether this shortcoming can be overcome by the
relative edge if bottom-up verification is faster than its top-down counterpart.
We will reexamine this issue in experiments.
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• No ID-list+top-down: This scenario does not make much sense, because in
top-down verification, the ID-lists of all patterns in the tree can be obtained as
a by-product. So, why not take this “free lunch” to boost performance?

• No ID-list+bottom-up: Fig. 18.6 illustrates the situation. We adopt bottom-up
postorder traversal to verify false positives, while successive iterations are essen-
tially independent of each other, except that they share the same tree T to hold
the mining result.
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Fig. 18.6 The first two iterations of SUMMARIZE-MINE without verified ID-lists

18.7 Experimental Results

In this section, we will provide empirical evaluations of SUMMARIZE-MINE. We
have two kinds of data sets: a real data set and a synthetic data set. To be more
concrete, we shall use the real data set to show the effectiveness and efficiency
of our algorithm, while the synthetic data set will demonstrate the parameter set-
ting mechanism, as well as the method’s scalability. All experiments are done on
a Microsoft Windows XP machine with an Intel Core 2 Duo 2.5G CPU and 3 GB
main memory. Programs are written in Java.

The mining process works by randomly summarizing a graph database, finding
patterns from the summaries, and then verifying obtained patterns. As we briefly
discussed in Section 18.2, to handle edges with multiple labels during the mining
step, we modify gSpan and store a label list with each edge in the graph: A pat-
tern matching will be successful as long as the pattern’s corresponding edge label
is covered by this list. For the verification step, we shall try alternative schemes



492 C. Chen et al.

(e.g., top-down, bottom-up), and the optimization that leverages summary-guided
isomorphism checking (see Section 18.5) will be adopted by default.

18.7.1 Real Data Set

Program Analysis Data. Program dependence graphs appear in software-security
applications that perform characteristic analysis of malicious programs [5]. The
goal of such analysis is to identify subgraphs that are common to many malicious
programs, since these common subgraphs represent typical attacks against system
vulnerabilities, or to identify contrast subgraphs that are present in malicious pro-
grams but not in benign ones, since these contrast subgraphs are useful for malware
detection. In our experience and as reported by anti-malware researchers, these rep-
resentative program subgraphs have less than 20 vertices.

We collected dependence graphs from six malware families, includ-
ing W32.Virut, W32.Stration, W32.Delf, W32.Ldpinch, W32.Poisonivy, and
W32.Parite. These families exhibit a wide range of malicious behaviors, includ-
ing behaviors associated with network worms, file-infecting viruses, spyware, and
backdoor applications. In a dependence graph, vertices are labeled with program
operations of interest and the edges represent dependency relationships between
operations. For example, when the operations are system or library calls, then an
edge with label y = f (x) between two vertices v1 and v2 captures the information
that the system call at v1 assigns the variable x and the second system call uses the
variable y whose value is derived from x . Such dependence graphs are quite large
in practice, sometimes with vertex counts up to 20, 000 and edge counts an order
of magnitude higher (up to 220, 000 based on our observation). For the experiment
data we use, the average number of nodes for all graphs is around 1,300.

Before we move on, let us assume for now that all parameters in Section 18.7.1
are already set to the optimal values. Detailed discussions on how this is achieved
will be covered in Section 18.7.2.

Figure 18.7 shows a graph pattern discovered from the Stration family of mal-
ware. Stration is a family of mass-mailing worms that is currently making its way
across the Internet. It functions as a standard mass-mailing worm by collecting email
addresses saved on a hostand sending itself to the recipients, which does display
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44
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5

6

1: NtOpenKey(‘Catalog Entries’)
2: NtOpenKey(‘0000000010’)
3: NtOpenKey(‘000000009’)
4: NtQueryValueKey(...)
5: NtOpenFile(‘\\Device\\Afd\\EndPoint’)
6: NtDeviceIoControlFile(‘AFD_RECV’)
7: NtDeviceIoControlFile(‘AFD_SEND’)

Fig. 18.7 A sample malware pattern
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some characteristics of spyware as shown in the figure. The displayed signature
corresponds to a malware reading and leaking certain registry settings related to the
network devices.

In Fig. 18.8, we plot the probability bound predicted in Theorem 1 against the
empirical event frequency that is observed in experiments. Suppose there are X j

nodes with label l j in a graph Gi ∈ D, we set x j as round

(

ai · X j
∑L

j=1 X j

)

, where

ai is the number of nodes to be kept for each database graph. In this way, labels
that appear more often in the original graphs will also have more presence in their
summarized versions, which is reasonable. Let A be the average number of nodes for
graphs in the original database and a be the corresponding number after summariza-
tion; the summarization ratio is defined as α = A/a. We set min_sup = 55% (note
that, for a graph data set with big transaction size, min_sup is often set relatively
high since small structures are very easy to be contained by a large graph; thus, there
would be too many patterns if the support threshold is low), min_sup′ = 45%,
α = 8, and randomly pick 300 patterns from the output of iteration 1. For each
pattern p, we count its support s = |Dp| in the original database D, compute
q(p) based on the distribution of p’s vertex labels according to Lemma 2, and fix
s′ = 70% ·s to calculate the theoretical guarantee of Prob

[|D′p| ≤ s′
]

as given in the
right-hand side of Theorem 1, which is drawn on the x-axis. Then, we further gen-
erate 100 copies of D′ based on randomized summarization, obtain the percentage
of times in which p’s support |D′p| really falls below s′, and draw it on the y-axis.
Patterns whose vertices are all associated with distinct labels have been omitted,
because they can never miss.

It can be seen that our probabilistic guarantee is quite safe, where only very few
points exist whose empirical frequencies go beyond the corresponding theoretical
bounds, which is possible, because the frequency values calculated by such random
sampling may not represent true probabilities. On the other hand, it also shows that
real false-negative rate is often not that high. So, we probably do not have to be
too conservative when setting the new support threshold min_sup′, due to the three
effects we pointed out in the proof of Theorem 1.
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Fig. 18.9 Three alternative strategies

In Fig. 18.9, we draw the running time with regard to min_sup′ after fixing
min_sup = 55%, α = 8, and compare relative performances of the three strategies
we proposed in Section 18.6. Here, two iterations are processed, while one can also
increase the number of rounds t to further bring down the pattern miss rate. Based
on the testing results, it seems that we are better off using verified ID-lists, because
they are very effective in pruning false positives. Suppose a pattern p is mined from
D′ and after verifying it against D we find that p’s support in the original database
is less than min_sup, then for ID-list+top-down, we will terminate immediately
without growing to p’s supergraphs. However, considering No ID-list+bottom-up,
as long as the support of these supergraphs in D′ is greater than min_sup′, they
will all be generated and then verified as a batch at the end of each iteration. The
advantage of such pre-pruning starts to prevail when min_sup′ becomes smaller,
which induces more false positives. Based on similar reasoning, the curve for
ID-list+bottom-up turns out to appear in the middle, since pruning cannot happen
in the first round but it can act in the second round. Finally, due to its general supe-
riority, for the rest of this section, we shall use ID-list+top-down as our default
implementation of SUMMARIZE-MINE, without further notices.

Figure 18.10 shows the corresponding number of patterns based on the same set-
ting as Fig. 18.9, and we also add another curve depicting the fraction of false pos-
itives that is verified and discarded by the ID-list+top-down strategy. As expected,
when min_sup′ is reduced, false negatives decrease while false positives increase.
The gap between these two curves corresponds to the number of subgraphs that
are truly frequent in the original database D, which gradually widens as we move
to the left of the picture, since SUMMARIZE-MINE can now catch more patterns
above min_sup′. Accordingly, the price paid for this is an increased cost to mine
the summarized database D′ and verify against D.

We compare the performance of gSpan, a state-of-art graph miner, with
SUMMARIZE-MINE in Fig. 18.11. For this experiment, a series of connected sub-
graphs are randomly drawn from each transaction, so that we can run both algo-
rithms on graphs with different size and see whether there exists any trend. All
other settings are the same as Fig. 18.9, except that we only run one iteration here.
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Fig. 18.11 Efficiency w.r.t. transaction size

Obviously, when the transaction size goes up, it becomes harder and harder for
gSpan to work, where we have omitted the rightmost point of this curve since gSpan
cannot finish within 3 h. In comparison, SUMMARIZE-MINE remains somewhat
stable, which is natural, because the embedding enumeration issue becomes much
worse for large graphs, and our algorithm is specifically designed to tackle this
problem.

18.7.2 Synthetic Data Set

Generator Description. The synthetic graph generator follows a similar mecha-
nism as the one used to generate itemset transactions, where we can set the number
of graphs (D), average size of graphs (T ), number of seed patterns (L), average
size of seed patterns (I ), and number of distinct vertex/edge labels (V/E). To begin
with, a set of L seed patterns are generated randomly, whose size is determined
by a Poisson distribution with mean I ; then, seed patterns are randomly selected
and inserted into a graph one by one until the graph reaches its size, which is the
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realization of another Poisson variable with mean T . Due to lack of space, we refer
interested readers to [15] for further details.

Figure 18.12 considers the problem of optimally setting the new support thresh-
old min_sup′ to achieve best algorithmic efficiency while ensuring a specific prob-
abilistic guarantee, i.e., the overall false-negative rate is at most ε = 0.05. Consid-
ering the total running time, intuitively, with a low min_sup′, we would miss fewer
patterns in one round and thus may require a smaller number of iterations to reach
the desired ε; however, it is also true that more time has to be spent in each round.
So, what is the best trade-off? Since one-round miss rate as predicted by Corollary 1
is monotonically decreasing in q(p), we can make the following statement. Focus-
ing on a particular value of q(p) = θ , if under this setting, we can guarantee that
the overall false-negative rate (1 − P)t is at most ε; then for all patterns p′ with
q(p′) ≥ θ , the probability for them to miss from the output must be less than ε,
too. This θ value can be adjusted to tune SUMMARIZE-MINE accordingly toward
larger/smaller patterns or patterns with more/less identically labeled vertices.
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Fig. 18.12 The optimal setting of min_sup′

Setting θ = 0.8 (which we think is reasonable for the mining task in hand),
the total number of rounds t can be easily determined based on a given value of
min_sup′: Here, t is calculated by the formula t = � log ε

log(1−P)
�, where 1 − P

should be substituted by the probability bound given in Corollary 1. Running
SUMMARIZE-MINE for t iterations, we can draw the total computation time
against min_sup′, which is shown in Fig. 18.12. The synthetic data set we take is
D400T500L200I5V5E1, i.e., 400 transactions with 500 vertices on average, which
are generated by 200 seed patterns of average size 5; the number of possible ver-
tex/edge labels is set to 5/1. Considering the graphs we generated above, each trans-
action has approximately the same size, and thus it is reasonable to retain an equal
number of a = 50 vertices for all summaries. min_sup is set to 40%. Finally,
the lowest running time turns out to be reached at min_sup′ = 28% for both ID-
list+top-down and No ID-list+bottom-up, where because of its ability to pre-prune
at the very beginning, ID-list+top-down is not influenced much when min_sup′
becomes low, which enables us to include more points for the corresponding curve
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when it is extended to the left. Also, the running time is not quite sensitive to param-
eter choices, as long as min_sup′ is not too high.

In Fig. 18.13, we analyze the impact of summarization ratio on our algo-
rithm. The data set is D500T500L200I5V5E1. We vary α from 3.33 to 25 (outer
loop), while min_sup′ is implicitly tuned to the best possible value as we did in
Fig. 18.12 (inner loop). It can be seen that α = 10 happens to be the optimal
position: When we summarize more, data graphs become smaller, which makes
it faster to mine frequent subgraphs over the summaries; however, in the meantime,
topology collapsing also introduces more false negatives and false positives, where
additional computing resources must be allocated to deal with them. In this sense,
it is important to run SUMMARIZE-MINE at the best trade-off point; and as we can
see from the figure, there are actually a broad range of summarization ratios with
reasonable performance.

Taking D(|D|)T500L200I5V5E1, we also test the efficiency of our algorithm
over ten data sets by varying the number of transactions |D| from 100, 200 up
to 1,000, which is shown in Fig. 18.14. We use min_sup = 40%, α = 10,
while min_sup′ and number of rounds t are tuned and optimally set as we did in
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Fig. 18.12. As demonstrated, the implementation is highly efficient, which can finish
in hundreds of seconds, and SUMMARIZE-MINE is linearly scalable with regard to
the data size.

18.8 Related Work

Many efficient frequent subgraph mining algorithms have been proposed, including
FSG [15], gSpan [28], AGM [13], followed by Path-Join, MoFa, FFSM, GASTON,
etc., and the wealth of literature cannot be fully enumerated here. Owing to more
recent development, now we are also able to mine maximal graph patterns [12],
significant graph patterns [10], and patterns with topological constraints [20]. All
these methods directly take the input graph database without any data reduction.
Their strategy works fine for a database consisting of small graphs, but could not
perform efficiently when the graphs contain a large number of pattern embeddings,
which we analyzed in the introduction.

There is another line of research [4, 16] that specifically mines frequent graph
patterns from a single large network. Their major contribution is to define the pattern
support in a single graph G, i.e., how many times should we count a pattern, given
all its embeddings in G that might overlap? These methods are often restricted to
sparse networks or networks with a good number of labels, thus limiting the number
of potential embeddings.

There have been a few studies on how to improve the efficiency of graph mining
in general. However, they approach the problem from different angles, and none of
them could tackle the intrinsic difficulty of embedding enumeration in bulky graph
data sets. To name a few, Yan et al. [27] introduce structural leap search and lever-
ages structural proximity to mine discriminative subgraphs. Hasan et al. [9] invent
a randomized heuristic to traverse the pattern space, where a collection of represen-
tative patterns are found. It analyzes how to reduce pattern candidates, based on the
observation that many of them are quite similar. These two methods still work on the
pattern space: Instead of doing a normal traversal, they can either perform “leap” or
pick “delegates”. To improve the mining speed on a large sparse graph, Rainhardt
and Karypis [23] decide to incorporate parallel processing techniques, which are
orthogonal to the focus of SUMMARIZE-MINE.

The concept of summarizing large graphs in order to facilitate processing and
understanding is not new [11]. Raghavan and Garcia-Molina [22] study the prob-
lem of compressing Web graphs so that the link information can be efficiently
stored and easily manipulated for fast computation of PageRank; Sarlos et al.
[24] further analyze how the sketches can help calculate approximate personalized
PageRank. Chakrabarti and Faloutsos [2] develop statistical summaries that analyze
simple graph characteristics like degree distributions and hop-plots. Navlakha et
al. [19] approximate a large network by condensing its nodes and edges, which
can preserve the original topological skeleton within a bounded error. Recently,
Tian et al. [25] suggest a semantics-oriented way to summarize graphs by grouping
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vertices based on their associated attributes, which reflects the inherent structures
and promotes easy user navigation; Chen et al. [3] further integrate this notion
into a generic topological OLAP framework, where a graph cube can be built.
The mining algorithm we developed in this paper can be further combined with all
these studies to examine how structured patterns are presented on the summarized
level.

Regarding other data reduction techniques that can be applied, we have pointed
out sampling [26] and FP-Growth [8] as two examples that either reduce the num-
ber of transactions or compress between transactions, which are different from
our compression method that takes effect within transactions. For a given pattern,
because subgraph isomorphism checking and associated embedding enumerations
happen inside a target graph, any method that cannot dig into individual transac-
tions does not help. For instance, if we want to sample, then we should sample
nodes/edges/substructures and in the meantime keep their original characteristics
intact, so as to preserve the underlying patterns. This may require us to assume a
generic graph generation model like the one given in [18]. In contrast, SUMMARIZE-
MINE does not need such assumptions; the theoretical bound we developed is only
conditional on the random grouping and merging of nodes, which can be easily
implemented.

Finally, within a bigger context, the method of creating and leveraging synopsis
to facilitate data processing has received significant attention in the broad database
field [7, 30]. There is a recent work [17] on bursty sequence mining that transforms
consecutive, identically labeled items within the same transaction into intervals for
the purpose of length reduction. However, as the data becomes more complex and
takes the form of graphs, compression based on randomized mechanisms plays a
key role in pattern preserving, which is a major contribution of this study. For exam-
ple, in XSKETCH [21], the same set of nodes in the XML graph are often merged
together, which could cause much pattern loss if we perform mining on such kind
of summaries.

