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Preface

The current growth rate of wireless data exceeds both spectral efficiency advances
and availability of new wireless spectrum; a trend towards network densification is
essential to respond adequately to the continued surge in mobile data traffic. To this
end, there are two common ideas to densify the network, one is by aggregating lots
of antennas at the base station to achieve large diversity gain, termed massive
multiple-input-multiple-output (MIMO), and the other one is by spreading antennas
into the network and form small autonomous regions to provide better path loss,
known as small cell network.

The focus of this book is on combining these two techniques and to investigate a
better utilization of the excessive spatial dimensions to improve network perfor-
mance. Particularly, we point out two directions that the large number of antennas
can be used for: (1) interference suppression, where we propose a linear precoding
scheme termed cell-edge aware zero forcing (CEA-ZF) that exploits the extra
degrees of freedom from the large base station antenna array to mitigate inter-cell
interference at cell-edge neighboring users; (2) wireless backhaul, where we pro-
pose using the massive antenna array at macro base stations to simultaneously serve
several small access points within their coverage by spatial multiplexing, thus
connecting different tiers in a small cell network via wireless backhaul and perform
an energy-efficient design. In order to quantify the performance of our proposed
schemes, we combine random matrix theory and stochastic geometry to develop an
analytical framework that accounts for all the key features of a network, including
number of antenna array, base station density, inter-cell interference, random base
station deployment, and network traffic load. The analysis enables us to explore the
impact from different network parameters through numerical analysis. Our results
show that on the one hand, CEA-ZF outperforms conventional zero forcing in terms
of coverage probability, aggregated per cell rate, and edge user rate, demonstrating
it as a more effective precoding scheme to achieve better coverage probability in
massive MIMO cellular networks. On the other hand, we show that a two-tier small
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cell network with wireless backhaul can be significantly more energy-efficient than
a one-tier cellular network. However, this requires the bandwidth division between
radio access links and wireless backhaul to be optimally designed according to the
load conditions.

We would like to thank Dr. Giovanni Geraci from Bell Labs, Ireland, and Prof.
Jeffrey G. Andrews from University of Texas at Austin, for their comments in
improving the quality of this book.

Singapore Howard H. Yang
2016 Tony Q.S. Quek
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Chapter 1
Introduction

Abstract In this chapter, we present a general overview for two promising candi-
dates of next generation wireless technologies, the massive multiple-input multiple-
output (MIMO) system and the small cell networks. After respectively reviewing
their concepts, advantages, and challenges, we provide the motivation and contribu-
tion of this book.

1.1 Background

Driven by new generation of wireless devices and the proliferation of bandwidth-
intensive applications, user data traffic and the corresponding network load are
increasing in an exponential manner, leading challenges in wireless industry to sup-
port higher data rates and ensure a consistent quality of service (QoS) throughout the
network. To address this challenge, it requires network capacity to be increased by a
factor of thousand over next ten years. Since spectral resources are scarce, there is a
broad consensus to achieve this through network densification, i.e., deploying more
antennas per unit area into the network.

In general, there are two approaches to densify the network [1]. The first direc-
tion is by aggregating more antennas at the existing base stations (BSs) to spatially
multiplex user equipments (UEs) on the same time–frequency resource block. If the
number of antennas largely exceeds the number of actively transmitting or receiving
UEs per cell, it is epitomized as massive MIMO, where tremendous spatial degrees
of freedom can overcome the fluctuation in wireless channel and bring a significant
power gain to the system [2–4]. The second approach is termed small cells, which
suggests to deploy antennas in a distributed manner and form autonomous regions
with each covering a smaller area and serving much fewer UEs than a traditional
macro base station [5, 6]. By shrinking the cell range, UEs not only benefit from
better path loss, but also less competitors to share spectrum resource in the same cell,
thus both network throughput and spatial reuse can be improved. Either approach
will eventually lead the cellular network to be operating in a regime where number of
serving antennas largely exceeds number of UEs. Such excessive degrees of freedom
not only provide opportunities to attain higher capacity, but also power new direc-

© The Author(s) 2017
H.H. Yang and T.Q.S. Quek, Massive MIMO Meets Small Cell, SpringerBriefs
in Electrical and Computer Engineering, DOI 10.1007/978-3-319-43715-6_1
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2 1 Introduction

Fig. 1.1 Example of a downlink massive MIMO system, where base station antenna number N is
orders larger than the number of UEs K . Data streams are simultaneously transmitted to all UEs in
the cell

tions for enhanced network design to achieve better energy efficiency or improved
coverage for cell-edge UEs [7, 8]. To this end, we first detail the concept of massive
MIMO and small cell networks and then outline our contributions in this book that
improve energy efficiency, coverage, and cell-edge user rate.

1.1.1 Massive MIMO System

Massive MIMO is a form of multi-user MIMO where BS deploys an antenna array
with hundreds of active elements to serve tens of active UEs in the same time–
frequency resource block [3, 9]. Figure1.1 illustrates the concept of a typical down-
link massive MIMO system, where multiple data streams for different intended UEs
are precoded using channel state information (CSI) estimated from training phase,
and sent out simultaneously from the BS. It has been shown that as the BS antenna
array scales up, beams steered at different UEs will eventually be almost orthogonal
to each other [2, 10]. In this regard, massive MIMO enables each of its UEs to enjoy
a wireless channel that has high power gain and small crosstalk.

Several nice properties emerge when MIMO array are made large, which are
summarized as follows:

• The vast number of antenna elements enable BS using simple linear precod-
ing/decoding schemes, such asmaximum ratio transmission (MRT) or zero forcing
(ZF), to achieve the optimal channel capacity [11].

• The action of the law of large numbers smoothens out frequency dependencies in
the channel, which enables an easy design of power control to improve spectral
efficiency without regarding the short term fading channels [12].
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• The large antenna array allows BS to concentrate its transmit power at the receivers
by forming narrow beams. In this way, radiated power at BS can also be signifi-
cantly reduced [13, 14].

Besides, massive MIMO also has many potential trails as reducing latency on
the air interface, simplifies the multiple access layer, and increases the system
robustness [3].

While very promising, massive MIMO still presents a number of research chal-
lenges. For instance, since coherence time of a wireless channel is naturally finite,
there are only limited amount of orthogonal pilot sequences that can be assigned
to devices for acquiring channel knowledge. Consequently, these pilot sequences
have to be reused for all cells in the network, which inevitably contaminates the
estimated channel, resulting in a crucial limitation to the system performance [11,
15, 16]. More importantly, though crosstalk-free channels is attainable per cell with
massive MIMO, UEs located at the cell edges still surfer from interference gener-
ated by BSs transmitting in other cells, which significantly limits their experience
[16–18]. In this book, by elaborating the high number of antennas at base stations,
we propose a scheme that can coordinate the inter-cell interference without the need
for orthogonalizing resources over time or frequency.

1.1.2 Small Cell Networks

On a separate track, modern wireless devices, such as smartphones, tablets and lap-
tops, are generating more indoor traffic than outdoor, leading to an inhomogeneous
data demand across the entire network. However, the conventional cellular networks
are designed to cover large areas and optimized under homogeneous traffic profile,
thus facing the challenge to meet such unbalanced traffic profile from different geo-
graphical areas [5]. To this end, there emerges a trend where more and more small
cellular access points are deployed into residential homes, subways, and offices, such
that satisfactory user experience is achievable. This type of network architecture,
where macrocell network is overlaid with a mix of lower power cells, is commonly
referred to as small cell network [5, 6, 19].

By deploying a large amount of lower power network nodes that covers a small
area, traffic frommacrocells can be offloaded to small access points which located in
shorter distance to the end UEs. In this regard, small cell network has the advantage
to not only improve the indoor coverage, but also boost the spectral efficiency per unit
area via spatial reuse [6, 20]. Furthermore, the small access points can be deployed
with relative low network overhead, and have high potential for bringing in an energy
efficient design to future wireless networks [21–23].

A typical architecture of small cell network is illustrated in Fig. 1.2, where BSs
of different types coexist in the network to serve different users. The role of different
users are summarized as follows [6]:
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Fig. 1.2 Example of a small cell network consists ofmacrocell, pico cells, and femto cells. Different
type of cells serve different amount of UEs

• Macrocell base stations, which are conventionally installed by operators to provide
open public access. These base stations are usually destined to provide a guaran-
teed minimum data rate under limited delay constraint and maximum tolerable
outage. They typically emit up to 46dBm, covering a wide area on the order of
few kilometers and serving thousands of customers.

• Pico cell access points, which are operator-installed low power cell towers. Pico
cells are mainly deployed in places that have insufficient macro penetration, with
the purpose to infill the outdoor or indoor coverage. Their transmit power generally
range from 23–30dBm, providing a coverage area around 300m and serving a few
tens of users.

• Femto cell access points, which are user-deployed access points. Femto cells are
usually low cost and operating with low power, they are commonly used to offload
data traffic and serve a dozen of active users in homes or enterprises. Typically,
the coverage range of femto cell is less than 50m and the transmit power is less
than 23dBm.

Small cell networks entail a shift of paradigm over the traditional cellular network,
where centralized macrocells are divided into more autonomous, uncoordinated, and
intelligent small cells. Though such paradigm shift provides excellent opportunities
for network enhancement, several challenges also comes along. For instance, the
interference alignment in co-channel deployment and hand over between different
cells all act as a key limiting factor for capacity [6, 24, 25]. Besides, because of
the complex topology of the various types of coexisting cells in small cell network,
backhaul design poses a more challenging issue. For instance, pico cells may require
to access utility infrastructure with wired backhauling, which may be potentially
expensive. As for the femto cells, which in contrast use low-cost backhauling, may
facedifficulties toQoS sincebackhaul relies onusers’ broadband connections.Hence,
operators need to carefully deploy backhaul for small cell network in a way that
identifies the most cost effective and guarantees the QoS [8, 26]. Inspired by the
large spatial dimensions in massive MIMO, we propose equipping macrocell base
stationswith large antenna arrays in a small cell network. In this sense, the tremendous
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diversity gain brings good opportunity for wireless backhaul in small cell network,
where macro base stations have dedicated backhaul to the core network, while small
access points can aggregate their traffic, and send to their closest macro base stations
via wireless link. In this book, we will investigate an energy efficient design to such
small cell network with wireless backhaul.

1.2 Book Outline

In the following two chapters, we mainly discuss two approaches of using the large
antenna arrays, i.e., interference suppression at cell edge and wireless backhaul in
small cell networks, to improve network performance.

In Chap.2, we propose a linear precoding scheme that exploits the excessive
spatial dimension to suppress downlink inter-cell interference at adjacent cell edge,
in a massive MIMO network. Specifically, each BS acquires CSI of their own UEs
within the cell and neighboring UEs at the cell edge, with the proposed precoding
scheme,BS then sacrifices certain degrees of freedom to suppress interference toward
the neighboring users and uses the remaining spatial dimensions for multiplexing
gain. Through an analysis that accounts for both large antenna arrays and random
BS topology, we demonstrate that if our precoding scheme can be used throughout
the entire network in a distributed manner, both coverage and cell-edge rate can be
significantly improved.

In Chap.3, we investigate an energy efficient design in a small cell network, where
macro base stations are equipped with large antenna array, and small access points
connect to their closest macro base stations via wireless backhaul. By combining
random matrix theory and stochastic geometry, we develop a general framework for
the analysis, which takes a complete treatment of uplink and downlink transmis-
sions, spatial multiplexing, and resource allocation between radio access links and
backhaul. Our results show that irrespective of the deployment strategy, it is critical
to control the network load in order to maintain a high energy efficiency. Moreover,
a two-tier small cell network with wireless backhaul can achieve a significant energy
efficiency gain over a one-tier deployment, as long as the bandwidth division between
radio access links and wireless backhaul is optimally designed.

Chapter 4 summarizes the main result, and provides several directions for future
extension based on the frameworks we developed in this book.
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Chapter 2
Massive MIMO for Interference
Suppression: Cell-Edge Aware Zero Forcing

Abstract Ubiquitous high-speed coverage and seamless user experience are among
the main targets of next generation wireless systems, and large antenna arrays have
been identified as a technology candidate to achieve them. By exploiting the excess
spatial degree of freedom from the large number of base station (BS) antennas, we
propose a new scheme termed cell-edge-aware (CEA) zero forcing (ZF) precoder
for coordinated beamforming in massive MIMO cellular network, which suppresses
inter-cell interference at themost vulnerable user equipments (UEs). In this work, we
combine the tools from random matrix theory and stochastic geometry to develop a
framework that enables us to quantify the performance of CEA-ZF and compare that
with a conventional cell-edge-unaware (CEU) ZF precoder in a network of random
topology. Our analysis and simulations show that the proposed CEA-ZF precoder
outperforms CEU-ZF precoding in terms of (i) increased aggregate per-cell data
rate, (ii) higher coverage probability, and (iii) significantly larger 95%-likely rate,
the latter being the worst data rate that a UE can reasonably expect to receive when
in range of the network. Results from our framework also reveal the importance of
scheduling the optimal number of UEs per BS, and confirm the necessity to control
the amount of pilot contamination received during the channel estimation phase.

