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“This book is dedicated to Vladimir Yurin and Anatoliy Sokolik who pioneered
research into plant potassium channels”



Preface

Plants live in a constantly changing environment from which they cannot physically

escape. Plants therefore need signalling and response mechanisms to adapt to new

local conditions. The efficacy of such mechanisms underlies the plant performance

during stress and therefore also impacts greatly on agricultural productivity. Mod-

ulation of ion channel activity not only provides a means for rapid signal generation

but also allows adjustment of cellular physiology. For example, Ca2+ permeable ion

channels can transduce environmental stimuli into Ca2+-encoded messages which

can modify the gene expression. Furthermore, ion channel activity is essential to

control cellular ion homeostasis that impacts on plant responses to drought, salinity,

pathogens, nutrient deficiency, heavy metals, xenobiotics and other stresses.

This volume focuses on the crucial roles of different types of ion channel in plant

stress responses. Functions of ion channels are discussed in the context of mechanisms

to relay external and endogenous signals during stress and as mechanisms to

regulate cellular ion homeostasis and enzymatic activities in the context of biotic

and abiotic stress. The chapters presented cover cation and anion channels located

in various cellular compartments and tissues.

Colchester, September 2009 Vadim Demidchik

York, September 2009 Frans Maathuis
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Ion Channels and Plant Stress: Past, Present,

and Future

Nobuyuki Uozumi and Julian I. Schroeder

Abstract Perhaps the most significant change in plant electrophysiological stud-

ies that began some 25 years ago was a shift in focus frommore basic electrical and

biophysical properties of plant membranes to pursuing the understanding of the

plant physiological and cell biological functions of individual plant ion channel

types. In the 1990s, ion channels were characterized as targets of upstream signal

transduction mechanisms, and in the later 1990s powerful combined molecular

genetics, patch clamp, and plant physiological response analyses further mani-

fested the importance of ion channels for many biological and stress responses of

plants. Essential metals and ions in the intracellular and intraorganellar spaces of

plant cells contribute to the activities of regulatory proteins, signal transduction,

and to the maintenance of turgor pressure, osmoregulation, toxic metal chelation,

and membrane potential control. A large number of studies on mineral nutrition

have sustained the profitable cultivation of plant growth and development, and

provided important knowledge on plant physiological mechanism of absorption of

minerals from soils. Abiotic stress and biotic stresses are a global problem for

plant growth in agricultural and noncultivated lands. Ion channels in plant cells

play crucial functions in adapting to and overcoming abiotic and biotic stresses.

Plant membrane transport systems play an important role not only in the uptake of

nutrients from the soil but also in the adaptation to stress and environmental

change.
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A revolution has taken place in the understanding of cell physiological, bio-

physical, molecular, and interaction network properties of plant ion channels

and transporters as summarized here. However, many exciting and stimulating

questions remain open to discovery, promising that research on plant ion channels

will continue to be a vibrant area of research for many years to come.

1 Introduction

Among plant nutrients, potassium or K+, is the most abundant cellular cation

controlling cellular homeostasis, plant movements, cell expansion, guard cell

turgor, membrane potentials, and many other processes. Potassium ions also

counteract toxic effects of cations such as sodium (Na+). Potassium transport

properties have served as a classical model for understanding mechanisms of

plant ion transport (Epstein et al. 1963). Studies indeed show that principles

learned from K+ transport and K+ channel analyses can be applied to other trans-

port systems.

Characterization of ion channel functions in plant stress responses led to the

formulation of models of how multiple ion channels and transporters can function

together in mediating a response. Studies in guard cells led to an early model for the

interplay of a network of ion channels and proton ATPases in mediating stomatal

opening and closing (Shimazaki et al. 1986; Schroeder and Hagiwara 1989;

Schroeder and Hedrich 1989; Thiel et al. 1992; Lemtiri-Chlieh and MacRobbie

1994; Ward and Schroeder 1994; Davies and Sanders 1995; Blatt et al. 1999).

Remarkably, studies of rapid changes in plant pathogen responses and other rapid

stimulus-responses show ion transport behaviors that, at least in general terms,

show similarity to those mediating stomatal closing (Nurnberger et al. 1994; Jabs

et al. 1997). In guard cells, cytosolic Ca2+ activates anion efflux channels and

inhibits K+ uptake channels (Schroeder and Hagiwara 1989), which together with

Ca2+ inhibition of plasma membrane proton pumps (Kinoshita et al. 1995) causes

anion and K+ efflux and depolarization of the plasma membrane to reduce the turgor

pressure of guard cells.

Calcium (Ca2+) concentrations are tightly controlled at low submicromolar

concentrations in the cytosol. Increases in Ca2+ concentrations and stimulus-induced

enhancement in Ca2+ sensitivity (Young et al. 2006) function as an effective signal

which modulates calcium-binding proteins thus transmitting signals in signal trans-

duction pathways. Ion channels that mediate Ca2+ influx into the cytosol from the

extracellular space and from organelles have been characterized in electrophysio-

logical studies (Miller et al. 1990). However, the genes encoding these ion channels

still remain mostly uncharacterized in plant cells, probably due to the presence of

large gene families with overlapping functions (Shimazaki et al. 1986; Blatt 2000;

Ward et al. 2009). Anion channels in the plasma membrane have also emerged as

major mechanisms regulating signal transduction and ion transport. Two types of

2 N. Uozumi and J.I. Schroeder



anion channel currents (slow (S)-type and rapid (R)-type) have been characterized

extensively in guard cells and in hypocotyl cells (Keller et al. 1989; Schroeder and

Hagiwara 1989; Marten et al. 1992; Colcombet et al. 2001), and genes encoding

the anion conducting subunits of slow-type anion channels have been identified

using Arabidopsismutants (Negi et al. 2008; Vahisalu et al. 2008). Recent genetic

approaches have led to identification of two additional gene families that encode

anion conducting channel subunits that play major roles in aluminum resistance

(Sasaki et al. 2004; Furukawa et al. 2007; Magalhaes et al. 2007). Yet another

class of proteins exists, which shows similarity to mammalian chloride channels,

AtCLCs. Functional characterization of the AtCLCa membrane protein showed that

it encodes a nitrate-proton exchanger in the vacuolar membrane, rather than an

anion channel (De Angeli et al. 2006) and additional CLC proteins are targeted to

other organelle membranes (Marmagne et al. 2007).

In this chapter, we will provide an overview of the classes of different ion

channels that have been characterized and their underlying gene families. In several

cases, we discuss examples of their physiological functions in guard cells as well as

in other cell and tissue types. The relevance of these channels in stress responses in

many plant cell types is discussed throughout this book. Figures 1 and 2 summarize

progress over the past 25 years in the identification of plant ion channel classes,

technical advances, and major genes encoding plant membrane transport systems.

Figure 1 exemplifies the accelerating pace of discovery in this thriving field.

Initial model for guard cell lon channel network 1989
AtTPK42004

AKT11992
AtKC11997

CNGC1999
AtAACT1

AtCLCa2006
SLAC12008GORK2000

SKOR1998S-type 1989
R-type 1989

1980 1990
SV1986 VK1994

KORC1994
NORC1994

KUP11998
AtKT11997
HAK11997

SOS11996
TaHKT2;11994

NHX11999
AtHKT1;12000

E. coil complementation 1998
Patch clamp Arabidopsis mutants 1997

X. oocyte recording 1992
Yeast complementation 1992

Patch clamp on Vicia faba 1986

FV1987

2000 2010
AtTPK12002

AtHAK52005

ALMT2004
/HvMATE2007

KAT11992
K+

in1984
K+

out1984

AtTPC12005
AKT21995/AKT31996

Fig. 1 Time-line of progress on the identification of individual plant ion channel classes, the genes

encoding these plant ion transporters, and introduction of new techniques
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2 Plasma Membrane K+ Channels in Guard Cells

The first characterizations of single plant ion channels were reported in 1984 in the

analyses of leaf cells (Moran et al. 1984) and guard cells (Schroeder et al. 1984).

These successful applications of patch clamp techniques for the measurement of

plant ion channels opened the door to electrophysiological characterizations of ion

channels in plant membranes of land plant cells, which are usually orders of

magnitude smaller than the classically analyzed giant algae cells (Curtis and Cole

1938; Tazawa 1968, 1972). They also reported the measurement of sodium, potas-

sium, and chloride ions in protoplasm of algal cells, which may be more difficult

to measure than plant cells. Two major classes of voltage-dependent K+ channels

were characterized in guard cells; hyperpolarization-activated “inward-rectifying”

K+ channels and depolarization-activated “outward-rectifying” K+ channels

(Schroeder et al. 1984, 1987; Blatt 1988). Inward-rectifying K+ channels are

activated by hyperpolarization via electrogenic proton pumps controlled by blue

light signals (Assmann et al. 1985; Shimazaki et al. 1986). The opening of stomatal

pores is regulated by the accumulation of K+ in guard cells. Both inward- and

SLAC12008

anion anion

1mM Ca2+ 500nM Ca2+ 100nM Ca2+ alkalinization acidification

S-type
1989

R-type
1989

anion
malate

ATML2005 AtAACT12007

HvMATE2007

citrate

pH6.7

K+

AtTPK12007 AtTPC12005

KAT11992

AKT11992

SKOR1998

GORK2000

NtTPK12008

K+

K+in
1984

Vacuolar cation channels in guard cell

K+K+/Ca2+

VK
1994

SV
FV

1987
1986
1988
1994

Ca2+in
1990

K+out
1984

Fig. 2 Simplified scheme of several of the cation and anion channels in the plasma membrane and

in the vacuolar membrane of plant cells, which were identified and characterized in patch clamp

studies. Genes encoding some of these ion channels have been cloned and characterized (see text)
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outward-rectifying K+ channels were proposed to contribute to the physiological

transport of K+ into and out of guard cells during stomatal movements (Schroeder

et al. 1987). Subsequent studies in many different plant cell types including

coleoptiles, root hair cells, aleurone, root cortex, and xylem parenchyma cells

showed that these types of K+ channels are widely distributed and were proposed

to have important functions in K+ transport and membrane potential control (Bush

et al. 1988; Kourie and Goldsmith 1992; Gassmann and Schroeder 1994; Wegner

and Raschke 1994; Maathuis et al. 1997; de Boer and Volkov 2003).

2.1 Characterization of K+ Channel and Transporter cDNAs

In 1992, two distinct K+ channel genes, KAT1 and AKT1, were isolated from

Arabidopsis thaliana by complementation of K+ uptake deficient yeast mutants

(Anderson et al. 1992; Sentenac et al. 1992). Both genes encode six putative

transmembrane regions and a predicted voltage sensor domain, and resemble

Shaker K+ channels in Drosophila neurons. For the isolation of these genes, both

groups used yeast mutants which are unable to grow at low concentrations of K+ in

the medium. The use of yeast expression systems provides a powerful method for

isolation of channel and transporter cDNAs and for structure-function analyses of

these transporters (Frommer and Ninnemann 1995; Uozumi et al. 1995; Hoth et al.

1997; Nakamura et al. 1997).

Electrophysiological characterization of the KAT1-encoded protein in Xenopus
oocytes showed that KAT1 functions as a heperpolarization-activated K+ channel

(Schachtman et al. 1992). Thus these studies led to the first isolation and character-

ization of eukaryotic inward-rectifying K+ channel genes (Anderson et al. 1992;

Schachtman et al. 1992; Sentenac et al. 1992), as hyperpolarization-activated K+

channels genes had not yet been identified in animal genomes (Kubo et al. 1993;

Ward et al. 2009).

AKT1 expression in Xenopus oocytes failed to show ion channel activities, but

insect cells (Sf9 cell line) expressing AKT1 displayed an inwardly rectifying K+

conductance (Gaymard et al. 1996). Other types of Arabidopsis K+ channel genes

have been isolated after this; a weakly inward-rectifying K+ channel, AKT2 (Cao

et al. 1995; Ketchum and Slayman 1996), depolarization-activated K+ channels,

SKOR and GORK (Gaymard et al. 1998; Ache et al. 2000), and a silent channel,

AtKC1 which is likely to modulate other K+ channels (Dreyer et al. 1997; Reintanz

et al. 2002). The role of the silent regulatory subunit has been confirmed for the

carrot AtKC1 homolog, KDC1 (Bregante et al. 2008). The cytosolic regulatory

components, calcineurin B-like proteins (CBLs), and CBL-interacting protein kinases

(CIPKs) are closely associated with several ion channels and transporters that

function in adaptation to salinity or ion stress in plant cells. The complex of CBL1/

CIPK23 directly controls AKT1-mediated K+ uptake in roots and enhances K+ uptake

when ambient K+ becomes deficient (Li et al. 2006; Xu et al. 2006).

Interestingly, Escherichia coli was shown to be another heterologous expression
system suitable for functional expression of both plasma membrane-located and

Ion Channels and Plant Stress: Past, Present, and Future 5



organelle membrane-located plant channels/transporters (Uozumi 2001). Using this

system, K+ uptake activities of KAT1, AKT2, HKT-type transporters, and KUP-

type transporters were measured (Kim et al. 1998; Uozumi et al. 2000; Uozumi

2001). Moreover, the transmembrane topologies of the Shaker-type K+ channel

KAT1 and the Na+/K+ transporter, HKT1 (TaHKT2;1) were determined by means

of a bacterial alkaline phosphatase fusion approarch (Kim et al. 1998; Uozumi et al.

1998, 2000; Kato et al. 2001; Uozumi 2001).

KUP/HAK/KT genes encode a separate class of important plant K+ uptake

transport proteins and were isolated after earlier genomic EST sequencing showed

plant isoforms with homology to E. coli Kup and yeast HAK transporters (Quintero

and Blatt 1997; Santa-Maria et al. 1997; Fu and Luan 1998; Kim et al. 1998). The

Arabidopsis genome sequence shows the presence of 13 genes KUP/HAK/KT

genes in the Arabidopsis thaliana genome (Mäser et al. 2001; Ahn et al. 2004),

and the physiological role of AtKUP4 and AtHAK5 has been reported (Rigas

et al. 2001; Gierth et al. 2005). AKT1 and AtHAK5 likely together mediate K+

uptake from soil. The transport mechanism by which these KUP/HAK/KTs mediate

K+ uptake into plants cells remains unknown (Maathuis and Sanders 1994). An

important question for future research will be the characterization of the interplay

of several different K+ transporter/channel classes in mediating K+ transport.

3 Critical Roles of Plasma Membrane Anion Channels

in Plant Stress Responses

Stomatal closing is mediated by the release of ions and organic solutes from guard

cells. Electrophysiological studies led to a model for the mechanisms that can drive

K+ release from guard cells. Electrophysiological research on outward-rectifying

K+ channels indicated that inhibition of proton pumps would not suffice for

depolarization-activation of K+ channels (Schroeder et al. 1987; Schroeder 1988).

Elevation of the cytosolic Ca2+ concentration in guard cells led to the activation of a

novel class of plant ion channels – S-type anion channels (Schroeder and Hagiwara

1989). Due to the electrochemical gradient of anions across the plasma membrane

of guard cells, activation of anion channels causes anion efflux leading to depolari-

zation. Anion channels were therefore proposed as drivers of ion efflux, thus

controlling stomatal closing (Schroeder and Hagiwara 1989). Further research

revealed additional types of anion channel in guard cells with properties different

from those of S-type anion channels (Keller et al. 1989). These so-called R-type

anion channels can also mediate anion efflux leading to stomatal closing.

Anion channels in guard cells are permeable to chloride, nitrate, sulfate, and

malate (Keller et al. 1989; Schroeder and Hagiwara 1989; Schmidt and Schroeder

1994). Patch clamp analyses of the plasma membrane of Vicia faba guard cells

revealed that these two types of anion channel conductances coexist in the mem-

brane (Schroeder and Keller 1992). R-type anion channels are characterized as

rapidly activating with kinetics that are time- and voltage-dependent and that show

6 N. Uozumi and J.I. Schroeder



inactivation (Keller et al. 1989; Hedrich et al. 1990). The other class of depolari-

zation activated anion channels exhibits extremely slow voltage dependent acti-

vation and deactivation properties – the S-type anion channels (Schroeder and

Hagiwara 1989; Schroeder and Keller 1992). It has been proposed that R-type

and S-type anion channels may be encoded by the same channel protein (Linder and

Raschke 1992), despite their relatively significant differences in some biophysical

and regulatory properties. The plant hormone abscisic acid, which is induced in

response to drought stress, activates both S-type and R-type anion channels (Grabov

et al. 1997; Pei et al. 1997, 1998; Raschke 2003; Raschke et al. 2003; Roelfsema

et al. 2004). S-type and R-type anion channels have also been characterized in

hypocotyl cells of Arabidopsis and were also shown to co-exist in the same cells

(Colcombet et al. 2005). Studies in the Arabidopsis hypocotyls also suggested that

these two anion channels can be clearly distinguished in these cells (Colcombet

et al. 2005). Nevertheless, it is possible that these two very different anion currents

share molecular components (Raschke 2003).

4 Roles of Anion Channels in Stress Responses and

Identification of Anion Channel Gene Families

SLAC1 (slow anion channel-associated 1) encodes a homologue of bacterial dicar-

boxylate/malic acid (C4-dicarboxylate) transport proteins and was identified as

an S-type slow anion channel (Vahisalu et al. 2008). The plasma membrane

protein SLAC1 plays an essential role in stomatal closure in response to CO2,

ABA, ozone, darkness, humidity reduction, Ca ions, hydrogen peroxide, and

nitric oxide (Negi et al. 2008; Vahisalu et al. 2008). Loss-of-function mutations

in SLAC1 are accompanied by an overaccumulation of osmoregulatory anions in

guard cell protoplasts (Negi et al. 2008). T-DNA insertion and point mutations in

the SLAC1 gene led to abrogation of S-type anion channels in guard cells

(Vahisalu et al. 2008). Interestingly however, R-type anion channels were intact

in slac1 mutant guard cells. SLAC1 shows homology to a yeast and a bacterial

malate transporter. The permeability of S-type anion channels to anions and the

increased trapping of malate in slac1 guard cells suggest that SLAC1 encodes

the anion conducting subunit of S-type anion channels (Negi et al. 2008; Vahisalu

et al. 2008). Slac1 mutants provide strong evidence for the model that anion

channels represent central mechanisms in mediating stomatal closing. Interest-

ingly, a different type of malate transporter, AtABC14 has been identified as a

malate import protein mediating malate uptake from the cell wall into guard cells

(Lee et al. 2008) and thus distinct channels and transporters are now known that

mediate anion efflux and uptake in guard cells.

Aluminum is the third most abundant element in the Earth’s crust. In acidic soils

aluminum (Al3+) is solubilized and Al3+ is toxic to plants. However, plants release

organic acids, including malate and citrate from their roots, to chelate free alumi-

num (Al3+) in acidic soil (Ma et al. 2001; Kochian et al. 2004). Al3+ activates anion

Ion Channels and Plant Stress: Past, Present, and Future 7



channels in the plasma membrane of wheat roots (Ryan et al. 1997). Genes were

identified in genetic studies and named ALMTs for Al3+-activated malate transporters,

since they play important roles in this Al3+ resistance response (Sasaki et al. 2004).

ALMT expression in Xenopus oocytes is sufficient for Al3+-activated anion channels,
showing that ALMTs appear to function as a type of Al3+ receptor (Pineros et al.

2008). TaALMT1 mediates transport of malate, and to a lesser extent nitrate/chloride

based on electrophysiological measurements (Pineros et al. 2008; Zhang et al. 2008).

Furthermore, Al3+-activated citrate transporters (HvAACT1) (Furukawa et al.

2007) and (SbMATE) (Magalhaes et al. 2007) belong to the multidrug resistance

transporter family and also function in aluminum tolerance in acid soils. The Al3+

resistance-associated anion transporters show no homology to the above SLAC1

anion channel from guard cells.

In animals, chloride channels of the ClC family have been characterized.

Bacterial CLC homologues however function as 2 Cl�/1H+ exchangers (Accardi

and Miller 2004; Picollo and Pusch 2005; Miller 2006). The functions of the

homologous genes in Arabidopsis and tobacco have largely remained unknown

(Hechenberger et al. 1996; Lurin et al. 1996). However, in 2006 the AtCLCa

transporter was characterized as a NO3-/H
+ exchanger in the vacuolar membrane

of Arabidopsis cells (De Angeli et al. 2006). Atclca knockout mutants provide

evidence that AtCLCa functions in nitrate accumulation into vacuoles in

Arabidopsis thaliana (Geelen et al. 2000). AtCLCd and AtCLCe are targeted to

the thylakoid membranes in chloroplasts and AtCLCf was localized in Golgi

membranes (Marmagne et al. 2007). Further studies on the subcellular localizations

of AtCLCs may illuminate intracellular anion transport mechanisms in plant cells.

5 Ca2+ Channels and Intracellular Ca2+ Elevations

Stimulus-induced changes in the Ca2+ concentration in the cytoplasm of plant cells

are triggered by many diverse stimuli (Hetherington and Brownlee 2004). Intracel-

lular Ca2+ concentration changes in guard cells were identified using fluorescent

Ca2+ indicators, Fura-2 (McAinsh et al. 1990; Schroeder and Hagiwara 1990),

and Fluo-3 (Gilroy et al. 1990). Patch clamp analyses showed the presence of

Ca2+-permeable channels in the plasma membrane of guard cells (Schroeder and

Hagiwara 1990; Hamilton et al. 2000; Pei et al. 2000). ABA-induced intracellular

Ca2+ elevations have been extensively studied (Allan et al. 1994; Grabov and Blatt

1998; Allen et al. 1999a; Staxen et al. 1999). The pH-independent, green florescent

protein-based Ca2+ indicators yellow cameleon 2.1 and 3.6 were applied for moni-

toring cytoplasmic free Ca2+, [Ca2+]cyt, in Arabidopsis thaliana (Allen et al. 1999b;
Miyawaki et al. 1999; Yang et al. 2008). Studies using low concentration cameleon

or fura2-based Ca2+ reporters have revealed that repetitive spontaneous Ca2+

transients occur in plant cells (Grabov and Blatt 1998; Allen et al. 1999a; Staxen

et al. 1999; Wais et al. 2000; Young et al. 2006; Yang et al. 2008). Furthermore,

experimentally imposing Ca2+ oscillations, by repetitive depolarizations and

8 N. Uozumi and J.I. Schroeder



hyperpolarizations of the plasma membrane, showed that independent of the Ca2+

elevation pattern, Ca2+-induced a rapid stomatal closure which was named the

“Ca2+ reactive” stomatal closing response (Allen et al. 2001). In addition to this

Ca2+ reactive response, it was revealed that the pattern of experimentally-induced

[Ca2+]cyt elevations controls the ability of stomata to re-open after the initial stoma-

tal closing response, even when the [Ca2+]cyt elevations are terminated (Allen

et al. 2001; Li et al. 2004). This long-term Ca2+ pattern inhibition of re-opening

of stomatal pores, was named the “Ca2+ programmed” response and is impaired in

glutamate receptor overexpressing guard cells (Cho et al. 2009). Thus [Ca2+]cyt
oscillation kinetics in guard cells can function in maintaining steady-state stomatal

closing. Organelles in plant cells serve as intracellular stores for Ca2+. A Ca2+

sensing receptor, CAS, was isolated via a functional expression screening approach

using heterologous expression (Han et al. 2003). Recent work shows that CAS1 is

localized in thylakoid membranes (Nomura et al. 2008; Weinl et al. 2008) and

functions in extracellular Ca2+-induced, transient cytosolic Ca2+ increases, which

lead to stomatal closure (Han et al. 2003; Nomura et al. 2008; Weinl et al. 2008).

6 Gene Candidates for Plasma Membrane Ca2+ Channels

Several classes of Ca2+ permeable channels have been characterized in the plasma

membrane of plant cells, including depolarization-activated Ca2+ channels (Thuleau

et al. 1994a, b; Miedema et al. 2008) and hyperpolarization-activated Ca2+

influx channels (Gelli and Blumwald 1997; Hamilton et al. 2000; Pei et al. 2000;

Demidchik et al. 2002). In general, plant Ca2+ channels are not entirely Ca2+

selective but also show permeabilities to other cations (Schroeder and Hagiwara

1990; Thuleau et al. 1994a, b; Pei et al. 2000; Demidchik et al. 2002). However, the

genes encoding plasma membrane Ca2+ channels remain less well-clarified. Two

gene families are likely to provide possible candidates. One family includes 20

genes in the Arabidopsis genome and encodes homologs to “ionotropic” glutamate

receptors, which encode receptor ion channels in animal systems (Lam et al. 1998;

Kim et al. 2001). Research has shown that glutamate application to roots causes

[Ca2+]i elevations that are disrupted in knock-out mutants in the Glr3.3, glutamate

receptor gene (Qi et al. 2006). A second candidate family of plant Ca2+ permeable

channels is cyclic nucleotide-gated channel homologs. In Arabidopsis, 20 different

cyclic nucleotide-gated channel genes (CNGCs) are present, and several individual
channels have been analyzed. Voltage dependent K+ channels, including KAT1 and

AKT1 have corresponding cyclic nucleotide binding sites in the C-terminal regions

(Hoshi 1995). However, CNGC channels do not include the typical “GYG” K+

selectivity signature sequence of K+ channels (Ward et al. 2009). Studies analyzing

CNGC functions after heterologous expression in yeast indicate that they may

encode Ca2+ permeable channels (Kohler et al. 1999; Leng et al. 1999), although

this may not apply to all members of the CNGC family. Genetic analysis showed

that both AtCNGC11 and AtCNGC12 are positive mediators of resistance signaling

pathways activated by pathogen infection (Yoshioka et al. 2006). Future research
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into the physiological functions of this large gene family may reveal new and

unexpected ion channel functions.

7 Properties of Vacuolar Cation Channels

Plant vacuoles often take up more than 90% of the cell volume, and thus the

channels mediating K+ transport across the vacuolar membrane (tonoplast) may

be of relevance to cell volume regulation and storage of this nutrient. Three classes

of cation channel, SV (Slow Vacuolar), VK (Vacuolar K), and FV (Fast Vacuolar),

have been named based on the endogenous K+ channel activities identified by patch

clamp studies. FV channels mediate K+ transport at very low concentrations of

cytosolic Ca2+ (Hedrich and Neher 1987; Allen and Sanders 1996). SV channels are

activated by elevation in the cytosolic Ca2+ concentration (Hedrich and Neher

1987; Pei et al. 1999). SV channels were initially reported to be anion permeable

channels (Hedrich et al. 1986). However, later studies revealed that SV channels are

Ca2+ permeable cation channels that do not significantly conduct anions (Ward and

Schroeder 1994; Ward et al. 1995; Allen and Sanders 1996). A third class of

vacuolar cation channels are the Ca2+-activated channels, named VK channels,

which are highly K+ selective channels (Ward and Schroeder 1994). The determi-

nation of genome sequences of Arabidopsis and reverse genetic approaches have

led to the identification of the genes encoding SV channels (Peiter et al. 2005) and

VK channels (Gobert et al. 2007). The AtTPC1 protein is targeted to the vacuolar

membrane and these proteins encode SV channels (Peiter et al. 2005). The genes

encoding two-pore K+ channels (TPKs) include two repeats of membrane-pore-

membrane domains (Czempinski et al. 1997, 2002; Kaplan et al. 2007). AtTPK1,

2, 3, and 5 are tonoplast K+ channels (Voelker et al. 2006), whereas AtTPK4 is

located in the plasma membrane (Becker et al. 2004). AtTPK1 was shown to encode

the VK channel (Gobert et al. 2007). Functional characterization of NtTPK1, located

in tobacco tonoplasts, shows K+ currents induced by cytosolic acidification, indicat-

ing the presence of other types of vacuolar K+ channels that differ from the above

vacuolar channel types (Hamamoto et al. 2008).

8 Sodium Transport Systems in Plants

Sodium (Na+) is not categorized as an essential nutrient in higher plants, and

excessive Na+ leads to detrimental effects on plant growth. Several distinct classes

of Na+ transporters mediate Na+ homeostasis (Fig. 3). After Na+ entry into the

cytoplasm of root cells, Na+ is loaded into the xylem (de Boer 1999). The presence

of a Na+/H+ exchange activity at the xylem/symplast interface of soybean roots

(Lacan and Durand 1996) and Na+-permeable nonselective ion channels in the

plasma membrane of barley root xylem parenchyma cells (NORC) (Wegner and
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De Boer 1997) and in wheat and Arabidopsis root cortex and epidermis (NSC)

(Tyerman et al. 1997; Buschmann et al. 2000; Davenport and Tester 2000;

Demidchik and Tester 2002) have been reported.

The exclusion of Na+ from plant cells and the sequestration of Na+ in vacuoles

alleviate sodium stress under saline conditions. The plasma membrane Na+/H+

antiporter named SOS1 (Shi et al. 2000), was identified in an Arabidopsis mutant,

sos1, that shows a salt oversensitive phenotype (Wu et al. 1996). SOS1-mediated

Na+/H+ transport activity is modulated by a Ca2+ sensor/protein kinase complex

CBL4 (SOS3)/CIPK24 (SOS2) (Wu et al. 1996; Shi et al. 2002; Zhu 2002). Na+/H+

antiporters were also identified which are targeted to the vacuole-membrane. The

first functionally-characterized member of this gene family, AtNHX1, contributes

to Na+ and monovalent cation sequestration in plant vacuoles. Overexpression of

AtNHX1 was shown to increase salt tolerance in Arabidopsis (Apse et al. 1999).

Leaf Vacuole
PhloemXylem

AtHKT 1;1
OsHKT 1;5

OsHKT2;1

Root

SOS1

AtNHX1

NORC

Na

Na

Na

Na

Na

Na

Na

Fig. 3 Simplified model for mechanisms of Na+ absorption, recirculation, and extrusion by

different classes of Na+ channels/transporters, including Na+ loaded into xylem vessel by non-

selective outwardly rectifying cation conductance, NORC (Wegner and De Boer 1997), Na+ influx

mediated by HKT transporters (Uozumi et al. 2000; Mäser et al. 2002a; Sunarpi et al. 2005),

plasma membrane Na+ extrusion via SOS1 antiporters (Shi et al. 2000), and tonoplast Na+

sequestration by NHX antiporters (Apes et al. 1999). AtHKT1;1, and OsHKT1;5 are present in

the plasma membrane of xylem parenchyma cells, and mediate unloading of Na+ from xylem

vessels into xylem parenchyma cells, thus protecting leaves from Na+ overaccumulation and Na+

damage (leaf Na+ exclusion) (Berthomieu et al. 2003; Sunarpi et al. 2005; Ren et al. 2005). In the

case of K+ starvation in soils, rice roots take up Na+ at low extracellular Na+ levels via OsHKT2;1

(Horie et al. 2007). Na+ is sequestered in vacuoles by AtNHX1. Excessive Na+ in the cytosol is

transported out of cells by SOS1
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In contrast to these Na+ transporters that remove Na+ from the cytoplasm,

molecular identification of plasma membrane Na+ influx systems into plant cells

has also been achieved. Na+ uptake transporters in wheat HKT1 also named,

TaHKT1 (TaHKT2;1) (Schachtman and Schroeder 1994; Rubio et al. 1995;

Gassmann et al. 1996) and in Arabidopsis thaliana AtHKT1 (AtHKT1;1) were

identified (Uozumi et al. 2000). The first HKT gene, TaHKT1 (TaHKT2;1), was

originally cloned from wheat and shown to mediate K+ and Na+ co-transport in yeast

and Xenopus oocytes (Schachtman and Schroeder 1994; Rubio et al. 1995; Gassmann

et al. 1996). Further extensive studies on HKT structure and function demonstrated

that HKTs include 4 domains that resemble the K+ permeation pore of a K+ channel

tetramer (Durell et al. 1999; Kato et al. 2001; Mäser et al. 2002a; Tholema et al. 2005;

Gambale and Uozumi 2006) and HKT transporters have indeed been proposed to

mediate channel-like transport (Gassmann et al. 1996; Corratge et al. 2007). Note that

the term, transporter or channel has been used interchangeably for HKT transporters,

and HKTs provide an interesting model to explore the shrinking distinctions between

co-transporters and ion channels. Whereas some HKT transporters change their

K+ and Na+ selectivities depending on the ionic conditions, similar to multi-ion

channel pores (Schachtman and Schroeder 1994; Rubio et al. 1995; Gassmann

et al. 1996; Horie et al. 2001), the only HKT transporter encoded in the Arabidopsis
genome, AtHKT1, was found to be more Na+ selective (Uozumi et al. 2000). Further

studies showed that HKT transporters fall into either of these two cation selectivity

HKT subfamilies (Horie et al. 2001, 2006). Research identified an amino acid residue

that contributes to the distinction of these two cation selectivities of HKT transpor-

ters: AtHKT1;1 has a Ser instead of Gly in the first pore loop region which reduces

K+ selectivity. In contrast, TaHKT1 lacks this residue and is more Na+ selective

(Durell et al. 1999; Mäser et al. 2002a; Tholema et al. 2005; Gambale and Uozumi

2006). The nomenclature of HKT transporters cloned from various plants has been

divided into two distinct groups, which also largely separate these subfamilies by

their Ser or Gly in the selectivity filter, with the exception of OsHKT2;1 (Horie

et al. 2001). Bacterial HKT homologs, Trk, or Ktr transporters, function as major

K+ uptake systems (Gaber et al. 1988; Ko et al. 1990; Schlosser et al. 1995;

Nakamura et al. 1998; Matsuda et al. 2004). K+ uptake is stimulated by Na+ in the

cyanobacterial Ktr homologues of this family and significantly contributes to

adaptation to hyperosmolar shock (Matsuda et al. 2004).

The question why plants express Na+ selective Na+ influx transporters such

as AtHKT1;1 remained. Null mutations or those that reduce activity in the Na+

transporter AtHKT1;1 (Mäser et al. 2002b; Gong et al. 2004; Berthomieu et al.

2003) resulted in Na+ overaccumulation in leaves of these plants. The AtHKT1;1

transporter was immuno-localized in the plasma membrane of xylem parenchyma

cells (Sunarpi et al. 2005). The Na+ hypersensitive phenotype of Athkt1;1 mutants

(Mäser et al. 2002b) is due to the lack of Na+ retrieval from xylem vessels by

AtHKT1;1, leading to toxic Na+ overaccumulation in leaves (Sunarpi et al. 2005).

Mapping of a salt tolerance quantitative trait locus (QTL) from rice led to the

isolation of OsHKT1;5, which is expressed in xylem parenchyma cells (Ren et al.

2005) and thus AtHKT1;1 and OsHKT1;5 have analogous functions in Na+
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retrieval from the xylem sap (Ren et al. 2005; Sunarpi et al. 2005). Interestingly,

this HKT transporter-mediated exclusion of Na+ accumulation in Arabidopsis
and rice leaves via Na+ removal from the xylem, has more recently been found

to be the underlying mechanism of three major salinity tolerance QTLs in wheat

(Byrt et al. 2007), providing an example of transfer of knowledge from model

plants such as Arabidopsis and rice (Uozumi et al. 2000; Mäser et al. 2002b; Ren

et al. 2005; Sunarpi et al. 2005), to applications in the field.

In contrast to the above discussed sodium toxicity at high Na+ concentrations,

low concentrations of Na+ (e.g. < 5 mM) support growth of many plant species

when K+ is deficient. The Na+ transporter OsHKT2;1 (previously named OsHKT1)

is strongly induced in rice roots in response to K+ starvation (Horie et al. 2001).

Three loss of function mutant lines in OsHKT2;1 exhibited substantial reduction in

Na+ influx into plant roots, showing that rice plants use Na+ as a nutrient in the

medium for their survival and growth under K+ starvation and low Na+ conditions

(Horie et al. 2007). Thus several classes of Na+ transporters and exchangers exist in

plants and each class has unique roles in mediating sodium tolerance.

9 Future Prospects

Starting 25 years ago the study of plant transport moved into the era of identifying

and characterizing individual ion channels and transporters. Such studies have

benefited from several independent technical innovations including patch clamp-

ing, heterologous expression in yeast, oocytes, E coli and animal cells, ion sensitive

fluorophores for imaging, biophysical structure-function analyses, forward and

reverse genetic analyses, and the sequencing of reference plant genomes. However,

the genes encoding some of the known channels/transporters remain to be identi-

fied. Additional approaches will aid in their identification including genetic studies

of natural variation, systems biology, in silico analyses and proteomics. Abiotic

stress and biotic stress continuously influence the plant body. Plants have developed

an adaptive response to them; for example, reactive oxygen species have been used

as intracellular and extracellular signals, which regulate membrane transport sys-

tem, and coregulate Ca2+ signaling (McAinsh et al. 1996; Pei et al. 2000; Foreman

et al. 2003; Demidchik et al. 2007).

Interestingly, almost every characterized plant ion channel and transporter class

was found to have unique and intriguing properties, which have required new

concepts and interdisciplinary analyses for their characterizations. These unique

properties are often intimately related to their physiological functions and remain a

basis for further analyses in the future. These advances are also contributing to the

derivation of fundamental principles on the relationship of channels and transporters

in all organisms. Moreover, many of the identified plant ion channels and transporters

are linked to major environmental stresses that are directly relevant for the challenges

facing humanity in the present century, including drought resistance, desiccation
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avoidance, salt tolerance, aluminum resistance, pathogen responses, and water use

efficiency. These pressing global needs will require further creative, interactive, and

dynamic research efforts by the community of plant ion transport researchers. In

particular, new knowledge will lead to the selection and generation of elite crops.
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The Role of Ion Channels in Plant Salt Tolerance

Anna Amtmann and Mary J. Beilby

Abstract Salinisation of agricultural land threatens world food production because

it exposes crops to low water potential and high concentration of toxic ions in the

soil. In particular, all major crops are sensitive to high concentrations of sodium

(Na+). Due to the negative electrical potential inside cells Na+ influx into plant roots

can occur through ion channels or other membrane transport proteins that facilitate

passive diffusion of Na+ across the plasma membrane. In this chapter, we discuss

the contribution of different types of ion channels to Na+ influx. In the first part of

the chapter, we recapitulate the basic properties of different types of plant ion

channels such as voltage-dependence of gating and relative selectivity for Na+ and

potassium and build a simple model to assess how these channels contribute to

whole-cell ionic current and Na+ uptake. In the second part of the chapter, we

describe a number of experimental studies that have investigated Na+ flux and ion

channel currents in different plant species. The combined evidence suggests

that salt tolerance in plants is based on the restriction of Na+ influx through

voltage-independent ion channels.
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I–V Current–Voltage

PK:PNa Relative Na+/K+ permeability

CNGC Cyclic nucleotide gated channel

1 Introduction

Salinisation of agricultural land hampers food production in many areas of the

world (Amtmann et al. 2004; Munns and Tester 2008). Most land plants, including

all major crops, are unable to grow if salt concentration of the soil solution exceeds

100 mM. However, a small and diverse range of plant species, so-called halophytes,

is able to grow and even thrive on high salt concentrations. Salt tolerance in

plants is often linked to the restriction of Na+ accumulation and maintenance of a

high K+/Na+ ratio in the shoots (Maathuis and Amtmann 1999; Moller and Tester

2007). The rate of Na+ accumulation in plant shoots is determined by the net uptake

of Na+ into roots and its net translocation from roots to shoots. Net uptake of Na+

into roots is the sum of unidirectional Na+ influx and unidirectional Na+ efflux

across the plasma membrane of epidermal and cortical cells. Net root-shoot trans-

location of Na+ is the result of net Na+ flux from roots to shoots in the xylem and

Na+ recycling from shoots to roots in the phloem (Tester and Davenport 2003). Na+

flux in the xylem involves Na+ efflux from root parenchyma cells into the xylem

and the recovery of Na+ from the xylem. Na+ recycling requires the loading of Na+

into the phloem in the leaves and its recovery in the roots (Fig. 1).

Several transporters have been identified that mediate Na+ transport across the

plasma membranes of the cells involved in this complex system of whole-plant Na+

Xylem

Phloem

Root

Shoot

I

II

III

IV

V

VI

VII

Fig. 1 Flux of sodium (Na+) through the plant. I: unidirectional Na+ influx into root cells,

II: unidirectional Na+ efflux from roots to the external medium, III: Na+ loading into the root

xylem, IV: recovery of Na+ from the root xylem, V: root-shoot translocation of Na+ in the xylem,

VI: Na+ unloading from the xylem in the shoot, VII: Na+ recycling through the phloem
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fluxes (Amtmann et al. 2004; Munns and Tester 2008). For example, the Na+/H+

antiporter SOS1 mediates the efflux of Na+ from root cells into the soil or cortical

apoplast (Wu et al. 1996; Shi et al. 2000; Rus et al. 2004). Together with HKT and

CHX-type transporters, it also provides a means for Na+ transport into and out of the

xylem (Shi et al. 2002; Hall et al. 2006; Huang et al. 2006; James et al. 2006; Byrt

et al. 2007). Much less is known about the transporters responsible for Na+ uptake

into root epidermal and cortical cells. This chapter discusses the roles of different

types of ion channels in root Na+ uptake. The first part of the chapter considers the

relevance of different types of ion channels for Na+ uptake based on theoretical

current–voltage curves, which are generated for a combination of ion channels

differing in selectivity and voltage dependence. The second part of the chapter

describes a number of specific experimental studies that have investigated the roles

of ion channels in Na+ uptake and salt tolerance. It is hoped that the chapter

contributes to the understanding of a fundamental aspect of plant adaptation to

saline environments.

2 The Role of Ion Channels in Na+ Uptake: A Simple Model

2.1 Electrochemical Gradients and Fluxes

The driving force for Na+ into root cells is the combined gradient of voltage and

chemical activity across the plasma membrane (electrochemical gradient). In a

typical plant cell, the difference in electrical potential between the cytoplasm and

the apoplast (membrane potential) is in the order of –120 to –180 mV. According to

the Nernst equation, this provides a driving force for 100–1000-fold accumulation

of Na+ in the cytoplasm. Measurements of Na+ in the cytoplasm are sparse and

accompanied by considerable error since both X-ray measurements (Binzel et al.

1985; Hajibagheri and Flowers 1989; Flowers and Hajibagheri 2001) and radio-

tracer flux analyses (Kronzucker et al. 2006) have underlying problems with the

exact assignment of the determined values to intracellular compartments, while the

use of Na+-sensitive microelectrodes and dyes is restricted to certain cell types

(Carden et al. 2003; Kader and Lindberg 2005; Anil et al. 2007). Nevertheless, the

combined evidence suggests that cytoplasmic Na+ concentrations are generally in

the lowmillimolar range. This is in accordance with the notion that cytoplasmic Na+

concentrations above 100 mM are toxic due to the detrimental effects of a high Na+

environment to protein stability (Serrano et al. 1999) and displacement of K+ from

essential co-factor binding sites on K+-dependent enzymes (Wyn Jones and Pollard

1983). Thus in both low and high salt environments, living cells have to balance

passive influx of Na+ with Na+ efflux, either across the plasma membrane back into

the apoplast or across the tonoplast into the vacuole. The energy requirement for Na+

efflux is considerable; approximately �5.7 kJ/mol per tenfold concentration gradi-

ent or per �60 mV of membrane potential. In addition to energy, time is an

important factor for salt tolerance because the rate of Na+ uptake will determine
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how quickly Na+ reaches toxic levels inside the cell. It is clear then that limiting Na+

influx into root cells is a fundamental requisite for plant life in high salt conditions.

Balancing Na+ influx with Na+ export from the cytoplasm back into the apoplast

(also sometimes termed ‘futile cycling’) is one way of reducing the Na+ load (Britto

and Kronzucker 2006; Malagoli et al. 2008). The importance of Na+ export from root

cells for salt tolerance is evident in the salt over-sensitivity of mutants that are

impaired in the plasma membrane Na+/H+ antiporter SOS1 (Wu et al. 1996; Shi

et al. 2000). This system seems to be similarly crucial in salt-sensitive and salt-

tolerant species (Oh et al. 2007). Futile cycling occurs to a varying degree in all plants

investigated so far with 78–98% of Na+ taken up transported back into the environ-

ment (Kronzucker et al. 2006, 2008; Wang et al. 2006, 2009; Malagoli et al. 2008).

A second strategy for removing Na+ from the cytoplasm is to compartmentalise it in

the vacuoles. Na+ uptake into the vacuole also requires energy but has a dual benefit

in saline conditions; it avoids Na+ build-up in the apoplast (Oertli 1968) and enhances

the intracellular solute potential thereby contributing to turgor adjustment. The

importance of Na+ allocation into vacuoles is evident in the fact that over-expression

of NHX-type vacuolar Na+/H+ antiporters enhances salt tolerance in plants (Apse

et al. 1999; Zhang et al. 2001; Ohta et al. 2002). One point that is rarely discussed in

this context is that vacuolar Na+ storage as a means to remove Na+ from the cyto-

plasm relies on growth. Only if the vacuolar lumen is constantly enlarged can rapid

saturation of this mechanism be avoided. Or, putting it the other way round, when the

vacuolar storage space is exhausted Na+ will accumulate in the cytoplasm, and its

toxic effect will slow down growth thereby exacerbating the problem. The ability of

plants to cope with high Na+ concentrations in the soil therefore relies onmaintaining

a positive balance between the rate of growth (enlargement of the vacuolar lumen)

and the rate of Na+ uptake across the root plasma membrane.

Two important conclusions can be drawn from the above considerations:

l The rate of Na+-uptake (the size of Na+-influx) is critical for the ability of plants

to avoid the build-up of toxic Na+ concentrations in the cytoplasm.
l The driving force for Na+ uptake into roots is directed inward and therefore Na+

uptake can proceed through passive transport.

Ion channels represent the most common pathway for passive ion flux across

biological membranes and will therefore be at the centre of this review. However, it

should be noted that other transport systems could contribute to passive influx of

Na+ into plant cells. For example, some members of the HKT family transport Na+,

either in a high-affinity mode coupled to K+ uptake or in a low-affinity affinity

mode as an Na+–Na+ co-transport system (Rubio et al. 1995; Uozumi et al. 2000;

Horie et al. 2001; Liu et al. 2001). Additionally, Na+ influx may occur through

proteins mediating proton-coupled transport of K+, amino acids, sugars, etc. The

resulting cumulative ‘leakage’ of Na+ into cells cannot readily be distinguished

from Na+ currents through voltage-independent channels (see below) but due to low

transport rates of the above mentioned systems compared to ion channels their

contribution is likely to be very small.
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2.2 Fundamental Characteristics of Different Channel Types

Before one can assess which channel types are relevant for Na+ uptake, it is important

to understand the basic properties of ion channel proteins. Ion channels are generally

characterised by three features: (a) their conductance, which determines the amount

of current that flows through an open channel at any given voltage, (b) their open

probability, which determines howmany channels are active at any given voltage and

(c) their selectivity, which determines the relative flux of different ions through an

open channel. The specific properties of ion channels are best explored in voltage

clamp experiments, in which the movement of ions through ion channel proteins is

monitored as a current that flows across a single channel (e.g. in excised membrane

patches, single-channel current) or a population of channels (e.g. all channels in the

plasma membrane of one cell, whole-cell current). The driving force for ion flux

through the channels can be experimentally manipulated by clamping the membrane

to different voltages. Voltage-clamp experiments have established that some com-

ponents of the whole-cell current are ‘time-dependent’, which means that they

require a certain time to reach a new steady state after a sudden change of voltage.

This behaviour can be explained by the fact that the open probability of the under-

lying channels is voltage-dependent. Upon a change in voltage, a certain number of

channels change from an inactive into an active state or vice versa, until the total

number of active channels complies with the new voltage. The time that is required

for this change is in the range of milliseconds and when essayed over a large number

of individual channel proteins the activation or inactivation is visible as a change in

macroscopic current over time. So-called inward rectifying channels (IRCs) increase

their open probability (activate) if the voltage is clamped to more negative (hyper-

polarised) voltages while so-called outward rectifying channels (ORCs) activate if

the membrane is depolarised. The open-probability (Po) of voltage-dependent ion

channels is usually well described with a Boltzman distribution (Fig. 2a), in which

the half activation potential, V50, is the voltage at which half of the maximal number

of channels are open, and the gating charge, zg, is the steepness of the voltage

dependence. In addition to time-dependent currents, the whole-cell current usually

comprises a current component that responds instantaneously to a sudden change in

voltage, which indicates that the open-probability of the underlying channels is

voltage-independent. Note that the term voltage-independent channel (VIC) refers

to the open probability alone; the current through any open channel will of course

change with voltage according to Ohm’s law (‘open-channel conductance’). Both the

open-channel conductance and the voltage-dependence of the open probability are

best described by current–voltage (I–V) curves in which the current through the

channel (or an ensemble of channels) is plotted against the voltage. By convention

negative currents represent influx of cations into the cytoplasm, while positive

currents represent cation efflux from the cytoplasm. I–V curves determined for an

entire cell are the sum of individual I–V curves for different channel types, each of

which is the product of the I–V curve of a single channel with the total number

of channels in the cell and the open probability. Decomposing the whole-cell
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Fig. 2 Open probability and selectivity of ion channels. (a) Typical voltage-dependence of an

inward rectifying K+-channel. In this example the half-activation potential (V50) is –150 mV and

the gating charge is 2. (b) Current (I) flowing through an open K+-selective channel at any given

voltage (V). The cytoplasmic K+ concentration is set as 100 in all curves, the external K+

concentration as 100 (solid curve), 10 (dotted curve), or 1 (dashed curve). In these cases the

reversal potential Erev is equal to EK, as calculated with the Nernst equation: EK ¼ �60 mV log

([K]cyt/[K]ext). The same curves are produced with the Goldman-Hodgkin-Katz (GHK) model if

the external medium contains 100 Na+ instead of K+, and the permeability of the channel is equal

for K+ and Na+ (solid curve), 10 times higher for K+ than Na+ (dotted curve) or 100 times higher

for K+ than Na+(dashed curve). In these cases EK is very negative and ENa is very positive

28 A. Amtmann and M.J. Beilby



current–voltage relationship into individual channel types is a considerable challenge

that relies on detailed characterisation of the properties of individual channels in

excised patch clamp experiments.

While the measurement of currents in voltage-clamp experiments reveals the

voltage-dependence and activation kinetics of channels it does not directly tell us

which ions carry the current. If only one permeable ion species is present on both

sides of the membrane, the membrane potential at which the current is nil (the

reversal potential, Erev) is equal to the equilibrium potential of this ion (Eion) given

by the Nernst equation (Fig. 2b). The relative permeability of ion channels for

different ions is usually established by exposing the outer and inner side of the

membrane to different ion concentrations. Erev can then be compared with Eion of

each ion; if Erev is closer to EA than EB the permeability of the channel is higher for

A than for B. The Goldman-Hodgkin-Katz (GHK) equation provides the simplest

approach to calculate the relative permeability from the reversal potential (Hille

2001). However, the GHK model makes two important assumptions; (a) that ions

move independently through the channel and (b) that the electrical field across the

membrane is constant. In other words, it only applies if no ion–ion or ion–protein

interactions occur in the channel, neither of which is usually the case (Hille 2001).

It therefore remains difficult to predict the exact contribution of different ions to a

current when the membrane is exposed to a mixture of ions. Nevertheless the GHK

model is usually a good approximation of the actual currents, and until now it has

not been replaced by a satisfactory general model that takes into account different

types of molecular interactions. More importantly, the GHK model helps us to

conceptually understand ion fluxes across cell membranes and provides a useful

guidance for experiments. In the following section of this chapter we will apply

existing knowledge on channel selectivity and voltage-dependence in a model

based on Nernst, GHK and Boltzman equations, to assess which channel types

are most likely to contribute to Na+ uptake in saline conditions.

2.3 Contribution of Different Channel Types to Na+ Uptake

In all plant species investigated so far the plasma membrane of root epidermal and

cortex cells displays all three types of currents described above (Table 1). Inward-

rectifying currents activating upon hyperpolarisation (V50 of �150 to �190 mV)

usually show a relatively steep voltage-dependence (zg around 2) and are highly

selective for K+ over Na+ (relative permeability, PK:PNa around 50). Outward

rectifying currents activating upon depolarisation (V50 around 0 mV) display

weaker voltage-dependence (zg below 2) and are less selective for K+ over Na+

(PK:PNa around 10). The channels underlying these two types of currents are well

characterised with respect to their electrical properties at the single-channel level

and the structure–function relations within the channel proteins (Véry and Sentenac

2003; Dreyer et al. 2004). Much less is known about the molecular nature of the

transporters underlying the instantaneous currents across root plasma membranes
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although they are electrophysiologically well characterised (Amtmann and Sanders

1999; Demidchik et al. 2002; Demidchik and Maathuis 2007). A common feature of

these currents in most plant species is that they display weak selectivity for K+ over

Table 1 Equations and parameters used to generate current–voltage (I/V) curves shown in

Figs. 3 and 4

General equation:

I(V) ¼ PoNP(F
2/RT)V(Si – Se exp(�FV/RT)/(1 – exp(�FV/RT))

with P: permeability of the channel for ion S, Si, Se: cytoplasmic and external

concentration of S, R: gas constant, T: temperaturea, F: Faraday constant,

Po: open probability. Po ¼ (1 – 1/(1 þ exp(�zg(F/RT)(V – V50)))) for IRC

Po ¼ 1/(1 þ exp(�zg(F/RT)(V – V50)))
2 for ORC

Po ¼ 1 for VIC

with zg: gating charge, V50: half activation potential.

Parameters:

Channel Ion (Si/Se in mM) zg V50 (mV) NP (m3s�1) Figure (curve)

IRC K+ (100/2) 2 �150 2 � 10�17 Fig. 3a (dotted)

Fig. 4b (dotted)

IRC Na+ (2/100) 2 �150 4 � 10�19 Fig. 3a (dashed)

Fig. 4b (dashed)

IRC Na+ (2/100) 2 �150 2 � 10�19 Fig. 3a (solid)

IRC Na+ (2/100) 2 �150 2 � 10�18 Fig. 4a (dash-dotted)

ORC K+ (100/2) 1 0 1 � 10�17 Fig. 3a (dotted)

Fig. 4b (dotted)

ORC Na+ (2/100) 1 0 1 � 10�18 Fig. 3a (dash-dotted)

Fig. 4b (dashed)

ORC Na+ (2/100) 1 0 2 � 10�19 Fig. 3a (dashed)

ORC Na+ (2/100) 1 0 1 � 10�19 Fig. 3a (solid)

ORC K+ (100/2) 1 �60 1 � 10�17 Fig. 3b (dotted)

ORC K+ (100/2) 1 �120 1 � 10�17 Fig. 3b (dotted)

ORC Na+ (2/100) 1 �60 1 � 10�18 Fig. 3b (solid)

ORC Na+ (2/100) 1 �120 1 � 10�18 Fig. 3b (dash-dotted)

VIC K+ (100/2) n.a.b n.a. 1 � 10�18 Fig. 3c (dotted)

Fig. 4b (dotted)

VIC Na+ (2/100) n.a. n.a. 1 � 10�18 Fig. 3c (dashed)

Fig. 4b (dashed)

VIC Na+ (2/100) n.a. n.a. 5 � 10�19 Fig. 3c (dash-dotted)

VIC Na+ (2/100) n.a. n.a. 1 � 10�19 Fig. 3c (solid)

IRC K+ (100/1) 2 �150 2 � 10�17 Fig. 4a (dotted)

ORC K+ (100/1) 1 0 1 � 10�17 Fig. 4a (dotted)

VIC K+ (100/1) n.a. n.a. 1 � 10�18 Fig. 4a (dotted)

IRC Na+ (1/1) 2 �150 4 � 10�19 Fig. 4a (dashed)

ORC Na+ (1/1) 1 0 1 � 10�18 Fig. 4a (dashed)

VIC Na+ (1/1) n.a. n.a. 1 � 10�18 Fig. 4a (dashed)
a18�C for Figs. 3 and 4
bn.a.: not applicable
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other cations, in particular Na+, and they have therefore also been termed ‘non-

selective cation channels’ (NSCCs, see Demidchik and Maathuis 2007 for review).