18.9 Conclusions

In this chapter, we examine an important issue in frequent graph pattern mining,
the intrinsic difficulty to perform embedding enumeration in large graphs, which
might block many important downstream applications. Mining bulky graph data
sets is in general very hard, but the problem should still be solvable if the node/edge
labeling is not very diverse, which limits the explosion of pattern space. As we tried
to find out the bottleneck, it was observed that even for small and simple substruc-
tures, the corresponding mining process could be very slow due to the existence of
thousands of isomorphic embeddings in the target graphs. So, different from previ-
ous studies, SUMMARIZE-MINE proposes a novel mining framework that focuses
on data space reduction within transactions and effectively turns lossy compres-
sion into a virtually lossless method by mining randomized summaries for multiple
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iterations. Experimental results on real malware data demonstrate the efficiency of
our method, which can find interesting malware fingerprints that were not revealed
previously. Moreover, SUMMARIZE-MINE also sheds light on how data compres-
sion may impact the underlying patterns. This will be particularly interesting, given
an emerging trend of huge information networks that must adopt data reduction as
a necessary preprocessing step for analytical purposes.
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Chapter 19
Finding High-Order Correlations in
High-Dimensional Biological Data

Xiang Zhang, Feng Pan, and Wei Wang

Abstract In many emerging real-life problems, the number of dimensions in the
data sets can be from thousands to millions. The large number of features poses great
challenge to existing high-dimensional data analysis methods. One particular issue
is that the latent patterns may only exist in subspaces of the full-dimensional space.
In this chapter, we discuss the problem of finding correlations hidden in feature
subspaces. Both linear and nonlinear cases will be discussed. We present efficient
algorithms for finding such correlated feature subsets.

19.1 Introduction

Many real-life applications involve the analysis of high-dimensional data. For exam-
ple, in bio-medical domains, advanced microarray techniques [1, 2] enable moni-
toring the expression levels of hundreds to thousands of genes simultaneously. By
mapping each gene to a feature, gene expression data can be represented by points
in a high-dimensional feature space. To make sense of such high-dimensional data,
extensive research has been done in finding the latent structure among the large
number of features. In general, existing approaches in analyzing high-dimensional
data can be summarized into three categories [3]: feature selection, feature trans-
formation (or dimension reduction), and projected clustering.

The goal of feature selection methods [4–7] is to find a single representative
subset of features that are most relevant for the task at hand, such as classification.
The selected features generally have low correlation with each other but have strong
correlation with the target feature.

Feature transformation methods [8–13] summarize the data set by creating
linear/nonlinear combinations of features in order to uncover the latent struc-
ture. The insight behind feature transformation methods is that a high dimen-
sional data set may exhibit interesting patterns on a lower dimensional subspace
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due to correlations among the features. The commonly used linear feature transfor-
mation methods include principal component analysis (PCA) [11], linear discrim-
inant analysis (LDA), and their variants (see [9] for an overview). PCA is one of
the most widely used feature transformation methods. It seeks an optimal linear
transformation of the original feature space such that most variance in the data is
represented by a small number of orthogonal derived features in the transformed
space. PCA performs one and the same feature transformation on the entire data set.
It aims to model the global latent structure of the data and hence does not separate
the impact of any original features nor identify local latent patterns in some feature
subspaces.

Recently proposed projected clustering methods, such as [14, 15], can be viewed
as combinations of clustering algorithms and PCA. These methods can be applied
to find clusters of data points that may not exist in the axis parallel subspaces but
only exist in the projected subspaces. The projected subspaces are usually found
by applying the standard PCA in the full dimensional space. Like other clustering
methods, projected clustering algorithms find the clusters of points that are spatially
close to each other in the projected space. However, a subset of features can be
strongly correlated even though the data points do not form any clustering structure.

19.1.1 Motivation

In many emerging applications, the data sets usually consist of thousands to hun-
dreds of thousands of features. In such high-dimensional data set, some feature
subsets may be strongly correlated, while others may not have any correlation at
all. In these applications, it is more desirable to find the correlations that are hid-
den in feature subspaces. For example, in gene expression data analysis, a group
of genes having strong correlation is of high interest to biologists since it helps to
infer unknown functions of genes [1] and gives rise to hypotheses regarding the
mechanism of the transcriptional regulatory network [2]. We refer to such correla-
tion among a subset of features as a local correlation in comparison with the global
correlation found by the full dimensional feature reduction methods. Since such
local correlations only exist in some subspaces of the full dimensional space, they
are invisible to the full feature transformation methods.

Recently, many methods [1, 16] have been proposed for finding clusters of fea-
tures that are pairwisely correlated. However, a set of features may have strong
correlation but each pair of features only weakly correlated.

For example, Fig. 19.1 shows four genes that are strongly correlated in the mouse
gene expression data collected by the biologists in the School of Public Health
at UNC. All of these four genes have same Gene Ontology (GO) [17] annotation
cell part, and three of which, Myh7, Hist1h2bk, and Arntl, share the same GO
annotation intracelluar part. The linear relationship identified by our algorithm is
−0.4(Nrg4) + 0.1(Myh7) + 0.7(Hist1h2bk) − 0.5(Arntl) = 0. As we can see
from the figure, all data points almost perfectly lay on the same hyperplane, which
shows that the four genes are strong correlated. (In order to visualize this three-
dimensional hyperplane, we combine two features, Nrg4 and Myh7, into a single
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Fig. 19.1 A strongly correlated gene subset
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Fig. 19.2 Pairwise correlations of a strongly correlated gene subset. (a) (Hist1h2bk, Arntl);
(b) (Arntl, Nrg4&Myh7); (c) (Hist1h2bk, Nrg4&Myh7)

axis as −0.4(Nrg4) + 0.1(Myh7) to reduce it to a two-dimensional hyperplane.)
If we project the hyperplane onto two dimensional spaces formed by each pair of
genes, we find none of them show strong correlation, as depicted in Fig. 19.2a–c.

Projected clustering algorithms [14] have been proposed to find the clusters of
data points in projected feature spaces. This is driven by the observation that clusters
may exist in arbitrarily oriented subspaces. Like other clustering methods, these
methods tend to find the clusters of points that are spatially close to each other in
the feature space. However, as shown in Fig. 19.1, a subset of features (genes in this
example) can still be strongly correlated even if the data points are far away from
each other. This property makes such strong correlations invisible to the projected
clustering methods. Moreover, to find the projections of original features, projected
clustering methods apply PCA in the full dimensional space. Therefore, they cannot
decouple the local correlations hidden in the high-dimensional data.

In [18], an algorithm is proposed to find local linear correlations in high-
dimensional data. However, in real applications, the feature subspace can be either
linearly or nonlinearly correlated. The problem of finding linear and nonlinear cor-
relations in feature subspacesremains open.
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Fig. 19.3 An example data set

For example, Fig. 19.3 shows a data set consisting of 12 features,
{ f1, f2, . . . , f12} and 1000 data points. Embedded in the full dimensional space,
features subspaces { f1, f2, f3} and { f4, f5, f6} are nonlinearly correlated and
{ f7, f8, f9} are linearly correlated. Features { f10, f11, f12} contain random noises.

Performing feature transformation methods to the full dimensional space can-
not uncover these local correlations hidden in the full feature spaces. For example,
Fig. 19.4a shows the result of applying Principal Component Analysis (PCA) [11]
to the full dimensional space of the example data set shown in Fig. 19.3. In this
figure, we plot the point distribution on the first three principal components found
by PCA. Clearly, we cannot find any pattern that is similar to the patterns embedded
in the data set. Similarly, Fig. 19.4b shows the results of applying ISOMAP [13] to
reduce the dimensionality of the data set down to 3. There is also no desired pattern
found in this low-dimensional structure.

How can we identify these local correlations hidden in the full dimensional space?

This question is twofold. First, we need to identify the strongly correlated feature
subspaces, i.e., a subset of features that are strongly correlated and actually have
low-dimensional structures. Then, after these locally correlated feature subsets are
found, we can apply the existing dimensionality reduction methods to identify the
low-dimensional structures embedded in them.
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Fig. 19.4 Applying dimensionality reduction methods to the full dimensional space of the example
data set. (a) Result of PCA (b) Result of ISOMAP

Many methods have been proposed to address the second aspect of the question,
i.e., given a correlated feature space, finding the low-dimensional embedding in it.
The first aspect of the question, however, is largely untouched. In this chapter, we
investigate the first aspect of the question, i.e., identifying the strongly correlated
feature subspaces.

19.1.2 Challenges and Contributions

(1) In this chapter, we investigate the problem of finding correlations hidden in
the feature subspaces of high-dimensional data. The correlations can be either
linear or nonlinear. To our best knowledge, our work is the first attempt to find
local linear and nonlinear correlations hidden in feature subspaces.

For both linear and nonlinear cases, we formalize the problem as finding
reducible subspaces in the full dimensional space. We adopt the concept of PCA
[11] to model the linear correlations. The PCA analysis is repeated applied on
subsets of features. In the nonlinear cases, we utilize intrinsic dimensionality
[19] to detect reducible subspaces. Informally, a set of features are correlated
if the intrinsic dimensionality of the set is smaller than the number of features.
Various intrinsic dimensionality estimators have been developed [20–22]. Our
problem formalization does not depend on any particular method for estimating
the intrinsic dimensionality.

(2) We develop an efficient algorithm, CARE,1 for finding local linear correlations.
CARE utilizes spectrum properties about the eigenvalues of the covariance
matrix and incorporates effective heuristic to improve the efficiency.

(3) We develop an effective algorithm REDUS2 to detect nonlinearly correlated
feature subsets. REDUS consists of the following two steps.

1 CARE stands for finding loCAl lineaR corrElations.
2 REDUS stands for REDUcible Subspaces.
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It first finds the union of all reducible subspaces, i.e., the overall reducible sub-
space. The second step is to uncover the individual reducible subspaces in the over-
all reducible subspace. The key component of this step is to examine if a feature
is strongly correlated with a feature subspace. We develop a method utilizing point
distributions to distinguish the features that are strongly correlated with a feature
subspace and those that are not. Our method achieves similar accuracy to that of
directly using intrinsic dimensionality estimators, but with much less computational
cost.

Extensive experiments on synthetic and real-life data sets demonstrate the effec-
tiveness of CARE and REDUS.

19.2 Related Work

19.2.1 Feature Transformation

Feature transformation methods can be categorized into linear methods, such as
multi-dimensional scaling (MDS) [10] and principal component analysis (PCA)
[11], and nonlinear methods, such as local linear embedding (LLE) [12], ISOMAP
[13], and Laplacian eigenmaps [8]. For high dimensional data sets, if there exist
low-dimensional subspaces or manifolds embedded in the full dimensional spaces,
these methods are successful in identifying these low-dimensional embeddings.

Feature transformation methods are usually applied on the full dimensional
space to capture the independent components among all the features. They are not
designed to address the problem of identifying correlation in feature subspaces. It is
reasonable to apply them to the feature spaces that are indeed correlated. However,
in very high dimensional data sets, different feature subspaces may have different
correlations, and some feature subspace may not have any correlation at all. In this
case, dimensionality reduction methods should be applied after such strongly corre-
lated feature subspaces have been identified.

19.2.2 Feature Selection

Feature selection methods [4–7] try to find a subset of features that are most rele-
vant for certain data mining task, such as classification. The selected feature subset
usually contains the features that have low correlation with each other but have
strong correlation with the target feature. In order to find the relevant feature subset,
these methods search through various subsets of features and evaluate these subsets
according to certain criteria. Feature selection methods can be further divided into
two groups based on their evaluation criteria: wrapper and filter. Wrapper models
evaluate feature subsets by their predictive accuracy using statistical re-sampling or
cross-validation. In filter techniques, the feature subsets are evaluated by their infor-
mation content, typically statistical dependence or information-theoretic measures.
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Similar to feature transformation, feature selection finds one feature subset for the
entire data set.

19.2.3 Subspace Clustering

Subspace clustering is based on the observation that clusters of points may exist in
different subspaces. Many methods [23–25] have been developed to find clusters in
axes paralleling subspaces. Recently, the projected clustering was studied in [14],
inspired by the observation that clusters may exist in arbitrarily oriented subspaces.
These methods can be treated as combinations of clustering algorithms and PCA.
Similar to other clustering methods, these methods tend to find the clusters of points
that are close to each other in the projected space. However, as shown in Fig. 19.1,
a subset of features still can be strongly correlated even if the data points are far
away from each other. Pattern-based bi-clustering algorithms have been studied in
[1, 16]. These algorithms find the clusters in which the data points share pairwise
linear correlations, which is only a special case of linear correlation.

19.2.4 Intrinsic Dimensionality

Due to correlations among features, a high-dimensional data set may lie in a sub-
space with dimensionality smaller than the number of features [20–22]. The intrinsic
dimensionality can be treated as the minimum number of free variables required to
define the data without any significant information loss [19]. For example, as shown
in Fig. 19.3, in the three-dimensional space of { f1, f2, f3}, the data points lie on
a Swiss roll, which is actually a two-dimensional manifold. Therefore, its intrinsic
dimensionality is 2.

The concept of intrinsic dimensionality has many applications in the database and
data mining communities, such as clustering [26, 27], outlier detection [28], nearest
neighbor queries [29], and spatial query selectivity estimation [30, 31]. Different
definitions of intrinsic dimensionality can be found in the literature. For example, in
linear cases, matrix rank [32] and PCA [11] can be used to estimate intrinsic dimen-
sionality. For nonlinear cases, estimators such as box counting dimension, infor-
mation dimension, and correlation dimension have been developed. These intrinsic
dimensionality estimators are sometimes collectively referred to as fractal dimen-
sion. Please see [33, 34] for good coverage of the topics of intrinsic dimensionality
estimation and its applications.

19.3 Problem Formalization

In this section, we utilize PCA and intrinsic dimensionality to formalize the prob-
lem of finding strongly correlated feature subspaces in linear and nonlinear cases,
respectively .
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Suppose that the data set 	 consists of N data points and M features. Let
	P = {p1, p2, . . . , pN } denote the point set, and 	F = { f1, f2, . . . , fM } denote
the feature set in 	, respectively. In the following sections, we define the linear and
nonlinear reducible subspaces.

19.3.1 Linear Reducible Subspace

A strongly linear-correlated feature subset is a subset of features that show strong
linear correlation in a large portion of data points.

Definition 1 (STRONGLY LINEAR-CORRELATED FEATURE SUBSET)
Let 	′ = {fi1, . . . , fim } × {p j1, . . . ,p jn } be a submatrix of 	, where 1 ≤ i1 < i2 <

· · · < im ≤ M and 1 ≤ j1 < j2 < . . . < jn ≤ N . CF is the covariance matrix of
	′. Let {λl} (1 ≤ l ≤ n) be the eigenvalues of CF and arranged in increasing order,3

i.e., λ1 ≤ λ2, · · · ,≤ λn . The features {fi1, . . . , fim } is a strongly linear-correlated

feature subset if the value of the objective function f (	′, k) = %k
t=1λt

%m
t=1λt

≤ η and

n/N ≥ δ, where k, η, and δ are user-specified parameters.

Eigenvalue λl is the variance on eigenvector vl [11]. The set of eigenvalues {λl}
of matrix C	′ is also called the spectrum of C	′ [35].

Geometrically, each n × m submatrix of 	 represents an m-dimensional space
with n points in it. This m-dimensional space can be partitioned into two subspaces,
S1 and S2, which are orthogonal to each other. S1 is spanned by the k eigenvectors
with smallest eigenvalues and S2 is spanned by the remaining m − k eigenvectors.
Intuitively, if the variance in subspace S1 is small (equivalently the variance in S2 is
large), then the feature subset is strongly linear-correlated. The input parameters k

and threshold η for the objective function f (	′, k) = %k
t=1λt

%m
t=1λt

are used to control

the strength of the correlation among the feature subset. The default value of k is 1.
The larger the value of k, the stronger the linear correlation.

The reason for requiring n/N ≥ δ is because a feature subset can be strongly
linear-correlated only in a subset of data points. In our definition, we allow the
strongly linear-correlated feature subsets to exist in a large portion of the data
points in order to handle this situation. Note that it is possible that a data point
may participate in multiple local correlations held by different feature subsets. This
makes the local correlations more difficult to detect. Please also note that for a given
strongly linear-correlated feature subset, it is possible that there exist multiple linear
correlations on different subsets of points. In this chapter, we focus on the scenario
where there exists only one linear correlation for a strongly linear-correlated feature
subset.

3 In this chapter, we assume that the eigenvalues are always arranged in increasing order. Their
corresponding eigenvectors are {v1, v2, . . . , vn}.
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Fig. 19.5 An example data set containing linear-correlated feature subsets

For example, in the data set shown in Fig. 19.5, the features in submatrix 	′ =
{f2, f7, f9} × {p1,p2, . . . ,p9} is a strongly linear-correlated feature subset when
k = 1, η = 0.004, and δ = 60%. The eigenvalues of the covariance matrix, C	′ , the
input parameters, and the value of the objective function are shown in Table 19.1.

The spectrum of covariance matrix has a well-known theorem which is often
called the interlacing eigenvalues theorem4 [35].