2.1 Introduction

Supporting the ever increasing wireless throughput demand is the primary factor
driving the industry and academia alike toward the fifth generation (5G) wireless
systems. To attain a satisfied quality of service (QoS), 5G networks need not only
to provide a large aggregate capacity, but also guarantee high worst-case rates for
all UEs, including those located at the cell edge, i.e., close to interfering BSs [1–3].
New technologies are being introduced to improve the performance of cell-edge UEs
from current levels. Equipping BSs with a large number of antennas, widely known
as massive multiple-input multiple-output (MIMO), has emerged as one of the most
promising solutions [4–6]. Besides the large diversity gain it brings along, spatial

© The Author(s) 2017
H.H. Yang and T.Q.S. Quek, Massive MIMO Meets Small Cell, SpringerBriefs
in Electrical and Computer Engineering, DOI 10.1007/978-3-319-43715-6_2
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dimensions available at massiveMIMOBSs can also be used to suppress interference
at cell-edge UEs, thus shed light to new design aspects of inter-cell interference
mitigation. To this end, we design and analyze a linear transmission scheme, termed
cell-edge-aware (CEA) zero forcing (ZF) precoder, that significantly improves the
data rate of UEs at the cell edge, as well as the overall network throughput.

2.1.1 Motivation and Related Work

A considerable amount of research has investigated the use of multi-cell joint signal
processing for cell-edge performance improvement [7–9]. The common idea behind
joint processing techniques is to organize BSs in clusters, where BSs lying in the
same cluster share information on the data to be transmitted to all UEs in the cluster.
Although this information allows BSs to coordinate their transmission and jointly
serve all UEs with an improved system throughput, it comes at the cost of heavy
signaling overhead and backhaul latency, which defy the purpose of its implemen-
tation [10].

As the benefits of joint processing are often outweighed by the increased latency
and overhead, a more practical alternative to increase the cell-edge throughput can
be found in coordinated beamforming, or precoding, schemes [11–13]. Under coor-
dinated precoding, each BS acquires additional channel state information (CSI) of
UEs in neighboring cells, but no data information is shared between the various BSs.
The additional CSI can then be exploited to control the crosstalk generated at UEs
in other cells, e.g., by using multiple BS antennas to steer the crosstalk toward the
nullspace of the neighboring UEs. This approach is especially attractive for mas-
sive MIMO BSs, due to the abundance of spatial dimensions provided by the large
antenna arrays [14].

Remarkable attempts to design and analyze a coordinated precoder for massive
MIMO cellular networks are made in [15, 16]. The current paper differs from and
generalizes the latter works in two key aspects

1. Design: Unlike [15, 16], where each BS suppresses the interference at all edge
UEs in all neighboring cells, we specifically target those neighboringUEs close to
the BS coverage area. Therefore, our precoder employs fewer spatial dimensions
to mitigate inter-cell interference, leaving more degrees of freedom to each BS
to better multiplex its own associated UEs [17].

2. Analysis: While [15, 16] assume a symmetric hexagonal cellular network, we
consider a generalized model with random topology. Hexagonal models can lead
to substantial performance overestimation, as demonstrated in [18, 19], whereas
our analysis accounts for the randomness of practical cellular deployments.
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2.1.2 Approach and Summary of Results

In this work, we propose a CEA-ZF precoder for massive MIMO cellular networks.
Exploiting the excess spatial degrees of freedom made available by each massive
MIMO BS, our CEA-ZF precoder suppress inter-cell interference at the cell-edge
UEs in a distributed manner, thus boosting the received signal-to-interference ratio
(SIR) of these most vulnerable of these most vulnerable UEs. In order to evaluate
the performance of our scheme, we combine random matrix theory with stochastic
geometry and analyze the coverage and rate performance of the proposed CEA-ZF
precoder, as well as those of a conventional cell-edge-unaware (CEU) ZF precoder,
in a general setting that accounts for random BS deployment and interference affect-
ing both the channel estimation and data transmission phases. Our key results and
contributions can be summarized as follows:

• We propose a new linear precoder for the downlink of massiveMIMO cellular net-
works, which we denote as the CEA-ZF precoder, where some spatial dimensions
are used to suppress inter-cell interference at the cell-edge neighboring UEs, and
the remaining degrees of freedom are used to multiplex UEs within the cell. Our
precoder works in a distributed manner, and it boosts network coverage and rate
performance compared to CEU-ZF precoding.

• We develop a general framework to analyze the SIR distribution and coverage of
massive MIMO cellular networks for both the proposed CEA-ZF and the CEU-
ZF precoder. Our analysis is tractable and captures the effects of multi-antenna
transmission, spatial multiplexing, path loss and small-scale fading, network load
and BS deployment density, imperfect channel estimation, and random network
topology.

• Through our analysis, which is validated via simulation results, we demonstrate
that the proposed CEA-ZF precoder outperforms the CEU-ZF precoder in terms
of aggregate per-cell data rate and coverage probability. Moreover, the CEA-ZF
precoding guarantees a significantly larger 95%-likely rate, i.e., it improves the
worst data rate that any UE can expect to achieve.

• We quantify the effect of imperfect CSI, and reveal the importance of controlling
the amount of pilot contamination received during the channel estimation phase,
e.g., through smart pilot allocation schemes.We also study the systemperformance
as a function of the network load, showing that it is beneficial to schedule the
optimal number of UEs per BS.

The remainder of this chapter is organized as follows. We introduce the system
model in Sect. 2.2. In Sect. 2.3, we analyze the SIR and network coverage under
CEA-ZF and CEU-ZF precoding, also studying a special case that provides intu-
itions behind the gain attained by using different precoding schemes. We show the
simulations that confirm the accuracy of our analysis as well as the numerical results
to quantify the benefits of CEA-ZF precoding and obtain design insights in Sect. 2.4.
This chapter is concluded in Sect. 2.5 (Main notations are summarized in Table2.1).
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Table 2.1 Notation summary

Notation Definition

Φb; λ PPP modeling the location of BSs; BS deployment density

N ; K Number of transmit antennas per BSs; number of scheduled UEs per BS

Pt ; α BS transmit power; path loss exponent

Ci ; CN
i First-order Voronoi cell for BS i ; cell neighborhood for BS i

CE
i = Ci ∪ CN

i Extended cell for BS i

riik ; rīik Distance between UE k in cell i and its serving BS i and second closest
BS ī , respectively

xi jk ∼ CN (0, IN ) Small-scale fading between BS i and UE k in cell j

wu,ik ; wa,ik CEU-ZF and CEA-ZF precoding vector, respectively, at BS i for its UE k

M ; F Available number of pilots; pilot reuse factor

Ip Interference during training phase

Iu; Ia Interference during data transmission phase for CEU-ZF and CEA-ZF,
respectively

τi jk Standard deviation of CSI error between BS i and UE k in cell j

θ SIR decoding threshold

Pc(θ); ρ95 Coverage probability; 95%-likely rate

2.2 System Model

We consider the downlink of a cellular network that consists of randomly deployed
BSs, whose location follows a homogeneous Poisson point process (PPP) Φb of
spatial density λ in the Euclidean plane. In this network, each BS transmits with
power Pt and is equipped with a large number of antennas, N . Single-antenna UEs
are distributed as a homogeneous PPP with sufficient high density on the plane, such
that each BS has at least K ≤ N candidate UEs in its cell to serve. In light of its
higher spectral efficiency, we consider spatial multiplexing at the BSs, where in each
time–frequency resource block (RB) each BS simultaneously serves the K UEs in
its cell [4].

We assume that UEs associate to the BS that provides the largest average received
power. Due to the homogeneous nature of the network, this results in a distance-
based association rule.1 In this sense, the set of UE locations that are associated to
BS i located at zi ∈ R

2 are defined by a classical Voronoi tessellation on the plane,
denoted by V 1

i and given by [22, 23]

V 1
i = {

z ∈ R
2|‖z − zi‖ ≤ ‖z − zk‖, ∀ zk ∈ Φb\zi

}
. (2.1)

1Different association rules apply when transmit power or large-scale fading vary among BSs,
resulting in a weighted Voronoi diagram [20, 21].
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We note that the set V 1
i contains all locations for which BS i is the closest. Such

definition is identical to that of a traditional cell, thus we equivalently denote V 1
i

as Ci .
In order to identify the neighboringUEs for eachBS,we find it useful to generalize

the above definition of Voronoi cell to the second order. More precisely, the second-
order Voronoi tessellation V 2

i, j denotes the set of UE locations for which the BSs in
zi and z j are the two closest, and it is given by [22, 23]

V 2
i, j ={

z ∈ R
2| ∩l∈{i, j} {‖z − zl‖ ≤ ‖z − zk‖}, ∀ zk ∈ Φb \ {zi , z j }

}
. (2.2)

Using the second-order Voronoi tessellation, we can now define the notion of
extended cell CE

i for BS i , given by (i) all UEs for which BS i is the closest, and (ii)
all UEs for which BS i is the second closest. The extended cell CE

i is given by

CE
i = ∪ j V

2
i, j , ∀ z j ∈ Φb \ zi . (2.3)

According to the above definition, each UE that lies in CE
i sees BS i as either its

closest or second closest BS. The extended cell CE
i includes the UEs located in Ci

that are served by BS i , as well as the neighboring UEs which are most vulnerable
to interference generated by BS i . These UEs constitute the cell neighborhood for
BS i , which we denote by CN

i and define as follows:

CN
i = CE

i \ Ci . (2.4)

Figure2.1 illustrates the concepts of first-order and second-order Voronoi tes-
sellation, cell neighborhood, and extended cell. Figure2.1a shows a realization of
first-order Voronoi tessellation, where each BS i covers a cellCi . Figure2.1b depicts
the corresponding second-order Voronoi tessellation, where each pair of BSs (i, j)
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Fig. 2.1 Examples of (a) first-order and (b) second-order Voronoi tessellation. In (a), solid lines
delimit first-order Voronoi cells Ci . In (b), dashed lines delimit second-order Voronoi cells V 2

i, j ,

solid lines delimit the extended cellCE
1 , and a shadowed region indicates the cell neighborhood CN

1
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identifies a region V 2
i, j (delimited by dashed lines), such that UEs located in V 2

i, j have
BS i andBS j as their closest and second closest, or vice versa. Figure2.1b also shows
the extended cell CE

1 for BS 1 (delimited by solid lines), which is composed by the
first-order cell C1 and by the neighborhood CN

1 (shadowed region).
In the following, by using the concepts of extended cell and cell neighborhood, we

propose a CEA-ZF precoding scheme where each BS not only spatially multiplexes
the associated UEs in Ci , but also suppresses the interference caused at the most
vulnerable neighboring UEs in CN

i . We note that each BS i can easily obtain a list of
UEs in CN

i by means of reference signal received power (RSRP) estimation. In fact,
downlink RSRP measurements for a list of neighboring BSs are periodically sent by
each UE for handover purposes [24].

2.2.1 Channel Model and Estimation

In this network, we model the channels between any pair of antennas as independent
and identically distributed (i.i.d.) and quasi-static, i.e., the channel is constant during
a sufficiently long coherence block, and varies independently from block to block.2

Moreover, we assume that each channel is narrowband and affected by two attenu-
ation components, namely, small-scale Rayleigh fading, and large-scale path loss.3

As such, the channel matrix from BS i to its K associated UEs can be written as

Hi = R
1
2
i Xi , (2.5)

where Ri = diag{r−α
i i1 , . . . , r−α

i i K } is the path loss matrix, with ri jk denoting the dis-
tance from the BS i to UE k in cell j , i.e., associated with BS j . The constant α

represents the path loss exponent, whereas Xi = [xi i1, . . . , xi i K ]H is the K × N
fading matrix, where xi jk ∼ CN (0, IN ) is the channel fading vector between BS i
and UE k in cell j . Due to the interference-limited nature of massive MIMO cellular
networks, we neglect the effect of thermal noise [4].

In order to simultaneously amplify the desired signal at the intended UEs and
suppress interference at other UEs, each BS requires CSI from all the UEs it serves.
This CSI is obtained during the training phase, where some RBs are used for the
transmission of pilot signals. Since the number of pilots, i.e., the number of RBs
allocated to the training phase, is limited, these pilots must be reused across cells.
Pilot reuse implies that the estimate for the channel between a BS and one of its UEs

2Note that the results obtained through the machinery of random matrix theory can be modified to
model transmit antenna correlation [25].
3For the sake of tractability, the analysis presented here does not consider shadowing. Note that
the results involving large-system approximations can be adjusted to account for the presence
of shadowing as in [20]. Moreover, a generalized gamma approximation can still be used under
shadowing, since the channel attenuation at a given UE follows a Rayleigh distribution [21].
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is contaminated by the channels between the BS and UEs in other cells which share
the same pilot [4–6, 26].

Pilot contamination can be a limiting factor for the performance of massive
MIMO. In order to mitigate such phenomenon, nonuniversal pilot reuse has been
proposed, where neighboring cells use different sets of mutually orthogonal pilots
[15, 19]. Under nonuniversal pilot reuse, the total set of available pilot sequences is
divided into subgroups, and different subgroups are assigned to adjacent cells. For
a pilot reuse factor F , the same subgroup of orthogonal pilot sequences is reused in
every F cells.

