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Abstract

We present a recently developed concept of limiting phase trajectories (LPTs)
allowing a unified description of resonance highly non-stationary processes for a
wide range of classical and quantum finite-dimensional dynamic systems with
constant and varying parameters. This concept provides a far-going extension and
adequate mathematical description of the well-known linear beating phenomenon in
the systems of two weakly coupled oscillators to a diverse variety of nonlinear
models. Contrary to stationary and non-stationary, non-resonance oscillations,
described efficiently in the framework of nonlinear normal mode (NNMs) concept,
the non-stationary resonance processes under consideration are characterized by
strong modulation and intense energy exchange between different parts of the
system. They include energy exchange in multi-particle systems, targeted energy
transfer, non-stationary vibrations of carbon nanotubes, nonlinear quantum tun-
neling, autoresonance, and non-conventional synchronization. Besides the nonlin-
ear beats, the LPT concept allows us to find the conditions of transition from intense
energy exchange to strong energy localization. A special mathematical technique
based on the non-smooth temporal transformations leads to the clear and simple
description of strongly modulated regimes. The role of LPT as the fundamental
non-stationary resonance process corresponding to the maximum possible energy
exchange between different parts of the system turns out to be similar to that of
NNMs in the stationary theory.

Keywords Nonlinear normal mode � Limiting phase trajectory � Weakly coupled
nonlinear oscillators � Energy transfer and localization � Synchronization �
Autoresonance � Quantum tunneling � Carbon nanotubes
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Introduction

For a sufficiently long time, the main analytical tools for the study of both stationary
and non-stationary nonlinear processes in the finite-dimensional systems, as well as
the study of their instability and bifurcations, have been associated with the concept
of nonlinear normal modes. Rosenberg (1960, 1962, 1966) defined a nonlinear
normal mode (NNM) of an undamped discrete multi-particle system as syn-
chronous periodic oscillation, where the displacements of all the material points
of the system reach their extreme or zero values simultaneously. Then, the NNM
concept was generalized on the autogenerators, and systems subjected to external
force (see, e.g., (Manevitch et al. 1989; Vakakis et al. 1996) and references therein)
to describe the forced stationary oscillations. In the autogenerators, a NNM can
be considered as an attractor that corresponds to a synchronized motion of
self-sustained non-conservative oscillators (Rand and Holmes 1980). The important
features that distinguish NNMs from their linear counterparts are: (i) the super-
position principle turns out to be invalid and (ii) there can be more NNMs than the
number of the degrees of freedom the system has. In this case, the essentially
nonlinear modes (they do not have an analogue in linear theory) are generated
through the NNM bifurcations, breaking the symmetry of the dynamics and
resulting in the nonlinear energy localization (motion confinement). This phe-
nomenon is directly related to the strong asymmetry caused by the nonlinearity. The
manifestation of spatially localized NNMs is extremely important in different fields
of nonlinear physics. The excitations of this type determine elementary mechanisms
of many physical processes and make a significant contribution into the thermal
capacity. Such excitations exist, for instance, in molecules and polymer crystals
(Ovchinnikov 1999).

Therefore, if we deal with stationary processes, a comprehensive theory for their
analysis including analysis of their stability and bifurcations has been developed.
Additionally, the combinations of non-resonant NNMs in quasi-linear systems can
be used for the asymptotic description of non-stationary processes (Nayfeh and
Mook 2004), the only difference being that the amplitudes in the nonlinear systems
depend on the frequencies. However, when a nonlinear system is in resonance,
intensive energy exchange and transport are characterized by a complicated
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non-stationary behavior, which makes any analytical investigation very compli-
cated. As a result, numerical studies are dominant in this field.

In this book, we discuss a new concept that allows us to derive a unified
description of such processes in finite-dimensional models. The main idea of the
concept is to introduce a fundamental non-stationary process that corresponds to the
maximum possible (under given conditions) energy exchange between weakly
coupled oscillators or different parts of the system (coherence domains). Such a
process is referred to as a limiting phase trajectory (LPT) (Manevitch 2005, 2007,
2009). In order to highlight the necessity for this new analytical background, we
discuss first the current state of the non-stationary resonance problems starting from
the beats in the system of two weakly coupled linear oscillators.

1. Beats between two weakly coupled classical linear oscillators represent the
simplest example of energy exchange between the parts of an oscillator array. In
quantum mechanics, the beats correspond to periodic oscillations of the prob-
abilities for finding the system in one of two basis states (in the two-level
model). Due to the superposition principle, the linear beats in the case of two
degrees of freedom can be described as a combination of two normal modes
corresponding to the stationary states. But this representation is not applicable
for nonlinear oscillators wherein the superposition principle does not hold. The
absence of an adequate analytical description of nonlinear strongly modulated
processes prevents the understanding of their specifics and restricts the analysis
by the numerical results only, which do not allow further theoretical general-
izations. For instance, until recently there were no extensions of beat phenomena
to multi-particle systems. In the framework of linear physics, energy transfer is
usually associated with the propagation of the wave packets, that is, of the
combinations of many normal modes with close frequencies. Typically, a wave
packet gradually spreads due to dispersion (when the phase velocity of the
normal modes depends on the frequency). The quantum harmonic oscillator, for
which the linear Schrödinger equation has the solution in the form of a wave
packet, provides a unique example of a non-spreading non-stationary process (in
the presence of the force field). Such a non-spreading wave packet describes the
non-stationary coherent state that is similar to the classical harmonic oscillator.
The reason for this phenomenon is that the combination of the wave functions
with close energies may result in their mutual compensation everywhere except
for a relatively narrow area in which the “amplification” of the excitation occurs
forming the localized profiles. This mechanism cannot be realized in the
finite-dimensional nonlinear models due to dispersion. Therefore, the idea to
present non-stationary energy transfer in such models as combinations of sta-
tionary processes turns out to be non-productive.

2. A special attention should be given to the problem of targeted energy transfer
(TET), where energy of some form is directed from a source (donor) to a
receiver (recipient) in a one-way irreversible fashion. Many processes in nature
involve some type of energy transfer. It is not surprising that TET phenomena
have received much attention in applications from diverse fields of applied
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mathematics, applied physics, and engineering. Applications of energy local-
ization and TET in diverse areas are given, e.g., in Dauxois et al. (2004) and
Vazquez et al. (2003), including both theoretical and experimental results.
Representative examples are given in earlier works on targeted energy transfer
between nonlinear oscillators and/or discrete breathers (Aubry et al. 2001;
Kopidakis et al. 2001), wherein the notion of TET was first introduced, and
following works on the TET manifestation in physical systems (Maniadis et al.
2004; Maniadis and Aubry 2005; Morgante et al. 2002). The dynamic mecha-
nisms considered in these works are based on imposing conditions of nonlinear
resonance between interacting dynamic systems to achieve TET from one to
another and then “breaking” this condition at the end of the energy transfer to
make it irreversible. This principle was further employed in a wide variety of
mechanical applications. A lightweight mass attachment referred to as a non-
linear energy sink (NES) was intensively studied over past two decades; a large
number of examples can be found in monographs (Vakakis 2010; Vakakis et al.
2008), where the extensive bibliography is presented. The results of Vakakis
et al. (2008) demonstrated that the almost irreversible energy transfer in the
systems coupled with NES could not be analytically described in the framework
of the traditional approaches. Recent researches (Kikot et al. 2015; Kovaleva
and Manevitch 2010, 2013; Manevitch 2007, 2009, 2012; Manevitch and
Gendelman 2011; Manevitch et al. 2007, 2010, 2011a, b; Manevitch and
Kovaleva 2013; Manevitch and Musienko 2009; Manevich and Smirnov 2010a,
b, c; Manevitch and Vakakis 2014; Smirnov and Manevitch 2011; Starosvetsky
and Ben-Meir 2013; Starosvetsky and Manevitch 2011; Savadkoohi et al. 2011;
Vaurigaud et al. 2011; Zhen et al. 2016) have proved that the explicit analytical
results for impulsively loaded structures as well as for nonlinear oscillators with
an external source of energy can be obtained with the help of the recently
developed LPT methodology.

3. An analogy between classical and quantum energy transport is an interesting
aspect for discussion. Examples of this analogy can be found in Hasan et al.
(2013); Kosevich et al. (2010); Kovaleva and Manevitch (2012); Kovaleva et al.
(2011); Manevitch et al. (2011c); Maniadis et al. (2004); Raghavan et al. (1999).
In quantum mechanics, the transition between adjacent levels is realized by
quantum tunneling, first analyzed contemporaneously but independently in
(Landau 1932; Majorana 1932; Stückelberg 1932; Zener 1932). Generalization
of the tunneling theory onto nonlinear quantum systems, such as supercon-
ducting Josephson junctions and Bose-Einstein condensates, is particularly
interesting (Liu et al. 2002; Trimborn et al. 2010; Zelenyi et al. 2013; Zobay and
Garraway 2000). However, existing analytical techniques that enable the cal-
culation of the asymptotic values of transitional probabilities at large times are
insufficient to describe tunneling at the finite times with arbitrary initial
conditions.

