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Abstract

We present a pedagogical introduction to the notions underlying the connection
formulation of General Relativity—Loop Quantum Gravity (LQG)—with an
emphasis on the physical aspects of the framework. We begin by reviewing General
Relativity and Quantum Field Theory, to emphasise the similarities between them
which establish a foundation upon which to build a theory of quantum gravity. We
then explain, in a concise and clear manner, the steps leading from the Einstein–
Hilbert action for gravity to the construction of the quantum states of geometry,
known as spin-networks, which provide the basis for the kinematical Hilbert space
of quantum general relativity. Along the way we introduce the various associated
concepts of tetrads, spin-connection and holonomies which are a pre-requisite for
understanding the LQG formalism. Having provided a minimal introduction to the
LQG framework, we discuss its applications to the problems of black hole entropy
and of quantum cosmology. A list of the most common criticisms of LQG is
presented, which are then tackled one by one in order to convince the reader of the
physical viability of the theory.

An extensive set of appendices provide accessible introductions to several key
notions such as the Peter–Weyl theorem, duality of differential forms and Regge
calculus, among others. The presentation is aimed at graduate students and
researchers who have some familiarity with the tools of quantum mechanics and
field theory and/or General Relativity, but are intimidated by the seeming technical
prowess required to browse through the existing LQG literature. Our hope is to
make the formalism appear a little less bewildering to the uninitiated and to help
lower the barrier for entry into the field.

ix



Chapter 1
Introduction

The goal of Loop Quantum Gravity (LQG) is to take two extremely well-developed
and successful theories, General Relativity and Quantum Field Theory, at “face
value” and attempt to combine them into a single theory with a minimum of assump-
tions and deviations from established physics. Our goal, as authors of this paper, is to
provide a succinct but clear description of LQG—the main body of concepts in the
current formulation of LQG relying primarily on the self-dual variables approach,
some of the historical basis underlying these concepts, and a few simple yet inter-
esting results—aimed at the reader who has more curiosity than familiarity with
the underlying concepts, and hence desires a broad, pedagogical overview before
attempting to read more technical discussions. This paper is inspired by the view
that one never truly understands a subject until one tries to explain it to others.
Accordingly we have attempted to create a discussion which we would have wanted
to read when first encountering LQG. Everyone’s learning style is different, and
accordingly we make note of several other reviews of this subject [1–11], which
the reader may refer to in order to gain a broader understanding, and to sample the
various points of view held by researchers in the field.

We will begin with a brief review of the history of the field of quantum gravity
in the remainder of this section. Following this we review some topics in general
relativity in Chap.2 and Quantum Field Theory in Chap. 3, which hopefully fall into
the “Goldilocks zone”, providing all the necessary concepts for LQG, and nothing
more. We may occasionally introduce concepts in greater detail than the reader
considers necessary, but we feel that when introducing concepts to a (hopefully) wide
audience who find them unfamiliar, insufficient detail is more harmful than excessive
detail.Wewill discuss the Lagrangian andHamiltonian approaches to classical GR in
more depth and set the stage for its quantization in Chap. 4 then sketch a conceptual
outline of the broad program of quantization of the gravitational field in Chap. 5,
before moving on to our main discussion of the loop quantum gravity approach in
Chap.6. The pros and cons of the self-dual variables approach are also discussed in
some depth in Sect. 5.3. In Chap.7 we cover applications of the ideas and methods
of LQG to the counting of microstates of black holes (Sect. 7.1) and to the problem
of quantum cosmology (Sect. 7.2). Last, but not least, some common criticisms of

© Springer International Publishing Switzerland 2017
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2 1 Introduction

LQG and our rebuttals thereof are presented in Chap. 8 along with a discussion of
its present status and future prospects.

It is assumed that the reader has a minimal familiarity with the tools and concepts
of differential geometry, quantum field theory and general relativity, though we aim
to remind the reader of any relevant technical details as necessary.

Before we begin, it would be helpful to give the reader a historical perspective of
the developments in theoretical physics which have led us to the present stage.

We are all familiar with classical geometry consisting of points, lines and surfaces.
The framework of Euclidean geometry provided the mathematical foundation for
Newton’s work on inertia and the laws ofmotion. In the 19th centuryGauss, Riemann
and Lobachevsky, among others, developed notions of curved geometries in which
one or more of Euclid’s postulates were loosened. The resulting structures allowed
Einstein and Hilbert to formulate the theory of general relativity which describes
the motion of matter through spacetime as a consequence of the curvature of the
background geometry. This curvature in turn is induced by the matter content as
encoded in Einstein’s equations (2.10). Just as the parallel postulate was the unstated
assumption of Newtonian mechanics, whose rejection led to Riemmanian geometry,
the unstated assumption underlying the framework of general relativity is that of the
smoothness and continuity of spacetime on all scales.

Loop quantum gravity and related approaches invite us to consider the possibility
that our notion of spacetime as a smooth continuum must give way to an atom-
istic description of geometry in which the classical spacetime we observe around us
emerges from the interactions of countless (truly indivisible) atoms of spacetime.
This idea is grounded in mathematically rigorous results, but is also a natural con-
tinuation of the trend that began when 19th century attempts to reconcile classical
thermodynamics with the physics of radiation encountered fatal difficulties—such as
James Jeans’ “ultraviolet catastrophe”. These difficulties were resolved only when
work by Planck, Einstein and others in the early 20th century provided an atom-
istic description of electromagnetic radiation in terms of particles or “quanta” of
light known as photons. This development spawned quantum mechanics, and in turn
quantum field theory, while around the same time the special and general theories of
relativity were being developed.

In the latter part of the 20th century physicists attempted, without much success,
to unify the two great frameworks of quantum mechanics and general relativity.
For the most part it was assumed that gravity was a phenomenon whose ultimate
description was to be found in the form of a quantum field theory as had been so
dramatically and successfully accomplished for the electromagnetic,weak and strong
forces in the framework known as the Standard Model. These three forces could be
understood as arising due to interactions between elementary particles mediated
by gauge bosons whose symmetries were encoded in the groups U (1), SU (2) and
SU (3) for the electromagnetic, weak and strong forces, respectively. The universal
presumption was that the final missing piece of this “grand unified” picture, gravity,
would eventually be found in the form of the QFT of some suitable gauge group.
This was the motivation for the various grand unified theories (GUTs) developed
by Glashow, Pati-Salam, Weinberg and others where the hope was that it would be

http://dx.doi.org/10.1007/978-3-319-43184-0_8
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possible to embed the gravitational interaction along with the Standard Model in
some larger group (such SO(5), SO(10) or E8 depending on the particular scheme).
Such schemes could be said to be in conflict with Occam’s dictum of simplicity
and Einstein and Dirac’s notions of beauty and elegance.More importantly all these
models assumed implicitly that spacetime remains continuous at all scales. As we
shall see this assumption lies at the heart of the difficulties encountered in unifying
gravity with quantum mechanics.

A significant obstacle to the development of a theory of quantum gravity is the fact
that GR is not renormalizable. The gravitational coupling constantG (or equivalently
1/M2

Planck in dimensionless units where G = c = � = 1) is not dimensionless,
unlike the fine-structure constant α in QED. This means that successive terms in any
perturbative series have increasing powers of momenta in the numerator. Rejecting
the notion that systems could absorb or transmit energy in arbitrarily small amounts
led to the photonic picture of electromagnetic radiation and the discovery of quantum
mechanics. Likewise, rejecting the notion that spacetime is arbitrarily smooth at all
scales—and replacing it with the idea that geometry at the Planck scale must have
a discrete character—leads us to a possible resolution of the ultraviolet infinities
encountered in quantum field theory and to a theory of “quantum gravity”.

Bekenstein’s observation [12–14] of the relationship between the entropy of a
black hole and the area of its horizon combined with Hawking’s work on black hole
thermodynamics led to the realization that there were profound connections between
thermodynamics, information theory and black hole physics. These can be succinctly
summarized by the famous area law relating the entropy of amacroscopic black hole
SBH to its surface area A:

SBH = γA (1.1)

where γ is a universal constant and A � AP, with AP ∝ l2P being the Planck
area. While a more detailed discussion will wait until Sect. 7.1, we note here that if
geometrical observables such as area are quantized Eq. (1.1) can be seen as arising
from thenumber ofways that one can join togetherN quanta of area to formahorizon.
In LQG the quantization of geometry arises naturally—though not all theorists are
convinced that geometry should be quantized or that LQG is the right way to do so.

With this historical overview in mind, it is now worth summarizing the basic
notions of general relativity and QFT before we attempt to see how these two disci-
plines may be unified in a single framework.

1.1 Conventions

Before we proceed, a quick description of our conventions for indices will hopefully
be useful to the reader;

http://dx.doi.org/10.1007/978-3-319-43184-0_7
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• Greek letters μ, ν, ρ,λ, . . . ∈ {0, 1, 2, 3} from the middle of the alphabet are
four-dimensional spacetime indices. Other Greek letters, α,β, . . .will be used for
general cases in N dimensions.

• Lowercase letters from the start of the Latin alphabet, a, b, c, . . . ∈ {1, 2, 3} are
three-dimensional spatial indices. These will often be used when dealing exclu-
sively with the spatial part of a four-dimensional quantity that would otherwise
have Greek indices.

• LowercaseLatin letters j, k, l, . . . ∈ 1, 2, 3, . . . , N from themiddle of the alphabet
are indices for a space of N dimensions. Equations involving these indices are the
general cases, which can be applied to Minkowski space, R

3, etc. They will also
sometimes be used as su(2) Lie algebra indices.

• Uppercase letters I, J, K , . . . are specifically “internal” indices used for Lie alge-
bra elements, which take values in the appropriate range, such as {1, 2, 3} for the
Pauli matrices, or {0, 1, 2, 3} for the sl(2,C) Lorentz Lie algebra.

Wherever possible we will attempt to avoid using “special” letters (e.g. π, i = √−1,
γ in the context of the Dirac matrices, σ in the context of the Pauli matrices) as
indices, unless there is no chance of confusion.
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Chapter 2
Classical GR

General relativity (GR) is an extension of Einstein’s special theory of relativity (SR),
which was required in order to include observers in non-trivial gravitational back-
grounds. SR applies in the absence of gravity, and in essence it describes the behavior
of vector quantities in a four-dimensional spacetime, with the Minkowski metric1

ημν = diag(−1,+1,+1,+1), (2.1)

leading to a 4D line-element

ds2 = −c2dt2 + dx2 + dy2 + dz2 . (2.2)

The speed of a light signal, measured by any inertial observer, is a constant, denoted
c. If we denote the components of a vector in four-dimensional spacetime with Greek
indices (e.g. vμ) theMinkowskimetric2 divides vectors into three categories; timelike
(those vectors for which ημνv

μvν < 0), null or light-like (those vectors for which
ημνv

μvν = 0), and spacelike (those vectors for which ημνv
μvν > 0). Any point,

with coordinates (ct, x, y, z), is referred to as an event, and the set of all null vectors
having their origin at any event define the future light-cone and past light-cone of that
event (Fig. 2.1). Events having time-like or null displacement from a given event E0

(i.e. lying inside or on E0’s lightcones) are causally connected to E0. Those in/on the
past light-cone can influence E0, those in/on the future lightcone can be influenced
by E0.

1Of course the choice diag(+1,−1,−1,−1) is equally valid but we will have occasion later to
restrict our attention to the spacial part of the metric, in which case a positive (spatial) line-element
is cleaner to work with.
2Strictly speaking it is a pseudo-metric, as the distance it measures between two distinct points can
be zero.
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6 2 Classical GR

Fig. 2.1 The future-pointing and past-pointing null vectors at a point define the future and past
light cones of that point. Slices (at constant time) through the past light cone of an observer are
two-spheres centred on the observer, and hence map directly to that observer’s celestial sphere

General relativity extends these concepts to non-Euclidean spacetime. The metric
of this (possibly curved) spacetime is denoted gμν . Around each event it is possible
to consider a sufficiently small region such that the curvature of spacetime within
this region is negligible, and hence the central concepts of Special Relativity apply
locally. Rather than developing the idea that the curvature of spacetime gives rise to
gravitational effects, we shall treat this as assumed knowledge, and discuss how the
curvature of spacetime may be investigated. Since spacetime is not assumed to be
flat (we’ll define “flat” and “curved” rigorously below) and Euclidean, in general one
cannot usefully extend the coordinate system from the neighborhood of one point
in spacetime (one event) to the neighborhood of another arbitrary point. This can be
seen from the fact that a Cartesian coordinate system which defines “up” to be the
z-axis at one point on the surface of the Earth, would have to define “up” not to be
parallel to the z-axis at most other points. In short, a freely-falling reference frame
cannot be extended to each point in the vicinity of the surface of the Earth—or any
other gravitating body. We are thus forced to work with local coordinate systems
which vary from region to region. We shall refer to the basis vectors of these local
coordinate systems by the symbols ei. A set of four such basis vectors at any point is
called a tetrad or vierbein. The metric is related to the dot product of basis vectors
by gij = ei · ej. As the basis vectors are not necessarily orthonormal, we also may
define a set of dual basis vectors ei, where ei · ej = δij .

2.1 Parallel Transport and Curvature

Given the basis vectors ei of a local coordinate system, an arbitrary vector is written in
terms of its components vi as �V = viei. It is of course also possible to define vectors
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with respect to the dual basis. These dual vectors will have components with lowered
indices, for example vi, and take the general form viei. The metric is used to switch
between components referred to the basis or dual basis, e.g.vj = gijv

i.Vectors defined
with raised indices on their components are called ‘contravariant vectors’ or simply
‘vectors’. Those with lowered indices are called ‘covariant vectors’, ‘covectors’ or
‘1-forms’. Note that ei, having lowered indices, are basis vectors, while the ei, having
raised indices, are basis 1-forms. We will return to the distinction between vectors
and 1-forms in Sect. 3.2.

When we differentiate a vector along a curve parametrised by the coordinate xk

we must apply the product rule, as the vector itself can change direction and length,
and the local basis will in general also change along the curve, hence

d �V
dxk

= ∂vj

∂xk
ej + vj ∂ej

∂xk
. (2.3)

We extract the ith component by taking the dot product with the dual basis vector
(basis 1-form) ei, since ei · ej = δij . Hence we obtain

dvi

dxk
= ∂vi

∂xk
+ vj ∂ej

∂xk
· ei , (2.4)

which by a suitable choice of notation is usually rewritten in the form

∇kv
i = ∂kv

i + vj�i
jk . (2.5)

The derivative written on the left-hand-side is termed the covariant derivative, and
consists of a partial derivative due to changes in the vector, and a term �i

jk called the
connection due to changes in the local coordinate basis from one place to another. If
a vector is parallel-transported along a path, its covariant derivative will be zero. In
consequence any change in the components of the vector is due to (and hence equal
and opposite to) the change in local basis, so that

∂vi

∂xk
= −vj ∂ej

∂xk
· ei . (2.6)

The transport of a vector along a single path between two distinct points does not
reveal any curvature of the space (or spacetime) through which the vector is carried.
To detect curvature it is necessary to carry a vector all the way around a closed path
and back to its starting point, and compare its initial and final orientations. If they
are the same, for an arbitrary path, the space (or spacetime) is flat. If they differ,
the space is curved, and the amount by which the initial and final orientations of
the vector differ provides a measure of how much curvature is enclosed within the
path. Alternatively, one may transport two copies of a vector from the same starting
point, A, along different paths, λ1 and λ2 to a common end-point, B. Comparing the
orientations of the vectors after they have been transported along these two different

http://dx.doi.org/10.1007/978-3-319-43184-0_3
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Fig. 2.2 The parallel transport of a vector around a closed path tells us about the curvature of a
region bounded by that path. Here a vector is parallel transported along curve λ1 from A to B, and
back from B to A along λ2. Both λ1 and λ2 are sections of great circles, and so we can see that the
vector maintains a constant angle to the tangent to the curve between A and B, but this angle changes
abruptly at B when the vector switches from λ1 to λ2. The difference in initial and final orientation
of the vector at A tells us that the surface (a sphere in this case) is curved. Just as an arbitrarily
curved path inR2 can be built up from straight line segments, an arbitrary path in a curved manifold
can be built up from sections of geodesics (of which great circles are an example)

paths reveals whether the space is flat or curved. It should be obvious that this is
equivalent to following a closed path (moving along λ1 from A to B, and then along
λ2 from B to A, c.f. Fig. 2.2). The measure of how much this closed path (loop)
differs from a loop in flat space (that is, how much the two transported vectors at B
differ from each other) is called the holonomy of the loop.

In light of the preceding discussion, suppose a vector �V is transported from point
A some distance in the μ-direction. The effect of this transport upon the components
of �V is given by the covariant derivative ∇μ of �V . The vector is then transported in
the ν-direction to arrive at point B. An identical copy of the vector is carried first
from A in the ν-direction, and then in the μ-direction to B. The difference between
the two resulting (transported) vectors, when they arrive at B is given by

(∇μ∇ν − ∇ν∇μ) �V . (2.7)

This commutator defines the Riemann curvature tensor,

Rλ
ρμνv

ρ = [∇μ, ∇ν]vλ. (2.8)

If and only if the space is flat, all the components of Rλ
ρμν will be zero, otherwise

the space is curved.
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Since the terms in the commutator of covariant derivatives differ only in the
ordering of the indices, it is common to place the commutator brackets around the
indices only, rather than the operators, hence we can write

2∇[μ∇ν] = [∇μ, ∇ν] = ∇μ∇ν − ∇ν∇μ . (2.9)

2.2 Einstein’s Field Equations

Einstein’s equations relate the curvature of spacetime with the energy density of the
matter and fields present in the spacetime. Defining the Ricci tensor Rρν = Rμ

ρμν and
the Ricci scalar R = Rν

ν (i.e. it is the trace of the Ricci tensor, taken after raising an
index using the metric gμν), the relationship between energy density and spacetime
curvature is then given by

Rμν − 1

2
Rgμν + �gμν = 8πGTμν, (2.10)

where G is Newton’s constant, and the coefficient � is the cosmological constant,
which prior to the 1990s was believed to be identically zero. The tensor Tμν is
the energy-momentum tensor (also referred to as the stress-energy tensor). We will
not discuss it in great detail, but its components describe the flux of energy and
momentum (i.e. 4-momentum) across various timelike and spacelike surfaces.3 The
component Tμν describes the flux of the μth component of 4-momentum across
a surface of constant xν . For instance, the zeroeth component of 4-momentum is
energy, and hence T 00 is the amount of energy crossing a surface of constant time
(i.e. energy that is moving into the future but stationary in space, hence it is the
energy density).

It should be noted that we can write �ρ
μν in terms of the metric gμν (see for e.g.

[1]),

�ρ
μν = 1

2
gρδ

(
∂μgδν + ∂νgδμ − ∂δgμν

)
. (2.11)

Since the Riemann tensor is defined from the covariant derivative, and the covariant
derivative is defined by the connection, the metric gμν should be interpreted as a
solution of the Einstein field equations, Eq. (2.10).

It is sometimes preferable to write Eq. (2.10) in the form

Gμν = 8πGTμν − �gμν (2.12)

3The presence of the energy-momentum tensor is related to the fact that it is not merely the mass of
matter that creates gravity, but itsmomentum, as required tomaintain consistencywhen transforming
between various Lorentz-boosted frames.
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where the Einstein tensor Gμν = Rμν − Rgμν/2 is the divergence-free part of the
Ricci tensor. The explicit form of Eq. (2.10) emphasises the relationship between
mass-energy and spacetime curvature. All the quantities related to the structure of
the spacetime (i.e. Rμν , R, gμν) are on the left-hand side. The quantity related to the
presence of matter and energy, Tμν , is on the right-hand side. For now it remains
a question of interpretation whether this means that mass-energy is equivalent to
spacetime curvature, or identical to it. Perhaps more importantly the form of the
Einstein field equations (EFEs) makes it clear that GR is a theory of dynamical
spacetime. As matter and energy move, so the curvature of the spacetime in their
vicinity changes.

It is worth noting (without proof, see for instance [1]) that the gravitational field
in the simplest case of a static, spherically-symmetric field around a massM, defines
a line element of the form derived by Schwarzschild,

ds2 = −c2
(
1 − 2GM

c2r

)
dt2 +

(
1 − 2GM

c2r

)−1

dr2 + r2(dθ2 + sin2 θdφ2). (2.13)

For weak gravitational fields, and test masses moving at low velocities (v � c)
the majority of the deviation from the line element in empty space is caused by the
coefficient of the dt2 term on the right. This situation also coincides with the limit
in which Newtonian gravity becomes a good description of the mechanics. In the
Newtonian picture the force of gravity can be written as the gradient of a potential,

�F = ∇V . (2.14)

It can be shown that
∂g00 ∝ ∇V, (2.15)

implying that gravity in the Newtonian or weak-field limit can be understood, pri-
marily, as the amount of distortion in the local “speed” of time caused by the presence
of matter.

2.3 Changes of Coordinates and Diffeomorphism
Invariance

General relativity embodies a principle called diffeomorphism invariance. This prin-
ciple states, in essence, that the laws of physics should be invariant under different
choices of coordinates. In fact, one may say that coordinates have no meaning in the
formulation of physical laws, and in principle we could do without them.

In a practical sense, however, when performing calculations it is often necessary
to work with a particular choice of coordinates. When translating between differ-
ent points we may find that basis vectors are defined differently at different points
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(giving rise to a connection, as we saw above). However if we restrict our attention
to a particular point we find that the coordinate basis may be changed by perform-
ing a transformation on the basis, leading to new coordinates derived from the old
coordinates. Transformations of coordinates take a well-known form, which we will
briefly recap. Suppose the two coordinate systems have basis vectors x1, . . . , xn and
y1, . . . , yn. Then for a given vector �V with components ak and bl in the two coordi-
nate systems it must be true that akxk = �V = blyl. Differentiating with respect to y,
the relationship between coordinate systems is given by

bl = ak
∂xk

∂yl
. (2.16)

This tells us how to find the components of a vector in a “new” coordinate system (the
y-basis), given the components in the “old” coordinate system (the x-basis). Let us
write Jkl = ∂xk/∂yl, and then since a summation is implied over k the transformation
of coordinates can be written in terms of a matrix acting upon the components
of vectors, bl = Jkl ak . Such a matrix, relating two coordinate systems is called a
Jacobian matrix. While one transformation matrix is needed to act upon vectors
(which have only a single index), one transformation matrix per index is needed for
more complex objects, e.g.

bjkl = Jmj J
n
k J

p
l amnp . (2.17)

Since themetric defines angles and lengths (and hence areas and volumes) calcula-
tions involving the volume of a region of spacetime (e.g. integration of a Lagrangian)
must introduce a supplementary factor of

√−g (where g is the determinant of the
metric gμν) in order to remain invariant under arbitrary coordinate transformations.
Hence instead of dnx → dny we have

dnx
√−g(x) → dny

√−g(y) . (2.18)

The square root of the determinant of the metric is an important factor in defining
areas, as we can see by considering a parallelogram whose sides are defined by two
vectors, �x and �y. The area of this parallelogram is given by the magnitude of the cross
product of these vectors, hence

Aparallel. = √
(�x × �y) · (�x × �y) =

√
(�x · �x)(�y · �y) sin2 θ =

√
(�x · �x)(�y · �y)(1 − cos2 θ) .

(2.19)

Suppose that �x and �y are basis vectors lying in a plane. Then the metric in this plane
will be

mij =
( �x · �x �x · �y

�y · �x �y · �y
)

(2.20)
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where i, j ∈ {�x, �y}. Comparing Eqs. (2.19) and (2.20), we see that

Aparallel. =
√

(�x · �x)(�y · �y) − (�x · �y)2 = √
detmab . (2.21)

It is therefore reasonable to expect an analogous function of the metric to play a
role in changes of coordinates. Furthermore we would expect the total area of some
two-dimensional surface, which can be broken up into many small parallelograms,
to be given by integrating the areas of such parallelograms together (this point will
be taken up again is Sect. 6.2).

To see why Eq. (2.18) applies in the case of coordinate transformations4, con-
sider an infinitesimal region of a space. Let this region be a parallelipiped in some
coordinate system x1, . . . , xn. Now suppose we want to change to a different set of
coordinates, y1, . . . , yn, which are functions of the first set (e.g. we want to change
from polar coordinates to Cartesian). The Jacobian of this transformation is

J = ∂(x1, . . . , xn)

∂(y1, . . . , yn)
=

⎛

⎜⎜
⎝

∂x1

∂y1 · · · ∂x1

∂yn

...
...

∂xn

∂y1 · · · ∂xn

∂yn .

⎞

⎟⎟
⎠ (2.22)

The entries in the Jacobian matrix are the elements of the vectors defining the sides
of the infinitesimal region we began with, referred to the new basis. Each row corre-
sponds with one vector, and the absolute value of the determinant of such a matrix,
multiplied by dny = dy1 . . . dyn gives the volume of the infinitesimal region. An
integral referred to these new coordinates must include a factor of this volume, to
ensure that the coordinates have been transformed correctly and the integral doesn’t
over-count the infinitesimal regions of which it is composed, hence

∫
f (x1, . . . , xn)dx1 . . . dxn =

∫
f (y1, . . . , yn)|detJ|dy1 . . . dyn . (2.23)

The Jacobian matrix defines the transformation between coordinate systems. To
be specific, we will choose the Minkowski metric ημν for the first coordinate system.
The metric of the second coordinate system remains unspecified, hence

gαβ = ∂xμ

∂yα

∂xν

∂yβ
ημν . (2.24)

We can treat this expression as a product of matrices. If we do so, we must be careful
about the ordering of terms, since matrix multiplication is non-commutative, and
it is useful to replace one of the Jacobian matrices by its transpose. However this
extra complication can be avoided since we are interested in the determinants of
the matrices, and det(AB) = detA detB = detB detA, and also detAT = detA so

4This argument is taken from Chap.8 of [2], where a more detailed discussion can be found.

http://dx.doi.org/10.1007/978-3-319-43184-0_6
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the ordering of terms is ultimately unimportant. Taking the absolute value of the
determinant of Eq. (2.24),

|J| =
√

g

η
= √−g (2.25)

since η = detημν = −1. From this and Eq. (2.23) the use of a factor
√−g follows

immediately.
The transformations described above, where a new coordinate basis is derived

from an old one is called a passive transformation. By contrast, it is possible to leave
the coordinate basis unchanged and instead change the positions of objects, whose
coordinates will consequently change as measured in this basis. This is called an
active coordinate transformation. With this distinction in mind, we will elaborate on
the concept of diffeomorphism invariance in GR.

A diffeomorphism is a mapping of coordinates f : x → f (x) from a manifold U
to a manifold V that is smooth, invertible, one-to-one, and onto. As a special case
we can take U and V to be the same manifold, and define a diffeomorphism from a
spacetime manifold to itself. A passive diffeomorphism will change the coordinates,
but leave objects based on them unchanged, so that for instance the metric before a
passive diffeomorphism is gμν(x) and after it is gμν(f (x)). Invariance under passive
diffeomorphisms is nothing special, as any physical theory can be made to yield the
same results under a change of coordinates. An active diffeomorphism, on the other
hand, would yield a new metric g′

μν(x), which would in general measure different
distances between any two points than does gμν(x). General relativity is significant
for being invariant under active diffeomorphisms. This invariance requires that if
gμν(x) is any solution of the Einstein field equations, an active diffeomorphism yields
g′

μν(x) which must be another valid solution of the EFEs. We require that any theory
of quantum gravity should also embody a notion of diffeomorphism invariance, or at
the very least, should exhibit a suitable notion of diffeomorphism invariance in the
classical limit.

An understanding of classical general relativity helps us to better understand
transformations between locally-defined coordinate systems. We will now proceed
to a discussion of Quantum Field Theory, where these local coordinate systems are
abstracted to “internal” coordinates. And just as the discussion of GR provides us
with tools to more easily visualise the concepts at the heart of QFT, the quantisation
of field theories discussed in the next section will lay the foundations for our attempts
to extend classical GR into a quantum theory of gravity.
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Chapter 3
Quantum Field Theory

Quantum Field Theory should be familiar to most (if not all) modern physicists,
however we feel it is worth mentioning the basic details here, in order to emphasize
the similarities between QFT and GR, and hence illustrate how GR can be written as
a gauge theory. In short, we will see that a local change of phase of the wavefunction
is equivalent to the position-dependent change of basis we considered in the case
of GR. Just as the partial derivative of a vector gave (via the product rule) a deriv-
ative term corresponding to the change in basis, we will see that a derivative term
arises corresponding to the change in phase of the quantum field. This introduces a
connection and a covariant derivative defined in terms of the connection.

3.1 Covariant Derivative and Curvature

We may write the wavefunction of a particle as a product of wavefunctions φ(x) and
u(x) corresponding respectively to the external and internal degrees of freedom,1

ψ(x) = φ(x)ju(x)j (3.1)

where there is an obvious analogy to the definition of a vector, with the uj playing the
role of basis vectors, the φ(x)j playing the role of the components, and summation
implied over the repeated index j. In complete analogy with Eq. (2.3), by applying
the product rule we find that

dψ

dxμ
= ∂φj

∂xμ
uj + φj

∂uj
∂xμ

(3.2)

1A more thorough discussion of the material in this subsection can be found in Chap.3 of [1].
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16 3 Quantum Field Theory

For illustrative purposes, let us consider a fairly simple choice of basis, where we
have only one u and so we drop the index j. We will write u = eigθ(x). Then the
derivative of ψ will take the form

dψ

dxμ
= ∂φ

∂xμ
eigθ(x) + igeigθ(x)φ

∂θ(x)

∂xμ

= eigθ(x)

(
∂

∂xμ
+ ig

∂θ(x)

∂xμ

)
φ (3.3)

Nextwecanpre-multiply thewhole expressionby e−igθ(x) to eliminate the exponential
term on the right hand side. This is equivalent to Eq. (2.4) where we extracted an
expression for the derivative of the components using ei · ej = δij . Lastly we switch
notation slightly to more closely resemble Eq. (2.5), and define the term in brackets
to be a covariant derivative

Dμ = ∂μ + igAμ (3.4)

where Aμ = ∂μθ, and Dμ satisfies all the properties required of a derivative operator
(linearity, Leibniz’s rule, etc.).

