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JAN WOLEŃSKI, Jagiellonian University, Kraków, Poland

VOLUME 342



DEGREES OF BELIEF
EDITED BY

Franz Huber
University of Konstanz, Germany

Christoph Schmidt-Petri
University of Leipzig, Germany

123



Editors
Dr. Franz Huber
Formal Epistemology Research Group
Zukunftskolleg and Department of Philosophy
University of Konstanz
P.O. Box X906
78457 Konstanz
Germany
franz.huber@uni-konstanz.de
www.uni-konstanz.de/philosophie/huber

Dr. Christoph Schmidt-Petri
University of Leipzig
Department of Philosophy
04009 Leipzig
Germany
schmidt-petri@rz.uni-leipzig.de

ISBN: 978-1-4020-9197-1 e-ISBN: 978-1-4020-9198-8

DOI 10.1007/978-1-4020-9198-8

Library of Congress Control Number: 2008935558

c© Springer Science+Business Media B.V. 2009
No part of this work may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, microfilming, recording
or otherwise, without written permission from the Publisher, with the exception
of any material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com



Foreword

This book has grown out of a conference on “Degrees of Belief” that was held
at the University of Konstanz in July 2004, organised by Luc Bovens, Wolfgang
Spohn, and the editors. The event was supported by the German Research Foun-
dation (DFG), the Philosophy, Probability, and Modeling (PPM) Group, and the
Center for Junior Research Fellows (since 2008: Zukunftskolleg) at the University of
Konstanz. The PPM Group itself – of which the editors were members at the time –
was sponsored by a Sofia Kovalevskaja Award by the Alexander von Humboldt
Foundation, the Federal Ministry of Education and Research, and the Program for
the Investment in the Future (ZIP) of the German Government to Luc Bovens, who
co-directed the PPM Group with Stephan Hartmann. The publication of this book
received further support from the Emmy Noether Junior Research Group Formal
Epistemology at the Zukunftskolleg and the Department of Philosophy at the Uni-
versity of Konstanz, directed by Franz Huber, and funded by the DFG. We thank
everyone involved for their support.

Dedicated to the memory of Philippe Smets and Henry Kyburg.

Konstanz, Germany Franz Huber
Christoph Schmidt-Petri

v



Contents

Belief and Degrees of Belief . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Franz Huber

Part I Plain Belief and Degrees of Belief

Beliefs, Degrees of Belief, and the Lockean Thesis . . . . . . . . . . . . . . . . . . . . . . 37
Richard Foley

The Lockean Thesis and the Logic of Belief . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
James Hawthorne

Partial Belief and Flat-Out Belief . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Keith Frankish

Part II What Laws Should Degrees of Belief Obey?

Epistemic Probability and Coherent Degrees of Belief . . . . . . . . . . . . . . . . . . 97
Colin Howson

Non-Additive Degrees of Belief . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Rolf Haenni

Accepted Beliefs, Revision and Bipolarity in the Possibilistic Framework . 161
Didier Dubois and Henri Prade

A Survey of Ranking Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Wolfgang Spohn

vii



viii Contents

Arguments For—Or Against—Probabilism? . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Alan Hájek
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Belief and Degrees of Belief

Franz Huber

1 Introduction

Degrees of belief are familiar to all of us. Our confidence in the truth of some propo-
sitions is higher than our confidence in the truth of other propositions. We are pretty
confident that our computers will boot when we push their power button, but we
are much more confident that the sun will rise tomorrow. Degrees of belief formally
represent the strength with which we believe the truth of various propositions. The
higher an agent’s degree of belief for a particular proposition, the higher her confi-
dence in the truth of that proposition. For instance, Sophia’s degree of belief that it
will be sunny in Vienna tomorrow might be .52, whereas her degree of belief that
the train will leave on time might be .23. The precise meaning of these statements
depends, of course, on the underlying theory of degrees of belief. These theories
offer a formal tool to measure degrees of belief, to investigate the relations between
various degrees of belief in different propositions, and to normatively evaluate de-
grees of belief.

The purpose of this book is to provide a comprehensive overview and assess-
ment of the currently prevailing theories of degrees of belief. Degrees of belief
are primarily studied in formal epistemology, but also in computer science and
artificial intelligence, where they find applications in so-called expert systems and
elsewhere. In the former case the aim is to adequately describe and, much more
importantly, to normatively evaluate the epistemic state of an ideally rational agent.
By employing the formal tools of logic and mathematics theories of degrees of be-
lief allow a precise analysis that is hard to come by with traditional philosophical
methods.

Different theories of degrees of belief postulate different ways in which degrees
of beliefs are related to each other and, more generally, how epistemic states should
be modeled. After getting a handle on the objects of belief in Section 2, we briefly
survey the most important accounts in Section 3. Section 4 continues this survey by
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2 F. Huber

focusing on the relation between belief and degrees of belief. Section 5 concludes
this introduction by pointing at some relations to belief revision and nonmonotonic
reasoning.

2 The Objects of Belief

Before we can investigate the relations between various degrees of belief, we have
to get clear about the relata of the (degree of) belief relation. It is common to assume
that belief is a relation between an epistemic agent at a particular time to an object
of belief. Degree of belief is then a relation between a number, an epistemic agent at
a particular time, and an object of belief. It is more difficult to state what the objects
of belief are. Are they sentences or propositions expressed by sentences or possible
worlds (whatever these are – see Stalnaker 2003) or something altogether different?

The received view is that the objects of belief are propositions, i.e. sets of pos-
sible worlds or truth conditions. A more refined view is that the possible worlds
comprised by those propositions are centered at an individual at a given time
(Lewis 1979). In that case the propositions are often called properties. Most epis-
temologists stay very general and assume only that there is a non-empty set of
possibilities, W , such that exactly one element of W corresponds to the actual
world. If the possibilities in W are centered, the assumption is that there is exactly
one element of W that corresponds to your current time slice in the actual world
(Lewis 1986 holds that this element not merely corresponds to, but is your current
time slice in the actual world).

Centered propositions are needed to adequately represent self-locating beliefs
such as Sophia’s belief that she lives in Vienna, which may well be different from
her belief that Sophia lives in Vienna (this is the case if Sophia does not believe that
she is Sophia). Self-locating beliefs have important epistemological consequences
(Elga 2000, Lewis, 2001), and centered propositions are ably argued by Egan (2006)
to correspond to what philosophers have traditionally called secondary qualities
(Locke 1690/1975). Lewis’ (1979: 133ff) claim that the difference between cen-
tered and uncentered propositions plays little role in how belief and other attitudes
are formally represented and postulated to behave in a rational way can only be
upheld for synchronic constraints on the statics of belief. For diachronic constraints
on the dynamics of belief this claim is false, because the actual centered world
(your current time slice in the actual uncentered world) is continually changing as
time goes by. We will bracket these complications, though, and assume that, unless
noted otherwise, the difference between centered and uncentered possibilities and
propositions has no effect on the topic at issue.

Propositions have a certain set-theoretic structure. The set of all possibibilities,
W , is a proposition. Furthermore, if A and B are propositions, then so are the com-
plement of A with respect to W , W \ A = A, as well as the intersection of A and
B , A ∩ B . In other words, the set of propositions is a (finitary) field or algebra A
over a non-empty set of possibilities W : a set that contains W and is closed under
complementations and finite intersections. Sometimes the field of propositions, A,
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is not only assumed to be closed under finite, but under countable intersections. This
means that A1 ∩ . . . ∩ An . . . is a proposition (an element of A), if A1, . . . , An . . .

are. Such a field A is called a σ -field. Finally, a field A is complete just in case the
intersection

⋂B of all sets in B is an element of A, for each subset B of A.
If Sophia believes (to some degree) that it will be sunny in Vienna tomorrow, but

she does not believe (to the same degree) that it will not be not sunny in Vienna
tomorrow, propositions cannot be the objects of Sophia’s (degrees of) belief(s). Af-
ter all, that it will be sunny in Vienna tomorrow and that it will not be not sunny
in Vienna tomorrow is one and the same proposition. It is only expressed by two
different, though logically equivalent sentences. For reasons like this some accounts
take sentences of a formal language L to be the objects of belief. In that case the
above mentioned set-theoretic structure translates into the following requirements:
the tautological sentence τ is assumed to be in the language L; and whenever α and
β are in L, then so is the negation of α, ¬α, as well as the conjunction of α and β,
α ∧ β.

However, as long as logically equivalent sentences are required to be assigned
the same degree of belief – and all accounts considered in this volume require this,
because they are normative accounts – the difference between taking the objects of
beliefs to be sentences of a formal language L or taking them to be propositions in a
finitary field A is mainly cosmetic. Each formal language L induces a finitary field
A over the set of all models or classical truth value assignments for L, ModL. It
is simply the set of all propositions over ModL that are expressed by the sentences
in L. This set in turn induces a unique σ -field, viz. the smallest σ -field σ (A) that
contains A as a subset. It also induces a unique complete field, viz. the smallest
complete field that contains A as a subset. In the present case where A is generated
by ModL, this complete field is the powerset, i.e. the set of all subsets, of ModL,
℘ (ModL). Hence, if we start with a degree of belief function on a formal language
L, we automatically get a degree of belief function on the field A induced by L.
As we do not always get a language L from a field A, the semantic framework of
propositions is more general than the syntactic framework of sentences.

3 Theories of Degrees of Belief

We have started with the example of Sophia, whose degree of belief that it will
be sunny in Vienna tomorrow equals .52. Usually degrees of belief are taken to
be real numbers from the interval [0, 1], but we will come across an alternative in
Section 4. If the epistemic agent is certain that a proposition is true, her degree of
belief for this proposition is 1. If the epistemic agent is certain that a proposition is
false, her degree of belief for the proposition is 0. However, these are extreme cases.
Usually we are neither certain that a proposition is true nor that it is false. That does
not mean, though, that we are agnostic with respect to the question whether the
proposition in question is true. Our belief that it is true may well be much stronger
than that it is false. Degrees of belief quantify this strength of belief.
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3.1 Subjective Probabilities

The best developed account of degrees of belief is the theory of subjective probabil-
ities. On this view degrees of belief simply follow the laws of probability. Here is
the standard definition due to Kolmogorov (1956). Let A be a field of propositions
over the set of possibilities W . A function Pr : A → � from A into the set of real
numbers,�, is a (finitely additive and unconditional) probability on A if and only if
for all A and B in A:

1. Pr (A) ≥ 0
2. Pr (W ) = 1
3. Pr (A ∪ B) = Pr (A)+ Pr (B) if A ∩ B = ∅

The triple 〈W,A, Pr〉 is called a (finitely additive) probability space. If A is
closed under countable intersections and thus a σ -field, and if Pr additionally
satisfies

4. Pr (A1 ∪ . . . ∪ An ∪ . . .) = Pr (A1)+ · · · + Pr (An)+ · · ·
Pr is a σ - or countably additive probability on A (Kolmogorov 1956: ch. 2 actu-

ally gives a different but equivalent definition – see e.g. Huber 2007a: sct. 4.1). In
this case 〈W,A, Pr〉 is called a σ - or countably additive probability space.

A probability Pr : A→ � on A is called regular just in case Pr (A) > 0 for every
non-empty A in A. Let APr be the set of all propositions A in A with Pr (A) > 0. The
conditional probability Pr (· | ◦) : A×APr → � on A (based on the unconditional
probability Pr : A → � on A) is defined for all A in A and all B in APr by the
ratio

5. Pr (A | B) = Pr (A ∩ B) / Pr (B)

(Kolmogorov 1956, ch. 1, §4). The domain of the second argument place of
Pr (· | ◦) has to be restricted to APr, since the fraction Pr (A ∩ B) / Pr (B) is not
defined for Pr (B) = 0. Note that Pr (· | B) : A → � is a probability on A, for
every B in APr. Other authors take conditional probability as primitive and define
unconditional probability in terms of it (Hájek 2003).

What does it mean to say that Sophia’s subjective probability for the proposition
that tomorrow it will be sunny in Vienna equals .52? This is a difficult question. Let
us first answer a different one. How do we measure Sophia’s subjective probability
for such a proposition? On one account Sophia’s subjective probability for A is
measured by her betting ratio for A, i.e. the highest price she is willing to pay
for a bet that returns 1 Euro if A, and 0 otherwise. On a slightly different account
Sophia’s subjective probability for A is measured by her fair betting ratio for A, i.e.
that number r = b/ (a + b) such that she considers the following bet to be fair: a
Euros if A, and −b Euros otherwise (a, b ≥ 0 with inequality for at least one). As
we may say it: Sophia considers it to be fair to bet you b to a Euros that A.

It is not irrational for Sophia to be willing to bet you 5.2 to 4.8 Euros that tomor-
row it will be sunny in Vienna, but not be willing to bet you 520, 000 to 480, 000 Eu-
ros that this proposition is true. This uncovers one assumption of the measurement
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in terms of (fair) betting ratios: the epistemic agent is assumed to be neither risk
averse nor risk prone. Gamblers in the casino are risk prone: they pay more for
playing roulette than the fair monetary value according to reasonable probabilities
(this may be perfectly reasonable if the additional cost is what the gambler is willing
to spend on the thrill she gets out of playing roulette). Sophia, on the other hand, is
risk averse – and reasonably so! – when she refuses to bet you 100, 000 to 900, 000
Euros that it will be sunny in Vienna tomorrow, while she is happy to bet you 5 to
5 Euros that this proposition is true. After all, she might lose her standard of living
along with this bet. Note that it does not help to say that Sophia’s fair betting ratio
for A is that number r = b/ (a + b) such that she considers the following bet to be
fair: 1 − r = a/ (a + b) Euros if A, and −r = −b/ (a + b) otherwise (a, b ≥ 0
with inequality for at least one). Just as stakes of 1, 000, 000 Euros may be too high
for the measurement to work, stakes of 1 Euro may be too low.

Another assumption is that the agent’s (fair) betting ratio for a proposition is
independent of the truth values of the proposition. Obviously we cannot measure
Sophia’s subjective probability for the proposition that she will be happily married
by the end of the week by offering her a bet that returns 1 Euro if she will, and
0 otherwise. Sophia’s subjective probability for happily getting married by the end
of the week will be fairly low (as a hardworking philosopher she does not have
much time to date). However, assuming that happily getting married is something
she highly desires, her betting ratio for this proposition will be fairly high.

Ramsey (1926) avoids the first assumption by using utilities instead of money.
He avoids the second assumption by presupposing the existence of an “ethically
neutral” proposition (a proposition whose truth or falsity does not affect the agent’s
utilities) which the agent takes to be just as likely to be true as she takes it to be
false. For more see Hájek (2007).

Let us return to our question of what it means for Sophia to assign a certain
subjective probability to a given proposition. It is one thing for Sophia to be willing
to bet at particular odds or to consider particular odds as fair. It is another thing
for Sophia to have a subjective probability of .52 that tomorrow it will be sunny in
Vienna. Sophia’s subjective probabilities are measured by, but not identical to her
(fair) betting ratios. The latter are operationally defined and observable. The former
are unobservable, theoretical entities that, following Eriksson and Hájek (2007), we
should take as primitive.

The theory of subjective probabilities is not an adequate description of people’s
epistemic states (Kahneman et al. 1982). It is a normative theory that tells us how an
ideally rational epistemic agent’s degrees of belief should behave. So, why should
such an agent’s degrees of belief obey the probability calculus?

The Dutch Book Argument provides an answer to this question. (Cox’s theo-
rem, Cox 1946, and the representation theorem of measurement theory, Krantz
et al. 1971, provide two further answers.) On its standard, pragmatic reading, the
Dutch Book Argument starts with a link between degrees of belief and betting ra-
tios as first premise. The second premise says that it is (pragmatically) defective to
accept a series of bets which guarantees a sure loss. Such a series of bets is called
a Dutch Book (hence the name “Dutch Book Argument”). The third premise is the



6 F. Huber

Dutch Book Theorem. Its standard, pragmatic version says that an agent’s betting ra-
tios obey the probability calculus if and only if an agent who has those betting ratios
cannot be Dutch Booked (i.e. presented a series of bets each of which is acceptable
according to those betting ratios, but whose combination guarantees a loss). From
this it is inferred that it is (epistemically) defective to have degrees of belief that do
not obey the probability calculus. Obviously this argument would be valid only if
the link between degrees of belief and betting ratios were identity (in which case
there were no difference between pragmatic and epistemic defectiveness) – and we
have already seen that it is not.

Joyce (1998) attempts to vindicate probabilism by considering the accuracy of
degrees of belief. The basic idea here is that a degree of belief function is (epis-
temically) defective if there exists an alternative degree of belief function that is
more accurate in each possible world. The accuracy of a degree of belief b (A) in a
proposition A in a world w is identified with the distance between b (A) and the truth
value of A in w, where 1 represents truth and 0 represents falsehood. For instance, a
degree of belief up to 1 in a true proposition is more accurate, the higher it is – and
perfectly accurate if it equals 1. The overall accuracy of a degree of belief function
b in a world w is then determined by the accuracy of the individual degrees of belief
b (A). Given some conditions on how to measure distance, Joyce is able to prove
that a degree of belief function obeys the probability calculus if and only if there
exists no alternative degree of belief function that is more accurate in each possible
world (the only-if part is not explicitly mentioned in Joyce 1998, but needed for the
argument to work and presented in Joyce’s contribution to this volume). Therefore,
degrees of belief should obey the probability calculus.

The objection to this attempt – due to Bronfman (manuscript) – that has attracted
most attention starts by noting that Joyce’s conditions on measures of inaccuracy
do not determine a single measure, but a whole set of such measures. This would
strengthen rather than weaken Joyce’s argument, were it not for the fact that these
measures differ in their recommendations as to which alternative degree of belief
function a non-probabilistic degree of belief function should be replaced by. All of
Joyce’s measures of inaccuracy agree that an agent whose degree of belief func-
tion violates the probability axioms should adopt a probabilistic degree of belief
function which is more accurate in each possible world. However, these measures
may differ in their recommendation as to which particular probabilistic degree of
belief function the agent should adopt. In fact, for each possible world, following
the recommendation of one measure will leave the agent off less accurate accord-
ing to some other measure. Why, then, should the epistemic agent move from her
non-probabilistic degree of belief function to a probabilistic one in the first place?

In his contribution to this volume Joyce responds to this question and other ob-
jections. For more on Dutch Book Arguments, Joyce’s non-pragmatic vindication
of probabilism, and arguments for (non-) probabilism in general see Hájek’s contri-
bution to this volume.

We have discussed how to measure subjective probabilities, and why degrees
of belief should obey the probability calculus. It is of particular epistemological
interest how to update subjective probabilities when new information is received.
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Whereas axioms 1–5 of the probability calculus are synchronic conditions on an ide-
ally rational agent’s degree of belief function, update rules are diachronic conditions
that tell us how the ideally rational agent should revise her subjective probabilities
when she receives new information of a certain format. If the new information comes
in form of a certainty, probabilism is extended by

Update Rule 1 (Strict Conditionalization) If Pr : A → � is your subjective
probability at time t, and between t and t ′ you learn E ∈ A and no logically stronger
proposition, then your subjective probability at time t ′ should be Pr (· | E) : A→�.

Strict conditionalization thus says that the ideally rational agent’s new subjective
probability for a proposition A after becoming certain of E should equal her old
subjective probability for A conditional on E .

Two questions arise. First, why should we update our subjective probabilities
according to strict conditionalization? Second, how should we update our subjec-
tive probabilities when the new information is of a different format and we do not
become certain of a proposition, but merely change our subjective probabilities for
various propositions? Jeffrey (1983) answers the second question by what is now
known as

Update Rule 2 (Jeffrey Conditionalization) If Pr : A → � is your subjective
probability at time t, and between t and t ′ your subjective probabilities in the mutu-
ally exclusive and jointly exhaustive propositions E1, . . . , En, . . . (Ei ∈ A) change
to p1, . . . , pn, . . . (pi ∈ [0, 1]) with

∑
i pi = 1, and the positive part of your sub-

jective probability does not change on any superset thereof, then your subjective
probability at time t ′ should be Pr ′ (·) : A→�, where

Pr ′ (·) =
∑

i Pr (· | Ei ) pi .

Jeffrey conditionalization thus says that the ideally rational agent’s new subjective
probability for A after changing her subjective probabilities for the elements Ei of
a partition to pi should equal the weighted sum of her old subjective probabilities
for A conditional on the Ei , where the weights are the new subjective probabilities
pi for the elements of the partition.

One answer to the first question is the Lewis-Teller Dutch Book Argument for
strict conditionalization that is analogous to the synchronic one discussed previ-
ously (Lewis 1999, Teller 1973). Its extension to Jeffrey conditionalization is pre-
sented in Armendt (1980) and discussed in Skyrms (1987). For more on the issue
of diachronic coherence see Skyrms’ contribution to this volume. As of now, there
is no gradational accuracy argument for either strict or Jeffrey conditionalization.
Other philosophers have provided arguments against strict (and, a fortiori, Jeffrey)
conditionalization: van Fraassen (1989) holds that rationality does not require the
adoption of a particular update rule (but see Kvanvig 1994), and Arntzenius (2003)
uses, among others, the “shifting” nature of self-locating beliefs to argue against
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strict conditionalization as well as against van Fraassen’s reflection principle (van
Fraassen 1995). The second feature used by Arntzenius (2003), called “spreading”,
is independent of self-locating beliefs. It will be mentioned again in Section 4.

In subjective probability theory complete ignorance of the epistemic agent with
respect to a particular proposition A is often modeled by the agent’s having a sub-
jective probability of .5 for A as well as its complement W \ A. More generally,
an agent with subjective probability Pr is said to be ignorant with respect to the
partition {A1, . . . , An} if and only if Pr (Ai ) = 1/n. The principle of indifference
requires an agent to be ignorant with respect to a given partition (of “equally pos-
sible” propositions). It leads to contradictory results if the partition in question is
not held fixed (see, for instance, the discussion of Bertrand’s paradox in Kneale
1949). A more cautious version of this principle that is also applicable if the partition
contains countably infinitely many elements is the principle of maximum entropy.
It requires the agent to adopt one of those probability measures Pr as her degree
of belief function over (the σ -field generated by) the countable partition {Ai} that
maximize the quantity

−
∑

i

Pr (Ai ) log Pr (Ai ) .

The latter is known as the entropy of Pr with respect to the partition {Ai }. See
Paris (1994).

Suppose Sophia has hardly any enological knowledge. Her subjective probability
for the proposition that a Schilcher, an Austrian wine speciality, is a white wine
might reasonably be .5, as might be her subjective probability that a Schilcher is
a red wine. Contrast this with the following case. Sophia knows for sure that a
particular coin is fair. That is, Sophia knows for sure that the objective chance of
the coin landing heads as well as its objective chance of landing tails each equal
.5. Under that assumption her subjective probability for the proposition that the
coin will land heads on the next toss might reasonably be .5. Although Sophia’s
subjective probabilities are alike in these two scenarios, there is an important episte-
mological difference. In the first case a subjective probability of .5 represents com-
plete ignorance. In the second case it represents substantial knowledge about the
objective chances. (The principle that, roughly, one’s initial subjective probabilities
conditional on the objective chances should equal the objective chances is called the
principal principle by Lewis 1980.)

Examples like these suggest that subjective probability theory does not provide
an adequate account of degrees of belief, because it does not allow one to distin-
guish between ignorance and knowledge about chances. Interval-valued probabil-
ities (Kyburg and Teng 2001, Levi 1980, van Fraassen 1990, Walley 1991) can
be seen as a reply to this objection without giving up the probabilistic frame-
work. In case the epistemic agent knows the objective chances she continues to
assign sharp probabilities as usual. However, if the agent is ignorant with respect
to a proposition A she will not assign it a subjective probability of .5 (or any
other sharp value, for that matter). Rather, she will assign A a whole interval
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[a, b] ⊆ [0, 1] such that she considers any number in [a, b] to be a legitimate
subjective probability for A. The size b − a of the interval [a, b] reflects her
ignorance with respect to A, that is, with respect to the partition {A, W \ A}.
(As suggested by the last remark, if [a, b] is the interval-probability for A, then
[1− b, 1− a] is the interval-probability for W \ A.) If Sophia were the enological
ignoramus that we have previously imagined her to be, she would assign the interval
[0, 1] to the proposition that a Schilcher is a white wine. If she knows for sure that
the coin she is about to toss has an objective chance of .5 of landing heads and she
subscribes to the principal principle, [.5, .5] will be the interval she assigns to the
proposition that the coin, if tossed, will land heads.

When epistemologists say that knowledge implies belief (Steup 2006), they use
a qualitative notion of belief that does not admit of degrees (except in the trivial
sense that there is belief, disbelief, and suspension of judgment). The same is true
for philosophers of language when they say that a normal speaker, on reflection,
sincerely asserts to “A” only if she believes that A (Kripke 1979). This raises the
question whether the qualitative notion of belief can be reduced to the quantita-
tive notion of degree of belief. A simple thesis – known as the Lockean thesis –
says that we should believe a proposition A just in case our degree of belief for A
is sufficiently high (‘should’ takes wide scope over ‘just in case’). Of course, the
question is which threshold is sufficiently high. We do not want to require that we
only believe those propositions whose truth we are certain of – especially if we
follow Carnap (1962) and Jeffrey (2004) and require every reasonable subjective
probability to be regular (otherwise we would not be allowed to believe anything
except the tautology). We want to take into account our fallibilism, the fact that our
beliefs often turn out to be false.

Given that degrees of belief are represented as subjective probabilities, this means
that the threshold for belief should be less than 1. In terms of subjective probabil-
ities, the Lockean thesis then says that an epistemic agent with subjective proba-
bility Pr : A → � should believe A in A just in case Pr (A) > 1 − ε for some
ε ∈ (0, 1]. This, however, leads to the lottery paradox (Kyburg 1961, and, much
clearer, Hempel 1962) as well as the preface paradox (Makinson 1965). For every
threshold ε ∈ (0, 1] there is a finite partition {A1, . . . , An}, Ai ∈ A, and a reasonable
subjective probability Pr : A → � such that Pr (Ai ) > 1 − ε for all i = 1, . . . , n,
while Pr (A1 ∩ . . . ∩ An) < 1− ε.

For instance, let ε = .02 and consider a lottery with 100 tickets that is known
for sure to be fair and such that exactly one ticket will win. Then it is reasonable,
for every ticket i = 1, . . . , 100, to assign a subjective probability of 1/100 to the
proposition that ticket i will win the lottery, Ti . We thus believe of each single
ticket that it will lose, because Pr (W \ Ti ) = .99 > 1 − .02. Yet we also know
for sure that exactly one ticket will win. So Pr (T1 ∩ . . . ∩ T100) = 1 > 1 − .02.
We therefore believe both that at least one ticket will win, T1 ∩ . . . ∩ T100, as well
as of each individual ticket that it will not win: W \ T1, . . . , W \ T100. Together
these beliefs form a belief set that is inconsistent in the sense that its intersection
is empty:

⋂ {T1 ∩ . . . ∩ T100, W \ T1, . . . , W \ T100} = ∅. Yet consistency (and de-
ductive closure, which is implicit in taking propositions rather than sentences to be
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the objects of belief) have been regarded as the minimal requirements on a belief set
ever since Hintikka (1961).

The lottery paradox has led some people to reject the notion of belief altogether
(Jeffrey 1970), whereas others have been led to the idea that belief sets need not
be deductively closed (Foley 1992 and, especially, Foley’s contribution to this vol-
ume). Still others have turned the analysis on its head and elicit a context-dependent
threshold parameter ε from the agent’s belief set. See Hawthorne and Bovens (1999)
and, especially, Hawthorne’s contribution to this volume.

Another view is to take the lottery paradox at face value and postulate two
epistemic attitudes towards propositions – belief and degrees of belief – that are
not reducible to each other. Frankish (2004) defends a particular version of this
view. He distinguishes between a mind, where one unconsciously entertains beliefs,
and a supermind, where one consciously entertains beliefs. For more see Frank-
ish’s contribution to this volume. Further discussion of the relation between be-
lief and probabilistic degrees of belief can be found in Kaplan (1996) as well as
Christensen (2004) and Maher (2006).

3.2 Dempster-Shafer Belief Functions

The theory of Dempster-Shafer (DS) belief functions (Dempster 1968, Shafer 1976)
rejects the claim that degrees of belief can be measured by the epistemic agent’s
betting behavior. A particular version of the theory of DS belief functions is the
transferable belief model (Smets and Kennes 1994). It distinguishes between two
mental levels: the credal level and the pignistic level. Its twofold thesis is that fair
betting ratios should indeed obey the probability calculus, but that degrees of belief,
being different from fair betting ratios, need not. Degrees of belief need only satisfy
the weaker DS principles. The idea is that whenever one is forced to bet on the
pignistic level, degrees of belief are used to calculate fair betting ratios that satisfy
the probability axioms (recall the Dutch Book Argument). These are then used to
calculate the agent’s expected utility for various acts (Savage 1972, Joyce 1999).
However, on the credal level where one only entertains and quantifies various be-
liefs without using them for decision making, degrees of belief need not obey the
probability calculus.

Whereas subjective probabilities are additive (axiom 3), DS belief functions
Bel : A→ � are only super-additive, i.e. for all propositions A and B in A:

6. Bel (A)+ Bel (B) ≤ Bel (A ∪ B) if A ∩ B = ∅
In particular, the agent’s the degree of belief for A and her degree of belief for

W \ A need not sum to 1.
What does it mean that Sophia’s degree of belief for the proposition A is .52, if

her degree of belief function is represented by a DS belief function Bel : A→ �?
According to one interpretation (Haenni and Lehmann 2003), the number Bel (A)
represents the strength with which A is supported by the epistemic agent’s knowl-
edge or belief base. It may well be that the agent’s knowledge or belief base neither
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supports A nor its complement W \ A, while it always maximally supports their
disjunction, A ∪ A.

Recall the supposition that Sophia has hardly any enological knowledge. Un-
der that assumption her knowledge or belief base will neither support the propo-
sition that a Schilcher is a red wine, Red , nor will it support the proposition
that a Schilcher is a white wine, White. However, Sophia may well be certain
that a Schilcher is either a red wine or a white wine, Red ∪ White. Hence her
DS belief function Bel will be such that Bel (Red) = Bel (White) = 0 while
Bel (Red ∪White) = 1.

On the other hand, Sophia knows for sure that the coin she is about to toss is fair.
Hence her Bel will be such that Bel (H eads) = Bel (T ails) = .5. Thus we see
that the theory of DS belief functions can distinguish between uncertainty and one
form of ignorance. Indeed,

I (A) = 1− Bel (A1)− · · · − Bel (An)− · · ·

can be seen as a measure of the agent’s ignorance with respect to the countable
partition {A1, . . . , An, . . .} (the Ai may, for instance, be the values of a random
variable such as the price of a bottle of Schilcher in Vienna on November 21,
2007).

Figuratively, a proposition A divides the agent’s knowledge or belief base into
three mutually exclusive and jointly exhaustive parts. A part that speaks in favor of
A, a part that speaks against A (i.e. in favor of W \ A), and a part that neither speaks
in favor of nor against A. Bel (A) quantifies the part that supports A, Bel (W \ A)
quantifies the part that supports W \ A, and I (A) = 1 − Bel (A) − Bel (W \ A)
quantifies the part that neither supports A nor W \ A. Formally this is spelt out in
terms of a (normalized) mass function on A, a function m : A→ � such that for all
propositions A in A:

m (A) ≥ 0
m (∅) = 0∑

B∈A m (B) = 1

A (normalized) mass function m : A → � induces a DS belief function Bel :
A→� by defining, for each A in A,

Bel (A) =
∑

B⊆A

m (B) .

The relation to subjective probabilities can now be stated as follows. Subjective
probabilities require the epistemic agent to divide her knowledge or belief base into
two mutually exclusive and jointly exhaustive parts: one that speaks in favor of A
and one that speaks against A. That is, the neutral part has to be distributed among
the positive and negative parts. Subjective probabilities can thus be seen as DS belief
functions without ignorance.
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A DS belief function Bel : A → � induces a Dempster-Shafer plausibility
function P : A→�, where for all A in A,

P (A) = 1− Bel (A) .

Degrees of plausibility quantify that part of the agent’s knowledge or belief base
which is compatible with A, i.e. the part that supports A together with the part that
neither supports A nor W \A. In terms of the (normalized) mass function m inducing
Bel this means that

P (A) =
∑

B∩A �=∅
m (B) .

If and only if Bel (A) and Bel (W \ A) sum to less than 1, P (A) and P (W \ A)
sum to more than 1. For more see Haenni’s contribution to this volume.

The theory of DS belief functions is more general than the theory of subjec-
tive probabilities in the sense that the latter requires degrees of belief to be addi-
tive, while the former merely requires them to be super-additive. In another sense,
though, the converse is true. The reason is that DS belief functions can be rep-
resented as convex sets of probabilities (Walley 1991). As not every convex set of
probabilities can be represented as a DS belief function, sets of probabilities provide
the most general framework we have come across so far.

An even more general framework is provided by Halpern’s plausibility measures
(Halpern 2003). These are functions Pl : A → � such that for all propositions A
and B in A:

Pl (∅) = 0
Pl (W ) = 1

7. Pl (A) ≤ Pl (B) if A ⊆ B .

In fact, these are only the special cases of real-valued plausibility measures.
While it is fairly uncontroversial that an agent’s degree of belief function should
obey Halpern’s plausibility calculus, it is questionable whether his minimal princi-
ples are all there is to the rationality of degrees of belief. The resulting epistemology
is, in any case, very thin.

3.3 Possibility Theory

Possibility theory (Dubois and Prade 1988) is based on fuzzy set theory (Zadeh
1978). According to the latter theory, an element need not belong to a set either
completely or not at all, but may be a member of the set to a certain degree. For
instance, Sophia may belong to the set of black haired women to degree .72, because
her hair, although black, is sort of brown as well. This is represented by a member-
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ship function μB : W → [0, 1], where μB (w) is the degree to which woman w ∈ W
belongs to the set of black haired woman, B .

Furthermore, the degree μB (Sophia) to which Sophia belongs to the set of
women who do not have black hair, B, equals 1− μB (Sophia). If μY : W → [0, 1]
is the membership function for the set of young women, then the degree to which
Sophia belongs to the set of black haired or young women, B ∪ Y , is given by

μB∪Y (Sophia) = max {μB (Sophia) , μY (Sophia)} .

Similarly, the degree to which Sophia belongs to the set of black haired young
women, B ∩ Y , is given by

μB∩Y (Sophia) = min {μB (Sophia) , μY (Sophia)} .

μB (Sophia) is interpreted as the degree to which the vague statement “Sophia is
a black haired woman” is true.

Degrees of truth belong to philosophy of language. They do not (yet) have any-
thing to do with degrees of belief, which belong to epistemology. In particular, note
that degrees of truth are usually considered to be truth functional (the truth value of a
compound statement such as A∧B is a function of the truth values of its constituent
statements A and B; that is, the truth values of A and B determine the truth value of
A∧ B). This is the case for membership functions μ. Degrees of belief, on the other
hand, are hardly ever considered to be truth functional. For instance, probabilities
are not truth functional, because the probability of A ∩ B is not determined by the
probability of A and the probability of B . That is, there is no function f such that
for all probability spaces 〈W,A, Pr〉 and all propositions A and B in A:

Pr (A ∩ B) = f (Pr (A) , Pr (B))

Suppose I tell you that Sophia is tall. How tall is a tall woman? Is a woman with
a height of 175 cm tall? Or does a woman have to be at least 178 cm in order to be
tall? Although you know that Sophia is tall, your knowledge is incomplete due to the
vagueness of the term “tall”. Here possibility theory enters by equipping you with a
(normalized) possibility distribution, a function π : W → [0, 1] with π (ω) = 1 for
at least one ω in W . The motivation for the latter requirement is that at least (in fact,
exactly) one possibility is the actual possibility, and hence at least one possibility
must be maximally possible. Such a possibility distribution π : W → [0, 1] on the
set of possibilities W is extended to a possibility measure � : A → � on the field
A over W by defining for each A in A:

� (∅) = 0
� (A) = sup {π (ω) : ω ∈ A}

This entails that possibility measures � : A → � are maxitive (and hence sub-
additive), i.e. for all A and B in A,
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8. � (A ∪ B) = max {� (A) , � (B)}.
The idea is, roughly, that a proposition is at least as possible as all of the pos-

sibilities it comprises, and no more possible than the “most possible” possibility
either. Sometimes, though, there is no most possible possibility (i.e. the supremum
is no maximum). For instance, that is the case when the degrees of possibility
are 1/2, 3/4, 7/8, . . . , 2n − 1/2n, . . . In this case the degree of possibility for the
proposition is the smallest number which is at least as great as all the degrees of
possibilities of its elements. In our example this is 1. (As will be seen below, this is
the main formal difference between possibility measures and unconditional ranking
functions.)

We can define possibility measures without recourse to an underlying possibility
distribution as functions � : A→� such that for all propositions A and B in A:

� (∅) = 0
� (W ) = 1
� (A ∪ B) = max {� (A) , � (B)}

It is important to note, though, that the last clause is not well-defined for dis-
junctions or unions of infinitely many propositions (in this case one would have to
use the supremum operation sup instead of the maximum operation max). The dual
notion of a necessity measure N : A→� is defined for all propositions A in A by

N (A) = 1−�
(
A
)
.

This implies that
N (A ∩ B) = min {N (A) , N (B)} .

The latter equation can be used to start with necessity measures as primitive.
Define them as functions N : A→� such that for all propositions A and B in A:

N (∅) = 0
N (W ) = 1
N (A ∩ B) = min {N (A) , N (B)}

Then possibility measures � : A→ � are obtained by the equation

� (A) = 1− N
(
A
)
.

Although the agent’s epistemic state is completely specified by either � or N ,
the agent’s epistemic attitude towards a particular proposition A in A is only jointly
specified by � (A) and N (A). The reason is that, in contrast to probability theory,
� (W \ A) is not determined by � (A). Thus, degrees of possibility (as well as de-
grees of necessity) are not truth functional either. The same is true for DS belief and
DS plausibility functions as well as Halpern’s plausibility measures.
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In our example, let WH be the set of values of the random variable H = Sophia’s
height in cm between 0 cm and 300 cm, WH = {0, . . . , 300}. Let πH : WH →
[0, 1] be your possibility distribution. It is supposed to represent your epistemic
state concerning Sophia’s body height, which contains your knowledge that she is
tall. For instance, your πH might be such that πH (n) = 1 for any natural number
n ∈ [177, 185] ⊂ W . In this case your degree of possibility for the proposition that
Sophia is at least 177cm tall is

�H (H ≥ 177) = sup {πH (n) : n ≥ 177} = 1.

The connection to fuzzy set theory now is that your possibility distribution
πH : WH → [0, 1], which is based on your knowledge that Sophia is tall, can
be interpreted as the membership function μT : WH → [0, 1] of the set of tall
woman. So the epistemological thesis of possibility theory is that your degree of
possibility for the proposition that Sophia is 177 cm tall given the vague and hence
incomplete knowledge that Sophia is tall equals the degree to which a 177 cm tall
woman belongs to the set of tall woman. In more suggestive notation,

πH (H = n | T ) = μT (n) .

For more see the contribution to this volume by Dubois and Prade.

3.4 Summary

Let us summarize the accounts we have dealt with so far. Subjective probability
theory requires degrees of belief to be additive. An ideally rational epistemic agent’s
subjective probability Pr : A→ � is such that for any A and B in A:

3. Pr (A)+ Pr (B) = Pr (A ∪ B) if A ∩ B = ∅
The theory of DS belief functions requires degrees of belief to be super-additive.

An ideally rational epistemic agent’s DS belief function Bel : A → � is such that
for any A and B in A:

6. Bel (A)+ Bel (B) ≤ Bel (A ∪ B) if A ∩ B = ∅
Possibility theory requires degrees of belief to be maxitive and hence super-

additive. An ideally rational epistemic agent’s possibility measure � : A → �
is such that for any A and B in A:

7. � (A ∪ B) = max {� (A) , � (B)}
All of these functions are special cases of real-valued plausibility measures Pl :

A→�, which are such that for all A and B in A:

8. Pl (A) ≤ Pl (B) if A ⊆ B
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We have seen that each of these accounts provides an adequate model for some
epistemic situation (Halpern’s plausibility measures do so trivially). We have further
noticed that subjective probabilities do not give rise to a notion of belief that is
consistent and deductively closed. Therefore the same is true for the more general
DS belief functions and Halpern’s plausibility measures. It has to be noted, though,
that Roorda (1995) provides a definition of belief in terms of sets of probabilities.
(As will be mentioned in the next section, there is notion of belief in possibility
theory that is consistent and deductively closed in a finite sense.)

Moreover, we have seen arguments for the thesis that degrees of belief should
obey the probability calculus. Smets (2002) tries to justify the corresponding thesis
for DS belief functions. To the best of my knowledge nobody has yet published
an argument for the thesis that degrees of belief should obey Halpern’s plausibil-
ity calculus (not just in the sense that only plausibility measures are reasonable
degree of belief functions, but in the sense that all and only plausibility measures
are reasonable degree of belief functions.) I am not aware of an argument for the
corresponding thesis for possibility measures either. However, there exists such an
argument for the formally similar ranking functions. These functions also give rise
to a notion of belief that is consistent and deductively closed. They are the topic of
the next section.

4 Belief, Degrees of Belief, and Ranking Functions

Subjective probability theory as well as the theory of DS belief functions take
the objects of belief to be propositions. Possibility theory does so only indirectly,
though possibility measures on a field of propositionsA can also be defined without
recourse to a possibility distribution on the underlying set of possibilities W . A
possibility ω in W is a complete and consistent description of what the world may
look like relative to the expressive power of W . W may contain two possibilities: ac-
cording to ω1 it will be sunny in Vienna tomorrow, according to ω2 it will not. On the
other end of the spectrum, W may comprise grand possible worlds à la Lewis (1986).

We usually do not know which of the possibilities in W corresponds to the actual
world. Otherwise these possibilities would not be genuine possibilities for us, and
our degree of belief function would collapse into the truth value assignment corre-
sponding to the actual world. All we usually know for sure is that there is exactly one
possibility which corresponds to the actual world. However, to say that we do not
know which possibility that is does not mean that all possibilities are on a par. Some
of them will seem really far-fetched, while others will strike us as more reasonable
candidates for the actual possibility.

This gives rise to the following consideration. We can partition the set of pos-
sibilities, that is, form sets of possibilities that are mutually exclusive and jointly
exhaustive. Then we can order the cells of this partition according to their plausi-
bility. The first cell in this ordering contains the possibilities that we take to be the
most reasonable candidates for the actual possibility. The second cell contains the
possibilities which we take to be the second most reasonable candidates. And so on.
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If you are still equipped with your possibility distribution from the preceding
section you can use your degrees of possibility for the various possibilities to obtain
such an ordered partition. Note, though, that an ordered partition – in contrast to
your possibility distribution – contains no more than ordinal information. While
your possibility distribution enables you to say how possible you take a possibility
to be, an ordered partition only allows you to say that one possibility ω1 is more
plausible than another ω2. In fact, an ordered partition does not even let you say that
the difference between your plausibility for w1 (say, tomorrow the temperature in
Vienna will be between 15◦C and 20◦C) and for w2 (say, tomorrow the temperature
in Vienna will be between 20◦C and 25◦C) is smaller than the difference between
your plausibility for w2 and for the far-fetched w3 (say, tomorrow the temperature
in Vienna will be between 45◦C and 50◦C).

This takes us directly to ranking theory (Spohn 1988; 1990), which goes one
step further. Rather than merely ordering the possibilities in W , a pointwise ranking
function κ : W → N ∪ {∞} additionally assigns natural numbers to the (cells
of) possibilities. These numbers represent the degree to which an ideally rational
epistemic agent disbelieves the various possibilities in W . The result is a numbered
partition of W ,

κ−1 (0) , κ−1 (1) , . . . , κ−1 (n) = {ω ∈ W : κ (ω) = n} , . . . , κ−1 (∞) .

The first cell κ−1 (0) contains the possibilities the agent does not disbelieve
(which does not mean that she believes them). The second cell κ−1 (1) is the set
of possibilities the agent disbelieves to degree 1. And so on. It is important to note
that, except for κ−1 (0), the cells κ−1 (n) may be empty, and so would not appear at
all in the corresponding ordered partition. κ−1 (0) must not be empty, though. The
reason is that one cannot consistently disbelieve everything.

More precisely, a function κ : W → N ∪ {∞} from a set of possibilities W into
the set of natural numbers extended by ∞, N ∪ {∞}, is a (normalized) pointwise
ranking function just in case κ (ω) = 0 for at least one ω in W , i.e. just in case
κ−1 (0) �= ∅. The latter requirement says that the agent should not disbelieve every
possibility. It is justified, because she knows for sure that one possibility is the actual
one. A pointwise ranking function κ : W → N ∪ {∞} on W induces a ranking
function � : A → N ∪ {∞} on a field of propositions A over W by defining for
each A in A,

� (A) = min {κ (ω) : ω ∈ A} (= ∞ if A = ∅) .

This entails that ranking functions � : A → N ∪ {∞} are (finitely) minimitive
(and hence sub-additive), i.e. for all propositions A and B in A,

9. � (A ∪ B) = min {� (A) , � (B)} .
As in the case of possibility theory, (finitely minimitive and unconditional) rank-

ing functions can be directly defined on a field of propositions A over a set of
possibilities W as functions � : A→ N ∪ {∞} such that for all A and B in A:
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� (∅) = ∞
� (W ) = 0
� (A ∪ B) = min {� (A) , � (B)}

The triple 〈W,A, �〉 is a (finitely minimitive) ranking space. SupposeA is closed
under countable/complete intersections (and thus a σ -/complete field). Suppose fur-
ther that � additionally satisfies, for every countable/possibly uncountable B ⊆ A,

� (B) = min {� (A) : A ∈ B} .

Then � is a countably/completely minimitive ranking function, and 〈W,A, �〉 is
a countably/completely minimitive ranking space. Finally, a ranking function � on
A is regular just in case � (A) < ∞ for every non-empty or consistent proposition
A in A. For more see Huber (2006), which discusses under which conditions rank-
ing functions on fields of propositions induce pointwise ranking functions on the
underlying set of possibilities.

Let us pause for a moment. The previous paragraphs introduce a lot of terminol-
ogy for something that seems to add only little to what we have already discussed.
Let the necessity measures of possibility theory assign natural instead of real num-
bers in the unit interval to the various propositions so that∞ instead of 1 represents
maximal necessity and maximal possibility. Then the axioms for necessity measures
become:

N (∅) = 0, N (W ) = ∞, N (A ∩ B) = min {N (A) , N (B)}

Now think of the rank of a proposition A as the degree of necessity of its negation
W \ A, � (A) = N (W \ A). Seen this way, finitely minimitive ranking functions are
a mere terminological variation of necessity measures:

� (∅) = N (W ) = ∞
� (W ) = N (∅) = 0

� (A ∪ B) = N
(

A ∩ B
) = min

{
N

(
A
)
, N

(
B

)} = min {� (A) , � (B)}

(If we take necessity measures as primitive rather than letting them be induced by
possibility measures, and if we continue to follow the rank-theoretic policy of adopt-
ing a well-ordered range, we can obviously also define countably and completely
minimitive necessity measures.) Of course, the fact that (finitely minimitive and
unconditional) ranking functions and necessity measures are formally alike does
not mean that their interpretations are the same. The latter is the case, though,
when we compare ranking functions and Shackle’s degrees of potential surprise
(Shackle 1949; 1969). (These degrees of potential surprise have made their way
into philosophy mainly through the work of Isaac Levi – see Levi 1967a; 1978.) So
what justifies devoting a whole section to ranking functions?
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Shackle’s theory lacks a notion of conditional potential surprise. Shackle (1969:
79ff) seems to assume a notion of conditional potential surprise as primitive that
appears in his axiom 7. This axiom further relies on a connective that behaves like
conjunction except that it is not commutative and is best interpreted as “A followed
by B”. Axiom 7, in its stronger version from p. 83, seems to say that the degree
of potential surprise of “A followed by B” is the greater of the degree of potential
surprise of A and the degree of potential surprise of B given A,

ς (A followed by B) = max {ς (A) , ς (B | A)} ,

where ς is the measure of potential surprise. Spohn’s contribution to this volume
also discusses Shackle’s struggle with the notion of conditional potential surprise.

Possibility theory, on the other hand, offers two notions of conditional possibility
(Dubois and Prade 1988). The first notion of conditional possibility is obtained by
the equation

� (A ∩ B) = min {� (A) , � (B | A)} .

It is mainly motivated by the desire to have a notion of conditional possibil-
ity that makes also sense if possibility does not admit of degrees, but is a merely
comparative notion. The second notion of conditional possibility is obtained by the
equation

� (A ∩ B) = � (A) � (B || A) .

The inspiration for this notion seems to come from probability theory. While
none of these two notions is the one we have in ranking theory, Spohn’s contribu-
tion to this volume (relying on Halpern 2003) shows that, by adopting the second
notion of conditional possibility, one can render possibility theory isomorphic to
real-valued ranking functions. For reasons explained below, I prefer to stick to rank-
ing functions taking only natural numbers as values, though – and for the latter there
is just one good notion of conditional ranks.

The conditional ranking function � (· | ·) : A × A → N ∪ {∞} (based on the
unconditional ranking function � : A→ N ∪ {∞}) is defined for all A and B in A
with A �= ∅ as

� (A | B) = � (A ∩ B)− � (B) ,

where ∞−∞ = 0. Further stipulating � (∅ | B) = ∞ for all B in A guarantees
that � (· | B) : A → N ∪ {∞} is a ranking function, for every B in A. It is, of
course, also possible to take conditional ranking functions as primitive and to define
(unconditional) ranking functions in terms of them.

The number � (A) represents the agent’s degree of disbelief for the proposition
A. If � (A) > 0, the agent disbelieves A to a positive degree. Therefore, on pain of
inconsistency, she cannot also disbelieve W \ A to a positive degree. In other words,
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for every proposition A in A, at least one of A and W \ A has to be assigned rank
0. If � (A) = 0, the agent does not disbelieve A to any positive degree. This does
not mean, however, that she believes A to a positive degree – the agent may suspend
judgement and assign rank 0 to both A and W \ A. Belief in a proposition is thus
characterized as disbelief in its negation.

For each ranking function � : A → N ∪ {∞} we can define a corresponding
belief function β� : A → Z ∪ {∞} ∪ {−∞} that assigns positive numbers to those
propositions that are believed, negative numbers to those that are disbelieved, and 0
to those with respect to which the agent suspends judgement:

β� (A) = � (W \ A)− � (A)

Each ranking function � : A→ N ∪ {∞} induces a belief set:

B� =
{

A ∈ A : �
(

A
)

> 0
} = {

A ∈ A : �
(
A
)

> � (A)
} = {

A ∈ A : β� (A) > 0
}

B is the set of all propositions the agent believes to some positive degree or, equiv-
alently, whose complements she disbelieves to a positive degree. The belief set
B� induced by a ranking function � is consistent and deductively closed (in the
finite sense). The same is true for the belief set induced by a possibility measure
� : A→�,

B� =
{

A ∈ A : �
(
A
)

< 1
} = {A ∈ A : N� (A) > 0} .

If � is a countably/completely minimitive ranking function, then the belief set
B� induced by � is consistent and deductively closed in the following count-
able/complete sense:

⋂ C �= ∅ for every countable/possibly uncountable C ⊆ B�;
and A ∈ B� whenever

⋂ C ⊆ A for any countable/possibly uncountable C ⊆ B�

and any A ∈ A. Ranking theory thus offers a link between belief and degrees of
belief that is preserved when we move from the finite to the countably or uncount-
ably infinite case. As shown by the example in Section 3.3, this is not the case
for possibility theory. (Of course, as indicated above, the possibility theorist can
copy ranking theory by taking necessity measures as primitive and by adopting a
well-ordered range).

As for subjective probabilities there are rules for updating one’s epistemic state
represented by a ranking function. In case the new information comes in form of a
certainty, ranking theory’s counterpart to probability theory’s strict conditionaliza-
tion is

Update Rule 3 (Plain Conditionalization) If � : A → N ∪ {∞} is your rank-
ing function at time t, and between t and t ′ your learn E ∈ A and no logically
stronger proposition, then your ranking function at time t ′ should be � (· | E) :
A→ N ∪ {∞}.
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If the new information merely changes your ranks for various propositions, rank-
ing theory’s counterpart to probability theory’s Jeffrey conditionalization is

Update Rule 4 (Spohn Conditionalization) If � : A→ N ∪ {∞} is your ranking
function at time t, and between t and t ′ your ranks in the mutually exclusive and
jointly exhaustive propositions E1, . . . , Em, . . . (Ei ∈ A) change to n1, . . . , nm, . . .

(ni ∈ N ∪{∞}) with mini {ni } = 0, and the finite part of your ranking function does
not change on any superset thereof, then your ranking function at time t ′ should be
�′ : A→ N ∪ {∞}, where

�′ (·) = min i {� (· | Ei )+ ni } .
As the reader will have noticed by now, whenever we substitute 0 for 1,∞ for 0,

min for+,+ for×, and > for <, a true statement about probabilities almost always
turns into a true statement about ranking functions. (There are but a few known
exceptions to this transformation; Spohn 1994 mentions one.)

Two complaints about Jeffrey conditionalization carry over to Spohn conditional-
ization: Jeffrey respectively Spohn conditionalization is not commutative
(Levi 1967b); any two regular probability measures respectively ranking functions
can be related to each other via Jeffrey respectively Spohn conditionalization (by
letting the evidential partition consist of the set of singletons containing the possi-
bilities in W ). The first complaint is misconceived, because both Jeffrey and Spohn
conditionalization are result- rather than evidence-oriented: the parameter pi re-
spectively ni characterizes the resulting degree of (dis)belief in Ei rather than the
amount by which the evidence received between t and t ′ boosts or lowers the degree
of (dis)belief in Ei . These parameters thus depend on both the prior epistemic state
and the evidence received. Evidence first shifting E from p at t to p∗ at t ′ and
then to p′′ at t∗∗ is not a rearrangement of evidence first shifting E from p at t to
p∗∗ at t ′ and then to p∗ at t ′′. Field (1978) respectively Shenoy (1991) presents a
probabilistic respectively rank-theoretic update rule that is evidence-oriented in the
sense of characterizing the evidence as such, independently of the prior epistemic
state. Both of these rules are commutative.

The second complaint confuses input and output: Jeffrey respectively Spohn con-
ditionalization does not rule out any evidential input as impossible (just as it does
not rule out any prior epistemic state as impossible that is not already ruled out by
the probability respectively ranking calculus). However, that does not imply that
it is empty as a normative rule. On the contrary, for each prior epistemic and each
evidential input there is one and only one posterior epistemic state that is compatible
with Jeffrey respectively Spohn conditionalization. It is up to the agent what to do
with a given epistemic state and a given evidential input, but it is up to nature which
evidential input the agent receives.

One reason why an epistemic agent’s degrees of belief should obey the prob-
ability calculus is that otherwise she is vulnerable to a Dutch Book (standard
version) or an inconsistent evaluation of the fairness of bets (depragmatized ver-
sion). For similar reasons she should update her subjective probability according
to strict or Jeffrey conditionalization, depending on the format of the new infor-
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mation. Why should degrees of disbelief obey the ranking calculus? And why
should an epistemic agent update her ranking function according to plain or Spohn
conditionalization?

The answers to these questions require a bit of terminology. An epistemic agent’s
degree of entrenchment for a proposition A is the number of “independent and min-
imally positively reliable” information sources saying A that it takes for the agent
to give up her disbelief that A. If the agent does not disbelieve A to begin with, her
degree of entrenchment for A is 0. If no finite number of information sources is able
to make the agent give up her belief that A is false, her degree of entrenchment for
A is∞.

Suppose we want to determine Sophia’s degree of entrenchment for the proposi-
tion that Vienna is the capital of Austria. This can be done by, say, putting her on
the Stephansplatz and by counting the number of people passing by and telling her
that Vienna is the capital of Austria. Her degree of entrenchment for the proposition
that Vienna is the capital of Austria equals n precisely if she stops disbelieving
that Vienna is the capital of Austria after n people have passed by and told her it
is. The relation between these operationally defined degrees of entrenchment and
the theoretical degrees of disbelief is similar to the relation between betting ratios
and degrees of belief: under suitable conditions (when the information sources are
independent and minimally positively reliable) the former can be used to measure
the latter. Most of the time the conditions are not suitable, though. In Section 3.1
primitivism seemed to be the only plausible game in town. In the present case “going
hypothetical” (Eriksson and Hájek 2007) is more promising: the agent’s degree of
disbelief in A is the number of information sources saying A that it would take for
her to give up her disbelief that A, if those sources were independent and minimally
positively reliable.

Now we are in the position to say why degrees of disbelief should obey the
ranking calculus. They should do so, because an agent’s belief set is and will al-
ways be consistent and deductively closed in the finite/countable/complete sense
just in case her entrenchment function is a finitely/countably/completely minimitive
ranking function and, depending on the format of the evidence, the agent updates
according to plain or Spohn conditionalization (Huber 2007b).

It follows that the above definition of conditional ranks is the only good notion:
both plain and Spohn conditionalization depend on the notion of conditional ranks,
and the theorem does not hold if we replace that notion by another one. Furthermore,
the definition of degrees of entrenchment makes only sense for natural numbers –
after all, we have to count the independent and minimally positively reliable infor-
mation sources. Therefore every concession to possibility theory – be it by adopting
a different notion of conditional ranks or by allowing real-valued ranking functions –
is a concession too much.

With the possible exception of decision making (see, however, Giang and Shenoy
2000), we can do everything with ranking functions that we can do with probability
measures. In fact, in contrast to probability theory, ranking theory also has a notion
of yes-or-no belief that is crucial if we want to stay in tune with traditional episte-
mology. (In addition, this allows for rank-theoretic theories of belief revision and of
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nonmonotonic reasoning that are the topic of the next section.) Let me conclude this
section with what I take to be a further advantage of ranking over probability theory.

Contrary to a widely held view there is no such thing as a genuinely unbiased
assignment of probabilities (an ur- or tabula rasa prior, as we may call it) – even if
we consider just a finite set of (more than two) possibilities. For instance, it is often
said that assigning a probability of 1/6 to each of the six outcomes of a throw of
a die is such an unbiased assignment. To see that this is not so it suffices to note
that it follows from this assignment that the proposition that the number of spots the
die will show after being thrown is greater than one is five times the probability of
its negation. More generally, for every probability measure Pr on the powerset of
{1, . . . , 6} there exists a contingent proposition A such that Pr (A) > Pr

(
A
)
. That

is the sense in which there is no genuinely unbiased ur- or tabula rasa prior. This
is in contrast to ranking theory, where the ur- or tabula rasa prior is that function
� : A → N ∪ {∞} such that � (A) = 0 for all consistent propositions A in A, no
matter how rich the field of propositions A.

In probability theory we cannot adequately model conceptual changes – espe-
cially those that are due the agent’s not being logically omniscient. Prior to learn-
ing a new concept the probabilistic agent is equipped with a probability measure
Pr on some field A over some set W . When the agent learns a new concept,
the possibilities ω in W become more fine grained. For instance, Sophia’s set of
enological possibilities with regard to a particular bottle of wine prior to learning
the concept BARRIQUE is W1 = {red, white}. After learning that concept her set
of possibilities is

W2 = {red & barrique, red &¬ barrique, white & barrique, white &¬ barrique} .

To model this conceptual change adequately, the field of propositions over the
new set of possibilities W2 will contain a counterpart-proposition for each old
proposition in the field over W1. In our example, the fields are the powersets.
The counterpart-proposition of the old proposition that the bottle of wine is red,
{red} ⊆ W1, is {red & barrique, red &¬ barrique} ⊆ W2. The important epistemo-
logical feature of these conceptual changes is that Sophia does not learn any factual
information; that is, she does not learn anything about which of the possibilities
corresponds to the actual world. If �1 is Sophia’s ranking function on the powerset
of W1, we want her �2 to be such that �1 (A) = �2

(
A′

)
for each old proposition

A in the powerset of W1 and its counterpart proposition A′ in the powerset of W2,
and such that �2 (B) = �2

(
B

)
for each (contingent) new proposition B . This is

easily achieved by letting �2 copy �1 on the counterpart-propositions of the old
propositions, and letting it copy the ur-prior on all the new propositions. In contrast
to this there is no way of obtaining probability measures Pr1 on the old field and Pr2

on the new field that are related in this way.
The same is true for the different conceptual change that occurs when Sophia

learns the new concept ROSÉ and thus that her old set of possibilities was not
exclusive. If �1 is Sophia’s ranking function on the powerset of W1, her �3 on the
powerset of W3 = {red, rosé, white} is that function �3 such that �1 ({ω}) = �3 ({ω})
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for each old singleton-proposition {ω}, and �3
({

ω′
}) = 0 for each new singleton-

proposition
{
ω′

}
. Again, we cannot model this change in probability theory, since

the only new probability measure that, in this sense, conservatively extends the old
one assigns 0 to the (union of all) new possibilities. (Note that one and the same
sentence may pick out different propositions with respect to the two sets of possi-
bilities. For instance, with respect to W1 the sentence “It is not a bottle of red wine”
picks out the proposition that it is a bottle of white wine, {white}, while with respect
to W2 this sentence picks out the proposition that it is a bottle of rosé or white wine,
{rosé, white}.) Arntzenius (2003) relies on just this inability of probability theory
to cope with changes of the underlying set of worlds when he uses “spreading” to
argue against conditionalization and reflection.

5 Belief Revision and Nonmonotonic Reasoning

5.1 Belief and Belief Revision

We have moved from degrees of belief to belief, and found ranking theory to provide
a link between these two notions, thus satisfying the Lockean thesis. While some
philosophers (most probabilists) hold the view that degrees of belief are more basic
than beliefs, others adopt the opposite view. This is generally true of traditional epis-
temology, which is mainly concerned with the notion of knowledge and its tripartite
definition as justified true belief. Belief in this sense comes in three “degrees”: the
ideally rational epistemic agent either believes A, or else she believes W \A and thus
disbelieves A, or else she neither believes A nor W \ A and thus suspends judgment
with respect to A. Ordinary epistemic agents sometimes believe both A and W \ A,
but since they should not do so, we may ignore this case.

According to this view an agent’s epistemic state is characterized by the set of
propositions she believes, her belief set. Such a belief set is required to be consis-
tent and deductively closed (Hintikka 1961). In belief revision theory a belief set is
usually represented as a set of sentences from a formal language L rather than as
a set of propositions. The question addressed by belief revision theory (Alchourrón
et al. 1985, Gärdenfors 1988, Gärdenfors and Rott 1995) is how an ideally rational
epistemic agent should revise her belief set B ⊆ L if she learns new information in
form of a sentence α from L. If α is consistent with B in the sense that B �� ¬α,
the agent should simply add α to B and close this set under (classical) logical con-
sequence. In this case her new belief set, i.e. her old belief set B revised by the new
information α, B+̇α, is the set of logical consequences of B ∪ {α}:

B+̇α = Cn (B ∪ α) = {β ∈ L : B ∪ {α} � β}

Things get interesting when the new information α contradicts the old belief set
B. The basic idea is that the agent’s new belief set B+̇α should contain the new
information α and as many of the old beliefs in B as is allowed by the requirement
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that the new belief set be consistent and deductively closed. To state this more pre-
cisely, let us introduce the notion of a contraction. To contract a statement α from
a belief set B is to give up the belief that α is true, but to keep as many of the
remaining beliefs from B while ensuring consistency and deductive closure. Where
B−̇α is the agent’s new belief set after contracting her old belief set B by α, the
A(lchourrón)G(ärdenfors)M(akinson) postulates for contraction −̇ can be stated as
follows. (Note that +̇ as well as −̇ are functions from ℘ (L) × L into ℘ (L).) For
every set of sentences B ⊆ L and any sentences α and β in L:

−̇1. If B = Cn (B), then B−̇α = Cn
(B−̇α

)
. Deductive Closure

−̇2. B−̇α ⊆ B. Inclusion
−̇3. If α �∈ Cn (B), then B−̇α = B. Vacuity
−̇4. If α �∈ Cn (∅), then α �∈ Cn

(B−̇α
)
. Success

−̇5. If Cn ({α}) = Cn ({β}), then B−̇α = B−̇β. Preservation
−̇6. If B = Cn (B), then B ⊆ Cn

((B−̇α
) ∪ {α}). Recovery

−̇7. If B = Cn (B), then
(B−̇α

) ∩ (B−̇β
) ⊆ B−̇ (α ∧ β).

−̇8. If B = Cn (B) and α �∈ B−̇ (α ∧ β), then B−̇ (α ∧ β) ⊆ B−̇α.

−̇1 says that the contraction of B by α, B−̇α, should be deductively closed, if B is
deductively closed. −̇2 says that a contraction should not give rise to new beliefs
not previously held. −̇3 says that the epistemic agent should not change her old
beliefs when she gives up a sentence she does not believe to begin with. −̇4 says
that, unless α is tautological, the agent should really give up her belief that α is
true if she contracts by α. −̇5 says that the particular formulation of the sentence
the agent gives up should not matter; in other words, the objects of belief shoud be
propositions rather than sentences. −̇6 says that the agent should recover her old
beliefs if she first contracts by α and then adds α again. According to −̇7 the agent
should not give up more beliefs when contracting by α ∧ β than the ones she gives
up when she contracts by α alone or by β alone. −̇8 finally requires the agent not to
give up more beliefs than necessary: if the agent gives up α when she contracts by
α ∧ β, she should not give up more than she gives up when contracting by α alone.

Given the notion of a contraction we can now state what the agent’s new belief
set B+̇α should look like. First, the agent should clear B to make it consistent with
α. That is, the agent first should contract B by ¬α. Then she should simply add α

and close under (classical) logical consequence. The recipe just described is known
as the Levi identity:

B+̇α = Cn
((B−̇¬α

) ∪ {α})

Revision +̇ defined in this way satisfies a corresponding list of properties. For
every set of sentences B ⊆ L and any sentences α and β in L:

+̇1. B+̇α = Cn
(B+̇α

)
.

+̇2. α ∈ B+̇α.
+̇3. If ¬α �∈ Cn (B), then B+̇α = Cn (B ∪ {α}).
+̇4. If ¬α �∈ Cn (∅), then ⊥ �∈ B+̇α.
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+̇5. If Cn ({α}) = Cn ({β}), then B+̇α = B+̇β.
+̇6. If B = Cn (B), then

(B+̇α
) ∩ B = B−̇¬α.

+̇7. If B = Cn (B), then B+̇ (α ∧ β) ⊆ Cn
((B+̇α

) ∪ {β}).
+̇8. If B = Cn (B) and ¬β �∈ B+̇α, then Cn

((B+̇α
) ∪ {β}) ⊆ B+̇ (α ∧ β).

(The contradictory sentence ⊥ can be defined as the negation of the tautological
sentence �, ¬�.) Rott (2001) discusses many further principles and variations of
the above.

In standard belief revision theory the new information is always part of the new
belief set. Non-prioritized belief revision relaxes this requirement (Hansson 1999).
Personally I am not quite sure this makes sense conceptually, but the idea seems
to be that the agent might add the new information and then check for consistency,
which makes her give up part or all of the new information again, because her old
beliefs turn out to be more entrenched. (The degrees of entrenchment mentioned in
the previous section are named after this relation, but it is to be noted that the former
are operationally defined, while the latter is a theoretical notion).

The notion of entrenchment provides the connection to degrees of belief. In order
to decide which part of her belief set she wants to give up, belief revision theory
equips the ideally rational epistemic agent with an entrenchment ordering. Techni-
cally, this is a relation � on L such that for all α, β, and γ in L:

E1. If α � β and β � γ , then α � γ . Transitivity
E2. If α � β, then α � β. Dominance
E3. α � α ∧ β or β � α ∧ β. Conjunctivity
E4. If ⊥ �∈ Cn (B), then α �∈ B just in case ∀β ∈ L : α � β. Minimality
E5. If ∀α ∈ L : α � β, then β ∈ Cn (∅). Maximality

B is a fixed set of background beliefs. Given an entrenchment ordering � on L
we can define a revision +̇ as follows:

B+̇α = {β ∈ B : ¬α ≺ β} ∪ {α}

Here α ≺ β holds just in case α � β and β �� α. Then one can prove the
following representation theorem.

Theorem 1 Let L be a formal language, let B ⊆ L be a set of sentences, and let α

be a sentence in L. Each entrenchment ordering� on L induces a revision operator
+̇ on L satisfying +̇1-+̇8 by defining B+̇α = {β ∈ B : ¬α ≺ β} ∪ {α}. For each
revision operator +̇ on L satisfying +̇1-+̇8 there is an entrenchment ordering � on
L that induces +̇ in exactly this way.

It is, however, fair to say that belief revision theorists distinguish between degrees
of belief and entrenchment. Entrenchment, so they say, characterizes the agent’s
unwillingness to give up a particular belief, which may be different from her de-
gree of belief for the respective sentence or proposition. Although this distinction
seems to violate Occam’s razor by unnecessarily introducing an additional epis-
temic level, it corresponds to Spohn’s parallelism (see Spohn’s contribution to this
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volume) between subjective probabilities and ranking functions as well as to Stal-
naker’s stance in his (1996: sct. 3). Weisberg (to appear: sct. 1.7) expresses similar
sentiments.

Suppose the agent’s epistemic state is represented by a ranking function � (on a
field of propositions over the set of models ModL for the language L, as explained
in Section 1). Then the ordering�� that is defined for all α and β in L by

α �� β if and only if � (Mod (¬α)) ≤ � (Mod (¬β))

is an entrenchment ordering for B = {α ∈ L : � (Mod (¬α)) > 0}.
Ranking theory thus covers AGM belief revision theory as a special case. It is

important to see how ranking theory goes beyond AGM belief revision theory. In
the latter theory the agent’s prior epistemic state is characterized by a belief set B
together with an entrenchment ordering �. If the agent receives new information in
form of a sentence α, the entrenchment ordering is used to turn the old belief set into
new one, viz. B+̇α. The agent’s posterior epistemic state is thus characterized by
a belief set only. The entrenchment ordering itself is not updated. Therefore AGM
belief revision theory cannot handle iterated belief changes. To the extent that belief
revision is not simply a one shot game, AGM belief revision theory is thus no theory
of belief revision at all. (The analogous situation in terms of subjective probabilities
is to characterize the agent’s prior epistemic state by a set of propositions together
with a subjective probability measure, and to use that measure to update the set of
propositions without ever changing the probability measure itself.)

In ranking theory the agent’s prior epistemic state is characterized by a ranking
function � (on a field over ModL). That function determines the agent’s prior be-
lief set B, and so there is no need to additionally specify B. If the agent receives
new information in form of a proposition A, as (the propositional equivalent of)
AGM belief revision theory has it, there are infinitely many ways to update her
ranking function that all give rise to the same new belief set B+̇A. Let n be an ar-
bitrary positive number in N ∪ {∞}. Then Spohn conditionalization on the partition
{A, ModL \ A} with n > 0 as new rank for ModL \ A (and consequently 0 as new
rank for A), �′n (ModL \ A) = n, determines a new ranking function �′n that induces
a belief set B′n . It holds for any two positive numbers m and n in N ∪ {∞}:

B′m = B′n = B+̇A,

where the latter is the belief set described two paragraphs ago.
Plain conditionalization is the special case of Spohn conditionalization with ∞

as new rank for ModL \ A. The new ranking function obtained in this way is
�′∞ = � (· | A), and the belief set it induces is the same B+̇A as before. However,
once the epistemic agent assigns rank ∞ to ModL \ A, she can never get rid of
A again (in the sense that the only information that would allow her to give up
her belief that A is to become certain that A is false, i.e. assign rank ∞ to A; that
in turn would make her epistemic state collapse in the sense of turning it into the
tabula rasa ranking from Section 4 that is agnostic with respect to all contingent
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propositions). Just as one is stuck with A once one assigns it probability 1, so one
is basically stuck with A once one assigns its negation rank ∞. As we have seen,
AGM belief revision theory is compatible with always updating in this way. That
explains why it cannot handle iterated belief revision. To rule out this behavior one
has to impose further constraints on entrenchment orderings. Boutilier (1996) as
well as Darwiche and Pearl (1997) do so by postulating constraints compatible with,
but not yet implying ranking theory. Hild and Spohn (2008) argue that one really
has to go all the way to ranking theory. Stalnaker (2009) critically discusses these
approaches and argues that one needs to distinguish different kinds of information,
including meta-information about the agent’s own beliefs and revision policies as
well as about the sources of her information.

5.2 Belief and Nonmonotonic Reasoning

A premise β classically entails a conclusion γ , β � γ , just in case γ is true in
every model or truth value assignment in which β is true. The classical consequence
relation � (conceived of as a relation between two sentences, i.e. �⊆ L× L, rather
than as a relation between a set of sentences, the premises, and a sentence, the
conclusion) is non-ampliative in the sense that the conclusion of a classically valid
argument does not convey information that goes beyond the information contained
in the premise.
� has the following monotonicity property. For any sentences α, β, and γ in L:

If β � γ, then α ∧ β � γ.

That is, if γ follows from β, then γ follows from any sentence α ∧ β that is
at least as logically strong as β. However, everyday reasoning is often ampliative.
When Sophia sees the thermometer at 33◦ Celsius she infers that it is not too cold
to wear her sundress. If Sophia additionally sees that the thermometer is placed
above the oven where she is boiling her pasta, she will not infer that anymore. Non-
monotonic reasoning is the study of reasonable consequence relations which violate
monotonicity (Gabbay 1985, Makinson 1989, Kraus et al. 1990; for an overview see
Makinson 1994).

For a fixed set of background beliefs B, the revision operators +̇ from the
previous section give rise to nonmonotonic consequence relations |∼ as follows
(Makinson and Gärdenfors 1991):

α |∼ β if and only if β ∈ B+̇α

Nonmonotonic consequence relations on a language L are supposed to satisfy the
following principles from Kraus et al. (1990).

KLM1. α |∼ α. Reflexivity
KLM2. If � α ↔ β and α |∼ γ , then β |∼ γ . Left Logical Equivalence
KLM3. If � α → β and γ |∼ α, then γ |∼ β. Right Weakening
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KLM4. If α ∧ β |∼ γ and α |∼ β, then α |∼ γ . Cut
KLM5. If α |∼ β and α |∼ γ , then α ∧ β |∼ γ . Cautious Monotonicity
KLM6. If α |∼ β and α |∼ γ , then α ∨ β |∼ γ . Or

The standard interpretation of a nonmonotonic consequence relation |∼ is “If . . .,
normally . . .”. Normality among worlds is spelt out in terms of preferential models
〈S, l,≺〉 for L, where S is a set of states and l : S → ModL is a function from S
to the set of models for L, ModL, that assigns each state s its model or world l (s).
The abnormality relation ≺ is a strict partial order on ModL that satisfies a certain
“smoothness” condition. For our purposes it suffices to note that the order among
the worlds that is induced by a pointwise ranking functions is such an abnormality
relation. Given a preferential model 〈S, l,≺〉 we can define a nonmonotonic conse-
quence relation |∼ as follows. Let α̂ be the set of states in whose worlds α is true,
i.e. α̂ = {s ∈ S : l (s) |= α}, and define

α |∼ β if and only if ∀s ∈ α̂ : if ∀t ∈ α̂ : t �≺ s, then l (s) |= β.

That is, α |∼ β holds just in case β is true in the least abnormal among the
α-worlds. Then one can prove the following representation theorem.

Theorem 2 Let L be a language, let B ⊆ L be a set of sentences, and let α be
a sentence in L. Each preferential model 〈S, l,≺〉 for L induces a nonmonotonic
consequence relation |∼ on L satisfying KLM1-KLM6 by defining

α |∼ β if and only if ∀s ∈ α̂ : if ∀t ∈ α̂ : t �≺ s, then l (s) |= β.

For each nonmonotonic consequence relation on L satisfying KLM1-KLM6 there is
a preferential model 〈S, l,≺〉 for L that induces |∼ in exactly this way.

Whereas the classical consequence relation preserves truth in all logically possi-
ble worlds, nonmonotonic consequence relations preserve truth in all least abnormal
worlds. For a different semantics in terms of inhibition nets see Leitgeb (2004).

What is of particular interest to us is the fact that these nonmonotonic conse-
quence relations can be induced by a fixed set of background beliefs B and various
forms of degrees of belief over B. We will not attempt to indicate how this works.
Makinson’s contribution to this volume is an excellent presentation of ideas under-
lying nonmonotonic reasoning and its relation to degrees of belief. Similar remarks
apply to Rott’s contribution to this volume, in which entrenchment orderings, rank-
ing functions, and further models of epistemic states are defined for beliefs as well
as disbeliefs and non-beliefs.
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Part I
Plain Belief and Degrees of Belief



Beliefs, Degrees of Belief, and the Lockean
Thesis

Richard Foley

What propositions are rational for one to believe? With what confidence is it rational
for one to believe these propositions? Answering the first of these questions requires
an epistemology of beliefs, answering the second an epistemology of degrees of
belief.

The two accounts would seem to be close cousins. An account of rational de-
grees of belief simply takes a more fine-grained approach than does an account of
rational beliefs. The latter classifies belief-like attitudes into a threefold scheme of
believing, disbelieving, and withholding judgment, whereas the former introduces
as many distinctions as needed to talk about the levels of confidence one has in
various propositions.

Indeed, there is a simple way to think about the relationship between the two.
Begin with the assumption that one believes a proposition P just in case one is
sufficiently confident of the truth of P. Now add the assumption that it is rational
for one’s confidence in a proposition to be proportionate to the strength of one’s
evidence. Together these two assumptions suggest a thesis, namely, it is rational for
someone S to believe a proposition P just in case it is rational for S to have a degree
of confidence in P that is sufficient for belief.

Call this ‘the Lockean thesis,’ not so much because John Locke explicitly en-
dorses it—he doesn’t—but rather because he hints at the idea that belief-talk is
but a general way of classifying an individual’s confidence in a proposition. An
immediate benefit of the Lockean thesis is that it sidesteps the worry that it is too
much to expect anyone to believe very many propositions with exactly the degree of
confidence that the evidence warrants. For according to the thesis, S can rationally
believe P even if S’s specific degree of belief in it is somewhat higher or lower than
it should be, given S’s evidence.

This is a tidy result, but it does invite the follow-up question, what degree of
confidence is sufficient for belief? But even if it proves difficult to identify a precise
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threshold for belief, this in itself wouldn’t seem to constitute a serious objection
to the Lockean thesis. It only illustrates what should have been obvious from the
start, namely, the vagueness of belief talk. According to the Lockean, belief-talk and
degree-of-belief-talk are not fundamentally different. Both categorize one’s confi-
dence in the truth of a proposition. Belief-talk does so in a less fine-grained and
more vague way, but on the other hand vagueness may be just what is needed, given
it is often not possible to specify the precise degree of confidence that someone has
in a proposition.

Still, it seems as if we should be able to say something, if only very general,
about the threshold above which one’s level of confidence in a proposition must rise
in order for someone to believe that proposition. What to say is not immediately
obvious, however, since there doesn’t seem to be a non-arbitrary way of identifying
a threshold. But perhaps we don’t need a non-arbitrary way. Why not just stipulate
a threshold? We deal with other kinds of vagueness by stipulation. Why not do the
same here?

Indeed, it might not even matter much where the threshold is as long as we are
consistent in applying it. There are some restrictions, of course. We won’t want to
require subjective certainty for belief. So, the threshold shouldn’t be that high. On
the other extreme, we will want to stipulate that for belief one needs to have more
confidence in a proposition than its negation. But except for these two restrictions,
we would seem to be pretty much on our own. What matters, at least for the theory of
rational belief, is that some threshold be chosen. For once a threshold x is stipulated,
we can use the Lockean thesis to say what is required for rational belief: it is rational
for S to believe P just in case it is rational for S to have degree of confidence y in P,
where y ≥ x.

Or can we? Although at first glance this seems to be an elegant way to think
about the relationship between rational belief and rational degrees of belief, a sec-
ond glance suggests that it may lead to paradoxes, the most well known of which
are the lottery and preface. More precisely, it leads to paradoxes if we make two
assumptions about rational belief.

The first is non-contradiction: if it is rational for S to believe P, it cannot be
rational for S to believe not-P. A fortiori it is impossible for the proposition (P and
not-P) to be rational for S.

The second assumption is that rational belief is closed under conjunction: if it is
rational for S to believe P and rational for S to believe Q, it is also rational for S to
believe their conjunction, (P & Q).

I will be arguing that this second assumption should be rejected, but for now the
relevant point is that if both assumptions are granted, the Lockean thesis must be
abandoned. The argument is relatively simple.

Suppose that degrees of belief can be measured on a scale from 0 to 1, with 1
representing subjective certainty. Let the threshold x required for belief be any real
number less than 1. For example, let x = 0.99. Now imagine a lottery with 100
tickets, and suppose that it is rational for you to believe with full confidence that the
lottery is fair and as such there will be only one winning ticket. In particular, assume
it is rational for you to believe that (either ticket #1 will win or ticket #2 will win . . .
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or ticket #100 will win). This proposition is logically equivalent to the proposition
that it’s not the case that (ticket #1 will not win and ticket #2 will not win . . . and
ticket #100 will not win). Assume you realize this, and as a result it is rational for
you to believe this proposition.

Suppose finally that you have no reason to distinguish among the tickets con-
cerning their chances of winning. So, it is rational for you to have 0.99 confidence
that ticket #1 will not win, 0.99 confidence that ticket #2 will not win, and so on for
each of the other tickets. Then according to the Lockean thesis, it is rational for you
to believe each of these propositions, since it is rational for you to have a degree of
confidence in each that is sufficient for belief. But if rational belief is closed under
conjunction, it is also rational for you to believe that (ticket #1 will not win and ticket
#2 will not win . . . and ticket #100 will not win). However, we have already assumed
that it is rational for you to believe the denial of this proposition. But according to
the assumption of noncontradiction, it is impossible for contradictory propositions
to be rational for you. So, contrary to the initial hypothesis, x cannot be 0.99.

A little reflection indicates that comparable arguments can be used to show that
x cannot be anything other than 1, since the same problem can arise with respect
to a lottery of any size whatsoever, no matter how large. However, we have already
agreed that x need not be 1. Subjective certainty is not required for belief.

To make matters even worse, another argument similar in form, the preface argu-
ment, seems equally devastating to the Lockean thesis from the opposite direction.
It seems to show that a degree of confidence greater than 0.5 is not necessary for
belief.

Here is a version of the preface. You write a book, say, a history book. In it
you make many assertions, each of which you can adequately defend. In particular,
it is rational for you to have a degree of confidence x or greater in each of these
propositions, where x is sufficient for belief but less than l. (This forces us to bracket
for the moment the conclusion of the lottery argument.) Even so, you admit in the
preface that you are not so naive as to think that your book contains no mistakes.
You understand that any book as ambitious as yours is likely to contain at least a
few errors. So, it is highly likely that at least one of the propositions that you assert
in the book, you know not which, is false. Indeed, if you were to add appendices
with propositions whose truth is independent of those you have defended previously,
the chances of there being an error somewhere in your book becomes greater and
greater. Thus, it looks as if it can be rational for you to believe the proposition that at
least one of the claims in your book, you know not which, is false. This proposition
is equivalent to the denial of the conjunction of the assertions in your book, but
given conjunctivity and noncontradiction, it cannot be rational for you to believe this
proposition. On the contrary, it must be rational for you to believe the conjunction of
the claims in your book. This is so despite the fact that it is rational for you to have
a low degree of confidence in this conjunction, a degree of confidence significantly
less than 0.5.

These two arguments create a pincer movement on the Lockean thesis. The lot-
tery seems to show that no rational degree of confidence less than 1.0 can be suf-
ficient for rational belief, while the preface seems to show that a rational degree of
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confidence greater than 0.5 is not even necessary for rational belief. Despite being
similar in form, the two arguments are able to move against the Lockean thesis
from opposite directions because the controlling intuitions in the two cases are
different.

The controlling intuition in the lottery case is that it is rational for you to believe
that the lottery is fair and that as such exactly one ticket will win. Unfortunately,
the only plausible way to satisfy this intuition without violating either the non-
contradiction assumption or the conjunctivity assumption is to insist that having
0.99 confidence in a proposition is not sufficient for belief.

On the other hand, the controlling intuition in the preface case is just the op-
posite. The intuition is that it is rational for you to believe each of the individual
propositions in your book. Unfortunately, if we grant this intuition, then given the
conjunctivity assumption we must also admit that it is rational for you to believe the
conjunction of the propositions you assert in your book, despite the fact that it is
rational for you to have less than 0.5 confidence in this conjunction.

Thus, the lottery and the preface might be taken to show that the most serious
problem for the Lockean thesis has nothing to do with the vagueness of belief. If
that were the only problem, it could be dealt with by stipulating some degree of
belief as the threshold. The problem, rather, is that there doesn’t seem to be any
threshold that can be stipulated without encountering paradox.

This conclusion follows only if we grant the above two assumptions, however.
A natural reaction, then, is to wonder whether the problem is caused by one or the
other of these assumptions rather than the Lockean thesis. This is precisely what I
will be arguing.

But first, consider another kind of diagnosis, one that claims the problems of
the lottery and the preface are the result of thinking about the two cases in terms
of beliefs simpliciter rather than degrees of belief. If we were to abandon the epis-
temology of belief and were to be content with having only an epistemology of
degrees of belief, the issues of the lottery and the preface are avoided. We simply
observe that it is rational for you to have a high degree of confidence in the individual
propositions—in the lottery, the proposition that ticket #1 will lose, that ticket #2
will lose, and so on; and in the preface, the propositions that constitute the body of
the book—but a low degree of confidence in their conjunctions. We then leave the
matter at that, without trying to decide whether it is rational to believe simpliciter
these propositions. We don’t attempt to stipulate a threshold of belief. We just cease
talking about what it is rational to believe. We abandon the epistemology of belief.

Despite the radical nature of this proposal, it has its appeal, because it does make
the problems of the lottery and preface disappear. I will be arguing, however, that we
would be losing something important if we were to abandon the theory of rational
belief and that we are in no way forced into this desperate position by the above
argument, which is grounded on the assumption than an adequate theory of rational
belief must contain a conjunction rule.

My tack, in other words, is to stand the above argument on its head. I begin by
presuming that the project of formulating an epistemology of belief, at least on the
face of it, is a legitimate and important project. The second premise is the same
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as above: any theory of rational belief must either reject the conjunction rule or
face absurd consequences. I conclude that we ought to reject the conjunction rule,
which in any event lacks initial plausibility. After all, a conjunction can be no more
probable than its individual conjuncts, and often is considerably less probable.

Thus, there is at least a prima facie case to be made against the conjunction
rule. But to be sure, there are also prima facie worries associated with rejecting
the rule, the most fundamental of which is that if we are not required on pains of
irrationality to believe the conjunction of propositions that we rationally believe, we
might seem to lose some of our most powerful argumentative and deliberative tools.
In particular, deductive reasoning might seem to lose much of its force, since without
a conjunction rule, we might seem to be at liberty to accept the premises of an
argument and accept also that the argument is deductively valid and yet nonetheless
deny that we are rationally committed to believing the conclusion.

This is a misplaced worry. Some sort of conjunction rule is indeed essential
for deductive reasoning, but the relevant rule is not one that governs beliefs but
rather such attitudes as presuming, positing, assuming, supposing, and hypothesiz-
ing. Each of these is a form of commitment that, unlike belief, is context-relative.
You don’t believe a proposition relative to certain purposes but not believe it relative
to others. You either believe or you don’t. But presuming, positing, and assuming
are not like this. Having such attitudes toward a proposition is rather a matter of your
being prepared to regard the proposition as true for a certain range of purposes or in
a certain range of situations. Moreover, relative to these purposes or situations, the
attitudes are conjunctive. If for the purposes of a discussion you assume (suppose,
posit) P and if for that same discussion you also assume (suppose, posit) Q, you
are committed within that context to their conjunction, and committed as well to
anything their conjunction implies.

Deductive reasoning is typically carried on in terms of such attitudes rather than
beliefs. Since you can deduce R from P and Q even if you don’t believe P or Q, the
reasoning process here cannot be characterized as one that directly involves beliefs.
It is not a matter of your moving from your beliefs in P and Q to a belief in R. The
attitudes involved are weaker than beliefs. For purposes of your deliberations, you
have assumed or posited P and you have done the same for Q.

Suppose, on the other hand, that you do in fact believe both P and Q. This doesn’t
alter the nature of the deductive reasoning, and one sign of this is that the deduc-
tion has no determinant consequences for what you believe. In deducing R from P
and Q, you can just as well abandon P or abandon Q (or both) as believe R. The
deductive reasoning is neutral among these alternatives. Thus once again, it cannot
be construed as a matter of moving from belief to belief. You may be engaging in
the reasoning in order to test your beliefs P and Q, but the reasoning itself must
be regarded as involving attitudes that are distinct from belief. For the purposes of
the test, you hypothetically suspend belief in P and Q and adopt an attitude toward
each that is weaker than belief. You assume or posit both P and Q and from these
assumptions deduce R. You are then in a position to deliberate about whether to
abandon P or Q (or both) or to believe R. The latter kind of deliberation does directly
concern your beliefs, but on the other hand it is not deductive reasoning.
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Consider a related worry. It might be thought without a conjunctive rule gov-
erning belief, we would lose the regulative role that considerations of consistency
play in our deliberations about what to believe. Suppose, for example, that someone
constructs a reductio argument out of a number of propositions that you believe. If
rational belief need not be conjunctive and if as a result you can knowingly but
rationally have inconsistent beliefs, then without irrationality it seems as if you
can acknowledge the validity of this reductio without its having any effect on your
beliefs.

The way to deal with this worry is to be clear about the nature of reductios.
Reductios prove that the conjunction of their premises cannot possibly be true, that
is, they prove inconsistency. They need not, however, show which of the presup-
posed premises is false. They only sometimes do this and then only in a derivative
way by proving that the conjunction is false. In proving that the conjunction is false,
reductios provide a potentially powerful argument against a given premise of the
argument, but the strength of the argument against the premise depends on a number
of factors.

Suppose, for example, that the premises of the argument are so theoretically in-
tertwined with one another that they tend to stand or fall together. An argument
against the truth of their conjunction will then constitute a strong argument against
each and every premise as well.

Alternatively, if one of the premises is distinctly weak while the others are strong
and there are a relatively small number of premises, a reductio provides a devastat-
ing argument against the weakest premise.

On the other hand, there are reductios whose premises are not like either of these
cases. Their premises aren’t so theoretically intimate that they tend to stand or fall
together. Moreover, even the weakest premise is relatively strong and the number of
premises is large. But if so, the strength of the reductio argument against even the
weakest premise may be only negligible. This is the reverse of the idea, common
enough in defenses of coherence theories of epistemic justification, that although
consistency among a very small or theoretically untight set of propositions doesn’t
have much positive epistemic significance, consistency among a very large and the-
oretically tight set does. The point here, in contrast, is that although inconsistency in
a very large and untight set of propositions need not have much negative epistemic
significance, inconsistency among a very small or tight set does. The latter precludes
the possibility that it is rational for you to believe each and every proposition in the
set, but the former need not.

This is not to say that the discovery of inconsistency among a large and untight
set of propositions is ever altogether irrelevant. It isn’t. Inconsistency is always an
indication of inaccuracy, and because of this, it should always put you on guard.
In particular, it puts you on guard about using these propositions as evidence. On
the other hand, a proposition can be rational for you to believe without it being
the case that you can use it unrestrictedly as evidence to argue for or against other
propositions. Although it sometimes can be rational to believe inconsistent propo-
sitions, it is never rational to base further deliberation and inquiry on inconsistent
propositions.
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So, a convincing reductio does show that it is irrational for you to believe the con-
junction of its premises, because in doing so you would be believing an internally
contradictory proposition. It also puts you on alert about the individual premises.
This, in turn, may result in restrictions on how these propositions can be used as
evidence. Even so, the case against the individual premises need not be so great
as to make it irrational for you to believe them. The lottery, the preface, and the
more general case of a fallibilist belief about your other beliefs are all examples of
this. In each of these cases, it is possible to construct a reductio out of propositions
that are rational for you believe, but a huge number of propositions are involved in
establishing the inconsistency. The propositions are thus not serious competitors of
one another. Nor are they so deeply intertwined with one another theoretically that
they tend to stand or fall together.

The bottom line, then, is that the discovery of inconsistency often, but not al-
ways, makes for an effective reductio, that is, a reductio that constitutes powerful
arguments against one or more members of the inconsistent set of propositions. On
the other hand, it is precisely the rejection of the conjunction rule that allows us to
say when a reductio can be so used and when it cannot.

Rejecting the conjunction rule does preclude one use of reductios. It precludes
their being used to prove that knowingly believing inconsistent propositions is al-
ways and everywhere irrational. But this is hardly a criticism, since precisely the
issue in question is whether this is indeed always and everywhere irrational. I say
that it is not; that the lottery, the preface, and the case of a fallibilist belief about
one’s other beliefs plainly illustrate this; and that attempts to deny the obvious in
these cases are based in part upon a failure to distinguish evidence from rational
belief, and in part upon the unfounded worry that if inconsistencies are allowed
anywhere they will have to be allowed everywhere.

Besides, what are the alternatives to rejecting the conjunction rule? They are to
give up on the epistemology of belief altogether or to find some other way of dealing
with the preface and the lottery within the confines of a theory of rational belief that
retains the conjunction rule. But on this point, the critics of theories of rational belief
are right. If we retain the conjunction rule, there is no natural way to do justice to
the controlling intuitions of both the lottery and the preface.

Recall that the controlling intuition in the lottery is that it is rational for you to
believe that the lottery is fair and that as such exactly one ticket will win. But with
a conjunction rule, we are then forced to conclude that it cannot be rational for you
to believe of any given ticket that it will lose, for if this were rational, it would be
rational to believe of each ticket that it will lose, since by hypothesis your evidential
position with respect to each is the same. But if it were rational for you to believe of
each ticket that it will lose, then via the conjunction rule, it would also be rational
for you to believe that (#1 will not win & #2 will not win . . . & #n will not win). This
proposition is logically equivalent to the proposition that it’s not the case (#1 will
win or #2 will win . . . or #n will win). If it were rational for you to believe the latter
proposition, however, it would be rational for you to believe explicitly contradictory
propositions. But this is impossible: explicitly contradictory propositions cannot be
simultaneously rational for you.
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Unfortunately, if we reason in a parallel way about the preface, we find ourselves
denying the controlling intuition about it, namely, that it is rational for you to believe
the individual propositions that constitute the body of your book. This in turn would
have broadly skeptical implications, since preface like cases can be created out of
virtually any very large set of ordinary beliefs simply by adding to the set the belief
that at least one member of the set is false. If, on the other hand, we grant that each
of the propositions in the preface can be rational for you, we are forced to conclude,
via the conjunction rule, that it is also rational for you to believe the conjunction of
these propositions despite the fact that the conjunction is unlikely to be true.

To be sure, there are important differences between the lottery and the preface.
An especially noteworthy one is that in the preface you can have knowledge of the
propositions that make up your book whereas in the lottery you do not know of
any given ticket that it will lose. This difference, however, is to be explained by
the prerequisites of knowledge, not those of rational belief. The precise form of the
explanation will depend on one’s account of knowledge. For example, according
to one kind of account, to know a proposition P you must have strong evidence
for P that does not equally support a falsehood. In the lottery, however, it is the
same evidence that supports the proposition that ticket #1 in the lottery will lose,
that ticket #2 will lose, that ticket #3 will lose, and so on. Thus, given the above
requirement for knowledge, you do not have knowledge of any of these propositions
even though you have a rational true belief in all but one.

By contrast, the evidence that you have for each of the individual propositions in
your book are not like this. By hypothesis, you have distinct evidence for the distinct
propositions. Thus, even if one is false, the evidence you have for the others do not
necessarily support the false proposition. And so, nothing in the above requirement
implies that you do not have knowledge of these other propositions.

But all this is irrelevant to the main point at hand, which is that there is a straight-
forward way of dealing with the lottery and the preface without repudiating the
epistemology of belief. It is to reject the assumption that rational belief is closed
under conjunction. This allows us to stipulate a threshold for belief, if only a vague
one, without paradox.

Nevertheless, it is still worth asking whether we shouldn’t abandon the episte-
mology of belief. Doing so makes it easier to deal with the lottery and the preface.
We simply say that it is rational for you to have a high degree of confidence in each
of the particular assertions in those cases and a low degree of confidence in their
conjunction, and we leave the matter at that, refusing even to entertain the question
of what it is rational for you to believe simpliciter. Why have two theories when
one might do just as well?

The answer is that one won’t do just as well. There are deep reasons for wanting
an epistemology of beliefs, reasons that an epistemology of degrees of belief by its
very nature cannot possibly accommodate.

Consider a betting situation in which you know that nine of the ten cups on the
table cover a pea, and you are offered the opportunity to bet ‘pea’ or ‘not-pea’ on any
combination of the ten cups, with a $1 payoff for each correct guess and a $1 loss
for each incorrect guess. In such a situation, a decision to bet ‘pea’ on each of the
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ten cups is rational. This is the optimal betting strategy even though you realize that
this series of bets precludes an ideal outcome, in the sense that you cannot possibly
win all of the bets. You know in advance that one is going to lose. Still, this is your
best overall strategy.

Notice that the number of options available to you in this case is sharply limited.
You can either bet ‘yes’ or ‘no’ on a pea being under a cup or you can refuse to bet.
The theory of rational belief is concerned with epistemic situations that resemble
this kind of restricted betting situation. The three betting options correspond to the
three options with which the theory of rational belief is concerned: believing, dis-
believing, and withholding. To be sure, not every betting situation is one in which
the options are limited to just three. So too there is nothing in principle that limits
belief-like options to just three. We can and do have various degrees of confidence
in propositions, and we can and do ask whether our degrees of confidence are appro-
priate. Even so, in our deliberations we often want to limit our belief-like options to
just three, and likewise in gleaning information from others we often want to limit
them to just three. We often find it useful and even necessary to do so. We exert
pressure upon others and upon ourselves to take intellectual stands.

In reading a manuscript of this sort, for example, you expect me to say what I
think is true and what I think is false about the issues at hand. You expect me not to
qualify my every assertion with the degree of confidence I have in it. You want my
views to be more economically delivered than this. And so it is with a host of other
informative, argumentative, and decision-making activities.

In decision making, for instance, we want and need at least some of the param-
eters to be set out without qualification. We first identify what we believe to be the
acts, states, and outcomes that are appropriate for specifying the problem. It is only
after we make this specification that there is a well-formed decision upon which
to deliberate. It is only then that our more fine-grained attitudes—in particular, our
degrees of confidence that various acts will generate various outcomes—come into
play.