In this chapter we will continue to call them voltage-independent channels (VICs)

since their selectivity is the topic of discussion here. Another common feature of

VICs is that they are insensitive to ions that typically block voltage-dependent

currents such as Cs+ and TEA+. By contrast, VICs are partially inhibited by external

Ca2+ with a Kd in the range of a few hundred micromolar (Amtmann et al. 1997;

Roberts and Tester 1997; Tyerman et al. 1997; Demidchik and Tester 2002; Volkov

and Amtmann 2006). It is this latter feature that has indicated that VICs may play an

important role in Na+ uptake because unidirectional influx of Na+ measured in

radiotracer flux experiments is inhibited by external Ca2+ in a similar fashion

(Davenport and Tester 2000; Tester and Davenport 2003). Reports on other regu-

latory features of VICs are less consistent. For example, inhibition by cyclic nucleo-

tides (CNs) or activation by glutamate was observed in some studies but not others

(Maathuis and Sanders 2001; Demidchik and Tester 2002; Demidchik et al. 2004;

Volkov and Amtmann 2006). The assignment of instantaneous currents to members

of the ‘cyclic-nucleotide gated channel’ (CNGC; Talke et al. 2003) or ‘glutamate

receptor’ (GLR; Davenport 2002) gene families is therefore still under question.

In addition to IRC, ORC and VIC, hyperpolarisation and depolarisation activated

Ca2+ channels (HACC and DACC; Miedema et al. 2008) might contribute to Na+

uptake in certain cell types such as root hairs. Again, the genes encoding these

channels have not yet been identified. In the following model calculations we con-

centrate on IRC, ORC and VIC as the main potential pathways for Na entry into

plant root cells but the model can easily be extended to evaluate the contribution of

additional pathways.

Based on known general features of ORCs, IRCs and VICs, we can calculate the

K+ and Na+ current through each channel type for a given concentration of K+ and

Na+ at either side of the membrane. To generate ‘whole-cell’ I–V curves, the

channel current given by the GHK equation is multiplied with the channel’s open

probability, Po, determined by the Boltzman equation and the total number of

channels, N (Amtmann and Sanders 1999). For VICs Po is set to 1, for IRCs and

ORCs Po is calculated using a Boltzman distribution with typical values for V50 and

zg. P, the permeability of the single channel for a specific ion, is often not known

and neither is N, the total number of channels in the membrane, but the product NP
can be chosen so that it mimics the whole-cell current produced by a specific type of

channel. The values chosen for P also have to reflect the relative Na+/K+ perme-

ability (PK:PNa) of the particular channel (e.g. P is set 10 times higher for K+ than

for Na+ to account for a channel PK:PNa of 10). The equations and values used to

generate the I–V curves shown in Figs. 3 and 4 are listed in Table 1.

Figure 3 demonstrates the effect of relative permeability and voltage-dependence

on the amount of K+ and Na+ current through the different channel types in a hypo-

thetical ‘high-salt’ situation (cytoplasmic/extracellular concentrations are 100/2 mM

for K+ and 2/100 mM for Na+). Figure 3a shows K+ and Na+ currents through IRCs

with a V50 of �150 mV and a gating charge of 2, and ORCs with a V50 of 0 mV

and a gating charge of 1. Na+ current through the IRC (apparent at voltages
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below –100 mV) is equal to K+ inward current through this channel if PK:PNa of the

IRC is 50 (dashed and dotted curves overlap at negative voltages). The current is

reduced by half when PK:PNa is 100 and increases 5 times if PK:PNa is 10. Although

these results are rather trivial due to the simple conditions chosen here (external

K+/Na+ ratio is 1/50) they illustrate two important facts: Firstly, a channel with a

very high selectivity for K+ over Na+ will still transport a considerable amount of

Na+ if the external Na+ concentration is very high and the K+/Na+ ratio is low (note

that sea water has approximately 50 times more Na+ than K+). Secondly, a high

PK:PNa of the IRC is essential to avoid very large influx of Na+ because this channel
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Fig. 3 Theoretical whole-cell current–voltage curves describing the net flux of K+ (dotted lines)
and Na+ (other lines) through plasma membrane ion channels. K+ flux is represented by dotted

lines, Na+ flux by other lines. (a) Effect of relative permeability of IRC and ORC on Na+ inward

current. PK/PNa is set to 10 (dash-dotted curve), 50 (dashed curve), or 100 (solid curve). Note the
dotted curve representing K+ inward current identical to the dashed curve for Na+ inward current.

(b) Effect of the half activation potential V50 of the ORC on Na+ inward current; V50 is set to 0 mV

(dashed curve), �60 mV (solid curve) or �120 mV (dash-dotted curve). Note that dashed and

solid curves are indistinguishable from the X-axis. (c) Effect of the relative permeability of VICs

for K+ and Na+ on Na+-inward current. PK/PNa was set to 1 (dashed curve), 2 (dash-dotted curve)
or 10 (solid curve). Ion concentrations: 100 mM K+, 2 mM Na+ in cytoplasm, 2 mM K+, 100 mM

Na+ outside. Equations and all other parameters used to generate I–V curves are given in Table 1
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operates at membrane potentials that are much more negative than ENa (ENa ¼ +100

mV in our example). It should be noted that a study of young Arabidopsis thaliana
seedlings found blockage of the IRC by cytoplasmic Na+ (Qi and Spalding 2004),

which would eliminate both K+ and Na+ influx through the IRC when the Na+

concentration in the cytoplasm rises. However, no such inhibition was found for

the IRC in roots of more mature Arabidopsis plants or other species (Volkov and

Amtmann 2006).

Changing the PK:PNa of the ORC between 10 and 100 has little effect on Na+

influx through the ORC (apparent as an inward current between +60 and –60 mV).

The ORC-mediated Na+ inward current is generally very small because the activity

range of the channel is close to ENa. Figure 3b explores how the voltage-dependence

of the ORC influences Na+ influx through this channel type. Shifting V50 negative

(from 0 to –60 and –120 mV) increases the Na+ inward current and moves it

into a range of physiological membrane potentials (solid and dash-dotted curves).

However, even with a V50 of –120 mV the ORC-mediated Na+ inward current is

relatively small (compared to IRC and VIC currents, compare Fig. 3a and c). Very

negative V50 values are unlikely to occur in saline conditions as the activation

potential of ORCs is usually coupled to EK (Blatt and Gradmann 1997; Maathuis

et al. 1997; Amtmann and Blatt 2009). Considering that accumulated salt in the soil

will always contain some K+, the external K+ concentration accompanying Na+
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b

a
300.0

200.0

300.0

(pA)

(pA)

50.00–50.00–100.0–150.0–200.0

–50.00

–(mV)

–100.0–150.0–200.0

200.0

100.0

–100.0

50.00

100.0

–(mV)

Fig. 4 Theoretical whole-cell

current–voltage curves

describing the total net flux of

K+ and Na+ through an

ensemble of IRC, ORC and

VIC. Total K+ flux is shown in

light grey, total Na+ flux in

dark grey. Equations and all

parameters used to generate

the I–V curves are given in

Table 1. Total current is given

in solid lines. (a) Ion

concentrations are 1 mM K+

and 1mMNa+ outside the cell,

and 100 mM K+ and 1 mM

Na+ in the cytoplasm. Note

that the dash-dotted curve

indicated in Table 1 is to small

to be seen, and that the dotted

curve is hidden under the solid

curve. (b) Ion concentrations

are 2 mMK+ and 100mMNa+

outside the cell, and 100 mM

K+ and 2 mM Na+ in the

cytoplasm. Note that the

dotted curve for K+-inward

current is hidden under the

identical dashed curve

The Role of Ion Channels in Plant Salt Tolerance 33



concentrations of more than 50 mMwill rarely be lower than 1 mM, representing an

EK of approximately �120 mV. We conclude that in most conditions the ORC will

not make a major contribution to Na+ uptake. Experimental evidence for blockage

of the ORC by Na+ from the cytoplasmic and/or external side (Thiel and Blatt 1991;

Shabala et al. 2006), further argues against a role of ORC in Na+ uptake.

Figure 3c shows the effect of the relative permeability of VICs on Na+ inward

current through this type of channel. Whole-cell instantaneous currents are usually

small compared to time-dependent currents and this has been taken into account by

assigning a whole-cell K+ conductance (NP) that is smaller than the respective values

for IRC and ORC (10�18 m3s�1 for VIC, 10�17 m3s�1 for ORC, 2 � 10�17 m3s�1

for IRC, Table 1). In accordance with experimental evidence the VIC-mediated

K+ inward current in our model is very small (dotted curve). However, in most

plant species this channel type does not discriminate between K+ and other cations.

With a PK:PNa of 1 (dashed curve) the VIC-mediated Na+ inward current is

considerably larger than IRC-mediated Na+ current (dashed curve in Fig. 3b).

Furthermore, because VICs are voltage-independent, Na+ inward currents are still

apparent in a voltage range where the IRC is closed (here between 0 and –120 mV).

Increasing PK:PNa of the VICs to 2 and 10 strongly reduces the amount of Na+ influx

(dash-dotted and solid curves).

Calculating separate I–V curves for each ion and each channel under consider-

ation has the advantage that the model can be easily extended for additional ions

or channels, and that different subsets of I–V curves can be combined to address

different questions. For example, we can add K+ and Na+ currents through IRCs to

visualise the total current through this channel type, or we can add Na+ currents

through several channel types and compare the resulting total Na+ current with the

total K+ current carried by the same ensemble of channels. We can thus easily

establish how much each channel type contributes to Na+ influx in any combination

of K+ and Na+ concentrations inside and outside the cell, and how this contribution

is influenced by different channel features.

Figure 4 shows total K+ and Na+ currents through an ensemble of IRC, ORC and

VICs for hypothetical low-salt and high-salt conditions. The three channel types

considered here have again basic features that represent most cation channels

recorded in plant root cells (Table 1). From the range of available experimental

data, values for individual channel features were chosen that are typical and, in case

of doubt, promote Na+ influx rather than minimise it. Figure 4a shows that in a

situation with 1 mM K+ and 1 mM Na+ outside the cell, K+ inward flux is almost

entirely mediated by IRCs and Na+ influx is very small. Increasing the external salt

concentration to 100 M Na+ and 2 mM K+ (Fig. 4b) produces large Na+ influx (dark

grey) most of which is mediated by VICs. The IRCs make an increasing contri-

bution at negative voltages below –140 mV to a maximum of approximately 30%.

In a living cell, the inward current through ion channels will be counteracted by

proton efflux through the plasma membrane proton pump resulting in a membrane

potential that is more negative than the reversal potential of the ion channel-mediated

cation currents. However, it is also clear that in saline conditions the Na+ current

through the VIC will shift Erev to a considerably more positive voltage (compare

34 A. Amtmann and M.J. Beilby



Erev in Fig. 4a and b), which explains why cells are often more depolarised in high

salt conditions than in low salt conditions, in which the K+ inward current through

IRCs is the only major counterpart to the proton pump. Most importantly, the salt-

induced depolarisation shifts the membrane potential into a voltage range where the

IRC is inactive and therefore K+ influx is impaired. This, in turn, results in a high

ratio of Na+ versus K+ influx imposing further strain on the cytoplasmic K+/Na+

ratio. As illustrated in Fig. 4c even a 50% reduction of VIC Na+ permeability (either

by reducing the number of channels to half or by increasing PK:PNa to 2) has a

strong effect not only on Na+ influx but also on Erev and the K+/Na+ influx ratio. It

can be concluded from this exercise that

l VICs make the strongest contribution to Na+ influx in high salt conditions

despite their relatively low number,
l Na+ influx through non-selective VICs depolarises the membrane in high salt

conditions, and
l down-regulating VICs (decreasing the number of active channels) or increasing

their selectivity for K+ over Na+ could be an important means to reduce Na+

influx and maintain K+ influx into cells in high salt conditions.

In the remainder of this chapter we will describe a number of experimental

studies that have investigated the role of ion channels in Na+ influx and salt

tolerance, and discuss the outcome of these studies in the context of the predictions

made by our model calculations.

3 The Role of Ion-Channels in Salt Tolerance: Experimental

Evidence

3.1 Ion Channels and Salt Tolerance in Crops

Voltage-independent, non-selective cation channels in plants were first described

for several crop species. Characterisation of discrete single channel currents in

excised membrane patches from root cells of rye, wheat and maize and cultured

cells of barley proved that at least part of the whole-cell ‘leak’ current was

mediated by channel proteins (White and Lemitiri-Clieh 1995; Amtmann et al.

1997; Roberts and Tester 1997; Tyerman et al. 1997). Based on theoretical I–V
curves as the ones shown here it was suggested that these channels could consti-

tute a pathway for Na+ influx in saline conditions (Amtmann and Sanders 1999).

A subsequent study analysed single channels from wheat roots in lipid bilayers

and compared their characteristics with whole-cell currents from wheat root

protoplasts and 22Na influx into wheat roots (Davenport and Tester 2000). One

channel type identified in lipid bilayers was similar to the one described in

membrane patches with respect to conductance, permeability sequence and rela-

tive permeability for K+ and Na+ (PK:PNa of approx. 0.8). Most importantly,
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inward Na+ current through the channel was not inhibited by known inhibitors of

voltage-dependent K+ channels (TEA+, Cs+, verapamil) but showed partial inhi-

bition by external Ca2+ with a Ki of 0.65 mM. Similarly, unidirectional influx of

Na+ into wheat root segments was insensitive to K+-channel inhibitors but was

inhibited by external Ca2+ with a Ki of 0.61 mM. This study provided good

evidence that Na+-influx in wheat is indeed mediated by non-selective VICs. To

date no electrophysiological studies have been carried out on rice, but analysis of

fluxes indicates that rice differs from other plant species insofar as an important

part of Na+ uptake proceeds through apoplastic leakage that breaches the cell wall

barriers of exodermis and endodermis (so-called by-pass flow, Yadav et al. 1996).

Apoplastic linkage between the external solution and the stele could occur in

root apices (before the Casparian strip is formed) or at the sites of lateral root

emergence (Yadav et al. 1996).

3.2 Ion Channels and Salt Tolerance in Arabidopsis thaliana

The interest of plant scientists in non-selective ion channels was fuelled by the

discovery that the Arabidopsis genome contains two large families of genes that are

homologous to so-called cyclic nucleotide gated channels (CNGCs) (Talke et al.

2003) and glutamate receptors (GLRs) (Davenport 2002). In animals these channels

are non-selective for cations and, in many cases, voltage-independent, thus exhibit-

ing features that are similar to those of plant VICs. The sensitivity of plant VICs to

CNs was explored in a study with root protoplasts from A. thaliana (Maathuis and

Sanders 2001). cGMP and cAMP reduced the open probability of VICs in excised

outside-out patches almost to zero and a membrane-permeable cGMP analog

reduced the instantaneous current recorded in the whole-cell configuration. The

authors went on to investigate the effect of membrane-permeable CNs on unidirec-

tional 22Na influx into A. thaliana roots and on the growth of A. thaliana seedlings

in saline condition (100 mM NaCl). Unidirectional Na+ influx was indeed lower in

plants exposed to cGMP or cAMP and treatment with either of the CNs consider-

able improved growth on high salt. The study provided experimental proof for

a link between VICs, Na+ influx and salt tolerance but, as is so often the case, it

raised as many questions as it answered. For example, CNGCs from animals and

A. thaliana (at least those that have been characterised) are activated rather than

de-activated by CNs. Currents through A. thaliana heterologously expressed CNGC
proteins also differ in other features from VIC-type currents. For example, CNGC1

is inward-rectifying and CNGC2 is selective for K+ (Leng et al. 1999, 2002).

Another question relates to the observation that CN-dependency of VICs was

only found in some protoplasts. It would be interesting to know whether this subset

of protoplasts derives from a specific cell type within the root. Finally, if CNs have

a regulatory role in salt adaptation then why do plants require experimental

application of CNs to take advantage of this role? Clearly down-regulation of

VICs by endogenous CNs is either not optimised for salt stress, or it is limited to

maintaining other essential functions of the channels. These questions apart, the
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study provides strong evidence that inhibition of VIC-mediated currents reduces

Na+ influx and improves salt tolerance in A. thaliana. A separate study investigated

the pharmacological profile of 22Na radiotracer flux into living A. thaliana plants to
assess the contribution of different transporters to Na+ influx (Essah et al. 2003).

Na+ influx was not affected by inhibitors of voltage-dependent K+ channels (Cs+,

TEA+), Cl� channels (Zn2+), Ca2+ channels (Gd3+, La3+, verapamil) or Na+/H+

antiporters (amiloride), and was unchanged in akt1 and hkt1 knockout mutants.

Na+-influx was partially inhibited by external Ca2+ as well as cGMP, but stimulated

by glutamate and 4-amino butyric acid (GABA). This pharmacological spectrum

agreed well with the one determined for non-selective ion channels in A. thaliana
root protoplasts (Demidchik and Tester 2002). While these data further confirmed

that VICs are the main contributor to Na+ influx they also suggested that more than

one pathway was involved without providing clear indication which genes may

encode these pathways.

3.3 Ion Channels and Salt Tolerance in Halophytic Higher Plants

The research described above provided firm evidence that VICs provide the major

pathway for in Na+ uptake in many salt-sensitive plant species, and that inhibition

of this pathway increases salt tolerance, but the question whether successful

evolutionary adaptation to a saline environment involved restriction of this path-

way, remained an open question. Thellungiella halophila (often called salsuginea)
a salt-tolerant close relative of A. thaliana provides a convenient system to address

this question (Inan et al. 2004; Amtmann et al. 2005; Amtmann 2009). T. halophila
still grows in an external salt concentration comparable to sea water (e.g. 500 mM

NaCl) and, unlike most plant species, it survives a sudden drastic increase in Na+

concentration (salt shock; Inan et al. 2004). Several laboratories have shown that

T. halophila (Shandong ecotype) accumulates considerably less Na+ in its leaves

than A. thaliana at a similar external salt concentration, both in the short term (hours)

and in the long run (weeks) and also maintains a higher K+/Na+ ratio (Inan et al.

2004; Volkov et al. 2004; Wang et al. 2006; Aleman et al. 2009a). Radiotracer flux

analysis of entire plants showed that unidirectional 22Na influx into the roots of

T. halophila exhibits similar characteristics as those found in A. thaliana and other

salt-sensitive species, in particular inhibition by external Ca2+ and insensitivity to

the IRC and ORC-blockers Cs+ and TEA+ (Wang et al. 2006). However, 22Na influx

was approximately 2 times smaller in T. halophila than in A. thaliana. Rather
unexpectedly, 22Na efflux was also smaller in T. halophila. Comparison of 22Na

flux with net shoot Na+ accumulation suggested a scenario in which (a) differences

in unidirectional Na+ influx into roots can account for the different Na+ accumula-

tion in the two species, (b) both species operate a similar degree of futile Na+

cycling with approximately 78% of the Na+ taken up being exported back into the

environment, and (c) less energy-dependent Na+ efflux is required in T. halophila
than A. thaliana to balance Na+-influx (Fig. 5). Further support for this model

was provided by a patch-clamp study comparing VIC-mediated currents in the
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plasma membrane of root protoplasts from T. halophila and A. thaliana (Volkov

and Amtmann 2006). VIC currents showed similar pharmacological profiles as in

other species, most notably inhibition by external Ca2+ and lack of inhibition by Cs+

or TEA+, and this profile was reflected in net Na+ accumulation in the shoots.

However, the reversal potential of T. halophila VIC currents shifted negative when

K+ in the external medium was replaced with Na+, which indicates that VICs in

T. halophila (unlike their counterparts in A. thaliana and other salt-sensitive

species) are selective for K+ over Na+. Interestingly the whole-cell conductance

was similar for K+ and Na+, indicating that ion movement through the channel does

not satisfy the GHK model. Nevertheless the negative Erev resulted in a consider-

ably smaller Na+ inward current in T. halophila compared to A. thaliana over a

wide range of voltages. Impalements of epidermal root cells in their native root

environment showed that T. halophila root cells are much less depolarised in

response to NaCl than those of A. thaliana (Volkov and Amtmann 2006). This

finding supports the notion that the size of VIC-mediated Na+ influx strongly

impacts on the membrane potential (see Sect. 2.3). Na+ influx calculated from the

measured VIC currents at the respective membrane potentials also agreed well with

unidirectional 22Na influx previously measured in both species (see above). The

combined results from the studies with T. halophila suggest that salt tolerance in

this species is at least in part due to increased K+/Na+ selectivity of root VICs,

which reduces unidirectional Na+ influx. The dual benefit of this strategy consists in

(a) maintenance of hyperpolarized membrane potential and thus selective uptake

capacity for K+ through the IRC and the high-affinity transporter HAK5 (Aleman

et al. 2009b), and (b) the reduced energy requirement for Na+ export.

Limitation of Na+ influx into roots is also evident in other salt-tolerant species.

For example, it was shown that Pucinella tenuiflora, a monocotyledonous

Unidirectional Na+ influx

0.66 µmol (min g root FW)–1

455 mg (g root DW)–1 /24 h

Unidirectional Na+ efflux

0.51 µmol (min g root FW)–1

78% of influx

Net Na+ uptake /24 h

102 mg (g root DW)–1

Arabidopsis thaliana
(Col0)

Thellungiella halophila
(Shandong)

Net Na+ uptake /24 h

29 mg (g root DW)–1

Unidirectional Na+ efflux

0.24 µmol (min g root FW)–1

77% of influx

Unidirectional Na+ influx

0.31 µmol (min g root FW)–1

86 mg (g root DW)–1 /24 h 

Fig. 5 Unidirectional flux and net uptake of Na+ in A. thaliana and T. halophila.Measured values

are given in normal font, calculated values in italic font. All data taken from (Wang et al. 2006)
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halophyte, achieves a higher K+/Na+ accumulation ratio in the shoot than wheat

(Wang et al. 2009). As in the example of T. halophila and A. thaliana, both
unidirectional Na+ influx into the roots and unidirectional Na+ efflux from the

roots were smaller in P. tenuiflora than in wheat while the relative amount of futile

Na+ cycling was the same in both species (efflux being 80% of influx).

In contrast to the ‘salt excluders’ T. halophila and P. tenuiflora, the halophyte

Suaeda maritima is a ‘salt includer’ which accumulates large amounts of Na+

during growth. Interestingly, this halophyte also seems to employ different path-

ways for Na+ uptake than the other two halophytes. A recent study showed

that cAMP, Ca2+ or Li+ had no effect on unidirectional Na+ influx or net Na+

accumulation in S. maritima, whereas Ba2+ decreased both parameters (Wang et al.

2007). Most strikingly, at high external NaCl (150 mM) unidirectional Na+ influx

into roots, net Na+ accumulation in the shoot and growth were all inhibited by TEA+

and Cs+, suggesting that in saline conditions K+-inward rectifying channels mediate

Na+ influx. The main question arising from this study is how S. maritima manages

to maintain a membrane potential in high salt that is negative enough to operate the

IRC. One possible explanation is that S. maritima has no VICs, thereby reducing the
depolarising effect of Na+, and a very high activity of the plasma membrane proton

pump, which counteracts Na+-influx through the IRC. An obvious benefit of

restricting Na+-uptake through IRCs is that it will always be accompanied by

considerable K+ uptake (see IRC-mediated K+ and Na+ current in Figs. 3 and 4),

which ensures a high K+/Na+ accumulation rate in the plant. Seen in this light,

S. maritima and T. halophila follow the same general strategy which consists in the

restriction of Na+-uptake through VICs and the maintenance of a negative mem-

brane potential for K+-uptake (Fig. 6). One could even argue that the elimination of

Na+ influx through VICs is necessary for substantial Na+ uptake through IRCs, and

hence a pre-requisite for ‘Na+-inclusion’ in halophytes. The fact that experimental

inhibition of VICs increases salt-tolerance in a glycophyte (Maathuis and Sanders

2001; see Sect. 3.2) further advocates VICs as a primary target for improving salt

tolerance in crops. Figure 6 summarises the proposed involvement of different ion

channels in Na+ uptake in different plant species.

3.4 Ion Channels and Salt Tolerance in Charophytes

A four-gene phylogenetic analysis locates embryophyte land plants phylogeneti-

cally within the Charophyta, and identifies the Charales as the closest living aquatic

relatives of land plants (Karol et al. 2001; McCourt et al. 2004). Fossil evidence

tells us that the Devonian charophytes (living 416 – 359 million year ago) could

survive in marine or brackish environments (Kelman et al. 2004; Edgell 2003).

Modern charophytes contain both salt-sensitive (Chara australis) and salt-tolerant

genera (Lamprothamnium succinctum). The salt-tolerance of Lamprothamnium is

impressive: every single cell in the plant can survive at salinities greater than

seawater and can tolerate large shifts in salinity (Beilby and Shepherd 2006).

Cells of C. australis, on the other hand, die within days of exposure to 50 mM
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NaCl if the medium is low in calcium. Thus, comparing the electrophysiology of

these closely related plants of ancient lineage is likely to identify a minimal

ensemble of factors that influence salt tolerance.

The electrophysiology of charophytes is well explored using the voltage clamp

technique (Beilby 1989, 1990). The I/V characteristics are very similar to those of

A.thaliana and crop plants (Chen et al. 2007; Munns and Tester 2008) and contain

the outward current from the proton pump, inward and outward rectifying currents

through IRCs and ORCs and a background (leak) current thought to flow through

non-selective VICs.

The two components of salt stress, reduction in turgor and sodium toxicity, were

distinguished experimentally by exposing the cells to sorbitol medium and saline

medium of equivalent osmolarity. In both Chara and Lamprothamnium, the back-
ground conductance does not change upon mild (non plasmolysing) turgor decrease

but it increases in a Ca2+ dependent manner in saline medium. The proton pump in

salt tolerant charophyte cells is activated by a decrease in turgor (Al Khazaaly and

Beilby 2007) and must therefore sense the pressure change or receive information

from a pressure sensor. This activation is transient, as Lamprothamnium cells

regulate their turgor (Bisson and Kirst 1980). The proton pump is also activated

Y +

Salt-sensitive
(A. thaliana, wheat)

Y –

Salt-tolerant
(T. halophila, P. tenuiflora)

VICVIC

Y

K+

K+
Na+

K+
Na+

K+
Na+

K+
Na+ Na+

K+
Na+

K+
Na+

K+
Na+

H+H+H+

–

Halophyte
(S. maritima)

H+pumpH+pumpH+pump

IRCIRCIRC

ORCORCORC

Fig. 6 Proposed scenarios of Na+ and K+ flux across plasma membrane ion channels in roots of

salt-sensitive and salt-tolerant plant species. Left panel: In salt-sensitive plants a large Na+ influx

through the voltage-independent channel (VIC) leads to depolarisation of the membrane potential,

which in turn inactivates the K+-inward rectifying channel (IRC) and activates the K+-outward

rectifying channel (ORC). Proton pump activity is not large enough to fully compensate for the

depolarising effect of the VIC. Centre panel: In some salt-tolerant plants Na+ influx through the

VIC is reduced (e.g. through higher K+/Na+ selectivity in T. halophila), and the membrane

potential remains negative enough to activate the IRC. Right panel: In the halophyte S. maritima,
the VIC appears to be absent and Na+ influx occurs only through the IRC. Large pump activity

hyperpolarises the membrane
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by an increase in Na+ concentration (Beilby and Shepherd 2001), so cells must be

able to monitor Na+ concentration. This activation persists as long as the cells stay

in the high salt medium. The smaller Lamprothamnium plants in more saline

environments are presumed to have less energy for growth (Shepherd et al.

1999). The proton pump in salt-sensitive charophyte cells does not respond to

decrease in turgor (Beilby and Shepherd 2006). It is transiently activated by an

increase in Na+ concentration if Ca2+ concentration in the medium is sufficiently

high. It is rapidly inactivated when Na+ concentration is high and Ca2+ concentra-

tion is low (Beilby and Shepherd 2006; Shepherd et al. 2008). Thus, in charophytes

higher Ca2+ content of saline media exerts its protective influence not only by

blocking VICs, but also by keeping the pump running.

In salt-sensitive Chara, the inactivation of the pump brings the membrane

potential to the Erev of the background current, which is near �100 mV and rather

insensitive to changes in ionic composition or pH of the medium. (This is puzzling

from thermodynamic considerations and needs more research.) Spontaneous repet-

itive transient depolarisations (action potentials, APs) are often observed with long

duration in low calcium saline media, further depleting the cell of K+ and Cl�

(Shepherd et al. 2008). The involvement of APs in signalling saline stress from root

to shoot may also be important in land plants (Felle and Zimmermann 2007).

Recently, another parameter of salt stress was found that distinguishes Chara
from Lamprothamnium: Chara exhibits salinity-induced noise in the membrane

potential upon exposure to saline medium (Al Khazaaly et al. 2009). At frequencies

between 1 and 500 mHz classical noise analysis shows (1/f2) rise of noise power as
frequency falls, and a marked increase in noise power when the cell is exposed to

high salinity (but not to equivalent osmotic stress). Inspection of the time domain

shows that as well as initiating depolarisation, exposure to high Na+ concentrations

usually initiates a continuous but random series of small rapid depolarisations with

a slower recovery. It is postulated that high Na+ concentration activates proton (or

hydroxyl) channels. After longer exposure to high salinity, the membrane potential

of C. australis cells continues to depolarize toward zero, while the noise diminishes

(suggesting that progressively larger numbers of proton/hydroxyl channels are

activated). The I/V data after several hours of saline stress can be simulated with

the action of proton/hydroxyl channels (Beilby and Al Khazaaly 2009). The activa-

tion of these channels at the time of exposure to salt would be disastrous for plant

cells, as both the negative membrane potential and the pH gradients between the

cytoplasm, vacuole and the medium are necessary for the cell to survive in high

salt. Interestingly, proton/hydroxyl channels are also present in roots of wheat

where they mediate circulating currents similar to those observed in charophyte

cells (Raven 1991; Tyerman et al. 2001).

In summary, the salt-tolerant Lamprothamnium senses a decrease of turgor and

an increase of Na+ in the medium, and responds by pumping protons faster to

maintain a negative membrane potential while keeping proton/hydroxyl channels

closed. The turgor is thus regulated. Salt-sensitive Chara does not respond to turgor
decrease, does not regulate turgor, loses the pump function and negative membrane

potential and undergoes spontaneous repetitive APs. The opening of proton/
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hydroxyl channels speeds up the irreversible decline by further decreasing the

membrane potential and promoting K+ loss through ORCs.

4 Summary and Conclusions

Salt sensitivity in plants is often accompanied by high Na+ accumulation and a low

Na+/K+ ratio in the shoot. These parameters are ultimately determined by the rate of

Na+ uptake into root cells. Theoretical current–voltage relationships based on

existing knowledge on selectivity and gating properties of plant ion channels

point to an important role of voltage-independent channels (VICs) in root Na+

uptake. In salt-sensitive plant species, including A. thaliana and important crops

like wheat, maize and barley, experimental evidence supports the notion that non-

selective VICs are the main pathway for Na+ influx into roots. Inhibition of VIC-

mediated Na+ influx with cyclic nucleotides increases salt tolerance in A. thaliana.
Rice seems to differ from the above mentioned plant species insofar as apoplastic

Na+ influx makes an important contribution to Na+ accumulation. In many salt-

tolerant plant species unidirectional Na+ influx into roots is smaller than in related

salt-sensitive species. In T. halophila, a close relative of A. thaliana, this is achieved
by increased K+/Na+ selectivity of VICs. Restriction of Na+ influx through VICs

has the additional benefit of maintaining a negative membrane potential enabling

selective K+-uptake through inward rectifying K+ channels (IRCs), which supports

K+/Na+ homeostasis in the plant. In the halophyte S. maritima Na+ influx into roots
occurs through IRCs. IRC activity depends on a hyperpolarised membrane poten-

tial, which is probably achieved through elimination of VIC-mediated Na+ influx

and strong activity of the plasma membrane proton pump. The importance of the

proton pump for salt tolerance is also evident in ancestral aquatic plants of the

genus Charales. Recent evidence suggests that salt-sensitivity in Chara is due to

uncoupling of the proton pump by proton (or hydroxyl) channels under salt stress.

This channel type has also been described for wheat, and its role for salt-sensitivity

in land plants requires further attention in the future. We conclude that inhibition/

modification of VICs and activation of the proton pump should be at the centre of

biotechnological efforts to improve salt tolerance in crops.
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Cation Channels and the Uptake

of Radiocaesium by Plants

Philip J. White, Lea Wiesel, and Martin R. Broadley

Abstract Caesium (Cs) is not required by plants and rarely reaches toxic

concentrations in the natural environment. However, two harmful, long-lived,

radioisotopes of Cs (134Cs and 137Cs) are produced anthropogenically. These radio-

isotopes enter the terrestrial food chain through plants and thereby impact on human

health and commerce. Since radiocaesium enters plants across the plasma mem-

branes of root cells, reducing radiocaesium influx to root cells is expected to reduce

its concentration in edible tissues. Theoretical models indicate that, in K-replete

plants, most Cs (30–90%) enters root cells through voltage-independent cation

channels (VICCs), with K+/H+ symporters (KUPs) contributing the remainder.

This conclusion is consistent with the pharmacology of Cs+ influx to K-replete

plants, which is identical to that of VICCs, and the phenotypes of Arabidopsis
mutants lacking particular VICCs, such as cyclic nucleotide gated channels

(CNGCs), which have lower shoot Cs concentrations than wild-type plants. During

K-starvation, the expression of genes encoding KUPs, such as AtHAK5, increases,
resulting in increased Cs+ uptake and an increased contribution of KUPs to total

Cs+ uptake, as witnessed by changes in the pharmacology of Cs+ influx to roots

and the phenotype of Arabidopsis mutants lacking AtHAK5, which accumulate

less Cs than wild-type plants. Unfortunately, the absence of CNGCs and KUPs

has pleiotropic effects on plant growth, and manipulation of their cationic selec-

tivity may be required to develop crop genotypes with reduced radiocaesium

accumulation.

P.J. White (*) and M.R. Broadley

Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK

e-mail: philip.white@scri.ac.uk

L. Wiesel

Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK;

University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK

V. Demidchik and F. Maathuis (eds.), Ion Channels and Plant Stress Responses,
Signaling and Communication in Plants,

DOI 10.1007/978-3-642-10494-7_3, # Springer-Verlag Berlin Heidelberg 2010

47



Abbreviations

CNGC Cyclic nucleotide gated channel

CPA Cation/proton-antiporter family

DACC Depolarisation-activated Ca2+ channel

GLR Glutamate receptor

HACC Hyperpolarisation-activated Ca2+ channel

KIRC Inward-rectifying K+ channel

KORC Outward-rectifying K+ channel

KUP ‘High-affinity’ K+/H+ symporter

NORC Non-specific outward-rectifying cation channel

NSCC Non-specific cation channel

QTL Quantitative trait locus

TPK Tandem pore K+ channel

VICC Voltage-insensitive cation channel

1 Background

Caesium (Cs) is an alkali metal element with chemical properties similar to

rubidium (Rb) and potassium (K). It is found naturally as the stable isotope 133Cs,

which may reach concentrations of 25 mg g�1 dry soil and low micromolar

concentrations in the soil solution (White and Broadley 2000). Caesium is not

required by plants and, although Cs+ can perturb cellular biochemistry by compet-

ing with K+ (Cline and Hungate 1960; Hampton et al. 2004; Le Lay et al. 2006; Qi

et al. 2008), it is rarely present at toxic concentrations in the natural environment

(White and Broadley 2000). However, two anthropogenic radioisotopes of Cs

(134Cs and 137Cs) produced in nuclear reactors and thermonuclear explosions are

of environmental concern (White and Broadley 2000). These radioisotopes migrate

rapidly in an aqueous environment, emit harmful b and g radiation during their

decay, have relatively long half-lives (2.06 and 30.17 years, respectively) and are

rapidly incorporated into biological systems (White and Broadley 2000). They

enter the terrestrial food chain through plants, and their presence in foodstuffs

impacts upon both health and commerce.

Agricultural land in Belarus, Russia and Ukraine is still contaminated by 137Cs

originating from the Chernobyl accident in 1986 (Smith et al. 2000; Beresford et al.

2001). Two strategies are available to return this land to safe agricultural produc-

tion. The first is to cleanse the soil of radiocaesium. The second is to grow crops that

do not accumulate radiocaesium in their edible portions. Since Cs accumulation by

plants is a heritable trait (Payne et al. 2004), plants with extreme phenotypes could

be developed in breeding programs. Growing plants with an increased ability to

accumulate 137Cs accelerates the cleansing of contaminated soils (Entry et al. 1996;
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Dushenkov 2003; White et al. 2003), whilst plants accumulating less 137Cs in their

edible tissues can be used to develop “safer” crops (White and Broadley 2000;

White et al. 2003, 2004). Cultivation of safer crops complements other agricultural

countermeasures to reduce the radiation dose to populations inhabiting areas con-

taminated by 137Cs (Alexakhin 1993; Beresford et al. 2001). A recent survey of

over 130 potential countermeasures for managing land contaminated with radio-

caesium suggested that selective crop breeding was one of only six strategies

worthy of further exploration (http://www.strategy-ec.org.uk). This chapter will

focus on strategies to reduce Cs influx to plant roots and, thereby, radiocaesium

accumulation by crops.

Plants acquire Cs from the soil solution. It is taken up by epidermal and cortical

cells of the root as the monovalent cation, Cs+, which is transported symplastically,

through the interconnected cytoplasms of root cells, across the root to the stele,

where it is loaded into the xylem (White and Broadley 2000; White et al. 2004).

Only about 20% of the Cs delivered to the shoot via the xylem is retained by the

shoot, and most is returned to the root via the phloem for recirculation within the

plant (Buysse et al. 1995; Hampton 2005). Thus, it is argued that the physiological

process impacting most on Cs accumulation by plants are the uptake of Cs from

the rhizosphere and the delivery of Cs to the xylem (White and Broadley 2000;

Hampton et al. 2005). These processes are catalysed by transport proteins in the

plasma membrane of root cells, and control of their activities are, therefore, funda-

mental to the development of safer crops for soils contaminated by radiocaesium.

2 Historical Studies

It has long been known that the fluxes of monovalent cations across lipid mem-

branes must be catalysed by transport proteins. Based upon the chemical similarity

of Cs+, Rb+ and K+, the concentration-dependencies for their uptake, and competi-

tion between these cations for uptake by plant roots, researchers proposed that they

shared the same uptake mechanisms: high affinity mechanisms at micromolar

rhizosphere concentrations and low affinity mechanisms at millimolar rhizosphere

concentrations (Bange and Overstreet 1960; Handley and Overstreet 1961; Shaw

and Bell 1989; Zhu and Smolders 2000). In addition, it was proposed that the high-

affinity mechanisms catalyzing Cs+ uptake were unconditionally energy-dependent,

whereas the low affinity mechanisms catalyzing Cs+ uptake could occur through

nonspecific cation channels utilizing the Cs+ electrochemical gradient alone (Bange

and Overstreet 1960; Shaw and Bell 1989). However, molecular mechanisms of

cation transport cannot be inferred solely from kinetic parameters: it is well known

that inward-rectifying K+ channels catalyse K+ influx to plant cells from solutions

with extremely low K+ concentrations, provided there is a supporting electrochem-

ical gradient, and that H+/K+-cotransporters contribute to K+ influx to plant cells

across a wide range of extracellular K+ concentrations (White and Broadley 2000;

Gierth and Mäser 2007; Britto and Kronzucker 2008; Karley and White 2009).
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The uptake of Cs+ by plant roots is not only reduced by the presence of monovalent

cations in the rhizosphere, with an apparent effectiveness of K+ � Rb+ > NH4
+ >

Na+ � Li+ (Bange and Overstreet 1960; Handley and Overstreet 1961; Shaw and

Bell 1989; Hampton et al. 2004), but is also partially inhibited by millimolar

concentrations of divalent cations, with an apparent effectiveness of Ba2+ > Mg2+

> Ca2+ (Bange and Overstreet 1960; Handley and Overstreet 1961; Sze and Hodges

1977; Broadley et al. 2001; Hampton et al. 2004) and trivalent cations, such as La3+

and Gd3+ (Broadley et al. 2001; Hampton et al. 2004).

3 Caesium Transport Proteins in Root Cells

Several types of transport protein are able to catalyse Cs+ transport across the

plasma membrane of root cells. Inward-rectifying K+ channels (KIRCs), voltage-

insensitive cation channels (VICCs), voltage-dependent Ca2+ channels (HACCs

and DACCs) and “high-affinity” K+/H+ symporters (KUPs) can catalyse Cs+ influx

to root cells, whilst outward-rectifying cation channels (KORCs and NORCs) can

catalyse Cs+ efflux from root cells (White and Broadley 2000; White et al. 2004;

Hampton et al. 2005; Qi et al. 2008). These transport proteins have contrasting

abilities to discriminate between Cs+ and K+ and their relative abundance and

activities vary with cell type, plant species and environmental conditions. It has,

therefore, been postulated that differences in the complement of these transport

proteins can account for the observations that both Cs+ uptake and shoot Cs/K

quotients vary (a) with plant species and (b) with plant K status (White and

Broadley 2000; White et al. 2003, 2004; Hampton et al. 2005; Qi et al. 2008;

Wiesel et al. 2008). Since Cs is not an essential element, nor is toxic to plants at the

concentrations found in the natural environment, it is unlikely that there has been

any evolutionary pressure to select for protein structures that permit or exclude Cs+

transport. Thus, differences in the Cs/K selectivity of transport proteins are likely to

have arisen serendipitously, as a consequence of the requirements for the transport

of other, physiologically important, cations.

Several K+-selective channels belonging to the “Shaker” superfamily are present

in the plasma membrane of Arabidopsis root cells (Table 1). These include the

KIRCs AtAKT1, which appears to be the dominant K+ channel involved in K+

nutrition (Hirsch et al. 1998; Spalding et al. 1999; Broadley et al. 2001; Gierth et al.

2005; Xu et al. 2006), AtKC1/AtKAT3/AtAKT4, which appears to be a regulatory

subunit for AtAKT1 (Reintanz et al. 2002; Pilot et al. 2003; Fizames et al. 2004),

and (possibly) AtKAT1, and the KORCs AtSKOR, which is implicated in loading

K+ into the xylem for transport to the shoot (Gaymard et al. 1998), and AtGORK,

which is present in cells throughout the root, where it is thought to be involved in

osmotic regulation and the maintenance of a negative cell membrane potential

(Ivashikina et al. 2001; Reintanz et al. 2002; Fizames et al. 2004). Orthologues of

genes encoding these channels have been found in roots of all plant species studied

to date (Zimmermann and Chérel 2005; Ashley et al. 2006; Gambale and Uozumi
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2006; Lebaudy et al. 2007). Although KIRCs are permeable to Cs+, they transport

little Cs+ into root cells because increasing extracellular Cs+ reduces cation perme-

ation through them (Wegner and Raschke 1994; Maathuis and Sanders 1995; White

and Lemtiri-Chlieh 1995; Bregante et al. 1997; White 1997; White and Broadley

2000). The KORCs are also permeable to Cs+ and are relatively insensitive to

inhibition by extracellular Cs+ (Maathuis and Sanders 1995; Roberts and Tester

1995, 1997b; White and Lemtiri-Chlieh 1995; Vogelzang and Prins 1995; White

1997; Gaymard et al. 1998), although there is evidence that KORCs are inhibited by

cytoplasmic Cs+ in a voltage-dependent manner (Maathuis and Sanders 1995).

Caesium-permeable VICCs in the plasma membrane of root cells have been

characterized using a variety of electrophysiological techniques. These channels are

a subset of the non-specific cation channels (NSCCs; Demidchik et al. 2002b;

Demidchik and Maathuis 2007). They were first observed as a “leak conductance”

in the plasma membrane of green algae (Yurin et al. 1991; Demidchik et al. 1997).

Their counterparts in higher plants were initially characterized following incorpora-

tion of plasma membrane vesicles from rye roots into artificial planar lipid bilayers

(White and Tester 1992) and their presence was subsequently confirmed in proto-

plasts from rye roots (White and Lemtiri-Chlieh 1995). Since then they have been

observed in plasma membrane fractions from wheat roots (Davenport and Tester

2000; White 2005) and appear to be ubiquitous in protoplasts from plant roots

(White 1997, 1999; Roberts and Tester 1997b; Buschmann et al. 2000; Maathuis

and Sanders 2001; Demidchik and Tester 2002; Demidchik et al. 2002a, b; Volkov

and Amtmann 2006; Demidchik and Maathuis 2007). It is thought that VICCs are

encoded by members of the cyclic-nucleotide gated channel (CNGC) and gluta-

mate receptor (GLR) gene families (White and Broadley 2000; Davenport 2002;

Demidchik et al. 2002b; White et al. 2002, 2004; Talke et al. 2003; Hampton et al.

2005; Demidchik and Maathuis 2007; Kaplan et al. 2007; Roy et al. 2008), most of

which are expressed in roots (Table 1). Direct evidence that AtCNGCs and AtGLRs

transport Cs+ is scarce. However, both AtCNGC2 and AtCNGC4 mediated cyclic-

nucleotide-dependent Cs+ influx when expressed in oocytes (Leng et al. 2002;

Balagué et al. 2003), the expression of AtCNGC10 in Escherichia coli LB650
(DtrkH, DtrkG) resulted in Cs toxicity (Li et al. 2005), and the addition of cAMP

to inside-out membrane patches from protoplasts of Arabidopsis root cells reduced
the activity of VICCs permeable to Cs+ (Maathuis and Sanders 2001). Similarly,

AtGLR3.4 mediated Cs+ influx when expressed in oocytes (Meyerhoff et al. 2005)

and glutamate-activated, voltage-independent Cs+ currents sensitive to quinine, La3+

and Gd3+ have been recorded in protoplasts from Arabidopsis root cells (Demidchik

et al. 2002b, 2004). This pharmacological profile is consistent with that of GLR-

mediated phenomena in plants (White et al. 2002).

Although NORCs transport Cs+ (Wegner and Raschke 1994) they are unlikely to

contribute significantly to Cs+ efflux across the plasma membrane, since they open

only at extremely positive membrane potentials and unphysiologically high cytosolic

Ca2+ concentrations (Wegner and Raschke 1994; White 1997; Wegner and De Boer

1997). Similarly, although DACCs are permeable to Cs+ (White 2000, 2005; White

et al. 2002), it is thought that the Ca2+ concentrations found in the rhizosphere will
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prevent Cs+ permeating these channels (White and Broadley 2000). No genes

encodingDACCs are known for certain. One candidate in some plant species appears

to be TPC1 (Hashimoto et al. 2005), although AtTPC1 is present in the tonoplast of

Arabidopsis (Peiter et al. 2005; Ranf et al. 2008; Gradogna et al. 2009). Several

HACCs have been recorded in the plasma membrane of root cells (White 2000;

Demidchik et al. 2002a, 2007;White et al. 2002; Foreman et al. 2003; Miedema et al.

2008). The HACCs are thought to be encoded by members of the annexin gene

family, all of which are expressed in roots (Clark et al. 2001; White et al. 2002;

Mortimer et al. 2008). The permeability to Cs+ of neither HACCs nor annexins

appears to have been confirmed. However, a Cs+-permeable, hyperpolarisation-

activated NSCC activated by reactive oxygen species has been observed in the

plasma membrane of protoplasts of Arabidopsis root cells (Demidchik et al. 2003).

The “high-affinity” K+/H+ symporters present in the plasma membrane of root

cells are thought to be encoded by members of the KUP gene family (Rodrı́guez-

Navarro and Rubio 2006; Gierth and Mäser 2007; Grabov 2007; Karley and White

2009) and it has been shown that AtHAK5 is present in the plasma membrane

of Arabidopsis root cells (Qi et al. 2008). Plant KUPs are expected to transport

Cs+, as do their homologues from fungi and bacteria (White and Broadley 2000),

but this has rarely been tested. However, the expression of a modified AtHAK5,
with a leucine changed to a histidine at position 776, in a mutant yeast strain

(CY162: Dtrk1, Dtrk2) with reduced K+ uptake allows it to accumulate both K+

and Cs+ (Rubio et al. 2000; Qi et al. 2008), and Cs uptake and accumulation by

Arabidopsis parallels the expression of AtHAK5 (Hampton et al. 2004; Qi et al.

2008). Similarly, heterologous expression of barley, rice or pepper orthologs of

AtHAK5 (HvHAK1, OsHAK1, CaHAK1) promotes Cs+ uptake in yeast, and their

expression in roots of K-starved plants is correlated with increased high-affinity

Cs+ uptake (Santa-Marı́a et al. 1997; Rubio et al. 2000; Bañuelos et al. 2002;

Martı́nez-Cordero et al. 2005).

Caesium influx to the vacuole is likely to be catalysed by cation/H+-antiporters,

whereas Cs+ release from vacuoles probably occurs through Cs+-permeable cation

channels. Members of the CPA cation/H+-antiporter family, which in Arabidopsis
comprises eight AtNHX genes, 28 AtCHX genes, six AtKEA genes and two AtNHD
genes resembling NhaD, are likely to catalyse Cs+ transport into vacuoles of root

cells, although this has not been proven (Sze et al. 2004; Zimmermann and Chérel

2005; Ashley et al. 2006; Pardo et al. 2006; Gierth and Mäser 2007). Indirect assays

based on the ability of cations to dissipate a pH gradient held in liposomes contain-

ing AtNHX1, which is found in the tonoplast of root cells, or LeNHX2, an ortholog

of AtNHX5 that is present in Golgi and pre-vacuolar compartments of tomato roots,

suggest that these proteins transport Cs+ but at lower rates than K+ (Venema et al.

2002, 2003).

The electrical activities of several distinct Cs+-permeable cation channels have

been recorded in vacuoles from root cells, of which the two most frequently

observed are the tonoplast SV and FV channels (Lebaudy et al. 2007; Pottosin

and Schönknecht 2007). The gene encoding the Arabidopsis SV channel appears to

be AtTPC1 (Peiter et al. 2005; Ranf et al. 2008; Gradogna et al. 2009), but an
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intracellular location of TPC1 orthologues is not observed in all plant species

(Hashimoto et al. 2005). The SV channel has a significant permeability to Cs+

(White 2000). The genetic identity of the FV channel is not yet known (Demidchik

and Maathuis 2007). It is possible that Cs+ fluxes across the tonoplast might be

mediated by cation channels encoded by members of the tandem pore K+ channel

(TPK/KCO) and Kir-like channel (KCO3) gene families (Véry and Sentenac 2003;

Zimmermann and Chérel 2005; Lebaudy et al. 2007). In Arabidopsis, AtTPK1,
AtTPK2, AtTPK3 (¼AtKCO6), AtTPK5 and AtKCO3 are all expressed in roots and

located at the tonoplast (Schönknecht et al. 2002; Zimmermann and Chérel 2005;

Voelker et al. 2006; Latz et al. 2007). However, AtTPK1 appears to encode a

channel that has little permeability to Cs+ and resembles the K+-selective, VK

channel (Bihler et al. 2005; Gobert et al. 2007; Latz et al. 2007; Lebaudy et al.

2007). Intriguingly, some KUPs, such as OsHAK5, are also found in the tonoplast

(Bañuelos et al. 2002), and it has been suggested that these cation/H+-symporters

might catalyse the efflux of monovalent cations from the vacuole (Rodrı́guez-

Navarro and Rubio 2006).

4 Molecular Mechanisms for Cs Uptake by Roots

of Non-Mycorrhizal Plants

4.1 K-Replete Plants

The kinetic parameters of proteins able to transport Cs+ across the plasma mem-

brane have been incorporated into a theoretical model to predict their contributions

to Cs+ influx to a stereotypical root cell (White and Broadley 2000; Hampton et al.

2005). This model suggests that, under K-replete conditions, (a) Cs+ influx through

KIRCs is negligible, (b) VICCs mediate most (30–90%) Cs+ influx, with KUPs

mediating the remainder, and (c) KORCs load Cs+ into the xylem. These predic-

tions have been tested using Arabidopsis. First, the pharmacology of Cs+ influx to

roots of intact Arabidopsis was compared with that of transport proteins that could

mediate Cs+ influx (White and Broadley 2000; Broadley et al. 2001; Hampton et al.

2004; Qi et al. 2008). Second, Cs accumulation by mutants lacking specific

transport proteins was assayed, with the expectation that mutants lacking transport

proteins mediating Cs+ influx to roots would have reduced Cs+ uptake and shoot Cs

concentrations (Broadley et al. 2001; White et al. 2004; Hampton et al. 2005; Qi

et al. 2008). Third, genetic loci impacting on Cs+ accumulation in K-replete plants

were identified (Payne et al. 2004).

The prediction that VICCs catalyse significant Cs+ influx to root cells is sup-

ported by the observation that both VICCs and Cs+ uptake by roots of K-replete

plants, are partially inhibited by submillimolar concentrations of Gd3+, La3+,

Ba2+, Mg2+ and Ca2+, but not by TEA+ or 10 mM Br-cAMP (White and Lemtiri-

Chlieh 1995; White 1997, 1999; White and Broadley 2000; Broadley et al. 2001;
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Demidchik et al. 2002a, b; Hampton et al. 2004, 2005; Volkov and Amtmann

2006). The prediction, that Cs+ influx to root cells through KIRCs is negligible, is

supported by the observations that both Cs+ influx to roots and shoot Cs concentra-

tions of Arabidopsis lacking AtAKT1 are often greater than those of wild-type

plants (Broadley et al. 2001;White et al. 2004; Qi et al. 2008). Two explanations for

the increased Cs uptake in akt1mutants have been suggested: (a) that the expression

of genes encoding Cs+-permeable transporters contributing to cellular K-homeo-

stasis, such as AtHAK5, are upregulated in plants lacking AtAKT1, which is

consistent with transcriptional analyses of akt1 mutants (Zimmermann and Chérel

2005; Qi et al. 2008), and (b) that the loss of AtAKT1 results in a more negative cell

membrane potential and, thereby, increases the activity of other Cs+-permeable

transporters (White et al. 2004).

Evidence that AtCNGCs underlie the VICC-mediated Cs+ influx to roots of

K-replete plants is based on measurements of Cs accumulation by Arabidopsis
mutants lacking individual AtCNGCs. However, although some Arabidopsis
mutants lacking AtCNGCs, such as cngc2, cngc3, cngc16, cngc19 and cngc20,
have lower shoot Cs concentrations than wild-type plants, mutants lacking other

AtCNGCs, such as cngc1, cngc9, cngc10 and cngc12, have greater shoot Cs

concentrations than wildtype plants (White et al. 2004; Hampton et al. 2005).

Again, it has been suggested that increased Cs accumulation in Arabidopsismutants

lacking particular AtCNGCs is a consequence of functional compensation in gene

expression (White et al. 2004; Hampton et al. 2005). Thus, the expression of genes

encoding plasma membrane K+-transporters might be altered to compensate for the

absence of AtCNGCs that contribute significantly to cellular K homeostasis and/or

the expression of genes encoding Ca2+-transporters might be altered to compensate

for the absence of AtCNGCs that contribute to cytoplasmic Ca2+-homeostasis or

intracellular Ca2+ signalling (White et al. 2004; Hampton et al. 2005). This hypoth-

esis is consistent with the upregulation of genes encoding AtKUPs in the cngc4
mutant (Hampton 2005), and the observation that a greater fraction of Cs+ influx to

roots of cngc1 and cngc4 mutants is inhibited by extracellular NH4
+ than in wild-

type plants (Hampton et al. 2005). Interestingly, only the lack of AtCNGC1

decreased shoot K concentration significantly, which may attest to functional

compensation by other K+ transport proteins to maintain K+ homeostasis in mutants

lacking other AtCNGCs, and shoot Ca concentration was not affected by the

absence of any AtCNGC (Hampton et al. 2005). Arabidopsis mutants lacking

AtHAK5 (hak5-1, hak5-2) or AtKUP4 (trh1), and Arabidopsis mutants with aber-

rant AtKUP2 activity (shy3.1), have lower shoot Cs concentrations than wild-type

plants (White et al. 2004; Qi et al. 2008). This is consistent with the prediction that

KUPs catalyse Cs+ influx to root cells. The prediction that Cs+ is delivered to the

xylem by a KORC, AtSKOR, is supported by the observation that shoot Cs

concentrations are generally reduced in the skor mutant (White et al. 2004).