4. Autoresonance (AR) in nonlinear oscillators, which is manifested as the growth
of the resonance amplitude caused by periodic forcing with slowly varying
frequency, has numerous applications in different fields of physics (see, e.g.,
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Andronov et al. 1966; Barth and Friedland 2013; Ben-David et al. 2006; Bohm
and Foldy 1947; Chacón 2005; Chapman 2012; Fajans and Friedland 2001;
Kalyakin 2008; Marcus et al. 2004; McMillan 1945; Veksler 1944). After the
first studies for the purposes of particle acceleration, AR has become a very
active field of research. It was noticed in early works (Bohm and Foldy 1947;
Livingston 1954; McMillan 1945; Veksler 1944) that the physical mechanism
underlying AR can be interpreted as an adiabatic nonlinear phase-locking
between the system and the driving signal. It is directly connected with the
inherent property of nonlinear systems to remain in resonance when the driving
frequency varies in time. However, an analytical quantitative analysis of the
transition from bounded oscillations to AR has not been done yet. The only
known critical threshold was obtained numerically, but its applicability to a
large class of physical problems is questionable and can be a subject of a
separate discussion. Moreover, this threshold is unusable in the case of the
adiabatic AR (Kovaleva and Manevitch 2013a, b).

5. Synchronization is a fundamental problem discussed over the centuries, starting
from Huygens’ famous observations; an extensive bibliography and discussion
of all known results can be found in, e.g., Pikovsky et al. (2001).
Synchronization in the chains of coupled Van der Pol or Van der Pol-Duffing
oscillators has numerous applications in different fields of physics and bio-
physics (Vazquez et al. 2003; Enjieu Kadjia and Yamapi 2006; Kovaleva M.
2013; Manevitch et al. 2013; Mendelowitz et al. 2009; Pankratova and Belykh
2012; Rand and Holmes 1980; Peles and Wiesenfeld 2003; Pikovsky et al.
2001; Rompala et al. 2007). Despite the long history, several questions are still
open even for these benchmark models. In particular, the previous studies
considered synchronization of these systems which is similar by spatial profile
to nonlinear normal mode and did not discuss the possibility of the alternative
types of synchronization.

6. Up to now our knowledge of the nonlinear dynamics of carbon nanotubes
(CNTs) is very poor. The reasons are coupled with the limited possibilities
of the numerical methods (including the ab initio quantum mechanical calcu-
lations and molecular dynamic simulations) as well as the strong complexity
of the various continuous models of the CNTs. Such models allow us to estimate
the linear spectrum of the CNT oscillations, but they seem as unsolvable for the
analytical study of the nonlinear processes. Therefore, a few works in this area
(Shi et al. 2009; Li and Shi 2008; Soltani et al. 2011, 2012) develop the
numerical methods in the framework of the various approximations.

In this book, we present new concepts and methods of analysis, which provide
the answers to the following open questions:

1. What is an adequate description of nonlinear beating?
2. Is it possible to generalize the concept of the beats on the linear and nonlinear

multi-particle systems?
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3. What are the conditions of the transition from intense energy transfer to energy
localization in finite discrete systems?

4. What conditions provide irreversible energy transfer in time-dependent classical
and quantum systems?

5. What are the conditions of transition from irreversible energy transfer (tunnel-
ing) to autoresonance in an oscillator with slowly varying frequency of the
external excitation?

6. Can a non-conventional synchronization of weakly coupled autogenerators
exist?

7. What are the basic non-stationary processes in the single-walled carbon
nanotubes?

Recent studies have proved the answers to the questions above can be obtained
in the framework of the LPT concept.

This book is organized as follows: in the first part, we introduce the LPT concept
by analyzing finite-dimensional conservative models relating to the oscillators and
oscillator arrays with constant parameters. These models describe the nonlinear
beats in quasi-linear and strongly nonlinear systems of weakly coupled oscillators
as well as in quasi-linear oscillatory chains.

The second part is devoted to the generalization of the LPT concept onto
non-conservative systems with constant and variable parameters.

In the third part, we discuss the applications of the LPT concept to important
mechanical and physical problems.

To capture a wider audience, the authors tried to set up the book in such a way
that different chapters of the book could be read independently.
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Part I
Conservative Systems

In this part, we introduce the LPT as fundamental notion in non-stationary
resonance dynamics starting from the simplest conservative quasi-linear system of
two weakly coupled identical oscillators (Sect. 1.1). The role of LPTs in the res-
onance energy exchange and transition to energy localization at initially excited
oscillator is demonstrated. Then (Sect. 1.2), we define the LPTs in a more general
conservative two-degrees-of-freedom (2DOF) system assuming a small frequency
detuning between the oscillators. We suggest a thorough dynamical analysis, which
helps us to highlight a similarity between classical and quantum systems and to find
the sets of parameters corresponding to different types of dynamical behavior of the
coupled systems. Besides, the suggested analysis underlies further study of coupled
oscillators with slowly varying parameters in the Part II.

We show further (Sects. 2.1 and 2.2) that the LPT concept remains very pro-
ductive even in the case when equations of motion cannot be linearized. Two such
systems are considered which are similar to a weightless unstretched preliminarily
string with two uniformly situated point-like masses. In the first model (Sect. 2.1),
the motion of the particles occurs in the transversal (to the string) direction only
(scalar case). In Sect. 2.2.4, this restriction is removed.

Section 3.1 is devoted to more complicated case of three weakly coupled non-
linear oscillators. We analyze a change in the types of fundamental non-stationary
resonance processes described by LPTs with weakening the inter-particle coupling.

In the three following Sects. 4.1–4.3, it is shown how the LPT concept works in
the case of finite multi-particle system. We consider subsequently Fermi–Pasta–
Ulam (FPU), Klein–Gordon (KG), and dimer oscillatory chains and show that the
LPT concept successfully works in multi-particle system if to introduce certain
clusters of coupled particles (coherence domains) that allow, in particular, to
generalize the beat notion on the systems with many degrees of freedom.

Finally, Sects. 5.1–5.3 are devoted to energy exchange between two oscillatory
chains.



Chapter 1
Two Coupled Oscillators

1.1 Limiting Phase Trajectories of Two Weakly Coupled
Identical Nonlinear Oscillators

1.1.1 The Model and Main Asymptotic Equations of Motion

Let us consider first a simple nonlinear problem of energy transfer in the system of
two weakly coupled nonlinear oscillators with cubic restoring forces (Fig. 1.1). Its
linearized version is a widely used example of beating phenomenon. In this limiting
case, due to superposition principle, every vibrational process can be presented as a
combination of two basic oscillations corresponding to in-phase and out-of-phase
linear normal modes. If coupling between the oscillators is relatively weak and only
one of the oscillators is initially excited, beat with a slow periodic inter-particle
energy exchange is observed. So, from the mathematical viewpoint, in the lin-
earized system only basic stationary vibrations, which are linear normal modes, are
usually considered as fundamental solutions that allow us to describe also any
non-stationary process. Analysis of the nonlinear model where the superposition
principle is not valid, but internal (intermodal) resonance is present, shows clearly
that resonant (and consequently strongly interacting) NNMs are not appropriate for
an adequate description of such non-stationary process as beat. We will show that
their adequate description is achieved in terms of fundamental non-stationary
solutions (LPTs), without any modal representations.

The problem under consideration can be described by the following system of
two nonlinear equations (in dimensionless form):
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d2U1

ds21
þU1 þ 2beðU1 � U2Þþ 8aeU1

3 ¼ 0;

d2U2

ds21
þU2 þ 2beðU2 � U1Þþ 8aeU2

3 ¼ 0;

ð1:1Þ

Here

Uj ¼ uj;0
L0

; s1 ¼
ffiffiffiffiffiffiffi
c1
m
t

r
; 8ae ¼ c0L0

c1
; 2be ¼ c12

c1
; ð1:2Þ

c1 and c3 are the linear stiffness and nonlinear stiffness of the first and second
oscillators, respectively; c12 is the stiffness of the coupling spring; m is the mass of
the particle; s1 is the dimensionless time; and e � 1.

Introducing the complex variables:

uj ¼ e�is1 dUj

ds1
þ iUj

� �
u�
j ¼ eis1

dUj

ds1
� iUj

� �
ð1:3Þ

and slow time s2 ¼ es1 (along with the fast time s1), one can use the following
two-scale expansions for the functions:

ujðs1;u2Þ ¼
X
n

enuj;nðs1; s2Þ; j ¼ 1; 2 ð1:4Þ

and for the differential operator d
ds1

¼ @
@s1

þ e @
@s2

:

Selecting the terms of different orders by parameter e after substituting (1.4) into
equations of motion and equating them to zero, one reveals that functions uj;n do
not depend on the fast time, and main asymptotic approach is described by the
following equations (in slow time s2):

-(c u c u1 1 3 1+
3) -c u -u ) 12 1 2( -(c u c u1 2 3 2+

3)

u1
u2

L0

Fig. 1.1 Two linearly coupled nonlinear oscillators
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df1
ds2

þ ibf2 � 3iajf1j2f1 ¼ 0;
df2
ds2

þ ibf1 � 3iajf2j2f2 ¼ 0;
ð1:5Þ

uj ¼ eibs2 fj; j ¼ 1; 2; ð1:6Þ

which describe, as well as the mechanical system discussed, others including
two-level quantum systems (Kosevich and Kovalyov 1989) where functions fj, do
not depend on the fast time, s1. This system (Fig. 1.1) is fully integrable and has
two integrals:

H ¼ bðf2f �1 þ f1f �2 Þ �
3
2
aðjf1j4 þ jf2j4Þ; ð1:7Þ

N ¼ jf1j2 þ jf2j2: ð1:8Þ

(the second integral can be obtained by summation of Eq. (1.5) and conjugate
equations after their multiplication on f �1 , f1, f

�
2 , f2, respectively).