We denote by M = κL the number of available orthogonal pilots, with L being
the number of symbols that can be transmitted within a time–frequency coherence
block, and κ being the fraction of symbols that are allocated for channel estimation.
For a time-division duplexing (TDD) system with L = 2 × 104 and κ = 5%, there
would be M = 1000 orthogonal pilots, and therefore a pilot reuse factor F = 7
would allow to estimate the channels of 142 UEs per cell [10].4 As a general rule,
a pilot reuse factor F > 3 is recommended in order to mitigate pilot contamination
[28]. In this regard, we assume that there are sufficient pilot sequences to support a
large enough pilot reuse factor, such that each BS can estimate the CSI of UEs in its
own cell and in adjacent cells.

By using the MMSE criterion for pilot-based channel estimation, we can express
the estimated small-scale fading x̂i jk between BS i and UE k in cell j as [17]

xi jk =
√
1 − τ 2

i jk x̂i jk + τi jkqi jk, (2.6)

where qi jk ∼ CN (0, IN ) is the normalized estimation error and τ 2
i jk is the error

variance, given by [9]

τ 2
i jk = 1

1 + E[γ CSI
i jk ] · M

FK

. (2.7)

In (2.7), γ CSI
i jk is the SIR of the received pilot signal at the BS, given by

γ CSI
i jk = r−α

i jk ‖xi jk‖2
∑

l∈ΦP
r−α
ilk ‖xilk‖2 (2.8)

where ΦP indicates the set of BSs that have their UEs reusing the same pilot as UE k
in cell j and are thus generating pilot contamination. The estimated channel matrix
at BS i can therefore be written as

4In a TDD system, downlink channels can be estimated through uplink pilots thanks to channel
reciprocity. This makes the training time proportional to the number of UEs. A frequency-division
duplexing (FDD) system requires a considerably longer training time, proportional to the number
of BS antennas, and is therefore less suitable for massive MIMO [4, 27].
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Ĥi = R
1
2
i X̂i . (2.9)

2.2.2 Downlink Transmission

For the downlink transmission, we introduce two precoding schemes: (i) the conven-
tional CEU-ZF precoder and (ii) the proposed CEA-ZF precoder.

2.2.2.1 Conventional CEU-ZF Precoding

With conventional zero forcing transmission, each BS i calculates the precoding
vector to its UE k as [25]

wu,ik = 1
√

ζu,i

(
ĤH

i Ĥi

)−1
ĥi ik, (2.10)

where Ĥi = [ĥi i1, . . . , ĥi i K ] is the estimated channel matrix, and ζu,i = tr[(ĤH
i Ĥi )]

is a power normalization factor.
Note that ZF precoding aims at mitigating intra-cell crosstalk caused by spatial

multiplexing to attain better SIR, where each BS projects signal for each intended
UE onto the null space of other UEs receiving service in the same cell. In a multiuser
MIMO system, it has been shown that ZF outperform maximum ratio transmission
(MRT) in terms of per-cell sum-rate [15]. When the system dimensions make the ZF
matrix inversion in (2.10) computationally expensive, a simpler truncated polynomial
expansion can be employed with similar performance [29].

2.2.2.2 Proposed CEA-ZF Precoding

Unlike CEU-ZF precoding, where all spatial dimensions available at each BS i are
used to multiplex UEs within cell Ci , the proposed CEA-ZF precoder exploits some
spatial dimensions to suppress interference at the most vulnerable UEs, i.e., those
lying in the BS’s cell neighborhood CN

i . In this fashion, BS i sacrifices some of its
intra-cell power gain while trying to be a good neighbor who reduces the inter-cell
interference to each of its adjacent cells. If such interference suppression is performed
by all BSs in a distributed manner, the cell-edge performance as well as the overall
data rate of the network can be improved. An illustration of the basic features of
CEA-ZF is given in Fig. 2.2, where a multi-antenna BS spatially multiplexes its
in-cell UEs while simultaneously suppressing interference at its neighboring UEs.

ForBS i , we denote by K ′ the number ofUEs lying in the cell neighborhood,where
we omit the subscript i for notational convenience. We note that K ′ indicates the
number of UEs for which BS i is the second closest, i.e., the number of neighboring
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Fig. 2.2 Illustration of CEA-ZF, where a BS performs spatial multiplexing for in-cell UEs (blue)
and interference suppression for neighboring UEs (red)

UEs for BS i . The proposed CEA-ZF precoder between BS i and UE k in cell i is
then given by

wa,ik = 1
√

ζa,i

(
K∑

l=1

ĥi il ĥH
i il +

K ′∑

l=1

ĥi ī l ĥ
H
i ī l

)−1

ĥi ik, (2.11)

with ĥi ī l denoting the estimated channel between BS i and the l-th neighboring UE,
where the notation ī indicates that BS i is the second closest BS for that particular
UE. The constant ζa,i is chosen as an average power normalization factor, given by
ζa,i = ∑K

k=1 ‖wa,ik‖2.
It should be noted that the CEA-ZF precoder in (2.11) can be seen as a generaliza-

tion of the two-cell precoder proposed in [11] to a nonsymmetric and non-pairwise
scenario.

2.3 Coverage Analysis

In this section, we analyze the downlink SIR coverage of a massive MIMO cellular
networkwith conventional CEU-ZF precoding and the proposed CEA-ZF precoding,
and we provide a special case that helps us to grasp intuitions about the performance
gain attained from CEA-ZF.

2.3.1 Preliminaries

2.3.1.1 Coverage Probability

In our analysis, the performancemetric of interest is the coverage probability, defined
as the probability that the received SIR γ at a generic UE is above a given threshold
θ , i.e.,
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Pc(θ) = P (γ ≥ θ) , θ > 0. (2.12)

We note that the coverage probability Pc(θ) provides information on the SIR distri-
bution across the network, and it allows to evaluate the data rate performance at the
cell edge.

2.3.1.2 SIR at a Typical UE

By applying Slivnyak’s theorem to the stationary PPP of BSs, it is sufficient to
evaluate the SIR of a typical UE at the origin [30]. In the following, we denote as
typical the UE k associated with BS i , with a received signal given by

yik = Pthi ikwiksik +
K∑

l=1,l �=k

Pthi ikwil sil +
∞∑

j �=i

K∑

l=1

Pth j ikw jl s jl, (2.13)

where wik is the normalized precoding vector from the serving BS i to the typical
UE, and sik is the corresponding unit-power signal, i.e., E

[|sik |2
] = 1. The vector

wik can take different forms, depending on the precoding scheme employed. The
SIR at the typical UE can be written as

γik = |hi ikwik |2
∑K

l=1,l �=k |hi ikwil |2 + I
, (2.14)

where the first summation in the denominator represents the intra-cell interference,
while I denotes the aggregate out-of-cell interference. The latter is given by

I =
∑

j �=i

g jik

rα
j ik

, (2.15)

where g jik = ∑K
l=1

∣
∣x j ikw jl

∣
∣2 is the effective small-scale fading from interfering BS

j to UE k in cell i . From results in [31], we note that if the precoding vectors {w jl}Kl=1

at BS j are mutually independent and satisfy
∑K

l=1 ‖w jl‖2 = 1, the effective channel
fading is distributed as g jik ∼ Γ (K , 1/K ).

2.3.1.3 CSI Error

Under sufficient nonuniversal pilot reuse, a generic BS i can estimate the channels of
all in-cell UEs as well as the channels of neighboring UEs. From (2.7) and (2.8), the
CSI error variance for an in-cell UE and for a neighboring UE can be, respectively,
written as
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τ 2 = 1

1 + t−α

Ip
· M
FK

, (2.16)

τ̄ 2 = 1

1 + s−α

Ip
· M
FK

, (2.17)

where t and s denote the distance between a typical UE and its closest and second
closest BS, respectively, and Ip is the pilot interference received during the training
phase.

Under reuse factor F , clusters of F adjacent cells choose different subgroups of
pilot sequences and do not cause interference, i.e., pilot contamination to each other.
Therefore, each BS receives pilot contamination only from UEs lying outside the
cluster of F cells, whose mean area can be calculated as F/λ [30]. This area can
be approximated with a circle B(0, Re) of radius Re = √

F/(λπ) [32], yielding the
following mean interference

E
[
Ip
] = E

⎡

⎣
∑

x∈ΦP∩Bc(0,Re)

hx,o‖x‖−α

⎤

⎦

= 2 (λπ/F)
α
2

α − 2
, (2.18)

where Bc(0, Re) denotes the complement set of B(0, Re). By approximating the
interference Ip with its mean [9] and by substituting (2.18) into (2.16) and (2.17),
the CSI error can be expressed as a function of t and s as follows:

τ 2 ≈ 1

1 + M(α−2)F
α
2 −1

2K (λπ)
α
2 tα

, (2.19)

τ̄ 2 ≈ 1

1 + M(α−2)F
α
2 −1

2K (λπ)
α
2 sα

. (2.20)

2.3.2 Coverage Probability Under CEU-ZF

Wenowderive the coverage probability underCEU-ZFprecoding.An approximation
of the conditional SIR under CEU-ZF can be obtained in the large-system regime as
follows.

Lemma 2.1 Conditioned on the out-of-cell interference Iu and the intra-cell dis-
tance riil , l ∈ {1, . . . , K }, when K , N → ∞ with β = K/N < 1, the SIR achieved
by CEU-ZF precoding converges almost surely to the following quantity
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γu,ik →
(
1 − τ 2

i ik

)
(1 − β)N

(
τ 2
i ikr

−α
i ik + Iu

) (
rα
i ik + Rk

) , (2.21)

where Rk is given by

Rk =
K∑

l=1,l �=k

rα
i il . (2.22)

Proof See Appendix section “Proof of Lemma 2.1”.

Deriving the coverage probability requires knowledge of the distribution of Rk ,
which is the sum of (K − 1) i.i.d. random variables (r.v.s) rα

li i . The distance rlii is a
r.v. that follows a Rayleigh distribution fc(r), given by [33]

fc(r) = 2πλre−λπr2 . (2.23)

It can then be shown that rα
li i follows a Weibull distribution with shape and scale

parameters 2/α and (λπ)− α
2 , respectively [34]. As such, the distribution of Rk can

be approximated by a generalized Gamma distribution as follows [35].

Assumption 1 The probability density function (pdf) fRk (r) and cumulative density
function (CDF) FRk (r) of the r.v. Rk can be approximated as follows:

fRk (r) ≈ ημμrημ−1

ΩμΓ (μ)
exp

(
−μrη

Ω

)
, (2.24)

FRk (r) ≈ 1

Γ (μ)
Γ

(
μ,

μrη

Ω

)
, (2.25)

where Γ (s, x) = ∫ x
0 t s−1e−t dt is the lower incomplete gamma function, and Ω =

E[Rη

k ] is a scale parameter, given by

Ω =
⎡

⎣μ
1
η Γ (μ)E[Rk]
Γ
(
μ + 1

η

)

⎤

⎦

η

(2.26)

while μ and η are solutions of the following equations:

Γ 2
(
μ + 1

η

)

Γ (μ) Γ
(
μ + 2

η

)
− Γ 2

(
μ + 1

η

) = E
2[Rk]

E[R2
k ] − E2[Rk] , (2.27)

Γ 2
(
μ + 2

η

)

Γ (μ) Γ
(
μ + 4

η

)
− Γ 2

(
μ + 2

η

) = E
2[R2

k ]
E[R4

k ] − E2[R2
k ]

. (2.28)
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The quantities E[Rk], E[R2
k ], and E[R4

k ] are the first, second, and fourth moment of
the r.v. Rk , respectively, and can be calculated as

E[Rk] = K − 1

(λπ)
α
2
Γ
(
1 + α

2

)
, (2.29)

E[R2
k ] = K − 1

(λπ)α

[
Γ (1 + α) + (K − 2) Γ 2

(
1 + α

2

)]
, (2.30)

E[R4
k ] = K − 1

(λπ)2α

[
(K − 2) (K − 3) (K − 4) Γ 4

(
1 + α

2

)

+ 3(K − 2) Γ 2(1 + α) + 4 (K − 2) Γ
(
1 + α

2

)
Γ

(
1 + 3α

2

)

+ Γ (1 + 2α) + 6 (K − 2) (K − 3) Γ (1 + α) Γ 2
(
1 + α

2

)]
. (2.31)

By using the approximated distribution of Rk , we can now obtain the coverage
probability of a massive MIMO cellular network under CEU-ZF.

Theorem 2.1 The coverage probability of a massive MIMO cellular network under
CEU-ZF precoding can be approximated as

P
(
γu,ik ≥ θ

) ≈ 1

Γ (μ)

∞∫

0

Γ

⎛

⎝μ,
μ

Ω

⎡

⎣
(
1−τ 2

)
(1−β) Nrα

θ
(
τ 2+ 2πλr2

α−2

) − rα

⎤

⎦

η⎞

⎠ fc(r)dr,

(2.32)

where τ 2 is given in (2.19), and fc(r) is given by (2.23).

Proof See Appendix section “Proof of Theorem 2.1”.

Here, it should be noted that although coverage probability of a multiuser MIMO
cellular network with conventional CEU-ZF precoding has also been derived in
[31, 36, 37], the result in (2.32) provides an approximation that involves only one
integration and is therefore easier to be evaluated. The accuracy of this approximation
will be verified in Fig. 2.4.

2.3.3 Coverage Probability Under CEA-ZF

We now derive the coverage probability under the proposed CEA-ZF precoder. Sim-
ilar to the CEU-ZF, an approximation of the conditional SIR under CEA-ZF can be
obtained in the large-system regime as follows.