When the Ler x Col genetic mapping population of Arabidopsis was grown on

agar containing subtoxic levels of Cs, four chromosomal loci (QTL) impacting on

shoot Cs concentration were identified, accounting for > 80% of the genetic

contribution to the trait variation (Payne et al. 2004). These QTL were located on
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Chromosomes I, II, IV and V. Significantly, the QTL on the top of Chromosomes I

and V co-localised with QTL impacting shoot Cs concentration in the Ler x CVI

genetic mapping population of Arabidopsis (Payne et al. 2004). A cursory glance at

these chromosomal regions reveals the presence of genes encoding putative Cs+

transporters. For example, genes encoding a putative plasma membrane K+-channel

(AtTPK4) on Chromosome I and a putative plasma membrane VICC (AtGLR3.1)
on Chromosome II are found within a genomic region of 100,000 bp (c. 25 genes)

on either side of the marker where a significant allelic effect on shoot Cs concen-

tration was observed in the Ler x Col population (Payne et al. 2004).

4.2 K-Starved Plants

The intrinsic cationic selectivity of KIRCs, KUPs and VICCs differs, and the fluxes

of Cs+ and K+ that they catalyse are influenced uniquely by both the absolute and

relative concentrations of these cations in the rhizosphere (White and Broadley

2000). The expression of genes encoding these transporters is also affected differ-

ently by plant K status. White et al. (2004) suggested that these phenomena could

account for: (a) the lack of correlation between the shoot Cs:K ratio and the Cs+:K+

ratio in the soil solution when plants were grown in media with contrasting K+

concentrations (Cline and Hungate 1960; Smolders et al. 1996a, b), (b) differences

in the relative uptake of Cs+ and K+ by plants of different K-status (e.g. Qi et al.

2008) and (c) increased Cs+ uptake and accumulation by K-starved plants (e.g. Zhu

and Smolders 2000; Hampton et al. 2004; Qi et al. 2008).

In Arabidopsis, K-starvation, but not Cs-toxicity, increases the expression of

AtHAK5, occasionally AtKUP3, and both AtGLR1.2 and AtGLR1.3 in roots (Kim

et al. 1998; Maathuis et al. 2003; Ahn et al. 2004; Armengaud et al. 2004; Hampton

et al. 2004, 2005; Shin and Schachtman 2004; Gierth et al. 2005; Sahr et al. 2005;

Amtmann et al. 2006; Cao et al. 2008; Qi et al. 2008). Potassium starvation also

reduces the expression of AtSKOR (Maathuis et al. 2003; Pilot et al. 2003), but

rarely affects the expression of genes encoding KIRCs, CNGCs or TPK/KCOs in

Arabidopsis roots (Maathuis et al. 2003; Pilot et al. 2003; Hampton et al. 2004,

2005; Shin and Schachtman 2004; White et al. 2004; Zimmermann and Chérel

2005). The increased expression of AtKUPs, and in particular AtHAK5, results in an
increased capacity for Cs+ uptake, and changes in the pharmacology of Cs+ uptake

by roots of K-starved plants (Hampton et al. 2004, 2005; Qi et al. 2008). The

fraction of Cs+ uptake inhibited by NH4
+ is greater in K-starved Arabidopsis than

in K-replete Arabidopsis, which is consistent with the pharmacology of KUPs

(Bañuelos et al. 2002; Martı́nez-Cordero et al. 2005; Nieves-Cordones et al.

2007; Fulgenzi et al. 2008; Qi et al. 2008) and the hypothesis that AtKUPs mediate

more Cs+ influx to roots of K-starved plants (Hampton et al. 2004, 2005; Qi et al.

2008). Thus, during K-starvation, K+ uptake by Arabidopsis roots changes from

being dominated by AtAKT1 to being dominated by AtHAK5, whilst Cs+ uptake
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changes from being dominated by VICCs to being dominated by AtHAK5. This

results not only in greater Cs accumulation, but also in a greater Cs/K quotient in

tissues of K-starved plants.

4.3 Differences between Plant Species

There is considerable variation among plant species in their ability to take up Cs and

accumulate it in their shoots (e.g. Andersen 1967; Broadley and Willey 1997;

Broadley et al. 1999a, b; White et al. 2003, 2004; Willey et al. 2005; Willey and

Tang 2006; Watanabe et al. 2007). In general, among the Angiosperms, monocot

species (e.g. Lilliales, Poales) have the lowest shoot Cs concentrations and species

from the eudicot orders Asterales, Brassicales and Caryophyllales accumulate the

highest shoot Cs concentrations (Broadley et al. 1999a; Willey et al. 2005). This

suggests that the complement, abundance and/or kinetics of Cs-transport proteins

differ between plant species. In addition, the Cs/K quotients in shoot tissues of

different plant species grown under identical conditions vary widely (Andersen

1967; White et al. 2004). Since different transport proteins have contrasting abilities

to discriminate between Cs+ and K+, this varying shoot Cs/K quotient suggests that a

different complement of transport proteins is present in different plant species (White

et al. 2004; Hampton et al. 2005; Wiesel et al. 2008). Shoot Cs concentrations and

shoot Cs/K quotients are positively linearly correlated among plant species, suggest-

ing that shoot Cs and K concentrations vary independently (Fig. 1). A plausible

explanation for this observation is that all plants express constitutively an essential,

selective K+ transporter, such as AKT1, but differ in their complement of proteins

catalyzing the non-specific uptake (or efflux) of Cs+ and K+, such as CNGCs or

KUPs. Thus, plants with higher shoot Cs concentrations and shoot Cs/K quotients are

likely to have higher CNGC: AKT1 and/or KUP:AKT1 expression ratios than plants

with lower shoot Cs concentrations and shoot Cs/K quotients.
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Fig. 1 Relationship between

Cs concentrations and Cs/K

quotients in shoots of 44 plant

species grown on soil

contaminated with 10 mCi
carrier-free 137Cs (Andersen

1967). Data for monocot

(filled circles) and eudicot

(open circles) species are
shown
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5 Molecular Mechanisms for Cs Uptake by Roots

of Mycorrhizal Plants

Most plants live in symbiosis with mycorrhizal fungi. In this symbiosis, the fungi

gain carbohydrates from plants and, in return, they help supply plants with water

and essential mineral nutrients. There are several types of mycorrhizal symbioses,

the two most common being arbuscular mycorrhizae and ectomycorrhizae. More

than 80% of vascular plants live in symbiosis with arbuscular mycorrhizal (AM)

fungi, which belong to the monophyletic phylum of Glomeromycota (Smith and

Read 1997; Schübler et al. 2001; Morgan et al. 2005). Because of the role of AM

fungi in plant nutrition, it has been suggested that they might affect Cs uptake by

plants (Entry et al. 1996). Studies in which only the AM fungi had access to

radiocaesium have demonstrated that they are able to deliver it to their plant

symbionts (Dupré de Boulois et al. 2006) and it has also been shown that AM

fungi can also transfer Cs from one plant to another (Meding and Zasoski 2008).

However, there is no consistent information about the influence of AM fungi on Cs

accumulation by plants (Table 2). Similarly, there is no consistent information on

the influence of ectomycorrhizal (EM) fungi on Cs accumulation by their tree

symbionts. For example, Brunner et al. (1996) and Riesen and Brunner (1996)

found that the EM fungus Hebeloma crustuliniforme decreased Cs uptake by Picea
abies, whilst Ladeyn et al. (2008) found that symbiosis with Rhizopogon roseolus
increased Cs uptake by Pinus pinaster.

The inconsistent effects of mycorrhizal fungi on Cs accumulation by their plant

symbionts might be explained by a number of factors. First, the availability of Cs to

organisms depends on the physical and chemical properties of the substrate (Entry

et al. 1996), and both plant and fungal species differ in their ability to access

different soil Cs pools (Berreck and Haselwandter 2001). Second, mycorrhizal

associations could influence plant Cs accumulation directly, by altering the ex-

pression of genes encoding Cs-transporters, and/or indirectly by improving plant

Table 2 Effects of arbuscular mycorrhizal fungi on Cs accumulation by plants

Reference Influence Plant species Fungal species

Entry et al. (1999) Increase Paspalum notatum Glomus mosseae/
Glomus intraradices

Entry et al. (1999) Increase Sorghum halepense G. mosseae/
G. intraradices

Entry et al. (1999) Increase Panicum virgatum G. mosseae/
G. intraradices

Rogers and Williams (1986) Increase Melilotus officinalis Glomus sp.
Rosén et al. (2005) Increase Allium porrum Soil fungi

Joner et al. (2004) No effect Medicago truncatula G. intraradices
Rogers and Williams (1986) No effect Sorghum sudanense Glomus sp.
Rosén et al. (2005) No effect Lolium perenne Soil fungi

Berreck and Haselwandter (2001) Decrease Agrostis tenuis G. mosseae
Dighton and Terry (1996) Decrease Trifolium repens Soil fungi
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nutritional status, which would increase plant growth rates and root exploration of

the substrate (Joner et al. 2004). It is possible for AM fungi to influence Cs uptake,

and Cs redistribution within the plant, by altering the expression of genes encoding

VICCs, KUPs and KORKs. It has been speculated that if mycorrhizae contribute to

improved plant K status, then the complement of K transporters in roots of mycorr-

hizal plants would reflect that of K-replete plants (Wiesel et al. 2008). This implies

that Cs uptake by roots of mycorrhizal plants would occur mainly through VICCs

and that associations with AM fungi would reduce the accumulation of Cs by plants

in K-limited environments. Interestingly, Liu et al. (2007) showed the upregulation

of a gene similar to AtCNGC1 of Arabidopsis in roots of Medicago truncatula
during symbiosis with Glomus intraradices.

6 Prospects for the Generation of Safer Crops

It is impractical to remove large areas of agricultural land from crop production

to cleanse them of radiocaesium. To reduce the radiation dose to populations inha-

biting contaminated areas, the cultivation of crop genotypes accumulating less

radiocaesium in their edible portions will complement other agricultural counter-

measures (Alexakhin 1993; Beresford et al. 2001). Such genotypes might be

obtained through phenotypic selection, plant breeding or genetic manipulation

(White et al. 2003; Payne et al. 2004). Knowledge of the genes that impact on Cs

accumulation by plants can inform all three strategies, by providing molecular

markers for selection and breeding, and target genes for genetic manipulation.

Since Cs+, like K+, is transported symplastically to the xylem, restricting Cs+ uptake

by root cells is an attractive option to reduce the entry of radiocaesium to plants and

the food chain (White and Broadley 2000; White et al. 2003).

Caesium is a nonessential element and enters plants serendipitously through

transporters that are primarily responsible for Ca2+ and/or K+ uptake. Transport

proteins that can facilitate Cs+ influx to root cells have been identified, and their

likely contributions to Cs+ uptake under a variety of environmental conditions have

been assessed in cation-flux modeling studies (White and Broadley 2000; Hampton

et al. 2005). In K-replete plants VICCs, such as CNGCs, are likely to mediate most

Cs influx to root cells, whilst Cs influx to roots of K-deficient plants is likely to be

dominated by KUPs and, in particular, orthologs of AtHAK5 (White and Broadley

2000; Hampton et al. 2005). However, phenotypes of plants lacking proteins that

contribute significantly to Cs+ influx to root cells are often agronomically unattrac-

tive. For example, although Arabidopsis plants lacking certain AtCNGCs have

reduced shoot radiocaesium concentrations, these mutants exhibit other detrimental

phenotypes, including reduced growth rates and infertility, possibly because these

channels are components of cytosolic Ca2+ signaling cascades (White 2000;

Hampton et al. 2005). Similarly, when grown in media containing low K+ con-

centrations, Arabidopsis lacking AtHAK5 have reduced rates of Cs+ influx and
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accumulation, but they also grow more slowly than wild-type plants, presumably

because they lack sufficient K+ (Qi et al. 2008). Thus, it appears that more subtle

genetic manipulation of transport activities, such as altering the cationic selectivity

of transport proteins, is required. A targeted mutagenesis strategy could be fol-

lowed, similar to ones that produced variants of the KIRC AtKAT1 with reduced

Cs+ sensitivity (Ichida and Schroeder 1996; Ichida et al. 1999), to generate alleles of

transport proteins with greater Ca2+:Cs+ and/or K+:Cs+ selectivity.
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Ion Channels in Plant Development

Anuphon Laohavisit and Julia M. Davies

Abstract Ion channels function at several levels in plant development to effect

control of membrane voltage, facilitate generation of turgor, and integrate signal-

ling. Despite the experimental problems associated with multi-gene channel families

and redundancy, molecular approaches are now revealing the extent of channel

function in development. Here, we review the key categories of channels implicated

in development with a focus on channel involvement in polar growth and nodula-

tion. Comparison of root hairs with pollen tubes as paradigms of polar growth

reveals similar assemblies of channels involved in controlling membrane voltage

and cytosolic free calcium.
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1 Ion Channels in Plant Development

To increase cell size and develop form, plants require strict regulation and

co-ordination of ion channel activities by growth regulators, with effects of biotic

and abiotic stress as “higher tiers” of regulation. Despite a wealth of channel

studies on native membranes, delineating channel function in developmental pro-

grammes has been limited by characterization of channel mutants. In addition to

the problem of redundancy, assigning roles in development is complicated by

possible nutritional roles for channels and pleiotropic mutational effects. Never-

theless, the first decade of this century has seen seminal contributions by “chan-

nel” laboratories to the field of plant development. Here, we review the key

categories of channels implicated in development with evidence primarily from

molecular studies. Channels are then placed into context for polar growth and

nodulation as developmental paradigms.

1.1 Molecular Identification of K+- and Anion Channels
in Plant Development

Potassium (K+) is a key osmoticum for turgor-driven cellular elongation. Together

with anions, it also has an important role in regulating channels and active trans-

porters through the control of membrane potential. Three families of K+-selective

channels are recognized in plants (Kir-like, Shaker and TPK; Tandem Pore K+) and

their functions have been reviewed recently by Lebaudy et al. 2007. Shaker K+

channels for plasma membrane (PM) K+ uptake are implicated in Daucus embryo-

genesis and polarity patterning (Formentin et al. 2006). Recently, the role of

outward K+ rectifiers in cell division and expansion has been re-addressed. Activa-

tion of a PM outward rectifier (NTORK1) can induce cell division of tobacco BY-2

cells while suppressing its expression promotes elongation (Sano et al. 2009)

Vascular K+ channels are also implicated in cell cycle control (Sano et al. 2009).

Proliferative, tumerous growth in Arabidopsis involves the PM K+ influx Shaker

channels AKT1 and AKT2/3 (Deeken et al. 2003).

In Arabidopsis, the root epidermal PM AKT1 Shaker a-subunit is essential for
root development in the presence of NH4

+ (Hirsch et al. 1998). AKT1 activity is

enhanced on phosphorylation by CIPK23, which lies downstream of the calcineurin

B-like Ca2+ sensors CBL1 and CBL9 (Li et al. 2006a). The latter can be activated

by increasing cytosolic free Ca2+ ([Ca2+]cyt) which in turn could be caused by the

reactive oxygen species (ROS) that are produced in response to K+ deficiency (Shin

and Schachtman 2004). The overall result of this signaling cascade would be an

increased root K+ uptake. Auxin-regulated expression of the maize Shaker K+-

uptake channel gene ZMK1 has been linked to coleoptile elongation (Philippar et al.
1999) while K+ channels also have critical roles to play in polar growth (see Sects. 1

and 2 in Chapter “The Role of Ion Channels in Plant Salt Tolerance”).
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Plant anion channels are variously regulated by membrane voltage, stretch, and

light. They are often associated with nutrient acquisition, membrane stabilization,

and initiating membrane depolarisation. PM anion channels in the hypocotyl

epidermis are implicated in blue light- and auxin-regulated elongation (Cho and

Spalding 1996; Colcombet et al. 2001, 2005). Other hormones such as brassinos-

teroids can also regulate PM anion channels in Arabidopsis suspension cells to

promote the membrane hyperpolarisation which is necessary for K+ uptake and cell

expansion (Zhang et al. 2005). At the other end of a cell’s life, mitochondrial

voltage-regulated anion channels now appear to be involved in elicitor-induced

programmed cell death (Tateda et al. 2009).

Genetic identities of the anion channels described electrophysiologically remain

largely obscure. AtSLAC1 (Slow Anion Channel-Associated 1) probably encodes a

subunit for anion channel activity or regulation in Arabididopsis guard cell PM but

no specific developmental phenotype has been described for a loss of function

mutant (Vahisalu et al. 2008). Members of the ChLoride Channel (CLC) gene

family are present in both Arabidopsis and rice, and could play roles in nutrition

and development (reviewed by de Angeli et al. 2009; Lv et al. 2009). These trans-

porters are present in endomembranes and may also translocate NO3
� (de Angeli

et al. 2009; Lv et al. 2009). Loss of vacuolar OsClC1 and OsClC2 function resulted

in reduced rice growth, but knockouts of their counterparts in Arabidopsis did not

result in a developmental phenotype (Nakamura et al. 2006; de Angeli et al. 2009).

Given the importance of anion transport for membrane voltage control and there-

fore the command of cation transport in development, further exploration of anion

channel families is eagerly awaited.

1.2 Molecular Identification of Mechanosensitive Channels

In Arabidopsis, AtMCA1 encodes a putative mechanosensitive (MS) Ca2+ channel

(Nakagawa et al. 2007). Its transcript is abundant in root tissue, leaves, and stem.

AtMCA1-GFP protein is PM-localised in roots (Nakagawa et al. 2007). When

AtMCA1 is expressed in Chinese hamster ovary cells, stretching induces Ca2+ influx

(observed using ratiometric Ca2+ imaging) suggesting that AtMCA1 forms a Ca2+

conductance. AtMCA1 is thought to have a role in root mechanosensing and growth

as the loss of function mutant cannot penetrate hard agar (Nakagawa et al. 2007).

AtMCA2 is 73 % similar to AtMCA1, suggesting that it too could be an MS

channel.

The AtMSLs family encodes MscS (MS channel of small conductance)-like

proteins. MscS is important in pressure perception and osmotic shock response in

E. coli (Haswell and Meyerowitz 2006; Haswell et al. 2008). AtMSL2 and 3 are

likely to contribute to plastid development (controlling division, size, and shape)

during plant development (Haswell and Meyerowitz 2006). The proteins are loca-

lised at the plastid envelope and the Atmsl2 and 3 insertional mutants exhibit abnor-

mal plastid development. Furthermore, AtMSL3 can complement osmotic-shock
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response deficient E. coli cells that lack MS ion channel activity, suggesting that

AtMSL3 is also an MS channel (Haswell and Meyerowitz 2006). However, there

is no direct electrophysiological evidence for this (Haswell and Meyerowitz 2006).

In contrast, AtMSL9 and AtMSL10 have been characterised electrophysiologically

(Haswell et al. 2008). They are both localised to the PM of root cells, while there is

a small fraction which is also localised to endomembranes. The Atmsl mutant root

protoplasts lack the normal PM MS channel activity (Haswell et al. 2008). These

MS channels are weakly permeant to Ca2+ and their ability to deliver physiologi-

cally significant Ca2+ influx remains unknown (Haswell et al. 2008). More work on

this channel family is now required.

1.3 Glutamate Receptor-Like Channels and Cyclic-Nucleotide
Gated Channels

Ionotropic glutamate receptors (GLR) form Ca2+-permeable cation channels in

animals and are essential for central nervous system function. Plant GLR structure

has been reviewed by Forde and Lea (2007) and Demidchik and Maathuis (2007).

There are 20 genes encoding putative GLR sub-units in Arabidopsis that are

expressed throughout the plant and all are expressed in roots (Lam et al. 1998;

Forde and Lea 2007; Roy et al. 2008). Native membrane electrophysiology and

heterologous expression are now revealing the transport capacities of plant GLRs

that are generally held to be present at the PM (summarized in Table 1 with

references therein). AtGLR1.1, 1.4, 3.4, and 3.7 appear able to translocate Ca2+

while analysis of mutant plants implicates AtGLR 3.2 and 3.3 in Ca2+ transport and

hence stimulation of exocytosis or growth-related signaling (Table 1; Chiu et al.

2002; Demidchik et al. 2002a; Meyerhoff et al. 2005; Stephens et al. 2008; Qi et al.

2006). Developmental phenotypes are also emerging from mutant analyses (Table 1

and references therein) with AtGLR 1.1implicated in control of root growth. The

rice OsGLR3.1 also affects root growth (Li et al. 2006b). It is possible that GLRs

are involved in co-ordinating root architecture with intracellular and extracellular

glutamate/nitrogen status to optimise nutrient uptake and allocation (Forde and Lea

2007).

Cyclic nucleotide-gated channels (CNGCs) in animals form Ca2+-permeable

conductances and their homologues in plants have been identified (reviewed by

Kaplan et al. 2007; Demidchik and Maathuis 2007). There are 20 genes encoding

CNGC sub-units in Arabidopsis and their structure is addressed in Chapter “New

Approaches to Study the Role of Ion Channels in Stress Induced Signalling;

Measuring Calcium Permeation in Plant Cells and Organelles Using Optical and

Electrophysiological Techniques”. Developmental phenotypes for Arabidopsis
CNGCs are summarised in Table 2 and addressed in Sect. 1 in Chapter “The

Role of Ion Channels in Plant Salt Tolerance”. The emerging pattern is of

PM-localised channels that upon activation by cyclic nucleotide binding would
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allow K+ and Ca2+ influx. Elevation of [Ca2+]cyt would cause Ca2+/CaM formation

and binding of that complex to the CNGC would restrict further channel activity to

end the [Ca2+]cyt signal (Kaplan et al. 2007). One of the most exciting findings of

recent years is that the cngc2 mutant is dwarfed, implicating this PM hyperpolar-

isation-activated Ca2+-permeable cation channel (HACC) in growth and develop-

ment (Ali et al. 2007; see Sect. 1 in Chapter “The Role of Ion Channels in Plant

Salt Tolerance”).

2 Ion Channels Acting in Concert

To appreciate the importance of ion channels in development, their roles are best

considered in a well-established system. Thus, in this second part of the review, the

role of ion channels in root hair development, pollen tube development, algal

development, and nodule formation will be discussed.

2.1 Ion Channels in Root Hair Development

Root hairs are single cells that undergo polarised growth at the apex, regulated by

hormones and environmental conditions. Apical PM fluxes of H+, K+, Cl�, and Ca2+

are associated with elongative growth. Proteomics have so far failed to identify the

channels involved (Brechenmacher et al. 2009), but root hair transcript analysis

has revealed expression of 3 K+ channel genes in Arabidopsis root hairs (Ivashikina
et al. 2001). AtAKT1 and a modulatory PM a-subunit (AtKC1) are involved in root
hair development (Ivashikina et al. 2001; Reintanz et al. 2002; Desbrosses et al.

2003). KDC1 was also identified as a Shaker-like, inwardly rectifying PM K+

channel in carrot root hairs (Downey et al. 2000) and recent split ubiquitin assays

indicate that it may form a hetero-tetrameric K+ channel with AKT1 (Bregante et al.

2008). While it is readily envisaged that combinations of inward rectifiers govern

K+ uptake for expansion under a range of conditions (particularly PM voltage), the

apparently sole PM K+ outward rectifier in Arabidopsis root hairs (GORK; Guard
Cell Outward Rectifying K+ channel) (Ivashikina et al. 2001) may play a role in

controlling voltage. However, loss of GORK does not produce a hair growth

phenotype (Hosy et al. 2003).

Apical Ca2+ uptake by elongating root hairs is essential for generating the apex-

high [Ca2+]cyt gradient that may regulate exocytosis and signalling (Monshausen

et al. 2008). Patch clamp analysis of the Arabidopsis root hair apical PM has

revealed the co-existence of two Ca2+ channels that are differentially regulated by

voltage (Miedema et al. 2008; Fig. 1). Hyperpolarisation-activated Ca2+-permeable

cation channels (HACCs) permit Ca2+ influx at voltage more negative than

�100 mV but could operate at less negative voltage when [Ca2+]cyt increases

(Véry and Davies 2000). This could form a local positive feedback system for
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influx. Depolarisation-activated Ca2+ channels (DACCs) open at more depolarised

voltage, with peak activity around�80 mV to�120 mV (Miedema et al. 2008). The

presence of DACCs may enable Ca2+ uptake over the membrane voltage range in

which HACCs are not operating. Together with HACCs, DACCs may enhance Ca2+

influx in response to different stimuli and could allow continued Ca2+ uptake in

drought stress, which depolarises the root hair PM (Dauphin et al. 2001). HACCS

and DACCS also co-exist in the PM of elongating epidermal cells of the main root

where HACC activity may be “primed” by Ca2+ influx through non-selective cation

channels (Demidchik et al. 2002b, 2003b). Chloride channels are likely to be key

NADPH
oxidase

O2
•- H2O2 OH–

K+

K+

AtGORK AtAKT1
KDC1

AtCNGCs?
DACCs HACCs NSCCs? AtGLRs?

AtCLCs?

Cl–

Regulation of
Membrane voltage/ 

Turgor

[Ca2+]cyt

Cl–

Regulation of
Membrane voltage

AtTPC1 AtCLCa

NADPH
oxidase

K+

AtSPIK1
AtTPK4 HACCs

AtCNGC 18/
AtCNGCs?

Ca2+

Ca2+

Ca2+ Ca2+ Ca2+ Ca2+ Ca2+

Regulation of
Membrane voltage/

Turgor

[Ca2+]cyt

ROP1

Ca2+

RIC3/
RIC4

Actin
dynamics

CaM

G-protein

ROS ?

Cl–
AtCLCs?

Regulation of
Membrane voltage

+

+

?

+

+

+ +

?

Extra
cellular

Cytosol

PM

Cytosol

Vacuole

tonoplast

Extra
cellular

Cytosol

PM

Root Hair

Pollen tube

Fig. 1 Simplified diagram of ion channels which may be involved during root hair and pollen tube
development. In root hair tip growth, only the localisation of HACCs and DACCs at the root hair

apex is well established. Others are shown to be expressed in the root hair although whether they

are localised at the apex remains unknown. In pollen tube growth, channels which are thought to be
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Cl� may regulate membrane voltage and turgor-driven tip growth. Bold letters represent channels.
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components in voltage regulation at the apical PM, but although their activities have

been described electrophysiologically in Arabidopsis and Medicago, their molecu-

lar identities remain unknown (Kurkdjian et al. 2000; Dauphin et al. 2001; Diatloff

et al. 2004). Of the ClC family, ClCa is most strongly expressed in Arabidopsis root
hairs but is likely to be localised at endomembranes (Lv et al. 2009).

The root hair apical PM contains an NADPH oxidase (encoded by Respiratory

Burst Oxidase Homologue C in Arabidopsis) that can generate apoplastic super-

oxide anions (Foreman et al. 2003; Takeda et al. 2008; Fig. 1). These would readily

form H2O2 which in turn could source apoplastic OH
� by reaction with extracellular

Cu or Fe. An apical HACC activated by apoplastic OH� has been identified in

Arabidopsis root hairs that could enable Ca2+ influx, increase [Ca2+]cyt, and stimu-

late NADPH oxidase activity through that enzyme’s EF hands to maintain the

[Ca2+]cyt gradient (Foreman et al. 2003; Takeda et al. 2008). A similar mechanism

could operate in diffuse growth of the main root (Foreman et al. 2003). At present it

is not clear whether the root hair OH�-activated HACC is a Ca2+-permeable NSCC

(as identified in the root epidermis; Demidchik et al. 2003b) or the constitutive

HACC (which shows greater Ca2+ permeation) identified by Véry and Davies (2000).

Extracellular ATP, ADP, ABA and ethylene are now known to be upstream regu-

lators of NADPH oxidases and HACCs in a variety of plant cells, suggesting that

these mechanisms may regulate root hair growth (Murata et al. 2001; Demidchik

et al. 2003b, 2009; Zhao et al. 2007).

Molecular identities of HACCs and DACCs are unknown but it is feasible that

(in Arabidopsis) GLRs 1.1, 3.3, 3.4, 3.7 and CNGCs 1, 3, 10 contribute to apical

Ca2+ influx (see Table 2 and references therein; Chiu et al. 2002; Demidchik et al.

2002a; Meyerhoff et al. 2005; Stephens et al. 2008; Qi et al. 2006). AtGLR 3.4 is a

particularly compelling candidate as it is expressed in root hairs, is PM-localised

and appears Ca2+ transport-competent (Demidchik et al. 2002a; Meyerhoff et al.

2005). In rice, the TPC1 (Two Pore Channel 1) gene was proposed to encode a

DACC (albeit not specifically in hairs) with a role in Ca2+ uptake and development

(Kurusu et al. 2004, 2005; Hashimoto et al. 2005). However, AtTPC1 is a vacuolar

Ca2+-permeable channel (Peiter et al. 2005). A key question is whether CNGC2

(which forms a HACC in guard cells; Ali et al. 2007) is the root hair HACC as there

are contradictory reports of its expression in root cells (Ma et al. 2006; Dinneny

et al. 2008). Identification of PM and endomembrane root hair channels will not

only unlock growth mechanisms but also aid understanding of nod signalling (see

Sect. 4 in Chapter “The Role of Ion Channels in Plant Salt Tolerance”).

2.2 Ion Channels in Pollen Tube Growth

Pollen presents an opportunity to track channel expression and function from grain

maturation to polar pollen tube growth in vitro. Arabidopsis pollen grain expresses

SPIK1 (Shaker Pollen Inward K+ channel; pollen-specific), TPK1 and TPK4, AKT2,
KAT1, KAT2, GORK, and SKOR (Stelar K+ Outward Rectifier; a PM channel), the
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putative chloride channel gene CLC-c and CNGC 7, 8, 16, and 18 (Mouline et al.

2002; Becker et al. 2003, 2004; Pina et al. 2005; Wang et al. 2008). In common with

root hairs, growing pollen tubes maintain apical PM fluxes of H+, K+, Cl�, and Ca2+

(Michard et al. 2008 and references therein). Loss of tube PM AtSPIK1 perturbs

pollen germination and tube development (Mouline et al. 2002). AtTPK4, the only

TPK channel present at the PM rather than tonoplast, is present in pollen tubes but

loss of function does not result in a phenotype. Unlike Shaker channels such as

SPIK1, AtTPK4 is weakly voltage-dependent and could permit K+ uptake at less

negative voltages where SPIK1 would be closed (Becker et al. 2004). Differential

modulation of SPIK1 and TPK4 opening by Ca2+ and H+ would further “fine-tune”

K+ influx (Mouline et al. 2002; Becker et al. 2004). Although apical Cl� fluxes are

linked to pollen tube growth, associated channel genes have yet to be identified.

Apical oscillatory Ca2+ influx is intimately related to pollen tube growth

(Cárdenas et al. 2008a; Michard et al. 2008). An MS Ca2+-permeable channel is

localised to a small region of the Lillium pollen grain PM where pollen tube growth

will occur, as well as at the tip of the growing tube (Dutta and Robinson 2004).

Pollen tube apical PM of Pyrus (Qu et al. 2007) contains a HACC while PM

HACCs have been identified in pollen protoplasts of Arabidopsis and Lillium that

could be present at the tube apex. These are regulated by heterotrimeric G proteins

or external calmodulin (Shang et al. 2005; Wu et al. 2007). PM Ca2+-permeable

channel activity in Arabidopsis pollen protoplasts is stimulated by actin depoly-

merisation (Wang et al. 2004) and this could relate to the inter-relationship of apical

actin and [Ca2+]cyt dynamics if these channels were present in the pollen tube.

However, actin depolymerisation was recently reported to lower apical [Ca2+]cyt in

Lilium tubes (Cárdenas et al. 2008a).

Apical actin dynamics are regulated by the PM-localised ROP1 (Rho-related

GTPase) which lies upstream of the ROP effector proteins RIC3 and RIC4 (ROP-

interactive CRIB motif-containing proteins) in Arabidopsis (reviewed by Yang

2008). RIC3 is presently thought to lie upstream of actin-regulated PM Ca2+

channels. ROP activity also governs NADPH oxidase activity in root hairs

(reviewed by Yang 2008; see Sect. 1 in Chapter “The Role of Ion Channels in

Plant Salt Tolerance”), but while NADPH oxidase inhibitors or lowered RBOH
expression negates pollen tube growth (Cárdenas et al. 2006; Potocký et al. 2007),

interaction of ROS and PM Ca2+ channels has yet to be delineated. However,

AtCNGC18 is now firmly implicated in pollen tube polarity (Chang et al. 2007;

Frietsch et al. 2007). The protein’s localisation to the apical PM is promoted by

ROP1 (Chang et al. 2007; Frietsch et al. 2007). AtCNGC18 expression in E. coli
results in Ca2+ accumulation, suggesting that AtCNGC18 could be involved in

pollen tube Ca2+ influx (Frietsch et al. 2007; Iwano et al. 2004). The Atcngc18
insertion mutant exhibits aberrant pollen tube growth (Frietsch et al. 2007) while

the overexpressor has wider and shorter tubes (Chang et al. 2007). The study of

other AtCNGCs (such as AtCNGC7 and AtCNGC16 that are up-regulated on tube

growth; Wang et al. 2008) is now necessary to elucidate the function of other

potential Ca2+-permeable channels and place their activity in the context of oscil-

lating apical [Ca2+]cyt.
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2.3 Ion Channels in Algal Development

Rhizoid outgrowth from algal embryos is also a polar growth process. That of the

brown alga (Fucus serratus) shares a [Ca2+]cyt-ROS signalling system reminiscent

of root hairs. The apical PM of this alga harbours a Ca2+-permeable cation channel

that is activated by exogenous H2O2 and is likely to contribute to growth and

osmoregulation (Coelho et al. 2002, 2008). This channel may also be stretch-

activated (Taylor et al. 1996). NADPH oxidase inhibition or addition of catalase

abolishes the apex-high [Ca2+]cyt gradient and suppresses rhizoid polar growth

(Coelho et al. 2008). Buffering intracellular [Ca2+]cyt also abolished the apex-

high intracellular [ROS] which suggests a similar positive feedback loop to root

hairs (Coelho et al. 2008). Algae, like plants, also use ion channels to regulate their

membrane potentials. Coccolithus pelagicus harbours a PM inward-rectifying Cl�

conductance to regulate membrane voltage and hence the calcification process

necessary for producing the external plates of this marine phytoplankton (Taylor

and Brownlee 2003). Ion channel studies in algae will be advanced significantly by

the sequencing of the Chlamydomonas genome. Chlamydomonas has a vertebrate-
like voltage-dependent Ca2+ channel (CAV2) which is localised toward the distal

part of the flagella and operates in deflagellation (Fujiu et al. 2009). The transport

ability of CAV2 has yet to be demonstrated as its expression in heterologous

systems has proved challenging (Fujiu et al. 2009).

2.4 Ion Channels in Nodule Development

Nod factors are rhizobial lipochitin oligosaccharide signalling molecules required

to establish nodulation in legumes (Oldroyd and Downie 2008). They evoke

specific changes in root epidermal [Ca2+]cyt to initiate the symbiotic relationship

between N-fixing rhizobia and legumes (reviewed by Oldroyd and Downie 2008).

Nod factors cause transient Ca2+ influx at the root hair apex which, as it occurs

before membrane depolarization (Ehrhardt et al. 1992; Felle et al. 1998, 1999),

could initially be mediated by PM HACCs. The depolarized state can last for

15–30 min and perhaps there is a role for DACCs during this period. Increased

[Ca2+]cyt-mediated Cl� efflux also contributes to membrane depolarization (Felle

et al. 1998, 1999; Kurkdjian et al. 2000). Upon Nod factor perception, there is a

transient increase in intracellular ROS (possibly resulting ultimately from PM

NADPH oxidase activity) at the tip of growing root hairs (Cárdenas et al. 2008b)

and ROS efflux declines (Shaw and Long 2003). Although activation of root hair

PM Ca2+ channels by intracellular ROS has not yet been demonstrated, intracellular

H2O2 activates a PM HACC in Arabidopsis root epidermis (Demidchik et al. 2007)

and it is feasible that such a mechanism could contribute to [Ca2+]cyt elevation in

nod signalling. Additionally, legume root hairs and epidermis could also contain the

OH� -activated PM HACC characterised in Arabidopsis (Foreman et al. 2003). It is
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also feasible that an increase in [Ca2+]cyt could also be due to Ca2+ release from

apical internal stores. Efflux of K+ is also observed after Cl� efflux at the root hair

apex, which could promote membrane repolarisation (Felle et al. 1998).

The genes encoding the channels involved in nod-induced apical [Ca2+]cyt
elevation have yet to be identified, but the NodO product (a peptide produced by

Rhizobium leguminosarum biovar viciae) has in vitromonovalent cation-permeable

channel activity and could contribute to plant ionic fluxes (Sutton et al. 1994).

While Ca2+ influx can occur within a minute of nod perception, perinuclear Ca2+

oscillations (“Ca2+ spiking”) are observed 10–30 min later and are essential for the

plant’s transcriptional response (reviewed by Oldroyd and Downie 2008). Spiking

is not contingent on the initial Ca2+ influx and the two responses are genetically

distinct (Oldroyd and Downie 2008). The CASTOR and POLLUX nuclear enve-

lope proteins of Lotus japonicus are essential for spiking and are members of a

novel class of cation channels with relatives in non-leguminous plants such as

Arabidopsis (Charpentier et al. 2008). CASTOR forms a cation channel with weak

preference for K+ over Na+ and Ca2+ in planar lipid bilayers. The mutant castor-
2 (Ala substituted for Thr at position 264 in the amino acid sequence) no longer

exhibits Ca2+ spiking in response to Nod factor and the protein itself has altered

channel characteristics (Charpentier et al. 2008). POLLUX is able to complement a

K+ transport-deficient yeast mutant and overexpressing POLLUX in a castor null
mutant can restore nodulation, suggesting that both proteins have similar function

in planta (Charpentier et al. 2008). It has been proposed that CASTOR and

POLLUX act as voltage-regulating K+ channels in vivo, the activities of which

regulate an unidentified nuclear envelope Ca2+ channel (Charpentier et al. 2008;

Oldroyd and Downie 2008). Nodule formation results in down-regulation of several

root channel transcripts including CNGCs1, 2 and 6, GLRs3.1 and 3.3, TPC1, and
ClC-e (Benedito et al. 2008).

3 Conclusions

Plants use discrete assemblies of co-localised ion channels to control development.

In general, Ca2+-permeable channels are associated with signal transduction (which

may alter developmental gene expression) with K+- and anion channels acting to

regulate membrane voltage during these events. K+ channels play critical roles in

regulating turgor and membrane voltage to drive expansion. Channel modulation

by ROS to regulate polar growth may be conserved from Fucus rhizoids to higher

plant pollen tubes and root hairs. Molecular identities of channels (particularly for

anions and Ca2+) still require resolution and not just for those at the PM – the

advances in nod signalling have demonstrated the clear need to keep studying

endomembrane systems.
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Potassium and Potassium-Permeable Channels

in Plant Salt Tolerance

Sergey Shabala and Igor I. Pottosin

Abstract Salinity causes billion dollar losses in crop production around the globe

and has also a significant social impact on rural communities. To breed salt tolerant

crops, a better understanding of mechanisms mediating plant adaptive responses to

salinity is needed. Over the last years, evidence has been accumulated suggesting that

plants’ ability to maintain a high cytosolic K+/Na+ ratio appears to be critical to plant

salt tolerance. This paper reviews molecular and ionic mechanisms contributing to

potassium homeostasis in salinized plant tissues and discuss prospects for breeding

for salt tolerance by targeting this trait. We show that K+ channels are instrumental to

nearly all aspects of salinity stress signaling and tolerance, and the plant’s ability to

control intracellular K+ homeostasis is arguably the most important feature of salt-

tolerant species. The molecular identity of key genes, mediating plant adaptive

responses to salinity, is analyzed, and the modes of their control are discussed. It is

suggested that the major focus of plant physiologists and breeders should be on

revealing the specificity of K+ channel regulation under saline conditions and a “fine

tuning” of all mechanisms involved in the regulation of K+ homeostasis in plants,

including both plasma- and endomembrane channels and transporters.
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CNGC Cyclic nucleotide-gated channel

CIPK CBL-interacting protein kinases

FACC Fast activating cation channel

FV Fast vacuolar channel

GLR Glutamate receptor

KIR Inward-rectifying K+ channel

KOR Outward-rectifying K+ channel

KUP/HAK/KT H+/K+ symporter

NHX Vacuolar Na+/H+ exchanger

NSCC Non-selective cation channel

PCD Programmed cell death

PM Plasma membrane

ROS Reactive oxygen species

SV Slow vacuolar channel

TEA Tetraethylammonium chloride

TPK/KCO Two-pore K+ channel

Trk/HKT Na+/K+ symporter

1 Introduction

1.1 Salinity as an Issue

Global food production will need to increase by approximately 50% by 2050 to

match the projected population growth (Flowers 2004; Rengasamy 2006). As most

suitable land has already been cultivated, this implies a need for expansion into new

areas to meet the above target. Most of these areas are either severely affected by

salinity, or require extensive irrigation and, hence, are at risk to become saline

(Flowers 2004). Over 800 million hectares of land worldwide are affected by

salinity (Munns 2005), comprising nearly 7% of the world’s total land area. Irriga-

tion systems are particularly prone to salinization, with nearly one-third of irrigated

land being severely affected (Munns 2002). The economic penalties are in the

billion dollar range. Salt tolerant crops, or plant species able to remove excessive

salt from the soil while lowering the water table, may contribute significantly to

managing this problem. The key to engineering plants for salt tolerance lies in a

better understanding of the key physiological mechanisms underlying the adaptive

responses of plants to salinity. Numerous strategies are used by different species to

deal with excessive NaCl content in the soil. Most of them are attributed to better

regulation of Na+ uptake and compartmentation (e.g., Na+ exclusion from uptake

and sequestration in vacuoles, regulation of Na+ transport to the shoot at the xylem/

root parenchyma boundary, retranslocation in phloem, or compartmentation within

the shoot; reviewed by Tester and Davenport 2003). In addition, plant’s ability to

retain K+ in its tissues under saline conditions appears to be central to salinity

tolerance (Shabala and Cuin 2008). This chapter addresses the latter mechanism.
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1.2 Physiological Constraints Imposed by Salinity

Traditionally, growth inhibition and poor plant performance under saline conditions

are attributed to osmotic stress imposed by salinity and to specific ion (Na+ in most

cases) toxicity. As will be shown below, detrimental effects of each of these factors

are crucially dependent on a plant’s ability to maintain K+ homeostasis and control

K+ transport across cellular membranes.

To deal with osmotic stress problem and maintain sufficient turgor pressure

required to drive extension growth in roots and shoots, plants must increase their

cell sap osmolality in a process called osmotic adjustment. The traditional view is

that plants are doing this by increased de novo synthesis of a variety of organic

osmolytes (so-called “compatible solutes”) (Bohnert and Jensen 1996; Sakamoto

and Murata 2000). However, being an energetically expensive process (Raven

1985), such de novo synthesis draws on a substantial portion of the ATP pool,

thus making it less available for other metabolic functions and imposing growth

penalties. Alternatively, plants can also achieve osmotic adjustment by increased

accumulation of inorganic ions (mainly, Na+, Cl�, and K+) in the cell. However,

being accumulated in high quantities, both Na+ and Cl� are toxic to cell metabo-

lism. Such specific ion (particularly Na+) toxicity is often considered as a primary

reason for detrimental effects of salinity (Tester and Davenport 2003). In this

review, we show that an optimal Na+ management by plants crucially depends on

K+ transport and Na+ compartmentation.

Recently, a third component, an ROS-induced damage to key macromolecules

and proteins, has been added to the list of detrimental effects of salinity (Zhu 2003;

Tester and Davenport 2003). Moreover, several papers have shown that salinity-

induced increases in ROS production may often lead to programmed cell death

(PCD), and that the cytosolic K+ “status” is critical in triggering salinity-induced

PCD (reviewed in Shabala 2009). This issue is also discussed briefly in this

chapter (see Sect. 1.2 in Chapter “Cation Channels and the Uptake of Radiocaesium

by Plants”).

2 Potassium Homeostasis in Plants

2.1 Potassium Essentiality and Functions in Plants

Being the second (after nitrogen) most abundantmineral nutrient in plants (Marschner

1995), potassium is crucial to cell metabolism. The typical potassium concentration

in shoot tissue varies between 4 and 8% of the plant’s dry weight. Importantly, the

concentration of free potassium is highest among all essential mineral nutrients,

which determines its crucial role in cellular osmo- and turgor regulation. In addition

to this, K+ activates over 50 key metabolic enzymes, including those involved in

photosynthesis, oxidative metabolism, and protein synthesis (Marschner 1995).
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Potassium is also widely used as a charge-balancing ion and is essential for all types

of plant movements, including stomatal opening. In addition, K+ neutralizes the

soluble (e.g., organic acid anions and inorganic anions) and insoluble macromolec-

ular anions and stabilizes cytosolic pH at the level optimal for most enzymatic

reactions (pH ~ 7.2) (Cuin and Shabala 2006). Thus, cytosolic K+ homeostasis is

crucial to optimal cell metabolism. To a large extent, detrimental effects of salinity

can be explained by the existing competition between Na+ and K+, as Na+ substitutes

K+ at major binding sites in key metabolic processes in the cytoplasm (Marschner

1995). It is becoming increasingly evident that it is not the absolute quantity of Na+

per se, but rather the cytosolic K+/Na+ ratio that determines cell metabolic compe-

tence and ultimately, the ability of a plant to survive in saline environments (Gorham

et al. 1991; Gaxiola et al. 1992; Maathuis and Amtmann 1999; Cuin et al. 2003;

Colmer et al. 2006; Shabala and Cuin 2008), and the difference in salt sensitivity

between some species was attributed to enhanced K+/Na+ discrimination (Gorham

et al. 1991; Dvořák et al. 1994; Dubcovsky et al. 1996; Volkov et al. 2004).

2.2 Tissue- and Organelle-Specific Potassium Compartmentation

The two major pools of potassium in plant cells are in the vacuole and in the

cytosol. Cytosolic K+ concentrations are maintained at a constant level of ~100 mM

and do not differ between root and leaf cells (Walker et al. 1996; Cuin et al. 2003).

Such strict cytosolic K+ homeostasis is explained by the fact that both activation

and protein biosynthesis rely on high and stable K+ concentrations within the

cytoplasm (Maathuis and Sanders 1994; Leigh et al. 1999). On the contrary,

vacuolar K+ content may vary dramatically between different cell types, ranging

from ~120 mM in root cell vacuoles (Walker et al. 1996) to ~230 mM in mesophyll

cell vacuoles (Cuin et al. 2003). Under K+ deficiency conditions, cytosolic K+ is

maintained at a constant level at the expense of vacuolar potassium (Walker et al.

1996) where it can drop essentially to zero. However, given the important role of

vacuolar K+ in maintaining cell turgor, other cations (e.g., Na+, Mg2+, or Ca2+) or

organic solutes (e.g., sugars) must substitute for the osmotic functions of potassium

in vacuoles. A failure to do this causes an immediate arrest of plant growth.

Salinity stress results in significant membrane depolarization, favoring passive

K+ efflux from the cytosol. As a result, a rapid decline in cytosolic K+ is measured

(Shabala et al. 2006). This decline, however, is only transient, as shown by direct

electrophysiological measurements using impaled K+ selective microelectrodes

(Cuin et al. 2003; Shabala et al. 2006). The rapid recovery of cytosolic K+ in these

acute NaCl stress experiments may be interpreted as evidence for the restoration of

the cytosolic K+ pool at the expense of the vacuole (see Sect. 2 in in Chapter “Cation

Channels and the Uptake of Radiocaesium by Plants”). It is obvious that such a

process can have only a limited time span and, unless further K+ leakage across the

plasma membrane is prevented, the vacuolar K+ pool will eventually become

depleted. This is the case for prolonged salinity treatment (Cuin et al. 2003).
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K+ also plays an important role in charge balance in thylakoid membranes

(Junge and Jackson 1982), as well as in enzymatic control of leaf photochemistry

in stroma (Demmig and Gimmler 1983; Pier and Berkowitz 1987). The impact of

salinity of K+ transport and homeostasis in chloroplasts is discussed in Sect. 3 in

Chapter “Cation Channels and the Uptake of Radiocaesium by Plants”.

2.3 Major Potassium Transport Systems: A Brief Overview

Over millions of years, plants have evolved a sophisticated network of potassium

transport systems. In Arabidopsis, seven major families of cation transporters are

known, comprising 75 genes in total. These include (Mäser et al. 2001; Véry and

Sentenac 2002, 2003; Shabala 2003) the following:

– Shaker-type family of K+ channels (9 genes in total);

– “Two-pore” potassium channels (TPK; 5 genes in total);

– KUP/HAK/KT transporters (H+/K+ symporter, 13 genes in total);

– Trk/HKT transporters (Na+/K+ symporter; one gene);

– K+/H+ antiporter homologs (NHX/CHX; around 26 genes);

– Cyclic-nucleotide-gated channels (CNGC; 20 genes in total);

– Glutamate receptors (GLRs; 20 genes in total).

It is also important to note that not only are these transporters specifically expressed

within various cell compartments and tissues, but also their expression patterns are

strongly affected by environmental conditions and, specifically, by salinity. Thus, K+

transport activity may be adjusted in various cells, independently in each organ/tissue,

to match the plant’s demands in a challenging environment. As a result, cytosolic K+

homeostasis can be maintained to enable optimal plant function.

2.4 Potassium and Potassium-Permeable Channels

Shaker-type potassium channels include nine members in Arabidopsis and are

further subdivided into three major functional groups, based on their voltage

dependency (Véry and Sentenac 2002, 2003):

(a) Inward-rectifying channels (AKT1, KAT1, KAT2 and SPIK) mediating potas-

sium uptake and activated by membrane hyperpolarization;

(b) Weakly-inward-rectifying channels (AKT2/3) which mediate both potassium

uptake and release depending on the local potassium electrochemical gradients;

(c) Outward-rectifying channels (SKOR and GORK) mediating potassium release

from the cell and activated by membrane depolarization.

Shaker channels are ubiquitously expressed in various plant tissues, providing a

possibility for the rapid redistribution of K+ between various plant parts and cellular

compartments.
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“Two-pore” TPK/KCO potassium channels have five members in Arabidopsis
(Czempinski et al. 2002). Only one of them, AtTPK4, is targeted to the plasma

membrane (in pollen tubes) and forms a functional K+ channel there. All others

encode tonoplast proteins (Voelker et al. 2006); see Sect. 1 in Chapter “Cation

Channels and the Uptake of Radiocaesium by Plants” for further details. TPKs play

roles in pollen tube growth, stomatal closure and radical development (Becker et al.

2004; Gobert et al. 2007).

Non-selective cation channels (NSCCs) form a large (40 putative members in

Arabidopsis) heterogeneous group of channels. As the name suggests, NSCC

typically show a high selectivity for cations over anions but differ widely in their

ability to conduct mono- and divalent cations (Demidchik et al. 2002; Demidchik

and Maathuis 2007). These channels are ubiquitous at the plasma and tonoplast

membranes of plant cells and vary greatly in their voltage dependence and perme-

ability ratios. Accordingly, they are further classified as depolarization activated,

hyperpolarization activated, voltage insensitive, calcium activated, mechanosensi-

tive, cyclic nucleotide-gated, and glutamate-gated (Demidchik et al. 2002). So far,

no proteins responsible for non-selective cation currents have been identified at the

molecular level. Likely candidates for NSCC forming proteins belong to two

families, namely CNGCs and GluRs.

Cyclic nucleotide-gated channels (CNGCs) are ligand-gated channels that are

regulated by cAMP or cGMP (Leng et al. 2002). Twenty and sixteen CNGC family

members are identified in Arabidopsis (Köhler et al. 1999; Mäser et al. 2001) and

rice (Yuan et al. 2003), respectively. In contrast to animal CNGCs, the domains

binding cyclic nucleotide and calmodulin overlap in plant CNGCs (Köhler et al.

1999) enabling cross-talk between cyclic nucleotides and calmodulin signaling

(Arazi et al. 2000). At least some CNGCs show equal permeability for K+ and

Na+ (Balague et al. 2003; Bridges et al. 2005) and may thus impact on cytosolic

K/Na ratios under saline conditions (Maathuis and Sanders 2001), and one specific

channel (AtCNGC2) is probably highly selective for K+ (Hua et al. 2003).

Ionotropic Glutamate receptors (iGluRs) form NSCCs in animals; whether they

form functional channels in planta has yet to be established. In Arabidopsis, 20
genes are reported to encode putative glutamate receptor subunits (Lacombe et al.

2001). The high expression levels of all AtGLR genes in Arabidopsis roots imply

that they are important in regulating ion (including K+) uptake from the soil (Chiu

et al. 2002). A possible signaling role has been also postulated (Lam et al. 1998).

3 Regulation of K+ Channel Activity Under Saline Conditions

3.1 K+ Channels and “Osmotic” and “Ionic” Components
of Salt Stress

Salinity causes a plethora of physiological responses including a deceleration of

the growth of root tips, shoots, and young leaves, as well as stomatal closure

(Munns and Tester 2008). All these effects may be attributed to the impact of
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salinity on K+ transport across the plasma membrane (PM). Not only do high

concentrations of Na+ in the soil reduce the activity of K+, making it less available

for plants, but K+ uptake is also significantly reduced as a result of the direct

competition between Na+ and K+ for uptake sites at the PM, including both low-

(e.g., NSCC) and high- (e.g., KUP and HKT) affinity transporters (Fig. 1; see

also Shabala and Cuin 2008 for more details). Even more important is NaCl-

induced PM depolarization. Depending on NaCl concentration and plant species,

40–80 mV PM depolarization was reported in both root (Shabala et al. 2005a;

Chen et al. 2007b; Cuin et al. 2008) and leaf (Shabala 2000; Shabala et al. 2005b)

tissues. Such depolarization makes passive K+ uptake through inward-rectifying

K+ channels thermodynamically impossible and, at the same time, dramatically

increases K+ efflux through depolarization-activated outward-rectifying K+ chan-

nels (Fig. 1). According to the modern view, a major portion of Na+ influx in the

root occurs via NSCC channels (see Demidchik and Maathuis 2007 for a review).

This results in a significant PM depolarization. At the same time, changes in

solution osmolality are sensed by a putative osmosensor and are translated into

increased activity of the electrogenic H+-ATPase (reviewed in Shabala and Cuin

2008), resulting in membrane hyperpolarization. The downstream targets of each

of these components are voltage-dependent hyperpolarization- (KIR) and depolar-

ization (KOR)-activated Shaker-type K+ channels. Depending on the severity of

the salt stress, one of components dominates, resulting in either increased K+

uptake (at mild salinity levels), or in a massive K+ loss (at more severe salt

concentrations) from the cell. Increased H+-pump activity might also provide an

additional driving force for the high-affinity K+ uptake via HAK/KUP transpor-

ters. This issue is discussed further in Sect. 2 in Chapter “Cation Channels and the

Uptake of Radiocaesium by Plants”.