The best way to address this is to use (1.7) and the coordinates h and D, where

f1 ¼
ffiffiffiffi
N

p
cos h eid1 ; f2 ¼

ffiffiffiffi
N

p
sin h eid2 ; D ¼ d1 � d2:

Then the equations of motion have the form

dh
ds2

¼ b sinD; sin 2h
dD
ds2

¼ 2b cos 2h cosDþ 3
2
aN sin 4h; ð1:9Þ

and integral (1.7) can be written as follows:

H ¼ ðcosDþ k sin 2hÞ sin 2h; ð1:10Þ

where k ¼ 3aN
4b ; a[ 0:

(we assume a hard nonlinearity here, but a soft nonlinearity can be taken into
account similarly).

System (1.9) is strongly nonlinear even in the case of initially linear problem, but
it is integrable. Before further analysis, let us present plots of the phase trajectories
for different values of k in Fig. 1.2 (because of the phase plane periodicity, it is
sufficient to consider two presented quadrants only).

Stationary points in Fig. 1.2a–f correspond to NNMs and can be found, as usual,
from the conditions dh/ds1 = 0; dD/ds1 = 0. These points are associated with the
equilibrium states (in the slow time), and therefore, in the resonance case, the
explicit definition of the stationary process can be found from Eq. (1.9).

The sets of trajectories encircling the stationary points correspond to
non-stationary oscillations. Since system (1.9) is integrable, one can formally find
its analytical solution for arbitrary initial conditions. However, it is not so if we
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consider more complicated models with many degrees of freedom, where the
existence of two integrals is insufficient to find an analytical solution, or
non-conservative systems having no integrals. In the mentioned models, the con-
ventional approach can be frequently connected exactly with the NNM concept.

It is important to note that even for the considered simplest 2DOF model, the
NNM concept may work if a chosen trajectory in the phase plane is at a relatively
small distance from the stable stationary point. This approach fails when dealing
with strongly non-stationary nonlinear resonance processes because of the strong
intermodal interaction. Then, the NNMs are no more appropriate for analysis of
non-stationary processes. In this case, we need fundamental solutions of other types
which are LPTs describing maximum possible periodic inter-particle energy
exchange (Manevitch 2005, 2007; Manevitch and Smirnov 2010). Since this par-
ticular solution represents an outer boundary for a set of trajectories encircling the
basic stationary points (Fig. 1.2), we refer to it as the limiting phase trajectory. It is
important to note that the LPT is defined by a certain set of initial conditions. The
equality h(0) = 0 implies that f2(0) = 0, and, in virtue of (1.2)–(1.4), U2 = 0, V2 = 0
at s0 ¼ 0. Therefore, the condition h(0) = 0 defines the LPT in the system with the
initially excited first oscillator, while the second oscillator stays initially at rest. On
the contrary, the condition h(0) = p/2 defines the same LPT in the system with the
excited second oscillator, while the first oscillator is initially at rest. It is clear that
we can interpret motion and energy transfer along LPT as strongly non-stationary
process. Let us show that we can consider the LPT as another type of fundamental
solution (alternative to NNMs). The LPT can then be used as a generating solution
to construct close trajectories with strong energy transfer.

We can see that two dynamic transitions are clearly distinguished when the
nonlinearity parameter k increases. The first transition consists in the appearance of

Fig. 1.2 Phase trajectories in the h� D plane for: a k = 0.2, b k = 0.4, c k = 0.55, d k = 0.9, e
k = 1, f k = 1.5
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two additional stationary points, corresponding to the NNMs, the number of which
changes from 2 (if k < 1/2) to 4 (for k > 1/2), and of separatrix passing through
unstable stationary point which is an image of out-of-phase NNM. This transition is
distinctly shown in Fig. 1.2c. The first transition, which leads to the appearance of
two new out-of-phase modes, does not qualitatively influence the behavior of the
LPT, which is far from the stationary points.

The second transition, which occurs when k = 1, is connected with the behavior
of the limiting phase trajectory (LPT) corresponding to complete energy exchange
between the oscillators. Namely, this trajectory transforms into separatrix at this
value of k (Fig. 1.2e) or one can say that the separatrix becomes the LPT. This
means that the characteristic time for complete energy transfer turns out to be
infinite. For k > 1, such a transfer becomes impossible (see Fig. 1.2f).
Simultaneously, energy localization on the excited particle can be observed.

It is easy to check that the values H ¼ 1þ k2; H ¼ �1þ k2 correspond to the
in-phase and out-of-phase cooperative NNMs, respectively. Regimes of this kind are
not specific to systems with internal resonances only; they reflect synchronized
motions that can be presented as lines in the configuration space of the initial
variables (the existence of normal modes in strongly nonlinear systems was shown in
Rosenberg (1960, 1962). Efficient techniques for their construction even in the case
when they are not straight may be developed by applying the principle of least action
in Jacobi’s form and the corresponding equations for the trajectories in the config-
uration space. Such techniques allow to find the NNMs using power expansions by
the independent variable (i.e., one of unknowns in this case) in the framework of
nonlinear boundary problem (Manevitch et al. 1989; Vakakis et al. 1996).

For the discussed problem, there is no need for such the expansions because the
NNMs are represented here by stationary points; this advantage is widely used in
the papers devoted to NNMs and their bifurcations, as well as when searching for
the close regimes in damped and forced weakly coupled systems (Vakakis et al.
1996; Manevitch and Gendelman 2011). The regimes close to stationary points in
the h� D plane in the conservative system under consideration are beats with weak
energy transfer between two oscillators. The equations of motions can be linearized
in the vicinity of stationary points, and their solutions present small-amplitude
oscillations of both h and D around their values, corresponding to the NNMs. If one
linearizes Eq. (1.9) after the transformation h1 ¼ h� p=4, D1 ¼ D� p (the latter
for the case H ¼ �1þ k2, only), one arrives at the equations of linear oscillators,
which are valid for initial conditions close to those for the normal modes
themselves:

d2h1
ds22

þ a21h1 ¼ 0;
d2h1
ds22

þ a22h1 ¼ 0; ð1:11Þ

where a21 ¼ 4b2ð1þ 2kÞ; a22 ¼ 4b2ð1� 2kÞ.
These equations contain a contribution that depends on the nonlinear terms of

the initial system. Moreover, they lead to the conclusion that instability is possible
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if k > 1/2, which corresponds to instability of the out-of-phase nonlinear normal
mode (if a > 0).

An alternative demonstration of the LPT evolution can be obtained by excluding
the variable D from (1.9). Taking into account that (in the case when only the first
oscillator is initially excited) H = 0 on the LPT, we can express cos D as a function
of h and, finally, derive the following pendulum equation valid on the LPT
(Manevitch 2009):

d2h
ds22

þ k2 sin 4h ¼ 0; 0� h� p=2: ð1:12Þ

We come to an unexpected conclusion: LPTs corresponding to different values
of parameter k satisfy the pendulum equation with a restriction on the amplitudes.
Let us assume that the pendulum’s energy is fixed but the value of parameter k can
be chosen. We can interpret the process as pendulum oscillations as well as a
one-dimensional motion of a ball or a point-like particle between two symmetrically
located rigid walls. Figure 1.3 shows such systems (“ball between walls”) with
different curvature of the substrate (left panel). The point-like particle moves
between two absolutely rigid walls along the substrate. This particle is reflected
elastically at the points h ¼ 0 and h ¼ p=2, corresponding to the walls location.
The central panel of the Fig. 1.3 shows the phase portrait with the trajectories,
which correspond to the motion in the cases depicted on the left panel. The
respective dependences hðsÞ are shown on the right panel of the Fig. 1.3. The
curvature of the substrate determines the value of the parameter k. When k = 0
(weakly coupled linear oscillators), this process is a uniform motion along a straight
line with periodic reflections from the rigid walls and corresponding changes in the
sign of velocity (Fig. 1.3, case a). It is clear that this motion can be described by a
saw-tooth function of time (see Fig. 1.3, right panel). When 0 < k < 1 (weakly
coupled nonlinear oscillators), the motion occurs along a curved trajectory, but the
periodic elastic collisions with both rigid walls still take place (Fig. 1.3b).
Therefore, in this case motion differs from the linear case since the segments
between the collisions are curved. Let us recall that in both cases motion of a
particle corresponds to LPT with full energy exchange between the oscillators.
When k = 1, LPT coincides with the separatrix of the pendulum, and the particle
does not have a sufficient energy to overcome the energy barrier, hence the periodic
collisions cannot be realized. This corresponds to a motion with infinite period
(Fig. 1.3c).