Similarly in expository books and articles, in reports, in financial statements, in
documentaries, and in most other material designed to transfer information, we want
much of the information delivered in black-and-white fashion. We want a definite
yes or no on the statements in question while at the same time recognizing that this
is not always feasible. Often the information available is not sufficiently strong one
way or the other to allow the author to take a definite stand on all of the issues, in
which case we tolerate a straddling of the fence.

Even so, the overall pattern is clear. If all the information provided to us by
others were finely qualified with respect to the provider’s degree of confidence in it,
we would soon be overwhelmed. It is no different with our private deliberations. We
don’t have finely qualified degrees of confidence in a wide variety of propositions,
but even if we did, we would soon find ourselves inundated if we tried to deliberate
about complicated issues on the basis of them.1

1 See Gilbert Harman, Change in View (Cambridge: MIT Press, 1988), Chapter 3.
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We don’t always need to take definite stands, of course. We sometimes welcome
and even demand probabilities, but even here, the probabilities are arrived at against
a backdrop of black-and-white assumptions—that is, a backdrop of belief. I calcu-
late what to bet before I draw my final card, and I note to myself that the probability
of the drawn card’s being a heart, given the cards in my hand and the exposed cards
of my opponents, is 0.25. Or I note that the probability of the die coming up six
is 0.16667, or the probability of an American male’s dying of a heart attack prior
to age forty is 0.05. The assignment of such probabilities depends on antecedent
black-and-white beliefs. I believe that the deck of cards is a standard deck, that the
die isn’t weighted, and that the statistics on heart attacks were reliably gathered. It
might be argued that these background beliefs are so close to certain that we ignore
their probabilities, but this is just the point. There are so many potentially distorting
factors that we need to ignore most of them. We couldn’t possibly keep track of
all of them, much less have all of them explicitly enter into our deliberations. We
therefore ignore many of them despite the fact that we recognize that there is some
probability of their obtaining. We are content with our black-and-white beliefs about
these matters.

So, we often try to avoid probabilistic qualifications, both in our own case and
in the case of others. Indeed, a penchant for making such qualifications is in some
contexts regarded as a mark of an overly cautious or even slippery personality. We
do not want to get our everyday information from the overly opinionated but neither
do we want to get it from the overly diffident or cagey. We commonly need others
to provide us with a sharply differentiated picture of the situation as they see it.

In effect, we expect others, whether scientists, teachers, butchers, journalists,
plumbers, or simply our friends, to act as jurors for us, delivering their black-and-
white judgments about the facts as best they can. In the American legal system, for
example, juries have three options in criminal proceedings. Each particular juror
has only two—to vote ‘innocent’ or to vote ‘guilty’—but collectively they have
three. If each individual juror votes ‘innocent’ the jury reaches a collective verdict of
innocence and thereby acquits the defendant; if each votes ‘guilty’ the jury reaches
a collective verdict of guilt and thereby convicts the defendant; otherwise the result
is a hung jury, in which neither innocence nor guilt is declared.

No room is provided for judgments of degree here. Juries are not allowed to
qualify their judgments. They cannot choose among ‘almost certainly guilty’ as
opposed to ‘highly likely to be guilty’ as opposed to ‘more likely than not to be
guilty’. A fortiori they are not given the option of delivering numerically precise
judgments. They cannot, for example, judge that it is likely to degree 0.89 that the
defendant is guilty. Nothing in theory precludes a legal system from allowing such
fine judgments and then adjusting the punishment to reflect the degree of belief that
the jury has in the defendant’s guilt, but there are good reasons for opposing a legal
system of this sort. Such a system would be unwieldy and would invite injustice,
since it would increase the percentage of innocent people who are punished.

Taking stands is an inescapable part of our intellectual lives, and the epistemol-
ogy of belief is the study of such stands. The range of options is restricted to just
three: to say yes to a proposition, to say no to it, or to remain neutral on it. The
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project is then to describe what is the best, or at least a satisfactory, combination of
yes, no, and neutral elements to adopt, not for all time but for now.

Admittedly, it is sometimes odd to report opinion within a belief/disbelief/
withhold judgment trichotomy. Doing so is sometimes even misleading. This is
especially likely to be so with respect to games of chances and other situations in
which it is natural to work with probabilities. In lottery cases, for example, you may
be reluctant to say without qualification that you believe that ticket #23 will not win.
You will be especially reluctant to say this if #23 is your ticket. To do so would be to
under describe your opinion and would encourage misunderstanding (Well, if you
believe it will lose, why did you buy it?). Even here, however, we can still ask, if
you were forced to give a black-and-white picture, what picture should it be? Could
it be rational for you to say yes to the propositions that ticket #1 will not win, that
#2 not win, and so on, even though you realize one of these tickets will win?

I have been arguing that this can be rational for you. A combination of yes, no,
and neutral elements that you know in advance is not ideally accurate can nonethe-
less be a satisfactory one for you, given your evidential situation and given the al-
ternatives. The lottery, the preface, and the more general case of having fallibilistic
beliefs about your other beliefs all illustrate this.



The Lockean Thesis and the Logic of Belief

James Hawthorne

1 Introduction

In a penetrating investigation of the relationship between belief and quantitative
degrees of confidence (or degrees of belief ) Richard Foley (1992) suggests the fol-
lowing thesis:

. . . it is epistemically rational for us to believe a proposition just in case it is epistemically
rational for us to have a sufficiently high degree of confidence in it, sufficiently high to make
our attitude towards it one of belief.

Foley goes on to suggest that rational belief may be just rational degree of confi-
dence above some threshold level that the agent deems sufficient for belief. He finds
hints of this view in Locke’s discussion of probability and degrees of assent, so he
calls it the Lockean Thesis.1

The Lockean Thesis has important implications for the logic of belief. Most
prominently, it implies that even a logically ideal agent whose degrees of confi-
dence satisfy the axioms of probability theory may quite rationally believe each of a
large body of propositions that are jointly inconsistent. For example, an agent may
legitimately believe that on each given occasion her well-maintained car will start,
but nevertheless believe that she will eventually encounter a dead battery.2 Some
epistemologists have strongly resisted the idea that such beliefs can be jointly ra-
tionally coherent. They maintain that rationality, as a normative standard, demands
consistency among all of the agent’s beliefs – that upon finding such an inconsis-
tency, the rational agent must modify her beliefs. The advocates of consistent belief
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allow that a real agent may legitimately fall short of such an ideal, but the legitimacy
of this short-fall is only sanctioned, they maintain, by the mitigating circumstance
of her limited cognitive abilities – in particular by her lack of the kind of logical om-
niscience one would need in order to compute enough of the logical consequences
of believed propositions to uncover the inconsistencies. But if the Lockean Thesis
is right, the logic of belief itself permits a certain degree of inconsistency across the
range of an agent’s beliefs, even for idealized, logically omniscient agents.3

So we are faced with two competing paradigms concerning the nature of rational
belief. I don’t intend to directly engage this controversy here.4 My purpose, rather,
is to spell out a qualitative logic of belief that I think provides a more compelling
model of coherent belief than the quantitative logic based on probabilistic degrees
of confidence. I’ll show that this qualitative logic fits the Lockean Thesis extremely
well. More specifically, this logic will draw on two qualitative doxastic primitives:
the relation of comparative confidence (i.e. the agent is at least as confident that
A as that B) and a predicate for belief (i.e. the agent believes that A). It turns
out that this qualitative model of belief and confidence shares many of the benefits
associated with the probabilistic model of degrees of confidence. For, given any
such comparative confidence relation and associated belief predicate, there will be
a probability function and associated threshold that models them in such a way that
belief satisfies the Lockean Thesis.

2 Ideal Agents and the Qualitative Lockean Thesis

The Lockean Thesis is clearly not intended as a description of how real human
agents form beliefs. For one thing, real agents don’t often assign numerical degrees
of confidence to propositions. And even when they do, their probabilistic confi-
dence levels may fail to consistently link up with belief in the way the Lockean
Thesis recommends. Indeed, real agents are naturally pretty bad at probabilistic
reasoning – they often fail miserably at even simple deductive reasoning. So clearly
the Lockean Thesis is intended as an idealized model of belief, a kind of norma-
tive model, somewhat on a par with the (competing) normative model according

3 Closely related is the issue of whether knowledge should be subject to logical closure – i.e.
whether a rational agent is committed to knowing those propositions he recognizes to be logically
entailed by the other propositions he claims to know. (See John Hawthorne’s (2004) for an insight-
ful treatment of this matter.) This issue is, however, somewhat distinct from the issue of whether an
agent may legitimately maintain inconsistent collections of beliefs. For, knowledge requires more
than rational belief – e.g. it requires truth. So one might well maintain that everything an agent
claims to know should be jointly consistent (if not, then closure must be rejected!), and yet hold
that an agent may legitimately believe each of some jointly inconsistent collection of propositions
that he doesn’t claim to know.
4 I recommend David Christensen’s (2004) excellent treatment of these issues. Whereas Chris-
tensen draws on the logic of numerical probabilities in developing his view, I’ll show how to get
much the same logic of belief from a more natural (but related) logical base. So the present paper
might be read as offering a friendly amendment to Christensen’s account.
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to which an agent is supposed to maintain logically consistent beliefs. But even
as a normative model, the Lockean Thesis may seem rather problematic, because
the model of probabilistic coherence it depends on seems like quite a stretch for real
agents to even approximate. For, although we seldom measure our doxastic attitudes
in probabilistic degrees, the Lockean Thesis seems to insist that rationality requires
us to attempt to do so – to assign propositions weights consistent with the axioms
of probability theory. Such a norm may seem much too demanding as a guide to
rationality.

To see the point more clearly, think about the alternative logical consistency
norm. It’s proponents describe an ideally rational agent as maintaining a logically
consistent bundle of beliefs. Here the ideal agent is a component of the norma-
tive model that real agents are supposed to attempt to emulate, to the best of their
abilities, to the extent that it is practical to do so. They are supposed to follow the
normative ideal by being on guard against inconsistencies that may arise among
their beliefs, revising beliefs as needed to better approximate the ideal. If instead we
take probabilistic coherence as a normative model, how is the analogous account
supposed to go? Perhaps something like this: Real agents should try to emulate the
ideal agent of the model (to the best of their abilities) by attempting to assign proba-
bilistically coherent numerical weights to propositions; they should then believe just
those propositions that fall above some numerical threshold for belief appropriate to
the context, and should revise probabilistic weights and beliefs as needed to better
approximate the ideal.

The problem is that this kind of account of how probabilistic coherence should
function as a normative guide seems pretty far-fetched as a guide for real human
agents. It would have them try to emulate the normative standard by actually con-
structing numerical probability measures of their belief strengths as a matter of
course. Real agents seldom do anything like this. Perhaps there are good reasons
why they should try.5 But a more natural model of confidence and belief might
carry more authority as a normative ideal.

As an alternative to the quantitative model of coherent belief, I will spell out
a more compelling qualitative logic of belief and confidence. I’ll then show that
probabilistic measures of confidence lie just below the surface of this qualitative
logic. Thus, we may accrue many of the benefits of the probabilistic model without
the constant commitment to the arduous task of assigning numerical weights to
propositions.

5 There are, of course, arguments to the contrary. Dutch book arguments attempt to show that if an
agent’s levels of confidence cannot be numerically modeled in accord with the usual probabilistic
axioms, she will be open to accepting bets that are sure to result in net losses. And the friends
of rational choice theory argue that an agent’s preferences can be rationally coherent only if his
levels of confidence may be represented by a probability function. The import of such arguments
is somewhat controversial (though I find the depragmatized versions in Joyce (1999) and Chris-
tensen (2004) pretty compelling). In any case, the present paper will offer a separate (but somewhat
related) depragmatized way to the existence of an underlying probabilistic representation. So let’s
put the usual arguments for probabilistic coherence aside.
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A very natural qualitative version of the Lockean Thesis will better fit the quali-
tative doxastic logic I’ll be investigating. Here it is:

Qualitative Lockean Thesis: An agent is epistemically warranted in believing a propo-
sition just in case she is epistemically warranted in having a sufficiently high grade of
confidence in it, sufficiently high to make her attitude towards it one of belief.

This qualitative version of the thesis draws on the natural fact that we believe
some claims more strongly than others – that our confidence in claims comes in
relative strengths or grades, even when it is not measured in numerical degrees.
For instance, an agent may (warrantedly) believe that F without being certain
that F. Certainty is a higher grade of confidence than mere belief. Also, an agent
may believe both F and G, but be more confident that F than that G. Belief and
confidence may be graded in this way without being measured on a numerical
scale.

I will describe a logic for ‘� believes that B’ and for ‘� is at least as confident that
B as that C’ (i.e. ‘� believes B at least as strongly as C’) that ties the belief predicate
and the confidence relation together by way of this Qualitative Lockean Thesis. In
particular, I will show how two specific rules of this logic tie belief to confidence in a
way that is intimately connected to the preface and lottery paradoxes. It will turn out
that any confidence relation and associated belief predicate that satisfies the rules
of this logic can be modeled by a probability function together with a numerical
threshold level for belief – where the threshold level depends quite explicitly on
how the qualitative logic treats cases that have the logical structure of preface and
lottery paradoxes.6 In effect what I’ll show is that probability supplies a kind of
formal representation that models the qualitative logic of belief and confidence. The
qualitative semantic rules for the logic of belief and confidence turn out to be sound
and complete with respect to this probabilistic model theory.

How good might this qualitative account of belief and confidence be at replacing
the onerous requirements of probabilistic coherence? Let’s step through the account
of what the normative ideal recommends for real agents one more time, applying
it to the qualitative model. The idea goes like this: Real agents should try to emu-
late the ideal agents of the model (to the best of their abilities) by being on guard
against incoherent comparative confidence rankings (e.g. against being simultane-
ously more confident that A than that B and more confident that B than that A),
and against related incoherent beliefs (e.g. against believing both A and not-A);
and they should revise their beliefs and comparative confidence rankings as needed
to better approximate this ideal. The plausibility of this kind of account will, of
course, largely depend on how reasonable the proposed coherence constraints on
confidence and belief turn out to be. To the extent that this account succeeds, it
inherits whatever benefits derive from the usual probabilistic model of doxastic co-
herence, while avoiding much of the baggage that attends the numerical precision of

6 Henry Kyburg first discussed the lottery paradox in his (Kyburg, 1961). Also see Kyburg’s (1970).
The preface paradox originates with David Makinson (1965).
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the probabilistic model. Thus, it should provide a much more compelling normative
model of qualitative confidence and belief.

3 The Logic of Comparative Confidence

Let’s formally represent an agent �’s comparative confidence relation among propo-
sitions (at a given moment) by a binary relation ‘≥�’ between statements.7 Intu-
itively ‘A ≥� B’ may be read in any one of several ways: ‘� is at least as confident
that A as that B’, or ‘� believes A at least as strongly as she believes B’, or ‘A is at
least as plausible for � as is B’. For the sake of definiteness I will generally employ
the first of these readings, but you may choose your favorite comparative doxastic
notion of this sort. The following formal treatment of≥� should fit any such reading
equally well. Furthermore, I invite you to read ‘A ≥� B’ as saying ‘� is warranted
in being at least as confident that A as that B’ (or ‘� is justified in believing A as
strongly as B’), if you take that to be the better way of understanding the important
doxastic notion whose logic needs to be articulated.

One comment about the qualifying term ‘warranted’ (or ‘justified’) in the context
of the discussion of confidence and belief. I am about to specify logical rules for
‘≥�’ (and later for ‘believes that’) – e.g., one such rule will specify that ‘is at least as
confident as’ should be transitive: if A≥� B and B≥� C, then A≥� C. Read without
the qualifying term ‘warranted’, this rule says, ‘if � is at least as confident that A as
that B, and � is at least as confident that B as that C, then � is at least as confident
that A as that C.’ Read this way, � is clearly supposed to be a logically ideal agent.
In that case you may, if you wish, presume that the ideal agent is warranted in all
of her comparative confidence assessments and beliefs. Then, to the extent that the
logic is compelling, real agents are supposed to attempt to live up to this logical
ideal as best they can. Alternatively, if you want to think of � as a realistic agent,
the qualifier ‘warranted’ may be employed throughout, and takes on the extra duty
of indicating a logical norm for real agents. For example, the transitivity rule is
then read this way: ‘if � is warranted in being at least as confident that A as that
B, and � is warranted in being at least as confident that B as that C, then � is
warranted in being at least as confident that A as that C.’ In any case, for simplicity
I’ll usually suppress ‘warranted’ in the following discussion. But feel free to read it
in throughout, if you find the norms on these doxastic notions to be more plausible
when expressed that way.

In this section I will specify the logic of the confidence relation. Closely associ-
ated with it is the certainty predicate ‘Cert�[A]’ (read ‘� is certain that A’). Certainty
is easily definable from comparative confidence. To be certain that A is to be at least
as confident that A as that a simple tautology of form ‘(A∨¬A)’ holds – i.e., by

7 The syntax of the logic I’ll be describing employs sentences which, for a given assignment of
meanings, become statements that express propositions, as is usual in a formal logic. So from this
point on I’ll speak in terms of sentences and statements. On this usage, to say that an agent believes
statement S just means that she believes the proposition expressed by statement S.
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definition, ‘Cert�[A]’ will just mean ‘A ≥� (A∨¬A)’. For now we stick strictly to
confidence and certainty. We will pick up belief in a later section.

3.1 The Rudimentary Confidence Relations

To see that we can spell out the logic of belief and confidence in a completely
rigorous way, let’s define confidence relations as semantic relations between object
language sentences of a language L for predicate logic with identity. A weaker lan-
guage would do – e.g. a language for propositional logic. But then you might wonder
whether for some reason the following approach wouldn’t work for a stronger lan-
guage. So, for the sake of definiteness, I’ll directly employ the stronger language.
Indeed, the logic of belief and confidence presented here should work just fine for
any object language together with it’s associated logic – e.g. for your favorite modal
logic. Furthermore, I appeal to a formal language only because it helps provide a
well understood formal model of the main idea. The object language could just as
well be a natural language, provided that the notion of deductive logical entailment
is well defined there.

So, a confidence relation ≥� is a semantic relation between sentences of a lan-
guage. The following semantic rules (or axioms) seem to fit the intuitive reading of
this notion quite well.

Definition 1 Rudimentary Confidence Relations: Given a language L for predi-
cate logic with identity, the rudimentary confidence relations on L are just those
relations ≥� that satisfy the following rules (where ‘|= A’ say that A is a logical
truth of L):

First, define ‘Cert�[A]’ (read ‘� is (warranted in being) certain that A’) as A ≥�

(A∨¬A);
For all sentences A, B, C, D, of L,

1. it’s never the case that ¬(A∨¬A) ≥� (A∨¬A) (nontriviality);
2. B ≥� ¬(A∨¬A) (minimality);
3. A ≥� A (reflexivity);
4. if A ≥� B and B ≥� C, then A ≥� C (transitivity);

5.1. if Cert�[C≡D] and A ≥� C, then A ≥� D (right equivalence);
5.2. if Cert�[C≡D] and C ≥� B, then D ≥� B (left equivalence);
6.1. if for some E, Cert�[¬(A·E)], Cert�[¬(B·E)], and

(A∨E) ≥� (B∨E), then A ≥� B (subtractivity);
6.2. if A ≥� B, then for all G such that

Cert�[¬(A·G)] and Cert�[¬(B·G)], (A∨G) ≥� (B∨G) (additivity);
7. if |= A, then Cert�[A] (tautological certainty).

Also, define ‘A ≈� B’ (read ‘� is equally confident in A and B’) as ‘A ≥� B and
B ≥� A’; define ‘A >� B’ (read ‘� is more confident in A than in B’), as ‘A ≥� B
and not B ≥� A’; and define A ∼� B (read ‘�’s comparative confidence that A as
compared to B is indeterminate’), as ‘not A ≥� B and not B ≥� A’.
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These rules are a weakened version of the axioms for qualitative probabil-
ity (sometimes called comparative probability).8 From these axioms together with
some definitions one can prove a number of intuitively plausible things about com-
parative confidence. For example, the following relationships follow immediately
from the definitions together with transitivity and reflexivity (but draw on none of
the other rules): (i) for any two statements, either A >� B or B >� A or A ≈� B or
A ∼� B; (ii) A ≥� B just in case either A >� B or A ≈� B; (iii) ‘>�’ is transitive
and asymmetric, and ‘≈�’ is an equivalence relation (i.e. transitive, symmetric, and
reflexive); (iv) whenever two statements are considered equally plausible by � (i.e.
whenever A ≈� B) they share precisely the same confidence relations (≥�, >�,≈�,
and ∼�) to all other statements. The following claims are also easily derived9: (v)
if Cert�[A], then, for all B, A ≥� B ≥� ¬A and (B·A) ≈� B ≈� (B∨¬A); (vi) if
Cert�[B⊃A], then A ≥� B; (vii) if A ≥� B then ¬B ≥� ¬A.

Let’s look briefly at each rule for the rudimentary confidence relations to see
how plausible it is as a constraint on comparative confidence – i.e., to see how
well it fits our intuitions about comparative confidence. Rules 1 and 2 are obvi-
ous constraints on the notion of comparative confidence. Rule 2, minimality, just
says that every statement B should garner at least as much confidence as a sim-
ple contradiction of form ¬(A∨¬A). The agent should have no confidence at all
in such simple contradictions – they lay at the bottom of the confidence ordering.
Given the definition of ‘>�’, rule (1), nontriviality, taken together with minimality
is equivalent to ‘(A∨¬A) >� ¬(A∨¬A)’, which says that the agent is (warranted in
being) more confident in any simple tautology of form (A∨¬A) than in the simple
contradiction gotten by taking its negation. If this rule failed, the agent’s ‘confidence
ordering’ would indeed be trivial. Indeed, given the remaining rules, the agent would
be equally confident in every statement.10

Rule 3, reflexivity, merely requires that the agent find each statement to be at least
as plausible as itself. This should be uncontroversial.

Rule 4, transitivity, is more interesting, but should not really be controversial. It
says that whenever � is (warranted in being) at least as confident that A as that B, and
is (warranted in being) at least as confident that B as that C, then � is (warranted
in being) at least as confident that A as that C. This rule seems unassailable as a

8 For a standard treatment of the qualitative probability relations see (Savage, 1972). The axioms
given here are weaker in that they only require confidence relations to be partial preorders (i.e.
reflexive and transitive), whereas such relations are usually specified to be total preorders (i.e.
complete and transitive). Also, the present axioms have been adapted to apply to sentences of a
language, whereas Savage’s version applies to sets of states or sets of possible worlds. Although
that approach is formally somewhat simpler, it tends to hide important philosophical issues, such
as the issue of the logical omniscience of the agent. Notice that our approach only draws on the
notion of logical truth in rule 7. The other rules are quite independent of this notion. This will
permit us to more easily contemplate how the rules may apply to logically more realistic agents.
9 The derivations of these draw on rule 7 only to get certainty for some very simple tautologies –
e.g. |= A ≡ ((A·B)∨(A·¬B)), and |= ¬((A·B)·(A·¬B)).
10 Because, if ¬(A∨¬A) ≥� (A∨¬A), from certainty in some very simple tautologies it follows
that for each B and C, B ≥� ¬(A∨¬A) ≥� (A∨¬A) ≥� C; thus B ≥� C, and similarly C ≥� B.
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principle of comparative confidence. Ideal agents follow it, and it seems perfectly
reasonable to expect real agents to try to conform to it.

All of the rules up to this point should be uncontroversial. Indeed, of all the rules
for the rudimentary confidence relations, I only expect there to be any significant
concern over tautological certainty (rule 7), which seems to require a kind of log-
ical omniscience. We’ll get to that. But none of the rules described thus far require
anything we wouldn’t naturally expect of real rational agents.

The usual axioms for qualitative probability are stronger than the rules presented
here. In place of reflexivity, the usual axiom include an axiom of complete compari-
son, which says that for any pair of sentences A and B, the agent is either at least as
confident that A as that B, or she is at least as confident that B as that A:

3*. A ≥� B or B ≥� A (completeness, a.k.a. totality or comparability).
Completeness says that the agent can make a determinate confidence comparison

between any two statements. This rule is rather controversial, so I’ve not made it a
necessary constraint on the rudimentary confidence relations. However, I will argue
in a bit that the rudimentary confidence relations should always be extendable to
confidence relations that satisfy completeness. More about this later.

Notice that completeness would supersede reflexivity, since completeness implies
‘A ≥� A or A ≥� A’ – i.e. A ≥� A. When any binary relation is both reflexive and
transitive it is called a preorder (alternatively, a quasi-order). Adding completeness
to transitivity yields a total preorder.11 Where completeness is present, the relation-
ship of confidence ambiguity, ‘A ∼� B’, will be vacuous; there is never ambiguity
in confidence comparisons between two statements. I’ll discuss completeness more
a bit later. For now, suffice it to say that the rudimentary confidence relations are not
required to satisfy it.

Rules 5, substitutivity of equivalences (left and right), make good sense. The
two parts together say that whenever an agent is certain that statements X and
Y are materially equivalent (i.e. certain that they agree in truth value), then all
of her comparative confidence judgments involving Y should agree with those
involving X.

The two rules 6 taken together say that incompatible disjuncts (added or sub-
tracted) should make no difference to the comparative confidence in statements. To
see the idea behind rule 6.1, subtractivity, consider a case where the agent is certain
that some statement E is incompatible with each of two statements A and B. (There
will always be such an E – e.g. the simple contradiction (C·¬C).) If the agent is at

11 Terminology about order relations can be confusing because usage is not uniform. By a ‘(weak)
preorder’ I mean a reflexive and transitive relation. The term ‘weak partial order’ is often used
this way too, but is also often used to mean a reflexive, transitive, and antisymmetric relation.
(Antisymmetry says, ‘if A ≥ B and B ≥ A, then A = B’, where ‘=’ is the identity relation, not just
the equivalence we’ve denoted by ‘≈’.) Applied to statements, antisymmetry would be too strong.
It would mean that whenever � is equally confidence that A as that B (i.e. whenever A ≈� B), A
and B must be the same statement, or at least be logically equivalent statements. The term ‘(weak)
total preorder’ means a preorder that also satisfies completeness. The term ‘weak order’ is often
used this way too, but is also often used to mean that the relation is antisymmetric as well. (The
weak/strict distinction picks out the difference between ≥ and >.)
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least as confident that (A∨E) as that (B∨E), then intuitively, she should be at least as
confident that A as that B. The removal of the ‘disjunctively tacked on’ incompatible
claim E should have no effect on the agent’s comparative confidence with respect to
A and B.

Furthermore, whenever the agent considers a statement G to be incompatible
with the truth of A and with the truth of B, her relative confidence in the disjunc-
tions, (A∨G) as compared to (B∨G), should agree with her relative confidence in
A as compared to B. Only the agent’s confidence in A as compared to B should
matter. Disjunctively tacking on the incompatible claim G should have no influence
on her assessment. This is just what rule 6.2, additivity, says. Both subtractivity and
additivity are substantive rules. But both are completely reasonable constraints on
an agent’s comparative confidence assessments.

I’ll soon suggest two additional rules that I think a more complete account of
the notion of comparative confidence should satisfy. But all of the rules for the
rudimentary relations appear to be sound, reasonable constraints on comparative
confidence. I think that rule 7, tautological certainty, is the only constraint stated so
far that should raise any controversy. It says that if a sentence is logically true, the
ideal agent will be certain that it’s true – i.e. as confident in it as in a simple tautology
of form ‘(A∨¬A)’. It thereby recommends that when a real agent attempts to assess
her comparative confidence in some given pair of statements, she should (to the
extent that it’s practical for her to do so) seek to discover whether they are logically
true, and should become certain of those she discovers to be so. The ideal agent
always succeeds, and the real agent is supposed to attempt it, to the extent that it’s
practical to do so. Put this way the rule sounds pretty innocuous. Rules of this kind
are common in epistemic and doxastic logics. How problematic is it as component
of a normative guide?

First let’s be clear that failure to be sufficiently logically talented does not, on
this account, warrant calling the real agent irrational – it only implies that she is
less than ideally rational. But some will argue that this ideal is too far beyond our
real abilities to count as an appropriate doxastic norm. Let’s pause to think a bit
more about this, and about the kind of norm we are trying to explicate.

Notice that we might easily replace rule 7 by a weaker version. We might, for
example, characterize a broader class of confidence relations by reading ‘|= A’ as
‘A is a logical truth of the sentential logic of L’. In that case the agent need not be
certain of even the simplest predicate logic tautologies. However, even the compu-
tation of propositional logic tautologies is in general NP hard, and so in many cases
outstrips the practical abilities of real agents. Perhaps a better alternative would be
to only require certainty for some easily computable class of logical truths – e.g.,
read ‘|= A’ as ‘A is a logical truth computable via a truth tree consisting of no more
than 16 branches’; or perhaps read it as ‘the number of computation steps needed
to determine the logical truth of A is bounded by a (specified) polynomial of the
number of terms in A’. Some such weaker rule, which together with the other rules
characterizes a broader class of rudimentary confidence relations, might well pro-
vide a more realistic normative constrain on the comparative confidence assessments
of real agents.
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The full development of a less demanding doxastic logic that better fits the abil-
ities of real agents would certainly be welcomed. But even if/when we have such
a logic available, the more demanding ideal we are exploring here will continue
to have an important normative role to play. To see the point imagine that such a
real-agent-friendly logic of confidence and belief has been worked out, and consider
some collection � of confidence relationships (between statements) or beliefs that
this logic endorses as rationally coherent for real agents.12 Wouldn’t we still want to
know whether the realistic coherence of � arises only because of the limited logical
abilities of the agents we are modeling? Wouldn’t we want to know whether a some-
what more demanding real-agent logic, suited to somewhat more logically adept
agents, would pronounce a different verdict on the coherence of �, perhaps assessing
this collection as rationally incoherently for the more adept? That is, wouldn’t we
still want to know whether the assessment of � as coherent results only from the
limited deductive abilities of real agents, or whether such confidence relations and
beliefs would continue to count as jointly coherent, regardless of limitations? Only
a normative ideal that doesn’t model deductive-logical limitations can answer these
questions.13

There will always be some cognitive differences among real people. Some will
be more logically adept than others, and the more adept reasoners should count as
better reasoners for it. And it seems unlikely that there is a plausible way to draw a
firm line to indicate where ‘good enough reasoning’ ends. That is, it seems doubtful
that we can develop a logic of real reasoning that would warrant the following kind
of claim: ‘Reasoning that reaches the logical depth articulated by this logic is as
good as we can plausibly want a real reasoner to be, and any actual agent who rec-
ognizes more logical truths than that will just not count as any better at maintaining
belief coherence.’ The point is that no matter how successful a real-agent logic is
at describing plausible norms, if the norm falls short of tautological certainty, there
may always be some agents who exceed the norm to some extent, and they should
count as better for it. Thus, although the ideal of tautological certainty may be an
unattainable standard for a real agent, it nevertheless provides a kind of least upper
bound on classes of rationally coherent comparative confidence relations.

It turns out that any relation that satisfies rules 1–7 behaves a lot like comparisons
of probabilistic degrees of confidence. That is, each of these relations is probabilis-
tically sound in the following sense:

Given any probability function P� (that satisfies the usual probability axioms),14 the relation
≥� defined as ‘A ≥� B just when P�[A] ≥ P�[B]’ satisfies rules 1–7.

12 Suppose, for example, that this logic endorses as rationally coherent, beliefs like those that take
the form of the preface-paradox – where an agent believes each of a number of claims, S1 through
Sn (e.g. where Si says that page i of her book is free of error) and she also believes ¬(S1·. . . ·Sn)
(e.g. that not all pages of her n page book are error free).
13 Indeed, later we will see that the logic we are investigating here, ideal as it is, affirms the rational
coherence of preface-like and lottery-like beliefs, even for logically ideal agents.
14 Here are the usual axioms for probabilities on sentences of a formal language L. For all R and
S: (i) P[S] ≥ 0; (ii) if |= S, then P[S] = 1; (iii) if |= ¬(R·S), then P[R∨S] = P[R] + P[S].
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Thus, if an agent were to have a probabilistic confidence function that provides a
numerical measure of her degree of confidence in various statements, this function
would automatically give rise to a rudimentary confidence relation for her. However,
some confidence relations that satisfy 1–7 cannot be represented by any probability
function – i.e. rules 1–7 are not probabilistically complete. Two additional rules
will place enough of a restriction on the rudimentary confidence relations to close
this gap.

3.2 The Completed Confidence Relations

Rudimentary confidence relations allow for the possibility that an agent cannot de-
termine a definite confidence comparison between some pairs of statements. When
this happens, the confidence relation is incomplete – i.e. for some A and B, neither
A >� B, nor A ≈� B, nor B >� A. Real agents may well be unable to assess
their comparative confidence in some pairs of statements. Nevertheless, there is a
perfectly legitimate role for completeness15 to play as a normative guide. I’ll argue
that a reasonable additional constraint on comparative confidence is this: an agents
comparative confidence relation should in principle be consistently extendable to a
relation that compares all statements. For, if no such consistent extension is even
possible, then the agent’s definite confidence relationships must be implicitly inco-
herent.

To see this, suppose that A ∼� B, and suppose that no extension of her definite
confidence relations (>� and ≈�) to any definite relationship between A and B
would yield a confidence relation consistent with rules 1–7. That means that her def-
inite confidence relationships imply on their own (from rules 1–7) that A∼� B must
hold – because no definite confidence relationship between A and B is coherently
possible, given her other definite confidence relationships. The agent maintains co-
herence only by refusing to commit to a definite relationship between A and B. Thus,
in such a case, the agent’s inability to assess a determinate confidence relationship
between A and B is not merely a matter of it ‘being a hard case’. Rather, her refusal
to make an assessment is forced upon her. It is her only way to stave off explicit
incoherence among her other determinate comparative confidence assessments. This
seems a really poor reason for an agent to maintain indeterminateness. Rather, we
should recommend that when a real agent discovers such implicit incoherence, she
should revise her confidence relation to eliminate it. Her revised confidence relation
might well leave the relationship between A and B indeterminate – but this should
no longer be due to the incoherence of the possibility of placing a definite confidence
relationship between them.

Thus, insofar as the rules for the rudimentary confidence relations seem rea-
sonable as a normative standard, it also makes good sense to add the normative

15 This notion of completeness should not be confused with the notion of probabilistic complete-
ness for a confidence relation described at the end of the previous subsection.
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condition that a coherent rudimentary confidence relation should be extendable to a
complete rudimentary confidence relation, a relation that satisfies rule 3*. (I’ll show
how to handle this formally in a moment.) There will often be lots of possible ways
to extend a given vague or indeterminate confidence relation, many different ways
to fill in the gaps. I am not claiming that the agent should be willing to embrace
some particular such extension of her confidence relation, but only that some such
extension should be consistent with the confidence orderings she does have.

Let’s now restrict the class of rudimentary confidence relations to those that
satisfy an additional two-part rule that draws on completeablity together with one
additional condition. The most efficient way to introduce this additional rule is to
first state it as part of a definition.

Definition 2 Properly Extendable Rudimentary Confidence Relations: Let us say
that a rudimentary confidence relation ≥� on language L is properly extendable
just in case there is a rudimentary confidence relation ≥� on some language L+ an
extension of L that agrees with the determinate part of ≥� (i.e., whenever A≈� B, A
≈� B; and whenever A >� B, A >� B) on the shared language L, and also satisfies
the following rule for all sentences of L+:

(X) (i) (completeness): either A ≥� B or B ≥� A; and
(ii) (separating equiplausible partitions): If A >� B, then, for some inte-

ger n, there are n sentences S1, . . . , Sn that � takes to be mutually in-
compatible (i.e., Cert�[¬(Si· Sj)] for i �= j), and jointly exhaustive (i.e.,
Cert�[S1 ∨. . .∨ Sn]) and in all of which � is equally confident (i.e.
Si ≈� Sj for each i, j), such that for each of them, Sk, A >� (B∨Sk).

(Any set of sentences {S1, . . . , Sn} such that Cert�[¬(Si· Sj)] and Cert�[S1∨. . .∨
Sn] is called an n-ary equiplausible partition for �.)

The ‘X’ here stands for ‘eXtendable’. The idea is that when a confidence relation
is rationally coherent, there should in principle be some complete extension that
includes partitions of the ‘space of possibilities’, where the parts of the partition Sk

are, in �’s estimation, equally plausible, but where there are so many alternatives
that � can have very little confidence in any one of them. Indeed, for any statement
A in which � has more confidence than another statement B, there is some large
enough such partition that her confidence in each partition statement must be so
trifling that she remains more confident in A than she is in the disjunction of any
one of them with B. (This implies that the partition is fine-grained enough that at
least one disjunction B∨Sk must separate A from B in that A >� (B∨Sk) >� B.)

More concretely, consider some particular pair of statements A and B, where
� is more confident that A than that B, and where ≥� is a complete rudimentary
confidence relation. Suppose there is a fair lottery consisting of a very large number
of tickets, n, and let ‘Si’ say that ticket i will win. Further suppose that with regard
to this lottery, � is certain of its fairness (i.e. Si ≈� Sj for every pair of tickets i
and j), she is certain that no two tickets can win, and she is certain that at least one
will win. Then rule X will be satisfied for the statements A and B provided that the
lottery consists of so many tickets (i.e. n is so large) that � remains more confident
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in A than in the disjunction of B with any one claim Si asserting that a specific ticket
will win. To satisfy rule X we need only suppose that for each pair of sentences A
and B such that A >� B, there is such a lottery, or that there is some similar partition
into extremely implausible possibilities (e.g. let each Si describe one of the n = 2m

possible sequences of heads and tails in an extremely long sequence of tosses of a
fair coin).

That explains rule X. But what if there are no such lotteries, nor any similar large
equiplausible partitions for an agent to draw on in order to satisfy rule X? I have
yet to explain the notion of being properly extendable, and that notion is designed
to deal with this problem. According to the definition, the agent � who possesses
a ‘properly extended’ confidence relation has a rich enough collection of equiplau-
sible partitions at hand to satisfy rule X for all sentences A and B. But in general
an agent � may not be so fortunate. For example, � may not think that there are
any such lotteries, or any such events that can play the role of the needed partitions
of her ‘confidence space’. Nevertheless, �’s comparative confidence relation will
have much the same structure as �’s, provided that �’s confidence relation could be
gotten by starting with �’s, and then throwing away all of those partitions that aren’t
available to � (e.g. because the relevant statements about them are not expressed in
�’s language). In that case, although � herself doesn’t satisfy rule X, her confidence
relation is properly extendable to a relation that does.16 Indeed, when≥� is properly
extendable, there will usually be many possible ways (many possible �s) that extend
�’s confidence relation so as to satisfy rule X.

Now we are ready to supplement rules 1–7 with this additional rule. Here is how
to do that:

Definition 3 Confidence Relations: Given a language L for predicate logic, the
(fully refined) confidence relations ≥� on L are just the rudimentary confidence
relations (those that satisfy rules 1–7) that are also properly extendable.

To recap, rule X is satisfied by a relation ≥� provided it can be extended to
a complete relation ≥� on a language that describes, for example, enough fair

16 To put it another way, � may think that there are no fair lotteries (or similar chance events)
anywhere on earth. Thus, rule X does not apply to her directly. But suppose that �’s language
could in principle be extended so that it contains additional statements that describe some new
possible chance events (they needn’t be real or actual) not previously contemplated by �, and
not previously expressible by �’s language. (Perhaps in order to describe these events � would
have to be in some new referential relationship she is not presently in. E.g. suppose there is some
newly discovered, just named star, Zeta-prime, and suppose someone suggests that a culture on
one of its planets runs lotteries of the appropriate kind, the ‘Zeta-prime lotteries’). Now, for �’s
confidence relation to be properly extendable, it only need be logically possible that some (perhaps
extremely foolish) agent �, who agrees with � as far as �’s language goes, satisfies rule X by
employing the newly expressible statements. Notice that we do not require � herself to be willing
to extend her own confidence relation so as to satisfy rule X. E.g., when �’s language is extended
to describe these new (possible) lotteries, � herself might extend her own confidence relation to
express certainty that the suggested lotteries don’t really exist (or she may think they exist, but take
them to be biased). How � would extend her own confidence relation is not in any way at issue.
All that matters for our purposes is that her confidence relation could in principle coherently (with
rules 1–7) be extended to satisfy rule X for some logically possible agent �.
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single-winner lotteries that whenever A >� B, there is some lottery with so many
tickets that disjoining with B any claim Si that says ‘ticket i will win’ leaves A >�

(B∨Si).
Every probabilistic degree of confidence function behaves like a (fully refined)

confidence relation – i.e. the rules for confidence relations are probabilistically
sound in the following sense:

Theorem 1 Probabilistic Soundness of the confidence relations: Let P� be any prob-
ability function (that satisfies the usual axioms). Define a relation ≥� as follows:
A ≥� B just when P�[A] ≥ P�[B]. Then ≥� satisfies rules 1–7 and is properly
extendable to a relation that also satisfies rule X.

Conversely, every confidence relation can be modeled or represented by a prob-
abilistic degree of confidence function:

Theorem 2 Probabilistic Representation of the confidence relations: For each re-
lation ≥� that satisfies rules 1–7 and is properly extendable, there is a probability
function P� that models ≥� as follows:

(1) if P�[A] > P�[B], then A >� B or A ∼� B;
(2) if P�[A] = P�[B], then A ≈� B or A ∼� B.

Furthermore, if ≥� itself satisfies rule X (rather than merely being properly extend-
able to a rule X satisfier), then P� is unique and P�[A] ≥ P�[B] if and only if A ≥�

B.
Notice that, taken together, (1) and (2) imply the following:

(3) if A >� B, then P�[A] > P�[B];
(4) if A ≈� B, then P�[A] = P�[B].

And this further implies that

(5) if A ∼� B, then for each C and D such that C >� A >� D and C >� B >� D,
both P�[C] > P�[A] > P�[D] and P�[C] > P�[B] > P�[D].

That is, whenever A∼� B, the representing probabilities must either be equal, or
lie relatively close together – i.e. both lie below the smallest representing probability
for any statement C in which � is determinately more confident (i.e. such that both
C >� A and C >� B) and both lie above the largest representing probability for any
statement D in which � is determinately less confident (i.e. such that both A >� D
and B >� D).

Thus, probabilistic degree of confidence functions simply provide a way of mod-
eling qualitative confidence relations on a convenient numerical scale. The proba-
bilistic model will not usually be unique. There may be lots of ways to model a
given confidence relation probabilistically. However, in the presence of equiplausi-
ble partitions, the amount of wiggle room decreases, and disappears altogether for
those confidence relations that themselves satisfy the conditions of rule X.

The probabilistic model of a refined confidence relation will not usually be
unique. There will usually be lots of ways to model a given confidence relation
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probabilistically – because there will usually be lots of ways to extend a given con-
fidence relation to a complete-equiplausibly-partitioned relation. So in general each
comparative confidence relation is represented by a set of representing probability
functions.

A common objection to ‘probabilism’ (the view that belief-strengths should be
probabilistically coherent) is that the probabilistic model is overly precise, even
as a model of ideally rational agents. Proponents of probabilism often respond by
suggesting that, to the extent that vagueness in belief strength is reasonable, it may
be represented by sets of degree-of-belief functions that cover the reasonable range
of numerical imprecision. Critics reply that this move is (at best) highly questionable
– it gets the cart before the horse. Probabilism first represents agents as having
overly precise belief strengths, and then tries to back off of this defect by taking the
agent to actually be a whole chorus of overly precise agents.

‘Qualitative probabilism’ not only side-steps this apparent difficulty – it entirely
resolves (or dissolves) this issue. In the first place, qualitative probabilism doesn’t
suppose that the agent has numerical degrees of belief – it doesn’t even suppose
that the agent can determine definite confidence-comparisons between all pairs of
statements. Secondly, the Representation Theorem(s) show how confidence rela-
tions give rise to sets of degree-of-belief functions that reflect whatever imprecision
is already in the ideal agent’s confidence relation. We may model the agent with
any one of these (overly precise) functions, keeping in mind that the quantitative
function is only one of a number of equally good numerical representations. So,
for qualitative probabilism, the appeal to sets of representing probability functions
is a natural consequence of the incompleteness (or indeterminateness) of the ideal
agent’s relative confidence relation – rather than a desperate move to add indefinite-
ness back into a model that was overly precise from the start.

4 The Integration of Confidence and Belief

Now let’s introduce the notion of belief and tie it to the confidence relation in accord
with the Qualitative Lockean Thesis. I’ll represent belief as a semantic predicate,
Bel�[S], that intuitively says, ‘� believes that S’, or ‘� is warranted in believing
that S’.

Clearly whenever � is certain of a claim, she should also believe it. Thus, the
following rule:

(8) If Cert�[A] then Bel�[A] (certainty-implies-belief ).

Now, the obvious way to tie belief to confidence in accord with the Lockean
Thesis is to introduce the following rule:

(9) If A ≥� B and Bel�[B], then Bel�[A] (basic confidence-belief relation).

This rule guarantees that there is a confidence relation threshold for belief. For,
given any statement that � believes, whenever � is at least as confident in another
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statement R as she is in that believed statement, she must believe (or be warranted
in believing) R as well. And given any statement that � fails to believe, whenever �
is at least as confident in it as she is in another statement S, she must fail to believe
S as well.17

Taking into account the probabilistic modelability of the confidence relations,
guaranteed by Theorem 2, rule (9) also implies that the quantitative version of the
Lockean Thesis is satisfied. That is, for each confidence relation ≥� and associated
belief predicate Bel� (satisfying rules (8) and (9)), there is at least one probability
function P� and at least one threshold level q such that one of the following condi-
tions is satisfied:

(i) for any sentence S, Bel�[S] just in case P�[S] ≥ q, or
(ii) for any sentence S, Bel�[S] just in case P�[S] > q.18

Furthermore, if the confidence relation ≥� itself satisfies rule X, then P� and q
must be unique.

4.1 The Preface and the n-Bounded Belief Logics

We are not yet done with articulating the logic of belief. The present rules don’t
require the belief threshold to be at any specific level. They don’t even imply
that the probabilistic threshold q that models belief for a given confidence rela-
tion has to be above 1/2; q may even be 0, and every statement may be believed.
So to characterize the logic of belief above some reasonable level of confidence,
we’ll need additional rules. I’ll first describe these rules formally, and then I’ll ex-
plain them more intuitively in terms of how they capture features of the preface
paradox.

The following rule seems reasonable:

(1/2): if Cert�[A∨B], then not Bel�[¬A] or not Bel�[¬B]).

That is, if the agent is certain of a disjunction of two statements, then she may
believe the negation of at most one of the disjuncts.

There are several things worth mentioning about this rule. First, in the case where
B just is A, the rule says that if the agent is certain of A, then she cannot believe

17 However, this does not imply that there must be a ‘threshold statement’. Their may well be an
infinite sequence of statements with descending confidence levels for �, R1 >� R2 >� . . . >� Rn >

. . . , all of which � believes. And there could also be another infinite sequence of statements with
ascending confidence levels for �, S1 <� S2 <� . . . <� Sn, . . . , all of which � fails to believe.
(I.e., for countable sets of sentences there need be no greatest lower bound or least upper bound
sentence.)
18 The sequence of probabilities associated with the sequence of statements in the previous note,
P[R1] > P[R2] > . . . >� P[Rn] > . . . , is bounded below (by 0 at least), so has a greatest lower
bound, call it q.



The Lockean Thesis and the Logic of Belief 65

¬A. Second, taking B to be ¬A, the rule implies that the agent cannot believe both
a statement and its negation. Furthermore, the (1/2) rule is probabilistically sound:
for any probability function P� and any specific threshold value q > 1/2, the corre-
sponding confidence relation ≥� and belief predicate Bel�, defined as ‘A ≥� B iff
P�[A] ≥ P�[B], and Bel�[C] iff P�[C] ≥ q > 1/2’, satisfies all of the previous rules,
including the (1/2) rule.

Now consider a rule that is somewhat stronger than the (1/2) rule:

(2/3): if Cert�[A∨B∨C], then not Bel�[¬A] or not Bel�[¬B] or not Bel�[¬C]).

According to this rule, if the agent is certain of a disjunction of three statements,
then she may believe the negations of at most two of the disjuncts. But this rule
doesn’t bar her from believing the negations of each of a larger number of claims
for which the disjunction is certain. Notice that the (1/2) rule is a special case of the
(2/3) rule – the case where C just is B. So the (2/3) rule implies the (1/2) rule. Also,
in the case where C is ¬(A∨B), Cert�[A∨B∨C] must hold because (A∨B∨C) is
a tautology. In that case the (2/3) rule says that the agent must fail to believe one
of the claims ¬A or ¬B or (A∨B) (i.e. ¬¬(A∨B)). Furthermore, the (2/3) rule is
probabilistically sound: for any probability function P� and any specific threshold
value q > 2/3, the corresponding confidence relation ≥� and belief predicate Bel�,
defined as ‘A ≥� B iff P�[A] ≥ P�[B], and Bel�[C] iff P�[C] ≥ q > 2/3’, satisfies
all the previous rules together with the (2/3) rule.

More generally, consider the following ((n-1)/n) rule for any fixed n ≥ 2:

((n-1)/n): if Cert�[A1∨. . .∨An], then not Bel�[¬A1] or . . . or not Bel�[¬An]).

According to this rule, if the agent is certain of a disjunction of n statements,
then she may believe the negations of at most n-1 of the disjuncts. But this rule
doesn’t bar her from believing each of a larger number of statements for which the
disjunction is certain. Notice that for any m < n, the ((m-1)/m) rule is a special
case of the ((n-1)/n) rule. So the ((n-1)/n) rule implies all ((m-1)/m) rules for n >

m ≥ 2. Furthermore, the ((n-1)/n) rule is probabilistically sound in that, given any
probability function P� and any specific threshold value q > (n-1)/n, the correspond-
ing confidence relation ≥� and belief predicate Bel�, defined as ‘A ≥� B iff P�[A]
≥ P�[B], and Bel�[C] iff P�[C] ≥ q > (n-1)/n’, satisfies all of the previous rules
together with the ((n-1)/n) rule.

Let’s say that any confidence relation ≥� together with the associated belief
predicate Bel� that satisfy rules 1–9 and the ((n-1)/n) rule (for a given value of n)
satisfies an n-bounded belief logic. Clearly the n-bounded belief logics form a nested
hierarchy; each confidence-belief pair that satisfies an n-bounded logic satisfies all
m-bounded logics for all m < n. Whenever an agent whose confidence-belief pair
satisfies an n-bounded logic is certain of a disjunction of n statements, she may
believe the negations of at most n-1 of the disjuncts. However it remains possible
for such agents to believe the negations of each of a larger number of statements and
yet be certain of their disjunction. The preface ‘paradox’ illustrates this aspect of an
n-bounded logic quite well.
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Suppose that an agent writes a book consisting of k-1 pages. When the book is
completed, she has checked each page, and believes it to be error free. Let Ei say
there is an error on page i. Then we may represent the agent’s doxastic state about
her book as follows: Bel�[¬E1], . . . , Bel�[¬Ek−1]. On the other hand, given the
length of the book and the difficulty of the subject, the agent also believes that there
is an error on at least one page: Bel�[E1∨. . .∨Ek−1]. (And she may well say in the
preface of her book that there is bound to be an error somewhere – thus the name of
this paradox.)

One might think that such a collection of beliefs is incoherent on its face – that
real agents maintain such collections of beliefs only because real agents fall short
of logical omniscience. Indeed, if an agent is warranted in believing the conjunction
of any two beliefs, and if she holds preface-like beliefs, as just described, then she
must also be warranted in believing a pretty simple logical contradiction. For, she
is warranted in believing (¬E1 · ¬E2), and then warranted in believing (¬E1 · ¬E2 ·
¬E3), and then . . . , and then warranted in believing (¬E1 · ¬E2·. . . ·¬Ek−1), and
then warranted in believing (¬E1 · ¬E2·. . . ·¬En−1·(E1∨E2∨ . . .∨Ek−1)). So, if the
correct logic of belief warrants belief in the conjunction of beliefs, and if believing
simple contradictions is a doxastic failure of the agent, then preface-like beliefs can
only be due to an agent’s logical fallibility, her inability to see that her beliefs imply
that she should believe a contradiction, which should in turn force her to give up at
least one of those beliefs.

The confidence-belief logic I’ve been articulating puts the preface paradox in
a different light. If belief behaves like certainty, like probability 1, then the con-
junction rule for beliefs should indeed hold. However, the confidence-belief logic
we’ve been investigating permits belief to behave like probability above a threshold
q < 1. It allows that the agent may well believe two statements without believing
their conjunction, just as happens with probabilities, where it may well be that P�[A]
≥ q and P�[B]≥ q while P�[A·B] < q. Similarly, according to the confidence-belief
logic, the agent is not required to believe the conjunction of individual beliefs. So the
kind of doxastic state associated with the preface ‘paradox’ is permissible. However,
there are still important constraints on such collections of beliefs. The ((n-1)/n) rule
is one such constraint.

It will turn out that the confidence-belief logic is probabilistically modelable –
that for each confidence-belief pair, there is a probability function and a threshold
level that models it. Given that fact, it should be no surprise that the confidence-
belief logic behaves like probability-above-a-threshold with regard to conjunctions
of beliefs. For, whenever a confidence-belief pair is modelable by a probability func-
tion P� at a threshold level q, if q > (n-1)/n, then the ((n-1)/n) rule must hold.19

19 To see this, let [≥�, Bel�] be a confidence-belief pair that is probabilistically modelable at
some threshold level q > (n-1)/n. So, Bel�[A] holds just when P�[A] ≥ q; and A ≥� B just when
P�[A] ≥ P�[B]. Suppose that Cert�[A1∨. . .∨An]. We show that not Bel�[¬Ai] for at least one
of the Ai. Cert�[A1∨. . .∨An] implies that P�[A1∨. . .∨An] = 1 (since Cert�[A] holds just when
A ≥� (A∨¬A)). Thus, 1 = P�[A1∨. . .∨An] ≤ P�[A1] +. . . + P�[An] = (1−P�[¬An]) +. . . + (1 –
P�[¬An]) = n – (P�[¬A1] +. . . +P�[¬An]). So P�[¬A1] +. . . +P�[¬An] ≤ (n – 1). Now, if for each
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To see what this means for the logic of belief, suppose, for example, that the
agent’s confidence-belief pair behaves like probability with a belief bound q just a
bit over 9/10. Then she must satisfy the (9/10) rule:

(9/10): if Cert�[A1∨. . .∨A10], then not (Bel�[¬A1] and . . . and Bel�[¬A10])

She is certain of tautologies, so in the preface paradox case we’ve been dis-
cussing for any k page book, Cert�[E1∨. . .∨Ek∨ ¬(E1∨. . .∨Ek)] always holds.
Now, according to the (9/10) rule, if the number of pages in her book is k ≤ 9,
she cannot be in the doxastic state associated with the preface paradox – i.e. she
cannot (Bel�[¬E1] and Bel�[¬E2] and . . . and Bel�[¬E9] and Bel�[E1∨. . .∨E9]).20

However, provided that her book contains k > 9 pages, the 10-bounded logic of
confidence-belief pairs (associated with the (9/10) rule) permits her to be in a dox-
astic state like that of the preface paradox – she may Bel�[¬E1] and Bel�[¬E2] and
. . . and Bel�[¬E9] and Bel�[E1∨. . .∨E9]. But, of course, the logic doesn’t require
her to be in such a state.

More generally, any given n-bounded logic permits its confidence-belief pairs to
satisfy each of {Cert�[A1∨. . .∨Ak], Bel�[¬A1], . . . , Bel�[¬Ak]} (for some agents
� and statements Ai) when k > n, but absolutely forbids this (for all agents �
and statements Ai) when k ≤ n. This behavior is characteristic of any confidence-
belief logic that arises from a probability function with a belief bound just above
(n-1)/n.

4.2 The Lottery and the (n+1)*-Bounded Belief Logics

The rules described thus far characterize lower bounds, (n-1)/n, on the confidence
threshold required for belief. A further hierarchy of rules characterizes upper bounds
on the belief modeling confidence thresholds. I’ll first describe these rules formally,
and then explain them more intuitively in terms of how they capture features of a
version of the lottery paradox.

Consider the following rule:

(2/3)*: if Cert�[¬(A·B)] and Cert�[¬(A·C)] and Cert�[¬(B·C)], then Bel�[¬A]
or Bel�[¬B] or Bel�[¬C].

This rule says that if the agent is certain that no two of the three statements A,
B, and C is true, then she should also believe the negation of at least one of them.
This rule is probabilistically sound in that, given any probability function P� and

Ai, P�[¬Ai] ≥ q > (n-1)/n, then we would have n-1 = n·((n-1)/n) < n·q≤ P�[¬A1] +. . . +P�[¬An]
≤ (n-1) – contradiction! Thus, P�[¬Ai] < q for at least one of the Ai – i.e. not Bel�[¬Ai] for at
least one of the Ai. This establishes the probabilistic soundness of rule ((n-1)/n) for all thresholds
q > n-1/n.
20 Here E1 through E9 are A1 through A9, respectively, of the (9/10) rule. And in this example A10

of the (9/10) rule corresponds to ¬(E1∨. . .∨E9).
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any specific threshold value q ≤ 2/3, the corresponding confidence relation ≥� and
belief predicate Bel�, defined as ‘A ≥� B iff P�[A] ≥ P�[B], and Bel�[C] iff P�[C]
≥ q, where q ≤ 2/3’, satisfies all of the previous rules together with the (2/3) rule.
If the agent’s threshold for belief is no higher than 2/3, then she has to believe that
at least one of a mutually exclusive triple is false.21

More generally, consider the following (n/(n+1))* rule for any fixed n ≥ 2:

(n/(n+1))*: for any n+1 sentences S1, . . . , Sn+1, if for pairs (i �= j), Cert�[¬(Si·Sj)],
then Bel�[¬S1] or Bel�[¬S2] or . . . or Bel�[¬Sn+1].

This rule is probabilistically sound in that, given any probability function P� and
any specific threshold value q ≤ n/(n+1), the corresponding confidence relation ≥�

and belief predicate Bel�, defined as ‘A ≥� B iff P�[A] ≥ P�[B], and Bel�[C] iff
P�[C] ≥ q, where q ≤ n/(n+1)’, satisfies all of the previous rules together with the
(n/(n+1)) rule.22

According to this rule, if the agent is certain that at most one of the n+1 state-
ments is true, then she must believe the negation of at least one of them. But no-
tice that when the (n/(n+1))* rule holds for a confidence-belief pair, the agent is
permitted to withhold belief for the negations of fewer than n+1 mutually exclusive
statements. The rule only comes into play when collections of n+1 or more mutually
exclusive statements are concerned – and then it requires belief for the negation of
at least one of them.

Let’s say that any confidence relation≥� together with associated belief predicate
Bel� that satisfies rules 1–9 and the (n/(n+1))* rule (for a given value of n) satisfies
an (n+1)*-bounded belief logic. A version of the lottery ‘paradox’ illustrates the
central features of an (n+1)*-bounded logic quite well.

Lotteries come in a variety of forms. Some are designed to guarantee at least one
winner. Some are designed to permit at most one winner. And, of course, some lot-
teries have both features. Lotteries are usually designed to give each ticket the same
chance of winning. But for the purposes of illustrating the (n/(n+1))* rule we need
not suppose this. Indeed, for our purposes we need only consider lotteries that are
exclusive – where no two tickets can win. I’ll call such lotteries ‘exclusive lotteries’.
(These lotteries may also guarantee at least one winner – but for our purposes we
need not assume that they do).

Let ‘Wi’ stand for the statement that ticket i will win, and suppose an agent � is
certain that no two tickets can win this particular lottery – i.e. for each pair, i �= j,
Cert�[¬(Wi·Wj)]. Let’s say that � is in an m-ticket optimistic state just in case:

21 For, suppose P� models the [≥�, Bel�] pair with a threshold for belief q ≤ 2/3. For mutually
exclusive A, B, and C we have 1 ≥ P�[A∨B∨C] = P�[A] + P�[B] + P�[C] = (1-P�[¬A]) + (1-
P�[¬B]) + (1-P�[¬C]) = 3 – (P�[¬A] + P�[¬B] + P�[¬C]), which entails that P�[¬A] + P�[¬B]
+ P�[¬C] ≥ 2. So at least one of P�[¬A], P�[¬B], or P�[¬C] must be at least as great as 2/3 ≥ q
(since if each of these three probabilities is less than 2/3, their sum must be less than 2); so at least
one of ¬A, ¬B, and ¬C must be believed.
22 A probabilistic argument similar to that in the previous note shows the soundness of this rule.
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for some collection of at least m tickets (which may be arbitrarily labeled as ‘ticket 1’, . . . ,
‘ticket m’), � deems it genuinely possible that W1 (i.e. not Bel�[¬W1]), and . . . , and �
deems it genuinely possible that Wm (i.e. not Bel�[¬Wm]).

Consider an agent � whose confidence relation and belief predicate is modeled
by a probability function with an explicit threshold value q for belief. Suppose q
= .99. It is easy to see how � might come to be in an m-ticket optimistic state if
the exclusive lottery has relatively few tickets. For instance, in a lottery with three
tickets, she might believe that ticket A has a .40 chance of winning, that ticket B
has a .30 chance of winning, and that ticket C has a .20 chance of winning, leaving
a .10 chance that none of the tickets will win. Then, for any given ticket i, � does
not believe that ticket i will not win, since, for each i, her degree of confidence in
¬Wi is smaller than q = .99. Hence, she is in a 3-ticket optimistic state with respect
to the 3-ticket lottery. However, for larger and larger lotteries exclusivity will force
her to assign lower and lower degrees of confidence to at least some of the Wi. For
a sufficiently large lottery, a lottery of 100 or more tickets, her degree of confidence
in ¬Wi must come to exceed q = .99 for at least one ticket i. Thus, she must believe
¬Wi for at least one ticket i. (If, in addition, she is equally confident regarding the
possibility of each ticket winning – i.e. if Wi ≈� Wj for each i and j – then she must
believe of each ticket that it will not win.)

The point is that when the quantitative Lockean Thesis holds for � at a thresh-
old level q (or higher) for belief, then the following rule is sound for any value of
m ≥ 1/(1-q):

(n/(n+1))*: if for each i �= j, Cert�[¬(Wi· Wj)], then Bel�[¬W1] or . . . or
Bel�[¬Wm].

This is just the (n/(n+1))* rule stated another way. (Using a bit of algebra to
calculate q in terms of m, the above condition holds just when q ≤ (m-1)/m. Then,
substituting n +1 for m, the above rule is just the (n/(n+1))* rule for n+1 statements.)
However, for each value of m < 1/(1-q), m-ticket optimistic states remain rationally
coherent for �. For then the belief threshold q is above (m-1)/m, and the agent may
well remain optimistic about the possibility of each of the m tickets winning – i.e. it
may well be that not Bel�[¬W1] and . . . and not Bel�[¬Wm].

Notice that for each given value of n, the (n/(n+1))* rule is perfectly compatible
with the ((n-1)/n) rule described in the previous section. However the starred and
unstarred rules don’t fit together at all well when the starred rule takes a fractional
value equal to or smaller than the unstarred rule. To see why, consider a confidence-
belief relation that has, for a given n, both the rules (n/(n+1))* and (n/(n+1)). These
two rules together would say this:

for any n+1 sentences S1, . . . , Sn+1,

if Cert�[S1∨. . .∨Sn+1] and for pair (each i �= j), Cert�[¬(Si· Sj)], then Bel�[¬Si]
for at least one Si and not Bel�[¬Sj] for at least one Sj.

Such a rule would rule out the possibility of a partition (i.e. a mutually exclusive
and exhaustive set of statements Si) for which the agent is equally confident in each
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(i.e. where for each i and j, Si ≈� Sj). That is, for such an agent, in cases where
exactly one ticket is certain to win, no n+1 ticket lottery could possibly be fair (could
possibly permit equal confidence in each ticket’s winning). The logic alone would
rule that out! Similarly, the starred rule cannot have a lower fractional value than
the unstarred rule, for the same reason. Thus, the tightest bounds on belief thresh-
olds that properly fits these n-bounded rules corresponds to those confidence-belief
logics that have both an ((n–1)/n) rule and an (n/(n+1))* rule.23

5 The Logic of Belief

Let’s now pull together the rules studied in the previous sections to form one grand
logic of confidence and belief. Here is how to do that formally:

Definition 4 the Rudimentary n-Level Confidence-Belief Pairs: Given a language
L for predicate logic, the rudimentary n-level confidence-belief pairs on L are just
the pairs [≥�, Bel�] consisting of a rudimentary confidence relations and a belief
predicate that together satisfy the following rules:

(8) if Cert�[A] then Bel�[A];
(9) If A ≥� B and Bel�[B], then Bel�[A];

Level n rules (for fixed n ≥ 2):

(10) for any n sentences S1, . . . , Sn,

if Cert�[S1∨ S2∨. . .∨ Sn], then not (Bel�[¬S1] and Bel�[¬S2] and . . . and
Bel�[¬Sn]);

(11) for any n+1 sentences S1, . . . , Sn+1,

if for each i �= j, Cert�[¬(Si· Sj)], then Bel�[¬S1] or Bel�[¬S2] or . . . or
Bel�[¬Sn+1].

The rules for the rudimentary n-level confidence-belief pairs are probabilistically
sound in the sense that for any probability function P� and any specific threshold
level q > 1/2 such that n/(n+1) ≥ q > (n-1)/n, the corresponding relation ≥� and
belief predicate Bel� (defined as A ≥� B iff P�[A] ≥ P�[B], and Bel�[C] iff P�[C]
≥ q) must satisfy rules 1–7 and 8–11. However, as with the rudimentary confidence
relations, some confidence-belief pairs are not constrained enough by these rules to
be modelable by a probability function. But that is easy to fix using precisely the
same kind of rule that worked for selecting the (refined) confidence relations from
the rudimentary ones.

23 See (Hawthorne, 1996, 2007) and (Hawthorne and Makinson, 2007) for a related treatment of
the logics of classes of nonmonotonic conditionals that behave like conditional probabilities above
a threshold. Rules very similar to the ((n-1)/n) and (n/(n+1))* rules apply there.
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Definition 5 the Properly Extendable Rudimentary n-Level Confidence-Belief
Pairs: Let us say that a rudimentary n-level confidence-belief pair [≥�, Bel�] on
a language L is properly extendable just in case there is a rudimentary confidence-
belief pair [≥�, Bel�] on some language L+ an extension of L that agrees with the
determinate part of ≥� and Bel� (i.e. whenever A ≈� B, A ≈� B; whenever A >�

B, A >� B; and whenever Bel�[C], Bel�[C]) on the shared language L, and also
satisfies the following rule for all sentences of L+:

(XX) (i) (completeness): Either A ≥� B or B ≥� A; and
(ii) (separating equiplausible partitions): If A >� B, then, for some (large

enough) n, there are n sentences S1, . . . , Sn that � takes to be are mu-
tually incompatible (i.e., Cert�[¬(Si· Sj)] for i �= j), and jointly exhaus-
tive (i.e., Cert�[S1∨. . .∨ Sn], where � is equally confident in each (i.e.
Si ≈� Sj for each i, j), such that for each of them, A >� (B∨Sk).

This is exactly like Definition 2 for properly extendable rudimentary confidence
relations, but adds to it that the extended belief predicate agrees with the belief
predicate on the sentences in the shared language L.

Now we may specify the (refined) n-level confidence-belief pairs in the obvious
way.

Definition 6 the n-Level Confidence-Belief Pairs: Given a language L for predi-
cate logic, the (refined) n-level confidence-belief pairs on L are just the rudimentary
n-level confidence-belief pairs [≥�, Bel�] on L that are properly extendable.

The logic of the n-level confidence belief pairs is sound and complete with re-
spect to probability functions and corresponding belief thresholds.

Theorem 3 Probabilistic Soundness for n-level confidence-belief pairs: Let P� be
any probability function (that satisfies the usual axioms). Define the relation ≥� as
follows: A≥� B just when P�[A]≥ P�[B]. And for any q≥ 1/2, define Bel� in terms
of threshold level q in any one of the following ways:

(i) q = (n–1)/n for fixed n ≥ 2, and for all S, Bel�[S] just when P�[S] > q, or
(ii) n/(n+1) > q > (n–1)/n for fixed n ≥ 2, and for all S, Bel�[S] just when P�[S]

≥ q, or
(iii) n/(n+1) > q > (n–1)/n for fixed n ≥ 2, and for all S, Bel�[S] just when P�[S]

> q, or
(iv) q = (n–1)/n for fixed n ≥ 3, and for all S, Bel�[S] just when P�[S] ≥ q.

Then the pair [≥�, Bel�] satisfies rules 1–9 and the level n versions of rules (10)
and (11).

Theorem 4 Probabilistic Completeness for n-level confidence-belief pairs: For each
n-level confidence-belief pair [≥�, Bel�] (i.e. each pair satisfying Definition 6),
there is a probability function P� and a threshold q that models ≥� and Bel� as
follows: for all sentences A and B, (1) if P�[A] > P�[B], then A >� B or A ∼� B;
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(2) if P�[A] = P�[B], then A ≈� B or A ∼� B; and one of the following clauses
holds:

(i) q = (n-1)/n for fixed n ≥ 2, and P�[S] > q just when Bel�[S], or
(ii) n/(n+1) > q > (n-1)/n for fixed n ≥ 2, and P�[S] ≥ q just when Bel�[S], or

(iii) n/(n+1) > q > (n-1)/n for fixed n ≥ 2, and P�[S] > q just when Bel�[S], or
(iv) q = (n-1)/n for fixed n ≥ 3, and P�[S] ≥ q just when Bel�[S].

Furthermore, if ≥� itself satisfies rule X, then P� and q are unique.

Theorem 4 shows us precisely how the Qualitative Lockean Thesis is satisfied.
It tells us that each confidence relation and belief predicate that satisfies the n-level
rules (10) and (11) (for a specific value of n) may be modeled by a probability
function and a suitable threshold level q in the range between n/(n+1) and (n-1)/n
(as specified by one of (i–iv)). Furthermore, at the end of Section 3 we saw that
any given probabilistic model may be overly precise, specifying definite relative
confidence relationships that go beyond those the agent is willing to accept. This
point continues to hold for probabilistic models with thresholds of confidence and
belief. Thus, an agent’s confidence-belief pair may be better represented (or mod-
eled) by a set of probability-function–threshold-level pairs that capture the agent’s
incomplete (indefinite) assessment of comparative confidence relationships among
some statements.

6 Concluding Remarks

A qualitative logic of confidence and belief fits well with the Lockean Thesis. This
logic is based in the logic of the at least as confident as relation (i.e., in the logic
of qualitative probability) extended to accommodate a qualitative belief threshold.
It turns out that this logic may be effectively modeled by quantitative probability
functions together with numerical thresholds for belief. Thus, for this logic, the
Qualitative Lockean Thesis is recapitulated in an underlying quantitative model that
satisfies the Quantitative Lockean Thesis.

The version of qualitative probabilism associated with the Qualitative Lockean
Thesis needn’t suppose that the agent has anything like precise numerical degrees
of belief. Indeed, it doesn’t even suppose that the agent can determine definite
confidence-comparisons between all pairs of statements. Rather, the Representation
Theorems show how a qualitative confidence relation and corresponding belief pred-
icate may give rise to a set of degree-of-belief functions and associated numerical
thresholds, where the set reflects whatever imprecision is already in the ideal agent’s
qualitative confidence relation and qualitative belief predicate. We may model the
agent with any one of these (overly precise) functions and numerical thresholds,
keeping in mind that the quantitative function is only one of a number of equally
good numerical representations. So, for qualitative probabilism, the appeal to sets
of representing probability functions is a natural consequence of the incompleteness
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(or indeterminateness) of the ideal agent’s relative confidence relation – rather than
merely a device for adding indefiniteness back into a quantative model that was
overly precise from the start.

I’ll now conclude with a few words about how this logic of confidence and belief
may be further extended and developed.

The logic presented here only provides a static model of confidence and belief.
A dynamic model would add an account of confidence/belief updating – an account
of the logic of an agent’s transitions from one confidence/belief model to another
based on the impact of evidence. The deep connection with probability makes it
relatively easy to see how standard accounts of probabilistic belief dynamics – e.g.,
Bayesian updating, and Jeffrey Updating – may be adapted to qualitative confi-
dence and belief. Since an agent’s qualitative confidence-relation/belief-predicate
pair can be modeled as a set of probability functions with numerical belief thresh-
olds, schemes for updating quantitative degrees of confidence suggest approaches
to updating qualitative confidence and belief as well.

One way in which real belief may be more subtle than the model of belief cap-
tured by the Lockean Thesis as explored thus far is that real belief seems to have
a contextual element. The level of confidence an agent must have in order for a
statement to qualify as believed may depend on various features of the context, such
as the subject matter and the associated doxastic standards relevant to a given topic,
situation, or conversation. The logic investigated here is easily extended to handle
at least some facets of this context-sensitivity of belief. To see how, consider the
following modification of the Lockean Thesis:

Contextual Qualitative Lockean Thesis: An agent is epistemically warranted in believing
a statement in a context � just in case she is epistemically warranted in having a sufficiently
high grade of confidence in the statement – sufficiently high to make her attitude towards it
one of belief in context �.

The idea is that rather than represent the doxastic state of an agent � by a single
confidence/belief pair, we may represent it as a confidence relation together with a
list of belief predicates, [≥�, Bel��, Bel��, . . . , Bel�	], where each belief predicate
Bel�� is associated with a specific kind of context �, where each pair [≥�, Bel��]
constitutes an n-level Confidence/Belief pair (as specified in Definition 6) appropri-
ate to the context. Then we simply specify that � believes S in context � (Bel�[S] in
context �) just when Bel��[S] holds.24

Variations on this approach may be employed to represent additional subtleties.
For example perhaps only certain kinds of statements (e.g. those about a specific
subject matter) are ‘doxastically relevant or appropriate’ for a given context. We
may model this by restricting the contextually sensitive predicate Bel�� to only
those statements considered relevant or appropriate in the context. Thus, although
Q ≥� R and Bel��[R] holds, � may fail to believe Q in context � because this

24 Alternatively, we might represent this contextuality in terms of a single two-place belief relation
Bel[S, �] between statements and contexts together with a single three-place confidence relation
between pairs of statements and contexts.
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context itself excludes Q from consideration. (E.g., relative to the context we form a
new confidence relation ≥�

� by dropping context-irrelevant statements like Q from
the full confidence relation≥�. We may then characterize the belief predicate Bel��

appropriate to the context so as to satisfy Definition 6 for the confidence/belief pair
[≥�

�, Bel��].) Thus, the qualitative logic of confidence and belief that attends the
Qualitative Lockean Thesis should be sufficiently flexible to represent a range of
additional features of confidence and belief.25
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Partial Belief and Flat-Out Belief

Keith Frankish

1 Introduction: A Duality

There is a duality in our everyday view of belief. On the one hand, we sometimes
speak of credence as a matter of degree. We talk of having some level of confidence
in a claim (that a certain course of action is safe, for example, or that a desired event
will occur) and explain our actions by reference to these degrees of confidence –
tacitly appealing, it seems, to a probabilistic calculus such as that formalized in
Bayesian decision theory. On the other hand, we also speak of belief as an un-
qualified, or flat-out, state (‘plain belief’ as it is sometimes called), which is either
categorically present or categorically absent. We talk of simply believing or thinking
that something is the case, and we cite these flat-out attitudes in explanation of our
actions – appealing to classical practical reasoning of the sort formalized in the
so-called ‘practical syllogism’. 1

This tension in everyday discourse is reflected in the theoretical literature on
belief. In formal epistemology there is a division between those in the Bayesian
tradition, who treat credence as graded, and those who think of it as a categorical
attitude of some kind. The Bayesian perspective also contrasts with the dominant
view in philosophy of mind, where belief is widely regarded as a categorical state
(a token sentence of a mental language, inscribed in a functionally defined ‘belief
box’, according to one popular account). A parallel duality is present in our everyday
view of desire. Sometimes we talk of having degrees of preference or desirability;
sometimes we speak simply of wanting or desiring something tout court, and, again,
this tension is reflected in the theoretical literature.

What should we make of these dualities? Are there two different types of belief
and desire – partial and flat-out, as they are sometimes called? If so, how are they
related? And how could both have a role in guiding rational action, as the everyday
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1 It is worth stressing that it is the attitude that is unqualified in flat-out belief, not necessarily the
content. It is possible for a flat-out belief to have a qualified content – for example, that there is a
75% chance of rain tomorrow.
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view has it? The last question poses a particular challenge in relation to flat-out
belief and desire. Bayesian decision theory teaches us that the rational way to make
decisions is to assign degrees of probability and desirability to the various possible
outcomes of candidate actions and then choose the one that offers the best trade-off
of desirability and likely success. Flat-out belief and desire just do not come into
the picture. The everyday view thus faces a challenge: how can flat-out belief and
desire have the psychological importance they seem to have, given their apparent
irrelevance to rational action? Borrowing a term from Mark Kaplan, I shall refer to
this as the Bayesian Challenge (Kaplan 1996).2

The challenge has an especially strong bite if one adopts an interpretivist view
of the mind of the sort advocated by, among others, Donald Davidson and Daniel
Dennett (Davidson 1975; Dennett 1981). On such a view, adherence to the norms of
practical rationality is a precondition for the possession of mental states: we credit
an agent with just those degrees of belief and desire that best rationalize their inten-
tional actions, and we regard an item of behaviour as an intentional action just in
case we can interpret it as the rational expression of a coherent set of subjective prob-
abilities and desirabilities. Given a Bayesian view of practical rationality, it follows
that habitual violation of Bayesian norms is conceptually impossible; the behaviour
in question simply would not qualify as intentional. From this perspective, then,
flat-out belief and desire are irrelevant to intentional action tout court. Indeed, it is
hard to see what sense we could make of a person’s acting upon a flat-out belief or
desire. For any action they performed would, as a matter of conceptual necessity,
already have a complete intentional explanation in terms of their partial beliefs and
desires. How, then, could flat-out states get into the picture?

In this chapter I shall offer an explanation of the duality in our everyday view
of belief and desire. I shall begin by arguing that some widespread views of the
relation between partial and flat-out belief are inadequate, then go on to outline a
better account, which not only does justice to our intuitions about these states and
their cognitive role, but also repulses the Bayesian challenge. I shall focus primarily
on belief but shall occasionally mention desire, too, and shall treat it as a condition
for a successful account of belief that it should extend in a natural way to desire.
Note that my primary aim will be descriptive: I shall aim to articulate notions of
partial and flat-out belief that reflect our everyday intuitions about these states. The
discussion will nonetheless have a bearing on issues in formal epistemology, and I
shall say something about this at the end of the chapter.

2 Partial Belief as a Derivative of Flat-Out Belief

Although the duality in everyday belief talk is widely recognized, few writers claim
that it points to the existence of two distinct kinds of psychological state. It is more
common to suppose that it highlights two aspects of a single one. The general

2 Note, however, that I interpret the challenge in a broader sense than Kaplan. Kaplan is concerned
with the question of how flat-out belief can have a role in theoretical inquiry; I am interested in
how it can figure in practical reasoning as well.
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assumption is that one form of belief is the core state and the other a derivative,
which can be defined in terms of the core one. There are two strategies here, de-
pending on whether flat-out belief or partial belief is taken to be the core state. I
shall consider the first strategy in this section and the second in the next.

Suppose that belief is fundamentally a flat-out state, which is either categorically
present or categorically absent. What then might we mean when we talk of having
degrees of belief? One option is to maintain that we are referring to flat-out beliefs
in explicit probability claims. So, for example, when we say that someone is 50%
confident that a coin toss will come up heads, what we mean is that they believe
flat-out that the probability of its coming up heads is 0.5. Similarly, it might be sug-
gested, degrees of preference can be identified with flat-out beliefs in the desirability
of various situations.

Now it is true that we do sometimes form flat-out beliefs about probabilities
and desirabilities, but it is implausible to identify our degrees of confidence and
preference with such beliefs. For we attribute degrees of confidence and preference
to individuals who lack the conceptual sophistication required to form beliefs of
this kind. We speak of children and animals having more or less confidence in
something and preferring one thing to another, even though they do not possess
the concepts of probability and desirability. Indeed, even if a person is capable of
forming beliefs about probabilities and desirabilities, we do not suppose that they
have actually formed appropriate beliefs of this kind every time their behaviour
manifests some degree of confidence or preference – certainly not that they have
done so consciously, and I do not think we are committed to the view that they have
done so non-consciously either.

The problem comes into sharper focus when we consider how the relevant flat-out
beliefs are to be construed. They cannot be beliefs about one’s own degrees of confi-
dence, on pain of regress. If the aim is to analyse talk of partial belief in other terms,
then we must not make reference to partial beliefs in the analysis. Nor will it do to
think of the beliefs in question as concerning so-called ‘objective probabilities’, un-
derstood as facts about the frequencies of certain types of event or about the propen-
sities of objects. For we can have degrees of confidence in single events, which do
not have objective probabilities in this sense. (Again, this is not to say that people do
not form beliefs about objective probabilities, just that we cannot analyse degrees of
confidence in terms of them). This does not exhaust the options, of course. It might
be suggested that we could identify partial beliefs with beliefs about the degree
to which hypotheses are confirmed by the evidence (so-called ‘logical probabili-
ties’) or with beliefs about one’s own behavioural dispositions (say, how willing
one would be to bet on various propositions). However, these suggestions succumb
even more clearly to the earlier objection: one can have preferences and degrees of
confidence without knowing anything about confirmation relations or betting odds.
A similar objection will hold, I suspect, for any other proposal along these lines.

On the view just considered, talk of partial belief serves to characterize an aspect
of the content of our flat-out beliefs. Another option, advocated by Gilbert Harman,
among others, is to see it as characterizing an aspect of the attitude. When we talk
of our degrees of belief, Harman claims, we are referring to how strongly held our
flat-out beliefs are, where this is a matter of how hard it would be for us to give them
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up (Harman 1986, ch. 3). So, one either believes a proposition or does not believe
it, but if one does, then one does so with a certain degree of strength or attachment.
(Harman stresses that this need not involve making an explicit assessment of how
important the belief is to us; our degree of attachment to it may be implicit in the
way we reason – the more attached to it we are, the more powerful the reasons
needed to get us to abandon it). I suspect that this view is held, at least tacitly, by
many philosophers of mind, and it can be easily extended to desire. When we talk
of our degrees of preference we can be understood as referring to the strength of
our flat-out desires, where this is a matter of their tenacity or their power to override
competing desires.

This view is also unsatisfactory, however. The main problem is that it means that
one would have to believe a proposition flat-out in order to have a degree of belief in
it. And this is surely wrong. I have some degree of confidence (less than 50%) in the
proposition that it will rain tomorrow, but I do not believe flat-out that it will rain –
not, at least, by the everyday standards for flat-out belief. (If anything, I believe the
opposite). Indeed, according to Bayesian principles, a rational agent will entertain
some degree of confidence in every proposition of whose falsity they are not certain,
including pairs that are contradictory. Yet it would be absurd to say that a rational
agent will have a flat-out belief in every proposition to which they ascribe non-zero
probability. Similar considerations apply to desire. I can prefer to be maimed rather
than killed without desiring flat-out to be maimed. (This is not to say, of course, that
we do not have degrees of attachment to our flat-out beliefs and desires, just that our
degrees of confidence cannot be identified with them).

Finally, note that both proposals considered still face the Bayesian challenge.
On the former view, partial beliefs form only a subset of our flat-out beliefs, and
it is hard to see how it could be rational to act on the remaining ones. And on the
second proposal it is unclear how reasoning involving flat-out beliefs and desires
could be sensitive to our degrees of attachment to those states in the way required
by Bayesian decision theory.

It is implausible, then, to regard partial belief as a derivative of flat-out belief,
and in what follows I shall treat it as a psychological primitive. This is not the same
as an ontological primitive, of course; there will be some story to be told about
how partial beliefs are physically realized. But I shall assume that this story will not
appeal to psychological notions.

3 Flat-Out Belief as a Derivative of Partial Belief

Turn now to the opposite view – that partial belief is the core state and flat-out
belief the derivative. The obvious strategy here is to identify flat-out belief with
some level of confidence, either the maximum (1 on the scale of 0–1 on which
degrees of confidence are standardly measured) or a level exceeding some threshold
short of the maximum. This view is assumed either explicitly or tacitly by many
epistemologists and philosophers of science working within the Bayesian tradition,
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and it has the advantage of dispelling the Bayesian challenge. If talk of a person’s
flat-out beliefs is simply an alternative way of characterizing their degrees of confi-
dence, then Bayesian theory poses no threat to it. The view faces serious difficulties,
however.

Consider first the suggestion that flat-out belief is maximum confidence – a view
reflected in the frequent use of the term ‘full belief’ for flat-out belief. The prob-
lem here is that one can believe something, in the everyday sense, without being
certain of it. I believe that my grandmother was born on the 3rd of August, but I
am not absolutely certain of it. I may have misremembered or been misinformed.
Nor is this lack of certainty necessarily a bad thing; a fallibilist attitude to one’s
own beliefs has much to recommend it. Another difficulty for the full-belief view
arises in connection with practical reasoning. On Bayesian principles, to assign a
probability of 1 to a proposition is to cease to contemplate the possibility that it is
false and, consequently, to ignore the undesirability of any outcome contingent upon
its falsity.3 One consequence of this is that if one is certain of something, then one
should be prepared, on pain of irrationality, to bet everything one has on its truth for
no return at all. For one will simply discount the possibility of losing the bet. (This
is the problem of the ‘all-for-nothing bet’; see Kaplan 1996; Maher 1986, 1993). Yet
we can believe something, in the everyday sense, without being prepared to stake
everything, or even very much, on its truth. (I would bet something, but not a great
deal, on the truth of my belief about my grandmother’s birth date). So flat-out belief
is not the same thing as maximum probability. A third problem for the full-belief
view is that it does not extend to desire. One can desire something, in the everyday
sense, without assigning it maximum desirability. I want a new car, but I do not
regard a new car as the most desirable thing in the world.

Suppose, then, that flat-out belief corresponds to a high level of confidence, albeit
one that falls short of the maximum. For example, we might say that a person has a
flat-out belief in a proposition if their confidence in it is greater than their confidence
in its negation – that is, if it exceeds 0.5. Richard Foley dubs this the Lockean thesis
(Foley 1993, ch. 4).4 Flat-out desire might similarly be identified with a certain level
of desirability.

3 In assessing a course of action, the Bayesian calculates the desirabilities of the various possible
outcomes it might have, weighting each by the probability of its occurring. Now suppose that a
particular action, A, would have a very bad outcome if condition C obtained. That is to say, suppose
that the desirability of performing A in C – symbolized as des(A(C)) – is strongly negative. (At-
tractive outcomes have positive desirabilities, unattractive ones negative desirabilities, and neutral
ones a desirability of zero). Normally, this would count against performing A, even if one were
fairly confident that C did not obtain. But now suppose one is certain that C does not obtain – i.e.
one assigns prob(C) a value of 0. Then the weighted desirability of performing A when C obtains –
prob(C)×des(A(C)) – will also be zero, no matter how low des(A(C)) is. That is, one should be
indifferent between performing A and maintaining the status quo and should be willing to perform
it for no return at all. The possibility of the bad outcome will be completely ignored.
4 For Locke’s endorsement of the view, see his Essay Concerning Human Understanding, Book
IV, Chaps. 15 and 16. Modern adherents of the Lockean thesis include Chisholm (1957) and Sellars
(1964). See also Foley’s paper in the present volume.
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Although popular, this view also faces serious difficulties. First, the norms of
flat-out belief are different from those of high confidence. Flat-out belief, as we
commonly conceive of it, is subject to a conjunctive constraint: we accept that
we ought to believe the conjunction of any propositions we believe (provided, at
least, that we recognize it as such; it is plausible to think that rational norms are
tailored to our needs and capacities as finite agents). This principle – conjunctive
closure – underlies some important deliberative practices. Reasoning often involves
conjoining propositions – putting together things one believes and then deriving
a conclusion from them. A person who rejected the principle would not regard
such inferences as compelling. Nor, by the same token, would they be troubled
by the discovery that their beliefs conjointly entail a contradiction (Kaplan 1981,
p. 133). Yet if flat-out belief is high confidence then it will not be subject to
conjunctive closure. For on Bayesian principles it will frequently be rational to
assign a lower probability to a conjunction than to any of its conjuncts individu-
ally. And given the right numbers, this might make the difference between meeting
and failing to meet a threshold for belief, even when the number of conjuncts is
small.

A second problem for the Lockean thesis concerns the influence of belief on ac-
tion. The common-sense conception of flat-out belief is that of a state which makes
a qualitative difference to one’s behavioural dispositions. Of course, just how the
addition of any particular flat-out belief changes one’s dispositions will depend on
what other mental states one has – what other beliefs, what desires and intentions,
and so on. But whatever the background, the addition of a new flat-out belief ought
to make some qualitative difference. (This is true even if we restrict our attention to
the context of theoretical inquiry. If a scientist forms the flat-out belief that a certain
theory is true, then we should expect this to make a qualitative difference to what
they are disposed to say and do in their professional capacity). But if the Lockean
thesis is true, the acquisition of a new flat-out belief may not involve any significant
change at all. The move from a degree of confidence that just falls short of a thresh-
old to one that just exceeds it may or may not make a qualitative difference to how
one is disposed to act. It will all depend on one’s background probabilities and de-
sirabilities. Given one background, a threshold-crossing change in one’s confidence
assignment to a particular proposition may make a great difference; given another,
it may make none. At any rate, it will not, as a rule, make a greater difference
than a change of similar extent anywhere else along the confidence scale. Similar
considerations apply to desire.

We can make the same point in a slightly different way. The folk notion of flat-out
belief is that of an explanatorily salient psychological state. That is to say, the folk
view is that our flat-out beliefs can be cited in explanation of our actions – or of some
of them, at least. But this will be the case only if there are robust, counterfactual-
supporting generalizations linking flat-out belief with action. And if the Lockean
thesis is correct, there will be no such generalizations, since, as we have just seen,
the acquisition of a new flat-out belief will often make no significant difference to
how one is disposed to act. And, given this, it is hard to see why the state should



Partial Belief and Flat-Out Belief 81

hold any theoretical interest for us.5 It is worth stressing that the objection here is not
that flat-out beliefs will be causally idle – they will, after all, possess just as much
causal power as the states of confidence in which they consist. Rather, it is that they
will not possess their causal powers in virtue of being states of flat-out belief; there
will be no psychological laws defined over flat-out beliefs. The Lockean thesis thus
avoids the Bayesian challenge only at the cost of making flat-out belief qua flat-out
belief explanatorily idle. I conclude, then, that the Lockean thesis does not capture
the everyday conception of flat-out belief. Again, the same goes for desire.

4 Flat-Out Belief as an Intentional Disposition

If we reject the full-belief view and the Lockean thesis, what options are left? Must
we conclude that flat-out belief is also a psychological primitive? That would be an
unwelcome conclusion. It would leave us with a mystery as to the relation between
the two forms of belief and with seemingly no hope of fending off the Bayesian
challenge. Indeed, if that were the only option, one might be inclined to doubt
whether there really was such a thing as flat-out belief at all. There is another op-
tion, however. This agrees with the views just considered in treating partial belief as
fundamental but postulates a more complex relation between it and flat-out belief.
The idea is to think of flat-out beliefs as behavioural dispositions arising from the
agent’s partial beliefs and desires – intentional dispositions, we might call them.
Thus, to say that a person has a flat-out belief with content p is to say that they have
partial beliefs and desires such that they are disposed to act in a certain way – a
way characterized by reference to the proposition p (examples will make this clear
shortly). I shall refer to this generic position as the behavioural view of flat-out
belief.

On this view, acquiring a new flat-out belief will make a qualitative difference
to one’s behavioural dispositions; indeed, it simply is acquiring a certain sort of
behavioural disposition. And flat-out belief will accordingly have some explanatory
salience; there will be counterfactual-supporting generalizations linking flat-out be-
lief with actions that manifest the disposition. Yet because it treats partial belief
as fundamental, the behavioural view also has the resources to answer the Bayesian
challenge. The important point is that, on this view, flat-out beliefs are not something
over and above partial beliefs and desires. An intentional disposition (say, to save
money) exists in virtue of a set of underlying partial beliefs and desires which are,
given a normal cognitive background, sufficient for it. In a widely used phrase, the
disposition is realized in the partial states. Thus, on the behavioural view, flat-out
beliefs are realized in partial beliefs and desires, and they will have an influence on
action precisely equal to that of the realizing states. As we shall see, this offers a
powerful response to the Bayesian challenge.

5 Stalnaker makes a similar point (1984, p. 91).
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Given this general approach, what sort of intentional disposition might flat-out
belief consist in? One option would be to identify it with a disposition to act as if the
proposition believed were true – that is, to prefer options that would be more attrac-
tive if it were true over ones that would be more attractive if it were false. Following
Kaplan, I shall refer to this as the act view.6 This view is unattractive, however, as
Kaplan points out (Kaplan 1996, pp. 104–106). For unless they are certain that p is
true, rational agents will be disposed to act as if p is true in some circumstances and
disposed to act as if it is false in others – it will all depend on the options available.
For example, consider two scenarios. In (1) you are offered a choice between the
status quo and betting £1 on p for a return of £10; in (2) you are offered a choice
between the status quo and betting £10 on p for a return of £1. And suppose that
your confidence in p is about 0.5. Then, if rational, you will be disposed to take the
bet in scenario (1), thereby acting as if p is true, but disposed to reject the bet in sce-
nario (2), thereby acting as if Not-p is true. It follows that a defender of the act view
must either insist that flat-out belief requires certainty or accept that flat-out belief
can vary with context, and neither option is attractive. As we saw earlier, it is implau-
sible to claim that flat-out belief requires certainty. And flat-out belief, as commonly
understood, is unqualified as to context, as well as to attitude. If we believe a propo-
sition, under a certain mode of presentation, then we believe it under that mode of
presentation in all contexts, not just when certain options are presented to us.

A more plausible option is to think of flat-out belief as a specific intentional
disposition, linked to a limited range of activities. One suggestion is that it con-
sists in a linguistic disposition – a disposition sincerely to assert the proposition
believed. This view has its roots in an influential 1971 paper by Ronald de Sousa (de
Sousa 1971). De Sousa suggests that we harbour an ‘epistemic lust’ – a hankering
for objects of unqualified epistemic virtue – which prompts us to make all-out epis-
temic commitments to propositions (bets on truth). And flat-out beliefs, de Sousa
proposes, are simply dispositions to make or manifest such commitments. More
recently, Mark Kaplan has developed a detailed version of this proposal, which he
calls the assertion view of belief (Kaplan 1996; see also Maher 1993). According
to Kaplan:

You count as believing [i.e. believing flat-out] P just if, were your sole aim to assert the
truth (as it pertains to P), and your only options were to assert that P, assert that ∼P or
make neither assertion, you would prefer to assert that P. (Kaplan 1996, p. 109)

On this view, Kaplan points out, there is no simple relationship between flat-out
belief and confidence. ‘The truth’ can be thought of as a comprehensive error-free
account of the world, and in deciding what to assert when one’s aim is to assert the
truth one must strike a balance between the aims of attaining comprehensiveness
and of avoiding error. The assertability of a proposition will thus be a function, not
only of one’s confidence in its truth, but also of one’s estimate of its informativeness,
together with the relative strengths of one’s desires to shun error and to attain com-
prehensiveness.

6 Kaplan ascribes versions of the act view to Braithwaite (1932–1933), Churchman (1956),
Rudner (1953), and Teller (1980).
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This view avoids the pitfalls of the act view. Understood in this way, flat-out
belief does not require certainty and is not context-dependent. There is only one
context that is criterial for belief possession – that of disinterested inquiry, where
one’s sole aim is to assert the truth – and provided one has a constant disposition to
assert that p in this context, one counts as believing p flat-out, even if one does not
always act as if p were true. Another attraction of the assertion view is that it does
not conflict with our common-sense commitment to the conjunctive constraint, as
the Lockean thesis does. The conflict arose because confidence is not preserved over
conjunction. But once we abandon the view that flat-out belief is a level of confi-
dence, this no longer presents a problem. We can insist that we should be prepared
to conjoin any pair of claims we believe, even if this means believing propositions
to which we assign a relatively low probability – the increased risk of error in such
cases being offset by the gain in comprehensiveness.

This view of flat-out belief is, then, closer to the everyday one than the others
we have considered. Nevertheless it is not the everyday one. For although it accords
flat-out belief some psychological salience, it does not accord it the sort of salience
we commonly take that state to have. We think of flat-out belief as a state that enters
into practical reasoning and has an open-ended role in the guidance of action. (This
is true even if we restrict our attention to beliefs formed in the context of theoretical
inquiry; a scientist’s theoretical beliefs will have an open-ended influence on the
conduct of their research). Yet, as Kaplan himself emphasizes, on the assertion view
flat-out belief is linked to only one action – assertion.7 A related difference is that, on
the folk view, the influence of belief on action is desire-mediated – beliefs influence
action only in combination with desires. On the assertion view, however, flat-out
beliefs dispose us to act directly, without the involvement of desires. Indeed, the
assertion view offers no account of what flat-out desires might be. I see no reason
for denying that we can form linguistic dispositions of the sort Kaplan describes. We
do sometimes give verbal endorsement to a proposition without taking it to heart and
acting upon it. And we might, at a pinch, describe such a disposition as a form of
belief. But it is an etiolated kind, not the everyday action-guiding variety.

5 Flat-Out Belief as a Premising Policy

I want to turn now to another way of developing the behavioural view of flat-out
belief, which offers a more robust account of the cognitive role of the state. In recent
years a number of writers have drawn a distinction between belief and acceptance.
This has links with the distinction between partial and flat-out belief (the latter, too,
is often referred to as ‘acceptance’), but there are significant differences; indeed,

7 Kaplan writes:

It is, I think, a mistake to suppose that we need recourse to talk about belief [i.e. flat-out
belief] in order adequately to describe the doxastic input into rational decision making.
. . . That task has been taken over, without residue, by our talk of confidence rankings.
(Kaplan 1996, p. 107)

See also Maher 1993, pp. 149–152.
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writers on acceptance typically insist that it is not a form of belief at all, strictly
speaking. There are a number of independent versions of the belief/acceptance dis-
tinction, each addressing different concerns and fostering different conceptions of
the two states (for a survey, see Engel 2000). I want to focus on a version developed
by Jonathan Cohen (Cohen 1989, 1992; for similar accounts, see Bratman 1992;
Engel 1998; Stalnaker 1984).