A transformation θ → θ′ = θ + λ will result in a transformation of the
wavefunction ψ → ψ′ = eigλψ, and a transformation of the connection Aμ → A′

μ.
For brevity, let us write G = eigλ. We can find the transformation of Aμ from the
requirement that D′

μψ
′ = D′

μGψ = GDμψ, which means that

(∂μ + igA′
μ)Gψ = G(∂μ + igAμ)ψ

∴ (∂μG)ψ + G∂μψ + igA′
μGψ = G∂μψ + igGAμψ

∴ (∂μG)ψ + igA′
μGψ = igGAμψ

∴ igA′
μG = igGAμ − (∂μG)

∴ A′
μ = GAμG

−1 + i

g
(∂μG)G−1 . (3.5)

Substituting in G = eigλ we deduce that Aμ transforms as

A′
μ = Aμ − ∂μλ . (3.6)

Since we defined Aμ = ∂μθ above, the presence of a minus sign might be a bit
surprising. Surely from the definition of Aμ we expect that ∂θ′ = ∂θ +∂λ. However
what Eq. (3.6) is telling us is simply that when we locally change the basis of a
wavefunction but leave the overall physics unchanged, the connection must change
in an equal and opposite manner to compensate. This is akin to the concept of
diffeomorphism invariance discussed in Sect. 2.3. In both GR and QFT there are two
ways to change the local coordinate basis. The first is by moving from an initial
position to a new position where the basis is defined differently. The second is by

http://dx.doi.org/10.1007/978-3-319-43184-0_2
http://dx.doi.org/10.1007/978-3-319-43184-0_2
http://dx.doi.org/10.1007/978-3-319-43184-0_2
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staying at one point and performing a transformation (a diffeomorphism in GR,
a gauge transformation in QFT) to change the coordinate basis. In each case, we
want the laws of physics to remain the same, despite any change to the chosen
coordinate basis. We can see how this condition is enforced by the transformation of
the connection, Eq. (3.6), and the role of the covariant derivative in the action for a
Dirac field ψ of mass m;

S =
∫

d4x ψ̄(i�cγμ∂μ − mc2)ψ . (3.7)

A global gauge transformation corresponds to rotating ψ by a constant phase ψ →
eigλψ. Under this change we can see that the value of the action

S →
∫

d4x ψ̄e−igλ(i�cγμ∂μ − mc2)eigλψ (3.8)

does not change because the factor of eigλ acting on ψ and the corresponding factor
of e−igλ acting on ψ̄ pass through the partial derivative unaffected, and cancel out.
However if we allow λ to become a function of position λ(x), then the global gauge
transformation is promoted to a local gauge transformation, due to which the partial
derivative becomes

∂μ

(
eigλ(x)ψ

) = eigλ(x)
(
∂μ + ig(∂μλ(x))

)
ψ (3.9)

leading to a modification of the action S → S − ∫
d4x �cγμ(∂μλ)ψ̄ψ. The covariant

derivative, however, compensates for the x-dependence of λ, since as we saw in
Eq. (3.5) it has the property that

Dμψ → Dμ

(
eigλ(x)ψ

) = eigλ(x)Dμψ (3.10)

and so the phase factor passes through the covariant derivative as desired. It is now
trivial to show that the Dirac action defined in terms of the covariant derivative,

SDirac =
∫

d4x ψ̄(i�cγμDμ − mc2)ψ (3.11)

is invariant under local phase transformations of the form ψ → eigλ(x)ψ, ψ̄ →
ψ̄e−igλ(x), so long as Aμ(x) transforms as per Eq. (3.6). The connection Aμ tells us
how the phase of thewavefunction at each point corresponds to the phase at a different
point, in analogy to the connection in GR which told us how coordinate bases varied
from point to point, but additionally the requirement that the action be invariant under
local gauge transformations necessitates that it is not simply the wavefunction, but
also the connection that changes under a gauge transformation.
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The discussion above has been restricted to the case of a simple rotation of the
phase (that is, eigλ ∈ U(1), the rotation group of the plane). In GR, by contrast,
the local bases at different points may be rotated in three dimensions relative to
each other (that is, the basis vectors are acted upon by elements of SO(3)). We can
accordingly generalise the discussion above to include phase rotations arising from
more elaborate groups. For instance, in the case ofSU(2)we replace thewavefunction
ψ by a Dirac doublet

ψ → ψ =
(

ψ1(x)
ψ2(x)

)
(3.12)

and act upon this with transformations of the form

U(x) = exp(iλI(x)tI). (3.13)

Here tI = σI/2, (with σI the Ith Pauli matrix).2 In this case the covariant derivative
becomes

Dμ = ∂μ + igAI
μt

I (3.14)

(summation on the repeated index is implied). In analogy to the case discussed above
for GR, we can form the commutator of covariant derivatives. In this case, we obtain
the field strength tensor Fμν , the analogue of the Riemann curvature tensor,

[Dμ, Dν] = igFI
μν t

I (3.15)

where we can see (by applying the standard commutation relations for the Pauli
matrices, namely [σI , σJ ] = 2iεIJKσK , and relabelling some dummy indices) that

FI
μν = ∂μA

I
ν − ∂νA

I
μ − gεIJKAJ

μA
K
ν . (3.16)

When our gauge group is abelian (as in QED) all the generators of the corre-
sponding Lie algebra commute with each other and thus the structure constants of
the group (εIJK in the SU(2) example of Eq. (3.16)) vanish. In this event the field
strength simplifies to

FI
μν = ∂μA

I
ν − ∂νA

I
μ (3.17)

The field strength FI
μν itself is gauge covariant but not gauge invariant. Under an

infinitesimal gauge transformation A0 → A0 + δA the field strength also changes by
F[A0] → F[A0 + δA] = F0 + δF where the variation in field strength is given by
δF = Dμ[A0](δA) as the reader can easily verify by substituting and expanding in
Eq. (3.16) or Eq. (3.17). Here Dμ[A0] denotes that the covariant derivative is taken
with respect to the original connection A0.

2In general the tI will be the appropriate generators of the symmetry group, e.g. I = 1, 2, . . . N2−1
for SU(N), as noted in Sect. 1.1.

http://dx.doi.org/10.1007/978-3-319-43184-0_1
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The basic statement of Einstein’s gravitational theory, often expressed in the
saying

Matter tells geometry how to curve and geometry tells matter how to move.

has a parallel statement in the language of gauge theory. In a gauge theory, matter is
represented by the fieldsψwhereas the “geometry” (not of the background spacetime,
but of the interactions between the particles) is determined by the configurations of
the gauge field. The core idea of GR can then be generalised to an equivalent idea in
field theoretic terms,

Gauge charges tell gauge fields how to curve and gauge fields tell gauge charges how to
move.

Now, what we have so far is an action, Eq. (3.11) which describes the dynamics
of spinorial fields, interactions between which are mediated by the gauge field. The
gauge field itself is not yet a dynamic quantity. In any gauge theory, consistency
demands that the final action should also include terms which describe the dynamics
of the gauge field alone. We know this to be true from our experience with QED
where the gauge field becomes a particle called the photon. From classical electro-
dynamics Maxwell’s equations possess propagating solutions of the gauge field—or
more simply electromagnetic waves. The term giving the dynamics of the gauge field
can be uniquely determined from the requirement of gauge invariance. We need to
construct out of the field strength an expression with no indices. This can be achieved
by contracting FI

μν with itself and then taking the trace over the Lie algebra indices.
Doing this we get the term

Sgauge = −1

4

∫
d4xTr

[
FμνFμν

]
(3.18)

which in combination with (3.11) gives us the complete action for a gauge field
interacting with matter

S = Sgauge + SDirac =
∫

d4x

{
−1

4
Tr

[
FμνFμν

] + ψ̄(i�cγμDμ − mc2)ψ

}
(3.19)

3.2 Dual Tensors, Bivectors and k-Forms

The field strength is usually first encountered in the case of electromagnetism, where
the relevant gauge group is U(1) which has only one group generator and so we can
drop the index I in Eq. (3.17). The electromagnetic field strength Fμν combines the
electric and magnetic fields into a single entity,
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Fμν = ∂μAν − ∂νAμ =

⎛

⎜⎜
⎝

0 E1 E2 E3

−E1 0 −B3 B2

−E2 B3 0 −B1

−E3 −B2 B1 0

⎞

⎟⎟
⎠ (3.20)

Since each component of Fμν is associated with two index values, we can think of
the components as “bivectors” (oriented areas lying in the μ-ν plane), in analogy
with vectors which carry only a single index (and are oriented lengths lying along
a single axis). For the reader unfamiliar with bivectors we will very quickly review
them.

A unit basis vector ei can be visualised as a line segment with a “tail” and a
“head”, and an orientation given by traversing the vector from its tail to its head. A
general vector is a linear combination of basis vectors, �v = v1e1 + v2e2 + v3e3 + . . .

Similarly a unit basis bivector can be visualised as an area bounded by the vectors
ei and ej, written as the wedge product ei ∧ ej, and with an orientation defined by
traversing the boundary of this area along the first side, in the same direction as ei,
then along the second side parallel to ej, and continuing anti-parallel to ei and ej to
arrive back at the origin (this concept can be extended arbitrarily to define trivectors,
etc. as illustrated in Fig. 3.1). A general bivector is a linear combination of basis
bivectors. Writing the field strength as a general bivector we find that it takes the
form

Fμν = E1(e1∧e0)+E2(e2 ∧e0)+E3(e3 ∧e0)+B1(e2 ∧e3)+B2(e3 ∧e1)+B3(e1∧e2)
(3.21)

Electric fields are those parts of Fμν lying in a plane defined by one space axis and
the time axis, while magnetic fields are those lying in a plane defined by two space
axes (Fig. 3.1). Reversing the orientation of a bivector is equivalent to traversing its

Fig. 3.1 Wedge products of basis vectors define basis bivectors, basis trivectors, and so on. While
a vector’s magnitude is its length, a bivector’s magnitude is its area, and the magnitude of a trivector
is its volume. The orientation of the unit bivector and unit trivector are shown here by the dashed
arrows. The field strength Fμν can be represented as a set of bivectors oriented between pairs of
timelike and spacelike axes in four dimensions (shown here by distorting the angles between axes,
as is done in a two-dimensional drawing of a cube). Shaded (unshaded) bivectors are the magnetic
(electric) field components
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boundary “backwards”, so we may write ej ∧ ei = −ei ∧ ej. This is consistent with
the fact that the field strength is antisymmetric, i.e. Fμν = −Fνμ.

We can also combine the electric and magnetic fields into a single entity by
defining the dual field strength,

�Fμν = 1

2
ελρμνFλρ =

⎛

⎜⎜
⎝

0 −B1 −B2 −B3

B1 0 E3 −E2

B2 −E3 0 E1

B3 E2 −E1 0

⎞

⎟⎟
⎠ (3.22)

We can see that themapping between field strength and dual field strength3 associates
a given electric field component with a corresponding magnetic field component,
such that Ej ↔ −Bj. Thinking in terms of bivectors, the quantity defined on the
plane between any pair of spacetime axes is associated to the quantity defined on
the plane between the other two spacetime axes. The field strength is said to be
self-dual if �F = +F, and anti-self-dual if �F = −F. Although we will not be
concerned with (anti-)self-dual field strengths in the rest of this paper, we will be
dealing with (anti-)self-dual gauge connections from Sect. 5.1 onwards. The EM
field strength as presented here is merely the simplest example to use to introduce
the concept of self-duality, and illustrate its physical meaning. Further discussion of
duality, for the reader requiring a deeper understanding, is presented in Appendix
E. Some readers will also no doubt have noticed the similarity between bivectors
ei ∧ej, and differential 2-forms dxi ∧dxj. The two are indeed very similar. A bivector
defined by the wedge product of two vectors a∧b can be imagined as a parallelogram
with two sides parallel to a, and the other sides parallel to b. The magnitude of this
bivector is the area of the enclosed parallelogram. Differential forms, on the other
hand, have a magnitude which is thought of as a density. This is often drawn as a
series of lines (similar to the contour lines on a topographical map or the isobars
on a weather map) with smaller spacing between lines indicating higher density
(Fig. 3.2). Hence a 1-form can be thought of as a density of contour lines or contour
surfaces perpendicular to the direction of the 1-form. The inner product of a vector
with a 1-form is a scalar—the number of lines that the vector crosses. Similarly
a 2-form can be thought of as a series of contours spreading out through a plane
(this plane being defined by the directions of the two 1-forms wedged together to
make the 2-form). Clearly there is a one-to-one mapping between vectors and 1-
forms, and between bivectors and 2-forms, which involves changing one’s choice of
magnitude, (length or area)↔ (density). It is certainly more common to see 1-forms,
2-forms, and higher-dimensional forms used throughout physics, but bivectors and
higher-dimensional multivectors can be very useful too (see Sect.E.1 for a further
discussion of multivectors) and are often easier to visualise.

3The notation F̃ is also used for the dual field strength.

http://dx.doi.org/10.1007/978-3-319-43184-0_5
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Fig. 3.2 Two vectors (far left) with the same direction and different magnitude differ in their length,
while two bivectors (left) differ in their area. The magnitude of k-forms is a density, and can be
represented by interval lines. A 1-form (right) has a direction, just like a vector, but the spacing
of interval lines represents its magnitude. A 2-form (far right) defines a plane, just like a bivector
does, and once again the magnitude is represented by the spacing of interval lines. In all cases, the
greater magnitude object is on the top row

3.3 Wilson Loops and Holonomies

In Sect. 2 we defined a holonomy as a measure of how much the initial and final
values of a vector transported around a closed loop differ. The discussion in the
previous section demonstrates that the internal degrees of freedom of a spinor can
also be position-dependant, and hence it should be possible to define a holonomy by
the difference between the initial and final values of a spinor transported around a
closed loop.4 As a first step to constructing such a definition, let us consider what
happens when we compare the values of a field at different points, separated by a
displacement dxμ. We begin by using Eqs. (3.2), (3.3) and (3.4) to write

dψ

dxμ
= ∂φ

∂xμ
u + φ

∂u

∂xμ
= u

(
∂μ + igAμ

)
φ (3.23)

from which we readily see that igAμu = ∂μu, or equivalently igAμudxμ = du. The
internal components of the fields will be related by a gauge rotation which we will
call U(dxμ). The action of this rotation can be expanded as

U(dxμ)u = u + du = u + igAμudx
μ = (1 + igAμdx

μ)u (3.24)

and we immediately see that

U(dxμ) = exp{igAμdx
μ} (3.25)

4The name holonomy is also used within the LQG community to refer to a closed loop itself. We
feel this is unnecessarily confusing, and hence we shall avoid using the term “holonomy” for a
closed loop or closed path. The reader should be aware that this terminology does, however, exist
within the wider literature.

http://dx.doi.org/10.1007/978-3-319-43184-0_2
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U(dxμ) is the parallel transport operator that allows us to bring two field values
at different positions together so that they may be compared. Remembering that the
effect of parallel transport is path-dependant, this operator can be readily generalised
to finite separations along an arbitrary path λ and connections valued in arbitrary
gauge groups, in which case we find

U(x, y) = P exp

{∫

λ

igAμ
I(x)tIdxμ

}
(3.26)

where the P tells us that the integral must be path ordered,5 tI are gauge group
generators as before, and x and y are the two endpoints of the path λ we are parallel
transporting along. If the gauge connection vanishes along this path then the gauge
rotation is simply the identitymatrix andψ is unchanged by being parallel transported
along the path. In general, however, the connection will not vanish.

Now consider the situation when the path λ is a closed loop, i.e. its beginning and
end-point coincide. Analogously to the situation for a curved manifold, where the
parallel transport of a vector along a closed path gives us a measure of the curvature
of the spacetime bounded by that path, the parallel transport of a spinor around a
closed path yields a measure of the gauge curvature living on a surface bounded by
this path. We can see this simply in the case of a small square “plaquette” in the
μ-ν plane, with side length a. The gauge rotation in this case is a product of the
rotation induced by parallel-transporting a spinor along each of the four sides of the
plaquette in order. The parallel transport operators for each side of the plaquette are
found from Eq. (3.26), and explicitly, their product around a plaquette is

W = eigaA
†
ν (x+aν)eigaA

†
μ(x+aμ+aν)eigaAν (x+aμ)eigaAμ(x) (3.27)

Assuming that we are dealing with a non-Abelian field theory, this product of expo-
nentials can be converted to a single exponential by use of the Baker-Cambell-
Haussdorf rule, which for the product of four terms takes the form

eAeBeCeD = exp{A+B+C+D+[A,B]+[A,C]+[A,D]+[B,C]+[B,D]+[C,D]+ . . .}
(3.28)

After a bit of algebra we find that this simplifies to

W = exp{iga2Fμν + . . .} (3.29)

where the . . . represent higher-order terms. An arbitrary loop can be approximated
by a tiling of small plaquettes, to yield a result proportional to the total tiled area,
multiplied by Fμν . Since the common edges of adjacent plaquettes are traversed in
opposite directions, the contributions along these edges are cancelled, and the entire
tiling results in a path around the outside of the tiled area (Fig. 3.3). Such an arbitrary

5See Appendix F for the definition of a “path ordered” exponential.
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Fig. 3.3 An arbitrary closed path in the plane can be approximated by tilings of plaquettes. Since
each plaquette is traversed anti-clockwise, adjacent edges make cancelling contributions to the
parallel transport of a spinor, leaving only the contribution at the boundary of the tiling (as illustrated
for the plaquettes in the lower-right corner)

loop is called a Wilson loop, and the holonomy associated to it is called the Wilson
loop variable, and corresponds to an element in the gauge group of the theory. To
obtain a single variable from the parallel transport around a loop, we take the trace
of the holonomy

Wλ = TrP exp

{∮

λ

igAμ
I(x)tIdxμ

}
. (3.30)

The Wilson loop is gauge-invariant, since each line segment of which the loop is
composed transforms as

U(x, y) → G(y)U(x, y)G−1(x) (3.31)

under a gauge transformation like that in Eq. (3.5), and so the product of several line
segments forming a closed loop transforms as

W → W ′ = G(x1)U(x1, x2)G
−1(x2) . . .G(xn)U(xn, x1)G

−1(x1). (3.32)

Different gauge transformations therefore correspond with different choices of start-
ing point for the loop. However the trace is invariant under cyclic permutations,
Tr[ABC] = Tr[BCA] = Tr[CAB], and so the Wilson loop variable is independent of
choice of gauge transformation [2].

This discussion shows that Fμν is a measure of the gauge curvature within a
surface, as well as a measure of the holonomy of the loop enclosing the surface (that
is, the gauge rotation induced on a spinor when it is parallel-transported around a
closed loop). Hence when the connection does not vanish the associated holonomy
will in general not be trivial.
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3.4 Dynamics of Quantum Fields

Wewill conclude this section with a discussion of two approaches to the dynamics of
quantumfields. These arewell-established in the case of theories likeQED andQCD,
and so it will be natural later on to consider equivalent approaches when we wish to
quantise spacetime, which is the dynamical field in GR. These two approaches are
based on Lagrangian and Hamiltonian dynamics.

3.4.1 Lagrangian (or Path Integral) Approach

As shown in Eq. (3.18), starting with the curvature of a gauge field it is possible to
define an action which governs the dynamics of the gauge field. In the path-integral
approach to quantum field theory the basic element is the propagator which allows us
to calculate the probability amplitudes between pairs of initial and final states of our
Hilbert space. Although we will be concerned with fields throughout the majority
of the following discussion, the prototypical example is that of the non-relativistic
point particle in flat space moving under the influence of an external potential V (x)
for which the action is given by

Spp[γ] =
∫

γ

d3x dt

(
1

2
mẋ2 − V (x)

)
. (3.33)

Note that the potential term must be replaced by a gauge field Aμ in the relativistic
case, in which case the action takes the form

SRel[γ] =
∫

γ

d3x dt
(pμ + Aμ)(pμ + Aμ)

m0
(3.34)

where pμ is the energy-momentum 4-vector of the particle and m0 is its rest mass.
This is the familiar action for a charged point particle moving under the influence of
an external potential, whose effect is encoded in the abelian gauge potential Aμ. The
action integral depends on the choice of the path γ taken by the system as it evolves
from the initial to final states in question. The action can be evaluated for any such
path and not just the ones which extremize the variation of the action. This allows
us to assign a complex amplitude (or real probability in the Euclidean case) to any
path γ by

exp {iS[γ]} . (3.35)

Using this complex amplitude as a weighting function we can calculate matrix ele-
ments for transitions between an arbitrary pair of initial �i(t) and final �f (t′) states
by summing all paths or histories which interpolate between the two states,
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〈
�i(t) | �f (t

′)
〉 =

∫
D[ψ] exp {iS[γ]} , (3.36)

in contrast to the classical view of dynamics, in which a systemmoves from an initial
state to a final state in exactly one way. Here D[ψ] is an appropriate measure on the
space of allowed field configurations.

For the point-particle |q, t〉 represents a state where the particle is localized at
position q at time t. The matrix-element between states at two different times then
takes the form

〈
q, t | q, t′〉 =

∫
D[ψ] exp {

iSpp[γ]} . (3.37)

The weighting factor gives higher value to the contribution from those paths which
have an associated action close to the minimum. It is this which results in classical
behaviour, in the appropriate limit. However the contributions of all possible paths
must still be taken into account to accurately calculate the transitions between states.

3.4.2 Hamiltonian Approach: Canonical Quantisation

The alternative to the Lagrangian or path-integral approach is to study the dynamics
of a system through its Hamiltonian. This leads to Dirac’s procedure for canonical
(or “second”) quantisation.6 The Hamiltonian H for a dynamical system can be
constructed from the Lagrangian L by performing a Legendre transformation. Given
a configuration variable q, which we can think of as a generalised position, and a
corresponding generalised momentum p defined by

p = ∂L

∂q̇
, (3.38)

then the Hamiltonian is given by

H[p, q] = pq̇ − L[q, q̇] (3.39)

in the case of a point particle, and generalisations of this equation for other systems.
If we define the Poisson bracket of two functions by

{ f , g} =
n∑

i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
(3.40)

6The quantisation of the motion of a particle in a classical potential is sometimes referred to as
“first quantisation”. This is the basis for the somewhat un-intuitive name “second quantisation” for
quantisation extended to the potential as well.
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where f = f (q, p, t) and g = g(q, p, t), then Hamilton’s equations can be written
in the form

q̇ = ∂H

∂p
= {H, p} and ṗ = −∂H

∂q
= {H, q} (3.41)

and give the time evolution of the system. Hence, leaving the second spot in the
brackets empty, time evolution is generated by the operator {H, } which acts upon
the generalised coordinates and momenta.

In quantummechanics and quantumfield theory observables are replaced by oper-
ators, i.e. x → x̂. While operators do not necessarily commute, classical observables
do. However the Poisson bracket of two observables will not necessarily be zero, and
Dirac was led to postulate that in the transition from classical to quantummechanics,
Poisson brackets between observables should be replaced by commutation relations,
where the scalar value of the commutator is i� times the scalar value of the equivalent
Poisson bracket, i.e.

{f , g} = 1 implies
[
f̂ , ĝ

]
= i�. (3.42)

This prescriptionwill be central to our attempts to quantise spacetime in later sections.
This completes the necessary background discussion of quantum field theories.
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Chapter 4
Expanding on Classical GR

We now return to the discussion of general relativity. Equipped with the preceding
discussions of both the quantisation of field theories, and the geometrical interpreta-
tions of gauge transformations, it is time to set about formulatingwhatwill eventually
become a theory of dynamical spacetime obeying rules adapted from quantum field
theory. But before we get there we must cast classical GR into a form amenable to
quantisation.

From classical mechanics we know that dynamics can be described either in the
Hamiltonian or the Lagrangian frameworks. The benefits of a Lagrangian framework
are that it provides us with a covariant perspective on the dynamics and connects
with the path-integral approach to the quantum field theory of the given system. The
Hamiltonian approach, on the other hand, provides us with a phase space picture
and access to the Schrödinger method for quantization. Each has its advantages and
difficulties and thus it is prudent to be familiar with both frameworks. We will begin
with discussing these approaches in a classical framework, and move to quantisation
in Chap.5.

4.1 Lagrangian Approach: The Einstein-Hilbert Action

The form of the Lagrangian, and hence the action, can be determined by requirements
of covariance and simplicity. Out of the dynamical elements of geometry—themetric
and the connection—we can construct a limited number of quantities which are
invariant under coordinate transformations, hence they should have no uncontracted
indices. These quantities must be constructed out of the Riemann curvature tensor
or its derivatives. These possibilities are of the form: {R,RμνRμν,R2,∇μR∇μR, . . .}.
The simplest of these is the Ricci scalar R = Rμναβgμαgνβ . As it turns out this term
is sufficient to fully describe Einstein’s general relativity, yielding a Lagrangian that
is simply

√−gR, where as noted in Sect. 2.3, g = det(gμν).

© Springer International Publishing Switzerland 2017
D. Vaid and S. Bilson-Thompson, LQG for the Bewildered,
DOI 10.1007/978-3-319-43184-0_4

29

http://dx.doi.org/10.1007/978-3-319-43184-0_5
http://dx.doi.org/10.1007/978-3-319-43184-0_2


30 4 Expanding on Classical GR

This allows us to construct the simplest lagrangian which describes the coupling
of geometry to matter,

SEH+M = 1

κ

∫
d4x

√−gR +
∫

d4x
√−gLmatter (4.1)

where Lmatter is the Lagrangian for the matter fields that may be present and κ is a
constant, to be determined. If the matter Lagrangian is omitted, one obtains the usual
vacuum field equations of GR. This action (omitting the matter term) is known as
the Einstein-Hilbert action, SEH.

It is worth digressing to prove (at least in outline form) that the Einstein field
equations (EFEs) can be found from SEH+M. The variation of the action (4.1) yields
a classical solution which, by the action principle, is chosen to be zero,

δS = 0 =
∫

d4x

[
1

κ

δ
√−g

δgμν
R + 1

κ

√−g
δR

δgμν
+ δ

√−gLmatter

δgμν

]
δgμν (4.2)

which implies that

1√−g

δ
√−g

δgμν
R + δR

δgμν
= −κ

1√−g

δ
√−gLmatter

δgμν
. (4.3)

The energy-momentum tensor can be defined as

Tμν = − 2√−g

δ
√−gLmatter

δgμν
(4.4)

where g = det(gμν), and Lmatter is a Lagrangian encoding the presence of matter.1

From Eq. (4.4) we can immediately see that

1√−g

δ
√−g

δgμν
R + δR

δgμν
= κ

2
Tμν . (4.5)

We now need to work out the variation of the terms on the left-hand-side. Omitting
the details, which can be found elsewhere (see e.g. the appendix of [2]), we find that

δ
√−g = − 1

2
√−g

δ
√

g = 1

2

√−g(gμνδgμν) = −1

2

√−g(gμνδg
μν) (4.6)

1This definition of the energy-momentum tensor may seem to come out of thin air, and in many
texts it is simply presented as such. To save space we will follow suit, but the reader who wishes
to delve deeper should consult [1], in which Tμν is referred to as the dynamical energy-momentum
tensor, and it is proven that it obeys the conservation law ∇μTμν = 0 (as one would hope, since
energy and momentum are conserved quantities), as well as being consistent with the form of the
electromagnetic energy-momentum tensor.
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thanks to Jacobi’s formula for the derivative of a determinant. The variation of the
Ricci scalar can be found by differentiating the Riemann tensor, and contracting on
two indices to find the variation of the Ricci tensor. Then, since the Ricci scalar is
given by R = gμνRμν we find that

δR = Rμνδg
μν + gμνδRμν . (4.7)

The second term on the right may be neglected when the variation of the metric
vanishes at infinity, and we obtain δR/δgμν = Rμν . Plugging these results into
Eq. (4.5) we find that

− 1

2
gμνR + Rμν = κ

2
Tμν (4.8)

which yields the Einstein equations if we set κ = 16πG.
As noted in Eq. (2.11), we can write �ρ

μν in terms of the metric gμν ,

�ρ
μν = 1

2
gρδ

(
∂μgδν + ∂νgδμ − ∂δgμν

)

and since the covariant derivative ∇μ is a function of �ρ
μν , and the Riemann tensor is

defined in terms of the covariant derivative, the Einstein-Hilbert action is ultimately
a function of the metric gμν and its derivatives.

As a further aside, wewill briefly describe how the Lagrangian formulation allows
us to make contact with the path-integral or sum-over-histories approach outlined in
Sect. 3.4.1, and apply it to the behaviour of spacetime as a dynamical field. In general,
this approach involves calculating transition amplitudes with each path between the
initial and final states being weighted by an exponential function of the action as-
sociated with that path. In the case of gravity we may think of four-dimensional
spacetime as a series of spacelike hypersurfaces, �t , corresponding to different
times. Each complete 4-dimensional geometry consisting of a series of 3-dimensional
hypersurfaces that interpolate between the initial and final states may be thought of
as the generalisation of a “path”. This 3+1 splitting of spacetime into foliated three-
dimensional hypersurfaces will be covered in more detail in the next subsection. To
calculate thematrix-elements (as in Eq. (3.36)) for transition amplitudes between ini-
tial and final states of geometry, �t and �t′ (see Fig. 4.1) we use the Einstein-Hilbert
action for GR on a manifold M without matter

SEH = 1

κ

∫
d4x

√−g R. (4.9)

Let us represent the states corresponding to the initial and final hypersurfaces as
|hab, t〉 and |h′

ab, t
′〉, where hab is the intrinsic metric2 of a given spatial hypersurface,

2The intrinsic metric will be introduced properly very shortly, specifically in Eq. (4.16) and the
associated discussion.
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Fig. 4.1 Weighted sums of transitions between different configurations of spacelike hypersurfaces
may be used to calculate the transition amplitude between an initial and final state of geometry
(right), see Eq. (4.10). This is analogous to the path-integral approach used in quantum field theory
(left), see Eq. (3.36)

and a, b ∈ {1, 2, 3}. Then the probability that evolving the geometry will lead to a
transition between these two states is given by

〈hab, t|h′
ab, t

′〉 =
∫

D[gμν] exp
{
iSEH(gμν)

}
(4.10)

where the action is evaluated over all 4-metrics gμν interpolating between the initial
and final hypersurfaces.D[gμν] is the appropriate measure on the space of 4-metrics.
While this approach is noteworthy, and ultimately leads to a very successful compu-
tational approach to quantising gravity [3], it is not the path we follow to formulate
loop quantum gravity. Instead, as mentioned above, the Lagrangian formulation of
general relativity is used as a stepping-stone to the Hamiltonian formulation.