Vacuole

KOR
DPZ

NSCC

NaCl

ATP

os
m

os
en

so
r

HPZ
KIR HAK/KUP

Na+

K+

K+ K+ H+
H+

Fig. 1 Potassium transporters and cellular mechanisms of perception of ionic and osmotic

components of salt stress. See text for explanations. Reproduced from Shabala and Cuin 2008,

with permission of Physiologia Plantarum
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3.2 GORK and AKT Channels as Downstream Targets
of Salinity Effects

The model shown in Fig.1 highlights the importance of voltage gating and impli-

cates Shaker-type K+ channels as possible downstream targets during salinity stress

signaling. This model was validated in direct electrophysiological experiments

using a range of Arabidopsis transport mutants (Shabala and Cuin 2008) as well

as concurrent measurements of net K+ fluxes, membrane potential changes, and

intracellular cell turgor pressure (Shabala and Lew 2002). No significant difference

in NaCl-induced K+ efflux was found between WT Columbia and the akt1 mutant,

while gork roots showed a much more attenuated response to salinity treatment

(Shabala and Cuin 2008). At the same time, hyperosmotic mannitol treatment

caused similar K+ uptake in WT and gork roots, but had essentially no impact

on K+ fluxes in akt1 roots. Also, clamping the membrane voltage at values positive

and negative of EK led to switching of the K+ flux from net efflux to influx and

vice versa in Arabidopsis root hairs (Shabala and Lew 2002). Given the strong

correlation between the ability of the root to retain K+ and plant salinity tolerance

(Chen et al. 2005, 2007a, 2007b; Cuin et al. 2008; Smethurst et al. 2008), these

findings point to the GORK channel as a main downstream target of the detrimental

effects of salinity. In addition, GORK activity may impact on salinity tolerance via

its modulation by both exogenous and endogenous factors. Four major lines of

evidence support the above statement:

(1) In addition to NSCC (Demidchik et al. 2002), GORK channels appear to be the

key target for ameliorative effects of supplementary Ca2+ and some other

divalent cations as revealed in patch-clamp (Shabala et al. 2006) and pharma-

cological (Shabala et al. 2003, 2005b) studies.

(2) NaCl induced K+ leak from roots occurs mainly via GORK channels; decreases

in its activity are associated with a lower salt-induced depolarization and thus

confers salt tolerance (Chen et al. 2005, 2007b; Cuin et al. 2008).

(3) Detrimental effects of salinity may be also ameliorated by either exogenous

application of compatible solutes (Harinasut et al. 1996) or by overexpressing

genes responsible for biosynthesis of various compatible solutes (Bohnert et al.

1995; Bray 1997). The recent work in our laboratory has shown that compatible

solutes prevent NaCl-induced K+ leakage from the cell, because of both the

enhanced activity of the H+-ATPase (Cuin and Shabala 2005, 2007a) and a

decreased induction of TEA+-sensitive K+ leak by ROS (Demidchik et al. 2003;

Cuin and Shabala 2007b). The specific mechanisms by which ROS stress

activates K+-permeable ion channels in plant membranes are discussed in this

volume in chapter 11 by Demidchik.

(4) In animal tissues, caspase activity is significantly increased by a low cytosolic

K+ content (Hughes and Cidlowski 1999), and a decrease in cytosolic K+ pool

was suggested as a trigger for the PCD in plant cells (Demidchik, personal

communication; Shabala 2009). Consistent with this notion, expression of the
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animal CED-9 anti-apoptotic gene significantly increases plant salinity and

oxidative stress tolerance by blocking K+ efflux via KORs and NSCCs (Shabala

et al. 2007a).

3.3 Voltage Gating and the Role of H+-ATPases

Salt stress rapidly stimulates H+ pumping by plasma membrane ATPases (Shabala

2000), most likely because of its modulation by 14-3-3 protein binding (Babakov

et al. 2000). Such activation will tend to reduce membrane depolarization, attenu-

ating or preventing K+ efflux. In this context, salt-tolerant barley varieties had 2–2.5

fold intrinsically higher rates of H+-ATPase pumping (Chen et al. 2007a). As a

result, these varieties were capable of maintaining ~ 10 mV more negative mem-

brane potential in root epidermal cells and displayed ~3-fold less NaCl-induced K+

efflux. In addition, stimulation of H+-pumping will acidify the apoplast, thus

improving the K+/Na+ selectivity of the ion channel mediated transport. Indeed,

such acidification will cause opposite effects on K+-selective channels and NSCC,

activation and inhibition, respectively (Amtmann et al. 2004).

It is not quite clear how long the NaCl-induced plasma membrane depolarization

lasts and when the potential becomes sufficiently negative to allow the activation of

K+ uptake via inward rectifier K+ channels. It appears that the effect is highly

species-specific. It was shown that a salt-tolerant species, Thelluingiella halophila,
was able to recuperate the initial very negative potential difference value while its

salt-sensitive relative, Arabidopsis thaliana, was not (Volkov and Amtmann 2006).

Long-term potentiation of the H+-ATPase activity may be achieved via facil-

itating of 14-3-3 protein binding by spermine, accumulated in salinized tissues

(Garufi et al. 2007). 14-3-3 proteins may also directly regulate K+ channel activity;

they are required for KIR activity and could differentially modulate KORs (Bunney

et al. 2002; Wijngaard et al. 2005). Thus, it appears that 14-3-3 proteins may control

intracellular K+ homeostasis both directly, by regulating K+ permeable channels,

and indirectly, by modulating H+-ATPase activity. This is consistent with the idea

that 14-3-3 proteins might mediate cross-talk between the salt stress and potassium

signaling pathways in plant roots (Xu and Shi 2006).

3.4 Maintaining the Optimal Cytosolic K+/Na+ Ratio

Being an overall result of Na+/K+ exchange across the plasma membrane, regula-

tion of K+ efflux is a more complex trait than control of either Na+ uptake or

exclusion. The extent of NaCl-induced K+ efflux depends on both the magnitude of

salt-induced membrane depolarization (H+ pump activity vs Na+ entrance through
NSCC) and on the activity of all K+-release channels (e.g., KOR and NSCC).

Also, the initial rapid loss of cytosolic K+ is rapidly reversed through repletion by
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K+ from the vacuole (Shabala et al. 2006). Thus, regulation of K+ transport across

membranes of other organelles has to be considered. However, the above repletion

could only postpone but not abolish the need to reabsorb K+ from the salinized soil.

As a result, plants with initially better designed PM Na+ and K+ transport systems

(e.g., with a reduced Na+ influx and K+ efflux) will have a longer lasting advantage.

Comparative analysis of ion currents in Thellungiella and Arabidopsismay serve as

an interesting extension of this principle. Both KOR and NSCC in T. halophila root
plasma membranes display a higher degree of the K+/Na+ selectivity (Volkov et al.

2004). Consequently, Na+ influx in T. halophila was reduced as compared to

A. thaliana. Moreover, despite a higher (and more energy consuming) Na+ export

from roots, A. thaliana accumulated more Na+ (Wang et al. 2006).

In addition, leaf epidermal cells of T. halophila also displayed a higher ratio of

Na+ to K+ currents compared with mesophyll cells, which could underlie the

preferential accumulation of Na+ in the leaf epidermis as compared to the tissues

with higher metabolic workloads. Leaf epidermis and mesophyll could possess

contrasting concentrations of cytosolic Na+ and K+ (Karley et al. 2000), which

argues for a mainly apoplastic way of communication between these cell types.

A redistribution of Na+ and K+ between these cell types in salinized barley leaves

seems to be an important strategy for maintaining constant K+ activity and a high

K+/Na+ ratio in the cytosol of mesophyll cells (Cuin et al. 2003).

3.5 Long-term Salinity Exposure and Regulation
of K+ Transport

Long-term salinity exposure adds another dimension to the regulation of K+

transport, causing tissue- and genotype- specific changes in the expression levels

of K+ channels. In addition to GORK channels, several more Shaker-type channels

are involved in plant adaptive responses to salinity. These are briefly summarized in

Table 1 and are commented on below.

AKT1 channels are most abundant in root epidermis and responsible for K+

uptake by roots. Not being perfectly K+-selective, AKT1 may mediate some Na+

influx when the Na+/K+ ratio in the external medium is high (Amtmann and Sanders

1999). Therefore, it comes as little surprise that in halophytes (e.g., ice plant)

and relatively tolerant rice cultivars, expression levels of this channel are down-

regulated (Table 1) whereas this did not occur in salt-sensitive rice and Arabidopsis
(Golldack et al. 2003). Interestingly, salt tolerant rice cultivars differed from the salt

sensitive ones by a slower accumulation of Na+, whereas K+ content remained

relatively constant. This ability for Na+ exclusion was lost, however, at very low

external K+ (Golldack et al. 2003). This not only emphasizes the importance

of maintaining a high K+/Na+ ratio, but also implies the participation of additional

K+ import systems. On the other hand, Atakt1 mutants displayed a higher salt-

sensitivity (Qi and Spalding 2004). It appears, therefore, that the expression of this
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inward rectifier has to be fine tuned to match the activity of high-affinity K+

transporters to support K+ absorption, whereas at the same time toxic Na+ influx

is avoided. A modification of the inward rectifier properties may be achieved by the

formation of heteromeric complexes with subunits of a different K+ channel.

AtKC1, which does not form functional channels by itself (Dreyer et al. 1997),

could form functional heteromeric channels with AKT1 in roots, and with both

AKT1 and AKT2 in leaf mesophyll (Dennison et al. 2001; Pilot et al. 2003). An

increase of AtKC1 transcript in leaves and shoots would increase the formation of

heteromeric channels which require a higher activation voltage compared to AKT1

homomers and thus would be less active.

3.6 Tonoplast (Vacuolar) Channels

3.6.1 Properties of K+-Permeable Vacuolar Channels

Three major types of K+-permeable channels are known to be present at tonoplast

membranes. These include the following:

– slow vacuolar (SV) channels;

– fast vacuolar (FV) channels;

– vacuolar K+ (VK) channel.

In Arabidopsis the SV channel is a product of a single gene, ATPC1, encoding a

unique double-pore Ca2+ channel (Peiter et al. 2005). This channel is activated by

cytosol-positive voltages and elevated cytosolic Ca2+ (Hedrich and Neher 1987;

Pottosin et al. 2001) and, when open, conducts K+, Na+, Ca2+, and Mg2+ almost

indiscriminately. The activation threshold of the SV channel is shifted to positive

voltages by vacuolar Ca2+, thus strongly limiting the channel activity at physiologi-

cal transtonoplast potentials (Pottosin et al. 1997, 2004). Recent work on beet

vacuoles has shown that, although the SV channels dominate the vacuolar Ca2+

release at diverse signaling conditions, this release is strongly restricted (Pérez et al.

2008; Pottosin et al. 2009). Consistent with these observations is a report of Ranf

et al. (2008) that SV-mediated vacuolar Ca2+ release does not contribute signifi-

cantly to early Ca2+ responses to a variety of abiotic and biotic stresses.

The FV forms a non-selective monovalent cation channel which is inhibited by

micromolar Ca2+ and Mg2+ at either membrane side (Tikhonova et al. 1997;

Brüggemann et al. 1999a, 1999b; Dobrovinskaya et al. 1999a, 1999b). At present,

the gene(s) encoding the FV channels are not identified. At physiological condi-

tions, the FV-mediated currents are delimited by the intrinsic voltage dependence,

Mg2+, and polyamines (see Pottosin and Muñiz 2002 for a review).

The VK channels were originally found in guard cells (Ward and Schroeder

1994) but reported later in other plant tissues (Pottosin et al. 2003; Gobert et al.

2007). In Arabidopsis mesophyll and guard cell vacuoles VK channels are

encoded by TPK1, a tandem pore K+ channel. These channels mediate vacuolar
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K+ release during stomatal closure, seed germination, and K+ accumulation during

seedlings growth (Gobert et al. 2007). AtTPK2, AtTPK3, AtTPK5, and AtKCO3

also encode tonoplast proteins, but their channel function is not yet demonstrated.

There is also evidence that TPK family members do not form heteromeric proteins

and their expression patterns poorly overlap, implying tissue-specific functions

(Voelker et al. 2006). Arabidopsis TPK1/VK channels are voltage-independent

and require elevated cytosolic Ca2+ for their activation (Bihler et al. 2005; Gobert

et al. 2007).

3.6.2 Vacuolar Channels and Cytosolic K+ Homeostasis

Two vacuolar pumps, a V-type H+-ATPase and a pyrophosphatase, generate the

electrochemical potential difference for H+ across the tonoplast, which fuels differ-

ent secondary transports (see for a review Barkla and Pantoja 1996; Maeshima

2001; Gaxiola et al. 2002). Under salt stress, the import of Na+ into the vacuole via

Na+/H+ antiport is central to plant survival, as it leads to osmotic adjustment and

Na+ detoxification. Therefore, both over-expression of H+-pumps and Na+/H+

antiporters corroborated the increased salt tolerance in plants (see Gaxiola et al.

2002; Apse and Blumwald 2007 for a review).

Under salt stress conditions, leaf vacuoles can accumulate between 200 and

400 mM Na+ in crop species (Cuin et al. 2003; James et al. 2006) and up to 1 M in

some halophytes (Barkla and Pantoja 1996). In salinized plant tissues, the tonoplast

electric potential difference is close to zero (Cuin et al. 2003), whereas the differ-

ence in Na+ concentration between the vacuole and cytosol could reach 10-fold

(Apse and Blumwald 2007). Thus, any passive tonoplast conductance for Na+

implies a Na+ leak from the vacuole. Proper Na+ sequestration could be achieved

only when the Na+ leak from the vacuole is abolished or at least greatly reduced.

Both SV and FV channels are highly Na+ permeable, with PNa � PK (Amodeo

et al. 1994; Brüggemann et al. 1999a; Pottosin et al. 2003). Thus, they have to be

shut down under salt stress conditions. On the other hand, the function of the

tonoplast K+-selective channel, VK, could be beneficiary under salt stress. This

benefit is dual: (1) providing a shunt conductance for H+-pumping, and (2) export-

ing K+ from the vacuole to improve the cytosolic K+/Na+ ratio (Pottosin et al.

2003).

3.6.3 Regulation of Vacuolar Channel Activity Under Saline Conditions

Cytosolic K+ can not be eternally maintained at the expense of the vacuolar K+

pool, so the role of VK channels may decrease with the progression of salt stress.

However, non-selective FV and SV channels should be down-regulated at most

times under saline conditions. Indeed, salinity treatment resulted in a dramatic

decrease of the SV currents in root vacuoles in Plantago species (Maathuis and
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Prins 1990); the effect was more pronounced in a salt-tolerant species. Recent

studies did not demonstrate significant salt-induced changes in AtPC1 (SV) tran-

scripts in Arabidopsis and TPK (VK) transcription was only moderately regulated

by external stresses (Maathuis 2006; Voelker et al. 2006; Hamamoto et al. 2008).

Thus, changes in the expression of vacuolar channels seem to have a low impact on

vacuolar function under salt stress conditions.

Ivashikina and Hedrich (2006) reported that vacuolar Na+ increased a threshold

voltage for the SV channel activation. Thus, accumulation of Na+ in the vacuole per
se could reduce the channel-mediated Na+ leak. However, such effects were only

observed at zero vacuolar Ca2+; at physiological luminal Ca2+, the SV channel

activity is potentiated by high monovalent cation concentrations, especially by Na+

which ameliorates the inhibitory effect of vacuolar Ca2+ (Pottosin et al. 2005a;

Pérez et al. 2008). On the other hand, salt-induced vacuolar Ca2+ accumulation

could suppress SV channel opening. Although such accumulation has not been

directly demonstrated yet, the expression of the vacuolar Ca2+/H+ antiporter CAX3
is strongly induced by salt and is important for salt tolerance (Maathuis 2006; Zhao

et al. 2008), whereas another antiporter, CAX1, is activated by SOS2, a serine/

threonine kinase, whose function is essential for salt tolerance (Cheng et al. 2004).

Both SV and VK channels are directly activated by cytosolic Ca2+, but SV

channels may be also regulated via Ca2+ dependent protein phosphorylation.

Cytosolic Ca2+ signaling under salinity triggers a variety of downstream targets

such as calcium- and calmodulin-binding proteins, calmodulin, and calcineurin

B-like proteins (see Luan et al. 2002; Mahajan and Tuteja 2005 for a review). SV

channels are calmodulin-dependent and possess at least two phosphorylation sites

(Bethke and Jones 1997) allowing both stimulation and inhibition of their activity,

depending on calcineurin B concentration (Allen and Sanders 1995). Thus, under

salt stress the SV channel activity might be indirectly regulated by cytosolic

Ca2+ via CBL-CIPK signaling pathways.

SV activity under saline conditions may also be regulated by stress-induced ROS

production. SV channel activity from several plant species is stimulated by reduc-

ing agents and it is also conceivable that ROS, because of their oxidizing effects on

both calmodulin and calcineurin, may impact on SV channel activity in vivo
(Carpaneto et al. 1999; Scholz-Starke et al. 2005). A strong inhibitory effect of

H2O2 on the SV channel was recently demonstrated (Pottosin et al. 2009).

Last but not least, both FV and SV channels show the highest sensitivity to

polyamines among plant channels, with Kd values for inhibition by spermine of ~5

and ~50 mM, respectively (Brüggemann et al. 1998, Dobrovinskaya et al. 1999a,

1999b). Given the fact that free polyamine concentrations in plant tissues may rise

above these levels under saline conditions (Alcázar et al. 2006), polyamine block-

age of SV and FV channels may be an efficient adaptive mechanism to prevent Na+

efflux into the cytosol. Interestingly, VK channels are almost insensitive to poly-

amines (Hamamoto et al. 2008). Thus, selective inhibition of FV and SV channels

by polyamines will make the overall passive transport of cations across the tono-

plast much more K+-selective under salinity, promoting the efficient sequestration

of Na+ in the vacuole.
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3.7 Chloroplasts and Mitochondria

3.7.1 Salinity and Photosynthesis

The drop in photosynthetic activity is one of the principal factors determining plant

sensitivity to salt stress. At low and moderate salinities, this decline is usually

attributed to a decreased CO2 conductance (the so-called “stomatal limitation”

component; Munns 2002), as well as by a decrease in leaf size. Photosynthetic

activity of isolated chloroplasts decreases only slightly despite a large decrease of

K+ and increase of Na+ content under salinity (Robinson et al. 1983; Flexas et al.

2004). More severe salinity treatments result in non-stomatal inhibition of photo-

synthesis, where an impact on leaf photochemistry becomes more important. There

is a large body of evidence that an extreme rise of salt in chloroplasts provokes a

disorganization of their ultrastructure, lipid peroxidation, and separation of mem-

brane components (Navarro et al. 2006; Barhoumi et al. 2007), as well as increased

photoinhibition and reduced PSII repair (Takahashi and Murata 2008). A direct

consequence of a lower photosynthesis rate is an increased generation of ROS

which is partly compensated by an increased activity of the ROS-scavenging

enzymes. Indeed, plants expressing high levels of ROS detoxifying enzymes

naturally or transgenic overexpressors display a relatively higher salt tolerance

(Mittova et al. 2002; Tseng et al. 2007).

3.7.2 Photosynthetic Activity, Stromal pH, and Membrane Transport

in Chloroplasts

CO2 fixation is optimal at stromal pH ~ 8 and is strongly suppressed at pH < 7.3.

Protons could be expelled from the stromal compartment by light-driven H+

pumping into the thylakoid lumen (Junge and Jackson 1982) and/or by ATP-

dependent export across the chloroplast envelope (Wu and Berkowitz 1992b;

Berkowitz and Peters 1993; Shingles and McCarty 1994). The latter mechanism

of H+ extrusion is important, bearing in mind that envelope membranes are perme-

able to protons (Thaler et al. 1991). To electrically counterbalance H+ pumping

across the envelope, Na+ or K+ uptake is required, which has been shown to reverse

stroma acidification and photosynthesis inhibition (Demmig and Gimmler 1983;

Heiber et al. 1995). The resulting trans-envelope K+(Na+)/H+ exchange is electro-

neutral and, as a very minimum, involves a functionally coupled H+-ATPase and

putative cation channel(s) of the inner envelope membrane (Wu and Berkowitz,

1992a, 1992b; Berkowitz and Peters 1993; see Neuhaus and Wagner 2000 for a

review). A search of suitable channels was mainly performed by reconstitution of

the inner envelope membrane fractions into the artificial bilayers and revealed a

variety of high-conductance, poorly regulated and low selective cation channels

(Mi et al. 1994; Heiber et al. 1995). In contrast, a tightly voltage-regulated cation

channel, FACC, has been described upon direct patch-clamping of intact pea
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chloroplasts (Pottosin et al. 2005b). Taking into the account the K+ transport rate

across the envelope (Demmig and Gimmler 1983), the corresponding K+ current

would be 0.25–0.8 pA per single chloroplast. Low conductance (~30 pS) and low-

activity (open probability ~2% at physiological pH, Ca2+, and voltage) make FACC

a suitable candidate to mediate the trans-envelope K+ fluxes. The relative Na+ to K+

permeability of FACC is ~0.5 (Pottosin et al. 2005b), which matches the relative

Na+ to K+ envelope conductance (Wang et al. 1993). The FACC partial down-

regulation by a physiologically relevant stromal alkalinization (from pH 7.3 to 8.0)

may explain the experimentally observed light-induced increase of the transenve-

lope electric potential difference (Demmig and Gimmler 1983). Therefore, FACC

seems to also play a role in controlling the transenvelope potential.

3.7.3 Role of the Envelope K+(Na+)/H+ Antiport in Salt Tolerance

The molecular identity of the putative envelope H+-translocating ATPase and

cation (e.g., FACC) channels is unknown. Recent studies have shown the existence

of additional components (AtCHX23 protein) that could mediate electroneutral

K+(Na+)/H+ exchange across the envelope membranes of A. thaliana chloroplasts

(Song et al. 2004). The chx23 loss-of-function mutants had yellowish leaves (lower

chlorophyll content), altered chloroplast ultrastructure (lack of grana thylakoid

stacks), an increased cytosolic pH (leaves), and decreased growth at higher medium

pH (7.0) as well as increased K+ and salt sensitivity. On the basis of physiological

cytosol to stroma K+(Na+) and H+ gradients, a secondary K+(Na+)/H+ antiport

across the envelope could function only in the direction of the H+ uptake by

chloroplasts paralleled by a K+(Na+) release. Thus, some effects, like an increase

in cytosolic pH in chx23 mutants, could not be explained in a straightforward

manner. However, together with the results of other authors, these data point out

that proper functioning of the chloroplast pH-stat depends on the K+(Na+)/H+

antiport across the envelope, and is important for salt tolerance.

3.7.4 Mitochondrial Channels

In contrast to chloroplast membranes (where so far only weakly selective cation

channels were reported), the inner membrane of plant mitochondria contains highly

K+-selective ATP-sensitive channels (PmitoKATP; Pastore et al. 1999; Petrussa et al.

2001). This channel forms a part of the mitochondrial energy-dissipating system.

In the energized mitochondria, a large matrix-negative voltage difference exists

across the inner mitochondrial membrane, which decreases due to a K+ influx upon

the activation of PmitoKATP. Depending on the function of anion channels (Laus

et al. 2008) and additional inner membrane K+ transport systems (K+/H+ antiporter),

a swelling of mitochondria may be observed, with a rupture of the outer membrane

and cytochrome c release, which in turn could promote programmed cell death

(Vianello et al. 2007). Together with chloroplasts, mitochondria are a major source

of ROS production in plant cells, in particular during salt- and drought-induced
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responses (Foyer and Noctor 2005; Pastore et al. 2007). PmitoKATP is rapidly

(within seconds) stimulated by superoxide anions, and its activation in a feedback

manner decreases the ROS production by mitochondria (Pastore et al. 1999). In

durum wheat, salt and drought stresses increased the activity of the PmitoKATP by

several-fold, which could be reversed by addition of superoxide dismutase and

catalase. A twofold increase in the �O2
� production by mitochondria was measured,

which could in turn be reduced by 60% by PmitoKATP activity (Trono et al. 2004).

Thus, PmitoKATP could be part of a mechanismwhich protects the mitochondria and

the cell from excessive ROS production under stress. Alternative/additional potent

dissipative pathways via K+ uniport may exist in the inner membrane of plant

mitochondria, which are independent of the metabolic status and ATP level, but

equally useful in the prevention of the ROS generation (Ruy et al. 2004).

An important aspect of mitochondrial operation under stress is their collaboration

with chloroplasts in the regulation of cell redox homeostasis. Mitochondria can

discharge reducing equivalents produced by chloroplasts without a large increase in

ROS generation, thus decreasing photoinhibition and over-reduction of chloro-

plasts/cytosol under conditions of delimited CO2 supply, e.g., under salt and drought

stresses (Pastore et al. 2007).

4 Concluding Remarks and Future Prospects

As summarized above, K+ channels are instrumental to nearly all aspects of salinity

stress signaling and tolerance, and the plant’s ability to control intracellular K+

homeostasis appears to be central to salinity tolerance (e.g., Chen et al. 2005, 2007a,

2007b). Given the fact that NaCl-induced K+ efflux is mediated predominantly by

GORK channels, it would be very tempting to suggest that knocking out GORK

genes would increase salt tolerance. Such a statement may be a bit naı̈ve, in the light

of the multiple roles these channels play in plants, and any benefits of such modifi-

cation may be outweighed by the potentially numerous physiological disturbances

caused by such a mutation (see Shabala and Cuin 2008). Instead, the major focus of

plant physiologists and breeders should be on revealing the specificity of K+ channel

regulation under saline conditions and a “fine tuning” of all mechanisms involved in

the regulation of K+ homeostasis in plants. Such “tuning” should be not restricted

to just the plasma membrane, but also has to include tonoplast, mitochondrial and

chloroplast K+ channels, and transporters. Special attention should be paid to control

of voltage gating and ROS scavenging/production, two major factors affecting

activities of GORK and NSCC K+-permeable channels. Importantly, the function

of these channels under saline conditions, as well as modes of their regulation,

should be studied in planta and particularly in crop species. Finally, special attention
should be given to the tissue-specific aspects of the function and regulation of

K+-permeable channels under saline conditions. There is no doubt we have enough

unanswered questions to keep us busy for many years!
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Gaymard F, Roby D (2003) HLM1, an essential signaling component in the hypersensitive

response, is a member of the cyclic nucleotide-gated channel ion channel family. Plant Cell

15:365–379

Barhoumi Z, Djebali W, Chaı̈bi W, Abdelly C, Smaoui A (2007) Salt impact on photosynthesis

and leaf ultrastructure of Aeluropus littoralis. J Plant Res 120:529–537
Barkla BJ, Pantoja O (1996) Physiology of ion transport across the tonoplast of higher plants.

Annu Rev Plant Physiol Plant Mol Biol 47:159–184

Basu R, Ghosh B (1991) Polyamines in various rice (Oryza sativa) genotypes with respect to

sodium-chloride salinity. Physiol Plant 82:575–581

Becker D, Geiger D, Dunkel M, Roller A, Bertl A, Latz A, Carpaneto A, Dietrich P, Roelfsema

MRG, Voelker C, Schmidt D, Mueller-Roeber B, Czempinski K, Hedrich R (2004) AtTPK4,

an Arabidopsis tandem-pore K+ channel, poised to control the pollen membrane voltage in a

pH- and Ca2+-dependent manner. Proc Natl Acad Sci USA 101:15621–15626

Berkowitz GA, Peters JS (1993) Chloroplast inner-envelope ATPase acts as primary H+ pump.

Plant Physiol 102:261–267

Bethke PC, Jones RL (1997) Reversible protein phosphorylation regulates the activity of the slow-

vacuolar ion channel. Plant J 11:1227–1235

Bihler H, Eing C, Hebeisen S, Roller A, Czempinski K, Bertl A (2005) TPK1 is a vacuolar ion

channel different from the slow vacuolar cation channel. Plant Physiol 197:417–424

Bohnert HJ, Jensen RG (1996) Metabolic engineering for increased salt tolerance – the next step.

Austral J Plant Physiol 23:661–666

Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptation to environmental stresses. Plant Cell

7:1099–1111

Bray EA (1997) Plant responses to water deficit. Trend Plant Sci 2:48–54

Bridges D, Fraser ME, Moorhead GBG (2005) Cyclic nucleotide binding proteins in the Arabi-
dopsis thaliana and Oryza sativa genomes. BMC Bioinformatics 6
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Dobrovinskaya OR, Muñiz J, Pottosin II (1999a) Inhibition of vacuolar ion channels by poly-

amines. J Membr Biol 167:127–140
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Dvořák J, Noaman MM, Goyal S, Gorham J (1994) Enhancement of the salt tolerance of Triticum
turgidum L. by the kna1 locus transferred from the Triticum aestivum L. chromosome 4D by

homoeologous recombination. Theor Applied Genet 87:872–877

Flexas J, Bota J, Loreto F, Cornic G, Sharkey TD (2004) Diffusive and metabolic limitations to

photosynthesis under drought and salinity in C3 plants. Plant Biol 6:269–279

Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the

concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

Fuchs I, Stölzle S, Ivashikina N, Hedrich R (2005) Rice K+ uptake channel OsAKT1 is sensitive to

salt stress. Planta 221:212–221

Garufi A, Visconti S, Camoni L, Aducci P (2007) Polyamines as physiological regulators of 14–3–3

interaction with the plant plasma membrane H+-ATPase. Plant Cell Physiol 48:434–440

Gaxiola R, Delarrinoa IF, Villalba JM, Serrano R (1992) A novel and conserved salt-induced

protein is an important determinant of salt tolerance in yeast. EMBO J 11:3157–3164

Gaxiola RA, Fink GR, Hirschi KD (2002) Genetic manipulation of vacuolar proton pumps and

transporters. Plant Physiol 129:967–973

Gobert A, Isayenkov S, Voelker C, Czempinski K, Maathuis FJM (2007) The two-pore channel

TPK1 gene encodes the vacuolar K+ conductance and plays a role in K+ homeostasis. Proc Natl

Acad Sci USA 104:10726–10731

Golldack D, Quigley F, Michalowski CB, Kamasani UR, Bohnert HJ (2003) Salinity stress-

tolerant and -sensitive rice (Oryza sativa L.) regulate AKT1-type potassium channel transcripts

differently. Plant Mol Biol 51:71–81

Gorham J, Bristol A, Young EM, Jones RGW (1991) The presence of the enhanced K/Na

discrimination trait in diploid triticum species. Theor Appl Genet 82:729–736

Hamamoto S, Marui J, Matsuoka K, Higashi K, Igarashi K, Nakagawa T, Kuroda T, Mori Y,

Murata Y, Nakanishi Y, Maeshima M, Yabe I, Uozumi N (2008) Characterization of a tobacco

TPK-type K+ channel as a novel tonoplast K+ channel using yeast tonoplasts. J Biol Chem

283:1911–1920

Harinasut P, Tsutsui K, Takabe T, Nomura M, Takabe T, Kishitani S (1996) Exogenous glycine-

betaine accumulation and increased salt-tolerance in rice seedlings. Biosci Biotech Biochim

60:366–368

Hedrich R, Neher E (1987) Cytoplasmic calcium regulates voltage-dependent ion channels in

plant vacuoles. Nature 329:833–835

Heiber T, Steinkamp T, Hinnah S, Schwarz M, Flügge U-I, Weber A, Wagner R (1995) Ion
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Regulation of Ion Channels by the Calcium

Signaling Network in Plant Cells

Weihua Wu, Yi Wang, Sung Chul Lee, Wenzhi Lan, and Sheng Luan

Abstract Free calcium (Ca2+) has been considered as a second messenger in all

eukaryotes. In response to many extracellular signals, plants often alter cellular Ca2+

status, and such changes in many cases are required and sufficient for downstream

responses. The specific Ca2+ changes triggered by different signals are reflected by

not only the concentration but also the temporal and spatial patterns, forming the

so-called “Ca2+ signature” for each of the different signals. In decoding such Ca2+

signatures, plants cells express and organize a large number of sensors that recognize

the Ca2+ signals and transmit the signals into downstream cellular responses. One of

the cellular targets for such Ca2+ sensors is the ion channels that are involved in a

variety of cellular processes. Such ion channels can be regulated by Ca2+ signaling in

many ways including both transcriptional and posttranslational modifications. Here,

we review the recent studies and conclusions on the ion channel regulation by various

signaling pathways involving calcium sensors and their targets.

1 Introduction

Despite the lack of a specific nervous system, plants are capable of perceiving

external stimuli, processing the signals, generating specific responses, and some-

times “remembering” the stimulus-response process. This process, often referred to

as “signal transduction” or “acclimation,” is reminiscent of the “learning” process in

animals. In between the signal (input) and response (output), there exists a compli-

cated molecular network for processing the information regardless of the specific

organism in question. Within the molecular network for plant signaling, calcium

serves as a critical component and plays a role in the signaling of many extracellular
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stimuli including biotic and abiotic stress factors and developmental cues (Trewavas

and Knight 1994; Bush 1995; Braam et al. 1997; Felle and Hepler 1997; Holdaway-

Clarke et al. 1997; McAinsh et al. 1997; Wymer et al. 1997; Sanders et al. 1999;

Rudd and Franklin-Tong 2001). One important question in calcium signaling con-

cerns the specificity of signal-response coupling as different signals elicit distinct

and specific cellular responses. Recent studies in both animal and plant cells suggest

that a Ca2+ signal is characterized not only by the concentration of Ca2+ but also by

its spatial and temporal information (Franklin-Tong et al. 1996; Holdaway-Clarke

et al. 1997; Dolmetsch et al. 1998; Li et al. 1998; Trewavas 1999; Allen et al. 2001;

Hetherington and Brownlee 2004). A combination of changes in all Ca2+ parameters

produced by a particular signal is always different from that produced by any other

signal and therefore referred to as a “Ca2+ signature.” If the specificity of the

calcium signals is encoded by these signatures, a particular plant cell must be

equipped with the mechanisms for decoding various signatures leading to specific

responses. Although the decoding process is not well understood, studies indicate

that this process starts with calcium sensors, often calcium-binding proteins that

bind calcium with high-affinity and alter their own structural properties. Such

structural changes result in functional changes in the sensor proteins (with effector

domains) or trigger interaction with the target proteins of the sensors (without

effector domains). The sensors or their targets are often regulatory proteins that

modulate the function of others and elicit changes in cellular processes.

Several families of Ca2+ sensors have been identified in higher plants. Perhaps, the

best known is calmodulin (CaM) and CaM-related proteins, which typically contain

four EF-hand domains for Ca2+-binding (Zielinski 1998; Snedden and Fromm 2001;

Luan et al. 2002). Another class is the Ca2+-dependent protein kinases (CDPKs),

which contain CaM-like Ca2+-binding domains and a kinase domain in a single

protein (Roberts and Harmon 1992; Harmon et al. 2000). CDPK proteins function

both as Ca2+ sensors and as effectors of their Ca2+-sensing activity. A more recent

addition of Ca2+ sensors are proteins similar to both the regulatory B-subunit of

calcineurin and the neuronal Ca2+ sensor in animals (Luan et al. 2002). These plant

Ca2+ sensors are referred to as calcineurin B-like (CBL) proteins (Kudla et al. 1999).

CaM and CBL are small proteins that contain multiple Ca2+-binding domains but

lack other effector domains like the kinase domain in CDPKs. To transmit the Ca2+

signal, CaMs and CBLs interact with target proteins and regulate their activity. CaM

target proteins have been identified in higher plants and include protein kinases,

metabolic enzymes, cytoskeleton-associated proteins, and others (Reddy et al. 1996;

Snedden et al. 1996; Zielinski 1998; Snedden and Fromm 2001; Luan et al. 2002;

Reddy et al. 2002). A family of SNF1-like protein kinases called CIPKs has been

identified as targets for CBL proteins (Shi et al. 1999). The target proteins of these

small Ca2+ sensors then regulate activities that constitute cellular responses triggered

by an external signal. The CDPKs bind calcium and regulate the kinase activity

present in the same molecule, more tightly linking calcium sensing and effector

activity. Both small (CaM- and CBL-type) and large (CDPK-type) Ca2+ sensors are

therefore part of a complex signaling network of interconnected pathways. A prime

goal of many plant biologists is to understand how this network is established and

112 W. Wu et al.



how it functions to link discrete external signals to specific cellular and physiological

responses. In this chapter, we focus on CDPKs and the small Ca2+ sensors (CaMs and

CBLs) that regulate ion channel activities in plant cells.

Many ion channels and ion transporters are important candidates for transducing

Ca2+ signals. Plant ion channels are transmembrane proteins possessing hydrophilic

pore structures that locate in the plasma membrane (PM) or intracellular membranes

(e.g., tonoplast, plastid, and mitochondrial membranes) of living cells. Solute ions

move through the open pore of ion channels driven by a transmenbrane electro-

chemical potential at extremely high rates (106–108 ions per second through one

channel protein) (Maathuis et al. 1997). According to the mechanism that controls

channel opening and closing (gating), plant ion channels can be classified into four

categories: (a) voltage gated channel; (b) exogenous ligands/regulators gated channel;

(c) endogenous ligands/regulators gated channel; and (d) mechanical action (stretch,

pressure, shear, or displacement) gated channel (Krol and Trebacz 2000). Alterna-

tively, ion channels can be categorized according to ion selectivity. Plant ion channels

are expressed in various tissues, located at various cellular and subcellular mem-

branes, and differ in terms of gating mechanisms, ion selectivity, activation kinetics,

as well as regulatory mechansims by modulatory factors (Barbier-Brygoo et al. 2000;

White et al. 2000; Lebaudy et al. 2007). These ion channels, together with their

regulatory components as well as other ion transporters, establish various complex

transmembrane transport systems and play essential roles in plant cell nutrient uptake,

membrane potential controlling, ion homeostasis, and signal transductions (Barbier-

Brygoo et al. 2000; Krol and Trebacz 2000; White et al. 2000; Lebaudy et al. 2007).

A number of studies have revealed that direct or indirect regulation of ion

channel activity by Ca2+ is important for plant responses to various stimuli. For

example, stomatal movement is controlled by changes in guard cell turgor, which

are modulated via Ca2+-regulated ion fluxes (Assmann 1993; Ward et al. 1995;

MacRobbie 1998). The elevation of [Ca2+]cyt inhibits inward K+ channel-mediated

K+ influx across the PM of guard cells (Schroeder and Hagiwara 1989) and

activates K+ efflux from guard cell vacuoles to cytoplasm mediated by K+ channels

on the tonoplast (Ward and Schroeder 1994). The anion channels in the PM of

stomatal guard cells are also activated by the elevated cytosolic Ca2+ (Schroeder

and Hagiwara 1989; Hedrich et al. 1990; Allen et al. 1999) and in concert the

Ca2+-regulated ion fluxes result in stomatal closure. The following sections briefly

describe Ca2+ sensors (CDPKs, CaMs, and CBLs) and how they mediate regulation

of ion channel activities in different types of plant cells.

2 CDPKs, Plant Calcium “Sensor-Responders” that Regulate

Ion Channels

Calcium’s role as a second messenger has been identified in all eukaryotes. Before

the finding of calmodulin-domain protein kinases (CDPKs), the general paradigm

for the mode of action of calcium was its binding to a sensor protein (e.g., CaM),
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altering protein conformation. Conformational changes in the sensor protein trigger

interaction with downstream effectors (often enzymes) leading to the modification

of target enzymes. Identification of CDPK in plants represented a new paradigm for

calcium sensing because the sensor protein itself contains a kinase domain that

serves as an effector (Harper et al. 1991). Therefore, CDPKs are also referred to as

“sensor-responders” as they contain both a sensing and a response domain for the

calcium signaling process (Harper and Harmon 2005).

2.1 Structural Diversity and Regulation of CDPK Superfamily

The first CDPK to be cloned represented a typical CDPK that contains calmodulin-

like calcium-binding domains (Harper et al. 1991). Subsequent studies identified

several sub-types of protein kinases that were highly related to CDPKs and may

reflect evolutionary diversification of the same type of protein kinases. These

include the CDPK-Related Kinases (CRKs) and calcium and calmodulin-dependent

kinases (CCaMKs). The CRKs have high sequence homology to CDPKs and retain

a general similarity in their structural domains. For example, the kinase domains in

the CRKs are followed by a long C-terminal domain corresponding to the CaM-like

domains in CDPKs, although the calcium-binding EF hand motifs are not con-

served in CRKs. The structural features of CCaMK are rather unique in that they

contain both calcium-binding and CaM-binding domains in the same protein.

Instead of four EF-hands, as found in CDPKs, CCaMKs usually have three EF

hands, a feature also described for the animal calcium binding protein visinin (Patil

et al. 1995).

Biochemical studies on CDPKs have identified several regulatory features that

represent important models for the regulation of calcium-regulated protein kinases

in plants (reviewed by Harper and Harmon 2005). The structural domains carry

straightforward features related to their function and regulation. For example, the

kinase domain contains the catalytic site of the enzyme; the EF-hand motifs are

calcium-binding domains; the autoinhibitory domain is located between the kinase

domain and EF hands and represses kinase activity when the calcium signal is

absent. Presumably, the autoinhibitory domain serves as a pseudosubstrate that

binds to the kinase active site and blocks the access of substrates. Upon calcium

binding, the conformational change results in the release of the inhibitory domain

from the active site thereby making the kinase site available for substrate access. In

addition to calcium-dependent regulation, some CDPKs have been shown to be

modified by myristoylation and palmitoylation (Martin and Busconi 2000). By

attaching a lipid module to the N-terminus of the protein, these modifications can

effectively target the protein to the cell membranes. For the regulation of CCaMKs,

calcium-binding to the visinin-like domain enhances autophosphorylation that in

turn increases calmodulin-binding affinity, leading to maximal activation of the

kinase (Takezawa et al. 1996). The identification of plant CDPKs and CCaMKs

significantly expands the repertoire of CDPKs in eukaryotes.
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2.2 Functional Diversity of CDPKs and CCaMKs

Where and when a gene is expressed, its subcellular localization often determines

the function of the gene (product). A number of studies address the temporal and

spatial expression patterns of CDPK genes. Recent transcriptional profiling studies

further enriched the information at the genome scale on gene expression patterns.

Although a comprehensive study of all CDPKs is lacking, some CDPK isoforms

have been shown to be ubiquitously expressed, whereas others are expressed with

tissue-specificity, regulated by various signals such as stress conditions, light,

hormones, and pathogens (reviewed by Cheng et al. 2002; Hrabak et al. 2003;

Harper et al. 2004). Concerning the subcellular localization, studies have shown

that CDPKs can be either soluble or associated with cell membranes (Harmon et al.

2000). Some isoforms are found to be located throughout the cytoplasm and the

nucleus. The subcellular compartments that contain CDPKs include the PM, per-

oxisomes, endoplasmic reticulum, seed oil bodies, and mitochondria (Harper and

Harmon 2005). Interestingly, most of the CDPKs contain both myristoylation and

palmitoylation sites at their N-termini, which could be responsible for their recruit-

ment to cell membranes. It is yet to be determined how the subcellular locations of

these CDPKs are related to their functions.

Toward the understanding of CDPK function in plant physiology, several

approaches have been taken and a number of results are revealing. Using bio-

chemical approaches, a growing list of substrates for CDPKs has been identified,

that are involved in a number of cellular processes. Substrates include enzymes

involved in carbon, nitrogen, and sulfur metabolism (Tang et al. 2003; Hardin

et al. 2004; Liu et al. 2006), enzymes for secondary metabolism (Cheng et al.

2001), and proteins for ion and water transport (Hwang et al. 2000; Guenther

et al. 2003). The phosphorylation of substrates by CDPKs can alter enzyme/

transporter activity against the substrates (in the case of aquaporin and phenylal-

anine ammonia lyase) and change the regulatory properties of substrates (Liu

et al. 2006) or protein stability (Tang et al. 2003). However, these biochemical

studies have yet to be connected to the physiological functions of the relevant

CDPKs in plants.

Although significant effort has been dedicated to the functional analysis of

CDPKs, it has been challenging to assign function to specific CDPKs using either

forward or reverse genetics approaches. Available data so far suggest that signifi-

cant redundancy among CDPK isoforms may account for difficulty in genetic

analysis. For example, a recent report (Mori et al. 2006) showed that two CDPKs

(CPK3 and CPK6) are involved in the regulation of stomatal response to ABA. The

plant hormone ABA is a well-known chemical messenger that is produced upon

stress exposure especially under drought conditions. An important response of

plants to drought is the closing of their stomata to preserve water, a process that

involves a number of signaling components including ABA and calcium. Further-

more, calcium has been shown to serve as a downstream second messenger for

ABA in stomatal closing response. However, little is known regarding the
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mechanism of calcium action in guard cells except that ion channels responsible for

turgor regulation are potential targets for ABA-induced calcium fluctuation (Allen

et al. 2000; MacRobbie 2000; Schroeder et al. 2001; Luan 2002). As CDPKs are

important sensor-responders in plants, it is speculated that they may play a role in

calcium-regulated stomatal closure. The work by Mori et al. (2006) showed that

disruption of CPK3 and CPK6 resulted in rather subtle phenotypic changes at the

whole plant level despite changes in ion channel activities in the guard cells. This

study therefore indicates that, in addition to functional redundancy, genetic ana-

lyses to identify whole plant phenotypes may not be successful because of cellular

specificity of particular CDPKs.

Calcium signaling is crucial for many aspects of reproductive biology. The

earliest evidence for such a conclusion was obtained by the finding of a calcium

“wave” during the fertilization process in sea urchins. In plants, pollen tube growth

has been used as a single-cell model for the study of calcium signaling for decades.

Directional pollen tube elongation critically depends on calcium oscillations

(Franklin-Tong et al. 1996). Although it is not known how the calcium waves are

decoded by sensors and effectors in the male gametophyte, some studies indicate

the involvement of CDPKs. This includes findings that a large number of CDPK

isoforms are expressed in pollen grains, the effect of CDPK antisense RNA

interference on pollen tube growth (Estruch et al. 1994; Yoon et al. 2006), and

recent reverse genetics analyses in Arabidopsis (J. Harper, personal communica-

tion). It is possible that a high degree of functional redundancy may also be found in

pollen CDPKs.

Although CCaMKs are not found in the model plant Arabidopsis, studies have
demonstrated a critical role of such calcium-regulated protein kinases in plant-

microbe symbiosis. One example is the legume�Rhizobium symbiosis important in

nitrogen fixation. An early signaling event in plant recognition of the bacterial

partner is a calcium oscillation in root hairs (Ehrhardt et al. 1996) and similar

calcium signaling has been observed during the establishment of plant-fungus

symbioses. A genetic screen identified a mutant defective in nodule formation in

the legume M. truncatula and the gene affected in the mutant encodes a CCaMK

containing typical visinin-like EF hands in the calcium sensing domain. In addition,

several other genes that encode receptor-like kinases and a cation transporter are

predicted to generate and decode calcium signals during the legume�Rhizobium
interaction reviewed in (Oldroyd and Downie 2004). The CCaMK-type kinases are

clearly candidates for decoding calcium changes during legume�microbe interac-

tion. More recent studies using CCaMK mutants lacking the autoinhibitory domain

(making the kinase constitutively active) demonstrate that a CCaMK (DMI3) is

required and sufficient for the nodulation-related plant cell morphogenesis (Gleason

et al. 2006; Tirichine et al. 2006), highlighting the possibility of transferring

nitrogen fixation to nonlegume plants by manipulation of CCaMKs and other

molecular components in the plant�Rhizobium interaction pathway. Because Ara-

bidopsis does not seem to have any type of symbiotic relationship with microbes,

it is speculated that CCaMKs may be specifically involved in such symbiotic

processes.
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2.3 Ion Channel Regulation by CDPKs

It was spectulated for more than a decade that CDPKs might have potential

functions in regulation of ion channels in plant cells. So far, there have been

several studies showing evidence supporting this notion. Pei et al. (1996) dem-

onstrated that a recombinant Arabidopsis CDPK activates Cl� channels located

in the Vicia faba tonoplast. Later, a soybean CDPK was demonstrated to inhibit

KAT1-mediated inward K+ currents (Berkowitz et al. 2000). Recently, in vivo
experiments in Arabidopsis guard cells directly confirmed that CPK6 and CPK3

are involved in ABA and Ca2+ dependent activation of S-type anion channels as

well as ABA activation of Ca2+-permeable channels (Mori et al. 2006). How-

ever, lack of direct evidence for the identification and characterization of ion

channel phosphorylation by specific CDPKs has become a challenging issue in

this field. Future studies should therefore give attention to the following related

questions: (a) identification of CDPKs and ion channels specifically expressed in

the given cell types (such as guard cells, pollen cells, root cells, and so on),

(b) redundancy analyses of specifically expressed CDPKs in one cell type,

(c) identification of interaction and phosphorylation between CDPKs and ion

channels, and (d) an analysis of the physiological function CDPK-regulated ion

channel activity.

3 Calmodulins : Small Calcium Sensors that Target a Family

of Ion Channels (CNGCs)

3.1 Plant Genomes Encode a Large Number of CaMs
and CaM-Related Proteins

Perhaps the best known calcium-binding proteins are CaMs, highly conserved

proteins in all eukaryotic systems. Compared to animals and fungi, which contain

only a few CaM isoforms, plants contain an extended superfamily of CaMs and

CaM-related proteins with a diverse number of Ca2+-binding EF hands and addi-

tional domains (Snedden and Fromm 1998; Zielinski 1998; Snedden and Fromm

2001; Luan et al. 2002). In addition, a large number of CaM-like and CaM-related

proteins have been identified in plant species. In Arabidopsis, typical CaM isoforms

include CaM1-7 that are highly similar to animal CaMs and to each other (>95%

similar on amino acid sequence). Other proteins (CaM8-14) share 50–75% amino

acid identity to the typical CaM2, and some of them have been shown to have

CaM activity. They are referred to as CaM-like (CaM8, 9, 13, and 14) or, when

they have additional non-CaM domains, CaM-related proteins (CaM10�12).

For example, Arabidopsis CaM8 is a CaM-like protein because of its more
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divergent sequence. This protein can function as a CaM in Ca2+-binding and yeast

complementation experiments, but it appears to interact with a more limited set of

target proteins as compared to typical CaM isoforms (Zielinski 2002). A good

example of a CaM-related protein is petunia CaM53, which has been demon-

strated to have CaM activity but it contains a polybasic C-terminal domain that is

not found in a typical CaM. As discussed later, this extra domain in CaM53

regulates its cellular localization (Rodriguez-Concepcion et al. 1999). It is also

interesting that the genes encoding CaM10, CaM12, and CaM2 are organized in a

tandem array in this order on chromosome 2. This could result from gene

duplication and incorporation of additional domains in a sequence of events

from CaM2 to CaM10 to CaM12.

The EF hands in CaM proteins are organized into two distinct globular domains,

each of which contains one pair of EF hands. Each pair of EF hands is considered to

be the basic functional unit. Pairing of EF hands is thought to stabilize the protein

and increase its affinity toward Ca2+ (Seamon and Kreetsinger 1983). Although

each globular domain binds Ca2+ and undergoes conformational changes indepen-

dently, the two domains act in concert to bind target proteins (Nelson and Chazin

1998). Upon increase of Ca2+ to sub-micromolar or low micromolar levels, all CaM

molecules will be activated. Cooperative binding is required for this “on-off”

mechanism to function efficiently. Cooperativity of Ca2+ binding ensures that full

activation of the CaM occurs in a narrow region of calcium concentrations during a

signaling event.

Selectivity of CaM toward Ca2+ is also an important factor in effective

transduction of the Ca2+ signal. CaMs bind Ca2+ selectively in the presence of

high concentrations of Mg2+ and monovalent cations in the cell. This selectivity is

achieved by optimizations in the structure folds of the binding loop. For example,

the discrimination between Ca2+ and Mg2+ is accomplished through the reduction

in the size of the binding loop. Binding of Mg2+ ions would collapse the EF-hand

loop, thereby reducing the distance between negatively charged side chains and

destabilizing the CaM-Mg2+ complex (Falke et al. 1994). Even small changes in

the chemical properties of the Ca2+ binding loop (e.g., Glu12!Gln) can drasti-

cally reduce the binding affinity for Ca2+ (Beckingham 1991; Haiech et al. 1991).

The Glu12!Gln mutation changes the carboxylate side chain into carboxyla-

mide, which removes the oxygen ligand for Ca2+ (Nelson and Chazin 1998).

Structural analyses in combination with site-directed mutagenesis established that

CaMs (and other EF-hand containing proteins) have evolved as highly specific

Ca2+ sensors.

Structural analysis of the Ca2+-free and Ca2+-bound states of CaM proteins

reveals the conformational changes induced by Ca2+ binding. In the Ca2+-free

state, CaM adopts a closed conformation. Ca2+ binding triggers a conformational

change and the protein now adopts an open conformation with near perpendicular

inter-helical angles between the globular domains. This open conformation exposes

a hydrophobic surface within each globular domain and permits binding of protein

targets (Babu et al. 1988; Kuboniwa et al. 1995; Zhang et al. 1995).
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3.2 Calmodulin Targets a Large Array of Proteins
Including Ion Channels

The diversity of gene expression and protein localization patterns is important for

generating functional diversity and specificity. The temporal and spatial expression

patterns of CaMs, like those for CDPKs or any gene family in plants, are diverse.

Some CaMs are ubiquitously expressed, whereas expression of others is regulated

by various factors including light, mechanical stress, heat/cold shock, wounding,

osmotic stress, pathogens, and plant hormones. Certain CaM genes are also devel-

opmentally regulated and show tissue- and cell-specific expression patterns.

Despite extensive analysis of expression patterns, relevant physiological functions

are not known. Some touch-induced genes (TCH) encode CaM-related proteins,

which are rapidly induced by mechanical manipulation, cold- and heat-shock,

phytohormones, and Ca2+ itself (Braam et al. 1997). The magnitude and kinetics

of mRNA induction differ between the different TCH genes (Braam et al. 1997).

Extensive work with TCH3 established that the gene is expressed in the shoot apical
meristem, vascular tissue, and root pericycle cells during vegetative growth in

Arabidopsis. Following wind stimuli, TCH3 becomes abundant in branch points

of leaf primordia and stipules, pith parenchyma, and vascular tissues, although the

functional consequences of this induction are not understood.

As plants can establish specific cellular Ca2+ signatures by restricting Ca2+ to a

specific compartment of the cell (reviewed in (Rudd and Franklin-Tong 2001), the

subcellular location of CaMs and other calcium sensors plays a role in decoding

“local” calcium signals and is not fixed. A good example for this type of regulation

is petunia CaM53 (Rodriguez-Concepcion et al. 1999): Similar to rice OsCaM61,

CaM53 contains a polybasic 34-residue C-terminal extension ending with a CaaX-

box motif for prenylation. CaM53 prenylation (Caldelari et al. 2001) and proces-

sing (Rodriguez-Concepcion et al. 2000) lead to targeting the PM. However, when

prenylation is blocked, the polybasic domain targets the protein to the nucleus. A

similar prenylation-dependent membrane vs. nuclear localization has been recently

reported for OsCaM61 (Dong et al. 2002). Prenylation and PM targeting of CaM53,

however, do not depend on calcium binding. The prenylation status of CaM53 is

likely an important aspect of its function, as the set of proteins with which CaM53

could potentially interact upon calcium binding is expected to be very different

depending on the subcellular localization of the protein.

An important clue for the function of intracellular calcium sensors is the identity

of their target proteins. The Ca2+-bound CaM binds and regulates the activity of a

wide range of proteins that are not necessarily related in structure. How can

Ca2+-CaMs bind to so many different proteins? More specifically, the plasticity

of the Ca2+-CaM structure must accommodate the variation in both the molecular

size and composition of the target proteins. This issue has been addressed by

structural analyses of Ca2+-CaMs and target-bound Ca2+-CaMs. Studies show that

the two globular domains of Ca2+-CaM are interconnected by a flexible tether that
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can accommodate peptides of varying sizes (Nelson and Chazin 1998). Upon

binding a peptide, the two globular domains fold toward each other to form a

hydrophobic channel rich in methionine residues that have flexible hydrophobic

side chains. In this channel, Ca2+-CaM interacts with peptides mostly through

nonspecific van der Waals interactions that form between the exposed hydrophobic

domains of Ca2+-CaM and the target peptides, which explains why Ca2+-CaM can

bind many target proteins (O’Neil and DeGrado 1990; Osawa et al. 1998; Zhang

and Yuan 1998). Together, the structures of CaM illustrate how this class of

proteins can function as extremely efficient Ca2+ sensors and on/off switches,

allowing them to transduce Ca2+ signals with high efficiency and accuracy. Differ-

ent affinities for Ca2+-CaM interactions with specific target proteins may be suffi-

cient for the differential transduction of the Ca2+ signal.