Lemma 2.2 Conditioned on the out-of-cell interference Ia, the intra-cell distance
riil with l ∈ {1, . . . , K }, the distance rīik between the typical UE and its second



22 2 Massive MIMO for Interference Suppression: Cell-Edge Aware …

closest BS, and the standard deviation τī ik of the corresponding CSI error, when
K , N → ∞ with β = K/N < 1 and β ′ = K ′/N < 1, the SIR of CEA-ZF
converges almost surely to a quantity given by

γa,ki →
(
1 − τ 2

i ik

)
(1 − β − β ′)N

(
τ 2
i ikr

−α
i ik + τ 2

ī ik
r−α

ī ik
+ Ia

) (
rα
i ik + Rk

) (2.33)

Proof See Appendix section “Proof of Lemma 2.2”.

Using the above results, we are now able to derive the coverage probability under
CEA-ZF precoding.

Theorem 2.2 The coverage probability of a massive MIMO cellular network under
CEA-ZF can be obtained as

P
(
γa,ik ≥ θ

) ≈
∞∫

0

∞∫

t

Γ

⎛

⎝μ,
μ

Ω

⎡

⎣
(
1−τ 2

)
(1−2β) Nsα

θ
(
τ̄ 2 + τ 2 sα

tα + 2πλs2
α−2

) − tα

⎤

⎦

η⎞

⎠ fs|c(s, t) fc(t)
Γ (μ)

dsdt, (2.34)

where τ 2 and τ̄ 2 are given in (2.19) and (2.20), respectively, and

fs|c(s, t) = 2πλse−λπ(s2−t2). (2.35)

Proof See Appendix section “Proof of Theorem 2.2”.

Equations (2.32) and (2.34) quantify how some of the key features of a cellular
network, i.e., deployment strategy, interference, and impairments in the channel
estimation phase, affect the coverage probability provided by massive MIMO BSs.
These equations will be used in our numerical study in the following section, which
investigates the impact of different system parameters on the network performance.
Before going to that directly, we provide a special case that helps us grasp the
first order understanding from network parameter impacts, stated in the following
corollary.

Corollary 2.1 In the case that τ 2 = τ̄ 2 = 0, whenα = 4 and N → ∞, the coverage
probability under CEU-ZF and CEA-ZF converges respectively as follows:

P
(
γu,ik ≥ θ

) → 1 − 2(K − 1)θ

(1 − β)N
≈ 1 − 2βθ

1 − β
, (2.36)

P
(
γa,ik ≥ θ

) → 1 − 4(K − 1)(K + 4)θ2

(1 − 2β)2N 2
≈ 1 −

(
2βθ

1 − 2β

)2

. (2.37)

Proof See Appendix section “Proof of Corollary 2.1”.

Several conclusions can be drawn from the above corollary, we state them as follows:
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• CEA-ZF outperforms CEU-ZF in terms of coverage probability only when β <
1
2 −

√
θ2+2θ
4+2θ , or equivalently, 2(4+θ)K

2+θ−√
θ2+2θ

< N . This observation implies that CEA-
ZF requires sufficient spatial dimensions to attain better performance.

• When BS antenna number N grows to be large, the coverage probability under
CEU-ZF and CEA-ZF increases as 1/N and 1/N 2, respectively. This observation
demonstrates that CEA-ZF is more effective precoding scheme in massive MIMO
cellular networks.

2.4 Numerical Results and Discussion

In this section, we first show simulation results that confirm the accuracy of our ana-
lytical framework. After that, we provide numerical results to show the performance
gain attained by the proposed CEA-ZF precoder, and we discuss how data rate and
coverage are affected by the number of scheduled UEs and the channel estimation
accuracy.

2.4.1 Simulation Validations

Unless differently specified, we use the following parameters for path loss exponent,
BS density, and number of UE, respectively: α = 3.8, λ = 10−6, and K = 10.
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Fig. 2.3 Downlink SIR for CEU-ZF and CEA-ZF versus number of BS antennas, for scenarios
with and without CSI error
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Fig. 2.4 Coverage probability under CEU-ZF and CEA-ZF precoding

In Fig. 2.3a, we depict the downlink SIR achieved by a typical UE of a massive
MIMO cellular network as a function of the number of BS antennas N , under dif-
ferent precoding schemes and transmit CSI errors. The figure shows a negligible
difference between simulations and analytical results, which confirms the accuracy
of Lemmas 2.1 and 2.2. We also note that the SIR values obtained for ZF precoding
are consistent with the ones obtained in [17].

Figure2.4 compares the simulated coverage probability to the analytical results
derived in Theorems 2.1 and 2.2. The coverage probability is plotted versus the SIR
threshold at the typical UE. The figure shows that analytical results and simulations
fairly well match and follow the same trend, thus confirming the accuracy of the
theorems.

2.4.2 Numerical Results

Unless otherwise stated, the following system parameters will be used: BS deploy-
ment density λ = 10−6, number of scheduled UEs per cell K = 20, path loss
exponent α = 3.8, and pilot reuse factor F = 7. We note that neglecting the training
time does not affect the fairness of our performance comparison between CEU-ZF
and CEA-ZF precoding.
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Fig. 2.5 Impact of antenna number on network performance: a coverage probability versus number
of BS antennas for K= 20 scheduled UEs per cell, under CEU-ZF and CEA-ZF precoding. b 95%-
likely rate versus number of BS antennas, with CEU-ZF and CEA-ZF precoding

2.4.2.1 Impact of Large Antenna Array

In Fig. 2.5, we show the effect of BS antenna number N on the network performance.
Figure2.5a depicts the coverage probability under CEU-ZF and CEA-ZF precoding
as a function of the number of BS antennas N , for two different SIR thresholds
θ . The following can be observed: (i) with a sufficient number of BS antennas, i.e.,
N > 3K , CEA-ZFoutperformsCEU-ZFprecoding, and (ii) CEA-ZF requires signif-
icantly fewer antennas to achieve high coverage probabilities compared to CEU-ZF
precoding.

In Fig. 2.5b, we compare the 95%-likely rate under the two precoding schemes.
The 95%-likely rate (denoted by ρ95) is defined as the rate achievable by at least 95%
of the UEs in the network, and it can be regarded as the worst rate any scheduled UE
may expect to receive when located at the cell edge [3, 4].While the 95%-likely rates
of both CEU-ZF andCEA-ZF precoding benefit from a larger number of BS antennas
N , the proposed CEA-ZF precoder achieves a significantly larger 95%-likely rate
compared to conventional CEU-ZF, and the gain increases as N grows.

In summary, the proposed CEA-ZF precoder outperforms conventional CEU-ZF
precoding from several perspectives. CEA-ZF provides better coverage than CEU-
ZF, especially in the massive MIMO regime, i.e., when BSs are equipped with a
large number of antennas, N . While CEA-ZF can attain high coverage probability
with reasonable values of N , a significantly larger number of antennas is required
to achieve the same coverage under CEU-ZF precoding. The proposed CEA-ZF
precoder also achieves a larger sum-rate per cell, and a significantly larger 95%-
likely rate. The latter is especially important, being the worst data rate that any
scheduled UE can expect to receive.
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2.4.2.2 Impact of Imperfect CSI

We now study the impact of the channel estimation error on coverage and edge rates.
To this end, we vary the CSI error variance τ 2 and τ̄ 2 at in-cell UEs and neighboring
UEs, respectively, while keeping their ratio constant as E[τ̄ 2]/E[τ 2] = 1.8. In the
following, we set the SIR threshold as θ = 0 dB and number of BS antennas as
N = 100.

Figure2.6a shows the coverage probability as a function of the CSI error for
various values of scheduled UEs per cell. Although the presence of a CSI error
degrades the coverage probability of both CEU-ZF and CEA-ZF precoding, it can
be seen that CEA-ZF significantly outperforms conventional CEU-ZF for low-to-
moderate values of the CSI error. Under a large CSI error, CEA-ZF still performs as
well as CEU-ZF as long as the number of scheduled UEs per cell is controlled, e.g.,
K = 10 or K = 20 in the figure.

Figure2.6b depicts the 95%-likely rate as a function of the CSI error variance for
CEU-ZF and CEA-ZF precoding. Once again, CEA-ZF significantly outperforms
conventional CEU-ZF for low-to-moderate values of the CSI error, while the 95%-
likely rates of both precoders degrade and achieve similar values under very poor
CSI quality, i.e., large values of τ 2 and τ̄ 2.

As expected, pilot contamination can negatively affect the achievable data rates
by degrading the quality of the CSI available at the BSs. In the presence of very
large channel estimation errors, the performance of CEA-ZF precoding degrades
and converges to the one of conventional CEU-ZF precoding. In fact, the cell-edge
suppressionmechanism employed byCEA-ZF relies on the accuracy of themeasured
channels, and the promised gains in terms of coverage and 95%-likely rate cannot
be achieved. It is therefore desirable to control the amount of pilot contamination
received during the channel estimation phase, for example by designing appropriate
pilot allocation schemes.
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Fig. 2.6 Comparison of coverage probability and 95%-likely rate with CSI error variance. In (a),
Coverage probability plotted as a function of CSI error variance. In (b), 95%-likely rate plotted as
a function of CSI error variance
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2.5 Conclusion

In this chapter, we proposed the CEA-ZF precoder that exploits the excess spatial
degrees of freedom available at massive MIMO BSs to suppress inter-cell interfer-
ence at the most vulnerable UEs in the network. The CEA-ZF specifically targets
those neighboring UEs close to the BS coverage area, thus requiring fewer spa-
tial dimensions to mitigate inter-cell interference, and leaving more dimensions for
intra-cell spatial multiplexing. Moreover, it can be implemented in a distributed
fashion.

In order to model practical deployments, we analyzed the performance of CEA-
ZF and conventional CEU-ZF precoding in a random asymmetric cellular network.
By using CEA-ZF precoder, we showed that a better network coverage is attainable.
More importantly, the 95%-likely rate, namely, the minimum data rate that any UE
can expect to achieve, is significantly improved. The latter is of particular interest,
given the ambitious edge rate requirements set for 5G, which aims at uninterrupted
user experience. Our study also quantified the impact of imperfect CSI, confirming
the importance of controlling the amount of pilot contamination during the channel
estimation phase.

Appendix

Proof of Lemma 2.1

We treat the out-of-cell interference as noise, then as K , N → ∞ with β = K/N <

1, the SIR converges to [25]

γu,ik → 1 − τ 2
i ik

Υ · r−α
i ik τ 2

i ik + Ψ · Iu , a.s. (2.38)

where Υ and Ψ are given by

Υ = 1

φ

1

N
trR−1

i , (2.39)

Ψ = ψ
N
K φ2 − ψ

1

K

1

N
trR−1

i (2.40)

and ψ and φ are given, respectively, by

ψ = 1

N
tr

(
IN + K

N

1

φ
IN

)−2

= 1
(
1 + β

φ

)2 , (2.41)
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φ = 1

N
tr

[(
1 + β

φ

)
IN

]−1

= 1

1 + β

φ

. (2.42)

By solving (2.41) and (2.42), we obtain φ = 1 − β and ψ = φ2. By substituting ψ

and φ in (2.39) and (2.40), respectively, the following holds

Υ = Ψ = 1

N

1

1 − β

K∑

l=1

rα
i il . (2.43)

Lemma 2.1 then follows by substituting (2.43) into (2.38).