Table 19.1 An example of strongly linear-correlated feature subset

Feature subset {f2, f7, f9}
Eigenvalues of C	′ λ1 = 0.001, λ2 = 0.931, λ3 = 2.067
Input parameters k = 1, η = 0.004 and δ = 60%
Objective function value f (	′, k) = 0.0003

4 This theorem also applies to Hermitian matrix [35]. Here we focus on the covariance matrix,
which is semi-positive definite and symmetric.
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Theorem 1 Let 	′ = {fi1, . . . , fim }×{p j1, . . . ,p jn } and 	
′′ = {fi1, . . . , fim , fi(m+1)}×{p j1 , . . . ,p jn } be two submatrices of 	. COmega′ and C
	
′′ are their covariance

matrices with eigenvalues {λl} and {λ′l}. We have

λ
′
1 ≤ λ1 ≤ λ

′
2 ≤ λ2 ≤ · · · ≤ λm−1 ≤ λ

′
m ≤ λm ≤ λ

′
m+1.

Theorem 1 tells us that the spectra of C	′ and C
	
′′ interleave each other, with

the eigenvalues of the larger matrix bracketing those of the smaller one.
By applying the interlacing eigenvalues theorem, we have the following property

for the strongly linear-correlated feature subsets.

Property 1 (Upward closure property of strongly linear-correlated feature subsets)
Let 	′ = V ′×P and 	

′′ = V
′′×P be two submatrices of 	 with V ′ ⊆ V

′′
. If V ′ is a

strongly linear-correlated feature subset, then V
′′

is also a strongly linear-correlated
feature subset.

Proof We show the proof for the case where |V ′′ | = |V ′| + 1, i.e., V ′ is a subset of
V
′′

by deleting one feature from V ′. Let C	′ and C
	
′′ be the covariance matrices of

	′ and 	
′′

with eigenvalues {λl} and {λ′l}. Since V ′ is a strongly linear-correlated

feature subset, we have f (	′, k) = %k
t=1λt

%m
t=1λt

≤ η. By applying the interlacing

eigenvalues theorem, we have %k
t=1λt ≥ %k

t=1λ
′
t and %m

t=1λt ≤ %m+1
t=1 λ

′
t . Thus

f (	
′′
, k) = %k

t=1λ
′
t

%m+1
t=1 λ

′
t

≤ η. Therefore, V
′′

is also a strongly linear-correlated feature

subset. By induction we can prove for the cases where V ′ is a subset of V
′′

by
deleting more than one feature.

The following example shows the monotonicity of the objective function with
respect to the feature subsets. Using the data set shown in Fig. 19.5, let 	1 = V1 ×
P1 = {f2, f7}×{p1, . . . ,p15}, 	′1 = (V1∪{f9})× P1, and 	

′′
1 = (V1∪{f4, f9})× P1.

The values of the objective function, when k = 1, are shown in Table 19.2. It can be
seen from the table that the value of the objective function monotonically decreases
when adding new features.

Table 19.2 Monotonicity with respect to feature subsets

Point subset P1 = {p1, . . . ,p15}
Feature subset V1 f (	1, k) = 0.1698
Feature subset V1 ∪ {f9} f (	′1, k) = 0.0707
Feature subset V1 ∪ {f4, f9} f (	

′′
1, k) = 0.0463

On the other hand, adding (or deleting) data points to a fixed feature sub-
set may cause the correlation of the features to either increase or decrease; that
is, the objective function is non-monotonic with respect to the point subsets. We
use the following example to show the non-monotonicity of the objective func-
tion with respect to the point subsets. Using the data set shown in Fig. 19.5, let
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	2 = V2 × P2 = {f2, f7, f9} × {p1, · · · ,p9,p11}, 	′2 = V2 × (P2 ∪ {p10}), and
	
′′
2 = V2 × (P2 ∪ {p14}). The values of their objective functions, when k = 1, are

shown in Table 19.3. It can be seen from the table that the value of the objective
function f can either increase or decrease when adding more points.

Table 19.3 No monotonicity with respect to point subsets

Feature subset V2 = {f2, f7, f9}
Point subset P2 f (	2, k) = 0.0041
Point subset P2 ∪ {p10} f (	′2, k) = 0.0111
Point subset P2 ∪ {p14} f (	

′′
2, k) = 0.0038

We define the linear reducible subspace.

Definition 2 (LINEAR REDUCIBLE SUBSPACE)
A submatrix 	′ = V × P is a linear reducible subspace iff (1) Feature set V is
strongly linear-correlated; (2) none of the feature subsets of V is strongly linear-
correlated.

19.3.2 Nonlinear Reducible Subspace

PCA can only measure linear correlations. In this section, we extend the problem
to nonlinear correlations and nonlinear reducible subspaces. Instead of specifically
using “nonlinear,” we use the general terms “correlation” and “reducible subspace”,
for both linear and nonlinear cases.

We use intrinsic dimensionality to define correlated features (linear and
nonlinear). Given a submatrix 	′ = V × P , we use ID(V ) to represent the intrinsic
dimensionality of the feature subspace V ∈ 	F . Intrinsic dimensionality provides a
natural way to examine whether a feature is correlated with some feature subspace:
if a feature fa ∈ 	F is strongly correlated with a feature subspace V ⊆ 	F , then
adding fa to V should not cause much change of the intrinsic dimensionality of V .
The following definition formalizes this intuition.

Definition 3 (STRONG CORRELATION)
A feature subspace V ⊆ 	F and a feature fa ∈ 	F have strong correlation if

�ID(V, fa) = ID(V ∪ { fa})− ID(V ) ≤ ε.

In this definition, ε is a user-specified threshold. Smaller ε value implies stronger
correlation, and larger ε value implies weaker correlation. If V and fa have strong
correlation, we also say that they are strongly correlated.

Definition 4 (REDUNDANCY)
Let V = { fv1 , fv2 , . . . , fvm } ⊆ 	F . fvi ∈ V is a redundant feature of V if fvi has
strong correlation with the feature subspace consisting of the remaining features of
V , i.e.,
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�ID
({

fv1 , . . . , fvi−1 , fvi+1 , . . . , fvm

}
, fvi

) ≤ ε.

We say V is a redundant feature subspace if it has at least one redundant feature.
Otherwise, V is a non-redundant feature subspace.

Note that in Definitions 3 and 4, I D(V ) does not depend on a particular intrinsic
dimensionality estimator. Any existing estimator can be applied when calculating
I D(V ). Moreover, we do not require that the intrinsic dimensionality estimator
reflects the exact dimensionality of the data set. However, in general, a good intrinsic
dimensionality estimator should satisfy two basic properties.

First, if a feature is redundant in some feature subspace, then it is also redundant
in the supersets of the feature subspace. We formalize this intuition as the following
property.

Property 2 For V ∈ 	F , if �ID(V, fa) ≤ ε, then ∀U (V ⊆ U ⊆ 	F ),
�ID(U, fa) ≤ ε.

This is a reasonable requirement, since if fa is strongly correlated with V ⊆ U ,
then adding fa to U will not greatly alter its intrinsic dimensionality.

From this property, it is easy to see that if feature subspace U is non-redundant,
then all of its subsets are non-redundant, which is clearly a desirable property for
the feature subspaces.

Corollary 1 If U ⊆ 	F is non-redundant, then for ∀V ⊆ U, V is also non-
redundant.

The following property extends the concept of basis [36] in a linear space to
nonlinear space using intrinsic dimensionality. In linear space, suppose that V and
U contain the same number of vectors, and the vectors in V and U are all linearly
independent. If the vectors of U are in the subspace spanned by the vectors of V ,
then the vectors in V and the vectors in U span the same subspace. (A span of a set
of vectors consists of all linear combinations of the vectors.) Similarly, in Property
3, for two non-redundant feature subspaces, V and U , we require that if the features
in U are strongly correlated with V , then U and V are strongly correlated with the
same subset of features.

Property 3 Let V = { fv1, fv2 , . . . , fvm } ⊆ 	F and U = { fu1 , fu2 , . . . , fum } ⊆ 	F

be two non-redundant feature subspaces. If ∀ fui ∈ U , �ID(V, fui ) ≤ ε, then for
∀ fa ∈ 	F , �ID(U, fa) ≤ ε iff �ID(V, fa) ≤ ε.

Intuitively, if a feature subspace Y (Y ⊆ 	F ) is redundant, then Y should be
reducible to some subspace, say V (V ⊂ Y ). Concerning the possible choices of
V , we are most interested in the smallest one that Y can be reduced to, since it
represents the intrinsic dimensionality of Y . We now give the formal definitions of
reducible subspace and its core space.

Definition 5 (REDUCIBLE SUBSPACE AND CORE SPACE)
Y ⊆ 	F is a reducible subspace (linear or nonlinear) if there exists a non-redundant
subspace V (V ⊂ Y ), such that
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(1) ∀ fa ∈ Y , �ID(V, fa) ≤ ε and
(2) ∀U ⊂ Y (|U | ≤ |V |), U is non-redundant.

We say V is the core space of Y , and Y is reducible to V .

Criterion (1) in Definition 5 says that all features in Y are strongly correlated
with the core space V . The meaning of criterion (2) is that the core space is the
smallest non-redundant subspace of Y with which all other features of Y are strongly
correlated.

Among all reducible subspaces, we are most interested in the maximum ones. A
maximum reducible subspace is a reducible subspace that includes all features that
are strongly correlated with its core space.

Definition 6 (MAXIMUM REDUCIBLE SUBSPACE)
Y ⊆ 	F is a maximum reducible subspace if

(1) Y is a reducible subspace and
(2) ∀ fb ∈ 	F , if fb �∈ Y , then �ID(V, fb) > ε , where V is the core space of Y .

Let {Y1,Y2, . . . ,YS} be the set of all maximum reducible subspaces in the data
set. The union of the maximum reducible subspaces O R = ⋃S

i=1 Yi is referred to
as the overall reducible subspace.

Note that Definition 6 works for the general case where a feature can be in dif-
ferent maximum reducible subspaces. In this chapter, we focus on the special case
where maximum reducible subspaces are non-overlapping, i.e., each feature can be
in at most one maximum reducible feature subspace.

In the following sections, we present the CARE and REDUS algorithms which
efficiently detect linear reducible subspaces and maximum (nonlinear) reducible
subspaces in high-dimensional data.

19.4 The CARE Algorithm

In this section, we present the algorithm CARE for finding the linear reducible sub-
space (Definition 2). CARE enumerates the combinations of features to generate
candidate feature subsets. To examine if a candidate is a linear reducible subspace,
CARE adopts a two-step approach. It first checks if the feature subset is strongly
correlated on all data points. If not, CARE then apply point deletion heuristic to
find the appropriate subset of points on which the current feature subset may become
strongly correlated. In Section 19.4.1, we first discuss the overall procedure of enu-
merating candidate feature subsets. In Section 19.4.2, we present the heuristics for
choosing the point subsets for the candidates that are not strongly correlated on all
data points.
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19.4.1 Feature Subsets Selection

For any submatrix 	′ = V × {p1, . . . ,pM } of 	, in order to check whether feature
subset V ′ is strongly correlated, we can perform PCA on 	′ to see if its objective

function value is lower than the threshold, i.e., if f (	′, k) = %k
t=1λt

%m
t=1λt

≤ η.

Starting from feature subsets containing a single feature, CARE adopts depth-
first search to enumerate combinations of features to generate candidate feature
subsets. In the enumeration process, if we find that a candidate feature subset is
strongly correlated by evaluating its objective function value, then all its supersets
can be pruned according to Property 1.

Next, we present an upper bound on the value of the objective function,
which can help to speed up the evaluation process. The following theorem shows
the relationship between the diagonal entries of a covariance matrix and its
eigenvalues [35].

Property 4 Let 	′ be a submatrix of 	 and C	′ be the m × m covariance matrix of
	′. Let {ai } be the diagonal entries of C	′ arranged in increasing order, and {λi } be
the eigenvalues of C	′ arranged in increasing order. Then %s

t=1at ≥ %s
t=1λt for all

s = 1, 2, . . . , n, with equality held for s = m.

Applying Property 4, we can get the following proposition.

Proposition 1 Let 	′ be a submatrix of 	 and C	′ be the m×m covariance matrix
of 	′. Let {ai } be the diagonal entries of C	′ and arranged in increasing order. If
%k

t=1at

%m
t=1at

≤ η, then we have f (	′, k) ≤ η, i.e., the feature subset of 	′ is a strongly

correlated feature subset.

The proof of Proposition 1 is straightforward and omitted here. This proposition
gives us an upper bound of the objective function value for a given submatrix of
	. For any submatrix 	′ = V × {p1, . . . ,pN } of 	, we can examine the diagonal
entries of the covariance matrix C	′ of 	′ to get the upper bound of the objective
function. The computational cost of calculating this upper bound is much less than
that of evaluating the objective function value directly by PCA. Therefore, before
evaluating the objective function value of a candidate feature subset, we can check
the upper bound in Proposition 1. If the upper bound is no greater than the threshold
η, then we know that the candidate is a strongly correlated feature subset without
performing PCA on its covariance matrix.

19.4.2 Choosing the Subsets of Points

In the previous section, we discussed the procedure of generating candidate feature
subsets. A feature subset may be strongly correlated only on a subset of the data
points. As discussed in Section 19.3.1, the monotonicity property does not hold for
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the point subsets. Therefore, some heuristic must be used in order to avoid perform-
ing PCA on all possible subsets of points for each candidate feature subset. In this
subsection, we discuss the heuristics that can be used for choosing the subset of
points.

19.4.2.1 A Successive Point Deletion Heuristic

For a given candidate feature subset, if it is not strongly correlated on all data points,
we can delete the points successively in the following way.

Suppose that 	′ = {fi1, . . . , fim } × {p1, . . . ,pN } is a submatrix of 	 and
f (	′, k) > η, i.e., the features of 	′ is not strongly correlated on all data points. Let
	′\pa

be the submatrix of 	′ by deleting point pa (pa ∈ {p1, . . . ,pN }) from 	′. This
heuristic deletes the point pa from 	′ such that f (	′\pa

, k) has the smallest value
compared to deleting any other point. We keep deleting points until the number of
points in the submatrix reaches the ratio n/N = δ or the feature subset of 	′ turns
out to be strongly correlated on the current point subset.

This is a successive greedy point deletion heuristic. In each iteration, it deletes the
point that leads to the most reduction in the objective function value. This heuristic
is time consuming, since in order to delete one point from a submatrix containing n
points, we need to calculate the objective function value n times in order to find the
smallest value.

19.4.2.2 A Distance-Based Point Deletion Heuristic

In this section, we discuss the heuristic used by CARE. It avoids calculating objec-
tive function value n times for deleting a single point from a submatrix containing
n points.

Suppose that 	′ = {fi1, . . . , fim } × {p1, . . . ,pN } is a submatrix of 	 and
f (	′, k) > η, i.e., the features of 	′ are not strongly correlated on all data points.
Let S1 be the subspace spanned by the k eigenvectors with the smallest eigenvalues
and S2 be the subspace spanned by the remaining m−k eigenvectors. For each point
pa (pa ∈ {p1, . . . ,pN }), we calculate two distances: da1 and da2 . da1 is the distance
between pa and the origin in sub-eigenspace S1 and da2 is the distance between pa

and the origin in sub-eigenspace S2. Let the distance ratio rpa = da1/da2 . We sort
the points according to their distance ratios and delete (1− δ)N points that have the
largest distance ratios.

The intuition behind this heuristic is that we try to reduce the variance in subspace
S1 as much as possible while retaining the variance in S2.

Using the running data set shown in Fig. 19.5, for feature subset {f2, f7, f9}, the
deleted points are shown as stars in Fig. 19.6a and b using the two different heuristics
described above. The reestablished linear correlations are 2f2 + 5.9f7 + 3.8f9 = 0
(successive), and 2f2 + 6.5f7 + 2.9f9 = 0 (distance based). Note that the embedded
linear correlation is 2f2+6f7+3f9 = 0. As we can see from the figures, both methods
choose almost the same point subsets and correctly reestablish the embedded linear
correlation.
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(b)(a)

Fig. 19.6 Points deleted using different heuristics. (a) Successive point deletion; (b) Distance-
based point deletion

The distance-based heuristic is more efficient than the successive approach since
it does not have to evaluate the value of the objective function many times for each
deleted point.

As a summary of Section 19.4, CARE adopts the depth-first search strategy to
enumerate the candidate feature subsets. If a candidate feature subset is not strongly
correlated on all data points, then CARE applies the distance-based point deletion
heuristic to find the subset of points on which the candidate feature subset may have
stronger correlation. If a candidate turns out to be a linear reducible subspace, then
all its supersets can be pruned.