According to Cohen, belief is a disposition to entertain ‘credal feelings’; to be-
lieve that p is to be disposed to feel it true that p when you consider the matter
(Cohen 1992, p. 5). Like other affective dispositions, Cohen explains, belief is in-
voluntary and varies in intensity. Acceptance, on the other hand, is a policy, which
can be actively adopted in response to pragmatic considerations. To accept a propo-
sition is to decide to treat it as true for the purposes of certain kinds of reasoning
and decision-making. It is, in Cohen’s words:

to have or adopt a policy of deeming, positing, or postulating that p – i.e. of including that
proposition or rule among one’s premisses for deciding what to do or think in a particular
context, whether or not one feels it to be true that p. (1992, p. 4)

We are able to adopt such policies, Cohen implies, because our conscious rea-
soning is, to some extent, under our personal control. Acceptance-based mental
processes are, he says, ‘consciously guided by voluntarily accepted rules’ (1992,
p. 56) – the rules in question being logical, conceptual, or mathematical ones of the
sort we acquire in the course of learning to engage in reasoned argument. Cohen also
identifies a parallel conative state – goal adoption – which is related to acceptance as
desire is to belief (1992, pp. 44–45). (For convenience I shall use the term ‘premising
policy’ for both acceptance and goal adoption).

Cohen does not say much about what is involved in executing premising policies,
but the general idea is clear enough: in accepting a premise or adopting a goal, we
commit ourselves to a policy of taking it as an input to our conscious reasoning
and decision-making, manipulating it in accordance with whatever inference rules
we accept. Typically, these will include the rules of classical deductive logic (or
informal versions of them), together with simple, non-probabilistic rules of practi-
cal and inductive reasoning. I shall assume that we also commit ourselves to acting
upon the results of these calculations – adopting any conclusions as further premises
or goals, and performing, or forming intentions to perform, any dictated actions.
(These commitments will, of course, be contingent upon the continued acceptance
of the premise or goal itself; we can repudiate a policy if we find its dictates un-
acceptable). I take it that acts of policy adoption themselves are performative ones,
like promises, which both announce and create the commitment in question. In the
case of premising policies, these actions will of course typically be silent and in-
ternalized. When I speak of a person being committed to an action, or course of
action, I mean that they regard themselves as obliged to perform it – often, though
not always, in virtue of some prior performative of this kind. 8

8 For detailed discussion of the nature of premising policies and the procedures involved in their
execution, see my 2004, ch. 4.
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Now, Cohen’s conception of belief is somewhat idiosyncratic, and I shall set it
aside, but his account of acceptance is very relevant to our concerns. For acceptance
in Cohen’s sense has many of the characteristics of flat-out belief, as we commonly
conceive of it. First, it is an all-or-nothing state: for any proposition, p, and any
deliberative context, C, one either has or has not adopted a policy of premising that
p in C. (It is true that we may have varying degrees of attachment to our premising
policies – finding some easier to give up than others. But so long as we hold on to a
given set of policies, our commitment to each of them will be the same). Secondly,
acceptance is subject to the same inferential norms as flat-out belief. This is defi-
nitional: accepting a proposition involves committing oneself to manipulating it in
accordance with whatever inferential rules one recognizes. Thirdly, acceptance will
be salient in the explanation of action and inference in the way we take flat-out belief
to be. In accepting a proposition we undertake, not just to speak as if the proposition
accepted were true, but to reason and act as if it were. And, fourthly, this account of
flat-out belief extends smoothly to flat-out desire, which can be identified with goal
adoption.

Moreover, although Cohen does not present it in this way, it is natural to view
acceptances and goal adoptions as intentional dispositions. If one has a policy of
performing some action then one will be motivated to perform it on appropriate oc-
casions – that is, one will have an intentional disposition to perform it. Not every in-
tentional disposition counts as a policy, however; one can be intentionally disposed
to eat chocolate biscuits at regular intervals without having a policy of doing so. The
difference lies in the nature of the motivation. The motivation for a policy-related
action is not simply the desirability of the action itself or of its immediate outcome,
but rather the desirability of adhering to the policy. We adopt policies because we
think that they will bring some long-term benefit, and we adhere to them because we
want to secure this benefit. This sort of motivation is, I suggest, the defining char-
acteristic of policy-based action. That is, to have a policy of A-ing is to be disposed
to A precisely because one regards oneself as having embarked upon a course of
A-ing and attaches a high desirability to sticking to it.9 The present suggestion thus
affords a way of developing the behavioural view of flat-out belief outlined earlier.
If flat-out beliefs are policies of premising, then one will count as having a flat-out
belief with content p if one is highly confident that one has embarked upon a course
of premising that p and attaches a high desirability to adhering to it. These partial
states will be sufficient for the existence of the flat-out state, which can be thought
of as being realized in them.

9 This is slightly simplified. Typically, I think, the immediate motive for a policy-related action will
be a general desire to adhere to whatever policies one has adopted – to honour one’s policy com-
mitments, as it were. We cannot always keep in mind the reasons for pursuing particular policies,
so a general desire of this kind will be useful, helping to promote consistency in our activities and
underwriting long-term planning. On this view, then, the desire to obtain the benefits of following
a particular policy will be an indirect motive for the ensuing actions, having served to motivate the
adoption of the policy in the first place.
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It is worth stressing that the partial beliefs and desires that sustain a premising
policy need not be consciously entertained. Actions can be consciously performed
even if the beliefs and desires that motivate them are not themselves conscious.
For example, I consciously press various keys on my computer keyboard because I
desire to type certain words and believe that pressing them will achieve that. But I
do not consciously entertain those beliefs and desires as I hit the keys; I just think
about the content of what I am typing. Much the same, I assume, would go for the
beliefs and desires that support a premising policy. Typically, all I would think about
at a conscious level is the content of my premises and goals. The mental states that
motivate my premising activities would reveal themselves in my attitude to these
contents – in the fact that I regard myself as committed to my premises and goals
and bound to act upon their consequences.

Despite all this, we cannot simply identify flat-out belief with acceptance. Indeed,
writers on acceptance typically deny that it is a form of belief and stress the apparent
differences between it and belief. I shall mention two of these. First, acceptance
is responsive to prudential considerations in a way that belief appears not to be.
We can decide to treat a proposition as true for a variety of reasons – not only
evidential, but also professional, ethical, religious, and so on (Cohen 1992, p. 12,
p. 20). For example, professional ethics may oblige a lawyer to accept that their
client is innocent for the purposes of defending them. Secondly, acceptance, unlike
belief, can be context-relative. We can accept something when reasoning on certain
topics while rejecting it, or suspending judgement, when reasoning on others. The
lawyer may accept their client’s innocence when planning their defence, but not
when reasoning about personal matters. Belief, on the other hand, does not seem to
be compartmentalized in this way.

It remains possible, however, that flat-out beliefs form a subset of acceptances,
and this is the view I want to propose. The question of how the subset is delimited is
a complex one, and here I can only outline the view I favour (for extended defence
of this view, see Frankish 2004, ch. 5). Given the points just made, the obvious
suggestion would be that the distinguishing factors are motivation and context –
that flat-out beliefs are those acceptances that are epistemically motivated and un-
restricted as to context. This is too swift, however. Motivation is, I think, irrelevant
here. In general, aetiological considerations are not decisive in determining belief-
hood; we would not deny a mental state the title of belief simply because it had been
formed in an anomalous way. Moreover, while it is true that we cannot choose to
believe anything we like, it is arguable that there is a sense in which belief can be
responsive to pragmatic reasons (see Frankish 2007). Context, on the other hand, is
important. Belief, in the everyday sense, plays an open-ended role in deliberation,
and acceptances that are restricted to particular deliberative contexts do not count as
beliefs in this sense.

Not all unrestricted acceptances are beliefs, however. A person might accept a
proposition for general reasoning purposes without actually believing it. Think, for
example, of a highly insecure person who, for therapeutic reasons, accepts it as a
general premise that they are capable and successful, even though they do not really
believe that they are. For an acceptance to count as a belief, I suggest, it must not
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only be unrestricted, but must also extend to an important class of deliberations
which I shall call truth-critical with respect to premises, or TCP for short. A TCP
deliberation is one where we attach an overridingly high desirability to taking only
truths as premises – for example, theoretical deliberations where there are large
penalties for coming to false conclusions. The insecure person who accepts for ther-
apeutic reasons that they are capable and successful does not count as believing
that proposition, since they would not be willing to rely on it in TCP deliberations.
(Therapeutic considerations may influence which deliberations they treat as TCP –
perhaps determining that they treat few as such – but they will not affect their will-
ingness to use a proposition as a premise in those deliberations they do treat as TCP).
Note that, if rational, one will be willing to take a proposition as a premise in TCP
deliberations only if one has a high degree of confidence in it (higher at least than in
any of the relevant alternatives), so it is a corollary of this view that high confidence
is necessary for flat-out belief – though not, of course, sufficient for it.

I shall return to this suggestion at the end of the chapter, but for present purposes
nothing turns on it. The important claim is that flat-out beliefs form a subset of
acceptances; the exact boundaries of the subset do not matter. Note that no similar
complication arises in the identification of flat-out desires with goal pursuits, since
folk psychology recognizes the existence of instrumental desires that are formed for
pragmatic reasons and effective only within restricted contexts.

6 Flat-Out Belief and Action

I turn now to the role of flat-out belief and desire in the guidance of action and to my
response to the Bayesian challenge. Here the view just sketched has an important
consequence. It is that our premises and goals influence our behaviour in virtue of
our partial beliefs and desires concerning them. In adopting premises and goals we
commit ourselves to performing any actions they dictate. So if we believe that our
premises and goals mandate a certain action, and want to honour our commitment to
them, then we shall be motivated to perform the action for that very reason. In other
words, when we perform an action in response to our flat-out beliefs and desires we
do so because we are highly confident that we have premising policies that dictate
the action and attach a high desirability to sticking to them. (Again, these partial
attitudes need not, and typically will not, be conscious ones).

Any such action will thus have two different intentional explanations – one citing
the flat-out beliefs and desires involved, and another citing the partial beliefs and de-
sires in which these flat-out attitudes are realized. Take a simple case. Suppose I am
ordering in my favourite Chinese restaurant. I have just requested spring rolls, when
I consciously recall that these items are high in fat and that I want to cut down my
fat intake – these thoughts being recollections of a pair of previously formed flat-out
beliefs and desires. I instantly calculate that these attitudes dictate a change of order
and request something else. Here it would be natural to explain my action simply
by citing the flat-out belief and desire just mentioned. However, since these atti-
tudes influence my behaviour in virtue of my partial beliefs and desires concerning
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them, there will be another – much less obvious – intentional explanation of my
action, which represents it as the outcome of Bayesian decision-making involving
non-conscious partial attitudes. Thus, upon consciously recalling my flat-out belief
and desire, and calculating that they warranted a change of order, I became highly
confident that I had premising policies that warranted a change of order. Since I
strongly desired to adhere to my premising policies and to perform the actions they
dictated, the option of changing my order now had the highest overall estimated de-
sirability, so I took it. A similar explanation will be available whenever an agent acts
upon flat-out beliefs and desires. In each case, the explanation citing such attitudes
will be compatible with, and underpinned by, another explanation, which represents
the action as the rational product of the agent’s non-conscious partial beliefs and
desires. Of course, not all actions will have dual explanations of this kind, but only
those that are the product of conscious deliberation involving flat-out beliefs and
desires. Much of our behaviour is of a less reflective kind and will (on this view)
be explicable only in terms of partial attitudes. But any action that does have an
explanation in terms of flat-out attitudes will also have an explanation in terms of
partial ones.

This view gives us a response to the Bayesian challenge. The challenge was to
explain how it could be rational to act upon flat-out beliefs and desires and to ignore
degrees of confidence and desirability (indeed, how it could be possible, given an
interpretivist view of the mind). Now, the challenge assumes that motivation by
flat-out beliefs and desires is incompatible with motivation by partial ones – that
actions cannot be simultaneously motivated both by flat-out states and by partial
ones, and thus cannot be simultaneously responsive both to the norms of classical
practical reasoning and to those of Bayesian decision-making. But if flat-out beliefs
and desires are premising policies of the kind described, then this assumption is
false. For, as we have seen, on this view our flat-out attitudes influence our behaviour
in virtue of our partial beliefs and desires concerning them. We act on our premises
and goals because we attach a high desirability to adhering to our premising policies
and to performing the actions they dictate. Thus, in acting upon our flat-out beliefs
and desires we are not departing from Bayesian norms but adhering to them, and the
resulting actions can be justified both on classical grounds, as dictated by our flat-out
beliefs and desires, and on Bayesian grounds, as warranted by our probabilities and
desirabilities. The Bayesian challenge is thus neutralized.

For the same reason, belief in the efficacy of flat-out belief and desire is com-
patible with a broadly interpretivist view of the mind. Given a Bayesian conception
of practical rationality, interpretivism dictates that all intentional actions will, as
a matter of conceptual necessity, have explanations in terms of partial beliefs and
desires. But, again, on the present view, this is compatible with some of them also
having classical explanations in terms of flat-out beliefs and desires.

Let us look at a few objections to this account. First, doesn’t one explanation
undermine the other? If an action can be adequately explained by reference to the
agent’s partial beliefs and desires, doesn’t that make it redundant to offer another
explanation in terms of their flat-out ones? No – no more than the fact that an ac-
tion can be explained in physical terms makes it redundant to offer an intentional
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explanation for it. The two are pitched at different levels. On the behavioural view,
flat-out beliefs and desires are realized in partial ones and are causally effective
in virtue of them. We might think of the different explanations as forming part of
a layered framework of explanatory levels – physical, biological, intentional. Just
as some events, as well as having physical and biological explanations, also have
an intentional explanation in terms of partial beliefs and desires, so some have a
second, higher-level intentional explanation in terms of flat-out beliefs and desires.

Secondly, is it not highly counter-intuitive to claim that some of our actions have
two intentional explanations – and even more so to claim that one of these expla-
nations cites beliefs about premising policies and their dictates? Surely the reason I
change my order in the restaurant is simply that I believe that spring rolls are fatty
and want to reduce my fat intake – not that I believe my premising policies require
me to change my order? The claim that some actions have dual intentional explana-
tions is novel, but not, I think, specially counter-intuitive. It is common to recognize
the existence of two types of belief-desire explanation, classical and probabilistic;
the novelty lies in suggesting that one underpins the other. And while it is certainly
counter-intuitive to explain everyday actions by reference to meta-level beliefs and
desires concerning premising policies, it is important to remember that the attitudes
in question will typically be non-conscious. They will manifest themselves in the
way we conduct our conscious reasoning, but they will not figure in it themselves as
premises, and explanations citing them will be far from obvious. Moreover, when an
action is performed in response to meta-level attitudes of this kind, there will always
be a simpler and more intuitive explanation available citing the first-order flat-out
beliefs and desires that featured in the agent’s conscious reasoning. Since we do not
expect actions to have dual intentional explanations, we shall therefore systemat-
ically overlook those explanations that cite partial attitudes concerning premising
policies. It is not surprising, then, that we find the claim that such explanations exist
counter-intuitive.

Thirdly, isn’t the proposed view subject to the same objection as the full-belief
view discussed earlier? The worry is that adopting a proposition as an unqualified
premise is equivalent to treating it as certain, and therefore involves being willing to
stake everything on its truth. And, as I pointed out, we can believe something flat-out
without being willing to do this. My response here is to deny that adopting a propo-
sition as a premise involves treating it as certain (or, in the case of a goal, treating
it as maximally desirable). There will be situations where there is little to gain from
acting on a given premise or goal and much to lose, and in such situations it would
be prudent to refrain from doing so. For example, suppose I have accepted that the
gun in my desk drawer is unloaded. And suppose I am offered a small sum of money
for taking the gun and, without checking the chamber, pointing it at the head of a
loved one and pulling the trigger. In deciding whether or not to accept this offer, I
might, quite reasonably, refrain from relying on the premise that the gun is unloaded.
This presents no special difficulty for the present account, however. There is no need
to suppose that in adopting a premise or goal we commit ourselves to acting on it
come what may. In some cases the risks of adhering to a policy will outweigh the
advantages, and we shall prefer to refrain and err on the side of caution. This would
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not necessarily mean abandoning the policy; we might continue to regard ourselves
as committed to it and remain ready to act upon it in other situations where there
is less at stake. Of course, it will be important not to make a habit of failing to act
upon our premises and goals; doing so would erode our commitment to them. But
occasional failures will not be too serious. Indeed, it is plausible to regard premising
policies as having built-in exception clauses, excluding those deliberations where it
would obviously be dangerous or absurd to rely on the premise or goal in question.
What will typically happen in such cases, I suspect, is that we will make the reasons
for caution explicit, qualifying or supplementing our premises and goals so that we
can act upon them without undue risk.

Fourthly, what is the point of adopting premising policies? If I attach a suffi-
ciently high probability to a proposition, then Bayesian theory will dictate I should,
in most circumstances, act as if it were true. What do I gain by accepting it as a
premise, too? The same goes for desire. What do we gain by adopting an outcome as
a goal, in addition to attaching a high desirability to it? The short answer, I suggest,
is that doing so affords us a measure of personal control over our thought processes.
A lot of our mental life goes on below the surface. Much of our behaviour is the
product of automatic, non-conscious mental processes of which we are unaware and
over which we have no direct control. It is these processes that succumb to descrip-
tion in Bayesian terms (which is not to say that they involve actual Bayesian calcula-
tions, of course). Premising policies, on the other hand, are consciously formed and
executed and are subject to personal supervision and control. By adopting premises
and goals, and engaging in conscious reasoning, we can take manual control of our
thought processes. We can decide what to think about, and when, and can direct our
minds to theoretical problems with no immediate behavioural relevance. We can
evaluate propositions and goals in the light of appropriate norms and choose which
to endorse. And we can reflect on the inferential procedures we use, assess them,
and enhance them. In effect, by forming and executing premising policies we create
a highly flexible general-purpose reasoning system, whose procedures are open to
continual refinement and extension.

To sum up, then: on this view flat-out beliefs and desires are premising policies,
realized in non-conscious partial attitudes and effective in virtue of them. They form
what amounts to a distinct level of mentality, which is conscious, reflective, and
under personal control (elsewhere I have dubbed it the ‘supermind’). The case for
this view is essentially an inference to the best explanation: it offers the best account
of how we could harbour attitudes with the profiles of flat-out belief and desire, and
it does justice to our intuition that it is not irrational to act upon such attitudes. I
have argued elsewhere that this view also receives support from other sources – in
particular, from reflection on the nature of occurrent thought, our ability to make up
and change our minds, and the role of natural language in cognition. Again, many
of our intuitions about these matters can be accounted for on the hypothesis that we
are in the habit of forming and executing premising policies (see Frankish 2004).
The view also harmonizes well with recent work in the psychology of reasoning
(see Frankish 2009).
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7 Flat-Out Belief and Formal Epistemology

My aims here have been descriptive. I have sketched accounts of partial belief and
flat-out belief which reflect our everyday intuitions about these states and their roles,
and have not offered rigorously defined notions that could be employed in a system
for formalizing normative principles. But the descriptive task does have relevance
for formal epistemology. We need to understand how our everyday doxastic con-
cepts work in order to determine whether they, or refined versions of them, can be
incorporated into a formal system and to see how to translate everyday claims into a
formalized language. Investigation of these latter issues is a matter for another time,
but I shall conclude this chapter with a brief comment on the utility of the everyday
concept of flat-out belief for formal purposes.

I noted earlier that there is a strong case for thinking that rational flat-out belief
is subject to conjunctive closure. And if it is a form of acceptance, as I have argued,
then this will be the case. Accepting a proposition involves embarking on a policy
of taking it as a premise in one’s conscious reasoning, deductive and otherwise.
And that involves being prepared to conjoin the proposition with others one has
accepted. I suggested, however, that the concept of flat-out belief is that of a specific
type of acceptance, defined by context. An acceptance counts as a flat-out belief, I
suggested, only if its possessor is prepared to rely on it in deliberations where they
attach a high desirability to taking only truths as premises (TCP deliberations). And,
as I pointed out, this means that rational flat-out belief requires high confidence.
From this perspective, then, rational flat-out belief is not subject to conjunctive clo-
sure, since rational high confidence is not preserved over conjunction. A rational
agent might be prepared to rely on a series of propositions individually in TCP
deliberations, but unwilling to rely on their conjunction in such deliberations.

If this is right, then the folk concept of flat-out belief is a mongrel one: that of a
premising policy coupled with high confidence. And there is consequently a tension
in it: qua premising policy flat-out belief is subject to conjunctive closure, qua state
involving high confidence it isn’t. Now this is not an objection to the descriptive
account offered here – indeed it is a positive recommendation for it. For flat-out
belief does seem to be subject to a tension of just this sort. We do feel both that we
ought to adhere to conjunctive closure and that it is sometimes acceptable to violate
it – for example, that it is not unreasonable to believe that one has some false beliefs,
even though this claim is incompatible with belief in their conjunction. (The Lock-
ean thesis, by contrast, cannot explain this tension, since it offers no reason to think
that flat-out belief should be subject to conjunctive closure in the first place). The
presence of the tension does mean, however, that the everyday concept is unlikely
to be suitable for use in formal epistemology.

What sort of flat-out doxastic notion do we need for formal purposes? The ques-
tion takes us beyond the scope of the present chapter, but the short answer, I suggest,
is simply that of acceptance, in the sense described above, relativized to various
purposes and contexts and without the requirement for high confidence. That is to
say, the relevant attitude is a commitment to using a proposition as a premise in
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reasoning and decision-making for some purposes in some contexts, regardless of
the degree of confidence we have in it. And, as with belief, this attitude will be
motivated and sustained by the agent’s partial beliefs and desires – epistemic and
otherwise – and justified on decision-theoretical grounds. In theoretical contexts,
for example, it might involve trading off informativeness against probability in the
way Kaplan describes – some highly informative propositions being believable in
this sense even though our confidence in them is low. From this perspective, then,
flat-out belief may turn out to be a relatively uninteresting variant of a much more
important attitude.

Acknowledgments This chapter draws in part on material from my book Mind and Supermind
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Part II
What Laws Should Degrees of Belief Obey?



Epistemic Probability and Coherent Degrees
of Belief

Colin Howson

The function of logic . . . consists simply in specifying which
functions can assume the role of probabilities without
violating the conditions of consistency; while it is up to each
person to choose that particular opinion, among infinitely
many consistent ones, which he prefers or feels to be the right
one

(Bruno de Finetti, 1972, p. 83).

1 Introduction: the Principle of Indifference

The history of epistemic probability has been a fluctuating one. Precipitating out as a
distinct notion some time around the beginning of the nineteenth century, it quickly
became seen by many as a powerful new logic of discovery. Central to its power
to generate remarkable results was a rule for computing the prior probabilities in
Bayes’s Theorem calculations of posterior probabilities1. The rule, which virtually
all commentators in the anglophone world follow Keynes in calling the principle
of indifference, had two forms, discrete and continuous. The discrete form says
that if the information you currently have is neutral, or symmetrical, between n
exhaustive and exclusive possibilities, then the a priori probability of each is equal
to 1/n. The continuous form (traditionally known as ‘geometrical probability’) says
that if the information you have is neutral between a set of possibilities represented
by a closed interval I of Euclidean space of n dimensions then this should be ex-
pressed by a uniform a priori probability density over I. A special case of both
forms is where there is no specific background information, so that the uniform
distributions appear to be mandated a priori. Countably infinite sets of possibilities
present a problem of their own, since the only uniform distributions on them must
clearly assign the probability 0 each member, which conflicts with the principle of
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of Hi given evidence E, P(Hi) is the prior probability of Hi, and P(E|Hi) is the likelihood of Hi
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countable additivity, which states that if the members of a countably infinite family
{Ai: i=1,2, . . .} are mutually exclusive then the probability of the union is equal to
limn(P(A1+ . . . + P(An)) (it is straightforward to show that the limit exists). In fact,
it is an interesting and controversial question whether countable additivity should
be accorded axiomatic status, one to which we shall return in Section 4.

The finite and bounded-interval cases nevertheless offered a wealth of interest-
ing applications. One of them was the subject of a posthumously published pa-
per (Bayes 1763) by the eponymous (and unwitting) author of what is now called
the Bayesian theory. In this remarkable paper, for the first time in the history of
mathematical statistics a precise posterior probability distribution was derived for a
quantity of scientific interest, in this case an objective chance parameter lying in the
unit interval, where the principle of indifference prescribes the uniform probability
density 12. More sophisticated twentieth century mathematics would show that the
role played by the principle of indifference in obtaining Bayes’s result was much less
indispensable than it seemed, with much weaker assumptions, e.g. exchangeability,
or invariance of the prior probabilities over finite permutations, sufficing to generate
much the same posterior distribution for a large enough sample3. But before this
newer knowledge became available it was not clear that the principle of indiffer-
ence could be separated from the rest of the formal apparatus without depriving the
Bayesian theory of all explanatory power. Which, historically speaking, was unfor-
tunate, because by the early years of the twentieth century it became apparent that,
despite its apparent obviousness, something was seriously wrong with the principle
of indifference.

The problem arises in its most acute form for ‘geometrical probability’ where
there is no substantive prior information mentioned above (i.e. no results of experi-
mental observations). This was the type of case that Bayes himself dealt with when
he used the uniform distribution over the possible values of p in [0,1]. But consider
a new parameter q = p2. Clearly, any information about p can be recast as equivalent
information about q, in the sense that locating p in any subinterval will locate q
in a uniquely corresponding subinterval and conversely (assume that only positive
roots of q are taken). But it is very easy to see that it is impossible for both p and
q to be uniformly distributed in their common value-space [0,1]. Thus the principle
of indifference seems to lead to an absurdity. An objection often raised against this
reasoning is that the square of a probability makes no sense. It is a difficult objection
to sustain if, as it seems, there just is no fact of the matter about whether p or q or
indeed any other transformation of p is the ‘correct’ numerical measure of a proba-
bility. If you doubt this, think of odds. Odds are the transformation O(p) = p/(1-p),
where O(p) is taken to be infinite at the point p = 1 (appending∞ to the non-negative
real line is called the one-point compactification of it). The odds scale is of course
used for the practical purpose of determining the division of stakes in a gamble, but
it is also a custom hallowed by a long tradition for people to express their uncertainty

2 For an explanation of Bayes’s calculation see Howson and Urbach 2006, pp. 266–269.
3 de Finetti 1937, pp. 118–130.
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in this form even where no bet takes place. Certainly no-one claims that odds-talk
is ‘incorrect’ in this context: it is just a different way of talking about probabilities.
So is q. It still might be argued that the p-scale is the natural scale for measuring
statistical – or indeed any other – probabilities, particularly if they are regarded
as long-run relative frequencies. The objection was dealt with briskly by another
eminent statistician, I.J. Good, who pointed out that ‘it is likewise only a convention
to define probability as the limit of a proportion of successes rather than as some
monotone function of this limit’ (1950, p. 105). Like odds, for example. Or q.

The fact that the choice of different mathematical representations of a quantity
leads to a conflict with the principle of indifference was initially regarded as a ‘para-
dox’ (a different example than the above became quite famous under the name of
‘Bertrand’s Paradox’4), that is to say a highly worrying demonstration that some-
thing seen to be intuitively correct nevertheless is inconsistent. Other celebrated
‘paradoxes’ emerged around the same time in parts of pure mathematics (Russell’s
Paradox, Burali-Forti Paradox etc.) and logic (the Liar Paradox, Berry’s Paradox
etc.), and had the same startling effect: other principles just as ‘obviously’ correct
as the principle of indifference, e.g. that every property has an extension, were found
to generate contradictions. The discovery of these ‘paradoxes’ caused seismic shifts
in their respective disciplines (after-shocks persist to this day). With a good deal of
heart-searching supposedly fundamental principles impugned by the paradoxes of
logic and mathematics were either given up completely or heavily modified. The
problem with the ‘geometric’ paradoxes of probability, however, was that the prin-
ciple of indifference seemed so integral to the idea of probability-as-uncertainty
that to give it up seemed to entail abandoning the whole enterprise of a quantitative
theory of uncertainty. This was the lesson that in the early twentieth century the
eminent statisticians R.A. Fisher and Jerzy Neyman, ideological foes in everything
else, persuaded the statistical world to adopt. They argued, in enormously influen-
tial papers and books, that with the principle of indifference epistemic probability
was inconsistent and without it was necessarily subjective, there being nothing to
constrain the prior probabilities; either way it had no place in science. And such has
remained the orthodoxy in statistics until relatively recently.

Which is where we start our story, in the nineteen twenties and thirties, when
Frank Ramsey in England and Bruno de Finetti in Italy independently developed
accounts of epistemic probability as a theory of consistency in an agent’s subjective
probability assignments, which Ramsey identified with their considered degrees of
belief in the corresponding propositions. Such a theory sounds somewhat like the
theory of deductive consistency, with the rules constraining truth-value assignments
in the deductive case being those of deductive logic and in the probabilistic case the
probability axioms (exactly which probability axioms is a question I shall address
later). The deductive parallel was indeed drawn by both de Finetti and Ramsey

4 This arises from trying to answer the question whether a chord drawn at random in a circle
exceeds the side-length of the inscribed equilateral triangle. For a recent discussion see Howson
and Urbach 2006, pp. 282–285
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(Ramsey, 1926, p. 91; the epigraph to this paper is one of many similar remarks by
de Finetti), though as we shall see Ramsey’s was much more a behavioural concept
of consistency. What is of the greatest significance as far as this part of our discus-
sion is concerned is that the first principles to which each appealed (different first
principles, as we shall see) do not entail the principle of indifference or indeed any
principle other than the probability axioms themselves, as Ramsey noted explicitly
(1926, p. 189).

Ramsey’s and de Finetti’s ideas proved seminal in the development and applica-
tion of from what I shall henceforth call subjective probability, following de Finetti,
though their ideas differed in more than detail. Ramsey inaugurated the study of
epistemic probability as a subtheory of the theory of rational choice expressed
formally in terms of axiomatic utility which, developed more systematically and
rigorously in the classic work of L.J. Savage (1954), has remained the approach
of choice of most people working in the field today. Although Ramsey also saw
the theory of subjective probability as intimately connected with rational decision
and utility, de Finetti nevertheless pointed the way to seeing the rules of subjective
probability as something like consistency principles with respect to assignments of
probability. In looking in more detail at the work of these three seminal thinkers we
shall see logical and decision-theoretic influences pull in different directions, and in
de Finetti we shall see them both present.

2 Ramsey

Although Ramsey also referred to the laws of subjective probability as the logic of
consistent partial belief, the consistency according to his account was explicitly a
property (or not) of an agent’s preferences among uncertain options: they are con-
sistent, for Ramsey, if in a total ordering of a set of options they are transitive and
obey certain other postulates, some of a purely formal nature to ensure sufficient
similarity of structure to the continuum of real numbers. Given these postulates,
Ramsey was able to show that such a preference ordering is isomorphic to the or-
dering by magnitude of the reals. The use of representation theorems like this to
show that real numbers under suitable arithmetical operations faithfully represent
a rich enough algebraic structure was new to discussions of probability at the time
Ramsey wrote, though it was already an established focus of mathematical research,
eventually to become the discipline called measurement theory.

Ramsey never gave a formal proof of his representation theorem, but as Bradley,
who seems to have been the first to notice it, points out (2001), a very similar result
had been stated and proved in an abstract setting twenty years earlier by the German
mathematician Hölder. Hölder axiomatised the notion of an algebraic difference
structure and proved a corresponding representation theorem. An algebraic differ-
ence structure is an ordered set (A×A,≤) such that

1. ≤ is a complete, reflexive and transitive relation on A.
2. (a,b)≤(c,d)⇒ (d,c)≤(b,a), for all a, b, c, d in A.
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3. (a,b)≤(a’,b’) and (b,c)≤(b’,c’)⇒ (a,c)≤(a’,c’) for all a, b, c in A.
4. For all a, b, c in A, (a,b)≤(b,c)≤(b,a)⇒ ∃x,x’ in A (a,x)≡(c,d)≡(x’,b).
5. Only finitely many equal subintervals are contained in a bounded interval

(Archimedean condition).

Hölder’s theorem states that there exists a real-valued function f on A such that
for all a, b, c, d in A, (a,b)≤(c,d)⇒ f(a)–f(b)≤ f(c)–f(d) (Krantz et al. 1971, 4.4.1).
It is not difficult to see that the axioms Ramsey lays down in his paper for consis-
tent preferences essentially determine an algebraic difference structure in Hölder’s
sense. It follows from Ramsey’s own representation theorem that any of the family
of representing functions from the set of worlds to the reals establishes an interval
scale for what we can call utility (Ramsey did not use this term, but everyone since
does). He is now in a position to define a numerical measure of partial belief as, in
effect, utility-valued odds, and on the basis of his axioms to prove that it satisfies the
finitely additive probability axioms (Ramsey did not give the proof explicitly, but it
is routine).

3 Savage

Representation theorems became the characteristic tool of the utility-based ap-
proach, employed even more successfully by Savage. Savage took as primitive a
relation of preference among acts, and from his own set of postulates governing
these proved the simultaneous existence both of a class U of utility functions closed
under positive affine transformations (as had Ramsey), and of a unique finitely ad-
ditive probability function P such that act f is preferred to act g if and only if the
expected utility of f with respect to any u in U and P is greater than the expected
utility of g. Mathematically a tour de force, Savage’s work nevertheless also raised
questions that were not easy to answer. To take probably the best-known, the ap-
parently plausible postulate known as the Sure-Thing Principle (1954 pp. 21–24)
generates the well-known Allais paradox, a paradox whose force Savage himself
implicitly acknowledged by evincing preferences in the Allais decision problem
which violated the expected utility principle. There are more subtle problems. The
motivating principle of this approach is that an agent’s personal probability (‘per-
sonal probability’ is Savage’s own terminology) is determined by the way they rank
uncertain options. Savage had noticed that in a ‘small world’ obtained by partition-
ing ‘grand world’ states a probability distribution for the small world could be de-
fined which is not the marginalisation of the corresponding grand world probability.
Schervish et al. (1990) exploited Savage’s construction to show that with respect to
one and the same ‘world’ (at least) two different probability/utility distributions can
be constructed consistently with the same expected utility ranking of acts. In one,
outcomes constant in value have values in the other which depend on the states,
and vice versa. This result has the even less congenial corollary that the way a
Savagean agent values the prizes in uncertain options can affect the evaluation of
the uncertainties themselves – a result which seems to vindicate Jeffreys’s earlier
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scepticism about trying to base a theory of what you judge likely on one of what
you think desirable (1939, p. 30).

Savage’s account of personal probability is, paradoxically, further undermined by
improving its conceptual foundations. Jeffrey’s decision theory (1964), published
a decade after Savage’s, as is well-known replaces Savage’s problematic and ulti-
mately untenable state-consequence dichotomy with a much more appealing single
algebra of propositions describing both the taking of actions and the possible con-
sequences ensuing, generating thereby a modified expected-utility representation of
preference (desirability) whose probability-weights are conditional probabilities of
outcomes given the action contemplated (in Savage’s theory they are unconditional
probabilities distributed over a partition of states). But a characteristic feature of Jef-
frey’s theory is, of course, that now an extensive class of different probability func-
tions becomes consistent with any given desirability ranking of options. Worse, there
are (countably additive) probability functions in this class such that each reverses the
ordering by probability determined by the other on at least one pair of propositions.
Worse still: it follows almost immediately that it is possible for an agent to order
propositions by degree of belief consistently with the Jeffrey-Bolker axioms but in
a way not representable by any single probability function (Joyce 1999, p. 136).

True, the class of functions can in principle be narrowed down, even to a single
function: that goes without saying. The trouble is that the narrowing-down seems to
cause major disruption elsewhere, or else begs the question. As an example of the
former, Bradley (2001) shows that uniqueness can be obtained by adjoining to the
underlying algebra of propositions a class of conditionals satisfying the so-called
Adams’ Principle (which says that the probability of a conditional is a conditional
probability). But then Lewis’s famous Triviality Theorems (Lewis, 1976) imply that
the resulting logic must be non-Boolean, to say nothing of these conditionals pos-
sessing some very counterintuitive features: e.g. ‘If Jones is guilty then Jones is
guilty’ turns out to have no truth-value if Jones is in fact not guilty5. The other
option is to add additional axioms. Jeffrey himself counselled adding axioms for
qualitative probability orderings (1974, pp. 77–78), a strategy endorsed by Joyce:

The bottom line is that Jeffrey/Bolker axioms need to be augmented, not with further con-
straints on rational preference, but with further constraints on rational belief (1999, p. 137)

It is well-known how to do this to secure uniqueness, but the strategy of course
effectively sells the pass as far as the program for determining subjective proba-
bilities by appeal to properties of rational preference is concerned. The continued
concentration of activity in the theory of rational preference should not conceal the
fact that one of its historically principal objectives, the determination of personal
probabilities by a suitable elicitation of preferences (recall that it was Ramsey’s
explicit goal), is still a long way from being satisfactorily achieved.

5 de Finetti himself proposed that the term ‘B|A’ inside the conditional probability function P(B|A)
should be regarded as a conditional proposition, taking the values ‘true’, ‘false’, and ‘void’ when
A is false, mirroring the conditions for a conditional bet which is called off if B is false. (de
Finetti 1937, p. 108).
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Another objection, in my opinion an even more fundamental one, is that though
this type of account purports to provide a theory of ‘the behaviour of a ‘rational’
person with respect to decisions’ (Savage 1954, p. 7), its precepts are literally im-
possible for any rational agent to obey other than by chance. The Savagean ‘rational’
agent has to be able to decide deductive relationships, since their personal probabil-
ity function, in satisfying the (finitely additive) probability axioms, has to respect all
entailment relations (thus if A is a logical truth P(A) = 1, if A entails B then P(A) ≤
P(B), if A entails B and A has nonzero probability then P(B|A) = 1 etc). The square
quotes around ‘rational’ in the quotation from Savage suggest a degree of idealisa-
tion, but this is arguably much more than a question of degree. A famous result in
mathematical logic of Church and Turing is that not even highly idealised computers
with arbitrarily extendable memories can decide these questions. According to its
critics, this type of theory therefore appears to assume that ‘logical omniscience’ is
part of rationality (Earman, 1992, p. 121), evoking the call by some for a ‘slightly
more realistic personal probability’ (Hacking 1967).

That response misses an important point. The fact is that there is a formalism
in which a real-valued non-negative function is defined on a Boolean algebra and
which satisfies the usual probability axioms. Since it is quite impossible that such a
theory can describe the beliefs of even a super-rational person, the question naturally
arises as to whether there is some less straining interpretation that can be put on it.
Indeed there is, and it is adumbrated in the work of de Finetti, though he too was
also a strong advocate of a decision-theoretic interpretation subjective probability. It
is in his work, particularly in his discussion of the finite versus countable additivity
question, that we will see these two aspects in marked tension with each other.

4 De Finetti

De Finetti, no less than Ramsey and Savage, was much concerned with the decision-
related aspects of the theory of subjective probability, but the main focus of his work
is on what he regards as intrinsic properties of probability assignments to arbitrary
sets of events6. This already brings his approach closer to an explicitly logical one, at
any rate in the papers he wrote in the middle portion of his academic life (the focus
in his later work was more decision-theoretic), and which includes the well-known
1937 paper anthologised by Kyburg and Smokler (1964). De Finetti famously in-
vestigated the conditions under which these local assignments are coherent, in the
terminology introduced by the translator (Henry Kyburg) of de Finetti’s 1937 paper.
There is an interesting point and important point connected with this terminology. In
this paper, originally written in French, de Finetti used the French word ‘cohérence’,
and in his Italian writings it is ‘coerenza’, but both these words could equally well

6 1937, p. 103, especially footnote (b). ‘Events’ should be construed very widely, to include the
truth or falsity of factual statements in general. It would probably be better to call them propositions
rather than events, though ‘events’ is de Finetti’s own terminology.
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have been translated as ‘consistency’. Indeed the translator of another classic paper
of de Finetti’s (1949) does use the word ‘consistent’ uniformly, while de Finetti
himself, in the more recent footnotes to his 1937 paper actually glosses ‘coherence’
as ‘consistency’ (1937, p. 103, footnote (4)(b)). Kyburg himself acknowledges that
the translation ‘consistency’ was perfectly acceptable to de Finetti, but elects to use
‘coherence’ instead because of what he sees as a strong disanalogy to the deductive
concept:

‘Consistency’ is used by some English and American authors, and is perfectly acceptable to
de Finetti. [However], as the words are used in this translation, to say that a body of beliefs
is ‘consistent’ is to say (as in logic) that it contains no two beliefs that are contradictory.
To say that in addition the body of beliefs is ‘coherent’ is to say that the degrees of belief
satisfy certain further conditions. (Kyburg and Smokler 1964, p. 55).

As we shall see later, the persuasive disanalogies Kyburg cites will disappear on
a closer analysis.

So what is coherence? In the 1937 paper your subjective probability of a propo-
sition A is defined as the betting quotient P(A) at which you will be indifferent
to betting on or against A, where for a given stake S>0 the bettor-against pays
the bettor-on S(1-P(A)) if A is true and –SP(A) if not7 (there is a corresponding
definition of your conditional subjective probability of A given B, as the indifferent
betting quotient in a bet which goes ahead only if B is true). If P(E) is any set of
assignments of subjective probabilities to the propositions in some arbitrary set E ,
then Q is coherent if and only if there is no set of stakes such that those betting
quotients will deliver a certain loss (or gain: reverse the direction of the bets) in bets
involving the propositions in E . De Finetti proved that a necessary and sufficient
condition for the coherence of P(E) is that the betting quotients can be extended to
a finitely additive probability function on any field of propositions including E as
a subset (1972, p. 76; this famous result is often called the Dutch Book theorem,
because traditionally a Dutch Book is a set of stakes which ensure a positive loss
(or gain: reverse the signs of the stakes). To avoid the familiar problems connected
with the divergence of utility and monetary value, de Finetti assumes that the stakes
are kept sufficiently small.

In work written after 1937 de Finetti extended the concept of coherence to what
he called ‘previsions’, or estimates, of random quantities in general: an agents’ prob-
ability of A is now his/her prevision of A’s indicator function (i.e. the function which
takes the value 1 if A is true and 0 if not). De Finetti now provided two criteria of
coherence for previsions and proved that they are equivalent (1974, p. 88, 89). An
assignment of previsions (x’) of random quantities (X) is coherent1 just in case no
sum of bets on Xi, i = 1, . . . , n, each with gain c(Xi–xi’), exists such that the sum of
the gains is uniformly negative (a variable quantity is uniformly negative if it always
takes a value≤ ε for some ε<0). The assignment is coherent2 just in case there is a
penalty equal to [(xi–xi’)/n]2 if the value of Xi is xi, and there is no set of numbers
xi
∗ such that the value of the sum of the penalties is uniformly less with xi

∗ replacing

7 Thus the odds on A are P(A)/(1-P(A).



Epistemic Probability and Coherent Degrees of Belief 105

xi
′; in geometrical terms, there is no point (x1

∗, . . ., xn
∗) which is closer to all the

points (x1, . . . , xn) than (x1’, . . . , xn’) in the associated metric (de Finetti 1974,
p. 90). Clearly, where the Xi are indicator functions of corresponding propositions
Ai, the criterion of coherence1 reduces to the earlier definition of coherence (note
that for finite sets of bets the criterion of uniform negativity becomes that of simple
negativity).

These procedures are supposed to elicit your true beliefs (there is an expected
penalty should you register values which do not correspond to these) and the as-
sociated criteria of coherence look like straightforward rationality constraints on
the previsions. I will focus on the betting procedure, since that, together with its
accompanying Dutch Book theorem, is the feature of de Finetti’s theory for which
he is best known. A little reflection raises some questions on whether coherence is
such a straightforward constraint after all. The presumption is for each proposition
A that there is a value at which you will be indifferent between betting on or against
A (this fixes your degree of belief in A), and that you will bet at the same rates
on all of any finite set of propositions Ai, i = 1, . . ., n, that you would on each
individually (this is de Finetti’s assumption of rigidity which I shall talk more about
shortly). The objections are well-known (see, for example, Schick 1986). Even if
the stakes are kept small some element of risk-aversion will always be present, as
de Finetti himself conceded (1974, pp. 81–82), granting that the amounts gambled
would need to be measured in utiles to avoid this and related objections (utiles are
value-linear and additive by definition). This approach he eschewed in favour of the
small-money-bets one, on the ground that it would be impossible in practice to deal
in pure-value units (ibid.). But then it is difficult to accept that any rational person
would be willing to bet on some arbitrarily large number of propositions at the rate
he/she might think fair in a single bet on any one of them.

There is another feature of de Finetti’s account that calls into question any simple
rationality role played by coherence, and it is a feature that has aroused quite a lot
of controversy (not least about de Finetti’s intentions). This is that only betting quo-
tients on finitely many propositions are incoherent, according to him: even when an
infinite system will lead to certain loss (or gain) it is not incoherent. The following
simple example is de Finetti’s own. There is a lottery with denumerably infinitely
many tickets, numbered by the positive integers. According to de Finetti the uniform
assignment P(i) = 0, i = 1, 2, . . . is coherent, even though anyone accepting bets with
a stake of one dollar at the corresponding odds of 0 against each ticket is bound to
lose the dollar (1972, p. 91). The assignment, in other words, can be Dutch Booked
but is nevertheless not only coherent in de Finetti’s view but positively mandated if
one’s beliefs are perfectly symmetrically distributed over all the possibilities (1974,
p. 121; if there is anywhere in de Finetti’s writings where the ghost of the principle
of indifference lurks it is here; but is merely a ghost). How can one explain the
apparent inconsistency? De Finetti’s view, which we shall look at in more detail
shortly, is that a symmetrically distributed belief should be logically possible over
the integers as well as over a finite set and a bounded interval of real numbers.

The consequence of accepting this not-implausible position, however, is that one
must assign the zero uniform distribution over the integers. BUT this does not entail
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that one is therefore vulnerable to a Dutch Book: de Finetti evades that consequence
by denying that an infinite number of individually acceptable bets is acceptable,
while accepting it for finite ones (the latter is his assumption of rigidity (1974,
p. 77)). For de Finetti a bet on A with betting quotient p if fair (according to the
agent; this subjectivising qualification is always present) just in case p is the unique
value t for which the agent is indifferent between betting on or against, and he adopts
as an axiom that any finite sum of fair bets is fair (1972, pp. 77–78). The prevision
of the infinite sum in the lottery is of course negative, and therefore unfair even
though each of the bets is individually fair if the agent’s belief is symmetrical. But
for de Finetti this is just to deny that rigidity is extendable to infinite sums of fair
bets. In a frequently misunderstood passage, he points out that extending it to the
countably infinite in any case presupposes countable additivity (1972, p. 91: it is
straightforward to show that the countable extension implies countable additivity;
for a further discussion see Howson 2009))

Though technically consistent, de Finetti’s position nevertheless seems based on
a fairly arbitrary cut-off between finite and infinite: why should fairness be closed
under all finite sums of bets, however large, but not under countably infinite sums?
The answer seems to be simply that if closure fails for any finite sum then the fi-
nite additivity of probabilities must also fail, whereas if closure is maintained for
countably infinite sums then countable additivity for probabilities is entailed, which
would rule out the uniform distribution P(i) = 0 as incoherent. The fact is that de
Finetti wanted finite additivity but not countable adopted as a general principle, and
it is now time to look at some of the arguments pro and con.

5 Finite versus Countable Additivity

One of de Finetti’s principal arguments against adopting countable additivity as an
axiom is that intuitively consistent, and in some cases desirable, assignments are
prohibited if countable additivity is a rule of general applicability. For example, it
would be clearly impossible to assign probability 0 to all members of a countable
partition. But it seems very prejudicial to rule such a distribution inconsistent. This
feeling is reinforced by the following powerful argument of de Finetti (1974, p. 121).
Suppose one assigns, for whatever reason, a uniform distribution to a random quan-
tity whose values are the interval [0,1], and then learns that the true value is rational.
Since all one has learned is that a nondenumerable infinity of points, all of initial
probability 0, are now excluded, the natural response is plausibly to maintain the
uniform 0 distribution over the rationals in [0,1]. But under countable additivity
this is of course impossible. De Finetti also points out in the same discussion that
if one defines objective probability in terms of limiting relative frequencies then
one cannot always equate one’s subjective probabilities with these since there are
limiting frequency distributions which are not countable additive.

Continuity (limits and infima of decreasing sequences commute) is equivalent to
countable additivity, and is adopted by Kolmogorov as an axiom, but again there
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seems no compelling reason for it independent of mathematical convenience, and
even this can be overstated: a good deal of classical analytical probability theory
is retained, the principal casualties being those bits of the modern mathematical
theory rather removed from practical concerns, including the ‘almost surely’ limit
theorems of mathematical probability in their strongest form (I shall come back to
this shortly, because there is a case to be made that some of these powerful results
are rather too powerful). There are prima facie weightier arguments, however, for
countable additivity, and two bulk large in the literature: (i) there is a Dutch Book
argument, and (ii) without countable additivity there is the apparently anomalous
phenomenon of non-conglomerability.

We have already discussed the limitations of Dutch Book arguments, so I shall
proceed straight to (ii). The non-conglomerability issue seems prima facie more of
a problem. For a finitely additive but not countably additive probability function
it is possible to have a≤ P(A|Bi)≤b for each Bi in a countable partition, but for
P(A) to lie outside those bounds (i.e. be non-conglomerable; though the possibility
is easily shown to arise only for infinite partitions); indeed, it is consistent to have
P(A|Bi) = 1 for every i, and at the same time to have P(A)<1. This is the ‘Paradox
of Non-Conglomerability’, as de Finetti calls it. It implies that the average value of
P(A|X), weighted by the probabilities of each value of X, may lie outside its max-
imum or minimum value. Non-conglomerability is easily proved to be impossible
for countably additive functions. De Finetti discusses this ‘paradox’ at some length
(1972, pp. 98–104), and concludes, I think correctly, that it is merely another case
where ‘intuition’ is unreliable. In support of this conclusion cites an example from
analysis where an analogous situation arises merely because of the failure of two
limits to be interchangeable, a phenomenon that it is perfectly intelligible in context
(1972, p. 102).

A fact often invoked in support of countable additivity is that it usually has
to be appealed to in order to obtain the strong form of various limit theorems in
probability. Bayesians who adopt the principle of countable additivity frequently
cite as a merit of the theory of inductive inference that it demonstrates that under
very general conditions an agent’s posterior probabilities will converge on the truth
with probability one, where the truth in question is that of a hypothesis definable
in a σ -field of subsets of an infinite product space (see, for example, Halmos 1950
p. 213, Theorem B). In other words, merely to be a consistent probabilistic reasoner
(subject to countable additivity being included in the criteria of consistency) appears
to commit one to a prior certainty that one will converge on certainty a posteriori
in the limit of increasing evidence.

This does sound somewhat dissonant with the Humean sceptical message, one
which I have argued in Howson 2000 is fundamentally correct as far as inductive
inference is concerned, that such conclusions must implicitly or explicitly beg the
question. In this case the begging is implicit, and the question is where it is lo-
cated. The following example, due to Kelly (1996, p. 323), suggests that there are
very good grounds for locating it precisely in the principle of countable additivity.
Firstly, note that if {Bi} is a countable, mutually inconsistent family of propositions
such that the probability is positive that at least one of the Bi is true, then the only
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probability distribution over {Bi} consistent with countable additivity must carry
almost all the probability on a finite initial segment. Now suppose H says that a data
source which can emit 0 or 1 emits only 1s on repeated trials, and that P(H)>0.
The propositions An saying that a 0 occurs first at the nth repetition are a countably
infinite disjoint family, and so the probability of the statement that at least one of
the Ai is true, given the falsity of H, must be 1. So given the front-end skewedness
prescribed by countable additivity, the probability that H is false will be mostly con-
centrated on a finite disjunction A1∨ . . . ∨An. It quickly follows that the probability
that H is true, given a sufficiently long unbroken run of 1s, is very close to 1. As
Kelly observes

If probabilistic convergence theorems are to serve as a philosophical antidote to the logical
reliabilist’s concerns about local underdetermination and inductive demons, then countable
additivity is elevated from the status of a mere technical convenience to that of a central
epistemological axiom favoring scientific realism. (ibid.)

6 A Different Approach

Neither de Finetti’s theory of coherence nor the utility-oriented approach stemming
from Ramsey’s path-breaking work seems to offer a satisfactory resultion of the
problem of justifying the probability axioms, or whether countable additivity should
or should not be listed among them. We shall now look at a very different approach
to subjective probability, one conceptually quite independent of any question of
rational betting or rational choice generally, and which I believe, does offer a more
satisfactory answer to these questions. To this end we return our attention to a topic
raised briefly in the Introduction: acceptable numerical scales for measuring prob-
abilities. The American physicist R.T. Cox and the British statistician I.J. Good, in
published work shortly after the Second World War, independently argued that there
are some very general rules which should be satisfied by every admissible way of
assigning numerical degrees of uncertainty, and then showed that any such measure
is a rescaling of some finitely additive probability function. Cox’s discussion being
the more systematic, it is the one I shall describe here (Good gives an outline proof
for a more restrictive set of assmptions).

A working physicist, Cox describes his strategy in terms of the search for invari-
ant principles:

It is therefore reasonable to consider first . . . what principles of probable inference will hold
however probability is measured. Such principles, if there are any, will play in the theory of
probable inference a part like that of Carnot’s principle in thermodynamics, which holds for
all possible scales of temperature, or like the parts played in mechanics by the equations of
Lagrange and Hamilton, which have the same form no matter what system of coordinates
is used in the description of motion (1961, p. 1)

What should these principles be? Taking as primitive a notion of the probability
of a proposition A given some consistent information C, which, following Keynes
he symbolised A|C, Cox identified the following three:
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(1) Probability should depend only on propositional content; i.e. if A is logically
equivalent to B and C to D then the probability of A given C is equal to that of
B given D.

(2) The joint probability of A and B given C should depend on, and only on, the
probabilities of B given C and of A given B and C, and be an increasing function
of both.

(3) The probability of –A given C should depend on, and only on, that of A given
C, and be a decreasing function of A given C.

We can rewrite these formally thus:

(1) A|C = B|D.
(2) There is some real-valued function f(x,y) of two real variables such that A&B|C

= f(A|B&C, B|C) where f(x,y) is increasing in x and y.
(3) There is some function g(x) such that –A|C = g(B|C) where g(x) is decreasing

in x.

To (1–3) Cox added the assumptions, which seem reasonable ones, that f and
g should not only be continuous on their domains (I2 and I respectively, for some
closed interval I), but also sufficiently smooth, to the point of being at least twice-
differentiable8.

Each of (1–3) seems plausible, with (1) and (3) warranting obviousness, while (2)
says no more than that when the probability of A given B is given, and that of B itself
is given, the joint probability of A and B is determinate. It is now easy to show, using
different decompositions of A&B&D|C and the rules of the propositional calculus,
that

f(f(A|B&D&C, B|D&C), D|C) = f(A|B&D&C, f(B|D&C, D|C))

i.e.

f(f(x, y), z) = f(x, f(y, z)) (1)

where A|B&D&C = x, B|D&C = y, D|C = z. Regarding the particular values x, y
and z of these probabilities merely as samples of the values they might take, and
supposing that the relation (1) is uniform across these9 , (1) becomes a functional
equation which can be solved for f. The general solution, whose discovery was
originally due to Abel, can be put in the form

f(x, y) = h−1(h(x).h(y))10

8 Aczél (1966) and Paris (1994) subsequently proved Cox’s result without assuming differentia-
bilty.
9 Halpern (1999) overlooks this consideration, which is certainly implicit in Cox’s treatment (the
differentiability assumption clearly implies that f is constant for perturbations of the arguments),
and claims that Cox had no justification for assuming that (1) holds throughout I.
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where h is an arbitrary continuous, strictly increasing function. Cox set h(T|C) = 1,
where T is a tautology (or the tautology if we identify equivalent propositions), and
showed that (3) implies that

h(−A|C) = [1− h(A|C)m]1/m

Since h is otherwise arbitrary, m can be taken to be 1, from which it is a few easy
steps to the central result:

However A|C is measured, subject only to it satisfying (1–3), there is an order-preserving
continuous transformation h from I to [0,1] such that h(A|C) is a finitely additive conditional
probability.

We can obtain an unconditional finitely additive probability in the usual way by
defining P(A) = h(A|T).

Any admissible measure can be rescaled into a finitely additive probability, but
there are reasons (apart from the weight of tradition) for selecting the probabil-
ity scale itself as canonical. Firstly there is the additivity property of probability
functions, on which the theory of integration, and hence distribution and frequency
functions, rests (even for finite additivity). In addition there is the important fact
that the basic principle underlying the Bayesian theory of inductive inference is that
subjective probabilities should reflect objective ones where the latter constitute the
sole relevant information: this formal identity generates the likelihood terms in a
Bayes’s Theorem computation of posterior probabilities.

The probability scale also helps one see more easily the connection between
epistemic probability and the fundamentally important external constraint of truth.
One must be careful not to push this too far, however. Joyce, for example (1997),
has attempted to prove that if a probability function fails to satisfy the rules of the
finitely additive probability calculus then it can be dominated by an assignment
with respect to the average distance from the distribution of values of the indicator
functions of the relevant propositions. But the enterprise founders on the fact that the
value 1 is only conventionally associated with truth: one could just as well associate
0 with truth and 1 with falsity, whence Joyce’s argument would indicate a preference
for falsity. But a weaker connection with truth can be upheld: it is very easy to
prove using the probability calculus that not only do all necessarily true propositions
take the value 1 (and hence certainty tracks necessary truth), but also that the class
of probability-one propositions is closed under deducibility; similarly, it is easy to
demonstrate the dual version of this feature, namely that every proposition which
entails one of probability 0 itself has probability 0 (in algebraic terms the two classes
are a filter and an ideal respectively).

Finally, we can now revisit the finite versus countable additivity question with
a more determinate response. For it is not difficult to see that there is no natural
modification of Cox’s argument which justifies adding countable additivity to finite,

10 Since h is an arbitrary increasing function, by taking logarithms the general solution can also be
expressed in the form f(x,y) = H−1(H(x) + H(y)) for arbitrary continuous increasing H.
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for though mathematically sophisticated it does no more than show that the truth-
functional rules of the propositional calculus combine with the basic constraints
(1–3) to generate finitely additive probabilities only. There is, of course, no fact of
the matter about whether countable additivity is or is not ‘correct’: it is a matter
of weighing up pros and cons. My personal opinion, for what it is worth, is that
de Finetti has made a very persuasive case, which is strongly reinforced by Cox’s
result, against countable additivity.

7 Consistency and Coherence

It is time return to another topic, the central topic of this paper, that was broached
and then postponed. Recall that we saw Kyburg reject a logical characterisation
of coherence, as a species of consistency, because of what he saw, pardonably, as
the strong disanalogy between the two notions. In what follows I shall give some
reasons why I think that the disanalogies are nevertheless superficial, and that at
bottom there is a single concept, of equation-solvability subject to constraints, and
that probabilistic consistency (coherence) and deductive consistency differ only in
the form of the constraints.

We can start by noting that in his seminal book on first order logic (1968), Ray-
mond Smullyan developed a version of the tableau system which evaluates the con-
sistency of any truth-value distribution over an arbitrary set of sentences from a first
order language (a sentence together with its assigned value is called by Smullyan
a ‘signed’ sentence (1968, p. 15)). It is the propositional case which is particularly
relevant to this discussion. Let L be a propositional language. An assignment of
truth-values (for suggestiveness let them be 1 for ‘true’ and 0 for ‘false’) to a subset
of sentences of L is semantically consistent just in case it can be extended to a
valuation of all the sentences in L satisfying the usual truth-table constraints; we
call such an extension a model of the original assignment. It is easy to see how these
definitions relate to the more familiar notions of semantic consistency and model
for unsigned formulas (from now on when I use the word ‘consistency’ it is always
semantic consistency I will have in mind). A model determines and is determined
by the values assigned the sentence-variables, so we see that the notion of deductive
consistency for propositional logic is nothing more than the familiar mathematical
one of the solvability of a set of equations subject to constraints.

Mutatis mutandis the same is true of probabilistic consistency, where the
solvability-constraints are now the finitely additive probability axioms, extending
straightforwardly to assignments of conditional probabilities (the {0,1} truth-value
assignment is also of course a two-valued unconditional probability assignment). In
other words, deductive and probabilistic consistency differ therefore only in the na-
ture of the constraints imposed. We also see that probabilistic consistency as defined
above is nothing more than coherence: recall that an assignment of probabilities
from [0,1] to a set E of propositions is coherent according to de Finetti’s defini-
tion if it is not vulnerable to a Dutch Book, and de Finetti proved that coherence
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so defined is equivalent to the assignment’s being extendable to a finitely additive
probability on any algebra including E (1972, p. 78); i.e. to its solvability over E .
Indeed, some authors actually define coherence as solvability in this sense (Coletti
and Scozzafava 2002, p. 31).

Note also that not only consistency and model but also the notion of (semantic)
consequence is common to both the deductive and probabilistic cases. For suppose
Q is an assignment to some set of sentences/propositions. Then the assignment V(A)
= p, p∈{0,1}/p∈[0,1] is a consequence of Q just in case every model of Q is a model
of V(A) =p11 .

We can now list three parallel metalogical results:

i. An assignment (of truth-values/probability-values) is consistent just in case it is
extendable to all the sentences of an arbitrary including language/algebra. In the
probabilistic case this was first proved by de Finetti (1972, p. 78); it would not
be true, by a well-know result of measure theory, if countable additivity rather
than mere finite additivity were adopted.

ii. An assignment is consistent just in case it has a model (in the probabilistic case,
by analogy, a model is an extension satisfying the probability axioms to some
including algebra; by 1. this can be any including algebra).

iii. Compactness. An assignment to a set E is consistent iff the restriction to every
finite subset of E is consistent. In the probabilistic case this also depends on
assuming only finite additivity. Consider the countable lottery example again.
Every finite subset of the uniform assignment P(i) = 0, for every i = 1, 2, . . . ,
is consistent under countable additivity, but not the entire assignment. So com-
pactness fails.

iv. Non-ampliativity. Since for probabilistic and deductive consequence every
model of the premises is a model of the conclusion (both considered as value-
assignments), defining ‘logical content’ in the traditional way as possibilities
excluded, we see that valid probabilistic inference just like valid deductive in-
ference is non-ampliative. This is of course contrary to the received wisdom
according to which probabilistic inference is generally ampliative, but this is
because the model of probabilistic inference appealed to is the Keynes-Carnap
one whereby a specific conditional probability function is supposed to represent
a relation of weak entailment: here of course the arguments of the function can
be logically independent. That model has, however, not borne fruit in the way its
advocates hoped it would. I shall expand on this point at the end of this section.

Consistency, model and consequence are thus seen to be not ideas in any way
intrinsic to deductive logic, but carry over in a canonical way to the probabilis-
tic context, contrary to Kyburg’s negative view of the matter cited earlier. Recall

11 The difference between assignments to formulas or sentences in the deductive case and to propo-
sitions qua algebra elements in the probabilistic is superficial: every valuation of sentences induces
a corresponding one on the elements of the corresponding Lindenbaum algebra.
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that Kyburg also observed that de Finetti would not have been averse to translat-
ing ‘cohérence’ as ‘consistency’, and it is arguable that this was because de Finetti
entertained a view basically rather similar to that above. At that time he certainly
believed that the principles of subjective probability were of a logical character: the
following quotation seems completely unequivocal on the matter:

It is beyond doubt that probability theory can be considered a multi-valued logic (precisely:
with a continuous range of values), and that this point of view is the most sutable to clarify
the foundational aspects of the notion and the logic ofprobability. (1935, quoted in Coletti
and Scozzafava 2002, p. 61).

And in his 1937 paper he claimed that incoherence exhibited not a behavioural
defect of the agent but an ‘intrinsic contradiction’ in a subjective probability-
assignment (1937, p. 103). Indeed it does: as we see, incoherent assignments are
inconsistent.

That deductive logic and the theory of epistemic probability were complementary
logics was the belief of many of the early pioneers (Leibniz was a notable example)
as well as of Keynes and Carnap in the twentieth century. Everyone knows that
both consistency and logical consequence are central to deductive logic, and it is a
matter of taste which of the two, if either, one regards as more essential or primary.
But as far as deductive logic goes nothing substantive hangs on the choice, since
considered as semantic notions, logical consequence and consistency are interdefin-
able. Once probabilities are considered, however, the choice of which to generalise
will have very different consequences. Keynes and Carnap chose to generalise the
relation of consequence by means of a ‘suitable’ conditional probability function.
The problem with this idea, as eventually became apparent (the becoming apparent
was very eventual and actually took far too long), is that one needs a prior metric on
the space of possibilities in order to define degrees of consequence. The choice is
then between a metric which weights possibilities equally and one which does not.
The latter would inevitably be accused of a priori bias, and attention was focussed
on the latter. But that entails, of course, an appeal to the principle of indifference,
and its attendant, probably insoluble, problems. This is, I concede, a necessarily
abbreviated account of a controversial and convoluted chapter in the history of the
subject; the reader will find a more extended discussion in Howson 2009.

By contrast, as Ramsey and I think more clearly de Finetti realised, in their
different ways, the formalism of probability is more amenable to a generalisation
of the concept of consistency, and I hope the foregoing will convince readers just
how fruitful this programme has been. Casting laws of probability as logical con-
sistency constraints, analogous to the logical axioms of deductive logic, also gives
an entirely natural justification for regarding the axioms of probability as the sole
legitimate ‘objective’ constraint on personal assessments of probability. Nor was it
only Ramsey and de Finetti who glimpsed the parallel with truth-valuations. In the
second half of the twentieth century the formal apparatus of modern model theory
was deployed, first by Gaifman (1964) and then by Scott and Krauss (1966) and
others, to show in detail how a classical Boolean valuation of the sentences of a
logical language has a canonical extension to a probability function; in Gaifman’s
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case the language was a first order language, in Scott and Krauss’s an infinitary
language of type L
1
.

There are two important corollaries of developing subjective probability in such
a format. One is that the question of accurately representing one’s beliefs has little –
in fact no – theoretical importance. Ramsey, a behaviourist as far as mental states
were concerned, regarded actions as the windows through which we discern beliefs,
citing the unreliability of introspection as identifies of true strengths of belief. His
concern that an agent’s true beliefs should be elicited so that they can be subject
to rational assessment and improvement has remained a concern of many workers
in the field (recall that it is noted as a meritorious feature of de Finetti’s criteria
of coherence that any other choice of agents’ previsions than their actual ones will
exact a higher expected penalty). But the merits of true reporting are irrelevant as far
the consistency of assignments is concerned, just as, of course, one’s epistemology
is irrelevant as far as the consistency of truth-values assignments is concerned. To
this extent the current tendency to label the Bayesian theory ‘Bayesian Epistemol-
ogy’, or some general theory of rational belief and decision, seems to me misguided.
Thus the so-called ‘logical omniscience’ problem mentioned earlier is automatically
solved (this is the second corollary). Just as there is nothing in the theory of deduc-
tive consistency that implies the need to assume of logical omniscience on the part
of a deductive reasoner, so there is nothing in the theory of probabilistic consistency
implying it either.

8 Conditionalisation

A controversial item in the Bayesian armoury is conditionalisation, and more gener-
ally ‘updating rules’. We have seen how the probability axioms are characterised in
a natural way as consistency constraints on probability assignments. The problem of
consistency arises also, and particularly sharply, in the following ‘dynamic’ setting.
Suppose that as a result of making an observation, one’s assignment to a proposition
A shifts exogenously from 0<p<1 to p=1. But suppose there is another proposition
B, implied by A and to which one had assigned probability less than 1 before this
shift occurred in the value of A. Then it is inconsistent maintain this value, since
the probability calculus tells us that it must now be 1. In general, unless it is very
attenuated, one’s previous assignment will be inconsistent with the new value p=1.

At this point opinions differ on what should be done. That segment of Bayesian
opinion according to which agents evaluate contingencies in terms of constrained
rational belief functions see this as the problem of adopting a new ‘rational belief’
function, call it Q, and claim that Q is give by the condition that for all B in the
domain of one’s old probability function P, Q(B) = P(B|A). This is the Rule of
(Bayesian) Conditionalisation. It is a special case of the rule, called Jeffrey Con-
ditionalisation, according to which if there is an exogenous shift on a finite partition
A1, . . . , An to any new non-zero values p1, . . . , pn then Q(B) = �piP(B|Ai).

The justifications offered for these rules vary. One school of thought has it that the
change from P to Q should be minimal, in the sense of minimum distance between P
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and Q in function space, and to measure which they invoke a functional called cross-
entropy, or the Kullback-Leibler ‘directed distance’metric – ‘directed’ because it is
not symmetric in P and Q (for definitions and further explanation see Diaconis and
Zabell 1982). It is not difficult to prove that the Jeffrey rule, and hence its special
case of Bayesian Conditionalisation, minimises cross-entropy (Williams 1980). The
justification for proposing that minimum change from P consistent with the new
constraint P(A) = 1 should be the criterion for choosing Q is that if P is an op-
timally rational function, from the agent’s point of view, then it should plausibly
be retained modulo the smallest changes required to accommodate the constraint
(a similar minimal-change case has been made for conditionalisation in terms of
the well-known AGM theory of belief-revision of (AGM = Alchourrón-Gärdenfors-
Makinson)). This argument begs the question in two ways. One is that what the
‘closest’ function to P is, is far from absolute, and depends on one’s notion of what
‘closeness’ actually means. If closeness is defined in terms of a metric on function-
space then the choice of the Kullback-Leibler metric seems to beg the question in
that it is only one of a number of possible measures of distance in function space
(Diaconis and Zabell 1982), and not all of these deliver conditionalisation; indeed,
since the Kullback-Leibler measure is not symmetric, it is not even strictly speaking
a metric at all. Secondly, there is the fact that once a presumptively rational belief-
function has been abandoned (and this is in effect what accepting the new constraint
amounts to), then it seems to beg the question to demand that one’s new function be
‘minimally’ different.

Probably the most popular way of justifying conditionalisation is by means of a
so-called ‘dynamic’ Dutch Book (Teller, 1973). Since the argument is straightfor-
wardly extended to Jeffrey conditionalisation I shall restrict the discussion to the
simpler case of Bayesian conditionalisation. This presumes the same willingness
to bet indifferently on or against any proposition according to one’s evaluation of
the probability as de Finetti’s Dutch Book argument for the probability axioms did.
Where it departs from that argument is in assuming also the agent is willing to
state his/her strategy for changing their probabilities in the event of the ‘condition’
A being true. The opponent can then compare their proposal for their new Q(B)
with their existing conditional betting quotient P(B|A), for some B, and exploit the
difference with a Dutch Book (it requires making an appropriate side-bet on A for
the eventuality of A’s being declared false).

According to a good deal of the literature this ‘dynamic’ argument is supposed
to show that conditionalisation is a condition of ‘dynamic coherence’. If the earlier
strictures about even the less question-begging Dutch Book arguments are correct,
however, then this ‘dynamic’ version is far from demonstrating that conditionalisa-
tion is a consistency constraint on probability assignments. The Dutch Book above
penalises a change of belief over time, and the correct response to it is that if you do
think your beliefs will change, for whatever reason rational or irrational, don’t com-
pound the hazards implicit in this by also committing yourself to betting at your fair
betting rates! The fact is that changing your beliefs does not imply inconsistency.
On the contrary, it is easy to show that if – and there is no reason in principle why
you should not – you assign probabilities to your future belief-states then there are
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circumstances where to be consistent you must actually violate conditionalisation
and another related ‘principle’ allegedly founded on ‘dynamic coherence’, Reflec-
tion12 . For example, suppose Q represents your belief state tomorrow. Suppose
also that P(A) = 1, and P(Q(A)=r)>0, where r is some number less than 1. Then
it is easy to see that consistency with the ordinary probability calculus demands
that P(A|(Q(A)=r) = 1, and you must on pain of inconsistency violate Reflection.
Suppose finally that tomorrow you learn that Q(A)=r by introspection. Hence Q(A)
�= P(A|Q(A)=r) and you have also violated conditionalisation. But the violation is
actually required if you are to be consistent. It follows that, far from being a condi-
tion of consistency, ‘dynamic coherence’ will actually lead to inconsistency.

What we see in this example is that learning the conditioning proposition, in this
case ‘Q(A)=r’, conflicts with the probability conditionally assigned by P to A. But
suppose that there is no such conflict, to the extent that the previous conditional
probabilities are preserved by Q. In that case it is easy to see that Jeffrey and hence
Bayesian conditionalisation are valid rules according to the ‘synchronic’ probability
calculus. This suggests the following resolution of the problematic status of the rules
of conditionalisation: they are valid ceteris paribus, where the other things that must
remain equal are the relevant conditional probabilities.

That conclusion is reinforced by another deductive parallel. Consider the follow-
ing pattern of conditional inference

V(B) = 1 V(A/B) = r

V(A) = r
(2)

where r∈D, D being the real-number value-range of V with minimum 0 and max-
imum 1. If you substitute (a) a ‘logical’ conditional with antecedent B and conse-
quent A for A/B, and set D = {0,1} you get a general version of modus ponens valid
for not only the material conditional, but Stalnaker and Lewis conditionals too. If (b)
you make V(X) and V(X/Y) an unconditional, respectively conditional, probability
and set D = [0,1] you have a rule that is ‘synchronously’ valid, i.e. it follows from
the probability axioms.

Now change (2) to

V(B) = 1 W(A/B) = r

V(A) = r

Under (a) this is of course flatly invalid, for the obvious reason that V and W are
two distinct valuations, and for the same reason it is (or should be) under (b) too.

12 This states that if Q(A) is your probability at some future time in A then it should be related
to your current probability by the relation P(A|Q(A) = r) = r. Don’t worry that this might look
ill-formed, or ‘second order’. ‘Q(A)’ can be represented as a perfectly ordinary random variable
on the possibility space parameterised by A. There are more serious defects of Reflection, as we
shall see.
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But clearly in (2) one can make any uniform substitution for r and the result is still
valid. So substitute W(A/B) uniformly for r:

V(B) = 1 V(A/B) = W(A/B)

V(A) = W(A/B)
(3)

i.e. (3) is the valid conditional form of conditionalisation we identified above, where
the condition in question the preservation of the conditional probabilities from be-
fore learning B to after (that same condition is also necessary and sufficient for
Jeffrey conditionalisation).

9 Conclusion

The classic objection to the subjectivist position is that it cannot provide a justifi-
cation for any determinate prior distribution, and cannot to that extent justify the
specific inferences that people make and for which they would like a theory to pro-
vide rational justification. Perhaps people would like that, but at the same time there
are powerful arguments, originating with Hume, that no such justification can be
provided in principle which does not beg the question implicitly or explicitly. As-
suming these sceptical arguments are sound, the subjectivist can now make a virtue
out of the weakness of their theory, by pointing out that as a logic of consistency
it merely exhibits in a transparent manner the inductive assumptions, i.e. the prior
probabilities, that are implicit in proceeding validly to inductive conclusions. This
was the view of both Ramsey and de Finetti:

We strive to make judgments as dispassionate, reflective and wise as possible by a doctrine
that shows where and how they intervene and lays bare possible inconsistencies between
judgments. There is an instructive analogy between [deductive] logic, which convinces
one that acceptance of some subjective opinions as ‘certain’ entails the certainty of others,
and the theory of subjective probabilities, which similarly connects uncertain opinions. (de
Finetti, 1972, p. 144)

And:

This is simply bringing probability into line with ordinary formal logic, which does not
criticise premises, but merely declares that certain conclusions are the only ones consistent
with them (Ramsey, 1926, p. 91)

If these two great pioneers were correct in their assessment of the scope of the
theory they jointly created, then that new logic that they helped forge resolves an
ancient philosophical question by providing a best-possible solution of the problem
of induction13.

13 My book (2000) is an extended argument for this verdict.
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Non-Additive Degrees of Belief

Rolf Haenni

1 Introduction

This paper starts from the position that belief is primarily quantitative and not cat-
egorical, i.e. we generally assume the existence of various degrees of belief. This
corresponds to the observation that most human beings experience belief as a matter
of degree. We follow the usual convention that such degrees of belief are values in
the [0, 1]-interval, including the two extreme cases 0 for “no belief” and 1 for “full
belief”.1 Any other value in the unit interval represents its own level of certitude,
thus allowing the quantification of statements like “I strongly believe . . .” or “I can
hardly believe ...”. In this sense, we make a strict distinction between belief and
faith, the latter always being absolute. This position is in perfect accordance with
the following definition of belief:

Belief =
Assent to the truth of something offered for acceptance. It may or may not imply certitude
[. . .]. Faith almost always implies certitude. (Merriam-Webster Online Dictionary)

Degrees of belief depend at least on two factors, namely the epistemic state of the
person who holds the belief, and the proposition or statement under consideration.
The belief holder will subsequently be called agent, and with epistemic state we
refer to the evidence or information that is available to the agent at a particular point
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represent degrees of belief and disbelief with a single number.
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in time. The idea that belief depends on the available evidence is also included in
the following definition:

Belief =
Mental acceptance of a proposition, statement, or fact, as true, on the ground of [. . .] evi-
dence. (Oxford English Dictionary)

In a formal setting, we will talk about the degree of belief Bel A,t (h) ∈ [0, 1] of an
agent A at time t with respect to a hypothesis h. The hypothesis itself is assumed to
be a proposition in a formal language that is either true or false, but the actual truth
value of h is usually unknown to A. With ¬h we denote the complementary hypoth-
esis that is true whenever h is false, and Bel A,t (¬h) represents the corresponding
degree of belief in ¬h. Sometimes it is convenient to call Bel A,t (¬h) degree of
disbelief (Spohn 2008) or degree of doubt (Shafer 1976). Shackle referred to it as
the degree of potential surprise (Shackle 1949, 1952, 1953), and 1− Bel A,t (¬h) is
sometimes called degree of plausibility (Shafer 1976; Smets and Kennes 1994) or
degree of possibility (Haenni 2008; Haenni et al. 2000).

1.1 Properties of Degrees of Belief

In an epistemic theory of belief, rational agents are expected to hold degrees of
belief according to certain fundamental rules or laws. It is not our goal here to im-
pose a comprehensive and universally acceptable axiomatic framework for degrees
of belief, but rather to point out some of the most essential properties that most
people would be willing to accept, at least as a good approximation of the true
characteristics of degrees of belief.2

In this respect, the first thing we assume is that if two agents A1 and A2 possess
exactly the same amount of relevant information at time t , then they should hold
equal degrees of belief with respect to a common hypothesis h. In other words, we
assume that degrees of belief depend exclusively on the current amount of available
information, that is on the agent’s epistemic state, but not on the agent’s mental
state as a whole. With this we exclude subjective preferences or any other form of
bias. If we call the available information at time t knowledge base3 and use � t or
simply � to represent it, we may thus prefer to denote degrees of belief by Bel�(h)
rather than Bel A,t (h). Often, � will be expressed by set of sentences in a formal
language, e.g. by logical or probabilistic constraints, but we do not further specify
this at this point. If � (or A and t) is unambiguously determined by the context,
we may abbreviate Bel�(h) by Bel(h). The process of building up degrees of belief
from a given knowledge base is called reasoning.

Two of the most generally accepted properties of degrees of belief are consistency
and non-monotonicity. Consistency means that if a hypothesis h (logically) entails
another hypothesis h′, then Bel(h) is expected to be smaller or equal than Bel(h′).

2 Smets gives such an axiomatic justification for Dempster-Shafer belief functions in (Smets 1993).
3 Smets prefers to call it evidential corpus EC A

t (Smets and Kennes 1994).
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We may thus impose that h |= h′ should imply Bel(h) ≤ Bel(h′), where |= means
logical entailment. Additionally, we may assume that Bel(⊥) = 0 and Bel(�) = 1,
where ⊥ denotes the hypothesis that is always false (and thus entails any other
possible hypothesis) and � the hypothesis that is always true (and thus is entailed
by any other possible hypothesis), respectively.

The non-monotonicity property tells us that obtaining new confirming (discon-
firming) evidence may raise (lower) an agent’s degrees of belief.4 In general, learn-
ing new information �′ (another set of logical or probabilistic constraints) will thus
force the agent to adapt existing degrees of belief non-monotonically in any possi-
ble direction, depending on whether the new evidence supports or refutes current
degrees of belief (or to leave them unchanged if �′ is already included in � or if �′

is irrelevant to h):

Bel�(h) � Bel�∪�′(h). (1)

More controversial is the question whether degrees of belief should be additive
or not. In this paper, we will assume non-additivity (or sub-additivity), which states
that degrees of belief of complementary hypotheses h and ¬h do not necessarily
add up to 1,

Bel(h)+ Bel(¬h) ≤ 1, (2)

or more generally, that the degrees of belief of two exclusive hypotheses h1 and h2

do not necessarily add up to the degree of belief of their disjunction h1∨h2,

Bel(h1)+ Bel(h2) ≤ Bel(h1∨h2). (3)

Non-additivity is a direct consequence of assuming Bel∅(h) = 0 for all hypoth-
esis h �= �. The idea of this is that the extreme case of total ignorance, expressed
by an empty set � = ∅ of logical and probabilistic constraints, should never lead
to degrees of belief different from zero (except for Bel∅(�) = 1). This reflects a
very cautious and sceptical attitude, according to which nothing is believed in the
absence of supporting evidence. This attitude implies Bel∅(h) + Bel∅(¬h) = 0
for all h ��∈ {⊥,�}, which is a particular case of the non-additivity assumption
Bel(h) + Bel(¬h) ≤ 1. Non-additive degrees of belief are appealing, since they
allow a proper distinction between uncertainty and ignorance (see Section 2.5). A
number a different theories of uncertain reasoning are motivated by this, and it is
what this paper is about.

4 In the context of inductive logic (Gustason 1998, Hacking 2001, Harrod 1974, Kyburg 1970),
some authors start from the (stronger) criterion of adequacy, which expects degrees of belief to
converge towards 0 and 1, respectively: “As evidence accumulates, the degree to which the collec-
tion of true evidence statements comes to support a hypothesis, as measured by the logic, should
tend to indicate that false hypotheses are probably false and that true hypotheses are probably true”
(Hawthorne 2005).
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Fig. 1 Non-monotone and non-additive degrees of belief

Figure 1 illustrates how non-monotone and non-additive degrees of belief may
evolve if the available evidence � t monotonically accumulates over time from an
initially empty set, i.e. if � t ⊆ � t ′ holds for all t ≤ t ′ and for � 0 = ∅.

Non-additive approaches to degrees of belief are in opposition to the Bayesian
paradigm, according to which an agent’s degrees of belief are understood as sub-
jective probabilities and therefore follow the laws of probability theory (de Finetti
1937, Ramsey 1926). Updating degrees of belief in the presence of new evidence
(often called observations) is then based on a rule that follows from Bayes’ theorem.
Although the theorem itself is undisputed, its usefulness depends on the ability to
assign suitable prior probabilities. In the extreme case of no relevant background
knowledge, e.g. for � = ∅, it means that an additive pair of values must be as-
signed to Bel∅(h) and Bel∅(¬h). To solve this problem, Bayesians tend to apply the
principle of indifference (also called the principle of insufficient reason) (Keynes
1921), which states that if exclusive possibilities are indistinguishable (except for
their names), then they are equally probable. This raises various problems such
as various Bertrand-style paradoxes (Erickson 1998, van Fraassen 1990). In our
concrete case of � = ∅, it implies Bel∅(h) = Bel∅(¬h) = 1/2 for all possible
hypotheses h /∈ {⊥,�}. The same conclusion results from applying the maxi-
mum entropy principle (Paris 1994), a cautious version of the principle of insuf-
ficient reason, which instructs us to choose the model with the greatest entropy
(Williamson 2005).

From the perspective of a non-additive belief measure, additivity appears as
an ideal case in which degrees of belief coincide with long-run frequencies or
subjective probabilities. There are numerous practical examples where the available
evidence is such that this ideal case actually occurs (for certain hypotheses), but this
seems not to be the case in general. As an example, consider the event of tossing a
coin. In the ideal case, e.g. if the coin is known to be fair, one can conclude from
the available information � = {“the coin is fair”} that the two possible outcomes
head and tail are equally (or at least nearly equally) probable. This implies ad-
ditive degrees of belief Bel�(head) = Bel�(tail) = 1/2. However, if we suppose
that nothing is known about the coin and the way it is tossed, we have a situation
that is quite different from the above ideal case, and non-additive degrees of belief
Bel∅(head) = Bel∅(tail) = 0 seem to be more appropriate, particularly because



Non-Additive Degrees of Belief 125

they make the obvious epistemic difference to the ideal case explicit. Dempster de-
fends this point in one of his original papers:

While it may count as a debit item that inferences are less precise than one might have
hoped, it is a credit item that greater flexibility is allowed in the representation of a state of
knowledge. (Dempster 1968, §1)

To strengthen the above argument about the coin tossing example, suppose that
the coin toss is repeated, say 10 times, and that the outcome is 10 times head
(see Lindley’s comment in the appendix of (Dempster 1968)). With a fair coin, we
would certainly be perplexed by the result, but most probably ascribe it to chance
and continue to ascribe a degree of belief of 1/2 to future events head . With an
unknown coin, however, we would regard the outcomes of the first 10 coin tosses
as good evidence that the coin is actually biased towards head and thus change
our degree of belief to a value closer to 1. Similar arguments in favor of non-
additive degrees of belief, or in other words for adding a third category “don’t
know” to the usual Bayesian dichotomy “h is true” or “h is false”, are given in
(Dempster 2008, §2.4).

Another important argument for non-additive degrees of belief is the observa-
tion that non-additivity is an implicit property of most formal logics. Since logic
is usually not concerned with numbers, this is not very apparent at first sight.
But if we consider logical entailment |= between a set of premises � and a con-
clusion h, we may often encounter the case in which � is insufficient to entail
either h or its negation ¬h, i.e. where � �|= h and � �|= ¬h, and this trans-
lates most naturally into the above-mentioned special case of total ignorance with
Bel(h) = Bel(¬h) = 0.

1.2 Opinions

Beliefs in general and degrees of belief in particular are undoubtedly closely con-
nected to an agent’s opinions. With the goal of representing different belief states,
the term opinion has been introduced by Jøsang as the fundamental concept of what
he calls subjective logic (Jøsang 1997, 2001, 2002, Jøsang and Bondi 2000). Es-
sentially the same concept has been studied before under different names, first by
Ginsberg (Ginsberg 1984) and later by (Hájek et al. 1992, Hájek and Valdés 1991)
and Daniel (1994). In all cases, the starting point is a non-additive measure of belief,
respectively a pair (b, d) of reals with b, d ≥ 0 and a + b ≤ 1. Here we focus on
Jøsang’s original definition in (1997), according to which an opinion with respect to
a hypothesis h is a triple,5


h = (b, d, i ), (4)

5 Later in (Jøsang 2001), opinions are defined as quadruples (b, d, i, a) with an additional compo-
nent a, the so-called relative atomicity (we do not need this in this paper).
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where b = Bel(h) is the degree of belief of the hypothesis h, d = Bel(¬h) the
degree of disbelief of h, and i = 1 − (b + d) the so-called degree of ignorance.6

Since b, d , and i sum up to one by definition, opinions should be regarded as a
two-dimensional rather than three-dimensional concept, even if it is useful to always
indicate all three dimensions for an improved readability. As shown in Fig. 2, the set
of all possible opinions can be represented by a 2-simplex called opinion triangle
(Jøsang 1997). To represent a ternary probabilistic space, Dempster used a similar
picture almost thirty years earlier in his most influential papers (Dempster 1967,
1968). Dempster did not have a particular name, so he referred to it as barycentric
coordinates, which is the correct mathematical term (Bottema 1982). An isosceles
triangle instead of a equilateral triangle was used in (Hájek et al. 1992) to picture
the space of all degree of belief/disbelief pairs.

To further illustrate the concept of an opinion with an example, suppose you meet
an old friend from school after a long time. You remember her as a slim person, and
except for her current balloon-shaped belly, this is still the case. Now consider your
updated opinion with regard to the the following three hypotheses: h1 = “She is
pregnant”, h2 = “She is in the first month of pregnancy”, h3 = “This is her first
pregnancy”. Without any further information about your friend, your opinion 
h1

will probably be close or equal to (1, 0, 0), 
h2 will be close or equal to (0, 1, 0),
and 
h3 will be close or equal to (0, 0, 1).

The three opinions in the above example are very particular extreme cases. We
adopt the terminology of (Hájek and Valdés 1991), i.e. (1, 0, 0) and (0, 1, 0) are
called extremal and (0, 0, 1) is called neutral.7 Examples of general opinions will
be given in Section 2.3 (see Example 2 and Fig. 10). A general opinion 
 = (b, d, i )
is called positive if b > d , and it is called negative if b < d . Positive opinions are
located in the right half and negative opinions in the left half of the opinion triangle.
For b �= d , (b, d, i ) and (d, b, i ) are called opposite opinions, i.e. the opposite of a
positive opinion is negative, and vice versa.

Fig. 2 The opinion triangle
with its three dimensions
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6 In (Jøsang 2001), Jøsang calls i degree of uncertainty rather than degree of ignorance, but the
latter seems to be more appropriate and in better accordance with the literature (see Section 2.5).
7 In the context of religious belief, they correspond to the positions of believers, atheists, and
agnostics, respectively.



Non-Additive Degrees of Belief 127

In the opinion triangle, the two regions of positive and negative opinions are sepa-
rated by the central vertical line of indifferent opinions for which b = d holds. Note
that the neutral opinion (0, 0, 1) is also indifferent. Another particular indifferent
opinion is the point ( 1

2 , 1
2 , 0) at the bottom of the triangle.

Opinions are called pure if either b = 0 or d = 0, i.e. (b, 0, 1−b) is a purely
positive and (0, d, 1−d) a purely negative opinion.8 More specifically, (1, 0, 0) is
the extremal positive and (0, 1, 0) the extremal negative opinion. Pure opinions are
located on the left and the right edge of the triangle. Finally, opinions (b, 1−b, 0)
with i = 0, which form the bottom line of the triangle, are called Bayesian (or prob-
abilistic). Note that the extremal opinions (1, 0, 0) and (0, 1, 0) are also Bayesian,
as well as the particular indifferent opinion ( 1

2 , 1
2 , 0). All those particular types of

opinions are shown in Fig. 3.
Notice that the special case of Bayesian opinions, which is unambiguously char-

acterized by a single (additive) value b ∈ [0, 1], does not allow the agent to have “no
opinion” or to say “I don’t know”. This limited expressiveness is why we think that
assuming additive degrees of belief is too restrictive for a general model of degrees
of belief.

Fig. 3 Special types of
opinions
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1.3 Related Work

Opinions as discussed above are implicitly included in many another approaches.
As mentioned earlier, a two-dimensional view of opinions has been studied by
Ginsberg, Hájek et al., and Daniel in a proper algebraic setting, where pairs (b, d) are
called Dempster pairs or simply d-pairs (Daniel 1994, Ginsberg 1984, Hájek et al.
1992, Hájek and Valdés 1991). The set of all such (non-extremal) Dempster pairs,
together with Dempster’s rule of combination, forms a commutative semigroup with
numerous interesting mathematical properties, e.g. that (0, 0) is the neutral element
of the combination.

Such belief/disbelief pairs are also obtained from probabilistic argumentation
(Haenni 2005, 2008), where b and d are the respective probabilistic weights of un-

8 In (Hájek et al. 1992), pure opinions are called simple.
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certain logical arguments supporting the hypothesis and counter-arguments reject-
ing the hypothesis, respectively (see Section 3 for further details). In this particular
context, b and d are also called degree of support and degree of refutation, respec-
tively. One can think of them as respective probabilities that the given evidence
logically entails h or ¬h. Pearl questioned the usefulness of such probabilities of
provability:

Why should we concern ourselves with the probability that the evidence implies h, rather
than the probability that h is true, given the evidence? (Pearl 1990)

Of course, we would prefer having the latter, i.e. the ideal situation mentioned
in the previous section, but the imperfection and incompleteness of the available
information does not provide this in general.

The term probability of provability (or probability of necessity) has first been
used by Pearl (1988) and later by Laskey and Lehner in (1989) and Smets in (1991).
Ruspini proposes a similar viewpoint, but he prefers to talk about epistemic proba-
bilities P(Kh) and P(K¬h) of the epistemic states Kh (h is known) and K¬h (¬h
is known), respectively (Ruspini 1986, Ruspini et al. 1992). In Section 3, we will
discuss this position in further detail.

The Dempster-Shafer theory (Dempster 1968, Shafer 1976), also known as the
theory of belief functions or the theory of evidence, also yields such a pair of values,
but the degree of disbelief Bel(¬h) is usually replaced by the degree of plausibility
Pl(h) = 1 − Bel(¬h).9 This implies 0 ≤ Bel(h) ≤ Pl(h) ≤ 1 for all possible
hypotheses h and defines thus a partitioning of the unit interval [0, 1] into three
partitions. The same type of belief/plausibility pairs are used in Smets’ Transferable
Belief Model (TBM) Smets [1994] and Kohlas’ Theory of Hints (Kohlas and Mon-
ney 1995). Notice that the spirit behind such belief/plausibility pairs is very similar
to the modal operators � (necessity) and � (possibility) in modal logic (Blackburn
et al. 2001). The connection to the opinion triangle is illustrated in Fig. 4.

Fig. 4 Belief and plausibility
induced by an opinion 
h Bel(h) Pl(h)0 1

b di

ωh

9 The terms belief and plausibility were introduced by Shafer (1976) as a replacement for what
Dempster originally called lower and upper probability (Dempster 1967). Note that Dempster’s
lower and upper probabilities are not to be confounded with lower and upper bounds obtained
from inference with probability intervals (Kyburg 1988) or more generally with convex sets of
probabilities Walley (1991).
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To obtain another two-dimensional representation of opinions, we may use the
principle of indifference to transform Dempster pairs (b, d) into additive probabil-
ities. In the TBM framework, this transformation is called pignistic transformation
(Smets and Kennes 1994), and its result is called betting probability Bet P(h). In
the simple case of two complementary hypotheses h and ¬h, Bet P(h) is simply the
average over Bel(h) and Bel(¬h). Bet P(h) together with the degree of ignorance
i = 1 − Bel(h) − Bel(¬h) is another possible two-dimensional view, as shown
in Fig. 5. It reflects the standpoint of some moderate Bayesians, who admit that in
addition to the (additive) degree of belief one should also consider the strength of the
belief, which depends on the amount of available supporting evidence. Hawthorne’s
comment about this point goes as follows:

I contend that Bayesians need two distinct notions of probability. We need the usual degree-
of-belief notion that is central to the Bayesian account of rational decision. But Bayesians
also need a separate notion of probability that represents the degree to which evidence
supports hypotheses. (Hawthorne 2005, §1)

In this sense, additional supporting evidence can function in two ways: increase
the degree of belief or the strength of belief (or both). This point is the central idea
of what Schum (1986) calls the Scandinavian School of Evidentiary Value (Edman
1973, Gärdenfors et al. 1983), another non-additive approach to degrees of belief
that is known today as the Evidentiary Value Model (EVM) (Sahlin and Rabinowicz
1998). It originates from the work of the Swedish lawyer Ekelöf in the early sixties
(Ekelöf 1992).

Instead of considering non-additive degrees of belief in the above sense, some
authors suggested so-called non-additive probabilities (Gilboa 1987, Sarin and
Wakker 1992, Schmeidler 1989). They are often understood as (lower and upper)
bounds of probability intervals, which are induced by sets of compatible probabil-
ity functions (Koopman 1940, Kyburg 1988, Smith 1961, Walley and Fine 1982).
Today, the common general term for this particular class of approaches is impre-
cise probabilities (Walley 1991). Note that imprecise or non-additive probabilities
have been in use in physics for a long time, where the role of the non-additivity is
to describe the deviation of elementary particles in mechanical wave-like behavior
(Feynman et al. 1963). In this paper, in order to avoid unnecessary confusion, we

Fig. 5 Betting probability
induced by an opinion 
h

i

ωh

0 1BetP(h)
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prefer to make a strict distinction between additive probabilities (in the classical
sense) and non-additive degrees of belief. In Section 3, we will see how to use the
former to obtain the latter.

1.4 Historical Roots

As Shafer and later Kohlas pointed out (Kohlas 2003, Shafer 1978, 1993, 1996),
examples of the two-dimensional (non-additive) view of degrees of belief can also
be found in the literature of the late seventeenth and early eighteenth centuries, well
before Bayesian ideas were developed. Historically, non-additive degrees of belief
were mostly motivated by judicial applications, such as the reliability of witnesses
in the courtroom, or more generally by the credibility of testimonies on past events
or miracles.

The first two combination rules for testimonies were published in 1699 in an
anonymous article (1699).10 One of those rules considers two witnesses with re-
spective credibilities (frequencies of saying the truth) p and p′. If we suppose that
they deliver the same report, they are either both telling the truth with probability pp′

or they are both lying with probability (1 − p)(1 − p′). Every other configuration
is obviously impossible. The original formulation of the main statement goes as
follows:11

The ratio of truth saying cases to the total number of cases,

pp′

pp′ + (1 − p)(1 − p′)
, (5)

will represent the probability of both testifiers asserting the truth. (Anonymous article 1699)

Translated into our terminology, it means that if both witnesses report the truth of
the hypothesis h, then Bel(h) is given by the expression in (5). The corresponding
formula for n independent witnesses of equal credibility p,

pn

pn + (1− p)n
, (6)

has been mentioned by Laplace (1749–1827) in (Laplace 1820) and is closely re-
lated to the Condorcet Jury Theorem discussed in social choice theory (Black 1958,
List 2004, List and Goodin 2001, Marquis de Condorcet 1785). Notice that both
probabilities in (5) and (6) sum up to 1 with respect to the two possibilities h

10 There is some disagreement about the authorship of this article. Shafer names the English
cleric George Hooper (1640–1727) (Shafer 1990), but for Pearson, the true author is the English
statistician Edmund Halley (1656–1742) (Pearson 1978). Another possible author is the Scottish
mathematician John Craig (1663–1731).
11 In its substance, this statement was considered important enough to be included in Francis
Edgeworth’s (1845–1926) article on probability in the 11th edition of the Encyclopædia Britannica
(Edgeworth 1911).
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and ¬h. It thus seems that they are classical additive probabilities, but since they
do not depend on a prior probability with respect to h, they raise the controversial
question of whether these formulae are proper posterior probabilities in a Bayesian
sense. George Boole (1815–1864) proposed a similar formula that includes a prior
probability (Boole 1854), but (5) and (6) still appear to be reasonable results.

The connection between Laplace’s and Boole’s formulae has been studied in
(Haenni and Hartmann 2006), in which both expressions drop out as special cases
of a more general model of partially reliable information sources. This general
model is also applicable to situations of contradictory testimonies. It presupposes
non-additive degrees of belief, but Laplace’s and Boole’s formulae themselves re-
mains additive. However, the fact that Laplace’s formula does not require a prior
probability for h turns out to be the consequence of approaching the problem from
the perspective of non-additive degrees of belief.