Finally, if k > 1, the particle also does not have a sufficient energy to overcome
the energy barrier, but a reverse motion to the left wall is possible (Fig. 1.3d). This
corresponds to a transition from a “large” LPT with full energy exchange between
the oscillators to a “small” LPT with partial (but maximum possible for the given
nonlinearity parameter k) energy exchange (with predominant energy localization
on the initially excited oscillator). To fully comprehend the fundamental role of
LPTs in non-stationary resonance dynamics it is very important to understand that
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NNMs do not take part in the process of intensive energy exchange between the
oscillators. Therefore, we simply cannot analyze strongly non-stationary resonance
processes in terms of interacting NNMs.

1.1.2 Analytical Solution for LPT

Because the value of H for the LPT in integral (1.10) is equal to zero. Therefore, the
variables h and D in this case are connected by the equation:

cosD ¼ �k sin 2h; ð1:13Þ

so that sinD ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 2h

p
. Then, the first of Eq. (1.8) can be written as

follows:

dh
ds2

¼ �b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 2h

p
; ð1:14Þ

The solution of Eq. (1.14) for the plus sign is the elliptic Jacobi’s function:
h ¼ ð1=2Þ am 2bs2; kð Þ. Because 0� h� p=2 by definition, one can use the negative
sign for 2n� 1ð Þp\2bs2\2np, n = 1, 2, 3….

Fig. 1.3 Evolution of the Limiting Phase Trajactory as the motion of the ball between rigid walls.
Left panel—the “ball between walls” systems at different values of the parameter k: a k = 0,
b k = 0.5, c k = 1.0, d k > 1.0; h is the “coordinate” of the ball. Central panel—the trajectories on
the phase portrait corresponding to the systems on the left panel; the letter shows the respective
system. Right panel—time evolution of the “coordinate” hðs2Þ for the systems on the left panel
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Thus, we arrive at the final solution:

h ¼ 1
2
mod jamðbs2; jÞj; p2

h i
;

D ¼ � arccos j sin
1
2
mod jamðbs2; jÞj; p2

h i� �� � ð1:15Þ

with period K(k), i.e., the complete elliptic integral of the first kind (for the in-phase
oscillations). The solution for the out-of-phase oscillations is:

h ¼ 1
2
jamð2bs2; kÞj; D ¼ p� arcsin½k snð2bs2; kÞ�; ð1:16Þ

The periodic functions (1.15) are not smooth; D 2bs2ð Þ has breaks at the points
2bs2 ¼ 2n� 1ð Þp, n = 0,1,…, and h 2bs2ð Þ has discontinuities in the derivative at
these points (in terms of distributions dh=ds2 ¼ ð2b=pÞD). Plots of h 2bs2ð Þ for
three values of parameter k are shown in Fig. 1.4.

The value k = 0.5 corresponds exactly to the first dynamic transition. However,
the solution to the LPT (Fig. 1.4a) is still close to that of the linear case, except for a
small change in period. Only for values of k that are close to unity, the deflections
form an exact sawtooth profile and the change in period becomes noticeable
(Fig. 1.4b).

The second dynamic transition occurs when k = 1. In this case, one can find a
simple analytical solution corresponding to the LPT:

2bs2 ¼
Z2h

0

d 2hð Þ
cos 2h

; h ¼ 1
2
arcsin

1� e�2bs2

1þ e�2bs2
ð1:17Þ

It can be seen from (1.16) that the LPT actually becomes separatrix if k ¼ 1:
h ¼ p=4:

Exact solutions for the LPTs in terms (h, D) for k = 0.5, k = 0.9 and k = 1.1 are
shown graphically in Fig. 1.4a–c, respectively. Two of them are obviously close to
the sawtooth functions. The third one with smaller amplitude corresponds to energy
localization after second transition.

It is convenient to introduce two non-smooth functions sðs2Þ and eðs2Þ
(Fig. 1.5). Similar functions (but with alternating signs of dependent variables)
were introduced first by Pilipchuk (2010). Here, we use similar notation.

We would like to show that the very natural area for application of these
non-smooth basic functions is the description of beats (using the variables h and D)
and close trajectories with strong energy transfer. Actually in the case k = 0 (the
linearized system), the solution of (1.9) can be rewritten in the form
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h ¼ ðp=2Þs; D ¼ ðp=2Þe, s ¼ s s2=að Þ, e ¼ e s2=að Þ where a ¼ p=2b (exactly as in
a vibro-impact process with velocity D ¼ p=2). After introducing the basic func-
tions s ðs2=aÞ, eðs2=aÞ, we can present the solution as:

D ¼ X2ðsÞþ Y2ðsÞ e s2
a

� �
h ¼ X1ðsÞþ Y1ðsÞe s2

a

� �
ð1:18Þ

Substituting expressions (1.18) into (1.9) we obtain that the smooth functions of
non-smooth variable XiðsÞ, YiðsÞ satisfy Eq. (1.19):

Fig. 1.4 Exact analytical solutions for LPTs for different values of parameter k: a k = 0.5,
b k = 0.9; c k = 1
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@

@s

X1

Y1

� �
¼ 1

2
ab½sinðX2 þ Y2Þ � sinðX2 � Y2Þ�

@

@s

X2

Y2

� �
¼ ab½ctg 2ðX1 þ Y1Þ cosðX2 þ Y2Þ � ctg 2ðX1 � Y1Þ cosðX2 � Y2Þ�

þ 3a
2
aN½cos 2ðX1 þ Y1Þ � cos 2ðX1 � Y1Þ�:

ð1:19Þ

Then, we can search for the solution of Eq. (1.19) in the form of power
expansions in the independent variable s:

Xi ¼
X1
l¼0

Xi; l s
l; Yi ¼

X1
l¼0

Yi; l s
l; j ¼ 1; 2 ð1:20Þ

where a generating solution is the linear beat:

0 1 42 3 5 6 7 8 9 10
0.0

0.5

1.0

0 1 2 3 4 5 6 7 8 9 10
-1.0

-0.5

0.0

0.5

1.0
e

τ

τ2 /a

τ2 /a

Fig. 1.5 Non-smooth basic functions sðs2=aÞ, eðs2=aÞ, where 2a is a halved period (in time s2)
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X1;0 ¼ 0; X1;1 ¼ p
2
; Y1;0 ¼ 0; X2;0 ¼ 0; Y2;0 ¼ p

2
; ð1:21Þ

satisfying exactly the h� D equations for the case of the strongest beat. It can be
proved that the presentation (1.18), taking into account (1.20), actually recovers the
exact solution (in slow time) of the nonlinear problem for the most intensive energy
transfer between the oscillators. As this takes place, the expansion (1.20) restores
the exact local representation of the corresponding elliptic function (near s ¼ 0),
but the expression (1.18) allow predicting the exact global behavior of the system. It
is important to note that, even for large enough values of k, the solution appears
close to that of linear beats; the only change is the barely seen curvature of the lines
that are straight for linear beats and a change in the period.

One can find corresponding corrections by considering the next order of
approximations, namely X1;0 ¼ 0; X1;1 ¼ a b, X1;3 ¼ �ð2=3Þ a bð Þ3k2, Y2;0 ¼ p=2,
Y2;1 ¼ 2a b k, which coincide with those in the expansions of the exact solution.

Contrary to previous applications of non-smooth transformations, in the con-
sidered case there is no need to formulate boundary problems to compensate for
singularities. They arise due to the substitution of non-smooth functions into the
second of the equations of motion (1.9) in order to derive these equations in terms
of the smooth functions Xi and Yi. However, these singularities are exactly com-
pensated for LPT because sin 2h ¼ 0 at singular points.

The most important feature of the proposed technique is the unification of the
local and global approaches. The local approach is invoked using power expan-
sions, with unusually good results even in the zeroth approximation. For global
characteristics such as the period of oscillations T = 2a, its expansion in the
parameter k can be found, separately after construction of the analytical form of
solution (with the period still unknown). The key point for the solution of this
problem is preliminary knowledge of the amplitude values of the h and D functions
(in particular, hðaÞ ¼ p=2). This is another important distinction from the previous
applications of non-smooth transformations, in which the problem was solved step
by step; in the zeroth approximation, a ¼ p=2b.

It is worth discussing a principal question connected with the behavior of the
arising power series. It was noted that the zeroth approximation turns out to be
efficient even for large values of the nonlinearity parameter (i.e., going far from the
first bifurcation point, corresponding to qualitative change in the phase plane).
However, the convergence of these expansions is slow and practically does not
depend on the magnitude of the nonlinearity parameter, that is, on the modulus of
the elliptic integral of the first kind. This situation rather resembles the behavior of
asymptotic series where only the first terms give a reliable representation. The
solution may be found in a similar way to that for the case of asymptotic series:
using the first terms of the expansion to construct a Pade approximation, which
essentially allows the range of reliable representation of the solution to be extended.
For example, the Pade approximation in the case k = 0.62, b ¼ 0:58 gives for the
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period the value Tp = 6.18, which is close to the numerical value T = 6.14. (when
using the power expansion itself including nine terms, one finds T = 4.28).