19.5 The REDUS Algorithm

In this section, we present REDUS algorithm which detects the (nonlinear) max-
imum reducible subspaces (Definition 6). We first give a short introduction to the
intrinsic dimensionality estimator. Then we present the algorithms for finding the
overall reducible subspace and the maximum reducible subspace, respectively.

19.5.1 Intrinsic Dimensionality Estimator

To find the overall reducible subspace in the data set, we adopt correlation dimension
[33, 34], which can measure both linear and nonlinear intrinsic dimensionality, as
our intrinsic dimensionality estimator since it is computationally more efficient than
other estimators while its quality of estimation is similar to others. In practice, we
observe that correlation dimension satisfies Properties 2 and 3, although we do not
provide the proof here. In what follows, we give a brief introduction of correlation
dimension.

Let Y be a feature subspace of the data set, i.e., Y ⊆ 	F . Suppose that the
number of points N in the data set approaches infinity. Let dis(pi , p j ,Y ) represent
the distance between two data points pi and p j in feature subspace Y . Let BY (pi , r)
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be the subset of points contained in a ball of radius r centered at point pi in subspace
Y , i.e.,

BY (pi , r) = {p j |p j ∈ 	P , dis(pi , p j ,Y ) ≤ r}.

The average fraction of pairs of data points within distance r is

CY (r) = lim
N→∞

1

N 2

∑

pi∈	P

|BY (pi , r)|.

The correlation dimension of Y is then defined as

ID(Y ) = lim
r,r ′→0

log[CY (r)/CY (r ′)]
log[r/r ′] .

In practice, N is a finite number. CY is estimated using
1

N 2

∑

pi∈YP

|B(pi , r)|. The

correlation dimension is the growth rate of the function CY (r) in log–log scale,

since
log[CY (r)/CY (r ′)]

log[r/r ′] = log[CY (r)] − log[CY (r ′)]
log r − log r ′

. The correlation dimension

is estimated using the slope of the line that best fits the function in least squares
sense.

The intuition behind the correlation dimension is following. For points that are
arranged on a line, one expects to find twice as many points when doubling the
radius. For the points scattered on two-dimensional plane, when doubling the radius,
we expect the number of points to increase quadratically. Generalizing this idea to
m-dimensional space, we have CY (r)/CY (r ′) = (r/r ′)m . Therefore, the intrinsic
dimensionality of feature subspace Y can be simply treated as the growth rate of the
function CY (r) in log–log scale.

19.5.2 Finding Overall Reducible Subspace

The following theorem sets the foundation for the efficient algorithm to find the
overall reducible subspace.

Theorem 2 Suppose that Y ⊆ 	F is a maximum reducible subspace and V ⊂ Y is
its core space. We have ∀U ⊂ Y (|U | = |V |), U is also a core space of Y .

Proof We need to show that U satisfies the criteria in Definition 6. Let V =
{ fv1 , fv2 , . . . , fvm } and U = { fu1 , fu2 , . . . , fum }.

Since U ⊂ Y , from the definition of reducible subspace, U is non-redundant, and
for every fui ∈ U , �ID(V, fui ) ≤ ε. For every fa ∈ Y , we have �ID(V, fa) ≤ ε.
Thus from Property 3, we have �ID(U, fa) ≤ ε. Similarly, for every fb �∈ Y ,
�ID(V, fb) > ε. Thus �ID(U, fa) > ε.

Therefore, U is also a core space of Y .
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Theorem 2 tells us that any subset U ⊂ Y of size |V | is also a core space of Y .
Suppose that {Y1,Y2, . . . ,YS} is the set of all maximum reducible subspaces in

the data set and the overall reducible subspace is O R = ⋃S
i=1 Yi . To find O R,

we can apply the following method. For every fa ∈ 	F , let RF fa = { fb| fb ∈
	F , b �= a} be the remaining features in the data set. We calculate �ID(RF fa , fa).
The overall reducible subspace O R = { fa |�ID(RF fa , fa) ≤ ε}.We now prove the
correctness of this method.

Corollary 2 O R = { fa |�ID(RF fa , fa) ≤ ε}.
Proof Let fy be an arbitrary feature in the overall reducible subspace. From Theo-
rem 2, we have ∀ fy ∈ Yi ⊆ O R, ∃Vi ⊂ Yi ( fy �∈ Vi ), such that Vi is the core space
of Yi . Thus �ID(Vi , fy) ≤ ε. Since fy �∈ Vi , we have Vi ⊆ RF fy . From Property
2, we have �ID(RF fy , fy) ≤ ε.

Similarly, if fy �∈ O R, then �ID(RF fy , fy) > ε.
Therefore, we have O R = { fy |�ID(RF fy , fy) ≤ ε}.
The algorithm for finding the overall reducible subspace is shown in Algorithm 1

from Line 1 to Line 7. Note that the procedure of finding overall reducible subspace
is linear to the number of features in the data set.

Algorithm 1 REDUS
Input: Dataset 	, input parameters ε, n, and τ ,
Output: Y : the set of all maximum reducible subspaces

O R = ∅;1
for each fa ∈ 	F do2

RF fa = { fb| fb ∈ 	F , b �= a};3
if �ID(RF fa , fa) ≤ ε then4

O R = O R ∪ { fa};5
end6

end7
sample n points P = {ps1 , ps2 , · · · , psn } from 	.8
for d = 1 to |O R| do9

for each candidate core space C ⊂ O R (|C | = d) do10
T = { fa | fa is strongly correlated with C , fa ∈ O R, fa �∈ C};11
if T �= ∅ then12

Y ← T ;13
update O R by removing from O R the features in T ;14

end15

end16

end17
return Y.18

19.5.3 Maximum Reducible Subspace

In this section, we present the second component of REDUS, i.e., identifying the
maximum reducible subspaces from the overall reducible subspace found in the
previous section.
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19.5.3.1 Intrinsic Dimensionality-Based Method

From Definition 6 and Theorem 2, we have the following property concerning the
reducible subspaces.

Corollary 3 Let Yi ⊆ O R be a maximum reducible subspace, and Vi ⊂ Yi be any
core space of Yi . We have

Yi = { fa |�ID(Vi , fa) ≤ ε, fa ∈ O R}.

Therefore, to find the individual maximum reducible subspaces Yi ⊆ O R
(1 ≤ i ≤ S), we can use any core space Vi ⊂ Yi to find the other features in Yi . More
specifically, a candidate core space of size d is a feature subset C ⊂ O R (|C | = d).
From size d = 1 to |O R|, for each candidate core space, let T = { fa |�ID(C, fa) ≤
ε, fa ∈ O R, fa �∈ C}. If T �= ∅, then T is a maximum reducible subspace
with core space of size d. The overall reducible subspace O R is then updated by
removing the features in T . Note that the size of |O R| decreases whenever some
maximum reducible subspace is identified. We now prove the correctness of this
method.

Corollary 4 Any candidate core space is non-redundant.

Proof It is easy to see any candidate core space of size 1 is non-redundant. Now,
assume that all candidate core spaces of size d − 1 are non-redundant; we show all
candidate core spaces of size d are non-redundant. We prove this by contradiction.

Let V = { fv1 , fv2 , . . . , fvd } be an arbitrary candidate core space of size d.
Without loss of generality, assume that fd is the redundant feature in V . Let
V ′ = { f1, f2 . . . , fvd−1}. We have �ID(V ′, fvd ) ≤ ε. Since |V ′| = d − 1;
V ′ is non-redundant according to the assumption. Moreover, we have T =
{ fa |�ID(V ′, fa) ≤ ε, fa ∈ O R, fa �∈ V ′} �= ∅, since fvd ∈ T . Therefore, fvd ∈ T
would have been removed from O R before the size of the candidate core spaces
reaches d. This contradicts the assumption of fvd being in the candidate core space
V . Therefore, we have that any candidate core space is non-redundant.

Corollary 5 Let C be a candidate core space. If ∃ fa ∈ O R such that �ID(C, fa) ≤
ε, then C is a true core space of some maximum reducible subspace in O R.

Proof Let Y = { fy |�ID(C, fy) ≤ ε, fy ∈ O R}. Following the process of finding
O R, we know that Y includes all and only the features in 	F that are strongly
correlated with C . Thus ∃C ⊂ Y , such that C satisfies criterion (1) in Definition
5 and criterion (2) in Definition 6. Moreover, according to Corollary 4, C is non-
redundant. Hence C also satisfies criterion (2) of Definition 5. Thus Y is a maximum
reducible subspace with core space C .

In this method, for each candidate core space, we need to calculate �ID(C) and
�ID(C ∪ { fa}) for every fa ∈ O R in order to get the value of �ID(C, fa). How-
ever, the intrinsic dimensionality calculation is computationally expensive. Since
the intrinsic dimensionality estimation is inherently approximate, we propose in the
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(b)(a)

Fig. 19.7 Point distributions in correlated feature subspace and uncorrelated feature subspace.
(a) strongly correlated features; (b) uncorrelated features

following section a method utilizing the point distribution in feature subspaces to
distinguish whether a feature is strongly correlated with a core space.

19.5.3.2 Point Distribution-Based Method

After finding the overall reducible subspace O R, we can apply the following heuris-
tic to examine if a feature is strongly correlated with a feature subspace. The intu-
ition behind our heuristic is similar to the one behind the correlation dimension.

Assume that the number of data points N in the data set approaches infinity and
the features in the data set are normalized so that the points are distributed from
0 to 1 in each dimension. Let ps ∈ 	P be an arbitrary point in the data set, and
0 < l < 1 be a natural number. Let ξsy represent the interval of length l on feature
fy centered at ps . The expected number of points within the interval ξsy is l N . For
d features C = { fc1, fc2 , . . . , fcd }, let QsC be the d-dimensional hypercube formed
by the intervals ξsci ( fci ∈ C). If the d features in C are totally uncorrelated, then the
expected number of points in QsC is ld N . Let fm be another feature in the data set,
and C ′ = { fc1 , fc2 , . . . , fcd , fm}. If fm is determined by { fc1, fc2 , . . . , fcd }, i.e., fm

is strongly correlated with C , then C ′ has intrinsic dimensionality d. The expected
number of points in the d-dimensional hypercube, QsC ′ , which is embedded in the
(d+1)-dimensional space of C ′, is still ld N . If, on the other hand, fm is uncorrelated
with any feature subspace of { fc1, fc2 , . . . , fcd }, then C ′ has dimensionality d + 1,
and the expected number of points in the (d + 1)-dimensional hypercube QsC ′ is
l(d+1)N . The difference between the number of points in the cubes of these two
cases is ld(1− l)N .

Figure 19.7a,b show two examples on two-dimensional spaces. In both examples,
d = 1 and C = { fa}. In Fig. 19.7a, feature fb is strongly correlated with fa . Feature
fc is uncorrelated with fa , as shown in Fig. 19.7b. The randomly sampled point
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ps is at the center of the cubes Qs{ fa , fb} and Qs{ fa , fc}. The point density in cube
Qs{ fa , fb} is clearly much higher than the point density in cube Qs{ fa , fc} due to the
strong correlation between fa and fb.

Therefore, for each candidate core space, we can check if a feature is correlated
with it in the following way. We randomly sample n points P = {ps1 , ps2 , . . . , psn }
from the data set. Suppose that C = { fc1 , fc2 , . . . , fcd } is the current candidate core
space. For feature fa ∈ O R ( fa �∈ C), let C ′ = { fc1 , fc2 , . . . , fcd , fa}. Let δsi C ′
represent the number of points in the cube Qsi C ′ . P ′ = {psi |δsi C ′ ≥ l(d+1)N } is the
subset of the sampled points such that the cube centered at them have more points
than expected if fa is uncorrelated with C . We say fa is strongly correlated with C

if |P
′|
|P| ≥ τ , where τ is a threshold close to 1.
Concerning the choice of l, we can apply the following reasoning. If we let

l =
(

1
N

) 1
d+1

, then the expected number of points in the cube Qsi C ′ is 1, if fa is

uncorrelated with C . If fa is correlated with C , then the expected number of points
in the cube Qsi C ′ is greater than 1. In this way, we can set l according to the size of
the candidate core space.

The second step of REDUS is shown in Algorithm 1 from Line 8 to Line 18.
Note that in the worst case, the algorithm needs to enumerate all possible feature
subspaces. However, in practice, the algorithm is very efficient since once an indi-
vidual reducible subspace is found, all its features are removed. Only the remaining
features need to be further examined.

19.6 Experiments

In this section, we present the experimental results of CARE and REDUS on both
synthetic and real data sets. Both algorithms are implemented using Matlab 7.0.4.
The experiments are performed on a 2.4 GHz PC with 1G memory running Win-
dowsXP system.

19.6.1 Synthetic Data

We evaluate CARE and REDUS on different synthetic data sets.

19.6.1.1 CARE

To evaluate the effectiveness of the CARE, we generate a synthetic data set of 100
features and 120 points in the following way. The data set is first populated with ran-
domly generated points for each one of the 100 features. Then we embedded three
local linear correlations into the data set as described in Table 19.4. For example,
on points {p1, . . . ,p60} we create local linear correlation f50 − f20 + 0.5f60 = 0.
Gaussian noise with mean 0 and variance 0.01 is added into the data set.
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Table 19.4 Local linear correlations embedded in the data set
Point subsets Local linear correlations

{p1, · · · ,p60} f50 − f20 + 0.5f60 = 0
{p30, · · · ,p90} f40 − f30 + 0.8f80 − 0.5f10 = 0
{p50, · · · ,p110} f15 − f25 + 1.5f45 − 0.3f95 = 0

We first show the comparison of CARE and full dimensional PCA. We perform
PCA on the synthetic data set described above. To present the linear correlation
discovered by PCA, we show the resulting hyperplanes determined by the three
eigenvectors with the smallest eigenvalues. Each such hyperplane represents a linear
correlation of all the features in the data set. Due to the large number of features, we
only show the features with coefficients with absolute values greater than 0.2. The
linear correlations reestablished by full dimensional PCA are shown in Table 19.5.
Clearly, these are not the local linear correlations embedded in the data set.

Table 19.5 Linear correlations identified by full dimensional PCA

Eigenvectors Linear correlations reestablished

v1 (λ1 = 0.0077) 0.23f22 − 0.25f32 − 0.26f59 ≈ 0
v2 (λ2 = 0.0116) 0.21f34 − 0.26f52 ≈ 0
v3 (λ3 = 0.0174) −0.22f6 − 0.29f8 + 0.22f39

−0.23f72 + 0.26f93 ≈ 0

Table 19.6 shows the local linear correlations reestablished by CARE, with k =
1, η = 0.006, δ = 50%, and maxs = 4. As can be seen from the table, CARE
correctly identifies the correlations embedded in the data set.

Table 19.6 Local linear correlations identified by CARE

f50 − 0.99f20 + 0.42f60 = 0
f40 − 0.97f30 + 0.83f80 − 0.47f10 = 0
f15 − 0.9f25 + 1.49f45 − 0.33f95 = 0

Figure 19.8 shows the hyperplane representation of the local linear correla-
tion, f40 − 0.97f30 + 0.83f80 − 0.47f10 = 0, reestablished by CARE. Since this
is a three-dimensional hyperplane in four-dimensional space, we visualize it as a
two-dimensional hyperplane in three-dimensional space by creating a new feature
(−0.83f80+0.47f10). As we can see from the figure, the data points are not clustered
on the hyperplane even though the feature subsets are strongly correlated. The exist-
ing projected clustering algorithms [14, 15] try to find the points that are close to
each other in the projected space. Therefore, they cannot find the strongly correlated
feature subset as shown in this figure.

To evaluate the efficiency of CARE, we generate synthetic data sets as follows.
Each synthetic data set has up to 500K points and 60 features, in which 40 linear
correlations are embedded. Gaussian noise with mean 0 and variance 0.01 is added
into the data set. The default data set for efficiency evaluation contains 5000 points
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Fig. 19.8 The hyperplane representation of a local linear correlation reestablished by CARE

and 60 features if not specified otherwise. The default values for the parameters are
k = 1, η = 0.006, δ = 50%, and maxs = 4.

Figure 19.9a–f show the efficiency evaluation results. Figure 19.9a shows that
the running time of CARE is roughly quadratic to the number of features in the data
set. Note that the theoretical worst case should be exponential when the algorithm
has to check every subset of the features and data points. Figure 19.9b shows the
scalability of CARE with respect to the number of points when the data set contains
30 features. The running time of CARE is linear to the number of data points in
the data set as shown in the figure. This is due to the distance-based point deletion
heuristic. As we can see from the figure, CARE finishes within reasonable amount
of time for large data sets. However, since CARE scales roughly quadratically to the
number of features, the actual runtime of CARE mostly depends on the number of
features in the data set.