Another important historical contribution, in which the connection to non-additive
degrees of belief is more obvious, can be found in the fourth part of Jakob Bernoullis
(1654–1705) famous Ars Conjectandi (the art of conjecture). He distinguishes be-
tween necessary and contingent (uncertain) statements:

A proposition is called necessary, relative to our knowledge, when its contrary is incompat-
ible with what we know. It is contingent, if it is not entailed by what we know. (Bernoulli
1713)

With respect to the question of whether the hypothesis h is implied by the the
given evidence, Bernoulli analyses four possible situations: (a) the evidence is
necessary and implies h necessarily; (b) the evidence is contingent, but implies h
necessarily; (c) the evidence is necessary, but implies h only contingently; (d) the
evidence is contingent and implies h only contingently.

In (c) and (d), a further distinction is made between pure and mixed arguments.
In the mixed case, it is assumed that if the evidence does not imply h, it implies ¬h,
whereas nothing is said about ¬h in the pure case. Bernoulli then considers the
number of cases in which the evidence occurs and in which h (or ¬h) is entailed.
Finally, the corresponding ratios with respect to the total number of cases turn out
to be non-additive in (b) and in the pure versions of (c) and (d).

Bernoulli also discusses the problem of combining several testimonies. Essen-
tially, his combination rules are special cases of what is known today as Dempster’s
rule of combination (see Section 2.4 for details). In the mixed version of (c), the
results of the combination coincide with Laplace’s formula, again without requiring
a prior probability for h. Laplace’s analysis is thus included in Bernoulli’s analysis,
but the connection to non-additive degrees of belief is now more obvious.

Even more general is Johann Heinrich Lambert’s (1728–1777) discussion in
(Lambert 1764). From Lambert’s perspective, Bernoulli’s pure and mixed argu-
ments are special cases of a more general situation, in which a syllogism (logical
argument) has three parts, the affirmative, the negative, and the indeterminate. There
is a number attached to each of these parts, all three of them summing up to 1. This
is exactly what is called today a Dempster pair (b, d) or an opinion 
h = (b, d, i ). In
this sense, Bernoulli’s distinction between pure and mixed arguments is a restriction
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to positive and Bayesian opinions, respectively, but Lambert’s discussion covers
the general case. A more comprehensive summary of Bernoulli’s, Lambert’s, and
Laplace’s work with corresponding links to the modern view is given in (Kohlas
2003, Shafer 1978). Notice that these very old ideas, until they were rediscovered
by Dempster, Hacking, and Shafer at the end of the 20th century (Dempster 1967,
Hacking 1975, Shafer 1976), were completely eliminated from mainstream proba-
bility over almost three full centuries.

2 Dempster-Shafer Theory

Probably the most influential and prominent non-additive approach to degrees of
belief is the so-called Dempster-Shafer Theory (DST). It is designed to deal with
the distinction between uncertainty and ignorance. Rather than computing the prob-
ability of an event H given some evidence, as in classical probability theory, the
goal here is to compute the probability that H is a necessity in the light of the
available evidence. This measure is called belief function Bel�(H ), and it satisfies
all the properties laid out in Section 1.1. Due to the central role of belief functions,
DST is sometimes called Theory of Belief Functions.

DST supposes the available information to be given in various pieces. We can
thus think of � = {�1, . . . , �m} as a collection of pieces or bodies of evidence
�i . Smets calls such a set evidential corpus (Smets and Kennes 1994), but here we
prefer the term knowledge base, as suggested in Section 1.1. Each � ∈ � is encoded
by a belief function Bel� or the corresponding mass function m� (see Section 2.2).
If two or several pieces of evidence are independent, then DST suggests a rule to
combine them (see Section 2.4). Formally, the result of the combination is denoted
by �1 ⊗ �2 (for a pair �1 and �2) and ⊗� (for the whole set �). The idea of
combining evidence is fundamental in DST, and it includes Bayesian conditioning
(derive posterior from prior probabilities) as a special case.

The roots of DST go back to the late 1960s and Dempster’s concepts of lower
and upper probabilities, which result from a multi-valued mapping between two
sample spaces  and � (Dempster 1967, 1968). The first space  carries an ordinary
probability measure P , but the events of interests are subsets of �. In such a setting,
we can use the multi-valued mapping to turn the given probabilities given for 
into lower and upper probabilities for events H ⊆ �. In the early seventies, Glenn
Shafer proposed a re-interpretation of Dempster’s lower probabilities as epistemic
probabilities or degrees of belief. Shafer called his theory Mathematical Theory of
Evidence (Shafer 1976), a name that is still in use. He took the rule for combining
degrees of belief as fundamental. Since Shafer’s conjunctive combination rule was
already included in Dempster’s papers, he and most subsequent authors referred to
it as Dempster’s rule of combination (DRC). Nevertheless, Shafer’s original book is
still one of the most comprehensive sources of information on DST.

In the late 1970s and early 1980s, Jeffrey Barnett brought Shafer’s theory into the
AI community (Barnett 1981) and called it Dempster-Shafer theory (DST). Since
then, numerous discussions, elaborations, and applications of DST were published
by various authors. Particularly important contributions are Smets’ Transferable
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Belief Model (Smets 1994) and Kohlas’ Mathematical Theory of Hints (Kohlas
1995). The more recent theory of Probabilistic Argumentation proposes a new
perspective, in which DST turns out to be a unified theory of logical and proba-
bilistic reasoning (Haenni 2005, 2008, Haenni et al. 2000, Haenni and Lehmann
2003, Kohlas 2003). This approach and its connection to DST will be discussed in
Section 3.

In the late 1970s, the success story of DST was abruptly slowed down by a paper
of Lotfi Zadeh, who presented an example for which Dempster’s rule of combina-
tion produces results usually judged unsatisfactory or counter-intuitive (Yen 1988,
Zadeh 1979, 1984, 1986). A common explanation is that possible conflicts between
different pieces of evidence are mismanaged by DRC. Since then, many authors
have used Zadeh’s example either to criticize DST as a whole, or as a motivation
for constructing alternative combination rules, which mainly differ from the way
possible conflicts are managed (the appendix of (Smets 2007) gives a comprehen-
sive overview of such methods). Others do not reject DRC, but they try to fix the
problem by considering non-exclusive or non-exhaustive frames of discernment, see
e.g. (Smarandache et al. 2004, Smets 1990). A critical note on the increasing num-
ber of possible combination rules and alternative interpretations of DST appeared in
(Haenni 2002). The most detailed and clarifying analysis of Zadeh’s puzzling exam-
ple is given in (Haenni 2005). Its conclusion is that it is not an intrinsic problem of
DRC, but a problem of its misapplication. We will briefly discuss Zadeh’s example
in Section 2.4.

The goal of this section is to provide a rough overview of the main concepts,
mathematical foundations, and different interpretations of DST. The discussion will
be restricted to finite frames, and only little or nothing will be said about computa-
tion, implementation, or applications. For more information about these advanced
topics we refer to the corresponding literature, especially to the papers recently re-
published as a collected volume (Yager and Liping 2008).

2.1 Frame of Discernment

Belief is always related to a certain open question X . In general, we must consider
many different possible answers for X . In the context of DST, it is assumed that
there is a unique true (but unknown) answer. Such a question is therefore formally
described by a set �X of pairwise exclusive answers. Without loss of generality, we
can also assume �X to be exhaustive, i.e. the true answer is supposed to be one
of its elements.12 Such an exhaustive and Such an exhaustive and exclusive set �X

is called frame of discernment or simply frame (Shafer 1976). Some authors call it
universe of discourse or simply universe. In a context, in which X is unambiguously

12 This is the so-called closed-world assumption. Some authors prefer the open-world assumption,
in which the true answer is not necessarily an element of �X . However, by extending �X with
an additional element θelse , which represents the complement of �X and thus covers all other
possible answers, it is always possible to “close the world” and to continue with the exhaustive set
�X ∪ {θelse}.
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determined, we may simply write following, we make the additional assumption that
� is finite.

In the context of DST and with respect to a given frame �X , a hypothesis or
event is a subset H ⊆ �X of values.13 H is true if it contains the true answer of X ,
otherwise it is false. 2� denotes the set of all subsets (power set) of �, i.e. the set of
all possible hypotheses.

In the literature on DST, most authors restrict their discussion to a single, simple,
and unstructured frame of discernment. This is a strong simplification, since most
problems in the “real world” include many different open questions at the same time.
If we think of questions as variables Xi with corresponding frames �Xi (or �i for
short), then we may start from the position that a problem is first of all described by
a set V = {X1, . . . , Xn} of relevant variables, and only then by the corresponding
overall frame of discernment

�V = �1 × · · · ×�n, (7)

obtained from the Cartesian product of the individual frames �i . �i . V is called the
domain of the problem, and multivariate frame of discernment. The elements of �V

are configurations or vectors (x1, . . . , xn) of values xi ∈ �i . Sometimes, they are
called world states or simply states. Due to the exclusiveness and exhaustiveness of
each individual frame, it follows that �V is also exclusive and exhaustive, i.e. one
particular state of �V must represent the true state of the world. With regard to real-
world applications, one can hardly think of a problem without such a multivariate
frame, but this has been widely neglected in the literature on the foundations of DST.
Some authors, including Shafer in his original text on DST (Shafer 1976), discuss
the problems of refining or coarsening the given frame into a more respectively less
detailed frame, but these operations turn out to be special cases of a multivariate
models, in which some of the variables involved have a special relationship (Haenni
2006).

DST on single frames requires only one operation to combine different pieces of
evidence on the same frame (see Section 2.4). In a multivariate context, however,
every piece of evidence may concern a different (sub-)set of variables, and combin-
ing them is thus a bit more complicated. If � denotes a single piece of evidence,
then we write d(�) ⊆ V for the corresponding domain (set of relevant variables) of
�. Working with such general cases requires then two additional operations, one to
extend � to larger domains D ⊇ d(�) and one to project or marginalize it to smaller
domains d ⊆ d(�). The extension operator is useful to transform two pieces of
evidence �1 and �2 to their common domain d(�1) ∪ d(�2), which allows then the
use of the normal combination operator. Sometimes, this particular type of extension
is considered to be part of the combination operator. Such an extended combination
together with the marginalization operator, which is needed to focus the given infor-
mation to one or some of the variables involved (the questions of interest), forms the

13 We use upper case letters to distinguish such subsets H properly from general hypotheses h.
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basis of so-called valuation or information algebras (Kohlas 2003, Shenoy 1992).
This is an axiomatic information theory for which general inference procedures exist
(Haenni 2004, Kohlas and Shenoy 2000, Shenoy and Shafer 1988).

In this section, we will not further discuss DST with multivariate frames or
valuation-based inference. But we want to emphasize that these topics are of crucial
importance, not only for successfully applying and implementing DST to real-world
problems, but also for a deeper and more comprehensive understanding of this the-
ory. An particular variant of DST, in which multivariate frames are fundamental,
will be presented in Section 3.

2.2 Mass Functions

The Bayesian view of additive degrees of belief is mainly based on the idea that
an agent’s total belief is dispersible into various portions. Additionally, if the agent
commits a certain degree of belief to a proposition, the remainder must be commit-
ted to its alternatives. These are the two main features of the Bayesian approach. To
make it more general, the obvious thing to do is to keep the first of these features
while discarding the second. In other words, the additivity property is no longer
imposed. This is the fundamental idea that finally leads to DST.

At the core of DST is thus the idea that any piece of evidence �, for a given frame
of discernment �, is encoded by a function

m� : 2� → [0, 1], (8)

which maps every subset A ⊆ � of possible answers into a number m�(A) of the
[0, 1]-interval, with the condition that

∑

A⊆�

m�(A) = 1. (9)

In a context in which the evidence � is unambiguously clear, m� is often abbre-
viated by m. In Shafer’s book, such m-functions are called basic probability assign-
ments (bpa), and a single value m�(A) is a basic probability number (Shafer 1976).
The common names today are mass function for m and belief mass or simply mass of
A for single values m(A).14 A mass function m is called normalized, if additionally
m(∅) = 0 holds, otherwise it is called unnormalized. Some authors prefer to restrict
their discussion to normalized mass functions, because no belief mass ought to be
committed to the empty set. This follows from the exhaustiveness of �. However,
it is mathematically more convenient to allow unnormalized mass functions and to

14 Smets prefers to talk about basic belief assignments (bba) for m-functions m and basic belief
masses for single values m(A) (Smets and Kennes 1994).
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take care of the exhaustiveness later. In such an unnormalized context, m(∅) is called
conflicting mass.

A set A ⊆ � with m�(A) > 0 is called focal set or focal element of �. The set
of all focal elements is denoted by F�, and its union C� =

⋃
F� is the core of �.

Mass functions with respect to a frame � are similar to discrete probability distri-
butions (also called probability mass functions), except that the values are assigned
to subsets A ⊆ � instead of singletons θ ∈ �. Discrete probability distributions
are thus special cases of mass functions, namely if all focal elements are singletons.
Such mass functions are called Bayesian or precise.

There is a number of other particular classes of mass functions. Vacuous mass
functions represent the case of total ignorance and are characterized by m(�) = 1
(and thus m(A) = 0 for all strict subsets A ⊂ �). Simple mass functions have at
most one focal element distinct from �. Deterministic mass functions have exactly
one focal element. Consonant mass functions have nested focal elements, i.e. it
is possible to number the r elements Ai ∈ F� such that A1 ⊂ · · · ⊂ Ar . The
characteristics of these classes are depicted in Fig. 6.

Each of these classes has its own special mathematical properties. The combi-
nation of two Bayesian mass functions, for example, yields another Bayesian mass
function. For more details on this we refer to the literature (Kohlas and Monney
1995, Shafer 1976).

In Shafer’s original view, a belief mass m(A) should be understood as “[. . .]
the measure of belief that is committed exactly to A, [. . .] not the total belief one
commits to A” (Shafer 1976). This is one possible interpretation, in which mass
functions (or belief functions) are considered to be the “atoms” with which evidence
is described. This is also the view defended in Smets’ Transferable Belief Model
(Smets and Kennes 1994) and in Jøsang’s Subjective Logic (1997), and it is the
view that dominates the literature on DST today. A similar viewpoint is the one in
which belief masses are regarded as random sets (Matheron 1975, Nguyen 1978).

A slightly different perspective is offered by Dempster’s original concept of
multi-valued mappings (Dempster 1967), where mass functions indirectly arise from
two sample spaces  and �, a mapping

� :  → 2� (10)

a) Bayesian b) Vacuous c) Simple d) Deterministic e) Consonant

Fig. 6 Different classes of mass functions
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from  to the power set of �, and a corresponding (additive) probability measure
P over . Formally, the connection from such a multi-valued mapping to mass
functions is given by

m(A) =
∑


∈,
�(
)=A

P({
}) (11)

This is also Kohlas’s view in his Theory of Hints (Kohlas and Monney 1995),
where a quadruple � = (, P, �, �) is called hint, and the elements 
 of the ad-
ditional set  are understood as possible interpretations of the hint.15 Probability
remains thus the essential concept for both Dempster and Kohlas, whereas mass
functions or non-additive degrees of belief are induced as secondary elements. This
is also the starting point in the area of probabilistic argumentation (Haenni 2005),
which will be discussed in Section 3. Shafer supports Dempster’s probabilistic view
with the following words:

The theory of belief functions is more flexible; it allows us to derive degrees of belief for a
question from probabilities for a related question. These degrees of belief may or may not
have the mathematical properties of probabilities; how much they differ from probabilities
will depend on how closely the two questions are related. (Shafer 1990)

In the common foreword of (Yager and Liping 2008), a recently published col-
lected volume on classic works of the Dempster-Shafer theory, both Dempster and
Shafer strengthen this point:

Some authors [. . .] have tried to distance the Dempster-Shafer theory from the notion of
probability. But we have long believed that the theory is best regarded as a way of using
probability. Understanding of this point is blocked by superficial but well entrenched dog-
mas that still need to be overcome.

From a mathematical point of view, one can always construct a multi-valued
mapping (or a hint) for a given mass function, such that (11) holds. On the other
hand, (11) can always be used to reduce a multi-valued mapping into a mass func-
tion. Deciding between the two possible interpretations of DST is thus like trying to
solve the chicken and egg problem. However, Dempster’s probabilistic view offers
at least the following three advantages:

� The first advantage is the fact that nothing more than the basic laws of probability
and set theory is required. This is certainly less controversial than any attempt
to axiomatize DST in terms of belief or mass functions (an example of such an
attempt is given in (Smets 1993)).

� The second advantage comes from the observation that transforming a multi-
valued mapping or hint into a mass function always implies some loss of in-

15 In (Hájek et al. 1992), a hint (, P, �, �) is called Dempster space or simply d-space.
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formation. If � is the only question of interest, this loss may be of little or no
importance, but this is not always the case.

� The third advantage is connected to the combination rule (see Section 2.4), for
which Dempster’s probabilistic view offers a clear and unambiguous understand-
ing, in particular with respect to what is meant with independent pieces of evi-
dence.

The fact that the independence requirement has become one of the most con-
troversial points of DST is presumably a consequence of today’s dominating non-
probabilistic view and its attempt to see combination as a self-contained rule that is
entirely detached from the notion of probabilistic independence.

Example 1 To illustrate the difference between the two possible views, consider the
example of a murder case in court, where some irrevocable evidence allows us to re-
duce the list of suspects to an exhaustive and exclusive set � = {John, Peter, Mary}.
Let W be a witness testifying that Peter was at home at crime time, and suppose the
court judges W ’s reliability with a subjective (additive) probability of 0.8. Notice
that W ’s statement is not necessarily false if W is unreliable. We may thus denote
W ’s testimony by �W and represent it with an additional set W = {relW ,¬relW },
the probabilities PW ({relW }) = 0.8 and PW ({¬relW }) = 0.2, and the multi-valued
mapping

�W (relW ) = {John, Mary},
�W (¬relW ) = {John, Peter, Mary},

from W to �. Altogether we obtain a hint �W = (W , PW , �W , �). The cor-
responding (simple) mass function mW over �, which we obtain with the aid of
(11), has thus two focal elements {John, Mary} and {John, Peter, Mary}, and it is
defined by

mW ({John, Mary}) = 0.8,

mW ({John, Peter, Mary}) = 0.2.

Notice that the hint �W describes the given evidence with respect to two distinct
questions, whereas mW affects � only. The complete hint is thus more informative
than the mass function mW alone. The representations are illustrated in the pictures
shown in Figs. 7 and 8.

To avoid the loss of information, we may start with a multivariate frame �′ =
W × � from the beginning. The resulting mass function m ′

W has again two focal
sets and is similar to mW from above, but now all the information with respect to
both variables  and � is included:

m ′
W ({(relW , John), (relW , Mary)}) = 0.8,

m ′
W ({(¬relW , John), (¬relW , Peter), (¬relW , Mary)}) = 0.2.
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Fig. 7 The complete
multi-valued mapping of the
murder case example
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Fig. 8 The evidence reduced
to a mass function
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After all, the choice between a multi-valued mapping from  to � or a mass
function over the complete frame  × � turns out to be a matter of taste, whereas
reducing the evidence to � alone means to lose information.

2.3 Belief and Plausibility Functions

Following Shafer’s original view, according to which “the quantity m(A) measures
the belief that one commits exactly to A” (Shafer 1976), we obtain the total degree
of belief committed to a hypothesis H ⊆ � by summing up the masses m(A) of
all non-empty subsets A ⊆ H . In the general case, where m is not necessarily
normalized, it is additionally necessary to divide this sum by 1 − m(∅). This is
a necessary consequence of the exhaustiveness of �. Belief functions are finally
defined as follows:

Bel(H ) = 1

1− m(∅)

∑

∅�=A⊆H

m(A). (12)

One can easily show that this definition is in accordance with all the basic prop-
erties for degrees of belief laid out in Section 1.1, including non-additivity. In the
case of a normalized mass function, it is possible to simplify (12) into

Bel(H ) =
∑

A⊆H

m(A). (13)

This is the definition commonly found in the literature. An alternative definition
is obtained from Dempster’s perspective of a multi-valued mapping. It is evident
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that the elements of the so-called support set SH = {
 ∈  : �(
) ⊆ SH = {
 ∈
 : �(
) ⊆ H } are the evidence. In other words, every element 
 ∈ SH supports
H , and

P(SH ) =
∑


∈SH

P({
}) (14)

denotes the corresponding prior probability that H is supported by the evidence.
In the general (unnormalized) case, we must additionally consider the conflict set
S∅ = {
 ∈  : �(
) = ∅} of impossible states, the ones that are incompatible with
the exhaustiveness assumption. P(SH ) must thus be conditioned on the complement
of S∅. Note that S∅ ⊆ SH holds for all possible H ⊆ �. This leads to the following
alternative definition of belief functions:

Bel(H ) = P(SH |Sc
∅) =

P(SH ∩ Sc
∅)

P(Sc
∅)

= P(SH\S∅)
1− P(S∅)

= P(SH )− P(S∅)
1− P(S∅)

. (15)

It is easy to verify that (15) together with (11) and (14) leads to (12). The two
definitions are thus mathematically equivalent. But (15) has the advantage of pro-
viding a very clear and transparent semantics, in which Bel(H ) is the probabil-
ity of provability or probability of necessity of H in the light of the given model
(Pearl 1988, Smets 1991). We will give a similar definition in the context of proba-
bilistic argumentation (see Section 3), where the same measure is called degree of
support.

Due to the non-additive nature of belief functions, Bel(H ) alone is not enough to
describe an agent’s full opinion with regard to a hypothesis H . Shafer calls Bel(H c)
degree of doubt and 1 − Bel(H c) upper probability of H (Shafer 1976). The latter
expresses the extent to which H appears credible or plausible in the light of the
evidence. Today, it is more common to talk about the plausibility

Pl(H ) = 1− Bel(H c) (16)

of H . This definition implies 0 ≤ Bel(H ) ≤ Pl(H ) ≤ 1 for all H ⊆ �. Note
that corresponding mass, belief, and plausibility functions convey precisely the
same information. A given piece of evidence � is thus fully and unambiguously
represented by either function m�, Bel�, or Pl�. Another possible representation
is the so-called commonality function q� (Shafer 1976), which possesses some
interesting mathematical properties. We refer to the literature for more informa-
tion on commonality functions and on how to transform one representation into
another.

Example 2 To further illustrate the connection between mass, belief, and plausi-
bility functions, let’s look at another numerical example. Consider a frame � =
{A, B, C, D} and an unnormalized mass function m with four non-zero values
m(∅) = 0.2, m({C}) = 0.1, m({A, B}) = 0.4, and m({B, C}) = 0.3. The focal
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Table 1 The connection between mass, belief, and plausibility functions

H ∅ {A} {B} {C} {A, B} {A, C} {B, C} {A, B, C}
m(H ) 0.2 0 0 0.1 0.4 0 0.3 0
Bel(H ) 0 0 0 0.125 0.5 0.125 0.5 1
Pl(H ) 0 0.5 0.875 0.5 0.875 1 1 1

sets are thus ∅, {C}, {A, B}, and {B, C}. Table 1 shows for all possible hypotheses
H ⊆ � the values Bel(H ) and Pl(H ) as obtained from (12) and (16).

In the case of H = {B, C}, for example, we have two relevant focal sets, namely
{C} and {B, C}. If we divide the sum m({C})+m({B, C})= 0.1+0.3 = 0.4 of their
masses by 1−m(∅) = 1−0.2 = 0.8, we obtain Bel({B, C}) = 0.4/0.8 = 0.5. This
and the fact that {A} is the complement of {B, C} implies Pl({A}) = 1−0.5 = 0.5.

If we start, as indicated in Fig. 9, from a hint � = (, P, �, �) with two sets
 = {
1, 
2, 
3, 
4} and � = {A, B, C, D}, a multi-valued mapping �(
1) = ∅,
�(
2) = {C}, �(
3) = {A, B}, �(
4) = {B, C}, and corresponding probabilities
P({
1}) = 0.2, P({
2}) = 0.1, P({
3}) = 0.4, P({
4}) = 0.3, we can derive the
same values from the support sets with the aid of (15) and (16). Table 2 lists the
necessary details for all H ⊆ �.

Each pair of values Bel(H ) and Pl(H ) leads to an opinion in the sense of the
definition given in Section 1.2. The opinions for all hypotheses H ⊆ � are depicted
in Fig. 10. Note that the opinions of complementary hypotheses are symmetric with
respect to the vertical center line.

Fig. 9 The complete
multi-valued mapping

Θ

A

B

C

0.4

0.3

0.1
ω1

ω2

ω3

ω4

0.2 ∅Ω

Table 2 Belief and plausibility functions induced by a hint

H ∅ {A} {B} {C} {A, B} {A, C} {B, C} {A, B, C}

SH {
1} {
1} {
1} {
1, 
2} {
1, 
3} {
1, 
2} {
1, 
2, 
4} {
1, 
2, 
3, 
4}
SH\S∅ {} {} {} {
2} {
3} {
2} {
2, 
4} {
2, 
3, 
4}
P(SH\S∅) 0 0 0 0.1 0.4 0.1 0.4 0.8

Bel(H ) 0 0 0 0.125 0.5 0.125 0.5 1

Pl(H ) 0 0.5 0.875 0.5 0.875 1 1 1
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Fig. 10 The opinions for all
H ⊆ �

2.4 Dempster’s Rule of Combination

Representing evidence by mass, belief, or plausibility functions is the first key con-
cept of DST. The second one is a general rule for combining such mass, belief, or
plausibility functions when they are based on independent pieces of evidence. In its
general form, this combination rule was first described in Dempster’s original article
in which DST was founded (Dempster 1967). Dempster called it orthogonal sum,
but today most authors refer to it as Dempster’s rule of combination (DRC). For-
mally, the combination of two pieces of evidence �1 and �2 is denoted by �1 ⊗�2.
Some authors prefer to write m1 ⊗ m2 or Bel1 ⊗ Bel2 for the combination of cor-
responding mass or belief functions, but here we will write m�1⊗�2 and Bel�1⊗�2 ,
respectively.

The most accessible and intuitive description of DRC is obtained in terms of mass
functions. In the following, let m�1 and m�2 be two mass functions representing
independent pieces of evidence �1 and �2 on the same frame of discernment � (the
problem of combining mass functions on distinct frames and the related topic of
multivariate frames has been discussed in Section 2.1). Recall that we do not require
the mass functions to be normalized, which allows us to define the unnormalized
version of DRC as follows:

m�1⊗�2 (A) =
∑

A1∩A2=A

m�1(A1) m�2(A2). (17)

Note that (17) may produce a conflicting mass different from 0 even if both m�1

and m�2 are normalized. In the normalized version of DST, which is slightly more
common in the literature, it is therefore necessary to divide the right-hand expression
of (17) by the so-called (re-)normalization constant

k = 1−
∑

A1∩A2=∅
m�1(A1) m�2(A2), (18)

which corresponds to the division by 1−m(∅) in (12). In the following, we will use
the unnormalized rule together with (12). In either case, we may restrict the sets A1
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and A2 in (17) to the focal elements of m1 and m2. This is important for an efficient
implementation of DRC.

Dempster’s rule has a number of interesting mathematical properties. The most
important ones are commutativity, i.e. �1 ⊗ �2 = �2 ⊗ �1, and associativity, i.e.
�1⊗ (�2⊗�3) = (�1⊗�2)⊗�3. The order in which evidence is combined is thus
irrelevant. This allows us to write ⊗� = �1⊗ · · ·⊗�m for the combined evidence
obtained from a set � = {�1, . . . , �m}. DRC also satisfies all other properties of a
valuation algebra (Kohlas 2003), i.e. the general inference mechanisms for valua-
tion algebras are also applicable to DST.

An important prerequisite for DRC is the above-mentioned independence as-
sumption. But what exactly does it mean for two mass or belief functions to be
independent? This question is one of the most controversial issues related to DST.
However, if we start from two hints �1 = {1, �, �1, P1} and �2 = {2, �, �2, P2}
instead of two mass functions m1 and m2, it is possible to define independence
with respect to pieces of evidence in terms of standard probabilistic independence
between 1 and 2, for which marginal probabilities P1 respectively P2 are given.
The joint probability over the Cartesian product 12 = 1×2 is then the product
P12 = P1 P2, i.e. P12({
}) = P1({
1})P2({
2}) is the probability of an element

 = (
1, 
2) ∈ 12 in the product space.

If we suppose that 
 = (
1, 
2) ∈ 12 is the true state of 12, then �1 im-
plies that the true state of � is in �1(
1), whereas �2 implies that the true state of
� is in �2(
2). As a consequence, we can conclude that the true state of � is in
�1(
1)∩ �2(
2). Combining two hints �1 and �2 thus means to pointwise multiply
probabilities and intersect corresponding focal sets. This is the core of the following
alternative definition of Dempster’s rule:

�12 = �1 ⊗ �2 = (12, P12, �12, �) = (1×2, P1 P2, �1∩�2, �). (19)

If we use (11) to obtain the mass functions m�1 , m�2 , and m�12 from �1, �2,
and �12, respectively, it is easy to show that m�1 ⊗ m�2 = m�12 holds. Mathe-
matically, the two definitions of DRC given in (17) and (19) are thus equivalent.
But since (19) defines the underlying independence assumption unambiguously
in terms of probabilistic independence, it offers a less controversial understand-
ing of DRC. Unfortunately, this view is far less common in the literature than
the one obtained from (17). An axiomatic justification of the latter is included in
(Smets 1990).

Example 3 Consider the murder case of Example 1 and suppose that a second wit-
ness V , who saw the crime from a distance, testifies with 90% certainty that the
murderer is male, i.e. either John or Peter. Of course, if V is mistaken about the
gender, the murderer is Mary. In addition to the hint �W given in Example 1, we
must now consider a second hint �V = (V , PV , �V , �} with respect to the same
frame � = {John, Peter, Mary}, but with V = {relV ,¬relV }, the multi-valued
mapping �V (relV ) = {John, Peter}, �V (¬relV ) = {Mary}, and the probabilities
PV ({relV }) = 0.9 and PV ({¬relV }) = 0.1. Combining the two hints according to
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(19) produces then a new hint �W V = �W ⊗ �V = (W V , PW V , �W V , �) with
W V = {relWrelV , relW¬relV ,¬relW relV ,¬relW¬relV }, PW V = PW PV , and the
following multi-valued mapping:

�W V (relW relV ) = {John}, PW V ({relWrelV }) = 0.72,

�W V (relW¬relV ) = {Mary}, PW V ({relW¬relV }) = 0.08,

�W V (¬relW relV ) = {John, Peter}, PW V ({¬relWrelV }) = 0.18,

�W V (¬relW¬relV ) = {Mary}, PW V ({¬relW¬relV }) = 0.02.

If the resulting hint �W V is transformed into a mass function, we get mW V

({John}) = 0.72, mW V ({John, {Peter}) = 0.18, and mW V ({Mary}) = 0.08+ 0.02 =
0.1. It is easy to verify that the same result is obtained from applying (17) to mW

and mV .

Example 4 Let’s have short look at Zadeh’s example of disagreeing experts. In the
literature, the example appears in different but essentially equivalent versions. One
possible version is the story of a doctor who reasons about possible diseases. Let
� = {M, C, T } be the set of possible diseases (M stands for meningitis, C for
concussion, and T for tumor), i.e. exactly one of these diseases is supposed to be
the true disease. In order to further restrict this set, suppose the doctor consults two
other experts E1 and E2 who give him the following reports:

E1: “I am 99% sure it’s meningitis, but there is a small chance of 1% that it’s
concussion.”

E2: “I am 99% sure it’s a tumor, but there is a small chance of 1% that it’s
concussion.”

Encoding these statements according to Zadeh’s analysis leads to two mass func-
tions m1 and m2 defined by

m1(A) =
⎧
⎨

⎩

0.99, for A = {M}
0.01, for A = {C}
0, for all other A ⊆ �

⎫
⎬

⎭
, m2(A) =

⎧
⎨

⎩

0.99, for A = {T }
0.01, for A = {C}
0, for all other A ⊆ �

⎫
⎬

⎭
.

Combining m1 and m2 with the aid of the unnormalized version of DRC leads
then to a new mass function m defined by

m12(A) = m1⊗m2(A) =
⎧
⎨

⎩

0.0001, for A = {C}
0.9999, for A = ∅
0, for all other A ⊆ �

⎫
⎬

⎭
.

Note that m12 is highly conflicting. Normalization according to (12) then leads
to Bel12({M}) = Bel12({T }) = 0 and Bel12({C}) = 1, from which the doctor
concludes that C is the right answer, i.e. the patient suffers from concussion. In the
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light of the given statements from E1 and E2, this conclusion seems to be counter-
intuitive. How can a disease such as C , which has almost completely been ruled out
by both experts, become the only remaining option?

Mathematically, the situation is very clear. The puzzling result is due to the
fact that m1({T }) = 0 completely eliminates T as a possible answer, whereas
m2({M}) = 0 entirely excludes M , thus leaving C as the only possible answer.
In other words, E1 implicitly says that T is wrong (with absolute certainty), and E2
says that M is wrong (with absolute certainty). Together with the assumption that �
is exclusive and exhaustive, it follows then that C remains as the only possible true
answer.16 The result obtained from Zadeh’s example is thus a simple logical conse-
quence of the given information. This is the starting point of the analysis in (Haenni
2005), in which not Dempster’s rule but Zadeh’s particular way of modeling the
available evidence is identified to be the cause of the puzzle. In a more sophisticated
model, in which (1) the possible diseases are not necessarily exclusive and/or (2)
the experts are not fully reliable, Dempster’s rule turns out to be in full accordance
with what intuitively would be expected. For more details we refer to the discussion
in (Haenni 2005).

2.5 Aleatory vs. Epistemic Uncertainty

From the perspective of the hint model, i.e. with the multi-valued mapping from
a probability space  to another set � in mind, DST seems to make a distinction
between different types of uncertainty. The first one is represented with the aid of
the probability measure P over , whereas the second one manifests itself in the
multi-valued mapping � from  to �. Traditionally, probability theory has been
used to characterize both types of uncertainty, but recently, the scientific and engi-
neering community has begun to recognize the utility of defining multiple types of
uncertainty. According to (Helton 1997), the dual nature of uncertainty should be
described with the following definitions:

� Epistemic Uncertainty: The type of uncertainty which results from the lack of
knowledge about a system and is a property of the analysts performing the
analysis (also known as: subjective uncertainty, type B uncertainty, reducible
uncertainty, state of knowledge uncertainty, model form uncertainty, ambiguity,
ignorance).

� Aleatory Uncertainty: The type of uncertainty which results from the fact that a
system can behave in random ways (also known as: stochastic uncertainty, type A

16 In Sir Arthur Conan Doyle’s The Sign of Four (Doyle 1890a), Sherlock Holmes describes this
type of situation as follows: “How often have I said to you that when you have eliminated the im-
possible, whatever remains, however improbable, must be the truth”. In A Study in Scarlet (Doyle
1890b), he refers to it as the method of exclusion: “By the method of exclusion, I had arrived at
this result, for no other hypothesis would meet the facts”. For more information about Sherlock
Holmes’s way of reasoning we refer to (Uchii 1991).
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uncertainty, irreducible uncertainty, variability, objective uncertainty, random
uncertainty);

One of the most distinguishing characteristics between epistemic and aleatory
uncertainty is the fact that the former is a property of the analyst or agent, whereas
the latter is tied to the system under consideration. As a consequence, it is possible
to reduce epistemic uncertainty with research, which is not the case for aleatory
uncertainty. In realistic problems, aleatory and epistemic uncertainties are mostly
intricately interwoven. Some authors prefer to simply distinguish between uncer-
tainty (for aleatory uncertainty) and ignorance (for epistemic uncertainty) (Haenni
2003, Katzner 1998, Kelsey and Guiggin 1992, Smithson 1988).

It is well recognized that aleatory uncertainty is best dealt with the frequentist
approach associated with classical probability theory, but fully capturing epistemic
uncertainty seems to be beyond the capabilities of traditional additive probabilities.
This is where the benefits of non-additive approaches such as DST start. Within
DST, for example, it is possible to represent the extreme case of full aleatory un-
certainty (e.g. tossing a fair coin) by a uniform probability distribution over ,
whereas full epistemic uncertainty (e.g. tossing an unknown coin) is modeled by
�(
) = � for all 
 ∈ . DST allows thus a proper distinction between both types
of uncertainty, which is not the case with standard (first-order) probabilities alone.17

With respect to a hypothesis H , this distinction finally leads to a two-dimensional
quantitative result Bel(H ) ≤ Pl(H ) and thus to a general opinion in the sense of the
discussion in Section 1.2. The i -value of such an opinion is a measure of the epis-
temic uncertainty, including the extreme cases of i = 0 (no epistemic uncertainty)
and i = 1 (total epistemic uncertainty).

What are the benefits of distinguishing two types of uncertainty? First, by taking
into account the possibility of lacking knowledge or missing data, we get a more
realistic and more complete picture with regard to the hypothesis to be evaluated in
the light of the given knowledge. Second, if reasoning serves as a preliminary step
for decision making, a proper measure of ignorance is useful to decide whether the
available knowledge justifies an immediate decision. The idea is that high degrees
of ignorance imply low confidence in the results. On the other hand, low degrees of
ignorance result from situations where the available knowledge forms a solid basis
for a decision. Therefore, decision making should always consider the additional
option of postponing the decision until enough information is available.18 The study

17 Some probabilists try to evade the problem of properly distinguishing between epistemic and
aleatory uncertainty using second-order probability distributions over first-order probabilities
(Kyburg 1988, Pearl 1985). The shape (or the variance) of the underlying density function allows
then the discrimination of different situations, e.g. a flat shape for full epistemic uncertainty or one
peaking at 1/2 for full aleatory uncertainty. In addition to the increased mathematical complexity,
various objections have been raised against second-order probabilities. One important point is the
apparent non-applicability of “Dutch book” arguments (Smithson 1988).
18 It’s like in real life: people do not like decisions under ignorance. In other words, people
prefer betting on events they know about. This psychological phenomenon is called ambiguity
aversion and has been experimentally demonstrated by Ellsberg (Ellsberg 1961). His observations
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of decision theories with the option of further deliberation is a current research topic
in philosophy of economics (Douven 2002, Kelsey and Guiggin 1992, Schmeidler
1989). Apart from that, decision making under ignorance is a relatively unexplored
discipline. For an overview of attempts in the context of Dempster-Shafer theory we
refer to (Nguyen and Walker 1994).

3 Probabilistic Argumentation

As we have seen, the capability of DST to represent both types of epistemic and
aleatory uncertainty is a result of the multi-valued mapping from a probability space
 into another set �. Now suppose that both  and � are complex sets, e.g. product
spaces relative to some underlying variables. This is the typical situation in most
real-world applications. Note that  may be a sub-space of �.

The problem of working with such complex sets is to specify the multi-valued
mapping. The explicit enumeration of all (
, �(
))-pairs is certainly not practical.
The idea now, which leads us to the topic of this section, is to use a logical language
LV over a set V of variables. The simplest case of such a language is the language
of propositional logic, where V degenerates into a set of propositional variables
(Haenni et al. 2000). Other typical languages are obtained from finite set constraints
(Haenni and Lehmann 2000), interval constraints (Older and Vellino 1993), or gen-
eral multivariate constraints such as (linear) equations and/or inequalities (Kohlas
and Monney 1991, Wilson 2004). The goal thus is to exploit the expressive power
and flexibility of such languages in the context of DST.

The basic requirement is that the language defines a proper logical consequence
operator on the basis of a multi-dimensional state space. Together with the proba-
bility measure defined over , we obtain then a unified theory of probabilistic and
logical reasoning, which is known in the literature as the theory of probabilistic
argumentation (Haenni 2005, 2008, Kohlas 2003). This theory demonstrates how to
decorate the mathematical foundations of DST with the expressiveness and conve-
nience of a logical language. As an extract of (Haenni 2005) and (2008), this section
gives a short introduction. We refer to the literature for examples of successful appli-
cations (Haenni 2005, Haenni and Hartmann 2004, 2006; Jonczy and Haenni 2005,
Khosla 2006, Khosla and Chen 2003, Kohlas 2007, Kohlas et al. 2008, Picard and
Savoy 2001, Rogova et al. 2005, 2006).

3.1 Unifying Logic and Probability

Logic and probability theory have both a long history in science. They are mainly
rooted in philosophy and mathematics, but are nowadays important tools in many

are rephrased in Ellsberg’s paradox, which is often used as an argument against decision-making
on the basis of subjective probabilities.
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other fields such as computer science and, in particular, artificial intelligence. Some
philosophers studied the connection between logical and probabilistic reasoning,
and some attempts to combine these disciplines have been made in computer sci-
ence, but logic and probability theory are still widely considered to be separate
theories that are only loosely connected.

In order to build such a unifying theory, we must first try to better understand
the origin of the differences between logical and probabilistic reasoning. In this
respect, one of the key points to realize is based on the following simple obser-
vation: pure probabilistic reasoning usually presupposes the existence of a proba-
bility measure over all variables in the model, whereas logical reasoning does not
deal with probabilities at all, i.e. it presupposes a probability function over none of
the variables involved. If we call the variables over which a probability function is
known probabilistic, we can say that a probabilistic model consist of probabilistic
variables only, whereas all variables of a logical model are non-probabilistic. From
this point of view, the main difference between logical and probabilistic reasoning is
the number of probabilistic variables. This simple observation turns out to be crucial
for understanding some of the main similarities and differences between logical and
probabilistic reasoning.19

With this remark in mind, building a more general theory of reasoning is quite
straightforward. The simple idea is to allow an arbitrary number of probabilistic
variables. More formally, if V is the set of all variables involved in the model, we
suppose to have a subset W ⊆ V of probabilistic variables. If X denotes the finite
set of possible values (or states) of a single variable X ∈ V and S = X1 × · · · ×
Xs the corresponding Cartesian product for a subset S = {X1, . . . , Xs} ⊆ V , then
we consider a probability measure P : 2W → [0, 1] w.r.t. the σ -algebra of subsets
of W .20 Clearly, logical reasoning is characterized by W = ∅ and probabilistic
reasoning by W = V , but we are now interested in the more general case of arbitrary
sets of probabilistic variables. This is the conceptual starting point of the theory of
probabilistic argumentation. The connection between probabilistic argumentation
and the classical fields of logical and probabilistic reasoning is illustrated in Fig. 11.

In addition to the probability measure over W , let the given knowledge or
evidence be encoded by a set � ⊆ LV of logical sentences. It determines a set
EV = ��� ⊆ V of admissible states, the models of �, and it is assumed that the
true state of the world is exactly one element of EV . A probabilistic argumentation
system is then defined as a quintuple

A = (V ,LV , �, W, P). (20)

19 The literature on how to combine logic and probability is huge, but the idea of distinguishing
probabilistic and non-probabilistic variables seems to be relatively new.
20 Note that the finiteness assumption with regard to W is not a conceptual restriction of this
theory, but it allows us to define P with respect to the σ -algebra 2W and thus helps to keep the
mathematics simple.
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Fig. 11 Different sets of probabilistic variables

This is the mathematical structure into which the available evidence is compiled.
We will see later that every probabilistic argumentation systems defines a hint with
a corresponding multi-valued mapping from W to V .

Example 5 Alice flips a fair coin and promises to invite us to a barbecue tomorrow
night provided that the coin lands on head. Alice is well-known to always keep her
promises, but she does not say anything about what she is doing in case the coin
lands on tail, i.e. she may or may not organize the barbecue in that case. Of course,
we would like to know whether the barbecue takes place or not. How can this story
be expressed in terms of a probabilistic argumentation system?

The given evidence consists of two pieces: the first one is Alice’s reliable
promise, and the second one is the fact that the two possible outcomes of toss-
ing a fair coin are known to be equally likely. Thus the evidence is best modeled
with two Boolean variables, say H (for head) and B (for barbecue), with domains
H = B = {0, 1}, a (uniform) probability function over H , and a propositional
sentence h → b (with h and b as placeholders for the atomic events H = 1 and
B = 1, respectively). We have thus V = {H, B}, � = {h → b}, W = {H },
and P(h) = P(¬h) = 0.5. Altogether we get a probabilistic argumentation system
A = (V ,LV , �, W, P) as defined above, where LV is the language of propositional
logic over V .

3.2 Degree of Support

With respect to a given probabilistic argumentation system A = (V ,LV , �, W, P),
the problem to solve is to evaluate quantitatively whether a hypothesis, expressed
as a sentence h ∈ LV , is true or false. Let H = �h� ⊆ V h� ⊆ V be the
corresponding set of models of if the true state of the world is an element of H . In
the general case, i.e. for � ��|= h and � �|= ¬h, the question is how to use the given
probability measure P for judging the possible truth of h.

For judging a hypothesis h ∈ LV , the key concept is the notion of degree of
support, denoted by dsp(h) ∈ [0, 1]. The formal definition given below is based on
two observations. The first one is the fact that the set EV ⊆ V , which restricts the
set of possible states relative to V , also restricts the possible states relative to W . The
elements s ∈ W are called scenarios, and P({s}) denotes the corresponding prior
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probability of s. By projecting EV from V onto W , we get the set EW = E↓W
V ⊆

W of scenarios that are consistent with EV . This means that exactly one element
of EW corresponds to the true state of the world in V , and all other scenarios
s ∈ W\EW are impossible. This tells us to condition P on EW , i.e. to replace
the given prior probability P(·) by a posterior probability P ′(·) = P(·|EW ). EW

thus plays the role of the evidence, which is used to update P in a Bayesian way.
This mechanism is illustrated in Fig. 12 for the particular case of V = {X, Y } and
W = {X}.

The second observation goes in the other direction, that is from W to V . Let’s
assume that a certain scenario s ∈ W is the true scenario. This reduces the set of
possible states with respect to V from EV to

EV |s = {x ∈ EV : x↓W = s}, (21)

where x↓W denotes the projection of the state x from V to W . Thus, EV |s contains
all atomic events of EV that are compatible with s. This idea is illustrated in Fig. 13

Fig. 12 Prior and posterior
distributions over
probabilistic variables

ΘX

ΘY

EV

EW

P (·) = P(·|EW) P (·)

Fig. 13 Evidence
conditioned on various
scenarios

ΘX

ΘY

EV H

s0 s1 s2

EV |s2

EV |s1

s3

EV |s3
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for V = {X, Y }, W = {X}, and four scenarios s0, s1, s2, and s3. Note that s ∈ EW

implies EV |s �= ∅ and vice versa. Consider then a consistent scenario s ∈ EW for
which EV |s ⊆ H holds. In logical terms, this means that �|s |= h holds, where �|s
denotes the set of logical sentences obtained from � by instantiating all probabilistic
variables according to s. Since h is a logical consequence of s and �, and we can see
s as a defeasible or hypothetical proof for h in the light of �. We must say defeasible,
because it is generally unknown whether s is the true scenario or not. In other words,
h is only supported by s, but not entirely proven. Such supporting scenarios are also
called arguments for h, and the set of all arguments for h is denoted by

ARGS(h) = {s ∈ EW : �|s |= h} = {s ∈ W : ⊥ �≡ �|s |= h}. (22)

The elements of the set ARGS(¬h) are sometimes called counter-arguments of
h. In other words, they refute h in the light of the given evidence. In the example of
Fig. 8, the hypothesis h is supported by s3, but not by s0, s1, or s2 (s0 is inconsistent).
Similarly, ¬h is supported (or h is refuted) by s1, but not by s0, s1, or s3. In the case
of s2, nothing definite is known about h. The existence of such neutral scenarios
is the reason why degrees of support (see definition below) are non-additive. The
decomposition of the set W into supporting, refuting, neutral, and inconsistent
scenarios is depicted in Fig. 14.

The above definition of supporting arguments is the key notion for the following
definition of degree of support. In fact, because every arguments s ∈ ARGS(h)
contributes to the possible truth of h, we can measure the strength of such a contri-
bution by the posterior probability P ′({s}) = P({s}|EW ), and the total support for h
corresponds to the sum

dsp(h) =
∑

s∈ARGS(h)

P ′({s}) = P ′(ARGS(h)) = P(ARGS(h))

P(EW )
(23)

over all elements of ARGS(h). The fact that the sets ARGS(h) and ARGS(¬h)
are not necessarily complementary (or exhaustive) implies dsp(h)+ dsp(¬h) ≤ 1.
Degrees of support should therefore be understood as non-additive posterior prob-
abilities of provability. Under the condition that � �|= ⊥, they are well-defined

Fig. 14 Supporting, refuting,
neutral, and inconsistent
scenarios
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for all possible hypotheses h ∈ LV , that is even in cases in which the prior prob-
ability P does not cover all variables. This is the main advantage over classical
probabilistic reasoning, which presupposes the existence of a prior distribution over
all variables. For more technical details on probabilistic argumentation we refer to
(Haenni 2008).

3.3 Connection to Dempster-Shafer Theory

The connection between probabilistic argumentation and DST is quite straightfor-
ward, especially if by looking at DST from the hint perspective and a corresponding
multi-valued mapping between two spaces. If we start from a probabilistic argu-
mentation system (V ,LV , �, W, P), we simply need to set �(s) = EV |s for all
s ∈ W to obtain a corresponding hint (W , P, �, V ). To see that the two defini-
tions of Bel(H ) and dsp(h) coincide, consider the definition of the support set SH

in Section 2.3. In the current context, we get SH = {s ∈ W : EV |s ⊆ H } and
therefore S∅ = {s ∈ W : EV |s = ∅}. This implies EW = W \ S∅, which allows us
to transform the third expression of (15) into (23):

Bel(H ) = P(SH ∩ EW )

P(EW )
= P({s ∈ EW : EV |s ⊆ H })

P(EW )
= P(ARGS(h))

P(EW )
= dsp(h).

This shows that DST and probabilistic argumentation are mathematically equiva-
lent. Another way to show this equivalence is to transform all sentences � ∈ � into
corresponding mass functions m�, and to combine them with the Bayesian mass
function m P derived from P , This transformation is also interesting from a compu-
tational point of view, but for further details we refer to (Haenni and Lehmann 2003).
Finally, it is also possible to express any arbitrary mass function as a probabilistic
argumentation system and formulate Dempster’s combination rule as a particular
form of merging two probabilistic argumentation systems.

Despite these technical similarities, the theories are still quite different from a
conceptual point of view. Dempster’s rule of combination, for example, which is
one of the central concepts in the Dempster-Shafer theory, is no big issue in the
theory of probabilistic argumentation. Another difference is the fact that the notions
of belief and plausibility in the Dempster-Shafer theory are often entirely detached
from a probabilistic interpretation (especially in Smets’s TBM framework), whereas
degrees of support are probabilities by definition. Finally, while the use of a logi-
cal language to express factual information is an intrinsic part of a probabilistic
argumentation system, it is an almost unknown technique in the Dempster-Shafer
theory. In other words, probabilistic argumentation demonstrates how to decorate
the mathematical foundations of Dempster-Shafer theory with the expressiveness
and convenience of a logical language.
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3.4 Logical and Probabilistic Reasoning

To complete this section, let us briefly investigate how the classical fields of logical
and probabilistic reasoning fit into this general theory. As mentioned earlier, logical
reasoning is simply characterized by W = ∅. This has a number of consequences.
First, it implies that the set of possible scenarios W = {〈〉} consists of a single
element 〈〉, which represents the empty vector of values. This means that P({〈〉}) =
1 fully specifies the prior probability. Furthermore, we have EV |〈〉 = EV , which
allows us to simplify (22) into

ARGS(h) =
{ {〈〉}, for⊥ �≡ �|s |= h
∅, otherwise.

(24)

Finally, if we assume � �|= ⊥, we get EW = {〈〉} = W and thus P ′({〈〉}) = 1,
and this implies

dsp(h) =
{

1, for � |= h,

0, otherwise,
(25)

which corresponds to the usual understanding of provability in the context of logical
reasoning.

Probabilistic reasoning, on the other hand, is characterized by W = V , which
again has a number of consequences. Most obviously, we have W = V and thus
E = EW = EV . This implies

E |s =
{ {s}, for s ∈ E,

∅, otherwise,
(26)

from which we conclude that ARGS(h) = H ∩ E and therefore

dsp(h) = P(H ∩ E)

P(E)
= P(H |E), (27)

which is the usual way of defining posterior probabilities in the context of proba-
bilistic reasoning.

Probabilistic argumentation is therefore a true generalization of the two classical
types of logical and probabilistic reasoning. This is a remarkable conclusion, which
lifts probabilistic argumentation from its original intention as a theory of argumen-
tative reasoning up to a unified theory of logical and probabilistic reasoning.

4 Conclusion

Non-additive degrees of belief seem to arise naturally from the skeptical attitude of
not believing anything without available supporting evidence. Accepting this posi-
tion means to understand degrees of belief as epistemic degrees of supports rather



154 R. Haenni

than Bayesian probabilities. A direct consequence of this alternative view is the
intuitive concept of an opinion, which allows all possible combined situations of
belief, disbelief, and epistemic ignorance to be properly discriminated. This is the
common conceptual starting point of numerous formal approaches to non-additive
degrees of belief, among which Dempster-Shafer theory is the most prominent one.
Interestingly, the same ideas were already present in the 17th and 18 century, i.e. in
the early days of probability theory.

An alternative perspective is to see non-additive degrees of belief as the result of
combining the basic characteristics of logical and probabilistic reasoning. This is the
motivation of the theory of probabilistic argumentation, which shows how to enrich
the mathematical foundations of Dempster-Shafer theory with the expressiveness
and convenience of a logical language. At the same time, a precise response is given
to a very fundamental question in the are of reasoning and inference, namely how
the areas of logic and probability theory are connected.
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Accepted Beliefs, Revision and Bipolarity
in the Possibilistic Framework

Didier Dubois and Henri Prade

1 Introduction

Artificial Intelligence has emerged and been considerably developed in the last fifty
years together with the advent of the computer age, as a new scientific area aim-
ing at processing information in agreement with the way humans do. Inevitably,
such a range of efforts, both theoretical and application-oriented, and motivated by
new concerns, has led to modify and enlarge the way basic notions such as uncer-
tainty, belief, knowledge, or evidence could be thought, represented and handled in
practice.

In particular, there has been a major trend in uncertainty (more specifically, par-
tial belief) modelling, emphasizing the idea that the degree of confidence in an event
is not totally determined by the confidence in the opposite event, as assumed in
probability theory. Possibility theory (Dubois and Prade, 1988) belongs to this trend
that describes partial belief in terms of certainty and plausibility, viewed as dis-
tinct concepts. Belief and plausibility functions (Shafer, 1976), or lower and upper
probabilities (Walley, 1991) are other important representatives of this trend. The
distinctive features of possibility theory are its computational simplicity, and its
position as a bridge between numerical and symbolic theories of partial belief for
practical reasoning. Possibility theory, based on a non-additive setting that contrasts
with probability theory, provides a potentially more qualitative treatment of partial
belief, since the operations “max” and “min” play a role somewhat analogous to the
sum and the product in probability calculus. There are two different kinds of pos-
sibility theory: one is qualitative and the other is quantitative. They share the same
kind of set-functions, but they differ when it comes to conditioning and combination
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tools. Qualitative possibility theory is closely related to non-monotonic reasoning
(Benferhat et al., 1997), while quantitative possibility can be related to probability
theory and can be viewed as a special case of belief functions, or of upper and
lower probabilities (Dubois and Prade, 1998). Qualitative possibility theory can be
described either via a purely comparative approach, as a partial ordering on events,
or using set-functions ranging on an ordinal scale, while numerical possibility mea-
sures range on the unit interval. This paper only considers qualitative possibility
theory.

L. A. Zadeh coined the name “possibility theory” in the late seventies (Zadeh,
1978) for a non-probabilistic approach to uncertainty, based on maxitive possibility
measures. Possibility measures are then defined from possibility distributions that
are induced by pieces of vague linguistic information described by means of fuzzy
sets (Zadeh, 1965). This proposal was made independently from an earlier attempt
by an English economist interested in the way humans make choices, G. L. S.
Shackle (1961), who had introduced and defended a non-probabilistic approach
to uncertainty, based on a calculus of degrees of “potential surprise” that matches
the possibilistic framework. The potentials of Shackle’s approach for representing
belief states was early recognized and advocated by a philosopher, I. Levi (1966,
1967).

This paper provides an introductory survey of how partial belief can be rep-
resented in possibility theory, and how related issues such as acceptance, or be-
lief revision can be handled in this setting. More precisely, Section 2 presents the
representation framework of possibility theory. Section 3 emphasizes the important
difference that should be made between a degree of uncertainty and a degree of
truth. Then the representation of accepted beliefs, based on acceptance relations, is
discussed in Section 4. Section 5 summarizes the representation of nonmonotonic
consequence relations by means of possibility relations, an important type of accep-
tance relations. Section 6 stresses the difference between revising accepted beliefs
(a problem close to deriving plausible conclusions in a given context) vs. revising
an acceptance relation. Section 7 introduces an extended possibilistic representation
setting that distinguishes between negative information that states what is impossi-
ble according to beliefs, and positive information that reflects reported observations
and may provide reasons not to believe, leading to another mode of belief revision.

2 The Representation of Uncertainty in Qualitative
Possibility Theory

Possibility distribution. The basic representation tool in possibility theory is the
notion of a possibility distribution. A possibility distribution is a mapping � from
a set of possible situations U to a linearly ordered scale (L, <), with a top and a
bottom element respectively denoted by 0 and 1. When the scale L is taken as the
real interval [0, 1], one speaks of quantitative possibility theory, but L may also be a
discrete or finite linearly ordered scale in qualitative possibility theory. Quantitative
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and qualitative possibility theories obey the same laws, except for the definition of
conditioning (see Section 5). Such a distribution is supposed to encode a complete
pre-order on the set of situations according to their level or degree of plausibility,
with the following conventions:

�(u) = 0 means that situation u is impossible;
�(u) < �(u’) means that situation u is strictly less plausible than situation u’;
�(u) = 1 means that situation u is totally possible (= plausible).

Distinct situations may simultaneously have a degree of possibility equal to 1.
Clearly, if U is the complete range of possible situations, at least one of the situ-
ations in U should be fully possible, so that ∃u ∈ U, �(u) = 1 (normalization). In
the possibilistic framework, extreme forms of partial knowledge can be captured,
namely

� complete knowledge: there exists a unique situation u0, such that �(u0) = 1 and
�(u) = 0, ∀u �= u0 (only situation u0 is possible);

� incomplete binary knowledge: ∀u ∈ E, �(u) = 1 and ∀u /∈ E, �(u) = 0 (only the
situations in E are possible);

� complete ignorance: ∀u ∈ U, �(u) = 1 (all situations in u are fully possible).

In the general case, a possibility distribution � is supposed to reflect the incom-
pleteness of the available information. This information may be more or less precise,
more or less certain. The comparison of two informational situations represented by
� and �′ can be made by means of the following partial ordering relation: �′ is said
to be more specific than � (in the wide sense) if and only if �′ ≤ �, i.e., any value
possible for �′ is at least as possible for �. Then, one can consider that �′ is more
informative than �.

When the set �(U) is finite, U can be conveniently partitioned into a finite family
of non-empty, disjoint subsets E1, . . . , En covering U, such that i) �(u) = 1 if u ∈
E1, ii) �(u) < �(u’) if u ∈ Ek, u’∈ Ej and k > j. Thus, the set U of situations is
partitioned into subsets corresponding to decreasing levels of plausibility. This is
named a “well-ordered partition” by Spohn (1988).

Possibility measure. Given a possibility distribution �, one can compute to what
extent the information described by π is consistent with a statement like “the true
situation is in subset A”, or for short “A is true”, or even “statement A is true”. This is
estimated by means of the possibility measure �, defined from �, by (Zadeh, 1978):

�(A) = supu∈A �(u). (1)

Since �(A) estimates the consistency of the statement “the true situation is in
A” with what we know about the plausibility of the possible situations, the value
of �(A) corresponds to the situation(s) in A having the greatest plausibility degree
according to �; in the finite case, “sup” can be changed into “max” in (1). �(A) is
all the greater as the set A contains a situation having a higher plausibility. When
U is finite a possibility measure is characterized by the “maxitivity” axiom, which
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states that it is possible that “A or B is true” as long as it is possible that “A is true”,
or that it is possible that “B is true”, namely

�(A ∪ B) = max(�(A), �(B)), (2)

along with �(Ø) = 0, and �(U) = 1 (which agrees with the normalization of �).
�(Ø) = 0 is a natural convention since �(A) = �(A ∪ Ø) = max(�(A), �(Ø))
entails ∀A, �(A) ≥ �(Ø). When U is not finite, axiom (2) is replaced by an infinite
maxitivity axiom. Either A or Ac = U – A must be possible, that is max(�(A),
�(Ac)) = 1. In case of total ignorance, both A and Ac are fully possible. Note that
this leads to a representation of ignorance (∀ A �= Ø, �(A) = 1) that presupposes
nothing about the number of situations in the reference set U, while the latter aspect
plays a crucial role in probabilistic modelling.

Potential surprise. Measures of potential surprise s, advocated by Shackle (1949,
1961) as rivals of probabilities for expressing uncertainty, obey the characteristic
axiom s(A ∪ B) = min(s(A), s(B)). Letting s(A) = 1 – �(A), one recognizes an
equivalent counterpart of (2); it expresses that A ∪ B is surprising only if both A
and B are surprising (i.e., have a low possibility degree). Shackle also named the
quantity 1 – s(A) a measure of “possibility” and used distributions of the form s(u)
= 1 – �(u) (Shackle, 1961). Clearly, s(A) = infu∈A s(u).

Necessity measure. The case when 0 < min(�(A), �(Ac)) < 1 corresponds to
partial belief about A or its complement. The weak relationship between �(A) and
�(Ac) forces us to consider both quantities for the description of partial belief about
the occurrence of A. �(Ac) tells us about the possibility of “not A”, hence about the
certainty (or necessity) of occurrence of A since when “not A” is impossible then A
is certain. It is thus natural to use this duality and define the degree of necessity of
A (Dubois and Prade, 1980) as

N(A) = 1−�(Ac), (3)

where “1 – ·” denotes an order-reversing map of the scale L (e.g., if L is finite, i. e. L
= {�1,. . . , �m} with �1 = 1 > . . . > �m = 0, we have 1 – �k = �m−k+1). Equation (3)
can be equivalently written as 1 – �(A) = N(Ac), expressing that the impossibility
of A amounts to the certainty of its negation. Indeed Shackle also called the degree
of surprise s(A) = 1 – �(A) “degree of disbelief” in A.

Note that N(A) = 1 means that A is certainly true, while N(A) = 0 only says
that A is not certain at all (however A might still be possible). The interpretation
of the endpoints of the scale is clearly different for a possibility measure: �(A) = 0
means that A is impossible (i.e., A is certainly false), while �(A) = 1 only expresses
that A is completely possible, which leaves �(Ac) completely unconstrained. The
above definition of N from � makes sense only if �, and thus �, are normalized.
It is easy to verify that N(A) > 0 implies �(A) = 1, i.e., an event is completely
possible (completely consistent with what is known) before being somewhat certain.
Necessity measures satisfy an axiom dual of (2), namely
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N(A ∩ B) = min(N(A), N(B)). (4)

It expresses that “A and B” is all the more certain as A is certain and B is certain.
A similar characteristic property has been advocated by L. J. Cohen (1973, 1977) for
degrees of inductive support. Levi (1966, 1967), starting from Shackle’s measures
of surprise viewed as “measures contributing to the explication of what Keynes
called ‘weight of argument’ ” (Levi, 1979), also wrote a property identical to (4) for
so-called “degrees of confidence of acceptance”.

Reasoning According to the Weakest Link. Equation (4) also echoes the idea of
reasoning from a set of (classical) logic formulas stratified in layers corresponding
to different levels of confidence. Rescher (1976) proposed a deductive machinery
on the basis of the principle that the strength of a conclusion is the strength of
the weakest argument used in its proof, pointing out that this idea dates back to
Theophrastus (372–287 BC), a disciple of Aristotle. Indeed the possibilistic setting
can be directly related to this idea (measuring the validity of an inference chain by
its weakest link) since the following pattern, which follows from (4), holds

N(Ac ∪ B) ≥ � and N(A) ≥ � imply N(B) ≥ min(�, �), (5)

where N is a necessity measure. Indeed (Ac∪ B) ∩ A ⊆ B. Thus, (5) is the possi-
bilistic weighted counterpart of the modus ponens inference rule.

Other related settings. Axioms (2) or (4) have appeared in various forms or dis-
guises in the literature before and after Zadeh (1978) introduced possibility theory,
as already mentioned. Another example is Spohn (1988) who uses a function � from
a Boolean algebra to the set of natural integers satisfying �(A ∪ B) = min(�(A),
�(B)), where 0 stands for fully possible and high integers reflect increasing lev-
els of impossibility. So up to a proper rescaling, the characteristic property of �
functions is again a counterpart of (2); see (Dubois and Prade, 1991) for details.
Properties (4) and (2) are also satisfied respectively by consonant belief and plau-
sibility functions (Shafer, 1976), when the focal elements underlying them can be
ordered in a nested sequence. Possibility degrees can also belong to a partially or-
dered scale, which makes the computation of possibility degrees of events more
tricky (Halpern, 1997); the case where the possibility scale is a lattice is studied at
length by De Cooman (1997). In the quantitative possibility setting the pair (N(A),
�(A)) can be viewed as a pair of lower and upper probabilities bracketing an ill-
known probability; see (Dubois and Prade, 1992a; Walley, 1996; De Cooman and
Aeyels, 1999) for developments along this line.

Representing information with possibility and necessity degrees. Since N(Ø)
= 1 – �(U) = 0, we have min(N(A), N(Ac)) = 0, i.e. one cannot be somewhat certain
of two contradictory statements simultaneously. Thus, the following compatibility
condition holds between the necessity and the possibility of statement A

N(A) > 0 ⇒ �(A) = 1.

This means that A should be fully possible before being somewhat necessary.
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Let us consider the case of a binary piece of information “the true situation is
in E”, i. e. “E is true”, where E is an ordinary subset. E may be viewed as the set
of models of a consistent propositional knowledge base K = {pj}j=1,m and E is just
the set of interpretations that makes pj true, ∀j=1,m. Then, in terms of a possibility
distribution �E, this is represented by ∀u ∈ E, �E(u) = 1 and ∀u /∈ E, �E(u) = 0. The
associated possibility measure �E is such that

�E(A) = 1 if A ∩ E �= Ø (A and E are consistent) (6)

= 0 otherwise (A and E are mutually exclusive).

Clearly, �E(A) = 1 means that given information “E is true”, “A is true” is pos-
sible if and only if the intersection between set A and set E is not empty, while
�E(A) = 0 means that “A is true” is impossible when it is known that “E is true”.
The certainty of the event “A is true”, knowing that “E is true”, is then such that

NE(A) = 1 if E ⊆ A (E entails A) (7)

= 0 otherwise (E and Ac are consistent).

Clearly the information “E is true” logically entails “A is true” when E ⊆
A, so that certainty applies to events that are logically entailed by the available
information.

More generally, if U is partitioned into a family of subsets E1, . . . , En having
decreasing possibility degrees (if u ∈ Ei and u’∈ Ei then �(u) = �(u’), and if u ∈ Ei

and u’∈ Ej with i < j then �(u) > �(u’)), we have

N(A) = 1−max {�(Ei) s. t. Ei �⊂ A}. (8)

This means that “A is true” is all the more certain as all situations not in A are
less plausible.

3 Degree of Belief vs. Degree of Truth

The three classical epistemic states. In the binary possibility theory framework,
where the available information is semantically equivalent to “the true situation lies
in a subset E” as discussed above, there are three consistent epistemic states with
respect to a statement A, namely

(i) N(A) = 1 (hence N(Ac) = 0, �(A) = 1 and �(Ac) = 0);
(ii) N(Ac) = 1 (hence N(A) = 0, �(Ac) = 1 and �(A) = 0);

(iii) N(A) = 0 = N(Ac) (hence �(A) = 1 = �(Ac)).
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In the first two cases, the available information is sufficient to conclude that “A
is true”, and “A is false” respectively. The third case corresponds to complete ig-
norance about A. In other words, viewing the available information E as the set of
models of a propositional knowledge base K, one can deductively prove from K that
“A is true” in case (i), that “A is false” in case (ii), and in case (iii) one can neither
prove from K that “A is true”, nor that “A is false”. The fourth value of the pair
(N(A), N(Ac)) = (1, 1), or equivalently (�(A), �(Ac)) = (0, 0), is obtained only if
the knowledge base K is inconsistent, since in the presence of a contradiction in K,
everything can be entailed.

Stratified information. In the general case, U is partitioned into a family of
subsets E1, . . . , En having decreasing possibility degrees �(E1) = 1 > �(E2) > . . .
> �(En) = 0, as considered above (∀i ≥ n-1, Ei �= ∅, but En = ∅ is allowed).
Then the first two cases in the above trichotomy become naturally graded. Indeed,
observe that N(E1∪ . . . ∪ Ei) = 1 – �(Ei+1∪ . . . ∪ En) = 1 – �(Ei+1), in agreement
with (2). In particular, N(E1∪ . . . ∪ En) = 1 and N(E1) = 1 – �(E2). More generally,
E1∪ . . . ∪ Ei can be viewed as the set of models of a propositional knowledge base
K1∪ . . .∪Kn−i+1 for i = 1, n, where E1∪ . . . ∪ En is associated with K1 and E1 with
K1∪ . . . ∪ Kn. Any statement A that is deducible from K1∪ . . . ∪ Kn−i+1, or if we
prefer that is semantically entailed by E1∪ . . . ∪ Ei, has a level of necessity greater
or equal to 1 – �(Ei+1) according to (8).

Conversely, starting with a layered set of propositional formulas K = K1∪ . . .
∪ Kn, one can define a partition of situations with decreasing possibility degrees.
K is assumed to be consistent, and each subset Ki is supposed to be associated
with a necessity degree N([Ki]), where [Ki] denotes the set of models of Ki. We
assume N([K1]) = 1 > N([K2]) > . . . > N([Kn]). The degree N([Ki]) can be
seen as a degree of belief in each proposition in base Ki. Then, the partition of
the set of interpretations U (induced by the language used in K) is built in the
following way

E1 = [K1 ∪ . . . ∪ Kn] = [K1] ∩ . . . ∩ [Kn] ( �= ∅, since K is consistent),

E2 = [K1 ∪ . . . ∪ Kn−1]− E1,

and

Ei = [K1 ∪ . . . ∪ Kn−i+1]− (E1 ∪ . . . ∪ Ei−1) for i = 2, n,

where the Ek that are found empty are suppressed, and the possibility degrees asso-
ciated to the interpretations of the non-empty Ek’s are given by

�(E1) = 1
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and

�(Ei+1) = 1− N([K1 ∪ . . . ∪ Kn−i+1])

= 1− N([K1] ∩ . . . ∩ [Kn−i+1])

= 1−minj =1,n−i+1 N([Kj])

= 1− N([Kn−i+1]) for i = 1, n− 1.

This means that the interpretations that belong to ∩i [Ki] are considered as fully
possible, while the others are all the less possible as they are counter-models of
more reliable propositions (i.e., lying in a subset Ki with smaller index i).

Graded epistemic states. Thus, as soon as intermediary degrees of possibility
are allowed for distinguishing between more or less possible or plausible situations,
or equivalently when intermediary degrees of necessity are used for expressing that
propositional pieces of knowledge are more or less certainly true, one can still dis-
tinguish between three cases, in the possibility theory setting, namely:

i) N(A) > 0 (hence N(Ac) = 0, �(A) = 1 and �(Ac) < 1);
ii) N(Ac) > 0 (hence N(A) = 0, �(Ac) = 1 and �(A) < 1);

iii) N(A) = 0 = N(Ac) (hence �(A) = 1 = �(Ac)).

This corresponds to the three classes of epistemic cases of the binary case, but
now the certainty of having A true (or A false) is graded in terms of necessity de-
grees. The certainty degree N(A) of having A true reflects the fact that A is false in
all the situations whose plausibility is sufficiently low, or the extent to which A can
be entailed by using only pieces of knowledge whose certainty is high. Thus N(A)
can be regarded as a degree of belief, or a degree of certainty that A is true, and
N(Ac) = 1 – �(A) as a degree of disbelief in A, or as a degree of surprise of having
A true, and �(Ac) = 1 – N(A) as a degree of doubt w. r. t. A. This modelling of belief
and its articulation with doubt is in agreement with a view defended by philosophers
such as Clifford (1877), who emphasized that “it is wrong in all cases to believe
on insufficient evidence”, and an agent cannot acquire his belief by “stifling his
doubts”. In other words, one has no right to start to believe A, if one is unsure that
�(Ac) is zero or small, or at least smaller than �(A).

There is a latent, pervasive confusion in the scientific literature, and in particular
the artificial intelligence literature, between degree of belief and degree of truth.
However, Carnap (1945) points out the difference in nature between truth-values and
probability values (hence degrees thereof), precisely because “true” (resp: false) is
not synonymous to “known to be true” (resp: known to be false), or in other words,
“verified” (resp: falsified). He criticizes Reichenbach on his claim that probability
values should supersede the two usual truth-values (see, e.g. Reichenbach (1949)).
Let us also mention de Finetti who emphasized the distinction quite early. De
Finetti (1936) wrote on the dubious interpretation by Lukasiewicz (1930) of his
3rd truth-value as meaning “possible” (our translation from the French):
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Even if, in itself, a proposition cannot be but true or false, it may occur that a given person
does not know the answer, at least at a given moment. Hence for this person, there is a
third attitude in front of a proposition. This third attitude does not correspond to a third
truth-value distinct from yes or no, but to the doubt between the yes and the no (as people,
who, due to incomplete or indecipherable information, appear as of “unknown sex” in a
given statistics. They do not constitute a third sex. They only form the group of people
whose sex is unknown.

See (Dubois and Prade, 2001) for further discussions. Most importantly, degrees
of truth may obey truth functional calculi, while degrees of belief cannot be compo-
sitional w. r. t. every connective. In possibility theory this is illustrated by the duality
(3) and by

�(A ∩ B) ≤ min(�(A), �(B)),

N(A ∪ B) ≥ max(N(A), N(B)),

which contrasts with (2) and (4) respectively. Indeed one may have “possible A
and possible not A” true (i.e., �(A) = 1 = �(Ac)), while for Boolean proposition
extensions: A ∩ Ac = ∅, and �(∅) = 0. Similarly, letting B = Ac in the above
inequality, one has A ∪ Ac = U, and N(A ∪ Ac) = 1, while one may have N(A) = 0
= N(Ac) in case of complete ignorance.

4 Accepted Beliefs Induced by a Confidence Relation

We have seen in the previous section that the possibilistic representation of beliefs
induces a complete preordering of world states ≥� representing the epistemic state
of an agent (u≥� u’ if and only if �(u)≥� (u’)). It shares the set of propositions into
three subsets. Namely, one can distinguish between i) the set A of accepted beliefs
A such that N(A) > 0; the set R of rejected beliefs A such that �(A) < 1; and the
set U of ignored beliefs A such that �(A) = �(Ac) = 1. Like in classical logic, A is
deductively closed, incompleteness is captured, and uncertainty is ternary (i. e. there
are three epistemic states). Unlike classical logic, A is ranked in terms of certainty
and R is ranked in terms of impossibility.

In this section, we discuss how the notion of belief can be defined according to
a confidence measure and the important role played by possibility measures in this
definition; see (Dubois, Fargier and Prade, 2004, 2005) for more detailed studies.
For a proposition A to be believed, a minimal requirement is that the agent believes
A more than its negation. Of course, this is not a sufficient property for A to be an
accepted belief. An event that is slightly more probable than its complement will
not generally be accepted as true. Other natural requirements for an accepted belief
are that first, any consequence of an accepted belief be an accepted belief and next,
that the conjunction of two accepted beliefs be an accepted belief. In other words,
a set of accepted beliefs should be deductively closed. This view of acceptance is
shared by philosophers like L. J. Cohen (1989):
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. . . to accept that p is to have or adopt a policy of deeming, positing or postulating that p -
that is, of going along with this proposition. . . as a premiss in some or all contexts for one’s
own or others’ proofs, argumentations, deliberations, etc.

while

belief that p . . . is a disposition to feel it true that p.

Confidence relations that model acceptance thus model a very strong kind of
belief, one that an agent is ready to take for granted in the course of deliberations.

Confidence relations. Let us assume that the epistemic state of an agent about
the normal state of the world is modeled by a reflexive relation ≥L among events.
Stating A ≥L B means “the agent has at least as much confidence in A as in B”,
and subscript L stands for “likelihood”. Strict confidence preference is defined as
usual by A >L B if and only if (A ≥L B) and not (B ≥L A). Let us set the minimal
properties required for a confidence relation. At least the strict part of a confidence
relation is naturally assumed to be transitive:

Quasi-transitivity (QT): A >L B and B >L C imply A >L C.

Moreover, if A ⊆ B, then A implies B. So it should be that A and B are compa-
rable, and that the agent’s confidence in A cannot be strictly greater than in B.

Monotony with respect to inclusion (MI) : A ⊆ B implies B ≥L A.

This property of monotony is not sufficient to ensure that the strict part of
≥L is coherent with classical deduction. The so-called orderly axiom proposed by
Halpern (1997) must be added due to the possible incompleteness and lack of tran-
sitivity of ≥L:

Orderly axiom (O): if A ⊆ A′ and B′ ⊆ B then A >L B implies A′ >L B′.

A relation ≥L satisfying O, QT, and MI is called a confidence relation.
An example of confidence relation obeying the above properties was introduced

by Lewis (1973) in the setting of a modal logic of counterfactuals, and indepen-
dently rediscovered by Dubois (1986) and Grove (1988). It is the possibility rela-
tion ≥�, that is a non-trivial (U >� ∅) transitive confidence relation satisfying the
disjunctive stability property:

∀A, B ≥� C implies A ∪ B ≥� A ∪ C.

A ≥� B reads “A is at least as plausible (for the agent) as B”. A possibility
relation ≥� is fully characterized by a complete preorder ≥� on the set of states U
expressing relative plausibility (Dubois, 1986). It is the restriction of the possibility
relation to singletons: u ≥� u′ if and only if {u}≥� {u’}. The possibility relation is
recovered from ≥� as follows
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∀A �= ∅,∀B �= ∅, A ≥� B if and only if ∃u ∈ A,∀u′ ∈ B, u ≥� u′.

The dual relation defined by A≥N B if and only if Bc ≥� Ac is called a necessity
relation (Dubois, 1986; Dubois and Prade, 1991), as well as an epistemic entrench-
ment in the sense of Gärdenfors (1988). A ≥N B reads: “A is at least as certain
(entrenched for the agent) as B”. It is a non-trivial (U >N ∅) transitive confidence
relation satisfying the conjunctive stability property:

∀A, B ≥N C implies A ∩ B ≥N A ∩ C.

A confidence relation can be represented on a linearly ordered scale L by means
of a confidence function, that is a mapping g from U to L such that (i) g(Ø) = 0, (ii)
g(U) = 1, and (iii) if A ⊆ B then g(A) ≤ g(B), provided that the equivalence g(B)
≥ g(A) holds if and only if B ≥L A holds. Any possibility (resp. necessity) relation
can be equivalently represented by a possibility (resp. necessity) measure.

Accepted beliefs. The weakest and most natural way to define what it means for
a proposition to be believed in the sense of a confidence relation ≥L is to consider
that A is a belief if the agent is more confident in A than in its negation (modeled
by the complement of the set A). Namely

A proposition A is called a belief induced by≥L if and only A >L Ac. The set of
beliefs according to ≥L is thus: AL = {A: A >L Ac}.

In case of necessity relations, note that A >N Ac is equivalent to A >N ∅, since
it cannot be that A >N ∅ and Ac >N ∅ for any event A. The belief set AL is always
deduced from the confidence relation, but neither the original confidence relation
nor even its strict part can be re-built from this belief set alone.

In order to remain compatible with deductive inference, a set of accepted beliefs
AL must be deductively closed. It requires that any consequence of an accepted
belief be an accepted belief and that the conjunction of two accepted beliefs be
an accepted belief. In terms of the confidence relation, it leads to the following
additional postulates:

Consequence stability (CS): if A ⊆ B and A >L Ac then B >L Bc;

Conjunction stability (AND): if A >L Ac and B >L Bc

thenA ∩ B >L Ac ∪ Bc.

Actually, CS is an obvious consequence of the Orderly axiom. Possibility and
necessity relation satisfy both properties and yield deductively closed sets of beliefs.
But, in general, the logical closure of the set of beliefs induced by any confidence
measure is not guaranteed. For instance, the set AP = {A, P(A) > 0.5} of beliefs
induced by a probability measure P is generally not deductively closed. This phe-
nomenon remains, if the threshold 0.5 is changed into any larger value strictly less
than 1.

Contextual beliefs. Due to incomplete knowledge, a belief is only tentative and
may be questioned by the arrival of new information. Conditioning a confidence
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relation on a set C representing a piece of evidence about the current situation comes
down to restricting the confidence relation to subsets of C. The agent’s confidence
in A is said to be at least as high as the confidence in B in the context C if and only
if A ∩ C ≥L B ∩ C. The set of beliefs in context C induced by a confidence relation
≥L is thus defined as

AL(C) = {A : A ∩ C >L Ac ∩ C}.

This proposal is a natural way of revising a set of current beliefs AL about a given
situation, on the basis of a confidence relation and a new information item C about
the current situation. Clearly, AL = AL(U) can be viewed as the set of prior beliefs
when no evidence is yet available. Note that revising the confidence relation itself
is another problem not dealt with here. In this paper we only consider the change of
current beliefs about a particular situation when prior generic knowledge is encoded
by the confidence relation.

It should also be noticed that here, AL(∅) = ∅. This is contrary to classical
logic tradition, which assumes AL(∅) = 2U. We consider that, in the presence of
contradictory information on the current situation, an agent cannot entertain beliefs.
This is also true if ∅ ≥L C, which clearly entails AL(C) = ∅. If the agent is supposed
to entertain beliefs in each non- contradictory context, one is thus led to adopt a
non-dogmatism postulate for the confidence relation:

Non-dogmatism (ND): C >L ∅ if and only if C �= ∅.

Now, the revision of accepted beliefs should yield new accepted beliefs. Hence
AL(C) should be deductively closed. It leads to stating conditional versions of CS
and the AND properties:

Conditional consequence stability (CCS):

if A ∈ AL(C) and A ⊆ B then B ∈ AL(C).

It also reads: If A ⊆ B and C ∩ A >L C ∩ Ac then C ∩ B >L C ∩ Bc.

Conditional conjunctive stability (CAND):

if A ∈ AL(C) and B ∈ AL(C) then A∩B ∈ AL(C).

It also reads:

If C ∩A >L C ∩ Ac and C ∩ B >L C ∩ Bc then C ∩ A ∩ B >L C ∩ (Ac ∪ Bc).

Note that CCS and CAND reduce to the CS and AND rules when C = U. It
is obvious that the properties that make the set of accepted beliefs according to a
confidence relation deductively closed only involve the strict part of the confidence
relation, moreover restricted to pairs of disjoint subsets. The remaining part of the
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confidence relation has no influence on the set of accepted beliefs. Moreover, it is
not necessary to explicitly require CCS for the confidence relation, since the Orderly
property implies CCS.

Acceptance relation. This leads to define an acceptance relation ≥L as a non-
dogmatic confidence relation that satisfies the CAND property. The following basic
result can be obtained, which yields yet another form of the CAND axiom (Dubois
and Prade, 1995a; Friedman and Halpern, 1996):

For any relation > on disjoint events, which satisfies O, CAND is equivalent to
the “negligibility property”: for any three disjoint events A, B, C,

If A ∪ B > C and A ∪ C > B then A > B ∪ C. (NEG)

The name “negligibility property” can be explained as follows: for three disjoint
events A, B, C, when A >L C and A >L B, it means that each of B and C is less
plausible than A. However, whatever their respective plausibilities, their disjunction
is always less plausible than A since, from O, A ∪ B >L C and A ∪ C >L B, and
by NEG, A >L B ∪ C. So A >L D means that the confidence in D is negligible in
front of the one of A. If >L derives from a probability function, the property NEG
certainly does not hold in general. However, for a proposition to be an accepted
belief, one expects it to be much more believed than its negation. So axiom NEG is
not as counterintuitive as it might look, from the standpoint of acceptance.

Possibility relations are typical examples of transitive acceptance relations. It is
easy to see that the strict part >� of a non-dogmatic possibility relation satisfies the
negligibility axiom NEG because max(a, b) > c and max(a, c) > b together imply a
> max(b, c). It suggests a much stronger property than NEG called “qualitativeness”
by Halpern (1997). A relation > on 2L is “qualitative” when

∀A, B, C, if A ∪ B > C and A ∪ C > B then A > B ∪ C. (QUAL)

QUAL is much stronger than negligibility since it applies to any (not necessarily
disjoint) sets A, B, C. Any reflexive orderly qualitative relation is an acceptance
relation. The only example of a reflexive and complete qualitative preorder relation
is a possibility relation since QUAL is actually equivalent to the characteristic axiom
of possibility relations. Note that necessity relations are not acceptance relations
even if they satisfy NEG, since the property C >N ∅ if and only if C �= ∅ is not
valid. Generally, if >L satisfies the non-dogmatism axiom, its dual does not.

Another example of an acceptance relation >F is obtained by considering a fam-
ily F of possibility relations, letting A >L B iff A >� B for all ≥� in F. Let the
complement of such a relation be defined by A≥L B iff not(A >L B). It is complete,
but not transitive. Another acceptance relation defined by:

A ≥L B if and only if either A >� B for all ≥� in F, or A ≥� B

and B ≥� A for all ≥� in F
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is not complete but is transitive. Both these acceptance relations share the same strict
part. Such families play an important role in the representation of general acceptance
relations. Namely, any acceptance relation ≥L can be replaced by a family F of
possibility relations, in such a way that their strict parts >F and >L coincide on
disjoint events, hence generate the same set of accepted beliefs (Dubois, Fargier and
Prade, 2004).

Big-stepped probabilities. A probability measure P does not generally induce
an acceptance relation, i.e., B ≥LA if and only if P(B) ≥P(A) does not define an
acceptance relation in general. It can be shown that this is the case only if ∃u0

such that P({u0}) > 1/2 , and this should still hold when conditioning P on any
subset of U (Dubois and Prade 1995a). Only probability measures such that ∀ A
∃u ∈ A such that P({u}) > P(A \ {u}) are context-tolerant acceptance functions
(i. e. the induced relation satisfies the CAND property). This leads to very special
probability measures generally inducing a linear order on states, and such that the
probability of a state is much bigger than the probability of the next probable state
– we call them big-stepped probabilities. They are lexicographic probabilities. A
big-stepped probability function P, on a finite set U, with pi = P({ui}), induces a
linear order on U ( p1 >. . . > pn−1 ≥pn > 0), and forms a super-increasing sequence
(pi > �j=i+1,...,npj,∀i < n−1). The comparative probability relations induced by
big-stepped probabilities coincide with possibility relations on disjoint events. See
(Benferhat et al., 1999; Snow, 1999) for more details and the role of big-stepped
probabilities in the representation of conditionals.

The lottery paradox. This sheds some light on the lottery paradox that has
been proposed as a counterexample to the use of classical deduction on accepted
beliefs and to nonmonotonic reasoning at large (Kyburg 1961, 1988; Poole 1991).
The lottery paradox can be stated as follows. Suppose n > 1,000,000 lottery tick-
ets are sold and there is one winner ticket. So the probability P(player i loses) >

0.99 999. That is, one should believe that player i loses and the set of accepted
beliefs contains all propositions of the form « player i loses » for all i. If accepted
beliefs are deductively closed, the agent should conclude that all players lose, i. e.,
Prob(all players lose) = 0, for any value of n. But the proposition « one player wins »
should be believed. So, the deductive closure assumption for accepted beliefs leads
to inconsistency. Thus accepted beliefs cannot match with high probability events,
whatever « high » means. This example seems to kill any attempt to exploit logical
approaches in the computation of accepted beliefs. The solution to the paradox lies
in the existence of probability functions that agree with classical deduction from
accepted beliefs. Such probabilities, for which the set {A, P(A) > 0.5} of beliefs
is deductively closed, exist and are big-stepped probabilities on finite sets. Note
that in the lottery paradox described above, it is implicitly assumed that all players
have equal chance of winning. The underlying probability measure is uniform, the
total opposite of big-stepped probabilities. Hence there is no regularity at all in this
game: no particular occurrence is typical and randomness prevails. It is thus unlikely
that an agent can come up with a consistent set of beliefs about the lottery game.
So, in the situation described in the example, deriving accepted beliefs about who
loses, and reasoning from such beliefs is not advisable indeed. It suggests that big-
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stepped probabilities (and plausible reasoning based on acceptance relations) model
an agent reasoning in front of phenomena that have typical features, where some
non-trivial events are much more frequent than other ones. We suggest that such
domains, where a body of default knowledge exists, can be statistically modeled
by big-stepped probabilities on a meaningful partition of the sample space. Default
reasoning based on acceptance should then be restricted to such situations in order
to escape the lottery paradox.

5 Non-Monotonic Reasoning and Possibility Relations

Representing conditionals. Let A → B be a conditional assertion relating two
propositions, and stating that “if A holds then generally B holds too”. A condi-
tional assertion should be understood as: in the context A, B is an accepted belief.
A conditional knowledge base is a set � of conditionals A→ B where A and B are
subsets of U. A strict plausibility order >L on disjoint events is induced by a set of
conditional assertions by interpreting A → B as the statement that the joint event
A ∩ B is more plausible than A ∩ Bc, i. e.,

A ∩ B >L A ∩ Bcfor each A → B in�.

Conversely, the relation A >L B between disjoint sets corresponds to the condi-
tional A ∪ B→ Bc. In particular, A >L Ac translates into U→ A, i. e., believing in
A corresponds to stating that unconditionally A is true in general.

Basic postulates. Properties such conditionals, viewed as nonmonotonic infer-
ence consequence relationships, should possess, were advocated by Kraus, Lehmann,
and Magidor (1990):

– Reflexivity: A→ A;
– Right weakening: A→ B and B ⊆ C imply A→ C;
– AND: A→ B and A→ C imply A→ B ∩ C;
– OR: A→ C and B→ C imply A ∪ B→ C;
– Cautious monotony (CM): A→ B and A→ C imply A ∩ B→ C;
– Cut: A→ B and A ∩ B→ C imply A→ C.

The above postulates embody the notion of plausible inference in the presence
of incomplete information. Namely, they describe the properties of deduction under
the assumption that the state of the world is as normal as can be. The crucial rules
are Cautious Monotony and Cut. Cautious Monotony claims that if A holds, and if
the normal course of things is that B and C hold in this situation, then knowing that
B and A hold should not lead us to situations that are exceptional for A: C should
still normally hold. Cut is the converse rule: If C usually holds in the presence of A
and B then, if situations where A and B hold are normal ones among those where A
holds (so that A normally entails B), one should take it for granted that A normally
entails C as well. The other above properties are not specific to plausible inference:
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OR enables disjunctive information to be handled without resorting to cases. The
Right Weakening rule, when combined with AND, just ensures that the set of non-
monotonic consequences is deductively closed in every context. Reflexivity sounds
natural but can be challenged for the contradiction (A = ∅). These basic properties
can be used to form the syntactic inference rules of a logic of plausible inference.

Reasoning with default rules In this context, the properties of nonmonotonic
preferential inference can be written as properties of the confidence order >L. Then,
one can see that the AND and RW axioms are exactly the CAND and the CCS
axioms of acceptance relations. However, the reflexivity axiom A → A is hard to
accept for A = ∅ in the confidence relation framework, since it means ∅ >L ∅.
So A → A makes sense for A �= ∅, and we should only postulate the restricted
reflexivity condition (RR) A→ A, ∀ A �= ∅. Note also that A→ ∅ is inconsistent
with acceptance relations (otherwise, ∅ >L A). Hence a consistency preservation
condition (CP), stating that A→ ∅ never holds, should be postulated as well. It can
be established that the strict part of any acceptance relation satisfies AND, RW, CM,
Cut, OR, CP, RR (Dubois, Fargier and Prade, 2005).

Given a conditional knowledge base � = {Ai → Bi, i = 1, n}, its preferential clo-
sure �P is obtained by means of the above Kraus, Lehmann, and Magidor postulates
used as inference rules. The above results clearly show that the relation on events
induced by �P is an acceptance relation ≥L, and that the set {A, C → A∈ �P}
coincides with the belief set AL(C).

The relation defined by a consistent base � of conditional assertions or defaults
A → B can be represented by a non-empty family F� of possibility relations (or
equivalently of possibility measures) such that ∀� ∈ F�, A ∩ B >� A ∩ Bc (or
equivalently �(A ∩ B) > �(A ∩ Bc)) if A → B ∈ �. The family is empty in
case of inconsistency. This provides a possibilistic representation of the preferential
closure �P, namely A’ → B’∈ �P if and only if �(A’∩B’) > �(A’∩B’c) for all
� ∈ F� (Dubois and Prade, 1995b). Indeed, we have seen that the relation >L

defined in this way by means of a family of possibility relations is the strict part of
an acceptance relation. Benferhat et al. (1999) proved that a family of possibility
relations representing preferential inference can always be restricted to those pos-
sibility relations induced by linear plausibility orderings of states, or equivalently,
families of big-stepped probabilities.

Rational monotony. Lehmann and Magidor (1992) have considered an addi-
tional property that a nonmonotonic inference relation might satisfy,

– Rational monotony (RM): A→ C and not (A→ Bc) imply A ∩ B→ C.

In the above, not(A→ Bc) means that it is not the case that B generally does not
hold, in situations where A holds. Indeed, if Bc is expected, then it might well be an
exceptional A-situation, where C is no longer normal. Adding rational monotony to
the basic Kraus, Lehmann, and Magidor postulates, the conditional assertion A→ B
can always be modeled as A ∩ B >� A ∩ Bc for a unique possibility ordering >�

because it forces the underlying confidence relation ≥� to be a complete preorder
(Benferhat et al. 1997). In fact, RM is equivalent to the transitivity of the weak
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preferred worlds

Fig. 1 Nonmonotonic entailment

acceptance relation ≥. The constraint A ∩ B >� A ∩ Bc expresses that all the
preferred models of A, in the sense of >�, (i. e., the most “normal” ones) are in-
cluded in the set of classical models of B (see Fig. 1). This is one possible natural
interpretation of the default rule “generally, if A then B”, actually first suggested by
Shoham (1988).

A conditional knowledge base � = {Ai → Bi, i = 1,n} is thus equivalent to a
set of constraints of the form Ai∩ Bi >� Ai ∩ Bc

i that restricts a non-empty family
of possibility relations (if the constraints are consistent). Selecting the least specific
possibility relation (or equivalently the largest possibility distribution) corresponds
to the application of RM and to the computation of the rational closure of � after
Lehmann and Magidor (1992). It is still equivalently to the most compact rank-
ing according to Pearl (1990). The actual computation of this rational closure of �
amounts to finding the well-ordered partition induced by this set of constraints by
means of a ranking algorithm proposed by Pearl and also Benferhat et al. (1992).
Then the rational closure inference from � amounts to a possibilistic logic inference
from a set of constraints of the form N(Ai

c∪ Bi) ≥ �i, where Ai → Bi ∈ �, and
where the priority level �i is associated with the possibility ordering encoded by the
well-ordered partition.

Possibilistic conditioning and independence. In the above approach, a condi-
tional assertion A→ B is represented by a constraint of the form �(A∩B) > �(A∩
Bc). This is closely related to the expression of qualitative conditioning in possibility
theory, which obeys the equation (where �(A) > 0):

�(A ∩ B) = min(�(B|A), �(A)).

�(B|A) is then defined as the largest solution of the above equation (for quan-
titative conditioning, ‘min’ would be replaced by the product in the above equa-
tion). Then it can be checked that the associated conditional necessity measure
N(B|A) = 1−�(Bc|A) is such that

N(B|A) > 0 if and only if �(A ∩ B) > �(A ∩ Bc).

A non-symmetrical notion of qualitative independence, is obtained, namely,

B is independent of A if and only if N(B|A) > 0 and N(B) > 0.
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It turns out to be the proper notion corresponding exactly to the following re-
quirement for independence-based revision, due to Gärdenfors (1990):

If a belief state K is revised by a sentence A, then all sentences in K that are independent of
the validity of A should be retained in the revised state of belief.

See (Dubois, Farinas, Herzig, Prade, 1999; Ben Amor et al. 2002, 2005) for de-
tails and other notions of possibilistic independence.

6 Revising Accepted Beliefs vs. Revising an Acceptance Relation

At this point, it can be asked whether, given an acceptance relation ≥L, the change
operation that turns the belief set AL into the belief set AL(C) when the information
asserting the truth of proposition C, will satisfy the main postulates of belief revi-
sion (after Alchourrón et al. 1985; Gärdenfors, 1988). This is indeed the case; see
(Dubois, Fargier and Prade, 2005) for a detailed discussion of the postulates. Since a
set of accepted beliefs AL(C) is deductively closed, it is characterised by a subset of
states C∗ called its kernel, such that AL(C) = {A, C*⊆A}. Let B = U* be the kernel
of U, induced by the belief set AL. It is thus possible to describe a belief change
operation as a mapping from 2U × 2U to 2U, changing a pair (B, C) of subsets of
states into another subset of states C*. When the acceptance relation is transitive,
and then corresponds to a unique possibility relation, all the Alchourrón, Gärdenfors
and Makinson postulates for belief revision hold (for C �= ∅); see (Dubois and
Prade, 1992b). Moreover, the epistemic entrenchement relations (Gärdenfors, 1988)
that underlie any well-behaved belief revision process obeying the postulates have
the characteristic properties of necessity measures (Dubois and Prade, 1991).

The direct link between acceptance functions and revision postulates that has
been briefly mentioned here is somewhat parallel to the comparison between revi-
sion and non-monotonic inference first studied by Makinson and Gärdenfors (1991).
However, this leads to viewing the Alchourrón, Gärdenfors and Makinson’ theory
of revision (AGM for short in the following) as mainly concerned with the revi-
sion of the current beliefs of an agent pertaining to the present situation. This is
the ordinal counterpart to the notion of focusing an uncertainty measure on the
proper reference class pointed at by the available factual evidence (Dubois and
Prade, 1998). The AGM theory is not concerned with the revision of the generic
knowledge of the agent regarding what is normal and what is not. The acceptance
function setting is in some sense more general than the belief revision setting not
only because less postulates are assumed, but because it lays bare the existence of
these two kinds of revision problems: the revision of the accepted beliefs on the
basis of new observations, and the revision of the acceptance relation itself, due
to the arrival of new pieces of knowledge (like a new default rule). Moreover, the
acceptance relation framework also makes it clear that AL(C) is not computed from
AL, but it can solely be induced by the input information C and the acceptance
relation.
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The AGM theory does not suggest any constraint on the possible evolution of
the epistemic entrenchment relation after an AGM belief revision step. The accep-
tance relation framework suggests that it should remain unchanged. It has been
argued that belief revision cannot be iterated in case the epistemic entrenchment
relation, that underlies the revision operation, is lost, which prevents a further re-
vision step from being performed. This is questionable: in the AGM theory, if,
after revising AL into AL(C), the agent receives a new piece of information D
consistent with C, the belief set becomes AL(C∩D) computed with the same ac-
ceptance relation. That the acceptance does not change in the face of new obser-
vations is very natural in the above framework. The fact that the order of arrival
of inputs is immaterial in this case points out that acceptance relations summarize
background knowledge, and that observations{C, D} are just singular pieces of ev-
idence gathered at some point about a static world. By assumption, observations
C and D cannot be contradictory in the acceptance relation framework, otherwise
one of the observations C or D is wrong. In particular, the problem of handling
a sequence of contradictory inputs of the form C and Cc makes no sense in the
acceptance framework. More discussions on these issues can be found in Dubois
(2008).