Proof of Theorem 2.1

Consider a typical UE k in cell i and located at the origin. We denote the distance
between the typical UE and its serving BS i as riik = t . As such, we can approximate
the out-of-cell interference Iu by its mean, which can be computed as

E [Iu] = E

⎡

⎣
∑

x∈Φb\i

gxik
‖x‖α

⎤

⎦

(a)=
∫ ∞

t
r−αrdr = 2πλt−(α−2)

α − 2
, (2.44)

where (a) is obtained by applying theCampbell’s theorem [30]. By substituting (2.44)
into (2.21), the conditional SIR received at the typical UE can be approximated as

γu,ik ≈
(
1 − τ 2

i ik

)
(1 − β)N

(
τ 2
i ik t

−α + 2πλt−(α−2)

α−2

)
(tα + Rk)

. (2.45)

The coverage probability can then be calculated as

P
(
γu,ik ≥ θ

) ≈ E

⎡

⎣P

⎛

⎝ Rk ≤
(
1 − τ 2

i ik

)
(1 − β)Ntα

(
τ 2
i ik + 2πλt2

α−2

)
θ

− tα

∣
∣
∣
∣
∣
∣
riik = t

⎞

⎠

⎤

⎦

= 1

Γ (μ)
E

⎡

⎣Γ

⎛

⎝μ,
μ

Ω

⎡

⎣ (1 − τ 2)(1 − β)Ntα

θ
(
τ 2 + 2πλt2

α−2

) − tα

⎤

⎦

η⎞

⎠

⎤

⎦ . (2.46)

Since the pdf of t has been given in (2.23), Theorem 2.1 then follows from (2.46) by
deconditioning t .
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Proof of Lemma 2.2

We start with the minimum-mean-square-error (MMSE) version of the CEA-ZF
precoder, which includes a regularization term ρIN , given by

w̃a,ik = 1
√

ζ̃a,i

(

ρNIN +
K∑

l=1

ĥi il ĥH
i il +

K ′∑

l=1

ĥi ī l ĥ
H
i ī l

)−1

ĥi ik, (2.47)

where ζ̃a,i = ∑K
k=1

∥
∥w̃a,ik

∥
∥2. The SIR at the typical UE can be written as

γa,ik =
∣
∣hH

i ikw̃a,ik

∣
∣2

∑
l �=k

∣
∣hH

i ikw̃a,il

∣
∣2+∑K

l=1

∣
∣
∣hH

ī ik
w̃a,ī l

∣
∣
∣
2+ Ia

. (2.48)

Substituting (2.9) into the numerator of (2.48), and using the matrix inversion
lemma and the rank-1 permutation lemma [25], the received signal power converges
to the following limit in the large-system regime:

∣
∣
∣ĥH

i ikw̃a,ik

∣
∣
∣
2 → 1

ζa,i

(
r−α
i ik Λi

)2
(
1 + r−α

i ik Λi
)2 , as N → ∞ (2.49)

where Λi is the solution of the following fix point equation [38]

Λi = 1

ρ + 1
N

∑K
l=1

r−α
i il

1+Λi r
−α
i il

+ 1
N

∑K ′
l=1

r−α

i ī l

1+Λi r
−α

i ī l

. (2.50)

We next deal with the first two summations in the denominator of (2.48), which are
the intra-cell interference from the serving BS and the inter-cell interference from
the second closest interfering BS. Similarly, by using the rank-1 permutation again,
the large-system limit for these interference read as

∑

l �=k

∣
∣hH

i ikw̃a,il

∣
∣2 =

∑

l

1
ζa,i

r−α
i il
N

(
− ∂Λi

∂ρ

)

(
1 + r−α

i il Λi
)2

[(
1 − τ 2

i ik

)
r−α
i ik

(
1 + r−α

i ik Λi
)2 + τ 2

i ikr
−α
i ik

]

,

and

∑
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respectively. For the power normalization factor ζ̃a,i and ζ̃a,ī , the deterministic equiv-
alence under large-system regime can be derived in a similar way as

ζ̃a,i → 1

N

K∑

l=1

r−α
i il

(
− ∂Λi

∂ρ

)

(
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i il Λi
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ī ī l

(
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)

(
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ī ī l
Λī

)2 .

As such, we have the deterministic equivalence of SIR being as
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2
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ī ik
(
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ī ik
r−α

ī ik
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. (2.51)

Finally, by letting ρ → 0, each term in (2.51) that contains Λi , respectively,
converges to

(
r−α
i ik Λi

)2
(
1 + r−α

i ik Λi
)2 =

(
r−α
i ik ρΛi

)2
(
ρ + r−α

i ik ρΛi
)2 → 1, (2.52)
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. (2.54)

Lemma 2.2 then follows by substituting (2.52), (2.53), and (2.54) into (2.51).

Proof of Theorem 2.2

We consider a typical UE k of BS i that locates at the origin, and denote the distance
between the UE and its associated BS as riik = t and the distance from the UE
to its second closest BS as rīik = s. As such, we can approximate the out-of-cell
interference Ia by its mean based on Campbell’s theorem [30], as follows

E [Ia] = E

⎡

⎣
∑

x∈Φb\{i,ī}

gxik
‖x‖α

⎤

⎦

= 2πλs−(α−2)

α − 2
. (2.55)
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By substituting (2.55) into (2.33), the conditional SIR received at the typical UE can
be approximated as

γa,ik ≈ (1 − τ 2
i ik)(1 − β − β ′)N

(
τ 2
i ik t

−α + τ 2
ī ik
s−α + 2πλs−(α−2)

α−2

)
(tα + Rk)

. (2.56)

The coverage probability can then be approximated as
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(2.57)

Furthermore, from the mass transport theorem [30], we have the following rela-
tionship:

E
[∣∣CE

i

∣
∣] = 2E [|Ci |] . (2.58)

where | · | denotes the Lebesgue measure. As a result, the expectation of K ′ can be
calculated as

E
[
K ′] (a)= λuE

[∣∣CE
i

∣
∣] − λuE [|Ci |]

= K , (2.59)

where (a) follows from the fact that mean number of UEs in area A is given by λu|A|.
Using this fact, we approximate the random variable K ′ by its mean K . Theorem 2.2
then follows from (2.57) by deconditioning on t and s, with their pdf given in (2.23)
and (2.35), respectively.

Proof of Corollary 2.1

Let τ 2 = 0, τ̄ 2 = 0, and α = 4. We start with the asymptotic result for the network
coverage probability underCEU-ZF.Using the Fubini’s theorem [34], coverage prob-
ability in (2.32) can be written as

P
(
γu,ik ≥ θ

) ≈ 1

Γ (μ)

∫ ∞

0
exp

(

−
(

Ω

μ
t

) 1
η 2π(λπ)2θ
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)

tμ−1e−t dt.

(2.60)
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As N → ∞, we have

exp

(

−
(

Ω

μ
t

) 1
η 2π(λπ)2θ

(1 − β)(α − 2)N

)

∼ 1 −
(

Ω

μ
t

) 1
η 2π(λπ)2θ

(1 − β)(α − 2)N
. (2.61)

By substituting (2.61) into (2.60), the coverage probability under CEU-ZF read as

P
(
γu,ik ≥ θ

) ∼ 1 −
Γ
(
1
η

+ μ
)

Γ (μ)

(
Ω

μ
t

) 1
η (λπ)2 θ

(1 − β)N
, as N → ∞ (2.62)

and (2.36) follows from using (2.26) and (2.29) into (2.62).
Next, we deal with the asymptotic result for the network coverage probability

under CEA-ZF. When τ 2, τ̄ 2 → 0, we have the following expression for coverage
probability in (2.34) by using the Fubini’s theorem [34],

P
(
γa,ik ≥ θ

)

≈ 1

Γ (μ)

∫ ∞

0

(

1+ (Ωt/μ)
1
η (λπ)2θ
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)
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(
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1
η (λπ)2θ

(1 − 2β)N

)

tμ−1e−t dt

(2.63)

As N → ∞, we have

exp

(

− (Ωt/μ)
1
η (λπ)2θ

(1 − 2β)N

)

∼ 1 − (Ωt/μ)
1
η (λπ)2θ

(1 − 2β)N
. (2.64)

By substituting (2.64) into (2.63), the coverage probability under CEA-ZF read as

P
(
γa,ik ≥ θ

) ∼ 1 −
Γ
(
2
η

+ μ
)

Γ (μ)

(
Ω

μ
t

) 2
η (λπ)4 θ2

(1 − 2β)2N 2
, as N → ∞ (2.65)

and (2.37) follows from using (2.26) and (2.30) into (2.65).
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Chapter 3
Massive MIMO in Small Cell Networks:
Wireless Backhaul

Abstract Dense small cell networks are expected to be deployed in the next
generation wireless system to provide better coverage and throughput to meet the
ever-increasing requirements of high data rate applications. As the trend toward
densification calls for more and more wireless links to forward a massive backhaul
traffic into the core network, it is critically important to take into account the pres-
ence of a wireless backhaul for the energy-efficient design of small cell networks.
In this chapter, we develop a general framework to analyze the energy efficiency of
a two-tier small cell network with massive MIMO macro base stations and wireless
backhaul. Our analysis reveal that under spatial multiplexing, the energy efficiency
of a small cell network is sensitive to the network load, and it should be taken
into account when controlling the number of users served by each base station. We
also demonstrate that a two-tier small cell network with wireless backhaul can be
significantly more energy efficient than a one-tier cellular network. However, this
requires the bandwidth division between radio access links and wireless backhaul to
be optimally designed according to the load conditions.

3.1 Introduction

The next generation of wireless communication systems targets a thousandfold
capacity improvement to meet the exponentially growing mobile data demand, and
the prospective increase in energy consumption poses urgent environmental and eco-
nomic challenges [1, 2]. Green communications have become an inevitable necessity,
andmuch effort is beingmade both in industry and academia to develop new network
architectures that can reduce the energy per bit from current levels, thus ensuring the
sustainability of future wireless networks [3–7].

3.1.1 Background and Motivation

Since the current growth rate of wireless data exceeds both spectral efficiency
advances and availability of new wireless spectrum, a trend toward network den-
sification is essential to respond adequately to the continued surge in mobile data

© The Author(s) 2017
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traffic [8–10]. To this end, small cell networks are proposed to provide higher cover-
age and throughput by overlayingmacro cells with a vast number of low-power small
access points, thus offloading traffic and reducing the distance between transmitter
and receiver [11, 12]. Forwarding a massive cellular traffic to the backbone net-
work becomes a key problem when small cells are densely deployed, and a wireless
backhaul is regarded as the only practical solution where wired links are hardly avail-
able [13–17]. However, the power consumption incurred on the wireless backhaul
links, together with the power consumed by the multitude of access points deployed,
becomes a crucial issue, and an energy-efficient design is necessary to ensure the
viability of future small cell networks [18].

Various approaches have been investigated to improve the energy efficiency of
small cell networks. Cell size, deployment density, and number of antennas were
optimized to minimize the power consumption of small cells [19, 20]. Cognitive
sensing and sleepmode strategieswere also proposed to turn off inactive access points
and enhance the energy efficiency [21, 22]. A further energy efficiency gain was
shown to be attainable by serving users that experience better channel conditions, and
by dynamically assigning users to different tiers of the network [23, 24]. Although
various studies have been conducted on the energy efficiency of small cell networks,
the impact of a wireless backhaul has typically been neglected. On the other hand,
the power consumption of backhauling operations at small cell access points (SAPs)
might be comparable to the amount of power necessary to operate macrocell base
stations (MBSs) [25–27]. Moreover, since it is responsible to aggregate traffic from
SAPs toward MBSs, the backhaul may significantly affect the rates and therefore
the energy efficiency of the entire network. With a potential evolution toward dense
infrastructures, where many small access points are expected to be used, it is of
critical importance to take into account the presence of a wireless backhaul for the
energy-efficient design of heterogeneous networks.

3.1.2 Approach and Main Outcomes

Our main goal in this chapter is to study the energy-efficient design of small cell
networks with wireless backhaul. In particular, we consider a two-tier small cell
network which consists of MBSs and SAPs, where SAPs are connected to MBSs
via a multiple-input-multiple-output (MIMO) wireless backhaul that uses a fraction
of the total available bandwidth. We undertake an analytical approach to derive
data rates and power consumption for the entire network in the presence of both
uplink (UL) and downlink (DL) transmissions and spatial multiplexing, which is
a practical scenario that has not yet been addressed. Similar to the framework we
developed in Chap.2, we model the spatial locations of MBSs, SAPs, and UEs as
independent homogeneous Poisson point processes (PPPs), and analyze the energy
efficiency by combining tools from stochastic geometry and random matrix theory.
The analysis enable us to take a complete treatment of all the key features in a
small cell network, i.e., interference, load, deployment strategy, and capability of the

http://dx.doi.org/10.1007/978-3-319-43715-6_2
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wireless infrastructure components.With the developed framework,we can explicitly
characterize the power consumption of the small cell network due to signal processing
operations in macro cells, small cells, and wireless backhaul, as well as the rates and
ultimately the energy efficiency of the whole network. The main contributions in this
chapter are summarized below.

• We provide a general toolset to analyze the energy efficiency of a two-tier small
-network with wireless backhaul. Our model accounts for both UL and DL trans-
missions and spatial multiplexing, for the bandwidth and power allocated between
macro cells, small cells, and backhaul, and for the infrastructure deployment
strategy.

• Wecombine tools from stochastic geometry and randommatrix theory to derive the
uplink and downlink rates of macro cells, small cells, and wireless backhaul. The
resulting analysis is tractable and captures the effects ofmultiantenna transmission,
fading, shadowing, and random network topology.

• Using the developed framework, we find that the energy efficiency of a small cell
network is sensitive to the load conditions of the network, thus establishing the
importance of scheduling the right number of UEs per base station. Moreover, by
comparing the energy efficiency under different deployment scenarios, we find
that such property does not depend on the infrastructure.

• We show that if the wireless backhaul is not allocated sufficient resources, then
the energy efficiency of a two-tier small cell network with wireless backhaul can
be worse than that of a one-tier cellular network. However, the two-tier small cell
network can achieve a significant energy efficiency gain if the backhaul bandwidth
is optimally allocated according to the load conditions of the network.

The remainder of this chapter is organized as follows. The system model is intro-
duced in Sect. 3.2. In Sect. 3.3, we detail the power consumption of a heterogeneous
network with wireless backhaul. In Sect. 3.4, we analyze the data rates and the energy
efficiency, and we provide simulations that confirm the accuracy of our analysis.
Numerical results are shown in Sect. 3.5 to give insights into the energy-efficient
design of a HetNet with wireless backhaul. The chapter is concluded in Sect. 3.6.