The interaction between CaM and CaM-dependent protein kinases in animal

cells provides a good model that illustrates how Ca2+-CaM regulates the activity of

the target. For example, CaMKII contains an autoinhibitory domain, which

occludes the active site in the resting state. Ca2+-CaM binds to a site near or

overlapping with the autoinhibitory domain, thereby releasing it from the active

site and activating the enzyme (reviewed by Hook and Means 2001). On the basis of

the available results, this model also appears to be applicable to interactions

between CaMs and their target proteins in plant cells. CaM targets in plants have

been extensively reviewed (Snedden and Fromm 1998; Zielinski 1998; Snedden

and Fromm 2001; Reddy et al. 2002), and therefore we will only introduce the

conceptual framework, using several examples, to explain how CaMs regulate

protein target activity in plants.

CaM target proteins can be identified using labeled CaMs to screen expression

cDNA libraries (Fromm and Chua 1992). A large number of CaM-binding proteins

have been identified from plants. Glutamate decarboxylase (GAD) is one of the best

studied (Baum et al. 1993; Baum et al. 1996; Snedden et al. 1996; Zik et al. 1998).

The enzyme catalyzes conversion of L-glutamate into gamma-aminobutyric acid

(GABA) and is rapidly activated during several stress responses (Snedden and

Fromm 1998, 2001). GAD is activated by binding either to a CaM or to a monoclo-

nal antibody that recognizes the CaM-binding domain of GAD. In analogy to

Ca2+-CaM�CaMK interaction, binding of Ca2+-CaM to GAD probably relieves

the autoinhibitory effect of the CaM-binding domain, as GAD mutants that lack

the CaM-binding domain (GAD-C) are constitutively active. Overexpression of

GAD-C in transgenic tobacco induced developmental abnormalities associated with

increased GABA levels, concomitant with reduced levels of glutamate (Baum et al.

1996). The activation of GAD by environmental stimuli via the Ca2+-CaM signal-

ing system is very rapid, exemplifying the highly cooperative on/off switch of the

CaM response (Snedden and Fromm 1998).

Ca2+-ATPases are localized in the endo-membranes or PM and play a key role in

removing Ca2+ from the cytoplasm to terminate a signaling event, which is critical

for Ca2+ homeostasis in all eukaryotic cells (reviewed by Sze et al. 2000). Among

the Ca2+-ATPases in higher plants, type IIB Ca2+-ATPases are major targets of

Ca2+-CaM regulation. Unlike homologs in animal cells, plant type IIB ATPases are
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located in both endo-membranes (ER and tonoplast) and the PM (Sze et al. 2000).

Ca2+-CaM interacts with type IIB ATPases to activate the pump by releasing an

autoinhibitory domain from the active site, similar to the Ca2+-CaM�CaMKII

interaction in animals. It is noteworthy that plant Ca2+-ATPases are subject to

regulation by CDPKs, as briefly described earlier. Interestingly, while Ca2+-CaM

activates the pump, CDPK phosphorylation inhibits the pump, demonstrating the

complexity in the regulation of Ca2+ signal termination by feedback from two

different types of Ca2+ sensors (Hwang et al. 2000). Several plant nucleotide-

gated ion channels may also be regulated by Ca2+-CaM (Schuurink et al. 1998;

Arazi et al. 1999; Kohler et al. 1999; Leng et al. 1999; Arazi et al. 2000). These

channel proteins contain six transmembrane domains and a high-affinity CaM-

binding site overlapping with a cyclic nucleotide-binding (CNB) domain (Arazi

et al. 2000).

Ca2+ signaling and the role of CaM in the nucleus are drawing increased interest

(Rudd and Franklin-Tong 2001; Snedden and Fromm 2001). CaMs participate

in transcriptional regulation either directly by binding to transcription factors

(Szymanski et al. 1996) or indirectly by activating kinases or phosphatases that

control transcription factor activity (Marechal et al. 1999). Studies in animal cells

demonstrated that CaM localization to the nucleus could be facilitated by differen-

tial Ca2+ oscillations (Craske et al. 1999; Teruel et al. 2000; Teruel and Meyer

2000), suggesting additional and complex levels of transcriptional regulation. As

discussed earlier, changing the metabolic status of plant cells induced translocation

of CaM53 to the nucleus where it appears to activate specific signaling (Rodriguez-

Concepcion et al. 1999). Selective Ca2+ signals were measured in the cytoplasm

and the nucleus of transgenic plants expressing either cytoplasmic or nuclear forms

of the Ca2+ reporter protein aequorin (van Der Luit et al. 1999; Pauly et al. 2000).

Such Ca2+ signals may be required for the expression of specific genes. For

example, expression of tobacco NpCaM1 (but not NpCaM2, which encodes an

identical CaM protein) in response to wind was stimulated by nuclear Ca2+ tran-

sients, whereas cold-responsive expression was primarily induced by a cytoplasmic

Ca2+ transient (van Der Luit et al. 1999). Thus, spatially separated Ca2+ signals can

also control the function of closely related CaM proteins through the regulation of

their genes.

Although many target proteins have been identified for CaMs, relatively little is

known about the specific physiological function of each CaM member. Like the

situation with CDPKs, functional redundancy may have hindered the genetic

analysis of CaM members in model plants such as Arabidopsis.

3.3 Regulation of Cyclic Nucleotide-Gated Channels by CaMs

Although CaMs in plants have been identified for more than two decades, their

target ion channels appear to be limited to cyclic nucleotide-gated channels

(CNGC). The first plant CNGC channel HvCBT1 (Hordeum vulgare CaM-binding
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transporter) was cloned when screening for the CaM-binding proteins in barley

(Schuurink et al. 1998). Afterward, more CNGC proteins similar to HvCBT1 from

several species including Arabidopsis (Köhler and Neuhaus 1998; Kohler et al.

1999; Maser et al. 2001), tobacco (Arazi et al. 1999), and rice (Maser et al. 2001)

were identified. The protein sequences of CNGCs show similarity to Shaker-like K+

channels with six transmembrane domains (S1–S6), a pore domain between S5 and

S6, and a CNB domain (Demidchik et al. 2002; Talke et al. 2003). In contrast to

animal CNGCs, plant CNGCs possess a CaM-binding domain at the C-terminal that

overlaps with the CNB domain (Kohler et al. 1999). The CaM binding activities of

CNGCs have been confirmed by different research groups (Schuurink et al. 1998;

Arazi et al. 2000; Kohler and Neuhaus 2000). The protein structure and functional

analyses indicate that CNGC activity is enhanced by binding cyclic nucleotides and

inhibited by binding CaM (Arazi et al. 2000; Kohler and Neuhaus 2000; Leng et al.

2002; Balague et al. 2003; Ali et al. 2007). Activities of AtCNGC2 (Hua et al. 2003)

and AtCNGC10 (Li et al. 2005) have been demonstrated to be inhibited by CaMs.

Several studies showed that plant CNGCs are permeable to monovalent (K+, Na+)

and/or divalent (Ca2+) cations. For example, AtCNGC2 could conduct K+ and Ca2+

but not Na+ (Leng et al. 1999; Leng et al. 2002; Ali et al. 2007) and AtCNGC4 is

permeable to both K+ and Na+ equally (Balague et al. 2003). In addition to their

permeabilities to K+ and/or Na+, some CNGCs can probably mediate Ca2+ influx,

and the consequent cytosolic Ca2+ elevation may bind and activate CaMs to

subsequently regulate CNGC activity. Several CNGCs, such as AtCNGC2,

AtCNGC4, AtCNGC11, and AtCNGC12, have been demonstrated to have impor-

tant roles in plant responses to pathogen infection (Clough et al. 2000; Balague

et al. 2003; Yoshioka et al. 2006; Ali et al. 2007). A recent report showed that

AtCNGC18 may function as a cation channel and is involved in the polarized tip

growth of pollen tubes (Frietsch et al. 2007). Further investigation on physiological

functions of Ca2+/CaM modulation of CNGCs as well as other candidates of ion

channels in planta is expected.

4 The CBL-CIPK Network

4.1 Plant CBLs are Related to Calcineurin B but have
Significantly Diverged into a Group of Proteins
with New Functions

Earlier studies on calcium signaling implicate a calcineurin-like protein in the

signaling processes of ion channel regulation and salt tolerance (Luan et al. 1993;

Allen and Sanders 1995; Pardo et al. 1998). Calcineurin is a calcium/calmodulin-

dependent protein phosphatase highly conserved in eukaryotes from yeast to mam-

mals (Klee et al. 1998). Like CaM-dependent protein kinase, calcineurin contains a

CaM-binding domain in the catalytic subunit (calcineurin A). In addition, another
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regulatory subunit (calcineurin B) binds to the catalytic subunit and is required for

the activation of the phosphatase. Calcineurin B, like CaM, contains four EF-hand

domains, although the overall sequence is not related to CaM. Because calcineurin

serves as a critical molecular switch for many cellular processes in eukaryotes from

yeast to mammals, it was speculated that similar molecules might also exist in

plants. Extensive effort focused on the isolation of calcineurin-like proteins and

genes from plants and a family of genes encoding CBLs was eventually identified in

Arabidopsis (Kudla et al. 1999). Independently, a genetic analysis of salt mutants

identified a gene related to calcineurin B, called SOS3, (Liu and Zhu 1998) and it is a

member of the CBL family (also referred to as CBL4). CBLs are encoded by a

multigene family of at least ten members in Arabidopsis, which have similar

structural domains with small variations in the length of the coding regions

(Kudla et al. 1999; Kim et al. 2000; Albrecht et al. 2001; Guo et al. 2001a, b).

Their amino acid sequence identity, which ranges from 20–90%, would be sufficient

for functional redundancy among the closely related members, while allowing for

functional specificity among more diverged members. Unlike CaMs, CBLs as yet

have been identified only in higher plants, suggesting that CBLs may function in

plant-specific signaling processes. Comparing CaM with CBL proteins, the two

families do not show significant similarity in their primary amino acid sequences

except for the conserved positions in the EF-hand motifs. In addition to a general

sequence difference, CaMs and CBLs also differ in the number of typical EF-hand

motifs in their basic structure. Typically, CaMs contain four EF-hands and CBLs

contain three canonical EF-hands. Recent studies have solved the 3D structure of

two members in the CBL family and in both cases, the fourth “EF hand” appears to

diverge into a Mn-binding domain (Nagae et al. 2003; Sanchez-Barrena et al. 2005).

4.2 The CBL-Type Calcium Sensors Target a Family of Protein
Kinases–a Shift-of-Paradigm from Calcineurin in Yeast
and Animals

As discussed earlier, small calcium sensors function by targeting downstream

effectors. Unlike CaMs that interact with a large variety of target proteins, CBLs

appear to interact with a single family of protein kinases (Shi et al. 1999). These

kinases, referred to as CBL-interacting protein kinases (CIPKs), are most similar to

sucrose non-fermenting (SNF) protein kinase from yeast and animals in the kinase

domain but retain unique C-terminal regulatory domains. The CBL�CIPK interac-

tion represents a major paradigm shift in calcium signaling as compared to yeast

and animals where calcineurin B protein interacts and regulates a protein phospha-

tase. The CBLs interact with CIPKs through the C-terminal nonkinase domain

that contains a conserved region among different CIPK members (Shi et al. 1999;

Kim et al. 2000; Albrecht et al. 2001; Guo et al. 2001a, b). Interestingly, in-

teraction between CBL1 and CIPK1 requires micromolar levels of Ca2+. This
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Ca2+-dependent interaction is consistent with the general paradigm established for

Ca2+-sensor interactions with target proteins in animals (e.g., Ca2+-CaM�CaMKII

interaction). Another study (Halfter et al. 2000) using SOS3 (also referred to as

CBL4) as a “bait” also identified several interacting protein kinases that belong to

the CIPK family. In particular, SOS3 interaction with SOS2 (also called CIPK24)

stimulates kinase activity against a peptide substrate, suggesting that SOS3 serves

as a regulatory subunit of SOS2. SOS2 and SOS3 were initially identified by a

genetic screen for Arabidopsis mutants that are salt-overly-sensitive (reviewed by

Zhu 2003).

Regarding the biochemical properties of CIPKs, studies showed that CIPKs have

strong substrate specificity with very low activity against generic substrates (Shi

et al. 1999). In addition, the CIPK kinase activity prefers Mn2+ as a cofactor over

Mg2+ (Shi et al. 1999). Interaction with CBLs activates the kinase activity of

CIPKs. One study suggests that the CBL-interacting domain may serve as an

autoinhibitory domain that blocks the kinase active site (like the situation with

CDPK or CaMK) (Guo et al. 2001a, b). The CBLs interact with the autoinhibitory

domain in CIPKs and by doing so may release the kinase domain for substrate

access.

The Arabidopsis genome contains a large number of genes for putative CIPK

proteins. At least 25 CIPK genes have been confirmed by cDNA cloning and

sequencing (Luan et al. 2002). Further experiments have extended the analysis of

CBL�CIPK interactions to the entire family of CBLs and a large fraction of the

CIPK family in an effort to determine the functional pairs of CBLs and CIPKs.

These studies revealed that each CBL interacts with a subset of CIPKs and each

CIPK interacts with one or more CBLs. Some CBLs share common CIPK targets

and some CIPKs share common CBL regulatory subunits. Such interaction speci-

ficity and overlap among various members in the CBL and CIPK family may well

reflect functional specificity and redundancy (Kim et al. 2000; Albrecht et al. 2001;

Guo et al. 2001a, b). It must be noted, however, that these interaction studies were

performed using mostly the yeast two-hybrid system and therefore may not neces-

sarily represent the physiological situations in plants. In addition to matching the

CBLs with their target kinases, the interaction studies further defined the functional

domains of CBLs and CIPKs. For example, the CBL-interacting domain in the

C-terminal region of CIPKs was localized to a small region of approximately 20

amino acids (Kim et al. 2000; Albrecht et al. 2001; Guo et al. 2001a, b). This

domain may be important in kinase regulation by releasing the autoinhibitory

domain (Guo et al. 2001a, b).

Besides regulating the activity of the CIPK kinases, certain structural features of

CBLs also suggest these Ca2+-sensors can change cellular localization of the CBL-

CIPK complexes. Several CBLs have a conserved myristoylation site in their

N-terminal region (Liu and Zhu 1998; Kudla et al. 1999; Kim et al. 2000; Albrecht

et al. 2001). It would be expected that these CBLs are localized to cell membranes,

which could serve as a regulatory mechanism for establishing a local signal cascade

similar to the model discussed for CaM53 above. For example, a significant amount

of SOS3/CBL4 is always found associated with the membrane fraction and the
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myristoylation site is required for the function of the protein (Ishitani et al. 2000).

CBL1 and CBL9 are also associated with the membrane (D’Angelo et al. 2006; Xu

et al. 2006), and target CIPK1 and CIPK23 to the PM, thereby enabling CIPK

phosphorylation of membrane associated protein substrate(s) (see details in later

sections). Together, the view emerges that in plants certain calcium sensors

(including CDPK, CBL, and CaM) have acquired protein domains that restrict

their localization, serving as a mechanism to establish local signal transduction

pathways that initiate specific cellular responses.

4.3 Physiological Pathways Involving CBL-CIPK Signaling
Modules that Regulate Ion Channels and Transporters

So far, there have been several CBL-CIPK signaling pathways whose physiological

functions have been well investigated, and most of these pathways have been

identified to regulate the activities of ion channels or transporters.

The interaction pairs CBL4 (SOS3)-CIPK24 (SOS2) and CBL10-CIPK24

(SOS2) have been both confirmed to participate in salt tolerance in Arabidopsis
(Liu and Zhu 1998; Chinnusamy et al. 2004; Kim et al. 2007; Quan et al. 2007). By

genetic screening, the Arabidopsis salt-overly-sensitive (SOS) mutants were iden-

tified and a “SOS” pathway of plant responses to salt stress was established in

Arabidopsis roots. CBL4 (SOS3), a PM-located Ca2+ sensor, may sense the salt

stress induced Ca2+ signal in Arabidopsis roots (Liu and Zhu 1998; Ishitani et al.

2000), and transduce this signal to its downstream target CIPK24 (SOS2). By

interacting with CIPK24 (SOS2), CBL4 (SOS3) recruits CIPK24 (SOS2) to the

PM (Quintero et al. 2002) and activates the kinase activities of CIPK24 (SOS2)

(Halfter et al. 2000; Guo et al. 2001a, b). The PM-located Na+/H+ exchanger SOS1,

as the downstream target of the SOS3-SOS2 complex, is phosphorylated by SOS2

and activated (Quintero et al. 2002). As a result, cytosolic Na+ is transported out of

the cell by SOS1 contributing to salt tolerance. In addition, the SOS3-SOS2 complex

seems also to prevent Na+ entry into root cells by inactivating or down-regulating

another PM-located Na+ transporter AtHKT1 (Rus et al. 2001; Zhu 2002).

Two recent independent studies (Kim et al. 2007; Quan et al. 2007) showed that

CIPK24 (SOS2) can also interact with CBL10 and regulate Arabidopsis responses
to salt stress by regulating the activities of Na+ transporters. Interestingly, the

CBL10-CIPK24 (SOS2) complex may target the tonoplast and transport cytoplas-

mic Na+ into the vacuole by activating an unknown tonoplast-located Na+ trans-

porter (Kim et al. 2007). These studies demonstrated that two Ca2+ sensors (CBL4

(SOS3) and CBL10) can interact with CIPK24 (SOS2) and regulate activities of

Na+ transporters at PM or tonoplast, respectively. Both these pathways would

decrease the cytoplasmic Na+ load.

The CBL-CIPK signaling pathway also has been demonstrated to be involved

in regulation of K+ acquisition and/or translocation. Using a reverse genetics

approach, CIPK23 was identified to regulate K+-uptake in Arabidopsis roots,
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particularly under K+-deficient conditions (Xu et al. 2006). Low-K+ stress signals

may trigger the cytosolic Ca2+ elevation and lead to activation of PM-located

calcium sensors CBL1 and/or CBL9. The CBL1 and/or CBL9 proteins interact

with CIPK23 and recruit CIPK23 to the PM where the K+ channel AKT1 is

phosphorylated (Li et al. 2006; Xu et al. 2006; Cheong et al. 2007). As a result,

AKT1 is activated in Arabidopsis roots to augment K+ uptake under low-K+

conditions. It is noteworthy that the results of K+ content measurements indicated

that, in addition to AKT1, CIPK23 might also regulate other K+ transporters

involved in Arabidopsis K+ uptake (Xu et al. 2006).

As discussed above, each designated CBL-CIPK pair may possess specific

physiological functions in plant cells, depending on its subcellular location and

the specificity of its downstream target. It appears that CBLs play crucial roles in

determining the specific subcellular location of CBL-CIPK complexes by interact-

ing with CIPKs and recruiting CIPKs to the PM or tonoplast (Quintero et al. 2002;

Xu et al. 2006; Cheong et al. 2007; Kim et al. 2007; Quan et al. 2007). So far, most

identified targets of CBL-CIPK complexes are ion transporters or channels (Rus

et al. 2001; Quintero et al. 2002; Zhu 2002; Xu et al. 2006), which suggests

particular importance of CBL-CIPK signaling pathways in regulation of ion (par-

ticularly K+ and Na+) transport and cellular ion homeostasis as well as in plant

responses to environmental stimuli.

5 Plant Calcium Signaling Network in Response

to Abiotic Stresses

Calcium signaling has been considered as the most important regulatory system in

plant cells, particularly for plant responses to various environmental stresses, such

as salt, high and low temperatures, drought, and low K+ (LK) (Ng and McAinsh

2003; White and Broadley 2003). The initial generation and subsequent transduc-

tion of cytoplasmic Ca2+ signals in response to various environmental stress con-

ditions require numerous molecular components including Ca2+-permeable ion

channels, reactive oxygen species (ROS) as well as various Ca2+ sensors, which

constitute a complex Ca2+ signaling network in plant cells (Fig. 1).

The model entails the following processes. When the plants are subjected to a

stress signal, the PM-located nonselective cation channels (NSCCs), such as

CNGCs, are activated and mediate the Ca2+ influx into plant cells (Talke et al.

2003; Donaldson et al. 2004). The elevation of cytoplasmic Ca2+ could stimulate

NADPH oxidase-mediated production of ROS by means of CaM-regulated NAD

kinase (Yang and Poovaiah 2003). Consequently, the increased ROS (such as H2O2

and HO�) may directly activate some NSCCs or other Ca2+–permeable channels,

leading to further Ca2+ influx (Pei et al. 2000; Demidchik and Maathuis 2007). ROS

has been well documented as a signal molecule involved in plant stress responses

(Apel and Hirt 2004; Mori and Schroeder 2004; Pitzschke et al. 2006) and is tightly
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linked to the Ca2+ signaling pathway by activating Ca2+-permeable ion channels

(Pitzschke et al. 2006; Demidchik and Maathuis 2007).

In addition, the increased cytoplasmic Ca2+ could also activate the endo-

membrane NSCCs, such as AtTPC1 (a vacuole-located SV-type channel) that

may mediate Ca2+ release from vacuole (Peiter et al. 2005). The Ca2+ signals

generated by the combination of transporters through fluxes from both extracellular

and intracellular stores will be patterned with spatio-temporal variations under the

different stress conditions (Ng and McAinsh 2003), leading to specific “signatures”

that are then recognized and transduced downstream by specific Ca2+ sensors

(CaMs, CDPKs and CBLs) (Luan et al. 2002; White and Broadley 2003; Luan

2009; Luan et al. 2009).

Fig. 1 The schematic model of plant calcium signaling network in response to abiotic stresses

(After Demidchik and Maathuis 2007; Kim et al. 2009 with modifications). This model illustrates

the generation and transduction of cytoplasmic Ca2+ signals integrating with ion channels or

transporters in plant cells in responses to various abiotic stresses (salt, drought, nutrient-deficiency,

etc.). The details of this working model are described in the text.
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The growing data show that the Ca2+ sensors could interact and regulate down-

stream target proteins in plant cells via transcriptional and/or posttranslational

modulations (White and Broadley 2003; Kim et al. 2009). Here, we summarize

the regulations of ion channels or transporters by Ca2+ sensors under various abiotic

stresses (Fig. 1). In one pathway, the cytoplasmic Ca2+ signals are transduced into

nucleus, where the nucleus-localized CaMs or CDPKs may sense the signals and

regulate transcription factors (Kim et al. 2009). Consequently, the genes encoding

ion channels (CNGCs, AtKC1,OsAKT1, TaAKT1) or transporters (AtHAK5, AtKEA5)
are transcriptionally regulated (Buschmann et al. 2000; Shin and Schachtman 2004;

Fuchs et al. 2005; Ashley et al. 2006; Maathuis 2006). Alternatively, the cytosol-

located Ca2+ sensors (CaMs, CDPKs and CBLs) are activated by Ca2+ signals and

regulate the ion channel activities (AKT1, S-type anion channel, Ca2+-permeable

channel) or transporter activities (SOS1) at the PM or vacuolar membrane leading

to changes in the ion fluxes across these membranes. The overall regulations of

ion channels or transporters by Ca2+ sensors could affect the ion and osmotic

homeostasis in plant cells, which may enhance the tolerance of plants to various

abiotic stresses.
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The Role of Cyclic Nucleotide-Gated Channels

in Cation Nutrition and Abiotic Stress

Christen Y.L. Yuen and David A. Christopher

Abstract The plant cyclic nucleotide-gated channels (CNGCs) are a large family

of ion channels that are regulated by both cyclic nucleotides (CNs) and calmodulin

(CaM). CNGCs are generally permeable to a wide range of cations, including the

essential macronutrients K+ and Ca2+, as well as potentially toxic cations such as

Na+ or Pb2+. Several members of the CNGC family have been implicated in the

uptake of cations and/or their subsequent distribution across plant organs. Others

may participate in plant responses to salinity and abiotic stress by mediating Ca2+

signaling. Some CNGCs localize to the plasma membrane (PM) whereas others

localize to intracellular membranes such as the tonoplast, and may therefore

regulate the sequestration and release of cations among intracellular stores. It thus

appears that plants have adapted certain CNGCs for specialized roles in maintain-

ing cellular cation homeostasis.
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CN Cyclic nucleotide

CNBD Cyclic nucleotide-binding domain

CNGA Cyclic nucleotide-gated channel subunit type A

CNGB Cyclic nucleotide-gated channel subunit type B

CNGC Cyclic nucleotide-gated channel

CNTE Cyclic nucleotide-dependent thioesterase

DEPC Diethyl pyrocarbonate

EAG Ether-a-go-go

EGTA Ethylene glycol-bis(2-aminoethylether)-N,N,N0,N0-tetraacetic acid
ER Endoplasmic reticulum

GLR Glutamate receptor

GORK Gated outwardly-rectifying K+ channel

GUS b-Glucuronidase
HACC Hyperpolarization-activated Ca2+ channel

HCN Hyperpolarization-activated cyclic nucleotide-gated

HEK Human embryonic kidney

HvCBT1 Hordeum vulgare calmodulin-binding transporter 1

KAT K+ transporter of Arabidopsis thaliana
KUP K+ uptake transporter

MPSS Massively parallel signature sequencing

NSCC Nonselective cation channel

NtCBP4 Nicotiana tabacum calmodulin-binding protein 4

PM Plasma membrane

ROS Reactive oxygen species

SKOR Stelar K+ outward rectifier

TPM Transcripts per million

VI-NSCC Voltage-insensitive nonselective cation channel

1 Introduction

Inorganic cations are essential macro- and micronutrients in plants, playing crucial

roles in many cellular processes, such as signal transduction, the stabilization of cell

walls and membranes, osmoregulation, and the activation of numerous enzymes

(Maathuis 2009). Plants have evolved several distinct classes of transporters to

facilitate the movement of cations across cellular membranes. Electrophysiological

studies have shown that channels permeable to a wide range of cations are present at

the plasma membrane (PM) and other organellar membranes of all major plant

organs (Demidchik et al. 2002b). These channels are collectively referred to as

nonselective cation channels (NSCCs). NSCCs are proposed to facilitate the pas-

sive uptake of essential nutrient cations (e.g. K+ and Ca2+), to deliver cations across

tissues or between the cytosol and intracellular compartments such as the vacuole,

and to participate in Ca2+ signaling pathways critical for stress responses and

development (Demidchik and Maathuis 2007).
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Many NSCCs discriminate poorly between different monovalent cations, and

thus root-expressed NSCCs may serve as a major pathway for the uptake of Na+

(Davenport and Tester 2000; Maathuis and Sanders 2001; Demidchik and Tester

2002). Although most plants do not require Na+, it can be beneficial to the growth of

many plant species, particularly under conditions of K+-deficiency (Flowers and

Läuchli 1983). Because of their physicochemical similarity, Na+ can substitute for

K+ as an osmoticum within the vacuole, and may also be able to take the place of K+

as a counter-ion in long-distance transport in certain plants (Subbarao et al. 2003).

However, an excess of Na+ within the cytosol is toxic to plants, as Na+ can compete

for K+ binding sites of various proteins that require K+ for proper activity (Maathuis

and Amtmann 1999). Root-expressed NSCCs can also mediate the influx of Cs+

(Demidchik and Tester 2002), another cation that is deleterious to plant growth

because of its ability to interact with K+ binding sites (Hampton et al. 2004).

Plants possess at least two large gene families encoding for known or putative

NSCCs: the glutamate receptor-like (GLR) and cyclic nucleotide-gated channels

(CNGC) (Demidchik et al. 2002b). The genome of Arabidopsis thaliana contains

twenty CNGC genes, which can be divided into five subfamilies, designated by

Mäser et al. (2001) as groups I, II, III, IV-A, and IV-B. Each subfamily is

represented by multiple CNGC homologs in rice, indicating that their divergence

predates the split between monocots and dicots (Bridges et al. 2005). Plant CNGCs

are evolutionarily related to (but phylogenetically distinct from) the CNGCs found

in animals (Pilot et al. 2003b), and are predicted by modeling studies to assemble

into tetrameric channels (Hua et al. 2003a). Each CNGC subunit possesses a

centrally-located hydrophobic core region, common to all members of the Shaker

ion channel superfamily, as well as overlapping cyclic nucleotide (CN)- and

calmodulin (CaM)-binding sites located near the C-terminus (Fig. 1; for additional

information on the structure of CNGCs, please refer to Sect. 2 in Chapter “The

Function of Cyclic Nucleotide Gated Channels in Biotic Stress”).

Fig. 1 Structural features of plant CNGC subunits. Each CNGC subunit possesses a centrally-

located hydrophobic core composed of six membrane-spanning a-helices (S1–S6), with the

channel’s pore-forming segment (P) situated between S5 and S6. The S5 and P segments are

separated by a relatively large linker region. The cytoplasmic C-terminal region harbors partially

overlapping cyclic nucleotide-binding and calmodulin-binding domains (CNBD and CaMBD,

respectively)
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In animals, CNGCs mediate sensory signal transduction in olfactory cells and

photoreceptors, and are present in several other neuronal and non-excitable cell

types (Kaupp and Seifert 2002). Thus far, eight of the 20 CNGCs in Arabidopsis
have been ascribed physiological functions. As in the case of animal CNGCs, some

plant CNGCs encode Ca2+-permeable cation channels that participate in signaling

pathways (Talke et al. 2003). These include AtCNGC2 and AtCNGC4, which are

essential for activation of the hypersensitive response in plants (Clough et al. 2000;

Balagué et al. 2003), AtCNGC11 and AtCNGC12, which stimulate the pathogen

defense response signaling pathway (Yoshioka et al. 2006), and AtCNGC18, which

is required for the proper elongation of pollen tubes (Chang et al. 2007; Frietsch

et al. 2007). However, there is a growing body of evidence that some CNGCs

directly mediate cation uptake and contribute to maintain homeostasis by regulating

the passive exchange of cations between the cell and its extracellular environment

(Sunkar et al. 2000; Li et al. 2005; Gobert et al. 2006; Ma et al. 2006; Guo et al.

2008). In this chapter, we discuss the role of CNGCs in plant nutrition and abiotic

stress in relation to their ability to transport both essential and toxic cations, and as

components of Ca2+ signaling.

2 Molecular Characteristics of Plant CNGCs

2.1 Transport of Monovalent and Divalent Cations

Shaker-like K+ channels contain a characteristic motif, GYGD, which is situated

at the narrowest part of the ion-conducting pore and functions as an ion selectivity

filter, enabling the selective permeation of K+ over Na+ (Doyle et al. 1998; Long

et al. 2005). The pore domains of plant CNGCs are structurally similar to that of

K+-selective channels, but do not share the GYGD selectivity filter sequence.

Instead, the most common motif found at the analogous position of Arabidopsis
CNGCs is GQNL, which is present in all members belonging to subfamily I, as

well as several members of subfamily III (Table 1). Two paralogs harboring this

motif, AtCNGC1 and AtCNGC3, are capable of transporting both K+ and Na+ in

heterologous systems (Hua et al. 2003a; Gobert et al. 2006). In addition,

AtCNGC10 antisense lines exhibit alterations in the K+ and Na+ content within

roots and shoots (Li et al. 2005; Guo et al. 2008), suggesting that AtCNGC10

channels also mediate K+ and Na+ transport. Thus, channels sharing this selectiv-

ity filter sequence generally are not K+-selective. AtCNGC4, which possesses the

unique pore motif GN–L, also is permeable to both K+ and Na+ (Balagué et al.

2003). By contrast, AtCNGC2 preferentially conducts K+ over other alkali metal

cations (Cs+, Li+, and Rb+), and does not transport Na+ (Leng et al. 2002). Its

novel selectivity filter sequence, ANDL, has been demonstrated experimentally

to be responsible for AtCNGC2’s ability to discriminate between K+ and Na+

(Hua et al. 2003a).
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ö
h
le
r
an
d
N
eu
h
au
s
2
0
0
0
,

L
en
g
et

al
.
2
0
0
2
,
H
u
a
et

al
.

2
0
0
3
a,
A
li
et

al
.
2
0
0
6

A
tC
N
G
C
3

G
Q
N
L

K
+
,
N
a+

(n
o
t
C
a2

+
)

G
o
b
er
t
et

al
.
2
0
0
6

A
tC
N
G
C
1
0

G
Q
N
L

K
+

P
o
ss
ib
ly

n
o
n
-r
ec
ti
fy
in
g

A
ct
iv
at
ed

b
y
cG

M
P

P
ar
ti
al
ly

in
ac
ti
v
at
io
n
b
y

A
tC
aM

2

L
i
et
al
.
2
0
0
5
,
C
h
ri
st
o
p
h
er

et
al
.

2
0
0
7

A
tC
N
G
C
1
1

G
Q
N
L

C
a2

+
,
K
+

A
ct
iv
at
ed

b
y
cA

M
P

(n
o
t
cG

M
P
)

Y
o
sh
io
k
a
et

al
.
2
0
0
6
,
U
rq
u
h
ar
t

et
al
.
2
0
0
7

A
tC
N
G
C
1
2

G
Q
N
L

C
a2

+
,
K
+

A
ct
iv
at
ed

b
y
cA

M
P

(n
o
t
cG

M
P
)

Y
o
sh
io
k
a
et

al
.
2
0
0
6
,
U
rq
u
h
ar
t

et
al
.
2
0
0
7

A
tC
N
G
C
1
3

G
Q
N
L

G
ro
u
p
II

A
tC
N
G
C
5
,6
,7
,8
,9

G
Q
G
L

G
ro
u
p
II
I

A
tC
N
G
C
1
4
,1
5
,1
7

G
Q
N
L

A
tC
N
G
C
1
6

G
Q
S
L

A
tC
N
G
C
1
8

G
Q
N
I

C
a2

+
F
ri
et
sc
h
et

al
.
2
0
0
7

G
ro
u
p
IV

-A

A
tC
N
G
C
1
9

A
G
N
L

A
tC
N
G
C
2
0

A
G
N
Q

G
ro
u
p
IV

-B

A
tC
N
G
C
2

A
N
D
L

K
+
>

C
s+

�
L
i+

�
R
b
+
;
al
so

C
a2

+
,

b
u
t
n
o
t
N
a+
.
E
x
te
rn
al

C
a2

+

b
lo
ck
s
K
+
p
er
m
ea
ti
o
n

In
w
ar
d
-r
ec
ti
fy
in
g

A
ct
iv
at
ed

b
y
cA

M
P
an
d

cG
M
P

In
ac
ti
v
at
ed

b
y
C
aM

4
;

al
so

in
te
ra
ct
s
w
it
h

C
aM

2

L
en
g
et

al
.
1
9
9
9
,
K
ö
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Many, but not all, plant CNGCs are capable of efficiently transporting Ca2+, as

indicated by the ability of AtCNGC1, AtCNGC11, and AtCNGC12 to rescue Ca2+-

uptake deficient yeast mutants (cch1 mid1), whereas AtCNGC3 cannot (Ali et al.

2006; Gobert et al. 2006; Urquhart et al. 2007). As the pore regions of these four

CNGCs all share the same selectivity filter motif (GQNL), other sequences must

account for their differences in Ca2+ permeability. In the case of animal CNGCs, the

S5 and S6 transmembrane segments and the S5/P-linker region all influence Ca2+

permeation (Seifert et al. 1999). Some animal CNGCs have a high affinity for Ca2+;

the longer retention of Ca2+ ions within their pores (relative to low Ca2+-affinity

CNGCs) blocks the permeation of monovalent cations (Frings 1999). Electrophys-

iological studies indicate that Ca2+ blocks the permeation of K+ through the pore of

AtCNGC2, perhaps via a similar mechanism (Leng et al. 2002). Although

AtCNGC2 does not transport Na+, it is conceivable that Ca2+ may impede other

(Na+-permeable) CNGCs. In this regard, it is interesting to note that external Ca2+

partially inhibits the influx of Na+ via NSCCs in root protoplasts, which may

provide an explanation for the ameliorative effect of Ca2+ on salt stress (Demidchik

and Tester 2002).

Unlike their animal homologs, which display very little voltage dependence

(Kaupp and Seifert 2002), certain plant CNGCs are reportedly voltage-sensitive.

AtCNGC1, its tobacco ortholog NtCBP4, and AtCNGC2 all appear to be strictly

inward-rectifying channels (Leng et al. 2002). AtCNGC2 probably encodes for

the CN-dependent hyperpolarization-activated Ca2+ channel (HACC) detected in

Arabidopsis guard cells (Ali et al. 2007). HACCs are have also been detected in

both trichoblast and atrichoblast cells of the Arabidopsis root epidermis (Véry and

Davies 2000; Demidchik et al. 2002a), though it remains to be determined if these

are also related to inward-rectifying plant CNGCs. Two other members of the

CNGC family, AtCNGC4 (Balagué et al. 2003) and AtCNGC10 (Christopher

et al. 2007), conduct both inward and outward currents, with the former being

weakly outward-rectifying. These could be related to voltage-insensitive, or weakly

voltage-sensitive, NSCCs (VI-NSCCs) present at the PM of Arabidopsis root and
leaf cells (Maathuis and Sanders 2001; Shabala et al. 2006). VI-NSCCs are univer-

sally blocked by Gd3+ and La3+, but vary in their sensitivities to low pH, high

external Ca2+, CNs (cAMP or cGMP), quinine, and the amino acid modifier DEPC,

indicating that VI-NSCC currents in roots are mediated by more than one type of

channel (Maathuis and Sanders 2001; Demidchik and Tester 2002). In addition to

mediating K+ and Na+ influx, VI-NSCCs are implicated in the efflux of K+ from

root and leaf cells in response to salt stress (Shabala et al. 2006). Some VI-NSCCs

are also permeable to Ca2+ and are inferred to be essential for Ca2+ uptake, as

treatment of intact Arabidopsis roots with the potent VI-NSCC and HACC blocker,

Gd3+, strongly inhibits Ca2+ accumulation, whereas the HACC-specific blocker

verapamil does not (Demidchik et al. 2002a).

Both reactive oxygen species (ROS) and nitric oxide (NO) are produced during

abiotic and biotic stress (Lamattina et al. 2003; Apel and Hirt 2004). Interestingly,

a subpopulation of root VI-NSCCs are activated by hydroxyl radicals (OH�),
leading to increased Ca2+ influx into the cytosol (Demidchik et al. 2003). The
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pharmacological profiles of these channels suggest that they are distinct from the

VI-NSCCs involved in toxic Na+ influx. An increase in cytosolic Ca2+ levels can

also be induced in guard cells by NO; this occurs via the release of Ca2+ from

intracellular stores, and is blocked by agonists of guanylate cyclase, indicating that

the process is cGMP-dependent (Garcia-Mata et al. 2003). It is unclear if NO

directly activates Ca2+-permeable channels, or influences their activity through a

cGMP-dependent cascade. NO may also induce Ca2+ release through a cGMP-

independent mechanism (Durner et al. 1998). To our knowledge, no data have yet

been reported concerning the effects of ROS and NO on plant CNGC activity;

however, NO has been shown to directly activate the olfactory CNGC of rats

(Broillet 2000).

2.2 Regulation by CN Monophosphates

CN second messengers (cAMP and cGMP) have been implicated in a wide range

of physiological processes in plants, including phytochrome-mediated gene repres-

sion, cell cycle progression, adventitious root formation, pollen tube growth, pro-

duction of the plant antibiotic phytoalexin, and regulation of ion transport (Newton

and Smith 2004). Most of the putative direct targets for CNs in Arabidopsis are

cation transporters harboring an evolutionarily conserved CN-binding domain

(CNBD). These include the twenty CNGCs, the nine Shaker-like K+ channels, and

the putative Na+/H+ antiporter AtNHX7/SOS1 (Maathuis 2006). Two putative

thioesterases, AtCNTE1 and AtCNTE2, also possess a CNBD (Bridges et al.

2005). Molecular characterization of plant CNGCs has revealed that some CNGCs

are preferentially activated by cAMP over cGMP (Yoshioka et al. 2006), and vice

versa (Balagué et al. 2003). Thus, different sets of CNGCs may be regulated by

separate CN signaling pathways.

Several lines of evidence indicate that CNs are involved in plant responses to

abiotic stresses. The cGMP content of Arabidopsis seedlings rapidly rises (� 5 s)

after the onset of salt or osmotic stress (Donaldson et al. 2004), and salt-stressed

seedlings supplied with exogenous membrane-permeable analogs of cAMP or

cGMP exhibit improved growth characteristics and accumulate less Na+ (Maathuis

and Sanders 2001). One mechanism through which CNs may mediate plant

responses to salt stress is through the activation or deactivation of cation transpor-

ters. Indeed, it has been demonstrated that a subset of root-expressed Na+-permeable

VI-NSCCs are deactivated when cAMPs or cGMPs are supplied to the cytoplasmic

side of the PM (Maathuis and Sanders 2001). It is presently unclear if these

CN-deactivated VI-NSCCs are related to CNGCs, as all CNGCs analyzed to date

are CN-activated (Table 1). However, the regulatory properties of manyArabidopsis
CNGCs are still unknown, and it remains possible that some are repressed by CNs.

As many CNGCs are permeable to Ca2+, they may also influence abiotic stress

by mediating Ca2+ signaling. An influx of Ca2+ to the cytosol is elicited by cAMP

treatment in cultured carrot cells (Kurosaki 1997). Similarly, treatment of tobacco
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protoplasts with cAMP or cGMP triggers an elevation in cytosolic Ca2+ levels that

can be inhibited by verapamil, a known blocker of HACCs (Volotovski et al. 1998).

It is interesting to note that the transient increase in cytosolic Ca2+ that occurs in

response to salt stress is partially suppressed by an inhibitor of guanylyl cyclases,

suggesting the possible involvement of CN-regulated Ca2+ channels, such as

CNGCs (Donaldson et al. 2004).

2.3 Regulation by Calmodulin

Developmental and environmental cues, including biotic and abiotic stresses, elicit

Ca2+ signals. A key transducer of these signals is the Ca2+-binding protein, calmod-

ulin (CaM). Though lacking inherent enzymatic activity, CaM binds to and mod-

ulates the activities of a diverse range of proteins (Snedden and Fromm 1998). The

ability of CaM to interact with target proteins is dependent upon conformational

changes that occur when it binds Ca2+ (White and Broadley 2003). The CaM-

binding domain of plant CNGCs is delimited to a stretch of 23–24 amino acids

located at the C-terminus, coinciding with the terminal a-helix (aC) of the CNBD
(Arazi et al. 2000; Hua et al. 2003b). It is hypothesized that the overlapping nature

of the two domains allows CaM to influence CNGC activity by weakening or

impairing its interaction with CNs (Köhler et al. 1999; Arazi et al. 2000). Indeed,

an antagonistic relationship between CaM and CNs in modulating CNGC activity

has been described in two instances. Using the HEK cell expression system, Hua

et al. (2003b) demonstrated that recombinant AtCaM4 reversed the ability of cAMP

to activate AtCNGC2 currents in a time-dependent manner. Similarly, our lab has

observed that co-expression of AtCaM2 with AtCNGC10 partially suppresses the

ability of AtCNGC10 to complement the K+ uptake-deficient E. coli strain LB650

(trkG trkH); this effect was reversed by the addition of the membrane-permeable

CN analog, 8-Br-cGMP (Li et al. 2005). In both studies, the CNGC channels

appeared to interact specifically with the Ca2+-bound conformation of CaM, as

the effects of CaM were abolished in the presence of the Ca2+-chelating agent,

EGTA. A similar requirement of Ca2+ for interaction with CaM has been reported

for AtCNGC1, 3–6, and 9 (Reddy et al. 2002).

The Arabidopsis genome contains seven highly-conserved calmodulin (CAM)

genes, encoding four distinct isoforms (CaM1/4, CaM2/3/5, CaM6, and CaM7),

and 50 less-conserved CAM-like (CML) genes (McCormack and Braam 2003).

Although several CaM/CML proteins interacted with multiple binding partners in

protein microarray experiments, the majority of target proteins interacted specifi-

cally with only one or a few CaM/CMLs in vivo, indicating that many CaM/CMLs

operate through distinct sets of target proteins (Popescu et al. 2007). Several CAM
and CML genes are upregulated in response to external stimuli, such as mechanical

stimulation (CAM2, CML12, and CML24: Braam and Davis 1990) or salt stress

(CML9: Magnan et al. 2008; CML37 and CML39: McCormack et al. 2005).

Increased CAM transcript levels are also elicited in response to salt stress in tomato
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(Delumeau et al. 2002). There is currently very limited information concerning the

relative affinities of plant CNGCs for different CaM/CML proteins (Table 1). It

would be interesting to see if any of the stress-induced CaM or CML proteins

interact with CNGCs to generate physiological responses to environmental stresses.

3 CNGC Expression and Subcellular Localization

3.1 Tissue-Specific Expression Patterns

Characterization of the expression patterns of CNGC genes may provide insight

into their possible functions. For example, CNGC genes active in root hairs may

contribute to the acquisition of nutrient cations from the soil, while those expressed

in vascular tissues may mediate long-distance cation transport. The expression

profiles of Arabidopsis CNGC genes, derived from Genevestigator analysis of

publicly available microarray datasets, are shown in Fig. 2. The results indicate

that multiple paralogs are transcriptionally active in nearly all plant tissues, and are

generally consistent with massively parallel signature sequencing (MPSS) data

reported earlier by Talke et al. (2003). Note that although both MPSS and micro-

array data indicate that AtCNGC9 and AtCNGC10 are significantly expressed in

roots and shoots, this is not reflected in the heat maps of Fig. 2 because the signal

values for their expression in pollen sperm cells are an order of magnitude higher

than in other tissues. The relative transcriptional activity in sperm cells may be

overestimated, as the normalization methods for datasets in the Genevestigator

database may be inadequate for pollen (Becker and Feijó 2007).

On the basis of MPSS data, the most highly expressed paralog in roots is

AtCNGC10, which has a normalized transcript abundance value of 122 TPM (tran-

scripts per million); by comparison, AtAKT1, which encodes the principle inward-

rectifying K+-selective channel found in roots (Hirsch et al. 1998), has an abundance

value of 174 TPM. Immunoelectron microscopy has shown that AtCNGC10 is

present within multiple cells types of the root apex, including meristematic, and

peripheral and columella root cap cells (Christopher et al. 2007). Labeling by

AtCNGC10 antibodies was also observed in stele cells, albeit at much lower fre-

quency. AtCNGC1, AtCNGC2, AtCNGC3, and AtCNGC6 are moderately expressed

in roots (20–50 TPM; Talke et al. 2003). Promoter-GUS transcriptional fusion

studies have shown that AtCNGC3 is primarily expressed in the cortical and epider-

mal cells of the root mature zone, including root hairs (a primary site of ion uptake),

but does not appear to be expressed within endodermal or stele cells, or at the root tip

(Gobert et al. 2006). The expression patterns ofAtCNGC1,AtCNGC2, andAtCNGC6
in roots have not been characterized in detail, but available microarray data suggest

that AtCNGC1 and AtCNGC6 are active at the root tip, elongation, and mature (root

hair) zones, while AtCNGC2 expression is restricted to the mature zone (Fig. 2).

Notably, of the five most highly-expressed CNGC genes in roots, three (AtCNGC1,

The Role of Cyclic Nucleotide-Gated Channels in Cation Nutrition and Abiotic Stress 145



Arabidopsis thaliana
callus

sperm cell
seedling

cotyledons
hypocotyl
radicle
imbibed seed

inflorescence
flower

carpel
ovary
stigma

petal
sepal
stamen

pollen

pedicel
silique
seed

embryo

suspensor
stem
node

rosette
juvenile leaf
adult leaf
petiole

hypocotyl
xylem
cork

leaf primordia
stem

roots
lateral root
root hair zone
root tip
elongation zone
endodermis
endodermis+cortex
epid. atrichoblasts
lateral root cap
stele

20
10
5
1

senescent leaf

shoot apex
cauline leaf

testa (seed coat)
general seed coat
chalazal seed coat

endosperm
micropylar endosperm
peripheral endosperm
chalazal endosperm

abscission zone

cell culture / primary cell

I II III IVa IVb

A
tC

N
G

C
1

A
tC

N
G

C
3/

11
A

tC
N

G
C

10
A

tC
N

G
C

12
A

tC
N

G
C

13
A

tC
N

G
C

5
A

tC
N

G
C

6
A

tC
N

G
C

7
A

tC
N

G
C

8
A

tC
N

G
C

9
A

tC
N

G
C

14
A

tC
N

G
C

15
A

tC
N

G
C

16
A

tC
N

G
C

17
A

tC
N

G
C

18
A

tC
N

G
C

19
A

tC
N

G
C

20
A

tC
N

G
C

2
A

tC
N

G
C

4

146 C.Y.L. Yuen and D.A. Christopher



AtCNGC3, and AtCNGC10) have loss-of-function phenotypes associated with

altered cation accumulation, and one (AtCNGC2) is hypersensitive to growth on

media containing high concentrations of Ca2+ (see Sect. 4 in Chapter “New

Approaches to Study the Role of Ion Channels in Stress Induced Signaling; Measur-

ing Calcium Permeation in Plant Cells and Organelles Using Optical and Electro-

physiological Techniques”). It is not known whether AtCNGC6 and other, less

prominently-expressed CNGCs also play roles in cation nutrition and homeostasis,

or instead regulate other aspects of root biology. Several paralogs are transcribed in

the root stele, perhaps indicating a role in long-distance transport.

AtCNGC3 and AtCNGC10 are also significantly expressed in shoots. In mature

rosettes, AtCNGC3 is predominantly expressed in leaf veins, and may therefore be

involved in the distribution and/or unloading of cations transported through the

xylem (Gobert et al. 2006). AtCNGC3 is also transcriptionally active in the coty-

ledons of mature embryos from ungerminated seeds. In contrast to the vasculature-

predominant expression of AtCNGC3 in leaves, immunolabeling studies have

detected AtCNGC10 at the PM of spongy mesophyll, palisade parenchyma, and

xylem cells (Christopher et al. 2007). The mesophyll and parenchyma cells of

AtCNGC10 antisense plants are smaller (Borsics et al. 2007), demonstrating the

importance of AtCNGC10 in these cell types. As noted earlier, AtCNGC10 is also

strongly active in sperm cells. Its role in sperm physiology has not yet been defined,

but the relative scarcity of T-DNA insertions within AtCNGC10 (Borsics et al.

2007) may indicate that disruption of this gene causes gametophyte lethality.

Interestingly, although microarray and MPSS data indicate that AtCNGC1 mRNA

is abundant in both roots and shoots, AtCNGC1 protein was only detected in

microsomal membranes of roots, but not leaves (Ma et al. 2006).

3.2 Responses to Abiotic Stress

Plants use several strategies to cope with inadequate nutrient availability or exces-

sive concentrations of toxic ions within their environment. One strategy is to alter

the expression of genes relevant to ion transport. Using an Arabidopsis transporter-
specific gene array, Maathuis et al. (2003) analyzed the root expression patterns of

multiple transporter families in response to nutrient (K+ and Ca2+) deprivation and

salt (Na+) stress. The effects of salt stress on the expression of transporter genes

were further characterized subsequently by Maathuis (2006). These studies

Fig. 2 Tissue-specific expression patterns of plant CNGCs. The Genevestigator software suite was
used to mine publicly-released Arabidopsis ATH1 microarray datasets. The results are depicted as

a heat map, where dark blue indicates a relatively high expression level within a particular tissue

type, and progressively lighter shades of blue indicate lower levels of expression for a given gene.

The green bars below the chart indicate the log2 of the expression potential for each gene (i.e. the

maximum expression intensity for each gene observed across all data sets). AtCNGC3 and

AtCNGC11 are recognized by the same non-unique probe set, and have thus been combined as

AtCNGC3/11

<
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revealed that Ca2+ starvation and Na+ stress affected a large number of genes,

including several CNGCs. However, K+ deficiency modulated relatively few genes

in roots. In the experimental conditions used by Maathuis et al. (2003), the

abundance of K+ in roots was not substantially affected after 4 days starvation,

whereas shoot K+ levels decreased by ~30%. By contrast, Pilot et al. (2003a)

observed that the K+ contents of roots were ~50% lower after K+ deprivation

over a similar period. Differences in media composition (e.g. the presence of

NH4
+) may be responsible for the variance in root K+ levels (Maathuis et al. 2003).

To supplement earlier transcriptomics analysis, we utilized Genevestigator to

characterize CNGC expression in response to several additional types of abiotic

stress (Fig. 3). AtCNGC9 was the only CNGC regulated by K+ starvation in roots;

mRNA levels decreased 5-fold 24–96 h after the onset of deprivation (supplemental

data in Maathuis et al. 2003). However, no difference in AtCNGC9 root expression
was observed in a separate experiment (Fig. 3). These differences could be due to

experimental methodology or a high level of variability inherent to transcriptomics

analyzes (Maathuis 2006). Prolonged K+ starvation deceased AtCNGC8,
AtCNGC17, and AtCNGC19 mRNA levels by at least four-fold in shoots (Fig. 3).

Cs+ also strongly represses the expression of these three genes, which is consistent

with Cs+ toxicity due to interfering with the transport, accumulation and biological

activity of K+ (Hampton et al. 2004). The expression of several CNGC genes was

altered two-fold or more after Ca2+ starvation, with AtCNGC8, AtCNGC9, and
AtCNGC17 being downregulated, and AtCNGC12, AtCNGC19, and AtCNGC20
upregulated (supplemental data in Maathuis et al. 2003). With the exception of

AtCNGC12, which plays a role in disease resistance (Yoshioka et al. 2006), the

physiological functions of the genes affected by K+ and/or Ca2+ stress have not

been determined. Interestingly, AtCNGC8 expression, which appears to be pollen-

specific (Fig. 2), is downregulated in response to Na+ stress (Maathuis 2006), and

upregulated in response to nitrate or phosphate deficiency (Fig. 3). The availability

of phosphate has been shown to influence pollen production and morphology in

some plants (Lau and Stephenson 1994).

Putative NSCCs, such as CNGCs, are speculated to transport toxic levels of Na+

into the root. Surprisingly, however, Na+ stress only affects transcription of a few

CNGC genes. The mRNA levels for AtCNGC1, AtCNGC19, and AtCNGC20
increased in roots in response to salinity, while AtCNGC3, AtCNGC8, and

AtCNGC19 transcript levels were reduced in shoots (Maathuis 2006). As AtCNGC3
is mainly expressed in the leaf vasculature, reduced activity of this gene may serve

to limit the accumulation of Na+ in leaves. The significance of AtCNGC19 and

AtCNGC20 upregulation in response to Na+ treatment is currently unclear, as

Atcngc19 and Atcngc20 single mutants do not exhibit altered sensitivity to salt

stress (Maathuis 2006). The two genes belong to their own CNGC subgroup (IV-A)

in Arabidopsis, and encode for highly similar products (~75% sequence identity);

thus, the lack of an apparent phenotype may be due to functional redundancy.

AtCNGC19 also exhibits increased expression in response to several pathogens and
osmotic/drought stress (Fig. 3), and may therefore have a common function in both

biotic and abiotic stress pathways.
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3.3 Subcellular Localization

Translational reporter fusions have been utilized in several instances to define the

subcellular localization patterns of plant CNGCs. For example, translational fusions

to GFP were used to demonstrate that the barley homolog HvCBT1 localizes to

the PM in aleurone protoplasts (Schuurink et al. 1998), and that AtCNGC3,

Fig. 3 Effects of biotic and abiotic stresses on CNGC expression. Genevestigator was used to

analyze the effects of different stresses on CNGC expression levels. The results are depicted as a

heat map. Red indicates increased expression relative to control samples, while green indicates

decreased expression
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AtCNGC10, AtCNGC11, and AtCNGC12 localize to the PM when expressed in

Arabidopsis leaf protoplasts (Gobert et al. 2006; Christopher et al. 2007; Baxter

et al. 2008). In most cases, the chimeric CNGC proteins were evenly distributed

throughout the PM of transfected protoplasts, although HvCBT1-GFP aggregated

into numerous discrete patches, which may coincide with specialized functional

domains in the PM (Schuurink et al. 1998). The tobacco homolog, NtCBP4, was

also shown by immunoblotting to associate with the PM fraction (Arazi et al. 1999).