The issue of revising the acceptance relation is different, and beyond the scope
of this survey paper. The problem has been addressed for complete preorderings
on states by some authors like Spohn (1988), Boutilier and Goldszmidt (1997),
Williams (1994), Darwiche and Pearl (1997), and Benferhat, Dubois and Papini
(1999); also Dubois and Prade (1997) in the possibilistic setting.

7 A Bipolar View of Information

When representing knowledge, it may be fruitful to distinguish between negative
and positive information in the following sense. There are pieces of information
ruling out what is known as impossible on the one hand, and pieces of evidence
pointing out things that are guaranteed to be possible. But what is not impossible
is only potential, i.e. not always actually possible. Negative knowledge is usually
given by pieces of generic knowledge, integrity constraints, laws, necessary condi-
tions, which state what is impossible, forbidden. On the contrary, observed cases,
examples of solutions, sufficient conditions are positive pieces of information. Be-
ware that positive knowledge may not just mirror what is not impossible. Indeed
what is not impossible, not forbidden, does not coincide with what is explicitly
possible or permitted. So, a situation that is not impossible (i.e., possible) is not
actually possible (i.e., positive) if it is not explicitly permitted, observed or given as
an example. This bipolar view applies to preference representation as well if positive
desires are identified among what is not more or less rejected. As example of bipolar
knowledge, assume that one has some information about the opening hours of a
museum M. We may know for sure that museum M is open from 2 pm to 4 pm
(because we visited it recently at that time), and certainly closed during night (from
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9 pm to 9 am) by law regulations. Note that nothing then forbids museum M to be
open in the morning although there is no positive evidence reported supporting it.

Possibility theory is a suitable framework for modelling and reasoning about
bipolar information. Then negative information and positive information are repre-
sented by two separate possibility distributions yielding potential and actual (guar-
anteed) possibility measures respectively; see, e.g. (Dubois, Hajek and Prade, 2000;
Dubois, Prade and Smets, 2001; Weissbrod, 1998).

In uni-polar possibility theory, as presented in Section 2, a possibility distribu-
tion �, encodes a total pre-order on a set U of interpretations or possible states. It
associates to each interpretation u a real number �(u) ∈ [0, 1], which represents
the compatibility of the interpretation u with the available knowledge on the real
world.The larger �(u), the more plausible u is. The distribution � acts as a restric-
tion on possible states. In particular, �(u) = 0 means that u is totally impossible. The
second possibility distribution � should be understood differently. The degree �(u)
∈ [0, 1] estimates to what extent the feasibility of u is supported by evidence, or u
is really satisfactory, and �(u) = 0 just means that u has not been observed yet.

In general, the sets of guaranteed possible (GP) and impossible (I) situations are
disjoint and do not cover all the referential U. This is expressed by the coherence
condition GP ⊆ NI, where NI = U − I is the set of non-impossible situations. This
condition means that what is guaranteed to be possible should be not impossible.
When information is graded in the presence of uncertainty, � represents the fuzzy
set of guaranteed possible elements and � represents the fuzzy set of not impossible
elements. The coherence condition (if both distribtions share the same scale) now
reads :∀u ∈ U, �(u) ≤ �(u).

Given a pair of possibility distributions � and �, we can define: the (potential)
possibility degree of an event A, i.e. �(A) = max{�(u): u ∈ U}, the dual necessity
degree N(A) = 1−�(Ac) on the one hand, and the guaranteed possibility (or suffi-
ciency) degree of A, �(A) = min{�(u): u ∈ A} on the other hand (and if necessary
the dual degree of potential necessity ∇(A) = 1−�( Ac)). Note that � is based on an
existential quantifier since �(A) is high as soon as some u satisfying A is plausible
enough. It agrees with the negative nature of information, since Ac is impossible, i.
e. �(Ac) = 0 ⇔ N(A) = 1, corresponds to the non-existence of an interpretation u
outside A and having a non-zero degree of possibility �(u). � is based on a universal
quantifier since �(A) is low as soon as some u with a low plausibility satisfies A. It
agrees with the positive nature of information encoded by �, since �(A) = 1 requires
that all the interpretations of A are fully supported by evidence. In a similar way as
a possibility distribution � can be induced from a set of constraints of the form
N(Ah) ≥ �h, a possibility distribution � can be generated by a set of constraints of
the form �(Bj) ≥ �j. Namely,

�(u) = maxj {�j : u ∈ Bj}; �(u) = 0 if ∀j, u ∈ Bc
j .

Note that adding a new constraint �(Bk) ≥ �k yields a larger possibility distri-
bution, which fits with the fact that �-measures model positive information and that
positive observations accumulate. This contrasts with the fact that the addition of a
new constraint N(Ah) ≥ �h yields a smaller, more restrictive possibility distribution.
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Merging bipolar information by disjunctive (resp. conjunctive) combination of
positive (resp. negative) information may create inconsistency when the upper and
lower possibility distributions, which represent the negative part and the positive
part of the information respectively, fail to satisfy the consistency condition ∀u,
�(u) ≥ �(u). Then it is necessary to revise either � or � for restoring consistency.
When dealing with knowledge, observations are generally regarded as more solid
information than generic knowledge (because observations are more specific), and
then the revision process is modelled by

�revised(u) = max(�(u), �(u)),

which describes the revision of � by � once a new report has been fused with the
current � using the max operation. Thus priority is given to reports on observed
values leads to a revision of the generic theory in case of conflict with evidence.
Therefore, ∀u, �revised(u) ≥ �(u).

A dual type of revision, when receiving information about �, would consist in
changing � into �revised(u) = min(�(u), �(u)), thus restricting � (due to a fusion based
on the min combination). Therefore, ∀u, �(u) ≥ �revised(u). This type of revision is
natural when dealing with preferences, since � is then associated with a set of more
or less imperative goals, while positive information corresponds to the expression
of simple desires. Then goals have more priority than the wishes expressed as posi-
tive information.

8 Concluding Remarks

Possibility theory offers a coherent setting for modelling a form of uncertainty in a
quantitative or qualitative way, which corresponds to partial, imprecise, and incom-
plete information, rather than random phenomena, as for objective probabilities.
More specifically, this chapter has provided an extensive survey of the setting of
possibility theory as a natural framework for modelling belief and disbelief in a
graded way, as well as the underlying notion of acceptance relations. Among many
aspects of possibility theory that have not been covered here, let us mention, as a
related issue, the existence of two axiomatic frameworks for qualitative decision
under uncertainty respectively presented in (Dubois, Prade, and Sabbadin, 2001)
and in (Dubois, Fargier, Perny, and Prade, 2002), where the first one needs the
commensurability of the preference and uncertainty scales, while the second does
not require this hypothesis.
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Springer Verlag, Berlin, 185–205.

J. Pearl (1990) System Z: a natural ordering of defaults with tractable applications to default
reasoning. Proc. of the 3rd Conf. on the Theoretical Aspects of Reasoning About Knowledge
(TARK’90), Morgan and Kaufmann, San Mateo, CA., 121–135.

D. Poole (1991) The effect of knowledge on belief: conditioning, specificity and the lottery paradox
in defaut reasoning. Artificial Intelligence, 49, 281–307.

H. Reichenbach (1938) Experience and Prediction, : an Analysis of the Foundations and the Struc-
ture of Knowledge. University of Chicago Press, USA.

N. Rescher (1976) Plausible Reasoning. Van Gorcum, Amsterdam.
G. L. S. Shackle (1949) Expectation in Economics. Cambridge University Press, Cambridge, UK.

2nd edition, 1952.
G. L. S. Shackle (1961) Decision Order and Time in Human Affairs. 2nd edition, Cambridge Uni-

versity Press, Cambridge, UK.
G. Shafer (1976) A Mathematical Theory of Evidence. Princeton University Press, Princeton.
Y. Shoham (1988). Reasoning About Change — Time and Causation from the Standpoint of Artifi-

cial Intelligence, Cambridge, MA : The MIT Press.
P. Snow (1999) Diverse confidence levels in a probabilistic semantics for conditional logics. Arti-

ficial Intelligence, D. Reidel, Dordrecht, The Netherlands, 113, 269–279.
W. Spohn (1988) Ordinal conditional functions: a dynamic theory of epistemic states. In: Causation

in Decision, Belief Change and Statistics, vol. 2, (W. Harper, B. Skyrms, eds.), 105–134.
P. Walley (1991). Statistical Reasoning with Imprecise Probabilities, Chapman and Hall, Canada.
P. Walley P. (1996) Measures of uncertainty in expert systems. Artificial Intelligence, 83, 1–58.
J. Weisbrod (1998) A new approach to fuzzy reasoning, Soft Computing, 2, 89–99.
M.A. Williams (1994) Transmutations of knowledge systems. Proc. of the 4th Inter. Conf. on

Principles of Knowledge Representation and Reasoning (KR’94), (J. Doyle, E. Sandewall,
P. Torasso, eds.), Bonn, Germany, 619–629.

L. A. Zadeh (1965) Fuzzy sets. Information and Control, 8, 338–353.
L. A. Zadeh (1978) Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1,

3–28.
L. A. Zadeh (1981). Possibility theory and soft data analysis. In: Mathematical Frontiers of Social

and Policy Sciences (Cobb L. and Thrall R.M., eds.), Westview Press, Boulder, Colo. 69–129.



A Survey of Ranking Theory

Wolfgang Spohn

1 Introduction

Epistemology is concerned with the fundamental laws of thought, belief, or judg-
ment. It may inquire the fundamental relations among the objects or contents of
thought and belief, i.e., among propositions or sentences. Then we enter the vast
realm of formal logic. Or it may inquire the activity of judging or the attitude of
believing itself. Often, we talk as if this would be a yes or no affair. From time
immemorial, though, we know that judgment is firm or less than firm, that belief is
a matter of degree. This insight opens another vast realm of formal epistemology.

Logic received firm foundations already in ancient philosophy. It took much
longer, though, until the ideas concerning the forms of (degrees of) belief acquired
more definite shape. Despite remarkable predecessors in Indian, Greek, Arabic, and
medieval philosophy, the issue seemed to seriously enter the agenda of intellec-
tual history only in the 16th century with the beginning of modern philosophy.
Cohen (1980) introduced the handy, though somewhat tendentious opposition be-
tween Baconian and Pascalian probability. This suggests that the opposition was
already perceivable with the work of Francis Bacon (1561–1626) and Blaise Pascal
(1623–1662). In fact, philosophers were struggling to find the right mould. In that
struggle, Pascalian probability, which is probability simpliciter, was the first to take
a clear and definite shape, viz. in the middle of 17th century (cf. Hacking 1975),
and since then it advanced triumphantly. The extent to which it interweaves with
our cognitive enterprise has become nearly total (cf. the marvelous collection of
Krüger et al. 1987). There certainly were alternative ideas. However, probability
theory was always far ahead; indeed, the distance ever increased. The winner takes
it all!

I use ‘Baconian probability’ as a collective term for the alternative ideas. This
is legitimate since there are strong family resemblances among the alternatives.
Cohen has chosen an apt term since it gives historical depth to ideas that can be
traced back at least to Bacon (1620) and his powerful description of ‘the method
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of lawful induction’. Jacob Bernoulli and Johann Heinrich Lambert struggled with
a non-additive kind of probability. When Joseph Butler and David Hume spoke of
probability, they often seemed to have something else or more general in mind than
our precise explication. In contrast to the German Fries school British 19th century’s
philosophers like John Herschel, William Whewell, and John Stuart Mill elaborated
non-probabilistic methods of inductive inference. And so forth.1

Still, one might call this an underground movement. The case of alternative forms
of belief became a distinct hearing only in the second half of the 20th century. On the
one hand, there were scattered attempts like the ‘functions of potential surprise’ of
Shackle (1949), heavily used and propagated in the epistemology of Isaac Levi since
his (1967), Rescher’s (1964) account of hypothetical reasoning, further developed
in his (1976) into an account of plausible reasoning, or Cohen’s (1970) account of
induction which he developed in his (1977) under the label ‘Non-Pascalian probabil-
ity’, later on called ‘Baconian’. On the other hand, one should think that modern phi-
losophy of science with its deep interest in theory confirmation and theory change
produced alternatives as well. Indeed, Popper’s hypothetical-deductive method pro-
ceeded non-probabilistically, and Hempel (1945) started a vigorous search for a
qualitative confirmation theory. However, the former became popular rather among
scientists than among philosophers, and the latter petered out after 25 years, at least
temporarily.

I perceive all this rather as a prelude, preparing the grounds. The outburst came
only in the mid 70’s, with strong help from philosophers, but heavily driven by
the needs of Artificial Intelligence. Not only deductive, but also inductive reason-
ing had to be implemented in the computer, probabilities appeared intractable,2

and thus a host of alternative models were invented: a plurality of default log-
ics, non-monotonic logics and defeasible reasonings, fuzzy logic as developed by
Zadeh (1975, 1978), possibility theory as initiated by Zadeh (1978) and developed
by Dubois and Prade 1988, the Dempster-Shafer belief functions originating from
Dempster (1967, 1968), but essentially generalized by Shafer (1976), AGM belief
revision theory (cf. Gärdenfors 1988), a philosophical contribution with great suc-
cess in the AI market, Pollock’s theory of defeasible reasoning (summarized in Pol-
lock 1995), and so forth. The field has become rich and complex. There are attempts
at unification like Halpern (2003) and huge handbooks like Gabbay et al. (1994).
One hardly sees the wood for trees. It seems that what had been forgotten for cen-
turies had to be made good for within decades.

Ranking theory, first presented in Spohn (1983, 1988),3 belongs to this field as
well. Since its development, by me and others, is scattered in a number of papers,
one goal of the present paper is to present an accessible survey of the present state

1 This is not the place for a historical account. See, e.g., Cohen (1980) and Shafer (1978) for some
details.
2 Only Pearl (1988) showed how to systematically deal with probabilities without exponential
computational explosion.
3 There I called its objects ordinal conditional functions. Goldszmidt and Pearl (1996) started call-
ing them ranking functions, a usage I happily adapted.



A Survey of Ranking Theory 187

of ranking theory. This survey will emphasize the philosophical applications, thus
reflecting my bias towards philosophy. My other goal is justificatory. Of course, I
am not so blinded to claim that ranking theory would be the adequate account of
Baconian probability. As I said, ‘Baconian probability’ stands for a collection of
ideas united by family resemblances; and I shall note some of the central resem-
blances in the course of the paper. However, there is a multitude of epistemological
purposes to serve, and it is entirely implausible that there is one account to serve
all. Hence, postulating a reign of probability is silly, and postulating a duumvirate
of probability and something else is so, too. Still, I am not disposed to see ranking
theory as just one offer among many. On many scores, ranking theory seems to me
to be superior to rival accounts, the central score being the notion of conditional
ranks. I shall explain what these scores are, thus trying to establish ranking theory
as one particularly useful account of the laws of thought.

The plan of the paper is simple. In the five subsections of Section 2, I shall outline
the main aspects of ranking theory. This central section will take some time. I expect
the reader to get impatient meanwhile; you will get the strong impression that I
am not presenting an alternative to (Pascalian) probability, as the label ‘Baconian’
suggests, but simply probability itself in a different disguise. This is indeed one
way to view ranking theory, and a way, I think, to understand its virtues. However,
the complex relation between probability and ranking theory, though suggested at
many earlier points, will be systematically discussed only in the two subsections of
Section 3. The two subsections of Section 4 will finally compare ranking theory to
some other accounts of Baconian probability.

2 The Theory

2.1 Basics

We have to start with fixing the objects of the cognitive attitudes we are going to
describe. This is a philosophically highly contested issue, but here we shall stay
conventional without discussion. These objects are pure contents, i.e., propositions.
To be a bit more explicit: We assume a non-empty set W of mutually exclusive and
jointly exhaustive possible worlds or possibilities, as I prefer to say, for avoiding the
grand associations of the term ‘world’ and for allowing to deal with de se attitudes
and related phenomena (where doxastic alternatives are considered to be centered
worlds rather than worlds). And we assume an algebra A of subsets of W , which
we call propositions. All the functions we shall consider for representing doxastic
attitudes will be functions defined on that algebra A.

Thereby, we have made the philosophically consequential decision of treating
doxastic attitudes as intensional. That is, when we consider sentences such as “a
believes (with degree r ) that p”, then the clause p is substitutable salva veritate
by any clause q expressing the same proposition and in particular by any logically
equivalent clause q . This is so because by taking propositions as objects of belief
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we have decided that the truth value of such a belief sentence depends only on
the proposition expressed by p and not on the particular way of expressing that
proposition. The worries provoked by this decision are not our issue.

The basic notion of ranking theory is very simple:

Definition 1 Let A be an algebra over W. Then � is a negative ranking function4 for
A iff � is a function from A into R∗ =R+ ∪ {∞} (i.e., into the set of non-negative
reals plus infinity) such that for all A, B ∈ A:

(1) �(W ) = 0 and �(∅) = ∞,

(2) �(A ∪ B) = min {�(A), �(B)} [the law of disjunction (for negative ranks)].

�(A) is called the (negative) rank of A.

It immediately follows for each A ∈ A:

(3) either � (A) = 0 or �(A) = 0 or both [the law of negation].

A negative ranking function �, this is the standard interpretation, expresses
a grading of disbelief (and thus something negative, hence the qualification). If
�(A) = 0, A is not disbelieved at all; if �(A) > 0, A is disbelieved to some
positive degree. Belief in A is the same as disbelief in A; hence, A is believed
in � iff �(A) > 0. This entails (via the law of negation), but is not equivalent to
�(A) = 0. The latter is compatible also with �(A) = 0, in which case � is neutral or
unopinionated concerning A. We shall soon see the advantage of explaining belief
in this indirect way via disbelief.

A little example may be instructive. Let us look at Tweetie of which default
logic is very fond. Tweetie has, or fails to have, each of the three properties: be-
ing a bird (B), being a penguin (P), and being able to fly (F). This makes for
eight possibilities. Suppose you have no idea what Tweetie is, for all you know
it might even be a car. Then your ranking function may be the following one, for
instance:5

� B & P B & P B & P B & P

F 0 4 0 11
F 2 1 0 8

In this case, the strongest proposition you believe is that Tweetie is either no
penguin and no bird (B & P) or a flying bird and no penguin (F & B & P). Hence,

4 For systematic reasons I am slightly rearranging my terminology from earlier papers. I would be
happy if the present terminology became the official one.
5 I am choosing the ranks in an arbitrary, though intuitively plausible way (just as I would have to
arbitrarily choose plausible subjective probabilities, if the example were a probabilistic one). The
question how ranks may be measured will be taken up in Section 2.3.
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you neither believe that Tweetie is a bird (B) nor that it is not a bird (B). You are
also neutral concerning its ability to fly. But you believe, for instance: if Tweetie is
a bird, it is not a penguin and can fly (B→P & F); and if Tweetie is not a bird, it is
not a penguin (B→P) – each if-then taken as material implication. In this sense you
also believe: if Tweetie is a penguin, it can fly (P→F); and if Tweetie is a penguin,
it cannot fly (P→F) – but only because you believe that it is not a penguin in the
first place; you simply do not reckon with its being a penguin. If we understand
the if-then differently, as we shall do later on, the picture changes. The larger ranks
in the last column indicate that you strongly disbelieve that penguins are not birds.
And so we may discover even more features of this example.

What I have explained so far makes clear that we have already reached the first
fundamental aim ranking functions are designed for: the representation of belief.
Indeed, we may define B� = {A|�(A) > 0} to be the belief set associated with the
ranking function �. This belief set is finitely consistent in the sense that whenever
A1, . . . , An ∈ B�, then A1∩ . . . ∩An �= ∅; this is an immediate consequence of
the law of negation. And it is finitely deductively closed in the sense that whenever
A1, . . . , An ∈ B� and A1∩ . . . ∩An ⊆ B ∈ A, then B ∈ B�; this is an immediate
consequence of the law of disjunction. Thus, belief sets just have the properties they
are normally assumed to have. (The finiteness qualification is a little cause for worry
that will be addressed soon.)

There is a big argument about the rationality postulates of consistency and de-
ductive closure; we should not enter it here. Let me only say that I am disap-
pointed by all the attempts I have seen to weaken these postulates. And let me
point out that the issue was essentially decided at the outset when we assumed
belief to operate on propositions or truth-conditions or sets of possibilities. With
these assumptions we ignore the relation between propositions and their sentential
expressions or modes of presentation; and it is this relation where all the problems
hide.

When saying that ranking functions represent belief I do not want to further
qualify this. One finds various notions in the literature, full beliefs, strong beliefs,
weak beliefs, one finds a distinction of acceptance and belief, etc. In my view, these
notions and distinctions do not respond to any settled intuitions; they are rather
induced by various theoretical accounts. Intuitively, there is only one perhaps not
very clear, but certainly not clearly divisible phenomenon which I exchangeably
call believing, accepting, taking to be true, etc.

However, if the representation of belief were our only aim, belief sets or their log-
ical counterparts as developed in doxastic logic (see already Hintikka 1962) would
have been good enough. What then is the purpose of the ranks or degrees? Just
to give another account of the intuitively felt fact that belief is graded? But what
guides such accounts? Why should degrees of belief behave like ranks as defined?
Intuitions by themselves are not clear enough to provide this guidance. Worse still,
intuitions are usually tainted by theory; they do not constitute a neutral arbiter. In-
deed, problems already start with the intuitive conflict between representing belief
and representing degrees of belief. By talking of belief simpliciter, as I have just
insisted, I seem to talk of ungraded belief.
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The only principled guidance we can get is a theoretical one. The degrees must
serve a clear theoretical purpose and this purpose must be shown to entail their
behavior. For me, the theoretical purpose of ranks is unambiguous; this is why I
invented them. It is the representation of the dynamics of belief ; that is the second
fundamental aim we pursue. How this aim is reached and why it can be reached in
no other way will unfold in the course of this section. This point is essential; as we
shall see, it distinguishes ranking theory from all similarly looking accounts, and it
grounds its superiority.

For the moment, though, let us look at a number of variants of Definition 1.
Above I mentioned the finiteness restriction of consistency and deductive closure.
I have always rejected this restriction. An inconsistency is irrational and to be
avoided, be it finitely or infinitely generated. Or, equivalently, if I take to be true
any number of propositions, I take their conjunction to be true as well, even if the
number is infinite. If we accept this, we arrive at a somewhat stronger notion:

Definition 2 Let A be a complete algebra over W (closed also under infinite
Boolean operations). Then � is a complete negative ranking function for A iff �
is a function from W into N+ = N ∪ {∞} (i.e., into the set of non-negative integers
plus infinity) such that �−1(0) �= ∅ and and �−1(n) ∈ A for each n ∈ N+. � is
extended to propositions by defining �(∅) = ∞ and �(A) = min{�(w)|w ∈ A} for
each non-empty A ∈ A.

Obviously, the propositional function satisfies the laws of negation and disjunc-
tion. Moreover, we have for any B ⊆ A:

(4) �(
⋃B) = min {�(B)|B ∈ B} [the law of infinite disjunction].

Due to completeness, we could start in Definition 2 with the point function and
then define the set function as specified. Equivalently, we could have defined the
set functions by the conditions (1) and (4) and then reduce the set function to a
point function. Henceforth I shall not distinguish between the point and the set
function. Note, though, that without completeness the existence of an underlying
point function is not guaranteed; the relation between point and set function in this
case is completely cleared up in Huber (2006).

Why are complete ranking functions confined to integers? The reason is condi-
tion (4). It entails that any infinite set of ranks has a minimum and hence that the
range of a complete ranking function is well-ordered. Hence, the natural numbers
are a natural choice. In my first publications (1983) and (1988) I allowed for more
generality and assumed an arbitrary set of ordinal numbers as the range of a ranking
function. However, since we want to calculate with ranks, this meant to engage into
ordinal arithmetic, which is awkward. Therefore I later confined myself to complete
ranking functions as defined above.

The issue about condition (4) was first raised by Lewis (1973, Section 1.4) where
he introduced the so-called Limit Assumption in relation to his semantics of coun-
terfactuals. Endorsing (4), as I do, is tantamount to endorsing the Limit Assumption.
Lewis finds reason against it, though it does not affect the logic of counterfactuals.
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From a semantic point of view, I do not understand his reason. He requests us to
counterfactually suppose that a certain line is longer than an inch and asks how
long it would or might be. He argues in effect that for each � > 0 we should ac-
cept as true: “If the line would be longer than 1 inch, it would not be longer than
1 + � inches”. This strikes me as blatantly inconsistent, even if we cannot derive a
contradiction in counterfactual logic (due to its 
–incompleteness). Therefore, I am
accepting the Limit Assumption and, correspondingly, the law of infinite disjunc-
tion. This means in particular that in that law the minimum must not be weakened
to the infimum.

Though I prefer complete ranking functions for the reasons given, the issue will
have no further relevance here. In particular, if we assume the algebra of proposi-
tions to be finite, each ranking function is complete, and the issue does not arise. In
the sequel, you can add or delete completeness as you wish.

Let me add another observation apparently of a technical nature. It is that we can
mix ranking functions in order to form a new ranking function. This is the content of

Definition 3 Let � be a non-empty set of negative ranking functions for an algebra
A of propositions, and let ρ be a complete negative ranking function over �. Then
� defined by

(5) �(A) = min{�(A)+ �(�)| � ∈ �} for all A ∈ A

is obviously a negative ranking function for A as well and is called the mixture of
� by �.

It is nice that such mixtures make formal sense. However, we shall see in the course
of this paper that the point is more than a technical one; such mixtures will acquire
deep philosophical importance later on.

So far, (degree of) disbelief was our basic notion. Was this necessary? Certainly
not. We might just as well express things in positive terms:

Definition 4 Let A be an algebra over W. Then π is a positive ranking function for
A iff π is a function from A into R∗ such that for all A, B ∈ A:

(6) π(∅) = 0 and π(W ) = ∞,

(7) π(A ∩ B) = min{π(A), π(B)} [the law of conjunction for positive ranks].

Positive ranks express degrees of belief. π(A) > 0 says that A is believed (to some
positive degree), and π(A) = 0 says that A is not believed. Obviously, positive ranks
are the dual to negative ranks; if π(A) = �(A) for all A ∈ A, then π is a positive
function iff � is a negative ranking function.

Positive ranking functions seem distinctly more natural. Why do I still prefer
the negative version? A superficial reason is that we have seen complete negative
ranking functions to be reducible to point functions, whereas it would obviously be
ill-conceived to try the same for the positive version. This, however, is only indica-
tive of the main reason. Despite appearances, we shall soon see that negative ranks
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behave very much like probabilities. In fact, this parallel will serve as our compass
for a host of exciting observations. (For instance, in the finite case probability mea-
sures can also be reduced to point functions.) If we were thinking in positive terms,
this parallel would remain concealed.

There is a further notion that may appear even more natural:

Definition 5 Let A be an algebra over W. Then � is a two-sided ranking function6

for A iff � is a function from A into R ∪ {–∞, ∞} such that there is a negative
ranking function � and its positive counterpart π for which for all A ∈ A:

�(A) = �(A)− �(A) = π(A)− �(A).

Obviously, we have �(A) > 0, < 0, or = 0 according to whether A is believed,
disbelieved, or neither. In this way, the belief values of all propositions are expressed
in a single function. Moreover, we have the appealing law that �(A) = −�(A). For
some purposes this is a useful notion that I shall readily employ. However, its formal
behavior is awkward. Its direct axiomatic characterization would have been cumber-
some, and its simplest definition consisted in its reduction to the other notions.

Still, this notion suggests an interpretational degree of freedom so far unnoticed.7

We might ask: Why does the range of belief extend over all the positive reals in a
two-sided ranking function and the range of disbelief over all the negative reals,
whereas neutrality shrinks to rank 0? This looks unfair. Why may unopinionated-
ness not occupy a much broader range? Indeed, why not? We might just as well
distinguish some positive rank or real z and define the closed interval [−z, z] as the
range of neutrality. Then �(A) > z expresses belief in A and �(A) < −z disbelief
in A. This is a viable interpretation; in particular, consistency and deductive closure
of belief sets would be preserved. However, 0 would still be a distinguished rank in
this interpretation; it marks central neutrality, as it were, since it is the only rank x
for which we may have �(A) = �(A) = x .

The interpretational freedom appears quite natural. After all, the notion of belief
is certainly vague and can be taken more or less strict. We can do justice to this
vagueness with the help of the parameter z. The crucial point, though, is that we al-
ways get the formal structure of belief we want to get, however we fix that parameter.
The principal lesson of this observation is, hence, that it is not the notion of belief
which is of basic importance; it is rather the formal structure of ranks. The study of
belief is the study of that structure. Still, it would be fatal to simply give up talking
of belief in favor of ranks. Ranks express beliefs, even if there is interpretational
freedom. Hence, it is of paramount importance to maintain the intuitive connection.
In the sequel, I shall stick to my standard interpretation and equate belief in A with
�(A) > 0, even though this is a matter of decision.

6 In earlier papers I called this a belief function, obviously an unhappy term which has too many
different uses. This is one reason fort the mild terminological reform proposed in this paper.
7 I am grateful to Matthias Hild for making this point clear to me.
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Let us pause for a moment and take a brief look back. What I have told so far
probably sounds familiar. One has quite often seen all this, in this or a similar form –
where the similar form may also be a comparative one: as long as only the ordering
and not the numerical properties of the degrees of belief are relevant, a ranking func-
tion may also be interpreted as a weak ordering of propositions according to their
plausibility, entrenchment, credibility, etc. Often things are cast in negative terms, as
I primarily do, and often in positive terms. In particular, the law of negation securing
consistency and the law of disjunction somehow generalizing deductive closure (we
still have to look at the point more thoroughly) or their positive counterparts are
pervasive. If one wants to distinguish a common core in that ill-defined family of
Baconian probability, it is perhaps just these two laws.

So, why invent a new name, ‘ranks’, for familiar stuff? The reason lies in the sec-
ond fundamental aim associated with ranking functions: to account for the dynamics
of belief. This aim has been little pursued under the label of Baconian probability,
but it is our central topic for the rest of this section. Indeed, everything stands and
falls with our notion of conditional ranks; it is the distinctive mark of ranking theory.
Here it is:

Definition 6 Let � be a negative ranking function for A and �(A) < ∞. Then the
conditional rank of B ∈ A given A is defined as �(B|A) = �(A ∩ B)− �(A). The
function �A: B )→ �(B|A) is obviously a negative ranking function in turn and
called the conditionalization of � by A.

We might rewrite this definition as a law:

(8) �(A∩ B) = �(A)+�(B|A) [the law of conjunction (for negative ranks)].

This amounts to the highly intuitive assertion that one has to add the degree of
disbelief in B given A to the degree of disbelief in A in order to get the degree of
disbelief in A-and-B .

Moreover, it immediately follows for all A, B ∈ A with �(A) < ∞:

(9) �(B|A) = 0 or �(B|A) = 0 [conditional law of negation].

This law says that even conditional belief must be consistent. If both, �(B|A) and
�(B|A), were >0, both, B and B, would be believed given A, and this ought to be
excluded, as long as the condition A itself is considered possible.

Indeed, my favorite axiomatization of ranking theory runs reversely, it consists
of the definition of conditional ranks and the conditional law of negation. The latter
says that min{�(A|A ∪ B), �(B|A ∪ B)} = 0, and this and the definition of condi-
tional ranks entail that min{�(A), �(B)} = �(A ∪ B), i.e., the law of disjunction.
Hence, the only substantial assumption written into ranking functions is conditional
consistency, and it is interesting to see that this entails deductive closure as well.
Huber (2007) has further improved upon this important idea and shown that rank-
ing theory is indeed nothing but the assumption of dynamic consistency, i.e., the
preservation of consistency under any dynamics of belief. (He parallels, in a way,
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the dynamic Dutch book argument for probabilities by replacing its assumption of
no sure loss by the assumption of consistency under all circumstances.)

It is instructive to look at the positive counterpart of negative conditional ranks.
If � is the positive ranking function corresponding to the negative ranking function
�, Definition 6 simply translates into: �(B|A) = �(A ∪ B)− �(A). Defining A →
B = A ∪ B as set-theoretical ‘material implication’, we may as well write:

(10) �(A → B) = �(B|A)+ �(A) [the law of material implication].

Again, this is highly intuitive. It says that the degree of belief in the material im-
plication A → B is added up from the degree of belief in its vacuous truth (i.e., in
A) and the conditional degree of belief of B given A.8 However, again comparing
the negative and the positive version, one can already sense the analogy between
probability and ranking theory from (8), but hardly from (10). This analogy will
play a great role in the following subsections.

Two-sided ranks have a conditional version as well; it is straightforward. If � is
the two-sided ranking function corresponding to the negative � and the positive �,
then we may simply define:

(11) �(B|A) = �(B|A)− �(B|A) = �(B|A)− �(B|A).

It will sometimes be useful to refer to these two-sided conditional ranks.
For illustration of negative conditional ranks, let us briefly return to our example

of Tweetie. Above, I already mentioned various examples of if-then sentences, some
held vacuously true and some non-vacuously. Now we can see that precisely the if-
then sentences non-vacuously held true correspond to conditional beliefs. According
to the � specified, you believe, e.g., that Tweetie can fly given it is a bird (since
�(F |B) = 1) and also given it is a bird, but not a penguin (since �(F |B & P) = 2),
that Tweetie cannot fly given it is a penguin (since �(F |P) = 3) and even given it
is a penguin, but not a bird (since �(F |B & P) = 3). You also believe that it is not
a penguin given it is a bird (since �(P|B) = 1) and that it is a bird given it is a
penguin (since �(B|P) = 7). And so forth.

Let us now unfold the power of conditional ranks and their relevance to the dy-
namics of belief in several steps.

2.2 Reasons and Their Balance

The first application of conditional ranks is in the theory of confirmation. Basically,
Carnap (1950) told us, confirmation is positive relevance. This idea can be explored
probabilistically, as Carnap did. But here the idea works just as well. A proposition
A confirms or supports or speaks for a proposition B , or, as I prefer to say, A is a
reason for B , if A strengthens the belief in B , i.e., if B is more strongly believed

8 Thanks again to Matthias Hild for pointing this out to me.
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given A than given A, i.e., iff A is positively relevant for B . This is easily translated
into ranking terms:

Definition 7 Let � be a negative ranking function for A and � the associated two-
sided ranking function. Then A ∈ A is a reason for B ∈ A w.r.t. � iff �(B|A) >

�(B|A), i.e., iff �(B|A) > �(B|A) or �(B|A) < �(B|A).

If P is a standard probability measure on A, then probabilistic positive relevance
can be expressed by P(B|A) > P(B) or by P(B|A) > P(B|A). As long as all three
terms involved are defined, the two inequalities are equivalent. Usually, then, the
first inequality is preferred because its terms may be defined while not all terms of
the second inequality are defined. If P is a Popper measure, this argument does not
hold, and then it is easily seen that the second inequality is more adequate, just as
in the case of ranking functions.9

Confirmation or support may take four different forms relative to ranking func-
tions, which are unfolded in

Definition 8 Let � be a negative ranking function for A, � the associated two-sided
ranking function, and A, B ∈ A. Then

A is a

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

additional

sufficient

necessary

insufficient

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

reason for B w.r.t. � iff

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�(B| A) > �(B|A) > 0

�(B|A) > 0 ≥ �(B|A)

�(B|A) ≥ 0 > �(B|A)

0 > �(B|A) > �(B|A)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

.10

If A is a reason for B , it must obviously take one of these four forms; and
the only way to have two forms at once is by being a necessary and sufficient
reason.

Talking of reasons here is, I find, natural, but it stirs a nest of vipers. There is
a host of philosophical literature pondering about reasons, justifications, etc. Of
course, this is a field where multifarious philosophical conceptions clash, and it is
not easy to gain an overview over the fighting parties. Here is not the place for
starting a philosophical argument,11 but by using the term ‘reason’ I want at least to
submit the claim that the topic may gain enormously by giving a central place to the
above explication of reasons.

To elaborate only a little bit: When philosophers feel forced to make precise
their notion of a (theoretical, not practical) reason, they usually refer to the notion
of a deductive reason, as fully investigated in deductive logic. The deductive reason

9 A case in point is the so-called problem of old evidence, which has a simple solution in terms of
Popper measures and the second inequality; cf. Joyce (1999, pp. 203ff.).
10 In earlier publications I spoke of weak instead of insufficient reasons. Thanks to Arthur Merin
who suggested the more appropriate term to me.
11 I attempted to give a partial overview and argument in Spohn (2001a).
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relation is reflexive, transitive, and not symmetric. By contrast, Definition 7 captures
the notion of a deductive or inductive reason. The relation embraces the deductive
relation, but it is reflexive, symmetric, and not transitive. Moreover, the fact that
reasons may be additional or insufficient reasons according to Definition 8 has been
neglected by the relevant discussion, which was rather occupied with necessary
and/or sufficient reasons. Pursue, though, the use of the latter terms throughout the
history of philosophy. Their deductive explication is standard and almost always fits.
Often, it is clear that the novel inductive explication given by Definition 8 would be
inappropriate. Very often, however, the texts are open to that inductive explication
as well, and systematically trying to reinterpret these old texts would yield a highly
interesting research program in my view.

The topic is obviously inexhaustible. Let me take up only one further aspect.
Intuitively, we weigh reasons. This is a most important activity of our mind. We
do not only weigh practical reasons in order to find out what to do, we also weigh
theoretical reasons. We are wondering whether or not we should believe B , we are
searching for reasons speaking in favor or against B , we are weighing these reasons,
and we hopefully reach a conclusion. I am certainly not denying the phenomenon of
inference that is also important, but what is represented as an inference often rather
takes the form of such a weighing procedure. ‘Reflective equilibrium’ is a familiar
and somewhat more pompous metaphor for the same thing.

If the balance of reasons is such a central phenomenon the question arises: how
can epistemological theories account for it? The question is less well addressed than
one should think. However, the fact that there is a perfectly natural Bayesian answer
is a very strong and more or less explicit argument in favor of Bayesianism. Let us
take a brief look at how that answer goes:

Let P be a (subjective) probability measure over A and let B be the focal
proposition. Let us look at the simplest case, consisting of one reason A for B
and the automatic counter-reason A against B . Thus, in analogy to Definition 7,
P(B|A) > P(B|A). How does P balance these reasons and thus fit in B? The
answer is simple, we have:

(12) P(B) = P(B |A) · P(A)+ P(B|A) · P(A).

This means that the probabilistic balance of reason is a beam balance in the literal
sense. The length of the lever is P(B|A) − P(B|A); the two ends of the lever are
loaded with the weights P(A) and P(A) of the reasons; P(B) divides the lever into
two parts of length P(B|A)− P(B) and P(B)− P(B|A) representing the strength
of the reasons; and then P(B) must be chosen so that the beam is in balance. Thus
interpreted (12) is nothing but the law of levers.

Ranking theory has an answer, too, and I am wondering who else has. According
to ranking theory, the balance of reasons works like a spring balance. Let � be a
negative ranking function for A, � the corresponding two-sided ranking function,
B the focal proposition, and A a reason for B . So, �(B|A) > �(B|A). Again, it
easily proved that always �(B|A) ≥ �(B) ≥ �(B |A). But where in between is �(B)
located? A little calculation shows the following specification to be correct:
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(13) Let x = �(B|A)− �(B|A) and y = �(B|A)− �(B|A). Then

(a) x, y ≥ 0 and �(B|A)− �(B|A) = x + y,

(b) �(B) = �(B|A), if �(A) ≤ −x,

(c) �(B) = �(B|A), if �(A) ≥ y,

(d) �(B) = �(A)+ �(B|A)+ x, if −x < �(A) < y.

This does not look as straightforward as the probabilistic beam balance. Still, it is
not so complicated to interpret (13) as a spring balance. The idea is that you hook in
the spring at a certain point, that you extend it by the force of reasons, and that �(B)
is where the spring extends. Consider first the case where x , y > 0. Then you hook
in the spring at point 0 (=�(B|A)+ x) and exert the force �(A) on the spring. Either,
this force transcends the lower stopping point −x or the upper stopping point y.
Then the spring extends exactly till the stopping point, as (13b+c) say. Or, the force
�(A) is less. Then the spring extends exactly by �(A), according to (13d). The second
case is that x = 0 and y > 0. Then you fix the spring at �(B|A), the lower point
of the interval in which �(B) can move. The spring cannot extend below that point,
says (13b). But according to (13c+d) it can extend above, by the force �(A), but not
beyond the upper stopping point. For the third case x > 0 and y = 0 just reverse the
second picture. In this way, the force of the reason A, represented by its two-sided
rank �(A), pulls the two-sided rank of the focal proposition B to its proper place
within the interval [�(B|A), �(B|A)] fixed by the relevant conditional ranks.

I do not want to assess these findings in detail. You might prefer the probabilistic
balance of reasons, a preference I would understand. You might be happy to have at
least one alternative model, an attitude I recommend. Or you may search for further
models of the weighing of reasons; in this case, I wish you good luck. What you
may not do is ignoring the issue; your epistemology is incomplete if it does not
take a stance. And one must be clear about what is required for taking a stance. As
long as one considers positive relevance to be the basic characteristic of reasons, one
must provide some notion of conditional degrees of belief, conditional probabilities,
conditional ranks, or whatever. Without some well-behaved conditionalization one
cannot succeed.

2.3 The Dynamics of Belief and the Measurement of Belief

Our next point will be to define a reasonable dynamics for ranking functions that
entails a dynamic for belief. There are many causes which affect our beliefs, for-
getfulness as a necessary evil, drugs as an unnecessary evil, and so on. From a
rational point of view, it is scarcely possible to say anything about such changes.12

The rational changes are due to experience or information. Thus, it seems we have
already solved our task: if � is my present doxastic state and I get informed about the

12 Although there is a (by far not trivial) decision rule telling that costless memory is never bad,
just as costless information; cf. Spohn (1976/1978, Section 4.4).
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proposition A, then I move to the conditionalization �A of � by A. This, however,
would be a bad idea. Recall that we have �A(A) = ∞, i.e., A is believed with
absolute certainty in �A; no future evidence could cast any doubt on the informa-
tion. This may sometimes happen; but usually information does not come so firmly.
Information may turn out wrong, evidence may be misleading, perception may be
misinterpreted; we should provide for flexibility. How?

One point of our first attempt was correct; if my information consists solely in
the proposition A, this cannot affect my beliefs conditional on A. Likewise it cannot
affect my beliefs conditional on A. Thus, it directly affects only how firmly I believe
A itself. So, how firmly should I believe A? There is no general answer. I propose
to turn this into a parameter of the information process itself; somehow the way
I get informed about A entrenches A in my belief state with a certain firmness x .
The point is that as soon as the parameter is fixed and the constancy of the relevant
conditional beliefs is accepted, my posterior belief state is fully determined. This is
the content of

Definition 9 Let � be a negative ranking function for A, A ∈ A such that �(A),
�(A) < ∞, and x ∈ R∗. Then the A→x-conditionalization �A→x of � is defined by

�A→x (B) =
{

�(B|A) forB ⊆ A,

�(B|A)+ x forB ⊆ A
. From this �A→x (B) may be inferred for all

other B ∈ A with the law of disjunction.

Hence, the effect of the A→x-conditionalization is to shift the possibilities in A
(to lower ranks) so that �A→x (A) = 0 and the possibilities in A (to higher ranks) so
that �A→x (A) = x . If one is attached to the idea that evidence consists in nothing but
a proposition, the additional parameter is a mystery. The processing of evidence may
indeed be so automatic that one hardly becomes aware of this parameter. Still, I find
it entirely natural that evidence comes more or less firmly. Consider, for instance,
the proposition: “There are tigers in the Amazon jungle”, and consider six scenarios:
(a) I read a somewhat sensationalist coverage in the yellow press claiming this, (b)
I read a serious article in a serious newspaper claiming this, (c) I hear the Brazilian
government officially announcing that tigers have been discovered in the Amazon
area, (d) I see a documentary in TV claiming to show tigers in the Amazon jungle,
(e) I read an article in Nature by a famous zoologist reporting of tigers there, (f) I
travel there by myself and see the tigers. In all six cases I receive the information
that there are tigers in the Amazon jungle, but with varying and, I find, increasing
certainty.

One might object that the evidence and thus the proposition received is clearly
a different one in each of the scenarios. The crucial point, though, is that we are
dealing here with a fixed algebra A of propositions and that we have nowhere
presupposed that this algebra consists of all propositions whatsoever; indeed, that
would be a doubtful presupposition. Hence A may be course-grained and unable to
represent the propositional differences between the scenarios; the proposition in A
which is directly affected in the various scenarios may be just the proposition that
there are tigers in the Amazon jungle. Still the scenarios may be distinguished by
the firmness parameter.
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So, the dynamics of ranking functions I propose is simply this: Suppose � is
your prior doxastic state. Now you receive some information A with firmness x .
Then your posterior state is �A→x . Your beliefs change accordingly; they are what
they are according to �A→x . Note that the procedure is iterable. Next, you receive
the information B with firmness y, and so you move to (�A→x )B→y. And so on. This
point will acquire great importance later on.

I should mention, though, that this iterability need not work in full generality. Let
us call a negative ranking function � regular iff �(A) < ∞ for all A �= ∅. Then we
obviously have that �A→x is regular if � is regular and x < ∞. Within the realm
of regular ranking functions iteration of changes works without restriction. Outside
this realm you may get problems with the rank∞.

There is an important generalization of Definition 9. I just made a point of the
fact that the algebra A may be too coarse-grained to propositionally represent all
possible evidence. Why assume then that it is just one proposition A in the algebra
that is directly affected by the evidence? Well, we need not assume this. We may
more generally assume that the evidence affects some evidential partition E = {E1,
. . . , En} ⊆ A of W and assigns some new ranks to the members of the partition,
which we may sum up in a complete ranking function � on E . Then we may define
the E→�-conditionalization �E→� of the prior � by �E→�(B) = �(B|Ei )+�(Ei ) for
B ⊆ Ei (i = 1, . . . , n) and infer �E→�(B) for all other B by the law of disjunction.
This is the most general law of doxastic change in terms of ranking functions I can
conceive of. Note that we may describe the E→�-conditionalization of � as the
mixture of all �Ei (i = 1, . . . , n). So, this is a first useful application of mixtures of
ranking functions.

Here, at last, the reader will have noticed the great similarity of my condition-
alization rules with Jeffrey’s probabilistic conditionalization first presented in Jef-
frey (1965, Chapter 11). Indeed, I have completely borrowed my rules from Jeffrey.
Still, let us further defer the comparison of ranking with probability theory. The fact
that many things run similarly does not mean that one can dispense with the one in
favor of the other, as I shall make clear in Section 3.

There is an important variant of Definition 9. Shenoy (1991), and several authors
after him, pointed out that the parameter x as conceived in Definition 9 does not
characterize the evidence as such, but rather the result of the interaction between
the prior doxastic state and the evidence. Shenoy proposed a reformulation with a
parameter exclusively pertaining to the evidence:

Definition 10 Let � be a negative ranking function for A, A ∈ A such that �(A),
�(A) < ∞, and x ∈ R∗. Then the A ↑ x-conditionalization �A↑x of � is defined by

�A↑x (B) =
{

�(B)− y for B ⊆ A,

�(B)+ x − y for B ⊆ A,
where y = min{�(A), x}. Again, �A↑x (B)

may be inferred for all other B ∈ A by the law of disjunction.

The effect of this conditionalization is easily stated. It is, whatever the prior ranks
of A and A are, that the possibilities within A improve by exactly x ranks in com-
parison to the possibilities within A. In other words, we always have �A↑x(A) –
�(A) = x (in terms of the prior and the posterior two-sided ranking function).
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It is thus appropriate to say that in A ↑ x-conditionalization the parameter x
exclusively characterizes the evidential impact. We may characterize the A→ x-
conditionalization of Definition 9 as result-oriented and the A ↑ x-conditionalization
of Definition 10 as evidence-oriented. Of course, the two variants are easily interde-
finable. We always have �A→x = �A↑y , where y = x − �(A) = x + �(A). Still, it is
sometimes useful to change perspective from one variant to the other.13

For instance, the evidence-oriented version helps to some nice observations. We
may note that conditionalization is reversible: (�A↑x ) Ā↑x = �. So, there is always
a possible second change undoing the first. Moreover, changes always commute:
(�A↑x )B↑y = (�B↑y)A↑x . In terms of result-oriented conditionalization this law would
look more awkward. Commutativity does not mean, however, that one could com-
prise the two changes into a single change. Rather, the joint effect of two condi-
tionalizations according to Definition 9 or 10 can in general only be summarized
as one step of generalized E→ �-conditionalization. I think that reversibility and
commutativity are intuitively desirable.

Change through conditionalization is driven by information, evidence, or percep-
tion. This is how I have explained it. However, we may also draw a more philosoph-
ical picture, we may also say that belief change according to Definition 9 or 10 is
driven by reasons. Propositions for which the information received is irrelevant do
not change their ranks, but propositions for which that information is positively or
negatively relevant do change their ranks. The evidential force pulls at the springs
and they must find a new rest position for all the propositions for or against which
the evidence speaks, just in the way I have described in the previous subsection.

This is a strong picture captivating many philosophers. However, I have imple-
mented it in a slightly unusual way. The usual way would have been to attempt to
give some substantial account of what reasons are on which an account of belief
dynamics is thereafter based. I have reversed the order. I have first defined condi-
tionalization in Definition 6 and the more sophisticated form in Definitions 9 and
10. With the help of conditionalization, i.e., from this account of belief dynamics, I
could define the reason relation in a way sustaining this picture. At the same time
this procedure entails dispensing with a more objective notion of a reason. Rather,
what is a reason for what is entirely determined by the subjective doxastic state
as represented by the ranking function at hand. Ultimately, this move is urged by
inductive skepticism as enforced by David Hume and reinforced by Nelson Good-
man. But it does not mean surrender to skepticism. On the contrary, we are about to
unfold a positive theory of rational belief and rational belief change, and we shall
have to see how far it carries us.14

13 Generalized probabilistic conditionalization as originally proposed by Jeffrey was result-
oriented as well. However, Garber (1980) observed that there is also an evidence-oriented
version of generalized probabilistic conditionalization. The relation, though, is not quite
as elegant.
14 Here it does not carry us far beyond the beginnings. In Spohn (1991, 1999) I have argued for
some stronger rationality requirements and their consequences.
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If one looks at the huge literature on belief change, one finds discussed predom-
inantly three kinds of changes: expansions, revisions, and contractions. Opinions
widely diverge concerning these three kinds. For Levi, for instance, revisions are
whatever results form concatenating contractions and expansions according to the
so-called Levi identity, and so he investigates the latter (see his most recent account
in Levi 2004). The AGM approach characterizes both, revisions and contractions,
and claims nice correspondences back and forth by help of the Levi and the Harper
identity (cf., e.g., Gärdenfors 1988, Chapters 3 and 4). Or one might object to the
characterization of contraction, but accept that of revision, and hence reject these
identities. And so forth.

I do not really want to discuss the issue. I only want to point out that we have
already taken a stance insofar as expansions, revisions, and contractions are all spe-
cial cases of our A→ x-conditionalization. This is more easily explained in terms
of result-oriented conditionalization:

If �(A) = 0, i.e., if A is not disbelieved, then �A→x represents an expansion by A
for any x > 0. If �(A) = 0, the expansion is genuine, if �(A) > 0, i.e., if A is already
believed in �, the expansion is vacuous. Are there many different expansions? Yes
and no. Of course, for each x > 0 a different �A→x results. On the other hand, one
and the same belief set is associated with all these expansions. Hence, the expanded
belief set is uniquely determined.

Similarly for revision. If �(A) > 0, i.e., if A is disbelieved, then �A→x represents
a genuine revision by A for any x > 0. In this case, the belief in A must be given
up and along with it many other beliefs; instead, A must be adopted together with
many other beliefs. Again, there are many different revisions, but all of them result
in the same revised belief set.

Finally, if �(A) = 0, i.e., if A is not disbelieved, then �A→0 represents contraction
by A. If �(A) > 0, i.e., if A is even believed, the contraction is genuine; then belief
in A is given up after contraction and no new belief adopted. If �(A) = 0, the
contraction is vacuous; there was nothing to contract in the first place. If �(A) > 0,
i.e., if A is believed, then �A→0 = �A→0 rather represents contraction by A.15

As observed in Spohn (1988, footnote 20) and more fully explained in Gärdenfors
(1988, pp. 73f.), it is easily checked that expansions, revisions, and contractions
thus defined satisfy all of the original AGM postulates (K*1-8) and (K−1-8) (cf.
Gärdenfors 1988, pp. 54–56 and 61–64) (when they are translated from AGM’s
sentential framework into our propositional or set-theoretical one). For those like
me who accept the AGM postulates this is a welcome result.

For the moment, though, it may seem that we have simply reformulated AGM
belief revision theory. This is not so; A→x-conditionalization is much more general
than the three AGM changes. This is clear from the fact that there are many differ-
ent expansions and revisions that cannot be distinguished by the AGM account. It is

15 If we accept the idea in Section 2.1 of taking the interval [–z, z] of two-sided ranks as the
range of neutrality, contraction seems to become ambiguous as well. However, the contraction
just defined would still be distinguishable as a central contraction since it gives the contracted
proposition central neutrality.
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perhaps clearest in the case of vacuous expansion that is no change at all in the AGM
framework, but may well be a genuine change in the ranking framework, a redistri-
bution of ranks which does not affect the surface of beliefs. Another way to state the
same point is that insufficient and additional reasons also drive doxastic changes,
which, however, are inexpressible in the AGM framework. For instance, if A is still
disbelieved in the A↑x-conditionalization �A↑x of � (since �(A) > x), one has ob-
viously received only an insufficient reason for A, and the A↑x-conditionalization
might thus be taken to represent what is called non-prioritized belief revision in the
AGM literature (cf. Hansson 1997).

This is not the core of the matter, though. The core of the matter is iterated belief
change, which I have put into the center of my considerations in Spohn (1983, Sec-
tion 5.3 and 1988). As I have argued there, AGM belief revision theory is essentially
unable to account for iterated belief change. I take 20 years of multifarious, but in
my view unsatisfactory attempts to deal with that problem (see the overview in
Rott 2008) as confirming my early assessment. By contrast, changes of the type
A→x-conditionalization are obviously indefinitely iterable.

In fact, my argument in Spohn (1988) was stronger. It was that if AGM belief re-
vision theory is to be improved so as to adequately deal with the problem of iterated
belief change, ranking theory is the only way to do it. I always considered this to be
a conclusive argument in favor of ranking theory.

This may be so. Still, AGM theorists, and others as well, remained skeptical.
“What exactly is the meaning of numerical ranks?” they asked. One may well ac-
knowledge that the ranking apparatus works in a smooth and elegant way, has a
lot of explanatory power, etc. But all this does not answer this question. Bayesians
have met this challenge. They have told stories about the operational meaning of
subjective probabilities in terms of betting behavior, they have proposed an inge-
nious variety of procedures for measuring this kind of degrees of belief. One would
like to see a comparative achievement for ranking theory.

It exists and is finally presented in Hild and Spohn (2008). There is no space
here to fully develop the argument. However, the basic point can easily be indicated
so as to make the full argument at least plausible. The point is that ranks do not
only account for iterated belief change, but can reversely be measured thereby. This
may at first sound unhelpful. A→x-conditionalization refers to the number x ; so
even if ranks can somehow be measured with the help of such conditionalizations,
we do not seem to provide a fundamental measurement of ranks. Recall, however,
that (central) contraction by A (or A) is just A→0-conditionalization and is thus
free of a hidden reference to numerical ranks; it only refers to rank 0 which has a
clear operational or surface interpretation in terms of belief. Hence, the idea is to
measure ranks by means of iterated contractions; if that works, it really provides a
fundamental measurement of ranks that is based only on the beliefs one now has
and one would have after various iterated contractions.

How does the idea work? Recall our observation above that the positive rank of
a material implication A→B is the sum of the degree of belief in B given A and the
degree of belief in the vacuous truth of A→B , i.e., of A. Hence, after contraction
by A, belief in the material implication A→B is equivalent to belief in B given A,
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i.e., to the positive relevance of A to B . This is how the reason relation, i.e., positive
relevance, manifests itself in beliefs surviving contractions. Similarly for negative
relevance and irrelevance.

Next observe that positive relevance can be expressed by certain inequalities for
ranks that compare certain differences between ranks (similarly for negative rele-
vance and irrelevance). This calls for applying the theory of difference measure-
ment, as paradigmatically presented by Krantz et al. (1971, Chapter 4).

Let us illustrate how this might work in our Tweetie example in Section 2.1.
There we had specified a ranking function � for the eight propositional atoms, en-
tailing ranks for all 256 propositions involved. Focusing on the atoms, we are thus
dealing with a realm X = {x1, . . . , x8} (where x1 = B & P & F , etc.) and a
numerical function f such that

f (x1) = 0, f (x2) = 4, f (x3) = 0, f (x4) = 11,

f (x5) = 2, f (x6) = 1, f (x7) = 0, f (x8) = 8.

This induces a lot of difference comparisons. For instance, we have, f (x6) −
f (x5) < f (x2) − f (x1). It is easily checked that this inequality says that, given
B (being a bird), P (being a penguin) is positively relevant to F (not being able
to fly) and that this in turn is equivalent with P→F or P→F still being believed
after iterated contraction first by B and then by P and P (only one of the latter is
a genuine contraction). Or we have f (x2) − f (x6) = f (x4) − f (x8). Now, this is
an equality saying that, given P , B (and B) is irrelevant to F (and F), and this in
turn is equivalent with none of the four material implications from B or B to F or
F being believed after iterated contraction first by P and then by B and B (again,
only one of the latter is a genuine contraction).

Do these comparisons help to determine f ? Yes, the example was so constructed:
First, we have f (x1) − f (x3) = f (x3) − f (x1) = f (x1) − f (x7). This entails
f (x1) = f (x3) = f (x7). Let us choose this as the zero point of our ranking scale;
i.e., f (x1) = 0. Next, we have f (x5) − f (x6) = f (x6) − f (x1). If we choose
f (x6) = 1 as our ranking unit, this entails f (x5) = 2. Then, we have f (x2) −
f (x5) = f (x5) − f (x1), entailing f (x2) = 4, and f (x8)− f (x2) = f (x2) – f (x1),
entailing f (x8) = 8. Finally, we have f (x4)− f (x8) = f (x2)− f (x6), the equation
I had already explained, so that f (x4) = 11. In this way, the difference comparisons
entailed by our specification of f determine f uniquely up to a unit and a zero point.

The theory of difference measurement tells us how this procedure works in full
generality. The resulting theorem says the following: Iterated contractions behave
thus and thus if and only if differences between ranks behave thus and thus; and
if differences between ranks behave thus and thus, then there is a ranking function
measured on a ratio scale, i.e., unique up to a multiplicative constant, which exactly
represents these differences. (See Theorems 4.12 and 6.21 in Hild and Spohn (2008)
for what “thus and thus” precisely means.)

On the one hand, this provides for an axiomatization of iterated contraction going
beyond Darwiche and Pearl (1997), who presented generally accepted postulates
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of iterated revision and contraction and partially agreeing and partially disagreeing
with further postulates proposed.16 This axiomatization is assessible on intuitive and
other grounds. On the other hand, one knows that if one accepts this axiomatization
of iterated contraction one is bound to accept ranks as I have proposed them. Ranks
do not fall from the sky, then; on the contrary, they uniquely represent contraction
behavior.

2.4 Conditional Independence and Bayesian Nets

It is worthwhile looking a bit more at the details of belief formation and revision.
For this purpose we should give more structure to propositions. They have a Boolean
structure so far, but we cannot yet compose them from basic propositions as we
intuitively do. A common formal way to do this is to generate propositions from
(random) variables. I identify a variable with the set of its possible values. I intend
variables to be specific ones. E.g., the temperature at March 15, 2005, in Konstanz
(not understood as the actual temperature, but as whatever it may be, say, between
–100 and +100 ˚C) is such a variable. Or, to elaborate, if we consider each of the six
general variables temperature, air pressure, wind, humidity, precipitation, cloudiness
at each of the 500 weather stations in Germany twice a day at each of the 366 days
of 2004, we get a collection of 6×500×732 specific variables with which we can
draw a detailed picture of the weather in Germany in 2004.

So, A let V be the set of specific variables considered, where each v ∈ V is
just at least a binary set. A possible course of events or a possibility, for short, is
just a selection function w for V , i.e., a function w on V such that w(v) ∈ v for
all v ∈ V . Hence, each such function specifies a way how the variables in V may
realize. The set of all possibilities then simply is W=×V . As before, propositions
are subsets of W . Now, however, we can say that propositions are about certain
variables. Let X ⊆ V . Then we say that w, w′ ∈ W agree on X iff w(v) = w′(v) for
all v ∈ X . And we define that a proposition A is about X ⊆ V iff, for each w in A,
all w′ agreeing with w on X are in A as well. Let A (X) be the set of propositions
about X . Clearly, A(X) ⊆ A(Y ) for X ⊆ Y , and A = A(V ). In this way, propo-
sitions are endowed with more structure. We may conceive of propositions about
single variables as basic propositions; the whole algebra A is obviously generated
by such basic propositions (at least if V is finite). So much as preparation for the
next substantial step.

This step consists in more closely attending to (doxastic) dependence and inde-
pendence in ranking terms. In a way, we have already addressed this issue: depen-
dence is just positive or negative relevance, and independence is irrelevance. Still,
let me state

Definition 11 Let � be a negative ranking function for A and A, B, C ∈ A. Then
A and B are independent w.r.t. �, i.e., A⊥B, iff �(B|A) = �(B|A), i.e., iff for all

16 For an overview over such proposals see Rott (2008). For somewhat more detailed comparative
remarks see Hild and Spohn (2008, Section 8.5).
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A′ ∈ {A, A} and B ′ ∈ {B, B} �(A′ ∩ B ′) = �(A′) + �(B ′). And A and B are
independent given C w.r.t. �, i.e., A⊥B/C, iff A and B are independent w.r.t. �C .

(Conditional) independence is symmetric. If A is independent from B , A is so
as well. If A is independent from B and A′ disjoint from A, then A′ is independent
from B iff A ∪ A′ is. ∅ and W are independent from all propositions. And so on.

The more interesting notion, however, is dependence and independence among
variables. Look at probability theory where research traditionally and overwhelm-
ingly focused on independent series of random variables and on Markov processes
that are characterized by the assumption that past and future variables are indepen-
dent given the present variable. We have already prepared for explaining this notion
in ranking terms as well.

Definition 12 Let � be a ranking function for A = A(V ), and let X, Y , Z ⊆ V be
sets of variables. Then X and Y are independent w.r.t. �, i.e., X⊥Y , iff A⊥B for all
A ∈ A(X) and all B ∈ A (Y ). Let moreover Z(Z) be the set of atoms of A(Z), i.e.,
the set of the logically strongest, non-empty proposition in A(Z). Then X and Y are
independent given Z w.r.t. �, i.e., X⊥Y / Z, iff A⊥B / C for all A ∈ A(X), B ∈
A(Y ), and C ∈ Z(Z).

In other words, X⊥Y/Z iff all propositions about X are independent from all
propositions about Y given any full specification of the variables in Z . Conditional
independence among sets of variables obey the following laws:

Let � be a negative ranking function for A(V ). Then for any mutually disjoint
X, Y, Z , U ⊆ V :

(14) (a) if X⊥Y/Z , then Y⊥X/Z [Symmetry],
(b) if X⊥Y ∪U/Z , then X⊥Y/Z and X⊥U/Z [Decomposition],
(c) X⊥Y ∪U/Z , then X⊥Y/Z ∪U [Weak Union],
(d) X⊥Y/Z and X⊥U/Z ∪Y, then X⊥Y ∪U/Z [Contraction],
(e) if � is regular and if X⊥Y/Z ∪U and X⊥U/Z ∪ Y,

then X⊥Y∪U/Z [Intersection].

These are nothing but what Pearl (1988, p. 88) calls the graphoid axioms;
the labels are his (cf. p. 84). (Note that law (d), contraction, has nothing to do
with contraction in belief revision theory.) That probabilistic conditional indepen-
dence satisfies these laws was first proved in Spohn (1976/1978, Section 3.2) and
Dawid (1979). The ranking Theorem (2.4) was proved in Spohn (1983, Section 5.3
and 1988, Section 8.6). I conjectured in 1976, and Pearl conjectured, too, that the
graphoid axioms give a complete characterization of conditional independence. We
were disproved, however, by Studeny (1989) w.r.t. probability measures, but the
proof carries over to ranking functions (cf. Spohn 1994a). Under special condi-
tions, though, the graphoid axioms are complete, as was proved by Geiger and
Pearl (1990) for probability measures and by Hunter (1991) for ranking functions
(cf. again, Spohn 1994a).

I am emphasizing all this, because the main purport of Pearl’s path-breaking
book (1988) is to develop what he calls the theory of Bayesian nets, a theory



206 W. Spohn

that has acquired great importance and is presented in many text books (see, e.g.,
Neapolitan 1990 or Jensen 2001). Pearl makes very clear that the basis of this
theory consists in the graphoid axioms; these allow representing conditional de-
pendence and independence among sets of variables by Bayesian nets, i.e., by
directed acyclic graphs, the nodes of which are variables. A vertex u→v of the
graph then represents the fact that v is dependent on u given all the variables
preceding v in some given order, for instance, temporally preceding v. A ma-
jor point of this theory is that it can describe in detail how probabilistic change
triggered at some node in the net propagates throughout the net. All this is not
merely mathematics, it is intuitively sensible and philosophically highly signifi-
cant; for instance, inference acquires a novel and fruitful meaning in the theory of
Bayesian nets.

Of course, my point now is that all these virtues carry over to ranking theory with
the help of observation (14). The point is obvious, but hardly elaborated; that should
be done. It will thus turn out that ranks and hence beliefs can also be represented
and computationally managed in that kind of structure.

This is not yet the end of the story. Spirtes et al. (1993) (see also Pearl 2000)
have made amply clear that probabilistic Bayesian nets have a most natural causal
interpretation; a vertex u→v then represents that the variable v directly causally
depends on the variable u. Spirtes et al. back up this interpretation, i.e., this con-
nection of probability and causality, by their three basic axioms: the causal Markov
condition, the minimality condition, and, less importantly, the faithfulness condition
(cf. Spirtes et al. 1993, Section 3.4). And they go on to develop a really impressive
account of causation and causal inference on the basis of these axioms and thus
upon the theory of Bayesian nets.

Again, all this carries over to ranking theory. Indeed, this is what ranks were
designed for in the first place. In Spohn (1983) I gave an explication of probabilis-
tic causation that entails the causal Markov condition and the minimality condi-
tion, and also Reichenbach’s principle of the common cause, as I observed later
in Spohn (1994b).17 And I was convinced of the idea that, if the theory of causa-
tion is bound to bifurcate into a deterministic and a probabilistic branch, these two
branches must at least be developed in perfect parallel. Hence, I proposed ranking
theory in Spohn (1983) in order to realize this idea.18 Of course, one has to discuss
how adequate that theory of deterministic causation is, just as the adequacy of the
causal interpretation of Bayesian nets is open to discussion. Here, my point is only
that this deep philosophical perspective lies within reach of ranking theory; it is
what originally drove that theory.

17 I have analyzed the relation between Spirtes’ et al. axiomatic approach to causation and my
definitional approach a bit more thoroughly in Spohn (2001b).
18 For a recent presentation of the account of deterministic causation in terms of ranking functions
and its comparison in particular with David Lewis’ counterfactual approach see Spohn (2006).
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2.5 Objective Ranks?

Now, a fundamental problem of ranking theory is coming into sight. I have empha-
sized that ranking functions represent rational beliefs and their rational dynamics
and are thus entirely subject-bound. You have your ranking function and I have
mine. We may or may not harmonize. In any case, they remain our subjective
property.

I have also emphasized the analogy to probability theory. There, however, we
find subjective and objective probabilities. There are radicals who deny the one or
the other kind of probability; and the nature of objective probabilities may still be ill
understood. So, we certainly enter mined area here. Still, the predominant opinion
is that both, the subjective and the objective notion, are somehow meaningful.

We therefore face a tension. It increases with our remarks about causation. I said
I have provided an analysis of causation in ranking terms. If this analysis were to go
through, the consequence would be that causal relations obtain relative to a ranking
function, i.e., relative to the doxastic state of a subject. David Hume endorsed and
denied this consequence at the same time; he was peculiarly ambiguous. This ambi-
guity must, however, be seen as his great achievement with which all philosophers
after him had and still have to struggle. In any case, it will not do to turn causation
simply into a subjective notion, as I seem to propose. If my strategy is to work at all,
then the actually existing causal relations have to be those obtaining relative to the
objectively correct ranking function. Is there any way to make sense of this phrase?
(It is not even a notion yet.)

Yes, partially. The beginning is easy. Propositions are objectively true or false,
and so are beliefs. Hence, a ranking function may be called objectively true or false
as well, according to the beliefs it embodies. However, this is a very small step.
Ranking functions can agree in their belief sets or in the propositions receiving rank
0, and yet widely diverge in the other ranks and thus in inductive and dynamic
behavior. So, the suggested beginning is a very small step, indeed.

Taking a bigger step is more difficult. In Spohn (1993) I have made a precise
and detailed proposal that I still take to be sound; there is no space to repeat it
here. Let me only briefly explain the basic idea. It is simply this: If propositions
and beliefs are objectively true or false, then other features of ranking functions
can be objectified to the extent to which these features are uniquely reflected in the
associated belief sets. One constructive task is then to precisely define the content
of the phrase ‘uniquely reflected’ and the required presuppositions or restrictions.
The other constructive task is to inquire which specific features can in this sense be
objectified to which specific extent.

Very roughly, the results in my (1993) are this: First, positive relevance, i.e.,
the reason relation, is not objectifiable in this sense, even if restricted to necessary
and/or sufficient reasons. Second, whenever A is a sufficient or necessary direct
cause of B w.r.t. �, there is an associated material implication of the form “if the
relevant circumstances obtain, then if A, then B , or, respectively, if A, then B”.
I call the conjunction of all these material implications the causal law associated
with �. The causal law is a proposition, an objective truth-condition. The point now
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is that there is a rich class of ranking functions which, under certain presuppositions,
can uniquely be reconstructed from their causal laws and which may thus be called
causal laws as well. In this sense and to this extent, causal relations obtaining relative
to a subjective raking function can be objectified and thus do hold objectively.

A special case treated in Spohn (2002, 2005a) is the case of strict or deterministic
laws. A strict law is, by all means, a regularity, an invariable obtaining of a certain
type of state of affairs. But not any regularity is a law. What I have proposed in
Spohn (2002) is that a law is an independent and identically distributed (infinite)
repetition of the type of state in question or, rather, in order for that phrase to make
sense, an independent and identically distributed repetition of a certain ranking as-
sessment of that type of state. Hence, a law is a certain kind of ranking function.
This sounds weird, because a law thus turns into a kind of doxastic attitude. The
literature on lawlikeness shows, however, that this is not so absurd a direction; if,
besides explanatory power or support of counterfactuals, projectibility or induc-
tive behavior are made defining features of laws, they are characterized by their
epistemic role and thus get somehow entangled with our subjective states (see also
Lange 2000, Chapter 7, on the root commitment associated with laws). The main
point, though, is that the ranking functions expressing deterministic laws are again
of the objectifiable kind. So, there is a way of maintaining even within this account
that laws obtain mind-independently.

In fact, according to what I have sketched, a deterministic law is the precise rank-
ing analogue of a statistical law. De Finetti (1937) has proposed an ingenious way
of eliminating objective probabilities and statistical laws by showing, in his famous
representation theorem, that beliefs (i.e., subjective probabilities) about statistical
laws (describing an infinite sequence of independent and identically distributed tri-
als) are strictly equivalent to symmetric or exchangeable subjective probabilities for
these trials and that experience makes these symmetric probabilities converge to
the true statistical law. The eliminativist intention of the story is mostly dismissed
today; rather, objective probabilities are taken seriously. Still, de Finetti’s account
has remained a paradigm story about the relation between subjective and objective
probabilities.

I am mentioning all this because this paradigm story can be directly transferred
to ranking theory. Let � be any ranking function for an infinite sequence of trials
(= variables) which is regular and symmetric and according to which the outcome
of a certain trial is not negatively relevant to the same outcome in the next trial.
Then � is a unique mixture of deterministic laws for that sequence of trials in the
above-mentioned sense, and experience makes � converge to the true deterministic
law. (Cf. Spohn 2005a for all this, where I have treated only the simplest case of the
infinite repetition of a binary variable or a trial having only two possible outcomes.
With an additional condition, however, the results generalize to all variables taking
finitely many values).

This may suffice as an overview over the basics of ranking theory and its elabo-
ration into various directions; it got long enough. In a way, my overall argument in
Section 4 of this essay, when I shall make a bit more detailed comparative remarks
about other members of the Baconian probability family, should be clear by now:
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Bayesian epistemology has enormous powers and virtues and rich details and ram-
ifications. Small wonder that Pascal by far outstripped Bacon. In a nutshell, I have
explained that many essential virtues can be duplicated in ranking theory; indeed,
the duplications can stand on their own, having an independent significance. Bacon
can catch up with Pascal. Of course, my rhetorical question will then be: Which
other version of Baconian probability is able to come up with similar results?

Still, one might suspect that I can claim these successes only by turning Bacon
into a fake Pascal. I have never left the Bayesian home, it may seem. Hence, one
might even suspect that ranking theory is superfluous and may be reduced to the
traditional Bayesian point of view. In other words, it is high time to study more
closely the relation between probability and ranking theory. This will be our task in
the next section.

3 Ranks and Probabilities

The relation between probabilities and ranks is surprisingly complex and fascinat-
ing. I first turn to the more formal aspects of the comparison before discussing the
philosophical aspects.

3.1 Formal Aspects

The reader will have observed since long why ranks behave so much like proba-
bilities. There is obviously a simple translation of probability into ranking theory:
translate the sum of probabilities into the minimum of ranks, the product of prob-
abilities into the sum of ranks, and the quotient of probabilities into the difference
of ranks. Thereby, the probabilistic law of additivity turns into the law of disjunc-
tion, the probabilistic law of multiplication into the law of conjunction (for negative
ranks), and the definition of conditional probabilities into the definition of condi-
tional ranks. If the basic axioms and definitions are thus translated, then it is small
wonder that the translation generalizes; take any probabilistic theorem, apply the
above translation to it, and you are almost guaranteed to get a ranking theorem. This
translation is obviously committed to negative ranks; therefore I always favored
negative over positive ranks. However, the translation is not fool-proof; see, e.g.,
Spohn (1994a) for slight failures concerning conditional independence (between
sets of variables) or Spohn (2005a) for slight differences concerning positive and
non-negative instantial relevance. The issue is not completely cleared up.

Is there a deeper reason why this translation works so well? Yes, of course. The
translation of products and quotients of probabilities suggests that negative ranks
simply are the logarithm of probabilities (with respect to some base < 1). This does
not seem to fit with the translation of sums of probabilities. But it does fit when
the logarithmic base is taken to be some infinitesimal i (since for two positive reals
x ≤ y i x + i y = i x− j for some infinitesimal j ). That is, we may understand ranks as
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real orders of magnitude of non-standard probabilities. This is the basic reason for
the pervasive analogy.

Does this mean that ranking epistemology simply reduces to non-standard Bayes-
ianism? This may be one way to view the matter. However, I do not particularly
like this perspective. Bayesian epistemology in terms of non-standard reals is really
non-standard. Even its great proponent, David Lewis, mentions the possibility only
in passing (for the first time in 1980, p. 268). It is well known that both, non-standard
analysis and its continuation as hyperfinite probability theory, have their intricacies
of their own, and it is highly questionable from an epistemological point of view
whether one should buy these intricacies. Moreover, even though this understanding
of ranks is in principle feasible, it is nowhere worked out in detail. Such an elabo-
ration should also explain the slight failures of the above translation. Hence, even
formally the relation between ranks and non-standard probabilities is not fully clear.
Finally, there are algebraic incoherencies. As long as the probabilistic law of addi-
tivity and the ranking law of disjunction are finitely restricted, there is no problem.
However, it is very natural to conceive probability measures as �-additive (although
there is an argument about this point), whereas it is very natural to conceive of
ranking functions as complete (as I have argued). This is a further disanalogy, which
is not resolved by the suggested understanding of ranks.

All in all, I prefer to stick to the realm of standard reals. Ranking theory is a
standard theory, and it should be compared to other standard theories. So, let us put
the issue of hyperfinite probability theory to one side.

Let us instead pursue another line of thought. I have heavily emphasized that
the fundamental point of ranking theory is to represent the statics and the dynamics
of belief or of taking-to-be-true; it is the theory of belief. So, instead of inquiring
the relation between ranks and probabilities we might as well ask the more familiar
question about the relation between belief and probability.

This relation is well known to be problematic. One naive idea is that belief
vaguely marks some threshold in probability, i.e., that A is believed iff its subjective
probability is greater than 1 – � for some small �. But this will not do, as is hight-
lighted by the famous lottery paradox (see Kyburg 1961, p. 197 and Hempel 1962,
pp. 163–166). According to this idea you may believe A and believe B , but fail to
believe A & B . However, this amounts to saying that you do not know the truth table
of conjunction, i.e., that you have not grasped conjunction at all. So, this idea is a
bad one, as almost all commentators to the lottery paradox agree. One might think
then about more complicated relations between belief and probability, but I confess
not to have seen any convincing one.

The simplest escape from the lottery paradox is, of course, to equate belief with
probability 1. This proposal faces two further problems, though. First, it seems in-
tuitively inadequate to equate belief with maximal certainty in probabilistic terms;
beliefs need not be absolutely certain. Secondly, but this is only a theoretical version
of the intuitive objection, only belief expansion makes sense according to this pro-
posal, but no genuine belief revision. Once you assign probability 1 to a proposition,
you can never get rid of it according to all rules of probabilistic change. This is



A Survey of Ranking Theory 211

obviously inadequate; of course, we can give up previous beliefs and easily do so
all the time.

Jeffrey’s radical probabilism (1991) is a radical way out. According to Jeffrey, all
subjective probabilities are regular, and his generalized conditionalization provides
a dynamics moving within regular probabilities. However, Jeffrey’s picture and the
proposal of equating belief with probability 1 do not combine; then we would be-
lieve in nothing but the tautology. Jeffrey did not deny beliefs, but he indeed denied
their relevance for epistemology; this is what the adjective ‘radical’ in effect signi-
fies. He did not believe in any positive relation between belief and probability, and
probability is all you need – a viable conclusion from the lottery paradox perhaps,
though only as a last resort.

The point that probability theory cannot account for belief revision may appar-
ently be dealt with by an expansion of the probabilistic point of view, namely by
resorting to Popper measures. These take conditional probability as the basic no-
tion, and thus probabilities conditional on propositions having absolute probability
0 may be well defined. That is, you may initially believe A, i.e., assign probability
1 to A, and still learn that A, i.e., conditionalize w.r.t. A, and thus move to posterior
probabilities and even beliefs denying A. In this way, one can stick to the equation
of belief with probability 1 and escape the above objection. Have we thus reached a
stable position?

No, we have not. One point of Spohn (1986) was to rigorously show that AGM
belief revision is just the qualitative counterpart of Popper measures. Conversely,
this entails that the inability of AGM belief revision theory to model iterated belief
revision, which I criticized in my (1988), holds for Popper measures as well. In fact,
Harper (1976) was the first to note this problem vis à vis Popper measures, and thus
I became aware of the problem and noticed the parallel.

Harper proposed quite a complicated solution to the problem that is, as far as
I know, not well received; but it may be worth revisiting. My conclusion was a
different one. If AGM belief revision theory is incomplete and has to be evolved
into ranking theory, the probabilistic point of view needs likewise to get further
expanded. We need something like probabilified ranks or ranked probabilities; it
is only in terms of them that we can unrestrictedly explain iterated probabilistic
change.

A ranking function associates with each rank a set of propositions having that
rank. A ranked probability measure associates with each rank an ordinary probabil-
ity measure. The precise definition is straightforward. Hence, I confined myself to
mentioning the idea in my (1988, Section 8.7); only in my (2005b) I took the trouble
to explicitly introduce it. One should note, though, that as soon as one assumes the
probability measures involved to be �-additive, one again forces the ranks to be
well-ordered (cf. Spohn 1986); this is why in my (2005b) only the probabilification
of complete ranking functions is defined.

One may say that ranking theory thus ultimately reduces to probability theory.
I find this misleading, however. What I have just sketched is rather a unification of
probability and ranking theory; after all, we have employed genuine ranking ideas
in order to complete the probabilistic point of view. The unification is indeed a



212 W. Spohn

powerful one; all the virtues of standard Bayesianism which I have shown to carry
over to ranking theory hold for this unification as well. It provides a unified account
of confirmation, of lawlikeness, even of causation. It appears to be a surprising, but
most desirable wedding of Baconian and Pascalian probability. I shall continue on
the topic in the next subsection.

The previous paragraphs again urge the issue of hyperfinite probability; ranked
probabilities look even more like probabilities in terms of non-standard reals. How-
ever, I cannot say more than I already did; I recommend the issue for further in-
vestigation.19 I should use the occasion for clarifying a possible confusion, though.
McGee (1994, pp. 181ff.) showed that Popper measures correspond to non-standard
probability measures in a specific way. Now, I have suggested that ranked prob-
abilities do so as well. However, my (1986 and 1988) together entail that ranked
probabilities are more general than Popper measures. These three assertions do not
fit together. Yet, the apparent conflict is easily dissolved. The correspondence proved
by McGee is not a unique one. Different non-standard probability measures may
correspond to the same Popper measure, just as different ranked probabilities may.
Hence, if McGee says that the two approaches, Popper’s and the non-standard one,
“amount to the same thing” (p. 181), this is true only for the respects McGee is con-
sidering, i.e., w.r.t. conditional probabilities. It is not true for the wider perspective
I am advocating here, i.e., w.r.t. probability dynamics.

3.2 Philosophical Aspects

The relation between belief and probability is not only a formal issue, it is philo-
sophically deeply puzzling. It would be disturbing if there should be two (or more)
unrelated ways of characterizing our doxastic states. We must somehow come to
grips with their relation.

The nicest option would be reductionism, i.e., reducing one notion to the other.
This can only mean reducing belief to probability. As we have seen, however, this
option seems barred by the lottery paradox. Another option is eliminativism as most
ably defended in Jeffrey’s radical probabilism also mentioned above. This option
is certainly viable and most elegant. Still, I find it deeply unsatisfactory; it is unac-
ceptable that our talk of belief should merely be an excusable error ultimately to be
eliminated. Thus, both versions of monism seem excluded.

Hence, we have to turn to dualism, and then interactionism may seem the most
sensible position. Of course, everything depends on the precise form of interaction
between belief and probability. In Spohn (2005b) I had an argument with Isaac Levi
whom I there described as the champion of interactionism. My general experience,
though, is that belief and probability are like oil and water; they do not mix easily.
Quite a different type of interactionism is represented by Hild (t.a.) who has many

19 For quite a different way of relating probabilities and ranks appealing neither to infinitesimals
nor to Popperian conditional probabilities see Giang and Shenoy (1999).
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interesting things to say about how ranking and probability theory mesh, indeed how
heavily ranking ideas are implicitly used in statistical methodology. I do not have
space to assess this type of interactionism.

When the fate of interactionism is unclear one might hope to return to reduc-
tionism and thus to monism, not in the form of reducing belief to probability, but
in the form of reducing both to something third. This may be hyperfinite proba-
bility, or it may be ranked probabilities as suggested above. However, as already
indicated, I consider this to be at best a formal possibility with admittedly great
formal power of unification. Philosophically, I am not convinced. It is intuitively
simply inadequate to equate belief with (almost) maximal probabilistic certainty,
i.e., with probability 1 (minus an infinitesimal), even if this does not amount to
unrevisability within these unifications. This intuition has systematic counterparts.
For centuries, the behavioral connection of subjective probabilities to gambling and
betting has been taken to be fundamental; many hold that this connection provides
the only explanation of subjective probabilities. This fundamental connection does
not survive these unifications. According to them, I would have to be prepared to
bet my life on my beliefs; but this is true only of very few of my many beliefs. So,
there are grave frictions that should not be plastered by formal means.

In view of all this, I have always preferred separatism, at least methodologically.
If monism and interactionism are problematic, then belief and probability should
be studied as two separate fields of interest. I sense the harshness of this position;
this is why I am recommending it so far only as a methodological one and remain
unsure about its ultimate status. However, the harshness is softened by the formal
parallel which I have extensively exploited and which allows formal unification.
Thus, separatism in effect amounts to parallelism, at least if belief is studied in
ranking terms. Indeed, the effectiveness of the parallel sometimes strikes me as a
pre-established harmony.

Thus, another moral to be drawn may perhaps be structuralism, i.e., the search for
common structures. This is a strategy I find most clearly displayed in Halpern (2003).
He starts with a very weak structure of degrees of belief that he calls plausibility
measures and then discusses various conditions on those degrees that allow use-
ful strengthenings of that structure such as a theory of conditioning, a theory of
independence, a theory of expectation and integration, and so forth. Both, ranking
and probability theory, but not only they are specializations of that structure and its
various strengthenings. Without doubt, this is a most instructive procedure. Struc-
turalism would moreover suggest that it is only those structures and not their specific
realizations that matter. Halpern does not explicitly endorse this, and I think one
should withstand it. For instance, one would thereby miss the essential purpose for
which ranking theory was designed, namely the theory of belief. For this purpose,
no less and no more than the ranking structure is required.

Hence, let me further pursue, in the spirit of methodological separatism, the
philosophical comparison between ranks and standard probabilities. I have already
emphasized the areas in which the formal parallel also makes substantial sense:
inductive inference, confirmation, causation, etc. Let us now focus on three actual
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or apparent substantial dissimilarities, which in one or the other way concern the
issue what our doxastic states have to do with reality.

The first aspect of this issue is the truth connection; ranks are related to truth in
a way in which probabilities are not. This is the old point all over again. Ranks rep-
resent beliefs that are true or false, whereas subjective probabilities do not represent
beliefs and may be assessed in various ways, as well-informed, as reasonable, but
never as true or false. Degrees of belief may perhaps conform to degrees of truth-
likeness; however, it is not clear in the first place whether degrees of truthlikeness
behave like probabilities (cf. Oddie 2001). Or degrees of belief may conform to what
Joyce (1998) calls the norm of gradational accuracy from which he proceeds with
an interesting argument to the effect that degrees of belief then have to behave like
probabilities.20 Such ideas are at best a weak substitute, however; they never yield
an application of truth in probability theory as we have it in ranking theory.

This is a clear point in favor of ranking theory. And it is rich of consequences.
It means that ranking theory, in contrast to probability theory, is able to connect
up with traditional epistemology. For instance, Plantinga (1993, Chapters 6 and 7)
despairs of finding insights in Bayesianism he can use and dismisses it, too swiftly
I find. This would have been different with ranking theory. The reason why ranking
theory is connectible is obvious. Traditional epistemology is interested in knowl-
edge, a category entirely foreign to probability theory; knowledge, roughly, is jus-
tified true belief and thus analyzed by notions within the domain of ranking theory.
Moreover, the notion of justification has become particularly contested in traditional
epistemology; one focal issue was then to give an account of the truth-conduciveness
of reasons, again notions within the domain of ranking theory.

I am not claiming actual epistemological progress here. But I do claim an ad-
vantage of ranking over probability theory, I do claim that traditional epistemology
finds in ranking theory adequate formal means for discussing its issues, and using
such means is something I generally recommend as a formal philosopher.

The second aspect is the behavioral connection. Our doxastic states make some
actions rational and others irrational, and our theories have to say which. Here, prob-
ability theory seems to have a clear advantage. The associated behavioral theory is,
of course, decision theory with its fundamental principle of maximizing conditional
expected utility. The power of this theory need not be emphasized here. Is there
anything comparable on offer for ranking theory?

This appears excluded, for the formal reason that there is a theory of integration
and thus of expectation in probabilistic, but none in ranking terms; this is at least
what I had thought all along. However, the issue has developed. There are vari-
ous remarkable attempts of stating a decision theory in terms of non-probabilistic
or non-additive representations of degrees of belief employing the more general
Choquet theory of integration.21 Indeed, there is also one especially for ranking

20 Cf., however, Maher’s (2002) criticism of Joyce’s argument.
21 Economists inquired the issue; see, e.g., Gilboa (1987), Schmeidler (1989), Jaffray (1989),
Sarin and Wakker (1992) for early contributions, and Wakker (2005) for a recent one. The AI
side concurs; see, e.g., Dubois and Prade (1995), Brafman and Tennenholtz (2000), and Giang and
Shenoy (2005).
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theory. Giang and Shenoy (2000) translate the axiomatic treatment of utility as it
is given by Luce and Raiffa (1957, Section 2.5) in terms of simple and compound
lotteries directly into the ranking framework, thus developing a notion of utility
fitting to this framework. These attempts doubtlessly deserve further scrutiny (cf.
also Halpern 2003, Chapter 5).

Let me raise, though, another point relating to this behavioral aspect. Linguistic
behavior is unique to humans and a very special kind of behavior. Still, one may
hope to cover it by decision theoretic means, too. Grice’s intentional semantics
employs a rudimentary decision theoretic analysis, and Lewis (1969) theory of con-
ventions uses game (and thus decision) theoretic methods in a very sophisticated
way. However, even Lewis’ account of coordination equilibria may be reduced to a
qualitative theory (in Lewis (1975) he explicitly uses only qualitative terminology).
In fact, the most primitive linguistic behavioral law is the disquotation principle:
if a seriously and sincerely utters “p”, then a believes that p.22 The point is that
these linguistic behavioral laws and in particular the disquotation principle is stated
in terms of belief. There is no probabilistic version of the disquotation principle,
and it is unclear what it could be. The close relation between belief and meaning is
obvious and undoubted, though perhaps not fully understood in the philosophy of
language. I am not suggesting that there is a linguistic pragmatics in terms of ranking
functions; there is hardly anything.23 I only want to point out that the standing of
ranking theory concerning this behavioral aspect is at least promising.

There is a third and final aspect, again apparently speaking in favor of probability
theory. We do not only make decisions with the help of our subjective probabilities,
we also do statistics. That is, we find a lot of relative frequencies in the world,
and they are closely related to probabilities. We need not discuss here the exact na-
ture of this relation. Concerning objective probabilities, it is extensively discussed
in the debate about frequentism, and concerning subjective probabilities it is pre-
sumably best captured in Reichenbach’s principle postulating that our subjective
probabilities should rationally converge to the observed relative frequencies. What
is clear, in any case, is that in some way or other relative frequencies provide a
strong anchoring of probabilities in reality from which the powerful and pervasive
application of statistical methods derives. Subjective probabilities are not simply
free-floating in our minds.

For many years I thought that this is another important aspect in which rank-
ing theory is inferior to probability theory. Recently, though, I have become more
optimistic. Not that there would be any statistics in ranking terms,24 I do not see
ranks related to relative frequencies. However, a corresponding role is played by
the notion of exception and thus by absolute frequencies. In Section 2.5, I left the

22 If a speaks a foreign language, the principle takes a more complicated, but obvious form. There
is also a disquotation principle for the hearer, which, however, requires a careful exchange of the
hearer’s and the speaker’s role.
23 See in particular Merin (2006, Appendix B; 2008) whose relevance-based pragmatics yields
interesting results in probabilistic as well as in ranking-theoretic terms.
24 However, I had already mentioned that Hild (t.a.) finds a much closer connection of probabilities
and ranks within statistical methodology.
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precise account of objectifiable ranking functions in the dark. If one studies that
account more closely, though, one finds that these objectifiable ranking functions,
or indeed the laws as I have indicated them in Section 2.5, are exception or fault
counting functions. The rank assigned to some possible world by such a ranking
function is just the number of exceptions from the law embodied in this function
that occur in this world.

This is a dim remark so far, and here is not the place to elaborate on it. Still, I
find the opposition of exceptions and relative frequencies appealing. Often, we take
a type of phenomenon as more or less frequent, and then we apply our sophisticated
statistical methodology to it. Equally often, we try to cover a type of phenomenon by
a deterministic law, we find exceptions, we try to improve our law, we take recourse
to a usually implicit ceteris paribus condition, etc. As far as I know, the methodology
of the latter perspective is less sophisticated. Indeed, there is little theory. Mill’s
method of relevant variables, e.g., is certainly an old and famous attempt to such a
theory (cf. its reconstruction in Cohen 1977, Chapter 13). Still, both perspectives,
the statistical and the deterministic one, are very familiar to us. What I am sug-
gesting is that the deterministic perspective can be thoroughly described in terms of
ranking theory.25

It would moreover be most interesting to attend to the vague borderline. Some-
where, we switch from one to the other perspective, from exceptions to small relative
frequencies or the other way around. I am not aware of any study of this borderline,
but I am sure it is worth getting inquired. It may have the potential of also illu-
minating the relation of belief and probability, the deterministic and the statistical
attitude.

All these broad implications are involved in a comparison of ranks and probabil-
ities. I would find it rather confusing to artificially combine them in some unified
theory, be it hyperfinite or ranked probabilities. It is more illuminating to keep them
separate. Also, I did not want to argue for any preference. I wanted to present the
rich field of comparison in which both theories can show their great, though partially
diverging virtues. There should be no doubt, however, that the driving force behind
all these considerations is the formal parallelism which I have extensively used in
Section 2 and explained in Section 3.1.

4 Further Comparisons

Let me close the paper with a number of brief comparative remarks about alternative
accounts subsumable under the vague label ‘Baconian probability’. I have already
made a lot of such remarks en passant, but it may be useful to have them collected.
I shall distinguish between the earlier and usually more philosophical contributions

25 I attempted to substantiate this suggestion with my account of strict and ceteris paribus laws in
Spohn (2002) and with my translation of de Finetti’s representation theorem into ranking theory in
Spohn (2005a).
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on the one hand and the more recent, often more technical contributions from the
computer science side on the other hand. The borderline is certainly fuzzy, and I
certainly do not want to erect boundaries. Still, the centuries old tendency of spe-
cialization and of transferring problems from philosophy to special fields may be
clearly observed here as well.

4.1 Earlier and Philosophical Literature

It is perhaps appropriate to start with L. Jonathan Cohen, the inventor of the label.
In particular his (1977) is an impressive document of dualism, indeed separatism
concerning degrees of provability and degrees of probability or inductive (Baconian)
and Pascalian probability. His work is, as far as I know, the first explicit and powerful
articulation of the attitude I have taken here as well.26

However, his functions of inductive support are rather a preform of my ranking
functions. His inductive supports correspond to my positive ranks. Cohen clearly
endorsed the law of conjunction for positive ranks; see his (1970, pp. 21f. and p. 63).
He also endorsed the law of negation; but he noticed its importance only in his
(1977, pp. 177ff.), whereas in his (1970) it is well hidden as Theorem 306 on p. 226.
His presentation is a bit imperspicuous, though, since he is somehow attached to the
idea that �i , i.e., having an inductive support≥ i , behaves like iterable S4-necessity
and since he even brings in first-order predicate calculus.

Moreover, Cohen is explicit on the relationality of inductive support; it is a two-
place function relating evidence and hypothesis. Hence, one might expect to find
a true account of conditionality. This, however, is not so. His conditionals behave
like strict implication,27 a feature Lewis (1973, Section 1.2–1.3) has already warned
against. Moreover, Cohen discusses only laws of support with fixed evidence – with
one exception, the consequence principle, as he calls it (1970, p. 62). Translated into
my notation it says for a positive ranking function � that

(15) �(C|A) ≥ �(C|B) if A ⊆ B,

which is clearly not a theorem of ranking theory. These remarks sufficiently indicate
that the aspect so crucial for ranking functions is scarcely and wrongly developed in
Cohen’s work.

The first clear articulation of the basic Baconian structure is found, however, not
in Cohen’s work, but in Shackle (1949, 1969). His functions of potential surprise
clearly correspond to my negative ranking functions; axiom (9) in (1969, p. 81) is
the law of negation, and axiom (4) and/or (6) in (1969, p. 90) express the law of
disjunction. At least informally, Shackle also recognizes the duality of positive and

26 I must confess, though, that I had not yet noticed his work when I basically fixed my ideas on
ranking functions in 1983.
27 This is particularly obvious from Cohen (1970, p. 219, Definition 5).
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negative ranks. He is explicit that potential surprise expresses certainty of wrong-
ness, i.e., disbelief, and that there is conversely certainty of rightness (1969, p. 74).

His general attitude, however, is not so decidedly dualistic as that of Cohen.
His concern is rather a general account of uncertainty, and he insists that probabil-
ity does not exhaust uncertainty. Probability is an appropriate uncertainty measure
only if uncertainty is ‘distributional’, whereas potential surprise accounts for ‘non-
distributional’ uncertainty. So, he also ends up with an antagonistic structure; but
the intention was to develop two special cases of a general theory.

It is most interesting to see how hard Shackle struggles with an appropriate law
of conjunction for negative ranks. The first version of his axiom 7 (1969, p. 80)
claims, in our terminology, that

(16) �(A ∩ B) = max {�(A), �(B)}.

He accepts the criticism this axiom has met, and changes it into a second version
(1969, p. 83), which I find must be translated into

(17) �(B) = max {�(A), �(B|A)}

(and is hence no law of conjunction at all). He continues that it would be fallacious
to infer that

(18) �(A ∩ B) = min [max {�(A), �(B|A)}, max {�(B), �(A|B)}].

In (1969, Chapter 24) he is remarkably modern in discussing “expectation of change
of own expectations”. I interpret his formula (i) on p. 199 as slightly deviating from
the second version of his axiom 7 in claiming that

(19) �(A ∩ B) = max {�(A), �(B|A)}.