The approximate solution for LPT can be found also with using the iteration
procedure in which the starting approximation is accepted in the form of the basic
non-smooth functions shown in Fig. 1.5. The first iteration gives solution (1.22)
coordinated well with the exact solution (Fig. 1.6):

h ¼ As

D ¼ p
2
þ 3aN

4b
sin 2Asð Þ

� �
e

A ¼ p
2
; a ¼ p

2b

ð1:22Þ

The proposed procedure may be applied in all cases where we are studying
processes in systems with internal resonance, which are far from their stationary
states and consequently close to a beat with complete energy transfer. We underline
that LPT in systems that are linearized in terms of displacements but strongly
nonlinear in terms of h� D is a good approximation for the LPT in nonlinear
system. It is important that consideration of LPTs enables one to recognize the
second dynamic transition that occurs in a system when the nonlinearity parameter
N increases, caused by the transformation of the LPT into a separatrix. This means
that complete energy transfer from the first mass to the second one becomes
impossible, as mentioned above. When k > 1, the structure of the phase plane
changes drastically that leads to the appearance of infinite trajectories.
Simultaneously, the role of the two stable asymmetric normal modes, which
appeared due to the bifurcation of the initial out-of-phase mode, becomes more
important. These represent vibrations concentrated predominantly on one of the
masses. The result of direct numerical integration of the initial system confirms that
complete energy transfer (for k < 1) disappears when k > 1. When only the first

Fig. 1.6 Exact and approximate analytical solutions for LPTs for k = 0.5. Dashed blue line is the
exact solution, solid green line—approximation that is described by expressions (1.22)
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particle is initially excited, one can see that for k = 2, the system oscillates in the
attractive region of the localized nonlinear normal mode with energy concentrated
predominantly on the first particle (Fig. 1.7).

Naturally, in the case of linear system (k = 0), one can find exact analytical
solution using linear normal modes. However, the proposed description of the
beating phenomena via non-smooth basic functions has the advantage of being
physically adequate in both linear and nonlinear cases. It is clear that both linear
and nonlinear beats close to LPT can be more adequately described in terms of the
basic functions s and e than in terms of smooth functions. We choose this rather
simple system to illustrate the main ideas convincingly. Their application becomes
necessary when dealing with non-conservative systems which are not integrable
even in the slow time (see Parts 2 and 3).

Below, we present the solutions corresponding LPT on the initial (fast) timescale
before the first transition, after the first and second transitions. It is clearly seen that
LPT corresponds to envelope of the real beating process.

Fig. 1.7 Free oscillations with a ¼ 0:125; b ¼ 0:5; e ¼ 0:1 for: a k = 0.55, N = 2.933,
u1(0) = 1.7127, u1,t(0) = u2(0) = u2,t(0) = 0, b k = 1.1, N = 5.867, u1(0) = 2.422, u1,t(0) =
u

2
(0) = u2,t(0) = 0, c k = 2.0, N = 10.67, u1(0) = 3.266, u1,t(0) = u2(0) = u2,t(0) = 0
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1.1.3 Beating Close to LPTs

The LPT may be considered as the generating solution for the construction of close
phase trajectories. If the trajectory is close to the LPT, the initial condition h ¼ 0 for
s ¼ 0 has to be replaced by the condition h ¼ h0 for s ¼ 0. Therefore, we can again
use expansion (1.19), but X1;0 ¼ h0 is not equal to zero. The corresponding solution
is shown in Fig. 1.8 for k = 0.4 and two different values of hð0Þ (for Dð0Þ ¼ 0 in
both cases).

1.2 Effect of the Frequency Detuning Between
the Oscillators

In Sect. 1.1 we considered a degenerate situation when both weakly coupled
oscillators have the same dynamical characteristics. This allowed discussing the
LPT concept in the most transparent case. In this section, we take into account a
possible frequency detuning between the oscillators.

The LPT concept for asymmetric systems was introduced in (Manevitch and
Kovaleva 2013). An explanation and a more detailed discussion of the LPT

Fig. 1.8 Numerical integration of the modulated equations (k = 0.4, various initial conditions),
a N = 2.133, hð0Þ ¼ 0:02, Dð0Þ ¼ 0, b N = 2.133, hð0Þ ¼ 0:01, Dð0Þ ¼ 0
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properties and their connection with the non-stationary processes in an asymmetric
system (g 6¼ 0) is given below

1.2.1 Equations of Motion and Explicit Approximate
Solutions

The equations of motion of a couple of oscillators are given by:

m
d2u1
dt2

þ c1u1 þ c u31 þ c12 u1 � u2ð Þ ¼ 0;

m
d2u2
dt2

þ c2u2 þ c u32 þ c12 u2 � u1ð Þ ¼ 0;

ð1:23Þ

where m is the mass of each oscillator; c1 and c2 are the coefficients of linear
stiffness of the corresponding oscillators; c is the coefficient of cubic nonlinearity;
c12 is stiffness of linear coupling; u1 and u2 are the absolute displacements of the
first and second oscillators, respectively. As in a single oscillator, the small
parameter e is defined through relative stiffness of weak coupling: c12=c1 ¼ 2e � 1.
Assuming weak nonlinearity and taking into account resonance properties of the
system, we redefine other parameters as follows:

c1=m ¼ x2
0; c2=m ¼ x2

0ð1þ 2egÞ; s0 ¼ x0t; c=c1 ¼ 8ea; c12=cj ¼ 2ekj;
j ¼ 1; 2;

ð1:24Þ

where constant detuning parameter g is chosen to ensure the desired dynamics of
the originally symmetric (c1 = c2) system. It follows from (1.24) that k1 ¼ 1,
k2 ¼ 1þ 2egð Þ�1.

Substituting expressions (1.24) into (1.23), we obtain the following system:

d2u1
ds20

þ u1 þ 2eðu1 � u2Þþ 8eau31 ¼ 0;

d2u2
ds20

þð1þ 2egÞu2 þ 2eðu2 � u1Þþ 8eau32 ¼ 0

ð1:25Þ

It follows from (1.23), (1.25) that the only difference from degenerate case is a
small difference in the linear frequencies of the oscillators. Selected initial condi-
tions correspond to a unit impulse imposed to one of the oscillators in the system
being initially at the equilibrium state, i.e., u1 = u2 = 0; v1 = du1/ds0 ¼ 1, v2 = du2/
ds0 ¼ 0 at s0 ¼ 0 if the impulse applied to the first oscillators, or v1 = du1/ds0 = 0,
v2 = du2/ds0 = 1 if the initial impulse v2 = 1 is applied to the second oscillator. We
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take into account that for estimating the nonlinear contribution into the dynamics, it
is sufficient to change corresponding coefficients in Eq. (1.25) without changing the
intensity of excitation. Under given initial conditions, we determine the limiting
phase trajectory (LPT) of system (1.25).

As in the previous section, an asymptotic solution of (1.25) for small e is based
on the complexification of the dynamics and the separation of the slow and fast
constituents. To this end, we introduce the change of variables vj þ iuj ¼ Yj eis0 ,

j = 1, 2, and then present the complex amplitude as Yj s0; s1; eð Þ ¼ uð0Þ
j s1ð Þþ euð0Þ

j

s0; s1ð Þ + O(e2), s1 ¼ e s0. Then, using the multiple-scale techniques and separating
the fast and slow timescales (see Sect. 2.1), we derive the equations for the
leading-order slow terms analogous to (2.6), from which we deduce that the main

slow terms are presented in the form / 0ð Þ
1 s1ð Þ ¼ a s1ð Þeis1 , / 0ð Þ

2 s1ð Þ ¼ b s1ð Þeis1
where the complex envelopes a s1ð Þ and b s1ð Þ are given by the equations similar
to (1.5):

da
ds1

þ ib� 3ia aj j2a ¼ 0;

db
ds1

þ ia� 3ia bj j2b� 2igb ¼ 0:
ð1:26Þ

Similar to the symmetric case, it is easy to prove that system (1.26) conserves the
integral |a|2 + |b|2 = 1. We recall that the solutions of Eq. (1.26) with the
above-mentioned initial conditions define not only the LPT of the averaged system
but also the LPT of the initial system (1.25).

Equation (1.26) highlights similarity of the averaged equations of the classical
oscillator to the equations of two-state atomic tunneling (Raghavan et al. 1999;
Sievers and Takeno 1988). This similarity confirms a direct mathematical analogy
between quantum and classical transitions, and the applicability of the results
derived in this section to a wide class of physical problems. The polar represen-
tations a = cos h eid1 , b ¼ sin heid2 ; D ¼ d1 � d2, yield the following real-valued
equations:

dh
ds1

¼ sinD;

sin 2h
dD
ds1

¼ 2ðcosDþ 2k sin 2hÞ cos 2h� 2g sin 2h;
ð1:27Þ

where k ¼ 3a=4. Initial conditions for system (1.27) are chosen as h = 0, D = p/2
(the first oscillator is excited, but the second one is initially at rest) or h = p/2,
D = p/2 (the second oscillator is excited, but the first one is at rest). Both conditions
correspond to the LPTs of system (1.27) in the plane (D, h).

Note that system (1.27) conserves the integral of motion (preservation of
energy):
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H ¼ ðcosDþ k sin 2hÞ sin 2hþ g cos 2h; ð1:28Þ

whose properties are used in the dynamical analysis.