All of these CNGCs belong to subgroup I.

There are four pollen-specific Arabidopsis CNGCs: AtCNGC7 and 8 (group II),

and AtCNGC16 and 18 (group III) (Fig. 2). YFP-tagged versions of AtCNGC7 and

8 localize to the tonoplast, while AtCNGC16-YFP appears to be targeted to an

intracellular membrane different from that labeled by AtCNGC7-YFP (Chang et al.

2007). Therefore, some CNGCs may mediate the exchange of cations between the

cytosol and intracellular compartments such as the vacuole and the ER, which is

consistent with experiments by Volotovski et al. (1998) demonstrating that a

significant portion of the Ca2+ released into the cytosol in response to CN treatment

originates from intracellular stores. The only pollen-specific CNGC localizing to

the PM is AtCNGC18, which is targeted specifically to the apex of pollen tubes

(Chang et al. 2007; Frietsch et al. 2007). The essential role of AtCNGC18 in pollen

tube elongation raises the possibility that CNGCs may similarly regulate the

expansion of root hairs, which also elongate via tip growth. It will be interesting

to determine if other CNGCs exhibit asymmetrical subcellular localization patterns,

leading to polar ion fluxes within cells, and perhaps across plant tissues.

An alternative method that has recently been utilized to define the subcellular

distribution patterns of CNGCs is immunoelectron microscopy (Christopher et al.

2007). This approach enables the analysis of protein localization at a much higher

resolution than currently possible by light or confocal microscopy. For example,

immunoelectron microscopy has revealed that AtCNGC10 is present in the PM

(which confirmed the localization of the AtCNGC10-GFP fusion), and is also

detected within the ER, Golgi, trans-Golgi vesicles, and cell plate membranes

(Christopher et al. 2007). These localizations likely define steps in the trafficking

pathway of AtCNGC10 from initial synthesis to final integration in the PM and to

the expanding cell plate by way of Golgi-derived vesicles (Nebenführ et al. 2000).

4 Physiological Roles in Plant Nutrition

4.1 Cation Uptake and Homeostasis

Classical studies on the absorption of cations by intact barley roots have shown that

plants possess at least two distinct mechanisms of K+ uptake: a high-affinity system

(KM = 0.021 mM) that preferentially transports K+ over Na+ and a low-affinity

system (KM = 11.4 mM) that is capable of transporting both monovalent cations
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(Epstein et al. 1963). On the basis of loss-of-function studies, at least three CNGCs

contribute to the nonselective uptake of monovalent cations in Arabidopsis:
AtCNGC1, AtCNGC3, and AtCNGC10. The Atcngc1 T-DNA insertion mutant

accumulates less Ca2+ and K+ in shoot tissues than wild type, and is less sensitive

to toxic concentrations of Na+ (Hampton et al. 2004; Ma et al. 2006; Maathuis

2006). Given that AtCNGC1 protein is predominantly located in roots (Ma et al.

2006), and that heterologously-expressed AtCNGC1 channels are inward-rectifying

for K+, Na+, and Ca2+ (Leng et al. 2002; Ali et al. 2006), these phenotypes can be

explained by the Atcngc1 being deficient in the uptake of all three cations. The

relatively modest decrease in Ca2+ content within Atcngc1 shoots (6–22% lower), is

suggestive of additional Ca2+ uptake pathways in Arabidopsis (Ma et al. 2006).

Consistent with evidence that entry of toxic Pb2+ into root cells occurs at least in

part via Ca2+-permeable channels (Huang and Cunningham 1996), Atcngc1mutants

have a higher tolerance to Pb2+, and accumulate lower amounts of Pb2+ than wild-

type plants (Sunkar et al. 2000).

As for Atcngc1, T-DNA insertion mutants of AtCNGC3 are more resistant to Na+

stress, albeit at a restricted concentration range (40–80 mM; Gobert et al. 2006).

The similar sensitivities of Atcngc3 and wild-type plants at higher Na+ concentra-

tions may be due to the downregulation of AtCNGC3 activity by wild-type plants

under extreme salt stress. Indeed, a decrease in AtCNGC3 expression in shoots

during salt stress was reported (Maathuis 2006). The Na+ content of Atcngc3 shoots
(but not roots) is ~30% lower than that of wild type when grown on media

containing 80 mM NaCl (Maathuis 2006). The mutants are also less sensitive to

growth-inhibiting concentrations of K+, and accumulate ~20% less K+ than wild

type on high (120 mM) K+ media (Gobert et al. 2006). As AtCNGC3 is expressed in
the leaf vasculature and the epidermal and cortical cells of the root mature zone, the

higher tolerance of Atcngc3 mutants to K+ and Na+ stress may be due to decreased

monovalent cation uptake by roots, impaired translocation of these cations to

shoots, or both (Gobert et al. 2006). The germination of Atcngc3 seeds was

significantly lower than that of wild type seeds on high concentrations of NaCl,

suggesting that mutant embryos are hypersensitive to salt stress. In developing

embryos, AtCNGC3 is hypothesized to mitigate ionic toxicity by facilitating the

movement of Na+ from salt-sensitive to salt-tolerant tissues (Gobert et al. 2006).

AtCNGC3 channels do not appear to transport Ca2+, as AtCNGC3 cannot rescue a

Ca2+-uptake defective yeast strain, and Atcngc3 mutant seedlings do not exhibit

altered sensitivities to Pb2+ or high concentrations of Ca2+ (Gobert et al. 2006).

Altered expression of AtCNGC10 also affects nutrient cation transport in

Arabidopsis. Constitutive overexpression of AtCNGC10 under the CaMV 35S

promoter can partially compensate for akt1-1, a knockout mutation of a Shaker-
type gene implicated in the high-affinity uptake of K+ by root hairs (Li et al. 2005).

Furthermore, antisense-mediated silencing of AtCNGC10 causes plants to be hyper-
sensitive to growth on low K+ media (10–100 mM), as indicated by decreased

biomass production relative to wild type (Borsics et al. 2007). The effects of salt

stress on antisense lines are complex, with roots exhibiting increased tolerance to

NaCl compared to wild type, whereas the biomass production and photosynthetic
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activity of mutant shoots were more severely reduced than in control plants (Guo

et al. 2008). The effect of antisense suppression of AtCNGC10 on the accumulation

of monovalent cations within tissues is likewise complex, and appears to be

dependent upon the developmental states and experimental conditions utilized.

Initial studies observed ~40% less potassium in the leaves of mature antisense

plants relative to wild type plants grown in soil, suggesting the involvement of

AtCNGC10 in K+ uptake (Li et al. 2005). However, the roots and shoots of younger

AtCNGC10 antisense plants grown on Hoagland’s solution had higher levels of K+

than those of wild type, and shoots (but not roots) contained more Na+ than those of

wild type when plants were subjected to salt stress, which suggests a defect in

monovalent cation efflux under these growth conditions (Guo et al. 2008). Thus,

AtCNGC10 appears to mediate cation influx under certain circumstances, and

efflux in others, which is consistent with the observation that heterologously-

expressed AtCNGC10 can conduct both inward and outward cation currents in

HEK cells, as dictated by the electrochemical gradient (Christopher et al. 2007).

The efflux of K+ from antisense lines upon NaCl treatment is significantly reduced

relative to wild type (Guo et al. 2008), supporting conclusions by Shabala et al.

(2006) that the NaCl-induced K+ loss from Arabidopsis cells is mediated in part by

a VI-NSCC. Although the ability of AtCNGC10 to transport Ca2+ has not been

analyzed at the molecular level, preliminary experiments from our lab indicate that

AtCNGC10 antisense plants accumulate ~20% less Ca2+ in mature leaves (Borsics

and Christopher, unpublished data). It is interesting to note that AtCNGC10 was

detected in root cap cells (Christopher et al. 2007), as removal of the cap from

maize roots strongly inhibits the rapid transport of exogenously applied Ca2+ across

the root tip (Lee et al. 1983).

VI-NSCCs are permeable to Cs+ (Demidchik and Tester 2002), and theoretical

models suggest that the toxic influx of Cs+ into root cells occurs predominantly

through VI-NSCCs, with high-affinity K+/H+ symporters of the AtKUP family

transporting the remainder (White and Broadley 2000). A survey of the effects of

CNGCmutations on Cs+ accumulation in Arabidopsis revealed that some mutations

reduced Cs+ content in shoots (AtCNGC2, AtCNGC3, AtCNGC16, AtCNGC19, and
AtCNGC20), whereas others increased Cs+ content (AtCNGC1, AtCNGC9, and
AtCNGC12) (Hampton et al. 2004). The decreased Cs+ content of Atcngc3 shoots

is consistent with AtCNGC3’s putative role in the translocation of monovalent

cations to leaves. It is speculated that since K+ deficiency increases Cs+ influx, the

enhanced accumulation of Cs+ in Atcngc1 shoots may result from the mutant’s

defect in K+ uptake leading to upregulation of an alternative K+ and Cs+-permeable

pathway, such as AtKUPs (Hampton et al. 2004).

4.2 Ca2+ Signaling

Some of the effects of CNGC on plant growth may be indirect, by way of Ca2+

signaling pathways. As previously mentioned, there is circumstantial evidence
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supporting the involvement of CNGCs in mediating Na+-induced transient

increases of cytosolic Ca2+ (see Sect. 2.2 in Chapter “New Approaches to Study

the Role of Ion Channels in Stress Induced Signaling; Measuring Calcium Perme-

ation in Plant Cells and Organelles Using Optical and Electrophysiological Tech-

niques”). CNGCs may also serve a similar function in the response to Ca2+ stress, as

the growth of Atcngc2 is strongly impaired under moderately calcified (10–30 mM

Ca2+) conditions (Chan et al. 2003), but mutant plants do not exhibit altered Ca2+

accumulation (unpublished data in Chan et al. 2003; Hampton et al. 2004). In

addition, although AtCNGC1 and AtCNGC10 participate in cation uptake and

distribution, their possible involvement in Ca2+ signaling cannot be excluded.

Indeed, both mutants exhibit alterations in gravitropism, a process which involves

polar Ca2+ movement from the ER (Plieth 2005) and mechanosensitive ion chan-

nels (Leitz et al. 2009). The Atcngc1 roots ‘overbend’ upon gravistimulation (Ma

et al. 2006), while AtCNGC10 antisense roots display slower reorientation kinetics

(Borsics et al. 2007). As CNs can induce the release of Ca2+ from intracellular

stores (Volotovski et al. 1998), CNGCs that localize to the vacuole or ER mem-

branes are also potentially involved in Ca2+ signaling.

5 Conclusions and Future Perspectives

Plant CNGCs have diverse temporal and spatial distributions, voltage-dependence,

cation permeabilities, and regulation by CaM and CNs. Loss-of-function studies

indicate that at least three CNGCs contribute to the nonselective uptake and

transport of cations in Arabidopsis: AtCNGC1, AtCNGC3, and AtCNGC10. It is

presently unclear if these CNGCs exist natively as homomeric channels, or interact

with each other and/or other paralogs to form heterotetramers, as has been demon-

strated for animal CNGCs found in olfactory cells and photoreceptors (Kaupp and

Seifert 2002). Interestingly, all three are group I CNGCs, perhaps indicating that

nutrient transport represents the ancestral function of this phylogenetic subgroup.

There are several reasons why plants may have adapted CNGCs for the purpose of

nutrient absorption. Plants do not appear to possess canonical voltage-gated Ca2+

channels (Demidchik et al. 2002b), and thus one of the main functions of this

channel family may be to serve as a pathway for Ca2+ uptake. In addition, low-

affinity transport systems, such as NSCCs, have a greater influx capacity than

highly selective, high-affinity transporters (Britto and Kronzucker 2006). This

property may be advantageous in natural environments, where plants must compete

for limited resources, by permitting faster rates of cation uptake at the expense of

decreased selectivity against potentially toxic cations. Plants may also utilize

CNGCs as a means of acquiring Na+, for although excessive concentrations of

Na+ within the cytosol are detrimental to plant survival, moderate levels of Na+ can

be beneficial to the growth of many plant species, especially when the availability

of K+ is limited (Subbarao et al. 2003).
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In addition to their role in regulating cation homeostasis, there is considerable

evidence that CNGCs mediate Ca2+ signaling in response to both biotic (see

Chapter “The Function of Cyclic Nucleotide-Gated Channels in Biotic Stress”)

and abiotic stresses. Such channels may be located at the PM, or the membranes of

intracellular Ca2+ stores such as the vacuole and ER. CNGCs targeted to these

intracellular compartments may also be involved in regulating the sequestration of

monovalent and divalent cations. The cation permeabilities and subcellular loca-

tions of the various CNGCs must therefore be determined to complete their

functional characterization.
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Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A,

Maathuis FJM, Sanders D, Harper JH, Tchieu J, Gribskov M, Persans MW, Salt DE,

156 C.Y.L. Yuen and D.A. Christopher



Kim SA, Guerinot ML (2001) Phylogenetic relationships within cation transporter families of

Arabidopsis. Plant Physiol 126:1646–1667

McCormack E, Braam J (2003) Calmodulins and related potential calcium sensors of Arabidopsis.
New Phytologist 159:585–598

McCormack E, Tsai YC, Braam J (2005) Handling calcium signaling: Arabidopsis CaMs and

CMLs. Trends Plant Sci 10:383–389
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The Function of Cyclic Nucleotide-Gated

Channels in Biotic Stress

Wei Ma, Keiko Yoshioka, Chris Gehring, and Gerald A. Berkowitz

Abstract Plant cyclic nucleotide-gated ion channels conduct Ca2+ across the

plasma membrane (PM) and facilitate cytosolic Ca2+ elevation during pathogen

response signaling cascades. Until recently, not much was known about the specific

ion channels involved in Ca2+ influx into plant cells, or how Ca2+ signals are

generated and impact on downstream events during pathogen resistance responses.

Recent studies, involving the cyclic nucleotide gated ion channel (CNGC) family of

proteins, have provided new information relevant to these two areas of plant

biology and will be reviewed in this chapter. Current evidence points to specific

proteins that synthesize cyclic nucleotides and that function as ligands to activate

CNGCs. The role of these channels in Ca2+ conduction appears critical to the

generation of the hypersensitive response to pathogens, an important defense

mechanism that limits disease in plants. Signaling downstream from Ca2+ during

biotic stress responses involves cytosolic Ca2+-binding proteins such as calmodulin.
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CML CaM-like protein

CDPK Ca2+-dependent protein kinase

CNBDs Cyclic nucleotide binding domains

CNGC Cyclic nucleotide gated channel

GC Guanylyl cyclase

HR Hypersensitive response

LPS Lipopolysaccharide

LRR-RLKs Leucine-rich-repeat receptor-like kinases

NC Nucleotidyl cyclase

NO Nitric oxide

NOS Nitric oxide synthase

PAMP Pathogen-associated molecular pattern

PCD Programmed cell death

PM Plasma membrane

ROS Reactive oxygen species

SA Salicylic acid

TM Transmembrane

VPE Vacuolar processing enzyme

1 Introduction

Plants exposed to pathogens are capable of invoking a complex, multilayered,

programmed cellular-level suite of defense responses that act to limit disease

progression (Dangl et al. 1996). Plants lack a defense network of circulating mobile

sentry cells equivalent to macrophages of the jawed vertebrate immune system.

Consequently, recognition of a pathogen as “non-self” by plants is a critical and

little understood feature of system fitness and plant immune defense responses.

Plant immune responses are triggered by the perception of non-self through the

recognition of pathogen-associated molecular pattern (PAMP) molecules and elici-

tor molecules that can be pathogen-derived toxins. Typically, PAMPs are evolu-

tionarily conserved components of microbes (including pathogens) that are not

present in the plant cell (i.e., “self”). Examples are lipopolysaccharide (LPS; the

glycolipid component of the outer membrane found in Gram negative bacteria),

flagellin (the structural protein component of the bacterial motility organ), the

bacterial elongation factor Tu, chitin (found in fungal cell walls), and ergosterol

(found in fungal membranes) (Zipfel 2008).

One of the earliest components of the pathogen response signal transduction

cascade in a plant cell is an increase in cellular Ca2+ (Nürnberger et al. 1994) upon

perception of non-self (PAMP) presence. Cytosolic Ca2+ elevation upon pathogen

perception leads to a suite of basal defense responses (“PAMP triggered innate

immunity” as described by Jones and Dangl 2006), and the hypersensitive response

(HR) to avirulent pathogens. HR, one of the immune responses triggered by specific

effector molecules in pathogens, involves reactive oxygen species (ROS) and nitric
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oxide (NO) production leading to programmed cell death (PCD) in cells neighboring

the infection site, which limits the spread of the disease (Bent and Mackey 2007). HR

occurs when a specific avirulence (avr) gene product generated by pathogens inter-

acts (directly or indirectly) with a corresponding resistance (or “R” gene encoded)

protein present in the plant cell. PCD associated with HR that is evoked by this

interaction is distinct from, and augments basal level innate immunity resistance

responses. However, in both cases, a range of cytosolic defense systems is initiated in

the cells at the infection site upon pathogen perception due to cytosolic Ca2+ elevation

(Ma and Berkowitz 2007; Lecourieux et al. 2006). Thus, pathogen recognition

mechanisms lead to a cascade of defense responses through Ca2+ signaling.

Early electrophysiological analysis of plant cell responses to pathogen percep-

tion demonstrated that plasma membrane (PM) Ca2+-conducting channels contrib-

ute to pathogen-induced cytosolic Ca2+ elevation (Gelli and Blumwald 1997). Only

recently, however, has genetic evidence linked Ca2+ conductance through specific

ion channel gene products to plant pathogen defense signal transduction cascades.

Several isoforms of the 20-member cyclic nucleotide-gated ion channel (CNGC1-

20) family have been found to be involved in plant defense responses to biotic

stress. The information in this chapter will focus on linking the molecular properties

of CNGC channels to the cytosolic Ca2+ elevation that is a critical aspect of this

signaling. Details regarding steps upstream from cytosolic Ca2+ elevation that link

Ca2+ conductance to pathogen perception, as well as steps downstream from PM

Ca2+ conductance during pathogen signaling will be also be discussed.

Excellent reviews have been published recently covering topics related to the

focus of this chapter. Readers are referred to the following articles which provide

expansive reviews covering CNGCs (Sherman and Fromm 2009; Kaplan et al.

2007; Talke et al. 2003), Ca2+ signaling (McAinsh and Pittman 2009; Wheeler and

Brownlee 2008; Bouché et al. 2005; Hetherington and Brownlee 2004), Ca2+

conducting channels (Ward et al. 2009; Demidchik and Maathuis 2007), Ca2+

involvement in plant responses to pathogens (Ma and Berkowitz 2007; Garcia-

Brugger et al. 2006; Lecourieux et al. 2006), plant PAMP receptors (Zipfel 2008),

plant immune response to pathogens (Bent and Mackey 2007; Bittel and Robatzek

2007; Hofius et al. 2007; Jones and Dangl 2006), NO signaling (Courtois et al.

2008; Delledonne 2005; Lamotte et al. 2005), and cyclic nucleotide signaling

(Martinez-Atienza et al. 2007).

2 CNGC Structure and Function

Higher plants contain no canonical genes encoding voltage-gated Ca2+ channels;

current reviews point to CNGCs as facilitating Ca2+-signaling in land plants

(McAinsh and Pittman 2009; Wheeler and Brownlee 2008). Patch clamp studies

indicate that the major inward Ca2+ current across the plant PM occurs through

nonselective weakly voltage gated cation channels (Demidchik and Maathuis 2007;

Demidchik et al. 2002). All relevant experimental evidence indicates that plant
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CNGCs are specifically localized to the PM, although CNGC20 may be targeted to

the chloroplast (Sherman and Fromm 2009). Application of cyclic nucleotides to

plant (Arabidopsis) leaf (guard and mesophyll cell) protoplasts activates an

inwardly rectified Ca2+ current (Lemtiri-Chlieh and Berkowitz 2004); work with

isolated tobacco (Nicotiana plumbaginofolia) protoplasts has shown that cAMP and

cGMP application leads to cytosolic Ca2+ elevation as well (Volotovski et al. 1998).

The electrophysiological characterization of cyclic nucleotide dependent Ca2+

conductances across the PM included studies showing ligand activation of the

current in the detached patch configuration (i.e., in the absence of endogenous

cytosolic signaling molecules), suggesting that it is due to a direct interaction

between ligand and channel (Lemtiri-Chlieh and Berkowitz 2004). Thus, this

evidence documents the presence of native CNGC channels in the plant PM.

CNGCs native to animal membranes are relatively well characterized as ligand-

gated cation-conducting channels, with varying degrees of selectivity for Ca2+ and

monovalent cations. Animal CNGCs are activated by cyclic nucleotides (cGMP

and/or cAMP to different relative extents) and allosterically inhibited by calmodu-

lin (CaM) binding to a region of the protein distinct from that binding cyclic

nucleotides. In animals, native CNGCs are uniformly heterotetramers formed by

two and oftentimes three different CNGC subunits. No experimental evidence

supports this quaternary structure in plant membranes. However, modeling studies

suggest they are tetramers (Hua et al. 2003b). Expression of cDNAs encoding

single plant CNGC gene products in heterologous systems such as Xenopus laevis
oocytes and cultured human embryonic kidney cells, along with patch clamp

analysis of currents, indicates that functional channels can be formed as homomeric

protein complexes. We cannot assume, however, that this is the case with CNGCs

in native plant membranes. Whether or not native plant CNGC channel complexes

are formed frommore than one subunit has some implications (discussed below) for

understanding their role in plant pathogen signaling.

The tetrameric quaternary structure of the plant CNGC ion conduction pathway

is similar to the “inverted tee pee” found in members of the superfamily of 6

transmembrane (TM1-6) “Shaker-like” pore-loop ion channels. Each of the four

subunits forming the ion conduction pathway through the membrane has a pore

region selectivity filter (between TM5 and 6) that determines the specificity of ion

permeation. Importantly, the amino acids experimentally verified to form the

selectivity filter of plant CNGCs differ from their animal counterparts. Of the 20

plant CNGCs, only isofoms 1, 2, 18, 11, 12, and the chimeric mutant channel

CNGC11/12 have been experimentally verified to conduct Ca2+. The native plant

CNGC isoforms 2, 4, 11, and 12 are involved in signaling cascades related to plant

pathogen defense responses. Some indirect evidence indicates that at least some of

the other plant CNGC isoforms (e.g., CNGC3) do not conduct Ca2+ (Gobert et al.

2006, also R. Ali and G.A. Berkowitz, unpublished data). It should be noted,

however, that all plant CNGCs studied to date conduct K+ and in some cases Na+

or Ca2+; thus they are considered “nonselective” cation channels.

CNGCs are the only plant channels that are activated (i.e., showing increased

open probability at a given membrane potential) by cyclic nucleotides. They have
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cyclic nucleotide binding domains (CNBDs) at the cytosol-localized carboxyl

terminus. Several tertiary three-dimensional structural models of the plant CNGC

CNBD have been generated (Baxter et al. 2008; Kaplan et al. 2007; Bridges et al.

2005; Hua et al. 2003a) and these studies identified residues that may contribute

to ligand binding. Members of the plant “Shaker-like” (i.e., 6 TM) K+-selective

KAT and AKT channel families also have carboxyl terminus CNBD domains;

however, in these cases cyclic nucleotide deactivates the channel by shifting the

voltage threshold for activation to more negative values (e.g., Hoshi 1995). At

present, it is thought that plants lack functional cyclic nucleotide activated protein

kinases (Kaplan et al. 2007; Martinez-Atienza et al. 2007; Bridges et al. 2005).

Therefore, CNGCs can be considered to be the only (or at least primary) cellular

target of cyclic nucleotides that can transduce elevation of these messenger mole-

cules in the cytosol to downstream steps of a plant signaling cascade. It should be

noted that most of the functional characterizations of cyclic nucleotide effects on

plant CNGCs have shown that cAMP acts to activate the channel. Only in a few

instances has cGMP been used as an activating ligand (Leng et al. 1999) and in

some cases cGMP was found not to act as an activating ligand (Lemtiri-Chlieh and

Berkowitz 2004). Our understanding of cyclic nucleotide signaling in plants that

involves CNGCs, therefore, is primarily based on studies using cAMP.

The regulatory carboxyl terminus of plant CNGCs has a CaM binding domain

that overlaps the region of the polypeptide that binds cyclic nucleotides (the CNBD).

Some experimental evidence has shown that CaM blocks plant CNGC ion conduc-

tance (Ali et al. 2007; Ali et al. 2006; Li et al. 2005; Hua et al. 2003a). CaM may

compete with cyclic nucleotide for binding to the channel, and therefore prevent

cyclic nucleotide activation. This, possibly competitive–interaction between cyclic

nucleotide activation and CaM inhibition, may have some ramifications for CNGC-

dependent Ca2+ signaling with regard to pathogen defense responses in plants.

In the presence of exogenously added activating ligand (cyclic nucleotides),

plant CNGC currents are non-inactivating, both in native membranes and in

heterologous expression systems. Perhaps in the presence of an exogenous supply

of cyclic nucleotide, build up of Ca2+/CaM does not affect the channel. However,

native CNGC functioning during pathogen response signaling may be different. In

this case, a rise in cytosolic Ca2+ could lead to binding of Ca2+/CaM complex to the

CaM binding domain of the channel and thus reduce current. Thus, CNGC func-

tioning during a signaling cascade could lead to a transitory increase in Ca2+

conductance across the PM and concomitant transitory elevation in cytosolic

Ca2+. As cytosolic Ca2+ is elevated, further current through the channel could be

then blocked. The normal suite of plasma- and endomembrane Ca2+ ATPase pumps

and transporters could provide a mechanism for rapid return of cytosolic [Ca2+] to

homeostatic levels as further inward CNGC current is blocked.

Current reviews of Ca2+ signaling in plants (e.g., McAinsh and Pittman 2009;

Ward et al. 2009) distinguish CNGCs as distinct from the (unknown) family of

genes responsible for hyperpolarization activated (inwardly rectified) Ca2+ currents

across the PM. However, plant CNGCs may incorrectly be categorized as “solely”

ligand gated channels. They do retain the voltage-sensor region of voltage-gated
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channels (i.e., evenly spaced positively charged amino acids in the TM4 domain,

although the number of lysines and arginines in this region of plant CNGCs is

reduced). Addition of exogenous cyclic nucleotide clearly increases the open

probability of these channels but plant CNGCs may also be gated by voltage;

hyperpolarizing membrane potentials may activate these channels (see Hua et al.

2003b, Fig. 5). In this case, their functional properties may be more related to

animal hyperpolarization-activated and cyclic nucleotide gated (HCN) channels

than animal CNGCs (Wahl-Schott and Biel 2009). The current:voltage relationship

of plant CNGCs expressed in oocytes is quite different from that found for animal

CNGCs (compare Leng et al. 1999 and Yao et al. 1995, for example). The much

larger range of membrane potentials observed in plant cells and their change in

response to various signals could affect the population of open CNGC channels.

A recent study has provided some new insights into what is referred to as the

“C-linker” region of the plant CNGC polypeptide (Baxter et al. 2008). In this work,

a point mutation of a residue (E527K in CNGC12) in the CNBD was identified that

abolished channel function but did not affect ligand binding. The results suggested

that the C-linker region of plant CNGCs plays an important role in channel

function, perhaps providing a physical link between the CNBD and the pore that

transmits ligand binding to facilitate channel opening.

3 Ca2+ Signaling, CNGCs, and Pathogen Defense Responses

Early studies (Grant et al. 2000) have shown that inoculation of leaves with a

pathogen (Pseudomonas syringae) leads to an elevation of plant cell cytosolic Ca2+

(Fig. 1). This Ca2+ elevation may be affected by the presence in the pathogen of

some (but not all) avr genes. Exposure of leaves to a Ca2+ channel blocker prevents

HR in wild type plants inoculated with pathogen and this result supports the concept

that pathogen/PAMP-associated influx of Ca2+ is an early signal initiating plant

defense responses which, in the presence of pathogen avr and corresponding plant

R genes, leads to HR. Mutations in several (Arabidopsis) CNGCs have been

associated with altered plant responses to pathogens. Loss-of-function of CNGC2

(the “defense-no-death” or dnd1 mutant) and CNGC4 (the “HR-like lesion mimic

hlm1 or dnd2” mutant) alters plant responses to avirulent pathogens (including

P. syringae). Arabidopsis plants with these mutations display impaired HR, consti-

tutive expression of salicylic acid (SA), altered expression of pathogen defense-

related genes, and (despite the lack of HR) increased resistance to pathogen growth

unrelated to the HR.

The Arabidopsis mutant “constitutive expresser of PR (pathogenesis related)

genes 22” (cpr22) was identified in a screen for mutations associated with altered

activation of pathogen defense responses (Yoshioka et al. 2001). The cpr22 mutant

displays different phenotypes from dnd1 and hlm1 (dnd2) plants, but does overlap
with these CNGC loss-of-function mutants in having constitutively activated

defense responses and enhanced resistance to P. syringae (cpr22 also was shown
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to have enhanced resistance to the oomycete pathogen Hyaloperonospora para-
sitica) (Moeder and Yoshioka 2008; Yoshioka et al. 2006; Yoshioka et al. 2001).

The cpr22 mutation was identified as a 3-kb deletion that fuses two CNGC genes,

CNGC11 and CNGC12, to generate a novel chimeric gene, CNGC11/12 (Yoshioka
et al. 2006). Based on genetic and molecular analyzes, it is suggested that the

phenotype conferred by cpr22 is attributable to the expression of CNGC11/12.
Since loss-of-function mutants of CNGC11 or 12 show a partial breakdown of R-
gene mediated pathogen resistance but display enhanced resistance to pathogen

growth, one function of CNGC11 and 12 could be the activation of R-gene mediated

pathogen resistances and CNGC11/12may activate their downstream signal consti-

tutively (Yoshioka et al. 2006; Urquhart and Yoshioka unpublished data).

Urquhart et al. (2007) further investigated the nature of HR like cell death

induced by expression of AtCNGC11/12 using a transient expression system. In

this study, they found that cell death development depends on Ca2+ and the caspase

like vacuolar processing enzyme (VPE). Caspases are aspartate-specific cysteine

proteases that play an essential role in executing PCD in various organisms (Ho and

Hawkins 2005). Caspase-like activity is required for the development of PCD in

plants and VPE, a plant cysteine protease, was identified as a potential plant

counterpart to animal caspases that is essential for pathogen-induced HR (Hatsugai

et al. 2004; Rojo et al. 2004).

Fig. 1 Model of early steps in the plant immune response signal transduction pathway. Pathogen/

PAMP binding to a receptor results in a rise in cytosolic cyclic nucleotides through activation of a

nucleotidyl cyclase. The elevation of cyclic nucleotide levels activates a possibly heteromeric

CNGC, leading to Ca2+ influx. Cytosolic Ca2+ elevation leads to a rise in Ca2+ complexed with

CaM (or CML), which leads to NO and H2O2 production, gene expression, and CNGC inactiva-

tion. When plants are exposed to an avirulent pathogen, CNGC-mediated Ca2+ influx results in HR
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The phenotypes displayed by these CNGC mutants (dnd1, hlm1/dnd2, and

cpr22) suggest that native CNGC channel protein complexes are heteromeric in

plants. CNGC2 and 4 have overlapping expression patterns (and functions) while a

loss-of-function mutation in either gene alone causes similar alterations in patho-

gen-related responses. This could be explained by the possibility that these two

CNGC polypeptides are part of the same tetrameric channel protein in native plant

membranes. A loss of either polypeptide could impair the same channel protein

complex. Analysis of the CNGC11/12 mutant suggests that CNGC12 also forms

heteromeric channel protein complexes that are positive regulators of plant resis-

tance to avirulent pathogens.

Cytosolic Ca2+ elevation during pathogen response signaling could occur

through influx into the cytosol of Ca2+ from internal stores as well as from the

apoplast. For example, electrophysiological studies have identified a tonoplast Ca2+

current activated by cytosolic Ca2+ (Peiter et al. 2005). However, the expression

product of the only known gene encoding an endomembrane-localized plant Ca2+

conducting channel (TPC1) apparently does not contribute to pathogen-associated

Ca2+ signaling (Ranf et al. 2008).

Studies with the dnd1 mutant provide some insight into specific mechanisms

underlying the role that CNGC-mediated cytosolic Ca2+ elevation plays in patho-

gen signaling (Ali et al. 2007). In this work, some differences were noted in wild

type and dnd1 plant responses to avirulent pathogens related to the HR. HR was

restored in dnd1 plants supplied with an exogenous NO donor. NO generation is

required for development of HR. PAMP (LPS) application (using guard cells in

epidermal peels as a model cell system) led to Ca2+-, and CNGC-dependent NO

generation. Thus, it was concluded that CNGC-dependent cytosolic Ca2+ elevation

mediates pathogen/PAMP-induced NO generation which, in the presence of an

appropriate avr gene in the pathogen and a corresponding R gene in the plant, leads

to HR. Several lines of evidence suggest that the Ca2+ binding protein CaM, or a

CaM-like protein (CML), mediates the aforementioned NO generation downstream

from CNGC-mediated cytosolic Ca2+ elevation during pathogen signaling (Ma

et al. 2008). It is likely that CaM (or one of the many CMLs in plants) provides a

mechanism to transduce CNGC-dependent cytosolic Ca2+ elevations occurring

upon pathogen perception to a number of downstream responses.

4 CaM and Ca2+ Signaling During Pathogen Defense Responses

In addition to mediating some of the downstream signaling from the initial PAMP/

pathogen-induced cytosolic Ca2+ elevation, an increase in activated CaM via initial

Ca2+ influx through CNGCs could also shape the Ca2+ signal (Fig. 1). The specific

“signature” of a Ca2+ elevation in many cases provides information for specific

downstream responses (McAinsh and Pittman 2009). In the case of cytosolic Ca2+

elevation due to Ca2+ conductance through CNGCs, a rise in cytosolic Ca2+/CaM

could feedback and block further Ca2+ current (as mentioned above). Deactivation
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of CNGC currents during pathogen response signaling by CaM is supported by the

following experimental evidence: Application of a PAMP results in sustained Ca2+

current only in the presence of a CaM antagonist (Ali et al. 2007). The cytosolic

Ca2+ elevation occurring in leaves inoculated with avirulent pathogen was increased

and sustained (above background) for a longer duration in the presence of CaM

antagonist (Ma et al. 2008). The application of a broad range of PAMPs and

elicitors to plant cells results in a transitory “spike” in cytosolic Ca2+ typically

lasting from seconds to minutes (Errakhi et al. 2008; Lecourieux et al. 2006). A

feedback mechanism to down regulate CNGCs by CaM could therefore contribute

to the transitory rise and then fall in cytosolic Ca2+ during the signaling cascade.

CaM (or CML) probably affects pathogen response signaling downstream from

the cytosolic Ca2+ elevation by interacting with enzymatic proteins and transcrip-

tional regulators. Overexpression of soybean (Glycine max) CaMs in tobacco

(Nicotiana tabacum) leads to enhanced resistance to a range of pathogens (Heo

et al. 1999). Tobacco CaM silencing lines display increased susceptibility to

virulent bacterial and fungal pathogens (Takabatake et al. 2007). Silencing expres-

sion of the CML APR134 in tomato (Solanum lycopersicum) impaired HR forma-

tion while overexpression of the Arabidopsis ortholog of APR134 (AtCML43)
hastened HR development (Bouché et al. 2005). LPS-induced NO generation in

plant cells can be quenched by the addition of CaM antagonist (Ali et al. 2007).

An arginine-dependent nitric oxide synthase (NOS) type enzyme is responsible

for NO generation during pathogen response signaling cascades (Delledonne et al.

1998). A gene encoding a NOS-type enzyme has not yet been identified in plants;

however a number of studies indicates that NOS-dependent NO generation is Ca2+/

CaM dependent (e.g., Ma et al. 2008; Corpas et al. 2004). Thus, CNGC-mediated

cytosolic Ca2+ elevation upon pathogen perception could lead to NO generation due

to Ca2+ binding to CaM (or a CML) which then interacts either directly or indirectly

with NOS.

During plant-pathogen interactions, Ca2+/CaM can activate NAD kinase, which

would result in increased NADPH, the substrate for the oxidative burst responsible

for ROS production during the HR (Harding and Roberts 1998). A rise in cyto-

solic Ca2+ could affect ROS production during HR in other ways, such as through

Ca2+-dependent protein kinase (CDPK) signaling. Some studies suggest involve-

ment of CDPKs in HR. Two CDPK isoforms in potato (Solanum tuberosum) have
been shown to phosphorylate NADPH oxidase, which generates the ROS product

H2O2 during HR (Kobayashi et al. 2007). Other studies have suggested that

this ROS-generating enzyme may be affected by direct binding of Ca2+ (Torres

et al. 2006).

Recent works have begun to provide insights into how CNGC-dependent con-

ductance of Ca2+ into the cytosol could impact on expression of defense-related

genes during pathogen response signaling. The Arabidopsis CBP60g gene product

is a CaM-responsive protein involved in pathogen responses; it is required for

PAMP-mediated SA generation and other defense responses (Wang et al. 2009).

The absence of CaM interaction with this protein results in enhanced disease

progression. The expression product of the barley (Hordeum vulgare) MLO
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(mildew resistance locus o) gene is another CaM target involved in plant responses

to pathogens (Kim et al. 2002). MLO may be a negative regulator in plant defense

responses. The Arabidopsis signal responsive protein SR1, a member of the CaM

binding transcription activator protein family, is also a negative regulator of plant

pathogen signaling (Du et al. 2009; Galon et al. 2008) that could act downstream

from cytosolic Ca2+ elevation through CaM/CML signaling to regulate expression

of defense-related genes (including PR1 and regulators of SA synthesis).

5 Activation of CNGCs During Immune Signaling Cascades

Not much is known at present about the molecular mechanisms linking PAMP

perception at the PM to Ca2+ involvement in the early steps of the pathogen response

signal transduction cascade occurring in the plant cell cytosol. We suspect that

CNGC-dependent cytosolic Ca2+ elevation in plant cells occurs during immune

signaling due to activation of the channels by a rise in the level of cAMP and/or

cGMP upon pathogen perception. Not much evidence supporting this speculation is

available in the published literature at present. However we found a coordinated rise

of cAMP and Ca2+ occurring minutes after inoculating Arabidopsis leaves with

avirulent pathogen (P. syringae) (Ma et al. 2009), and a rise of cGMP several hours

post inoculation with the same pathogen (S. Meier and C. Gehring, unpublished

results). An alternative possible mechanism for CNGC activation could be pathogen/

PAMP-mediated post-translational modification of the channels, leading to increased

open probability and Ca2+ conductance. Some indirect evidence suggests that

pathogen-dependent phosphorylation or nitrosylation of PM proteins may occur

during plant immune signaling (Besson-Bard et al. 2008; Garcia-Brugger et al.

2006). This putative signaling mechanism may impact on Ca2+-conducting channels

either directly, or indirectly; however, no evidence links these post-translational

modifications to CNGC-mediated Ca2+ conductance at present. Here, we focus on

the possible role cyclic nucleotides may have as signaling molecules upstream from

CNGCs in plant immunity.

6 Cyclic Nucleotide Generation and Its Role in Biotic Stress

Responses

Identification of nucleotidyl cyclases (NCs) responsible for cAMP and cGMP gene-

ration in higher plants has remained elusive. This is somewhat surprising given

that the unicellular green alga Chlamydomonas reinhardtii contains >100 anno-

tated NCs (Schaap 2005) with 22 different domain architectures with 13 different

partners [http://supfam.mrc-lmb.cam.ac.uk/SUPERFAMILY (Madera et al. 2004)].

The first bona fideNC identified in higher plants was an adenylyl cyclase (AC) from

168 W. Ma et al.

http://supfam.mrc-lmb.cam.ac.uk/SUPERFAMILY


corn (Zea mays) pollen (Moutinho et al. 2001). However, BLAST searches of the

Arabidopsis genome with this sequence or known NCs from lower and higher

eukaryotic species do not identify orthologs. An alternative systematic search for

NCs, based on a search motif of functionally assigned and conserved amino acid

residues in the catalytic center of annotated guanylyl cyclases (GCs) from both

lower and higher eukaryotes, was undertaken by Ludidi and Gehring (2003) and 7

Arabidopsis candidate GCs including the soluble AtGC1 (Ludidi and Gehring

2003) and a wall associated kinase-like protein (AtWAKL10; At1g79680) were

identified. Microarray expression analysis of AtWAKL10 (Zimmermann et al.

2005) supports a role for this GC in pathogen signaling.

An extended bioinformatic search for potential GCs in higher plants by relaxing

the stringency of the originally used motif identified a number of annotated kinases

and receptor kinases, in particular leucine-rich-repeat receptor-like kinases (LRR-

RLKs)(Kwezi et al. 2007). One of these LRR-RLKs, the brassinosterosid receptor

AtBRI1, has since been expressed as a recombinant protein and shown to have

GC activity in vitro (Kwezi et al. 2007) suggesting that several other receptor

kinases that contain the same motif also function as GCs. One of these is AtPepR1

(At1g73080) (Kwezi et al. 2007) that is PM localized and has a role in pathogen

defense responses through binding the pathogen response-related Arabidopsis pep-
tides of the AtPep family (Ryan et al. 2007). Expression of some members of the

AtPep peptide family is induced by application of either PAMPs or pathogens

(P. syringae) to leaves (Ryan et al. 2007). We have found that recombinantly

expressed and affinity-purified AtPepR1 has GC activity, and that the AtPep ligands

which bind to this receptor induce AtPepR1- and CNGC2-dependent inward Ca2+

currents in Arabidopsis mesophyll cells (Z. Qi, R. Verma, G.A. Berkowitz, unpub-

lished results). Thus, it appears that AtPepR1 may generate cyclic nucleotides and

activate CNGC-dependent inward Ca2+ currents in response to pathogen perception

during plant immune signaling.

NC catalytic motif searches can also provide cues to identify putative plant ACs

since prior experimental work has shown that the catalytic domains of ACs and GCs

are highly similar (Roelofs et al. 2001). Searches identified 16 putative Arabidopsis
ACs one of which is KUP5 (K+ uptake permease 5). While the domain combination

of an AC with a potassium channel would be entirely novel in plants, such

homodimeric AC/ion-channels are known and functional in Paramecium and

Plasmodium falciparum (Weber et al. 2004).

Thus, although AC, GC, and cyclic nucleotide phosphodiesterase activities are

clearly present in protein extracts from plants the exact identity of the responsible

enzymes has yet to be established. However, we suspect that NCs play a critical role

in translating pathogen perception to CNGC activation and downstream pathogen

defense responses in the plant immune signaling cascade. Indeed, prior published

work with cultured cells challenged with fungal elicitors suggests that cyclic

nucleotides may act in plant immune signaling. Application of fungal extracts

induced elevation in the endogenous level of cAMP in cultured carrot (Daucus
carota), alfalfa, and French bean (Phaseolus vulgaris) cells (Cooke et al. 1994;
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Bolwell 1992; Kurosaki et al. 1987). Other work indicates that application of

exogenous cyclic nucleotides can in some cases activate pathogen response signal-

ing in cultured plant cells (Bindschedler et al. (2001). Furthermore, cyclic nucleo-

tides as well as the PAMP LPS induce cytosolic Ca2+ elevations within minutes in

leaves of wild type but not dnd1 plants. This rapid Ca2+ elevation leads to NO and

ROS generation that can be blocked by AC inhibitors. Inhibitors of cAMP genera-

tion also block PAMP-induced NO generation, the coordinated pathogen-induced

cAMP and cytosolic Ca2+ elevation occurring minutes after inoculation with

pathogen, and HR in response to inoculation with avirulent pathogen (Ma et al.

2009).

7 Summary and Perspectives for the Future

Early work on plant CNGCs focused on their characterization as ion channel

proteins, and on phenotypes related to their conductance of cations into plant organs

during growth and development. In addition, some CNGCs were associated with

plant responses to pathogens. More recent work, as discussed in this chapter, has

provided a fuller and more nuanced picture of (a) CNGC function related to their

molecular structure, (b) the role of CNGCs as Ca2+ conducting channels in plant

pathogen response signaling cascades, (c) several events downstream from CNGC-

mediated Ca2+ conduction in the pathogen response signaling cascade, (d) how

CNGC ligands (cyclic nucleotides) are generated in plants and (e) how generation

of cyclic nucleotides may be involved in linking pathogen perception to CNGC

activation and cytosolic Ca2+ signaling. Outstanding questions related to these

points are as follows: How is pathogen perception, through binding of PAMPs to

a receptor, linked to generation of cyclic nucleotide and/or other mechanism(s) that

activate CNGCs? Is the specific nature of the CNGC-mediated Ca2+ conductance

that occurs during the signaling cascade different during responses to PAMPs and

other elicitor molecules, avirulent and virulent pathogens, and/or sensing of non-

pathogenic microbes as non-self by plant cells? How does the molecular architec-

ture of CNGCs impact on their function in planta, with specific reference to issues

such as their gating properties and regulation by CaM? What specific molecular

events occur downstream from CNGC-mediated cytosolic Ca2+ elevation that act to

initiate a range of defense responses to pathogens? Do members of the family of

proteins recently identified as having a NC domain and in some cases in vitro NC

activity act to generate cyclic nucleotides in the plant during signaling cascades

such as the immune response to pathogenic biotic stress?We suspect that in the near

future, some aspects of these questions will be answered in the relevant literature.

This work was supported by NSF award 0844715. Due to space limitations, we

did not include citation of many relevant research publications and apologize to all

authors whose important work was not cited.
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New Approaches to Study the Role of Ion

Channels in Stress-Induced Signalling:

Measuring Calcium Permeation in Plant Cells

and Organelles Using Optical and

Electrophysiological Techniques

Armando Carpaneto, Paul Vijay Kanth Gutla, and Franco Gambale

Abstract Calcium is one of the most important second messengers in plant cells;

an increase in intracellular calcium is believed to be a major pathway in the plant

stress response. Several techniques were developed to measure cytoplasmic cal-

cium changes and there is an increasing effort to unravel spatial and dynamic

properties of calcium signals. Calcium influx in plant cells is typically mediated

by non-selective cation channels. Patch-clamp still plays a fundamental role in

studying calcium permeation; however, recent advances in microscopy are very

promising to characterize calcium fluxes even at the level of the single channel

protein. In this chapter, we focus on techniques that combine electrophysiological

and optical approaches to study the local and temporal characteristics of calcium

signalling in plants.
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GSDIM Ground-state depletion and single-molecule return

PAINT Points accumulation for imaging in nanoscale topography

PALM Photoactivatable localization microscopy

PALMIRA PALM with independently running acquisition

PyMPO maleimide 1-(2-maleimidylethyl)-4-(5-(4-methoxyphenyl)oxazol-2-yl)

pyridinium methanesulfonate

RESOLFT Reversible saturable optical fluorescence transitions

SCAM Scanning cysteine accessibility mutagenesis

SCCaFTs Single-channel calcium fluorescent transitions

SPEM Scanning photoemission microscope

SSIM Saturated structured illumination microscopy

STED Stimulated emission depletion microscopy

STORM Stochastic optical reconstruction microscopy

TEVC Two-electrode voltage-clamp

TIRF Total internal reflection microscopy

TL-PALM Time-lapse photoactivatable localization microscopy

1 Introduction

Pollack (1928) was probably the first author reporting calcium changes in the

cytoplasm of a living cell. He injected Amoeba dubia and Amoeba proteus with a

saturated solution of alizarin which precipitated with calcium ions; the resulting

compound, calcium alizarinate, could be seen under the microscope as “purplish

red crystals”. Pollack could demonstrate an “appreciable amount of calcium ions in

the living ameba” and that amebae should have a calcium reserve used to recover

from sublethal doses of alizarin. Moreover, he could observe a “shower of these

purplish red granules” at the places in which the ameba was attempting to put forth

a pseudopod.

Nowadays, there is emerging evidence of the importance of calcium in plant

cells (Sanders et al. 2002; McAinsh and Pittman 2009; for a critical view see Plieth

2005), in particular, in stress responses for example, mediated by abscisic acid

(ABA), mechanical stimulation, osmotic, salt and drought signals, oxidative stres-

ses, temperature changes, light, pathogens (Hetherington and Brownlee 2004;

Israelsson et al. 2006; Lecourieux et al. 2006; Oldroyd and Downie 2008), and in

plant development (Hepler 2005; Michard et al. 2008).

Methods tomeasure Ca2+ concentration in living cells can be divided into 4 groups

(Blinks et al. 1982), namely those based on bioluminescent indicators, metallochro-

mic indicators, fluorescent indicators, and Ca2+-selective microelectrodes.

This chapter summarizes the state of the art of optical calcium detection com-

bined with electrophysiological techniques in plant cells. This emerging approach

is essential to investigate the spatio-temporal properties of calcium signalling in

plants.
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2 Plant Cell Impalement

Membrane voltage in plant cells can be monitored over time using microelectrode

impalement. The impalement of a plant cell loaded with a calcium reporter, such as

aequorin or fura-2 (see below), allows the investigation of how changes in cytosolic

calcium and electrical signals are synchronized. Because guard cells are electrically

isolated, it is possible to perform voltage-clamp measurements with single or

double barreled electrodes (see for comparison Roelfsema et al. 2001) and thus

record current flowing through guard cell electrogenic channels/transporters; in

these cases, simultaneous calcium detection can give information on Ca2+ perme-

ability of the active channels.

2.1 Aequorin

Aequorin belongs to a class of photoproteins found in coelenterates that emit light

upon binding of calcium ions (Shimomura 2005; Knight and Knight 1995; Brini

2008). Functional aequorin is synthesized by the jellyfish Aequorea victoria and

consists of an apoprotein (a single polypeptide chain of 189 aminoacids and

molecular weight of 21.4 kDa, Inouye et al. 1985) and a prosthetic group (a hydro-

phobic luminophore called coelenterazine) in a peroxidized form (Shimomura

and Johnson 1978). From the structural point of view, aequorin is a globular molecule

containing a hydrophobic core cavity that accommodates coelenterazine-2-

hydroperoxide (Head et al. 2000). It has four helix-loop-helix EF-hand domains,

of which only three are able to bind calcium. Upon calcium binding, only two

calcium ions are sufficient to trigger an irreversible reaction in which the prosthetic

group and CO2 are released and a photon is emitted (lmax ¼ 470 nm). Aequorin can

be loaded into cells by a variety of techniques. The most used approach in the plant

field is based on genetic transformation of plants with the apoaequorin gene and

subsequent incubation in coelenterazine to obtain reconstituted active aequorin

(Knight and Knight 1995). In transgenic Nicotiana plumbaginifolia plants, a variety
of stress stimuli such as mechanical (touch, wind) stress, cold-shock, and elicitors,

induces an increase of intracellular calcium characterized by stimulus specific

kinetic patterns (Knight et al. 1991; Knight et al. 1992).

An important advance provided by aequorin is the possibility to target apoae-

quorin towards intracellular organelles by adding sorting sequences to the primary

sequence of the protein (Brini 2008). In plant cells, one remarkable application,

besides targeting aequorin to the nucleus and to the ER, was to fuse apoaequorin

with a tonoplast proton-pyrophosphatase in a way that active aequorin is adja-

cent to the cytoplasmic face of the vacuolar membrane (Knight et al. 1996).

The authors were able to prove that the cytosolic calcium increase due to rapid

cooling (a temperature drop of several degrees in a few seconds described as

“cold-shock” Minorsky 1989; for a detailed study see Plieth et al. 1999) resulted
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from influx of calcium from both the external medium and from the vacuole

(Knight et al. 1996).

As the vacuole is a very important calcium store (Martinoia et al. 2007), efforts

were made to characterize calcium-permeable tonoplast channels (Pottosin and

Schonknecht 2007). To study the involvement of Slow Vacuolar (AtTPC1) chan-

nels from Arabidopsis thaliana (Hedrich and Neher 1987; Peiter et al. 2005) in

calcium signalling, aequorin was expressed in wild-type, tpc1-2 knockout, and

AtTPC1-overexpressing plants. No significant differences were found among

these plants when they were challenged with abiotic (cold, hyperosmotic, salt,

and oxidative) stresses, elevation in extracellular Ca2+ concentration, and elicitors

such as elf18 and flagellin (Ranf et al. 2008).

Recently the Cold-Induced-Transient Conductance (CITC), localized on the

plasma membrane of mesophyll cells, was characterized by patch-clamp as an out-

ward rectifying calcium-permeable channel. The authors tested several Arabidopsis
mutants but it was not possible to identify CITC genes (Carpaneto et al. 2007). To

gain insights into the timing of cold-induced voltage- and Ca2+-changes, current-

clamp recordings on apoaequorin-expressing Arabidopsis leaves were performed

(Fig. 1). Leaf sections were impaled with microelectrodes and correspondent Ca2+

changes were followed. Upon perfusion of leaf sections with cold solution (indi-

cated by the downward arrow in the figure) the membrane potential depolarized

and aequorin bioluminescence, recorded by a high resolution CCD camera, was

emitted. When the cold stimulus was removed (at the time indicated by the upward

arrow) by perfusion with a solution kept at room temperature the membrane

potential repolarized and luminescence decreased. These data confirm previous

findings showing that the initial phase of the depolarization is synchronous with

Ca2+ influx (see Knight 2002).

Fig. 1 Cold-induced changes in membrane potential and cytosolic Ca2+. From Carpaneto et al.

(2007, copyrighted by the American Society of Plant Biologists and reprinted with permission)
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2.2 Fura-2

The major disadvantage in the use of aequorin for calcium detection is that the

photon intensity is too low to allow single cell imaging. Indeed, only one photon per

molecule and only a small fraction of the protein pool emits light (Brini 2008).

Therefore other fluorescent dyes such as indo-1 and fura-2 were used. However,

unlike many animal cells, plant cells do not readily take up the esterified form of

these molecules dyes (McAinsh et al. 1990; Gilroy et al. 1991; Gilroy 1997) and a

“low-pH” loading method was successfully developed for plant protoplasts (Bush

and Jones 1987). Alternatively, the dye can be micro-injected into the cytoplasm by

iontophoresis (McAinsh et al. 1990; Gilroy et al. 1991). The latter approach showed

that in guard cells the increase in calcium is induced by ABA, a phytohormone

known to report the water status of the plant, and that this signal preceded stomatal

closure.

To simultaneously control the membrane voltage and record calcium concentra-

tion, multi-barrelled microelectrodes are necessary. Vicia faba guard cells were

impaled using four-barrelled microelectrodes (Grabov and Blatt 1997): two barrels

(one for membrane voltage measurement and the second for current injection) were

used for voltage-clamping the cell while the others were connected to an iontopho-

resis module for fura-2 loading. Extreme acid loads (applying 30 mM Na+-butyrate

in the external solution) evoked cytosolic calcium increase and a parallel negative

shift in the activation threshold of inward rectifying potassium channels. Using the

same technique in a subsequent paper, the authors showed that hyperpolarization

triggered a calcium influx (Grabov and Blatt 1998).

Microinjection of fura-2 in guard cells by iontophoresis can also be performed

by three barreled microelectrodes. Levchenko et al. (2005) loaded V. faba guard

cells through current injection with up to 500 pA from the third barrel whereas cells

were kept at a holding voltage of �100 mV. In this case the injection current from

the third barrel was automatically compensated by a current coming from the

second barrel. Application of ABA in the external solution transiently activated

anion channels after a lag phase of about 2 min, without a parallel rise in cytosolic

free-calcium concentration.

Similar experiments were performed in Nicotiana tabacum guard cells (Marten

et al. 2007): ABA triggered a transient rise in cytoplasmic calcium in 14 out of

19 cells under investigation while in the remaining five cells ABA stimulated

anion channels without a change in cytoplasmic Ca2+. The authors concluded that

guard cells have evolved both calcium-dependent and -independent ABA signal-

ing pathways and that the use of these pathways is species-dependent. In guard

cells from N. tabacum anion channels could also be activated by CO2 and

darkness in a Ca2+-independent manner but the anion channel activity was

enhanced by parallel increases in the cytosolic Ca2+ concentration (Marten et al.