4.2 Hamiltonian Approach: The ADM Splitting

Since general relativity is a theory of dynamical spacetime, we will want to describe
the dynamics of spacetime in terms of some variables which make computations as
tractable as possible. The Hamiltonian formulation is well suited to a wide range
of physical systems, and the ADM (Arnowitt-Deser-Misner) formalism, described
below, allows us to apply it to general relativity. We can think of the action, Eq. (4.1),
which is clearly written in the form of an integral of a Lagrangian, as a stepping-stone
to this Hamiltonian approach. This Hamiltonian formulation of GR takes us to the
close of our discussion of classical gravity, and will be used as the jumping-off point
for the quantisation of gravity, to be undertaken in Chap5.

http://dx.doi.org/10.1007/978-3-319-43184-0_3
http://dx.doi.org/10.1007/978-3-319-43184-0_5
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Fig. 4.2 When performing
the ADM splitting, the lapse
function N and shift vector
Nμ define how points on
successive hypersurfaces are
mapped together

The ADM formalism involves foliating spacetime into a set of three-dimensional
spacelike hypersurfaces, and picking an ordering for these hypersurfaces which plays
the role of time, so that the hypersurfaces are level surfaces of the parameter t. This is
a necessary feature of the Hamiltonian formulation of a dynamical system, although
it seems at odds with the way GR treats space and time as interchangable parts of
spacetime. However this time direction is actually a “fiducial time”3 and will turn
out not to affect the dynamics. It is essentially a parameter used as a scaffold, which
in the absence of a metric is not directly related to the passage of time as measured
by a clock.

To begin, we will suppose that the 4-dimensional spacetime is embedded within
a manifoldM (which may be R

4 or any other suitable manifold). Next we choose a
local foliation4 {�t, t} ofM into spacelike 3-manifolds, where �t is the 3-manifold
corresponding to a given value of the parameter t. We will refer to such a manifold
as a “leaf of foliation”. The topology of the original four-dimensional spacetime is
then � ⊗R, while t is a parametrization of the set of geodesics orthogonal to�t (c.f.
Fig. 4.2). In addition at each point of a leaf we have a unit time-like vector nμ (with
nμnμ = −1) which defines the normal at each point on the leaf.

Given the full four-metric gμν on M and the vector field nμ the foliation is com-
pletely determined by the requirement that the surfaces �t of constant “time” are
normal to nμ.

The diffeomorphism invariance of general relativity implies that there is no canon-
ical choice of the time-like vector field tμ which maps a point xμ on a leaf �t to the
point x′μ on the leaf �t+δt , i.e. which generates time evolution of the geometry. This
property is in fact the gauge symmetry of general relativity. It implies that we can
choose any vector field tμ as long as it is time-like. Such a vector field can be pro-
jected onto the three-manifold to obtain the shift vector Na = t‖ which is the part

3The term “fiducial” refers to a standard of reference, as used in surveying, or a standard established
on a basis of faith or trust.
4Generally one assumes that our 4manifolds can always be foliated by a set of spacelike 3manifolds.
For a general theory of quantum gravity the assumption of trivial topologies must be dropped. In the
presence of topological defects in the 4 manifold, in general, there will exist inequivalent foliations
in the vicinity of a given defect. This distinction can be disregarded in the following discussion for
the time being.
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tangent to the surface, while the component of tμ normal to the three-manifold is
then identified as the “distance between hypersufaces” and its magnitude is called
the lapse function N = |t⊥|. Therefore tμ can be written as

tμ = Nnμ + Nμ (4.11)

where, though we have written the shift as a four-vector to keep our choice of indices
consistent, it is understood that N0 = 0 in a local basis of coordinates adapted to the
splitting.

Now we can determine the components of the four-metric in a basis adapted to
the splitting as follows;

g00 =gμν t
μtν

=gμν (Nnμ + Nμ) (Nnν + Nν)

=N2nμnμ + NμNμ + 2N(Nμnμ)

= − N2 + NμNμ (4.12)

where we have used nμnμ = −1 and Nμnμ = 0 in the third line. Working in a
coordinate basis where Nμ = (0,Na), we have g00 = −N2 + NaNa.5 Similarly to
obtain the other components of the metric we project along the time-space and the
space-space directions,

gμν t
μNν = NμNμ ≡ NaNa. (4.13)

Since, by definition g0ν ≡ gμν tμ, this implies that g0a = Na. The space-space com-
ponents of gμν are simply given by selecting values of the indices μ, ν ∈ {1, 2, 3}.
Thus the full metric gμν can be written schematically as

gμν =
(−N2 + NaNa N

NT gab

)
(4.14)

where a, b ∈ {1, 2, 3} andN ≡ {Na}. The 4D line-element can then be read off from
the above expression,

ds2 = gμνdx
μdxν = (−N(t)2 + NaNa)dt

2 + 2Nadt dxa + gabdx
adxb (4.15)

where again a, b ∈ {1, 2, 3} are spatial indices on �t .
The components gab of the metric restricted to a leaf of foliation are not the same

as the intrinsic metric in a leaf of foliation. The intrinsic metric is related to the
projection operator that takes any object Tμ,...,ν defined in the full four-dimensional
manifold and projects out its component normal to the leaf �t . To understand how
to decompose Tμ,...,ν into a part T‖, which lies only in the hypersurface �t and a

5From this expression we can also see that g00 = −N2 + NaNa is a measure of the local speed of
time evolution and hence is a measure of the local gravitational energy density.
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part T⊥, orthogonal to �t , we may consider an arbitrary vector vμ. The orthogonal
component is given by v⊥ = vμnμ. Similarly the component lying in �t is obtained
by projecting the vector along the direction of the shift, so v‖ = vμNμ. Writing a
general four-vector as vμ = v⊥nμ + v‖ Nμ

|N | (where |N | = NμNμ is the norm of the
shift vector) and acting on it with gμν + nμnν we have

(gμν + nμnν)

(
v⊥nν + v‖

Nν

|N |
)

= v⊥nμ(1 + nνnν) + v‖
|N | (Nμ + nμn

νNν) = v‖
Nμ

|N | .

Since nμnμ = −1, and nνNν = 0 by definition, we are left with only the component
of vμ parallel to�t . We see that hμν = gμν +nμnν is the required projection operator.
This tensor also happens to correspond to the intrinsic three-metric on �t , induced
by its embedding in M,

hab = gab + nanb, (4.16)

where as above a, b ∈ {1, 2, 3}. The reader might wonder how a rank 3 tensor hab
can be written in terms of a rank 4 object gμν . To understand this, note that the spatial
metric can also be written as a rank 4 tensor,

hμν = gμν + nμnν .

However, by construction, the time-time (htt) and space-time (htx, hty, htz) compo-
nents vanish and we are left with a rank 3 object. There is no contradiction in writing
the spatial metric with either spatial indices (a, b, . . .) or with spacetime indices
(μ, ν, . . .) as its contraction with another object is non-zero if and only if that object
has a purely spatial character.

We have already seen how the Einstein-Hilbert action can be written in terms
of the metric gμν and its derivatives. It makes sense, therefore, that in the case of
general relativity, where we have foliated the spacetime into spacelike hypersurfaces,
we should take the intrinsic metric on� (from now onwe drop the t superscript as we
will deal with only one, representative, leaf of the foliation) as our configuration or
“position” variable. To find the relevant Hamiltonian density we proceed in a manner
that parallels the approach in classicalmechanics or field theory—namelyweperform
a Legendre transform to obtain the Hamiltonian function from the Lagrangian. In the
case of classical mechanics, given a Lagrangian L dependent on some coordinates
q, we see that

H[p, q] = pq̇ − L[q, q̇] where p = ∂L

∂q̇
, (4.17)

where p is the generalised momentum conjugate to q. Similarly, in the case of scalar
field theory, we find that

H[π, φ] =
∫

d4x πφ̇ − L[φ, φ̇]. (4.18)
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Fig. 4.3 Intrinsic curvature measured by parallel transport (left), and extrinsic curvature measured
by changes in the normal vectors (right). The cylinder in this example has no intrinsic curvature,
the same as a flat sheet, since the solid vectors carried around the closed loop are unchanged, but
the normal vectors of the cylinder are not all parallel, indicating non-zero extrinsic curvature

In the case of GR we find that

H[πμν, hμν] =
∫

d3x πabḣab − L[hab, ḣab]. (4.19)

In addition to the intrinsic metric hab, the hypersurfaces 3�6 also possess a tensor
which describes their embedding in M, as shown in Fig. 4.3. This object is known
as the extrinsic curvature, and is measured by taking the spatial projection of the
gradient of the normal vectors to the hypersurface,

kab = ha
chb

d∇cnd ≡ Danb (4.20)

where Da is now the covariant derivative operator which acts only on purely spa-
tial objects. This spatial covariant derivative operator is explored in more detail in
Sect.C.1.

As is true in the case of the intrinsic metric, contracting the extrinsic curvature
with any time-like vector gives zero, kμνnμ = 0, implying that the extrinsic curvature
is a quantity with only spacelike indices, kab. Moreover kab = k(ab) is a symmetric
object by virtue of its construction (Sect.C.2).

Due to the properties of the Lie derivative and the purely spatial character of
the extrinsic curvature one can show (see Appendix B) that kab = £nhab, i.e. the
extrinsic curvature is the Lie derivative of the intrinsic metric with respect to the
unit normal vector field na. Now the Lie derivative £�vX of an object X with respect
to a vector field va can be interpreted as the rate of change of X along the integral
curves generated by va. By analogy with the definition of p in Eq. (4.17) we might be
tempted to identify the extrinsic curvature with the “momentum variable” conjugate
to the “position variable” (namely the intrinsic metric). This is not far off the mark.

6The notation 3� is sometimes used to denote that these are three-dimensional hypersurfaces,
however this is redundant in our present discussion.
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As we will see the conjugate momentum will, indeed, turn out to be a function of
kab.

The Einstein-Hilbert action can be re-written in terms of quantities defined on the
spatial hypersurfaces, by making two substitutions. Firstly, and analogously to g, we
write h for the determinant of hab and recognise that the four-dimensional volume
form

√−g is equal toN
√
h (that is, the three-dimensional volume formmultiplied by

the distance between hypersurfaces). Secondly, using the Gauss-Codazzi equation7,

(3)Rμ
νρσ = hμ

αh
β
νh

γ
ρh

δ
σR

α
βγδ − kνσk

μ
ρ − kνρk

μ
σ (4.21)

the four-dimensional Ricci curvature scalar R can be re-written in terms of the three-
dimensional Ricci scalar (3)R (that is, the Ricci scalar restricted to a hypersurface
�), and the extrinsic curvature of � as

R = (3)R + kabkab − k2 (4.22)

where k is the trace of the extrinsic curvature taken with respect to the 3-metric

k := kabhab . (4.23)

The Gauss-Codazzi relation is a very general result which is true in an arbitrary
number of dimensions. The reader with too much time on their hands may wish
to derive it for themselves by using the definition of the Ricci scalar in terms of
the Christoffel connection and using the 3-metric hμ

ν to project quantities in 3 + 1
dimensions down to the three dimensions of�. By repeating this processwith objects
living in n and n + 1 dimensions, one can obtain the version which applies for
manifolds of any dimensionality n.

Using these substitutions, the Einstein-Hilbert action can be rewritten in a form
that is convenient for identifying the parts which depend only on �,

SEH =
∫

dt d3x N
√
h

(
(3)R + kabkab − k2

) =
∫

dt LEH. (4.24)

We next need to find ḣab, which is obtained by taking the Lie derivative
(Appendix B) with respect to the vector field tμ which generates time-translations.
A detailed derivation is given in Sect.C.3, yielding the result

ḣab = £�thab = 2Nkab + £ �Nhab. (4.25)

The conjugate momentum is then found to be

πab = δL

δḣab
= √

h(kab − k hab). (4.26)

7A derivation of which can be found in Appendix 1.3 of [4].
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Substituting these results into Eq. (4.19) we obtain

H[πab, hab] =
∫

d3x πabḣab − L[hab, ḣab] (4.27a)

=
∫

d3x N

(
−√

h(3)R + 1√
h
(πabπab − 1

2
π2)

)
− 2NaDbπ

ab (4.27b)

=
∫

d3x (NH − NaCa) (4.27c)

where for brevity we have adopted the notation

H =
(
−√

h(3)R + 1√
h
(πabπab − 1

2π2)
)
(Hamiltonian constraint) (4.28a)

Ca = 2Dbπ
ab (Diffeomorphism constraint) (4.28b)

where π is the trace of πab, and D is the covariant derivative with respect to the
3-metric hab.

We can reverse the Legendre transform to rewrite the action for GR as

SEH =
∫

dtLEH =
∫

dt d3x
(
πabḣab − H[πab, hab]

)
(4.29a)

=
∫

dt d3x
(
πabḣab − NH + NaCa

)
. (4.29b)

It is now apparent that the action written in this form is a function of the lapse
and shift but not their time derivatives. Consequently the Euler-Lagrange equations
of motion obtained by varying SEH with respect to the lapse and shift are

δSEH
δN

= −H = 0, (4.30a)

δSEH
δNa

= Ca = 0, (4.30b)

implying thatH andCa are identically zero and are thus to be interpreted as constraints
on the phase space! This is nothing more than the usual prescription of Lagrange
multipliers—when an action depends only on a configuration variable q but not on
the corresponding momentum p, the terms multiplying the configuration variable are
constraints on the phase space.

Ca andH are referred to as the vector (or diffeomorphism) constraint and the scalar
(or Hamiltonian) constraint, respectively. The diffeomorphism constraint generates
diffeomorphisms within the spatial hypersurfaces �t . The Hamiltonian constraint
generates the time evolution which takes the geometry of �t to �t+1. A little later,
when we cast GR in the first order formulation we will encounter a third constraint,
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referred to as the Gauss constraint. We shall discuss the interpretation of the con-
straints once the Gauss constraint has been properly introduced, but note here that
the Hamiltonian constraint is relevant to the time evolution of the spacelike hyper-
surfaces, while other two constraints act spatially (i.e. within the hypersurfaces).

We see that the Hamiltonian densityHEH in Eq. (4.27c), obtained after performing
the 3+ 1 split of the Einstein-Hilbert action via the ADM procedure [5], is a sum of
constraints, i.e.HEH = NH−NaCa = 0. This is a generic feature of diffeomorphism
invariant theories.

4.3 Physical Interpretation of Constraints

Here we briefly describe the form of the Poisson brackets between the various con-
straints and their physical interpretation.8 The Poisson brackets between two func-
tions f and g defined on the phase space is given by

{f , g} =
∫

d3x
δf

δhab

δg

δπab
− δf

δπab

δg

δhab
(4.31)

where hab and πab are the canonical coordinates and momenta respectively. Since
these variables are fields defined over the three-dimensional manifold �, it is nec-
essary to integrate over � to obtain a number. Since the diffeomorphism constraint
Ca = 2Dbπ

ab is a function of momenta only, the Poisson bracket of this constraint
with the canonical coordinate is given by

{hcd(x′), ξaCa(x′′)} = −
∫

d3x
δhcd(x′)
δhef (x)

δ
[
2ξaDbπ

ab(x′′)
]

δπef (x)

= −
∫

d3x 2 δec δ
f
d δae δbf δ(x − x′) δ(x′′ − x)Dbξa(x

′′)

= −δ(x′ − x′′) 2Ddξc (4.32)

where ξa is a vector field defined on�, which serves to “smear out” the constraint Ca

over the manifold so that we get a function defined over the entire phase space, rather
than just being defined at each point of �. To go from the first line to the second we

8For what follows, it will be helpful to recall some aspects of symplectic geometry. In the symplectic
formulation of classical mechanics a system consists of a phase space in the form of an even-
dimensional manifold � equipped with a symplectic structure (anti-symmetric tensor) �μν . Given
any function f : � → R on the phase space, and a derivative operator ∇, there exists a vector
field associated with f , given by Xα

f = �αβ∇β f . Given two functions f , g on �, the Poisson

brackets between the two can be written as { f , g} = �αβ∇α f∇βg which can also be identified
with −LXf g = LXg f—the Lie derivative of g along the vector field generated by f or vice-versa.
Thus in this picture, the Poisson bracket between two functions tells us the change in one function
when it is Lie-dragged along the vector field generated by the other function (or vice-versa). For
more details see [6, Appendix B].
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have integrated by parts and dropped the term which is a pure divergence. This is
justified if the field ξa has support only on a compact subset of �. The constraint Ca

takes the metric hab to a neighboring point on the phase space, hab → hab − 2Dbξa.
Using the properties of the Lie derivative, the second term can also be written as
Lξhab = Daξb +Dbξa implying that hab → hab −Lξhab, and that therefore i.e. ξaCa

is the generator of spatial diffeomorphisms along the vector field ξa on the spatial
manifold �. This is the reason for calling it the “diffeomorphism constraint” in the
first place.

Similarly amuchmore involved calculation along the lines of the one above yields
for the Poisson bracket between a function f on the phase space and the “Hamiltonian
constraint” H [7, Sect. I.1.1]

{NH, f } = LN�n f (4.33)

i.e. H generates diffeomorphisms along the vector field N �n orthogonal to the
hypersurface �. In other wordsH maps functions defined on the hypersurface �t at
a given time t to functions on a hypersurface �t′ at a later time t′. This is the reason
for referring to H as the “Hamiltonian constraint”; it generates time evolution of
functions on the phase space, the same way the Hamiltonian in classical or quantum
mechanics does.

We do not wish to provide more details of the ADM procedure than are strictly
necessary. Further details about the ADM splitting and canonical quantization can
be found in [2] in the metric formulation, and [5] in the connection formulation.9

4.4 Seeking a Path to Canonical Quantum Gravity

In the Hamiltonian formulation one works with a phase space spanned by a set
of generalized coordinates qi, and a set of generalized momenta pi. For the case
of general relativity, the generalised coordinate is the intrinsic metric hab of the
spatial 3-manifold � and the extrinsic curvature kab induced by its embedding inM
determines the corresponding generalized momentum, as per (4.26). For comparison
the phase spaces of various classical systems are listed in the following table

System Coordinate Momentum
Simple harmonic oscillator x p
Ideal rotor θ Lθ

Scalar field φ(x, t) π(x, t)
Geometrodynamics hab πab = √

h(kabkab − k2)
Connection dynamics Aa

i Ea
i

9The terms “metric formulation” and “connection formulation” will be defined in Sect. 4.5.
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Now, given our phase space co-ordinatized by {hab,πab} and the explicit form of
the Hamiltonian of GR in terms of the Hamiltonian Eq. (4.28a) and diffeomorphism
Eq. (4.28b) constraints, we may expect that we can proceed directly to quantization
by promoting the Poisson brackets on the classical phase space to commutation
relations between the operators acting on a Hilbert space HGR:

hab → ĥab, (4.34a)

πab → i�
δ

δhab
, (4.34b)

{
hab(x),π

a′b′
(x′)

}
= δ(x − x′)δa

′
a δb

′
b →

[
ĥab, i�

δ

δha′b′

]
= i�δa

′
aδ

b′
b, (4.34c)

f [hab] → |�hab〉. (4.34d)

It should then remain to write the constraintsH and Cμ in operator form

H, Ca → Ĥ, Ĉa (4.35)

which act upon states |�q〉 which would then be identified with the physical states
of quantum gravity. The physical Hilbert space is a subset of the kinematic Hilbert
space which consists of all functionals of the 3-metrics, |�q′ 〉 ∈ Hphys ⊂ Hkin.

Unfortunately the above prescription is only formal in nature and we run into
severe difficulties when we try to implement this recipe. The primary obstacle is
the fact that the Hamiltonian constraint stated in Eq. (4.28a) has a non-polynomial
dependence on the 3-metric via the Ricci curvature 3R. We can see this schematically
by noting that 3R is a function of the Christoffel connection � which in turn is a
complicated function of hab:

3R ∼ (∂�)2 + (�)2; � ∼ q∂q ⇒ ∂� ∼ ∂q∂q + q∂2q. (4.36)

This complicated form of the constraints raises questions about operator ordering
and is also very non-trivial to quantize. Therefore, in this form, the constraints of
general relativity are not amenable to quantization.

This is in contrast to the situation with the Maxwell and Yang-Mills fields, which
being gauge fields can be quantized in terms of holonomies (see Sect. 3.3), which
form a complete set of gauge-invariant variables. An optimist might believe that
were we able to cast general relativity as a theory of a gauge field, we could make
considerablymore progress towards quantization than in themetric formulation. This
does indeed turn out to be the case as we see in the following sections.

http://dx.doi.org/10.1007/978-3-319-43184-0_3


42 4 Expanding on Classical GR

4.5 Connection Formulation

Our ultimate goal is to cast general relativity in the mould of gauge field theories
such as Maxwell or Yang-Mills. The parallel between covariant derivatives and con-
nections in GR and QFT suggests that gravity may be treated as a gauge field theory
with �ρ

μν as the gauge connection. However, though the Christoffel connection is an
affine connection it does not transform as a tensor under arbitrary coordinate trans-
formations (c.f. [2, Chap. 4]) and thus cannot play the role of a gauge connection
which should be a covariant quantity.

�ρ
μν allows us to parallel transport vectors vμ and, in general, arbitrary tensors

(vectors are, of course, a special case of tensors) i.e. it allows us to map the tangent
space Tp at point p to the tangent space Tp′ at the point p′. The map depends on the
path connecting p and p′ and it is this fact that allows us to measure local geometric
properties of a manifold. However, in order to allow the parallel transport of spinors
the Christoffel connection is not sufficient.

The Christoffel connection does not “know” about spinor fields of the form ψμ
I

(where I is a Lie algebra index). A theory of quantum gravity which does not know
about fermions would not be very useful. Thus we need an alternative to the Christof-
fel connection which has both these properties; covariance with respect to coordinate
transformations, and coupling with spinors.

Up until now we have worked with GR in second-order form, i.e. with the metric
gμν as the only configuration variable (hence this is also called the metric formu-
lation). The Christoffel connection �ρ

μν is determined by the metric compatibility
condition,

∇gμν = 0. (4.37)

The passage to the quantum theory is facilitated by switching to a first-order formula-
tion of GR (also called the connection formulation), in which both the metric and the
connection are treated as independent configuration variables. However due to the
problems with the Christoffel connection noted above, we shall choose a first-order
formulation in terms of a tetrad or “frame-field” (which we will see shortly, plays the
role of the metric) and a gauge connection (the “spin connection”), both of which
take values in the Lie algebra of the Lorentz group. In the following subsections we
will describe the tetrads and the spin connection in some detail, before proceeding
to our first example of a first-order formulation of gravity, the Palatini formulation.

The connection formulation exposes a hidden symmetry of geometry as illustrated
by the following analogy. The introduction of spinors in quantummechanics (and the
corresponding Dirac equation) allows us to express a scalar field φ(x) as the “square”
of a spinor φ = � i�i. In a similar manner the use of the tetrads allows us to write
the metric as a square gμν = eIμe

J
νηIJ . The transition from the metric to connection

variables in GR is analogous to the transition from the Klein-Gordon equation

(−∂2
t + ∂a∂a − m2)ψ = 0 (4.38)



4.5 Connection Formulation 43

to the Dirac equation
(iγμ∂μ − m)ψ = 0 (4.39)

in field theory (where here we have used c = � = 1).
The connection is a Lie algebra valued one-form Aμ

IJτIJ where τIJ are the gener-
ators of the Lorentz group. Our configuration space is then spanned by a tetrad and
connection pair, {eIμ,Aμ

IJ}. The tetrads are naturally identified as mappings between
the Lie algebra sl(2, C), and the Lie algebra so(3, 1) of 4-vectors.

4.5.1 Tetrads

We begin by considering the four dimensional manifoldM, introduced in Sect. 4.2,
above. As we know, any sufficiently small region of a curved manifold will look
flat10 and so we may define a tangent space to any point P in M. Such a tangent
space will be a flat Minkowski spacetime, and the point P may be regarded as part of
the worldline of an observer, without loss of generality. This tangent space will be
spanned by four vectors, eμ. Each basis vector will have four components, eIμ where
I ∈ {0, 1, 2, 3}, referred to the locally-defined reference frame (the “laboratory
frame” of the observer who’s worldline passes through P, with lengths and angles
measured using the Minkowski metric). As noted back in Chap. 1, such a set of four
basis vectors is referred to as a tetrad or vierbein (German for “four legs”).11 Since
the tetrads live in Minkowski space, their dot product is taken using the Minkowski
metric. But the dot product of basis vectors is just the metric itself, so the metric of
M at any point is just given by

gμν = eIμe
J
νηIJ (4.40)

where ηIJ = diag(−1,+1,+1,+1) is theMinkowskimetric. Taking the determinant
of both sides we find that

det(gμν) = det(ηIJ)det(e
I
μ)

2 = −det(eIμ)
2 (4.41a)

∴ e = √−g (4.41b)

where g ≡ det(gμν) and e ≡ det(eIμ). Due to this fact the tetrad can be thought of as
the “square-root” of the metric.

Tetrads can thus be interpreted as the transformation matrices that map between
two sets of coordinates, as can be seen by comparing Eq. (4.40) with the standard

10So long as the manifold is continuous, not discrete. This is an important point to keep in mind for
later.
11The similar word vielbein (“any legs”) is used for the generalisation of this concept to an arbitrary
number of dimensions (e.g. triads, pentads).

http://dx.doi.org/10.1007/978-3-319-43184-0_1
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form for a coordinate transformation, Eq. (2.16). It is this fact whichmakes the tetrads
a useful tool in modern formulations of GR. Since the components of spinors are
defined relative to the flat “laboratory frame” of the tangent space, and tetrads map
the metric of this tangent space to the metric of the full four-dimensional spacetime,
they serve the role we mentioned above, of allowing us to construct a connection
that knows about spinor quantities as well as vectors and tensors. The construction
of such a connection will be described in the following subsection.

As an aside, we note that any vector vμ can be written as an sl(2, C) spinor vab as

vab := vμe
μ
Iσ

I
ab (4.42)

where σI = {1,σx,σy,σz} is a basis of the Lie algebra sl(2, C) and a, b are the
spinorial matrix indices shown explicitly for clarity.

4.5.2 Spin Connection

It is a truth universally acknowledged, that a student in possession of a basic familiar-
ity with loop quantum gravity will be in want of an explanation of the significance of
SL(2, C). If we wish to construct a theory that encompasses GR under the framework
of gauge field theories we should anticipate that the local symmetries of spacetime
will define the gauge group of our quantum gravity theory. As noted in Chap.2 the
causal structure of spacetime defines a future light-cone and past light-cone at each
event. The past light-cone of an observer at any given value of time is the celestial
sphere at a fixed distance from the observer. The celestial sphere can be parametrised
by the angles θ, φ, and any point on a sphere can be stereographically projected onto
a plane. For our purposes, this shall be taken to be the complex plane, so that any
point on the celestial sphere corresponds with a complex number ζ = X + iY . We
can write this as the ratio of two complex numbers ζ = α/β, which can (if we so
desire) be written as functions of θ, φ. A change of the complex coordinates (which
is equivalent to a coordinate transformation of the real angles θ, φ) can be effected by
acting on the 2-vector with components α, β with a linear transformation, written in
the form of a 2 × 2 matrix with complex components. If we take the determinant of
this matrix to be +1 (which we can do, without loss of generality) this is an SL(2, C)

transformation. Thus the Lorentz group, SL(2, C), is the local gauge group of special
relativity.

While dynamics on a flat spacetime can be described by the Poincare group, in
a general curved spacetime such as we would expect in GR, translational symmetry
is broken and only local Lorentz invariance remains as an unbroken symmetry. The
mapping between local coordinate bases is encoded in the connection. As noted
above, the Christoffel connection does not allow for the parallel transport of spinors.
It is therefore not suitable to be used in constructing a theory of quantum gravity. The
simplest candidate that allows for parallel transport of spinors is an sl(2, C) valued

http://dx.doi.org/10.1007/978-3-319-43184-0_2
http://dx.doi.org/10.1007/978-3-319-43184-0_2
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connection Aμ
IJ . Such a choice of connection is a logical candidate for casting GR

as a gauge theory, and will be referred to as a spin connection.
In order to be able to parallel transport objects with spinorial indices we need a

suitable extension of the notion of a covariant derivative which acts on vectors to
one which acts on spinors (we follow [8, Appendix B]). The condition for parallel
transport of a vector is that its covariant derivative with respect to the Christoffel
connection should vanish, i.e.

∇kv
i = ∂kv

i + v j�i
jk = 0 (4.43)

Similarly the condition for parallel transport of a spinor requires that its covariant
derivative with respect to the gauge connection should vanish

Dμψ = ∂μψ + igAμψ = 0 (4.44)

where Aμ ≡ AI
μt

I is the gauge connection. Analogously, given the tetrad eIμ and the
Christoffel connection �

γ
αβ we define an sl(2, C) valued spin connection ωIJ

α and use
these to construct the generalised derivative operator on M which annihilates the
tetrad

Dαe
I
β = ∂αe

I
β − �

γ
αβe

I
γ + ωI

αJe
J
β = 0 (4.45)

The term “spin connection” may cause some confusion, by tricking newcomers
into thinking they have to learn a new concept, when it fact this is nothing more than
the notion of parallel transport of a particle along a Wilson line.

Now one would expect that this derivative operator should also annihilate the
(internal) Minkowski metric ηIJ = eαI eα

J and the spacetime metric gμν = eIμe
J
νηIJ .

One can check that requiring this to be the case yields that the spin-connection is
anti-symmetric ω{IJ}

α = 0 and the Christoffel connection is symmetric �α
[βγ] = 0.