And on pp. 204f. he even considers, and rejects (for no convincing reason), the
equation

(20) �(A ∩ B) = �(A)+ �(B|A),

i.e., our law of conjunction for negative ranks. In all these discussions, conditional
degrees of potential surprise appear to be an unexplained primitive notion. So,
Shackle may have been here on the verge of getting things right. On the whole,
though, it seems fair to say that his struggle has not led to a clear result.

Isaac Levi has always pointed to this pioneering achievement of Shackle, and
he has made his own use of it. In a way he did not develop Shackle’s functions
of potential surprise; he just stuck to the laws of negation and of disjunction for
negative ranks. In particular, there is no hint of any notion of conditionalization.
This is not to say that his epistemology is poorer than the one I have. Rather, he
finds a place for Shackle’s functions in his elaborated doxastic decision theory,
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more precisely, in his account of belief expansion. He adds a separate account
of belief contraction, and with the help of what is called Levi’s identity he can
thus deal with every kind of belief change. He may even claim to come to grips
with iterated change.28 One may thus sense that his edifice is at cross-purposes
with mine.

A fair comparison is hence a larger affair. I have tried to give it in Spohn (2005b).
Let me only mention one divergence specifically related to ranking functions. Since
Levi considers ranking functions as basically identical with Shackle’s functions of
potential surprise and since he sees the latter’s role in expansion, he continuously
brings ranking functions into the same restricted perspective. I find this inadequate.
I rather see the very same structure at work at expansions as well as at contractions,
namely the structure of ranks. Insofar I do not see any need of giving the two kinds
of belief change an entirely different treatment.

This brings me to the next comparison, with AGM belief revision theory (cf.
e.g., Gärdenfors 1988). I have already explained that I came to think of ranking
theory as a direct response to the challenge of iterated belief revision for AGM
belief revision theory, and I have explained how A→x-conditionalization for ranks
unifies and generalizes AGM expansion, revision, and contraction. One may won-
der how that challenge was taken up within the AGM discussion. With a plethora
of proposals (see Rott 2008), that partially ventilated ideas that I thought to have
effectively criticized already in Spohn (1988) and that do not find agreement, as far
as I see, with the exception of Darwiche and Pearl (1997). As mentioned, Hild and
Spohn (2008) gives a complete axiomatization of iterated contraction. Whether it
finds wider acceptance remains to be seen.

By no means, though, one should underestimate the richness of the AGM dis-
cussion, of which, e.g., Rott (2001) or Hansson (1999) give a good impression.
A pertinent point is that ranking theory generalizes and thus simply sides with
the standard postulates for revision and contraction (i.e., (K*1-8) and (K−1-8) in
Gärdenfors 1988, pp. 54–56 and 61–64). The ensuing discussion has shown that
these postulates are not beyond criticism and that many alternatives are worth dis-
cussing (cf., e.g., Rott 2001, pp. 103ff., who lists three alternatives of K*7, nine
of K*8, six of K−7, and ten of K−8). I confess I would not know how to modify
ranking theory in order to do justice to such alternatives. Hence, a fuller comparison
with AGM belief revision theory would have to advance a defense of the standard
postulates against the criticisms related with the alternatives.

The point is, of course, relevant in the debate with Levi, too. He prefers what
he calls mild contraction to standard AGM contraction that can be represented in
ranking theory only as a form of iterated contraction. Again, one would have to
discuss whether this representation is acceptable.

It is worth mentioning that the origins of AGM belief revision theory clearly lie in
conditional logic. Gärdenfors (1978) epistemic semantics for conditionals was a re-
sponse to the somewhat unearthly similarity spheres semantics for counterfactuals in

28 Many aspects of his epistemology are already found in Levi (1967). The most recent statement
is given in Levi (2004), where one also gets a good idea of the development of his thought.
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Lewis (1973), and via the so-called Ramsey test Gärdenfors’ interest more and more
shifted from belief in conditionals to conditional beliefs and thus to the dynamics
of belief. Hence, one finds a great similarity in the formal structures of conditional
logic and belief revision theory. In particular, Lewis’ similarity spheres correspond
to Gärdenfors’ entrenchment relations (1988, Chapter 4). In a nutshell, then, the
progress of ranking theory over Lewis’ counterfactual logic lies in proceeding from
an ordering of counterfactuality (as represented by Lewis’ nested similarity spheres)
to a cardinal grading of disbelief (as embodied in negative ranking functions).

Indeed, the origins reach back farther. Conditional logic also has a history, the
earlier one being somewhat indeterminate. However, the idea of having an ordering
of levels of counterfactuality or of far-fetchedness of hypotheses is explicitly found
already in Rescher (1964). If � is a positive ranking function taking only finitely
many values 0, x1, . . . , xm , ∞, then �−1(∞), �−1(xm), . . . , �−1(x1), �−1(0) is just
a family of modal categories M0, . . . , Mn (n = m+2), as Rescher (1964, pp. 47–50)
describes it. His procedure on pp. 49f. for generating modal categories makes them
closed under conjunction; this is our law of conjunction for positive ranks. And he
observes on p. 47 that all the negations of sentences in modal categories up to Mn−1

must be in Mn = �−1(0); this is our law of negation.
To resume, I cannot find an equivalent to the ranking account of conditionaliza-

tion in all this literature. However, the philosophical fruits I have depicted in Sec-
tion 2 and also in Section 3.2 sprang from this account. Therefore, I am wondering
to which extent this literature can offer similar fruits, and for all I know the answer
tends to be negative.

4.2 More Recent Computer Science Literature

In view of the exploding computer science literature on uncertainty since the 80’s
even the brief remarks in the previous subsection on the earlier times were dis-
proportionate. However, it is important, I think, not to forget about the origins. My
comparative remarks concerning the more recent literature must hence be even more
cursory. This is no neglect, though, since Halpern (2003), in book length, provides
comprehensive comparisons of the various approaches with an emphasis on those
aspects (conditionalization, independence, etc.) that I take to be important, too.
Some rather general remarks must do instead and may nevertheless be illuminating.

In the computer science literature, ranking theory is usually subsumed under the
heading “uncertainty” and “degrees of belief”. This is not wrong. After all, ranks are
degrees, and if (absolute) certainty is equated with unrevisability, revisable beliefs
are uncertain beliefs. Still, the subsumption is also misleading. My concern was not
to represent uncertainty and to ventilate alternative models of doing so. Thus stated,
this would have been an enterprise with too little guidance. My concern was exclu-
sively to statically and dynamically represent ungraded belief, and my observation
was that this necessarily leads to the ranking structure. If this is so, then, as I have
emphasized, all the philosophical benefits of having a successful representation of
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ungraded belief are conferred to ranking theory. By contrast, if one starts modeling
degrees of uncertainty, it is always an issue (raised, for instance, by the lottery para-
dox vis à vis probability) to which extent such a model adequately captures belief
and its dynamics. So, this is a principled feature that sets ranking theory apart from
the entire uncertainty literature.

The revisability of beliefs was directly studied in computer science under head-
ings like “default logic” or “nonmonotonic reasoning”. This is another large and
natural field of comparison for ranking theory. However, let me cut things short. The
relation between belief revision theory and nonmonotonic reasoning is meticulously
investigated by Rott (2001). He proved far-reaching equivalences between many
variants on both sides. This is highly illuminating. At the same time, however, it is
a general indication that the concerns that led me to develop AGM belief revision
theory into ranking theory are not well addressed in these areas of AI. Of course,
such lump-sum statements must be taken with caution.

The uncertainty literature has observed many times that the field of nonmono-
tonic reasoning is within its reach. Among many others, Pearl (1988, Chapter 10)
has investigated the point from the probabilistic side, and Halpern (2003, Chap-
ter 8) has summarized it from his more comprehensive perspective. This direction
of inquiry is obviously feasible, but the reverse line of thought of deriving kinds of
uncertainty degrees from kinds of nonmonotonic reasoning is less clear (though the
results in Hild and Spohn (2008) about the measurement of ranks with via iterated
contractions may be a step in the reverse direction).

So, let me return to accounts of uncertainty in a bit more detail, and let me take
up possibility theory first. It originates from Zadeh (1978), i.e. from fuzzy set the-
ory and hence from a theory of vagueness. Its elaboration in the book by Dubois
and Prade (1988) and many further papers shows its wide applicability, but never
denies its origin. So, it should at least be mentioned that philosophical accounts of
vagueness (cf., e.g., Williamson 1994) have nothing much to do with fuzzy logic.
If one abstracts from this interpretation, though, possibility theory is formally very
similar to ranking theory. If Poss is a possibility measure, then the basic laws are:

(21) Poss(∅) = 0, Poss(W ) = 1, and
Poss(A ∪ B) = max {Poss(A), Poss(B)}.

So far, the difference is merely one of scale. Full possibility 1 is negative rank 0,
(im)possibility 0 is negative rank ∞, and translating the scales translates the char-
acteristic axiom of possibility theory into the law of disjunction for negative ranks.
Indeed, Dubois and Prade often describe their degrees of possibility in such a way
that this translation fits not only formally, but also materially.

Hence, the key issue is again how conditionalization is treated within possibility
theory. There is some uncertainty. First, there is the motive that also dominated
Shackle’s account of the functions of potential surprise, namely to keep possibil-
ity theory as an ordinal theory where degrees of possibility have no arithmetical
meaning. Then the idea is to stipulate that
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(22) Poss(A ∩ B) = min {Poss(A), Poss(B|A)}
= min {Poss(B), Poss(A|B)}.

This is just Shackle’s proposal (4.1). Hisdal (1978) proposed to go beyond (4.1)
just by turning (4.2) into a definition of conditional possibility by additionally as-
suming that conditionally things should be as possible as possible, i.e., by defining
Poss(B|A) as the maximal degree of possibility that makes (4.2) true:

(23) Poss(B|A) =
{

P(A ∩ B), if Poss(A ∩ B) < Poss(A)

1, if Poss(A ∩ B) = Poss(A)

}

.

Halpern (2003, Proposition 3.9.2, Theorem 4.4.5, and Corollary 4.5.8) entails
that Bayesian net theory works also in terms of conditional possibility thus defined.
Many things, though, do not work well. It is plausible that Poss(B|A) is between the
extremes 1 and Poss(A ∩ B). However, (4.2) implies that it can take only those ex-
tremes. This is unintelligible. Condition (4.2) implies that, if neither Poss(B|A) nor
Poss(A|B) is 1, they are equal, a strange symmetry. And so on. Such unacceptable
consequences spread through the entire architecture.

However, there is a second way to introduce conditional possibilities (cf., e.g.,
Dubois and Prade 1998, p. 206), namely by taking numerical degrees of possibility
seriously and defining

(24) Poss(B||A) = Poss(A ∩ B)/Poss(A).

This looks much better. Indeed, if we define �(A) = log Poss(A), the logarithm
taken w.r.t. some positive base <1, then � is a negative ranking function such that
also �(B|A) = log Poss(B||A). Hence, (4.2) renders possibility and ranking theory
isomorphic, and all the philosophical benefits may be gained in either terms. Still,
there remain interpretational differences. If we are really up to degrees of belief
and disbelief, then the ranking scale is certainly more natural; this is particularly
clear when we look at the possibilistic analogue to two-sided ranking functions.
My remarks about objectifiable ranking functions as fault counting functions would
make no sense for a possibilistic scale. And so on. Finally, one must be aware that
the philosophical benefits resulted from adequately representing belief. Hence, it is
doubtful whether the formal structure suffices to maintain the benefits for alternative
interpretations of possibility theory.

Let me turn to some remarks about (Dempster-Shafer) DS belief functions.
Shafer (1976) built on Dempster’s ideas for developing a general theory of evi-
dence. He saw clearly that his theory covered all known conceptions of degrees
of belief. This, and its computational manageability, explains its enormous impact.
However, before entering any formal comparisons the first argument that should be
settled is a philosophical one about the nature of evidence. There is the DS theory
of evidence, and there is a large philosophical literature on observation and confir-
mation, Bayesianism being its dominant formal expression. I have explained why
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ranking theory and its account of reasons is a member of this family, too. Of course,
this argument cannot even be started here. My impression, though, is that it is still
insufficiently fought out, certainly hampered by disciplinary boundaries.

In any case, it is to be expected that DS belief functions and ranking functions are
interpretationally at cross-purposes. This is particularly clear from the fact that neg-
ative ranking functions, like possibility measures or Shackle’s functions of potential
surprise, are formally a special case of DS belief functions; they are consonant belief
functions as introduced in Shafer (1976, Chapter 10). There, p. 219, Shafer says
that consonant belief functions “are distinguished by their failure to betray even a
hint of conflict in the evidence”; they “can be described as ‘pointing in a single
direction’.” From the perspective of Shafer’s theory of evidence this may be an
adequate characterization. As a description of ranking functions, however, it does
not make any sense whatsoever. This emphasizes that the intended interpretations
diverge completely.

Even formally things do not fit together. We saw that the virtues of ranking theory
depend on the specific behavior of conditional ranks. This does not generalize to
DS belief functions. There is again an uncertainty how to conditionalize DS belief
functions; there are two main variants (cf. Halpern 2003, p. 103 and 132, which
I use as my reference book in the sequel). The central tool of Shafer’s theory of
evidence is the rule of combination proposed by Dempster (1967); it is supposed
to drive the dynamics of DS belief functions. Combination with certain evidence is
identical with one of the two variants of conditionalization (cf. Halpern 2003, p. 94).
According to Shafer, other uncertain evidence is also to be processed by this rule.
One might think, though, instead to handle it with Jeffrey’s generalized conditional-
ization, which is indeed definable for both kinds of conditional belief functions (cf.
Halpern 2003, p. 107). However, both kinds of Jeffrey conditionalization diverge
from the rule of combination (cf. Halpern 2003, p. 107 and 114).

Indeed, this was my argument in Spohn (1990, p. 156) against formally equat-
ing ranking functions with consonant belief functions: Ranking dynamics is driven
by a ranking analogue to Jeffrey conditionalization, but it cannot be copied by the
rule of combination since the corresponding combinations move outside the realm
of consonant belief functions. And, as I may add now, it does not help to let the
dynamics of DS belief functions be driven by Jeffrey conditionalization instead of
the rule of combination: Consonant belief functions are not closed under Jeffrey
conditionalization as well, whereas ranking functions are thus closed.29 I conclude
that there is no formal subsumption of ranking functions under DS belief functions.
Hence, their interpretations do not only actually diverge, they are bound to do so.

29 Does this contradict the fact that ranking functions are equivalent to possibility measures (with
their second kind of conditionalization), that possibility measures may be conceived as a special
case of DS belief (or rather: plausibility) functions, and that Jeffrey conditionalization works for
possibility measures as defined by Halpern (2003, p. 107)? No. The reason is that Jeffrey con-
ditionalization for possibility measures is not a special case of Jeffrey conditionalization for DS
belief functions in general. Cf. Halpern (2003, p. 107).
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Smets’ transferable belief model (cf., e.g., Smets 1998) proposes a still more
general model for changing DS belief functions in terms of his so-called special-
izations. One should check whether it offers means for formally subsuming ranking
functions under his model. Even if this would be possible, however, the interpre-
tational concerns remain. Smets’ specializations are so much wedded to Shafer’s
conception of evidence that any subsumption would appear artificial and accidental.
The philosophical argument about the nature of evidence is even more pressing here.

A final remark: There is a bulk of literature treating doxastic uncertainty not in
terms of a specific probability measure, but in terms of convex sets of probability
measures. The basic idea behind this is that one’s uncertainty is so deep that one
is not even able to fix one’s subjective probability. In this case, doxastic states may
be described as sets of measures or in terms of probability intervals or in terms
of lower and upper probabilities. Again, the multiple ways of elaborating this idea
and their relations are well investigated (see again Halpern 2003). Indeed, DS belief
functions, which provide a very general structure, emerges as generalizations of
lower probabilities. Even they, though, do not necessarily transcend the probabilistic
point of view, as Halpern (2003, p. 279) argues; DS belief functions are in a way
tantamount to so-called inner measures. May we say, hence, that the alternative
formal structures mentioned ultimately reduce to probabilism (liberalized in the way
explained)? We may leave the issue open, though it is obvious that the liberal idea
of uncertainty conceived as sets of subjective probabilities is, in substance, a further
step away from the ideas determining ranking theory. Even if probabilism were
successful in this way, as far as ranking theory is concerned we would only be
thrown back to our comparative remarks in Section 3.

We may therefore conclude that ranking theory is a strong independent pillar
in that confusingly rich variety of theories found in the uncertainty literature. This
conclusion is the only point of my sketchy comparative remarks. Of course, it is not
to deny that the other theories serve other purposes well. It is obvious that we are
still far from an all-purpose account of uncertainty or degrees of belief.
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Arguments For—Or Against—Probabilism?

Alan Hájek

1 Introduction

On Mondays, Wednesdays, and Fridays, I call myself a probabilist.1 In broad outline
I agree with probabilism’s key tenets: that

(1) an agent’s beliefs come in degrees, which we may call credences; and that
(2) these credences are rationally required to conform to the probability calculus.

Here, ‘the probability calculus’ refers to at least the finite fragment of Kolmogorov’s
theory, according to which probabilities are non-negative, normalized (with a top
value of 1), and finitely additive. Probabilism is a simple, fecund theory. Indeed,
it achieves such an elegant balance of simplicity and strength that, in the spirit of
Ramsey’s and Lewis’s accounts of ‘law of nature’, I am inclined to say that proba-
bilism codifies the synchronic laws of epistemology.2 Or so I am inclined on those
days of the week.

But on the remaining days of the week I am more critical of probabilism. A num-
ber of well-known arguments are offered in its support, but each of them is in-
adequate. I do not have the space here to spell out all of the arguments, and all
of their inadequacies. Instead, I will confine myself to four of the most important
arguments—the Dutch Book, representation theorem, calibration, and gradational
accuracy arguments—and I will concentrate on a particular inadequacy in each of
them, in its most familiar form.

I think it is underappreciated how structurally similar these four arguments for
probabilism are. Each begins with a mathematical theorem that adverts to credences
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1 Much like Earman (1992), p. 1.
2 The Ramsey/Lewis account has it that a law of nature is a theorem of the best theory of the
universe—the true theory that best balances simplicity and strength. I say ‘synchronic’ laws of
epistemology to allow for there being further ‘diachronic’ laws about how credences should update
in the face of evidence.
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or degrees of belief, and that has the form of a conditional with an existentially
quantified consequent. The antecedent speaks of some agent’s credences violating
the probability calculus. The consequent states the existence of something putatively
undesirable that awaits such an agent, some way in which the agent’s lot is worse
than it could be by obeying the probability calculus, in a way that allegedly impugns
her rationality. In each case, I will not question the theorem. But each argument
purports to derive probabilism from the theorem. And it is underappreciated that
in each case the argument, as it has been standardly or canonically presented, is
invalid.3

The trouble in each case is that there is a mirror-image theorem, equally be-
yond dispute, that undercuts probabilism; if we focus on it, we apparently have an
argument against probabilism, of exactly equal strength to the original argument
for probabilism. The original theorem provides good news for probabilism, but the
mirror-image theorem provides bad news. Once all this news is in, it provides no
support for probabilism. The probabilist must then look elsewhere for more good
news. I discuss some ways in which it has been found, or I attempt to provide it
myself—but even then it is alloyed.

2 The Dutch Book Argument4

The Dutch Book argument assumes that credences can be identified with corre-
sponding betting prices. Your degree of belief in X is p iff you are prepared to buy
or sell at $p a bet that pays $1 if p, and nothing otherwise. We may call p the price
that you consider fair for the bet on X—at that price, you are indifferent between
buying and selling the bet, and thus you see no advantage to either side. The betting
interpretation, of course, involves a good deal of idealization, but I won’t begrudge
it here. (I begrudge it enough elsewhere—see Eriksson and Hájek 2007.) Instead, I
will question the validity of the argument.

The centerpiece of the argument, as it has repeatedly been stated, is the following
theorem, which I will not dispute.

Dutch Book Theorem

If you violate probability theory, there exists a set of bets, each of which you consider fair,
which collectively guarantee your loss.

3 I say ‘invalid’ to convey that the fault with each argument is that the conclusion does not follow
from the theorem, rather than that the theorem is false. There’s a sense in which any argument
for a necessary truth p is valid—even ‘not p ∴ p’. After all, it is not possible for the premises of
the argument to be true and the conclusion false. So if probabilism is a necessary truth, then the
argument ‘Snow is white ∴ probabilism’ is valid in this sense. But philosophers often use ‘invalid’
in a different sense, according to which an argument is invalid if it is missing key steps needed to
show us that its conclusion follows from its premises. This is the sense that I intend in this paper.
4 This section streamlines an argument given in my (2005), which concentrated solely on the Dutch
Book argument.
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Call an agent who violates probability theory incoherent.5 Call a set of bets, each of
which you consider fair, and which collectively guarantee your loss, a Dutch Book
against you. The Dutch Book theorem tells us that if you are incoherent, there exists
a Dutch Book against you. Note the logical form: a conditional with an existentially
quantified consequent. The antecedent speaks of a violation of probability theory;
the consequent states the existence of something bad that follows from such a vio-
lation. We will see this form again and again.

So much for the theorem. What about the argument for probabilism? It is so
simple that it can be presented entirely in words of one syllable:6

You give some chance to p: it is the price that you would pay for a bet that pays a buck if
p is true and nought if p is false. You give some chance to q: it is the price that you would
pay for a bet that pays a buck if q is true and nought if q is false. And so on. Now, if you
failed to live up to the laws of chance, then you could face a dire end. A guy—let’s make
him Dutch—could make a set of bets with you, each fair by your lights, yet at the end of
the day you would lose, come what may. What a fool you would be! You should not tempt
this fate. So you should bet in line with the laws of chance.

This argument is invalid. For all the Dutch Book theorem tells us, you may be just
as susceptible to Dutch Books if you obey probability theory. Maybe the world is
an unkind place, and we’re all suckers! (Compare: it’s certain that if you pursue a
career in philosophy, you will eventually die; but that’s hardly a reason to avoid a
career in philosophy.) This possibility is ruled out by the surprisingly neglected, yet
equally important Converse Dutch Book theorem: if you obey probability theory,
then there does not exist a Dutch Book against you. So far, so good for probabilism.

But nothing can rule out the following mirror-image theorem, since it is clearly
true. With an eye to the financial gains that are in the offing, let’s call it the

Czech Book Theorem

If you violate probability theory, there exists a set of bets, each of which you consider fair,
which collectively guarantee your gain.

The proof of the theorem is easy: just rewrite the proof of the original Dutch Book
theorem, replacing ‘buying’ by ‘selling’ of bets, and vice versa, throughout. You
thereby turn the original ‘Dutch Bookie’ who milks you into a ‘Czech Bookie’
whom you milk. Call a set of bets, each of which you consider fair, and which
collectively guarantee your gain, a Czech Book for you. The Czech Book theorem
tells us that if you are incoherent, there exists a Czech Book for you. It is a simple
piece of mathematics, and there is no disputing it.

So much for the theorem. I now offer the following argument against probabil-
ism, again in words of one syllable. It starts as before, then ends with a diabolical
twist:

5 de Finetti used the word ‘incoherent’ to mean ‘Dutch bookable’, while some other authors use it
as I do. It will be handy for me to have this word at my disposal even when I am not discussing
Dutch books.
6 The homage to George Boolos will be obvious to those who know his (1994).
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. . . Now, if you failed to live up to the laws of chance, then you could face a sweet end. A
guy—let’s make him Czech—could make a set of bets with you, each fair by your lights,
yet at the end of the day you would win, come what may. What a brain you would be! You
should seek this fate. So you should bet out of line with the laws of chance.

This argument is invalid. For all the Czech Book theorem tells us, you may be just
as open to Czech Books if you obey probability theory. Maybe the world is a kind
place, and we’re all winners! (Compare: it’s certain that if you pursue a career in
philosophy, you will be happy at some point in your life; but that’s hardly a reason
to pursue a career in philosophy.) This possibility is ruled out by the surprisingly
neglected, yet equally important Converse Czech Book theorem: if you obey prob-
ability theory, then there does not exist a Czech Book for you.7 So far, so bad for
probabilism.

Let’s take stock, putting the theorems side by side:
Iff you violate probability theory, there exists a specific bad thing (a Dutch Book

against you).
Iff you violate probability theory, there exists a specific good thing (a Czech Book

for you).
The Dutch Book argument sees the incoherent agent’s glass as half empty, while the
Czech Book argument sees it as half full. If we focus on the former, probabilism
prima facie looks compelling; but if we focus on the latter, the denial of probabilism
prima facie looks compelling.

2.1 Saving the Dutch Book Argument 8

If you survey the vast literature on Dutch Book arguments, you will find that
most presentations of it focus solely on bets bought or sold at exactly your fair
prices, bets that by your lights bestow no advantage to either side. (See, e.g.,
Adams (1962), Adams and Rosenkrantz (1980), Armendt (1992), Baillie (1973),
Carnap (1950, 1955), Christensen (1991, 1996, 2001), de Finetti (1980), Döring
(2000), Earman (1992), Gillies (2000), Howson and Urbach (1993), Jackson and
Pargetter (1976), Jeffrey (1983, 1992), Kaplan (1996), Kemeny (1955), Kennedy
and Chihara (1979), Lange (1999), Lehman (1955), Maher (1993), Mellor (1971),
Milne (1990), Rosenkrantz (1981), Seidenfeld and Schervish (1983), Skyrms (1986),
van Fraassen (1989), Waidacher (1997), Weatherson (1999), and Williamson (1999)).
But bets that you consider fair are not the only ones that you accept; you also accept
bets that you consider favourable—that is, better than fair. You are prepared to sell
a given bet at higher prices, and to buy it at lower prices, than your fair price. This

7 Proof: Suppose for reductio that you obey probability theory, and that there is a set of bets,
each of which you consider fair, which collectively guarantee your gain. Then swapping sides of
these bets, you would still consider each fair, yet collectively they would guarantee your loss. This
contradicts the Converse Dutch Book theorem.
8 This sub-section mostly repeats the corresponding section of my (2005)—for this move in the
dialectic I have nothing more, nor less, to say than I did there.
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observation is just what we need to break the symmetry that deadlocked the Dutch
Book argument and the Czech Book argument.

Let us rewrite the theorems, replacing ‘fair’ with ‘fair-or-favourable’ throughout,
and see what happens:

Dutch Book theorem, revised:
If you violate probability theory, there exists a set of bets, each of which you

consider fair-or-favourable, which collectively guarantee your loss.
Converse Dutch Book theorem, revised:
If you obey probability theory, there does not exist a set of bets, each of which

you consider fair-or-favourable, which collectively guarantee your loss.
Czech Book theorem, revised:
If you violate probability theory, there exists a set of bets, each of which you

consider fair-or-favourable, which collective guarantee your gain.
Converse Czech Book theorem, revised:
If you obey probability theory, there does not exist a set of bets, each of which

you consider fair-or-favourable, which collectively guarantee your gain.
The first three of these revisions are true, obvious corollaries of the original

theorems. Indeed, the revised versions of the Dutch Book theorem and the Czech
Book theorem follow immediately, because any bet that you consider fair you ipso
facto consider fair-or-favourable. The revised version of the Converse Dutch Book
theorem also follows straightforwardly from the original version.9

But the revised version of the Converse Czech Book theorem is not true: if you
obey probability theory, there does exist a set of bets, each of which you consider
fair-or-favourable, which collectively guarantee your gain. The proof is trivial.10

The revision from ‘fair’ to ‘fair-or-favourable’ makes all the difference. And with
the failure of the revised version of the Converse Czech Book theorem, the corre-
sponding revised version of the Czech Book argument is invalid. There were no
Czech Books for a coherent agent, because Czech Books were defined in terms of
fair bets. But there are other profitable books besides Czech Books, and incoherence
is not required in order to enjoy those. Opening the door to fair-or-favourable bets
opens the door to sure profits for the coherent agent. So my parody no longer goes
through when the Dutch Book argument is cast in terms of fair-or-favourable bets,
as it always should have been.

9 Proof. Suppose you obey probability theory. Suppose for reductio that there does exist a set
of bets, each of which you consider fair-or-favourable, that collectively guarantee a loss; let this
loss be L > 0. Then you must regard at least one of these bets as favourable (for the Converse
Dutch Book theorem assures us that if you regarded them all as fair, then there could not be such
guaranteed loss). That is, at least one of these bets is sold at a higher price, or bought at a cheaper
price, than your fair price for it. For each such bet, replacing its price by your fair price would
increase your loss. Thus, making all such replacements, so that you regard all the bets as fair,
your guaranteed loss is even greater than L , and thus greater than 0. This contradicts the Converse
Dutch Book theorem. Hence, we must reject our initial supposition, completing the reductio. We
have proved the revised version of the Converse Dutch Book theorem.
10 Suppose you obey the probability calculus; then if T is a tautology, you assign P(T ) = 1. You
consider fair-or-favourable paying less than $1—e.g., 80 cents—for a bet on T at a $1 stake, simply
because you regard it as favourable; and this bet guarantees your gain.
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I began this section by observing that most of the presenters of the Dutch Book
argument formulate it in terms of your fair prices. You may have noticed that I left
Ramsey off the list of authors.11 His relevant remarks are confined to ‘Truth and
Probability’, and what he says is somewhat telegraphic:

If anyone’s mental condition violated these laws [of rational preference, leading to the ax-
ioms of probability], his choice would depend on the precise form in which the options were
offered him, which would be absurd. He could have a book made against him by a cunning
bettor and would then stand to lose in any event . . . Having degrees of belief obeying the
laws of probability implies a further measure of consistency, namely such a consistency
between the odds acceptable on different propositions as shall prevent a book being made
against you (1980/1931, 42).

Note that Ramsey does not say that all of the bets in the book are individually
considered fair by the agent. He leaves open the possibility that some or all of them
are considered better than fair; indeed ‘acceptable’ odds is synonymous with ‘fair-
or-favourable’ odds. After all, one would accept bets not only at one’s fair odds, but
also at better odds. Ramsey again:

By proposing a bet on p we give the subject a possible course of action from which so much
extra good will result to him if p is true and so much extra bad if p is false. Supposing the
bet to be in goods and bads instead of in money, he will take a bet at any better odds than
those corresponding to his state of belief; in fact his state of belief is measured by the odds
he will just take; . . . (1980/1931, 37).

It was the subsequent authors who restricted the Dutch Book argument solely to fair
odds. In doing so, they sold it short.12

2.2 ‘The Dutch Book Argument Merely Dramatizes
an Inconsistency in the Attitudes of an Agent Whose
Credences Violate Probability Theory’

So is it a happy ending for the Dutch Book argument after all? Unfortunately, I think
not. What exactly does the argument show? Taken literally, it is supposed to show
that an incoherent agent is susceptible to losing money. Understood this naı̈ve way,
it is easily rebutted—as various authors have noted, the agent can just refuse to
bet when approached by a Dutch bookie. To put the old point a novel way, in
that case the susceptibility is masked. The underlying basis for the agent’s betting

11 Skyrms (1986) was on the list, but not Skyrms (1980, 1984, or 1987). For example, in his
(1987) he notes that an agent will buy or sell contracts ‘at what he considers the fair price or
better’ (p. 225), and in his (1980), he explicitly states the Dutch Book theorem in terms of ‘fair or
favourable’ bets (p. 118). Shimony (1955), Levi (1974), Kyburg (1978), Armendt (1993), Douven
(1999), and Vineberg (2001) also leave open that the bets concerned are regarded as favourable. It
is hard to tell whether certain other writers on the Dutch Book argument belong on the list or not
(e.g., Ryder 1981, Moore 1983).
12 This ends the sub-section that was lifted from my (2005); the remainder of this paper is again
new.
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dispositions—her relevant mental state—is unchanged, but she protects them from
ever being triggered. Note well: she protects them; this is not even a case of masking
that is hostage to external influences (as are some of the well-known examples in
the dispositions literature).13 The protection is due to another disposition of her own.
Nor need we necessarily look far to find the masking disposition. It may simply be
her disposition to do the maths, to notice the net loss that taking all the bets would
accrue, and thus to shun them. Her disposition to take the bets because she finds
them individually favourable is masked by her disposition to refuse them because
she can see that they collectively lose. Now, you may say that she has inconsistent
dispositions, to accept the bets under one mode of presentation and to shun them un-
der another, and that she is ipso facto irrational. That’s surely a better interpretation
of the lesson of the Dutch Book argument, and we are about to consider it properly.
But here I am merely rebutting the naı̈ve interpretation that takes literally the lesson
of the monetary losses.

So let’s consider the more promising interpretation of the argument, also orig-
inating with Ramsey, which regards the susceptibility as symptomatic of a deeper
defect. Recall his famous line: ‘If anyone’s mental condition violated these laws [of
rational preference, leading to the axioms of probability], his choice would depend
on the precise form in which the options were offered him, which would be absurd.’
Authors such as Skyrms (1984) and Armendt (1993) regard this is as the real insight
of the Dutch Book argument: an agent who violates probability theory would be
guilty of a kind of double-think, ‘divided-mind inconsistency’ in Armendt’s phrase.
Such authors downplay the stories of mercenary Dutch guys and sure monetary
losses; these are said merely to dramatize that underlying state of inconsistency.
Skyrms describes the Dutch Book theorem as ‘a striking corollary’ of an underlying
inconsistency inherent in violating the probability axioms (1984, 22). The inconsis-
tency is apparently one of regarding a particular set of bets both as fair (since they
are regarded individually as fair) and as unfair (since they collectively yield a sure
loss).

Notice that put this way, there is no need to replace talk of ‘fair’ bets with ‘fair-
or-favourable’ bets, the way there was before. But we could do so: the inconsistency
equally lies in regarding the same set of bets both as fair-or-favourable and as not
fair-or-favourable. Moreover, there is nothing essentially Dutch about the argument,
interpreted this way. The Czech Book theorem is an equally striking corollary of
the same underlying inconsistency: regarding another set of bets both as fair (since
they are regarded individually as fair) and as better-than-fair (since they collectively
yield a sure gain). To be sure, guaranteed losses may be more dramatic than guar-
anteed gains, but the associated double-think is equally bad.

So now the real argument for probabilism seems not to stem from the Dutch
Book theorem (which is merely a ‘corollary’), but from another putative theorem,
apparently more fundamental. I take it to be this: If you violate probability theory,

13 I thank Jonathan Schaffer for pointing out the distinction between internally-based and
externally-based masking.
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there exists a set of propositions (involving bets) to which you have inconsistent
attitudes. Either the Dutch Book bets or the Czech Book bets could be used to estab-
lish the existence claim. This again is a conditional with an existentially quantified
consequent. Now I don’t have a mirror-image theorem to place alongside it, in order
to undercut it.

However, nor have I seen the converse of this more fundamental putative theo-
rem; still less am I aware of anyone claiming to have proved it. It seems to be a
live possibility that if you obey probability theory, then there also exists a set of
propositions to which you have inconsistent attitudes—not inconsistent in the sense
of being Dutch-bookable (the converse Dutch Book theorem assures us of this),
but inconsistent nonetheless.14 That is, I have not seen any argument that in virtue
of avoiding the inconsistency of Dutch-bookability, at least some coherent agents
are guaranteed to avoid all inconsistency. Without a proof of this further claim, it
seems an open question whether probabilistically coherent agents might also have
inconsistent attitudes (somewhere or other). Maybe non-extremal credences, prob-
abilistic or not, necessarily manifest a kind of inconsistency. I don’t believe that,
but I don’t see how the Dutch Book argument rules it out. The argument needs
to rule it out in order to preempt the possibility of a partners-in-crime defence
of non-probabilism: the possibility that we are all epistemically damned whatever
we do. Indeed, if all intermediate credences were ‘inconsistent’ in this sense, then
this sense of inconsistency would not seem so bad after all. I said earlier that the
original Dutch Book argument, understood in terms of monetary losses, is invalid;
the converse Dutch Book theorem came to its rescue (even though this theorem is
surprisingly neglected). Now I am saying that the Ramsey-style Dutch Book argu-
ment, understood as dramatizing an inconsistency in attitudes, is similarly invalid; it
remains to be seen if the converse of the putative theorem (italicized in the previous
paragraph) will come to its rescue.

I say ‘putative theorem’ because its status as a theorem is less clear than before—
this status is disputed by various authors. Schick (1986) and Maher (1993) question
the inconsistency of the attitudes at issue regarding the additivity axiom. They reject
the ‘package principle’, which requires one to value a set of bets at the sum of the
values of the bets taken individually, or less specifically, to regard a set of bets as fair
if one regards each bet individually as fair. The package principle seems especially
problematic when there are interference effects between the bets in a package—e.g.
the placement of one bet is correlated with the outcome of another. For example, you
may be very confident that your partner is happy: you will pay 90 cents for a bet that
pays a dollar if so. You may be fairly confident that the Democrats will win the next
election: you will pay 60 cents for a bet that pays a dollar if they win. So by the
package principle, you should be prepared to pay $1.50 for both bets. But you also
know that your partner hates you betting on political matters and inevitably finds

14 I suppose you are safe from such inconsistency if you obey probability theory trivially with a
consistent assignment of 1’s and 0’s, corresponding to a consistent truth-value assignment. Let us
confine our attention, then, to non-trivial probability assignments, which after all are the lifeblood
of probabilism.
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out as soon as you do so. So you are bound to lose the partner-is-happy bet if you
package it with the Democrats bet: you are certain that you will win a maximum of
a dollar, so $1.50 is a bad price for the package. This is just a variation on a problem
with the betting interpretation in its own right: placing a bet on X can change one’s
probability for X. Still, this variation only arises for packages, not single bets.

Or consider an agent who attaches extra value to a package in which risky gam-
bles cancel each other, compared to the gambles assessed individually. Buying in-
surance can be a rational instance of this. Suppose I am forced to bet on a coin
toss. I may attach extra value to a package that includes both a bet on Heads and
an equal bet on Tails compared to the individual bets, if I especially want to avoid
the prospect of loss. We see a similar pattern of preferences in the so-called Al-
lais ‘paradox’.15 Granted, such preferences cannot be rationalized by the lights of
expected utility theory. Yet arguably they can be rational. Moreover, the package
principle is even more problematic for infinite packages—see Arntzenius, Elga and
Hawthorne (2004)—so the Dutch Book argument for countable additivity is corre-
spondingly even more problematic.

This leaves us with a dilemma for the Dutch Book argument for probabilism. Ei-
ther we interpret its cautionary tale of monetary losses literally, or not. In the former
case, the moral of the tale seems to be false: an incoherent agent can avoid those
losses simply by masking her disposition to accept the relevant bets with another
disposition to reject them. In the latter case, one may question the putative theorem
when it is stated in terms of ‘inconsistent’ attitudes, and there seems to be no con-
verse theorem to guarantee that at least some probabilists avoid such inconsistency.
Either way, the argument for probabilism is invalid.

3 Representation Theorem-Based Arguments

The centerpiece of the argument for probabilism from representation theorems is
some version of the following theorem, which I will not dispute.

Representation Theorem

If all your preferences satisfy certain ‘rationality’ conditions, then there exists a repre-
sentation of you as an expected utility maximizer, relative to some probability and utility
function.

(The ‘rationality’ constraints on preferences are transitivity, connectedness, inde-
pendence, and so on.) The contrapositive gets us closer to the template that I detect
in all the arguments for probabilism:

If there does not exist a representation of you as an expected utility maximizer, relative to
some probability and utility function, then there exist preferences of yours that fail to satisfy
certain ‘rationality’ conditions.

15 Thanks here to Kenny Easwaran.
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Focusing on the probabilistic aspect of the antecedent, we have a corollary that fits
the conditional-with-an-existentially-quantified-consequent form:

If your credences cannot be represented with a probability function, then there exist prefer-
ences of yours that fail to satisfy certain ‘rationality’ conditions.

The antecedent involves a violation of the probability calculus; the consequent states
the existence of a putatively undesirable thing that follows: some violation of the
‘rationality’ conditions on preferences. In short, if your credences cannot be repre-
sented with a probability function, then you are irrational.

I will dispute that probabilism follows from the original theorem, and a fortiori
that it follows from the corollary. For note that probabilism is, in part, the stronger
thesis that if your credences violate probability theory, then you are irrational (a
restatement of what I called tenet (2) at the outset). It is clearly a stronger thesis
than the corollary, because its antecedent is weaker: while ‘your credences cannot be
represented with a probability function’ entails ‘your credences violate probability
theory’, the converse entailment does not hold. For it is possible that your credences
violate probability theory, and that nonetheless they can be represented with a prob-
ability function. Merely being representable some way or other is cheap, as we
will see; it’s more demanding actually to be that way. Said another way: it’s one
thing to act as if you have credences that obey probability theory, another thing to
actually have credences that obey probability theory. Indeed, probabilism does not
even follow from the theorem coupled with the premises that Maher adds in his
meticulous presentation of his argument for probabilism, as we will also see.

The concern is that for all we know, the mere possibility of representing you one
way or another might have less force than we want; your acting as if the representa-
tion is true of you does not make it true of you. To make this concern vivid, suppose
that I represent your preferences with Voodooism. My voodoo theory says that there
are warring voodoo spirits inside you. When you prefer A to B, then there are more
A-favouring spirits inside you than B-favouring spirits. I interpret all of the usual ra-
tionality axioms in voodoo terms. Transitivity: if you have more A-favouring spirits
than B-favouring spirits, and more B-favouring spirits that C-favouring spirits, then
you have more A-favouring spirits than C-favouring spirits. Connectedness: any two
options can be compared in the number of their favouring spirits. And so on. I then
‘prove’ Voodooism: if your preferences obey the usual rationality axioms, then there
exists a Voodoo representation of you. That is, you act as if there are warring voodoo
spirits inside you in conformity with Voodooism. Conclusion: rationality requires
you to have warring Voodoo spirits in you. Not a happy result.

Hence there is a need to bridge the gap between the possibility of representing
a rational agent a particular way, and this representation somehow being correct.
Maher, among others, attempts to bridge this gap. I will focus on his presentation,
because he gives one of the most careful formulations of the argument. But I suspect
my objections will carry over to any version of the argument that infers the rational
obligation of having credences that are probabilities from the mere representability
of an agent with preferences obeying certain axioms.
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Maher claims that the expected utility representation is privileged, superior to
rival representations. First, he assumes what I will call interpretivism:

an attribution of probabilities and utilities is correct just in case it is part of an overall
interpretation of the person’s preferences that makes sufficiently good sense of them and
better sense than any competing interpretation does (1993, 9).

Then he maintains that, when available, an expected utility interpretation is a perfect
interpretation:

if a person’s preferences all maximize expected utility relative to some p and u, then it
provides a perfect interpretation of the person’s preferences to say that p and u are the
person’s probability and utility functions.

He goes on to give the argument from the representation theorems:

. . . we can show that rational persons have probability and utility functions if we can show
that rational persons have preferences that maximize expected utility relative to some such
functions. An argument to this effect is provided by representation theorems for Bayesian
decision theory.

He then states the core of these theorems:

These theorems show that if a person’s preferences satisfy certain putatively reasonable
qualitative conditions, then those preferences are indeed representable as maximizing ex-
pected utility relative to some probability and utility functions (1993, 9).

We may summarize this argument as follows:

Representation Theorem Argument

1. (Interpretivism) You have a particular probability and utility function iff attribut-
ing them to you provides an interpretation that makes:

(i) sufficiently good sense of your preferences and
(ii) better sense than any competing interpretation.

2. (Perfect interpretation) Any maximizing-expected-utility interpretation is a per-
fect interpretation (when it fits your preferences).

3. (Representation theorem) If you satisfy certain constraints on preferences (tran-
sitivity, connectedness, etc.), then you can be interpreted as maximizing expected
utility.

4. The constraints on preferences assumed in the representation theorem of 3 are
rationality constraints.

Therefore (generalizing what has been established about ‘you’ to ‘all rational
persons’),

Conclusion: [All] rational persons have probability and utility functions (1993, 9)

The conclusion is probabilism, and a bit more, what we might call utilitism.
According to Premise 1, a necessary condition for you to have a particular proba-

bility and utility function is their providing an interpretation of you that is better than
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any competing interpretation. Suppose we grant that the expected utility representa-
tion is a perfect interpretation when it is available. To validly infer probabilism, we
need also to show that no other interpretation is as good. Perhaps this can be done,
but nothing in Maher’s argument does it. For all that he has said, there are other
perfect interpretations out there (whatever that means).

Probabilism would arguably follow from the representation theorem if
all representations of the preference-axiom-abiding agent were probabilistic
representations.16 Alas, this is not the case, for the following ‘mirror-image’ the-
orem is equally true:

If all your preferences satisfy the same ‘rationality’ conditions, then you can be interpreted
as maximizing non-expected utility, some rival to expected utility, and in particular as hav-
ing credences that violate probability theory.

How can this be? The idea is that the rival representation compensates for your cre-
dences’ violation of probability theory with some non-standard rule for combining
your credences with your utilities. Zynda (2000) proves this mirror-image theorem.
As he shows, if you obey the usual preference axioms, you can be represented with
a sub-additive belief function, and a corresponding combination rule. For all that
Maher’s argument shows, this rival interpretation may also be ‘perfect’.

According to probabilism, rationality requires an agent’s credences to obey the
probability calculus. We have rival ways of representing an agent whose prefer-
ences obey the preference axioms; which of these representations correspond to her
credences? In particular, why should we privilege the probabilistic representation?
Well, there may be reasons. Perhaps it is favoured by considerations of simplic-
ity, fertility, consilience, or some other theoretical virtue or combination thereof—
although good luck trying to clinch the case for probabilism by invoking these rather
vague and ill-understood notions. And it is not clear that these considerations settle
the issue of what rational credences are, as opposed to how they can be fruitfully
modelled. (See Eriksson and Hájek 2007 for further discussion.) It seems to be a
further step, and a dubious one at that, to reify the theoretical entities in our favourite
model of credences.

It might be objected that the ‘rival’ representations are not really rival. Rather,
the objection goes, they form a family of isomorphic representations, and choosing
among them is merely a matter of convention; whenever there is a probabilistic
representation, all of these other representations impose exactly the same laws on
rational opinion, just differently expressed.17 First, a perhaps flat-footed reply: I un-
derstand ‘probabilism’ to be defined via Kolmogorov’s axiomatization of probabil-
ity. So, for example, a non-additive measure is not a probability function, so under-
stood. That said, one might want to have a broader understanding of ‘probabilism’,
encompassing any transformation of a probability function and a correspondingly
transformed combination rule for utility that yields the same ordinal representation

16 Only arguably. In fact, I think that it does not follow, because the preference axioms are not all
rationality constraints.
17 I thank Hartry Field and Jim Joyce for independently offering versions of this objection to me.
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of preferences. If that is what is intended, then probabilism should be stated in those
terms, and not in the flat-footed way that is entirely standard. We would then want to
reexamine the arguments for probabilism in that light—presumably with a revised
account of ‘credence’ in terms of betting, a revised statement of what ‘calibration’
consists in, and revised axioms on ‘gradational accuracy’. But I am getting ahead of
myself—calibration, and gradational accuracy are just around the corner!

In any case, I believe that my main point stands, even with a more liberal under-
standing of ‘probabilism’: the representation theorem argument is invalid. We have
the theorem:

if you obey the preference axioms, then you are representable by a credence function that
is a suitable transformation of a probability function.

But to be able validly to infer probabilism in a broad sense, we need the further
theorem:

if you obey the preference axioms, then you are not also representable by a credence func-
tion that is not a suitable transformation of a probability function.

It seems that the status of this is at best open at the moment. The representation
theorem argument for probabilism remains invalid until the case is closed in favour
of the further theorem.

4 The Calibration Argument

The centerpiece of the argument is the following theorem—another conditional with
an existentially quantified consequent—which I will not dispute.

Calibration Theorem

If c violates the laws of probability then there is a probability function c+ that is better
calibrated than c under every logically consistent assignment of truth-values to propositions.

Calibration is a measure of how well credences match corresponding relative fre-
quencies. Suppose that you assign probabilities to some sequence of propositions—
for example, each night you assign a probability to it raining the following day, over
a period of a year. Your assignments are (perfectly) calibrated if proportion p of the
propositions to which you assigned probability p are true, for all p. In the example,
you are perfectly calibrated if it rained on 10% of the days to which you assigned
probability 0.1, on 75% of the days to which you assigned probability 0.75, and so
on. More generally, we can measure how well calibrated your assignments are, even
if they fall short of perfection.

The clincher for probabilism is supposed to be the calibration theorem. If you
are incoherent, then you can figure out a priori that you could be better calibrated
by being coherent instead. Perfect calibration, moreover, is supposed to be A Good
Thing, and a credence function that is better calibrated than another one is thereby
supposed to be superior in at least one important respect. Thus, the argument con-
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cludes, you should be coherent. See Joyce (2004) for a good exposition of this style
of argument for probabilism (although he does not endorse it himself).

I argue elsewhere (MS) that perfect calibration may be A Rather Bad Thing,
as does Seidenfeld (1985) and Joyce (1998). More tellingly, the argument, so pre-
sented, is invalid.

I will not quarrel with the calibration theorem. Nor should the probabilist quarrel
with the following ‘mirror-image’ theorem:

If c violates the laws of probability then there is a non-probability function c+ that is better
calibrated than c under every logically consistent assignment of truth-values to propositions.

Think of c+ as being more coherent than c, but not entirely coherent. If c assigns,
say, 0.2 to rain and 0.7 to not-rain, then an example of such a c+ is a function that
assigns 0.2 to rain and 0.75 to not-rain. If you are incoherent, then you know a priori
that you could be better calibrated by staying in coherent, but in some other way.18

So as it stands, the calibration argument is invalid. Given that you can improve
your calibration situation either by moving to some probability function or by mov-
ing to some other non-probability function, why do you have an incentive to move
to a probability function? The answer, I suppose, is this. If you moved to a non-
probability function, you would only recreate your original predicament: you would
know a priori that you could do better by moving to a probability function. Now
again, you could also do better by moving to yet another non-probability function.
But the idea is that moving to a non-probability function will give you no rest; it
can never be a stable stopping point. Still, the argument for probabilism is invalid as
it stands. To shore it up, we had better be convinced that at least some probability
functions are stable stopping points.

The following converse theorem would do the job:

If c obeys the laws of probability then there is not another function c+ that is better calibrated
than c under every logically consistent assignment of truth-values to propositions.

I offer the following near-trivial proof: Let P be a probability function. P can be per-
fectly calibrated—just consider a world where the relative frequencies are exactly

18 To be sure, the mirror-image theorem gives you no advice as to which non-probability function
you should move to. But nor did the calibration theorem give you advice as to which probability
function you should move to. Moreover, for all the theorem tells us, you can worsen your calibra-
tion index, come what may, by moving from a non-probability function to a ‘wrong’ probability
function. Here’s an analogy (adapted from Aaron Bronfman and Jim Joyce, personal communi-
cation). Suppose that you want to live in the best city that you can, and you currently live in an
American city. I tell you that for each American city, there is a better Australian city. (I happen
to believe this.) It does not follow that you should move to Australia. If you do not know which
Australian city or cities are better than yours, moving to Australia might be a backward step. You
might choose Coober Pedy.

That said, the calibration argument may still be probative, still diagnostic of a defect in an
incoherent agent’s credences. To be sure, she is left only with the general admonition to become co-
herent, without any advice on how specifically to do so. Nevertheless, the admonition is non-trivial.
Compare: when an agent has inconsistent beliefs, logic may still be probative, still diagnostic of a
defect in them. To be sure, she is left only with the general admonition to become coherent, without
any advice on how specifically to do so. Nevertheless, the admonition is non-trivial.
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as P predicts, as required by calibration. (If P assigns some irrational probabilities,
then the world will have to provide infinite sequences of the relevant trials, and cal-
ibration will involve agreement with limiting relative frequencies.) At that world,
no other function can be better calibrated than P. Thus, P cannot be beaten by
some other function, come what may, in its calibration index—for short, P is not
calibration-dominated. Putting this result together with the calibration theorem,
we have the result that probability functions are exactly the functions that are not
calibration-dominated.

The original calibration argument for probabilism, as stated above, was invalid,
but I think it can be made valid by the addition of this theorem. However, this is not
yet a happy ending for calibrationists. If you are a fan of calibration, surely what
matters is being well calibrated in the actual world, and being coherent does not
guarantee that.19 A coherent weather forecaster who is wildly out of step with the
actual relative frequencies can hardly plead that at least he is perfectly in step with
the relative frequencies in some other possible world! (Compare: someone who has
consistent but wildly false beliefs can hardly plead that at least his beliefs are true
in some other possible world!)

5 The Gradational Accuracy Argument

Joyce (1998) rightly laments the fact that ‘probabilists have tended to pay little heed
to the one aspect of partial beliefs that would be of most interest to epistemologists:
namely, their role in representing the world’s state’ (576). And he goes on to say: ‘I
mean to alter this situation by first giving an account of what it means for a system
of partial beliefs to accurately represent the world, and then explaining why having
beliefs that obey the laws of probability contributes to the basic epistemic goal of
accuracy.’

The centerpiece of his ingenious (1998) argument is the following theorem—yet
another conditional with an existentially quantified consequent—which I will not
dispute.

Gradational Accuracy Theorem

if c violates the laws of probability then there is a probability function c+ that is strictly more
accurate than c under every logically consistent assignment of truth-values to propositions
(Joyce 2004, 143).

19 Seidenfeld (1985) has a valuable discussion of a theorem due to Pratt and rediscovered by Dawid
that may seem to yield the desired result. Its upshot is that if an agent is probabilistically coherent,
and updates by conditionalization after each trial on feedback information about the result of that
trial, then in the limit calibration is achieved almost surely (according to her own credences). This
is an important result, but it does not speak to the case of an agent who is coherent but who has
not updated on such an infinite sequence of feedback information, and indeed who may never do
so (e.g., because she never gets such information).
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Joyce gives the following account of the argument. It

relates probabilistic consistency to the accuracy of graded beliefs. The strategy here in-
volves laying down a set of axiomatic constraints that any reasonable gauge of accuracy
for confidence measures should satisfy, and then showing that probabilistically inconsistent
measures are always less accurate than they need to be (2004, 142).

Saying that incoherent measures are ‘always less accurate than they need to be’
suggests that they are always unnecessarily inaccurate—that they always could be
more accurate. But this would not distinguish incoherent measures from coherent
measures that assume non-extremal values—that is, coherent measures that are not
entirely opinionated. After all, such a measure could be more accurate: an opin-
ionated measure that assigns 1 to the truth and 0 to all false alternatives to it, re-
spectively, is more accurate. Indeed, if a coherent measure P assumes non-extremal
values, then necessarily there exists another measure that is more accurate than P:
in each possible world there exists such a measure, namely an opinionated measure
that gets all the truth values right in that world. More disturbingly, if a coherent
measure P assumes non-extremal values, then necessarily there exists an incoherent
measure that is more accurate than P: for example, one that raises P’s non-extremal
probability for the truth to 1, while leaving its probabilities for falsehoods where
they are. (The coherent assignment <1/2, 1/2> for the outcomes of a coin toss,
<Heads, Tails>, is less accurate than the incoherent assignment <1, 1/2> in a world
where the coin lands Heads, and it is less accurate than the incoherent assignment
<1/2, 1> in a world where the coin lands Tails.) But this had better not be an
argument against the rationality of having a coherent intermediate-valued credence
function—that would hardly be good news for probabilism!

The reversal of quantifiers in Joyce’s theorem appears to save the day for proba-
bilism. It isn’t merely that:

if your credences violate probability theory, in each possible world there exists a probability
function that is more accurate than your credences.

More than that, by his theorem we have that:

if your credences violate probability theory, there exists a probability function such that in
each possible world, it is more accurate than your credences.

The key is that the same probability function outperforms your credences in each
possible world, if they are incoherent. Thus, by the lights of gradational accuracy
you would have nothing to lose and everything to gain by shifting to that probability
function. So far, so good. But we had better be convinced, then, that at least some co-
herent intermediate-valued credences do not face the same predicament—that they
cannot be outperformed in each possible world by a single function (probability, or
otherwise). Well, let’s see.

With the constraints on reasonable gauges of accuracy in place, Joyce (1998)
proves the gradational accuracy theorem. He concludes: ‘To the extent that one ac-
cepts the axioms, this shows that the demand for probabilistic consistency follows
from the purely epistemic requirement to hold beliefs that accurately represent the
world’ (2004, 143).
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Let us agree for now that the axioms are acceptable. (Maher 2003 doesn’t.) I have
already agreed that the theorem is correct. But I do not agree that the demand for
probabilistic consistency follows.

Again, we have a ‘mirror-image’ theorem:

if c violates the laws of probability then there is a non-probability function c+ that is
strictly more accurate than c under every logically consistent assignment of truth-values to
propositions.

(As with the corresponding calibration theorem, the trick here is to make c+ less
incoherent than c, but incoherent nonetheless.) If you are incoherent, then your be-
liefs could be made more accurate by moving to another incoherent function. Why,
then, are you under any rational obligation to move instead to a coherent function?
The reasoning, I gather, will be much as it was in our discussion of the calibration
theorem. Stopping at a non-probability function will give you no rest, because by
another application of the gradational accuracy theorem, you will again be able to
do better by moving to a probability function. To be sure, you will also be able to
do better by moving to yet another non-probability function. But a non-probability
function can never be a stable stopping point: it will always be strictly accuracy-
dominated by some other function.20

I contend that Joyce’s (1998) argument is invalid as it stands. As before, to shore
it up we had better be convinced that at least some probability functions are stable
stopping points. The following converse theorem would do the job:

If c obeys the laws of probability then there is not another function c+ that is strictly more
accurate than c under every logically consistent assignment of truth-values to propositions.

Things have moved quickly in this area recently. As it turns out, Joyce (this volume)
reports some results (by Lindley and Lieb et al.), and he proves a very elegant result
of his own, that entail this theorem. In these results, constraints of varying strength
are imposed on the ‘reasonable’ gauges of accuracy that will ‘score’ credence func-
tions. The weakest such constraints on such scoring rules that Joyce considers ap-
pear in his paper’s final theorem.21

To understand it, we need some terminology and background, following Joyce.
Consider a finite partition X = 〈X1, X2, . . . , X N 〉 of propositions. Our agent’s de-
grees of belief are represented by a credence function b (not necessarily a prob-
ability function) that assigns a real number b(X) in [0, 1] to each X ∈ X . The
N-dimensional cube BX = [0, 1]N then contains all credence functions defined on
X . P X is the set of all probability functions defined on X , which properly includes
the set VX of all consistent truth-value assignments to elements of X—I will call
these worlds. We may define a scoring rule S on X which, for each b in BX and
v in V X , assigns a real number S(b, v) ≥ 0 measuring the epistemic disutility of

20 I thank Selim Berker and Justin Fisher for independently suggesting this point. It inspired the
similar point in the previous section, too.
21 I had completed a draft of this paper before I had a chance to see Joyce’s new article, with its
new theorem. I thank him for sending it to me.
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holding the credences b when the truth-values across X are given by v. As in golf,
higher scores are worse! In the special case in which accuracy is the only dimension
along which epistemic disutility is measured, S(b, v) measures the inaccuracy of
b when the truth-values are given by v. Say that a credence function b in BX is
strongly dominated by b∗ according to S if S(b, v) > S(b∗, v) for every world v,
and say that b is weakly dominated by b∗ according to S if S(b, v) ≥ S(b∗, v) for
every v and S(b, v) > S(b∗, v) for some v. In English: b is weakly dominated by b∗

according to S iff b scores at least as badly as b∗ in every world, and strictly worse
in at least one world, according to S. Say that b is weakly dominated according to S
if there is some function b∗ such that b is weakly dominated by b∗ according to S.

Being weakly dominated according to a reasonable scoring rule is an undesirable
property of a function: holding that function is apparently precluded, since there is
another function that is guaranteed to do no worse, and that could do better, by S’s
lights.22 The constraint of coherent admissibility on a reasonable scoring rule S is
that S will never attribute the undesirable property of being weakly dominated to a
coherent credence function:

Coherent Admissibility. No coherent credence function is weakly dominated according to S.

The constraint of truth-directedness on S is that S should favour a credence function
over another at a world if the former’s assignments are uniformly closer than the
latter’s to the truth values in that world:

Truth Directedness. If b’s assignments are uniformly closer than c’s to the truth values
according to v, then S(b, v) < S(c, v).

Now we can state the final theorem of Joyce’s paper (this volume):

Theorem. Let S be a scoring rule defined on a partition X = 〈Xn〉. If S satisfies TRUTH
DIRECTEDNESS and COHERENT ADMISSIBILITY, and if S(b, v) is finite and contin-
uous for all b in BX and v ∈ V X , then

(i). every incoherent credence function is strongly dominated according to S and,
moreover, is strongly dominated by some coherent credence function, and

(ii). no coherent credence function is weakly dominated according to S.

(i). is the counterpart to the original gradational accuracy theorem, and it is strik-
ing that the domination of incoherent functions follows from the non-domination of
coherent functions, and seemingly weak further assumptions. (ii). entails the con-
verse theorem that I have contended was missing from Joyce’s (1998) argument.

So does this lay the matter to rest, and give us a compelling argument for prob-
abilism? Perhaps not. For (ii). just is the constraint of Coherent Admissibility on
scoring rules—the rules have been pre-selected to ensure that they favour coherent

22 I say ‘apparently’, because sub-optimal options are sometimes acceptable. Consider cases in
which there are infinitely many options, with no maximal option—e.g. the longer one postpones
the opening of Pollock’s (1983) ‘EverBetter wine’, the better it gets. And a satisficing conception
of what rationality demands might permit sub-optimality even when optimality can be achieved.
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credence functions. In short, Coherent Admissibility is question-begging with re-
spect to the converse theorem. (By contrast, the other constraints of Truth Direct-
edness, continuity, and finiteness are not.) Another way to see this is to introduce
into the debate Mr. Incoherent, who insists that credences are rationally required to
violate the probability calculus. Imagine him imposing the mirror-image constraint
on scoring rules:

Incoherent Admissibility. No incoherent credence function is weakly dominated according
to S.

Then (i). would be rendered false, and of course the mirror-image of (ii). would
be trivially true, since it just is the constraint of Incoherent Admissibility. From a
neutral standpoint, which prejudges the issue in favour of neither coherence nor
incoherence, offhand it would appear that Incoherent Admissibility is on all fours
with Coherent Admissibility.

So how would Joyce convince Mr. Incoherent that Coherent Admissibility is the
correct constraint to impose, and not Incoherent Admissibility, using premises that
they ought to share? Joyce offers the following argument that any coherent credence
function can be rationally held (under suitable conditions), and that this in turn limits
which scoring rules are acceptable. He maintains that it is ‘plausible’ that

there are conditions under which any coherent credence function can be rationally held. . .

After all, for any assignment of probabilities 〈pn〉 to 〈Xn〉 it seems that a believer could, in
principle, have evidence that justifies her in thinking that each Xn has pn as its objective
chance. Moreover, this could exhaust her information about X’s truth-value. According to
the ‘Principal Principle’ of Lewis (1980), someone who knows that the objective chance of
Xn is pn , and who does not possess any additional information that is relevant to questions
about Xn’s truth-value, should have pn as her credence for Xn . Thus, 〈pn〉 is the rational
credence function for the person to hold under these conditions. In light of this, one might
argue, the following restriction on scoring rules should hold:

Minimal Coherence: An epistemic scoring rule should never preclude, a priori, the holding
of any coherent set of credences.

(263–297, this volume).
So we have here a putative reason to impose Coherent Admissibility on a rea-

sonable scoring rule S. It obviates the putatively unacceptable situation in which a
coherent credence function is precluded, insofar as it is weakly dominated according
to S—unacceptable, since for any coherent assignment of credences, one could have
evidence that it corresponds to the objective chances. To complete the argument, we
apparently have no parallel reason for imposing Incoherent Admissibility on S, for
one could not have evidence that an incoherent assignment of credences corresponds
to the objective chances.

However, is not clear to me that any assignment of probabilities could correspond
to the objective chances, still less that one could have evidence for any particular
assignment that this is the case. There may necessarily be chance gaps to which
some other probability functions could nevertheless assign values. For example,
propositions about the chance function (at a time) might be ‘blind spots’ to the
function itself but could be assigned probabilities by some other function. Perhaps
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there are no higher-order chances, such as the chance of: �the chance of Heads is
1/2¬, even though �the chance of Heads is 1/2¬ is a proposition, and thus fit to
be assigned a value by some probability functions.23 Or perhaps such higher-order
chances are defined, but they are necessarily 0 or 1; and yet some other probability
function could easily assign an intermediate value to ‘the chance of Heads is 1/2’.

Moreover, it is clear to me that not any coherent credence function can be ratio-
nally held. For starters, any coherent credence function that violates the Principal
Principle cannot be—and presumably Joyce agrees, given his appeal to it in his
very argument. Indeed, if there are any constraints on rational credences that go
beyond the basic probability calculus, then coherent violations thereof are counter-
examples to Joyce’s opening claim in the quoted passage. Choose your favourite
such constraint—the Reflection Principle, or regularity, or the principle of indiffer-
ence, or what have you. My own favourite is a prohibition on Moore paradoxical
credences, such as my assigning high credence to ‘p & my credence in p is low’ or
to ‘p & I don’t assign high credence to p’. If epistemically rational credence is more
demanding than coherent credence, then there will be coherent credences that are
rationally precluded. More power to an epistemic scoring rule, I say, if it precludes
the holding of them!

So I am not persuaded by this defence of the Coherent Admissibility constraint,
as stated. And to the extent that one is moved by this defence, it would seem to
provide a more direct argument for coherence—from the coherence of chances and
the Principal Principle—without any appeal to scoring rules.

Now, perhaps a slight weakening of the constraint can be justified along the lines
of Joyce’s argument. After all, some of the problematic cases that I raised involved
higher-order probability assignments of one kind or another (higher order chances,
the Principal Principle, the Reflection Principle, and the prohibition on Moore para-
doxical credences), and the others (regularity and the principle of indifference) are
quite controversial. So perhaps Joyce’s argument goes through if we restrict our
attention to partitions 〈Xn〉 of probability-free propositions, and to purely first-order
probability assignments to them.24 Then it seems more plausible that any coherent
assignment of credences across such a partition should be admissible, and that a
scoring rule that ever judges such an assignment to be weakly dominated is unrea-
sonable.

The trouble is that then Joyce would seem to lose his argument for probabilism
tout court, as opposed to a watered-down version of it. Probabilism says that all
credences are rationally required to conform to the probability calculus—not merely
that credences in probability-free propositions are so required. Consider, then, a cre-
dence function that is coherent over probability-free propositions, but that is wildly
incoherent over higher-order propositions. It is obviously defective by probabilist
lights, but the concern is that its defect will go undetected by a scoring rule that is
confined to probability-free propositions. And how probative are scoring rules that

23 Thanks here to Kenny Easwaran and (independently) Michael Titelbaum.
24 Thanks here to Jim Joyce and (independently) Kenny Easwaran.
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are so confined, when an agent’s total epistemic state is not so confined, and should
be judged in its entirety?

6 Conclusion

I began by confessing my schizophrenic attitude to probabilism. I have argued that
the canonical statements of the major arguments for it have needed some repairing.
Why, then, am I sympathetic to it at the end of the day, or at least at the end of some
days? Partly because I think that to some extent the arguments can be repaired,
and I have canvassed some ways in which this can be done, although to be sure, I
think that some other problems remain. To the extent that they can be repaired, they
provide a kind of triangulation to probabilism. And once we get to probabilism, it
provides us with many fruits. Above all, it forms the basis of a unified theory of
decision and confirmation—it combines seamlessly with utility theory to provide a
fully general theory of rational action, and it illuminates or even resolves various
hoary paradoxes in confirmation theory.25 I consider that to be the best argument for
probabilism. Sometimes, though, I wonder whether it is good enough.

So on Mondays, Wednesdays and Fridays, I call myself a probabilist. But as I
write these words, today is Saturday.26
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Döring, Frank (2000), “Conditional Probability and Dutch Books”, Philosophy of Science 67
(September), 39, 1–409.

Douven, Igor (1999), “Inference to the Best Explanation Made Coherent”, Philosophy of Science
66 (Proceedings), S424–S435.

Earman, John (1992), Bayes or Bust?, Cambridge, MA: MIT Press.
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Diachronic Coherence and Radical Probabilism

Brian Skyrms

1 Introduction

Richard Jeffrey advocated a flexible theory of personal probability that is open to
all sorts of learning situations. He opposed what he saw as the use of a condi-
tioning model as an epistemological straightjacket in the work of Clarence Irving
Lewis (1946). Lewis’ dictum “No probability without certainty” was based on the
idea that probabilities must be updated by conditioning on the evidence. Jeffrey’s
probability kinematics – now also known as Jeffrey Conditioning – provided an
alternative. See Jeffrey (1957, 1965, 1968).

It was not meant to be the only alternative. He articulated a philosophy of rad-
ical probabilism that held the door open to modeling all sorts of epistemological
situations.

In this spirit, I will look at diachronic coherence from a point of view that embod-
ies minimal epistemological assumptions, and then add constraints little by little.

2 Arbitrage

There is a close connection between Bayesian coherence arguments and the theory
of arbitrage. See Shin (1992).

Suppose we have a market in which a finite number1 of assets are bought and
sold. Assets can be anything – stocks and bonds, pigs and chickens, apples and
oranges. The market determines a unit price for each asset, and this information is
encoded in a price vector x =<x1, . . . , xn>. You may trade these assets today in
any (finite) quantity. You are allowed to take a short position in an asset, that is to
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say that you sell it at today for delivery tomorrow. Tomorrow, the assets may have
different prices, y1, . . . , ym. To keep things simple, we initially suppose that there
are a finite number of possibilities for tomorrow’s price vector. A portfolio, p, is a
vector of real numbers that specifies the amount of each asset you hold. Negative
numbers correspond to short positions. You would like to arbitrage the market, that
is to construct a portfolio today whose cost is negative (you can take out money)
and such that tomorrow its value is non-negative (you are left with no net loss), no
matter which of the possible price vectors is realized.

According to the fundamental theorem of asset pricing you can arbitrage the
market if and only if the price vector today falls outside the convex cone spanned
by the possible price vectors tomorrow.2

There is a short proof that is geometrically transparent. The value of a portfolio,
p, according to a price vector, y, is the sum over the assets of quantity times price –
the dot product of the two vectors. If the vectors are orthogonal the value is zero.
If they make an acute angle, the value is positive; if they make an obtuse angle, the
value is negative. An arbitrage portfolio, p, is one such that p �x is negative and
p �yi is non-negative for each possible yi; p makes an obtuse angle with today’s
price vector and is orthogonal or makes an acute angle with each of the possible
price vectors tomorrow. If p is outside the convex cone spanned by the yis, then
there is a hyperplane which separates p from that cone. An arbitrage portfolio can
be found as a vector normal to the hyperplane. It has zero value according to a
price vector on the hyperplane, negative value according to today’s prices and non-
negative value according to each possible price tomorrow. On the other hand, if
today’s price vector is in the convex cone spanned by tomorrow’s possible price
vectors, then (by Farkas’ lemma) no arbitrage portfolio is possible.

Suppose, for example, that the market deals in only two goods, apples and or-
anges. One possible price vector tomorrow is $1 for an apple, $1 for an orange.
Another is that an apple will cost $2, while an orange is $1. These two possibilities
generate a convex cone, as shown in Fig. 1a. (We could add lots of intermediate
possibilities, but that wouldn’t make any difference to what follows.)

Let’s suppose that today’s price vector lies outside the convex cone, say apples
at $1, oranges at $3. Then it can be separated from the cone by a hyperplane (in 2
dimensions, a line), for example the line oranges = 2 apples, as shown in Fig. 1b.

Normal to that hyperplane we find the vector <2 apples, −1 orange>, as in
Fig. 1c.

This should be an arbitrage portfolio, so we sell one orange short and use the
proceeds to buy 2 apples. But at today’s prices, an orange is worth $3 so we can
pocket a dollar, or – if you prefer – buy 3 apples and eat one.

Tomorrow we have to deliver an orange. If tomorrow’s prices were to fall exactly
on the hyperplane, we would be covered. We could sell our two apples and use the
proceeds to buy the orange. But in our example, things are even better. The worst

2 If we were to allow an infinite number of states tomorrow we would have to substitute the closed
convex cone generated by the possible future price vectors.
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Fig. 1

that can happen tomorrow is that apples and oranges trade 1 to 1, so we might as
well eat another apple and use the remaining one to cover our obligation for an
orange.

The whole business is straightforward – sell dear, buy cheap. Notice that at this
point there is no probability at all in the picture.

3 Degrees of Belief

In the foregoing, assets could be anything. As a special case they could be tickets
paying $1 if p, nothing otherwise, for various propositions, p. The price of such
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Fig. 1 (continued)

a ticket can be thought of as the market’s collective degree-of-belief or subjective
probability for p. We have not said anything about the market except that it will
trade arbitrary quantities at the market price. The market might or might not be
implemented by a single individual – the bookie of the familiar Bayesian metaphor.

Without yet any commitment to the nature of the propositions involved, the math-
ematical structure of degrees of belief, or to the characteristics of belief revision,
we can say that arbitrage-free degrees of belief today must fall within the convex
cone spanned by the degrees-of-belief tomorrow. This is the fundamental diachronic
coherence requirement. Convexity is the key to everything that follows.

4 Probability

Suppose, in addition, that the propositions involved are true or false and that to-
morrow we learn the truth. We can also assume that we can neglect discounting the
future. A guarantee of getting $1 tomorrow is as good as getting $1 today. Then
tomorrow a ticket worth $1 if p; nothing otherwise, would be worth either $1 or $0
depending on whether we learn whether p is true or not.

And suppose that we have three assets being traded that have a logical structure.
There are tickets worth $1 if p; nothing otherwise, $1 if q; nothing otherwise, and $1
if p or q; nothing otherwise. Furthermore, p and q are incompatible. This additional
structure constrains the possible price vectors tomorrow, so that the convex cone be-
comes the two dimensional object: z = x + y, (x, y, non-negative), as shown in Fig. 2.

Arbitrage-free degrees of belief must be additive. Additivity of subjective proba-
bility comes from the additivity of truth value and the fact that additivity is preserved
under convex combination. One can then complete the coherence argument for prob-
ability by noting that coherence requires a ticket that pays $1 if a tautology is true
to have the value $1.
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Fig. 2

Notice that from this point of view, the synchronic Dutch books are really special
cases of diachronic arguments. You need the moment of truth for the synchronic
argument to be complete. The assumption that there is such a time is a much stronger
assumption than anything that preceded it in this development.

An intuitionist, for example, may have a conception of proposition and of the
development of knowledge that does not guarantee the existence of such a time,
even in principle. Within such a framework, coherent degrees of belief need not
obey the classical laws of the probability calculus.

5 Probabilities of Probabilities

Today the market trades tickets that pay $1 if pi; nothing otherwise, where the pis are
some “first-order” propositions. All sorts of news comes in and tomorrow the price
vector may realize a number of different possibilities. (We have not, at this point,
imposed any model of belief change.) The price vector for these tickets tomorrow
is itself a fact about the world, and there is no reason why we could not have trade
in tickets that pay off $1 if tomorrow’s price vector is p, or if tomorrow’s price
vector is in some set of possible price vectors, for the original set of propositions.
The prices of these tickets represent subjective probabilities today about subjective
probabilities tomorrow.

Some philosophers have been suspicious about such entities, but they arise quite
naturally. And in fact, they may be less problematic than the first-order probabilities
over which they are defined. The first-order propositions, pi, could be such that
their truth value might or might not ever be settled. But the question of tomorrow’s
price vector for unit wagers over them is settled tomorrow. Coherent probabilities
of tomorrow’s probabilities should be additive, no matter what.



258 B. Skyrms

6 Diachronic Coherence Revisited

Let us restrict ourselves to the case where we eventually do find out the truth about
everything and all bets are settled (perhaps on Judgment Day), so degrees of belief
today and tomorrow are genuine probabilities. We can now consider tickets that are
worth $1 if the probability tomorrow of p = a and p; nothing otherwise, as well as
tickets that are worth $1 if probability tomorrow of p = a.

These tickets are logically related. Projecting to the 2 dimensions that represent
these tickets, we find that there are only two possible price vectors tomorrow. Either
the probability tomorrow of p is not equal to a, in which case both tickets are worth
nothing tomorrow, or probability tomorrow of p is equal to a, in which case the
former ticket is has a price of $a and the latter has a price of $1. The cone spanned
by these two vectors is just a ray as shown in Fig. 3.

So today, the ratio of these two probabilities (provided they are well-defined) is a.
In other words, today the conditional probability of p, given probability tomorrow of
p = a, is a. It then follows that to avoid a Dutch book, probability today must be the
expectation of probability tomorrow. See Goldstein (1983) and van Fraassen (1984).
Since convexity came on stage, it has been apparent that this expectation principle
has been waiting in the wings. The introduction probabilities of probabilities allows
it to be made explicit.

Fig. 3

7 Coherence and Conditioning

In accord with Jeffrey’s philosophy of radical probabilism, we have imposed no
restrictive model of belief change. A conditioning situation is allowed, but not re-
quired. That is to say that there may be first-order propositions, e1, . . . , en, that
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map one-to-one to possible degrees-of-belief tomorrow, q1, . . . , qn, such that for
our degrees of belief today, p, and for all propositions under consideration, s,
qi(s) = p(s given ei), in which case we have a conditioning model. But there need
not be such propositions, which is the case that radical probabilism urges us not
to ignore. In this case, convexity still provides an applicable test of diachronic
coherence.

On the other hand, with the introduction of second order probabilities, coherence
requires belief change by conditioning – that is to say conditioning on propositions
about what probabilities will be tomorrow. See Skyrms (1980) and Good (1981).
These are, of course, quite different from the first-order sense-data propositions that
C. I. Lewis had in mind.

8 Probability Kinematics

Where does Richard Jeffrey’s probability kinematics fit into this picture? Belief
change by kinematics on some partition is not sufficient for diachronic coherence.
The possible probability vectors tomorrow may have the same probabilities condi-
tional on p and on its negation as today’s probability without today’s probability of
p being the expectation of tomorrow’s. Diachronic coherence constrains probability
kinematics.

In a finite setting, belief change is always by probability kinematics on some
partition, the partition whose members are the atoms of the space. But, as Jeffrey
always emphasized, coherent belief change need not consist of probability kine-
matics on some non-trivial partition. That conclusion only follows from stronger
assumptions that relate the partition in question to the learning situation.

Suppose between today and tomorrow we have a learning experience that changes
the probability of p, but not to zero or one. And suppose that then, by day after to-
morrow, we learn the truth about p. We can express the assumption that we have only
gotten information about p on the way through tomorrow to day after tomorrow, by
saying that we move from now to then by conditioning on p or on its negation.
This is the assumption of sufficiency of the partition {p, –p}. Then one possible
probability tomorrow has probability of p as one and probability of p&q as equal
to today’s Pr(q given p) and the other possible probability tomorrow has probability
of p as zero and probability of –p&q as equal to today’s Pr(q given –p). This is
shown in Fig. 4 for Pr(q given p) = 0.9 and Pr(q given –p) = 0.2. Diachronic coher-
ence requires that tomorrow’s probabilities must fall on the line connecting the two
points representing possible probabilities day after tomorrow, and thus must come
from, today’s probabilities by kinematics on {p, –p}. This is the basic diachronic
coherence argument that in Skyrms (1987, 1990) was cloaked in concerns about
infinite spaces.

As Jeffrey always emphasized, without the assumption of sufficiency of the par-
tition, there is no coherence argument. But equally, if there is no assumption that
we learn just the truth of p, there is no argument for conditioning on p in the case of
certain evidence.
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Fig. 4

9 Tomorrow and Tomorrow and Tomorrow

Consider not two or three days, but an infinite succession of days. Assume degrees of
belief are all probabilities (e.g. judgement day comes at time omega + 1). Probability
of p tomorrow, probability of p day after tomorrow, probability of p the next day, etc.
are a sequence of random variables. Diachronic Coherence requires that they form
a martingale. See Skyrms (1996) and Zabell (2002). Richer cases lead to vector-
valued martingales.

10 Diachronic Coherence Generalized

Looking beyond the scope of this paper, suppose that you throw a point dart at a
unit interval, and the market can trade in tickets that pay of $1 if it falls in a certain
subset, $0 otherwise. This is something of an idealization to say the least, and the
question arises as to how coherence might be applied. One natural idea might be
to idealize the betting situation so as to allow a countable number of bets, in which
case coherence requires countable additivity, a restriction of contracts to measur-
able sets and in general, the orthodox approach to probability. Then the martingale
convergence theorem applies: Coherence entails convergence.

An approach more faithful to the philosophy of de Finetti would allow a finite
number of bets at each time. This leads to strategic measure, a notion weaker than
countable additivity but stronger than simple finite additivity. See Lane and Sud-
derth (1984, 1985). Orthodox martingale theory uses countable additivity, but there
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is a finitely additive martingale theory built on strategic measures. See Purves and
Sudderth (1976). A version of the “coherence entails convergence” result can be
recovered, even on this more conservative approach. See Zabell (2002).
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Accuracy and Coherence: Prospects
for an Alethic Epistemology of Partial Belief

James M. Joyce

Traditional epistemology is both dogmatic and alethic. It is dogmatic in the sense
that it takes the fundamental doxastic attitude to be full belief, the state in which a
person categorically accepts some proposition as true. It is alethic in the sense that
it evaluates such categorical beliefs on the basis of what William James calls the
‘two great commandments’ of epistemology: Believe the truth! Avoid error! Other
central concepts of dogmatic epistemology – knowledge, justification, reliability,
sensitivity, and so on – are understood in terms of their relationships to this ultimate
standard of truth or accuracy.

Some epistemologists, inspired by Bayesian approaches in decision theory and
statistics, have sought to replace the dogmatic model with a probabilistic one in
which partial beliefs, or credences, play the leading role. A person’s credence in a
proposition X is her level of confidence in its truth. This corresponds, roughly, to
the degree to which she is disposed to presuppose X in her theoretical and practical
reasoning. Credences are inherently gradational: the strength of a partial belief in
X can range from certainty of truth, through maximal uncertainty (in which X and
its negation ∼X are believed equally strongly), to complete certainty of falsehood.
These variations in confidence are warranted by differing states of evidence, and
they rationalize different choices among options whose outcomes depend on X .

It is a central normative doctrine of probabilistic epistemology that rational cre-
dences should obey the laws of probability. In the idealized case where a believer
has a numerically precise credence b(X) for every proposition X in some Boolean
algebra of propositions,1 these laws are as follows:
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Non-triviality. b(∼T) < b(T), where T is the logical truth.
Boundedness. b(X) is in the closed interval with endpoints b(∼T) and b(T).
Additivity. b(X ∨ Y )+ b(X ∧ Y ) = b(X)+ b(Y ).2

Philosophers have offered a number of justifications for this requirement of
probabilistic coherence. Some, following Ramsey (1931), de Finetti (1937) and
Savage (1972), have advanced pragmatic arguments to show that believers with
credences that violate the laws of probability are disposed to make self-defeating
choices. Others, like Howson and Urbach (1989) and Christensen (1996), argue that
incoherence generates inconsistencies in value judgments. Still others, notably van
Fraassen (1983) and Shimony (1988), seek to tie probabilistic coherence to rules
governing the estimation of relative frequencies. Finally, Joyce (1998) hoped to
clarify the normative status coherence, and to establish an alethic foundation for
probabilistic epistemology, by showing coherence is conducive to accuracy. The
central claims of that article were as follows:

1. Partial beliefs should be evaluated on the basis of a gradational conception of
accuracy, according to which the accuracy of a belief in a true/false proposition
is an increasing/decreasing function of the belief’s strength.

2. One can identify a small set of constraints that any reasonable measure of grada-
tional accuracy should satisfy.

3. Relative to any measure of gradational accuracy that satisfies the constraints, it
can be show that: (3a) each incoherent system of credences is strictly inadmis-
sible in the sense that there is a coherent system that is strictly more accurate in
every possible world; and (3b) coherent credences are always admissible.

4. Inadmissibility relative to all reasonable measure of gradational accuracy renders
incoherent credences defective from a purely epistemic perspective.

This essay will clarify and reevaluate these claims. As it happens, the constraints
on accuracy measures imposed in Joyce (1998) are not all well justified. They are
also much stronger than needed to obtain the desired result. Moreover, neither (3b)
nor (4) where adequately defended. Finally, the focus on accuracy measures is
unduly restrictive: a broader focus on epistemic utility (which has accuracy as a
central component) would make the results more general. These deficiencies will

2 While this formulation may seem unfamiliar, one can secure the standard laws of probability via
the convention that logical truths have probability 1 and that contradictions have probability 0. I
have chosen this formulation to emphasize that b(∼T) = 0 and b(T) = 1 are mere conventions.
Non-triviality also has a conventional element. Conjoining Additivity with the stipulation b(∼T) >

b(T) produces an anti-probability, a function whose complement b−(X ) = 1−b(X ) is a probability.
The difference between representing degrees of belief using probabilities or anti-probabilities is
entirely a matter of taste: the two ways of speaking are entirely equivalent. It is crucial, however,
to recognize that when b measures strengths of beliefs, adopting the conventional b(∼T) > b(T)
requires us to interpret larger b-values as signaling less confidence in the truth of a proposition and
more in confidence in its falsehood. If one mistakenly tries to retaining the idea that b measures
confidence in truths while setting b(∼T) > b(T), one ends ups with nonsense. This mistake seems
to be the basis of the worries raised in Howson (2008, pp. 20–21).
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be corrected here, and the prospects for ‘non-pragmatic vindication of probabilism’
along the lines of 1–4 will be reassessed.

1 Formal Framework

We image an (idealized) believer with sharp degrees of confidence in propositions
contained in an ordered set X = 〈X1, X2, . . . , X N 〉. For simplicity we will assume
that X is finite, and that its elements form a partition, so that, as a matter of logic,
exactly one Xn is true. Our subject’s degrees of belief can then be represented by a
credence function b that assigns a real number b(X) between zero and one (inclu-
sive) to each X ∈ X . We can think of b as a vector3 〈b1, b2, . . . , bN 〉 where each
bn = b(Xn) measures the subject’s confidence in the truth of Xn on a scale where 1
and 0 correspond, respectively, to certainty of truth and certainty of falsehood.

The N-dimensional cube BX = [0, 1]N then contains all credence functions
defined on X . Its proper subsets include both (a) the family PX of all probability
functions defined on X , which in turn properly includes (b) the collection VX of all
consistent truth-value assignments to elements of X . If we let 0 signify falsity and 1
denote truth, we can identify VX with the set 〈ν1, ν2, . . . , νN 〉where νn is the binary
sequence that has a 1 in the nth place and 0 elsewhere. One can think of νn as the
‘possible world’ in which Xn is true, and all other X j are false.

It is easy to show that a credence function obeys the laws of probability if and
only if it is a weighted average of truth-value assignments, so that b ∈ P X exactly
if b = � j � j · ν j , where the � j are non-negative real numbers summing to 1. For
example, if X = 〈X1, X2, X3〉, then VX contains three points ν1 = 〈1, 0, 0〉, ν2 =
〈0, 1, 0〉, ν3 = 〈0, 0, 1〉 in �3. PX is the triangle with these points as vertices (where
1 = b1 + b2 + b3), and the regions above (1 < b1 + b2 + b3) and below (1 >

b1 + b2 + b3) this triangle contain credence assignments that violate the laws of
probability.

2 Epistemic Utility and Scoring Rules

Part of our goal is to isolate features of credence assignments that are advantageous
from a purely epistemic perspective. This task requires substantial philosophical
reflection, and little more than a broad cataloging of epistemically desirable features
will be attempted here. Readers will be left to decide for themselves which of the
properties discussed below conform to their intuitions about what makes a system
of beliefs better or worse from the purely epistemic perspective.

3 Notation: (a) Vector quantities are in bold; their arguments are not. (b) indices ranging over
integers (i , j , k, m, n) are always lower case, and their maximum value is the associated upper
case letter, so that, e.g., n ranges over 1, 2, . . ., N . (c) A vector x = 〈x1, x2, . . . , xN 〉 will often be
denoted 〈xn〉.
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To make headway, let us adopt the useful fiction that the notion of overall epis-
temic goodness or badness for partial beliefs can be made sufficiently precise and
determinate to admit of quantification. In particular, let’s assume that for each par-
tition of propositions X there is a scoring rule SX that, for each b in BX and ν in
VX , assigns a real number SX (b, ν) ≥ 0 which measures the epistemic disutility4

of holding the credences b when the truth-values for elements of X are as given
in ν. Intuitively, SX (b, ν) measures the extent to which b’s credences diverge from
some epistemic ideal at ν. A perfect score is obtained when SX (b, ν) = 0, and
SX (b, ν) > SX (b∗, ν) means that, in terms of overall epistemic quality, the credences
in b∗ are better than those in b when ν is actual. Thus, the choice of an epistemic
scoring rule should reflect our considered views about what sorts of traits make
beliefs worth holding from the purely epistemic perspective.

The term ‘scoring rule’ comes from economics, where values of S are seen as
imposing penalties for making inaccurate probabilistic predictions. If, say, a mete-
orologist is paid to predict rain, her employer might seek to promote accuracy by
docking her pay $S(b, ν) where bn is the predicted chance of rain on the nth day
of the year and �n is 1 or 0 depending upon whether or not it rains that day. When
scoring rules are so construed, it is vital to know whether they create incentives
that encourage subjects to make honest and accurate predictions. The focus here
will be different. Rather, than thinking of a subject as being motivated to minimize
her penalty, as economists do, we will use scoring rules to gauge those qualities
of credences that have epistemological merit. So, instead of interpreting epistemic
scoring rules as setting penalties that believers might suffer when they reveal their
beliefs, we view them as tools of evaluation that third parties can use to assess the
overall epistemic quality of opinions. The fact that one set of credences incurs a
lower penalty than another at a given world should be taken to mean that, from a
purely epistemic point of view, it would be better in that world to hold the first set
of credences than to hold the second. It is, of course, quite consistent with this that
the agent has an incentive structure that encourages her to hold beliefs that diverge
greatly from the epistemic ideal.5

4 I use epistemic disutility rather than epistemic utility so as to more easily relate this investigation
to the work on proper scoring rules in statistics and economics.
5 It must be emphasized that believers do not choose credences with the goal of minimizing their
score, as a weather forecaster would if her pay was at risk. Indeed, it is not clear that believers
should ever be thought of as ‘choosing’ their credences. Believing is not an action. Likewise,
in contrast with the scoring rule tradition, epistemic disutilities attach to credences directly, as
opposed to public reports of credences (or ‘previsions’). So, when we say that a person’s credences
score poorly relative to some scoring rule, we criticize his or her beliefs directly, but we do not
thereby suggest that there is any past action that the person should have performed differently or
even that there is any future action that they should perform.
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3 The Principle of Admissibility

Before beginning substantive discussions of epistemic scoring rules, it is important
to understand one general commitment that is involved in endorsing any such a rule.
Since a scoring rule is meant to provide an overall evaluation of credence functions,
when we endorse a rule as the correct measure of epistemic disutility we commit
ourselves to thinking that there is something defective, from a purely epistemic
perspective, about credences that score poorly according to that rule. Moreover,
if these poor scores arise as a matter of necessity, then the defect is one of epis-
temic irrationality. To make this precise, say that one credence function b in BX

is dominated by another b∗ with respect to S when S(b, ν) > S(b∗, ν) for every
truth-value assignment ν. Credences that are dominated this way are epistemically
inadmissible according to S. Endorsing S as the correct measure of epistemic utility
involves, minimally, committing oneself to the view that S-inadmissible credences
are epistemically irrational.

ADMISSIBILITY. A system of credences b ∈ BX is epistemically irrational
if there is another system b∗ ∈ BX such that S(b, ν) ≥ S(b∗, ν) for every
ν ∈ VX and S(b, ν) > S(b∗, ν) for some ν ∈ VX . Epistemically rational
credences are never weakly dominated in this way.

This is not a substantive claim about epistemic rationality. It is, rather, a con-
straint on the choice of scoring rules. If one doubts ADMISSIBILITY for a given
rule, the problem resides not the principle, but in the fact that the rule fails to capture
one’s sense of what is valuable about beliefs from a purely epistemic perspective.

4 Estimation and Accuracy

The interest of any epistemic scoring rule depends on the virtues it captures. While
systems of beliefs can possess a range of laudable qualities – they might be infor-
mative, explanatory, justified, reliably produced, safe, useful for making decisions,
and so on – epistemological evaluation is always concerned with the relationship
between belief and truth or, as we shall say for credences, epistemic accuracy. In-
deed, many of the qualities just mentioned are desirable largely in virtue of their
connection to accuracy. Accuracy is the one epistemic value about which there can
be no serious dispute: it must be reflected in any plausible epistemic scoring rule.
This does not mean that accuracy is all there is to epistemic utility. Perhaps other
qualities are involved, but accuracy remains an overriding epistemic value. All else
equal, if one system of credences is more accurate than another, then, from a purely
epistemic perspective, the first system is better than the second. Accuracy is an
unalloyed epistemic good.

But, what does it mean to say that credences are accurate, and how is their accu-
racy assessed? As a step toward answering, we can exploit the fact that a person’s
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credences determine her best estimates of the sorts of quantities that, from a purely
epistemic perspective, it is important to be right about. The accuracy of a system
of credences can then be assessed by looking at how closely its estimates are to the
actual values of these quantities. Here, a ‘quantity’ is any function that assigns real
numbers to possible worlds in VX (what statisticians call a random variable). Here
are two natural ‘epistemologically significant’ quantities:6

� Truth-values: Quantities are propositions, thought of as indicator functions that
map VX into {0, 1}.7 For each proposition Y, Y (ν) = 1 means that Y is true at ν

and Y (ν) = 0 means that Y is false at ν.
� Relative frequencies: Each quantity is associated with a set of propositions Y =
{Y1, Y2, . . . , YK }. Every world ν is mapped to the proportion of Y ’s elements that
are true in ν, so that FreqY (ν) = [Y1(ν)+ . . .+ YK (ν)]/K .

One’s choices about which quantities to focus on will be tied up with one’s
view of what credences are. Some accounts construe them as truth-value estimates
(Jeffrey 1986, Joyce 1998), while others tie them to estimates of relative frequency
(Shimony 1988, van Fraassen 1983).

Once appropriate epistemic quantities have been selected, the next step is to
explain how credences fix estimates. Estimation is straightforward when b obeys
the laws of probability: the correct estimate for a quantity F is its expected value
computed relative to b, so that Est b(F) = �n b(νn) · F(νn). It is then easy to see
that the estimated truth-value for any proposition is its credence Estb(Y ) = b(Y ).
And, since expectation is additive, Estb(F + G) = Estb(F)+ Estb(G), it follows
that for any set of propositions {Yk} one has both

Estimated Truth-value Additivity. Estb(�k Yk) = �k b(Yk).
Estimated Frequency Additivity. Estb(Freq(Y)) = �k b(Yk)/K .

Coherent credences can thus be summed to estimate either the number of truths or
the relative frequency of truths in a set of propositions. These are universal facts: as
long as b is coherent, these identities hold for any set of propositions.

When a credence function b violates the laws of probability the additivity equa-
tions fail, and it becomes less clear what estimates b sanctions. Fortunately, in the
special case of truth-value estimation there is a principle that does apply to all
credences, solely in virtue of what they are, whether or not they obey the laws of
probability. In the probabilistic tradition, the defining fact about credences is that

6 Some might include objective chances in this list. For current purposes, however, it is not useful to
focus on the connection between credences and chances. Credences can often be portrayed as esti-
mates of objective chances, but, unlike the cases of truth-values and frequencies, the relationship is
not uniform. There are situations, namely those in which a believer has ‘inadmissible’ information
in the sense of Lewis (1980), in which degrees of belief and estimates of objective chance diverge.
7 The choice of 1 to represent truth and of 0 to represent falsity is pure convention; any choice with
T(ν) > ⊥(ν) will do. If one sets T(ν) < ⊥(ν), the ideas developed here lead to an ‘anti-probability’
representation. See footnote 2.
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they are used to estimate quantities that depend on truth-values. These quantities
might be, e.g., values of bets, relative frequencies, outcomes of experiments, or
something else. But, whatever they are, one estimates these values by estimating
truth-values. In light of this, a person’s credence for Y will function as a kind of
‘summary statistic’ that encapsulates those features of her evidential situation that
are relevant to estimates of Y’s truth-value. As a result, we have

The Alethic Principle. A rational believer’s best estimate for the truth-value
of any proposition will coincide with her credence for it: Estb(Y ) = b(Y ) for
all credence functions b (coherent or not) and all propositions Y.

In light of this, the accuracy of any credence should be evaluated by considering the
accuracy of the truth-value estimate that it sanctions.

Since accuracy in estimation involves getting as close as possible to the true
value of the estimated quantities, estimates are always appropriately evaluated on a
‘closeness counts’ scale of accuracy.

GRADATIONAL ACCURACY. At world ν, if the estimates Est(F j ) are uni-
formly closer to the values of quantities F1, . . . , F J than are the esti-
mates Est∗(F j ), so that Est∗(F j ) ≥ Est(F j ) ≥ F j (ν) or Est∗(F j ) ≤
Est(F j ) ≤ F j (ν) for all j , and Est∗(F j ) > E ST (F j ) ≥ F j (ν) or
Est(F j ) < Est(F j ) ≤ F j (ν) for some j, then the first set of estimates
is more accurate than the second at ν.

When we apply this to truth-value estimation,8 and combine it with the thought
that making accurate truth-value estimates is an overriding epistemic value, the re-
sult is

TRUTH-DIRECTEDNESS. For credence functions b and b∗, if b’s truth-value
estimates are uniformly closer to the truth than b∗’s at world ν, so that either
b∗n ≥ bn ≥ �n or b∗n ≤ bn ≤ �n for all n and b∗n > bn ≥ νn or b∗n < bn ≤ νn

for some n, then S(b∗, ν) > S(b, ν).

In other words, moving credences uniformly closer to the actual truth-values of
propositions always increases epistemic utility. Rules that fail this test let people
improve the epistemic quality of their opinions by becoming less certain of truths

8 It is important not to confuse estimation with guessing (see Jeffrey 1986). A guess at a truth-value
is evaluated solely on the basis of whether or not it gets the truth-value exactly right; nothing is
gained by missing by a small rather than a large amount. In estimation, on the other hand, the goal
is get as close as one can to the actual value of the estimated quantity. This is why 1/4 is a fine
estimate of the truth-value of the proposition that the top card of a well-shuffled deck is a spade,
whereas the only guesses that make sense are 1 and 0. (Joyce 1998) argues that full-beliefs are best
evaluated as guesses, whereas credences are best evaluated as estimates.
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and more certain of falsehoods. Such rules do not make accuracy a cardinal virtue,
and so are not instruments of pure epistemic assessment.