Figure 19.9c shows that the runtime of CARE increases steadily until η reaches
certain threshold. This is because the higher the value of η, the weaker the correla-
tions identified. After certain point, too many weak correlations meeting the criteria
will be identified. Figure 19.9d demonstrates that CARE’s runtime when varying δ.
Figure 19.9e shows CARE’s runtime with respect to different maxs when the data
sets contain 20 features.

Figure 19.9f shows the number of patterns evaluated by CARE before and after
applying the upper bound of the objective function value discussed in Section 19.4.

19.6.1.2 REDUS

As shown in Algorithm 1, REDUS generally requires three input parameters: ε, n,
and τ . In the first step of finding the overall reducible subspace, ε is the threshold to
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Fig. 19.9 CARE Efficiency evaluation. (a) Varying number of features; (b) Varying number of
data points; (c) Varying η; (d) Varying δ; (e) Varying maxs ; (f) Pruning effect of the upper bound
of the objective function value

filter out the irrelevant features. Since features strongly correlated with some core
space can only change intrinsic dimensionality a small amount, the value of ε should
be close to 0. According to our experience, a good starting point is 0.1. After finding
the reducible subspaces, the user can apply the standard dimensionality reduction
methods to see if the are really correlated, and the adjust ε value accordingly to find
stronger or weaker correlations in the subspaces. In all our experiments, we set ε
between 0.002 and 0.25. In the second step, n is the point sampling size and τ is
the threshold to determine if a feature is strongly correlated with a candidate core
space. In our experiments, n is set to be 10% of the total number of data points in
the data set and τ is set to be 90%.

We generate two synthetic data sets.

REDUS Synthetic Data Set 1

The first synthetic data set is as shown in Fig. 19.3. There are 12 features
{ f1, f2, . . . , f12} and 1000 data points in the data set. Three reducible sub-
spaces, a two-dimensional Swiss roll, a one-dimensional helix-shaped line, and
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a two-dimensional plane, are embedded in different three-dimensional spaces,
respectively. The overall reducible subspace is { f1, f2, . . . , f9}. Let ci (1 ≤ i ≤ 4)
represent constants and r j (1 ≤ j ≤ 3) represent random vectors. The generating
function of the Swiss roll is t = 3

2π(1 + 2r1), s = 21r2, f1 = t cos(t), f2 = s,
and f3 = t sin(t). The roll is then rotated 45◦ counterclockwise on feature space
{ f2, f3}. The helix-shaped line is generated by f4 = c1r3, f5 = c2 sin(r3), and
f6 = c2 cos(r3). The two-dimensional plane is generated by f9 = c3 f7+ c4 f8. The
remaining three features { f10, f11, f12} are random vectors consisting of noise data
points.

In the first step, with ε = 0.25, REDUS successfully uncovers the overall
reducible space. The parameter setting for the second step is τ = 90%, and point
sampling size 10%. We run REDUS 10 times. In all 10 runs, REDUS successfully
identifies the individual maximum reducible subspaces from the overall reducible
subspace.

REDUS Synthetic Data Set 2

We generate another larger synthetic data set as follows. There are 50 fea-
tures { f1, f2, . . . , f50} and 1000 data points in the data set. There are three
reducible subspaces: Y1 = { f1, f2, . . . , f10} reducible to a two-dimensional
space, Y2 = { f11, f12, . . . , f20} reducible to a one-dimensional space, and Y3 =
{ f21, f22, . . . , f30} reducible to a two-dimensional space. The remaining features
contain random noises. Figures 19.10a,b show two examples of the embedded cor-
relations in three-dimensional subspaces. Figure 19.10a plots the point distribution
on feature subspace { f1, f2, f9} of Y1, and Fig. 19.10b plots the point distribution
on feature subspace { f11, f12, f13} of Y2.

We apply REDUS on this synthetic data set using various parameter settings.
Table 19.7 shows the accuracy of finding the overall reducible subspace when ε

takes different values. The recall is defined as T P/(T P + F N ), and the precision
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Fig. 19.10 Examples of embedded correlations in synthetic data set 2. (a) a correlation in Y1 (b) a
correlation in Y2
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Table 19.7 Accuracy of finding the overall reducible subspace when varying ε

ε Precision Recall

0.06 83% 100%
0.05 91% 100%
0.04 96% 100%
0.03 100% 100%
0.02 100% 100%
0.01 100% 100%
0 100% 90%

is defined as T P/(T P + F P), where T P represents the number of true positive,
F P represents the number of false positive, and F N represents the number of false
negative. As we can see, REDUS is very accurate and robust to ε.

To evaluate the efficiency and scalability of REDUS, we apply it to synthetic
data set 2. The default data set for efficiency evaluation contains 1000 points and
50 features if not specified otherwise. The default values for the parameters are the
same as before.

Figure 19.11a shows the runtime of finding the overall reducible subspace when
varying the number of data points. The runtime scales roughly quadratically. This
is because when computing the correlation dimensions, we need to calculate all
pairwise distances between the data points, which is clearly quadratic to the number
of points.

Figure 19.11b shows that the runtime of finding the overall reducible subspace is
linear to the number of features. This is because REDUS only scans every feature
once to examine if it is strongly correlated with the subspace of the remaining fea-
tures. This linear scalability is desirable for the data sets containing a large number
of features.

Figure 19.12a,b show the runtime comparisons between using the correlation
dimension as intrinsic dimensionality estimator and the point distribution heuristic
to identify the individual maximum reducible subspaces from the overall reducible
subspaces. Since the calculation of intrinsic dimensionality is relatively expensive,
the program often cannot finish in a reasonable amount of time. Using the point
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number of points; (b) Varying number of features
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Fig. 19.12 REDUS Efficiency evaluation of identifying maximum reducible subspaces from the
overall reducible subspace. (a) Varying number of points; (b) Varying number of features

distribution heuristics, on the other hand, is much more efficient and scales linearly
to the number of points and features in the data set.

19.6.2 Real Data

We apply CARE on the mouse gene expression data provided by the School of
Public Health at UNC. The data set contains the expression values of 220 genes in
42 mouse strains. CARE find eight strongly correlated gene subsets with parameter
setting: k = 1, η = 0.002, δ = 50%, and maxs = 4. Due to the space limit,
we show four of these eight gene subsets in Table 19.8 with their symbols and the
corresponding GO annotations. As shown in the table, genes in each gene subset
have consistent annotations. We also plot the hyperplanes of these strongly corre-
lated gene subsets in three-dimensional space in Fig. 19.13a–d. As we can see from
the figures, the data points are sparsely distributed in the hyperplanes, which again

Table 19.8 Strongly correlated gene subsets

Subsets Gene IDs GO annotations

1 Nrg4 Cell part
Myh7 Cell part; intracelluar part
Hist1h2bk Cell part; intracelluar part
Arntl Cell part; intracelluar part

2 Nrg4 Integral to membrane
Olfr281 Integral to membrane
Slco1a1 Integral to membrane
P196867 N/A

3 Oazin Catalytic activity
Ctse Catalytic activity
Mgst3 Catalytic activity

4 Hspb2 Cellular physiological process
2810453L12Rik Cellular physiological process
1010001D01Rik Cellular physiological process
P213651 N/A
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(a) (b)

(c) (d)

Fig. 19.13 Hyperplane representations of strongly correlated gene subsets. (a) Gene subset 1;
(b) Gene subset 2; (c) Gene subset 3; (d) Gene subset 4

demonstrates CARE can find the groups of highly similar genes which cannot be
identified by the existing projected clustering algorithms.

19.7 Conclusion

In this chapter, we investigate the problem of finding strongly correlated feature
subspaces in high-dimensional data sets. The correlation can be linear or nonlinear.
Such correlations hidden in feature subspace may be invisible to the global feature
transformation methods. Utilizing the concepts of PCA and intrinsic dimensionality,
we formalize this problem as the discovery of maximum reducible subspaces in the
data set. Two effective algorithms, CARE and REDUS, are presented to find the
reducible subspaces in linear and nonlinear cases, respectively. The experimental
results show that both algorithms can effectively and efficiently find these inter-
esting local correlations. These methods are powerful tools for identifying potential
transcriptional modules and thus play an important role in many modeling biological
networks.
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Chapter 20
Functional Influence-Based Approach to
Identify Overlapping Modules in Biological
Networks

Young-Rae Cho and Aidong Zhang

Abstract The inherent, dynamic, and structural behaviors of complex biological
networks in a topological perspective have been widely studied recently. These
studies have attempted to discover hidden functional knowledge on a system level
since biological networks provide insights into the underlying mechanisms of bio-
logical processes and molecular functions within a cell. Functional modules can
be identified from biological networks as a sub-network whose components are
highly associated with each other through links. Conventional graph-theoretic algo-
rithms had a limitation in efficiency and accuracy on functional modules detection
because of complex connectivity and overlapping modules. Whereas partition-based
or hierarchical clustering methods produce pairwise disjoint clusters, density-based
clustering methods that search densely connected sub-networks are able to generate
overlapping clusters. However, they are not well applicable to identifying functional
modules from typically sparse biological networks. Recently proposed functional
influence-based approach effectively handles the complex but sparse biological net-
works, generating large-sized overlapping modules. This approach is based on the
functional influence model, which quantifies the influence of a source vertex on each
target vertex. The experiment with a real protein interaction network in yeast shows
that this approach has better performance than other competing methods. A better
understanding of higher-order organizations that are identified by functional influ-
ence patterns in biological networks can be explored in many practical biomedical
applications.

20.1 Introduction

Biological networks, such as metabolic networks, protein interaction networks, and
gene regulatory networks, are typically described as complex systems. Biological
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networks contain the information of biochemical reactions or biophysical interac-
tions between molecular components at a certain environmental condition. Since
molecular functions are performed by a sequence of such reactions and interactions,
biological networks are valuable resources for characterizing functions of unknown
genes or proteins and discovering functional pathways. Systematic analysis of bio-
logical networks has thus become a primary issue in bioinformatics research [42].

A functional module is defined as a maximal set of molecules that participate
in the same function [22, 39]. It can be identified from biological networks as
a sub-network whose components are highly associated with each other through
links. In recent studies, it has been investigated that typical biological networks are
modular in topology [4]. A wide range of graph-theoretic algorithms have been
applied to biological networks for identifying functional modules [36]. However,
they had a limitation in accuracy and efficiency because of the critical challenges as
the following:

• Genome-wide biological networks are typically in a large scale and structured
by complex connectivity. It results from numerous cross-links (i.e., interconnec-
tions) between potential functional modules. Conventional graph-theoretic algo-
rithms are inappropriate to handle such large, complex networks because of their
unscalability and inefficiency in runtime.

• A molecule may be involved in several different functional activities under dif-
ferent environmental conditions. Without separating each condition, a network
includes overlapping modules, i.e., each vertex is a member of one or more
cluster(s). Therefore, conventional partition-based clustering (e.g., k-means algo-
rithm) or hierarchical clustering methods (e.g., agglomerative or divisive algo-
rithms) are inaccurate in biological network analysis because they produce pair-
wise disjoint clusters.

Most graph clustering algorithms search densely connected sub-graphs. A typical
example is the maximal clique algorithm for detecting fully connected sub-graphs.
Because of the strict constraints of maximal cliques, relatively dense sub-graphs can
be identified rather than complete sub-graphs by either using a density threshold
or optimizing an objective density function [37]. Assorted algorithms using alter-
native density functions have been recently presented [3, 9, 30]. These methods
have been frequently applied to biological networks because of the feasibility of
generating overlapping clusters. However, they exclude sparsely connected vertices
from the output clusters with high-density thresholds because the sparse connections
decrease the density of clusters. In addition, they are likely to combine distinct clus-
ters with low density thresholds because of numerous cross-links between clusters.
Therefore, they are not able to detect functional modules with appropriate sizes from
a biological network which is typically represented as a sparse but complex graph.

Recently, a novel approach based on the functional influence model has been
proposed [11, 13]. This model is designed to quantify the functional influence of
a source vertex on each target vertex in the input network. The edge weights and
vertex connectivity on the path from the source to the target are significant factors
for the quantification. The functional influence model is simulated by a flow-based
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algorithm. The quantity of functional influence on each target vertex determines
whether the target vertex is included in the same functional module with the source
vertex. This approach has been tested with a real protein interaction network in
yeast. The results demonstrate that this approach has better performance than other
competing methods in terms of accuracy. Manually annotated functional categories
from the MIPS database [27] are used as ground truth.

The remainder of this chapter is organized as follows. In Section 20.2, we
survey previous graph clustering methods which have been applied to functional
module detection from biological networks. In Section 20.3, the functional influ-
ence model and flow-based functional influence simulation algorithm are presented.
In Section 20.4, the modularization algorithm including three steps is discussed. In
Section 20.5, we show the experimental results in the real application to a protein
interaction network.

20.2 Survey of Previous Module Detection Approaches

Previous graph clustering methods for detecting functional modules can be cate-
gorized into three groups: partition-based clustering, hierarchical clustering, and
density-based clustering. First, the partition-based clustering approaches explore
the best partition which separates the graph into several sub-graphs. Next, the hier-
archical clustering approaches iteratively merge two sub-graphs that are the most
similar (or closest) or recursively divide the graph or sub-graph by disconnecting
the weakest links. Finally, the density-based approaches search densely connected
sub-graphs. The previous methods in these three categories are summarized in the
following subsections.

20.2.1 Partition-Based Clustering

20.2.1.1 Restricted Neighborhood Search Clustering (RNSC)

King et al. [26] proposed a cost-based local search algorithm modeled on the meta-
heuristic search. The process begins with a list of random or user-specific clusters
and calculates the cost of initial clusters by the cost function defined below. It then
iteratively moves each node on the border of a cluster to an adjacent cluster in a
random manner to find a lower cost. It finally detect the partition with the minimum
cost.

The cost function is determined by the proportion of interconnections. Suppose
we have a partition of a graph G. Let αv be the number of interconnections that
are linked from v to vertices in different clusters. The naive cost function is then
defined as:

Cn(G) = 1

2

∑

v∈V

αv. (20.1)
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For a vertex v in G, let βv be the total number of vertices in the cluster having v plus
the number of vertices linked to v in different clusters. The scaled cost function is
then defined as

Cn(G) = |V | − 1

3

∑

v∈V

αv

βv

. (20.2)

This measure reflects the size of the area that v influences in the cluster. Both cost
functions seek to define a clustering scenario in which the vertices in a cluster are
all connected to one another and there are no other connections between two clus-
ters. Since the RNSC algorithm starts with a random partition, different runs on the
same input data will generate different clustering results. As another weakness, this
method requires the prior knowledge of the exact number of clusters existing in a
network.

This method has been applied to finding protein complexes from protein interac-
tion networks [26]. However, they needed to filter the output modules to find true
protein complexes according to cluster size, cluster density, and functional homo-
geneity. Only the clusters that satisfy these three criteria have been considered as
predicted functional modules.

20.2.1.2 Markov Clustering (MCL)

The Markov clustering algorithm (MCL) was designed specifically for the appli-
cations to simple and weighted graphs [15, 17]. The MCL algorithm finds clusters
in a graph by a mathematical bootstrapping procedure. As an input graph, it uses a
Markov matrix having an edge weight on each corresponding entry. This algorithm
simulates random walks within the graph by alternating two operators: expansion
and inflation. It starts with computing the random walks of the input graph, yielding
a stochastic matrix. It then uses iterative rounds of the expansion operator, which
takes the square of the stochastic matrix, and the inflation operator, which raises
each matrix entry to a given power and then re-scales the matrix to return it to
a stochastic state. This process continues until there is no further change in the
matrix.

Expansion and inflation are used iteratively in the MCL algorithm to enhance
the graph where it is strong and to diminish it where it is weak, until equilibrium is
reached. Importantly, this algorithm has its “bootstrapping” nature, retrieving clus-
ter structure via the imprint made by this structure on the flow process. Since the
algorithm is fast and very scalable, it can be well applicable to real biological net-
works. Additionally, its accuracy is not compromised by the edges between different
clusters. A recent study [7] has demonstrated that the MCL method is superior for
extracting protein complexes from protein interaction networks even though it is not
able to generate overlapping clusters.
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20.2.2 Hierarchical Clustering

20.2.2.1 Bottom-Up Approaches

The bottom-up hierarchical clustering approaches start from single-vertex clusters
and iteratively merge the closest vertices or clusters into a super-cluster. For the
iterative merging, the similarity or distance between two vertices or two clusters
should be measured, for example, the similarity from the reciprocal of the shortest
path distance between two vertices [33] and the similarity from the statistical sig-
nificance of common interacting partners [20, 35]. Other advanced distance metrics
such as the Czekanowski-Dice distance [8] have also been used for this task. The
Czekanowski-Dice distance D between two vertices i and j is described as

D(i, j) = |Int(i)�Int( j)|
|Int(i) ∪ Int( j)| + |Int(i) ∩ Int( j)| , (20.3)

where Int(i) denotes the set of neighboring vertices directly connected to i including
the vertex i itself, and � represents the operator for symmetric difference between
two sets.