We can solve for �α
βγ in the usual manner (see for e.g. [2]) to obtain

�
γ
αβ = 1

2
gγδ

(
∂αgδβ + ∂βgδα − ∂δgαβ

)
. (4.46)

Inserting the above into Eq. (4.45) we can solve for ω to obtain

ωIJ
α = 1

2
eδ[I

(
∂[αeJ]δ] + e|β|J]eKα∂βeδK

)
. (4.47)

Note that in the above expression the Christoffel connection does not occur.
In the definition of D we have included the Christoffel connection. Ideally, in

a gauge theory of gravity, we would not want any dependence on the spacetime
connection. That this is the case can be seen by noting that all derivatives that appear
in the Lagrangian or in expressions for physical observables are exterior derivatives,
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i.e. of the form D[αeIβ]. The anti-symmetrization in the spacetime indices and the
symmetry of the Christoffel connection �

γ
[αβ] = 0 implies that the exterior derivative

of the tetrad can be written without any reference to �:

D[αeIβ] = ∂[αeIβ] + ω[αILeβ]L = 0. (4.48)

We can solve for ω by a trick similar to one used in solving for the Christoffel
connection. Following [8, Appendix B], first contract the above expression with
eα
J e

β
K to obtain

eα
J e

β
K

(
∂[αeIβ] + ω[αILeβ]L

) = 0. (4.49)

Now let us define �IJK = eα
I e

β
J ∂[αeβ]K . Performing a cyclic permutation of the

indices I, J,K in the above expression, adding the first two terms thus obtained and
subtracting the third term we are left with

�JKI + �IJK − �KIJ + 2eα
J ωαIK = 0. (4.50)

This can be solved for ω to yield

ωαIJ = 1

2
eKα [�KIJ + �JKI − �IJK ] (4.51)

which is equivalent to the previous expression, Eq. (4.47), for ω.
Next we consider the curvature tensors for the Christoffel and spin connections

and show the fundamental identity that allows us to write the Einstein-Hilbert action
solely in terms of the tetrad and the spin-connection. The Riemann tensor for the
spacetime and spin connections respectively are defined as

D[αDβ]vγ = Rαβγ
δvδ, D[αDβ]vI = RαβI

JvJ . (4.52)

Writing vγ = eIγvI and inserting into the first expression we obtain

Rαβγ
δvδ = D[αDβ]vγ = D[αDβ]eIγvI = eIγRαβI

JvJ = eIγRαβI
Jeδ

Jvδ (4.53)

where we have used the fact that DμeIν = 0. Since the above is true for all vδ , we
obtain

Rαβγ
δ = RαβI

JeIγe
δ
J . (4.54)

The Ricci scalar is given by R = gμνRμν = gμνRμδν
δ . Using the previous expression

we find
Rμδν

δ = RμδI
JeIνe

δ
J . (4.55)
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Contracting over the remaining two spacetime indices then allows us to write the
Ricci scalar in terms of the curvature of the spin-connection and the tetrads,

R = Rμν
IJeμ

I e
ν
J . (4.56)

4.5.3 Palatini Action

The Einstein-Hilbert action, from the discussion in Sect. 4.1, can be written in the
form

SEH = 1

κ

∫
d4x

√−ggμνRμν . (4.57)

The Palatini approach to GR starts with this action and treats the metric and the
connection as independent dynamical variables. Variation of the action with respect
to the metric yields the vacuum field equations (Rμν = 0), while variation with
respect to the connection implies that the connection is the Christoffel connection.
Discussion of the Palatini approach in terms of the metric and Christoffel connection
can be found in many textbooks (see e.g. [2, Appendix E]).

Having gone to the effort of defining tetrads and the spin connection we now
wish to write the action for GR in terms of these variables. We saw in Sect. 4.1 that
requirements of covariance and simplicity dictated the form of the action for GR.
Similarly our construction of an action based on tetrads and the spin connection is
guided by physical considerations. Firstly we want the action to be diffeomorphism
invariant. We also require the Lagrangian density to be a four-form, which we can
integrate over a four-dimensional spacetime to give a scalar (thus this action is valid
only in four dimensions). The curvature of the connection is already a two-form, so
(suppressing spacetime indices for simplicity) we include eI ∧eJ ≡ e[μI eν]J , which is
a two-form.12 This yields the Palatini action, the simplest diffeomorphism-invariant
action one can construct using tetrads and the curvature of the gauge connection.
We emphasise that this is not simply SEH rewritten with a change of variables, but
a parallel construction. The discussion above is intended to describe the physical
intuition behind this construction. It is conventional to use the notation FIJ

μν for the
curvature of the spin connection, to yield

SP [e,ω] = 1

2κ

∫
d4x � (eI ∧ eJ) ∧ FKL εIJKL

= 1

4κ

∫
d4x εμναβεIJKL eμ

I eν
JFαβ

KL , (4.58)

12If we use two copies of the curvature tensor then we get Yang-Mills theory (F ∧ F). But that
doesn’t include the tetrad.
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where

FKL
γδ = ∂[γωδ]KL + 1

2

[
ωγ

KM,ωδM
L
]

. (4.59)

The similarity between Eqs. (4.57) and (4.58) should be clear, especially when
we remember that gμν = eIμe

J
νηIJ (Eq. (4.40)). At this point Fμν

IJ is the curvature of
ω, but it remains to be shown that it satisfies the identity of Eq. (4.56). The equations
of motion obtained by varying the Palatini action are

δSP
δων

IJ
= εμναβεIJKL Dν

(
eα

I eβ
J
) = 0 , (4.60a)

δS

δeIμ
= εμναβεIJKL eν

JFαβ
KL = 0 . (4.60b)

One can see that Eq. (4.60a) is equivalent to the statement that

δS[g, �]
δ�

= 0 ⇒ ∇g = 0 (4.61)

therefore in this approach the metric compatibility condition Eq. (4.37) arises as the
equation of motion obtained by varying the action with respect to the connection.

In derivingEq. (4.60a)wehave utilized the fact thatF[ω+δω] = F[ω]+D[ω](δω),
where D[ω] is the covariant derivative defined with respect to the unperturbed con-
nection ω as in Eq. (4.48). The resulting equation of motion, Eq. (4.60a), is then
the torsion-free or metric-compatibility condition which tells us that the tetrad is
parallel transported by the connection ω. This then implies that Eq. (4.56) holds, i.e.
Fμν

IJ ≡ Rμν
IJ . The second equation of motion can be obtained by inspection, since

F does not depend on the tetrad. Already we see dramatic technical simplification
compared to when we had to vary the Einstein-Hilbert action with respect to the
metric as in Eq. (4.2).

We will digress at this point, much as we did in Sect. 4.1, in order to show that
Eq. (4.60b) is equivalent toEinstein’s vacuumequations.Wefirst note that the volume
form can be written as

εμναβ = 1

4!εPQRS e[μPeν
Qeα

Reβ]S. (4.62)

Contracting both sides with eν
J we find that

εμναβ e
ν
J = 1

4!εPQRS e[μPeν
Qeα

Reβ]Seν
J

= − 1

3!εJPQR e[μPeα
Qeβ]R (4.63)

where in the second line we have switched some dummy indices and relabelled
others. Inserting the right hand side of the above in Eq. (4.60b) and using the fact
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that Eq. (4.56) implies Fμν
IJ ≡ Rμν

IJ , we find that

δS

δeIμ
= εμναβ eν

JεIJKL Rαβ
KL

= − 1

3!ε
JPQR εIJKL e

[μ
P eα

Q eβ]
R Rαβ

KL

= δP[I δQK δRL] e
μ
P e

α
Q eβ

R Rαβ
KL

= eμ
[I e

α
K eβ

L] Rαβ
KL

=
(
eμ
I e

α
Ke

β
L + eμ

Ke
α
Le

β
I + eμ

Le
α
I e

β
K

)
Rαβ

KL

= eμ
I R + eβ

I Rαβ
μα + eα

I Rαβ
βμ

= eμ
I R − 2eβ

I Rβ
μ = 0. (4.64)

In the first step we have used the result in Eq. (4.63). In the second step we have
used the fact that the contraction of two epsilon tensors can be written in terms
of anti-symmetrized products of Kronecker deltas. In the third and fourth steps we
have simply contracted some indices using the Kronecker deltas and expanded the
anti-symmetrized product explicitly. In the fifth and sixth steps we have made use of
Eq. (4.54) and the definition of the Ricci tensor as the trace of the Riemann tensor:
Rβ

μ = Rαβ
αμ. Contracting the last line of the above with eνI and using the fact that

gμν = eIμe
J
νηIJ we find

Rμν − 1

2
gμνR = 0 . (4.65)

Thus the tetradic action in the first-order formulation—where the connection and
tetrad are independent variables—is completely equivalent to classical general rela-
tivity.

4.5.4 Palatini Hamiltonian and Constraints

Up to this point we have been discussing classical approaches toGR. The Palatini and
ADM approaches reproduce Einstein’s original formulation of GR, but as mentioned
in Sect. 4.4, one would hope that they provide a formulation amenable to canonical
quantisation. We can perform a 3 + 1 split of the Palatini action, Eq. (4.58) and
obtain a Hamiltonian which, once again, is a sum of constraints. However, while the
resulting formulation appears simpler than that in terms of the metric variables, there
are some second class constraints which when solved [8, Sect. 2.4] yield the same
set of constraints as obtained in the ADM framework. Thus, the Palatini approach
does not appear to yield any substantial improvements over the ADM version as far
as canonical quantization is concerned. To proceed to a quantum theory, we must
transition to a description of gravity in terms of the Ashtekar variables. But first, let
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us briefly review the ADM splitting in the tetrad formalism. For this purpose there
are two approaches.

The first approach involves repeating the steps in Sect. 4.2, but this time with
the first order action (4.58) (where the dynamical variables are the tetrad and the
connection), rather than with the Einstein-Hilbert action (4.57). This method is quite
tedious and is summarized in Appendix D. Here we present a more direct approach
due to Thiemann [7, Sect. I.1.3].

Thiemann’s approach is quite simple. It involves starting with the ADM con-
straints in the metric formulation and rewriting functions of the 3-metric hab and
3-momentum πab in terms of the tetrad eja and the extrinsic curvature one-form
Ki
a = Kabeib. We already know that the relation between the tetrad one-form and the

metric is given by (4.40),

hab = eiae
j
bδij

keeping in mind that in (3 + 1) dimensions the correct tensor on the right-hand
side would be the Minkowski tensor ηIJ rather than the Kronecker delta. Now under
local SO(3) rotations given by the matrix Oi

j, the tetrad changes, eia → Oi
je

j
a, but

the 3-metric hab remains invariant. Thus, in the tetrad formalism, the action of the
rotation group introduces three new degrees of freedom13, which were not present
in the metric formulation. These extra degrees of freedom can be eliminated by
introducing the extrinsic curvature one-form,

Ki
a = Kabe

i
b, (4.66)

where Kab is the extrinsic curvature (4.20) of the 3-manifold �. This equation can
be inverted to give

Kab = ei(aK
j
b)δij. (4.67)

Since Kab is symmetric, the following constraint on Ki
a must hold:

Gab = Ki
[ae

j
b]δij = 0. (4.68)

It is convenient to introduce the wedge (anti-symmetric) product of two copies of
the tetrad,

Ẽa
i = 1

2
εabcεijke

j
be

k
c, (4.69)

13In D dimensions, the rotation group has D(D − 1)/2 degrees of freedom corresponding to the
number of independent elements of an antisymmetric D × D matrix.
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in terms of which (4.68) can be written as

Gij = Ka[iẼa
j] = 0, (4.70)

or equivalently, as
Gk := εk

ijKaiẼ
a
j = 0. (4.71)

We can nowwrite the 3-metric and 3-momentum in terms ofEa
j andK

i
a as follows;

qab = det(Ẽc
l ) Ẽ

i
aẼ

j
b (4.72a)

Pab = det(Ẽc
l ) Ẽ

a
k Ẽ

d
k K

j
[dδ

b
c]Ẽ

c
j (4.72b)

When the “Gauss constraint” (4.70) is satisfied, qab,Pab reduce to theADMvariables
hab,πab. Using these definitions we can now rewrite the metric ADM constraints
(4.28) as

Gi = εijkK
j
aẼ

ak (4.73a)

Ca = Db

[
Kj
aẼ

b
j − δbaK

j
cẼ

c
j

]
(4.73b)

H = −det(q)R + 2√
det(q)

Kj
aK

l
bẼ

[a
j Ẽ

b]
l (4.73c)

where the first line is the Gauss constraint, the second the diffeomorphism constraint
and the third line is the Hamiltonian constraint.

The physical interpretation of these constraints is identical to that given in
Sect. 4.3, i.e. the diffeomorphism constraint ξaCa generates spatial diffeomorphisms
along the vector field ξa on � and the Hamiltonian constraint is the generator of
diffeomorphisms along the vector field N�n normal to � which corresponds to time-
evolution of physical quantities defined on �. The only change is the addition of
the Gauss constraint (4.71), which acts as the generator of SO(3) rotations. Given
an SO(3)-valued form ηi defined on �, ηiCi generates infinitesimal rotations in the
triad eia in the “direction” (in the sense of a direction on the SO(3) group manifold)
given by ηi.

These constraints satisfy the following Poisson bracket relations:

{Ki
a(x),K

j
b(y)} = 0 (4.74a)

{Ẽa
i (x),K

j
b(y)} = δ

j
iδ

a
bδ

3(x, y) (4.74b)

{Ẽa
i (x), Ẽ

b
j (y)} = 0 (4.74c)

showing that Ẽa
i and Kj

b are canonically conjugate variables.
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For further details including the calculations of the Poisson bracket structure of
these constraints we refer the reader to [7, Sect. I.1.3] or to any of the other reviews
listed in the bibliography.
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Chapter 5
First Steps to a Theory of Quantum Gravity

As discussed in the previous section, we wish to attempt to canonically quantise GR,
which means turning the Hamiltonian, diffeomorphism and Gauss constraints into
operators and replacing Poisson brackets with commutation relations. This proce-
dure is easier said than done, however. In a practical sense one must be careful with
the ordering of operators, and hence constructing appropriate commutation relations
is not as easy as one might at first hope. We shall discuss the way forward in outline,
before turning to a more detailed discussion of each step. Firstly we simplify the
constraints by adopting a complex-valued form for the connection and tetrad vari-
ables. These are the Ashtekar variables. Next one performs a 3 + 1 decomposition
to obtain the Einstein-Hilbert-Ashtekar Hamiltonian Heha which turns out to be a
sum of constraints. We have already seen that these constraints all equal zero, and
so when treated as operators they should act upon a state of quantum spacetime, |�〉
to yield Heha|�〉 = 0. This condition does not force a particular choice of basis for
|�〉 upon us, but it does admit a choice built from objects we are already familiar
with—Wilson loops. These loops are then allowed to intersect, to yield area and vol-
ume operators of the spacetime. As a result, the states of quantum spacetime come to
be represented by graphs whose edges are labelled by representations of the gauge
group (for GR this is SU (2)). Throughout, the notion of background independence,1

which is central to general relativity, is considered sacrosanct.
The reader interested in the history behind the canonical quantization program,

with further mathematical details, is referred to [1].

1It is important to mention one aspect of background independence that is not implemented, a priori
in the LQG framework. This is the question of the topological degrees of freedom of geometry. On
general grounds, one would expect any four dimensional theory of quantum gravity to contain non-
trivial topological excitations at the quantum level. Classically, these excitations would correspond
to defects which would lead to deviations from smoothness of any coarse-grained geometry.
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5.1 Ashtekar Formulation: “New Variables” for General
Relativity

We have already discussed the first-order form of GR above. Now let us turn our
attention to Ashtekar’s complex-valued version of this formalism. We begin with
tetradicGRwhose action iswritten in thePalatini form.This action is equivalent to the
usual Einstein-Hilbert action on-shell, i.e. for configurations which satisfy Einstein’s
field equations, as shown in Sect. 4.5.3. For dealing with spinors, a formalism defined
in terms of connections and tetrads is more useful than one defined in terms of the
metric, as shown above. When we perform the ADM splitting of the Palatini action,
we switch from variables defined in the full four-dimensional spacetime to the three-
dimensional hypersurfaces �t . Hence the tetrads at each point become “triads”,
eIμ → eia where μ → a ∈ {1, 2, 3}, I → i ∈ {1, 2, 3}, and the spin connection
is likewise restricted, to become �i

a = ωajkε
jki . The phase space variables of the

Palatini picture (eia, �
i
a) are the intrinsic metric of the spacelike manifold � and a

function of its extrinsic curvature respectively, similarly to the situation we noted in
Sect. 4.2. Unfortunately in this case the Hamiltonian constraint is still a complicated
non-polynomial function and canonical quantization does not appear to be any easier
in this formalism.

Ashtekar made the remarkable observation that the form of the constraints simpli-
fies dramatically2 if instead of the real connection ωμ

I J one works with a complex,
self-/anti-self-dual connection (this means that the connection is equal to ±1 times
the dual connection,which is defined in an analogousmanner to the dual field strength
of Eq. (3.22)). At the heart of the formulation of general relativity as a gauge the-
ory lies a canonical transformation from the triad and connection to the “new” or
Ashtekar variables,

Ẽa
i → 1

i
Ẽa
i , K i

a → Ai
a = �i

a − i K i
a, (5.1)

where Ai
a is the Ashtekar-Barbero connection, K i

a = kabebi with kab the extrinsic
curvature of � and Ẽa

i is the variable introduced previously (4.69).
Both Ai

a and Ẽa
i admit SU (2) rotations with respect to the internal indices (and

hence the choice of densitised triads is non-unique). We can therefore treat the
Ashtekar formulation of gravity as an SU (2) gauge theory. This is consistent with
our previous discussion about the choice of gauge group for gravity (Sect. 4.5.2), as
SU (2) is a subgroup of SL(2, C).

2For the detailed derivation of these constraints starting with the self-dual Lagrangian see for e.g.
[2, Sect. 6.2]

http://dx.doi.org/10.1007/978-3-319-43184-0_4
http://dx.doi.org/10.1007/978-3-319-43184-0_4
http://dx.doi.org/10.1007/978-3-319-43184-0_3
http://dx.doi.org/10.1007/978-3-319-43184-0_4
http://dx.doi.org/10.1007/978-3-319-43184-0_4


5.1 Ashtekar Formulation: “New Variables” for General Relativity 55

Given this choice of variables, the constraints simplify to

Gi = Da Ẽ
a
i (Gauss constraint) (5.2a)

Ca = Ẽb
i F

i
ab − Ai

aGi (Diffeomorphism constraint) (5.2b)

H = εi j k Ẽ
a
i Ẽ

b
j F

k
ab (Hamiltonian constraint) (5.2c)

We see that the Gauss constraint now takes the form of a net divergence of the triad
“electric” field, in analogy with the form of the Gauss law in electromagnetism.
Comparing the above expressions to the form of the Palatini constraints given pre-
viously (4.7a) we see that the diffeomorphism constraint is now linear in the triad
field. The greatest simplification is seen in the Hamiltonian constraint which is now
only quadratic in the triad, whereas previously, due to the presence of the 1/det(q)
term, it had a non-polynomial dependence on the triad. This makes quantisation fea-
sible. In fact [3], it turns out that the exponential of the Chern-Simons invariant on
the manifold is an exact solution of all three constraints! (See Appendix J for more
details.)

The phase space configuration and momentum variables are Ẽa
i and the spatial

connection Ai
a . The second class constraints which were present in the Palatini

framework must now vanish due to the Bianchi identity and the diffeomorphism
constraint becomes a polynomial quadratic function of the momentum variables—in
this case the triad. We thereby obtain a form for the constraints which is polynomial
in the coordinates and momenta and thus amenable to methods of quantization used
for quantizing gauge theories such as Yang-Mills. The resulting expression for the
Einstein-Hilbert-Ashtekar Hamiltonian of GR is

Heha = NaCa + NH + T iGi = 0 (5.3)

where Ca , H and Gi are the vector, scalar and Gauss constraints respectively. The
terms Na

i and N are the shift and lapse, while T i is a Lie algebra valued func-
tion over our spatial surface which encodes the freedom we have in choosing the
gauge for the spin connection. As in Sect. 4.3 we can calculate the Poisson brackets
between these constraints and the canonical variables. Doing so verifies the intuition
gained from Sect. 4.3. The Poisson brackets of a function f with the Hamiltonian
and diffeomorphism constraints gives

{ f,H} = £N �n f , { f, ξ aCa} = £�ξ f , (5.4)

implying that as expected H and Ca generate time-evolution and spatial diffeomor-
phism respectively. Introducing the gauge degrees of freedom has also led to the
introduction of a third constraint Gi , for whose Poisson bracket we have

{ f, T iGi } = −Ẽa
i DaT

i , (5.5)

implying that Gi is the generators of gauge rotations.

http://dx.doi.org/10.1007/978-3-319-43184-0_4
http://dx.doi.org/10.1007/978-3-319-43184-0_4
http://dx.doi.org/10.1007/978-3-319-43184-0_4
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It is instructive to compare the above form of the constraints to their metric
counterparts in Eq. (4.28) which are reproduced below for the reader’s convenience:

H =
(

−√
h(3)R + 1√

h
(πabπab − 1

2
π2)

)
,

Ca = 2Dbπ
ab.

The price to be paid for this simplification is that the theory we are left with is no
longer the theory we started with—general relativity with a manifestly real metric
geometry. The connection is nowa complex connection.However the newconcoction
is also not too far from the original theory and can be derived from an action. That this
is the case was shown independently by Jacobson and Smolin [4] and by Samuel [5].
They completed the analysis by writing down the Lagrangian fromwhich Ashtekar’s
form of the constraints would result:

S± [e, A] = 1

4κ

∫
d4x ±�μν

I J
±Fμν

I J . (5.6)

Here ±F is the curvature of a self-dual (anti-self-dual) four-dimensional connection
±A one-form, which we will discuss more in the next subsection. The field ±� is
the self-dual (anti-self-dual) portion of the two-form ẽ I ∧ ẽ J . The Palatini action is
then simply given by the real part of the self-dual (or anti-self-dual) action,

SP = Re[S±] . (5.7)

5.2 Real Variables for Canonical Gravity:
Barbero-Immirzi Parameter

In the previous sectionwe saw that the transformation (5.1) from thePalatini variables
{K i

a, E
a
i } to the Ashtekar variables {Ai

a, E
a
i } is of the form

Ẽa
i → 1

i
Ẽa
i ; K i

a → Ai
a = �i

a − i K i
a .

While this leads to simplification of the constraints, the presence of the unit imaginary
i = √−1 in the transformation rule also makes the theory complex! In order to
obtain physical results—corresponding to a metric valued in R instead of in C—we
must impose some restrictions on the possible solutions of the theory. If we use the
notation X• to represent the time derivative of X , then solutions must satisfy not only
the constraints (5.2a), but also the so-called “reality conditions”,

http://dx.doi.org/10.1007/978-3-319-43184-0_4
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Ẽa
i Ẽ

b
j δ

i j ∈ R, (5.8a)
(
Ẽa
i Ẽ

b
j δ

i j
)• ∈ R. (5.8b)

The first of these is simply the requirement that the metric constructed from the triad
field be real. The second says that themetric should remain real under time evolution.

As first pointed out in [6–8], the Ashtekar variables are a particular case of a more
general transformation,3

Ea
i → 1

γ
˜(γ )Ea

i , K i
a → Ai

a = �i
a − γ K i

a (5.9)

whereγ , the so-called “Barbero-Immirzi” parameter, is an arbitrary complex number.
For the particular choice of γ = i , the above variables reduce to Ashtekar’s original
form. For any other choice of γ , however, the resulting variables are just as valid
because the transformation remains canonical, i.e. the Poisson brackets before and
after the transformation continue to remain the same, namely

{
K i

a(x), Ẽ
b
j (y)

}
=

{
Ai
a(x),

(γ ) Ẽb
j (y)

}
= κδijδ

b
aδ(x, y). (5.10)

The advantage of using a real value for γ , is that the new variables and the
resulting constraints remain real, voiding the need to impose reality conditions (5.8)
on solutions of the constraints. Secondly, with γ = i , the gauge group of the theory
is SL(2, C), which is non-compact. This creates difficulties when moving to the
quantum theory because it is not clearly understood how to perform integration over
non-compact groups.

The disadvantage is that the form of the Hamiltonian constraint is no longer as
simple as given in (5.2c), and picks up another term quadratic in both the triad and
extrinsic curvature,

H = εi j k Ẽ
a
i Ẽ

b
j F

k
ab − 2(1 + γ 2)Ẽ [a

i Ẽb]
j K

i
aK

j
b ≈ 0. (5.11)

We can see that when γ = i , the second term in the above vanishes and we are
left with the usual Ashtekar form of the constraint.

The Barbero-Immirzi parameter is a topic of great debate in the (loop and allied)
quantum gravity community. The topics of discussion include determining its value
from comparison with the calculation of Bekenstein-Hawking gravity of a black
hole [9–15], four-fermion interaction sourced by non-zero value of γ [16–18],
effects of renormalization on values of γ [13, 19], possible relationship to the Stan-
dard Model[20], its role in obtaining a generalization of the Kodama state which

3The transformation to new variables, as implemented by most authors, including Barbero and
Immirzi, does not involve changing the triad. In this case the Poisson brackets between the new
variables picks up a factor of γ . However if we transform the triad also, as is done here following
[1], the factor of γ cancels out when taking the Poisson brackets.
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overcomes difficulties first pointed out byWitten [21–23], its role in determining the
strength of topological interactions in LQG of the sort encountered in the Peccei-
Quinn mechanism of the Standard Model [24–27], and more recently a possible
holographic interpretation of γ [28, 29].

This list is not meant to be exhaustive and any errors and emissions of significant
contribution related to γ are solely the result of the authors’ ignorance.

5.3 To Be (Real) or Not To Be

Before proceeding to the details of the quantization procedure let us address the
controversy over which is more preferable—real variables or complex ones. As
mentioned above, the reality of Ashtekar variables depends on the reality of the
Barbero-Immirzi parameter. If γ is complex (or real), then so are the Ashtekar vari-
ables. A complex value of γ implies that the spectrum of the area operator (to be
studied in greater detail in Sect. 6.2) will also contain complex eigenvalues. It is
not clear what physical interpretation one can assign to complex areas or complex
volumes. Moreover the structure of the kinematical Hilbert space of LQG (to be
discussed later in Chap.6) is understood only for the case of real γ . If γ is taken to
be complex then the entire technology of spin-networks—using which, for instance,
the black hole entropy calculation (Sect. 7.1) is performed—is rendered unusable.

Retaining a complex γ on the other hand, means that the spatial connection
has an interpretation as a spacetime connection since it transforms correctly under
diffeomorphisms [5, 30, 31], whereas this is not true for the real or “Ashtekar-
Barbero” connection. The Hamiltonian constraint is polynomial which is one of the
principle motivations and advantages for going from metric dynamics to connection
dynamics.

Over time conventional wisdom has favored the real variables, primarily because
they allow us to construct the kinematical Hilbert space of SU (2) spin-networks.
Therefore one might question the need to discuss the complex variables in any great
detail in such a review aimed primarily at beginners.

Apart from the fact that the self-dual variables have great pedagogical value for
explaining the steps leading to the simplified form of ADM constraints, in recent
years self-dual variables have made a comeback in works by Wieland [32, 33],
Frodden et al. [34] and Pranzetti [35].

Wieland has shown that starting from the complex variables (with SL(2, C) as
gauge group) one can perform the canonical quantization procedure and obtain the
same kinematic Hilbert space as in the SU (2) case. Thus the earlier concerns regard-
ing theviability of complexvariables vis-a-vis the existenceof thekinematicalHilbert
space would appear to have been resolved.

Frodden et al. have shown that when the dimension of the Hilbert space of SU (2)
Chern-Simons gauge theory, which describes the dynamics of a quantum isolated
horizon (QIH) [36, 37], is analytically continued to complex values, its asymp-
totic behavior has an exponential dependence on the horizon area. In this way the
Bekenstein-Hawking entropy is recovered in the semiclassical limit.

http://dx.doi.org/10.1007/978-3-319-43184-0_6
http://dx.doi.org/10.1007/978-3-319-43184-0_6
http://dx.doi.org/10.1007/978-3-319-43184-0_7
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Pranzetti has demonstrated that in order to provide a geometrical notion of the
temperature of a QIH one must work with a complex value of the Barbero-Immirzi
parameter. Taking γ = i and requiring that the horizon state satisfying the QIH
boundary condition be aKMS (thermal) state leads to the formula for the temperature
of the horizon. The Boltzmann and von-Neumann entropies can also be calculated
and in the semi-classical limit both yield the expression for the Bekenstein-Hawking
entropy.

With these observations in hand, it is certainly too soon to consign the complex
variables to being merely a historical footnote in the development of LQG.

5.4 Loop Quantization

As noted above, the program of loop quantum gravity involves the following steps:

1. Write GR in connection and tetrad variables (in first order form).
2. Perform a 3 + 1 decomposition to obtain the Einstein-Hilbert-Ashtekar Hamil-

tonian Heha which turns out to be a sum of constraints.
3. Obtain a quantized version of the Hamiltonian whose action on elements of the

physical space of states yields Heha|�〉 = 0.
4. Identify an appropriate basis for the physical states of spacetime.

The first two steps have been thoroughly covered. So now, after a fairly lengthy
digression, we are ready to return to the task mentioned in Sect. 4.4, rewriting the
constraints in operator form, and identifying the physical states of quantum gravity.
The first part of this process was completed in Eqs. (5.2c) and (5.2b).

The following exposition only gives us a bird’s eye viewof the process of canonical
quantization. The reader interested in the mathematical details of and the history
behind the canonical quantization program is referred to [1].

5.5 Canonical Quantization

Tofind solutions of the equations ofmotionwewant to find states�[A] such that they
are acted upon appropriately by the constraints. This means that they must satisfy

Ĥ|�〉 = 0

Ĉa|�〉 = 0

Ĝi |�〉 = 0

The Gauss constraint tells us that �[A] should be gauge-invariant functions of
the connection. The diffeomorphism constraint is telling us that �[A] should be
invariant under diffeomorphisms of the paths along which the connection lies. These

http://dx.doi.org/10.1007/978-3-319-43184-0_4
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constraints taken together do not impose a particular choice of �[A] upon us, but
they do admit Wilson loops as one possible, and particularly convenient, choice.

Let us consider solutions of the form �[A] = ∑
λ �[λ]Wλ[A]. A given state

will therefore be a sum of loops. These loops may in general be knotted, and hence
topologically distinct from each other. Such states will satisfy the Gauss constraint,
as Wilson loops are gauge-invariant. They will also satisfy the diffeomorphism con-
straint. In fact, diffeomorphism invariance actually helps us reduce the number of
basis states, thereby avoiding a potentially awkward problem. In a theory with a
fixed background and a well-defined metric any tiny change in the shape of a Wilson
loop will lead to a different holonomy, since parallel transport is path-dependent.
If different loops are taken to be the orthonormal basis states, this means that each
deformation of a loop results in a new state, orthonormal to every other loop. But in
a diffeomorphism-invariant theory it is not possible to distinguish between any two
loops that may be smoothly deformed into each other, and hence the space of loops
consists of only a single member of each topological equivalence class.