The combination of TRUTH-DIRECTEDNESS and ADMISSIBILITY entails that it
is epistemically irrational to have credences that are further from the truth than some
other set of credences at every possible world. This suffices to show that rational
credences must obey the first two laws of probability. For the first law, if b(T) �= 1
then b is always uniformly further from the truth than the credence function b∗

defined by b∗(T) = [1+b(T)]/2 and b∗(T) = b(∼T) (and similarly for b(∼T) �= 0).
For the second law, if b(Y ) > 1, then b is always uniformly further from the truth
than the credence function b∗ defined by b∗(Y ) = [1+ b(Y )]/2 and b∗(X) = b(X)
for X �= Y (and similarly for b(Y ) < 0).

A more substantive argument is required to establish that credences should satisfy
the third law of probability. One strategy is to augment ADMISSIBILITY with further
constraints on rational estimation for quantities other than truth-values, and to show
that these constraints force estimation to be additive. Two such requirements are:

Dominance. If F(ν) ≥ G(ν) for all ν ∈ VX , then Est(F) ≥ Est(G).
Independence. If F(ν) = G(ν) for all ν in some subset W of VX , then
Est(F) ≥ Est(G) iff Est(F∗) ≥ Est(G∗) for all other quantities F∗ and
G∗ that (i) agree with one another on W , and (ii) agree, respectively, with F
and G on VX ∼ W .

This general approach is reflected in most justifications of coherence, including
Dutch-book arguments and representation theorems.

Alternatively, one can simply require that estimates be additive. Jeffrey, for exam-
ple, has called the additivity of estimations, ‘as obvious as the laws of logic’ (1986,
p. 52). This is unlikely to move anyone with doubts about the normative status of
coherence, however, since the additivity of truth-value estimates is straightforwardly
equivalent to the additivity of credences.

A slightly less objectionable approach would be to introduce the following prin-
ciple, which does not so obviously presuppose that credences are additive.

Calibration. For all credence functions b (coherent or not) and all sets of
propositions Y , if b(Y ) = b for all Y ∈ Y , then Estb(Freq(Y)) = b.

This is intermediate between ALETHIC and the idea that estimated frequencies are
just summed credences. It reflects an intuition that is surely central to degrees of
belief: what can it mean to assign credence b(Y ) to Y unless one is committed to
thinking that propositions with Y’s overall epistemic profile are true roughly b(Y )
proportion of the time? Despite this, Calibration is still too similar to additivity to
serve as a premise in the latter’s justification. Calibration requires every uniform
distribution of credences over a partition {Yk} to be coherent, so that b(Yk) = 1/K
for all k. This is a strong requirement, and opponents of probabilistic coherence
will surely want to know what there is, other than a prior commitment to additiv-
ity, that prevents a rational person from believing both Y and ∼Y to degree 0.45
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and yet acknowledging the logical fact that exactly half the elements of {Y,∼Y }
are true.

Rather than pursuing these strategies, we will presuppose only ALETHIC, TRUTH-
DIRECTEDNESS, ADMISSIBILITY,9 and will investigate the prospects for deriving
the requirement of coherence directly from various further constraints on epistemic
scoring rules. Our objective will be to determine the extent to which probabilistic
coherence can be established as an epistemic virtue, and incoherence as an epistemic
vice, by showing that incoherent credences are inadmissible on all reasonable ways
of assessing epistemic utility. After spending the next few sections discussing vari-
ous properties that epistemic scoring rules might possess, we will consider the sig-
nificance of some theorems that purport to prove this sort of result. We will conclude
by relating these results to some facts about the estimation of relative frequencies.

5 Atomism or Holism?

Let’s begin by considering whether to endorse an atomistic or a holistic conception
of epistemic utility. On an atomistic picture, the epistemic utility of each bn can
be ascertained independently of the values of other credences in b. On a holistic
conception, individual credences have epistemic utilities only within the confines
of a system – one can speak of the epistemic value of the function b but not of
the various bn – and overall utility is not simply a matter of amalgamating utilities
of individual components. To illustrate, let X = 〈X1, X2, X3〉 and ν = 〈1, 0, 0〉.
Truth-directedness ensures that accuracy, and hence epistemic utility, improves
when b(X1) is moved closer to 1 and b(X2) is moved closer to 0, and this is true
whatever value b(X3) happens to have. If, however, b(X1) and b(X2) both shift to-
ward 1, so that b becomes more accurate in its fist coordinate but less accurate in its
second coordinate, then it is consistent with TRUTH-DIRECTEDNESS that epistemic
utility increases for some values of b(X3) but decreases for others. On an atomistic
conception this should not happen: the effect of changes in b(X1) and b(X2) on
overall epistemic value should not depend on what credences appear elsewhere in
b. To put it differently, one should be able to ignore cases where b and c agree when
assessing the relative change in epistemic utility occasioned by a shift in credences
from b to c.

One can enforce atomism by requiring epistemic scoring rules to obey an ana-
logue of the decision-theoretic ‘sure thing principle’.

SEPARABILITY. Suppose Y is a subset of X , and let b, b∗, c, c∗ be credence
functions in BX such that

9 We will also assume that the ordering of the propositions in X is immaterial to the value of the
scoring rule.
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b(X) = b∗(X) and c(X) = c∗(X) for all X ∈ Y

b(X) = c(X) and b∗(X) = c∗(X) for all X ∈ X ∼ Y

Then S(b, ν) ≥ S(c, ν) if and only if S(b∗, ν) ≥ S(c∗, ν).

This ensures that the overall epistemic utility of a person’s credences over Y can be
assessed in a way that is independent of what credences are assigned outside Y .

Many scoring rules are separable. Consider, for example, functions of the addi-
tive form S(b, ν) = �n�X (Xn) · sn(bn, �n),10 where each component function sn

measures the epistemic utility of bn on a scale that decreases/increases in its first
coordinate when the second coordinate is one/zero, and where the weights �X (Xn)
are non-negative real numbers summing to one that reflect the degree to which the
utilities of credences for Xn matter to overall epistemic utility. Such a function is
separable as long as each sn depends only on Xn , bn and �n (and not on Xk , bk or �k

for k �= n), and each �X (Xn) depends only on X and Xn (and not on b or ν).11

Those inclined toward a holist conception will deny SEPARABILITY. The issue,
at bottom, is whether one thinks of estimation as a ‘local’ process in which one’s
estimate of X’s truth-value reflects one’s thinking about X taken in isolation, or
whether it is a more ‘global’ process that forces one to take a stand on truth-values
of propositions that do not entail either X or its negation. We shall leave it to readers
to adjudicate these issues on their own.

6 Content Independence

Another set of issues concerns the extent to which the standard of epistemic value
for credences should be allowed to vary in response to features of propositions other
than truth-values. It is consistent with everything said so far that being right or wrong
about one truth has a greater effect on overall epistemic utility, ceteris paribus, than
being right or wrong about another. It might be, for example, that a shift in credence
toward a proposition’s truth-value matters more or less depending upon whether
the proposition is more or less informative. Or, in addition to being awarded points
for having credences that are near truth-values, subjects might get credit for having
credences that are close to objective chances, so that a credence of 0.8 for a truth
is deemed better if the proposition’s objective chance is 0.7 than if it is 0.2. Or,
perhaps assigning high credences to falsehoods is less of a detriment to epistemic
utility when the falsehood has high ‘verisimilitude’. Or, maybe assigning a high

10 Many authors assume that epistemic utilities have this additive form. We shall not be making
this assumption here, though many of the examples we discuss will be additive.
11 The weights may depend on X . If Xn is an element of another set Y it can happen that �X (Xn) <

�Y (Xn), in which case the credence for Xn matters less to overall epistemic value in the context of
X than in the context of Y .



Accuracy and Coherence 273

credence to a truth is worth more or less depending on the practical costs of falsely
believing it.

Those who take an austere view will maintain that nothing but credences and
truth-values matter to assessments of epistemic utility. They will insist on:

EXTENSIONALITY. Let b and b∗ be credence functions defined, respectively,
over X = 〈X1, . . . , X N 〉 and X∗ = 〈X∗1, . . . , X∗N 〉, and let ν and ν∗ be as-
sociated truth-value assignments. If bn = b∗n and �n = �∗n for all n, then
SX (b, ν) = SX∗ (b

∗, ν∗).

This requires the same basic yardstick to be used in evaluating all credences. It
ensures that b’s overall epistemic utility at ν is a function only of b’s credences and
ν’s truth-values. Additional facts about propositions – their levels of justification,
informativeness, chances, verisimilitude, practical importance and so on – have no
influence on S except insofar as they affect credences and truth-values.

EXTENSIONALITY is a strong requirement. It entails that SX (ν, ν) = SX (ν∗,
ν∗) < SX (1 − ν, ν) = SX (ν∗, 1 − ν∗) for all � and �∗. This makes it possible to
fix a single scale of epistemic utility using SX (ν, ν) as the zero and SX (1− ν, ν) as
the unit.

For another illustration of EXTENSIONALITY’s effects, consider its impact on
additive rules. In theory, the component functions in an additive rule might vary
proposition by proposition, so that sn(bn, �n) and sk(bk, �k) differ even when bn = bk

and �n = �k. In addition, utility with respect to Xn might still have more impact on
overall epistemic utility than utility with respect Xk because �X (Xn) > �X (Xk).
EXTENSIONALITY eliminates this variability: it requires that sn(b, �) = sk(b, �) for
all b and �, and �X (Xn) = 1/N for all n. All additive rules then assume the simple
form S(b, ν) = 1/N ·�n s(bn, �n) where s represents a single standard for evaluating
a credence given a truth-value.

As further indication of EXTENSIONALITY’s potency, notice that applying it to
X = 〈X,∼X〉 and X∗ = 〈∼X, X〉 enforces a symmetry between propositions
and their negations since S(〈b, c〉, 〈�, 1 − �〉) = S(〈c, b〉, 〈1 − �, �〉) for b, c ∈
[0, 1] and � ∈ {0, 1}. So, assigning credences b to X and c to ∼X when X has
a given truth-value is the same, insofar as extensional epistemic disutility is con-
cerned, as assigning credences c to X and b to ∼X when X has the opposite truth-
value. When c = 1 − b, this becomes S(〈b, 1 − b〉, 〈�, 1 − �〉) = S(〈1 − b, b〉,
〈1− �, �〉).

This last equation is independently plausible, and some might want to extend
it to incoherent credences by requiring that S(〈b, c〉, 〈�, 1 − �〉) = S(〈1 − b, 1 −
c〉, 〈1 − �, �〉) for all b and c. Failures of this identity do have an odd feel. Sup-
pose Jack sets credences of 0.8 and 0.4 for X and ∼X , while Mack, Jack’s coun-
terpart in another possible world, sets his at 0.2 and 0.6. Imagine that X is true
in Jack’s world, but false in Mack’s world. It seems unfair for Jack’s epistemic
utility to exceed Mack’s since each has a credence for X that is 0.2 units from
its truth-value, and a credence for ∼X that is 0.4 units from its truth-value. The
reversal of these truth-values in the different worlds does not seem relevant to
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assessments of Jack’s or Mack’s credences. This sort of reasoning suggests the
requirement of

0/1-SYMMETRY. Let νi and ν j be truth-value assignments for the partition
〈X N 〉 with ν i (Xi ) = ν j (X j ) = 1. Let b and b∗ be credence functions for X
that are identical except that b(Xi ) = 1 − b∗(Xi ) and b(X j ) = 1 − b∗(X j ).
Then, SX (b, ν i ) = SX (b∗, ν j ).

The combination of 0/1-SYMMETRY and EXTENSIONALITY entails a condition
that was endorsed in (Joyce 1998) as a requirement of epistemic accuracy:

NORMALITY. Let b and b∗ be defined, respectively, over X = 〈X1, . . . , X N 〉
and X∗ = 〈X∗1, . . . , X∗N 〉, and let ν and ν∗ be associated truth-value assign-
ments. If |bn − �n| = |b∗n − �∗n| for all n, then SX (b, ν) = S∗X (b∗, ν∗).

This makes epistemic utility depend entirely on absolute distances from credences
to truth-values, so that S(b, ν) = F(|b1 − �1|, . . . , |bN − �N |) where F(x1, . . . , xn)
is a continuous, real function that decreases monotonically in each argument. Any
additive rule will then take the form S(b, ν) = �n�n · f (|bn−�n|), where f :�→ �
is monotonically decreasing.12

The appropriateness of the preceding conditions as epistemic norms is up for
debate. Detractors will contend that judgments of overall epistemic quality depend
on a believed proposition’s informativeness, its objective chance, or on the costs of
being mistaken about it. Being confident to a high degree in a specific truth is a
more significant cognitive achievement than being equally confident in some less
specific truth. Having a credence far from a proposition’s objective chance seems
like a defect even if that credence is close to the proposition’s truth-value. Being
highly confident in a true proposition whose truth-value matters a great deal seems
‘more right’ than being confident to the same degree in a true proposition whose
truth-value is a matter of indifference. For all these reasons, some will argue, we
need a notion of epistemic accuracy that is more nuanced than EXTENSIONALITY

or NORMALITY allow.
Those on the other side will emphasize the central role of considerations of ac-

curacy in assessments of epistemic utility. EXTENSIONALITY and NORMALITY,
they will argue, are plausible when S measures accuracy. So, to the extent that con-
siderations of pure accuracy are dominant in evaluations of epistemic value, these
principles will seem reasonable. Those who think otherwise, it will be suggested,
are conflating issues about what makes a belief worth holding with questions about
how hard it is to arrive at a justified and accurate belief about some topic, or how
important it is, for practical reasons, to hold such a belief. For example, the more
informative a proposition is, ceteris paribus, the more evidence it takes to justify
a belief in its truth. While this added ‘degree of difficulty’ might be relevant to

12 Note that NORMALITY is weaker than the combination of 0/1-SYMMETRY and
EXTENSIONALITY because it allows for the possibility that S’s various component functions have
different weights.
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evaluations of the belief’s justification, it is not germane to its accuracy or, on this
view, its epistemic utility. Likewise, even though more or less might hang on being
right about a proposition, this does not affect the underlying accuracy of beliefs
involving that proposition. So, to the extent that we see epistemic utility as reflecting
considerations of accuracy alone we will be inclined toward EXTENSIONALITY and
NORMALITY.

Once again, we leave it to readers to adjudicate these issues.

7 Some Examples

It might be useful to consider some examples of additive scores that satisfy the
conditions listed so far. One interesting class of examples is provided by the

Exponential Scores: �z(b, ν) = (1/N)�n|�n − bn|z , for z > 0.

The best known of these is the Brier score, Brier(b, ν) = �2(b, ν), which identi-
fies the inaccuracy of each truth-value estimate with the squared Euclidean distance
between it and the actual truth-value. Since Brier (1950), meteorologists have used
this score to gauge the accuracy of probabilistic weather forecasts. Another popular
exponential score is the absolute value measure �1(b, ν), which measures epistemic
utility as the linear distance between each credence and its associated truth value.
�1 has been defended by Patrick Maher (2002) and Paul Horwich (1982), among
others, as the correct yardstick for measuring epistemic value.

Here are some other rules in common use:

Power Scores: �z(b, ν) = 1/N�n (z− 1) · bz+ �n · (1− z · bz−1), for z > 1.13

Logarithmic score: 	(b, ν) = 1/N�n − ln(|(1− �n)− bn|)
Spherical score: �(b, ν) = 1/N�n1− [|(1− �n)− bn|/(b2

n + (1− bn)2)1/2].

All these scores are 0/1-symmetric and the last two are Normal.
It is also possible to design scores that treat truth-values differentially, so that a

credence of b for X is assessed using one standard when X is true and with another
when X is false. A useful example here is the hybrid function that sets the penalty
for having credence b at its distance from the truth S(b, 1) = 1 − b when X is true
and at S(b, 0) = (1− b)− ln(1− b) when X is false.

These scores can differ along a number of dimensions. The most important dif-
ferences, for current purposes, have to do with (a) the question of whether or not
minimizing expected scores encourages coherence, (b) their convexity or concavity
properties, and (c) the degree to which they permit coherence. We will begin by
considering (a).

13 Note the Brier score is just the z = 2 power score.
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8 Strictly Proper Measures

Economists call a scoring rule strictly proper when it gives a coherent agent
an incentive to announce her actual credence as her estimate of X’s probabil-
ity. Likewise, an epistemic utility is strictly proper when each coherent credence
function uniquely minimizes expected value, relative to its own probability
assignments.

PROPRIETY. Ex pb(S(b)) = �n b(νn) · S(b, νn) < �n b(νn) · S(c, νn) =
Ex pb(S(c)) for every b ∈ P X and c ∈ BX .

It is easy to show that an additive rule is strictly proper if and only if its compo-
nent functions are strictly proper in the sense that

b · sn(b, 1)+ (1− b) · sn(b, 0) < b · sn(c, 1)+ (1− b) · sn(c, 0)

for all b, c ∈ [0, 1]. When the rule satisfies EXTENSIONALITY, this becomes a
constraint on a single pair of functions s(b, 1) and s(b, 0). When the rule is also
0/1-symmetric it becomes a constraint on the single function s(b, 1).

Readers are invited to verify the following facts:

� The Brier score, �2, is the only strictly proper exponential score.
� Every power rule �z is strictly proper.
� The logarithmic score 	 is strictly proper.
� The spherical score � is strictly proper.

Propriety places strong restrictions on accuracy measures. Indeed, as Schervish
(1989) shows, a necessary and sufficient condition for PROPRIETY in additive, ex-
tensional rules is the existence of a strictly increasing, positive function h such that

Schervi sh. h’(b) = −s’(b, 1)/(1− b) = s’(b, 0)/b.14

An equivalent characterization was given earlier in Savage (1972), who showed that
s(b, 1) and s(b, 0) define a strictly proper additive scoring rule if and only if there
is some twice differentiable positive function g on [0, 1] with g” < 0 on (0, 1) such
that

Savage. s(b, �) = g(b)+ (�− b) · g’(b)

One can see that the two characterizations are equivalent by setting h(b) = −g’(b).
Here are the Schervish and Savage functions for the Brier, spherical and logarith-

mic scores.

14 If we relax EXTENSIONALITY, these relationships hold for each sn .



Accuracy and Coherence 277

Score Brier Spherical �, D(b) = (b2 + (1− b)2)1/2 Logarithmic 	

s(b, 1) (1 − b)2 1− b/D(b) −ln(b)

s(b, 0) b2 1− (1− b)/D(b) −ln(1 − b)

g(b) b · (1 − b) 1−D(b) (1 − b) · ln(1 − b)+b·ln(1 − b)

h’(b) 2 D(b)−3 1/[b · (1− b)]

There are many strictly proper scores. As Gibbard (2008) emphasizes, the
Schervish equations provide a recipe for constructing them: if s(b, 1) is any strictly
decreasing differentiable function of b, then setting s(b, 0) = ∫ b

0 x ·h’(x) dx yields
a strictly proper rule. For example, if s(b, 1) = 1 − b, then h’(b) = 1/(1 − b) and
so s(b, 0) = 1 − b − ln(1 − b). Or, if s(b, 1) = (1 − b)3, then h’(b) = 3 · (1 − b)
and so s(b, 0) = 1/2(3b2 − 2b3).

A number of authors have argued that epistemic scoring rules should be strictly
proper, including Oddie (1997), Fallis (2007), Greaves and Wallace (2006), and
Gibbard (2008). Here is one such argument taken, in substantially modified from,
from Gibbard. Call a coherent credence function b immodest with respect to a scor-
ing rule S when b uniquely minimizes expected epistemic disutility from its own
perspective, so that Ex pb(S(c)) > Ex pb(S(b)) for all c ∈ BX . An immodest b
expects itself to be better, from a purely epistemic perspective, than any alternative
set of credences. A modest b, in contrast, assigns some other credence function
a lower expected epistemic disutility than it assigns itself. Someone with modest
credences is committed to expecting that she could do better, in epistemic terms, by
holding opinions other than the ones she holds.

Modest credences, it can be argued, are epistemically defective because they un-
dermine their own adoption and use. Recall that a person whose credences obey
the laws of probability is committed to using the expectations derived from her
credences to make estimates. These expected values represent her best judgments
about the actual values of quantities. If, relative to a person’s own credences, some
alternative system of beliefs has a lower expected epistemic disutility, then, by her
own estimation, that system is preferable from the epistemic perspective. This puts
her in an untenable doxastic situation. She has a prima facie15 epistemic reason,
grounded in her beliefs, to think that she should not be relying on those very beliefs.
This is a probabilistic version of Moore’s paradox. Just as a rational person cannot
fully believe ‘X but I don’t believe X ,’ so a person cannot rationally hold a set of
credences that require her to estimate that some other set has higher epistemic utility.
The modest person is always in this pathological position: her beliefs undermine
themselves.

This sort of pathology makes it unreasonable for a modest person to rely on her
beliefs when making estimates. As Gibbard argues, modest agents cannot rationally
rely on their credences when estimating the prudential values of actions: modest
credences lack ‘guidance value,’ as he puts it. Likewise, it has been suggested, see

15 It does not follow that she has an all-things-considered reason to change her beliefs. Epistemic
considerations are only one among many reasons that a person might have to alter one’s beliefs.
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Oddie (1997), one cannot rely on modest credences when deciding whether to gather
new information about the world.

Given that modesty is a defect, it would be a serious flaw in an epistemic util-
ity function if it required obviously rational credences to be modest. So, those im-
pressed by the forgoing argument, might want to introduce the following principle.

IMMODESTY: An epistemic scoring rule S should not render any credences
modest when there are epistemic circumstances under which those credences
are clearly the rational ones to hold.

This principle has no real content unless some set of ‘clearly rational’ credences
can be identified, and the larger this set is, the more bite IMMODESTY will have. As
a result, the principle’s force will depend on the degree to which people can agree
about which individual credences count as rational (in a given epistemic situation).
If such agreement cannot be achieved, the principle is empty.

Fortunately, some credences do seem uncontroversially rational, and so
IMMODESTY can be used to rule out various candidate scoring rules. Consider the
exponential scores with z �= 2. It seems clear that, in many epistemic situations, a
believer can rationally have a credence that assumes some value other than the max-
imally opinionated 0 and 1 or the maximally undecided 1/2. Normally, for instance,
it seems fine to align one’s credences for the tosses of a fair die with the uniform
probability over the six sides. However, with the exception of the Brier score, all
exponential scores make such credences modest. To see why, note that a coherent
agent with credence b for X will set Ex pb(�z(c)) = b(1 − c)z + (1 − b)cz. When
z �= 1, this has an extreme point at q = by/[by + (1 − b)y] where y = 1/(z − 1),
and this q is a maximum when z < 1 and a minimum when z > 1. So, while all the
�z agree that someone who is certain about X’s truth-value can be immodest, only
the Brier score �2 permits immodesty across the board, since q = b only at z = 2.
When z > 2 doxastic conservatism is encouraged. Someone who is the least bit
uncertain about X can improve expected epistemic utility by shifting her credence
to q, which lies between b and 1/2. Thus, when z > 2 one can only be immodest
about credences of 1, 1/2 or 0. When 1 < z < 2 doxastic extremism rules: a person
who is leaning, even slightly, toward thinking that X is true (or false), can improve
expected epistemic utility by leaning even more strongly in that direction. Again,
the message is that one should be either entirely opinionated or completely non-
committal. This sort of extremism is even more pronounced for the absolute value
score �1, or any �z with z ≤ 1. Here a person who is more confident than not of
X’s truth (falsity) does best, by her own lights, by jumping to the conclusion that X
is certainly true (false). To see the pernicious effects of this, imagine someone who
believes that a given die is fair, and so assigns a credence of 5/6 to X j = ‘face j will
not come up on the next toss’ for j = 1, 2, .., 6. If �z measures epistemic utility for
z ≤ 1, the person will expect her beliefs to worse off, epistemically speaking, than
someone who holds the logically inconsistent view that every X j is certainly true!
So, if modest credences are defective, then all credences within the intervals (0, 1/2)
or (1/2, 1) are unsound according to every exponential rule, except the proper rule
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�2. Worse yet, this judgment is independent of both the content of the proposition
believed and the believer’s evidential position with respect to it.16 Thus, to the extent
that we regard intermediate credences as legitimate, Immodesty requires us to reject
every �z with z �= 2.

IMMODESTY entails PROPRIETY provided that there are conditions under which
any coherent credence function can be rationally held. It is plausible that there are
such conditions. After all, for any assignment of probabilities 〈pn〉 to 〈Xn〉 it seems
that a believer could, in principle, have evidence that justifies her in thinking that
each Xn has pn as its objective chance.17 Moreover, this could exhaust her informa-
tion about X’s truth-value. According to the ‘Principal Principle’ of Lewis (1980),
someone who knows that the objective chance of Xn is pn, and who does not pos-
sess any additional information that is relevant to questions about Xn’s truth-value,
should have pn as her credence for Xn . Thus, 〈pn〉 is the rational credence function
for the person to hold under these conditions. In light of this, one might argue, the
following restriction on scoring rules should hold:

MINIMAL COHERENCE: An epistemic scoring rule should never preclude, a
priori, the holding of any coherent set of credences.

This does not mandate coherence. It merely says that coherent credences should be
at least permissible states of opinion.

MINIMAL COHERENCE and IMMODESTY suffice for PROPRIETY since together
they entail any acceptable measure of epistemic disutility will make all coherent cre-
dence functions immodest by ensuring Ex pb(S(c)) > Ex pb(S(b)) for all b ∈ PX

and c ∈ BX . Of course, this line of reasoning will only convince those who ac-
cept the rationales given for MINIMAL COHERENCE and IMMODESTY. The former
seems hard to deny: even those who are not convinced that epistemic rationality
requires coherence should stop short of saying that any coherence is prohibited a
priori. IMMODESTY, on the other hand, does have detractors, e.g., Maher (1900),
and so it is worth exploring other constraints on epistemic scoring rules.

Before moving on, we should note that, even in the absence of IMMODESTY,
MINIMAL COHERENCE imposes a substantive constraint on epistemic scoring rules.
When combined with ADMISSIBILITY it requires all coherent credence functions to
be admissible.

16 All failures of modesty have this character if EXTENSIONALITY holds. Some credence values
are prohibited independent of the propositions to which they attach or the believer’s evidence with
respect to them!
17 Some have held objective chances are not probabilities. This seems unlikely, but explaining why
would take us too far afield. In any case, nothing said here presupposes that all chance distributions
are realized as probabilities. Only the converse is being assumed: for any probability distribution
〈pn〉 over 〈Xn〉 it is possible that a believer knows that the objective chance of each Xn in pn . This
very weak assumption is especially compelling when EXTENSIONALITY is assumed. For in this
case, the requirement is only that there could be some partition or other for which each Xn has pn

as its objective probability.
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COHERENT ADMISSIBILITY: An epistemic scoring rule S is unreasonable if
there are b ∈ PX and c ∈ BX such that S(b, ν) ≥ S(c, ν) for every ν ∈ VX

and S(b, ν) > S(c, ν) for some � ∈ VX .

While this allows a coherent credence function to exceed an incoherent one in
epistemic disutility in some worlds, it prohibits this from happening in every world,
for that would make the coherent credences irrational a priori. As we shall see, this
idea has major ramifications for the prospects of justifying probabilism.

9 Convexity

While PROPRIETY delimits the range of allowable inaccuracy scores, significant
variation still remains. Another restriction is provided by considering the effects
of a scoring rule’s convexity or concavity properties. A scoring rule is everywhere
convex/flat/concave at ν iff 1/2·S(b, ν)+1/2·S(c, ν)>/=/<S(1/2·b+1/2·c, ν) for
all credence functions b and c. For everywhere convex rules, the epistemic disutility
of credences formed by evenly compromising between two credence functions is al-
ways lower than the average disutilities of the initial credence functions themselves.
So, if Jacob and Joshua have credences b and c, and if Emily’s credences m are an
even compromise between the two, so that m(X) = 1/2 · b(X)+ 1/2 · c(X) for each
X , then a convex/flat/concave rule will make Emily’s beliefs more/as/less sound,
from the epistemic perspective, than the average of those of Jacob and Joshua.

Here are two useful and general ways of stating that S(•, ν) is convex, with each
assumed to hold for all ν ∈ VX and all b, c ∈ BX .

� S(b + �, ν) − S(b, ν) > S(b, ν)− S(b − �, ν) for every vector of real numbers
� = 〈�n〉 with 0 ≤ bn ± �n ≤ 1.

� For any credence functions b1, b2, . . . , bm , and �1, �2, . . . , �m ≥ 0 with
�k�k = 1, �m�m · S(bm, ν) > S((�m�m · bm), ν).

It is easy to see that an additive rule S(b, ν) = �n�X (Xn) · sn(bn, �n) is convex at
b iff its components are convex at b. For a fixed truth-value �, a component s(b, �)
is convex at b just when s(b + �, �) − s(b, �) < s(b, �) − s(b − �, �) for small �.
This means that any prospective gain in epistemic value that might be achieved by
moving a credence incrementally closer to � is exceeded by the loss in value that
would be incurred by moving the credence away from � by the same increment.
s(b, �) is concave at b when s(b + �, �)− s(b, �) > s(b, �)− s(b − �, �) for small
�. It is flat at b when s(b + �, �)− s(b, �) = s(b, �)− s(b − �, �).

As a way of getting a handle on these concepts, imagine a random process that,
with equal probability, slightly raises or lowers credences of magnitude b for propo-
sitions with truth-value �. If epistemic disutility is measured using an additive rule
that is convex at b, this process is, on balance, detrimental: it would be better, on
average, if the credence just stayed at b. If epistemic disutility is convex, the process
will be beneficial, on balance. If epistemic utility is flat it should have no average
effect.
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An additive score’s convexity/concavity properties are reflected in the second
derivatives of its components, when these exist. A positive/zero/negative value of
s′′(b, �) signifies that the score is convex/flat/concave at b and �. The exponen-
tial scores provide a useful example. An easy calculation shows that �z′′(b, 1) =
z · (z − 1) · (1 − b)z−2 and �z′′(b, 0) = z · (z − 1) · bz− 2. These values are posi-
tive/zero/negative throughout (0, 1) depending upon whether z is greater than/equal
to/less than 1. So when z > 1, �z is everywhere convex; it penalizes incremental
shifts in credence away from a truth-value more than it rewards similar shifts toward
that truth-value. �1 is everywhere flat for both truth-values; its penalty for shifting
away from a truth-value is equal to its reward for shifting toward it. �z rules with
z < 1 are everywhere concave: they reward incremental shifts toward truth-values
more than they penalize similar shifts away from them.18

As our earlier discussion of exponential rules might suggest, the convexity prop-
erties of a scoring rule determine the degree of epistemic conservatism or adven-
turousness that it encourages. Altering any credence involves risking error, since
one might move away from the truth, but it also carries the prospect of increased
accuracy, since one might move closer to the believed proposition’s truth-value. The
more convex a score is at a point, the greater the emphasis it places on the avoidance
of error as opposed to the pursuit of truth near that point. The more concave it is, the
greater the emphasis it places on the pursuit of truth as opposed to the avoidance of
error. As William James famously observed, the requirements to avoid error and to
believe the truth – epistemology’s two ‘great commandments’ – are in tension, and
different epistemologies might stress one at the expense of the other. James endorsed
a liberal view that accents the second commandment, while W. K. Clifford, his con-
servative foil, emphasized the first. This debate plays out in the current context as a
dispute about convexity/concavity properties of measures of epistemic accuracy.19

Convexity encourages (in at least a small way) Cliffordian conservatism in the eval-
uation of credences. It makes the epistemic costs of moving away from the truth
a little higher than the benefits of comparable moves toward the truth. This makes
it relatively risky to modify credences, and so discourages believers from making
such changes without being compelled by evidence. In contrast, concavity fosters
Jamesian liberalism by making the costs of moving away from a truth smaller than

18 Here are some other examples: (i) The power scores are everywhere convex in both components
for 2≥z>1; (ii) Since –	”(b, 1) = 1/(1−b)2 and 	”(b, 0) = 1/b2 are positive everywhere between
zero and one, the exponential rule is everywhere convex; (iii) the spherical score � has a convexity
profile that varies across the unit interval. Its second derivative �”(b, 1) is negative/zero/positive
depending on whether b is </=/>(7 −√17)/8, and �”(b, 0) is negative/zero/positive depending
on whether b is </=/>(1+√17)/8. Between (7−√17)/8 and (1+√17)/8 both its components
are convex.
19 Not every aspect of the James/Clifford debate is captured by the convexity question. For exam-
ple, James held that the requirement to believe the truth can be justified on the basis of pragmatic
considerations, whereas Clifford maintained that epistemic conservatism was justified on both
practical and moral grounds. Also, the James/Clifford debate is bound up with issues of doxastic
voluntarism. Despite the talk of credences being improved by moves toward or away from the
truth, nothing said here should be taken to imply that agents ever have a hand in choosing what
they believe.
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the benefits of moving the same distance toward it. This can encourage believers
to alter their credences even in the absence of corresponding changes in evidence.
Flat measures set the costs of error and the benefits of believing the truth equal, and
so it becomes a matter of indifference whether or not one makes a small change in
credence.

Those with a Cliffordian outlook will suggest that epistemic utility should en-
courage a conservative policy by insisting on the following.

CONVEXITY. 1/2 · S(b, ν)+ 1/2 · S(c, ν) > S(1/2 · b + 1/2 · c, ν) for any
credence functions b and c.

Joyce (1998) defends CONVEXITY. Maher (2002) criticizes both the defense and
the principle itself. A different defense will be offered below, but it will be instruc-
tive to start by seeing why Maher’s criticisms go awry.

Maher’s case against CONVEXITY rests ultimately on the claim that the non-
convex absolute value score, �1(b, �) = |b− �|, is a plausible measure of epistemic
disutility. Maher offers two considerations to support �1. First, he writes, ‘it is natu-
ral to measure the inaccuracy of b with respect to the proposition X in possible world
ν by |b(X)− ν(X)|. It is also natural to take the total inaccuracy of b to be the sum
of its inaccuracies with respect to each proposition.’ (2002, p. 77) Second, he points
out that there are many situations in which people measure accuracy using �1. For
instance, one naturally averages when calculating students’ final grades, which is
tantamount to thinking that the inaccuracy of their answers is best measured by the
absolute value score.

Neither argument is convincing. While �1 may be a natural scoring rule to use
when grading papers, it is inappropriate in other contexts. When testing an archer’s
accuracy, for example, we use a target of concentric circles rather than concentric
squares aligned with vertices up/down and left/right. There is a sound reason for
this. With a square target, an archer whose inaccuracy is confined mainly along the
vertical or horizontal axis is penalized less than one whose inaccuracy is distributed
more evenly over both dimensions, e.g. an arrow that hits 9 inches below and 2
inches right of the bull’s-eye is deemed more accurate than one that hits 6 inches
from the bull’s-eye at 45◦ from vertical. While one can contrive scenarios in which
accuracy along the vertical or horizontal dimension is more important than accuracy
along other directions, this is not the norm. There are no preferred directions for
accuracy in archery; an error along any line running through the bull’s eye counts for
just as much as an error along any other such line. The square target uses an absolute
value metric, while the circular one employs Euclidean distance, the analogue of the
Brier score. Both modes of measurement can seem ‘natural’ in some circumstances,
but unnatural in others.

Moreover, for all its ‘naturalness’, the absolute value measure produces absurd
results if used across the board. We have already seen that �1 is not strictly proper,
but this is just the tip of the iceberg. Measuring epistemic disutility using �1 – or
any extensional, everywhere non-convex rule – lets logically inconsistent beliefs
dominate probabilistically coherent beliefs in situations where the latter are clearly
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the right ones to hold. This violates COHERENT ADMISSIBILITY. Suppose a fair
die is about to be tossed, and let X j say that it lands with j spots up. Though it is
natural to set b j = 1/6, the absolute value score forces one to pay an inescapable
penalty, not just an expected penalty, for doing so. For if c is the inconsistent20

credence assignment c j = 0 for all j, then �1(b, ν) = 10/36 > �1(c, ν) = 1/6
for every truth-value assignment ν.21 So, no matter how the truth-values turn out,
a believer does better by adopting the inconsistent 〈0, 0, 0, 0, 0, 0〉 over the cor-
rect consistent credence assignment 〈1/6, 1/6, 1/6, 1/6, 1/6, 1/6〉. Here we cross
the boarder from probabilistic incoherence into logical inconsistency. The believer
minimizes expected inaccuracy by being absolutely certain that every X j is false
even though logic dictates that one of them must be true. Measures of epistemic
disutility that encourage this should be eschewed. This includes the absolute-value
rule and every other additive rule whose components are uniformly non-convex. So,
Maher’s appeal to the absolute-value rule as a counterexample to CONVEXITY fails.

But, is there anything that can be said in favor of CONVEXITY? For those who
hope to preserve a ‘Cliffordian’ picture of the relationship between belief change
and evidence the answer is yes. To illustrate, suppose that a single ball will be drawn
at random from an urn containing nine white balls and one black ball. On the basis
of this evidence, a person might reasonably settle on a credence of b = 0.1 for
the proposition that the black ball will be drawn and a credence of b− = 0.9 for
the proposition that a white ball will be drawn. Suppose that the ball is drawn,
and that we learn that it is black. We are then asked to advise the person, without
telling her which ball was drawn, whether or not to take a pill that will randomly
raise or lower her credence for a black draw, with equal probability, by 0.01, while
leaving her credence for a white draw at 0.9. If our only goal is to improve the
person’s epistemic utility, then our advice should depend on the convexity of the
score for truths at credence 0.1. For a rule that is convex here, like the Brier score,
the pill’s disadvantages outweigh its advantages. For a rule that is concave at that
point, like the spherical score �, the potential benefits are, on average, worth the
risks. For a rule that is flat at 0.1, like the absolute value score, there is no advantage
either way.

Concavity or flatness in scoring rules thus give rise to an epistemology in which
the quality of a person’s beliefs can be improved, or at least not degraded, by the em-
ployment of random belief-altering processes that vary credences independently of
the truth-values of the propositions believed. Believers are then able to improve their
objective expected epistemic utility by ignoring evidence and letting their opinions
be guided by such processes. Cliffordians will see this sort of epistemic liberality as
encouraging changes of opinion that are inadequately tied to corresponding changes
in evidence. In any plausible epistemology, they will say, epistemic disutility should

20 A credence assignment is logically inconsistent (not merely probabilistically incoherent) when
it either assigns probability zero to all elements of some logical partition or when it assigns proba-
bility one to all members of some logically inconsistent set.
21 This is because �1(b, ν1) = 1/6 · [(1 − b1) + b2 + . . . + b6] = 5/6 when bn = 1/6, whereas
�1(c, ν) = 1/6 · [1+ 0+ . . .+ 0] = 1/6 when cn = 0. The situation is the same for the other five
truth-value assignments.
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be at least slightly conservative; the penalties for belief changes that decrease ac-
curacy should be at least a little more onerous, on average, than the penalties for
staying put and forgoing a potential increase in accuracy. It might be, of course,
that believers have non-epistemic reasons for altering their beliefs in the absence
of changes in their evidence, but from a purely epistemic point of view this sort of
behavior should not be rewarded. To the extent that one agrees with this conservative
stance, one will be inclined toward CONVEXITY.

Proponents of PROPRIETY might not be moved by this argument. They can re-
spond by noting that strictly proper scoring rules discourage the use of random
belief-altering mechanisms even when these rules are not convex. If inaccuracy is
measured using spherical score �, say, then a person with credences 〈0.1, 0.9〉 for
〈black, white〉 should not take a pill that will move her credences to 〈0.11, 0.9〉
or 〈0.09, 0.9〉 with equal probability even though � is strictly concave at 〈0.1, 0.9〉.
Since � is proper, the person’s own subjective expectations rank her credences above
any other, and so taking the pill is a poor idea from her point of view. Even though
the objective expected epistemic disutility of taking the pill is lower than that of
refusing it, this is not the person’s own view of things.

Defenders of CONVEXITY can counter by stressing that, whatever the person’s
subjective view of things, it remains true that if � measures epistemic disutility
then, objectively speaking, she would be well advised to let herself be guided by a
random process that has just as much chance of moving her away from the truth as
it has of moving her toward it. This is objectionable, whatever the person herself
may think. Moreover, her own epistemic position seems vexed. Suppose she knows
how epistemic disutility is measured and explicitly aims to minimize it. If the line of
reasoning explored in the previous paragraph were correct, then she should still stick
to her 〈0.1, 0.9〉 credences. But, would this make sense? It would be one thing if the
person refused the pill on the grounds that belief-alteration should not be randomly
tied to truth. But, on the PROPRIETY rationale, this would not be the story. Rather,
she would decline the pill because she is unsure whether or not a random beliefs
forming process will raise her expected score. She thinks it probably will not, but
she also recognizes that there is a one-in-ten chance that it will. Her subjective
expectations rule the day, even though, objectively speaking, taking the pill is the
better choice in the sense that the objective expected epistemic utility of taking it
is greater than that of not taking it. Those with Cliffordian leanings will see this as
intolerable. Our epistemology, they will claim, should not leave believers to wonder
about whether, as an empirical matter, they would be wise to leave their opinions
to the whims of random processes that are uncorrelated with the truth. The only
way to avoid this, they will emphasize, is by requiring epistemic scoring rules to be
everywhere convex.

Rather than trying to sort this out, we will treat CONVEXITY as an optional
constraint, and turn to the question of assessing the prospects for a non-pragmatic
vindication of probabilism.
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10 Prospects for a Nonpragmatic Vindication of Probabilism

The idea of vindicating coherence on the basis of accuracy considerations – and
without the use of Dutch book arguments or representation theorems – stems from
the work of van Fraassen (1983) and Shimony (1988). These articles sought, in
different ways, to show that incoherence leads believers to make poorly calibrated
estimates of relative frequencies, while coherence enhances such calibration. Un-
fortunately, frequency calibration is a poor standard of epistemic assessment. The
case against it is made in Joyce (1998), though many of the basic points were
raised in (Seidenfeld 1985). The central problem is that calibration violates TRUTH-
DIRECTEDNESS; my credences might be uniformly closer to the truth than yours,
and you still might be better calibrated to the frequencies than I am.

Joyce (1998) sought to improve on the van Fraassen/Shimony approach by fo-
cusing on truth-values rather than frequencies, and by arguing that ‘reasonable’
measures of epistemic inaccuracy would make both the following true:

(I). For any incoherent credence function c there is a coherent b that is strictly
more accurate than c under every logically possible assignment of truth-
values, so that S(c, ν) > S(b, ν) for all ν ∈ V X .

(II). No coherent credence function b is accuracy-dominated in this way by any
incoherent c: there is always a ν ∈ V X such that S(c, ν) > S(b, ν).

In keeping with the idea that inadmissible credences are flawed, Joyce (1998)
saw accuracy domination as an epistemic defect, and thus endorsed:

(III). The fact that incoherent credences are inadmissible relative to any reasonable
measure of epistemic accuracy, and that coherent credences are admissible, is
a strong, purely epistemic reason to prefer the latter over the former.

We will reevaluate the prospects for vindicating probabilism on the basis of (I)–
(III), though with a focus on epistemic utility more broadly construed. (So, ‘ac-
curacy’ in (I)–(III) should be replaced by ‘epistemic utility.’) The goal will be to
determine whether it is possible to show that, relative to any reasonable epistemic
scoring rule, all and only coherent credences are admissible, and to establish that
any incoherent credence is always dominated by a coherent one.

For this sort of argument to work, we need some account of what makes a
scoring rule ‘reasonable’. Joyce (1998) required reasonable rules to obey TRUTH-
DIRECTEDNESS, NORMALITY, SEPARABILITY and CONVEXITY, supplemented by
a strong symmetry principle that forces complementary mixtures of equally accurate
credences to be equally accurate.22 Maher (2002) and Gibbard (2006) object to this
latter principle, and Gibbard rejects NORMALITY. These objections have merit, and
it would be best to find a vindication of probabilism that avoids such controversial
premises.

22 The precise requirement is that S(�b+(1−�)c, ν) = S((1−�)b+�c, ν) when S(b, ν) = S(c, ν)
for any 0 ≤ � ≤ 1.



286 J.M. Joyce

Two different sorts of arguments turn out to be feasible: one that rests on
PROPRIETY, and another that relies on the weaker COHERENT ADMISSIBILITY.
Results of the first sort are found in Lindley (1982) and Lieb et al. (Probabilistic
Coherence and Proper Scoring Rules, unpublished). These works are in the tradi-
tion of de Finetti (1974) and Savage (1971) in that they focus on those features
of scoring rules that give rational agents incentives to reveal their true credences.
The underlying mathematical arguments can, however, be adapted to the task of
providing a vindication of probabilism. After briefly discussing this work, a new
and fairly sweeping result based on COHERENT ADMISSIBILITY will be proved.

The first PROPRIETY-based argument for probabilism is found in Lindley
(1982).23 Lindley assumes a scoring rule with the following features:

� Additive form,24 S(b, ν) = �n�X (Xn) · sn(bn, �n).
� Each sn(b, 1) and sn(b, 0) is defined for each b ∈ [0, 1].
� Each sn(b, 1) and sn(b, 0) has a continuous first derivative that is defined every-

where on [0, 1].
� These derivatives are such that sn

′(b, 0) > 0 and sn
′(b, 1) < 0 on (0, 1). (This

follows from TRUTH-DIRECTEDNESS given the previous conditions.)
� sn

′(b, 0)/sn
′(b, 1) approaches 0 when b approaches 0 from above.

� sn
′(b, 1)/sn

′(b, 0) approaches 0 when b approaches 1 from above.
� 1 is the unique admissible credence for T and 0 is the unique admissible value

for ∼T. (Again, this follows from TRUTH-DIRECTEDNESS given the previous
conditions.)

Lindley establishes the following result.

Theorem 1 (Lindley’s Theorem) Given the assumptions above, a set of credences
〈bn〉 for 〈Xn〉 is admissible only if the values

pn = sn
′(bn, 0)/[sn

′(bn, 0)− sn
′(bn, 1)]

collectively satisfy the laws of finitely additive probability. If, in addition, the map-
ping taking bn to pn is one-to-one for each n, so that x �= y only if sn

′(x, 0)/[sn
′(x, 0)

− sn
′(x, 1)] �= sn

′(y, 0)/[sn
′(y, 0)− sn

′(y, 1)], then the pn are coherent only if 〈bn〉
is admissible.

While this does not yet show that all and only coherent credences are admissible, it
does show that every set of admissible credences 〈bn〉 has a ‘known transform’ 〈pn〉
that obeys the laws of probability. And, if the bn → pn map is one-to-one, every set
of credences whose transform is coherent is admissible.

23 I have simplified Lindley’s result somewhat by (a) ignoring the generalization to conditional
probabilities, (b) assuming that credences fall in the unit interval (rather than some arbitrary closed
interval of the real line), and (c) skipping some technicalities involving the values of the component
functions at the endpoints of this interval.
24 Lindley suggests (p. 6) that the additivity assumption can be relaxed, but does not give details.
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Lindley remarks, almost in passing, that if one requires S (and hence each sn)
to be proper, then bn = pn for each n. Moreover, if S is proper and truth-directed,
then the last three conditions of the theorem are satisfied, and the bn → pn map
is one-to-one. Putting this all together, we obtain the following as a straightforward
consequence of Lindley’s Theorem.

Corollary If S is a truth-directed, proper scoring rule of additive form with
sn(b, 1), sn(b, 0), sn

′(b, 0), and sn
′(b, 1) defined for each b ∈ [0, 1], then the fol-

lowing are equivalent:

� b is incoherent (coherent)
� There is a (is no) credence function c such that S(b, ν) ≥ S(c, ν) for all ν ∈ V X

with S(b, ν) > S(c, ν) for at least one ν.

This is just the sort of result we seek. If the conditions on S strike one as essential
to any reasonable definition of epistemic utility, then Lindley’s Theorem entails that
all and only coherent credences are admissible relative to any reasonable epistemic
scoring rule. It does not, however, show that any incoherent credence is always
strictly dominated by a coherent one, which would make the vindication of proba-
bilism all the more convincing.

A similar success has recently been obtained by Lieb et al. (Probabilistic Co-
herence and Proper Scoring Rules, Unpublished)25 Their assumptions are nearly
identical to Lindley’s, but they are able to prove a slightly stronger result by exploit-
ing Savage’s characterization of strictly proper scoring rules and by making use of
some elegant mathematics involving a quantity called the ‘Bergman divergence’.
The advantages of this approach are (a) it does show that every incoherent credence
is strictly dominated by a coherent one, (b) it does not presuppose that credences are
defined over a partition, and (c) its method of proof (the author’s report) generalizes
to non-additive scoring rules.

Of course, these results will only be convincing to those who are already sold
on the idea that epistemic disutility should be measured by a strictly proper scor-
ing rule. Those looking for a vindication of probabilism that does not assume
PROPRIETY, might be moved by the following theorem which requires only the
weaker COHERENT ADMISSIBILITY, together with continuity.

Theorem 2 Let S be a scoring rule defined on a partition X = 〈Xn〉. If S satisfies
TRUTH-DIRECTEDNESS and COHERENT ADMISSIBILITY, and if S(b, ν) is finite
and continuous for all b in BX and ν ∈ V X , then

(i). every incoherent credence function is inadmissible relative to S and, moreover,
is dominated by some coherent credence function, and

25 Though aware of Lindley’s approach Lieb, et al., are not entirely clear about its application to
proper scoring rules. They write (p. 3) ‘the reliance on the transformation [from bn to pn], however,
clouds the significance of Lindley’s theorem,’ and do not mention its application to proper rules.
This is odd, given that Lieb et al. assume that scoring rules are proper, just the condition under
which the transformation becomes inert (being the identity function).
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(ii). every coherent credence function is admissible relative to S.

The proof can be found in the Appendix. Note that the theorem does not assume
that S has additive form, nor does it require S to be proper, normal, separable or
convex (though convexity will ensure S’s continuity on the interior of P X ). It is,
insofar as the author knows, the least restrictive result of this sort that has yet been
given. It also readily generalizes to the case where X is not a partition, though
we will not carry out this exercise here. One clear limitation of the result is that
it fails to address scoring rules, like the logarithmic rule, that go infinite at their
extreme points. While this is a serious restriction, it may be that the result can be
extended to such rules provided that (a) they are finite and continuous everywhere in
the interior of BX , and (b) their limiting behavior near the boundary is sufficiently
well-behaved. One natural conjecture is that CONVEXITY would suffice to ensure
well-behaved limiting behavior, but we cannot pursue this matter here.

The theorem and its proof highlight how strong COHERENT ADMISSIBILITY

really is: surprisingly, by forcing coherent credences to be admissible we go a
long way toward ensuring that incoherent credences are inadmissible. In addition,
it seems a likely conjecture that COHERENT ADMISSIBILITY, or something that
implies it, will be essential to any result of this sort. This need not be worrisome,
however, given the extreme stance that anti-probabilists would have to take in order
to deny COHERENT ADMISSIBILITY.

11 Is Inadmissibility an Epistemic Defect?

The significance one assigns to these theorems will depend on whether one thinks
that epistemic disutility satisfies the requirements being placed upon it, and on how
plausible one finds claim (III). Since the merits of the requirements have been dis-
cussed, let’s focus on (III). Aaron Bronfman (A Gap in Joyce’s Argument for Prob-
abilism, unpublished) has raised serious questions about (III)’s normative status.26

The basic thrust of the objection, albeit not in Bronfman’s terms, runs thus: (III)
has a wide-scope reading and a narrow-scope reading. Read wide, it says that a
credence function c is defective whenever some alternative b dominates it relative
to every reasonable epistemic disutility. Read narrowly, it says that c is defective
when, for each reasonable S, there is a bS that dominates c relative to S. This bS

need not, however, dominate c relative to other reasonable scoring rules. Indeed, it
is consistent with (I) and (II) that there might be no coherent b that dominates c with
respect to every reasonable S. So, a narrow reading of (III) is required if (I) and (II)
are to vindicate probabilism.

26 The same objection was raised independently by Franz Huber and Alan Hájek (who inspired
the Australia example). An excellent discussion of this, and related points, can be found in
Huber (2007).
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Bronfman argues that (III) is of questionable normative force when read nar-
rowly. If no single coherent system of credences b is unequivocally better than the
incoherent c, then a believer cannot move from c to b without risking increased
inaccuracy relative to some reasonable scoring rule in some world. Since this is
also true of coherent credences – for every coherent b there is an incoherent c such
that S(c, ν)<S(b, ν) for some reasonable S and some truth-value assignment ν – (I)
and (II) offer no compelling rationale for having credences that obey the laws of
probability. The mistake in Joyce (1998), Bronfman claims, lies in assuming that a
credence function that is defective according to each reasonable way of measuring
epistemic disutility is thereby defective simpliciter.

To appreciate the worry, consider an analogy. Suppose ethicists and psychologists
somehow decide that there are just two plausible theories of human flourishing, both
of which make geographical location central to well-being. Suppose also that, on
both accounts, it turns out that for every city in the U.S. there is an Australian city
with the property that a person living in the former would be better off living in
the latter. The first account might say that Bostonians would be better off living in
Sydney, while the second says they would do better living in Coober Pedy. Does it
follow that any individual Bostonian will be better off living in Australia? It surely
would follow if both theories said that Bostonians will be better off living in Sydney.
But, if the first theory ranks Sydney > Boston > Coober Pedy, and the second ranks
Coober Pedy > Boston > Sydney, then we cannot definitively conclude that the
person will be better off in Sydney, nor that she will be better off in Coober Pedy.
So, while both theories say that a Bostonian would be better off living somewhere
or other in Australia, it seems incorrect to conclude that she will be better off in
Australia per se because the theories disagree about which places in Australia would
make her better off.

While Bronfman’s objection does have some intuitive force, it still seems prob-
lematic that for incoherent credences, but not coherent credences, one is in a po-
sition to know that some alternative set of credences is better solely on the basis
of knowledge of the properties of reasonable epistemic scoring rules. The problem
remains even if we cannot identify what the alternative credences might be. In our
analogy, it seems problematic for Bostonians that they know they are not best off in
Boston, and that there is no American city in which they would be best off either.
The Australians have at least this advantage: they know that if there are better places
for them to be then the best such places are in Australia. Likewise, when apprised of
the results of the above proofs, coherent agents know that if there is an incoherent set
of credences with a higher epistemic utility than their own, then there is a coherent
set of credences that is sure to be even better whatever happens. The Australians at
least know that they are in the right country; agents with coherent credences at least
know that they are in the right region of P X .

More importantly, however, Bronfman’s objection only applies if there is no de-
terminate fact of the matter about which reasonable measure of inaccuracy is correct
in a given context. If any reasonable scoring rule is as good as any other when it
comes to measuring epistemic disutility, then (I)–(III) cannot vindicate coherence
without the help of an inference from ‘c is defective on every reasonable measure’
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to ‘c is unqualifiedly defective’. If, on the other hand, there is some single reason-
able epistemic disutility, then the wide and narrow readings of (III) collapse and
Bronfman’s worries become moot. It may be that the correct scoring rule varies
with changes in the context of epistemic evaluation, and it may even be that we
are ignorant of what the rule is, but the nonpragmatic vindications of probabilism
we have been considering are untouched by Bronfman’s objection as long as there
is some one correct rule in any given context of epistemic evaluation. Consider
two further analogies. Many philosophers claim that the standards for the truth
of knowledge ascriptions vary with context, but that in any fixed context a single
standard applies. Under these conditions, if every standard of evaluation has it that
knowledge requires truth then knowledge requires truth per se. Similarly, even if we
do not know which ethical theory is correct, as long as there is some correct theory,
then the fact that every reasonable candidate theory tells us to help those in need
means that we have a moral obligation to help those in need. So, the argument from
(I) to (III) to the requirement of coherence goes through with the help of one further
premise:

(IV). Only one scoring rule functions as the correct measure of epistemic disutility
in any context of epistemic evaluation.

How plausible is this premise? It is hard to say in the abstract without some
specification of the relevant epistemic context. However, there are certainly contexts
in which it makes sense to single out one scoring rule as uniquely best. For example,
in contexts where we are concerned about pure accuracy of truth-value estimation,
the Brier score has properties that make it an excellent tool for assessing epistemic
utility.

12 Homage to the Brier Score

There are a number of reasons for using the Brier score to assess epistemic accuracy.
First, in addition to being truth-directed, strictly proper, and convex, it is continuous,
separable, extensional and normal. In many contexts of evaluation – specifically
those involving assessments of pure accuracy, in which questions of holistic depen-
dence or informativeness are ignored – these are reasonable properties for a scoring
rule to have.

Moreover, as Savage (1971) showed, the Brier score is the only rule with these
properties that can be extended to a measure of accuracy for probability estimates
generally. It is natural to think of truth-value estimation as a species of probabil-
ity estimation. One can assess such estimates using an extended scoring rule that
takes each b ∈ BX and p ∈ P X to a real number S+(b, p) ≥ 0 that gives the
inaccuracy of b’s values as estimates of the probabilities assigned by p. In keep-
ing with the gradational character of estimation, if bn is always strictly between cn

and pn, then S+(b, p) < S+(c, p). S+ extends a truth-value based rule S when
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S+(b, ν) = S(b, ν) for every ν. Extended scoring rules can be strictly proper, con-
vex, separable, additive or normal. In his (1971) Savage proved the following result
(in slightly different terms):

Theorem 3 If an extended scoring rule S+ is strictly proper, convex, additive and
normal, then it has the quadratic form S+(b, p) = �n�n · (pn − bn)2.

So, if one thinks that accuracy evaluations for truth-values should dovetail with
accuracy evaluations for probability estimates, and that the latter should be strictly
proper, convex, additive and normal, then one will assess truth-value estimates using
a function of the form S+(b, ν) = �n�n · (�n− bn)2. If, in addition, one also accepts
EXTENSIONALITY, one must use the Brier score since EXTENSIONALITY requires
�n = �m for all m and n.

Savage provided yet another compelling characterization of the Brier score. In-
stead of assuming NORMALITY, which makes the inaccuracy a b as an estimate of p
a function of the absolute differences |pn− bn|, he insisted on S+(b, p) = S+( p, b)
for all coherent b and p. Again, the score so characterized has the quadratic form
�n�n · (�n − bn)2. Selten (1998) obtained the same result using a related symmetry
property. Selten offers an argument that is compelling for both properties. He imag-
ines a case in which we know that either p or b is the right probability, but do not
know which. He writes:

The [inaccuracy] of the wrong theory is a measure of how far it is from the truth. It is only
fair to require that this measure is ‘neutral’ in the sense that it treats both theories equally.
If p is wrong and b is right, then p should be considered to be as far from the truth as b
in the opposite case that b is wrong and p is right.. . . A scoring rule which is not neutral
[in this way] is discriminating on the basis of the location of the theories in the space of all
probability distributions.. . . Theories in some parts of this space are treated more favorably
than those in some other parts without any justification. (Selten 1998, p. 54 minor notational
changes)

This defense seems correct, at least when considerations about the informativeness
of propositions are being set aside.

A final desirable feature of the Brier score has to do with the relationship be-
tween truth-value estimates and frequency estimates. Let Z be an arbitrary finite
set of propositions and let {Z j} be any partitioning of Z into disjoint subsets. n j

is the cardinality of Z j , and N = � j n j is the cardinality of Z. Imagine a person
with credences b who makes an estimate f j for the frequency of truths in each Z j .
Following Murphy (1973), we can gauge the accuracy of her estimates using an
analogue of the Brier score called the calibration index.

Cal({Z j }, 〈 f j 〉, ν) = � j (n j/N) · (FreqZ j(ν)− f j )2

As already noted, a coherent believer will use average credences as estimates of
truth-frequencies, so that f j = �Z∈Z j b(Z )/n j . It is then possible to write:

Cal({Z j }, b, ν) = (1/N)·[� j �
2
Z j (b, ν)−2·� j (�Y �=Z∈Z j (ν(Y )−b(Z ))·(ν(Z )−b(Y )))]
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This messy equation assumes a simple and illuminating form when proposi-
tions are grouped by credence. Suppose that each element of Z has a credence
in {b1, b2, . . . , bJ }, and let Z j = {Z ∈ Z : b(Z ) = b j}. It then follows that
Cal({Z j }, b, ν) = (1/N) ·� j �Z∈Z j (FreqZ j (ν)− b j)2. So, relative to this partition-
ing, b produces frequency estimates that are perfectly calibrated (Cal = 0) when
half of the propositions assigned value 1/2 are true, two-fifths of those assigned
value 2/5 are true, three-fourths of those assigned value 3/4 are true, and so on. b’s
estimates are maximally miscalibrated (Cal = 1) when all truths in X are assigned
credence 0, and all falsehoods are assigned credence 1.

As Murphy showed, relative to this particular partition the Brier score is a straight
sum of the calibration index and the average variance in truth-values across the
elements of {Z j}. For a given ν, the variance in truth-value across Z j is given by
s2(Z j , ν) = (1/n j ) ·�Z∈Z j (FreqZ j (ν)− ν(Z ))2. To measure the average amount of
variation across all the sets in {Z j } Murphy weighted each Z j by its size to obtain
the discrimination index27

Di s({Z j }, b, ν) = � j (n j/N) · s2(Z j , ν).

This measures the degree to which b’s values sort elements of Z into classes that are
homogenous with respect to truth-value. Perfect discrimination (Di s = 0) occurs
when each Z j contains only truths or only falsehoods. Discrimination is minimal
(Di s = 1/4) when every Z j contains exactly as many truths as falsehoods.

As Murphy demonstrated, the sum of the calibration and discrimination indexes
is just the Brier score.28

MURPHYDECOMPOSITION. Cal({Z j}, b, ν)+ Di s({Z j }, b, ν) = Brier(b, ν)

The Brier score thus incorporates two quantities that seem germane to assessments
of epistemic accuracy. Other things equal, it enhances accuracy when credences
sanction well-calibrated estimates of truth-frequency. It is likewise a good thing,
ceteris paribus, if credences sort propositions into classes of similar truth-values.

Even so, neither calibration nor discrimination taken alone is an unalloyed good.
As Murphy noted, some ways of improving one at the expense of the other harm
overall accuracy. One can, for example, ensure perfect calibration over a set of
propositions that is closed under negation by assigning each proposition in the
set a credence of 1/2. Such credences are highly inaccurate, however, because
they do not discriminate truths from falsehoods. Conversely, one achieves per-
fect discrimination by assigning credence one to every falsehood and credence
zero to every truth, but one is then inaccurate because one is maximally miscal-
ibrated. The moral here is that calibration and discrimination are components of
accuracy that must be balanced off against one another in a fully adequate epis-

27 Murphy actually broke the discrimination index into two components.
28 For the proof, use s2(Z j , ν) = (1/n j ) · �Z∈Z j [ν(Z )2 − n j · (FreqZ j (ν))2].
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temic scoring rule that is designed to capture pure accuracy. The fact that the
Brier score, a rule with so many other desirable properties, balances the two off
in such a simple and beautiful way provides yet another compelling reason to
prefer it as a measure of epistemic accuracy across a wide range of contexts of
evaluation.

This is not to say that the Brier score is the right rule for every epistemic context.
Some legitimate modes of epistemic evaluation will surely focus on things other
than pure accuracy, e.g., some will require us to weight propositions by their infor-
mativeness, in which case a quadratic rule �n �n · (�n − bn)2 might be called for.
Doubtless there are other options. Still, as long as there is one notion of epistemic
disutility at play in any given context, and as long as that notion is captured by
some continuous, truth-seeking scoring rule that allows all coherent credences to be
rationally held, it will remain true that coherence contributes to the epistemic value
of a set of credences while incoherence is a detriment.

13 Appendix: Proof of Theorem

Theorem 4 Let S be a scoring rule defined on a partition X = 〈Xn〉. If S satisfies
TRUTH-DIRECTEDNESS and COHERENT ADMISSIBILITY, and if S(b, ν) is finite
and continuous for all b in BX and ν ∈ V X , then

(i). every incoherent credence function is inadmissible relative to S and, moreover,
is dominated by some coherent credence function, and

(ii). every coherent credence function is admissible relative to S.

Proof (ii) is just a restatement of COHERENT ADMISSIBILITY. We establish (i) by
means of a fixed point theorem (with some inspiration from the method of Fan
et al. (1957)).

Fix an incoherent credence function c = 〈cn〉 ∈ BX . For each n, define a map
fn(b) = S(b, νn) − S(c, νn) from the set of coherent credence functions P X into
the real numbers. fn(b) is the difference in S-score between the coherent b and the
incoherent c at the world νn . fn is clearly continuous everywhere in the interior of
P X given that S(•, νn) is continuous in this region.

To prove (i) it suffices to find a b ∈ P X with fn(b) < 0 for all n. Start by
supposing that �ncn < 1. (The �ncn > 1 proof is a mirror image, see below.) Define
N coherent points bm = 〈c1, c2, . . . , cm−1, (1− �n �=mcn), cm+1, . . . , cN 〉 and notice
that, in light of TRUTH DIRECTEDNESS and since (1 − �n �=mcn) > cm , we have
both S(bm, νm) < S(c, νm) and S(bn, νn) > S(c, νn) for n �= m. So, if we consider
the N points f (bm) = 〈 f1(bm), f2(bm), . . . , fN (bm)〉 of �N we will find that f (b1)
is negative in the first coordinate and positive elsewhere f (b2) is negative in the
second coordinate and positive elsewhere, f (b3) is negative in the third coordinate
and positive elsewhere, and so on.



294 J.M. Joyce

Now, consider B+, the convex hull of {bm}. This is the compact, convex sub-
set of �n composed of all probability functions of form p = �m �m · bm where
�1, �2, . . . , �N ≥ 0 and �m�m = 1. Since all of the bm are in the interior of P X ,
and in virtue of the way the bm are defined, elements of B+ can be written as

p = 〈pn〉 = 〈�n · (1− �k �=n ck)+ (1− �n) · cn〉

And, since (1− �k �=n ck) > cn it follows that pn > cn when �n > 0 and pn = cn

when �n = 0. In virtue of this and TRUTH-DIRECTEDNESS we have the following
little result, whose importance will emerge as the proof progresses.

Lemma 1 If p = �m�m · bm is in B+, and if �m = 0 then fm( p) is positive.

Proof This is a straightforward dominance argument. Assume μm = 0. Recall that
νm contains a 1 in its mth and a 0 everywhere else. As just noted, pk = ck holds
for k = m and for every other coordinate at which �k = 0. But, of course, some
�n �= �m must be positive, and for all these we have pn > cn . So, the values of
c are everywhere as close, and sometimes closer, to the values of νm than are the
values of p. TRUTH-DIRECTEDNESS then requires that S( p, νm) > S(c, νm), i.e.,
fm( p) > 0.

We now aim to define a function G: B+ → B+ that is continuous on B+ and has
the property that p = G( p) only if fn( p) < 0 for all n. If such a function can be
found, then the result we seek will be a consequence of:

Theorem 5 (Brouwer’s Fixed Point Theorem) Let A ⊂ �n be nonempty, compact,
and convex. If F: A → A is continuous throughout A, then F has a fixed point, i.e.,
there exists a ∈ A such that a = F(a).

To obtain G, start by defining a function M( p) = 1/N · (�n fn( p)) from B+ into
�. M( p) is the mean value of the fn( p). It is continuous everywhere on B+ since
each fn is continuous on B+. Next, for each n = {1, 2, . . . , N} define

gn( p) = max{ fn( p)− M( p), 0}

Each gn is continuous and non-negative. gn( p) > 0 exactly when fn( p) exceeds
the mean value of the fm( p). For each p ∈ B+ specify a set of N + 1 mixing
coefficients:

�n( p) = gn( p) / [1+ �1≤k≤N gk( p)] for n ≤ N

�N+1( p) = 1 / [1+ �1≤k≤N gk( p)]

Cleary, the values �n( p) are all non-negative and sum to one, and �N+1( p) > 0.
All the �n are continuous throughout B+ as well. Finally, define

G( p) = (�1≤n≤N �n( p) · bn)+ �N+1( p) · p

G is continuous throughout B+, and G( p) ∈ B+ because p ∈ B+ and B+ is closed
under mixing.
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Since G satisfies the prerequisites for the Brouwer theorem it has a fixed point:
there is a p ∈ B+ such that p = G( p).

Lemma 2 p = G( p) only if fn( p) < 0 for all n.

Proof The identity p = (�1≤n≤N �n( p)·bn)+�N+1( p)· p can hold in only two ways.
First, it could be that �n( p) = 0 for all n ≤ N , so that �N+1( p) = 1, which happens
only if fn( p)− M( p) ≤ 0 for all N . But, the only way for a set of real numbers to
all be less than or equal to their mean is for all of them to be equal to the mean (and
so equal to one another). So, the fn( p) must be either all positive (if M( p) > 0), all
zero (if M( p) = 0), or all negative (if M( p) < 0). The first two possibilities entail
S( p, νn) ≥ S(c, νn) for all n, which contradicts COHERENT ADMISSIBILITY. Thus,
we must have fn( p) < 0 for N when �n( p) = 0 for all n ≤ N .

Suppose now that �n( p) > 0 for some n ≤ N Here, p = G( p) will hold iff
p · �1≤n≤N �n( p) = �1≤n≤N �n( p) · bn . Since �1≤n≤N �n( p) > 0 there are mixing
coefficients �n = �n( p) / (�1≤n≤N �n( p)) that allow us to write p as a mixture of the
bn, so that p = �1≤n≤N �n ·bn . However, if some �n( p) > 0 then some fn( p) strictly
exceeds the mean, and this can only occur if some other fm( p) falls strictly below the
mean. But, if fm( p) < M( p), then �m( p) and hence �m will be zero. Accordingly, if
�n( p) > 0 for some n, then there exits values of m ≤ N for which �m( p) = �m = 0,
and all values of m for which fm( p) < M( p) have �m( p) = �m = 0. But, in virtue
of Lemma-1, fm( p) will be negative at each one of these values. But, if there are
values of fm( p) that fall below the mean, and if all of these are positive, then fn( p)
must be positive for all n. Thus, the assumption that �n( p) > 0 for some n yields
the conclusion that S( p, νn) > S(c, νn) for all n. Since this contradicts COHERENT

ADMISSIBILITY, �n( p) > 0 cannot hold when p is a fixed point of G.
Thus, the only scenario in which p = G( p) that is consistent with the assump-

tions of the proof is one in which S( p, νn) < S(c, νn) for all n.
On the basis of Lemma-2 and the Brouwer Fixed Point Theorem, we have found

what we wanted – a probability p than dominates the incoherent c – at least in the
case when the cn sum to less than one.

The proof for �ncn > 1 proceeds as a mirror image. The one subtlety concerns
the definition of the bm . Instead of subtracting from cm and leaving the other cn

fixed (which will not work when the cn are too large), one leaves cm fixed and
diminishes all the other cn. Specifically, the arguments of bm are given by bm = cm

and bn = cn · [(1− cm)/(�k �=m ck)]. Then one proves:

Lemma 1∗ If p = �m�m · bm is in B+, and if �k = 0 for k �= m then fk( p) is
negative.

Again, this is a straightforward dominance argument since all the elements of
each bm , other than the one at m, are less than their associated element of c.

The definition of the gn needs to be modified so that

gn( p) = max{M( p)− fn( p), 0}
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With this change, gn( p) > 0 exactly when fn( p) falls below the mean, and gn( p) =
0 when fn( p) ≥ M( p). The coefficients �n( p), . . . , �N+1( p) are defined as before,
and the Brouwer theorem again guarantees the existence of a p ∈ B+ with p =
G( p).

Lemma 2 ∗ p = G( p) only if fn( p) < 0 for all n.

Proof Again, the identity p = G( p) can hold in two ways. If, �n( p) = 0 for all
n ≤ N , then M( p) − fn( p) ≤ 0 for all N . As, before, this means that the fn( p)
must be either all positive, all zero, or all negative, and only the last possibility
conforms to COHERENT ADMISSIBILITY.

If �n( p) > 0 for some n then, as before, write p = �1≤n≤N �n ·bn . But, �n( p) > 0
implies that fn( p) is strictly less than the mean, and so there must be some other
fm( p) that exceeds the mean and for which �m( p) = �m = 0. Indeed, we have
�m( p) = �m = 0 for all fm( p) that exceed M( p). Lemma-1∗ tells us that all such
fm( p) must be negative, which ensures that all the fn( p), whether above, at, or
below the mean must be negative.

This completes the proof of the theorem.
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Degrees All the Way Down:
Beliefs, Non-Beliefs and Disbeliefs

Hans Rott

1 Introduction

A Cartesian skeptic must not accept anything but what is ideally clear and distinct
in her mind. She has only few beliefs, but all her beliefs have maximal certainty.1

Some philosophers recommend that a responsible believer should believe only what
is beyond any doubt, namely logical and analytical truths.2 The common core of
such proposals is that maximal certainty is held to be necessary and sufficient for
rational belief. Consequently, the believer’s beliefs are all on an equal footing, no
degrees of belief are needed, the set of beliefs is ‘flat’.

Other philosophers felt that this picture is inadequate. As a matter of fact, we
are not as reluctant to take on beliefs as Descartes admonished us to be. We believe
quite a lot of things, and we are aware that there are differences in the quality of
these beliefs. There is no denying that we are fallible, and if we are forced to give
up some of the beliefs we have formed (Descartes would say, precipitately), we can
adapt our beliefs in accordance with their varying credentials. Beliefs can be thought
of as being equipped with labels specifying their ‘certainty’, or, to use a different
terminology, their ‘entrenchment’ in a person’s belief state.

Ever since Hintikka (1962), philosophers and logicians have been fond of think-
ing of belief as a form of necessity (‘doxastic necessity’). If one wants to acknowl-
edge distinctions in degrees of belief, one has to introduce a notion of comparative
necessity. Saying that A is more firmly believed than B is to say that A is more
necessary than B . Degrees of belief are grades of modality.

Having said that, there are questions on two sides. First, it is of course natural
to think of a dual to necessity, a doxastic possibility operator. Second, we seem to
miss rankings of non-beliefs. Even if a proposition is not believed, it may be more

H. Rott (B)
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1 Actually, not so few and not so certain beliefs if she runs through the six Meditations to their
very end.
2 ‘Relations of ideas’, in Hume’s favourite terms. Isaac Levi calls such an epistemology ‘Par-
menidean’.
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or less close to being believed. We shall distinguish non-beliefs in a narrow sense
from disbeliefs (see Quine and Ullian 1978, p. 12). A sentence A is disbelieved by
a person if she believes the negation of A, and the person is in a state of non-belief
with respect to A if she is agnostic about it, i.e., believes neither A nor the negation
of A.3 In a rather straightforward manner, the notion of doxastic possibility can be
applied to non-beliefs: A is a non-belief if and only if the agent considers both A
and the negation of A possible. Perhaps surprisingly, we shall see that it has also
been quite common to apply the notion of doxastic possibility to disbeliefs.

To believe that A is true means that A is true in all the worlds that the person
regards as (doxastically) possible, and truth in all accessible possible worlds has
long been viewed as explicating the notion of necessity. As a consequence of the
classical notion of a world, it follows that the reasoner believes A ∧ B if and only
if she believes A and believes B . Necessity distributes over conjunction. Possibility
is dual to necessity, and thus it distributes of over disjunction. The reasoner believes
that A ∨ B is possible if and only if she believes that A is possible or believes
that B is possible. We shall see that in a framework that acknowledges degrees of
belief, comparative necessity comes with a special condition for conjunctions, and
comparative possibility with a special condition for disjunctions.

It is not quite clear whether the term ‘degree of belief’ should in the first in-
stance apply to beliefs or non-beliefs. Advocates of subjective probability theory,
identifying degrees of belief with probability values, seem to apply it primarily
to non-beliefs. If my degree of belief of A is represented by probability 0.5, for
example, I certainly don’t believe that A. In contrast, I start this paper by assuming
that degrees of belief should in the first instance apply to beliefs.4 The paradigm
case of a degree of belief gives expression to the firmness of belief.

It is the main aim of the present paper, however, to extend the degrees of belief
into a single linear ordering that also applies in a non-trivial way to both disbeliefs
and non-beliefs. It will turn out that the ways of constructing the extensions are
surprisingly uniform, viz., by relational intersection, even if the results differ in
structure. A constraint to be met is that beliefs should be ranked higher than disbe-
liefs, and that non-beliefs in the narrow sense should find a place between beliefs
and disbeliefs.5

The term ‘degrees of belief’ is usually taken to mean that some numbers, for
instance probabilities, are assigned to the beliefs in question. I shall not make this
assumption in the present paper. It is rather hard to justify the assignment of a precise
numerical value. Often it is easier (if less informative) to determine the certainty of

3 Thus ‘A is not a belief’ is equivalent to saying that ‘A is either a non-belief or a disbelief’.
To avoid confusion, I shall sometimes speak of ‘non-beliefs in the narrow sense’ rather than just
‘non-beliefs’.
4 Here I side with Levi (1984, p. 216): “In presystematic discourse, to say that X believes that h to
a positive degree is to assert that X believes that h.”
5 The notion of partial belief which is often used in probabilistic frameworks will not be addressed
in the present paper. We shall have no measure function that could express the relative size of a
proposition in a reasoner’s space of doxastic possibilities. Degrees are not proportions.
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a belief not absolutely, but only in comparison with other beliefs. I shall be content
in this paper with the comparative notion of ‘degree’, as expressed in the phrase ‘I
believe A to a greater degree than B’.

Whenever I will make use of numerals in the following, they are not meant to
stand for genuine numbers representing metrical relations among beliefs. They just
serve as convenient indicators of positions in a total preordering. The operations of
addition, subtraction or multiplication wouldn’t make any sense if applied to the
numerals I will be using.6

Non-probabilistic degrees of belief have sometimes been advocated because in
contrast to ordinary probability, they allow us to model ‘plain belief’ (Spohn 1990;
1991, p. 168) or ‘total ignorance’ (Dubois, Prade and Smets 1996). At the end of
this paper we will return to the question of the meaning of ‘belief’. Having extended
a qualitative notion of degree to both non-beliefs and disbeliefs, I will argue that the
notion of belief (as well as the correlative notions of disbelief and non-belief) is as
elusive here as it is in the probabilistic context.

2 Degrees of Beliefs

2.1 Entrenchment Relations

We begin the presentation with a way of distinguishing beliefs according to their
degrees of firmness, certainty or endorsement. A measure of the firmness of be-
lief can be seen in their invulnerability, that is, the resistance they offer against
being given up. Such measures are provided in the work on entrenchment rela-
tions by Peter Gärdenfors and David Makinson (Gärdenfors 1988, Gärdenfors and
Makinson 1988) and on the degrees of incorrigibility by Isaac Levi (see Levi 1996,
p. 264; 2004, pp. 191–199). Dubois and Prade (1991) have rightly pointed out that
entrenchment is a notion of comparative necessity and have related it to their own
account of possibility theory.7

In the following, we propose to read A ≤e B as “B is at least as firmly believed
as A” or “B is at least as entrenched among the reasoner’s beliefs as A”. Here are
the first three Gärdenfors-Makinson axioms for entrenchment relations8

6 An exception seems to be found in Section 4.2, but as remarked there, the plus sign used in the
construction of ‘belief functions’ from ‘entrenchment’ and ‘plausibility functions’ is not necessary,
but serves just a convenient means for encoding an operation that could just as well be presented
in purely relational terms.
7 Possibility theory as developed in Toulouse has produced a large number of very important
contributions to the topics covered in this paper. See for instance Dubois (1986), Dubois and
Prade (1988a), Dubois, Prade and Smets (1996) and Dubois, Fargier and Prade (2004).
8 This set of axioms is exactly the one used by Gärdenfors and Makinson (1994, p. 210) for expec-
tation orderings. I will offer an account of the difference between beliefs and expectations later in
this paper.
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(E1) If A ≤e B and B ≤e C then A ≤e C Transitivity
(E2) If A � B then A ≤e B Dominance
(E3) Either A ≤e A ∧ B or B ≤e A ∧ B Conjunctiveness

We work in a purely propositional language, including the truth and falsity con-
stants� and⊥. For the sake of simplicity, we may assume that the background logic
is classical (or of some similar Tarskian kind). In (E2), � may be thought of as de-
noting the consequence relation of classical logic. Condition (E3) establishes a kind
of functionality of ≤e with respect to conjunction, since the converse inequalities
A ∧ B ≤e A and A ∧ B ≤e B already follow from (E2). The firmness of belief of a
conjunction equals that of the weaker conjunct.

It is easy to derive from these axioms that entrenchment relations are total.

Either A ≤e B or B ≤e A.

Thus any two sentences can be compared in terms of entrenchment. The very talk
of ‘degrees of belief’ seems to presuppose this.9

By (E2), logically equivalent sentences are equally entrenched, they have the
same ‘degree of belief’. The contradiction ⊥ is minimally and the tautology � is
maximally entrenched.

The entrenchment of a proposition is determined by the least incisive way of
making that proposition false. This explains (E3), for instance. A least incisive way
of making A ∧ B false is either a least incisive way of making A false or a least
incisive way of making B false (or both). For reasons explained in Section 4, there
can be no corresponding condition for disjunctions, a disjunction A ∨ B can indeed
be strictly more entrenched than either of its disjuncts. There is no condition for
negation, but it is easy to deduce from (E1)–(E3) that at least one of A and ¬A is
minimal with respect to ≤e.

We treat as optional two conditions of Gärdenfors and Makinson (1988) relating
to the maximum and minimum of entrenchments.

(E4) ⊥ <e A iff A is believed Minimality
(E5) � ≤e A only if � A Maximality

9 Many people find this too strong. We often appear to have beliefs that we are unable to rank in
terms of firmness or certainty. For instance, I am more certain that I can jump 3 meters than that
I can jump 3.5 meters. But how does this relate to the question whether Henry V is the father of
Henry VI? It seems that I am neither more certain that Henry V is the father of Henry VI than that I
can jump 3.5 meters, nor am I more certain that I can jump 3 meters than that Henry V is the father
of Henry VI. I simply feel that I cannot compare the historical belief with my beliefs about my
ability to leap over a certain length. I agree that full comparability of entrenchments is a very strong
and sometimes unrealistic requirement. Various concepts of entrenchment without comparability
are studied by Lindström, Sten and Wlodzimierz Rabinowicz (1991) and Rott (1992, 2000, 2003).
The choice-theoretically motivated condition for the most ‘basic’ entrenchment (Rott 2001, p. 233,
Rott 2003), viz., A ∧ B ≤e C if and only if both A ≤e B ∧ C or B ≤e A ∧ C , has turned out to
be dual to Halpern’s (1997) condition of ‘qualitativeness’. But for the purposes of this paper, I will
assume that all beliefs are comparable in terms of their firmness.
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(E4) can be considered to be an explication of the notion of belief : A sentence is
entrenched in a person’s belief state to any non-minimal degree if and only if it is
believed to a degree that exceeds that of the non-beliefs.10 Put equivalently, with
the help of (E1)–(E3), that A is believed means that ¬A <e A. Beliefs are more
entrenched than their negations. Non-beliefs (in the wide sense including disbeliefs),
on the other hand, are only minimally ‘entrenched’, i.e., as entrenched as ⊥. Only
beliefs are really ranked by the degrees-of-belief relation ≤e which offers nothing
to distinguish between non-beliefs.

The ‘Parmenidean’ condition (E5) says that only tautologies are maximally en-
trenched. Setting technical advantages aside, there is little to recommend this con-
dition. Let us call maximally entrenched sentences a priori. I do not see that we
should dogmatically deny logically contingent sentences the status of aprioricity.
But (E5) implies the much weaker

(E5′) Not � ≤e ⊥ Non-triviality

which is a very reasonable condition. If � ≤e ⊥, then all sentences of the language
have the same entrenchment which trivializes the notion of a degree, and the rea-
soner would be at a loss whether to believe everything or nothing. Next to this trivial
relation are entrenchments having two layers, one including� and one including⊥,
the former containing all beliefs (which are all ‘a priori’) and the latter containing
all non-beliefs (in the wide sense). Although not trivial, such two-layered relations
do not really represent degrees of belief either, but express nothing more than a
categorical yes-no notion of belief.11

2.2 Entrenchment Ranking Functions

There are situations in which the requirements on the representation of firmness
have to be tightened, situations in which one does not only compare beliefs but in
which one wants to distinguish various distances in strength or degree of belief.
Rather than just saying that A is less firmly believed or less entrenched than B , one
wants to express how much less firmly A is believed than B . To this end, one can
map beliefs onto a scale, i.e., a totally ordered set of numbers, like the natural num-
bers (Spohn) or the closed real interval from 0 to 1 (Dubois and Prade). Rather than
just saying that A <e B , one might say, for instance, that the degree of entrenchment
(as a degree of belief) of A is 3, say, while the degree of entrenchment of B is 8.
And this of course is meant to express more difference than the degree 4 for A and

10 We may safely neglect here Gärdenfors and Makinson’s restriction of (E4) to consistent belief
sets.
11 According to my idealized description at the beginning of this paper, every skeptic has a two-
layered entrenchment relation. But the converse is of course not true; not every person with a
two-layered degree structure has beliefs that are absolutely certain.
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a degree 6 for B , even though the purely relational term is A <e B both times. We
follow Spohn in favouring the discrete structure of the integers.

An entrenchment ranking function, or simply entrenchment function, ε assigns to
each sentence a non-negative integer such that

(Ei) Sentences equivalent under � get the same ε-value. Intensionality
(Eii) ε(⊥) = 0 Bottom
(Eiii) ε(A ∧ B) = min{ε(A), ε(B)} Conjunctiveness

Entrenchment functions express quantitative degrees of beliefs. Condition (Ei)
needs no comment. Condition (Eii) is not really necessary and listed here just for
the sake of convenience and continuity with the literature. Condition (Eiii) is the
most characteristic feature of entrenchment ranking functions, essentially express-
ing what the axioms (E2) and (E3) above express in qualitative terms.

It follows from these conditions that for any A, either ε(A) = 0 or ε(¬A) = 0,
corresponding to the fact that either A ≤ ⊥ or ¬A ≤ ⊥ for entrenchment relations.

Spohn’s idea is that a positive entrenchment value ε(A) > 0 means that A is
believed. A maximum entrenchment value ε(A) ≥ ε(�) means that A is a priori for
an agent with the doxastic state represented by ε. One may stipulate again that only
tautologies are a priori, or, more cautiously, add at least the non-triviality condition
ε(⊥) < ε(�). We take all these conditions as optional.

Variants of entrenchment functions were introduced with Shackle (1949, 1961)
‘degrees of belief’, Levi’s (1967) ‘degrees of confidence of acceptance’, Cohen’s
(1977)’ ‘Baconian probability’, Rescher’s (1964, 1976) ‘conjunction-closed modal
categories’ and ‘plausibility indexings’, Shafer’s (1976) ‘consonant belief func-
tions’, Dubois and Prade’s (1988a, 1988b, 1991) ‘necessity measures’, Gärdenfors
and Makinson’s (1994) ‘belief valuations’ and Williams’s (1995) ‘partial entrench-
ment rankings’.

2.3 Entrenchment Functions and Relations

Let us call a reflexive and transitive relation ≤ finite if the symmetric relation - =
≤ ∩ ≤−1 partitions the field of the relation into finitely many equivalence classes.

Observation 1 Take an entrenchment function ε. Then its relational projection

A ≤e B if f ε(A) ≤ ε(B)

is an entrenchment relation. Conversely, for every finite entrenchment relation ≤e

there is an entrenchment function ε such that ≤e is the relational projection of ε.

I think it is fair to say that the first part of this observation it is folklore in belief
revision theory. The second part is equally simple. Just take the equivalence classes
with respect to-e and number them, beginning with 0, “from the bottom to the top”
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according to the ordering induced by ≤e. The structure of the entrenchment relation
guarantees that the function generated satisfies (Ei)–(Eiii).

Notice that if we start from ε, take its projection ≤e and afterwards apply the
construction just mentioned to ≤e, then we will not get back ε again. All the “gaps”
in ε will be closed in the new entrenchment function.

Now we have quite a fine-grained and satisfactory notion of degrees of belief.
The problem is, however, that the propositions that are not believed are all on the
same level. They are all as entrenched as the contradiction⊥. Intuitively this seems
just wrong. Believers do make distinctions between non-beliefs just as elaborately
as between beliefs. We begin to attack this modelling task by refining the degrees of
disbelieved sentences. This will be our first step in fanning out the ‘lowest’ degree
of belief. The second step will then continue by fanning out the newly formed, still
large ‘middle’ layer of non-beliefs in the narrow sense.

3 Degrees of Disbeliefs

Do we have any means to rank the large class of sentences at the bottom of entrench-
ment? The sentences that are not believed fall into two classes. On the non-beliefs
in the narrow sense, the reasoner does not take any firm stand. The disbeliefs, on the
other hand, are sentences that the reasoner believes to be false. Among the latter, we
can distinguish various degrees of plausibility. The key idea, it turns out, is to tie the
notion of the plausibility of a disbelief to the entrenchment of its negation. Degrees
of disbelief are in a sense dual to degrees of belief.

3.1 Plausibility Relations

Let us first look at the binary relation that compares degrees of disbeliefs. We pro-
pose to read A ≤p B as “A is at most as plausible as B” or “B is at least as close
to the reasoner’s beliefs as A”. Plausibility has the same direction as entrenchment.
The “better” the doxastic status of a proposition (either in terms of entrenchment or
in terms of plausibility), the higher it is in the relevant ordering.

(P1) If A ≤p B and B ≤p C then A ≤p C Transitivity
(P2) If A � B then A ≤p B Dominance
(P3) Either A ∨ B ≤p A or A ∨ B ≤p B Disjunctiveness

(P1) and (P2) are identical with (E1) and (E2). (P3) is dual to (E3), with disjunc-
tion playing the role of conjunction. Conditions (P2) and (P3) together establish a
kind of functionality of ≤p with respect to disjunction. The degree of plausibility
of a disjunction equals that of the more plausible disjunct. Like in the case of en-
trenchment, (P1)–(P3) taken together immediately entail that plausibility relations
are total.
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Again like in the case of entrenchment, we treat as optional two conditions con-
cerning the maximum and minimum of plausibility.

(P4) � ≤p A iff ¬A is not believed Maximality
(P5) A ≤p ⊥ only if � ¬A Minimality

(P4) can be considered to be an explication of the notion of believing-possible:
A sentence is maximally plausible in a person’s belief state if and only if it is not
excluded as impossible by the person’s belief state. Put equivalently, with the help of
(P1)–(P3), that A is believed means that ¬A <p �, or equivalently, that ¬A <p A.
All the sentences that are believed possible, i.e., not disbelieved, are maximally plau-
sible, and in this respect there is nothing to distinguish between them. Distinctions
in plausibility are only made between sentences that are disbelieved.

(P5) says that only contradictions are minimally plausible, a condition that we do
not want to endorse as universally valid. (P5) implies the much weaker

(P5′) Not � ≤p ⊥ Non-triviality

which is a very reasonable condition.
The plausibility of a proposition is determined by the most plausible way of

making that proposition true. This explains (P3), for instance. A most plausible way
of making A ∨ B true is either a most plausible way of making A true or a most
plausible way of making B true (or both). For reasons explained in Section 4, there
can be no corresponding condition for conjunctions, a conjunction A∧B can indeed
be strictly less plausible than either its conjuncts. There is no condition for negation,
but it is easy to deduce from (P1)–(P3) that at least one of A and ¬A is maximal
with respect to ≤p.

A disbelief A is less plausible than another disbelief B if and only if the negation
of the former has a higher degree of belief, i.e., is more entrenched, than the negation
of the latter.

Observation 2 Take an entrenchment relation ≤e. Then its dual

A ≤p B if f ¬B ≤e ¬A

is a plausibility relation. And vice versa.

This duality makes clear that while entrenchment relations are comparative ne-
cessity relations, plausibility relations are comparative possibility relations. The
conjunctive condition for entrenchments is changed into a disjunctive condition for
plausibilities by the occurrence of negation in Observation 2.
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3.2 Plausibility Ranking Functions

We now have a look at numerical ranks of disbeliefs. Although there is a line of
predecessors going back to Shackle (1949), I take Spohn (1988) as the seminal
paper for this model. The direction of Spohnian κ-functions, however, is reversed
in relation to plausibility relations. For Spohn, lower ranks (that can be thought of
as closer to the person’s current beliefs) denote higher plausibility, higher ranks are
‘farther off’ or ‘more far-fetched’. For reasons that will become clear later, we want
more plausible (or ‘more possible’) sentences to get higher ranks. Thus we introduce
plausibility ranking functions, or simply plausibility functions, that are the nega-
tive mirror images of Spohnian κ-functions (which could be called implausibility
functions).

A plausibility function π assigns to each sentence a non-positive integer such
that:

(Pi) Sentences equivalent under � get the same π-value. Intensionality
(Pii) π(�) = 0 Top
(Piii) π(A ∨ B) = max{π(A), π(B)} Disjunctiveness

Plausibility functions express quantitative degrees of disbelief. Condition (Pii) is
not really necessary. Condition (Piii) is the most characteristic feature of plausibil-
ity ranking functions, expressing what the axioms (P2) and (P3) above express in
qualitative terms.

It follows from these conditions that either π(A) = 0 or π(¬A) = 0. A negative
plausibility value π(A) < 0 means that A is disbelieved. A minimal plausibility
value π(A) ≤ π(⊥) means that ¬A is a priori.

Plausibility functions are entirely dual to entrenchment functions.

Observation 3 If ε is an entrenchment function, and we define π(A) = −ε(¬A),
then π is a plausibility function. And vice versa.

If π and ε are related as in Observation 3, then either π(A) = 0 or ε(A) = 0, i.e.,
either A or ¬A is doxastically possible.

3.3 Plausibility Functions and Plausibility Relations

The following observation is entirely dual to Observation 1.

Observation 4 Take a plausibility function π . Then its relational projection

A ≤p B if f π(A) ≤ π(B)

is a plausibility relation. Conversely, for every finite plausibility relation ≤p there
is a plausibility function π such that ≤p is the relational projection of π .

Again, I think it is fair to say that this is folklore in belief revision theory.
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4 Combining Degrees of Belief and Degrees of Disbelief

The axiom sets (E1)–(E3) and (P1)–(P3) are very similar. It is tempting to ‘combine’
degrees of belief and disbelief by just collecting their axioms, and dropping the sub-
scripts ‘e’ and ‘p’ attached to ‘≤’. Combining the minimum clause for conjunctions
with the maximum clause for disjunctions would make degrees of (dis-)beliefs more
“truth-functional.” However, we can show that given the background in which � is
the classical consequence relation, the combining of requirements for entrenchments
and plausibilities results in a trivialization.12

Observation 5 If a relation ≤ satisfies (E1)–(E3) and (P3), then it is at most two-
layered.

We can see this as follows. Suppose that A < � and B < � are two arbitrarily
chosen sentences of non-maximal entrenchment. Then A ∨ B < �, by (P3) and
(E1). Since� is equivalent with (A∨ B)∨ (¬A∧¬B), we get� ≤ (¬A∧¬B), by
(P3), (E1) and (E2).13 By (E2), A∨¬B and¬A∨ B are also maximally entrenched.
Since A is equivalent to (A ∨ B) ∧ (A ∨ ¬B), we thus find, by (E1) – (E3), that
A receives the same degree as A ∨ B , i.e., A ≤ A ∨ B as well as A ∨ B ≤ A.
Since on the other hand B is equivalent to (A∨ B)∧ (¬A∨ B), we get by the same
reasoning that B receives the same degree as A∨ B , too. Hence A and B must have
the same degrees. Since we can choose⊥ for A, say, we find that all non-maximally
entrenched sentences are in fact minimally entrenched. Thus the relation≤ is trivial
in that it distinguishes at most two degrees of belief. We conclude that there are
rather tight limits to the functionality of the degrees of belief – at least as long
as we insist that sentences that are logically equivalent with respect to classical
logic should receive the same degree.14 We reject the disjunctiveness condition (P3)
as a condition for entrenchments or degrees of beliefs. The degree of belief of a
disjunction can definitely be higher than that of its disjuncts. Similarly, we reject
the conjunctiveness condition for plausibilities or degrees of disbelief.

So there is a tension between degrees for beliefs and degrees for disbeliefs. The
former are functional with respect to conjunctions, but cannot be so with respect to
disjunctions, the latter have it just the other way round. Can we still piece together
the relations ordering beliefs and the relations ordering disbeliefs in a reasonable
way? It turns out that this is possible. The idea of combining entrenchment and plau-
sibility (necessity and possibility) to a single scale has been first explored by Spohn
(1991, p. 169; 2002, p. 378) and Rabinowicz (1995, pp. 111–112, 123–127).15

12 This result is contained in Rott (1991), but there are several related observations around, for
instance in a notorious little paper by Elkan (1994). Seen from a multiple-valued logic perspective,
it is (E2) (and also (Ei)) that is not acceptable.
13 If A and B were both beliefs, this result would be very strange indeed since the conjunction of
the negations of two beliefs would turn out to be maximally entrenched.
14 Which follows from (E2). Note that we haven’t talked about the functionality of negation in this
argument. While we shall not be able to fix the rift between the functionality of ‘and’ and ‘or’, we
shall install unrestricted functionality for negation.
15 But see footnote 17.
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4.1 Rabinowicz Likelihood Relations

Rabinowicz studied relations that make beliefs and disbeliefs fully comparable. We
change the numbering of Rabinowicz’s axioms in order to have a better correspon-
dence with the relations we have seen so far.

(L1) If A ≤l B and B ≤l C then A ≤l C Transitivity
(L2) Either A ≤l B or B ≤l A Connectivity
(L3) If A � B then A ≤l B Dominance
(L4) If ¬A <l A and ¬B <l B , then either A ≤l A ∧ B or B ≤l A ∧ B

Positive conjunctiveness
(L5) If A ≤l B then ¬B ≤l ¬A Contraposition

(L1) and (L3) parallel analogous conditions for entrenchment and plausibility.
(L2) is needed since in contrast to the cases of entrenchment and plausibility, the
connectivity of the relation ≤ is no longer derivable from the other conditions.
The validity of the conjunctiveness condition (E3) for entrenchment relations is
restricted for likelihood relations to pairs sentences that are more likely than their
negations (‘likely’ is here not meant in a probabilistic sense). Thus condition (L4).16

Finally, there is a new condition (L5), called ‘contraposition’ by Rabinowicz, that
takes care of negations.

As in the case of entrenchment and plausibility relations, we treat as optional two
conditions concerning the maximum and minimum of plausibility.

(L6) ¬A <l A iff A is believed Positivity
(L7) If � ≤l B then � B Maximality

(L7) says that only tautologies are maximally likely, a condition that we do not
want to endorse as universally valid. (L6) can be interpreted as a definition of the
notion of belief. A sentence A is believed iff it is more likely than its negation, i.e.,
iff ¬A <l A. Consequently, A is a disbelieved iff A < ¬A, and A is a non-belief iff
both A ≤ ¬A and ¬A ≤ A. In likelihood relations, the belief status can no longer
be expressed as a relation between A and either� or⊥. But notice that in any case,
A is a belief if and only if ¬A < A, regardless of whether ≤ is supposed to stand
for ≤e, ≤p or ≤l .