2008). Both the activation of anion channels induced by CO2/darkness and Ca2+

signals were repressed in NtMPK4-encoded MAP kinase-silenced guard cells

(Marten et al. 2008).

New Approaches to Study the Role of Ion Channels in Stress-Induced Signalling 179



The three barreled microelectrode technique was applied to both intact leaves

and epidermal strips from V. faba in order to compare calcium homeostasis and

stimulus-induced calcium signals (Levchenko et al. 2008). At hyperpolarizing

potentials of �100 mV, intact guard cells were able to maintain much lower

cytoplasmic calcium concentration than epidermal strips. Further hyperpolarization

opened hyperpolarized-activated calcium permeable channels (McAinsh and

Pittman 2009) with a consistent rise in Ca2+ concentration that returned to the

pre-stimulus level in intact plants but not in epidermal strips (Levchenko et al.

2008). Epidermal strips are thus less efficient than intact cells in buffering free

cytosolic calcium concentration.

2.3 Green-Fluorescent-Protein-Based Calcium Indicators

Green fluorescent protein (GFP, Shimomura 2005) represents one of the most

investigated proteins, especially as a marker of gene expression and protein

targeting in intact cells and organisms (Tsien 1998; Fricker et al. 2006). Indicators

based on GFP, specific for calcium detection, were constructed such as cameleon

(Miyawaki et al. 1997), camgaroo (Baird et al. 1999), Flash- and Inverse Pericam

(Nagai et al. 2001), and the troponin C-based sensor TN-L15 (Heim and

Griesbeck 2004).

In plant cells the pH-independent, GFP-based calcium indicator cameleon 2.1

was constitutively expressed in A. thaliana and allowed time-dependent measure-

ments of cytoplasmic calcium at the level of single guard cells (Allen et al. 1999).

Until now there were no attempts to combine electrophysiological approaches and

calcium detection with cameleon in plant cells.

3 Patch-Clamp

Patch-clamp is the most powerful technique to investigate the functional properties

of ion channels at the single cell level (Sakmann and Neher 1995; Hille 1992).

Fluorescent substances such as Lucifer Yellow were used in guard cell protoplasts

of V. faba to monitor the equilibration time between the pipette solution and the

cytoplasm after reaching the whole-cell configuration (Marten et al. 1992).

The compound fura-2 (Grynkiewicz et al. 1985) is generally known as an

indicator dye for measuring the free calcium concentration inside living cells. As

pointed out by Neher (1995) fura-2 is actually a divalent metal ion chelator and can

influence calcium signals. The chelating property of the dye can be used to estimate

the actions of endogenous buffers or, when fura-2 is present at high concentration,

to outcompete them. In the latter case, calcium fluxes across the membrane can be

measured in order to estimate fractional calcium current in non-selective cation

channels (see, as an example, Burnashev et al. 1995).
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3.1 Whole-Cell Measurements

In plant cells there are a few interesting examples where fura-2 was used in combi-

nation with patch-clamp. Schroeder and Hagiwara (1990) sealed a patch-clamp

pipette containing 100 mM fura-2 to the plasma membrane of a V. faba guard cell;

after reaching the whole-cell configuration and waiting 15min for equilibration of the

pipette solution with the cytoplasm, exposure of the cells to ABA produced (in

responsive guard cells) a transient increase in calcium concentration with a parallel

increase of an inward ion current. Reversal voltage measurements proved that these

currents were mediated by non-selective cation channels. These data provided direct

evidence of ABA-activated calcium-permeable channels. Using a similar approach

applied to A. thaliana guard cells, Pei et al. (2000) discovered activation of plasma

membrane calcium permeable channels by hydrogen peroxide.

Romano et al. (2000), using patch pipettes filled with calcium green-1 or (for

ratiometric images) indo-1, showed that increases in cytosolic calcium were not

necessary for ABA-inhibition of inward rectifying potassium channels in V. faba
guard cells, pointing to a calcium-independent mechanism in impairment of stoma-

tal opening by ABA. Finally, Levchenko et al. (2008) applied negative voltages

through a patch pipette in whole-cell configuration to protoplasts from V. faba
guard cells. This stimulus elicited negative currents and parallel calcium increases

that could be only reverted by depolarization or by blocking the calcium entry. This

is different to what was observed in intact cells where similar hyperpolarizing

voltages induced transient calcium rise (see Sect. 2 in Chapter “The Role of Ion

Channels in Plant Salt Tolerance”).

It is worth noting that in both A. thaliana and V. faba mesophyll protoplasts the

fura-2 concentration in the cytoplasm never reached a steady state level and

continuously rose after attaining the whole cell configuration. Possibly, the central

vacuole and the chloroplasts prevent effective dye loading or alternatively, the large

mesophyll cells need more loading time. In addition, chloroplasts partially absorb

the fluorescence, resulting in low fluorescence intensities. All these reasons make

simultaneous patch-clamp and optical measurements in mesophyll cells very

demanding (P. Dietrich, University of Erlangen, Germany, personal communica-

tion). Recently the redox properties of fura-2 were investigated by cyclic voltam-

metry and it was shown that fura-2 could be reversibly oxidized (Gulaboski et al.

2008). These results suggest that the redox transformations of the fura-2 forms do not

affect its calcium binding ability and thus, indipendently of which redox form of fura-

2 is present inside the cell, no change in calcium detection by fura-2 is expected.

3.2 Fluorescence Combined with Excised Patch (FLEP)

The same approach as used for guard cells, i.e. loading fura-2 through the patch

pipette in a whole-cell configuration, has also been applied in plant vacuoles.

However, under the experimental conditions tested by the authors, loading was
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not efficient in the whole vacuole configuration (Gradogna et al. 2009). This could

be due to either low diffusion rates in the highly viscose vacuolar sap or to the

presence inside the vacuole of substances able to quench fura-2 fluorescence. To

overcome this problem the authors excised the membrane patch and focused the

photomultiplier on the tip of the recording pipette where fura-2 was present.

Obvious advantages of this recording mode were the absence of any loading time

and no interference by luminal calcium buffers. Moreover photobleaching was not a

problem because calcium/fura-2 complexes near the tip were continuously substi-

tuted by free fura-2 molecules contained in the upper volume of the patch pipette

(representing a quasi-infinite reservoir of the dye). FLEP recordings are presented

in Fig. 2; the patch-clamp technique was applied to carrot root vacuoles, as

described in Gradogna et al. (2009), in the cytosolic-side out configuration in the

presence of 100 mM fura-2 inside the patch pipette. Fluorescence signals induced by

excitation light at 380 and 340 nm (Fig. 2a, upper panel) were recorded simulta-

neously with vacuolar currents (Fig. 2a, lower panel) elicited by the voltage

protocol (Fig. 2a, middle panel). Upon voltage depolarization, SV channels opened

and fluorescence signals at 380 and 340 nm respectively decreased and increased,

thus indicating a calcium flux from the cytosol to the vacuolar side. For the sake of

clarity, the same SV currents for all clamping voltages are shown in Fig. 2a and b.

In these experimental conditions, the outward rectifying SV currents were active

from �10 mV, as shown in Fig. 2c. Indeed �10 mV elicited a negative potassium

current and simultaneously an opposite flux of calcium was recorded, see panel A

and Gradogna et al. (2009). From a mechanistic perspective at the protein level, it is

clear that the opposite passage of potassium and calcium is not contemporaneous

but each of the two ions enters into the pore according to its accessibility and

electrochemical gradient. It is worth noting that the opposite unidirectional fluxes

cannot be distinguished with conventional patch-clamp recordings and this under-

lines the potential benefits of the FLEP technique in investigating divalent ion

channels/transporters.

Several lines of evidence indicated that calcium was permeating through the

SV channel: SV channel blockers such as nickel, zinc, lanthanum, and chloramine-

T abolished both currents and fluorescence signals. Moreover, A. thaliana tpc1-2
mutants which lack SV channels, did not show any variation in current or fluores-

cence signals in the presence of these modulators. If it is assumed that (1) in

symmetrical potassium conditions (105 mM) with 2 mM/5 nM calcium in the

cytosol/vacuole, the outward current at 0 mV is only mediated by calcium, and

(2) a linear relationship holds between calcium current and fluorescence (see

appendix in Gradogna et al. 2009), then the fractional calcium current (Pf) of the

SV channel can be estimated. The authors evaluated that Pf is voltage dependent

and that it approximately corresponds to 10% of the total SV currents at strongly

depolarized potentials (Gradogna et al. 2009).

Interestingly, besides calcium, fura-2 can also detect other divalent ions (i.e.

cadmium, zinc) whereas metal ions such as manganese, nickel, and cobalt act as

quenchers of fura-2 fluorescence. This adds to the possibility of using the FLEP

technique to study the transport of these ions through different channels/transporters.
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From a certain point of view the FLEP technique resembles radiotracer flux

measurements: focusing on a relatively small volume of a few picoliters inside the

pipette, fluorescence signals can be amplified by increasing the duration of voltage

Fig. 2 Simultaneous recordings of ionic currents using the patch-clamp technique and calcium

flux measured with the fluorescent calcium-sensitive dye fura-2 in isolated Daucus carota
vacuoles. (a) Upper panel: fura-2 fluorescence excited at 380 and 340 nm. Middle panel: applied

voltage versus time. Lower panel: SV currents recorded in cytosolic side-out configuration versus

time. (b) and (c) The same Slow Vacuolar currents as shown in A are superimposed for clarity.

Cytosolic bath solution was (in mM) 100 KCl, 1 CaCl2, 2 MgCl2, 20 Hepes/Tris, 2 DTT, pH ¼ 7.

Pipette (luminal) solution was (in mM) 100 KCl, 0.1 fura-2, 2 MgCl2, 20 Hepes/Tris, pH ¼ 7.

Sorbitol was added in both solutions to obtain a final osmotic pressure of 450 mOsM
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stimulus. Calcium tends to accumulate inside the pipette due to relatively slow

diffusion (Gradogna et al. 2009). As plant ion channels rarely show inactivation,

this technique seems thus very promising in addressing important challenges in

divalent ion transport through plant cell membranes.

4 New Prospects in Investigating Calcium Permeable Channels

Several new optical/electrophysiological approaches were recently developed to

investigate ion channel functions. Among many attempts to reveal single channel

openings using only optical detection, the combination of voltage-clamp with

fluorescence calcium imaging using Total Internal Reflection Microscopy (TIRF)

is the most successful (Demuro and Parker 2005). The use of voltage sensitive dyes

is promising to study the changes in membrane potential of a large number of cells

or organelles like plant vacuoles (Konrad and Hedrich 2008). Voltage-clamp

fluorometry is very useful to observe real-time conformational changes associated

with ion channel gating (Gandhi and Olcese 2008). Finally, in light microscopy,

“diffraction-unlimited” resolution has become most evident: the first example was

represented by STED (Stimulated Emission Depletion Microscopy) that displayed a

resolution down to 28 nm (Hell 2003). These topics are briefly discussed below.

4.1 Voltage-Clamp and TIRF

After the introduction of highly-sensitive fluorescent calcium-indicator dyes it

became possible to visualize the diffusional spread of calcium induced by the

openings of calcium-permeable channels. The concerted openings of calcium

channels generated puffs and sparks, or smaller events called blips and quarks

(for review see Demuro and Parker 2006). Combining electrophysiological and

optical approaches Zou et al. (2002) and Wang et al. (2001) could measure Single-

Channel Calcium Fluorescent Transitions (SCCaFTs) for the first time. However

the best recordings of the so called optical patch-clamping was performed by

Demuro and Parker (2005); different from FLEP, the activity of single calcium

channels can be monitored by the excitation of the fluorophore close to channel

mouth in a volume of approximately 0.1 fl (Shuai and Parker 2005). This was

accomplished using the evanescent wave generated by TIRF to slightly (100 nm)

penetrate inside a Xenopus oocyte expressing muscle nicotinic acetylcholine recep-

tor channels and previously loaded with fluo-4 dextran (Demuro and Parker 2005).

The voltage of the oocytes was controlled by the Two Electrode Voltage-Clamp

(TEVC) technique. Fluorescence changes provided information on the simulta-

neous activity of more than 400 channels in the imaging field, namely on open

and closed durations, open probability vs acetylcholine concentration, and relative

single channel amplitude vs voltage. The authors also studied the spatial
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distribution of the channels that were randomly distributed without evidence

of clustering. Moreover, the positions of the channels did not change over tens of

seconds. Such information regarding the spatial distribution and lateral diffusion of

ion channels cannot be obtained with conventional electrophysiological techniques.

Unfortunately, the thickness of the cell wall (usually> 100 nm) is one of the major

problem for the application of similar TIRF methods to plant cells (Shaw 2006).

4.2 Voltage-Sensitive Dyes

As seen before, the membrane voltage of plant cells can be accurately measured

usingmicroelectrodes. Impalement is, however, not suited for large sample screening

or to monitor the membrane potential changes in intracellular organelles. Recently,

Konrad and Hedrich (2008) established a method for quantification of the membrane

potential in guard cell protoplasts and in vacuoles based on the fluorescence proper-

ties of bis-(1,3-dibutylbarbituric acid)-trimethine oxonol (DiBAC4(3)). They were

able to follow ABA-induced depolarization in guard cells as well as changes in

tonoplast voltage upon ATP exposure. Simultaneous use of voltage and calcium

sensitive dyes will be an interesting, non-invasive, approach to study the intercon-

nection between voltage and calcium release in plant cells.

4.3 Voltage-Clamp Fluorometry

Voltage-clamp fluorometry (see for review Gandhi and Olcese 2008) was originally

developed in Isacoff’s lab (Mannuzzu et al. 1996) and is derived from two different

techniques namely TEVC (Stuhmer 1998) and SCAM (scanning cysteine accessi-

bility mutagenesis Akabas et al. 1992). The channel of interest is modified inserting

a single cysteine accessible from the external side. The cysteine is then labeled with

a thiol-reactive fluorophore such as PyMPO maleimide or tetramethylrhodamine

maleimide. These fluorophores change their fluorescence emission depending on

their exposure to solvent/lipid environment or to quenching groups. Voltage-clamp

fluorometry was successfully used to report conformational changes in voltage and

ligand-gated channels and to follow the dynamic properties of channel opening.

This approach could be applied to plant calcium-permeable channels, such as

AtTPC1, providing useful information about gating processes.

4.4 Far-Field Fluorescence Nanoscopy

Lens-based (far-field) optical microscopes were believed to have resolution limits

(d) of d ¼ l/(2n sina) where l is the wavelength of light, n sina the numerical
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aperture of the objective (n is the refractive index of the media and a one-half the

angular aperture of the objective). This limit is imposed by the diffraction proper-

ties of light. However, recently, diffraction-unlimited resolution has become evi-

dent (see, as an excellent review, Hell 2009). The basic idea of techniques such as

STED (Hell and Wichmann 1994; Klar et al. 2000), GSD (Hell and Krough 1995),

SPEM (Heintzmann et al. 2002), SSIM (Gustafsson 2005), RESOLFT (Hofmann

et al. 2005), PALM (Betzig et al. 2006), PALMIRA (Egner et al. 2007), STORM

(Rust et al. 2006), FPALM (Hess et al. 2006), PAINT (Sharonov and Hochstrasser

2006), dSTORM (Heilemann et al. 2008), TL-PALM (Biteen et al. 2008), and

GSDIM (Folling et al. 2008) is to switch off or on signals from fluorescent

molecules so that single molecules can be seen consecutively (for a brief summary

of all these techniques see Hell 2009). Remarkably, resolution of less than 20 nm

was obtained (Betzig et al. 2006). Microscopy is thus being replaced by nanoscopy

and the investigation of calcium microdomains is being substituted with the study

of calcium at the nanometer level.

5 Conclusion

In this chapter, we underlined the power of combined electrophysiological

approaches and optical calcium detection in order to investigate calcium permeable

ion channels in plant cells. The recent developments in microscopy offer new

advanced tools to characterize calcium permeation in plant systems entering the

nanometer scale. In turn, this will help to elucidate the molecular and physiological

role of calcium and other divalent ions in plant stress responses.
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Vacuolar Ion Channels: Roles as Signalling

Mechanisms and in Plant Nutrition

Frans J.M. Maathuis

Abstract Vacuoles play various roles in many physiologically relevant processes

in plants. Some of the more prominent are turgor provision, the storage of minerals

and nutrients and cellular signalling. To fulfil these functions a complement of

membrane transporters is present at the tonoplast. Prolific patch clamp studies have

shown that amongst these, both selective and non selective cation channels (NSCCs)

control key vacuolar functions: The non-selective SV channel is Ca2þ permeable

and has been proposed to have signalling roles during germination, stomatal open-

ing and in response to pathogens. The Kþ selective VK channel impacts on Kþ

nutrition and stomatal closure. Ligand-gated channels form possible pathways for

vacuolar Ca2þ release whereas the FV channel may be important in overall Kþ

homeostasis. This chapter will summarise and review themain functions of vacuolar

ion channels with particular emphasis on their roles in abiotic and biotic stress.
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cADPR Cyclic ADP-ribose

FV Fast vacuolar channel

IP3 Myo-inositol 1,4,5-triphosphate

LV Lytic vacuole

NSCC Non selective cation channel

PMF Proton motive force

PSV Protein storage vacuole

SV Slow vacuolar channel

VK Vacuolar Kþ channel

TMD Transmembrane domain

F.J.M. Maathuis

Biology Department/Area 9, University of York, York YO10 5DD, United Kingdom

e-mail: fjm3@york.ac.uk

V. Demidchik and F. Maathuis (eds.), Ion Channels and Plant Stress Responses,
Signaling and Communication in Plants,

DOI 10.1007/978-3-642-10494-7_10, # Springer-Verlag Berlin Heidelberg 2010

191



1 Introduction

Plant cells contain different types of vacuole, the most prominent being the central

lytic vacuole (LV) which can occupy as much as 95% of the cellular volume (Leigh

and Sanders 1997). LVs play many essential roles both at the cellular and tissue

level. They constitute the main site of turgor generation through their role as

depository for minerals and water, thereby providing structure to plants. LVs also

are the compartment where xenobiotic and toxic compounds are sequestered to

minimise potential toxicity in the cytoplasm which contains the bulk of the bio-

chemical machinery. Containment of secondary metabolites and proteins involved

in plant defence such as alkaloids and proteases forms a further function whereas

the low pH of LVs is believed to be important in degradation of both exogenous and

endogenous compounds such as proteins. Since the LV also forms a large store of

cellular Ca2þ it is important for cellular signalling.

A second type of vacuole is present, predominantly in storage tissues such as

seeds, but it is also found in vegetative cells. In seeds, these protein storage

vacuoles (PSVs, previously also known as protein bodies) are deposits for minerals

and proteins that are essential for the development of the embryo both pre- and post-

germination. PSVs contain internal compartments, crystalloids and globoids, which

respectively contain protein and complex salts such as phytate (Leigh and Sanders

1997; Bethke et al. 1998).

1.1 The Role of Vacuoles in Plant Nutrition

The general mechanisms regarding the role of vacuoles in plant nutrition have been

amply documented: for example, plants grown on Kþ-rich media will deposit large

quantities of this nutrient in the LVs of vegetative tissues (Maathuis and Sanders

1993). This “luxury” consumption of Kþ allows plants to survive subsequent

exposure to Kþ deficient conditions by mobilising the vacuolar store in order to

maintain cytoplasmic Kþ homeostasis (Walker et al. 1996). This scenario not only

pertains to Kþ but has also been observed for other (macro)nutrients such as P, N

and S (Marschner 1995). Indeed, the solute composition in vacuoles is highly

dynamic with constant adaptations to changing environmental and developmental

conditions and vacuolar contents reflect changes in external nutrient level not only

for macronutrients but also for important micronutrients like Fe and Zn (Marschner

1995). This mineral storage function of LVs is to some extent tissue dependent:

techniques such as X-ray analysis and single cell sampling have revealed that, in

barley leaves, Ca2þ and Cl� are mainly detected in vacuoles of epidermal cells but

not mesophyll cells. In contrast, P is more abundant in mesophyll vacuoles com-

pared to epidermal vacuoles (Leigh and Storey 1993).

PSVs are essential for delivery of nutrients to the germinating seed (Otegui et al.

2002). Inorganic minerals such as Kþ and Ca2þ are released from phytate and
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distributed. Phosphorous is released via break down of phytate whereas reduced

carbon and nitrogen derive from metabolisation of starch and storage proteins. The

subsequent early stages of seedling growth and development are also often depen-

dent on seed storage although this varies greatly from species to species.

The storage function of both LVs and PSVs not only presents a nutritional buffer

essential for plant growth and development but also provides a main source in

human and animal diets of sugars, minerals such as Ca2þ, Mg2þ, Zn2þ, Fe2þ and P,

and it is a main source of protein.

1.2 Vacuoles and Signalling

LVs provide a major intracellular Ca2þ store with concentrations typically in the

millimolar range. Both ATP driven Ca2þ pumps and Hþ-coupled Ca2þ antiporters

contribute to vacuolar Ca2þ accumulation and to maintaining a resting cytoplasmic

Ca2þ concentration of around 100 nM. LVs are believed to be important contribu-

tors to stimulus-invoked changes in cytoplasmic Ca2þ (Sanders et al. 2002).

Vacuolar Ca2þ release during signal transduction occurs through tonoplast located

ion channels. Some of these are voltage sensitive whereas others are believed to be

under control of ligands (Pottosin and Schoenknecht 2007). Whether PSVs play a

similar role to LVs in terms of Ca2þ signalling has yet to be established.

1.3 The Role of Vacuoles in Detoxification

Nutrient and non-nutrient minerals are often deficient in natural environments. Yet

there are many regions where local concentrations of particular minerals are

extremely high. This is particularly evident where salinisation is concerned and

levels of Naþ and Cl� can easily exceed 100 mM. Other minerals that frequently

occur in excess are heavy metals such as Fe2þ, Pb2þ and Cd2þ and metalloids such

as arsenic. In all cases, plant uptake of these potentially toxic elements can be

significant because they tend to mimic other, often beneficial, minerals. For exam-

ple, the chemical properties of Naþ are very similar to Kþ (an essential macronu-

trient) and Naþ therefore interferes with Kþ transport. Similarly, Pb2þ and Cd2þ

can be taken up through transport systems that normally move Ca2þ while arsenic

in the form of arsenate (AsO4
3�) enters plants through phosphate transporters (Ali

et al. 2009).

Uptake of toxic minerals induces various detoxification responses which often

culminate in vacuolar deposition. In the case of elements like Naþ and Cl�, the ions
are directly moved across the tonoplast by channel and carrier type transporters. In

contrast, heavy metals and metalloids such as arsenic are believed to be chelated to

non-protein thiols such as glutathione, phytochelatins or amino acids like histidine.
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The entire complex may then be loaded into the vacuole via ABC-type transporters

(Martinoia 2007).

Similar mechanisms are in place to sequester more complex xenobiotics in the

vacuole. Important examples are chemical herbicides that are conjugated to gluta-

thione and then stored in the vacuolar lumen. The overall effect of these strategies is

the removal of potentially harmful substances from the cytoplasm and thus mini-

mising inhibitory impact on enzyme activity.

1.4 Tonoplast Membrane Transporters

The dynamic and spatial aspects of vacuolar nutrient contents and vacuolar signal-

ling events critically depend on the concerted action and regulation of tonoplast

transporters. Luminal acidification of LVs is achieved through the activity of

primary Hþ pumps, the V-ATPase and the PPase. The resultant Proton Motive

Force (PMF) consists of a steep pH gradient (acidic in the vacuolar lumen) and a

rather low tonoplast potential which is generally believed to be in the range of �10

to�30 mV (Walker et al. 1996; Pottosin and Schoenknecht 2007). The PMF is used

to energise secondary transporters for transtonoplast fluxes of organics such as

sugars and amino acids, and minerals such Kþ, Naþ, Ca2þ and NO3
�. Ion channels

form a third class of tonoplast transporter that mediates fluxes down the electro-

chemical potential of the permeating ions.

Many primary and secondary transport gene families that localise to vacuolar

membranes have been identified (Martinoia 2007). For the tonoplast some of the

transporter genes have been cloned and characterised. Molecular identification has

often been achieved either through homology with mammalian systems, e.g. Ca2þ

ATPases and Naþ:Hþ antiporters, or because proteins are highly abundant, e.g.

V-ATPases and PPases, and therefore co-purify with tonoplast fractions. Gene

families that contain secondary tonoplast transporters involved in vacuolar nutrition

and signalling include the cation:Hþ exchangers (CHX family), Caþ:Hþ exchan-

gers (CAX family), heavy metal transporters (CDF family), Ca2þ pumps (ACA

family), aquaporins (TIP family), glutathione S-conjugate transporting ABC pumps

(MRP and other subfamilies) and possibly ATP energised heavy metal pumps from

the CPx-ATPase family. In addition, there is evidence for tonoplast localisation of

isoforms from the HAK/KUP family and the CLC family.

The amenability of vacuoles to patch clamp methodology ensured that tonoplast

channels were amongst the first and best characterised plant ion channels (Leigh

and Sanders 1997). The accumulative data show the presence of several cation and

anion channels (Fig. 1). The ubiquitous slow vacuolar (SV) channel has Kþ/Naþ

and Kþ/Ca2þselectivity ratios of around 1 and 4 respectively, is activated by

tonoplast depolarisation, has slow kinetics and requires elevated cytoplasmic

Ca2þ concentrations. The fast vacuolar (FV) channel has a similar low Kþ/Naþ

selectivity ratio as the SV channel but is inhibited by elevated [Ca2þ]cyt. Vacuolar
Kþ (VK) cation channels have been recorded in many plant vacuoles where they are
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involved in turgor regulation and Kþ nutrition. Anion channels permeable to

malate, Cl� and NO3
� are present at the tonoplast and in addition to the SV

channel, two or three further types of Ca2þ permeable channel have been described

which are either voltage dependent or ligand gated.

Until recently, none of the encoding genes for these channels was known.

However, the identification of the Arabidopsis SV channel as AtTPC1 (Peiter

et al. 2005) and the VK channel as AtTPK1 (Gobert et al. 2007) has led the way

to in depth studies regarding their regulation and physiological function. The

presence of CLC isoforms on the tonoplast has also been shown although some

of these may function as Hþ-coupled antiporters to drive vacuolar NO3
� accumu-

lation (De Angeli et al. 2006). For other types of tonoplast ion channel data mainly

derive from electrophysiology. In the subsequent sections I will discuss the data

currently available regarding roles of each type of vacuolar cation channel in

nutritional and signalling aspects.
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Fig. 1 Overview of the main primary and secondary transport systems in the vacuolar membrane.

Plants have at least two different vacuoles, the large lytic vacuole (LV) and the smaller protein

storage vacuole (PSV) which is particularly prevalent in seed and storage tissues. The LV

membrane, the tonoplast, contains two primary H+ pumps, the V-ATPase and the PPase which

establish a tonoplast PMF by moving protons into the vacuole. The PMF is subsequently used to

drive secondary transport through carriers and ion channels. Different antiport systems have been

identified that are involved in the transtonoplast movement of cations such as Kþ, Naþ and Ca2þ

and anions such as NO3
�. Anion channels are present to conduct Cl� and malate and non selective

cation channels (NSCCs) include the slow vacuolar (SV) and fast vacuolar (FV) conductances

whereas the vacuolar Kþ (VK) channel is selective for Kþ. In addition, Ca2þ selective channels

have been described that are gated through binding of cytosolic ligands like IP3 and cADPR. The

SV and VK channels have been shown to be encoded by TPC1 (two pore channel) and TPK1 (two

pore K channel) respectively. Far less is known about the PSV tonoplast but both SV and VK type

conductances have been recorded from this organelle
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1.5 The Slow Vacuolar Channel

The SV channel (TPC1) is now well established as an ubiquitous voltage dependent

non-selective cation channel (NSCC) which has been found in many different plant

species and all plant tissues. It shows characteristically slow activation at depolar-

ising tonoplast potentials and its current is therefore predominantly outward (i.e.

directed out of the cytoplasm). Apart from voltage dependence, the SV channel is

sensitive to both cytoplasmic and luminal Ca2þ levels (Pottosin and Schoenknecht

2007). Elevation of luminal Ca2þ has a strong inhibitory effect on channel opening

by shifting the activation potential further positive. The mechanistic details of this

process are unknown and so is the location of the binding site. In contrast, two

clearly identifiable EF-hand motifs between transmembrane domain 6 and 7 are

present. Binding of Ca2þ to these domains is believed to be responsible for the steep

increase in SV channel open probability. SV channel activity is further regulated by

a host of mechanisms including phosphorylation (Bethke and Jones 1997), 14-3-3

proteins (van den Wijngaard et al. 2001), organic cations and redox potential

(Scholz-Starke et al. 2004).

Early reports suggested the SV channel may be involved in maintaining turgor

and tonoplast potential (Hedrich et al. 1988) and during salt stress by pre-

venting Naþ leakage from the vacuole (Maathuis and Prins 1990). Much later,

the Arabidopsis SV channel was shown to be encoded by AtTPC1 (two pore

channel; Peiter et al. 2005), a protein with a secondary structure that consists of

two times 6 transmembrane domains (TMDs), 2 Ca2þ binding EF domains and at

least one putative 14-3-3 binding site (Fig. 2). Its pore structure does not resemble

that of classical Kþ, Ca2þ or Naþ channels. The molecular identification of the SV

channel enabled studies into the physiological role of this transporter by manip-

ulating its expression levels. Growth and cation contents during exposure to

deficiency and stress levels of a number of minerals were not significantly affected

by TPC1 expression (Peiter, Sanders and Maathuis, unpublished data). This indi-

cates that the SV channel is unlikely to be particularly important in plant nutrition.

However, in an Attpc1 loss of function (knockout) mutant, ABA-induced delay of
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Fig. 2 The SV channel is encoded by TPC1, a protein with a secondary structure that consists of

two times 6 transmembrane domains (TMDs). Two 12 TMD subunits form a functional channel.

Between TMD 6 and 7, two Ca2þ binding EF domains are present that are believed to be

responsible for the steep Ca2þ dependence of channel opening. In between the EF motifs a putative

14-3-3 binding site is present. The pore regions (P) of TPC1 contain serine (S) and glycine (G)

residues resulting in an “SGSG” selectivity filter in the holoenzyme. Ca2þ and Naþ selective

channels have “EEEE” and “DEKA” selectivity filters
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seed germination was significantly less whereas the opposite was observed in

overexpressing lines (Peiter et al. 2005). In Arabidopsis guard cells, ABA depen-

dent closure was not affected by AtTPC1 but high external Ca2þ, another well
documented closing stimulus, largely failed to evoke stomatal closure in the

knockout mutant. In rice, OsTPC1 loss of function led to a reduced response to

the fungal elicitor xylanase and to fewer cells showing the hypersensitive response,

an important mechanism to combat pathogenic infection (Kurusu et al. 2005). A

similar phenotype was recorded in tobacco BY-2 suspension cells. In this case the

fungal elicitor cryptogein produced a smaller Ca2þ signal, less cell death and less

induction of defence gene transcription in an NtTPC1 co-suppression line (Kadota

et al. 2004).

Heterologous expression of TPC1 restores Ca2þ uptake in cch/mid1 yeast, a

strain that lacks its plasma membrane high affinity Ca2þ uptake mechanism

(Furuichi et al. 2001). This suggests TPC1 can mediate Ca2þ flux. Also, many of

the TPC1 related phenotypes point to a Ca2þ signalling function of this protein: The

stomatal phenotype in Attpc1 mutants is reminiscent of det1-3 mutants which show

a similar lack of stomatal closure in response to elevated external Ca2þ (Allen et al.

2000). More detailed studies with the det1-3 mutant showed that the Ca2þ signal-

ling in the guard cell cytoplasm is altered. A similar alteration in tpc1 Ca2þ

signalling could therefore explain the observed stomatal phenotype. In tobacco,

direct measurements of cytoplasmic Ca2þ were made using the Ca2þ reporter

aequorin. Tobacco suspension cells of the TPC1 co-suppression line showed far

smaller Ca2þ signals than wildtype cells in response to cryptogein (Kadota et al.

2004). In rice the lack of H2O2 production and programmed cell death in the KO

mutant also imply a possible role of TPC1 in Ca2þ signalling (Kurusu et al. 2005)

since this is a well established intermediate in the hypersensitive response. Other

pointers towards a potential role of TPC1 in reactive oxygen intermediate and Ca2þ

signalling comes from studies comparing aequorin signals in wildtype and tpc1

plants in response to H2O2. At low concentration (0.1 mM) H2O2-induced Ca2þ

signals are attenuated and delayed in tpc1 KO mutants (Peiter, Sanders and

Maathuis, unpubl. data), however, this effect was not detected at very high

(10 mM) H2O2 (Ranf et al. 2008) suggesting the presence of multiple systems

with varying reactive oxygen species affinities.

Indeed, interpretation of the myriad of TPC1 related data is not always straight

forward and the idea that the vacuolar TPC1 channel participates in vacuolar

Ca2þ release and cellular Ca2þ signalling has been challenged for several reasons.

Heterologous expression can alter transport properties and membrane targeting which

complicates extrapolation of yeast data to plant systems. The work in tobacco

and rice was carried out under the mistaken belief that NtTPC1 and OsTPC1 were

localised in the plasma membrane and functioned in influx of apoplastic Ca2þ.
However subsequent work clearly showed that OsTPC1 and NtTPC1, like their

Arabidopsis counterpart, are vacuolar channels (Ranf et al. 2008).
More importantly, there are many strong electrophysiological data that show the

SV channel open probability is exceedingly small in the presence of Ca2þ gradients

and tonoplast potentials that could produce vacuolar Ca2þ release. Although there is
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a large inward Ca2þ gradient, the presence of millimolar Ca2þ in the vacuolar

lumen reduces an already low open probability at physiological tonoplast poten-

tials. This results in an effective channel open probability of near zero, even when

tonoplasts are significantly depolarised (Pottosin and Schoenknecht 2007).

The role of the SV channel in Ca2þ signalling was also studied using a direct

Ca2þmeasuring approach with the Ca2þ reporter aequorin: in response to a range of

stimuli, aequorin reported Ca2þ in the Attpc1 knockout background was not signifi-
cantly different from that observed in wildtype plants (Ranf et al. 2008). This work

showed that there was no difference in the amplitude and kinetics of Ca2þ signals in

mutant and wildtype in response to cold shock, osmotic shock, salt stress, oxidative

stress or elevation of external Ca2þ. In addition, exposure to elicitors such as

flagellin or salicylic acid also invoked comparable Ca2þ signals.

In combination, these findings appear to argue against a role of SV channels in

Ca2þ signalling and also plant nutrition and therefore begs the question of what

could be the function of this ubiquitous channel which dominates the tonoplast

conductance. Several scenarios are possible: there may be unknown factors that

affect the SV channel voltage dependence in such a way that open probability

is shifted to more physiological tonoplast potentials. For example, in animal cells it

has been shown that local cytoplasmic Ca2þ concentrations can easily reach

0.1 mM in the vicinity of ER or plasma membrane Ca2þ channels (Demuro and

Parker 2006). If SV channels were positioned at close range to such systems, their

open probability could be sufficient to evoke SV channel mediated Ca2þ influx

(Pottosin and Schoenknecht 2007). Alternatively, SV channels may participate in

overall Ca2þ nutrition, rather than Ca2þ signalling. Although no evidence was

found for this in Arabidopsis, overexpression of OsTPC1 in rice led to reduced

growth in the presence of excess Ca2þ and improved growth rates when Ca2þ was

deficient (Kurusu et al. 2004). SV channels may also be involved in regulation of

cation fluxes other than Ca2þ and these may impact on less obvious processes such

as tonoplast potential maintenance or osmotic adjustments.

1.6 The Vacuolar Kþ Channel

Vacuolar Kþ (VK) channel currents are typified by a lack of voltage dependence,

intrinsic rectification and a much lower requirement for cytoplasmic Ca2þ than the

SV channel. Due to its high selectivity for Kþ and its presence in guard cells it was

hypothesised that the VK conductance might be involved in stomatal functioning.

Electrophysiological and reverse genetics approaches showed that the Arabidopsis
VK channel is encoded by AtTPK1 (Gobert et al. 2007). TPK1 is a member of a

small gene family of two pore Kþ channels characterised by a four transmembrane/

two pore structure with GYGD Kþ selectivity motifs in each pore and a varying

number of putative C-terminal EF hands (Fig 3). The Arabidopsis genome contains

5 TPK isoforms and similarly sized TPK families have been found in genomes of

other species such as rice, tobacco and Physcomitrella (Dunkel et al. 2008).
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Like the SV channel, the VK channel activity needs the presence of cytoplas-

mic Ca2þ. The Arabidopsis TPK1 is steeply Ca2þ dependent and requires a

minimum Ca2þ concentration of around 1 mM, which is considerably lower

than that for the SV channel. However, the Ca2þ dependence appears to vary:

in tobacco the NtTPK1 was active in the virtual absence of any Ca2þ although

some residual Ca2þ stimulation was recorded (Hamamoto et al. 2008). In rice too,

the Ca2þ dependence of at least two isoforms (OsTPKa and OsTPKb) is consid-

erably less than that observed for AtTPK1 (Maathuis et al. unpubl results). This

divergence is likely to derive from the difference in putative Ca2þ binding sites

which consist of two well defined EF hands in AtTPK1 to one in NtTPK1 and

none in OsTPKb.

VK activity in Arabidopsis is also modulated by 14-3-3 binding but in contrast to

the SV channel which is strongly inhibited by 14-3-3, VK channel activity is

considerably promoted after binding 14-3-3 to its N-terminal 14-3-3 motif (Latz

et al. 2007). However, the sequence domain encoding the 14-3-3 binding motif in

AtTPK1 varies considerably amongst TPKs so whether 14-3-3 regulation is a

generic mechanism for these channels remains to be seen.

No obvious morphological phenotypes are present in tpk1 mutants when plants

are grown in normal conditions. However, comparisons of tpk1 KO mutant, wild-

type and TPK1 overexpressing plants point to multiple functions for TPK1, a gene

expressed in all tissues and cell types. In agreement with earlier suggestions (Ward

and Schroeder 1994) TPK1 impacts on Kþ release during stomatal closure: in

Attpk1, stomatal closure in response to ABA ultimately reached similar apertures

compared to wildtype plants but this occurred with much slower kinetics. Stomatal

opening, in response to the fungal toxin fusicoccin, was not affected. Thus, these

results indicate that TPK1 is a major pathway for Kþ release during stomatal

closure but that auxiliary mechanisms are present.

TPK1 expression influences seed germination: in knockout mutants the second

phase of germination, i.e. emergence of the radicle through the endosperm layer,

was considerably slower, especially in the presence of ABA. In contrast, germina-

tion occurred quicker in TPK1 overexpressors. Detailed mechanistic insights into

seed germination are rare which hampers interpretation of these findings. However,
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Fig. 3 TPK proteins such as the VK channel contain 4 TMDs and 2 pore regions per subunit with

two subunits forming a functional channel. Each pore region (P) contains a GYGD sequence which

is characteristic of Kþ selectivity, although some tobacco TPKs may have slightly different motifs.

In the N terminal region, TPKs have 14-3-3 binding domains and the presence of 14-3-3 leads to

channel activation. Amongst TPK isoforms the occurrence of C-terminal Ca2þ binding EF motifs

varies from 0 to 2
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germination requires redistribution of inorganic minerals to create turgor that drives

cell expansion. This is particularly important during the second phase of germina-

tion that is hallmarked by rapid radicle extension. A large fraction of the turgor

generating Kþ of seeds is sequestered in PSV globoids as insoluble K-phytate

(Herman and Larkins 1999). Release of this Kþ fraction can only take place after

break down of phytate by the enzyme phytase and subsequent transport of Kþ out of

the globoid and PSV. The latter may very well depend on Kþ selective cation

channels such as TPK1. TPK1 also impacts on overall Kþ homeostasis. Both in the

presence of excess Kþ (80 mM) and Kþ deficiency (0.01 mM) there was a limited

growth advantage in TPK1 overexpressors compared to wildtype plants. However,

there was no significant difference in tissue Kþ levels.

Like AtTPK1, the Arabidopsis isoforms TPK2, TPK3 and TPK5 express at the

tonoplast (Voelker et al. 2006) but functional expression of these genes has so far

not been successful. Interestingly, expression of these isoforms in Kþ-uptake
deficient E. coli cells does complement the E. coli mutation, pointing to functional

expression in this heterologous system (Isayenkov and Maathuis, unpubl. data).

TPK homologues in other species have been studied to some extent: the tobacco

NtTPK1 comes in several variants and some of these have diverging Kþ selectivity

filters in the sense that the GYGD motif is replaced by a GHGD or VHGD motif

(Hamamoto et al. 2008). These authors also showed a moderate blocking effect of

polyamines on NtTPK1. Although the physiological relevance of this is not clear,

polyamine levels are often increased in response to abiotic stresses such as drought

and salinity.

In rice, there are two close homologues of AtTPK1, OsTPKa and OsTPKb.

Interestingly, the rice isoforms express to different types of vacuole with TPKa

being expressed predominantly in the central LV and TPKb primarily found in

smaller PSV-type compartments (Fig.4). OsTPKa and TPKb have highly similar

protein sequences and how this leads to different membrane targeting is the subject

of ongoing studies. Similarly, it remains to be elucidated whether OsTPKa and

OsTPKb fulfil different functions in these compartments.

a b c d

Fig. 4 Rice TPKa and TPKb localise to different types of vacuole. TPKa (a, b) is predominantly

expressed in the main lytic vacuole whereas TPKb mostly resides in protein storage vacuoles

(c and d). Bright light images of rice mesophyll protoplasts are shown in (a) and (c) with the

protoplast in (a) osmotically ruptured to release the main vacuole. TPKa (b) and TPKb (d) were C

terminally fused to GFP to visualise expression by fluorescence
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1.7 The Fast Vacuolar Channel

Like the SV channel the FV channel has very low selectivity (Bruggemann et al.

1999) is K/Na selectivity is around unity and other monovalent cations can also

permeate this protein. Whether it can transport divalent cations remains to be

established. Originally described in red beet storage tissue (Hedrich and Neher

1987), few further studies have been published. FV channels become increasingly

inactive whenever the cytoplasmic Ca2þ concentration exceeds around 200 nM and

FV open probability has been reported to be largely insensitive to tonoplast potential.

Subsequent publications reported on the presence of FV channels in other tissues

such as barley mesophyll vacuoles (Tikhonova et al. 1997) where it shows moderate

outward rectification and biphasic voltage dependence. The gene(s) encoding the FV

channel is not known and this frustrates in depth studies regarding its characteristics

and in planta role. Since both luminal and cytoplasmic Kþ levels impact on FV

channel open probability, one of the physiological roles of this transporter may be in

maintaining cellular Kþ homeostasis (Pottosin and Martinez-Estevez 2003). Other

putative roles for the FV channel include providing a shunt conductance for the

V-ATPase, osmoregulation, and regulation of the tonoplast potential (Allen and

Sanders 1997).

1.8 Ligand-Gated Vacuolar Cation Channels

Several signalling pathways in animal cells are mediated by phosphoinositol

compounds. Briefly, these pathways include activation of a G-protein leading to

stimulation of phospholipase-C which hydrolyses the membrane lipid phophatidy-

linositol 4,5-bisphosphate releasing the second messenger myo-inositol 1,4,5-tri-

phosphate (IP3). IP3 subsequently causes Ca2þ release from intracellular stores

(Weernink et al. 2007).

In plants, stress such as rapid changes in osmotic pressure, produces IP3 within

minutes. Longer osmotic stress can also produce IP3 in an ABA-dependent manner

(Burnette et al. 2003). In addition, various reports showed that in plants too, IP3
could release Ca2þ from isolated vacuoles or vacuolar vesicles (Alexandre et al.

1990; Allen et al. 1995) and thus forms one of the major triggers for Ca2þ release

from internal stores. The main target of IP3 is IP3-gated ion channels found in

endomembranes. These are capable of conducting Ca2þand patch clamp experi-

ments showed the presence of such channels in beet vacuoles (Alexandre et al.

1990). Single channel recordings showed a unitary slope conductance of around

30 pS and, as expected for a true ligand-gated channel, both whole vacuole and

single channel currents were strictly dependent on the presence of IP3. Channel

affinity for IP3 showed a Km of around 200 nM which agrees well with IP3 levels

determined in tissue (Burnette et al. 2003). Current magnitude was sensitive to IP3
concentration in a first order fashion (i.e. a Hill coefficient of 1), showing no

Vacuolar Ion Channels: Roles as Signalling Mechanisms and in Plant Nutrition 201



evidence of cooperative ligand binding, as is the case for many animal IP3 recep-

tors. Therefore, plant IP3 receptors are likely to possess only one ligand binding site

per channel protein.

Although this initial work was followed by a few further reports (Allen et al.

1995; Allen and Sanders 1997), surprisingly little progress has been made in the

past 15 years regarding plant IP3 channels. For example, it is not clear whether

model systems such as Arabidopsis or rice contain IP3-gated conductances in their

vacuole. From a bioinformatics perspective, it is clear that plant genomes and

proteomes (at least those that have been sequenced so far) do not contain sequences

that resemble animal IP3 receptors. Identification of genes that encode the observed

plant IP3 channels is therefore likely to be exceedingly difficult.

There is some evidence that a second type of ligand-gated cation channel is

localised in plant tonoplasts. Pharmacologically, these channels resemble the

mammalian ryanodine receptor, a Ca2þ selective channel named after its propensity

to bind the plant alkaloid ryanodine. Mammalian ryanodine receptors are most

prevalent in muscle sarcoplasmic reticulum where they participate in Ca2þ release

that is necessary for muscle contraction. Although Ca2þ is believed to be the main

physiological agonist, there are endogenous and exogenous factors that influence

gating such as cyclic ADP-ribose (cADPR). cADPR is capable of releasing Ca2þ

from intracellular stores in many cell types and this release is often potentiated by

Ca2þ and ryanodine (Mandi and Bak 2008).

In plants, some studies showed that cADPR was able release Ca2þ from micro-

somal vesicles and also from intact red beet vacuoles (Allen et al. 1995). Nanomolar

amounts of cADPR gave rise to Ca2þ release which can be inhibited by ruthenium

red. Patch clamp experiments showed cADPR dependent currents that are mainly

carried by Ca2þ (PK:PCa between 0.04 and 0.1). Like vacuolar IP3 induced currents,

cADPR dependent currents are prevalent at physiological tonoplast potentials (�10

to �40 mV) and largely absent at positive potentials. Patch clamp data from intact

vacuoles further showed that IP3 and cADPR produce additive Ca2þ currents,

suggesting that both types of receptor are present in the same membrane.

A recent study (Pottosin et al. 2009) did not find evidence of cADPR-induced Ca2þ

release in intact vacuoles from red beet. As with plant IP3-gated channels, little further

work has been carried out regarding the exact nature of the putative cADPRdependent

channel. Particularly single channel data are needed, preferably from more than one

species, to firmly establish that such transporters are common in plant membranes.

With the SV channel as a potential Ca2þ release pathway, IP3-gated Ca
2þ perme-

able channels and cADPR-gated Ca2þ channels, possibly all co-residing in the

tonoplast of a single cell, an obvious question is why cells need such a plethora of

different vacuolar Ca2þ release pathways. The relevance of multiple pathways may

lie in providing specificity for Ca2þ signalling. At least 20 stimuli have been described

where a rise in Ca2þ forms part of the response. Nevertheless, both stimuli and

responses are usually highly specific and therefore cannot be mediated by a uniform

Ca2þ signal. More recent research has shown that Ca2þ signals subsume complicated

amplitude and frequency modulations, and spatial variations that all contribute to the

“Ca2þ signature” (Sanders et al. 2002). The presence ofmultiple mechanisms through
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which Ca2þ can be released with different kinetics, at different locations and in

response to a multitude of factors that impact on channel activity, ensures that cells

have an almost inexhaustible repertoire of potential Ca2þ signatures.

1.9 Vacuolar Anion Channels

Ion channels in the tonoplast that are sensitive to typical anion channel inhibitors

such as DIDS (4,40-diisothicyanatostilbene-2,20-disulfonic acid) and A9C (anthra-

cene-9-carboxylic acid) were recorded in early patch clamp studies. These channels

broadly fall into two categories: those that showed selectivity for inorganic anions

like Cl� and NO3
� and those that conduct organic acids such as malate and to a

lesser extent fumarate and succinate (Barkla and Pantoja 1996). The roles of these

tonoplast anion channels have been hypothesised to be legion and important in both

biotic and abiotic stress responses but unfortunately, characterisation of vacuolar

anion channels has been less forthcoming than that for cation channels and their

exact physiological roles are often ill-defined.

Early reports noted the presence of an anion permeable tonoplast conductance

that potentially played a role in vacuolar Cl� loading during salt stress and malate

accumulation (Pantoja et al. 1989). The malate selective channels are inward

rectifying which equates to a malate flux into the vacuole. Channel open probability

is generally voltage dependent with opening at positive tonoplast potentials. More

recently, some of these were genetically identified and this work indicated that one

of the malate permeable vacuolar channels is ALMT9 (Kovermann et al. 2007).

Loss of function in ALMT9 did reduce vacuolar malate currents but it did not

significantly affect plant growth.

Another major group of vacuolar anion channels is encoded by the CLC family.

The functions of these are still largely obscure but clearly include nitrogen homeo-

stasis. CLC-c was identified as a regulator of tissue nitrate level and mutations in

CLC-c led to reduced nitrate levels. The concentrations of chloride, malate, and

citrate were also affected in the clc-cmutant (Harada et al. 2004). CLC-a also has an

important role in nitrate homeostasis. When this transporter was non-functional, the

mutants had a greatly reduced capacity to cope with excessive nitrate stress and

were more sensitive to the herbicide chlorate (de Angeli et al. 2006). However, in

analogy to several animal CLCs, CLC-a does not appear to be an anion channel

but functions as an Hþ coupled antiporter to drive vacuolar nitrate accumulation

(de Angeli et al. 2006).

2 Concluding Remarks

The amenability of plant vacuoles to patch clamp technology has resulted in the

characterisation of many tonoplast ion channels, particularly those conducting

cations. At least 5 different cation conductances have been recorded all with a
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proposed function in nutrition, stress and signalling. In only two cases has the

molecular identity been revealed (Fig. 1) and this has led to more detailed insights

into the physiological function of the SV and VK channels. However, for other

vacuolar cation channels, even electrophysiological data are scarce. This is partic-

ularly pertinent where ligand-gated Ca2þ channels are concerned and further data

are urgently required. Identification at the molecular level also remains a big

priority but it is unclear how this can be achieved: extensive sequence homology

between putative plant Ca2þ channels and other organisms is lacking and alterna-

tive approaches such as tonoplast proteomics methods (Shimaoka et al. 2004;

Whiteman et al. 2008) do not detect less abundant proteins such as ion channels.

Yeast complementation strategies which have proved very successful in the isola-

tion of plasma membrane plant channels are similarly unsuitable since disruption of

yeast vacuolar cation channels does not yield clear phenotypes.

Another complicating factor for analysing physiological roles is the seemingly

high level of functional redundancy in vacuolar cation transport: disruption of

either the SV or the VK channel does not affect plant growth in most conditions.

Even in plants where both these conductances are absent no or little phenotype is

observed (F.J.M. Maathuis unpublished data). The role of the SV channel in Ca2þ

signalling could conceivably be carried out by other, presumably ligand-gated Ca2þ

permeable channels whereas VK-mediated Kþ release can take place through other

cation channels such as the SV or FV conductance.

However, since patch clamping plant vacuoles is relatively straight forward, it

should be feasible to optimise conditions and establish protocols to routinely record

specific cation conductances such as the FV channel or ligand-gated Ca2þ channels.

In combination with a reverse genetics approach this should allow testing of large

numbers of loss of function mutants to identify encoding genes and hence provide a

clearer picture regarding the role of such channels in plant signalling and stress

responses.

References

Alexandre J, Lassalles JP, Kado RT (1990) Opening of Ca2þ channels in isolated red beet root

vacuole membrane by inositol 1,4,5-triphosphate. Nature 343:567–570

Ali W, Isayenkov SV, Zhao FJ, Maathuis FJM (2009) Arsenite transport in plants. Cell Mol Life

Sci 66:2329–2340

Allen GJ, Muir SR, Sanders D (1995) Release of Ca2þ from individual plant vacuoles by both

Insp3 and cyclic ADP-ribose. Science 268:735–737

Allen GJ, Sanders D (1997) Vacuolar ion channels of higher plants. Adv Bot Res 25:217–252

Allen GJ, Chu SP, Schumacher K, Shimazaki CT, Vafeados D, Kemper A, Hawke SD, TallmanG,

Tsien RY, Harper JF, Chory J, Schroeder JI (2000) Alteration of stimulus-specific guard cell

calcium oscillations and stomatal closing in Arabidopsis det3 mutant. Science 289:2338–2342

Barkla BJ, Pantoja O (1996) Physiology of ion transport across the tonoplast of higher plants.

Annu Rev Plant Physiol 47:159–184

Bethke PC, Jones RL (1997) Reversible protein phosphorylation regulates the activity of the

slow-vacuolar ion channel. Plant J 11:1227–1235

204 F.J.M. Maathuis



Bethke PC, Swanson SJ, Hillmer S, Jones RL (1998) From storage compartment to lytic organelle:

The metamorphosis of the aleurone protein storage vacuole. Ann Bot 82:399–412

Bruggemann LI, Pottosin II, Schonknecht G (1999) Selectivity of the fast activating vacuolar

cation channel. J Exp Bot 50:873–876

Burnette RN, Gunesekera BM, Gillaspy GE (2003) An Arabidopsis inositol 5-phosphatase gain-

of-function alters abscisic acid signaling. Plant Physiol 132:1011–1019

De Angeli A, Monachello D, Ephritikhine G, Frachisse JM, Thomine S, Gambale F, Barbier-

Brygoo H (2006) The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant

vacuoles. Nature 442:939–942

Demuro A, Parker I (2006) Imaging single-channel calcium microdomains. Cell Calcium

40:413–422

Dunkel M, Latz A, Schumacher K, Wueller T, Becker D, Hedrich R (2008) Targeting of vacuolar

membrane localized members of the TPK channel family. Mol Plant 6:938–949

Furuichi T, Cunningham KW, Muto S (2001) A putative two pore channel AtTPC1 mediates Ca2þ

flux in Arabidopsis leaf cells. Plant Cell Physiol 42:900–905
Gobert A, Isayenkov S, Voelker C, Czempinski K, Maathuis FJM (2007) The two-pore channel

TPK1 gene encodes the vacuolar Kþ conductance and plays a role in Kþ homeostasis. Proc

Natl Acad Sci USA 104:10726–10731

Hamamoto S, Marui J, Matsuoka K, Higashi K, Igarashi K, Nakagawa T, Kuroda T, Mori Y,

Murata Y, Nakanishi Y, Maeshima M, Yabe I, Uozumi N (2008) Characterization of a tobacco

TPK-type Kþ channel as a novel tonoplast Kþ channel using yeast tonoplasts. J Biol Chem

283:1911–1920

Harada H, Kuromori T, Hirayama T, Shinozaki K, Leigh RA (2004) Quantitative trait loci analysis

of nitrate storage in Arabidopsis leading to an investigation of the contribution of the anion

channel gene, AtCLC-c, to variation in nitrate levels. J Exp Bot 405:2005–2014

Hedrich R, Barbier-Brygoo H, Felle HH, Fluegge UI, Luettge U, Maathuis FJM, Marx S, Prins

HBA, Raschke K, Schnabl H, Schroeder JI, Struve I, Taiz L, Ziegler P (1988) General

mechanisms for solute transport across the tonoplast of plant vacuoles: a patch clamp survey

of ion channels and proton pumps. Bot Act 101:7–13

Hedrich R, Neher E (1987) Cytoplasmic calcium regulates voltage-dependent ion channels in

plant vacuoles. Nature 329:833–835

Herman EM, Larkins BA (1999) Protein storage bodies and vacuoles. Plant Cell 11:601–613

Kadota Y, Furuichi T, Ogasawara Y, Goh T, Higashi K, Muto S, Kuchitsu K (2004) Identification

of putative voltage-dependent Ca2þ-permeable channels involved in cryptogein-induced Ca2þ

transients and defense responses in tobacco BY-2 cells. Biochem Biophys Res Comm

317:823–830

Kovermann P, Meyer S, Hortensteiner S, Picco C, Scholz-Starke J, Ravera S, Lee Y, Martinoia E

(2007) The Arabidopsis vacuolar malate channel is a member of the ALMT family. Plant J

52:1169–1180

Kurusu T, Sakurai Y, Miyao A, Hirochika H, Kuchitsu K (2004) Identification of a putative

voltage-gated Ca2þ-permeable channel (OsTPC1) involved in Ca2þ influx and regulation of

growth and development in rice. Plant Cell Physiol 45:693–702

Kurusu T, Yagala T, Miyao A, Hirochika H, Kuchitsu K (2005) Identification of a putative

voltage-gated Ca2þ channel as a key regulator of elicitor-induced hypersensitive cell death

and mitogen-activated protein kinase activation in rice. Plant J 42:798–809

Latz A, Becker D, Hekman M, Mueller T, Beyhl D, Marten I, Eing C, Fischer A, Dunkel M, Bertl

A, Rapp UR, Hedrich R (2007) TPK1, a Ca2þ-regulated Arabidopsis vacuole two-pore Kþ

channel is activated by 14-3-3 proteins. Plant J 52:449–459

Leigh RA, Storey R (1993) Intercellular compartmentation of ions in barley leaves in relation to

potassium nutrition and salinity. J Exp Bot 44:755–762

Leigh RA, Sanders D (1997) The plant vacuole. Adv Bot Res 25:1–461

Maathuis FJM, Prins HBA (1990) Patch clamp studies on root cell vacuoles of a salt tolerant and a

salt sensitive Plantago species. Plant Physiol 92:23–28

Vacuolar Ion Channels: Roles as Signalling Mechanisms and in Plant Nutrition 205



Maathuis FJM, Sanders D (1993) Energization of potassium uptake in Arabidopsis thaliana.
Planta 191:302–307

Mandi M, Bak J (2008) Nicotinic acid adenine dinucleotide phosphate (NAADP) and Ca2þ

mobilization. J Receptors Signal Transduction 28:163–184

Marschner H (1995) Mineral nutrition in higher plants. Mineral nutrition of higher plants.