3.2 System Model

3.2.1 Topology and Channel

We study a two-tier small cell network which consists of MBSs, SAPs, and UEs, as
depicted in Fig. 3.1. The spatial locations of MBSs, SAPs, and UEs follow indepen-
dent PPPs Φm, Φs, and Φu, with spatial densities λm, λs, and λu, respectively. All
MBSs, SAPs, and UEs are equipped with Mm, Ms, and 1 antennas, respectively, each
UE associates with the base station that provides the largest average received power,
and each SAP associates with the closest MBS. The links between MBSs and UEs,
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Fig. 3.1 Illustration of a two-tier small cell network with wireless backhaul

SAPs and UEs, and MBSs and SAPs are referred to as macro cell links, small cell
links, and backhaul links, respectively. In light of its higher spectral efficiency [28],
we consider spatial multiplexing where each MBS and each SAP simultaneously
serve Km and Ks UEs, respectively. In practice, due to a finite number of anten-
nas, MBSs and SAPs use traffic scheduling to limit the number of UEs served to
Km ≤ Mm and Ks ≤ Ms [29]. Similarly, each MBS limits to Kb the number of SAPs
served on the backhaul, with KbMs ≤ Mm. The MIMO dimensionality ratio for
linear processing on macrocells, small cells, and backhaul is denoted by βm = Km

Mm
,

βs = Ks
Ms
, and βb = KbMs

Mm
, respectively.

In this work, we consider a co-channel deployment of small cells with the macro
cell tier, i.e., macro cells and small cells share the same frequency band for trans-
mission.1 In order to avoid severe interference which may degrade the performance
of the network, we assume that the access and backhaul links share the same pool
of radio resources through orthogonal division, i.e., the total available bandwidth
is divided into two portions, where a fraction ζb is used for the wireless backhaul,
and the remaining (1 − ζb) is shared by the radio access links (macro cells and
small cells) [13, 15, 34, 35]. In order to adapt the radio resources to the variation of
the DL/UL traffic demand, we assume that MBSs and SAPs operate in a dynamic
time division duplex (TDD) mode [36, 37], where at every time slot, all MBSs and

1Many frequency planning possibilities exist for MBSs and SAPs, where the optimal solution is
traffic load dependent. Though a non-co-channel allocation is justified for highly dense scenarios
[30–32], in some cases a co-channel deployment may be preferred from an operator’s perspec-
tive, since MBSs and SAPs can share the same spectrum thus improving the spectral utilization
ratio [33].
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SAPs independently transmit in downlink with probabilities τm, τs, and τb on the
macro cell, small cell, and backhaul, respectively, and they transmit in uplink for the
remaining time.2 Wemodel the channels between any pair of antennas in the network
as independent, narrowband, and affected by three attenuation components, namely,
small-scale Rayleigh fading, shadowing SD and SB for data link and backhaul link,
respectively, and large-scale path loss, where α is the path loss exponent and the

shadowing satisfies E[S 2
α

D ] < ∞ and E[S 2
α

B ] < ∞, and by thermal noise with vari-
ance σ 2. We finally assume that all MBSs and SAPs use a zero forcing (ZF) scheme
for both transmission and reception, due to its practical simplicity [38].3

3.2.2 Energy Efficiency

We consider the power consumption due to transmission and signal processing oper-
ations performed on the entire network, therefore energy-efficiency tradeoffs will be
such that savings at theMBSs and SAPs are not counteracted by increased consump-
tion at the UEs, and vice versa [4, 43]. To this end, we identify the three aspects
as the major power consumption in the network, namely, the power spent on macro
cells, small cells, and wireless backhaul. Consistent with previous work [43–46], we
account for the power consumption due to transmission, encoding, decoding, and
analog circuits.

Let P[ W
m2 ] be the total power consumption per area, which includes the power

consumed on all links.We denote byR[ bitm2 ] the sum rate per unit area of the network,
i.e., the total number of bits per second successfully transmitted per square meter.
The energy efficiency η = R

P is then defined as the number of bits successfully
transmitted per joule of energy spent [43, 47]. For the sake of clarity, the main
notations used in this paper are summarized in Table3.1.

3.3 Power Consumption

In this section, we model in detail the power consumption of the small cell network
with wireless backhaul.

To start with, notice that each UE associates with the base station, i.e., MBS
or SAP that provides the largest average received power, the probability that a UE
associates to a MBS or to a SAP can be respectively calculated as [48]

2We note that different SAPs and MBSs may have different uplink/downlink resource partitions
for their associated UEs. Since the aggregate interference is affected by the average value of such
partitions, we assume fixed and uniform uplink/downlink partitions.
3Note that the results involving the machinery of random matrix theory can be adjusted to account
for different transmit precoders and receive filters, imperfect channel state information, and antenna
correlation [39–42].
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Table 3.1 Notation summary

Notation Definition

P; R; η Power per area; rate per area; energy efficiency

RDL
m ; RDL

s ; RDL
b Downlink rate on macrocells, small cells, and backhaul

RUL
m ; RUL

s ; RUL
b Uplink rate on macrocells, small cells, and backhaul

Pmt; Pst ; Put Transmit power for MBSs, SAPs, and UEs

Pmb; Psb Backhaul transmit power for MBSs and SAPs

Pmc; Psc Analog circuit power consumption at macrocells and small cells

Pme; Pse; Pue Encoding power per bit on macrocells, small cells, and backhaul

Pmd; Psd; Pud Decoding power per bit on macrocells, small cells, and backhaul

Φm; Φs; Φu PPPs modeling locations of MBSs, SAPs, and UEs

λm; λs; λu Spatial densities of MBSs, SAPs, and UEs

Am; As Association probabilities for MBSs and SAPs

Mm; Ms Number of transmit antennas per MBSs and SAPs

Km; Ks; Kb UEs served per macrocell and small cell; SAPs per MBSs on backhaul

τm; τs; τb Fraction of time in DL for macrocells, small cells, and backhaul

ζb; α Fraction of bandwidth for backhaul; path loss exponent

SD; SB Shadowing on radio access link and wireless backhaul

Am = λmP
2
α

mt

λmP
2
α

mt + λsP
2
α

st

(3.1)

and

As = λsP
2
α

st

λmP
2
α

mt + λsP
2
α

st

. (3.2)

In the remainder of this chapter, we make the assumption that the number of UEs,
the number of SAPs associated to aMBS, and the number of UEs associated to a SAP
by constant values Km, Kb, and Ks, respectively, which are upper bounds imposed
by practical antenna limitations at MBSs and SAPs.4

The assumption above is motivated by the fact that the number of UEs Nm served
by a MBS has distribution [48]

P(Nm = n) =
3.53.5Γ (n + 3.5)

(
λm
Amλu

)3.5

Γ (3.5)n! (1 + 3.5λm/λu)
n+3.5 , (3.3)

4The number of base station antennas imposes a constraint on the maximum number of UEs sched-
uled for transmission. In fact, under linear precoding, the number of scheduled UEs should not
exceed the number of antennas, in order for the achievable rate not to be significantly degraded
[49–51].
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Fig. 3.2 Complementary cumulative distribution function (CCDF) of the number of UEs Nm
associated to a MBS, where Km is the maximum number of UEs that can be served due to antenna
limitations

where Γ (·) is the gamma function. Let Km be a limit on the number of users that can
be served by a MBS, the probability that a MBS serves less than Km UEs is given by

P (Nm < Km) =
Km−1∑

n=0

3.53.5Γ (n + 3.5)
(

λm
Amλu

)3.5

Γ (3.5)n! (1 + 3.5λm/λu)
n+3.5

≤
(
2λm

λu

)3.5 Km−1∑

n=0

Γ (n + 3.5)

n!
3.53.5

Γ (3.5)
, (3.4)

which rapidly tends to zero as λu
λm

grows. This indicates that in a practical network
with a high density of UEs, i.e., where λu � λm, each MBS serves Km UEs with
probability almost one. Figure3.2 shows the probability P(Nm ≥ Km) that a MBS
has at least Km UEs to serve, where values of P(Nm ≥ Km) are plotted for three
UE–MBS density ratios λu/λm, and for various numbers of scheduled users Km. It
can be seen that P(Nm ≥ Km) ≈ 1 for moderate-to-high UE densities and low-
to-moderate values of Km, therefore confirming that each MBS tends to serve a
fixed number Km of UEs with probability one. A similar approach can be used to
show that P(Ns < Ks) ≈ 0 and P(Nb < Kb) ≈ 0 when λu � λm and λs � λm,
respectively, and therefore each SAP serves Ks UEs and each MBS serves Kb SAPs
on the backhaul with probability almost one.

In the following, we use the power consumption model introduced in [43], which
captures all the key contributions to the power consumption of signal processing
operations. This model is flexible since the various power consumption values can
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be tuned according to different scenarios. We note that the results presented in this
paper hold under more general conditions and apply to different power consumption
models [52, 53].

Under the previous assumption, and by using the model in [43], we can write the
power consumption on each macro cell link as follows

Pm = τmPmt + (1 − τm) KmPut + τmKm (Pme + Pud) R
DL
m

+ Pmc + (1 − τm) Km (Pmd + Pue) R
UL
m , (3.5)

where Pmt and Put are the DL and UL transmit power from the MBS and the Km

UEs, respectively, Pmc is the analog circuit power consumption, Pme and Pmd are
encoding and decoding power per bit of information for MBS, while Pue and Pud
are encoding and decoding power per bit of information for UE, and RDL

m and RUL
m

denote the DL and UL rates for each MBS–UE pair. The analog circuit power can
be modeled as [43]

Pmc = Pmf + PmaMm + PuaKm, (3.6)

where Pmf is a fixed power accounting for control signals, baseband processor, local
oscillator at MBS, cooling system, etc., Pma is the power required to run each circuit
component attached to the MBS antennas, such as converter, mixer, and filters, Pua
is the power consumed by circuits to run a single-antenna UE. Under this model, the
total power consumption on the macrocell can be written as

Pm = τmPmt+(1−τm) KmPut+τmKm(Pme+Pud)R
DL
m

+Pmf+PmaMm+PuaKm+(1−τm)Km(Pmd+Pue)R
UL
m . (3.7)

Through a similar approach, the power consumption on each small cell and back-
haul link can be written as

Ps = τsPst + (1 − τs) KsPut + Psf + τsKs (Pse + Pud) R
DL
s

+ PsaMs + PuaKs + (1 − τs) Ks (Psd + Pue) R
UL
s (3.8)

and

Pb = τbPmb + (1 − τb) KbPsb + τbKbKs (Pme + Psd) R
DL
b

+ PmaMm + KbMsPsa + (1 − τb) KbKs (Pmd + Pse) R
UL
b , (3.9)

respectively, the analog circuit power consumption in (3.9) accounts for power spent
on out of band SAPs. In the above equations, Pst is the transmit power on a small
cell, Pmb and Psb are the powers transmitted by MBSs and SAPs on the backhaul,
and Psf and Psa are the small-cell equivalents of Pmf and Pma. Moreover, RDL

s and
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RUL
s denote the DL and UL rates for each SAP–UE pair, and RDL

b and RUL
b denote

the DL and UL rates for each wireless backhaul link.
With the above results, the average power consumption per area can be expressed

as

P = Pmλm + Psλs + Pbλm, (3.10)

where Pm, Ps, and Pb are given, respectively, in (3.7), (3.8), and (3.9).

3.4 Rates and Energy Efficiency

In this section, we analyze the data rates and the energy efficiency of a small cell net-
work with wireless backhaul. Particularly, we combine tools from stochastic geom-
etry and random matrix theory to derive the uplink and downlink rates of macro
cells, small cells, and wireless backhaul. The analytical expressions provided in this
section are tight approximations of the actual data rates. For a better readability,
proofs and mathematical derivations have been relegated to the Appendix.

To start with, we consider a typical DL transmission link between a typical UE
located at the origin and served by its associatedMBS.Note that under dynamic TDD
[36, 37], the DL communication is corrupted by DL interference from other MBSs
and SAPs, and by UL interference from UEs that associated with other MBSs and
SAPs. Results from stochastic geometry indicates that the UL interference fromUEs
that associated with MBSs follow a homogeneous PPP with density (1− τm)λmKm,
and similarly, and similarly, the UL interference fromUEs that associated with SAPs
follow a homogeneous PPPwith density (1−τs)λsKs. TheUL interference fromUEs
that associated with SAPs follow a homogeneous PPP with density (1 − τs)λsKs.
Using composition theorem [54], we have the UL interfering UEs follow a PPP with
density λ̃u = (1 − τm)λmKm + (1 − τs)λsKs.

The large antenna array at MBS allows us to apply random matrix theory tools to
obtain the DL rate on a macro cell link.

Lemma 3.1 The downlink rate on a macrocell is given by

RDL
m = (1 − ζb)

∫ ∞

0

∫ ∞

0

e−σ 2z

z ln 2

(
1 − e−zνD

m

)
exp

(

−2π2λ̃uPδ
utE[Sδ

D]zδ

α sin
(
2π
α

)

)

×exp

(

−τmamCα,Km (zPmt, t)

(
zPmt

Km

)δ

− τsasCα,Ks(zPmt, t)

(
zPst
Ks

)δ
)

fLm (t)dtdz,

(3.11)

where δ = 2/α, am = λmπE[Sδ
D], as = λsπE[Sδ

D], λ̃u = (1 − τm)λmKm + (1 −
τs)λsKs, while νD

m, fLm (t), and Cα,K (z, t) given as follows
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νD
m = Pmt (1 − βm) (Gm)

α
2

βmΓ
(
1 + α

2

) , (3.12)

fLm (t) = Gmδxδ−1 exp
(−Gmx

δ
)
, x ≥ 0 (3.13)

Cα,K (z, t) = 2

α

K∑

n=1

(
K
n

)[
B

(
1; K − n + 2

α
, n − 2

α

)

− B

((
1 + s

t K

)−1; K − n + 2

α
, n − 2

α

)]
(3.14)

with Gm = am +as (Pst/Pmt)
δ , and B(x; y, z) = ∫ x

0 t y−1(1− t)z−1dt the incomplete
Beta function.