1.2.2 Stationary States and LPTs

The first step in the dynamical analysis is to define the stationary points of system
(1.27) corresponding to NNMs. The first condition of stationarity dh/ds1 ¼ 0 yields
sin D = 0; this implies that all steady states lie on the vertical axes D1 = 0 or
D2 = p. The second condition dD/ds1 ¼ 0 implies that the stationary values of h are
given by the equation:

F�ðhÞ ¼ ð�1þ 2k sin 2hÞ cot 2h ¼ g; ð1:29Þ

where the signs “+” and “−” correspond to D = 0 and D = p, respectively.
Figures 1.9, 1.10, 1.11, and 1.12 depict phase portraits of system (1.27) in the

plane (D, h) for different values of the parameters k and g. In the quasi-linear case,
when k � 0.5, there exists a unique solution of Eq. (1.29) on each of the axes
D = 0 and D = p. It was recently shown (Kovaleva and Manevitch 2012) that in
this case, the solution of the nonlinear system is close to that of the linear system.
Phase portraits of system (1.27) for k = 0.35 and different g are shown in Fig. 1.9. It
is easy to deduce from (1.27) that the change in the sign of the parameter g !
−g entails the change in the solution: h ! p − h, D ! 2p − D. This allows the
construction of the phase portraits only for g 	 0 (Fig. 1.9). Here and below,
stationary states correspond to nonlinear normal modes; bold lines depict LPTs. It is
shown in Fig. 1.9 that the LPT represents an outer boundary for a set of closed
trajectories encircling the stable center in the phase plane (D, h).

Below, we study in detail the dynamics of the system with nonlinearity k > 0.5.
It is shown in Figs. 1.10, 1.11, and 1.12 that if k > 0.5, there exists a certain value
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Fig. 1.9 Phase portraits of (1.27) for k = 0.35: a g = −0.1; b g = 0; c g 0.1
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g* such that the system has 3 stationary points on the axis D = p for |g| < |g*| and a
single point for |g| 	 |g*|, and the transition occurs through the coalescence of two
stationary states at a certain point hT such that F� hTð Þ ¼ g�. The condition
dF�=dh ¼ 0 at a point of merging of two roots of Eq. (1.29) gives the following
expressions for hT and g*:
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Fig. 1.10 Phase portraits of (1.27) for k = 0.65: a g = 0; b g = 0.075; c g = 0.083.
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Fig. 1.11 Phase portraits of (1.27) for k = 0.9: a g = −0.33; b g = −0.2; c g = −0.0945; d g = 0;
e g = 0.0945; f g = 0.2
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sin 2hT ¼ 2kð Þ�1=3; g� ¼ � 2kð Þ2=3�1
h i3=2

: ð1:30Þ

It follows from (1.30) that four stationary states exist in the domain k > 0.5. Note
that the parameter g* coincides with the critical parameter presented without proof
in Liu et al. (2002).

As shown below, the system with four stationary states exhibits two different
types of dynamical behavior corresponding to moderately nonlinear and strongly
nonlinear regimes. First, we consider the system with k = 0.65. It is easy to deduce
from (1.27) that the change in the sign of the parameter g ! −g entails the change
in the solution: h ! p − h, D ! 2p − D. This allows us to construct the phase
portraits only for g	 0 (Fig. 1.10). Bold lines in Fig. 1.10 depict the LPT of
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Fig. 1.12 Phase portraits of (1.27): a k = 1; (b) k = 1.3; the values of detuning g > 0 are
indicated in the planes
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system (1.27) in the plane (h, D); dotted lines correspond to the homoclinic sepa-
ratrix. It is seen that with an increase in g, the lower homoclinic loop vanishes
through the merging of the stable and unstable states, and the number of the
stationary states changes from 4 to 2. The corresponding critical value g* = 0.083
coincides with the theoretical value given by formula (1.30). It is easy to find that
the number of the stationary points changes from 2 to 4 at g* = −0.083.

Figure 1.10 illustrates the complete energy exchange between the symmetric
oscillators (g = 0); i.e., the upper level h = p/2 is reached during the cycle of
motion along the LPT starting at h = 0. Motion along the closed orbits within the
domain encircled by the LPT obviously provides less extensive energy exchange
than motion along the LPT. Vanishing of the homoclinic separatrix and the
emergence of a new closed orbit of finite period characterize moderately nonlinear
systems. The phase portraits for g < 0 can be constructed using symmetry. In these
systems, the localization of energy near the lower center is replaced by the local-
ization near the upper center. This phenomenon, responsible for the occurrence of
nonlinear tunneling in the slowly time-dependent systems (Liu et al. 2002;
Trimborn et al. 2010; Zobay and Garraway 2000), underlies the study of transient
processes in Part II.

It is shown from Fig. 1.11 that the system with k = 0.9 exhibits a more com-
plicated dynamical behavior. For clarity, the phase portraits for both g < 0 and
g > 0 are shown; bold lines correspond to the LPTs; dash-dotted lines depict the
homoclinic separatrix coinciding with the LPT; edges of the dashed “beaks” lie at
the points of annihilation of the stable and unstable states.

The change from 2 to 4 fixed points at g = −0.33 leads to the emergence of a
separatrix passing through the hyperbolic point and consisting of homoclinic and
heteroclinic branches (by the heteroclinic separatrix, we mean a trajectory from the
hyperbolic point on the axis D = p to the hyperbolic point on the axis D = −p that
separates locked and unlocked orbits). At g = −0.0945, the heteroclinic loop
coincides with the LPT at h = 0. Further increase in g leads to the occurrence of the
homoclinic separatrix and then to the merging of the separatrix with the LPT at
h = p/2 for g = 0.0945; finally, the merging of the lower stable center with the
hyperbolic point results in the degeneration of the separatrix and the change from 4
to 2 fixed points. The numerically found value |g*| = 0.33 coincides with the results
of calculation by formula (1.30). Complete energy exchange is observed in the
symmetric system (g = 0) moving along the LPT.

The phase portraits of system (1.27) with the parameters k = 1, g > 0, and
k = 1.3, g > 0 are depicted in Fig. 1.12; the portraits for g < 0 may be constructed
using symmetry. Figure 1.12b demonstrates in more detail the transformations of
the separatrix and the LPT associated with the transition from energy localization to
energy exchange.

The merging of the separatrix with the LPT and the transition from energy
localization to energy exchange correspond to strongly nonlinear regimes. The
merging of the stable and unstable states entails the emergence of a new unlocked
orbit and an associated transition from weak to a strong energy exchange
(Figs. 1.10, 1.11 and 1.12).
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1.2.3 Critical Parameters

Transitions from energy localization near the stable state to energy exchange in the
asymmetric system were investigated earlier (Tsironis 1993; Tsironis et al. 1993),
but an analytical boundary between the corresponding domains of parameters was
not derived. We present analytical conditions that ensure the transition from energy
localization on the excited oscillator to strong energy exchange (Manevitch and
Kovaleva 2013).

As mentioned previously, the dynamical behavior may be considered as strongly
nonlinear if its separatrix coincides with the LPT. Using this condition, we find a set
of parameters determining strongly nonlinear regimes. To this end, we consider
integral of motion (1.28). It follows from the initial condition h = 0 that H = g on
the LPT and, therefore,

ðcosDþ k sin 2hÞ sin 2h� 2g sin2 h ¼ 0 ð1:31Þ

on the LPT. Now, we obtain from Eqs. (1.27) and (1.31) that

dh=ds1 ¼ V ¼ sinD;V ¼ �½1� ðk sin 2h� g tan hÞ2�1=2: ð1:32Þ

(k sin 2h − g tan h)2 = 1 at V = 0.
Using equality (1.31) to exclude D, we replace system (1.27) by the following

second-order equation for LPTS

d2h
ds21

þ dU
dh

¼ 0 ð1:33Þ

with initial conditions h(0) = 0, V(0) = 1. The potential U(h) in (1.33) can be found
from the energy conservation law E = 1/2V2 + U(h) = 1, which gives

UðhÞ ¼ 1� 1=2V2 ¼ 1
2

1þ k sin 2h� g tan hð Þ2
h i

: ð1:34Þ

The maximum value U (h) = 1 is attained at V = 0. Potential U(h) and phase
portraits for system (1.31) with different coefficients k and g are shown in Fig. 1.13.