Nowwemust askwhetherWilson loops satisfy theHamiltonian constraint. Firstly
we observe that the triads (or tetrads when we are working in four dimensions) are
the conjugate momenta to the connection. In quantum mechanics the operator for
the momentum corresponds to derivation with respect to the position coordinate,
p → p̂ = −i� ∂

∂q . Similarly the quantum operator for the triad (or tetrad!) is given

by the derivative with respect to the connection, hence eai → −i� ∂
∂Aa

i . The action

of Ĥ on a Wilson loop is therefore

ĤWλ[A] = εi j k
δ

δAi
a

δ

δA j
b

Fk
abWλ[A] . (5.12)

The exact formof the resulting functional derivatives is not important for themoment.
However, as will be discussed below (Eq. (6.7)) the holonomies contain a term
representing the tangent vector to the curve along which the holonomy is evaluated.
But the tangent vector to the loop is λ̇ = dλ/ds where s parametrises points along
the loop. Due to the exponential form of the holonomy the derivatives pull out factors
of λ̇. Then since Fk

ab = −Fk
ba it follows that summation over the indices of the

curvature yields zero, and hence Fk
abλ̇

a λ̇b = 0, confirming that the Hamiltonian
constraint is satisfied.

This loop basis gives us a picture of spacetime at the smallest scale, consisting of
closed paths carrying representations of SU (2). It now remains to interpret the loop
basis in terms of physical observables.

http://dx.doi.org/10.1007/978-3-319-43184-0_6
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Chapter 6
Kinematical Hilbert Space

The allowed loop states that spacetime is composed of can take several forms. They
may consist of simple closed loops. These loops may be linked through each other.
Theymay also be knotted, and hence classified by knot invariants. And the loopsmay
intersect, creating vertices at which three or more Wilson lines meet. Historically
the importance of all these possibilities has been considered, and continues to be
assessed. We will simply take the view that a general loop state can have all of the
properties listed above. It is therefore valid to consider a loop state to be a graph or
network � with edges pi labelled by elements of some gauge group (generally SU(2)
or SL(2, C) in LQG)

�� = ψ(g1, g2, . . . , gn) (6.1)

where gi is the holonomy of A along the ith edge, defined in Eq. (6.7), below.1

Pictorially, we can imagine something like Fig. 6.1. In general we expect there to be
an ensemble {�i} of spin-networks which corresponds to a semiclassical geometry
{M, gab} in the thermodynamic limit.2

We now wish to identify operators corresponding to physical observables of the
spacetime. These operators should be based upon the physical structure of the graphs
under consideration. It is worth noting at this point that in the Hamiltonian approach

1The expression “holonomy of an edge” may surprise the reader, as we have previously emphasised
that a holonomymeasures curvature within a closed path, and described the effect of the connection
along a general curve or edge as Eq. (3.26), the Schwinger line integral. As noted in Rovelli and
Vidotto [1], the use of the term holonomy in the quantum gravity community is a bit different from
the more generally-accepted use of the term. As one of our stated aims is to make the formalism
of LQG less bewildering to the uninitiated, we take this opportunity to point out that in LQG the
name holonomy is frequently used to refer to the path-ordered exponential of the connection along
an arbitrary curve. For the sake of consistency with other works in the LQG literature we will use
it in this sense from now on.
2When the number of degrees of freedom N → ∞, the volume V → ∞ and the number density
N/V → n where n is bounded above.
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Fig. 6.1 States of quantum
geometry are given by
arbitrary graphs whose edges
are labelled by group
elements representing the
holonomy along each edge

to quantum gravity that we have pursued there is an ambiguity as to whether we
choose the connection or the frame fields as the configuration variables. In fact either
choice is permissible, but the physical interpretation of connections as configuration
variables and frame fields as conjugate momenta is more straightforward, and as we
shall see it allows us to write operators that generate discrete areas and volumes.

6.1 Space of Generalized Connections

In order to obtain suitable regularized operators in conventional quantumfield theory,
one must smear the field corresponding to configuration and momentum variables
over three-dimensional regions. For instance the operator �̂f , for the configuration
variableφ in a scalar field theory, would be constructed by smearing the field operator
with some function f (xμ) over some compact subset U ∈ M of the background
manifold M,

�̂f =
∫

U
d3x f (x)φ̂(x) (6.2)

and similarly for the momentum operators �̂g,

�̂g =
∫

U
d3x g(x)π̂(x). (6.3)

Given that the local operators satisfy the commutation relations

[
φ̂(x), π̂(x′)

]
= i�δ3(x, x′) (6.4)
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one can now compute the commutator of the smeared operators:

[
�̂f , �̂g

]
=

∫

U
d3x d3x′

[
f (x)φ̂(x), g(x′)π̂(x′)

]

= i�
∫

U
d3x f (x)g(x′)δ3(x, x′)

= i�
∫

U
d3x f (x)g(x). (6.5)

The problemwith using this prescription for constructing a quantum theory of gravity
is that it depends on the structure of the background spacetime, which enters through
the integration measure. In a curved spacetime with metric gμν , the integral (6.2) will
include a factor of

√−det(g), hence

�̂f =
∫

U
d3x

√−det(g)f (x)φ̂(x). (6.6)

Our goal is a background-independent treatment of geometrical observables. For
this to be possible the smearing procedure should also be background independent.
In a theory of connections and triads such a procedure is already well known—the
construction of holonomy variables by integrating (“smearing”) the connection along
a one-dimensional curve. We write holonomies (compare Eq. (3.30)) in the form

gλ[A] = P exp

{∫ λ1

λ0

i na(x)A
a
I t
Idx

}
(6.7)

where λ is the curve along which the holonomy is evaluated, x is an affine parameter
along that curve, the tI are generators of the appropriate symmetry group as noted
in Sect. 3.1, and na is the tangent to the curve at x. What makes holonomies “good”
variables for constructing a background-independent theory is the fact that the algebra
Cyl = ⋃

� Cyl� , (where Cyl� is the algebra of cylindrical functions on the graph
�, whose elements are of the form (6.1)) constructed on all possible graphs on a
manifold M is dense in the space of all suitably regular connections A on M.3 In
other words, given any connection A on M, by considering all possible graphs on
M, with each edge labeled by the holonomy of the connection A along that edge,
we can reconstruct the full gauge invariant information about A.

So finally we have thatHe = L2(G, dμ)—the space of square integrable functions
on the group manifold of the group G, with dμ the Haar measure on the group

3For the interested reader, in particular, we recommend reading [2, Sect. 3] and [3, Sect. I.2] for
details on the historical developments which led to the use of spin-networks as the basic objects in
LQG.

http://dx.doi.org/10.1007/978-3-319-43184-0_3
http://dx.doi.org/10.1007/978-3-319-43184-0_3
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manifold—constitutes the kinematical Hilbert space for a single edge e. For a graph
�, the kinematical Hilbert space is the tensor product space

H� = ⊗eHe (6.8)

over all edges e ∈ � in the graph.
Given two states of different graphs � and �′, their inner-product is zero

〈��′ |��〉 = δ�,�′ . (6.9)

Given two different states on the same graph�, their inner-product can be defined
using the Haar measure dμ, as

〈��|��〉 =
∫

Gn

dμ1 . . . dμn�(g1, . . . , gn)�̄(g1, . . . , gn) (6.10)

where n is the number of edges in the graph.
However, there is an ambiguity in the above procedure because a given state |�〉

may be cylindrical with respect to more than one graph �. This difficulty can be
overcome by extending the configuration space A of regular (smooth, continuous)
connections onM to the space Ā of generalized connectionswhose elements can be
arbitrarily discontinuous and need only be continuous along one-dimensional curves.

For further details and discussion the reader is referred to [4–6].

6.2 Area Operator

The area operator in quantum geometry is defined in analogy with the classical
definition of the area of a two-dimensional surface S embedded in some higher
dimensional manifold M. In the simplest case S is a piece of R

2 embedded in R
3,

however in general both S and the higher-dimensional manifold may have some
curvature. To make use of notation developed above, and without loss of generality,
we will presume S is embedded in a three-dimensional manifold � obtained by
foliating four dimensional spacetime (see Sect. 4.2). To each point p ∈ S we can
associate a triad or “frame field” i.e. a set of vectors {
e1, 
e2, 
e3} which form a basis
for the tangent space Tp at that point. In abstract index notation this basis can also
be written more succinctly as {eai}p where a, b, c ∈ {1, 2, 3} index the vectors and
i, j, k . . . label the components of each individual vector in the active or “chosen”
coordinate system. The indices i, j, k . . . are necessary because if S is curved (i.e. the
gauge connection Aa is non-zero) the basis at two distinct points in S need not be the
same, and hence a given vector 
ea will have different components at different points.

http://dx.doi.org/10.1007/978-3-319-43184-0_4
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The area of a two-dimensional surface S embedded in � is given by

AS =
∫

d2x
√

2h (6.11)

where 2hab is the metric on S, induced by the three-dimensional metric hab on �,
and 2h is its determinant, consistent with Eq. (2.21). Given an orthonormal triad
field {eai} on �, we can always apply a local gauge rotation to obtain a new triad
basis {e′

a
i}, such that two of its legs—a “dyad” {e′

x
i, e′

y
j}—are tangent to the surface

S and e′
z
k is normal to S. Then the components of the two-dimensional metric 2hAB

(A,B ∈ {x, y} are purely spatial indices) can be written in terms of the dyad basis
{eAI}4 as

2hAB = eA
IeB

JδIJ . (6.12)

The above expression with all indices shown explicitly becomes

2hAB :=
(
hxx hxy
hyx hyy

)
=

(
exIexJ exIeyJ

eyIexJ eyIeyJ

)
δIJ . (6.13)

Now, the determinant of a 2 × 2 matrix 2hAB takes the well-known form5

det(2hAB) =
∑

i1,i2

h1 i1h2 i2ε
i1 i2 = h11h22 − h12h21. (6.14)

For an orthornormal triad εijkezk = exieyj. Therefore in terms of the dyad basis {eAI},
adapted to the surface S, the expression for the determinant becomes

det(2hAB) = (
ex

iex
jey

key
l − ex

iey
jey

kex
l
)
δijδkl

= (
εikmεjln − εijmεkln

)
ez

mez
n δijδkl

= εikm εikn ez
mez

n

= δmn ez
mez

n (6.15)

where we have used the fact that εijm δij = 0 and also chosen to write the contraction
of two completely anti-symmetric tensors in terms of products of Kronecker deltas.

4I, J ∈ {0, 1} label generators of the group of rotations SO(2) in two dimensions. They are what is
left of the “internal” su(2) degrees of freedom of the triad when it is projected down to S.
5This is a special case of the determinant for an n × n matrix Aij which can be written as det(A) =∑

i1...in∈P A1 ii A2 i2 . . .An inε
i1i2...in where the sum is over all elements of the permutation group P

of the set of indices {im} and εi1i2...in is the completely anti-symmetric tensor.

http://dx.doi.org/10.1007/978-3-319-43184-0_2
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Thus the classical expression6 for the area becomes

AS =
∫

S
d2x

√ 
ez · 
ez (6.18)

where 
ez · 
ez ≡ ezmeznδmn. With the classical version in hand it is straightforward
to write down the quantum expression for the area operator. In the connection rep-
resentation, the classical dreibein (triad) plays the role of the momenta. Since the
quantum operator for the dreibein is given by eaj → −i� δ

δAa
j
we find that

ÂS =
∫

S
d2x

√

δjk
δ

δAz
j

δ

δAz
k
. (6.19)

In order to determine the action of this operator on a spin-network state, let us recall
the form of the state �� from Eq. (6.1),

�� = ψ(g1, g2, . . . , gn),

where gl is the holonomy along the lth edge of the graph. Let the edges of the graph�

intersect the surface S at exactlym locations, {P1, P2, . . .Pm}. For the time being let
us ignore the cases when an edge is tangent to S. We will also ignore the possibility
that if the loops intersect, creating vertices, such a vertex happens to lie on S. Then,
evidently, the action of Eq. (6.19) on the state �� will give us a non-zero result only
in the vicinity of the punctures.7 Thus

ÂS�� ≡
Pm∑

p=P1

√

δij
δ

δAz
i(p)

δ

δAz
j(p)

��. (6.20)

We have written the connections with an explicit dependence on position p to em-
phasise that at the lth puncture, the operator will act only on the holonomy gl. Then
recognising that the functional derivative of the holonomy with respect to the con-
nection takes the form

δ

δAa
I
gλ[A] = na(x)t

Igλ[A] (6.21)

6This is only valid for the case when� is a three-dimensional manifold. In a general n-dimensional
manifold, the area is a tensor

Aμν
jk = e[μjeν]k . (6.16)

In order to extract a single number—the “area”—from this tensor we project onto a two-dimensional
surface spanned by the vectors {ui, vj}

A[S] = e[μjeν]kuivj. (6.17)

7Since the connection is defined only along those edges and nowhere else!
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it follows easily that

δ

δAa
I
ψ(g1, . . . , gk, . . . , gn) = nat

Iψ(g1, . . . , gk, . . . , gn) (6.22)

where na is the unit vector tangent to the edge at the location of the puncture. Now,
recall that the tI in the above expression is nothing more than the Ith generator of
the Lie group in question. For SO(3), these generators are the same as the angular
momentum operators: tI ≡ JI . Thus the effect of taking the derivative with respect
to the connection is to act on the state by the angular momentum operators. This
gives us

δ

δAa
I

δ

δAb
J
ψ = nanbJ

IJJψ. (6.23)

Performing the contractions over the spatial and internal indices, noting that
nana = 1, we finally obtain

ÂS�� ≡
∑

k

√
δij ĴiĴj�� =

∑

k

√
J2�� (6.24)

where Ĵi is the ith component of the angular momentum operator acting on the spin
assigned to a given edge. J2 is the usual Casimir of the rotation group—that is, it
is the element

∑
a XaXa where the Xa are the basis of the relevant Lie algebra and

the Xa are the dual basis defined with respect to some invariant mapping of the basis
and dual basis to the scalars. The basic example of a Casimir element encountered at
undergraduate level is the squared angular momentum operator L2 = L2

x + L2
y + L2

z .
Casimir operators commute with all elements of the Lie algebra. The action of J2

upon a given spin state gives us

J2|j〉 = j(j + 1)|j〉. (6.25)

This gives us the final expression for the area of S in terms of the angular momentum
label jk assigned to each edge of � which happens to intersect S,

ÂS�� = l2P
∑

k

√
jk(jk + 1)�� (6.26)

where l2P
8 is inserted in order for both sides to have the correct dimensions.

8l2P is also known as the “Planck area”, a unit of area given as the square of the Planck length

lP = √
G�/c3.
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6.3 Volume Operator

We have found a way of assigning quantised areas to graph states. It is natural
to expect that these areas would lie on the boundaries of volumes, and to search,
therefore, for a volume operator analogous to the area operator found in Sect. 6.2
(Fig. 6.2). Similarly to the two-dimensional case, we find that the volume of a region
of space S is given by

V =
∫

S
d3x

√
h = 1

6

∫

S
d3x

√
εabcεijkeai e

b
j e

c
k . (6.27)

Replacing the tetrads by their operator equivalents gives us the following expression
for the volume operator:

V̂ = 1

6

∫

S
d3x

√

εabcεijk
δ

δAa
i

δ

δAb
j

δ

δAc
k
. (6.28)

We have already discussed in the previous section that the effect of acting on a
spin-network state with the operator corresponding to the tetrad has the effect of
multiplying the state by the angular momentum operator,

na
δ

δAa
i
�� = Ĵ i��. (6.29)

Consequently the action of the volume operator on a given state can be expressed as

V̂ �� = 1

6

∫

S
d3x

√
εabcεijknanbncĴiĴj Ĵk ��. (6.30)

Now, since the operator’s action is non-zero only on the vertices v of the graph �,
the integral in the above expression reduces to a sum over a finite number of vertices
v ∈ � which lie in S ∩ �,

V̂ �� = 1

6

∑

v∈S∩�

√
εabcεijknanbncĴiĴj Ĵk ��. (6.31)

In the literature one finds several forms of the volume operator.9 Two of these are
the Rovelli-Smolin (RS) and Ashtekar-Lewandowski (AL) versions. The RS version
[9] is

9In [7] a construction based on the geometry of classical polyhedra is used to obtain an expression
for the volume operator which acts on vertices with valence greater than four. For verticeswith fewer
than four edges, the associated volume always vanishes independent of the choice of the volume
operator. For other interesting work, see [8] where the pentahedral volume operator is analyzed and
classical chaos is found in the resulting dynamics.
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Fig. 6.2 In order to calculate the volume around the vertex wemust sum over the volume contained
in the solid angles between each unique triple of edges. Classically this volume can be determined
by the usual prescription 
a · (
b × 
c), where 
a, 
b, 
c are the vectors along each edge in the triple.
In quantum geometry these vectors are replaced by irreps of SU(2) but the basic idea remains
the same. a Volume around node in classical geometry. Edges are labelled by vectors of the form
ax̂+ bŷ+ cẑ ∈ R

3. b Volume operator in quantum geometry. Edges are labelled by elements of the
form ασx + βσy + γσz ∈ sl(2, C)

V̂ RS
S �� = γ3/2l3P

∑

v∈S∩�

∑

i,j,k

∣∣∣∣
iCreg

8
εabcε

ijknanbncĴiĴj Ĵk

∣∣∣∣

1/2

�� (6.32)

where εabc is the alternating tensor.
The AL version [6] is

V̂ AL
S �� = γ3/2l3P

∑

v∈S∩�

∣
∣∣∣
iCreg

8
εv(n

a, nb, nc)εabcε
ijknanbncĴiĴj Ĵk

∣
∣∣∣

1/2

��, (6.33)

where εv(na, nb, nc) ∈ {−1, 0, 1} is the orientation of the three tangent vectors at v

to the three curves/edges meeting at v. The n for each edge is assigned a value +1 if
it is coming out of the vertex, or −1 if it is going into the vertex. Then εv(na, nb, nc)
takes the value zero if the tangents to the edges are linearly dependent, and if they
are independent takes a value reflecting their overall orientation. The key difference
between the two version lies in this term. The RS operator does not take into account
the orientation of the edges which come into the vertex. This fact is taken into
account in the AL version, and it allows us to speak of a phase transition from a state
of geometry at high-temperature (T > Tc) where the volume operator averages to
zero for all graphs (which are “large” in some suitable sense) and a low-temperature
(T < Tc) state where a geometric condensate forms and the volume operator gains
a non-zero expectation value for states on all graphs. The key point here is that the
AL version takes into account the “sign” of the volume contribution from any triplet
of edges meeting at a vertex. Given any such triplet of edges eI , eJ , eK , by flipping
the orientation of any one edge we flip the sign of the corresponding contribution to
V̂ AL
S . If we take the orientation of an edge as our random variable for the purposes of
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Fig. 6.3 Decomposing a
four-valent node into two
three-valent nodes

constructing a thermal ensemble, then it is clear that in the limit of high-temperature
these orientations will flip randomly and the sum over the triplets of edges in V̂ AL

S will
give zero for most (if not all) graph states. As we lower the temperature the system
begins to anneal and for some temperature T = Tc the system should reach a critical
point where the volume operator spontaneously develops a non-zero expectation on
most (if not all) graph states.

Note that:

1. Since the result of the volume operator acting on a vertex depends on the signs
ε(eI , eJ , eK)of each triplet of edges, a simple dynamical systemwould then consist
of a fixed graph with fixed spin assignments (je) to edges but with orientations
that can flip, i.e. je ↔ −je (much like a spin).

2. The Hamiltonian must be a hermitian operator. This fixes the various terms one
can include in it. We must also include all terms consistent with all the allowed
symmetries in our model.

3. The simplest trivalent spin-network has one vertex with three edges, e.g. a vertex
of the hexagonal lattice. One can generalize the action of the volume operator on
graphs which have vertices with valence v (number of connecting edges) greater
than 3. (The volume operator gives zero on vertices with v ≤ 2 so these are
excluded). Todo soweuse the fundamental identitywhich allows us to decompose
the state describing a vertex with v ≥ 4 into a sum over states with v = 3. One
example of the decomposition of a four valent vertex into two three-valent vertices
is given in Fig. 6.3.

4. This model can help us understand how amacroscopic geometry can emerge from
the “spin” or many-body system described by a Hamiltonian, which contains
terms with the volume and area operators, on a spin-network.

6.4 Spin Networks

This discussion leaves us with a simple mental picture of spin-networks. Briefly, they
are graphs with representations (“spins”) of some gauge group (generally SU(2) or
SL(2, C) in LQG) living on each edge (Fig. 6.4). The links of this network correspond
with cross-sectional areas, and the verticeswhere three ormore linksmeet correspond
with discrete volumes. The values of area and volume are determined by the spin
labels on the relevant links. Since each link corresponds with the parallel transport
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of spin from one vertex to another, it is necessary to ensure that angular momentum
is conserved at vertices, and so an intertwiner is associated with each vertex. For
the case of a four-valent vertex we have four spins, (j1, j2, j3, j4). More generally a
polyhedron with n faces represents an intertwiner between the edges piercing each
one of the faces. There is a simple visual picture of the intertwiner in the four-valent
case.

Picture a tetrahedron enclosing the given vertex, such that each edge pierces
precisely one face of the tetrahedron. Now, the natural prescription for what happens
when a surface is punctured by a spin is to associate the Casimir of that spin J2 with
the puncture. The Casimir for spin j has eigenvalues j(j + 1). These eigenvalues are
identified with the area associated with a puncture.

In order for the edges and vertices to correspond to a consistent geometry it is
important that certain constraints be satisfied. For instance, for a triangle we require
that the edge lengths satisfy the triangle inequality a + b < c and the angles should
add up to ∠a + ∠b + ∠c = κπ, with κ = 1 if the triangle is embedded in a flat
space and κ �= 1 denoting the deviation of the space from zero curvature (positively
or negatively curved for k > 1 or k < 1, respectively).

In a similar manner, for a classical tetrahedron, now it is the sums of the areas
of the faces which should satisfy “closure” constraints. For a quantum tetrahedron
these constraints translate into relations between the operators ji which endow the
faces with area.

For a triangle, giving its three edge lengths (a, b, c) completely fixes the angles
and there is no more freedom. However, specifying all four areas of a tetrahedron
does not fix all the freedom. The tetrahedron can still be bent and distorted in ways
that preserve the closure constraints. These are the physical degrees of freedom that
an intertwiner possesses—the various shapes that are consistent with a tetrahedron
with a given set of face areas.

Fig. 6.4 States of quantum geometry are given by arbitrary graphs whose edges are labelled by
group elements representing the holonomy along each edge. The Peter-Weyl theorem allows us to
decompose these states in terms of spin-network states, where edges are now labelled by group
representations (angular momenta). a Labelling of edges by group elements. b Labeling of edges
by group representations
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6.5 Spin-Foams

In LQG the kinematical entities describing a given state of quantum geometry are
spin-networks. The dynamical entities—i.e. those that encode the evolution and his-
tory of spin-networks—are known as spin-foams. If a spin-network describes a d-
dimensional spacelike geometry, then a spin-foam describes a possible history which
maps this spin-network into another one. In order to determine the transition am-
plitudes between two different states of quantum-geometry whose initial and final
states are given by spin-networks Si and Sf , one must sum over all possible spin-
foams which interpolate between the two spin-network states. When we perform the
sum over all allowed histories we find that the resulting amplitude depends only on
the boundary configuration of spins. This is holography. The holographic principle
boils down to saying that the state of a system is determined by the state of its bound-
ary. Therefore, although the point is not made as often is it possibly should be, LQG
embodies the holographic principle in a very fundamental way. A spin-foam corre-
sponds to a history which connects two spin-network states. On a given spin-network
one can perform certain operations on edges and vertices which leave the state in
the kinematical Hilbert space. These involve moves which split or join edges and
vertices and those which change the connectivity. There are two basic transforma-
tions which the transitions between network states can be built from. These are the
“2-to-2” move, in which an adjacent pair of trivalent vertices in a network exchange
one incoming link each, and the “1-to-3” move, in which a single trivalent vertex
splits into three vertices, in analogy to the “star-triangle transformation” used in the
analysis of electrical circuits (see Fig. 6.5). The inverse moves are also possible, of
course, and the reader should easily recognize that the 2-to-2 move is its own inverse,
while the inverse of the 1-to-3 move shrinks a trio of vertices down to form a single
vertex.

Fig. 6.5 The 2-to-2 and 1-to-3 moves (left). The spin networks composing spatial hypersurfaces
undergo a succession of such evolution moves as time passes, from bottom to top as indicated by the
vertical arrow (centre). In spin-foams, the links of a spin-network sweep out sheets in spacetime,
such as the shaded region (right)



6.5 Spin-Foams 75

One can “formally” view a spin-foam as a succession of states {|�(ti)〉} obtained
by the repeated action of the scalar constraint

|�(t1)〉 ∼ exp −iHehaδt|�(t0)〉
|�(t2)〉 ∼ exp −iHehaδt|�(t1)〉 . . . (6.34)

and so on [10, 11]. It is not our intention to discuss spin-foams in great detail here.
Hopefully the preceding material has sufficiently familiarized the reader with the
notation and concepts of LQG that they will be able to read other, more specific
discussions of spin-foams easily.
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Chapter 7
Applications

Ultimately, the value of any theory is judged by its relevance for the real world.
Unfortunately, due to the small length scales involved, direct tests of models of
quantum gravity are not easy to perform. However one can try to reproduce well-
known results fromother physical theories as a preliminary consistency test for newer
theories. In this section, we will consider how LQG can be applied to the calculation
of black hole entropy, and to cosmological models.

While the question of black hole entropy is, as yet, an abstract problem, it is
concrete enough to serve as a test-bed for theories of quantum gravity. In addition
to the Bekenstein area law (mentioned in Chap.1), by investigating the behavior of
a scalar field in the curved background geometry near a black hole horizon it was
determined [1] that all black holes behave as almost perfect black bodies radiating
at a temperature inversely proportional to the mass of the black hole, T ∝ 1/MBH .
This thermal flux is named Hawking radiation after its discoverer. These properties
of a black hole turn out to be completely independent of the nature and constitution
of the matter which underwent gravitational collapse to form the black hole in the
first place. These developments led to the understanding that a macroscopic black
hole, at equilibrium, can be described as a thermal system characterized solely by its
mass, charge and angular momentum.

Bekenstein’s result has a deep implications for any theory of quantum gravity.
The “Bekenstein bound” refers to the fact that Eq. (1.1) is the maximum number of
degrees of freedom—of both, geometry and matter—that can lie within any region
of spacetime of a given volume V . The argument is straightforward [2]. Consider
a region of volume V whose entropy is greater than that of a black hole which
would fit inside the given volume. If we add additional matter to the volume, we will
eventually trigger gravitational collapse leading to the formation of a black hole,
whose entropy will be less than the entropy of the region was initially. However,
such a process would violate the second law of thermodynamics and therefore the
entropy of a given volume must be at a maximum when that volume is occupied
by a black hole. And since the entropy of a black hole is contained entirely on its
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horizon, one must conclude that the maximum number of degrees of freedom Nmax

that would be required to describe the physics in a given region of spacetimeM, in
any theory of quantum gravity, scales not as the volume of the region V (M), but as
the area of its boundary [2, 3] Nmax ∝ A(∂M).

In view of the independence of the Bekenstein entropy on the matter content of
the black hole, the origin of Eq. (1.1) must be sought in the properties of the horizon
geometry. Assuming that at the Planck scale, geometrical observables such as area
are quantized such that there is a minimum possible area element a0 that the black
hole horizon, or any surface for that matter, can be “cut up into”, Eq. (1.1) can be
seen as arising from the number of ways that one can put (or “sew”) together N
quanta of area to form a horizon of area A = kNa0, where k is a constant. In this
manner, understanding the thermal properties of a black hole leads us to profound
conclusions:

1. In a theory of quantum gravity the physics within a given volume of spacetimeM
is completely determined by the values of fields on the boundary of that region
∂M. This is the statement of the holographic principle.

2. At the Planck scale (or at whichever scale quantum gravitational effects become
relevant) spacetime ceases to be a smooth and continuous entity, i.e. geometric
observables are quantized.

InLQG, the second feature arises naturally—thoughnot all theorists are convinced
that geometry should be “quantized” or that LQG is the right way to do so. One can
also argue on general grounds that the first feature—holography—is also present in
LQG, though this has not, as yet, been demonstrated in a conclusive manner.

Let us now review the black hole entropy calculation in the framework of LQG.

7.1 Black Hole Entropy

The ideas of quantum geometry allow us to give a statistical mechanical description
of a black hole horizon. This is analogous to the statistical mechanical description
of entropy for a gas, or some other system composed of many smaller parts, and can
be illustrated by a toy model involving tossed coins.

Suppose we toss N fair coins in succession, and record both the order of each
series of heads and tails (this is called a microstate, since it keeps track of what each
“particle” in the system does) and the total number of heads and tails that occur,
ignoring the order (this is called the macrostate). In general, several microstates will
correspond to a given macrostate. For instance, if N = 4, there is only one way to
create a macrostate with zero heads (TTTT), or with four heads (HHHH), for the
macrostate with three heads (and hence, one tail), there are four microstates (HHHT,
HHTH,HTHH, and THHH), and similarly for themacrostatewith one head and three
tails. And for the macrostate with two heads and two tails there are six microstates.
The number of microstates y as a function of the number of heads in the macrostate,
x, follows a Gaussian distribution, which has the general form

http://dx.doi.org/10.1007/978-3-319-43184-0_1
http://dx.doi.org/10.1007/978-3-319-43184-0_1
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y = Ae−B(x−μ)2 (7.1)

where μ = N/2 and A and B are scaling constants. Taking the natural logarithm of
both sides we find that

(x − μ)2 = − 1

B
ln(

y

A
). (7.2)

We identify the left-hand side with the entropy of the specified macrostate, remem-
bering that in general different macrostates will have different entropies.1 The right-
hand side is proportional to the logarithm of the number of microstates allowed in
that macrostate. If we were interested in calculating the entropy of a gas, rather
than tossing coins, the macrostates would correspond to particular values of pressure
and temperature, while the microstates correspond to the positions and momenta of
individual molecules.

In general there are two ways to calculate the entropy associated with a given
random variable x:

1. Using Shannon’s formula. Let us say that we sample our random variable from
some given ensemble, fromwhichwe drawN samples. The variable x takes values
in the set {xi} where i = 1, 2, . . . n. Then the entropy associated with our lack of
knowledge of the variable x is given by

S(x) = −
n∑

i=1

p(xi) ln p(xi) (7.3)

where p(xi) is the probability that the random variable takes on the value xi. If in
theN samples on which the entropy is based, the ith value xi occurs ki times (with
the constraint that

∑
i ki = N), then we have the usual frequentist definition for

the probability associated with that value,

p(xi) = ki
N

.

The definition of the Shannon entropy (7.3) is equivalent to the definition of the
Gibbs entropy in statistical mechanics.