The proof of this lemma is given in Appendix section “Proof of Lemma 3.1”. In
Fig. 3.3, we provide a comparison between the simulated macrocell downlink rate
and the analytical result obtained in Lemma 3.1 with different antenna numbers at
the MBS. The downlink rate is plotted versus the transmit power at the MBSs. It can
be seen that analytical results and simulations fairly well match, thus confirming the
accuracy of Lemma 3.1.

We next deal with the analysis to the uplink achievable rate of an MBS UE. Note
that in the downlink, due to the maximum received power association, interfering
base station cannot be located closer to the typical user than the tagged base station,
i.e., an exclusion region exists where the distance between a UE and the interfering
base stations is bounded away from zero. However in the uplink, since PPP deploy-
ment assumption ignores a minimum inter-site distance between base stations, it can
happen that an interfering base station locates arbitrarily close to a typical MBS, i.e.,

30 35 40 45 50
1

1.5

2

2.5

MBS transmit power, Pmt [dBm]

M
ac
ro

ce
ll
do
w
nl
in
k
ra
te
,R

D
L

m

Sim.:Mm = 20, Km = 5
Ana.:Mm = 20, Km = 5
Sim.:Mm = 100, Km = 25
Ana.:Mm = 100, Km = 25

Fig. 3.3 Comparison of the simulations and numerical results for macrocell downlink rate



3.4 Rates and Energy Efficiency 45

the distance between aMBS and the interfering base stations can be arbitrarily small.
In the following, we treat the latter as a composition of three independent PPPs with
different spatial densities. We then apply stochastic geometry to obtain the macrocell
uplink rate as follows:

Lemma 3.2 The uplink rate on a macro cell is given by

RUL
m = (1 − ζb)

∫ ∞

0

∫ ∞

0

(
1 − e−zνUm/t

)

zeσ 2z ln 2
exp

{

−λ̃uπE[Sδ
D]

∫ ∞

0

1 − e−Gmu

1 + z−1u
1
δ /Put

du

− Γ (1+δ) δπ2zδ

sin(δπ)

[
τmamPδ

mt
∏Km−1

i=1 (i + δ)

Γ (Km)K δ
m

+ τsasPδ
st
∏Ks−1

i=1 (i + δ)

Γ (Ks)K δ
s

]}

fLm (t)dtdz

(3.15)

with νU
m = (1 − βm)MmPmt.

The proof is given in Appendix section “Proof of Lemma 3.2.”
In order to derive the downlink and uplink rate of an SAP UE, we apply similar

trick as we used in the derivation of macrocell rate. However, unlike the macrocell,
due to the relatively small number of antennas at the SAPs, random matrix theory
tools cannot be employed to calculate the rate on a small cell. We therefore use the
effective channel distribution as follows:

Lemma 3.3 The downlink rate on a small cell is given by

RDL
s =

∫ ∞
0

∫ ∞
0

(1 − ζb)

zeσ 2z ln 2

(

1 − 1
(
1 + zPstt−1/Ks

)Δs

)

exp

⎛

⎝−2π2λ̃uP
2
α
ut E[S

2
α

D ]z 2
α

α sin
(
2π
α

)

⎞

⎠

× exp

(

−τsas Cα,Ks (zPst, t)

(
zPst
Ks

)δ

− τmam Cα,Km (zPst, t)

(
zPmt

Km

)δ
)

fLs (t)dtdz,

(3.16)

where Δs = Ms − Ks + 1, and fLs(t) is given as

fLs(t) = Gsδt
δ−1 exp

(−Gst
δ
)
, t ≥ 0 (3.17)

with Gs = as + am (Pmt/Pst)
δ .

Following a similar approach as the one in Lemma 3.2, we can obtain the uplink
rate on a small cell.

Lemma 3.4 The uplink rate on a small cell is given by

RUL
s =

∫ ∞

0

(1 − ζb)

zeσ 2z ln 2

[
1 −

∫ ∞

0

fLs (t)dt

(1+zPut/t)Δs

]
exp

{

−λ̃uπE[Sδ
D]

∫ ∞

0

1 − e−Gsz

1 + z−1u
1
δ /Put

du

− Γ (1 + δ) δπ2zδ

sin(δπ)

[
τsasPδ

st
∏Ks−1

i=1 (i + δ)

Γ (Ks)K δ
s

+ τmamPδ
mt

∏Km−1
i=1 (i + δ)

Γ (Km)K δ
m

]}

dz.

(3.18)
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The proof of Lemmas 3.3 and 3.4 can be found in [55].
Now, it remains to derive the downlink and uplink rates on the wireless backhaul.

In the communication between MBS and SAP, each end of the transmission link
involves multiple antennas. For this scenario, it has been shown that using block
diagonalization (BD) is the optimal way to achieve capacity. However, there are no
closed form expression is available for the rate achievable by BD. To this end, we
treat each antenna of SAPs as an individual UE, and use ZF at the MBS to do the
precoding/decoding. Although ZF is suboptimal compared to the BD, we will show
by Fig. 3.4 that the rate gap between these two transmission schemes is limited, and
that the rates under BD and ZF follow a similar trend. Therefore, our findings on
the energy efficiency tradeoffs remain valid irrespective of the scheme used. In the
following, we present the uplink and downlink rate of the wireless backhaul, and
then show the simulation comparison to confirm the above claim.

Lemma 3.5 The downlink rate on the wireless backhaul is given by

RDL
b = ζbMs

Ks

∫ ∞

0

∫ ∞

0

(
1 − e−zνD

b

)

zeσ 2z ln 2
exp

(

−τbabCα,KbMs (zPmb, t)

(
zPmb

KbMs

)δ
)

× exp

(

−Γ (1 + δ) δπ2zδPδ
sb

sin(δπ)Γ (Ms)Mδ
s

E[Sδ
B](1 − τb)λs

Ms−1∏

i=1

(i + δ)

)

fLb(t)dtdz,

(3.19)

where ab = λmπE[Sδ
B], fLb(t) and νD

b are given as
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fLb(t) = abδt
δ−1 exp(−abt

δ), t > 0 (3.20)

νD
b = Pmb(1 − βb)aδ

b

βbΓ (1 + 1/δ)
. (3.21)

Lemma 3.6 The uplink rate on the wireless backhaul is given by

RUL
b = ζbMs

Ks

∫ ∞

0

∫ ∞

0

(
1 − e−zνUb /t

)

zeσ 2z ln 2
exp

{

− τbabΓ (1+δ)δπ2Pδ
mbz

δ
∏KbMs−1

i=1 (i + δ)

sin(δπ) (MsKb)
δ Γ (MsKb)

}

× exp
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zu−1/δPsb/Ms

)n (
1 − e−abu

)

(
1 + zu−1/δPsb/Ms

)Ms
du

}

fLb (t)dtdz

(3.22)

where νU
b = (1 − βb)MmPsb.

In Fig. 3.4 compares the rate on the wireless backhaul under BD and ZF, respec-
tively, with different numbers of SAPs. It can be seen that although ZF achieves a
lower rate than BD, the rate gap is limited as the antenna number grows, and the
rates under BD and ZF follow a similar trend. Therefore, the conclusions drawn in
this paper on the energy efficiency tradeoffs remain valid irrespective of the scheme
used.

We can now write the data rate per area in a small cell network with wireless
backhaul by combining results from above.

Lemma 3.7 The sum rate per area in a small cell network with wireless backhaul
is given by

R = B
(
Kmλm + Ksλs

){
Am

[
τmR

DL
m + (1 − τm)RUL

m

]

+ As

[
τs min

{
RDL
s , RDL

b

}
+ (1 − τs)min

{
RUL
s , RUL

b

}]}
, (3.23)

where B is the total available bandwidth, and RDL
m , RUL

m , RDL
s , RUL

s , RDL
b , and RUL

b
are given in (3.11), (3.15), (3.16), (3.18), (3.19), and (3.22), respectively.

Proof See Appendix “Proof of Lemma 3.7”.

Note that the energy efficiency is obtained as the ratio between the data rate per
area and the power consumption per area. We finally obtain the energy efficiency
of a heterogeneous network with wireless backhaul, defined as the number of bits
successfully transmitted per joule of energy spent.

Theorem 3.1 The energy efficiency η of a heterogeneous network with wireless
backhaul is given by
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η = B (Kmλm + Ksλs)

Pmλm + Psλs + Pbλm

(
Am

[
τmR

DL
m + (1 − τm)RUL

m

]

+ As

[
τs min

{
RDL
s , RDL

b

}
+ (1 − τs)min

{
RUL
s , RUL

b

}])
. (3.24)

Equation (3.24) quantifies how all the key features of a small cell network, i.e.,
interference, deployment strategy, and capability of the wireless infrastructure com-
ponents, affect the energy efficiency when a wireless backhaul is used to forward
traffic into the core network. Several numerical results based on (3.24) will be shown
in Sect. 3.5 to give more practical insights.

3.5 Numerical Results

In this section, we provide numerical results to show how the energy efficiency is
affected by various network parameters and to give insights into the optimal design of
a small cell networkwithwireless backhaul.As an example,we consider twodifferent
deployment scenarios, namely, (i) femto cells that consist of a dense deployment of
low-power SAPs with a small number of antennas, and (ii) pico cells that have a
less dense deployment of larger and more powerful SAPs. We refer to light load
and heavy load conditions as the ones of a network with βm = βs = βb = 0.25
and 0.9 ≤ βm, βs, βb < 1, respectively. The network is considered to be operating
at 2GHz, with path loss exponent set to α = 3.8 to model an urban scenario,
the shadowing SB and SD are set to be lognormal distributed as SB = 10

XB
10 and

SD = 10
XD
10 , where XB ∼ N (0, σ 2

B) and XD ∼ N (0, σ 2
D), with σB = 3 dB and

σD = 6 dB, respectively [56]. In addition, we equal the backhaul transmit power
to the radio access power, i.e., Pmb = Pmt, Psb = Pst. All other system and power
consumption parameters are set as follows: Pmt = 47.8 dBm, for pico cell SAPs
Pst = 30 dBm, for femto cell SAP Pst = 23.7 dBm, Put = 17 dBm, Pma = 1 W, for
pico cell SAPs Psa = 0.8 W, for femto cell SAP Psa = 0.8 W, Pua = 0.1 W [32];
Pmf = 225 W, for pico cell SAPs Psf = 7.3 W, for femto cell SAPs Psf = 5.2 W
[52, 53]; Pme = 0.1 W/Gb, Pmd = 0.8W/Gb, Pse = 0.2 W/Gb, Psd = 1.6 W/Gb,
Pue = 0.3 W/Gb, Pmd = 2.4 W/Gb [43].

Results from Fig. 3.5 illustrate the effect of network load on the energy efficiency.
Particularly, we compare the energy efficiency of small cell networks that use pico
cells and femto cells in Fig. 3.5a, under various load conditions and for different
portions of the bandwidth allocated to the wireless backhaul. The figure shows that
femto cell and pico cell deployments exhibit similar performance in terms of energy
efficiency. Moreover, Fig. 3.5a shows that the energy efficiency of the network is
highly sensitive to the portion of bandwidth allocated to the backhaul, and that
there is an optimal value of ζb which maximizes the energy efficiency. This optimal
value of ζb is not affected by the network infrastructure, i.e., it is the same for pico
cells and femto cells. However, the optimal ζb increases as the load on the network
increases. In fact, when more UEs associate with each SAPs, more data need to
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Fig. 3.5 Effect of network load on energy efficiency: a Energy efficiency of a small cell network
that uses pico cells and femto cells, respectively, versus fraction of bandwidth ζb allocated to the
backhaul, under different load conditions; and b Optimal fraction of bandwidth to be allocated to
the backhaul versus load on the backhaul, for various values of the number of UEs per SAP, Ks

be forwarded from MBSs to SAPs through the wireless backhaul in order to meet
the rate demand. In summary, the figure shows that irrespective of the deployment
strategy, an optimal backhaul bandwidth allocation that depends on the network load
can be highly beneficial to the energy efficiency of a small cell network.

In Fig. 3.5b, we plot the optimal value ζ ∗
b for the fraction of bandwidth to be

allocated to the backhaul as a function of the load on the backhaul βb. We consider
femto cell deployment for three different values of the number of UEs per SAP, Ks.
Consistently with Fig. 3.5a, this figure shows that the optimal fraction of bandwidth
ζ ∗
b to be allocated to the wireless backhaul increases as βb or Ks increase, since the
load on the wireless backhaul becomes heavier and more resources are needed to
meet the data rate demand.

In Fig. 3.6, the energy efficiency of the small cell network is plotted as a function of
the MBS transmit power under different deployment strategies and load conditions.
From the figure we can see that there is an optimal value for the transmit power, and
this is given by a tradeoff between the data rate that the wireless backhaul can support
and the power consumption incurred. Under spatial multiplexing, the data rate of the
network is affected by the number of scheduled UEs per base station antenna, which
we denote as the network load. As a consequence, the network load highly affects
the data rate, and in turn affects the energy efficiency.