The sought separatrix may exist if and only if dU/dh = 0 at hh 2 0; p=2ð Þ, as in
this case there exists a potential barrier corresponding to the local maximum U (hh)
and attained at V = 0; the latter condition is equivalent to D = 0. This implies that
(hh, 0) is a hyperbolic point. It now follows from (1.34) that the equality dU/dh* = 0
is equivalent to:

ðk sin 2hh � g tan hhÞ ð2k cos 2hh � g= cos2 hhÞ ¼ 0: ð1:35Þ

Combining (1.32) and (1.35), we find that Eq. (1.35) is reduced to a simple
biquadratic equation:
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Fig. 1.13 Potential U(h) (left column) and phase portraits in the plane (h, v) (right column) of
system (1.31) with k = 0.65 (a), k = 0.9 (b), k = 1 (c), k = 1.1 (d); detuning g is indicated on each
curve; bold lines depict critical potentials and corresponding associated separatrices confluent with
the LPT at h = 0
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4k cos4 hh � 2 k cos2 hh � g ¼ 0; cos2 hh ¼ 1
4
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
16

þ g
4k

r
: ð1:36Þ

If jg=kj � 1=4, then cos2hh 
 1/2 + g/2 k, hh 
 p/4 − g/2 k. Substituting these
approximations into the last Eq. (1.32), we derive the simple condition providing
the existence of the required separatrix:

k � ghj j ¼ 1: ð1:37Þ

It is easy to check that the theoretical threshold gh closely agrees with the results
of numerical calculations. In particular, gh = −0.1 for k = 0.9, whereas the
numerical threshold g = −0.0945, g = gh = 0.1 for k = 1.1 (Fig. 1.13), gh = 0.3 for
k = 1.3, whereas the numerical threshold g = 0.325 (Fig. 1.12).

In a similar way, we can prove that, when the initial condition is taken at h = p/
2, then the condition (1.37) is turned into the equality:

kþ ghj j ¼ 1: ð1:38Þ

If g < 0, then solution (1.36) exists provided that |g| � k/4; in the limiting case
g = −k/4, we have cos hh = 1/2, hh = p/3, and condition (1.36) becomes:

3
ffiffiffi
3

p

4
k ¼ 1; k� 
 0:77: ð1:39Þ

Inequalities k 	 k* and |g| � k/4 express the necessary condition for the
existence of the separatrix coinciding with the LPT at h = 0. Additionally, we need
to calculate the argument hh from (1.36).
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Chapter 2
Two-Particle Systems Under Conditions
of Sonic Vacuum

In this section, we investigate resonance energy transport in a purely nonlinear
system, wherein harmonic oscillations are prohibited by the properties of the system
potential of degree higher than two. So, in contrast to the models considered in the
previous sections, the potential of this system does not contain quadratic terms.
Hence, the system does not exhibit the quasi-linear behavior; furthermore, there is
no constant natural frequencies predetermining resonance properties of the system
in the quasi-linear approximation. This implies that the study of resonance pro-
cesses and resonance energy transport in a purely nonlinear system requires a
special approach.

The basic model considered in this section comprises two weakly coupled purely
nonlinear oscillators, wherein initial energy is imported to one of them. Numerical
simulations reveal the existence of strong classical beat oscillations corresponding
to complete recurrent resonant energy exchanges between the oscillators in the state
of sonic vacuum, where no resonance frequencies can be defined. In this study, we
show that both intense energy exchange and transition to energy localization are
adequately described in the framework of the LPT concept. We show that the
occurrence of the recurrent energy exchanges in this highly degenerate model
strictly depends on the system parameters. For instance, choosing the parameter of
coupling below a certain threshold leads to the significant energy localization on
one of the oscillators; on the contrary, increasing the strength of coupling above the
threshold brings to the formation of a strong beating response.

Analytical studies pursued in this section predict the occurrence of the strong
beating phenomenon and provide necessary conditions for its emergence.
Moreover, a careful analysis of the beating phenomenon reveals a qualitatively new
global bifurcation of highly non-stationary regime.

Two systems considered in this chapter are similar to a weightless unstretched
preliminarily string with two symmetrically located point-like masses. In the first
model (Sect. 2.1), we restrict the motion by transversal (to the string) direction only
(scalar case). In Sect. 2.2, this restriction is removed.
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2.1 Weakly Coupled Oscillators Under Conditions
of Local Sonic Vacuum

If the motion of the particles is transversal to the weightless string itself, the
coupling between the particles is realized by the local strongly nonlinear interac-
tions. If the preliminary stretching of the string is absent, they are cubic functions in
the main approximation. However, we consider even more general case when the
power may be not only three but an arbitrary odd integer.

2.1.1 Evidence of Energy Localization and Exchange
in Coupled Oscillators in the State of Sonic Vacuum

We study energy localization and complete recurrent energy transport in a homo-
geneous system of two coupled anharmonic oscillators in the state of sonic vacuum.
This model (in the case of cubic inter-particle interaction) is mathematically
equivalent to weightless string with two symmetrically located identical particles if
a preliminary stretching is absent and the motion occurs in the transversal direction
only. The main goal is to describe the transition from initial energy localization on a
single oscillator to complete recurrent energy exchanges (strong beating phe-
nomenon) between the oscillators due to variations of the system parameters

The model under consideration comprises two identical anharmonic oscillators
coupled with an anharmonic spring. The non-dimensional equations of motion are
given by

d2x1
dt2

þ xn1 ¼ vðx2 � x1Þn;
d2x2
dt2

þ xn2 ¼ vðx1 � x2Þn:
ð2:1Þ

here n ¼ 2kþ 1; k ¼ 1; 2; 3; . . .; the parameter v denotes coupling stiffness. Initial
conditions x1 = X1, v1 = dx1/dt = V1, x2 = 0, v2 = dx2/dt = 0 at t = 0 correspond to
complete initial localization of the system energy on the first oscillator with the
second oscillator being initially at rest.

It is important to emphasize that the system (2.1) is homogeneous, and therefore,
its total energy E can be normalized to unity (E = 1) by choosing appropriate
rescaling of the dependent and independent variables. This means that the global
system dynamics is energy-independent and can be studied for an arbitrary value of
the total energy level.

Below, we illustrate numerically the existence of two different regimes such as
energy localization on the initially excited oscillator and complete energy
exchanges between the oscillators. We also show that the first regime corresponds
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to the non-resonant behavior of the coupled oscillators while the second one is
triggered by the formation of permanent 1:1 resonance capture resulting in the
complete recurrent energy transport between the oscillators.

2.1.2 Energy Localization

Figure 2.1a depicts instantaneous energy EiðtÞ ¼ _x2i =2þ nþ 1ð Þ�1xnþ 1
i of each of

the oscillators in the system with parameters v = 0.12, n = 3 and initial conditions
x1 = 1, v1 = 0, x2 = 0, v2 = 0 at t = 0. Figure 2.1b, c illustrate the fast Fourier
transform (FFT) transforms of x1ðtÞ and x2ðtÞ, respectively.

In Fig. 2.1a, one can observe localization of the initial energy on the first
oscillator. This result is not surprising, as the system under consideration is purely
nonlinear (sonic vacuum), and strong spatial energy localization on certain frag-
ments of the system is expected. Moreover, fast Fourier transform (FFT) diagrams
presented in Fig. 2.1b, c show that this type of response exhibits a trivial
non-resonant behavior, where the amplitude of a main frequency component of the
first oscillator far exceeds the amplitude of the main components of the second
oscillator. Also, the second oscillator possesses two comparable components with
remote frequencies exhibiting a clear subharmonic motion. The detailed analysis of
this type of response is performed in Sect. 2.1.4.

Fig. 2.1 Regime of energy localization. a Instantaneous energies recorded on the first and the
second oscillators (E1(t) thin solid line, E2(t) bold solid line); b fast Fourier transform of the
response of the first oscillator x1(t); c fast Fourier transform of the response of the second oscillator
x2(t)
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2.1.3 Complete Energy Exchanges (Strong Beating
Response)

Slightly increasing the coupling parameter v, we observe a global change of the
response. In particular, instead of energy localization on the first oscillator we observe
the formation of a beating response characterized by complete energy exchange
between the oscillators. Instantaneous energy EiðtÞ ¼ _x2i =2þ nþ 1ð Þ�1xnþ 1

i is
plotted in Fig. 2.2a for each of the oscillators in the system with parameters v = 0.18,
n = 3 and initial conditions x1 = 1, v1 = 0, x2 = 0, v2 = 0 at t = 0. Figure 2.2b, c
illustrates the FFT transforms of x1(t) and x2(t), respectively.

Figure 2.2a depicts the beating response characterized by complete recurrent
energy exchange between the oscillators. FFT diagrams in Fig. 2.2b, c reveal the
resonant nature of the response ensuring the formation of 1:1 resonance between the
oscillators, which, in turn, leads to the strong beating response.

It is important to note that beating oscillations are usually observed in linear or
weakly nonlinear systems possessing at least one pair of close natural frequencies
(Manevitch and Gendelman 2011; Manevitch and Smirnov 2010a, b, c). In these
cases, the resonance frequency of the response is determined either by the natural
frequency of the linear subsystem or by the frequency of a periodic excitation.
However, in the system under consideration subjected to the state of acoustic vac-
uum the resonant frequency is determined by the energy level of initial excitation.
Therefore, resonance frequencies observed in Fig. 2.2b, c are obviously
amplitude-dependent. This means that an increase in the initial amplitude of the first
oscillator results in an increase in the resonant frequency of oscillations.

Fig. 2.2 Strong beating response. a Instantaneous energies recorded on the first and the second
oscillators (E1(t)—thin dotted line, E2(t)—bold solid line); b FFT of x1(t); c FFT of x2(t)
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2.1.4 Asymptotic Analysis of Resonance Motion

This section suggests theoretical analysis of the near-resonant behavior of system
(2.1). Special emphasis is given to an analytical description of the formation and the
annihilation of a regular beating response, along with the local and global bifur-
cation analysis of the system dynamics.