Two sub-graphs to be merged can be selected by an optimization process. The
similarity or distance can be measured in two steps to improve the accuracy. The
UVCLUSTER algorithm [2] first uses the shortest path distances as primary dis-
tances to apply the agglomerative hierarchical clustering. Next, based on the cluster-
ing results, it calculates the secondary distances. As a greedy optimization algorithm
[29], two sub-graphs to be merged can be found on each iteration by searching the
best modularity. In this work, the modularity Q of a graph is defined as

Q =
∑

i

(
eii − (% j ei j )

2), (20.4)

where eii is the number of intra-connecting edges within a cluster i , and ei j is the
number of interconnecting edges between two clusters i and j . The super param-
agnetic clustering (SPC) method [38] is another example of iterative merging. The
most similar pair of vertices can be selected from identical ferromagnetic spins.

These approaches are appealing for real biological applications because bio-
logical functions are also described by hierarchical ordering in general. Despite
the advantage of building the potential hierarchy of modular components, these
approaches may not have a meaningful guidance of the halting point in the merging
process to yield true functional modules.

20.2.2.2 Top-Down Approaches

The top-down hierarchical clustering approaches have the opposite procedure, start-
ing from one cluster including all vertices in a graph and recursively dividing it.
The recursive minimum-cut algorithm [21] is a typical example in this category.
However, it is computationally expensive to find the minimum number of cut in a
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complex system. Thus, the vertices or edges to be removed for the graph division
can be selected in alternative ways. For example, they can be iteratively found using
the betweenness measure [28] which gives a high score to the edge located between
potential modules. The betweenness CB of an edge e is calculated by the fraction of
the shortest paths passing through the edge, i.e.,

CB(e) =
∑

s �=t∈V,e∈E

|ρst (e)|
|ρst | , (20.5)

where ρst (e) is the set of the shortest paths between two vertices s and t , which are
passing through the edge e, and ρst is the set of all shortest paths between s and t .
Iterative elimination of the edges with the highest betweenness divides a graph
into two or more sub-graphs, and the iteration is recursively proceeded into each
sub-graph to detect final clusters [18]. While the betweenness assesses the global
connectivity pattern for each vertex or edge, the local connectivity can be considered
to select the interconnecting edges to be cut. For instance, the edge is selected by
the smallest rate of common neighbors between two ending vertices [31].

These approaches can reveal the global view of the hierarchical structure. Pre-
viously, the betweenness-based hierarchical method has been popularly used in
biological network analysis [16, 23]. However, finding the correct dividing points
is the most crucial and time-consuming process for the application to large-sized,
complex biological networks. In addition, as a critical shortcoming, these top-down
hierarchical clustering approaches are sensitive to noisy data, which are frequently
occurred in real biological networks.

20.2.3 Density-Based Clustering

20.2.3.1 Molecular Complex Detection (MCODE)

Molecular complex detection (MCODE) [3] is an effective approach for detecting
densely connected regions in large biological networks. This method weights a ver-
tex by local neighborhood density, chooses a few seeds with a high weight, and
isolates the dense regions according to given parameters. The MCODE algorithm
operates in three steps: vertex weighting, protein complex (cluster) generation, and
optional post-processing step to filter or add vertices to the resulting clusters accord-
ing to certain connectivity criteria.

In the first step, all vertices are weighted based on their local density using the
highest k-core of the vertex neighborhood. The k-core of a graph is defined as the
maximum sub-graph if every vertex has at least k links [41]. It is obtained by pruning
all the vertices with a degree less than k. Thus, if a vertex v has degree dv and it has
n neighbors with degree less than k, then the degree of v becomes dv−n. It will also
be pruned if k > (dv − n). The core-clustering coefficient of a vertex v is defined
as the density of the highest k-core of the vertices connected directly to v, together
with v itself. For each vertex v, its weight wv is
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wv = k × d, (20.6)

where d is the density of the highest k-core graph from the set of vertices including
all the vertices directly connected with v and the vertex v itself. The clustering
coefficient [40] is a traditional metric to quantify how well a vertex affects the local
denseness. The clustering coefficient c(vi ) of a vertex vi is formulated as the ratio
of the number of actual edges between direct neighbors of vi to the number of all
possible edges between them:

c(vi ) = |{(v j , vk)|v j ∈ N (vi ), vk ∈ N (vi ), j �= k}|
|N (vi )| × (|N (vi )− 1|) . (20.7)

Comparing to this conventional clustering coefficient, the core-clustering coefficient
in the MCODE algorithm amplifies weighting of heavily connected regions while
removing many sparsely connected vertices.

The second step of the algorithm is the cluster generation. With a vertex-weighted
graph as an input, a sub-graph with the highest-weighted vertex is selected as a seed.
Once a vertex is included, its neighbors are recursively inspected to determine if
they are a part of the cluster. The seed is then expanded to a cluster until it reaches a
density threshold of the cluster. By checking a vertex more than once, overlapping
clusters can be yielded. This process stops when no additional vertices can be added
to the cluster. The vertices included in the cluster are marked as examined. This
process is repeated for the next highest unexamined weighted vertex in the graph.

This method has been specifically devised to detect protein complexes in protein
interaction networks [3]. In the experiment with the yeast protein interaction net-
work, MCODE effectively located the densely connected regions as protein com-
plexes based solely on the connectivity.

20.2.3.2 Clique Percolation

Derenyi et al. [14] introduced a novel process of k-clique percolation, along with
the associated concepts of k-clique adjacency and k-clique chain. Two k-cliques
are adjacent if they share (k − 1) vertices, where k is the number of vertices in
each clique. A k-clique chain is a sub-graph comprising the union of a sequence of
adjacent k-cliques. A k-clique percolation cluster is thus a maximal k-clique chain.
The k-clique percolation cluster is equivalent to a regular percolation cluster in the
k-clique adjacency graph, where the vertices represent the k-cliques of the original
graph, and there is an edge between two vertices if the corresponding k-cliques are
adjacent. Using a heuristic approach, Derenyi et al. have found that the percolation
transition of k-cliques in random graphs takes place when the probability of two
vertices being connected by an edge reaches the threshold pc(k), where

pc(k) = 1
(
(k − 1) · |V |)1/(k−1)

. (20.8)
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The key advantage of the clique percolation method is its ability to identify over-
lapping clusters. Palla et al. [30] have tested the clique percolation method in the
yeast protein interaction network. Through this experiment, they determined that
the cumulative distribution of module size follows a power law with an exponent
of −1, approximately. They additionally observed that the cumulative distribution
of overlap size, which is the number of vertices shared in two modules, is close to a
power law with a somewhat larger exponent.

20.2.3.3 Complex Overlap Decomposition (COD)

Zotenko et al. [43] proposed a graph theoretical method, called Complex Overlap
Decomposition (COD), to detect overlapping clusters. This method is based on the
concepts of chordal graphs and cograph. A chord in a graph is any edge that con-
nects two non-consecutive vertices of a cycle. A chordal graph is a graph which
does not contain chordless cycles of length greater than three. Every chordal graph
has a corresponding clique tree representation. The topology of the clique tree is
determined by the structure of overlaps between maximal cliques in a graph. The
clique tree thus captures the structure of overlaps. Since some biological networks
are not chordal, the COD method uses the edge addition strategy. A pair of vertices
are called weak siblings if and only if they share exactly the same set of neighbors,
but are not directly connected to each other. The COD method takes the first step
toward delineating functional groups by connecting every pair of weak siblings.
The second step is to obtain all clique trees from the modified graph if it is chordal.
Otherwise, the process stops. However, since maximal cliques may not always be
the best way to represent functional groups, a new concept, cographs, is introduced.
A cograph is characterized by the absence of an induced sub-graph which has a
path of length-4. For each cograph, there is a Boolean expression which describes
all maximal cliques in the graph. Finally, each clique tree is extended to a “Tree
of Complexes” representation of the original graph by projecting each clique to a
functional group in the original graph.

This approach has been devised for identifying functional groups in protein inter-
action networks and applied to TNFα/NFκB and pheromone signaling pathways
[43]. The experimental results show that the COD method successfully identified
some proteins in the same functional groups and some functional groups within
more than one protein complex.

20.2.3.4 Seed Growth

Altaf-Ul-Amin et al. [1] recently developed another density-based clustering
method. This algorithm needs an input of the associated matrix of a graph. It ranks
the vertices by their degrees from top to bottom. The vertex with the highest degree
will be selected as the first seed node. The cluster then starts from the seed node
and grows gradually by adding vertices one by one from its neighbors. It is impor-
tant to add neighbors to the cluster by priority to guide the cluster formation in a
proper way. The priority is determined based on two measures: (1) the sum of the
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edge weights between a neighbor and each of the vertices in the cluster and (2)
the number of edges between a neighbor and each of the vertices in the cluster.
Furthermore, it checks another two points. First, the density of the cluster should be
below a threshold. Second, it should be investigated whether the vertex is a part of
the cluster by evaluating the cluster property. The cluster property cpnk of a vertex
n with respect to any cluster k of density dk and size |Nk | is defined as

cpnk = |Enk |
dk × |Nk | , (20.9)

where |Enk | is the total number of edges between the vertex n and each of the ver-
tices in k. Once a cluster is generated, the graph is updated by removing the cluster.
The next cluster can be generated from the remaining graph. However, to produce
overlapping clusters, vertices should be added starting from their first neighbors in
the original graph, not in the remaining graph, until there are no vertices left in the
graph.

The performance of this method has been tested in real protein interaction net-
works [1]. As a result, a significant number of predicted complexes have been
matched with known protein complexes. In addition, the quality of the predicted
complexes has been evaluated by the ratio of the interactions that occur between
protein pairs with similar functions. It has been observed that the percentage of the
interactions between protein pairs with common functions is higher in high-density
complexes.

20.3 Modeling and Simulation of Functional Influence

As a novel direction for effective analysis of biological networks, a functional influ-
ence model and flow-based functional influence simulation algorithm have been
presented [11, 13]. The key concept of this model is that a molecule, such as a
gene, protein, and enzyme, has a functional influence on another molecule through
links in a biological network. This approach requires a weighted, undirected graph
as the input network. The intensity or reliability of each link should be assessed
and assigned into the corresponding edge as its weight. The details of the func-
tional influence model and simulation algorithm will be discussed in the following
subsections.

20.3.1 Functional Influence Model

The functional influence model is designed to describe the propagation of functional
influence of a molecule over the entire network. This model is thus implemented by
simulating the quantity of the influence of a vertex vi ∈ V on the others v j ∈ V,

j �= i , in the input graph G(V, E). The primary assumption is that each vertex
contains the self-information which can be propagated through all links. As a central
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component of this model, the path strength S of a path p is defined as the product
of the weighted probabilities that each vertex on p chooses the succeeding vertex.
The weighted probability from vi to v j is the ratio of the weight between vi and v j

to the sum of the weights between vi and its neighbors directly connected:

S(p) = λ

n−1∏

i=0

wi(i+1)

dwt (vi )
, (20.10)

where p = 〈v0, v1, . . . , vn〉. v0 is the start vertex and vn is the end vertex of p.
wi(i+1) denotes the weight of the edge between vi and v(i+1), which is normalized
into the range between 0 and 1. dwt(vi ) represents the shape parameter that indicates
the weighted degree of the vertex vi . The weighted degree of vi is the sum of the
edge weights between vi and its neighbors. λ is the scale parameter which depends
on the specific type, structure, and properties of the input network. To make the
problem simple, the scale parameter will be set as λ = 1. Based on the assump-
tion that the shape parameter does not force the starting and ending vertices of p,
Formula (20.10) is converted into

S(p) = w0,1 ·
n−1∏

i=1

wi(i+1)

dwt(vi )
. (20.11)

The path strength of a path p thus has a positive relationship with the weights of the
edges on p, and a negative relationship with the weighted degrees of the vertices
on p. Formula (20.11) also implies that the path strength has an inverse relationship
with the length of p because the weighted probability, wi(i=1)/dwt(vi ), is in the
range between 0 and 1, inclusive. As the length of p increases, the product of the
weighted probability decreases monotonically. In the same manner, as the average
degree of the vertices on p increases, the path strength of p is likely to decrease.
For example, in Fig. 20.1, the higher the degrees of the vertices v1 and v2, the lower
S(v0, v3).

The functional influence model considers all possible paths between two vertices
including cycles. The quantity of the influence of a vertex on another is defined
as the cumulative path strength of all possible paths between them. For example,
in Fig. 20.2, suppose we measure the functional influence F(v0, v9) of v0 on v9
in the weighted network. v0 becomes the source vertex and v9 becomes the target
vertex. F(v0, v9) is calculated by summation of the path strength scores in Formula
(20.11) for all possible paths between v0 and v9. However, enumerating all possible

v0 v1 v2 v3
w0,1 w2,3w1,2

Fig. 20.1 Path strength is determined by three factors: edge weights, weighted degrees of vertices,
and path length. To have higher path strength S(p) of the path p = 〈v0, v1, v2, v3〉, the edge
weights on p, w0,1, w1,2, and w2,3 should be higher, and the weighted degrees of v1 and v2 on p
should be lower
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F(v0 ,v9)

F(v0 ,v6)
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Fig. 20.2 An example of implementing the functional influence model. To calculate the functional
influence of v0 on v9, F(v0, v9), the prior information of the influence of v0 on the neighbors of
v9, F(v0, v6), F(v0, v7), and F(v0, v8) can be used

paths between two vertices in a large network is not computationally acceptable. An
efficient approximation algorithm to simulate functional influences is described in
the next section.

20.3.2 Simulation of Functional Influence

The functional influence model has been simulated by a flow-based algorithm. This
algorithm has the assumption that flow takes a constant time to traverse each edge.
It requires a weighted network and a source vertex s as inputs and produces the
distribution of the functional influence of s on all the other vertices in the network
as an output.

As the same example in Fig. 20.2, suppose we measure the functional influ-
ence, F(v0, v9). Among all possible paths between v0 and v9, consider the path
p = 〈v0, v3, v6, v9〉. By Formula (20.11), the path strength S(p) is considered as
S(〈v0, v3, v6〉) × w6,9/dwt

6 . It indicates that, to compute the functional influence
F(v0, v9), the prior knowledge of the influence of v0 on the neighbors of v9, i.e.,
F(v0, v6), F(v0, v7), and F(v0, v8), should be obtained in advance. In other words,
given F(v0, v6), F(v0, v7), F(v0, v8), the weighted degrees of v6, v7, and v8, and
the weights of the edges connecting to v6, v7, and v8, we can estimate F(v0, v9). In
the same way, F(v0, v6), F(v0, v7), and F(v0, v8) require the prior knowledge of
the influence of v0 on the neighbors of v6, v7, and v8, respectively. Thus, the iterative
computation of the influence of v0 on the other nodes can finally achieve the quantity
of the functional influence of v0 on v9 through all links across the network.

As a notation in this flow-based algorithm, fs(x → y) denotes the functional
influence of s, which travels from a vertex x to a vertex y where x and y are linked
directly. The initial influence rate F(s, s) can be a user-specific constant value, e.g.,
1. Initially, the flow delivers the initial rate of s to its neighbors x with being reduced
by weights.

fini t (s → x) = ws,x × F(s, s), (20.12)
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where ws,x is the normalized weight of the edge between s and x into the range of
0 ≤ ws,x ≤ 1. The quantity of the functional influence of s on x , F(s, x), is then
updated by summing all incoming flow to x from its neighbors.

F(s, x) =
∑

u∈N (x)

fs(u → x). (20.13)

The summation calculates the new functional influence on x through all possible
paths in the network. In the initial flow, the functional influence that x receives only
comes from the source s. And then, the influence of s traverses all connecting edges
by the formula defined as

fs(x → y) = wx,y
∑

z∈N (x) wx,z
× F(s, x), (20.14)

where N (x) denotes the set of directly connected neighbor vertices of x . The mul-
tiplication of those two terms indicates the meaning of the product in Formula
(20.11). During the flow, the quantity of the functional influence of s on each vertex
v is repeatedly updated by Formula (20.13), traverses connecting edges by For-
mula (20.14), and is accumulated into Ps(v). The flow on a path stops if the flow
fs(x → y) reaches a user-dependent minimum threshold θ f low. The flow simula-
tion starting from s terminates when there is no more flow in the network. The final
Ps(v) then represents the functional influence of s on v. The high-level description
of the flow-based functional influence simulation algorithm is shown as following:

1. Initialize F(s, s).
2. Compute initial flow fini t (s → x) by Formula (20.12) for each x where

e(s, x) ∈ E .
3. Compute F(s, x) by Formula (20.13) for each x .
4. Compute flow fs(x → y) by Formula (20.14) for each y where e(x, y) ∈ E .
5. Remove flow fs(x → y) if it is less than a threshold θ f low.
6. Replace x and y with y and z, respectively, where e(y, z) ∈ E , and repeat the

steps of 3,4,5, and 6 until there is no more flow in the network.
7. Output cumulative F(s, v) for each v ∈ V .