2. Using the statistical mechanics method, or its more general version, Jaynes’ for-
malism [4]. This is based on themaximum entropy principle, according to which,
in the absence of any prior information about a given random variable the least
unbiased assumption one can make is that the variable satisfies a probability
distribution which possesses the maximum possible entropy. This assumption
leads us to the usual Boltzmann form of the probability. For a given value of the

1For a hand-waving argument as to why this should be the entropy, consider a simplified gas in
which eachmolecule has just two speeds, vmin (tails) and vmax (heads). Then the variable x is related
to the average speed of the gas molecules, which when squared is related to their energy, and this
may be related to entropy by the equation dS = dQ/T at constant T .
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random variable xi, the associated probability distribution must satisfy the max-
imum entropy criterion (wherein (7.3) is maximized) and also the usual axioms
of probability theory

n∑

i=1

pi = 1 (7.4a)

〈f (x)〉 =
n∑

i=1

pif (xi) (7.4b)

where f (x) is any function of x. The unique probability function which satisfies
these criteria is found to be (see for e.g. [5, Sect. 3.2])

pi = e−λ−μxi (7.5)

where λ,μ are Lagrange multipliers required for enforcing the constraints given
in (7.4)2 and where λ,μ can be identified with the chemical potential and inverse
temperature respectively, associated with the random variable x. Using (7.5) we
can write down the partition function

Z(μ) =
n∑

i=1

e−λ−μxi (7.6)

given which we can evaluate the usual thermodynamic quantities such as expec-
tation values, free energy and the entropy in x, given by

〈f (x)〉 = −∂ ln Z(μ)

∂μ
(7.7a)

F(T) = −kT ln Z(T) (7.7b)

S = −∂F

∂T
(7.7c)

where the inverse “temperature” is given by μ = 1/kT .

In the case of quantum geometry, themicrostates correspondwith the assignments
of area to the discrete “pieces” of a surface (such as the event horizon of a black
hole). Hence for each macroscopic interval of area [A + δA,A − δA], entropy S is
proportional to the log of the number of ways in which we can puncture the sphere
to yield an area within that interval.

The state of a quantum surface is specified by a sequence of N integers (or half-
integers depending on the gauge group) {ji, . . . , jN }, each of which labels an edge
which punctures the given surface (Fig. 7.1). The area of the surface is given by a
sum over the Casimir at each puncture,

2The quantity being extremized has the form L= − ∑n
i=1 {p(xi) ln p(xi) − λp(xi) −μf (xi)p(xi)}.
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Fig. 7.1 A spin-network corresponding to some state of geometry in the bulk punctures a black-
hole horizon at the indicated locations. Each puncture yields a quantum of area ∝ √

j(j + 1) where
j is the spin-label on the corresponding edge. The entropy of the black-hole—or, more precisely,
of the horizon—can be calculated by counting the number of possible configurations of punctures
which add up to give a macroscopic value of the area lying within some finite interval (A,A + δA)

A = 8πγl2P

N∑

i=1

√
ji(ji + 1). (7.8)

The eigenvalues of the operator ji are of the form ki/2, where ki ∈ Z. Thus, the
eigenvalues of the area operator are of the form

Ai = 4πγl2P
√
ki(ki + 2) = 4πγl2P

√
(ki + 1)2 − 1. (7.9)

In addition to (7.9) the integers {kI} must also satisfy a so-called projection con-
straint, which is discussed later in this section.

The task at hand is the following; given an interval [A+ δA,A− δA], where A is a
macroscopic area value and δA is some small interval (δA/A � 1), and the number
N of edges which puncture the surface, determine the allowed the number N(M) of
sequences of integers {ki, . . . , kN }, such that the resulting value for the total area falls
within the given interval

M = A

4πγl2P
=

∑

i

√
ki(ki + 2) ∈ [A + δA,A − δA] . (7.10)

There are various approaches to this problem. We summarize two of these—the
simple argument of Rovelli’s [6] and the number theoretical approach of [7, 8] in
the next section, and in the following section we describe the approach based on
Chern-Simons theory with SU(2) gauge group.
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7.1.1 Rovelli’s Counting

We want to compute the number of sequences N(M), where each sequence {ki}
satisfies

M = A

4πγl2P
=

∑

i

√
ki(ki + 2).

Let us first note the following set of inequalities:

∑

i

√
k2i <

∑

i

√
ki(ki + 2) ≡

∑

i

√
(ki + 1)2 − 1 <

∑

i

√
(ki + 1)2. (7.11)

Let N+(M) denote the number of sequences such that
∑

i ki = M and N−(M) denote
the number of sequences such that

∑
i(ki+1) = M). Then the above set of inequalities

implies that [6]
N−(M) < N(M) < N+(M). (7.12)

Computing N+(M) boils down to counting the number of partitions of M, i.e. the
numbers of sets of ordered, positive integers whose sum is M. As noted in [6],
this can be solved by observing that if (k1, k2, . . . , kn) is a partition of M, then
(k1, k2, . . . , kn, 1) and (k1, k2, . . . , kn + 1) are partitions of M + 1. All partitions of
M+1 can be obtained in this manner and therefore we have N+(M+1) = 2N+(M),
which implies that N+(M) = C2M , where C is a constant.

7.1.2 Number Theoretical Approach

This approach consists of two steps:

A. Determining allowed sequences. This involves solving the BP (Brahmagupta-
Pell) equation.3 For now, we will work in units where 4πγl2P ≡ 1. Thus for a
given set of N punctures on a quantum horizon, the total area can be written as

A =
N∑

i=1

Ai =
N∑

i=1

√
(ki + 1)2 − 1.

3It is well-known that the name of “Pell’s Equation” was the result of Leonhard Euler’s misidenti-
fication of John Pell with the mathematician Lord Brouckner. If we gave Euler a second chance to
name the equation, he might have called it “Brouckner’s equation”. This equation had previously
been intensively studied by the Indian mathematicians Brahmagupta and Bhaskara around the 5th
century B.C. and 12th century A.D. respectively. However, Brouckner and Euler are to be forgiven
for not having knowledge of the existence of this earlier work. The authors hereby take the liberty
of correcting this historical wrong associated with the naming of this equation, by adding the prefix
“Brahmagupta” to the presently accepted name “Pell’s Equation”.
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For each possible value of k, let gk be the number of punctures which have the
corresponding eigenvalue. So, we can write

A =
kmax∑

k=1

gk
√

(k + 1)2 − 1

with gk = 0 if no puncture has spin k/2. Clearly the sum over all possible values
of k gives the total number of punctures on the horizon,

∑
k gk = N . As shown

in Appendix H, the square root of any integer can be written as the product of an
integer and the square-root of a square-free integer. Since k ∈ Z ⇒ (k+1)2−1 ∈
Z, therefore we can write

√
(k + 1)2 − 1 = yk

√
pk

for some yk ∈ Z and pk ∈ A, where A is the set of square-free integers. This
implies that the area eigenvalue can be written as an integer linear combination
of square-roots of square-free numbers,

A =
imax∑

i=1

yi
√
pi,

leading us to the condition that

kmax∑

k=1

gk
√

(k + 1)2 − 1 =
imax∑

i=1

yi
√
pi.

As a first step towards solving the general case, let us first try to determine the
solution of the above equation for a single area eigenvalue ki/2,

√
(ki + 1)2 − 1 = yi

√
pi

knowing which we will be able to solve the general equation. Here the unknown
variables are ki, yi. The pi are the known square-free numbers. Setting xi = ki +1
and squaring both sides we obtain

x2i − piy
2
i = 1

This is commonly known as Pell’s equation, or perhaps more appropriately as the
Brahmagupta-Pell equation. A method for obtaining its solutions is described in
Appendix I.
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B. Determining the number of valid ways of sprinkling labels from an allowed
sequence onto the edges. This can be mapped to one of the simpler examples
of NP-complete problems in the field of computational complexity—the number
partitioning problem (NPP) [9, 10].
The relevance of the NPP for black hole entropy arises as follows: The count-
ing of states of a horizon for a non-rotating black hole boils down to determin-
ing the number of ways in which we can choose spin-labels ki from a given
sequence {k1, . . . , kN } (where the allowed sequences are determined by solving
the Brahmagupta-Pell equation) to each of the i = 1, . . . ,N edges puncturing the
horizon, such that

∑
ki = 0.

More generally the case where
∑

ki = m (m > 0), corresponds to a horizon with
angular momentumm. This is equivalent to the statement of the NPP, where given
an arbitrary but fixed sequence of (positive) integers A = {ai, . . . , aN }, one asks
for the number ofwaysNA inwhichwe can partitionA into two subsetsA+ andA−,
such that the difference of the sum of the elements of each subset is minimized,∑

A+ ai −
∑

A− ai = m. For the BHE problem m is given by
∑

k+
i − ∑

k−
i = m.

As shown in [7] this problem can be mapped to a non-interacting spin-system
[11] as follows. Consider a chain of N spins each of which can be in an up | ↑〉
state or a down | ↓〉 state. If ai belongs to A+ (A−) then we set the ith spin to
up (down). Consequently the constraint A+ − A− = m can be expressed as the
condition that

m −
N∑

i=1

aiSi = 0 (7.13)

where Si ∈ {+1,−1} are the possible eigenvalues of σz. The problem of partition-
ing A is then equivalent [11] to determining the ground state of the Hamiltonian

H = m −
N∑

i=1

ajσ
j
z (7.14)

where σ
j
z is the Pauli spin operator for the jth spin. Any eigenstate of H with zero

energy corresponds to a solution of the NPP for the set A.

7.1.3 Chern-Simons Approach

Another approach to the black hole entropy problem rests on the observation that
the dynamics of punctures on the black hole horizon, in the framework of LQG,
is described by a Chern-Simons theory. This relationship was first observed in the
classic papers by Ashtekar et al. [12–14].
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Building upon these findings, Kaul and Majumdar [15] were the first to show that
the Bekenstein-Hawking expression for the entropy of a four-dimensional Schwarz-
schild black hole could be obtained from the dimensionality of the Hilbert space of
an SU(2)Chern-Simons theory living on the horizon of that black hole. In addition to
the leading term proportional to the area of the horizon, they were also able to obtain
corrections proportional to the logarithm of the area in [16]. For a recent updated
review of their findings see [17, 18].

More recently work by Engle and co-workers [19, 20], reaches a similar conclu-
sion by working in a manifestly SU(2) invariant formulation of the horizon degrees
of freedom.

For a possible connection between the physics of the quantum Hall effect, as
described by a Chern-Simons theory, and the question of black hole entropy see
[21, 22].

In this regard it is also worth mentioning that Chern-Simons theory provides
an exact solution of the Hamiltonian constraint in terms of Ashtekar’s self-dual
variables. This solution is known as the Kodama state [23] and its properties have
been extensively studied by Randono [24–26]. A brief introduction to the Kodama
state is given in Appendix J.

7.1.4 Entropy from Entanglement

The relationship between entropy of entanglement and the entropy of black hole
horizons was first suggested more than two decades ago in [27, 28].

Consider a system, which could be a one-dimensional spin-chain (Fig. 7.2a) or a
quantum field theory living on some spacetime (Fig. 7.2b). Divide the system into
two parts A and B. Let ρAB be the density matrix representing the state of the system
as a whole and ρA, ρB be the density matrices for systems A,B obtained by tracing
over the degrees of freedom of A,B respectively, where

Fig. 7.2 Entropy of entanglement is obtained by tracing over the degrees of freedom in either A or
B. a Partitioning a spin-chain into two parts A and B. b Partitioning a spacetime into an “interior”
region B, and an “exterior” region A, separated by a boundary S representing a black hole horizon



86 7 Applications

ρA = TrB[ρAB], ρB = TrA[ρAB]. (7.15)

The von-Neumann entropy SA of region A (or the entropy SB of region B) can now
be defined as

SA = TrA [ρA ln ρA] , SB = TrB [ρB ln ρB] . (7.16)

The two entropies are equal, SA = SB, so we only need to calculate one of them. In
[27, 28] a scalar field was employed as a “probe” field. After performing the trace
over the interior region (B in Fig. 7.2b), the reduced density matrix ρA was found.
Its von-Neumann entropy was found to be proportional to the area of the boundary
surface S separating the interior and exterior regions.4 This relationship between
the entanglement entropy and the “area” of the boundary has turned out to be very
general and is not limited to 3 + 1 dimensional spacetime or to scalar fields. Some
reviews of this phenomenon of “holographic” entanglement entropy are [29, 30]. A
perspective inspired by the AdS/CFT correspondence can be found in [31].

In 2010, a seminal paper by Van Raamsdonk [32] argued that entanglement is
the glue that holds spacetime together. A similar idea had earlier been suggested
by Swingle [33] who proposed that holographic spacetimes find a realization in the
structure of networks formed from a technique, originally developed for studying
many body strongly correlated systems, known as entanglement renormalization
[34, 35]. Since then a substantial amount of work has been done [36, 37] towards
providing concrete support for this proposal.

In 2006 Livine and Terno [38] first suggested that entanglement between different
parts of the horizonmight contribute to the Bekenstein-Hawking entropy of the black
hole. In 2008 Donelly [39] and in 2012 Bianchi and Myers [40, 41] proposed that
Bekenstein-Hawking entropy could be understood as arising from the entropy of
entanglement between the quantumgeometric degrees of freedomoneither side of the
horizon. Similar ideas have been put forth by Dasgupta [42]. While these proposals
have much in common with Raamsdonk and Swingle’s ideas of geometry emerging
from entanglement, the question of black hole entropy has yet to be addressed in the
context of entanglement renormalization.

In conclusion, the study of black hole entropy in LQG is a very rich and active
field and the results presented in this review, while very important and pioneering,
should not been seen as the final word on this topic.

4Strictly speaking, a surface and its area are not the same thing, and the entropy is proportional to
the area rather than equal to it. However we feel it is acceptable in this case to use the standard
symbol for entropy, S, to indicate the boundary surface between the two regions, because of the
conceptual connection between the surface and the entropy.
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7.2 Loop Quantum Cosmology

One of the first avenues to follow when approaching old problems with new tools is
to select the simplest possible scenarios for study, in the hope that the understanding
gained in this arena would ultimately lead to a better understanding of more com-
plex systems and processes. In classical GR this corresponds to studying the sym-
metry reduced solutions5 of Einstein’s equations, such as the FLRW cosmologies
and their anisotropic counterparts, and various other exact solutions such as deSit-
ter, anti-deSitter, Schwarzschild, Kerr-Newman etc.6 which correspond respectively
to a “universe” (in this very restricted sense) with positive cosmological constant
(� > 0), a universe with � < 0, a non-rotating black hole and a rotating black hole
(both in asymptotically flat spacetimes7). In each of these cases the metric has a very
small number of local degrees of freedom and hence provides only a “toy model”.
Of course, in the real world, the cosmos is a many-body system and reducing its
study to a model such as the FLRW universe is a gross simplification. However, via
such models, one can obtain a qualitative grasp of the behavior of the cosmos on the
largest scales.

The following discussion draws primarily from [45–47]. For a more in-depth
introduction to the topic the reader is invited to consult [48, 49].

7.2.1 Isotropy and Homogeneity in the Metric Formulation

In the metric formulation the statements of isotropy and homogeneity of a spacetime
are as follows:

Homogeneity A given spacetime geometry Mg = (M, gμν), consisting of a mani-
foldM and ametric definedon thatmanifold, gμν , is said to be spatially homogeneous
[47, Sect. 4.1.1] if there exists a symmetry group S acting on spatial slices �t , such
that for any two points x, y ∈ �t , there exists an s ∈ S such that s(x) = y. Under the
action of s, the spatial metric hab on �t , satisfies

hab(x) = s�hab(x) = hab(y) (7.17)

5That is, the solutions of the EFEs possessing strong global symmetries which reduces the effective
local degrees of freedom to a small number.
6We refer the reader to the extremely comprehensive and well-researched catalog of solutions to
Einstein’s field equations, in both metric and connection variables, presented in [43]. A somewhat
older, but still valuable, catalog of exact solutions is given in [44].
7A metric with a radial dependence is considered asymptotically flat if it approaches (in a well-
defined sense) a flat Minkowski metric as r → ∞.
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where s� is the pullback8 of the spatial metric under the action of the isometry s.
Isotropy A given spacetime geometry Mg is said to be isotropic if at any point
xμ ∈ M, the metric satisfies

gμν(x)u
μvν = gμν(x)(Ru)

μ(Rv)ν (7.18)

where uμ, vν are arbitrary vectors in the tangent space Tp(x) at that point and R is an
arbitrary rotation acting on elements of Tp(x).

Isotropy is a more restrictive condition than homogeneity, because isotropy nec-
essarily implies homogeneity, however the reverse is not true.

7.2.2 FLRW Models

The simplest quantum cosmological model is that which corresponds to the Fried-
mann metric whose line-element is given by9

ds2 = −N(t)2dt2 + a(t)2
(

1

1 − kr2
dr2 + r2d�2

)
(7.19)

where the only dynamical variable is the scale factor a(t) which depends only on
the time parameter, r = √

x2 + y2 + z2 is the radial dimension of the spatial slices,
d�2 = dθ2+sin2 θdφ2 is the angular volume element and k = −1, 0,+1 determines
whether our spatial slices are open (k = −1), flat (k = 0) or closed (k = 1). For this
metric we can perform the 3+ 1 decomposition into a foliation of spatial manifolds
�t , and write down the action in terms of the various constraints. By comparing this
metric with the general form given in Eq. (4.15), we see thatN(t) is the lapse function
and the shift vanishes,Na = 0. This implies that the diffeomorphismconstraintDaπ

ab

must also vanish.
Inserting this metric into the the EFE (2.12) gives us the vacuum Friedmann-

LeMaitre-Robertson-Walker equationswhich describe the dynamics of homogenous,
isotropic spacetimes (

ȧ

a

)2

+ k

a2
= 8πG

3a2
Hmatter(a) (7.20)

where Hmatter is the Hamiltonian for any matter fields that might be present. This
equation gives us the Hamiltonian constraint for the FLRWmetric. This can be seen
by starting from the Lagrangian formulation where

8If r is a smooth map from one manifold to another r : M → N , and f is a smooth function
f : N → P, the pullback of f by r, denoted r�f , is the map fromM to P such that (r�f )(x) = f (r(x))
where x is inM. In the case given in the text s is a map from the manifold �t to itself.
9The following discussion is taken from [46, Sect. 4].

http://dx.doi.org/10.1007/978-3-319-43184-0_4
http://dx.doi.org/10.1007/978-3-319-43184-0_2
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SEH = 1

16πG

∫
dt d3x

√−gR[g]. (7.21)

The Ricci scalar R[g] for the FLRW line-element (7.19) is

R = 6

(
ä

N2a
+ ȧ2

N2a2
+ k

a2
− ȧṄ

aN3

)
. (7.22)

Substituting the above into the SEH we obtain

S = V0

16πG

∫
dt Na(t)2R = 3V0

8πG

∫
dt N

(
−aȧ2

N2
+ ka

)
(7.23)

where V0 = ∫
�
d3x is the volume of a fiducial cell V in the spatial manifold. From

this equation we can identify the momentum pa conjugate to the (only) degree of
freedom—the scale factor a(t):

pa = ∂L

∂ȧ
= − 3V0

4πG

aȧ

N
. (7.24)

Since the action does not contain any terms depending on Ṅ , we have pN = 0,
implying that the lapse function N(t) is not a dynamical degree of freedom. We
can now write down the Hamiltonian for the system in the usual manner, H =∑

i piq̇i − L = paȧ − L, which gives

Hgrav = −N

[
2πG

3V0

p2a
a

+ 3V0

8πG
ka

]
. (7.25)

It is clear from the formof this expression that thisHamiltonianwill becomedivergent
as a → 0. Changing from metric to connection variables will allow us to alleviate
this problem.

7.2.3 Connection Variables

In the connection formulation the definition of isotropy and homogeneity is different
from that in the metric picture, because here the relevant variables—the connection
and tetrad—transform not under the action of diffeomorphisms, but under the action
of gauge transformations g.10

Gauge Transformation Given a gauge group G (typically SL(2, C) for four-
dimensional Lorentzian gravity or SU(2) for the three-dimensional spatial slices)

10Gauge transformations for the case of abelian groups were discussed in Sect. 3.1. Here we cover
the more general non-abelian case which arises in four-dimensional gravity.

http://dx.doi.org/10.1007/978-3-319-43184-0_3
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and a manifoldM, a gauge transformation is a map g : M → G from the manifold
to the group, whose action on a given connection, tetrad/triad pair (Ai

a, e
a
i ) onM, is

given by
(A′, e′) = (g−1Ag + g dg, g−1eg). (7.26)

Homogeneity and Isotropy A given connection, tetrad/triad pair (Ai
a, e

a
i ) on a man-

ifold M, is said to be spatially homogenous and isotropic [45, Sect. 7.1] if M is
equipped with an isometry group S, and for every s ∈ S there exists a gauge trans-
formation g : M → G such that

(s�A, s�e) = (g−1Ag + g dg, g−1eg). (7.27)

Let us fix a fiducial flatmetric 0hab onM and the associated tetrad 0eai and co-triad
0ωi

a. Then every symmetric pair (A′,E′) on M, can always be written in the form

Aa = c̃ 0ωi
aτi, ea = p̃

√
det(0h) 0eai τ

i (7.28)

by choosing a suitable local gauge transformation (7.27). Here τi = − 1
2σi, with σi

being the Pauli matrices and generators of the Lie algebra su(2).
Thus the only non-trivial information in the pair (A′,E′) is contained in the two

c-numbers (c̃, p̃), in terms of which the connection and triad can be written as

Ai
a = c̃ δia, eai = p̃ δai . (7.29)

In variables adapted to the particular form of the metric (7.19), the connection c̃
and triad |p̃| are expressed as

|p̃| = a2

4
, c̃ = �̃ + γȧ = 1

2
(k + γȧ) (7.30)

where γ is the Immirzi parameter. The Poisson bracket between these variables is

{c̃, p̃} = 8πGγ

3
V0. (7.31)

The factors of V0 can be absorbed into the definition of the variables to give us

c = V 1/3
0 c̃ p = V 2/3

0 p̃ (7.32)

whose Poisson bracket is

{c, p} = 8πGγ

3
. (7.33)
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In terms of these the Hamiltonian constraint (7.25) becomes (for the flat k = 0
cosmology)

H = − 3

8πGγ2
c2 sgn(p)

√|p| + Hmatter = 0 (7.34)

where the factor of sgn(p) corresponds to the orientation of the triad, a feature that
is lost in the metric framework.

7.2.4 Holonomy Variables

To proceed to quantum cosmology one can start with either (7.25) or (7.34).Working
with the former, using a, pa as the generalized co-ordinate and momentum respec-
tively, one would obtain the Wheeler-deWitt equation. However, the WdW equation
does not resolve the short-range singularity obtained in the limit a → 0, since the
momentum operator is expressed as a derivation with respect to the co-ordinate,
p̂a ∼ ∂/∂a, which is a continuous operator and hence does not encode the discrete-
ness of background geometry.

In the LQC literature, the holonomy of an su(2) connection is usually expressed
in terms of the matrices τj = − 1

2σj as

ge(A) = P exp

(∫

e
Ai
aτin

a(x)dx

)
(7.35)

where na(x) is the unit tangent vector to the curve at the point xμ. For the isotropic
connection variable c̃ (7.30), the holonomy can be evaluated along any straight curve
of length l = V 1/3

0 , to give

ge(A) = cos(lc/2)1 + 2 sin(lc/2)(naτi
0eia) (7.36)

where 0eia is the (constant) fiducial triad associated with the (constant) metric on
spatial hypersurfaces.11 For example, if na lies along the z-direction, then

ge(A) =
[
cos(lc/2) − i sin(lc/2) 0

0 cos(lc/2) + i sin(lc/2)

]
=

[
e−ilc/2 0
0 eilc/2

]

(7.37)

where c is the rescaled connection variable, and not the speed of light! The matrix
elements of the holonomy operators, for an isotropic homogeneous spacetime, acting
in the fundamental representation of SU(2) will therefore be of the form exp(iμjc),
where j labels the edge along which the holonomy is evaluated, and μj depends on

11Note that the peculiar factor of 2 appearing in the second term on the right-hand side is a conse-
quence of working with the matrices τj = − 1

2σj , rather than with σj .
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the length of that edge. In terms of these matrix elements, all states in the connection
representation can be written in the form [47, Sect. 6.2.1.2]

ψ(c) =
∑

j

fje
iμjc (7.38)

where fj ∈ C,μj ∈ R. The inner product between two such states is given by

〈ψ1|ψ2〉 = lim
T→∞

T∫

−T

dcψ∗
1ψ2. (7.39)

7.2.5 Quantization

While states of the form eiμjc look very much like the familiar plane-waves eikx of
classical and (non-loop) quantum mechanics, in contrast to plane-waves holonomy
states are discontinuous in the “momenta” μj. This can be understood by recognising
that for general graph states, i.e. those not restricted to correspond to homogeneous
and/or isotropic geometries, states living on different graphs are orthogonal (6.9),

〈��′ |��〉 = δ�,�′ . (7.40)

In the present situation, when two statesψ1 andψ2 are given in terms of two different
sets of “momenta” {μj} and {μj′ }, the two states can be said to be living on different
graphs, and therefore are orthogonal whenever the sets of “momenta” for both states
are not identical,

〈ψ1|ψ2〉 = 0 , if {μj} �= {μj′ }.

For states corresponding to individual edges, ψi = eμic, we have

〈ψi|ψj〉 = δμi,μj =
{
1 if μi = μj

0 if μi �= μj
(7.41)

regardless of how small the difference μi − μj is. Thus the basis states (7.38) for a
homogeneous, isotropic spacetime are defined on a real number line, equipped not
with the usual continuous topology, but with a discrete topology! Because of this
fact there does not exist any operator corresponding to the connection ĉ.12 Therefore
when quantizing expressions involving powers of c, the corresponding operators
have to be constructed from exponentials of the connection.

12One might hope that such an operator could be obtained by taking the derivative of êxp iμc with
respect to μ. This turns out to not be the case. For further details we recommend the reader to read
[45, Sects. 7.2.1, 7.2.2] and [46, Sect. 5.2.1].

http://dx.doi.org/10.1007/978-3-319-43184-0_6
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As an example, consider the factor of c2, occurring in the definition of the Hamil-
tonian constraint (7.34). When constructing the operator for this constraint, we have
to write ĉ2 in terms of exponentials. This can be done by noting that

c2 = sin2(μc)

μ2
+ O(μ4)

and sin(μc) can in turn be expressed in terms of exponentials,

sin(μc) = eiμc − e−iμc

2i
,

which finally allows us to approximate the operator expression for ĉ2 as

ĉ2 = −
(

̂exp(iμc) − ̂exp(−iμc)
)2

4μ2
+ O(μ4) (7.42)

or, equivalently

ĉ2 =
̂sin2(μc)

μ2
+ O(μ4). (7.43)

7.2.6 Triad Eigenstates and Volume Quantization

From the Poisson bracket relations (7.33) between the rescaled connection and triad
variables (c, p), one can see that the commutator between the corresponding quantum
operators will be

[ĉ, p̂] = 8πγG

3
, (7.44)

implying that, in the connection representation (where states are functions of the
connections as in (7.38)), the operator p̂, becomes a derivative with respect to c,

p̂ = (−i�)
8πγG

3

∂

∂c
= −8πγl2P

3

∂

∂c
, (7.45)

where in the second step we have absorbed the factor of G� into the definition of the
Planck length l2P = G� (in units where the speed of light clight = 1). Then the action
of p̂ on the basis states ψμ(c) = exp(iμc) is

p̂ψμ = 8πγl2P
3

μψμ, (7.46)
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implying that the states ψμ(c) ≡ |μ〉 are eigenstates of the triad operator. We can
now understand the meaning of the parameter μ. By noting that the physical volume
of a unit cell is given in terms of the triad as V = |p|3/2,13 we can write down the
action of the corresponding volume operator on the triad eigenstate

V̂ |μ〉 = |p̂|3/2|μ〉 =
(
8πγl2P
3

)3/2

|μ|3/2|μ〉, (7.47)

and |μ|3/2 thus corresponds to the volume of a fiducial cell V of the spacetime when
the “universe” (in the very restricted sense of LQC) is in the state |μ〉.

7.2.7 Regularized FLRW Hamiltonian

By inserting the expression (7.43) for the operator ĉ2 in the expression (7.34), we
obtain the loop regularized expression for the Hamiltonian operator corresponding
to an isotropic, homogeneous, flat (k = 0) FLRW universe,

Ĥloop = − 3

8πGγ2

̂sin2(μc)

μ2
sgn(p)

√
|p̂| + Ĥmatter + O(μ4) � 0. (7.48)

Since there is no explicit time-dependence in this expression, corresponding to the
absence of a natural “clock” variable in general relativity, in order to understand how
this loop spacetime evolves we must introduce an auxiliary clock variable, a role
which is typically played by a massless scalar field in the matter sector.

The Hamiltonian for a massless scalar field in an isotropic background is given by

Hφ(a,φ,πφ) = 1

2
|p|−3/2π2

φ + |p|3/2V (φ) (7.49)

where a is the scale factor, (φ,πφ) are the generalized co-ordinate and momenta
variables for the scalar field respectively, p is the isotropic triad and V (φ) is an
optional potential for the scalar. The complete classical Hamiltonian constraint for a
massless scalar (with no potential term) in an isotropic background is then given by

H = Hgrav + Hφ = − 3

8πGγ2
c2 sgn(p)

√|p| + 1

2

π2
φ

|p|3/2 � 0 (7.50)

13In terms of the spatial metric, the volume of a unit cell is given by V = √
det h =

√
εabcεijkeai e

b
j e

c
k

(6.27). Since for an isotropic spacetime eai = p δai (7.29), we find that V = |p|3/2.

http://dx.doi.org/10.1007/978-3-319-43184-0_6
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and likewise the full quantum Hamiltonian operator, for gravity plus matter, is
given by

Ĥ = Ĥloop + Ĥmatter = − 3

8πGγ2

̂sin2(μc)

μ2
sgn(p)

√
|p̂| + 1

2

1̂

|p|3/2 π̂2
φ � 0. (7.51)

Understanding how to obtain solutions of this equation will take us too far afield for
an introductory review, so here we will only summarize the main implications of this
quantization.