By (L4), likelihood relations are functional with respect to conjunction for be-
liefs. Using contraposition, it is easy to see that they are functional with respect to
disjunctions for disbeliefs. A natural question to ask is whether there is any func-
tionality “across the categories”, for instance, when A is a belief and B is a disbelief.
The following facts are derivable from the axioms (L1)–(L5). Roughly, they say that

16 Rabinowicz’ original axiom is actually not (L4), but (L4R): If ¬C <l C , C ≤l A and C ≤l B,
then C ≤l A ∧ B. (L4R) can be proven equivalent to (L4) on the basis of the other axioms. –
Note also that on the basis of the other axioms, (L4) can equivalently be strengthened to (L4+): If
¬A ≤l A and ¬B <l B, then either A ≤l A ∧ B or B ≤l A ∧ B.
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in this case, if A is more firmly believed than B is disbelieved, then A∧B is as likely
as B , while if A is less firmly believed than B is disbelieved, then A∨ B is as likely
as A.

(LC∧) If B ≤l ¬B <l A, then B ≤l A ∧ B
(LC∨) If ¬A ≤l A <l ¬B , then A ∨ B ≤l A

Likelihood relations express distinctions between both beliefs and disbeliefs.
However, all the sentences that are neither believed or disbelieved, i.e., that are non-
believed in the narrow sense, get the same likelihood level ‘below’ all the beliefs
and ‘above’ all the disbeliefs. As far as Rabinowicz likelihood is concerned, there
is nothing to distinguish between them. Distinctions in likelihood are only made
between sentences that are either believed or disbelieved.

Rabinowicz’ motivation for introducing likelihood relations is given by the fol-
lowing

Observation 6 (Rabinowicz) Take an entrenchment relation≤e, and define the cor-
responding plausibility relation ≤p as in Observation 2. Then the relation

A ≤l B iff both A ≤e B and A ≤p B

is a likelihood relation.

Note that the definition of≤l from an entrenchment relation≤e and a plausibility
relation ≤p in Observation 6 produces a likelihood relation only if ≤e and ≤p fit
together in the sense that they satisfy the condition A ≤p B iff ¬B ≤e ¬A (or, of
course, equivalently A ≤e B iff ¬B ≤p ¬A).

Rabinowicz also shows how to reconstruct the entrenchment relation (and thus,
also the plausibility relation) corresponding to a given likelihood relation. He defines
A ≤e B if and only if A ≤l B or A ≤l ¬A. Using this definition, he is able to
demonstrate formally that entrenchment and likelihood are “equivalent concepts”
(1995, p. 125).

4.2 Spohnian Beta Functions

Now suppose an entrenchment ranking function ε is given, and π is its associated
plausibility function as defined in Observation 3. We are looking for a numerical
function that assigns ranks to both beliefs and disbeliefs. Except for notational dif-
ferences, the following suggestion is due to Wolfgang Spohn (1991, p. 169):17

17 This concept of “firmness of belief” (and its relational projection “more plausible than”) was
present already in Spohn (1988, p. 116). Spohn (1991) attributes the following elegant definition,
or actually its notational variant β(A) = κ(A) − κ(A), to Bernard Walliser. Variants of a similar
combination of necessity and possibility functions are mentioned and related to the certainty factors
of MYCIN (Buchanan and Shortliffe 1984) by Dubois and Prade (1988a, p. 295; 1988b, pp. 246,
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β(A) = ε(A)+ π(A)

Notice that β(A) equals ε(A) if ε(A) is positive, i.e., if A is believed, and equals
π(A) otherwise. We do not need “real” addition here, the plus sign is just a con-
venient notational device. Another way of conceiving of beta functions is viewing
them as combining the pair of entrenchment and plausibility values by applying
restricted maximum and minimum operations on them. This view will prove to be
interesting later.

β(A) =
{

max{ε(A), π(A)} if ε(A) > 0
min{ε(A), π(A)} otherwise

As far as I know, no axiomatic characterization of beta functions has been given
yet. So let us propose one here. A beta function, or also likelihood function,18 β

assigns to each sentence an integer such that

(Bi) Sentences equivalent under � get the same β-value Intensionality
(Bii) β(�) ≥ 0 Top
(Biii) If β(A) ≥ 0 and β(B) > 0, then β(A ∧ B) = min{β(A), β(B)}

Positive conjunctiveness
(Biv) β(¬A) = − β(A) Inversion

The inversion condition (Biv) for beta functions is the counterpart of the con-
traposition condition (L5) for likelihood relations. The positive conjunctiveness
condition (Biii) strengthens its relational counterpart (L4).19 As a consequence, the
dominance condition is not needed as a separate axiom. It follows from (Bi)–(Biv)
that if A � B then β(A) ≤ β(B).

The following interpretation of beta functions was the one intended by Spohn:
β(A) is positive (negative, or zero) if and only if A is believed (disbelieved or,
respectively, a non-belief in the narrow sense). We will treat this interpretation as
optional, but emphasize that beta functions in this interpretation distinguish ranks
between both beliefs and disbeliefs. (Bii) says that tautologies must not be disbe-
lieved. If β(A) ≥ β(�), we say that A is a priori, and if β(A) ≤ β(⊥), then ¬A is a
priori.

As in the relational case, we have functionality for conjunction among beliefs,
for disjunction among disbeliefs, and the following restricted “cross-categorical”
functionality of conjunction and disjunction:

254), Dubois, Prade and Smets (1996, end of Section 4.1) and Dubois, Moral and Prade (1998,
p. 349).
18 Spohn calls such functions ‘belief functions’, but I want to avoid this term because (a) it is rather
unspecific, and (b) in so far as it has an established meaning, it is commonly associated with the
work of Arthur Dempster and Glenn Shafer.
19 We pointed out in footnote 16 that the relational counterpart (L4+) of (Biii) is derivable from
the axioms for likelihood relations.
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(BC∧) If 0 ≤ −β(B) < β(A), then β(A ∧ B) = β(B)
(BC∨) If 0 ≤ β(A) < −β(B), then β(A ∨ B) = β(A)

It is easy to construct the entrenchment and plausibility functions corresponding
to a given beta function. If we put ε(A) = max{β(A), 0} and π(A) = −ε(¬A) =
−max{β(¬A), 0} = −max{−β(A), 0} = min{β(A), 0}, it can be proved that en-
trenchment and likelihood functions are “equivalent” concepts, as indeed are plau-
sibility and likelihood functions. This justifies our claim that the above conditions
axiomatically characterize Spohn’s idea of beta functions.

Observation 7 A function β is a likelihood function satisfying (Bi)–(Biv) if and only
if there is an entrenchment function ε satisfying (Ei)–(Eiii) such that

β(A) = ε(A)+ π(A)

where π is the plausibility function corresponding to ε, defined by π(A) = −ε(¬A).

Spohn (2002, p. 378) argued that “belief functions [i.e., beta functions, HR] may
appear to be more natural [than plausibility functions, HR]. But their formal be-
haviour is more awkward.”20 For the purposes of the present paper with its focus on
the concept of comparative degrees of belief, however, it is sufficient that there are
systematic and well-understood non-probabilistic rankings of beliefs and disbeliefs
along a single scale. We have axiomatized them and then identified a number of
interesting facts about them. So perhaps they look a little less awkward now.21 If one
were still inclined to call their formal behaviour awkward, then this would not speak
against the reasonableness of the notion of unified degrees of belief and disbelief.

4.3 Spohnian Beta Functions and Rabinowicz’ Likelihood
Relations

It turns out that the qualitative counterparts of Spohnian belief functions are exactly
the Rabinowicz likelihood relations.

Observation 8 Take a Spohnian beta function β. Then its relational projection

A ≤l B iff β(A) ≤ β(B)

is a Rabinowicz likelihood relation.
Conversely, for every finite Rabinowicz likelihood relation ≤l there is a Spohnian
beta function β such that ≤l is the relational projection of β.

20 Dubois, Moral and Prade (1998, p. 349) give a similar comment: “It turns out that this set-
function is not easy to handle beyond binary universes, because it is not compositional whatsoever.”
21 Perhaps as awkward as the cubic function y = x3 which is concave for x < 0 and convex for
x > 0.
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Sentences mapped to zero by a beta function are exactly those that are as likely
as their negations under the corresponding likelihood relation. For the proof of the
second part of Observation 8, one takes the equivalence class of sentences that are
as likely as their negations as the class of sentences getting rank zero by the beta
function β. Then one assigns numbers to all other equivalence classes with respect
to-l going up and going down from zero according to the ordering relation induced
by≤l . Due to contraposition (L5), everything happening in the negative integers will
be perfectly symmetrical to what goes on in the positive integers.

Let us now give a graphical illustration of the situation so far. The model for
belief states most easily comprehended is Grove’s (1988) subjectivist variant of
Lewis’s (1973) objectivist conception of system of spheres. It represents a doxastic
state by a system of nested sets of possible worlds.22 The smallest set “in the center”
is the set of possible worlds which the reasoner believes to contain the actual world
wa , i.e., the worlds considered “possible” according to the reasoner’s beliefs. If she
receives evidence that the actual world is not contained in this smallest set, she
falls back on the next larger set of possible worlds. Thus the first shell23 around the
center contains the worlds considered second most plausible by the reasoner. And
again, should it turn out that the actual world is not to be found in this set either, the
reasoner is prepared to fall back on her next larger set of possible worlds. And so
on. The sets or spheres of possible worlds correspond to grades of plausibility, or to
put it differently, grades of deviation from the subject’s actual beliefs. The system
of spheres taken as a whole can be thought of as representing a person’s mental or,
more precisely, doxastic state.24

How can we use this modelling to codify the degrees of belief and disbelief
(entrenchment or plausibility) of a given sentence? Such degrees are determined by
the sets of spheres throughout which this sentence holds universally, and the sets
of spheres which it intersects. If A covers more spheres than B , then A is more
entrenched than B . If A intersects more spheres than B , then A is more plausible
than B . Figure 1 gives an illustration of the degrees of belief of three sentences A,
B and C in a doxastic state represented by a Grovean system of spheres. I remind
the reader that the numerals in the qualitative approach are not supposed to denote
genuine numbers, they are just used to indicate the relative positions in a weak total
ordering. There is no sphere labelled ‘0’ in Fig. 1. That β(B) = 0 means that the
innermost sphere (labelled ‘1’) contains both B-worlds and ¬B-worlds.

22 For the sake of simplicity, I suppose that all sets mentioned in this model are finite. Technically,
the “worlds” should be thought of as the models of a finitary propositional language.
23 A shell is the difference set between two neighbouring spheres. Spheres are nested, shells are
disjoint.
24 Of course, it must not be expected that the system of spheres is centered on a single world wa

that represents the actual world. The facts that (i) the innermost circle need not be a singleton
and (ii) it need not contain the actual word distinguish Grove’s model from Lewis’ objectivist
system-of-spheres model. If one of the reasoner’s beliefs is wrong, then wa is not contained in the
innermost sphere. The actual world may be located at any arbitrary position in the sphere system.



316 H. Rott

4
3

2
1

AB

C

Fig. 1 Degrees of belief and disbelief: β(A) = 3, β(B) = 0 and β(C) = −1

5 Degrees for Non-Beliefs: Expectations, Disexpectations,
Non-Expectations

We have seen that we can, drawing on the work of Rabinowicz and Spohn, map
degrees of beliefs and disbeliefs into a single dimension in a reasonable way that
ranks disbeliefs lower than beliefs. But usually there are lots of things that a reasoner
is ignorant of, honestly most reasoners would have to admit that they neither believe
nor disbelieve most of the propositions they could be asked about. Yet all of these
myriads of non-beliefs in the narrow sense are mapped by a beta function onto a
single zero point. Intuitively, however, there can be vast differences between the
credibilities of various non-beliefs. Some of them are considered to be quite likely,
while others would be found very surprising. We should like to be able to express
such differentiations. What should we do then with the non-beliefs?

One perfectly good way of proceeding would be to use probabilities in order to
express the different doxastic attitudes toward non-beliefs.25 The fact that probabil-
ity distributions are not functional with respect to either ∧ and ∨, makes it evident
that the introduction of probabilities would make the model a hybrid. Although this
is not a decisive argument against using probabilities, it would be nicer if we con-
tinued with our ‘logical’ approach and distinguished among non-beliefs in terms of
comparative necessity and possibility in just the way in which we have assigned
degrees to beliefs and disbeliefs. Would it make sense to stipulate an expectation

25 The most well-known way of having a probability distribution within each ordinal rank
has emerged in the research related to so-called Popper measures, cf. van Fraassen (1976),
Spohn (1986), Hammond (1994) and Halpern (2001).
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ordering of non-beliefs analogous to the entrenchment ordering of beliefs, perhaps
in such a way that the set of expectations is logically closed and consistent? It turns
out that this is indeed possible. We can combine entrenchment and plausibility struc-
tures for beliefs and disbeliefs with similar structures for non-beliefs. Intuitively,
we just need to fan out the zero point of likelihood relations and functions into a
multitude of different ranks.

The key idea is this. Reasoners do not only have beliefs, but also things they
almost believe, or things they would believe if they were just a little bolder than
they are: They have opinions, expectations and hypotheses, they make conjectures
and default assumptions, they act on presumptions etc. It is not necessary to decide
here which of these pro-attitudes are stronger than which of the others. The point is
that by increasing their degree of boldness (or degree of credulity, gullibility etc.),
reasoners can successively strengthen the set of accepted sentences, until they reach
a point at which they refuse to further raise their credulity. A sequence of succes-
sively increasing ‘expectation sets’ emerges.26 Following the lead of Gärdenfors
and Makinson (1994), I use expectation as the generic term for such “subdoxastic”
attitudes. Let us call weak expectations the sentences accepted at the maximum level
of boldness. Semantically, this process of stepwise extending one’s expectation set
means establishing an inverted Grove model. Starting with the set of worlds that
represent the reasoner’s beliefs, new spheres that go inward are added. Each such
set of worlds corresponds to a member of the sequence of the reasoner’s gradually
enlarged expectation sets. In this system of spheres, the outermost sphere represents
the reasoner’s belief, and the innermost sphere represents her weakest expectations,
that is, the sentences she is ready to accept at her highest level of doxastic boldness.

Having established ‘inner spheres’ of expectation, some non-beliefs turn out to
be comparatively plausible and positively expected to some degree. However, other
non-beliefs will turn out to be implausible and surprising (or ‘disexpected’) to some
degree. Some non-beliefs will be neither expected nor disexpected, namely those
that are neither implied nor contradicted by the boldest theory entertained by the
reasoner.

5.1 Relations for Non-Beliefs

Interestingly, one can use precisely the same relational structures of comparative
necessity and possibility for evaluating expectations as we employed for beliefs.
We can re-use our axioms (E1)–(E3), (P1)–(P3) and (L1)–(L5) as before, but for
the sake of clarity we rename them into (Ex1)–(Ex3), (Px1)–(Px3) and (Lx1)–(Lx5)
in the present context, and apply the relation symbols ≤ex , ≤px and ≤lx . All these
relations are total.

The only difference lies in the interpretation. The optional conditions (E4) and
(E5) and their counterparts for plausibility and likelihood are no longer appropriate.
They should be replaced by

26 We assume for simplicity that this sequence is finite.
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(Ex4) ⊥ <ex A iff A is weakly expected
(Ex5) � ≤ex A iff A is believed
(Px4) A <px � iff ¬A is weakly expected
(Px5) A ≤px ⊥ iff ¬A is believed
(Lx6) ¬A <lx A iff A is weakly expected
(Lx7) � ≤lx A iff A is believed

Expectation relations ≤ex are similar to the relations with the same name intro-
duced by Gärdenfors and Makinson (1994). Expectation plausibility relations ≤px

establish comparisons of ‘disexpectations’ (with full comparability). I am not aware
that they have been presented in this way in the literature, but they are straightfor-
ward to introduce on our account.27

Notice that A is a weak expectation if and only if ¬A <x A, regardless of
whether ≤x is supposed to stand for ≤ex , ≤px or ≤lx .

As in the case of belief and disbelief, we can say that the relevant relations fit
together if, for example, they satisfy the duality principle A ≤px B iff ¬B ≤ex ¬A,
or the condition A ≤lx B iff A ≤ex B and A ≤px B , or the condition A ≤ex B iff
A ≤lx B or A ≤lx ¬A.

Focussing on the comparative necessity structures, the only difference between
entrenchment and expectation relations is that beliefs occupy the (usually: many)
non-minimal ranks in entrenchment relations, while they occupy the (single) max-
imal rank in expectation relations. By the same token, non-beliefs occupy the (sin-
gle) minimal rank in entrenchment relations, while they occupy the (usually: many)
non-maximal ranks in expectation relations.

The relations are intertwined in a way similar to the corresponding relations for
beliefs and disbeliefs

Observation 9 (i) Take an expectation relation ≤ex . Then its dual

A ≤px B iff ¬B ≤ex ¬A

is a plausibility relation for expectations. And vice versa.
(ii) Take an expectation relation ≤ex and define the corresponding plausibility

relation ≤px for expectations. Then the relation defined by

A ≤lx B iff both A ≤ex B and A ≤px B

is a likelihood relation for expectations.
Conversely, take a likelihood relation ≤ex for expectations. Then the relation
defined by

A ≤ex B iff both A ≤lx B or A ≤lx ¬A

is the corresponding expectation relation.

27 I shall continue to use the artificial term ‘disexpectation’ as short for ‘expectation-that-not’. If
there is a lack of expectation, I will talk of ‘non-expectations’.



Degrees All the Way Down 319

While expectation relations are comparative necessity relations, plausibility rela-
tions for expectations are comparative possibility relations. Likelihood relations for
expectations have the same hybrid structure as the likelihood relations for beliefs.

5.2 Functions for Non-Beliefs

Can we design ‘expectation functions’ analogous to belief and disbelief functions,
just with different ‘limiting cases’? Yes, we can. The intuitive idea is that we use
1 as the threshold value for belief and -1 as the threshold value for disbelief. Non-
beliefs receive degrees between the degrees of beliefs and the degrees of disbeliefs,
that is, between -1 and +1. We will use inverse integers for this task. However, the
reader should be warned once more that the numerals are not supposed to represent
anything more than the relative positions in a weak total ordering. In particular, the
distance between 1/2 and 1/3, say, is not meant to be smaller than the distance
between 2 and 3. Both pairs signify neighbouring ranks. And of course fractions
such as 1/2, 1/3, 1/4, . . . should not be mistaken for probabilities. As before, we
assume that the range of values of all functions that follow is finite.

An expectation ranking function, or simply expectation function, εx assigns to
each sentence an inverse positive integer 1, 1/2, 1/3, 1/4, . . . or 0 in such a way
that (Ei)–(Eiii) are satisfied, with the understanding that εx(A) = 1 means that A
is believed, and εx(A) > 0 means that A is weakly expected by a reasoner with
expectation state εx .

A plausibility ranking function, or simply plausibility function, for expectations
πx assigns to each sentence a negative inverse integer −1, −1/2, −1/3, −1/4, . . .
or 0 in such a way (Pi)–(Piii) are satisfied, with the understanding that πx (A) = −1

1
1/2

1/3

1/4

AB

D

C

Fig. 2 Degrees of expectation and disexpectation (= degrees of non-belief): βx (A) = 1, βx (B) =
1/2, βx (D) = −1/4, βx (C) = −1
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means that ¬A is believed, and πx(A) < 0 means that ¬A is weakly expected by a
reasoner with expectation state πx .

A likelihood function for expectations, βx assigns to each sentence an inverse
integer±1,±1/2,±1/3,±1/4, . . . or 0 in such a way (Bi)–(Biv) are satisfied, with
the understanding that βx(A) = 1 means that A is believed, and βx(A) = 0 means
that neither A nor ¬A is weakly expected by a reasoner with expectation state βx .

Notice that the sentences that receive value 0 by the functions ε, π and β, i.e.,
the non-beliefs in the narrow sense, can now be differentiated by assigning to them
(finitely many) values lying in the interval [−1/2, 1/2]. This provides an enormous
resource of fine-grained degrees for non-beliefs. On the other hand, functions for
non-beliefs do not report any distinctions between beliefs or distinctions between
disbeliefs. Figure 2 gives an example in system-of-spheres representation. Note that
this time, the reasoner’s beliefs are represented by the outermost sphere, rather than
by the innermost sphere as in Fig. 1. Again, there is no sphere labelled ‘0’, a β-value
of zero means that the proposition in question intersects but does not cover the
innermost sphere (labelled ‘1/4’ in Fig. 2).

6 Combining Degrees of Beliefs and Disbeliefs with Degrees
for Non-Beliefs

We have treated expectations formally exactly like beliefs – except that we indicated
that they are not quite beliefs, but strictly speaking non-beliefs. Gärdenfors and
Makinson have rightly pointed out that also from an intuitive point of view, beliefs
and expectations are not so different after all:

Epistemologically, the difference between belief sets and expectations lies only in our at-
titude to them, i.e., what we are willing to do with them. For so long as we are using a
belief set K , its elements function as full beliefs. But as soon as we seek to revise K , thus
putting its elements into question, they lose the status of full belief and become merely
expectations, some of which may have to go in order to make consistent place for beliefs
introduced in the revision process. (Gärdenfors and Makinson 1994, pp. 223-224)

Gärdenfors and Makinson did much to uncover the analogy between belief struc-
tures and expectation structures in their seminal papers (Makinson and Gärdenfors
1991, Gärdenfors and Makinson 1994), but they did not unify beliefs and expecta-
tions into an all-encompassing doxastic state.

Semantically, what has to be done in order to get beliefs and expectations into a
joint representation is quite clear. One just has to superimpose the outward-directed
system of spheres for beliefs and disbeliefs on the inward-directed system of spheres
for non-beliefs (see Fig. 3 for illustration). The only precondition for this operation
to succeed is that the two systems of spheres fit together. The innermost sphere of
the former must be identical with the outermost sphere of the latter: These spheres
are both supposed to represent the reasoner’s beliefs. What we have to do now is to
transfer this pictorial description to our various relations and functions representing
degrees of belief.
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4
3

211/3 1/2

1/4

AB

D

C

Fig. 3 Degrees of belief, non-belief and disbelief: βall (A) = 3, βall (B) = 1/2, βall (D) = −1/4,
βall (C) = −1

6.1 Combining Relations for Beliefs and Disbeliefs with Relations
for Non-Beliefs

Before we can start merging degrees for beliefs and disbeliefs with degrees for non-
beliefs, we need to make sure that the relevant orderings fit together. This is the
case if the beliefs marked out by the relation ≤e (or by ≤p or by ≤l) are identical
with the beliefs marked out by the relation ≤ex (or respectively, by ≤px or by ≤lx ).
Thus, when joining comparative necessity, comparative possibility and compara-
tive likelihoods, we require that the following fitting conditions are satisfied for all
sentences A:

i. ⊥ <e A iff � ≤ex A
ii. A <p � iff A ≤px ⊥

iii. ¬A <l A iff � ≤lx A

In the following, we use the relation symbols ≤ee, ≤pp and ≤ll for the relations
that combine the respective relations for beliefs/disbeliefs and non-beliefs.

If the relevant belief sets coincide, then there is no reason why entrenchment and
expectation relations should not be merged into a single homogeneous comparative
necessity relation satisfying (E1)–(E3).

A ≤ee B iff A ≤e B and A ≤ex B

The transitivity and dominance conditions for ≤e and ≤ex transfer immediately to
≤ee. With the help of the ‘fitting condition’ (i), one can also show that ≤ee satisfies
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conjunctiveness. The maxima of the combined relation ≤ee are the a priori beliefs,
the minima are those propositions that are not even weak expectations.

The plausibility relations concerning disbeliefs and non-beliefs (in the narrow
sense) can similarly be combined into a homogeneous comparative possibility rela-
tion satisfying (P1)–(P3).

A ≤pp B iff A ≤p B and A ≤px B

The transitivity and dominance conditions for ≤p and ≤px transfer immediately to
≤pp. With the help of the fitting condition (ii), one can also show that ≤pp satisfies
disjunctiveness.

Finally, the likelihood relations concerning beliefs/disbeliefs and non-beliefs (in
the narrow sense) can be combined similarly into a homogeneous comparative like-
lihood relation satisfying (L1)–(L5).

A ≤ll B iff A ≤l B and A ≤lx B

The relation ≤ll is the most comprehensive or fine-grained notion of degree that
we have: It draws distinctions in degree between beliefs and disbeliefs and non-
beliefs, with the latter in turn split up into expectations, disexpectations and non-
expectations.

6.2 Combining Functions for Beliefs and Disbeliefs with Functions
for Non-Beliefs

It will come to no surprise that we can do an analogous unification with functions
rather than relations. For the merger to succeed, the beliefs marked out by the func-
tion ε (or by the functions π and β) must fit together with the beliefs marked out by
the function εx (or, respectively, by the functions πx and βx). When joining compar-
ative necessity, comparative possibility and comparative likelihoods, we thus require
that for all A

i. ε(A) ≥ 1 iff εx (A) ≥ 1
ii. π(A) ≤ −1 iff πx (A) ≤ −1

iii. β(A) ≥ 1 iff βx (A) ≥ 1, and β(A) ≤ −1 iff βx(A) ≤ −1

If the relevant functions fit together, then we can again combine them into func-
tions specifying all-encompassing degrees of belief, disbelief and non-belief. We
use the function symbols εall , πall and βall to denote them.

i. εall(A) = max{ε(A), εx(A)}
ii. πall (A) = min{π(A), πx(A)}

iii. βall (A) =
{

max{β(A), βx(A)} if βx (A) > 0
min{β(A), βx(A)} otherwise
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Fig. 4 Degrees of belief plotted on a line

It is easy to verify that the overall function εall is a necessity function that assigns
to each sentence a non-negative integer or a positive inverse integer such that (Ei)–
(Eiii) are satisfied; that πall is a possibility function that assigns to each sentence a
non-positive integer or a negative inverse integer such that (Pi)–(Piii) are satisfied;
and that βall is a likelihood function βall that assigns to each sentence an integer
or an inverse integer such that (Bi)–(Biv) are satisfied. Figure 4 illustrates how the
discrete degrees of belief are arranged along a line.

7 Levi on Degrees of Belief and Degrees of Incorrigibility

The British economist G.L.S. Shackle (1949, appendix; 1961, Chapter X) was per-
haps the first person to introduce plausibility functions for expectations (under the
name ‘degrees of potential surprise’) and also to consider expectation functions (un-
der the name ‘degrees of belief’).28 Isaac Levi picked up on Shackle’s work,29 and
has developed a sophisticated theory of his own that combines aspects related to
beliefs and disbeliefs with aspects related to non-beliefs (or expectations). This is
expressed, for instance, in Levi (1996, p. 267):

Shackle measures can be interpreted in at least two useful ways: in terms of caution- and
partition-dependent deductively cogent inductive expansion rules and in terms of damped
informational value of contraction strategies. One interpretation (as an assessment of incor-
rigibility) plays a role in characterizing optimal contractions . . . . The other interpretation
plays a role in characterizing inductively extended expansions . . . . Although the formal
structures are the same, the applications are clearly different.

28 This is so in Levi’s streamlined accounts of the matter. Actually, Shackle struggled a lot with his
notion of degree of surprise, and he certainly did not have a worked-out concept of degree of belief.
As pointed out by Levi (1984, note 5) himself, Shackle was not quite consistent in his use of the
term ‘degree of belief’. Taking Shackle’s potential surprise to be the function−π , we can recast his
first official axiom as identifying the degree of belief in A with the pair 〈−π(A),−π(¬A)〉 while
only on p. 71 in Shackle (1961) he determines the degree of belief as the value −π(¬A) = ε(A).
29 Cf. Levi (1967, pp. 135–138; 1984; 1996, pp. 180–182; 2004, pp. 90–92.
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For four decades, Levi has studied both expansions and contractions of sets of
belief (‘corpora’ in his terminology). In a contraction, the reasoner gives up some
specific sentence and makes use of the outward-directed spheres. These spheres are
fallback positions for the case when a specified belief is to be withdrawn. The sort
of expansions mainly considered by Levi, however, does not need any input of a
specific sentence. An inductive expansion aims at inductively enlarging a certain set
of beliefs, making use of inward-directed spheres as bridgeheads for more daring
inferential leaps. How far into unknown territory the reasoner advances depends on
her boldness. No external instigation is needed to inductively expand a belief set.
Levi gives a decision-theoretic derivation of the expected values of the accepting of
a given sentence, with a degree of boldness serving as a parameter that tunes the
comparative utilities of freedom-from-error and acquirement-of-new-information.
The degree of expectation of a given sentence varies inversely with the degree of
boldness that is needed in order to render that sentence acceptable.

In Levi’s work, entrenchment relations (corresponding to outward-directed sys-
tems of spheres) characterize “degrees of incorrigibility.”30 Expectation relations are
derived by Levi by allowing different degrees of “boldness” in inductive acceptance
rules, and are on various occasions called “degrees of confidence of acceptance”
(Levi’s original term used in 1967), “degrees of belief”, “degrees of certainty”
or “degrees of plausibility.” Structurally, degrees of incorrigibility and degrees of
certainty are the same, in so far as they both obey the minimum-rule for conjunc-
tions. The crucial difference is that a sentence A is believed if and only if it has a
non-minimal degree of incorrigibility, and if and only if it has maximal degree of
certainty.31

Thus I think that by considering degrees of belief and disbelief along with de-
grees of non-belief, our model may also help to make transparent Levi’s long in-
sistence, which many have found hard to comprehend, that certainty (the feeling of
infallibility) and incorrigibility are entirely different notions.32 Degrees of certainty
are needed for the construction of inductive expansions, degrees of incorrigibility
are needed for the construction of belief contractions.33

30 As studied by Levi in his work on contractions, cf. Levi (1996, p. 264, 2004, p. 196). I take the
liberty of glossing over the subtler differences that Levi (2004, pp. 191–199) identifies between
degrees of entrenchment and degrees of incorrigibility.
31 I do not claim it is easy to find this explicitly stated in Levi’s writings. But it gets clear on
contrasting the axioms for Shackle-style b-functions in Levi (1996, p. 181; 2004, p. 90) with the
axioms for Gärdenfors-style en-functions in Levi (1996, p. 264; 2004, p. 198) for which the above
description is entirely correct, if ‘being believed’ is identified with ‘being contained in the corpus
K ’. Levi’s en-functions are our ε-functions, while his b-functins are our εx -functions. Levi has no
counterparts to εall -functions.
32 See Levi (1980, pp. 13–19, 58–62; 1991, pp. 141–146; 1996, pp. 261–268).
33 Another important point to note is that while Levi uses both informational value and the prob-
ability of error for belief expansions, he only uses (damped) informational value as a criterion for
belief contractions. Levi argues that belief contractions cannot incur any error to a person’s belief
system. That is certainly right, but error might be removed by a contraction. Levi’s pragmatist
philosophy, however, has no room for this, since in his picture a reasoner is invariably committed
to the infallibility of her beliefs. For details, see Rott (2006).



Degrees All the Way Down 325

The full scope of degrees of belief, disbeliefs and non-beliefs offered in this
paper may help dissolving some misunderstandings that have haunted the literature
for some time. For instance, the notion of ‘plain belief’ is used differently by Isaac
Levi (2004, pp. 93–95, 179–180; 2006) and Wolfgang Spohn (1990, 2006). What we
have called simply ‘belief’ in this paper is, I think, called ‘full belief’ by Levi and
‘plain belief’ (or ‘belief simpliciter’) by Spohn. For Levi, plain belief is the sort of
belief that would be reached after performing the inductive expansion recommended
by epistemic decision theory.34 In my terminology, this is an expectation to a certain
degree. Some misunderstandings in the discussion may have arisen from the fact that
most people have had in mind entrenchment or plausibility relations where Levi
was thinking of degrees of non-belief or expectation. To my knowledge, neither
Levi nor any of his critics has combined degrees of belief, disbelief and non-belief
(expectation) into a single linear structure.35

8 Conclusion: Elusive Belief

In many approaches of belief change and non-monotonic reasoning, researchers
have used either degrees of belief or degrees of disbelief or degrees of non-belief
(degrees of expectations). I have attempted to combine these various structures into
a unified whole in this paper. The combination was achieved in two steps. In the first
step, degrees of belief (necessity structures) were joined with degrees of disbelief
(possibility structures). In the second step this combined structure was joined with
a similar structure for (dis-)expectations rather than (dis-)beliefs, where this new
expectation structure fans out a single point of the old belief structure, namely the
zero point assigned to all the non-beliefs. For the first step, we were guided by work
of Rabinowicz and Spohn, for the second step, we expanded on some thoughts of
Levi.

I have said nothing about the application of this unified structure to belief change
or non-monotonic reasoning tasks, because this seems rather straightforward: Just
utilize that part of the ranking structure that is needed, and apply the well-known
recipes. The point of the paper is, anyway, the idea of ‘degrees of belief’ itself.36

It appears that the structural difference between necessity relations and func-
tions (representing belief and expectation) on the one hand, and possibility relations
and functions (representing disbelief and potential surprise) on the other hand is
more fundamental than the distinction between belief and expectations. After all, we
have seen that there is no problem in defining all-encompassing necessity structures

34 If the reasoner actually performs such an expansion, then, according to Levi, she in fact converts
her plain beliefs into full beliefs.
35 Levi (2004, p. 201) explicitly recommends against making this move.
36 For more related structures and their applications to belief revision and non-monotonic reason-
ing, see Friedman and Halpern (1995, 2001) and Halpern (2003). These works are representative
of excellent AI research of great technical sophistication. However, they do not follow through the
idea of combining degrees of belief, non-belief and disbelief into a single scale. Their terminologies
differ from the one used here.
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which have weak expectations (mere hypotheses, guesses, conjectures, etc.) occu-
pying the lowest ranks and very strong, ineradicable beliefs (that I called ‘a priori’)
occupying the highest ranks. Structurally, there are no differences from the top to
the bottom. Indeed, this explains the structural similarity between belief revision and
non-monotonic reasoning first noted by Makinson and Gärdenfors (1991). But there
is an essential structural contrast between the necessity structures of positive doxas-
tic attitudes (belief, expectation) and the possibility structures of negative doxastic
attitudes (disbelief, disexpectation), in that the latter obey a disjunction rule rather
than a conjunction rule.

It is interesting that even though the various structures we used for encoding
degrees of doxastic attitudes are not themselves uniform, the operations we used
for merging them have turned out to be uniform. The combination of the relevant
relations is always achieved by a conjunction: A ≤combined B iff both A ≤1 B and
A ≤2 B . The combination of the relevant functions can always be represented as
a minimum-maximum-operation: fcombined (A) equals max{ f1(A), f2(A)} in some
circumstances, and min{ f1(A), f2(A)} in others.

We pointed out in the introduction that some proponents of non-probabilistic
approaches to the representation of belief states argued that a main advantage of
their approaches is that they allow for the notion of ‘plain belief’ (or ‘belief sim-
pliciter’) and ‘plain non-belief’ (or ‘non-belief simpliciter’). Probabilistic models
are committed to assigning some number to a given proposition, and introspectively,
this is just not what we feel like doing when we say that we believe something (or
that we don’t believe it). Another advantage of non-probabilistic approaches is that
they are not troubled by the failure of closure under conjunction that afflicts the
high-probability interpretation to belief.

Richard Foley (1992, p. 111) interprets Locke’s (1690, Bk. IV, Ch. xv–xvi) dis-
cussion of probability and degrees of assent as warranting the

idea that belief-talk is a simple way of categorizing our degree of confidence in the truth
of a proposition. To say that we believe a proposition is just to say that we are sufficiently
confident of its truth for our attitude to be one of belief. Then it is epistemically rational for
us to believe a proposition just in case it is epistemically rational for us to have sufficiently
high degree of confidence in it, sufficiently high to make our attitude towards it one of
belief.

Foley calls this idea the Lockean Thesis, and proposes that rational belief should
be identified with a rational degree of confidence above some threshold level that
the agent deems sufficient for belief. The lottery has taught us that it is difficult to
reconcile this idea in probabilistic models of belief.37 The (non-trivial) necessity
structures that we have discussed in this paper do not have the problems afflict-
ing high-probability approaches to belief. They guarantee that the sets of sentences
above some specified threshold are all logically closed and consistent.

37 This ‘Lockean thesis’ has recently been probed in a probabilistic setting by Hawthorne and
Bovens (1999) and Wheeler (2005).
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So it seems that qualitative theories keep their promise of supplying a clear
account of plain belief (and thus, of plain non-belief). The situation, however, is
more complicated than that. In our final, all-encompassing comparative necessity
relations ≤ee and necessity functions εall , we have weak expectations, something
like mere guesses at the bottom, and these are clear cases of non-belief. At the top
we have a priori beliefs, which are clear cases of belief. Somewhere between the
reasoner’s expectations and a priori beliefs, her attitudes must begin to be ones of
belief. But where to draw the line? Once entrenchment functions have been merged
with expectation functions, the divide at the number 1 in the functional case of εall

seems arbitrary, and in the relational case of≤ee, there is no dividing line to be found
at all. Belief is a vague notion, and the threshold, if there really is one, is certainly
context-dependent. We would set the threshold high in the courtroom interrogation,
and we would set it low in a casual chat over lunch. There is no plain notion of belief.
Accordingly, even though qualitative approaches to belief possess some advantages
over probabilistic ones (they certainly possess some disadvantages, too), they do not
single out a unique, clear and distinct notion of belief simpliciter. This is as it should
be. Belief remains elusive.
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Appendix I: Some Proofs

A few little lemmas for likelihood relations

(a) Define A <l B as the conjunction of A ≤l B and B �≤l A. Then transitivity for
≤l implies:

If A ≤l B and B <l C , then A <l C .

Proof Let A ≤l B and B <l C . A ≤l C follows from the transitivity of ≤. Suppose
for reductio that C ≤l A. Then by transitivity C ≤l B , contradicting B <l C .

If A <l B and B ≤l C , then A <l C .
Proof Similar

If A <l B and B <l C , then A <l C .
Proof Immediate consequence of the last two lemmas.
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(b) If ¬A ≤l A and A ≤l B , then ¬B ≤l B
Proof Let ¬A ≤l A and A ≤l B . From the latter, by contraposition ¬B ≤l ¬A. So
¬B ≤l ¬A ≤l A ≤l B , and by transitivity ¬B ≤l B .

(c) If ¬A <l A and A ≤l B , then ¬B <l B
Proof Let ¬A <l A and A ≤l B . From the latter, by contraposition ¬B ≤l ¬A. So
¬B ≤l ¬A <l A ≤l B , and by transitivity ¬B <l B .

(d) If ¬A ≤l A and A <l B , then ¬B <l B
Proof Let ¬A ≤l A and A <l B . From the latter, by contraposition ¬B <l ¬A. So
¬B <l ¬A ≤l A <l B , and by transitivity ¬B <l B .

(e) If ¬A ≤l A, A ≤l ¬A and ¬B <l B , then A <l B .
Proof Let¬A ≤l A, A ≤l ¬A and¬B <l B , and suppose for reductio that B ≤l A.
Then we have the chain¬B <l B ≤l A ≤l ¬A, and thus by transitivity¬B <l ¬A.
So by contraposition, A <l B , and we have a contradiction. QED

Given transitivity, connectivity, dominance and contraposition, Rabinowicz’
original conjunction axiom (L4R) is equivalent with the conjunction axiom (L4)
used in this paper

(L4R) If ¬C <l C , C ≤l A and C ≤l B , then C ≤l A ∧ B
(L4) If ¬A <l A and ¬B <l B , then either A ≤l A ∧ B or B ≤l A ∧ B

Proof (L4R) implies (L4). Let ¬A <l A and ¬B <l B . By connectivity either
A ≤l B or B ≤l A. Suppose without loss of generality that A ≤l B (the case
B ≤l A is similar). Since we have ¬A <l A, A ≤l A as well as A ≤l B , we can
apply (L4R) and conclude that A ≤l A ∧ B .

(L4) implies (L4R). Let ¬C <l C , C ≤l A and C ≤l B . By contraposition, we
get ¬A ≤l ¬C and ¬B ≤l ¬C . So by several applications of transitivity, ¬A <l A
and ¬B <l B . So by (L4), we get A ≤l A ∧ B or B ≤l A ∧ B . In either case, an
application of transitivity gives C ≤l A ∧ B . QED

Given transitivity, connectivity, dominance and contraposition, the conjunction
axiom (L4) can be strengthened to

(L4+) If ¬A ≤l A and ¬B <l B , then either A ≤ A ∧ B or B ≤l A ∧ B

Proof Let ¬A ≤l A and ¬B <l B . The case ¬A <l A is covered by (L4). So
assume that A ≤l ¬A.

Suppose that not A ≤l A ∧ B . By connectivity, A ∧ B <l A. Thus by contrapo-
sition, ¬A <l ¬(A ∧ B). Using A ∧ B � A, dominance, A ≤l ¬A and transitivity,
we get A ∧ B <l ¬(A ∧ B).

Now we can apply (L4) and get
Either B ≤l B ∧ ¬(A ∧ B) or ¬(A ∧ B) ≤l B ∧ ¬(A ∧ B)
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which can be simplified to
Either B ≤l ¬A ∧ B or ¬(A ∧ B) ≤l ¬A ∧ B .

This implies, by dominance and transitivity
Either B ≤l ¬A or ¬(A ∧ B) ≤l ¬A.

But the latter contradicts ¬A <l ¬(A ∧ B) what we had above. So B ≤l ¬A
must be true. Since ¬A ≤l A by transitivity B ≤l A.

On the other hand, lemma (e) above tells us that A ≤l ¬A, ¬A ≤l A and
¬B <l B taken together imply that A <l B , and we also get a contradiction.

So the supposition that not A ≤l A ∧ B has led us into a contradiction. Thus
A ≤l A ∧ B , and we are done. QED

The likelihood axioms (L1) – (L5) imply the following “cross-categorical” func-
tionalities

(LC∧) If B ≤l ¬B <l A, then B ≤l A ∧ B
(A belief, B non-belief or disbelief)

(LC∨) If ¬A ≤l A <l ¬B , then A ∨ B ≤l A
(A belief or non-belief, B disbelief)

Proof (LC∧) Let B ≤l ¬B <l A. We want to show that B ≤l A ∧ B . By con-
traposition (L5), this means that ¬(A ∧ B) ≤l ¬B . Suppose for reductio that this
was not true, i.e., by connectivity (L2), that ¬B <l ¬(A ∧ B). Then by restricted
conjunctiveness (L4), either A ≤l A∧¬(A∧B) or¬(A∧B) ≤l A∧¬(A∧B). Either
way, we get by transitivity (L1) that ¬B <l A∧¬(A∧ B). But since A∧¬(A∧ B)
implies ¬B , this contradicts dominance (L3).

(LC∨) Let ¬A ≤l A <l ¬B . We want to show that A ∨ B ≤l A, that is, by
contraposition (L5), ¬A ≤l ¬A ∧¬B . But this follows immediately by (LC∧) that
we have just proved. QED

Observation 6. Take an entrenchment relation ≤e and the corresponding plau-
sibility relation ≤p satisfying the fitting condition A ≤p B iff ¬B ≤e ¬A. Then
the relation

A ≤l B iff both A ≤e B and A ≤p B

is a likelihood relation.

Proof This result is due to Rabinowicz (1995). Because of some differences in the
details, we give a proof of our own.

Transitivity and dominance for≤l , (L1) and(L3), follow immediately from Tran-
sitivity and dominance for ≤e and ≤p. Contraposition (L5) follows immediately
from the fitting condition.

Connectivity (L2). Suppose that not A ≤l B . We need to show that B ≤l A. That
not A ≤l B means that either not A ≤e B or not A ≤p B .
Case 1 Not A ≤e B . Hence, by the connectivity of ≤e, B <e A. By the fitting
condition, ¬A <p ¬B . Hence, by dominance and transitivity, ¬A <p �. Hence,
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since for every proposition, either it or its negation is as plausible as �, � ≤p A.
Hence, by dominance and transitivity again, B ≤p A. Taking this together with
B <e A, we get that B ≤l A.
Case 2 Not A ≤p B . Hence, by the connectivity of ≤p, B <p A. By the fitting
condition, ¬A <e ¬B . Hence, by dominance and transitivity, ⊥ <e ¬B . Hence,
since for every proposition, either it or its negation is as entrenched as ⊥, B ≤e ⊥.
Hence, by dominance and transitivity again, B ≤e A. Taking this together with
B <p A, we get that B ≤l A.

Positive conjunctiveness (L4). Let ¬A <l A and ¬B <l B . We need to show
that either A ≤l A ∧ B or B ≤l A ∧ B .

By the fitting condition, ¬A ≤e A is equivalent with ¬A ≤p A. Thus ¬A <l A
reduces to ¬A <e A, and similarly ¬B <l B reduces to ¬B <e B .

By conjunctiveness for ≤e, we know that either A ≤e A ∧ B or B ≤e A ∧ B . To
prove our claim, it thus suffices to show that both A ≤p A ∧ B and B ≤p A ∧ B ,
i.e., by the fitting condition, that both ¬(A ∧ B) ≤e ¬A and ¬(A ∧ B) ≤e ¬B .
But since either A ≤e A ∧ B or B ≤e A ∧ B , and since both ⊥ ≤e ¬A <e A and
⊥ ≤e ¬B <e B , we know that ⊥ <e A ∧ B . Hence, since for every proposition,
either it or its negation is as entrenched as ⊥, ¬(A ∧ B) ≤e ⊥. Thus, by dominance
and transitivity, ¬(A ∧ B) ≤e ¬A and ¬(A ∧ B) ≤e ¬B , which finishes the proof.
QED

It follows from (Bi)–(Biv) that if A � B then β(A) ≤ β(B).

Proof Suppose that A � B . Since the logic is classical, this is equivalent with each
of the following conditions:¬B � ¬A, A .� A ∧ B , � ¬A∨ B and A∧¬B � ⊥.
We want to show that β(A) ≤ β(B). In order to do this, we distinguish six cases.

Case 1 β(A) > 0 and β(B) > 0. Then, by (Biii), β(A∧ B) = min{β(A), β(B)}. By
(Bi), β(A) = β(A ∧ B), so β(A) ≤ β(B), as desired.

Case 2 β(A) > 0 and β(B) < 0. By inversion, β(¬B) > 0. So, by (Biii), β(A ∧
¬B) = min{β(A), β(¬B)} > 0. By (Bi), β(A ∧ ¬B) = β(⊥), so β(⊥) > 0. By
inversion again, β(�) < 0, contradicting (Bii). So this case is impossible.

Case 3 β(A) > 0 and β(B) = 0. By inversion, β(¬B) = 0. Thus, by (Biii), β(A ∧
¬B) = min{β(A), β(¬B)} = 0. By (Bi), β(A ∧ ¬B) = β(⊥), so β(⊥) = 0 and,
by inversion, β(�) = 0. We now show that for all sentences C , β(C) = 0. Suppose
firstly for reductio that β(C) > 0. Then β(C) = β(C∧�) = min{β(C), β(�)} = 0,
and we have a contradiction. Suppose secondly for reductio that β(C) < 0. By
inversion, β(¬C) > 0. Then β(¬C) = β(¬C ∧ �) = min{β(¬C), β(�)} = 0,
and we have again a contradiction. Thus β is the constant function assigning 0 to
all sentences, so trivially β(A) ≤ β(B). (It is in fact immediate that the relational
projection of this function satisfies all of (L1)–(L5).)

Case 4 β(A) ≤ 0 and β(B) ≥ 0. This immediately implies β(A) ≤ β(B).

Case 5 β(A) < 0 and β(B) < 0. Then, by inversion (Biv), β(¬A) > 0 and
β(¬B) > 0. By (Biii), β(¬A ∧ ¬B) = min{β(¬A), β(¬B)}. By (Bi), β(¬B) =
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β(¬A ∧ ¬B), so β(¬B) ≤ β(¬A). Thus, by inversion (Biv) again, β(A) ≤ β(B),
as desired.

Case 6 β(A) = 0 and β(B) < 0. By inversion, β(¬B) > 0. Thus, by (Biii), β(A ∧
¬B) = min{β(A), β(¬B)} = 0, and the case continues exactly like case 2. QED

Observation 7. A function β is a likelihood function satisfying (Bi)–(Biv) if and
only if there is an entrenchment function ε satisfying (Ei)–(Eiii) such that

β(A) = ε(A)+ π(A)

where π is the plausibility function corresponding to ε, defined by π(A) =
−ε(¬A).

Proof We first show that for every entrenchment function ε satisfying (Ei)–(Eiii),
the function β defined by β(A) = ε(A) − ε(¬A) is a likelihood function satisfy-
ing (Bi)–(Biv). Intensionality (Bi) and inversion (Biv) follow immediately from the
intensionality of ε and the definition of β. For (Bii), β(�) = ε(�) − ε(⊥) ≥ 0,
since ε is non-negative and ε(⊥) = 0, by (Eii). The most complex condition is
(Biii). Suppose that β(A) ≥ 0 and β(B) > 0. We need to show that β(A ∧ B) =
min{β(A), β(B)}. From β(A) ≥ 0 we conclude that ε(A) ≥ 0 and thus ε(¬A) = 0
and β(A) = ε(A). From β(B) > 0 we conclude that ε(B) > 0 and ε(¬B) = 0, so
that β(B) = ε(B). From ε(¬A) = 0 and ε(B) > 0, we get that ε(¬(A ∧ B)) = 0,
otherwise ε(¬A) ≥ ε(B ∧¬(A∧ B)) = min{ε(B)), ε(¬(A∧ B))}> 0. Now finally
consider β(A∧ B) = ε(A∧ B)− ε(¬(A∧ B)). Since ε(A∧ B) = min{ε(A), ε(B)}
and ε(¬(A ∧ B) = 0, we get that β(A ∧ B) = min{β(A), β(B)}, as desired.

For the converse direction, let β be a likelihood function satisfying (Bi)–(Biv).
We define for all sentences A

ε(A) = max{β(A), 0}

with the corresponding plausibility function being

π(A) = −ε(¬A) = −max(β(¬A), 0) = −max(−β(A), 0) = min(β(A), 0)

Now we check that this function ε indeed generates β by means of the equation
β(A) = ε(A) − ε(¬A). Let us distinguish two cases. If β(A) ≥ 0, then by inver-
sion β(¬A) ≤ 0, so ε(A) − ε(¬A) = max{β(A), 0} − max{β(¬A), 0} = β(A).
If β(A) < 0, then by inversion β(¬A) > 0, so ε(A) − ε(¬A) = max{β(A), 0} −
max{β(¬A), 0} = −max{−β(A), 0} = β(A). So in either case β(A) = ε(A) −
ε(¬A), as desired.

We finally show that ε is an entrenchment function satisfying (Ei)–(Eiii). (Ei) and
(Eii) are immediate. Regarding (Eiii), the case when both ε(A) and ε(B) are positive
is directly covered by the positive conjunctiveness condition (Biii). The only subcase
of (Eiii) that requires a closer look is when either ε(A) = 0 or ε(B) = 0. So suppose
without loss of generality that ε(A) = 0. Then, by the definition of ε, β(A) ≤ 0.
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We need to show that ε(A ∧ B) = min{ε(A), ε(B)} = 0, i.e., that β(A ∧ B) ≤ 0.
Suppose for reductio that β(A ∧ B) > 0. Then by dominance for β which we have
proved to be satisfied before, β(A) > 0, too, and we have a contradiction. QED

Observation 8. Take a Spohnian beta function β. Then its relational projection

A ≤l B iff β(A) ≤ β(B)

is a Rabinowicz likelihood relation.
Conversely, for every finite Rabinowicz likelihood relation ≤l there is a Spoh-
nian beta function β such that ≤l is the relational projection of β.

Proof Part 1. That the relational projection≤l of a beta function satisfies (L1), (L2),
(L4) and (L5) follows trivially from the conditions (Bi)–(Biv). And we have proven
before that these conditions imply a dominance condition for β which in turn guar-
antees the dominance (L3) for ≤l .

Part 2 is sketched in the main text, after the formulation of Obs. 8. QED

The relation ≤ee = ≤e ∩ ≤ex is a comparative necessity relation satisfying
(E1)–(E3)

Proof ≤ee satisfies transitivity and dominance, since both ≤e and ≤ex do.

For conjunctiveness, suppose that not A ≤ee A∧ B . We need to show that B ≤ee

A ∧ B . That not A ≤ee A ∧ B can come about in two ways: Either not A ≤e A ∧ B
or not A ≤ex A ∧ B .

Case 1 Suppose that not A ≤e A ∧ B . So B ≤e A ∧ B , by the conjunctiveness of
≤e. Also, A ∧ B <e A, by the connectivity of ≤e, and thus a fortiori ⊥ <e A. By
the fitting condition (i), we get � ≤ex A and thus a fortiori B ≤ex A. So by the
conjunctiveness of ≤ex , B ≤ex A ∧ B . Since we also had B ≤e A ∧ B , we finally
get B ≤ee A ∧ B , as desired.

Case 2 Suppose that not A ≤ex A ∧ B . So B ≤ex A ∧ B , by the conjunctiveness
of ≤ex . Also, A ∧ B <ex A, by the connectivity of ≤ex . By the transitivity of ≤ex ,
we get B <ex A, and thus a fortiori B <ex �. By the fitting condition (i), we get
B ≤e ⊥ and thus a fortiori B ≤e A∧ B . Since we also had B ≤ex A∧ B , we finally
get B ≤ee A ∧ B , as desired. QED

The relation ≤pp = ≤p ∩ ≤px is a comparative possibility relation satisfying
(P1)–(P3)

Proof ≤pp satisfies transitivity and dominance, since both ≤p and ≤px do.

For disjunctiveness, suppose that not A ∨ B ≤pp A. We need to show that A ∨
B ≤pp B . That not A∨B ≤pp A can come about in two ways: Either not A∨B ≤p A
or not A ∨ B ≤px A.

Case 1 Suppose that not A ∨ B ≤p A. So A ∨ B ≤p B , by the disjunctiveness of
≤p. Also, A <p A ∨ B , by the connectivity of ≤p, and thus a fortiori A <p �. By
the fitting condition (ii), we get A ≤px ⊥ and thus a fortiori A ≤px B . So by the



Degrees All the Way Down 333

disjunctiveness of ≤px , A ∨ B ≤px B . Since we also had A ∨ B ≤p B , we finally
get A ∨ B ≤pp B , as desired.

Case 2 Suppose that not A ∨ B ≤px A. So A ∨ B ≤px B , by the disjunctiveness
of ≤px . Also, A <px A ∨ B , by the connectivity of ≤px . By the transitivity of ≤px ,
we get A <px B , and thus a fortiori ⊥ <px B . By the fitting condition (ii), we get
� ≤p B and thus a fortiori A ∨ B ≤p B . Since we also had A ∨ B ≤px B , we
finally get A ∨ B ≤pp B , as desired. QED

A lemma concerning the relation ≤ll = ≤l ∩ ≤lx , built from ≤l and ≤lx . Let ≤l

and ≤lx satisfy the fitting condition (iii). Then

i. If A <l B , then A ≤lx B
ii. If A <lx B , then A ≤l B

iii. If A ≤lx ¬A, then A ≤l ¬A
iv. ¬A <ll A if and only if ¬A <lx A

Proof (i) Let A <l B and suppose for reductio that not A ≤lx B . From the latter
we get by connectivity that B <lx A, and a fortiori B <lx �. Hence, by the fitting
condition (iii), B ≤l ¬B . Taken together with A <l B , this gives us A <l ¬B . By
contraposition, B <l ¬A. So by transitivity, A <l ¬A. By the fitting condition (iii)
again, we get � ≤lx ¬A, and a fortiori ¬B ≤lx ¬A. By contraposition, A ≤lx B ,
and we have a contradiction.

(ii) Let A <lx B and suppose for reductio that not A ≤l B , that is, B <l A. From
the former we get a fortiori A <lx �, so by the fitting condition (iii), A ≤l ¬A.
By transitivity, we get B <l ¬A, and by contraposition A <l ¬B . By transitivity
again, this gives us B <l ¬B , so by the fitting condition (iii) again,� ≤lx ¬B . So a
fortiori,¬A ≤lx ¬B , and by contraposition B ≤lx A. But this contradicts the initial
supposition A <lx B .

(iii) Let A ≤lx ¬A, and suppose for reductio that not A ≤l ¬A, that is, ¬A <l A.
From the latter we get, by the fitting condition (iii), � ≤lx A. By transitivity, this
gives us � ≤lx ¬A, and by the fitting condition (iii) again, A <l ¬A, and we have
a contradiction. We conclude that A ≤l ¬A, as desired.

(iv) The condition ¬A <ll A means that ¬A ≤ll A and not A ≤ll ¬A. The
former part says that

¬A ≤l A and ¬A ≤lx A
while the latter part says that

not A ≤l ¬A or not A ≤lx ¬A
By part (iii) of the lemma, the latter line means that not A ≤lx ¬A, i.e., by connec-
tivity ¬A <lx A. But, due to part (iii) of the lemma again, this implies the former
part. In sum then, ¬A <ll A is equivalent with ¬A <lx A. QED

The relation≤ll = ≤l ∩ ≤lx is a likelihood relation satisfying (L1)–(L5)

Proof ≤ll satisfies transitivity (L1), dominance (L3) and contraposition (L5), since
both ≤l and ≤lx do.

For connectivity (L2), assume that not A ≤ll B . We need to show that B ≤ll A,
that is, B ≤l A and B ≤lx A. That not A ≤ll B can come about in two ways: Either
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not A ≤l B or not A ≤lx B . Firstly, suppose that not A ≤l B . Then, by connectivity,
B <l A. By part (i) of the lemma, we also get B ≤lx A, and we are done. Suppose
secondly that not A ≤lx B . Then, by connectivity, B <lx A. By part (ii) of the
lemma, we also get B ≤l A, and we are done.

For positive conjunctiveness (L4), let ¬A <ll A and ¬B <ll B . By the lemma,
part (iv), this reduces to ¬A <lx A and ¬B <lx B . Assume further that not A ≤ll

A ∧ B . We need to show that B ≤ll A ∧ B , that is B ≤l A ∧ B and B ≤lx A ∧ B .
That not A ≤ll A ∧ B can come about in two ways: Either not A ≤l A ∧ B or not
A ≤lx A ∧ B .

Case 1 Suppose that not A ≤l A ∧ B . Then, by connectivity, A ∧ B <l A. Sup-
pose for reductio that not B ≤lx A ∧ B , that is A ∧ B <lx B . Then by positive
conjunctiveness for ≤lx , A ≤lx A ∧ B . By transitivity, A <lx B . Thus, by part (ii)
of the lemma, A ≤l B . Together with A ∧ B <l A, this gives us A ∧ B <l B , by
transitivity. Together with A ∧ B <l A, we conclude with positive conjunctiveness
for ≤l that either A ≤l ¬A or B ≤l ¬B . By A ≤l B , this reduces to A ≤l ¬A.
Together with A ∧ B <l A, we get A ∧ B <l ¬A. However, we have ¬A <lx A as
well as A ≤lx A ∧ B which implies ¬A <lx A ∧ B . By the lemma, part (ii), this
in turn implies ¬A ≤l A ∧ B , and we have a contraction. So the supposition was
wrong, and we have shown that B ≤lx A ∧ B , as desired.

Case 2 Suppose that not A ≤lx A∧ B . Then, by connectivity, A∧ B <lx A, and by
positive conjunctiveness for ≤lx , B ≤lx A ∧ B . Taken together, this gives us B <lx

A, and by part (ii) of the lemma B ≤l A. Suppose for reductio that not B ≤l A∧ B ,
that is A∧ B <l B . By transitivity, we get A∧ B <l A. By positive conjunctiveness
of ≤l , we conclude that either A ≤l ¬A or B ≤l ¬B . Since B ≤l A, this reduces to
B ≤l ¬B . Taken together with A∧ B <l B , this gives that A∧ B <l ¬B . However,
we have ¬B <lx B as well as B ≤lx A ∧ B , which implies ¬B <lx A ∧ B . By the
lemma, part (ii), this in turn implies ¬B ≤l A ∧ B , and we have a contradiction. So
the supposition was wrong, and we have shown that B ≤l A ∧ B , as desired. QED

Appendix II: The Modal Logic of Plain Belief as Implicit in the
Logic of Entrenchment Relations and Functions

According to the Lockean thesis, a proposition can count as believed if the degree of
confidence in its truth is sufficiently high, or in the terms mainly used in this paper,
if the relevant degree of belief is high enough. Degrees of belief are here thought of
as comparative necessity relations, also called ‘entrenchment relations’. What kind
of implications does the theory of entrenchment relations and functions developed
in this paper have for a logic of plain belief? In order to answer this question we
have to begin with another one: How can we translate statements of comparative
necessity into the language of plain belief?

The Lockean thesis implies that belief is upward-closed, that is, if A is believed
and A ≤ B , then B is believed as well. In a first approximation, let us thus read
A ≤ B as expressing ‘If the reasoner believes A, then she also believes B’, or more
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formally, �A → �B . For this suggestion to make sense, we have to presuppose the
transitivity condition (E1) for ≤.

We then have interesting translations of the entrenchment axioms. For the la-
belling and the systematic place of the respective axioms in modal logic, see Chellas
(1980, Chapter 8).38 Dominance (E2) becomes Chellas’ rule

(RM) From � A → B infer � �A → �B

Conjunctiveness (E3) becomes Chellas’ axiom

(C) �A ∧�B → �(A ∧ B)

Taken together, (RM) and (C) define a regular system of modal logic (Chellas’
terminology). Alternatively, in the place of (RM) one could use the weaker rule

(RE) From � A ↔ B infer � �A ↔ �B

together with the additional axiom

(M) �(A ∧ B) → �A ∧�B

Regular systems are still weaker than normal systems.39 I think it may perhaps be
said that (C) and (M) provide a syntactic way of capturing the intrinsic meaning of
‘�’. Necessity distributes over conjunction.

What is still missing is the necessitation rule (RN) ‘From � A infer � �A’, or
equivalently, the axiom (N), ��. Systems without (RN) or (N) have no theorems of
the form ‘�A’, so no beliefs at all are declared by them as “logically required”.

It is hard to express this in entrenchment language. Relatively close is ⊥ < �.
Clearly ⊥ ≤ �, saying that �⊥ → ��, is just an instance of (E2). Within our
first approximation to interpreting ≤, ‘Not � ≤ ⊥’ is just construed as the negated
material conditional ‘¬(��→ �⊥)’. Thus the condition⊥ < � seems to express,
roughly, that all tautologies, but no contradictions are to be believed, and it makes
sense to stipulate this. It is equivalent with the conjunction of the modal axiom40

(N) ��

with the consistency axiom

(P) ¬�⊥

38 Here as everywhere in this paper, I use the term ‘axiom’ also when I talk about axiom schemes.
39 Instead of (M), just �(A∧ B) → �A would be sufficient. Notice that (RE) corresponds to (Ei),
and the biconditional (R) joining (C) and (M) corresponds to (Eiii).
40 About which Chellas does not say much.
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(P) is equivalent, in the context of the other axioms, with the usual axiom stating
that whatever is necessary is possible

(D) �A → ♦A

Using the interdefinability of � and ♦ as an axiom, it is easy to show that the fol-
lowing rule and axioms are the counterparts of (RE), (M) and (C) for the possibility
operator:

(RE♦) From � A ↔ B infer � ♦A ↔ ♦B
(M♦) (♦A ∨ ♦B) → ♦(A ∨ B)
(C♦) ♦(A ∨ B) → (♦A ∨ ♦B)

We now understand how fundamental the role of the Distribution Laws for � and
♦ is for the characterization of necessity and possibility, respectively. Given (RE) or
(RE♦), they suffice to characterize regular systems of modal logic.

Let us summarize the situation as seen in the light of our first approximation to
the modal reading of entrenchments (i.e., of comparative necessities). The modal
logic of belief implicit in our standard axiomatizations (E1)–(E3) or (Ei)-(Eiii), is
the non-normal, regular system of modal logic called R or ECM by Chellas; an
axiomatization in the spirit of this paper is (RE), (C) and (M). If we decide to
add the non-triviality condition ⊥ < � or ε(⊥) < ε(�), then we get a double
extension of ECM: The normal system D or KD satisfying the axioms (N) and (D).
Entrenchments do not validate the truth axiom (T), nor do they account for iterated
modalities.

But there is a problem about our first approximation. This can be seen in the
translation of the connectivity of≤, for instance. We should not render it by (�A →
�B) ∨ (�B → �A) which would be a simple tautology of propositional logic.
Connectivity should not be that trivial. So I don’t think ‘Not A ≤ B’ should be read
as¬(�A → �B), i.e., �A∧¬�B , because this says that A is actually believed and
B is actually not believed. Now what else could it mean? The correct meaning is
rather that there is a level of belief at which A is believed but B is not believed. This
does not imply that the level referred to is the one actually applied by, or actually
ascribed to, the reasoner for demarcating her ‘beliefs’ from her ‘non-beliefs’.

Better than the first approximation, and I think basically correct, is it to read
A ≤ B as expressing ‘Whenever the reasoner believes A, then she also believes
B’. The quantification is not over time indices here, but over degrees or levels of
belief. We can be more precise about that if the language includes (finitely many)
graded modalities �1, . . . ,�n and their respective duals ♦1, . . . ,♦n , governed by
the logical axioms �i A → � j A or, respectively, ♦ j A → ♦i A for all i ≥ j (cf.
Goble 1970). Then we can say that A ≤ B means that for all (context-dependent)
certainty indices i , ‘If the reasoner believes A at level i , then she also believes B at
i ’, or more formally, for all i , �i A → �i B . Relativizing belief to some grade or
level, however, we find it hard to make sense of a notion of plain belief.
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Levels of Belief in Nonmonotonic Reasoning

David Makinson

1 Introduction

Our purpose is to explain how the general idea of levels of belief manifests itself
in the formal constructions that have been proposed for modelling nonmonotonic
reasoning, both qualitative and quantitative. We also comment on the way in which
certain ingredients of the formal apparatus have been given different philosophical
interpretations.

2 What is Nonmonotonic Reasoning?

It should be remembered that while nonmonotonic logic may be perceived as
something new, exotic and mysterious, nonmonotonic reasoning is something that
all of us do, all the time. For nonmonotonicity is a property – or rather, the failure of
a property – that arises whenever our reasoning carries us ever so little beyond the
bounds of what is strictly implied by the available information.

Despite loose talk in classics of detective fiction about sleuths deducing their
conclusions from information whose significance is not seen by others, none of their
chains of inference are purely deductive. They involve presumption and conjecture,
and the ever-present possibility of going wrong. The conclusions do not follow of
necessity from the premises; it is logically possible that the former be false even
when the latter are true. The procedure is defeasible.

Nevertheless, for all its fallibility, it is reasoning. We appeal not only to the obser-
vations explicitly mentioned but also, implicitly, to a reservoir of background knowl-
edge, a supply of rules of thumb, a wide range of heuristic guides. Conclusions may
be withdrawn as more information comes to hand, with new ones advanced in their
place. When this is done, it does not mean that there was necessarily an error in the
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reasoning leading to the old conclusions, which may still be recognized as the best
to have drawn with the limited information then available.

Such reasoning is performed not only by Sherlock Holmes, but also by medical
practitioners, garage mechanics, computer systems engineers, and indeed all those
who are required to give a diagnosis of a problem in order to pass to action. Archae-
ologists sifting through the debris of a site may see their early conclusions about
the date, function and origin of an artefact modified as more evidence comes to
hand. We do it when we try to anticipate the weather by looking at the sky. Nobody
other than the mathematician, logician, or professional of some other highly abstract
domain such as theoretical economics or physics, spends much time in chains of
pure deduction.

But what exactly is meant by calling such reasoning nonmonotonic? We are rea-
soning nonmonotonically when we allow that a conclusion that is well drawn from
given information may need to be suspended when we come into possession of
further information, even when none of the old premises are abandoned. In other
words, if it can happen that a proposition x is a legitimate conclusion of a set A of
premises, but not of some larger set B formed by adding further propositions to A.

At this point the reader may interject ‘Of course, that’s the way in which all
inference has to be; it can’t be otherwise. There is nothing new about all this. Surely
standard systems of logic must already be prepared to deal with it’.

Indeed, epistemologists have for hundreds of years recognized this as an impor-
tant phenomenon. It has for long been familiar to writers on jurisprudence, and to
authors on the philosophy of the empirical sciences. But still today, mainstream
systems of logic do not take uncertain inference into account. They deal only with
purely deductive argument, where the conclusion follows of necessity from the
premises without the remotest possible doubt or exception.

This narrow focus did in fact help mainstream logic analyse the kind of reasoning
that is carried out in pure mathematics. Logic as we know it today was developed
in the late nineteenth and early twentieth centuries to obtain a deeper understanding
of the powers and limits of deduction in mathematics. Its remarkable success in that
area has tended to hide its limitations elsewhere.

This is not to say that there is anything wrong with classical logic. Nor is it
necessarily to be regretted that historically things developed in the way that they did.
For despite its limitations, an understanding of such inference is needed before one
can begin to make sense of other modes of reasoning. And in what follows, we will
have to assume that the reader does know a little about classical propositional logic.

3 Three Sources of Nonmonotonicity

It would be rash to try to enumerate all the sources of nonmonotonicity in our rea-
soning. They are many and open-ended. But we can specify the three that have
received serious study from logicians over the last few decades.

One source is the capacity of ordinary languages, and some formal ones, to refer
to themselves, and in particular to talk about the current limitations of the knowledge
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that is expressed in them. In other words, they have some capacity for self-reference.
Because of this, the addition of further information may not only undermine the
legitimacy of drawing certain conclusions, it may even transform some of them
from being true to being false; it may change their truth-values. For example, I
may say honestly that the only thing I know about a certain issue is so-and-so, but
this statement will become false when further information about that issue is made
available to me. Further conclusions based on this one may, in cascade, have their
truth-values compromised.

Because this arises from the capacity for self-reference, it is a very special phe-
nomenon. It is studied in epistemic and so-called auto-epistemic logic. But it will
not occupy us here, for it has little to do with degrees of belief.

Another source of the failure of monotonicity that has received attention from
logicians is associated with the notion of dialogue, or debate, between two or more
people. Suppose that two discussants have access to stocks of information, real or
apparent, which may or may not be the same. The first participant may begin by
advancing something that he takes to be reasonable. The second may agree, query,
challenge, undermine, or attack its supposed supports, or the link between the two.
The first may give up, reinforce, counterattack, etc. And so on. At each stage of the
discussion we may keep track of what conclusions have emerged, whether from a
participant’s angle, consensually, or from a third-party perspective; and we may also
consider those emerging from the final outcome (or from an infinite progression) of
the exchange.

Such procedures are evidently highly nonmonotonic, and have been studied by
logicians under names such as defeasible reasoning, defeasible nets, dialogue logic
etc, using resources not only from logic itself but also from graph and game theory.
But this too has little to do with degrees of belief, and will not occupy us here.

The third source of nonmonotonicity that has been studied by logicians lies in
our constant attempt to go in a principled way beyond the limits of our meagre
information, independently of any elements of dialogue or self-reference. It is the
attempt to provide supplementary machinery, and at the same time controls and
safeguards, for jumping, creeping, or crawling to conclusions beyond those that may
validly be derived using only the resources of classical (deductive, pure, certain, and
monotonic) logic.

This kind of reasoning is intimately connected with levels of belief. We will
describe several ways in which it has been analysed, bringing out in each case the
part played by underlying comparisons of commitment. We will keep formal details
to a minimum; the reader interested in pursuing them further may consult the much
more extended treatment in Makinson (2005), which also contains pointers to the
literature.

4 Additional Background Assumptions

When reasoning in daily life, the assumptions that we make are not all of the
same level. Usually, there will be a few that we display explicitly, because they
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are special to the situation under consideration, or for some other reason deserve to
be highlighted. There will be many others that we do not bother even to mention,
because we take them to be part of shared common knowledge, or too obvious to be
made explicit without tedium. They may not even be clearly present to our conscious
attention. This phenomenon was already well known to the ancient Greeks. They
used the term enthymeme to refer to an argument in which one or more premises are
left implicit.

Enthymemes give us one way to go supraclassical (i.e. beyond the limits of clas-
sical consequence) and, if we add an extra twist, nonmonotonic. In this section and
the following, we explain the formal mechanism.

Let K be any set of propositions, which will play the role of background assump-
tions. Let A be another set of propositions, representing some explicitly articulated
current premises for an inference. Finally, let x be an individual proposition, serving
as a candidate conclusion. For simplicity, assume that the language is propositional.

We write A |-K x and say that x is a consequence of A modulo the assumption
set K, iff K ∪ A |-x , where |- is classical propositional consequence. In other words,
iff there is no Boolean valuation v such that v(K ∪ A) = 1 whilst v(x) = 0. And
we call the relations |-K , for all possible choices of background assumption sets K ,
pivotal-assumption consequence relations.

Clearly, such consequence relations are supraclassical, in the sense that whenever
x is a classical consequence of A, then it is a consequence of A modulo K , for any
choice of background assumption set K – even when it is empty. Given the way in
which they are defined from classical consequence, these relations also inherit many
of its properties, In particular, pivotal-assumption consequence relations remain per-
fectly monotonic. Whenever x is a consequence of premises A modulo background
assumptions K , then by definition it is a classical consequence of K ∪ A, so by
the monotony of classical consequence, it is a consequence of (K ∪ A) ∪ B alias
K ∪ (A ∪ B) for any B and so, by definition again, x is also a consequence of
premises A ∪ B modulo K .

So far, by adding background assumptions, we have gone supraclassical; but we
are still monotonic. How does nonmonotonicity come in? It arises when, instead
of holding the background assumption set K fixed while the current premise set A
varies, we allow it also to vary. More precisely, when the part of K that we actually
use is allowed to vary, in a principled way, according to the current premise set A.

This is done by imposing a consistency constraint, and diminishing the usable
part of K when the constraint is violated. Specifically, we use only the maximal
subsets K ′ of K that are classically consistent with the current premises in A, and
for safety’s sake accept as legitimate conclusions only those propositions that are
classical consequences of K ′ ∪ A for all those maximal A-consistent subsets K ′.
This relation is called default-assumption consequence, the name bringing out its
close relation to the preceding pivotal-assumption consequence. It may be written
as A |∼K x .

Why would we want to do such a thing, diminishing the usable power of our
background assumptions? For the simple reason that when the current premises are
inconsistent with the background assumptions then, notoriously, taken together they
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classically imply every proposition in the entire language. That leaves us with three
alternatives: infer everything (hardly rational), truncate classical logic (rather des-
perate, and more difficult to do in a satisfactory manner than one might imagine),
or work with less than all the available information (in particular, privileging the
premises and abandoning some of the background assumptions).

With the introduction of the consistency checks, monotony goes out the window.
We will illustrate this with a simple example, but the underlying reason is already
apparent. When we add further premises to A, we increase its power, but by the same
token we also increase its potential for conflict with the background assumption set
K . To eliminate the inconsistency we have to reduce K to its maximal A-consistent
subsets; but these are all weaker than K . So we lose background assumptions and
thus risk losing conclusions.

For example, let K = {p → q , q → r} where p,q ,r are distinct elementary let-
ters of a formal language and→ is the well-known truth-functional (alias material)
conditional connective. Then p |∼K r , since the premise p is consistent with the
whole of K and clearly {p}∪K |- r . But {p,¬q} |∼/K r , for the premise set {p,¬q}
is no longer consistent with the whole of K . There is a unique maximal subset
K ′ ⊆ K that is consistent with {p,¬q}, namely the singleton K ′ = {q → r}; and
clearly {p,¬q}∪K ′ does not classically imply r – witness the valuation v with v(p)
= 1 and v(q) = v(r ) = 0. In brief: we gained the premise¬q , but lost the background
assumption p → q , losing thereby the conclusion r .

Despite this promising start, default-assumption consequence in the simple form
that we have defined above faces a serious dilemma. This arises when we ask
the question: what kinds of assumption set K may usefully be used in generat-
ing operations? Consider any such assumption set. Then either it is already closed
under classical consequence, i.e. x ∈ K whenever K |- x , or it fails to be so
closed, i.e. there is an x with K |- x but x /∈ K . Each option leads to an unpleasant
surprise.

� In the latter case, the identity of the consequence relation |∼K turns out to be
sensitive to the manner of formulation of the elements of K ; in other words,
it is syntax-dependent. It may be debated whether this is a shortcoming or
just a feature, and whether anything can, or should, be done about it; but we
need not go into such questions here, for it is the other case that concerns
us most.

� When K is already closed under classical consequence, the difficulty is much
more serious. The consequence relation |∼K becomes totally devoid of inter-
est, for it can be shown that in all interesting situations it collapses back into
classical consequence. To be precise: whenever the current premises A are in-
consistent with the background assumptions K (this is the interesting case), the
set of propositions x such that A |∼K x coincides with the set of all classical
consequences of A. None of the background assumptions ends up contributing
anything at all to the authorized conclusions! It is this that leads us – almost
forces us – into integrating the notion of degrees of belief into our construction
of a nonmonotonic consequence relation, as we will now see.
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5 Enter Levels of Belief

The standard way of dealing with the disastrous collapse that we have described is
to refine the definition of default-assumption consequence. Recall that, for A |∼K x
to hold, we required x to be a classical consequence of K ′ ∪ A for all the maximal
A-consistent subsets K ′ of K . We can liberalize by requiring K ′ ∪ A |- x only for
certain selected maximal A-consistent subsets K ′ of K .

But how are they to be selected? By introducing a further background compo-
nent into the modelling apparatus – typically a relation < that prioritizes among the
subsets of K , treating some as preferred over others. We can then define A |∼K x
to hold under the refined definition, iff x is a classical consequence of K ′ ∪ A for
each of the best of the maximal A-consistent subsets K ′ of K , from the perspective
of the relation <. From a mathematical point of view, ‘best’ here can be understood
as maximal under the relation (if we are reading < with better on the right) or as
minimal (if, conversely, we are reading it with better on the left). We will look right,
although left is just as common.

From a philosophical or intuitive viewpoint, it is natural to treat this relation < as
representing our confidence in the subset K ′, in other words, the level of our belief in
the truth of its elements, or (nuance!) the degree to which it deserves our belief. Un-
der this kind of reading, the refined definition of A |∼K x requires x to be a classical
consequence of K ′∪A for those maximal A-consistent subsets K′ of the background
assumption set K in which we place (or should place) highest confidence. We have a
double maximalization here: once under the relation of set-inclusion (to determine
the maximal A-consistent subsets K ′ of the background assumption set K ), and
again under the relation < of level of belief (to find those in which we have or
should have the greatest faith, or if one prefers, the least suspicion).

The terms ‘degree’ and ‘level’ here should not be overplayed. For the maximal-
ization procedure to be well-defined, the relation need not be a linear ordering as the
term ‘degree’ might insinuate, nor even ranked (alias modular) in the mathematical
sense as the term ‘level’ could suggest. Indeed, we could in principle work with an
arbitrary relation between subsets of K . Usually however, a condition is imposed on
the relation to ensure that non-empty sets always have at least one maximal element.

This step of considering only certain of the maximal A-consistent subsets of the
background assumption set, has the negative virtue of avoiding the collapse that we
noted above. It has the positive virtue of doing so with very little additional formal
machinery, which can moreover be read in a natural manner. But from two points of
view, it is still rather awkward.

Computationally, it is quite horrendous, because of the multiple consistency
checks needed to find the inclusion-maximal A-consistent subsets of K , and also
because of the job of determining the <-maximal ones among them. But that need
not concern the philosopher. The other point is that conceptually, the construction
seems to be putting the cart before the horse. The relation < compares the credibility
of different subsets K ′ of the background assumption set K . But surely, some would
say, that should be seen as a reflection of the credibility of the various propositions
that are elements of K . From a philosophical point of view, it would be better to
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work with a credibility relation < between the propositions themselves, rather than
between sets of them. Can this be done?

6 Variations

Indeed it can, and in various different ways that have been worked out in the techni-
cal literature. Two of the best known are called safe consequence and consequence
using epistemic entrenchment. We will sketch the former; the latter (and many oth-
ers) being described in detail in Makinson (2005).

To define a relation of safe consequence, the only equipment that we need is
a set K of background assumptions (whether or not closed under classical con-
sequence – both options are acceptable for this construction) and a background
relation < between propositions in K . This relation is again read as representing
level of confidence or credence, or, from the other end, suspicion and vulnerability.
Taking level of belief as improving to the right (as is usually done in this context),
we thus read a < b as saying that we have more confidence in b than in a. The
only constraint that need to impose on the relation in order to make the ensuing
construction behave well, is that it is acyclic over K , in the sense that there are no
propositions a1,. . . ,an in K with a1 < a2 < . . . < an < a1. Evidently, this condition
implies irreflexivity (take n = 1) and asymmetry (put n = 2).

The essential idea is as follows. When the current premises A are inconsistent
with the background assumption set K , we use only those elements of K that cannot
reasonably be ‘blamed’ for the inconsistency of K with A. In more formal terms,
we say that a proposition a in K is safe with respect to A iff a is not a minimal
element (under <) of any minimal subset (under set-inclusion) J of K that is incon-
sistent with A. Note that once again there are two dimensions of minimality. One
is with respect to the relation < between elements of K , while the other concerns
set-inclusion between subsets of K .

It is not difficult to show that the set of all safe elements deserves its name:
no matter how inconsistent the current premise-set A may be with the background
assumption set K , so long as it is itself consistent it will always be consistent with
the set of K ’s elements that are, in this sense, safe with respect to A.

There are a great many alternative ways of proceeding, but all of them involve,
in one way or another, some kind of machinery for selecting from among the propo-
sitions in K , or from among subsets of K , those which are deemed in some sense
most worthy of preservation in the face of conflict with current premises A. The
most straightforward way of doing this is by manipulating a relation in one way or
another, but more abstract procedures make use of selection functions. The logician
does not care very much about how, exactly, we may wish to read this relation or
selection function. For the philosopher, one natural kind of reading is in terms of
level of belief, with however elbow room for nuances – for example, between the
level of belief we actually have, and that which we should have.

Those who have studied the theory of belief change will find much of this famil-
iar. The consistency constraints and credibility relations described above correspond
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to ones that are used to construct operations of belief contraction and revision, as
well as closely related operations of update. This is only to be expected, for there are
very close connection between the two fields: it is possible to map belief revision
operations into nonmonotonic consequence relations and vice versa, via what is
known as the Gärdenfors-Makinson transformation.

If K is a set of beliefs, and a is a new input belief, then the result K∗a of re-
vising K to accommodate a may be identified with the set of all propositions that
are nonmonotonically implied by a, under a suitable nonmonotonic consequence
relation |∼ determined by K . Determined, indeed, in the simplest possible way: just
put a |∼ x iff x ∈ K∗a. Conversely, given a nonmonotonic inference relation |∼ and
a premise a, the consequences x of a under |∼ may be identified with the elements
of the result K∗a of revising K to accommodate a, where K is chosen to be the
set of consequences under |∼ of the empty set of propositions (i.e. the set of all
tautologies).

7 Preferred States

The constructions that we have been describing can also be carried out on what
is called the semantic level. Instead of working with background assumption sets,
whose elements are propositions, one works with abstract items called states (the
rather neutral term usually used by computer scientists and mathematicians) or
possible worlds (the rather grandiose one familiar to philosophers). To each state
is associated the set of all elementary propositions of the language that it satis-
fies, and satisfaction of compound propositions is defined using the usual Boolean
or first-order rules. It will be no surprise, given the discussion above, that along-
side the states a further piece of machinery is introduced. Again it is a rela-
tion, or more abstractly, a selection function, but this time between states rather
than between propositions or sets of propositions. It is usually called a preference
relation.

Suppose we are given a set of states, each associated with the set of propositions
that it satisfies, and a preference relation < between the states themselves. If A is a
set of premises, then the preferential consequences of A modulo this machinery are
defined to be the propositions x that are satisfied by the most preferred states that
satisfy A (mathematically, the maximal ones, or the minimal ones if we are reading
the relation in the other direction).

Despite its superficial differences, this kind of construction is in fact very similar
to that in terms of background assumptions. Indeed, they can be mapped into each
other in a way that shows that they are exactly equivalent in the finite case (i.e. when
the Boolean language has only finitely many elementary letters, and there are only
finitely many states to work with). The constructions differ only in the infinite case,
where the semantic one is more general.

Once again, the pure logician does not care very much how the relation < be-
tween states is to be understood. All that is needed, mathematically speaking, is
some relation (if desired, satisfying certain regularity conditions) to discriminate
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among the states that satisfy a given set A of premises. Moreover, the logician will
not be very concerned about what states ‘really are’; any items will do.

The philosopher, however, will usually want to give some kind of intuitive mean-
ing to this equipment. The states are commonly understood as representing possible
worlds, or possible reconfigurations of the actual world. The relation that prioritizes
among them is often understood as indicating their relative plausibility. Sometimes,
under the influence of earlier work of David Lewis and others on counterfactual
conditionals, the relation is read in a rather different way, as comparing their ‘dis-
tance’, or level of dissimilarity, from some fixed world. These readings need not be
the same; indeed the latter need have no connection at all with level of belief.

But in addition to these divergences of interpretation, there is another much less
tangible difference of mind-set. Some are content to see these interpretational no-
tions as heuristic guides, handles on which the imagination can take hold to get a
feeling for what is going on. Others want to take the talk literally, giving it a meta-
physical ring. Such philosophers ask questions like ‘what, really, are these possible
worlds?’ and ‘what is the correct way of ordering worlds according to plausibility?’
in the same way as in the philosophy of mathematics some ask ‘what really, are the
natural numbers?’ What for the logician is a convenient mathematical device with a
homely swing to it becomes for the philosopher a question of meaning – and for the
metaphysician a matter of doctrine.

8 Additional Background Rules

Instead of allowing propositions to work as background assumptions alongside our
current premises, we can make use of background rules. Isn’t this the same? Not at
all. A rule involving propositions is not itself a proposition, not even a conditional
one and, as we will see, it behaves rather differently.

In this section we will see briefly how supraclassical (but still monotonic) conse-
quence relations may be constructed in this way and how, with a further twist they
may go nonmonotonic. Again, this twist typically involves some kind of ordering,
this time of the rules, which may be read in terms of levels of acceptance.

By a rule we mean any ordered pair (a,x) of propositions of the language we are
dealing with. A set of rules is thus an arbitrary binary relation R over the language.
It would perhaps be more natural to use the term ‘rule’ for the relation, calling the
pairs in it something else, but such is standard terminology.

Given a set X of propositions and a set R of rules, we recall from elementary set
theory the standard definition of the image R(X) of X under R: it is the set of all y
such that for some x ∈ X we have (x, y) ∈ R. A set X is said to be closed under R
iff R(X) ⊆ X , i.e. iff whenever x ∈ X and (x, y) ∈ R then y ∈ X .

With this apparatus, we are ready to define pivotal-rule consequence. Let R be a
set of rules. Intuitively, they will be playing the role of a set of background ‘inference
tickets’ ready for application to any set of premises. Let A be a set of formulae, and
let x be an individual formula. We say that x is a consequence of A modulo the rule
set R, and write A |-R x , iff x is in every superset of A that is closed under both
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classical consequence and the rule set R. In other words, writing classical conse-
quence as an operation Cn rather than as a relation, iff x is in every set X ⊇ A such
that both Cn(X) ⊆ X and R(X) ⊆ X . A relation is called a pivotal-rule consequence
iff it is identical with |-R for some set R of rules.

How does this differ from adding a set of background assumptions? In particular,
from adding the material conditionals x → y for all the rules (x, y) ∈ R? A rule
is a relatively inanimate object. It can be fired or remain inactive, but cannot legiti-
mately be contraposed or subject to other manipulations. As a result, the generated
consequence relation behaves less regularly.

Consider for example, the singleton rule set R = {(x ,y)} and premise set A =
{¬y}. Clearly we have ¬x as a classical consequence of A taken with the material
conditional x → y, by modus tollens. But ¬x is not in the least superset of A that is
closed under both Cn and the rule set R. That superset is in fact just Cn(¬y), i.e. the
classical closure of A, which is vacuously closed under the rule (x ,y) for the simple
reason that it does not contain x , so that R(Cn(¬y)) = Ø.

Likewise, if we put R = {(x ,z), (y,z)} then z is a classical consequence of x ∨ y
together with the two material implications x → z and y → z. But while x |-R z and
y |-R z, we do not have x∨ y |-R z. This again is because the set {x∨ y} is vacuously
closed under R: we have R(Cn(x ∨ y)) = Ø ⊆ Cn(x ∨ y) since x ,y /∈ Cn(x ∨ y).

Thus far, we have gone supraclassical. The reasons for making a further twist to
go nonmonotonic are exactly the same as in the case of pivotal-assumption conse-
quence – there are occasions where the current premises clash with the background
rules, in the sense that the least superset of the premises that is closed under both
the rules and classical consequence contains a contradiction and so in turn is the
entire set of all propositions in the language. In this case, the same options present
themselves: either swallow the entire language as conclusion set, or try to cut back
classical logic, or apply consistency checks.

In this context, there are two ways of applying consistency checks: to the gener-
ating apparatus or to the generating process. The former runs parallel to what we
did for assumptions. One considers the maximal subsets S of the set R of rules such
that the closure of the current set of premises under both those rules and classical
consequence is consistent; and then one intersects all, or a selected subset of, the
outputs thus generated. We will not focus on that path, but rather on the other and
better-known one that looks at the generating process. For that option, a relation of
level of confidence, acceptance or priority between individual rules is brought into
play from the very beginning. Technically speaking, what we will be looking at is of-
ten known as Reiter default logic with normal rules; we will also call it default-rule
consequence. As for all other constructions in this brief exposition, further details
and references to the literature may be found in Makinson (2005).

We begin by fixing an ordering of the given set R of rules by listing them
in a sequence (finite or infinite) r1, r2,. . . For each such sequence s we define a
consequence relation |∼s by building it up inductively. Reiter’s original definition
was not inductive but fixpoint, but the equivalent inductive formulation is easier to
appreciate.
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Given any set A of propositions as premises we set A1 = A. For each n ≥ 1 we
put An+1 = Cn(An∪{x}), where (a,x) is the first rule in the sequence such that (1)
a ∈ An but (2) x /∈ An and also (3) x is consistent with An. In the limiting case that
there is no such rule, then we tread water by putting An+1 = Cn(An). Finally, we say
that A |∼s y iff y ∈ An for some n.

Clearly, it is condition (3) that puts on the brakes when contradiction threatens.
It is here in the middle of the generating process, i.e. in the inductive passage from
An to An+1, that we impose our consistency constraint. Roughly speaking, if the
conclusion of the rule is inconsistent with what we have built so far, then we do not
apply it.

The sequencing of the rules serves as a prioritization: the higher the priority, the
earlier will the rule have an opportunity for application. This makes a big difference
to the output, because the successful application of a rule can introduce material that
prevents another rule from being applied, because the conclusion of the second rule
is inconsistent with it.

If we have a single preferred sequence s for the rules in R, then we may take as
our final output the consequence relation that it thus generates. On the other hand,
if we allow a number of sequences of the rules in R, perhaps even all possible such
sequences, then our final output is defined to consist of those propositions that are
in the outputs of all of the corresponding consequence relations.

Once again, the logician does not much care how we might interpret the or-
derings of the background rules that are created by putting them in sequence; the
non-committal term ‘prioritization’ is enough. Philosophers, on the other hand, are
more interested in knowing how we might read the priority, in other words, what
might be the criteria for giving one rule a higher priority than another. A natural
candidate for this is that one rule is accepted with more confidence than another, so
that when a conflict arises, we prefer to use it rather than the other one.

It would not be quite right to speak here of degrees of belief, for reasons of
English grammar as much as logic. In English, we can say that we accept a rule,
but we can’t say that we believe it. We can believe only items that carry a truth-
value, i.e. are either true or false; and rules do not carry truth-values. As we empha-
sized earlier, they can be made up out of propositions, but they are not themselves
propositions.

9 Using Probability

At this point, a reader may express puzzlement. Surely, a long-accepted way of
expressing levels of belief is in terms of probability, of which we have a very well
developed mathematical theory. Yet, so far, we have not so much as mentioned prob-
ability as an ingredient of nonmonotonic reasoning.

In fact, there is quite a deep cultural divide between those who work in proba-
bility theory and those who work in logic; not many researchers are active in both
areas. Probability theory is much older as a discipline, and is generally practised
by mathematicians. Nonmonotonic logic developed quite recently at the hands of
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computer scientists and logicians, who often made a point of expressing its basic
concepts in qualitative rather than quantitative terms. But these are features of the
history of the domain rather than about its subject.

In fact, it is perfectly possible to express classical consequence in probabilistic
terms. It is equally possible to tweak that representation to create supraclassical
and nonmonotonic consequence relations. It turns out, however, that their behaviour
is very different from that of the qualitative relations that we have considered so
far. We will explain these points briefly, assuming that the reader has just a little
familiarity with the elements of probability theory.

There are several equivalent ways in which classical propositional consequence
may be characterized in probabilistic terms. The simplest of all is the following: Let
a,x be any formulae of propositional logic. Then a |- x holds iff for every proba-
bility function p: L → [0,1] we have p(a) ≤ p(x). The left-to-right implication
here is in fact one of the postulates of Kolmogorov’s well-known axiomatization of
probability theory; the converse implication is easily verified, noting the universal
quantification over all possible probability functions in the right hand condition,
and recalling that boolean valuations are themselves limiting cases of probability
functions.

However, the characterization of classical consequence that is most interesting
for our story is in terms of conditional probabilities. Fix any real number t distinct
from zero in the interval [0,1]; this is called a threshold parameter. Let a,x be any
formulae of propositional logic. Then it can be shown that a |- x holds iff for every
probability function p: L → [0,1] such that p(a) �= 0 we have pa(x) ≥ t . Here pa is
the conditionalization of the function p and is defined, for any formula a such that
p(a) �= 0, by putting pa(x) = p(a ∧ x)/p(a). It is easily verified that whenever p is
a probability function, in the sense that it satisfies the Kolmogorov postulates, then
so too is pa.

Thus, in so far as we may take probability as a measure of degree of belief
(whether actually held or rational to hold) then we may express classical logical
consequence in terms of those degrees, provided we quantify over all probability
functions (or a sufficiently large subset of them).

How can we go supraclassical? All we need to do is restrict the set of probability
functions over which we quantify in the above characterization, severely enough
to exclude some of the Boolean valuations (which, as we have remarked, are lim-
iting cases of probability functions). In other words, whenever we fix a set P of
probability functions and a threshold parameter t , we can define a consequence
relation |∼P as follows. For any formulae a,x of propositional logic, a |∼x iff for
every probability function p ∈ P such that p(a) �= 0 we have pa(x) ≥ t . The
only difference between this definition and its predecessor is that the quantification
is now over the probability functions that are in P , rather than over the set of all
probability functions whatsoever.

Are these consequence relations monotonic or nonmonotonic? It all depends on
the choice of the subset P . Suppose that the set P is closed under conditionalization,
i.e. that whenever p ∈ P and p(a) �= 0 (so that pa is well defined) then pa ∈ P .
Then the consequence relation |∼P remains monotonic. But when P is chosen in
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such a way that it is not closed under conditionalization – at the extreme limit, when
it is chosen to be a singleton – then monotony fails.

The failure can be illustrated by a very simple example. Suppose that our propo-
sitional language has just two elementary letters q ,r . Consider the probability distri-
bution p that gives each of the four atoms q∧r , . . . , ¬q∧¬r equal values 0.25, and
choose the threshold value t = 0.5. Choose a = q ∨ ¬q , x = q ∨ r , b = ¬q ∧ ¬r .
Then p(a) = 1 so p(a ∧ x)/p(a) = p(x)/1 = p(x) = p(q ∨ r ) = 0.75 ≥ t while
p(a ∧ b ∧ x)/p(a ∧ b) = 0/p(a ∧ b) = 0 < t .

However in probabilistic contexts the question of nonmonotonicity leaves centre
stage, which is dominated by another property – conjunction in the conclusion (alias
AND or ∧+). This is the condition that whenever a|∼x and a|∼y then a|∼ x ∧ y. It
is easy to show that the probabilistically defined consequence relations |∼P defined
above fail this rule for almost any choice of P (other than the set of all probability
functions which as we have seen gives us exactly classical consequence, which does
satisfy ∧+). In particular, the rule fails when P is chosen as a singleton.

The rule of disjunction in the premises alias ∨+ (whenever a|∼x and b|∼x then
a ∨ b |∼x) also fails in its unrestricted form. But ∧+ has a special, ‘watershed’
position in that its addition to rules that do hold probabilistically gives us ∨+ and
other ‘intermediate’ rules. These matters are investigated in detail in Hawthorne and
Makinson (2007).

In contrast, all of the qualitative consequence relations constructed by mecha-
nisms that we have considered above (default-assumption, default-valuation, and
default-rule consequence) do satisfy the rule of conjunction in the conclusion. In-
deed, it has sometimes been thought that the success of the rule can serve as a
criterion for distinguishing qualitative from quantitative approaches to reasoning.

On the other hand, reflection on the paradox of the preface (Makinson 1965)
suggests that even in qualitative contexts the rule of conjunction in the conclusion
may not be as innocent as it appears, and that the formal constructions that we
have outlined are simplistic and deceptive in this respect. We do not enter into this
fascinating issue here; it is one of the central themes of (Makinson, forthcoming).

10 Conclusions

Drawing together the threads of our discussion, we may say that nonmonotonic
logics as they have developed over the last quarter century, and more generally
theories of defeasible or uncertain reasoning including those based on probability,
often make use of the notion of levels of belief.

The most manifest employment is the one that we discussed last. Probability
functions can be seen as expressing numerical measures of level of credence (or
credibility), and can be utilized in developing criteria for drawing conclusions.
These criteria lead to our familiar (monotonic) classical logic when the set of all
probability functions is taken as parameter in the definition of a consequence rela-
tion. However, they lead to supraclassical (and in general nonmonotonic) ones when
we admit only a subset of the probability functions – in particular when we deploy a
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single probability function as parameter. Moreover in these cases, the familiar rule
of conjoining conclusions is lost.

On the qualitative level, current formal constructions appeal to levels of belief in
a less direct manner. They all make use of some kind of ordering of propositions
(or of sets of propositions, states, possible worlds, rules, etc). These may be read as
representing different degrees of belief or acceptance, although for the logician, as
contrasted with the philosopher, such a reading is a secondary matter. The orderings
employed establish priorities for performing certain operations (making consistency
checks, selecting subfamilies for intersection, etc), and as long as those tasks can be
performed, the logician is happy. To make the philosopher happy should require
more – an assurance that the semantic constructions used are indeed appropriate
ones, and that rules validated by them (e.g. conjunction in the conclusion for the
qualitative constructions), are really desirable.
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