20.3.3 Efficiency Analysis

Efficiency is one of the major strengths of the flow-based functional influence sim-
ulation algorithm. In general, random walk simulation on a graph is manipulated by
matrix computation. The product of adjacency matrices for each round of random
walks runs in O(n3). For n rounds, the time complexity grows to O(n4). However,
the flow-based simulation algorithm outperforms the matrix computation because it
efficiently chases the flow through only existing links and prunes each flow as soon
as it becomes trivial. Unlike other graph-theoretic methods, its runtime is obviously
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unrelated to the network diameter because flow traverses through all possible paths
including cycles. Since this algorithm uses a threshold to halt the flow as a user-
specified criterion, the theoretical upper bound of its runtime is unknown. However,
the potential factors that affect time complexity of this algorithm are investigated in
Fig. 20.3.

Synthetic input networks have been created by different features, and the average
runtime of the flow-based simulation starting from randomly selected 200 source
vertices in each network has been monitored. In the first test, the networks were
produced by increasing the number of vertices, from 500 to 7000, but retaining the
density as 0.002. The density of a network represents the proportion of the number
of actual edges to the number of all possible edges. In the next test, the networks
were produced by the same change of the number of vertices but a constant average
degree of 5. In Fig. 20.3 a, when the density is constant, the runtime increases as
adding vertices, because of the squared increase of the number of possible edges
for the constant density. However, when the average degree is constant, the runtime
is uniform regardless of the network size. In the additional experiment, the runtime
with the networks produced by the change of density in the fixed number of vertices
as 2000 and in a constant average degree of 5. As shown in Fig. 20.3 b, when the
network size is fixed, the runtime increases as the density becomes higher. However,
when the average degree is constant, the runtime is also uniform regardless of the
network density. These results indicate that the average degree of input networks
is a more critical factor to reduce time complexity of the flow-based simulation
algorithm than the size or density of networks. Since the average degree of complex
biological networks is typically low in a power law degree distribution, the flow-
based simulation algorithm efficiently outputs the functional influence between any
two vertices in the network.
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Fig. 20.3 Runtime of flow-based functional influence simulation in synthetic networks. The net-
works are structured by (a) the change of the number of vertices in constant density or a constant
average degree and by (b) the change of density in the constant number of vertices or a constant
average degree
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20.4 Modularization Algorithm

The quantity of the functional influence of a source vertex s on a target vertex t can
be a decisive indication whether s and t are the members of the same functional
module. A potential functional module including s can thus be found by collecting
all the vertices under the strong functional influence of s. The modularization algo-
rithm, specific to biological networks, will be presented in this section. The input is
a weighted, undirected network, and the output is a collection of functional modules
as sets of vertices. The three steps of the functional influence-based modularization
algorithm, source selection, functional flow simulation, and post-process, will be
discussed in the following subsections.

20.4.1 Source Selection

In this modularization algorithm, the members of a functional module are selected
by the functional influence of a source. The source vertex is thus a representative
core in the module. The source vertices are chosen through the topological analysis
of biological networks, generally via the use of centrality metrics. Commonly used
topology-based metrics include degree and clustering coefficient. A previous study
[24] has observed that the local connectivity of vertices in biological networks plays
a crucial role in cellular functions. It means high-degree vertices are possibly the
cores in functional modules. The clustering coefficient in Formula (20.7) also seeks
the vertex located in the center of a densely connected region, which is a potential
core of a functional module.

In a weighted network, the degree and clustering coefficient can be extended to
the weighted degree and weighted clustering coefficient [5]. The weighted degree
dwt(vi ) of a vertex vi is the summation of the weights between vi and its neighbors.

dwt(vi ) =
∑

v j∈N (vi )

wi j , (20.15)

where wi j is the weight of the edge between vi and v j . The weighted clustering
coefficient cwt(vi ) of a vertex vi is defined as

cwt(vi ) = 1

dwt(vi )(d(vi )− 1)

∑

v j ,vk∈N (vi ),

〈v j ,vk 〉∈E

(wi j + wik)

2
, (20.16)

where d(vi ) is the (unweighted) degree of vi . Then the vertices with high weighted
degrees or high weighted clustering coefficients are good candidates as sources.
Because the weights are obtained from functional knowledge in general, the
weighted degree and weighted clustering coefficient of a vertex include the fac-
tors related to not only topological significance in the network but also biological
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essentiality. The number of selected source vertices is a user-dependent parameter
in this algorithm.

20.4.2 Functional Influence Simulation

The functional influence simulation algorithm has been discussed in the previous
section. By flow-based simulation starting from each source vertex, the vertices, on
which have a higher functional influence than the minimum influence threshold θinf,
are grouped into a functional module. The flow-based simulation starting from all
source vertices then achieves the set of modules, called preliminary modules. Those
preliminary modules are typically overlapped because a vertex may be under the
functional influence of two or more source vertices.

20.4.3 Post-process

The quality of preliminary modules depends on the proper selection of source ver-
tices. If a selected source vertex is not a core of the potential module, the result
will be inaccurate. To improve the accuracy, merging similar preliminary modules
or finding optimal source vertices is necessary as a post-processing step.

20.4.3.1 Merging Similar Modules

Two or more preliminary modules may be very similar, i.e., they may include a
large fraction of common members, when their source vertices are closely located
to each other in the network. The close connection between two sources leads to high
functional similarity. Merging such similar preliminary modules is an important step
to make final modules accurate. The similarity S(Ms, Mt ) between two modules Ms

and Mt is measured by the weighted inter-connectivity defined as

S(Ms, Mt ) =
∑

x∈Ms ,y∈Mt
c(x, y)

min(|Ms |, |Mt |) , (20.17)

where

c(x, y) =
⎧
⎨

⎩

1 if x = y
w(x, y) if x �= y and 〈x, y〉 ∈ E
0 otherwise.

(20.18)

The modules with the highest similarity in Formula (20.17) are iteratively merged
until the highest similarity is less than a user-specified merging threshold.
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20.4.3.2 Iterative Centroid Search

If a vertex on periphery of a real functional module is chosen as a source vertex, then
the output modules by the functional influence simulation algorithm would not be
functionally homogeneous. The iterative centroid search (ICES) algorithm has been
developed to delineate the optimal positions for sources and to precisely identify
functional modules [12]. It computes the centrality C(vi ) of a vertex vi as the sum
of the maximum path strengths from vi to the other vertices in the network.

C(vi ) =
∑

v j∈V,

i �= j

Smax(〈vi , . . . , v j 〉), (20.19)

The centrality measurement guides the selection of a centroid in each module gener-
ated by flow-based simulation. The vertex with the highest centrality in each prelim-
inary module becomes a new centroid of the module. These centroids then become
the source vertices for the next round of flow-based simulation.

The ICES algorithm iterates two procedures: the selection of a centroid in each
module and the flow-based simulation starting from each new centroid to generate a
set of modules. Each iterative step identifies a set of centroids progressively closer to
the actual cores of functional modules. If an initial centroid is located on the periph-
ery of a potential module, the centroid approaches the actual core of the module
during the iterations. The algorithm concludes by optimizing the starting positions
of flow-based simulation, thus identifying the most accurate functional modules.

20.5 Application to Protein Interaction Networks

Protein interaction networks are structured by protein–protein interaction data. They
are represented by an undirected, unweighted graph G(V, E) with proteins as a set
of vertices V and the interactions between them as a set of edges E . An exam-
ple of the yeast protein interaction network is illustrated in Fig. 20.4. Currently,
protein–protein interaction data are publicly available in several databases such as
BioGRID [6], MIPS [27], DIP [34], MINT [10], and IntAct [25]. Since proteins
interact with each other for biochemical stability and functionality, the interaction
evidence between proteins can be interpreted as their functional coherence, and
functional modules of proteins can be identified based on the connectivity in the
interaction networks.

20.5.1 Data Source

The functional influence-based approach has been tested in the yeast protein inter-
action network. The core protein–protein interaction data have been extracted from
DIP [34]. They include 2526 distinct proteins and 5949 interactions between them.
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Fig. 20.4 The yeast protein interaction network. It is represented as a large-scale, complex graph

Since the functional influence-based approach requires the weighted graph as an
input, the weights of the interactions have been computed using the annotation data
from gene ontology (GO) [19] which currently has the most comprehensive func-
tional information of molecules. The GO is a repository of semantic terms and their
relationships across organisms. The GO terms are structured as a directed acyclic
graph according to the “is-a” and “part-of” relationships among them. Characterized
genes or proteins are annotated on each term. Using GO data, semantic similarity
and semantic interactivity [11] between interacting proteins have been measured
to estimate functional similarity between them. A semantic similarity or semantic
interactivity score of each interaction is assigned to the corresponding edge as a
weight.

The semantic similarity is assessed by the information contents in two seman-
tic concepts. In information theory, self-information is a measure of the informa-
tion content associated with the outcome of a random variable. The amount of
self-information contained in an event c depends on the probability P(c) of the
event. More specifically, the smaller the probability of the event, the larger the self-
information to be received when the event indeed occurs. The information content
of a concept C in the taxonomy is then defined as the negative log likelihood of C ,
− log P(C). Semantic similarity between two concepts is measured by their com-
monality, i.e., more common information two concepts share, more similar they are.
Resnik [32] proposed to measure the semantic similarity of the concepts, C1 and
C2, by the information content of the most specific concept C0 that subsumes both
C1 and C2.

The semantic similarity between interacting proteins can be derived from the
commonality of information contents of two GO terms having the annotations of
two interacting proteins. Suppose the size of annotation represents the number of
annotated proteins on a GO term. Using the annotation size of the most specific GO
term, on which two proteins x and y are annotated, semantic similarity Ssem(x, y)
between x and y is defined as
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Ssem(x, y) = − log

(

min
i

Pi (x, y)

)

, (20.20)

where Pi (x, y) is the ratio of the number of proteins annotated on the GO term ti ,
whose annotation includes both x and y, to the total number of distinct proteins
in annotations. Since x and y can be annotated on several different GO terms, the
minimum Pi (x, y) is chosen to maximize the similarity.

The semantic interactivity is based on the connection patterns among proteins
annotated on specific GO terms. It measures the probability P(x, y) that x interacts
with the proteins annotated on the GO terms whose annotation includes y as

P(x, y) = maxi |Si (y) ∩ N ′(x)|
|N ′(x)| , (20.21)

where N ′(x) = N (x) ∪ {x}. If x and all of its neighbors are not included in Si (y)
for any i , then P(x, y) is 0. If all of them are included in a set Si (y), then P(x, y)
is 1. Equation (20.21) thus satisfies the range of 0 ≤ P(x, y) ≤ 1. The semantic
interactivity Isem(x, y) between x and y is then measured by the geometric mean of
P(x, y) and P(y, x).

Isem(x, y) = √
P(x, y)× P(y, x). (20.22)

20.5.2 Identification of Overlapping Modules

The functional influence-based modularization algorithm requires two important
user-dependent parameters: the number of sources and the minimum influence
threshold. The number of modules in an output set depends on the number of
sources. On the other hand, the minimum influence threshold determines the average
size of output modules. By alternating the two parameter values, the optimal output
sets of modules have been found. Since real functional modules are hierarchically
distributed in typical, the output sets having similar numbers of the real functional
categories on the first, second, and third level in a hierarchy from the MIPS database
[27] are chosen.

The output modules share a large number of common members. The overlapping
rates of output modules have been evaluated by counting the number of appearance
across different modules for each protein. In Table 20.1, the average overlapping
rates on the output sets of modules are compared with that on real functional cat-
egories from MIPS. As the protein interaction network is decomposed into more
specific functional modules in a lower level, the average overlapping rate slightly
increases. The output modules weighted by semantic similarity have lower over-
lapping rates than real functional modules whereas those by semantic interactivity
have higher overlapping rates. However, the increasing patterns of the rates in output
modules are similar to those in real modules. Overall, the modules identified by
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Table 20.1 Average overlapping rates of proteins in the modules on the first, second, and third
level in a functional hierarchy

Module Functional Output modules Output modules
set categories (semantic similarity) (semantic interactivity)

Level 1 3.05 2.71 3.84
Level 2 3.45 3.25 3.98
Level 3 3.71 3.42 4.05

this functional influence-based approach have a similar overlapping pattern when
compared to real functional categories.

20.5.3 Statistical Assessment of Modules

To statistically assess the identified modules, the p-value from the hypergeomet-
ric distribution [9, 11] is commonly used. Each module is mapped to a reference
function with the lowest p-value and evaluated by the negative of log(p-value). A
low p-value (equivalently, a high− log(p-value)) between an identified module and
a reference function indicates that the module closely corresponds to the function.
In this experiment, the functional categories and their annotations from the MIPS
database were used as the reference functions.

The performance of the functional influence-based modularization algorithm is
compared to the competing methods in two different categories: the betweenness-
based algorithm [18] as a hierarchical approach and the clique percolation algorithm
[30] as a density-based method. For each implementation, the parameter values that
resulted in the best accuracy have been selected. Table 20.2 shows the parameter
values and the results of the output modules. Although the clique percolation method
is able to find overlapping modules, it detects numerous small-sized modules with a
few disproportionally large modules. As a result, its average accuracy is lower than
the other methods. The betweenness-based hierarchical clustering method includes
most of the sparsely connected vertices in the output modules. However, because the
output modules are disjoint, this method has a lower accuracy than the functional
influence-based method. In summary, the functional influence-based algorithm out-
performs other competing methods in terms of the accuracy of functional module
identification in a real protein interaction network.

Table 20.2 Performance comparison of modularization methods. The output modules were statis-
tically assessed in terms of accuracy using p-value

Number of Average size
Method modules of modules − log(p-value)

Influence-based (semantic similarity) 178 46.14 24.42
Influence-based (semantic interactivity) 189 40.40 29.05
Betweenness-based 57 41.02 17.44
Clique percolation 57 17.86 12.32
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20.6 Conclusion

Discovering hidden knowledge related to molecular functions from complex biolog-
ical networks has been a crucial task in biological data mining because the system-
level understanding of functional behaviors of molecular components becomes the
underlying bases of practical biomedical applications. Interestingly, it has been
observed that biological networks have collective behaviors in topology. In this
chapter, a novel functional influence-based approach has been proposed for effective
analysis of complex biological networks. This approach is based on the functional
influence model and flow-based simulation algorithm that quantifies the functional
influence of each vertex on the others through links. This influence pattern becomes
a unique characteristic of the input network in terms of connectivity and function-
ality. The functional influence simulation culminates in identifying functional mod-
ules hidden in the complex biological network. This framework will be enhanced
by applying top-notch techniques to the source seed selection as a pre-process and
the cluster merging as a post-process. Moreover, a better edge-weighting scheme,
which integrates with heterogeneous biological data available, can be adopted for
higher accuracy in detecting clusters corresponding to real functional modules.
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Chapter 21
Gene Reachability Using Page Ranking
on Gene Co-expression Networks

Pinaki Sarder, Weixiong Zhang, J. Perren Cobb, and Arye Nehorai

Abstract We modify the Google Page-Rank algorithm, which is primarily used for
ranking web pages, to analyze the gene reachability in complex gene co-expression
networks. Our modification is based on the average connections per gene. We pro-
pose a new method to compute the metric of average connections per gene, inspired
by the Page-Rank algorithm. We calculate this average as eight for human genome
data and three to seven for yeast genome data. Our algorithm provides clustering of
genes. The proposed analogy between web pages and genes may offer a new way to
interpret gene networks.

21.1 Introduction

The Page-Rank algorithm [1] analyzes links and assigns a numerical weighting to
each element of a hyperlinked set of elements, such as web pages, relative to its
importance. The level of importance represents the likelihood that a surfer, surfing
the web, will arrive at any stochastic page, based on the page similarity, having
started from another page. The Page-Rank theory assumes that a surfer continues
clicking the web links with a damping factor probability d [1].

In this chapter, we modify the Page-Rank algorithm and apply it to rank genes
in co-expression (CoE) networks. The modification considers the fact that every
gene is connected to an average number of neighbors in the CoE network. In [2] it
is shown that CoE networks which are based on the average connections per gene
are biologically meaningful. Namely, such networks can capture biologically rel-
evant features of the ground-truth gene regulatory networks and can preserve the
functional relationships between the genes. The average number of connections
per neighbor was applied to analyze ranking of social networks, but apparently not
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applied to genes or web pages using the Page-Rank algorithm [2]. In particular, the
authors of [3] applied the Page-Rank algorithm to rank genes using conventional
CoE networks. We propose a new method to compute the metric of average connec-
tions per gene, inspired by the Page-Rank algorithm.