7.2.8 Singularity Resolution and Bouncing Cosmologies

Expressing the operator for the connection in the form (7.42), rather than in the famil-
iar form ĉ = ∂/∂p from “normal” quantummechanics, has an important implication
for the resulting equations of motion. In quantum mechanics, the operator for the
squared momentum becomes (in the position representation)

p̂2|ψ〉 ∼ ∂2

∂x2
|ψ〉

leading to the usual Schrödinger equation, which is a differential equation. However,
in the “new” loop quantum mechanics, there is no operator corresponding to the
connection ĉ, when working in the triad representation! Thus a ĉ2 term has to be
approximated by the form given in (7.42)

ĉ2 ≈ −
(

̂exp(iδc) − ̂exp(−iδc)
)2

4δ2
+O(δ4) = − 1

4δ2

(
̂exp(iδc)

2 + ̂exp(−iδc)
2 − 2

)
+O(δ4).

To understand the action of this operator on a triad eigenstate |μ〉, we need the action
of the operator ̂exp(iδc) on |μ〉. This can be easily seen to be

̂exp(iδc)|μ〉 = |μ + δ〉 (7.52)

because |μ〉 is nothing more than eiμc!
Now we can easily determine the action of ĉ2 on |μ〉, which is

ĉ2|μ〉 ≈ − 1

4δ2
(|μ + 2δ〉 + |μ − 2δ〉 − 2|μ〉) + O(δ4). (7.53)

One can see that instead of a differential equation, in the LQC approach, we will
obtain difference equations. One might argue that if the limit δ → 0 is taken in
the above expression, the left-hand side will reduce to the usual expression for the
second derivative
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lim
δ→0

f (x + 2δ) + f (x − 2δ) − 2f (x)

δ2
= d2f (x)

dx2
.

However, as (7.47) shows, (8πγ/3)l3P|μ|3/2 corresponds to the volume of a fiducial
“cell”. As shown in Sect. 6.3, the action of the volume operator V̂ in full LQG—i.e.
before any symmetry reduction has been performed—on a spin-network state �� ,
living on the graph �, is of the form

V̂�� ∼
∑

v∈S∩�

√
εabcεijknanbncĴiĴj Ĵk

modulo some constants and choice of sign factors.Here S is the region of themanifold
whose volume we wish to obtain, v ∈ S ∩ � is the set of vertices v of � which lie
within S, and na, nb, nc are tangent vectors to the edges of � which meet at v.

Now, we know that the operator Ĵ is bounded from below, i.e. has a minimum
eigenvalue of 1/2. Thus the volume operator V̂ must also necessarily be bounded
from below, with the smallest possible volume eigenvalue in LQG being of the order
γ3/2l3P.

Thus we arrive at the conclusion that because of the quantization of geometric
operators in full LQG it is not permissible to take the limit δ → 0 in expressions such
as (7.53). This fact lies at the core of the observation that LQC cures the singularities
in cosmological evolution that are encountered in the limit that the scale factor
a → 0 when we solve the classical FRLW equations or their quantum counterparts,
the Wheeler-deWitt equations.

Furthermore, a similar line of reasoning shows that the factor of |̂p|−3/2, multiply-
ing the scalar fieldmomentum in the LQCHamiltonian (7.51), remains bounded from
above throughout the evolution of the universe. In classical general relativity, where
p ∼ a2, as the initial Big Bang singularity is approached, the scale factor diverges
a → 0, leading to infinite energy densities for the scalar (and any other matter) field.

In LQC, the fact that |̂p|−3/2 has an upper bound of order ∼ l−3
P , ensures that such

divergences do not occur. The consequence is that cosmological evolution remains
regular and non-singular as one approaches the Big Bang and, in fact, one can evolve
past the moment of creation into what can be interpreted as a collapsing phase of a
universe which existed before our own!

Though the interpretation of the various branches of the cosmological evolution
in LQC as bouncing universes might be a matter of some debate, it is clear that due
to the tight consistency constraints on this geometric approach to quantum gravity
we can rest assured that singularities such as the one encountered at the moment of
the Big Bang or the one which is the end result of uncontrolled gravitational collapse
of matter, resulting in formation of a black hole, are artifacts of a description of
geometry which implicitly relied on the assumption of an infinitely smooth and
continuous spacetime at all scales.

http://dx.doi.org/10.1007/978-3-319-43184-0_6
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Chapter 8
Discussion

Any fair and balanced review paper on LQG should also mention at least a few of
the many objections its critics have presented. A list of a few of the more important
points of weakness in the framework and brief responses to them follows:

1. LQG admits a volume extensive entropy and therefore does not respect the Holo-
graphic principle: This criticism hinges upon the description of states of quantum
gravity as spin-networks which are essentially spin-systems on arbitrary graphs.
However, spin-networks only constitute the kinematical Hilbert space of LQG.
They are solutions of the spatial diffeomorphism and theGauss constraints but not
of the Hamiltonian constraint which generates time-evolution. This criticism is
therefore due to a (perhaps understandable) failure to grasp the difference between
the kinematical and the dynamical phase space of LQG.
In order to solve the Hamiltonian constraint we are forced to enlarge the set
of states to include spin-foams which are histories of spin-networks. In a nut-
shell then, as we mentioned in Sect. 6.5, the kinematical states of LQG are the
spin-networks, while the dynamical states are the spin foams. The amplitudes
associated with a given spin-foam are determined completely by the specification
of its boundary state. Physical observables do not depend on the possible internal
configurations of a spin-foam but only on its boundary state. In this sense LQG
satisfies a stronger and cleaner version of holography than string theory, where
this picture emerges from considerations involving graviton scattering from cer-
tain extremal black hole solutions.
In [1] it is shown that in the context of loop quantum cosmology of a radiation-
filled flat FRW model, Bousso’s covariant entropy bound [2] is respected. As
one approaches the moment of the Big Bang, and quantum gravitational effects
become large the bound is violated, however, far from the Big Bang, when geom-
etry has become semiclassical the bound comes into force.
As yet, there is no general proof of whether or not LQG respects Bousso’s bound.
However, one might argue that the structure of LQG is amenable to the spirit of
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Bousso’s bound. The latter suggests that there is a fundamental limit to the num-
ber of degrees of freedom in any given region of spacetime. Such a fundamental
limit is already present in LQG in the form of the quantized area and volume
operators which tell us that any region of spacetime must contain a finite number
of geometric degrees of freedom.

2. LQG violates the principle of local Lorentz invariance/picks out a preferred frame
of reference: Lorentz invariance is obeyed in LQG but obviously not in the exact
manner as for a continuum geometry. As has been shown by Rovelli and Speziale
[3] the kinematical phase space of LQG can be cast into a manifestly Lorentz
covariant form. A spin-network/spin-foam state transforms in a well-defined way
under boosts and rotations. Similarly in quantum mechanics one finds that a
quantum rotor transforms under discrete representations of the rotation group
SO(3).

3. LQG does not have stable semiclassical geometries as solutions—geometry
“crumbles”: CDT simulations e.g. [4] show how a stable geometry emerges.
As mentioned in Sect. 4.1, this involves calculating a sum over histories for the
geometry of spacetime, between some initial and final state. The stability of the
spacetimes studied in such simulations appears to be dependent on causality—
that is, spacetime geometries develop unphysical structures in the Euclidean case,
which are controlled when there is a well-defined past and future, as is the case
in LQG. The question of exactly how similar CDT and LQG are to each other is
a matter of continuing investigation.

4. LQG does not contain fermionic and bosonic excitations that could be identified
with members of the Standard Model: The area and volume operators do not
describe the entirety of the structures that can occur within spin networks. LQG
or a suitably modified version which allows braiding between various edges will
exhibit invariant topological structures. Recent work [5–10] has been able to
identify some such structureswith SMparticles. In addition, in any spin-system—
such as LQG—there are effective (emergent) low-energy degrees of freedom
which satisfy the equations of motion for Dirac and gauge fields. Xiao-Gang
Wen and Michael Levin [11, 12] have investigated so-called “string-nets” and
find that the appropriate physical framework is the so-called “tensor category”
or “tensor network” theory [13–15]. In fact string-nets are very similar to spin-
networks so Wen and Levin’s work—showing that gauge bosons and fermions
are quasiparticles of string-net condensates—should carry over into LQGwithout
much modification.

5. LQG does not exhibit dualities in the manner String Theory does: Any spin system
exhibits dualities. A graph based model like LQG even more so. One example of
a duality is to consider the dual of a spin-network which is a so-called 2-skeleton
or simplicial cell-complex. Another is the star-triangle transformation, which can
be applied to spin-networks which have certain symmetries, and which leads to a
duality between the low and high temperature versions of a theory on a hexagonal
and triangular lattice respectively [16].

6. LQG doesn’t admit supersymmetry, wants to avoid extra dimensions, strings,
extended objects, etc.: Extra dimensions and supersymmetry are precisely that—
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“extra”. Occam’s razor dictates that a successful physical theory should be
founded on the minimum number of ingredients. It is worth noting that at the
time of writing of this paper, results from the LHC appear to have ruled out many
supersymmetric extensions of the standard model. By avoiding the inclusion of
extra dimensions and supersymmetry, LQG represents a perfectly valid attempt
to create a theory that is consistent with observations.

7. LQG has a proliferation of models and lacks robustness: Again a lack of extra
baggage implies the opposite. LQG is a tightly constrained framework. There
are various uniqueness theorems which underlie its foundations and were rig-
orously proven in the 1990s by Ashtekar, Lewandowski and others. There are
questions about the role of the Immirzi parameter and the ambiguity it introduces
however these are part and parcel of the broader question of the emergence of
semi-classicality fromLQG (see SimoneMercuri’s papers [17, 18] in this regard).

8. LQG does not contain any well-defined observables and does not allow us to
calculate graviton scattering amplitudes: Several calculations of two-point cor-
relation functions in spin-foams exist in the literature [19]. These demonstrate
the emergence of an inverse-square law.

As well as discussing criticisms of LQG, it is also fair to consider what role this
theory may have in the future. We would not have written a paper reviewing the
formulation of LQG if we did not consider it an important and interesting theory—
one which we feel is probably a good representation of the nature of spacetime.
However it is wise to remember that most physical theories are ultimately found
to be flawed or inadequate representations of reality, and it would be unrealistic to
think that the same might not be true of LQG. Questions linger about the nature
of time and the interpretation of the Hamiltonian constraint, among other things.
What is the value then, in studying LQG? Perhaps LQG will eventually be shown
to be untenable, or perhaps it will be entirely vindicated. As authors of this paper,
we feel that the truth will probably lie somewhere in the middle, and that however
much of our current theories of LQG survive over the next few decades, this research
program does provide strong indications about what some future (and, we hope,
experimentally validated) theory of “quantum gravity” will look like.

Acknowledgments DV would like to thank SBT for invitations to visit the Perimeter Institute in
late 2009, where this collaboration was born, and to visit the University of Adelaide in August,
2011 where this project was continued. DV thanks the Perimeter Institute and the University of
Adelaide for their hospitality during these visits. SBT would like to thank the Ramsay family for
their support through the Ramsay Postdoctoral Fellowship. Finally, a special note of thanks is due
to Martin Bojowald, for helping to clarify the details of the calculations in Appendix C.



102 8 Discussion

References

1. A. Ashtekar, E. Wilson-Ewing, Covariant entropy bound and loop quantum cosmology. Phys.
Rev. D 78(6), 064047 (2008). doi:10.1103/PhysRevD.78.064047

2. R. Bousso, A covariant entropy conjecture. J. High Energy Phys. 1999(07), 004 (1999). doi:10.
1088/1126-6708/1999/07/004

3. C. Rovelli, S. Speziale,Lorentz Covariance of Loop Quantum Gravity (2010). arXiv:1012.1739
4. R. Loll, J. Ambjorn, J. Jurkiewicz. The Universe from Scratch (2005). arXiv:hep-th/0509010
5. S.Bilson-Thompson,A Topological Model of Composite Preons (2005). arXiv:hep-ph/0503213
6. S.O. Bilson-Thompson, F.Markopoulou, L. Smolin,Quantum Gravity and the Standard Model

(2006). arXiv:hep-th/0603022
7. S. Bilson-Thompson et al.,Particle Identifications from Symmetries of Braided Ribbon Network

Invariants (2008). arXiv:0804.0037
8. S. Bilson-Thompson, J. Hackett, L.H. Kauffman, Particle Topology, Braids, and Braided Belts

(2009). arXiv:0903.1376
9. S. Bilson-Thompson et al., Emergent Braided Matter of Quantum Geometry (2012).

arXiv:1109.0080
10. D. Vaid, Embedding the Bilson-Thompson Model in an LQG-like Framework (2010).

arXiv:1002.1462
11. M.A. Levin, X.-G. Wen, String-net Condensation: A Physical Mechanism for Topological

Phases (2004). arXiv:cond-mat/0404617
12. M. Levin, X.-G. Wen, Detecting Topological Order in a Ground State Wave Function (2007).

arXiv:cond-mat/0510613
13. J.D. Biamonte, S.R. Clark, D. Jaksch, Categorical Tensor Network States (2010).

arXiv:1012.0531
14. G. Evenbly, G. Vidal, Tensor Network States and Geometry (2011). arXiv:1106.1082
15. J. Haegeman et al., Entanglement Renormalization for Quantum Fields (2011).

arXiv:1102.5524
16. R.J. Baxter, Exactly Solved Models in Statistical Mechanics. Dover Publications (2008). ISBN:

0486462714
17. S. Mercuri, From the Einstein-Cartan to the Ashtekar-Barbero canonical constraints, passing

through the Nieh-Yan functional. Phys. Rev. D 77(2) (2008). ISSN: 1550-7998. doi:10.1103/
physrevd.77.024036. arXiv:0708.0037

18. S. Mercuri, Peccei-Quinn mechanism in gravity and the nature of the Barbero-Immirzi para-
meter. Phys. Rev. Lett. 103(8) (July 2009). ISSN: 0031-9007. doi:10.1103/PhysRevLett.103.
081302. arXiv:arXiv:0902.2764

19. C. Rovelli, Graviton Propagator from Background-Independent Quantum Gravity (2005).
doi:10.1103/PhysRevLett.97.151301. arXiv:gr-qc/0508124

http://dx.doi.org/10.1103/PhysRevD.78.064047
http://dx.doi.org/10.1088/1126-6708/1999/07/004
http://dx.doi.org/10.1088/1126-6708/1999/07/004
http://arxiv.org/abs/1012.1739
http://arxiv.org/abs/hep-th/0509010
http://arxiv.org/abs/hep-ph/0503213
http://arxiv.org/abs/hep-th/0603022
http://arxiv.org/abs/0804.0037
http://arxiv.org/abs/0903.1376
http://arxiv.org/abs/1109.0080
http://arxiv.org/abs/1002.1462
http://arxiv.org/abs/cond-mat/0404617
http://arxiv.org/abs/cond-mat/0510613
http://arxiv.org/abs/1012.0531
http://arxiv.org/abs/1106.1082
http://arxiv.org/abs/1102.5524
http://dx.doi.org/10.1103/physrevd.77.024036
http://dx.doi.org/10.1103/physrevd.77.024036
http://arxiv.org/abs/0708.0037
http://dx.doi.org/10.1103/PhysRevLett.103.081302
http://dx.doi.org/10.1103/PhysRevLett.103.081302
http://arxiv.org/abs/arXiv:0902.2764
http://dx.doi.org/10.1103/PhysRevLett.97.151301
http://arxiv.org/abs/gr-qc/0508124


Appendix A
Conventions

We reiterate here the conventions adopted in Sect. 1.1; uppercase letters I, J,K, . . .

are “internal” indiceswhich take values in a range appropriate to the relevant Lie alge-
bra; lowercase letters j, k, l, . . . ∈ 1, 2, 3, . . . ,N from the middle of the alphabet will
be used for indices in a spaceofN dimensions; lowercase lettersa, b, c, . . . ∈ {1, 2, 3}
from the start of the alphabet are three-dimensional spatial indices; Greek letters are
spacetime indices, with μ, ν, . . . ∈ {0, 1, 2, 3} and α,β, γ, . . . ∈ {0, 1, 2, 3, . . . ,N}.

A.1 Lorentz Lie-Algebra

The generators of the n-dimensional representation of the Lorentz Lie algebra can
be written in terms of the (n × n) Dirac gamma matrices {γI}, which satisfy the
anticommutation relations

{
γI , γJ

} = 2gIJ × 1n×n (A.1)

where gIJ is the metric tensor and 1n×n is the identity matrix.
For the case of n = 4, the matrices are given by

γ0 =
(

0 1
−1 0

)
, γi =

(
0 σi

σi 0

)
(A.2)

where i, j, k ∈ {1, 2, 3} and σi are the usual Pauli matrices, and in this case gIJ is
equivalent to ηIJ = diag(−1, 1, 1, 1), the usual Minkowski metric.

In terms of the {γμ}, the generators of the Lorentz group SO(3, 1) can be written
as [1]

TIJ = i

4

[
γI , γJ

]
. (A.3)
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Note that, whereas in the above we have restricted ourselves to the case of 3 + 1
dimensions, the expression for the generators of the Lorentz group goes through in
any dimension, with either Lorentzian or Euclideanmetric [1, Sect. 3.2]. An so(3, 1)-
valued connection can then be written as

Aμ = Aμ
IJTIJ = i

4
Aμ

IJ [γI , γJ ] (A.4)

but by the antisymmetry of the gamma matrices, the above expression can be short-
ened to Aμ = i

2Aμ
IJγIγJ , where we remember that the connection is antisymmetric

in the internal indices AIJ = −AJI .



Appendix B
Lie Derivative

The Lie derivative £X of a tensor T is the change in T evaluated along the flow
generated by the vector field �X on a manifold. When T is simply a function T ≡ f
on the manifold, the Lie derivative reduces to the directional derivative of f along X1

£XT ≡ Xa∂af = ∂

∂γ
f (γ),

where γ co-ordinatizes the points along the curve generated by X. When the connec-
tion is torsion-free, we may replace ∂α with ∇α.

It can be shown [2] that

£XT
μ1...μn
ν1...νm

= Xα∇αT
μ1...μn
ν1...νm

−
n∑

i=1

T ...α...
ν1...νm

∇αX
μi +

m∑

i=1

Tμ1...μn
...α... ∇νiX

α (B.1)

where . . . α . . . is shorthand for an expression with α in the ith position and μ(s)
or ν(s) elsewhere, e.g. μ1 . . . μi−1 α μi+1 . . . μn. In particular the Lie derivative of a
vector field Tμ along another vector field Xν reduces to the commutator of the two
vector fields,

£XT
μ = Xα∇αT

μ − Tα∇αX
μ ≡ [X,T ] . (B.2)

In the case of a rank-2 tensor Tμν

£XTμν = Xα∇αTμν + Tαν∇μX
α + Tμα∇νX

α. (B.3)

Applying this to the metric tensor gμν we find the relation

£Xgμν = ∇μXν + ∇νXμ (B.4)

since the covariant derivative of the metric vanishes.

1This fact is related to the interpretation of the differential dx as a component of a 1-form, and the
derivative operator ∂x = ∂/∂x as a component of a vector field.
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Appendix C
ADM Variables

One would like to be able to determine the data required to embed the spatial hyper-
surfaces � within the 4-manifold M, given the spacetime metric gab and the unit
time-like vector field na normal to �. This data consists of the intrinsic and extrinsic
curvature tensors (hab, kab). As explained in the main text the object hab defined by
Eq. (4.16) plays the role of the intrinsic metric (or “curvature”) of�. The quantity kab
is the extrinsic curvature of � determined by the particular form of its embedding in
M. In order to define kab we first need to determine the form of the covariant spatial
derivative.

C.1 Covariant Spatial Derivative

To help visualize the covariant spatial derivative Da, one can think of an arbitrary
configuration of the electric field E in three-dimensional space 3�. For simplicity,
if 3� is R3 and 2� ⊂ 3� is the surface z = 0, then the three-dimensional derivative
operator ∇ = (∂x, ∂y, ∂z) on R

3 reduces to the two-dimensional derivative D =
(∂x, ∂y) on the x-y plane. DaEb tells us how E changes as we move from one point
to another in 2�.

The covariant spatial derivative on � acting on an arbitrary spacetime tensor
Tb1...bi

c1...cj is given by [3, Sect. 3.2.2.2]

DaTb1...bi
c1...cj = ha

′
a hb1

b′
1 . . . hbi

b′
i hc1 c′

1
. . . hcj c′

j
∇a′Tb′

1...b
′
i

c′
1...c

′
j . (C.1)

This expression simplifies considerably in the case of a vector field na. Using
Eq. (4.16) and the fact that nd∇cnd = (1/2)∇c(ndnd) = (1/2)∇c(−1) = 0 because
nana = −1, the spatial derivative of an arbitrary vector field can be written as

Danb = ha
chb

d∇cnd = (gb
d + nbn

d)ha
c∇cnd = ha

c∇cnb. (C.2)
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There is nothing mysterious about (C.2). As shown by the electric field example
above, it simply measures how the vector field na changes from point to point as we
move around the spatial manifold �.

C.2 Extrinsic Curvature

The extrinsic curvature of a given manifold is a mathematical measure of the manner
in which it is embedded in amanifold of higher dimension. As illustrated in Fig. 4.3b,
a two-dimensional cylinder embedded inR3 has zero intrinsic curvature, but non-zero
extrinsic curvature. The normal at each point of the cylinder is a three-dimensional
vector nb and this vector changes as one moves around the cylindrical surface if
the extrinsic curvature of the surface is non-zero. Thus, the simplest definition for a
tensorial quantity which measures this change is given by

kab = Danb = ha
chb

d∇cnd (C.3)

whereDa is the covariant spatial derivative defined in (C.1). This quantity turns out to
be symmetric. In order to see this [3, Sect. 3.2.2.2], note that given two spatial vector
fields Ya and Za, their commutator [Y ,Z]a = Yb∇bZa −Zb∇bYa will also be spatial,
i.e. na[Y ,Z]a = 0. Since naYa = 0, by applying the product rule to ∇bnaYa = 0 it
follows that na∇bYa = −Ya∇bna. The equivalent result holds if we replace Ya by
Za. Substituting in these results we find that

na[Y ,Z]a = na(Y
b∇bZ

a − Zb∇bY
a) = −ZaYb∇bna + ZbYa∇bna = YaZb(∇bna − ∇anb) = 0

where we have used the summation over indices to swap the labels a, b in one of
the terms. Since Ya,Za are purely spatial, this implies that (the spatial projection of)
∇anb = ∇bna. Thus the extrinsic curvature of 3� can be written as

kab = 1

2
(Danb + Dbna) (C.4)

verifying the symmetry of kab which was stated, without proof, in Sect. 4.2.

C.3 Canonical Momentum in the ADM Formulation

Recall that the time vector field is written in terms of the lapse N , shift Nμ and the
normal to the hypersurface nμ, so that tμ = Nnμ + Nμ (Eq. (4.11)). We wish to
write down the explicit form of the Lie derivative of a one-index Xa and two-index
object hab, with respect to a vector field va. Conveniently this is already present in
Eqs. (B.2)–(B.4)! As we may expect, when a vector field is a sum of two (or more)
vector fields (as for the time-evolution field above), the Lie derivative with respect
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to that field decomposes into the sum of Lie derivatives with respect to each of the
components fields. So if Xa = ua + va + wa, then £X [T ] = £u[T ] + £v[T ] + £w[T ],
where T is the arbitrary tensor whose Lie derivative we want to find. You can see this
directly from Eq. (B.1) by writing the field X as a sum of other vector fields. When
T is a vector, then £XT = [X,T ] = [u,T ] + [v,T ] + [w,T ] and so on ([A,B] is the
commutator of two vector fields as in Eq. (B.2)).

There are two steps involved in deriving the form of the canonical momentum.
First is to prove the identity (4.25). The second is to use that result to perform the
functional derivative of the Einstein-Hilbert Lagrangian LEH w.r.t. the ḣab to obtain
Eq. (4.26).

First, we wish to show that £�thab = 2Nkab + £ �Nhab, which we can do by finding
a suitable expression for £�thμν , and then restricting the indices to the range μ, ν →
a, b ∈ {1, 2, 3}. So, since tμ = Nnμ + Nμ, using the above mentioned additive
property of Lie derivatives, we have £�thμν = £N�nhμν + £ �Nhμν . The second term is
present unchanged in Eq. (4.25). Now it remains to be shown that 2Nkab = £N�nhab.

The simplest approach is to recognise that theLie derivative of ametric tensorwith
respect to the vector field �n (we shall neglect the factor of N at first, but re-introduce
it shortly) is given by Eq. (B.4), which we restate for convenience:

£�nhμν = ∇μnν + ∇νnμ.

The above equation holds true only when the derivative operator ∇μ is compatible
with the metric hμν whose Lie derivative we wish to determine (that is, ∇μhμν = 0).
Hence we restrict ourselves to the spatial components and switch to the correct
notation D for the spatial derivative operator instead of ∇. Then by definition (C.4)
we see that the Lie derivative of the spatial metric is twice the extrinsic curvature
of 3�,

£�nhab = Danb + Dbna = 2kab. (C.5)

Now we equate this expression with the definition of the Lie derivative of a rank-2
tensor, Eq. (B.3), and follow the treatment of [3, Sect. 3.2.2.2]:

2kab = £�nhab = nc∇chab + hac∇bn
c + hbc∇an

c

= 1

N
(Nnc∇chab + Nhac∇bn

c + Nhbc∇an
c)

= 1

N
(Nnc∇chab + hac∇b(Nn

c) + hbc∇a(Nn
c))

= 1

N
£�t−�Nhab

= 1

N

(
£�thab − £ �Nhab

)

= 1

N
ha

chb
d
(
£�thcd − £ �Nhcd

)

= 1

N

(
ḣab − DaNb − DbNa

)
(C.6)

http://dx.doi.org/10.1007/978-3-319-43184-0_4
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where in the second line we have multiplied and divided by the scale factor N . In the
third linewehaveused the fact thatnchac = 0 tomoveN inside the derivative operator.
In going from the third to the fourth, we have used Eq. (B.3) in reverse, along with
the relationship between the lapse, shift and time-evolution fields, Nna = ta − Na.
The fifth line is obtained by using the linearity of the Lie derivative. At this point we
may readily rearrange the expression to obtain Eq. (4.25). In the sixth we have, in
the words of Bojowald, “smuggled in” two factors of h knowing that kab is spatial
to begin with. In the seventh, the spatial projection hachbd£thcd = ḣab is identified
as the “time-derivative” of the spatial metric. We leave the remaining step (to show
that hachbd£ �Nhcd = DaNb + DbNa) as an exercise for the reader.

To summarize, we have

kab = 1

2N

[
£�thab − D(aNb)

] = 1

2N

[
ḣab − D(aNb)

]
. (C.7)

Now, the Einstein-Hilbert Lagrangian is given by

LEH = N
√
h
[
(3)R + kabkab − k2

]
.

The first term does not contain any dependence on kab or Na and so its derivative
w.r.t. ḣab vanishes. For the remaining two terms we have

δLEH
δḣef

= N
√
h

[

kab
δkab
δḣef

+ kab
δkab

δḣef
− 2k

δk

δḣef

]

,

where k = habkab and kab can be written as hachbdkcd , hence

δLEH
δḣef

= N
√
h

[

kab
δkab
δḣef

+ kabh
achbd

δkcd
δḣef

− 2 k hab
δkab
δḣef

]

. (C.8)

From (C.7) we have
δkab
δḣef

= 1

2N
δeaδ

f
b. (C.9)

Inserting this into the previous expression we have

δLEH
δḣef

= N
√
h

[
kab

1

2N
δeaδ

f
b + kabh

achbd
1

2N
δecδ

f
d − 2 k hab

1

2N
δeaδ

f
b

]

= √
h
[
kef − khef

] = πef (C.10)

which is identical to (4.26) as desired.

http://dx.doi.org/10.1007/978-3-319-43184-0_4
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Appendix D
3 + 1 Decomposition of the Palatini Action

Let us recall the gravity action (4.58) with connection and tetrad variables as basic
variables,

SP [e,ω] = 1

4κ

∫
d4x εμναβεIJKL eμ

I eν
JFαβ

KL

where, as before Fαβ
KL is the curvature of the gauge connection as given by (4.59):

FKL
γδ = ∂[γωδ]KL + 1

2

[
ωγ

KM,ωδM
L
]
.

As in Sect. 4.2, we assume that our spacetimemanifoldM is topologically�t×R,
where �t are spatial (3D) manifolds which “foliate” M. We identify a vector field
tμ = Nnμ + Nμ as the generator of “time-evolution”, written in terms of the purely
time-like normal vector nμ at each point of �t , the lapse function N and the purely
spatial “shift” vector-field Nμ.

In themetric formalism, we started bywriting the 4-metric gμν in terms of a spatial
component hμν

2 and a time-like component nμnν such that gμν = hμhν − nμnν . In
contrast, here we don’t have a metric! Instead we have the volume form εμναβ and
the tetrad field eμ

I .
We proceed by noting that, firstly, on an n-dimensional manifold, the space of n-

forms is one-dimensional, as shown in Sect.E.1. In other words any four-form Lμναβ

defined on M is proportional to any other four-form on M. Second, the wedge or
antisymmetric outer product of a three-form and a one-form gives a four-form. Now,
on the 3-manifold �t , there exists a volume three-form εabc (or εαβγ in terms of four-
dimensional indices). One can take the wedge product of εαβγ with the one-form tδ

2Recalling once again that even thoughμ, ν are four-dimensional indices, hμν itself is purely spatial,
because it satisfies hμνnν = 0
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(the dual of the time-evolution vector field) to obtain a four-form, ε[αβγ tδ]. Then by
virtue of the fact that the space of four-forms on M is one-dimensional it follows
that

εμναβ ∝ ε[μναtβ].

The constant of proportionality can be determined by contracting both sides with
tβ , to obtain

εμναβ = 4ε[μναtβ]. (D.1)

Substituting this expression into the tetrad Palatini action we find

SP [e,ω] = 1

4κ

∫
d4x 4 ε[μναtβ]εIJKL eμ

I eν
JFαβ

KL

= 1

4κ

∫
d4x
(
εμναtβ + εβμν tα + εαβμtν + εναβ tμ

)
εIJKL eμ

I eν
JFαβ

KL.