Academic, London 889 pp

Martinoia E (2007) Vacuolar transporters and their essential role in plant metabolism. J Exp Bot

58:83–102

Otegui MS, Capp R, Staehelin LA (2002) Developing seeds of Arabidopsis store different

minerals in two types of vacuoles and in the endoplasmic reticulum. Plant Cell 14:1311–1327

Pantoja O, Dainty J, Blumwald E (1989) Ion channels in vacuoles from halophytes and glyco-

phytes. FEBS Lett 255:92–96

Peiter E, Maathuis FJM, Mills LN, Knight H, Pelloux M, Hetherington AM, Sanders D (2005) The

vacuolar Ca2þ-activated channel TPC1 regulates germination and stomatal movement. Nature

434:404–408

Pottosin II, Martinez-Estevez M (2003) Regulation of the fast vacuolar channel by cytosolic and

vacuolar potassium. Biophys J 84:977–986

Pottosin II, Schoenknecht G (2007) Vacuolar calcium channels. J Exp Bot 58:1559–1569

Pottosin II, Wherrett T, Shabala S (2009) SV channels dominate the vacuolar Ca2þ release during

intracellular signalling. FEBS Lett 583:921–926

Ranf S, Wunnenberg P, Lee J, Becker D, Dunkel M, Hedrich R, Scheel D, Dietrich P (2008) Loss

of the vacuolar cation channel, AtTPC1, does not impair Ca2þ signals induced by abiotic and

biotic stresses. Plant J 53:287–299

Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant

Cell 14:S401–S417

Scholz-Starke J, De Angeli A, Ferraretto C, Paluzzi S, Gambale F, Carpaneto A (2004) Redox-

dependent modulation of the carrot SV channel by cytosolic pH. FEBS Lett 576:449–454

Shimaoka T, Ohnishi M, Sazuka T, Mitsuhashi N, Hara-Nishimura I, Shimazaki K, Maeshima M,

Yokota A, Tomizawa K, Mimura T (2004) Isolation of intact vacuoles and proteomic analysis

of tonoplast from suspension-cultured cells of Arabidopsis thaliana. Plant Cell Physiol

45:672–683

Tikhonova LI, Pottosin II, Dietz KJ, Schonknecht G (1997) Fast-activating cation channel in

barley mesophyll vacuoles. Inhibition by calcium. Plant J 11:1059–1070

van den Wijngaard PWJ, Bunney TD, Roobeek I, Schonknecht G, De Boer AH (2001) Slow

vacuolar channels from barley mesophyll cells are regulated by 14-3-3 proteins. FEBS Lett

488:100–104

Voelker C, Schmidt D, Mueller-Roeber B, Czempinski K (2006) Members of the Arabidopsis
AtTPK/KCO family form homomeric vacuolar channels in planta. Plant J 48:296–306

Walker DJ, Leigh RA, Miller AJ (1996) Potassium homeostasis in vacuolate plant cells. Proc Natl

Acad Sci USA 93:10510–10514

Ward JM, Schroeder JI (1994) Calcium activated Kþ channels and calcium-induced calcium

release by slow vacuolar ion channels in guard cell vacuoles implicated in the control of

stomatal closure. Plant Cell 6:669–683

Weernink PAO, Han L, Jakobs KH, Schmidt M (2007) Dynamic phospholipid signaling by G

protein-coupled receptors. Biochim Biophys Acta 1768:888–900

Whiteman SA, Serazetdinova L, Jones AME, Sanders D, Rathjen J, Peck SC, Maathuis FJM

(2008) Identification of novel proteins and phosphorylation sites in a tonoplast enriched

membrane fraction of Arabidopsis thaliana. Proteomics 8:3536–3547

206 F.J.M. Maathuis



Reactive Oxygen Species, Oxidative Stress

and Plant Ion Channels

Vadim Demidchik

Abstract Reactive oxygen species (ROS) are important toxic and regulatory

agents in plants. They are produced in response to a number of stimuli, including

major biotic and abiotic stresses. Disruption of respiratory and photosynthetic

electron transport chains, as well as activation of NADPH oxidases (NOXs) and

peroxidases, is a major reason for ROS generation and accumulation during stress

conditions. ROS production results in an additional challenge for plants that is

called oxidative stress. The latter can not only damage plant cells but can also signal

prime stresses to gene expression through activation of Ca2+ influx and K+ efflux

ion channels. This chapter reviews the mechanisms of stress-induced ROS genera-

tion in plants and discusses properties, regulation and possible structure of plant

ROS-activated ion channels.
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1 Introduction

Stresses are a major problem for agriculture. Understanding their mechanisms is a

way to improve crop yield. Stresses also contribute to desertification, deforestation,

death of corals and damage of phytoplankton. They have dramatic ecological

consequences and directly affect human life through climate change and food

shortage.

Over the last decade, induction of oxidative stress has been shown to be a central

phenomenon for many stresses (Fig. 1). Examples of plant stresses that are accom-

panied by ROS accumulation (oxidative stress) include drought (McAinsh et al.

1996), cold (Okane et al. 1996), high light (Karpinski et al. 1998), pathogens

(Schwacke and Hager 1992), salinity (Hernandez et al. 1993) and many others. It

is widely accepted now that oxidative stress has a broader role than simply being a

side effect due to an imbalance between production and removal of radicals. It was

shown that plant cells can produce some ROS by special enzymes for regulatory

needs. For example, the normal cell response to pathogen attack requires the

activation of complex signalling gene and protein networks by oxidative stress

(Breusegem et al. 2008). Control of cell functions by ROS and mechanisms of

oxidative signal encoding are probably the oldest, and most evolutionary “devel-

oped”, among all other stress reactions (Dowling and Simmons 2009). This is

because the evolution of aerobic organisms (from anaerobes) has been driven by

adaptation to constantly rising dioxygen (O2) levels. Therefore, plants could

employ oxidative stress or, in other words, ROS accumulation or radical imbalance,

Fig. 1 The recognition of

stress stimuli in plant cells.

Major plant stresses induce

production of reactive oxygen

species (ROS) and lead to an

oxidative stress which is

recognised by plant signalling

systems and regulates gene

expression
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for recognition and encoding of diverse stress factors, including those that did not

exist before, such as herbicides, nanoparticles and other xenobiotics.

As soon as ROS are produced they are recognised by cellular sensors. Their

nature is still unclear. Although several such sensors (two-component histidine

kinases, mitogen-activated protein kinases, some protein phosphatases and tran-

scription factors) have been proposed, involvement of none of these has been

proven experimentally (Apel and Hirt 2004). Apart from these systems, plasma

membrane and endomembrane ion channels could be involved in ROS sensing in

plants. In animal cells, such ion channel-“based” ROS sensors play critical roles in

cell physiology (Lahiri et al. 2006). Evidence is now accumulating that ROS and

free radicals can activate Ca2+-permeable channels very rapidly in the plant plasma

membranes causing Ca2+ elevation in the cytosol in seconds (Pei et al. 2000;

Demidchik et al. 2003, 2007; Foreman et al. 2003). This resembles (in speed) the

receptor-like reaction mediated by ionotropic receptors in animals (Fig. 2). Whether

this is due to a direct interaction or not is still questionable. However, it is clear that

ion channels link oxidative stress and Ca2+ signalling. Ca2+ is a central second

messenger in plants contributing to a plethora of signalling responses (Hetherington

and Brownlee 2004). It is believed that Ca2+ transients (Fig. 2) can encode the

signal specificity that evokes signal-specific gene expression. Another quick oxida-

tive stress-induced reaction is the activation of K+-permeable channels by which the

cell releases K+, a process that is often called K+/electrolyte leakage (Demidchik

et al. 2003). The physiological role of this phenomenon has been unclear until

recently. It was shown that K+ loss during plant stress can induce programmed cell

death (PCD), a “marginal” type of plant stress response playing critical roles in

whole-plant adaptation (Demidchik et al. submitted).

Fig. 2 Cu2+-induced elevation of cytosolic free Ca2+ in intact Arabidopsis thaliana roots. The

signal was inhibited by free radical scavenger, dimethyl sulfoxide. Plants constitutively expressing

aequorin in the cytosol were used. Standard procedures and chemiluminometry techniques were

used as described elsewhere (Demidchik et al. 2003)
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Here, available experimental data on the synthesis of ROS in plants and the

interaction between ROS and ion channels in plants are critically reviewed. Major

upstream and downstream components of this interaction are also discussed.

2 Synthesis of ROS and Free Radicals and Their Effect

on Ion Channels

The main questions that will be answered here are as follows: What are reactive

oxygen species? How are they produced? Which channels do they activate? The

importance of this section is to emphasise ROS heterogeneity in physiological

conditions. “ROS” have often been considered, particularly in plant pathology, as

a “single agent”. However new data show specificity in the action of different

ROS on plant systems, particularly on ion channels (Demidchik et al. 2003, 2007;

Foreman et al. 2003). Therefore, the exact chemistry of individual ROS needs to be

considered to understand their effect on channels as well as on any other target

in plants.

2.1 Oxygen and Radicals

Oxygen (O) is the main oxidiser in aerobic organisms and the second strongest

oxidiser in chemistry after fluorine. It is the most prevalent element in the Earth’s

crust (atomic abundance more than 50%) and the second most abundant gas in the

atmosphere (Guido 2001). Release of O2 to the atmosphere started approximately

2.5 billion years ago when the first blue-green algae appeared. This started an

increase of O2 level and specific O2-“driven” evolution of species (Dowling and

Simmons 2009). As a result, modern plants and animals have evolved sophisticated

systems for the use of O2 in metabolic reduction/oxidation (redox) cascades (85–90%

of consumed oxygen is utilised by mitochondria), defence against O2-mediated

oxidation (antioxidants), for regulatory needs (signalling) and sometimes as a

“weapon” against parasites, xenobiotics and endogenous “waste” products.

Although some direct inhibitory effects of O2 on enzymes (for example on

nitrogenase) have been reported (Belantine 1982), it is widely believed that O2 is

not particularly toxic or chemically active (Haugaard 1968). Low reactivity is

related to the so-called spin restriction phenomenon. Briefly, O2 is a free radical

since it has two unpaired electrons (lO2
l) and it can exist as a free molecule, but

both its electrons have the same spin numbers (parallel spins) which limit (restrict)

the number of O2 targets to those that have two electrons with antiparallel spins

(Gilbert 1981). To achieve more reactivity O2 requires an input of energy to remove

the spin restriction that can come from ionising irradiation, chemical reactions

and heat.
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Chemistry studies all varieties of reactive oxygen species (ROS) but, for biol-

ogy, only a few of these have been proven interesting. These include ubiquitous

species in plants such as singlet O2, hydroxyl radical (lOH), hydrogen peroxide

(H2O2), superoxide radical (lO2
�) and nitric oxide (NOl). Although NOl is clearly

an ROS, this substance, and its derivates, are often called reactive nitrogen species

(RNS). RNS will not be discussed here since they have not yet been shown to

induce strong oxidative stress in plants (Palavan-Unsal and Arisan 2009), although

their regulatory effects on ion channels have been recently delineated (Garcia-Mata

et al. 2003) and they may affect other ROS. Yet physiologically important ROS

include peroxyl, alkoxyl and hydroperoxyl radicals, ozone and hypochlorous acid.

The terms “ROS” and “free radicals” are repeatedly confused in biological

literature. ROS always include activated atom(s) of oxygen but are not necessarily

radicals, for example H2O2. Free radicals are any species capable of independent

existence and containing one or more unpaired electrons (Halliwell and Gutteridge

1999). They may entirely lack oxygen atoms; for example, transition metals are free

radicals without oxygen. Both ROS and free radicals promote oxidative stress and,

for example, induce well-known lipid peroxidation. The characteristics of key ROS

and free radicals in relation to ion channel activation are described below. In many

cases, the stresses that induce detectable ROS/free radical generation also cause an

increase of cytosolic Ca2+ or electrolyte (K+) leakage, which are both manifesta-

tions of ion channel activation.

2.2 Singlet Oxygen

The input of energy to O2, for example through excess light quanta in photosynthe-

sis, causes the formation of two types of very reactive O2: non-radical
1DgO2

(22.4 kcal) and the more reactive free radical 1Sg+O2 (37.5 kcal) (Schweitzer and

Schmidt 2003). The one word “singlet O2” often covers both of these since it is

believed that 1Sg+O2 can decay into 1DgO2, although the significance of this

reaction for biological systems is not proven. Singlet O2 is abundantly synthesised

in mitochondria and chloroplasts where, if over-produced (for example during

photo-oxidative stress or pathogen attack), it causes oxidative damage and con-

tributes to PCD reactions (Møller et al. 2007). In animals, singlet oxygen produc-

tion inhibits the mitochondrial inner membrane K+ influx channel which regulates

mitochondrial volume, cytochrome c release and transport of the superoxide anion

radical to the cytosol (Duprat et al. 1995; Fornazari et al. 2008). Whether similar

reactions take place in plants is unknown. The involvement of singlet O2 in ion

channel activation could be through H2O2, which can accumulate after singlet

oxygen detoxification in organelles and can diffuse to the cytosol where it activates

Ca2+ channels and triggers signalling cascades, for example sending ROS/Ca2+

“messages” to the nucleus. The latter is called retrograde signalling and might play

an essential role in the regulation of organelle protein biosynthesis under high light

and probably other environmental stresses (Fernándeza and Stranda 2008).
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Accurate measurements in intact plants of singlet O2 have now become possible

due to a new commercially available reagent (singlet oxygen sensor green, SOSG),

which is highly selective for this ROS (Flors et al. 2006; Driever et al. 2009). It has

been shown that singlet O2 is much more stable in plant systems than previously

thought and can diffuse outside the chloroplast and even reach the apoplastic space

(Flors et al. 2006). This finding suggests that a much broader spectrum of targets

of singlet O2 in plant cells exists, including plasma membrane and tonoplast

ion channels.

2.3 Superoxide Radical

If O2 (which is actually lO2
l) accepts a single electron, for example from NADPH

oxidase (NOX) or the electron transport chains of mitochondria and chloroplasts, it

becomes more reactive and negatively charged. The resultant lO2
� harbouring one

unpaired electron is called “superoxide anion radical” (also often called by its

shorter names, “superoxide radical” or “superoxide”). Note that there is no evi-

dence of direct plant ion channel activation or inhibition by superoxide, although

the generation of this ROS, as a precursor of more reactive H2O2 and hydroxyl

radicals, is certainly crucial for the modulation of ion channel activities in plants

(Demidchik et al. 2003, 2009; Foreman et al. 2003). Recent finding by Demidchik

et al. (2009) have shown that superoxide produced by NOX in response to purines,

such as ATP and ADP (a common signal released by wounded, collapsed or

stressed cells), is responsible for the activation of Ca2+-permeable cation channels

in the root cell plasma membrane. Therefore, it can be suggested that any other

stresses producing superoxide potentially induce Ca2+ channel activation.

2.3.1 The Chemistry of Superoxide

Superoxide is short-lived in aqueous solutions due to the dismutation reaction

when, ideally (but unlikely) two lO2
� react with two H+ to give H2O2 and O2.

More probably lO2
� reacts with H+, which yields the more reactive and more stable

hydroperoxyl radical HO2
�

l, similar to water and hypothetically permeable

through cell membranes. Two HO2
�

l form H2O2 and O2. The ratio lO2
�/HO2

�
l

depends on pH and is 1/1 at pH 4.8, 10/1 at pH 5.8 (typical for plant cell wall) and

100/1 at pH 6.8 (Sawyer and Gibian 1979). Providing that HO2
�

l has a longer

lifetime and higher reactivity than lO2
�, this species could be particularly important

at acidic pHs, for example in the apoplast (pH about 5.5–6.0). Unfortunately, the

effects of HO2
�

l on plant ion channels have not been studied.

Superoxide is an extremely inert molecule and does not interact with amino

acids, lipids or nucleic acids but is a precursor for more reactive ROS, such

hydroxyl radicals, and therefore a prime cause of oxidative stress. This role of
lO2

� is related to its capacity to interact with other radicals such as transition
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metals, NOl, phenoxyl radical and iron-sulphur clusters, leading to biosynthesis of

more reactive ROS (Sawyer and Gibian 1979; Halliwell and Gutteridge 1999).

Although both lO2
� and HO2

�
l react with transition metals, the prevalent

interaction is the reduction of transition metals by lO2
�. In the case of Fe3+ and

Cu2+, lO2
� reduces these to Fe2+ and Cu+. These metals can subsequently interact

with H2O2, which results in the synthesis of extremely reactive hydroxyl radicals

(Halliwell and Gutteridge 1999). The reactions of lO2
�/HO2

�
l with NOl give

ONOO� (peroxynitrite)/ROONO (alkyl peroxinitrite), both of which are critical

cytotoxic species more reactive than the original radicals (Squadrito and Pryor

1998). For example, peroxynitrite decomposes to hydroxyl radicals through the

intermediate formation of peroxynitrous acid (Pryor and Squadrito 1995). It is very

likely that these reactions occur in plants in stress conditions when both lO2 and

NOl concentrations are dramatically increased (del Rio et al. 2004). Therefore the

effects of NOl on ion channels in plants (Garcia-Mata et al. 2003; Sokolovski and

Blatt 2004) could be regulated by lO2
�.

2.3.2 Superoxide Generation during Stress Conditions

Superoxide is probably the most frequently detected ROS during stress condi-

tions, along with H2O2 (Apel and Hirt 2004). In some cases, it is generated a few

seconds after the addition of a stress factor or stress hormone (Kawano et al.

1998); but sometimes it takes hours to observe detectable superoxide levels

(Schraudner et al. 1998).

However, lO2
� rapidly forms H2O2; therefore the same techniques are often

used for superoxide and H2O2 detection in plants. Moreover, all “established”

superoxide detecting techniques, apart from Electron Paramagnetic Resonance

(EPR) spectroscopy, are not really specific to this radical, but sense other radical

species as well as sometimes H2O2 (Halliwell and Gutteridge 1999). The addition

of superoxide dismutase (SOD), which is an enzymatic antioxidant specifically

breaking down lO2
�, is crucial for accurate superoxide measurement.

Apart from the electron transport chains of mitochondria and chloroplasts that

produce lO2
� inside these organelles (Apel and Hirt 2004), the major system

generating this ROS during stress is the Ca2+-activated enzyme NOX encoded by

the Respiratory Burst Oxidase Homologues (RBOH) gene family which has ten

members in Arabidopsis and 9 in rice (Keller et al. 1998; Torres et al. 1998; Torres
and Dangl 2005; Wong et al. 2007). This system “works in concert” with ROS-

activated Ca2+ channels to generate and amplify stress-induced Ca2+ and ROS

transients (Demidchik and Maathuis 2007) (Fig. 3). The more Ca2+ enters the cell

the more ROS are generated and, vice versa – the more ROS are generated the more

Ca2+ enters (Takeda et al. 2008). It was suggested that this loop helps to amplify

weak signals at the level of the plasma membrane and generates sustained Ca2+

elevation encoding signal specificity (Demidchik and Maathuis 2007). Regulation

of this lO2
�–Ca2+ signal amplification mechanism is not well understood although

in most cases, it definitely does not “over-produce” ROS or Ca2+, each of which
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could kill the cell. However, over-production also has physiological “sense” and

leads to the induction of plant PCD reactions that are very useful for pathogen

defence and in response to some abiotic stresses such as salinity or heavy metals.

Physical distribution of the lO2
�–Ca2+ system is probably regulated by SCN1/

AtrhoGDI1 RhoGTPase GDP dissociation inhibitor that allows focussing AtrbohC-

catalysed production of ROS to specific areas of the cell such as root hair tips (Carol

et al. 2005). It can be suggested that stimulation of Ca2+-ATPases that removes

excess Ca2+ from the cytosol to the apoplast, vacuole or organelles, as well as

depolarisation of the membrane that decreases Ca2+ influx through channels, are

critical regulators of the lO2
�–Ca2+ loop. Activity of Rop GTPases (small G

proteins) that can probably control NOXs is an additional factor for fine regulation

of this signalling loop (Baxter-Burrell et al. 2002). In addition, it could be regulated

by Ca2+-binding proteins and Ca2+-mediated protein phosphorylation pathways.

Inhibition of Ca2+ channel conductances will also be a very rapid way to inhibit the
lO2

�–Ca2+ cycle, though no experimental evidence for this has been found so far.

Recent advances in NOX structural analysis and functional characterisation have

shown how this system generates superoxide. The system for electron transfer in

NOX includes the C-terminal cytoplasmic region (superdomain) homologous to the

enzyme ferredoxin reductase bearing the NADPH-binding and FAD-binding sites

that transfer the electron to the N-terminal six transmembrane segments containing

the di-heme system (Sumimoto 2008). Hemes react with O2 and generate lO2
�

outside the cell. An intrinsic property of NOX is its activation by cytosolic Ca2+.

This property allows the induction of superoxide production when Ca2+ activity

increases in the cytosol. The N-terminus of plant NOX contains two helix–

loop–helix structural domains binding Ca2+ (so-called EF hand) similar to calmod-

ulin and troponin-C. Binding of Ca2+ causes a conformational change, which leads

to intramolecular interaction of the N-terminal Ca2+-binding domain with the

Fig. 3 ROS/Ca2+ stress signalling “hub”. Stress signals activate NADPH oxidase or Ca2+-permeable

channels that induces a self-amplifying regulatory loop, because NADPH oxidase is stimulated by

Ca2+ binding to its EF-hand domain, while Ca2+ channels are activated by ROS. NADPH oxidase

transfers electrons from cytosolic NADPH to apoplastic O2 that causes synthesis of superoxide

(lO2
�). The latter rapidly forms hydrogen peroxide (H2O2). Cu

+ reduces H2O2 that yields the

extremely reactive lOH, which activates the Ca2+-permeable channel. Cu2+ can be reduced by an

apoplastic L-ascorbic acid (AA). Ca2+ modifies gene expression responsible for adaptation to stresses
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C-terminal superdomain, culminating in the activation of electron transfer (Bànfi

et al. 2004). EC50 for Ca2+ is about 1 mm, determined in a cell-free activation

system for animal NOX5 (Bànfi et al. 2004). Recent findings have also shown that

there are additional mechanisms for controlling Ca2+ regulation of NOX and

potential stress signalling. For example, sensitivity to Ca2+ can be stimulated by

calmodulin binding to the NADPH-binding domain or by protein kinase C-mediated

phosphorylation of specific serine/tryptophan residues in the FAD-binding domain

(Jagnandan et al. 2007; Kobayashi et al. 2007; Tirone and Cox 2007).

Despite exciting data on the superoxide role in signalling and the mechanisms of

its stress-induced generation by NOX, one cautionary note should be made. Diphe-

nylene iodonium (DPI), which is used as a major tool for the verification of NOX

dependent ROS production, is usually dissolved in 0.1–3% dimethyl sulfoxide

(DMSO), which is a powerful scavenger of free radicals and significantly inhibits

free radical induced Ca2+ signals at 0.1% and fully inhibits them at 1% and higher

(Fig. 2). Despite this, DMSO control measurements have not been carried out in

most studies, particularly in research on plant pathology themes. Clearly, DPI

inhibitory effects and NOX involvement in ROS production during stress in plants

may require re-evaluating.

2.3.3 Superoxide and Ca
2+

Channels Form a Stress Signalling “Hub”

in Plant Cells

In the last few years, hundreds of reports documenting stimulation of NOX activ-

ities in response to almost all known stress factors have been published (Apel and

Hirt 2004; Fluhr 2009). These studies have embraced a large number of plant

species and preparations, including all organs, the most important tissues, proto-

plasts and cell cultures. Analysis of the available data shows that NOX activation

during stress, which probably in most cases leads to the activation of Ca2+-permeable

channels, is mainly required for the following functions: (a) stress recognition

(probably through downstream Ca2+ signals); (b) stress-induced PCD (response to

pathogens and to severe abiotic stresses); (c) stomatal closure (critical for gas

exchange and drought response); (d) gravitropic response; and (e) processing stress

and growth hormone signals (auxin, ethylene, abscisic acid, gibberellic acid,

brassinosteroids, methyl jasmonate etc.). This strongly suggests that NOX and

ROS-activated Ca2+-permeable channels function as a regulatory “hub” in plants

for processing important internal and external stress stimuli (Fig. 3).

2.4 Hydroxyl Radical

Hydroxyl radicals (lOH) are central to plant ion channel activation during stress

conditions and elongation of growth (Demidchik et al. 2003, 2007; Foreman

et al. 2003) (Fig. 3). They can be produced by homolytic bond fission of H2O
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(when electrons in covalent bonds are equally distributed to atoms). This requires

a large energy input by ultraviolet quanta (for example during UV stress),

ionizing radiation, ultrasonication (due to acoustic cavitation), freezing-drying

cycles or heat (Halliwell and Gutteridge 1999). Less energy is required to

produce lOH from H2O2. A significant amount of lOH can be directly generated

from H2O2 (HOOH) and hydroperoxides (ROOH) by sunlight (Downes and Blunt

1879). Nevertheless, the most important way to produce lOH in cells is through

the so-called “Fenton chemistry” reactions known from the 19th century.

Although originally Fenton’s study was related to the effects of the transition

metal Fe2+ on tartaric acid (Fenton 1894), now the term “Fenton chemistry” and

“Fenton-like reagents” are used to mark reactions that take place in the presence

of H2O2 and transition metals and lead to the production of lOH, water and

superoxide (Goldstein et al. 1993). Although many radicals are formed as inter-

mediates, the net reactions of Fenton-like reagents are as follows: (A) metal

reduced + H2O2 ! metal oxidised + lOH + OH�; (B) metal oxidised + H2O2 !
metal reduced +HO2

�
l + H+ (Koppenol 2001). This was originally proposed by

Nobel Prize winner Fritz Haber and his student Joseph Weiss in the 1930s and

called the Haber–Weiss cycle (Haber and Weiss 1932). Importantly, ascorbic acid

is probably a major reductant for iron and copper in the Haber–Weiss cycle in

plants, where it can reach millimolar levels in the cytosol and apoplast (Fry

et al. 2002). Therefore, ascorbate plays a pro-oxidant role in these oxidative

reactions and could be a key component of ion channel activation by ROS and

stress signalling.

An effect of lOH on ion channels has been studied by the addition of Fenton-like

reagents (a mixture of Cu2+, L-ascorbic acid and H2O2) to plant cells (Demidchik

et al. 2003, 2007; Foreman et al. 2003). These studies have shown that lOH

activates Ca2+-permeable non-selective cation channels and K+ outwardly rectify-

ing (K+ efflux) channels in mature root atrichoblasts, root hairs, pericycle, cortex

and elongation zone cells. Activation of Ca2+ influx and K+ efflux by lOH has also

been found in roots of crop species (clover, pea, wheat, maize and spinach)

(Demidchik et al. 2003). Despite this obvious progress, the mechanisms of the

major upstream components of the lOH action on ion channels, which are the gene-

ration of lOH during stress and lOH interaction with the channel at the structural/

molecular level, remain poorly understood. Moreover, genes encoding lOH-activated

cation channels have not been identified.

The estimated in vivo half-life of lOH is only 1 ns, which allows lOH diffusion

only for very short distances (< 1 nm) (Halliwell and Gutteridge 1999). Second-

order rate constants for reactions of lOH with organic molecules are so high that

these reactions are only limited by lOH diffusion time (so-called “diffusion-

controlled rate”) (Anbar and Neta 1967). This shows that specific lOH scavengers

do not exist in principle and that, in most cases, the effects of mannitol, sorbitol,

dimethyl sulfoxide, thiourea or other “established” lOH scavengers on lOH-

induced reactions, such as activation of plant cation channels, are not due to lOH

scavenging. Realistically, the effects of widely used lOH scavengers are related to
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the removal of the lOH precursors, hydroperoxyl, H2O2 and superoxide, or to the

chelation of transition metals.

Although a number of techniques for lOH detection has been proposed (Halliwell

and Gutteridge 1999), only EPR spectroscopy provides a high specificity of lOH

measurements (Liszkay et al. 2004). Nevertheless this method is not ideal because
lOH spin traps, such as DMPO, DEPMPO or POBN, may decompose at room

temperature and react with superoxide (Pou et al. 1989). Yet, it is still far more

sensitive than any imaging techniques used for lOH detection. Recent advances in

EPR-based techniques allowed the use of a single root for lOH measurements

(Renew et al. 2005). These experiments have shown significant production of
lOH in intact plant roots (a major cause of Ca2+ channel activation) and that

NOX (RbohC) produces a precursor of lOH generation, lO2
�. Future work should

relate lOH production and changes in ROS-mediated channel activation during

stress responses.

2.5 Hydrogen Peroxide

Hydrogen peroxide (H2O2) is a relatively stable, non-radical, weak acid synthesised

as the end product of many processes involving more reactive ROS and free

radicals. It was shown that this ROS activates Ca2+-permeable non-selective cation

channels in guard cell protoplasts that probably underlie ABA-induced stomata

closure (Pei et al. 2000). H2O2 also interacts with the intracellular part of the root

Ca2+-permeable cation channels activating them and inhibits KORC in guard cells

and root epidermal protoplasts (Demidchik et al. 2003, 2007; Köhler et al. 2003).

H2O2 does not modulate activity Ca2+, K+, Cl� and non-selective ion channels in

green algae, or root plasma membrane ion channels when applied in the whole cell

configuration (Demidchik et al. 2001, 2003, 2007). Recent data have also shown

that H2O2 stimulates anion efflux in cultured Arabidopsis thaliana cells mimicking

ABA (Trouverie et al. 2008). However, this effect was probably related to the

activation of Ca2+ permeable conductances.

H2O2 originates in plants from the dismutation reaction of superoxide (produced

in organelles and by NADPH oxidases) and activity in the heme-containing perox-

idases (72 members of three major classes in Arabidopsis) (Vitch 2004). Functional
activity and structure of plant peroxidases are well studied and will not be discussed

here (Vitch 2004). Peroxidases were first proposed to play critical roles in ROS

production during biotic stress (Bolwell and Wojtaszek 1997; Bolwell et al. 1998;

Bindschedler et al. 2006). Now it is widely accepted that some, such as amine

oxidases (Cu-containing amino oxidases and polyamine oxidases), gluthatione

oxidases and ascorbate oxidases, are stimulated by abiotic stress and probably

critically important for ROS production and Ca2+ channel activation during long-

term salinity, pathogen and photooxidative stress (Rodrı́guez et al. 2002, 2007;

Chang et al. 2009). Oxidases may have negative feedback inhibitory mechanisms

since some of them are inhibited by their product H2O2 (Kitajima 2008).
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H2O2 is ubiquitous in plants (Apel and Hirt 2004). It is more stable than other

ROS (Halliwell and Gutteridge 1999) and some indirect evidence exists that it can

cross the plasma membrane via aquaporins (Dynowski et al. 2008). Therefore, it

can accumulate, particularly in the apoplast, because this area is less accessible by

cellular antioxidants such as catalase (Rodrı́guez et al. 2002; Apel and Hirt 2004).

In response to almost all known stresses, the cellular level of H2O2 rises from

0.1–1 mM to 0.1–10 mM (this phenomenon is often called ROS or H2O2 “transient”

by the analogy with Ca2+ transients) (Apel and Hirt 2004; Demidchik unpublished).

Different studies report different time periods required for detectable H2O2 accu-

mulation during stress and varies from seconds to several days (Apel and Hirt 2004;

Trouverie et al. 2008). The difference is due to several factors: (A) Low [H2O2]

at early stages of stresses may not be detectable by most fluorescent probes and

TiSO4. Moreover, in most cases, the used techniques show the cumulative effect

of all H2O2 produced. hemiluminescent probes report H2O2 faster and they

are more sensitive although less specific to H2O2. (B) Observations in the first

minutes might simply not be carried out, which was typical in many older studies.

(C) The experimental physical and chemical conditions may not have been

appropriate. For example, many protocols require a high pH (8–9) that affects

H2O2 generation from superoxide and changes the physiology of plant cells. (D)

The nature of the biological object. For example, cuticula and root caps compli-

cate the delivery of probes and delay reaction with H2O2 in intact leaves and

root tips. (E) The nature and intensity of the imposed stress varies dramatically

across studies.

2.6 Transition Metals

Transition metals are crucially important in all organisms. Cu- and Fe-induced

activation of non-selective cation channels and inhibition of anion channels were

the first described effects of transition metals acting as free radicals in plants

(Demidchik et al. 1996, 1997, 2001). According to the IUPAC definition (http://

goldbook.iupac.org/), a transition metal is any element with an incomplete d sub-

shell, or which can give rise to cations with an incomplete d sub-shell. This means

there are 40 chemical elements (21 to 30, 39 to 48, 71 to 80, and 103 to 112) that can

act as transition metals (McCleverty 1999). Only a few of these have demonstrated

their importance in biological systems (mainly d-elements of the first row)

(McCleverty 1999). The most important transition metals for biology are Cu and

Fe and to a much lesser extent Mn, Hg, Ni, Cr and Co. In plant cells, Cu and Fe are

the most abundant, and more easily change their valence compared to other

transition metals (Bergmann 1992; Fry et al. 2002). They function as key electron

transport components in most redox enzymes. Mn and Ni show similar properties

when coordinated by specific ligands in some redox proteins but they lack

electron transfer capacity in free ionic form in biological conditions (Halliwell

and Gutteridge 1999).
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The toxic and regulatory effects of Cu and Fe on ion channels are mainly related

to increased lOH generation. Cu is 60 times more potent as a catalyst of the Haber–

Weiss cycle and several million times more soluble than Fe, though Fe is more

abundant in the cell (Bergmann 1992; Halliwell and Gutteridge 1999; Fry et al.

2002). Thus, Cu could be a major catalyst of lOH generation, critical for channel

activation (Demidchik et al. 2003). Almost all Cu and Fe are bound in organic

complexes and their catalytic activity must be considered instead as a concentration

of free ionic forms (which is extremely low). It has been established that the

catalytic activity of both Fe and Cu increases several times during stress conditions

(Becana and Klucas 1992; Moran et al. 1994; Becana et al. 1998). In such condi-

tions transition metal activity can activate Ca2+-permeable non-selective cation

channels (NSCCs) and K+ outwardly rectifying channels (KORC) in the plasma

membrane (Demidchik et al. 2003). Increased lOH production leads to oxidative

stress and triggers PCD (Becana et al. 1998).

Moran et al. (1997) found that some specific phenolic compounds are synthe-

sised during stress and chelate Fe to increase its catalytic activity. Some promoted

DNA and lipid oxidation. However, apart from this finding, mechanisms by which

catalytic transition metal activities elevate in response to stress have not been

investigated. One possible scenario is that Cu and Fe catalytic activities are

modulated in plants cells by polyamines (for example spermine, spermidine and

putrescine) that are abundantly synthesised during abiotic and biotic stress (Alcázar

et al. 2006; Moschou et al. 2009) and form redox-active complexes with both Cu

(Guskos et al. 2007) and Fe (Tadolini 1988). Although this hypothesis has not yet

been tested in plants, inhibition by polyamines of KORC has been shown (Shabala

et al. 2007). KORCs are known to be activated by lOH and inhibited by H2O2 and

are involved in salt stress response.

3 Properties of Plant Ion Channels Regulated by ROS

and Free Radicals

The properties of any ion channel can be subdivided into two major categories:

physiological and molecular. Physiological properties pertain to the number of ions

that can be transported through the channel, how transport is regulated, which ions

are transported and what the physiological role of the channel is in plant growth and

development (Demidchik et al. 2006). Molecular properties describe aspects such

as the encoding gene, temporal and spatial variation in the encoding genes and

proteins and channel structure.

3.1 Physiological Properties and Involvement in Stress Responses

ROS accumulation and elevation of cytosolic free Ca2+ have been reported for

almost all major stresses in a number of plant species. Nevertheless, direct
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activation of ion channels by ROS or free radicals has been measured only a few

times (Demidchik and Maathuis 2007). Here, existing data on ROS/free radical-

activated cation channels in plants are critically discussed.

3.1.1 Transition Metal-Activated Cation Channels in Green Algae

Plant free radical-activated ion channels were discovered in the green alga Nitella
flexilis (Demidchik et al. 1996, 1997, 2001). This microelectrode voltage-clamp

study was intended to delineate the mechanisms of heavy metal toxicity in algae at

the cellular level. The advantage of this system was the preservation of the cell wall,

where H2O2 and ascorbate can catalyse lOH generation in the presence of transition

metals (see Sect. 2.4 of this Chapter), and minimal cell damage since it is impaled

just by one microelectrode. On the other hand, ion channels of Nitella have been

well characterised and this organism is very sensitive to heavy metals (Sokolik and

Yurin 1981, 1986). Exposure of intact Nitella cells to 5–100 mM free radicals, Cu2+

and Fe3+, activated inwardly directed, voltage-independent conductances with

instantaneous kinetics. Cu2+-activated conductances were non-selective for mono-

valent cations but discriminated against anions and were partially inhibited by H+,

divalent cations (Ca2+, Ba2+ and Zn2+) and the Ca2+ channel blocker nifedipine.

This was the first study of its kind for plant physiology; therefore, it was important

to show whether passive or active transporters mediate observed conductance.

Temperature coefficientQ10 of passive ion diffusion through the channel is between

1.2 and 1.6, while active transporters and pumps relying on chemical reactions have

Q10 > 2 (Hille 2001). Q10 of Cu
2+-activated conductance was between 1.2 and 1.6

suggesting the involvement of an ion channel based mechanism. Activation of this

conductance over time after addition of Cu2+ had temperature-dependent rate with

Q10 of about 3 corresponding to free radical “chain” reactions catalysed by transi-

tion metals (Halliwell and Gutteridge 1999). Overall, these data demonstrated that

transition metals activate NSCCs in plant cells due to a free radical-mediated

process. It was proposed that “excessive” activation of these channels results in

ionic imbalance inducing cell death and that this mechanism is a major cause of

toxicity of heavy metals in algae. Note that in the mid-1990s, mechanisms of

cationic control of PCD through the regulation of caspase-like activities and

endonucleases were unknown even in animal cells.

3.1.2 Hydroxyl Radical-Activated Channels in Roots of Higher Plants

The idea that free radicals can stimulate ion channel activities was later tested in

higher plants (Demidchik et al. 2003, 2007, 2009, Foreman et al. 2003). Application

of Cu2+ together with the transition metal-reducing agent ascorbate (Cu/asc) to

A. thaliana root epidermal cells activated non-selective inwardly-directed cation

and K+-selective outwardly-directed (efflux) conductances. The non-selective con-

ductance showed the following permeability series: K+ (1.00) � NH4
+ (0.91) � Na+
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(0.71) � Cs+ (0.67) > Ba2+ (0.32) � Ca2+ (0.24) > TEA+ (0.09). The K+ efflux

conductance demonstrated a much high selectivity to K+:K+ (1.00) > Na+

(0.31) > Ba2+ (0.06) » TEA+ (0.05) that corresponded to so-called “K+ outward

rectifiers” (KOR) previously investigated in Arabidopsis (Lebaudy et al. 2007).

Activation over time of Arabidopsis cation currents after Cu/asc addition was very

similar to the time-dependence of NSCC activation by Cu2+ in Nitella, suggesting
the involvement of a free radical-mediated mechanism. Interestingly, Cu2+ added

without ascorbate did not induce current in Arabidopsis protoplasts although it

caused elevation of cytosolic free Ca2+ in intact roots (Fig. 2) and induced currents

in intact Nitella cells. This suggests that apoplastic ascorbate, and probably other

reductants, can promote lOH generation via the Haber–Weiss cycle in the cell wall.

Superoxide/H2O2 for this cycle is likely to be produced by NADPH oxidase (see

Sects. 2.3 and 2.4) because, when cell wall peroxidases were removed by the

protoplast isolation procedure, Cu/asc was still capable of activating currents.

Cells in the root tip elongation zone and root hairs are the first to sense new

environments and stresses while the root grows. However, cells of internal tissues,

such as the pericycle, do not have contact with the soil and may not be involved in

primary stress sensing and signal transduction. This might explain why Ca2+

influx through Cu/asc-activated NSCCs in the elongation zone and root hairs is

larger than in other tissues and why the pericycle responds poorly to lOH

(Demidchik et al. 2003). This hypothesis does not contradict theories of cell

expansive and polar growth which are based on localised elevations of ROS-

activated Ca2+ influx in growing cell parts to stimulate exocytosis and delivery of

new cell structural material (Foreman et al. 2003; Coelho et al. 2008; see Chapter

“Ion Channels in Plant Development” of this book). It can be suggested that high

level of activities of ROS-producing enzymes and Ca2+ influx channels in root

hairs and elongation zone cells are necessary for both growth and “timely” stress

sensing and adaptation to a new environment. For example, our recent findings

show that acute salt stress causes NADPH oxidase activation leading to hydroxyl

radical generation accompanied by Ca2+ influx and K+ efflux channel activation in

intact root cells and this reaction is much larger in the root elongation zone

(Demidchik, unpublished).

3.1.3 Hydrogen Peroxide-Activated Channels in Roots and Leaves

In contrast to lOH, H2O2 is unable to activate currents in mature Arabidopsis root
cells when it is applied inside and outside the pipette in a whole-cell patch clamp

configuration or added outside in excised outside-out patches (Fig. 4) (Demidchik

et al. 2007). H2O2 activates Ca
2+ influx channels in this system only if applied to

excised outside-out patches at the cytoplasmic side (Fig. 4). This shows that H2O2

should be delivered directly to the channel inside mature epidermal cells. However,

H2O2 was capable of inducing Ca2+ currents in protoplasts from young cells of

the root elongation zone (Demidchik et al. 2007) and in Arabidopsis guard cells
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(Pei et al. 2000). Several mechanisms could be responsible for these contrasting

results: (A) ROS-activated channels in different tissues/cells may be encoded by

different genes; (B) young elongating cells and guard cells may have a higher

density of H2O2-permeable aquaporins (Eisenbarth and Weig 2005; Bienert et al.

2006) which facilitate H2O2 delivery to the cytosol (Dynowski et al. 2008); (C)

growing root cells and highly specialised guard cells have higher catalytic activities

of transition metals than mature root epidermal cells.

Ca2+-permeable channels in guard cells could have a more sophisticated pattern

of regulation by ROS than their root counterparts since their reaction to H2O2 may

be additionally controlled by the cell phosphorylation status (Mori and Schroeder

2004). In guard cell protoplasts, the H2O2-mediated activation of Ca2+-permeable

NSCCs was impaired in abi2-1 protein phosphatase mutants that are insensitive to

the drought stress hormone ABA (Murata et al. 2001; see also Chapter “Ion

Channels and Plant Stress: Past, Present and Future” of this book). Biochemical

tests of recombinant ABI2 protein that encodes phosphatase 2C (PP2C) demon-

strated that this protein is directly inhibited by H2O2 and could be one of the prime

targets for H2O2 in guard cells (Meinhard et al. 2002). It seems that phosphatase

may directly inhibit Ca2+-permeable NSCCs in guard cells because phosphoryla-

tion was shown to be crucial for activation of these channels (Köhler and Blatt

2002). Another possible scenario is that PP2C dephosphorylates some intermedi-

ate regulators controlling NSCC gating. Another very similar protein phosphatase

is also directly inhibited by H2O2 (Meinhard and Grill 2001). This phosphatase

blocks NADPH oxidase activation and ROS production by ABA that results in the

impairment of NSCC activation by ABA (Murata et al. 2001).

Fig. 4 Hydrogen peroxide effects on Ca2+-permeable channels in Arabidopsis thaliana root

epidermis according to Demidchik et al. (2007). Both exogenous and endogenous H2O2 applica-

tions to whole-cell patch-clamped protoplasts isolated from mature epidermis did not activate Ca2+

currents. When excised patches of the same protoplasts were used, endogenous application caused

activation. Protoplasts isolated from young cells of the elongation zone epidermis showed Ca2+

current activation in response to exogenous H2O2
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3.1.4 ROS-Activated NSCCs Could be Constitutive Hyperpolarisation-

Activated Ca2+ Channels Involved in Stress Reactions

An important question is whether ROS-activated NSCC and constitutive hyperpo-

larisation-activated Ca2+ channel (HACC; see Chapter “Ion Channels in Plant

Development” of this book) are the same. HACCs function in Ca2+ uptake at

hyperpolarised voltages in a number of cells and tissues, for example in tomato

suspension culture cells (Gelli and Blumwald 1997), guard cells (Hamilton et al.

2000; Pei et al. 2000; Köhler and Blatt 2002; Sokolovski et al. 2008), root hair cells

(Vèry and Davies 2000; Miedema et al. 2008), pollen tube (Wang et al. 2004; Wu

et al. 2007), root mature and elongation zone epidermis (Demidchik et al. 2002;

2007), and algal rhizoids (Coelho et al. 2002). It is believed that they are involved in

stress-related Ca2+ signalling and Ca2+ loading for polar growth stimulation rather

than nutritional Ca2+ uptake (Demidchik et al. 2002). Actually, these processes are

usually accompanied by ROS accumulation leading to the oxidative stress. Recent

data have demonstrated that unitary conductances of ROS-activated NSCCs and

HACCs are very similar and lie between 15 and 20 pS (Demidchik et al. 2007).

Moreover HACCs of the Arabidopsis mature root epidermis do not show high

selectivity for Ca2+, which additionally points to their possible relationship with

ROS-activated NSCCs. Major differences between these systems are that ROS-

activated NSCCs do not show steep rectification at hyperpolarised voltages and

delayed activation kinetics, typical for HACCs. However, this could be explained

by the presence of Cu2+ in the solution, which is not only a catalyst of lOH

generation but also a divalent cation that can itself permeate and block cation

channels. Cu2+ could block the rectifying component and change the kinetics of

HACCs. Cu2+ was shown to modify gating, kinetics and the rectification of animal

cation channels, including Ca2+-permeable cation channels (Kiss and Osipenko

1994). Recent data on purine-induced activation of Ca2+-permeable NSCCs

through NADPH oxidase-produced ROS have shown that, in the absence of Cu2+,

ROS-activated NSCCs in mature root epidermis are similar to HACCs and reveal

time-dependence and steep rectification. However, HACCs in the apical part of

growing root hairs are probably different from NSCCs/HACCs from root mature

epidermis because they are highly selective to Ca2+ and Ba2+. It should also be

noted that the selectivity of root hair HACCs for monovalent cations has been tested

in the presence of Ca2+ which probably affected selectivity properties (Vèry and

Davies 2000).

3.1.5 ROS-Activated K
+
Efflux Channels and Their Role in Plant

Stress Response

Potassium channels were the first ion channels characterised electrophysiologically

in plants (Sokolik and Yurin 1981, 1986) and the first to be systematically studied at

the genetic level (Sentenac et al. 1992; Gaymard et al. 1998). Owing to their high

selectivity for K+ and abundant expression in the plasma membrane and tonoplast,
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they control plant cell K+ influx (inwardly rectifying K+ channels, KIRs) and efflux

(outwardly rectifying K+ channels, KORCs or KORs) and thus regulate cell K+

homeostasis. They are also responsible for maintaining membrane potential since

K+ is the dominant ion in the cytosol.

Demidchik et al. (2003) have found a novel mechanism for regulation of plant

K+ efflux channels: activation by ROS (see selectivity series of ROS-activated

KORs in Sect. 3.1.2). This phenomenon has been recently investigated in detail

(Demidchik et al. unpublished; Fig. 5). In fact, K+ (electrolyte) leakage from plant

cells is a phenomenon occurring during almost any stress, but virtually unstudied.

Salinity causes a severe loss of K+ which is then replaced by Na+. This mechanism

is believed to be a major reason for Na+ toxicity at the cellular level (Maathuis and

Amtmann 1999). Demidchik et al. (submitted to Plant Journal) have shown that

Arabidopsis plasma membrane ROS-activated K+ outwardly rectifying channels

activate in response to oxidative stress and salinity and mediate dramatic K+ loss

from the cytoplasm leading to activation of cytoplasmic cell death proteases and

endonucleases which cause cell death. These K+ channels are probably encoded by

the GORK gene, previously characterised in Arabidopsis guard cells and roots

(Ivashikina et al. 2001; Hosy et al. 2003). ROS were not able to activate K+ efflux

channels in the GORK KO line. Development of PCD symptoms induced by NaCl

and oxidative stress were delayed in gork1-1 plants confirming the role of K+ efflux

channels in this process.

In animals, specific enzymes (caspases and endonucleases) destroy proteins and

DNA in response to the death factor (Remillard and Yuan 2004). They are normally

Fig. 5 The mechanism of K+ channel-mediated cell death in plants based on experimental data

obtained from Arabidopsis thaliana roots. Stresses and other factors stimulate ROS generation in

the apoplast and inside the cell. ROS activate K+ efflux channels leading to K+ loss and stimulation

of K+-controlled cell death enzymes
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inhibited by the natural blocker, K+, which is high in the cytosol (70–100 mM) (Yu

et al. 1997; Yu 2003; Remillard and Yuan 2004). Death factors can activate K+

efflux channels causing K+ loss that leads to stimulation of these enzymes (Yu

2003). A number of animal K+ channels participate in PCD (Remillard and Yuan

2004). Some, such as human ether-a-go-go (hERG) channels are directly activated

by hydroxyl radicals (Yu et al. 1997; Han et al. 2004). Future work should show

how individual plant caspase-like activities and endonucleases are regulated by K+

and whether ROS-activated K+ efflux channels are involved in other stresses, such

as pathogen attack and drought.

3.2 Molecular Properties

In animal cells, ROS-activated ion channels mainly belong to three classes: Sha-

kers, voltage-dependent Ca2+ channels and “transient receptor potential” (TRP)

channels. Secondary oxidative stress generally causes their activation. Apart from

activation by H2O2, lO2
�, HO2

�
l, some RNS or lOH, these channels are sensitive

to a range of regulators, such as ADP-ribose, ATP, cytosolic Ca2+, glutathione and

others. Cysteine, histidine and methionine residues are often responsible for ion

channel interaction with ROS (Yu et al. 1997; Hoshi and Heinemann 2001; Simon

et al. 2004). All three are probably capable of binding transition metals such as

copper and iron in complex. The role of transition metal complexes with cysteine

and histidine in signalling proteins, such as transcription factors and ion channels, is

well-documented (Yu et al. 1997; Yu 2003; Simon et al. 2004; Traore et al. 2009).

The reversibility of the ROS effects on channels can be based on incomplete and

reversible oxidation of amino acids. For example, ROS-induced cysteine oxidation

can lead to a sequential formation of more oxidised derivatives, such as cystine,

cysteine sulfenic acid and cysteine sulfinic acid, which are all enzymatically

reversible (Biteau et al. 2003). The highest level of Cys oxidation is the cysteic

acid, which is believed to be irreversible (Ghezzi 2005). Interaction of His with free

radicals leads to the appearance of the histidinyl radical that can produce peroxyl

radicals (in reaction with O2), which, if not quenched, form stable irreversibly

oxidised 2-oxo-histidine (Halliwell and Gutteridge 1999). Methionine is oxidised to

methionine sulfoxide (MetO, MeSOX, MetSO, or MsX), which can be reduced by

methionine sulfoxide reductase to methionine in a thioredoxin-dependent manner

(Hoshi and Heinemann 2001).

Plants probably do not have Ca2+ and TRP channels; therefore ROS-activated

Ca2+-permeable NSCCs and KORs are likely to be encoded by Shaker genes that

are abundant in plant genomes (for example plant Shaker K+ channels and 20

members of CNGCs). Several ROS-sensitive sites as well as putative metal binding

centres have been recently identified in plant Shakers and examination of their

importance for ROS-mediated ion channel activation is in progress (Demidchik and

Maathuis; unpublished).
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4 Concluding Remarks

Significant progress has been achieved in understanding the mechanisms of ROS

generation and radical imbalance caused in plants by biotic and abiotic stresses and

their involvement in stress signal transduction. The major finding of recent years is

the role of NADPH oxidase in stress-induced ROS generation. Accumulating

evidence also indicates the role of ROS-activated Ca2+- and K+-permeable cation

channels as a downstream target for NADPH oxidase-produced ROS. These chan-

nels have been characterised biophysically in A. thaliana and their roles in drought

stress, PCD and generation stress-induced Ca2+ signals have been demonstrated.

Nevertheless, many more questions need to be answered. Despite their extraor-

dinary importance in plant physiology, Ca2+-permeable and other ion channels

activated by free radicals and ROS are still poorly studied. Most aspects of their

physiology remain obscure. Pilot tests with vibrating ion-selective microelec-

trodes have shown their existence in some crop species (Demidchik et al. 2003)

but patch-clamp analyses in these species have not yet been carried out. Genes

encoding ROS-activated channels are yet to be identified. As already mentioned

above, hundreds of reports described cation channel activation by ROS leading to

elevations in cytosolic free Ca2+ and K+ leakage; however, the molecular iden-

tities of corresponding channels are lacking. Attention is often focused on H2O2,

which is easy to monitor but is probably not a prime cause of many stress-

signalling reactions. Studies of hydroxyl radical generation by transition metals

and their role in ROS activation of channels are absent. The effects of the

important ROS singlet oxygen on plant ion channels are also not studied. Addres-

sing these questions will greatly improve our understanding of the functioning and

molecular nature of plant ROS-activated cation channels and will help in the

future to control the ROS/Ca2+ stress signalling “hub” by genetic manipulation.

This could provide us with an opportunity to regulate plant stress responses and

stress tolerance.
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