We use the following major steps to implement our algorithm: (i) compute all
possible gene-CoE networks from a microarray data set using a nearest-neighbor-
based method [2] corresponding to the number of all possible nearest neighbors;
(ii) estimate the average number of gene connections per gene using the networks
computed in the first step; (iii) recompute the CoE network based on the average
gene connections; (iv) apply the Page-Rank algorithm to rank genes using the CoE
network as computed in the third step; (v) Define molecular and functional clas-
sifications of the top-ranked genes using the popular knowledge-based software
Ingenuity Pathway Analysis (IPA) (http://www.ingenuity.com).

We show through examples that our algorithm provides clustering of gene data.
We applied our algorithm to real data sets on ventilator-associated pneumonia
(VAP) [4] and ExpressDB (http://arep.med.harrard.edu/ExpressDB/yeastindex.html)
of yeast gene expressions. The pathways formed by the top-ranked VAP genes
are well described in infection/pneumonia literature (http://www.ingenuity.com),
adding a level of verification to our propositions. We calculated the average number
of gene connections per gene and found them to be eight for human and three to
seven for yeast genome data.

21.2 Method

In this section, we describe our method for ranking genes. We first present our
construction of the CoE networks based on the nearest neighbors. Then we dis-
cuss the Page-Rank algorithm, and its modification for ranking genes using the CoE
networks based on nearest neighbors.

21.2.1 Nearest-Neighbor-Based CoE Networks

We start with the notations that we use for constructing the CoE networks. Denote
the expression of the j th gene of the kth patient at the lth time point as xk j (l),
where j ∈ {1, 2, . . . , G}, k ∈ {1, 2, . . . , K }, and l ∈ {1, 2, . . . , N }. Let the
gene expression vector be xk j = [xk j (1), xk j (2), . . . , xk j (N )]T, where “T′′ denotes
the vector transpose. Define the average expression of the j th gene over the K
patients as

x. j = (1/K )

K∑

k=1

xk j , (21.1)
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and the Pearson correlation coefficient [2] between the i th and j th genes as
C(i, j) = corr(x.i , x. j ), where “corr” denotes the correlation operation. Note that
the symmetric correlation matrix is C of size G×G.

We present our construction of the CoE networks based on the nearest neighbors.
For every i th gene, we sort all other genes, j (∀ j �= i), in a descending order by
their correlation coefficients to the i th gene. Denote the sorted order of the j th gene
for the i th gene using an asymmetric metric R(i, j) (∀ R(i, j) ∈ N). We define
R(i, i) = 0 since we sort the correlation coefficients of all genes, j , with the i th
gene (∀ j �= i). We connect every i th gene (i ∈ {1, 2, . . . , G}), starting from its
top α co-expressed genes (nearest neighbors) using the sorted order, where α is a
user-defined threshold. The sorted order of the j th gene with respect to the i th gene
(∀ i �= j), R(i, j), is in general not equal to R( j, i) (∀ j �= i). Some nodes may
have more than α edges, due to the asymmetric property of the ranking. That is,
even though a specific i th (i ∈ {1, 2, . . . , G}) gene lists only α genes as its friends,
other genes that are not on i’s friend-list may have i as their friends [2]. Using this
method, we define gene-CoE matrices W1 and Wc as,

W1(i, j) =
{

1 if R(i, j) ≤ α

0 otherwise
, (21.2)

and

Wc(i, j) =
{ C(i, j)+1

2 if R(i, j) ≤ α

0 otherwise
, (21.3)

where W1(i, j) and Wc(i, j) are the (i, j)th elements of the G×G dimensional CoE
matrices W1 and Wc, respectively. Here we obtain CoE networks of different gran-
ularities by varying α in (21.2) and (21.3), as all nodes in these networks are con-
nected [2]. Also, we define (21.2) and (21.3) such that, 0 ≤ W1(i, j), Wc(i, j) ≤ 1.
The lower limit is required for employing the Page-Rank method. The upper limit
is chosen for the purpose of normalization.

We propose to use the matrix W1 or Wc for ranking genes. Note that due to
the asymmetric property of neighbors, W1 and Wc construct directional networks.
Hence, a non-zero W1(i, j) or Wc(i, j) signifies the reachability from the j th gene
to the i th gene [2].

The CoE networks (21.2) and (21.3) can capture biologically relevant features of
the ground-truth gene regulatory networks and can preserve the functional relation-
ships between the genes. Namely, the authors in [2] found that in such CoE networks
the genes that are in the same pathway or functional complex tend to be close to one
another with direct links or short paths. They also found that clustering of such net-
works can produce biologically more meaningful results than directly clustering the
gene expression data with conventional clustering methods. They further found that
clustering of such CoE networks is robust; particularly, perturbing a large fraction of
the connections of such networks does not significantly affect their final clustering
results.
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21.2.2 Page-Rank Method for Ranking Genes

Using analogy between the Internet web and gene network, the Page-Rank applied
to the CoE network provides the likelihood that a gene is reachable by connecting
edges. The connection path starts from any other gene and proceeds to the target
gene by connecting based on the expression similarity. Similarly, d, in CoE net-
works means the probability of propagating the signal from one gene to the another.
Generally, the value of d is set near to 1 (around 0.85) [1, 3] for exploiting the
connectivity information in gene ranking; we employ d = 0.85 in our gene-rank
analysis.

Denote the Page-Rank scores of genes 1, 2, . . . , G as Pr(1),Pr(2), . . . ,Pr(G),
where Pr(i) is the probability of reaching the i th gene by following the connecting
edges starting from any other gene based on the expression similarity. Define

Pr(i) = 1− d

G
+ d

∑

j∈M(i)

W(i, j)Pr( j), (21.4)

where G is the total number of genes in the network, M(i) denotes the genes con-
nected to the i th gene, and W(i, j) is

W(i, j) =

⎧
⎪⎪⎨

⎪⎪⎩

(

W1(i, j)/
G∑

i=1
W1(i, j)

)

or
(

Wc(i, j)/
G∑

i=1
Wc(i, j)

)

,

(21.5)

where W(i, j) is the (i, j)th element of the matrix W of size G×G [1]. Here
Pr(i) is proportional to W(i, j). The value of W(i, j) is 0 if the j th gene
does not link to the i th gene, and W(i, j) is normalized such that for each j ,
G∑

i=1
W(i, j)=1; i.e., the elements of each column of W add up to one. We define

r = [Pr(1),Pr(2), . . . ,Pr(G)]T . The solution of r is

r =
(

1− d

G

)

(I − dW)−11, (21.6)

where 1 is a G×1 vector of ones and I is an identity matrix. We rank the genes
using their corresponding scores.

Gene ranking by applying the Page-Rank algorithm to gene networks has a strong
biological interpretation. For example, suppose a gene with a low expression value is
a transcription factor that controls all the genes connected with it. The transcription
factor itself may be “activated” in the ground-truth gene regulatory networks, and
the genes connected with it show high expression values. The Page-Rank algorithm
should be able to identify this transcription factor gene.
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In principle, we can rank genes by applying the Page-Rank algorithm to any
network that defines the connectivity information among the genes. This is anal-
ogous to ranking web pages, where we rank these pages using the Internet web
connectivity information among the web pages; see the beginning of this section.
In the literature, either Gene Oncology annotations or the CoE network is used for
ranking genes [3]. (Gene Oncology annotations provide gene networks based on
past biological studies.) In this chapter, we use CoE networks defined by (21.2) and
(21.3) for ranking genes. Recall from Section 21.2.1 that these networks are bio-
logically relevant. Thus, gene ranking using the Page-Rank algorithm in our work
should provide biologically significant results; see Sections 21.4 and 21.5 for more
details.

21.2.3 Replacing α by the Average Number of Connections
per Gene

In the gene ranking algorithm described above, we replace α by the average number
of connections, αm, per gene in the CoE network. In Section 21.3, we discuss a
numerical method for estimating αm.

21.3 Numerical Examples

We present numerical examples to investigate: (i) the value of the parameter αm
for the CoE matrices W1 and Wc and (ii) the significance of that optimal value for
microarray gene-data clustering.

21.3.1 Estimating αm

We simulated three clusters of genes with 12 samples in each using the data gen-
eration scheme as proposed in [5]. We computed the gene ranks using W1 and Wc
for the simulated data set. We computed the variance of the gene-rank scores across
different networks for varying α. This variance signifies how the network connection
density changes from one gene to another. Small variance means all the genes in
the network are likely to be uniformly reachable with a similar probability. Large
variance indicates that some genes are more likely to be reachable than the others.
In general, a few genes of an organism are responsive to a specific perturbation.
Hence, we investigate the parameter α that leads to the maximum variance in the
corresponding gene-rank scores (see Fig. 21.1a,b). We observe in Fig. 21.1b that
the gene-rank score variance behaves similarly using the matrix W1 or Wc.

We propose to compute the average number of connections per gene for any of
the CoE matrices W1 and Wc as
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(a)

(b)

Fig. 21.1 (a) Heatmap of the simulated gene data set with three clusters. (b) Variance of Pr(i)
(∀ i ∈ {1, 2, . . . , G}) as a function of α. The warm grey and cool grey curves show the results using
the gene–CoE matrices Wc and W1, respectively. We indicate the local maxima using α = αm and
α = αt and the local minimum using α = αl

αm = argmax
α

Var{Pr(i) : i ∈ {1, 2, . . . , G}|α}, (21.7)

where Var{·} is the variance of the elements in {·} and {Pr(i) : i ∈ {1, 2, . . . , G}|α}
denotes the Page-Rank scores of the genes 1, 2, . . . , G for a given α. We compute
(21.7) for all possible values of α to obtain αm. The CoE matrix generated using
α = αm is the most diverse with respect to the connection density from one gene to
another.
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21.3.2 Clustering

We relate our proposed gene-rank analysis, using high d value, with gene-data clus-
tering. Consider (see Fig. 21.1b):

1. α = αm where Var{Pr(i) : i ∈ {1, 2, . . . , G}|α} attains a global maximum,
2. α = αl where Var{Pr(i) : i ∈ {1, 2, . . . , G}|α} attains a local minimum,
3. α = αt where Var{Pr(i) : i ∈ {1, 2, . . . , G}|α} attains a local maximum.

Figure 21.2a–c shows the corresponding histograms for α = αm, α = αl, and
α = αt, respectively. The histogram of {Pr(i) : i ∈ {1, 2, . . . , G}|α} is uni-
modal (single large peak) for α ≤ αl and bimodal (two large peaks) for α > αl.
Figure 21.2d–f shows the heatmaps of the corresponding CoE matrix W1 for α =
αm, α = αl, and α = αt, respectively. We find here that for α ≤ αl, W1 is block
diagonal and classifies accurately the clusters of the data set shown in Fig. 21.1a.
Note that the simulated data that we use here in Fig. 21.1b are arranged cluster
by cluster. This is not the case in practice, where an additional permutation step
is required for obtaining the block-diagonal structure of W1 for α ≤ αl. Note also
that the local minimum αl between αm and αt in Fig. 21.1b appears as a result of
our numerical simulation, and we do not investigate in this chapter the analytical
or intuitive justification of this result. We will investigate this issue in our future
work.

Our result here also intuitively suggests a close relationship between gene rank-
ing using the Page-Rank algorithm and gene-data clustering. Namely, genes with
similar expression levels that are measured using microarrays are highly correlated
with each other. The Page-Rank algorithm finds these genes equally reachable by
starting from another gene and thus clusters them together based on their degree of
reachability.

21.4 Application to Real Data

We applied our algorithm to real data sets of gene expression to (i) rank genes,
(ii) select the most vulnerable genes under possible perturbations, and (iii) estimate
the average number of connections per gene in the respective CoE networks.

21.4.1 Data Sets

Our real data analysis involves VAP [4] and ExpressDB (http://arep.med.harvard.edu/
ExpressDB/yeastindex.html) yeast mRNA expression data sets. We briefly describe
these data sets below.

VAP expression profiles were generated from 27 patients every two days for up
to 3 weeks [4]. A 7-day VAP window was defined bracketing the clinical diag-
nosis of pneumonia, with day 0 being the day that a patient was diagnosed as
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(a) (b)

(c) (d)

(e) (f)

Fig. 21.2 Histogram of {Pr(i) : i ∈ {1, 2, . . . , G}|α} for (a) α = αm, (b) α = αl, and (c) α = αt.
Heatmaps of W1 for (d) α = αm, (e) α = αl, and (f) α = αt
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having VAP. The time points within this VAP window were −3, −1, 0, 1, and
3 days [4]. Using Extraction of Differential Gene Expression (EDGE) software
(http://www.edge.software.com/), 85 mRNA species were identified with an FDR
of 0.1 whose abundance changed concordantly among the patients during the VAP
window [4]. We employed our proposed method to this data set for (i) estimating
the average number of connections per gene in the CoE networks and (ii) computing
gene rank to reveal additional functionally important genes with weak differential
expression.

ExpressDB is an yeast RNA expression data sets for multiple experimental
conditions (http://arep.med.harvard.edu/ExpressDB/yeastindex.html). In this data
set, our proposed method selected the most vulnerable genes under possible
perturbations.

21.4.2 VAP Gene Ranking

We compared the networks based on the IPA (http://www.ingenuity.com/) and Pear-
son correlation coefficient [2] using their respective gene ranks. We observed that
these two networks have somewhat different gene ranks. We found only five (BTK,
PIM1, IL1B, ITGA2B, and FLT1) in common among the 20 top-ranked genes in
these two networks. Note that the IPA gives an undirectional network based on the
reported gene–gene interactions (http://www.ingenuity.com/). For such networks,
we redefine (21.5) by assigning

W1(i, j) =
{

1 if the corresponding genes are connected, and
0 otherwise.

(21.8)

21.4.3 Reachability in ExpressDB Yeast RNA Expression Data sets

We claim that our method essentially computes a reachability of a gene from any
other gene using a revised Markov system. We employed our method to select the
most vulnerable genes to various perturbations in 31 different ExpressDB data sets
(http://arep.med.harvard.edu/ExpressDB/yeastindex.html) of∼ 6500 yeast genes in
each. We list the genes that appeared most of the times in top hundred ranks of all
these data sets. The genes that appeared

– for five times are YGL130W, YGR246C, and YHR144C and
– for four times are YBR090C, YLR104W, YML021C, YER050C, YER166W,

YHR195W, YDR350C, YER155C, YGL067W, YNR052C, YDR285W, YEL042W,
YPL106C, and YJL177W.
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21.4.4 Average Number of Gene Connections in CoE Networks

From the CoE networks analyzed herein, we estimated the average number of
connections per gene as eight and three to seven for human and yeast genome
data, respectively (see Fig. 21.3). These findings agree with other published results,
where 15 interactions per human protein were identified in the best samples of the

(a)

(b)

Fig. 21.3 (a) Variance of the VAP gene-rank scores Pr(i) (∀ i ∈ {1, 2, . . . , G}) as a function of α
where the peak is attained at αm = 8. The warm grey and cool grey curves show the results using
the matrices Wc and W1, respectively. (b) Histogram of the estimated αms from the 31 ExpressDB
data sets
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interaction data sets, the Reactome project [6, 8]. Note that we examined only a
small fraction of the human genome. Similarly, a recent report found approximately
five to ten unique interactions per yeast protein [8]. Thus these reports support the
notion of linking the traits of “connectedness” and “importance” as the tendency for
human genes to be essentially correlated well with the number of protein–protein
partners [8, 9].

21.5 Conclusion

We developed a modified Page-Rank algorithm to rank genes in CoE networks using
the fact that every gene is connected to an average number of neighbors in the CoE
network. We proposed a new method to compute the metric of average connec-
tions per gene in CoE networks. We calculated this metric value as eight for human
and three to seven for yeast genome data. We showed through examples that our
algorithm is efficient for clustering gene data. The canonical pathways formed by
the common five top-ranked VAP genes are well described in infection/pneumonia
literature (http://www.ingenuity.com/), adding a level of verification to our proposi-
tions.

The proposed analogy between web pages and genes provides new insights into
gene networks. In future work, we will investigate these aspects, particularly if the
damping factor, d, can be varied to affect the positive and negative feedback loops
in immunology. We will also investigate analytically our findings on gene-data clus-
tering, which we obtained in the numerical examples. Namely, we will investigate
analytical reasons for the appearance of the local minimum αl between αm and αt
in Fig. 21.1b. We will also develop an analytical foundation to relate gene ranking
using the Page-Rank algorithm and gene-data clustering, following the concept that
we presented in Section 21.3.2. Following this foundation, we will further develop a
method to cluster microarray-gene data by extending our analysis in Section 21.3.2,
and we will address the effectiveness and efficiency of such clustering.
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