(D.2)

To proceed further, we introduce the following notation [4, Sect. 6.2]:

Eα
IJ := 1

2
εαμνεIJKLeμ

Keν
L (D.3a)

(e · t)I := tμeμ
I (D.3b)

(A · t)IJ := tμAμ
IJ . (D.3c)

We will also need the identity [4, Sect. 3.2]

tμFμν
IJ = £�tAν

IJ − Dν(A · t)IJ . (D.4)

Using (D.3) and (D.4), (D.2) becomes

SP[e, ω] = 1

κ

∫
d4x

[
1

4
(e · t)I εIJKLεναβeν

JFαβ
IJ + 1

2
Eα

IJ£�tAα
IJ − 1

2
Eα

IJDα(A · t)IJ
]

. (D.5)

Substituting the expression for tμ in terms of the lapse and shift, the first term in the
above equation can be written as

1

4
(e · t)IεIJKLεναβeν

JFαβ
IJ = − 1

2
√
h
NTr(ẼαẼβFαβ) + 1

2
NβTr(ẼαFαβ)

Inserting this in the previous expression (D.5), we see that the Lagrangian of 3 + 1
Palatini theory can be written as

LP =
∫

�
− 1

2
√
h
NTr(ẼαẼβFαβ) + 1

2
NβTr(ẼαFαβ) + 1

2
Eα

IJ£�tAα
IJ + 1

2
Dα(Eα

IJ )(A · t)IJ (D.6)
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wherewe have performed an integration by parts on the last term in (D.5) and dropped
a surface term, which is presumed to vanish at spatial infinity, in (D.6).

Since our configuration variable is the connection Aα
IJ , the canonical momentum

can be read off the coefficient multiplying the time-derivative (or in this case the Lie
derivative with respect to the time-evolution vector field) of the connection in the
Palatini Lagrangian. Thus the canonical momentum is Eα

IJ .
The configuration variables of our theory are N,Nα, (A · t),Aα

IJ , and Eα
IJ .

However, since the Lagrangian (D.6), does not contain any time-derivatives of
N,Nαand (A · t), these variables act as Lagrange multipliers and their respective
coefficients must therefore be constant on the physical phase space.

To obtain the Hamiltonian, we can perform the usual Legendre transform on (D.6)
to obtain

HP =
∫

�

1

2
√
h
NTr(ẼαẼβFαβ)− 1

2
NβTr(ẼαFαβ)− 1

2
Dα(Eα

IJ )(A·t)IJ+λαβεIJKLẼα
IJ Ẽ

β
KL (D.7)

where the last term has been inserted in order to satisfy the constraint that

εIJKLẼα
IJ Ẽ

β
KL = 0

which follows from the definition of Eα
IJ .

The Hamiltonian thus becomes a sum of constraints, specifically

Tr(ẼαẼβFαβ) ≈ 0, Tr(ẼαFαβ) ≈ 0, Dα(Eα
IJ) ≈ 0

which are, respectively, the Hamiltonian, diffeomorphism and Gauss constraints.



Appendix E
Duality

The notion of self-/anti-self-duality of the gauge fieldFαβ is central to understanding,
on the one hand, the topological sector of Yang-Mills theory and, on the other, the
solutions of Einstein’s equations in the connection formulation. As discussed in
Sect. 3.2, the use of multivectors and k-forms can be very helpful for understanding
duality. Let us review these concepts.

E.1 Multivectors and Differential Forms

A vector is a directed line segment with a magnitude which is interpreted as a length.
One way to form the product of two vectors u and v is the dot product u · v, which is
a scalar that is maximised when the vectors are parallel. We can also form the wedge
product, u ∧ v, which is a directed surface spanned by u and v (the direction being
both an orientation in space and a preferred direction of rotation around the boundary
of the surface), with a magnitude interpreted as the area of the surface. This area is
called a bivector, and its magnitude is maximised when u and v are perpendicular
(and zero when they are parallel). The wedge product of three non-coplanar vectors
is a trivector, which is a parallelipiped with a direction (a preferred directed path
around the edges of the parallelipiped) and a magnitude interpreted as its volume.
The wedge product of k vectors (assuming they are not parallel, coplanar, etc.) will in
general be called amultivector, being an oriented parallelipiped in k dimensions, with
a magnitude given by its enclosed volume. A scalar may be regarded as a 0-vector.
We can define the Clifford product of multivectors as

uv = u · v + u ∧ v (E.1)

If u and v are ordinary vectors, then if u and v are perpendicular uv = u ∧ v since
in this case u · v = 0. Hence when dealing with orthonormal basis vectors we may
adopt the notation eiej = ei ∧ ej = eij, and likewise eiejek = ei ∧ ej ∧ ek = eijk , etc.
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116 Appendix E: Duality

Conversely if u and v are parallel then uv = u · v since in this case u∧ v = 0, hence
eiei = ei · ei = 1.

The importance of multivector quantities in physics can be seen if we consider the
case of four-dimensional Minkowski spacetime, where the scalar product is taken
using the metric ημν . Hence e0e0 = −1, and e1e1 = e2e2 = e3e3 = +1. In this case
the basis vectors are isomorphic to the Dirac gamma matrices, γμ, and the reader can
verify that they satisfy {eμ, eν} = 2ημν , the defining relation of the Dirac matrices
(see Eq. (A.1)). Since this anticommutator is formed by taking Clifford products of
the eμ, the gammamatrices are said to generate a representation of a Clifford algebra.

Differential forms and multivectors can be seen to correspond closely. A bivector
and a 2-form both define a plane. A trivector and a 3-form both define a volume,
etc. However as mentioned in Sect. 3.2, multivectors can be easier to visualise, as
the magnitude of a k-form is a density, while the magnitude of a multivector is a
k-dimensional volume. It can therefore often be easier to think of how the wedge
products and duals of k-forms behave by visualising them as multivectors.

Duality is a notion that emerges naturally from the construction of the space of
multivectors, and likewise from the construction of the space⊕n

k=0
n�k of differential

forms on a n-dimensional manifoldM. Let n�k denote the subspace consisting only
of forms of order k in n dimensions e.g. in three dimensions the space of two-forms
3�2 is spanned by the basis

{
dx1 ∧ dx2, dx2 ∧ dx3, dx3 ∧ dx1

}
where {x1, x2, x3} is

some local coordinate patch - i.e. a mapping from a portion of the given manifold to
a region around the origin in R

3.
Now one can show [2, 5] that n�k = n�n−k , i.e. the space of k-forms is the same

as the space of (n−k)-forms. Thus any k-form Fa1a2...ak , defined on an n dimensional
manifold, can be mapped to an (n−k)-form (�Fa1a2...an−k ). This is accomplished with
the completely antisymmetric tensor εx1...xn on M:

(�F)a1...an−k = 1

(n − k)!ε
a1...an−k

an−k+1...anF
an−k+1...an (E.2)

This expression may appear daunting, but as suggested we can make its mean-
ing clearer by examining duality with multivectors. Consider the case of three
dimensions. The antisymmetry of the wedge product means that the unit trivec-
tor eijk = eiejek picks up a factor of−1 each time the order of any two of its factors is
swapped, hence eijk = −eikj, etc. and so the unit trivector is a geometrical representa-
tion of the antisymmetric tensor εijk . Multiplying a vector by the unit trivector yields
a bivector, and multiplying a bivector by the unit trivector yields a vector (Fig. E.1).
To see why, consider the familiar cross product. Any two vectors a, b ∈ R

3 (that
are not parallel to each other) span a two-dimensional subspace of R3. Using these
two vectors we construct a third vector c = a × b, where the components of c are
given by ci = εijkajbk (and we remind the reader that summation is performed over
any repeated indices, as the raising or lowering of indices is irrelevant in R

N ). This
construction is taught to us in elementary algebra courses, but never quite seemed
to make complete sense because it seemed to be peculiar to three dimensions. The
product a × b is a vector which is perpendicular to the plane defined by the vectors

http://dx.doi.org/10.1007/978-3-319-43184-0_3
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Fig. E.1 The unit trivector e123 allows us to explore duality in three dimensions. When we take
the Clifford product, indicated here by (· + ∧), of the unit trivector with a vector, the part of e123
parallel to the vector yields a scalar factor via the dot product, and a factor of zero via the wedge
product part. This leaves us with a bivector perpendicular to the original vector (left). Likewise the
Clifford product of e123 with a bivector yields a vector (right). In each case the bivector and vector
are dual to each other, since each spans the directions the other doesn’t. Duality is therefore an
extension of the concept of orthogonality. For a four-dimensional object, the dual would be taken
with e1234, the dual of a vector would be a trivector, and the dual of a bivector would be another
bivector

a and b. But this plane is the same one that the wedge product a ∧ b lies in. If we
take the Clifford product of a ∧ b with the unit 3-vector, e1 ∧ e2 ∧ e3 = e123 we
are left with a vector that is perpendicular to the plane of a ∧ b, and which equals
−(a × b). Why? Because the components of a ∧ b parallel with components of the
unit trivector yield scalars, leaving only the components perpendicular to a ∧ b, as
we can see by expanding the Clifford product in full,

(e1 ∧ e2 ∧ e3)(a ∧ b) = (e123)((a1e1 + a2e2 + a3e3) ∧ (b1e1 + b2e2 + b3e3))

= (e123)((a1b2 − a2b1)e12 + (a1b3 − a3b1)e13 + (a2b3 − a3b2)e23)

= (a1b2 − a2b1)e12312 + (a1b3 − a3b1)e12313 + (a2b3 − a3b2)e12323

= (a1b2 − a2b1)(−e3) + (a1b3 − a3b1)e2 + (a2b3 − a3b2)(−e1)

= −a × b (E.3)

where in the third line we have dealt with the terms e12312 = e1 ∧ e2 ∧ e3 ∧ e1 ∧ e2
etc. by using ei ∧ ej = −ej ∧ ei to rearrange the basis vector terms, so that we may
eliminate extra terms by using eiei = ei · ei = 1. We also find that the wedge product
of a and b has components (a ∧ b)ij = a[ibj].

This allows us to view the cross product as a three-dimensional special case of
a procedure that can be performed in any number of dimensions. This procedure is
“forming the dual”. We can say that the cross product of two vectors is the dual of
the wedge product, (a × b) = �(a ∧ b). In the language of differential forms this
procedure is described by Eq. (E.2), and utilises the antisymmetric tensor εa1a2...an .
In the language of multivectors, it involves taking the Clifford product with the unit
multivector e1e2 . . . en = e12...n.

From now on we will speak of k-forms, rather than k-forms and/or multivectors.
But their equivalence, and the geometric interpretation arising from this, should be
kept in mind.
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E.2 Spacetime Duality

From the discussion in Sect.E.1, it should be obvious that in four dimensions the
dual of any two-form is another two-form

�Fαβ = 1

2
εαβ

μνFμν (E.4)

(compare this with Eq. (3.22), and as noted there, the quantity defined on the plane
between any pair of spacetime axes is associated to the quantity defined on the plane
between the other two spacetime axes). It is due to this property of even-dimensional
manifolds that we can define self-dual and anti-self-dual k-forms, where a form is
self-/anti-self-dual if

�F = ±F. (E.5)

Given an arbitrary 2-form Gμν its self-dual part G+ and anti-self-dual part G−
are given by

G+ = G + �G

2α
, G− = G − �G

2β
,

where α and β are constants we have introduced for later convenience. We can check
that

� (G ± �G) = ±(G ± �G) (E.6)

because �� = 1 in a Euclidean background. In other words �G+ = G+ and �G− =
−G−, which is precisely the definition of (anti-)self-duality. Thus any 2-form can
always be written as a linear-sum of a self-dual and an anti-self-dual piece

G = αG+ + βG−, �G = αG+ − βG−

.
The above results hold for a Euclidean spacetime. For a Lorentzian background

we would instead have �� = −1 and the dual of a two-form is given by

� Fαβ = i

2
εαβ

γδFγδ (E.7)

and the statement of (anti-)self-duality becomes

� F = ±iF (E.8)

with the self-dual and anti-self-dual pieces of a two-form G given by G+ = (G +
�iG)/2α and G− = (G − �iG)/2β.

http://dx.doi.org/10.1007/978-3-319-43184-0_3
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E.3 Lie-Algebra Duality

The previous section discussed self-duality in the context of tensors with spacetime
indices Tαβ...

γδ.... In gauge theories based on non-trivial Lie algebras we also have
tensors with Lie algebra indices, such as the curvature Fμν

IJ of the gauge connection
Aμ

IJ where I, J label generators of the relevant Lie algebra.. The dual of the connec-
tion can then be defined using the completely antisymmetric tensor acting on the Lie
algebra indices, as in

� Aμ
IJ = 1

2
εIJKLAμ

KL. (E.9)

E.4 Yang-Mills

Let us illustrate the utility of the notion of self-duality by examining the classical
Yang-Mills action,

SYM =
∫

R4
Tr [F ∧ �F]

Varying this action with respect to the connection gives us the equations of motion3

dF = 0 , d � F = 0 ,

which are satisfied if F = ± � F, i.e. if the gauge curvature is self-dual or anti-self-
dual. Thus for self-/anti-self-dual solutions the Yang-Mills action reduces to

S±
YM = ±

∫

R4
Tr [F ∧ F]

which is a topological invariant of the given manifold and is known as the Pontryagin
index. Here the± superscript on the right-hand side denotes whether the field is self-
dual or anti-self-dual.

E.5 Geometrical Interpretation

Given any (Lie algebra valued) two-form FI
ab (where I, J,K . . . are Lie algebra

indices)wecanobtain an element of theLie algebra by contracting itwith amember of
the basis of the space of two-forms, {dxi∧dxj}where xi denotes the ith vector and not
the components of a vector. The components are suppressed in the differential form
notation as explained in the preceding sections. The resulting Lie algebra element is

3See for instance the Yang-Mills theory section of the Wikipedia article on instantons.
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�I = FI
ab dx

a ∧ dxb

and �I is the flux of the field strength through the two-dimensional surface spanned
by {dxa, dxb}.

We can also define

��I = �FI
ab dx

a ∧ dxb = 1

2
εab

cdFI
cd dx

a ∧ dxb

which implies that ��I
ab = 1

2 εab
cd�I

cd , i.e. the flux of the field strength through the
a-b plane is equal to the flux of the dual field through the c-d plane.

E.6 (Anti) Self-dual Connections

When we say that the connection is (anti-)self-dual, explicitly this means that

AIJ
μ = ± � Aμ

IJ = ± i

2
εIJKLAμ

KL. (E.10)

Let us now show the relation between the (anti-)self-dual four-dimensional connec-
tion and its restriction to the spatial hypersurface �. We begin by writing the full
connection in terms of the generators {γI} of the Lorentz Lie algebra, ±A := AIJ

μ γIγJ ,
and expanding the sum (see [6, Sect. 2] and Sect. A.1), thus

AIJ
μ γIγJ = Ai0

μ γiγ0 + A0i
μ γ0γi + Aij

μγiγj

= 2A0i
μ γ0γi + Aij

μγiγj

= 2A0i
μ

(
σi 0
0 −σi

)
+ iAjk

μ εijk
(

σi 0
0 σi

)
. (E.11)

In the second line we have used the fact that AIJ
μ is antisymmetric in the internal

indices and that the gamma matrices anticommute. In the third we have used the
expressions for the gamma matrices given in Sect.A.1 to expand out the matrix
products. This allows us to write the last line in the above expression in the form

A = AIJ
μ γIγJ = 2i

(
Ai+

μ σi 0
0 Ai−

μ σi

)
(E.12)

where

Ai+
μ = 1

2
εijkAjk

μ − iA0i
μ (E.13a)

Ai−
μ = 1

2
εijkAjk

μ + iA0i
μ . (E.13b)
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For I = 0, J ∈ {1, 2, 3}, using the definition of the dual connection, we find that

Aμ
0i = i

2
ε0i jkAμ

jk

and so we may rewrite these expressions as

Ai+
μ = 1

2

(
εijk + ε0i jk

)
Ajk

μ (E.14a)

Ai−
μ = 1

2

(
εijk − ε0i jk

)
Ajk

μ . (E.14b)



Appendix F
Path Ordered Exponential

From Eq. (3.26) we see that the effect of a holonomy of a connection along a path λ
(for either an open or closed path) in a manifold M is defined as

ψ|(τ=1) = P
{
e
∫
λ igdτ ′Aμnμ

}
ψ|(τ=0) = Uλ ψ|(τ=0). (F.1)

The exponential can be formally expressed in terms of a Taylor series expansion

e− ∫γ dτ ′Aμnμ = 1 +
∞∑

n=1

1

n!
{∫ σ1

σ0=0

∫ σ2

0
. . .

∫ σn=1

0
dτ1dτ2 . . . dτn A(σn)A(σn−1) . . .A(σ1)

}

(F.2)

where for the nth term in the sum, the pathλ is broken up into n intervals parametrized
by the variables {τ1, τ2, . . . , τn} over which the integrals are performed. The path
ordering enforces the condition that the effect of traversing each interval is applied
in the order that the intervals occur. The interested reader is referred to pages 66–68
of [7].
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Appendix G
Peter-Weyl Theorem

The crucial step involved in going from graph states with edges labelled by
holonomies to graph states with edges labelled by group representations (angular
momenta) is the Peter-Weyl theorem. This theorem allows the generalization of the
notion of Fourier transforms to functions defined on a group manifold for compact,
semi-simple Lie groups.

Given a group G, let Dj(g)mn be the matrix representation of any group element
g ∈ G. Then we have (see Chap.8 of [8]);

Theorem G.1 The irreducible representation matrices Dj(g) for the group SU(2)
satisfy the following orthonormality condition

∫
dμ(g)D†

j (g)mnD
j′(g)n

′
m′ = nG

nj
δj

′
jδ

n′
nδ

m′
m. (G.1)

Here nj is the dimensionality of the jth representation of G and nG is the order of
the group. For a finite group this is simply the number of elements of the group.
For example, for Z2, nG = 2. However a continuous or Lie group such as SU(2)
has an uncountable infinity of group elements. In such cases nG corresponds to the
“volume” of the group manifold.

This property allows us to decompose any square-integrable function f (g) : G →
C in terms of its components with respect to the matrix coefficients of the group
representations.

Theorem G.2 The irreducible representation functions Dj(g)mn form a complete
basis of (Lebesgue) square-integrable functions defined on the group manifold.

Any such function f (g) can then be expanded as

f (g) =
∑

j;mn
fj
mnDj(g)mn (G.2)
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126 Appendix G: Peter-Weyl Theorem

where fjmn are constants which can be determined by inserting the above expression
for f (g) in (G.1) and integrating over the group manifold. Thus we obtain

∫
dμ(g)f (g)D†

j (g)mn =
∑

j′;m′n′

∫
dμ(g)fj′

m′n′
Dj′(g)m′n′D†

j (g)mn

=
∑

j′;m′n′
fj′

m′n′ nG
nj

δj
′
jδ

n′
nδ

m′
m, (G.3)

which gives us

fj
mn =

√
nj
nG

∫
dμ(g)f (g)D†

j (g)mn. (G.4)



Appendix H
Square-Free Numbers

According to the fundamental theorem of arithmetic, any integer d ∈ Z, has a unique
factorization in term of prime numbers,

d =
N∏

i=1

pmi
i

where {p1, p2, . . . , pN } are the N prime numbers which divide d, one or more times,
and mi is the number of times the prime number pi occurs in the factorization of d.
Thus we have

√
d =

N∏

i=1

pmi/2
i .

We can partition the set {mi} into two sets containing only the even or odd elements
respectively

{mi} ≡ {me
j } ∪ {mo

k}

where j ∈ 1 . . . ne, k ∈ 1 . . . no, and ne + no = N . This gives

√
d =
(

ne∏

i=1

p
mei
2
i

)⎛

⎝
no∏

j=1

p
moj
2
j

⎞

⎠ .

Since each of the me
i = 2aei and mo

j = 2bj + 1, for some ai, bj ∈ Z, we have

√
d =
(

ne∏

i=1

p
aei
i

)⎛

⎝
no∏

j=1

p
mo

j

j

⎞

⎠

√√√√
no∏

k=1

pk = A
√
B.

It is evident that since the third term in the product has no repeating elements, its
square-root

√
B cannot be an integer (i.e. the presence of repeating elements would
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lead to an expression like
√
X · X). Such an integer B is therefore known as a square-

free integer. Thus any integer d can be written as the product of a square-free integer
B and another (non square-free) integer C = A2 such that d = C × B.



Appendix I
Brahmagupta-Pell Equation

Around the 7th century A.D. the Indian mathematician Brahmagupta, demonstrated
the Brahmagupta-Fibonacci Identity,

(a2 + nb2)(c2 + nd2) = (ac)2 + n2(bd)2 + n[(ad)2 + (bc)2] + 2acbdn − 2acbdn
(I.1)

= (ac + nbd)2 + n(ad − bc)2 (I.2)

where we have added and subtracted 2acbdn from the left-hand side on the first line.
The above goes through for all n ∈ Z. Given any pair of triples of the form (xi, yi, ki),
where i = 1, 2, which are solutions of the Diophantine equation x2i − ny2i = k2i , we
can construct a third triple (x3, y3, k3), which is also a solution of the same equation,
by applying the Brahmagupta-Fibonacci identity to the first two pairs

(x21 − ny21)(x
2
2 − ny22) = (x1x2 − ny1y2)

2 − n(x1y2 − x2y1)
2 (I.3)

which tells us that x3 = x1x2 − ny1y2, y3 = x1y2 − x2y1 and k3 = k1k2. One can
easily check that the triple {x3, y3, k3} is also a solution of the Diophantine equation.

Whenwe apply the restriction that ki = 1, the Diophantine equation x2i −ny2i = k2i
reduces to the Brahmagupta-Pell equation,

x2i − ny2i = 1

and given two pairs of solutions {(xi, yi), (xj, yj)} to the BP equation (for the same
fixed value of n), we can generate a third solution given by:

(xk, yk) = ((xixj − nyiyj), (xiyj − xjyi))

More generally given any solution (x0, y0; n) to the BP equation, one can generate
an infinite set of solutions (xi, yi; n) by repeatedly applying the BF identity to the
starting solution
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130 Appendix I: Brahmagupta-Pell Equation

(x1, y1) = (x0, y0)
2

(x2, y2) = (x0, y0)(x1, y1)

...

(xn, yn) = (x0, y0)(xn−1, yn−1). (I.4)

Here, the pair (x0, y0; n) is referred to as the fundamental solution.

I.1 Quadratic Integers and the BP Equation

We are familiar with solutions of equations of the form

x2 + Bx + c = 0

This is the quadratic equation from beginning algebra courses, which has as solutions

x± = −B ± √
B2 − 4c

2

when the discriminant B2 − 4c is negative, the roots of the equation are imaginary
or complex numbers

x± = −B ± id

2
∈ C

where d = |B2 − 4c| and i = √−1. When {B, c} ∈ Z, the solutions of the quadratic
equations can be characterized as elements of the field of quadratic integersQ(

√
d),

which is an extension of the familiar field of rational numbersQ. Such numbers have
the form

z = a + ωb

where {a, b} ∈ Z, ω = √
d if d mod 4 ≡ 2, 3 and ω = 1+√

D
2 otherwise (if d

mod 4 ≡ 1). Note that d ∈ A, where A is the set of square-free integers.
It is at this point that onemakes a connection to the square-free quadratic extension

of the field of rationals Q(
√
n) and its integral subset Z(

√
n), by noting that any

solution (xi, yi; n) of the BP equation can be represented as a quadratic integer,

(xi, yi; n) ⇒ zni = xi + yi
√
n ∈ Z(

√
n).

The consistencyof this representation is enforcedby the fact that themultiplication
law for two quadratic integers zi, zj ∈ Z(

√
n) is the same condition satisfied when

multiplying two pairs of solutions of the BP equation to obtain a third pair, i.e. if
zi = xi + yi

√
n and zj = xj + yj

√
n are two members of Z(

√
n), then their product
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zk = zi × zj = xk + yk
√
n is given by

xk = xixj + nyiyj (I.5)

yk = xiyj + xjyi (I.6)

which is identical to the multiplication law satisfied by pairs of solutions of the BP
equation.



Appendix J
Kodama State

The Kodama state is an exact solution of the Hamiltonian constraint for LQG with
positive cosmological constant� > 0 and hence is of great importance for the theory.
It is given by

�K(A) = N e
∫
SCS (J.1)

whereN is a normalization constant. The action SCS[A] is the Chern-Simons action
for the connection AI

μ on the spatial 3-manifold M, given by

SCS = 2

3�

∫
YCS

where

YCS = 1

2
Tr

[
A ∧ dA + 2

3
A ∧ A ∧ A

]

with dA � ∂[μAI
ν] being the exterior derivative. Consistent with our discussion of

bivectors and k-forms in Sect.E.1 the wedge product ∧ between two 1-forms P and
Q is

P ∧ Q � P[aQb].

For identical one-forms the wedge product gives zero. That is why for the Chern-
Simons action to have a non-zero cubic term the connection must be non-abelian.
Let us write the various terms in the Chern-Simons density explicitly;

A ∧ dA ≡ Ai
[p∂qA

j
r]TiTj, A ∧ A ∧ A ≡ Ai

[pA
j
qA

k
r]TiTjTk

where p, q, r . . . are worldvolume (“spacetime”) indices, i, j, k . . . are worldsheet
(“internal”) indices and Ti are the basis vectors of the Lie algebra/internal space.
Taking the trace over these terms gives us
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YCS = 1

2
Tr

[
Ai

[p∂qA
j
r]TiTj +

2

3
Ai

[pA
j
qA

k
r]TiTjTk

]

The trace over the Lie algebra elements gives us

Tr
[
TiTj
] = δij, Tr

[
TiTjTk

] = fijk

where fijk are the structure constants of the gauge group.
Now, the Hamiltonian constraint in Ashtekar variables has the form

H = εijkẼ
a
i Ẽ

b
j F

k
ab.

We can quantize this expression in the usual way setting the connection Ai
a as the

“position” and the triad Ẽa
i as its conjugate “momentum”. Then in terms of operators,

the action of the Âi
a on a state will correspond to multiplication and Êa

i corresponds
to taking the functional derivative with respect to the the connection, hence

Âi
a�(A) ≡ Ai

a�(A) , Êa
i �(A) ≡ δ

δAi
a

�(A). (J.2)

The operator form of the Hamiltonian constraint then becomes

Ĥ = F̂k
abÊ

a
i Ê

b
j (J.3)

and its action on a wavefunction �(A) becomes

Ĥ�(A) = F̂k
ab

δ

δAi
a

δ

δAj
b

�(A). (J.4)

Now, making use of the fact that

δ

δAi
a

δ

δAj
b

SCS = εijkF
k
abSCS

we can immediately see that the Kodama state �K(A) is an eigenstate of (J.4) with
eigenvalue 2

3� !
Despite the remarkable fact that the Ashtekar variables allow us to find an exact

solution of the gravitational Hamiltonian for arbitrary geometries, there are sev-
eral technical problems with treating the Kodama state as a valid wavefunction for
quantum gravity as was first pointed out byWitten [9]. In recent work, Randono [10–
12] has suggested that these problems can be addressed by working with a suitable
modification of the original Kodama state.



Appendix K
3-j Symbols and 6-j Symbols

The Wigner 3-j symbol is related to the Clebsch-Gordan coefficients through

(
j1 j2 j3
m1 m2 m3

)
≡ (−1)j1−j2−m3

√
2j3 + 1

〈j1,m1; j2,m2|j3,m3〉

where the (ji,mi) are the orbital and magnetic quantum numbers of the ith particle.
The state | j1,m1; j2,m2〉 is the state representing two particles (or systems) each
with their separate angular momentum numbers, while | j3,m3〉 represents the total
angular momentum of the system. Classically, when we have two systems with
angular momentum �L1 and �L2, the angular momentum of the combined system is
�L3 = �L1 + �L2. In quantum mechanics, however, the angular momentum of the
composite system can be any one of a set of possible allowed choices. Whether or
not the angular momentum of the composite system can be specified by quantum
numbers j3,m3 is determined by whether or not the Clebsch-Gordan coefficient is
non-zero. In contrast, conceptually the 3-j symbols are coefficients which serve to
enforce the condition that the sum of three angular momenta is zero, hence

j1∑

m1=−j1

j2∑

m2=−j2

j3∑

m3=−j3

|j1m1〉|j1m1〉|j1m1〉
(

j1 j2 j3
m1 m2 m3

)
= |00〉 . (K.1)

An extension of the concept of the 3-j symbol is the Wigner 6-j symbol. This occurs
in the addition of three angular momenta to form a fourth (total) angular momentum,
and can be written as the sum over products of four 3-j symbols,

{
j1 j2 j3
j4 j5 j6

}
=
∑

m1,...,m6

(−1)
∑6

k=1(jk−mk)

(
j1 j2 j3
m1 m2 −m3

)(
j1 j5 j6

−m1 m5 m6

)

×
(

j4 j5 j3
m4 −m5 m3

)(
j4 j2 j6

−m4 −m2 −m6

)
. (K.2)
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The form of the product on the right-hand side indicates, in this case, the addition of
j1 and j2 to form j3, and then adding j5 and j3 to form the total angular momentum
j4, while meanwhile adding j1 and j5 to form j6, and then adding j2 and j6 to form
the total angular momentum j4. The 6-j symbol imposes a condition between four
angular momenta, and can be visualised as the tetrahedral Yutsis graph. Symmetries
of the graph correspond to invariance of the 6-j symbol under permutations of its
columns, and the interchange of upper and lower symbols in any two columns.



Appendix L
Regge Calculus

Regge showed in 1961 that one could obtain the continuumaction of general relativity
“in 2+1 dimensions” from a discrete version thereof given by decomposing the
spacetimemanifold into a collection of tetrahedral simplices [13, 14], with curvature
corresponding to an excess or shortage of angle traversed around each vertex. For
instance, a plane 2D surface can be tiled with equilateral triangles, with six such
triangles meeting at each vertex. If one attempted to fit in a seventh triangle around
a given vertex, thereby effectively increasing the number of degrees in a full circle,
the only way it could be accommodated would be by curving the resulting surface.
Similarly if one attempted to omit a triangle, thereby reducing the number of degrees
in a full circle, the only way to join the edges of adjacent triangles would be to curve
the surface they formed (clearly the addition or omission of more triangles leads to
more extreme curvature). Hence when many such tetrahedral simplices are joined
together, curvature of the resulting discrete manifold is represented by positive or
negative deficit angles.

The Regge action for the ith tetrahedron is

Si =
6∑

a=1

li,aθi,a. (L.1)

Here the sum over a is the sum over the edges of the tetrahedron. The terms li,a and
θi,a are the length of the edge and the dihedral deficit angle, respectively, around the
ath edge of the ith tetrahedron.

The Regge action for a manifold built up by gluing such simplices together is
simply the sum of the above expression over all N simplices

SRegge =
N∑

i=1

Si.
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It was later shown by Ponzano and Regge [15] that in the ji � 1 limit, the 6-j
symbol corresponds to the cosine of the Regge action [16]

{
j1 j2 j3
j4 j5 j6

}
∼ 1

12πV
cos

(
∑

i

jiθi + π

4

)

.
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