In Fig. 3.7, we plot the energy efficiency of the small cell network versus the
number of SAPs per MBS. We consider four scenarios: (i) optimal bandwidth allo-
cation, where the fraction of bandwidth ζb for the backhaul is chosen as the one
that maximizes the overall energy efficiency; (ii) proportional bandwidth allocation,
where the fraction of bandwidth allocated to the backhaul is equal to the fraction
of load on the backhaul, i.e., ζb = KbKs

Km+KbKs
[35]; (iii) fixed bandwidth allocation,

where the bandwidth is equally divided between macro- and small-cell links and
wireless backhaul, i.e., ζb = 0.5; and (iv) one-tier cellular network, where no SAPs
or wireless backhaul are used at all, and all the bandwidth is allocated to the macro
cell link, i.e., ζb = 0. Figure3.7 shows that in a two-tier small cell network there is
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an optimal number of SAPs associated to each MBS via the wireless backhaul that
maximizes the energy efficiency. Such number is given by a tradeoff between the
data rate that the SAPs can provide to the UEs and the total power consumption. This
figure also indicates that a two-tier small cell network with wireless backhaul can
be less energy efficient than a single tier cellular network if the wireless backhaul is
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not supported well. However, when the backhaul bandwidth is optimally allocated,
the small cell network can achieve a significant gain over a one-tier deployment in
terms of energy efficiency.

3.6 Concluding Remarks

In this chapter, we undertook an analytical study for the energy-efficient design of
small cell network with a wireless backhaul. By combining stochastic geometry
and random matrix theory, we developed a framework that is general and accounts
for uplink and downlink transmissions, spatial multiplexing, and resource allocation
between radio access links and backhaul. The framework allows to explicitly charac-
terize the power consumption of the small cell network due to the signal processing
operations in macro cells, small cells, and wireless backhaul, as well as the data rates
and ultimately the energy efficiency of the whole network.

Our results revealed that, irrespective of the deployment strategy, it is critical to
control the network load in order to maintain a high energy efficiency. Moreover, a
two-tier small cell network with wireless backhaul can achieve a significant energy
efficiency gain over a one-tier deployment, as long as the bandwidth division between
radio access links and wireless backhaul is optimally designed.

Appendix

Proof of Lemma 3.1

The channel matrix between a MBS to its Km associated UEs can be written as
Ĥ = L

1
2H, where L = diag{L−1

1 , . . . , L−1
Km

}, with Li = rα
i /Si being the path loss

from the MBS to its i th UE, where ri is the corresponding distance and Si denotes
the shadowing, H = [h1, . . . ,hKm ]T is the Km × Mm small-scale fading matrix,
with hi ∼ CN (0, I). The ZF precoder is then given by W = ξĤ∗(ĤĤ∗)−1, where
ξ 2 = 1/tr[(Ĥ∗Ĥ)−1] normalizes the transmit power [56]. In the following, we use the
notation ΦU as ΦD to denote the subsets of Φ that transmit in uplink and downlink,
respectively, we further denote Ux as the set of UEs that are associated with access
point x , and denote x̂ as the transmitter that locates closest to the origin. Since the
locations of MBSs and SAPs follow a stationary PPP, we can apply the Slivnyark’s
theorem [54], which implies that it is sufficient to evaluate the SINR of a typical
UE at the origin. As such, by noticing that under dynamic TDD, every wireless link
experiences interference from the downlink transmitting MBSs and SAPs, and from
the uplink transmitting UEs, the downlink SINR between a typical UE at the origin
and its serving MBS can be written as
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γ DL
m = Pmt|h∗

x̂m,owx̂m,o|2L−1
x̂m,o

Imu
oc + Iu + σ 2

, (3.25)

where hx̂m,o is the small-scale fading,wx̂m,o is the ZF precoding vector, Lx̂m,o denotes
the corresponding path loss, while Imu

oc is the aggregate interference from other cells
to the MBS UE, and Iu denotes the interference from UEs, respectively given as
follows:

Imu
oc =

∑

xm∈ΦD
m\x̂m

Pmtgxm,o

KmLxm,o
+

∑

xs∈ΦD
s

Pstgxs,o
KsLxs,o

(3.26)

and

Iu =
∑

xu∈ΦU
u

Put|hxu,o|2
Lxu,o

, (3.27)

whereas gxm,o and gxs,o represent the effective small-scale fading from the interfering
MBS xm and SAP xs to the origin, respectively, given by [57]

gxm,o =
∑

u∈Uxm

Km|h∗
xm,owxm,u |2 ∼ Γ (Km, 1) (3.28)

and
gxs,o =

∑

u∈Uxs

Ks|h∗
xs,owxs,u |2 ∼ Γ (Ks, 1) . (3.29)

By conditioning on the interference, when Km, Mm → ∞ with βm = Km/

Mm < 1, the SINR under ZF precoding converges to [39]

γ DL
m → γ̄ DL

m = PmtMm
(
Imu
oc + Iu + σ 2

)∑Km
j=1 e

−1
j

, a.s. (3.30)

where ei is the solution of the fixed point equation

L−1
x̂m,ui

ei
= 1 + J

Mm
, i = 1, 2, . . . , Km (3.31)

with J = ∑Km
j=1 L

−1
x̂m,u j

e−1
j . By summing (3.31) over i we obtain

J = Km + Km

Mm
J. (3.32)

Solving the equation above results in J = KmMm/(Mm − Km), and by substituting
the value of J into (3.31) we can have
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1

ēi
= Mm

Mm − Km
· Lx̂m,ui , (3.33)

which substituted into (3.30) yields

γ̄ DL
m = (1 − βm) MmPmt

(
Imu
oc + Iu + σ 2

)∑Km
j=1 Lx̂m,u j

. (3.34)

Notice that {Lx̂m,u j }Km
j=1 is an independent i.i.d. sequence with finite first moment,

given by

E
[
Lx̂m,u j

] = Γ

(
1 + 1

δ

)
G−1

m < ∞,

by applying the strong law of large numbers (SLLN) to (3.34), we have

γ̄ DL
m → (1 − βm)G1/δ

m Pmt

βmΓ
(
1 + 1

δ

) (
Imu
oc + Iu + σ 2

) , a.s. (3.35)

As such, using the continuous mapping theorem and the lemma in [58], we can
compute the ergodic rate as

E
[
log2

(
1 + γ̄ DL

m

)] = 1

ln 2
E

[
ln

(
1 + νD

m

Imu
oc + Iu + σ 2

)]

=
∫ ∞

0

e−σ 2z

z ln 2

(
1 − e−νD

mz
)
E
[
e−z Iu

]
E
[
e−z Imu

oc
]
dz. (3.36)

Due to the composition of independent PPPs and the displacement theorem [59], the
interference Iu follows a homogeneous PPP with spatial density λ̃u = (1 − τm) λm

Km + (1 − τs) λsKs, and the corresponding Laplace transform is given as [54]

E
[
e−z Iu

] = exp

⎛

⎝−2π2λ̃uE[S 2
α

D ]P 2
α

ut z
2
α

α sin
(
2π
α

)

⎞

⎠ . (3.37)

As for the Laplace transform of Imu
oc , the conditional Laplace transform on Lx̂m,o can

be computed as

E
[
e−z Imu

oc |Lx̂m,o = t
]

= exp

(

−τmamCα,Km (zPmt, t)

(
zPmt

Km

)δ

− τsasCα,Ks(zPmt, t)

(
zPst
Ks

)δ
)

. (3.38)
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Notice that Lx̂m,o has its distribution given by (3.13), and the rate RDL
m given as

RDL
m = (1 − ζb)E

[
log2

(
1 + γ̄ DL

m

)]
, (3.39)

substituting (3.37) and (3.38) into (3.36), and decondition Lx̂m,o with respect to (3.13)
we have the corresponding result.

Proof of Lemma 3.2

Let us consider a UE transmitting in uplink to a typical MBS located at the origin,
which employs a ZF receive filter r∗

o,x̂u
= ĥ∗

o,x̂u
(
∑

u∈Uo
ĥo,u ĥ∗

o,u)
−1 [56], the SINR is

then given by

γ UL
m = PutL

−1
o,x̂u

|r∗
o,x̂u

ho,x̂u |2(
Imbs
oc + Iu + σ 2

) ‖ro,x̂u‖2
, (3.40)

where Imbs
oc denotes the interference from other cells received at the MBS. By con-

ditioning on the interference, when Km, Mm → ∞ with βm = Km/Mm < 1, the
SINR above converges to [39]

γ UL
m → γ̄ UL

m = PutMm(1 − βm)L−1
o,x̂u

Imbs
oc + Iu + σ 2

, a.s. (3.41)

By using the continuous mapping theorem [58], the uplink ergodic rate can be
calculated as

E

[
log2

(
1 + γ̄UL

m

)]
= 1

ln 2
E

[

ln

(

1 + νUmL−1
o,xu

Imbs
oc + Iu + σ 2

)]

=
∫ ∞
0

∫ ∞
0

e−σ 2z

z ln 2

(
1 − e−zνUm/t

)
E

[
e−z Iu

]
E

[
e−z Imbs

oc
]
fLm (t)dzdt.

(3.42)

The Laplace transform of Imbs
oc can be computed as

E

[
e−z Imbs

oc

]

= exp

(

−Γ (1+δ) δπ2zδ

sin(δπ)

[
τmamPδ

mt

∏Km−1
i=1 (i+δ)

Γ (Km)K δ
m

+ τsasPδ
st

∏Ks−1
i=1 (i+δ)

Γ (Ks)K δ
s

])

.

(3.43)
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On the other hand, to consider the uplink interference from UEs, we use the result
in [60] where the path loss from MBS UEs and SAP UEs are modeled as two
independent inhomogeneous PPP with intensity measure being

Λ(m)
mu (dx) = δamx

δ−1 [1 − exp
(−Gmx

δ
)]

, (3.44)

Λ(m)
su (dx) = δasx

δ−1
[
1 − exp

(−Gmx
δ
)]

. (3.45)

The Laplace transform of the UE interference can then be calculated as

E[e−z Iu ] = exp

(

−(1 − τm)Km

∫ ∞
0

Λ
(m)
mu (dx)

1 + z−1x/Put
− (1 − τs)Ks

∫ ∞
0

Λ
(m)
su (dx)

1 + z−1x/Put

)

= exp

(

−λ̃uπE[Sδ
D]

∫ ∞
0

1 − e−Gmu

1 + z−1u
1
δ /Put

du

)

. (3.46)

As such, noticing that

RUL
m = (1 − ζb)E

[
log2

(
1 + γ̄ UL

m

)]
(3.47)

the result follows by substituting (3.43) and (3.46) into (3.42).

Proof of Lemma 3.7

The average rate for a typical UE located at the origin is given by

R = AmRm + AsRs, (3.48)

where Rm and Rs are the data rates when the UE associates to a MBS and a SAP,
respectively, given by

Rm = τmR
DL
m + (1 − τm)RUL

m (3.49)

and

Rs = τs min
{
RDL
s , RDL

b

} + (1 − τs)min
{
RUL
s , RUL

b

}
. (3.50)

As each MBS and each SAP serve Km and Ks UEs, respectively, the total density
of active UEs is given by Kmλm + Ksλs. Let B be the available bandwidth, the sum
rate per area is obtained asR = (Kmλm + Ksλs) BR. Lemma 3.7 then follows from
Lemmas 3.1 to 3.6 and by the continuous mapping theorem.
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Chapter 4
Conclusions

Abstract In this chapter, we summarize our contribution in this book and provide
several new directions for the research of future work.

The concept of massive MIMO enables the communication system to be scaled up
into a regimewhere antenna arrays at base stations greatly exceed the number of active
end users, thus resulting in tremendous diversity gain. Such gain not only provides
opportunity to improve capacity through spatial multiplexing, but also powers new
directions to rethink the network design.

This book provides an overview for new aspects of system design that utilizes the
large amount of spatial dimensions in massive MIMO to enhance network perfor-
mance. Particularly, we propose two approaches to exploit the vast antenna array:
(1) by exploiting spatial degree of freedom to suppress interference from BSs to the
most vulnerable cell-edge UEs, we propose the cell-edge aware zero forcing (CEA-
ZF) precoding scheme; (2) by noticing the tremendous diversity gain at the antenna
array, we propose applying massive MIMO for wireless backhaul in a two-tier small
cell network such that one macro base station can transmit to several small access
points simultaneously through spatial multiplexing. In order to take a complete treat-
ment of all the key features of a wireless network, such as wireless channel, random
base stations location, and large antenna array, we combine tools from randommatrix
theory and stochastic geometry to develop an analytical frameworks which is gen-
eral and accounts for all the key network parameters. With the analytical results, we
show that CEA-ZF outperforms the conventional CEU-ZF in terms of aggregated
per-cell data rate, coverage probability, and a significant 95%-likely, or edge-user
rate. On the other hand, we show that in a small cell network with wireless backhaul,
irrespective of the deployment strategy, it is critical to control the network load in
order to maintain a high energy efficiency. Moreover, a two-tier small cell network
with wireless backhaul can achieve a significant energy efficiency gain over a one-
tier deployment, as long as the bandwidth division between radio access links and
wireless backhaul is optimally allocated.

In the future work, we can extend the framework developed in this book to the
investigation of pilot contamination issues in massive MIMO cellular network, also
the analysis with full duplex in a small cell network.
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