Given the pure resonant nature of a strong beating regime, it is quite reasonable
to anticipate its formation in the neighborhood of the 1:1 resonance manifold. It is
well known that the phenomenon of 1:1 resonance capture provides maximum
energy transfer between weakly coupled identical oscillators. Thus, in order to
depict analytically the regime of complete energy transfer, as well as to find nec-
essary conditions for its existence, it is convenient to consider the system dynamics
in a neighborhood of the 1:1 resonance manifold.

Assuming resonance interactions, we rewrite (2.1) as follows:

d2xk
dt2

þX2xk ¼ el vðx3�k � xkÞn � xkn þX2xk
� �

; k ¼ 1; 2; ð2:2Þ

where X denotes the resonance frequency depending on the system energy, e is a
small parameter of the system, l = 1/e. As in the previous sections, we assume that
the sum in the square brackets is small but the expression
l v x3�k � xkð Þn�xkn þX2xk
� �

is of O(1) in the vicinity of resonance.
We underline that the representation of equations of motion in the form (2.2)

allows us to investigate the purely nonlinear system in the framework of the
quasi-linear theory and to employ the earlier developed methods. In the first step,
we introduce the new complex variables as follows:

uk ¼ 1
2i

YkeiXs0 � Y�
k e

�iXs0
� �

; vk ¼ X
2

YkeiXs0 þ Y�
k e

�iXs0
� �

; ð2:3Þ

and then substitute (2.3) into (2.1) to obtain the equations for Yk, Yk
* with the

right-hand sides of O(e) (see Starosvetsky and Ben-Meir 2013 for more details). In
the next step, the complex amplitude Yk(t, e) is sought in the form of the expansion
Yk(t, e) = uk

(0)(s1) + e uk
(1)(t, s1) + e2…, with the slow main term uk

(0)(s1), where
s1 = et is the leading-order slow timescale. Then, applying the multiple scales
methodology, we derive the following equation for the leading-order slow ampli-
tudes uk

(0)(s1) (detailed arguments are provided in Starosvetsky and Ben-Meir
2013):

du 0ð Þ
k

ds1
¼ il

Cn
ðn�1Þ=2
ð2XÞn u 0ð Þ

k jn�1u 0ð Þ
k � X

2
uk þ v

Cn
ðn�1Þ=2
ð2XÞn

����
����u 0ð Þ

3�k � u 0ð Þ
k jn�1 u 0ð Þ

3�k � u 0ð Þ
k

� �	 

k ¼ 1; 2

ð2:4Þ
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where Cn
ðn�1Þ=2 is the binomial coefficient. It is easy to conclude that system (2.4)

possesses two integrals of motion

N2 ¼ u 0ð Þ
1

��� ���2 þ u 0ð Þ
2

��� ���2
H ¼ /ð0Þ

1

��� ���ðnþ 1Þ
þ /ð0Þ

2

��� ���ðnþ 1Þ
þ l� /ð0Þ

1 � /ð0Þ
2

��� ���ðnþ 1Þ
:

ð2:5Þ

The first integral of motion allows for a convenient change of coordinates

u 0ð Þ
1 ¼ N cos heid1 ; u 0ð Þ

2 ¼ N sin heid2 : ð2:6Þ

Substituting (2.6) into (2.4), considering the relative phase d = d1 − d2 as a new
variable, and rescaling the independent variable by law

s ¼ Cn
ðn�1Þ=2N

n�1=ð2XÞn
h i

s1, we reduce (2.4) to the real-valued system

dd
ds

¼ l cosn�1 h� sinn�1 hþ 2v 1� sin 2h cos dð Þn�1
2 cot 2h cos d

h i
;

dh
ds

¼ lv 1� sin 2h cos dð Þn�1
2 sin d:

ð2:7Þ

It is important to note that system (2.7) does not involve the energy-dependent
frequency X and governed only by the constant parameters v and n, thus making the

global dynamics of system (2.7) invariant to the slow amplitudes uð0Þ
1

��� ���; uð0Þ
2

��� ���. We

will show that variations of the governing parameters v and n lead to both local and
global bifurcations.

2.1.5 Fixed Points and NNMs in the Neighborhood
of Resonance

The further study of the system dynamics is concentrated on the analysis of system
(2.7). First, we find fixed points of (2.7). By setting dh/ds = dd/ds = 0, we obtain
the following algebraic equations defining the fixed points of (2.7):

cosn�1 h� sinn�1 hþ 2vð1� sin 2h cos dÞn�1
2 cot 2h cos d ¼ 0;

ð1� sin 2h cos dÞn�1
2 sin d ¼ 0:

ð2:8Þ

By setting cos 2h = 0, sin d = 0, we obtain the following set of fixed points:

d 1ð Þ
1 ; h 1ð Þ

1

� �
¼ 0; p=4ð Þ; d 1ð Þ

2 ; h 1ð Þ
2

� �
¼ p; 3p=4ð Þ;

ðd 2ð Þ
1 ; h 2ð Þ

1 Þ ¼ ð0; 3p=4Þ; ðd 2ð Þ
2 ; h 2ð Þ

2 Þ ¼ ðp; p=4Þ:
ð2:9Þ
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The first pair of fixed points corresponds to the in-phase nonlinear normal mode
(NNM) of the original system (2.1), while the second one corresponds to the
out-of-phase NNM.

Additional fixed points (dk
(3), hk

(3)), k = 1, 2, are defined by the conditions cos
2h 6¼ 0, sin d = 0, that is,

cosn�1h� sinn�1h
� �

tan 2h� 2vð1þ sin 2hÞn�1
2 ¼ 0; d ¼ p; ð2:10Þ

cosn�1 h� sinn�1 h
� �

tan 2hþ 2vð1� sin 2hÞn�1
2 ¼ 0; d ¼ 0: ð2:11Þ

As mentioned above, the global system dynamics is governed by the parameters
v and n. In Fig. 2.3, we plot the solutions of Eq. (2.10) corresponding to d = p
versus variations of the parameter v for four different values of n. It is easy to see
that the branches of solutions bifurcate from the point (p, p/4). We will not illustrate
solutions of (2.11) because they are similar to those of (2.10) but for the range of
h 2 [p, 2 p].

Figure 2.3 demonstrates a qualitative change of the solutions of (2.10) for n > 5.
These topological changes represent the results of transition from a supercritical to a
subcritical pitchfork bifurcation undergone by the fixed points described in
(Zhupiev and Mikhlin 1981, 1984). Note that the appearance of the subcritical
bifurcation of the fixed points has a significant effect on the occurrence of strong
beats as well as on the shape of the response.

Fig. 2.3 Solutions of (2.10) versus variation of coupling strength v: a n = 3; b n = 5; c n = 5;
d n = 9. Stable branches of solution are denoted by bold solid lines, unstable branches of solutions

are denoted by dashed lines. Horizontal axes h = p/4 correspond to the fixed point h 2ð Þ
2
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Before proceeding with the analysis of strong beating response, we analytically
prove the occurrence of a subcritical pitchfork bifurcation at n > 5. In the first step,
one can deduce that the branches of the solutions of (2.10) bifurcate from the fixed

point h 2ð Þ
2 ¼ p=4. To analyze motion near h = p/4, Eq. (2.10) is rewritten as

v ¼ cosn�1 h� sinn�1 h
� �

tan 2h

2ð1þ sin 2hÞn�1
2

: ð2:12Þ

It follows from (2.12) that limh!p=4 @v=@hð Þ ¼ 0. In the next step, we insert the

expansion h ¼ p=4þ ~h, ( ~h
�� �� � 1) into (2.12) to obtain

v ¼ n� 1
2n

þ n n� 1ð Þ n� 2ð Þ
3ð2Þnþ 1

~h2 þO ~h3
� �

: ð2:13Þ

The first term in the right-hand side of (2.13) represents the first bifurcation
value of coupling strength v

v 1ð Þ
cr ¼ 2�n n� 1ð Þ; ð2:14Þ

at which the fixed point (d2
(2), h2

(2)) = (p, p/4) is transformed from the saddle point to
the stable center for an arbitrary value of n. The transformation of the saddle point
can be easily proved by performing a linear stability analysis (Starosvetsky and
Ben-Meir 2013).

It follows from expansion (2.13) that the coefficient of the quadratic term is
always positive for n > 5. In the special case of n = 5, this coefficient equals zero.
In this case, one can easily show that the coefficient of the higher-order term in the
expansion (i.e., the forth-order term) is negative. Hence, expansion (2.13) proves
the formation of a subcritical pitchfork bifurcation for n > 5.

2.1.6 Limiting Phase Trajectories

Figures 2.3 and 2.4 depict phase portraits of system (2.7) for n = 3 and n = 7. The
choice of these values of the parameter n is not arbitrary; it aims to show the global
changes in the system dynamics caused by the transition from supercritical (n > 5)
to subcritical (n > 5) pitchfork bifurcations.

In terms of the model (2.7), complete energy exchanges between the oscillators
are associated with the limiting phase trajectory (LPT), which passes through zero
point d = h = 0 and reaches the value h = p/2. We underline that, unlike the pre-
vious sections, there is no way to distinguish quasi-linear, moderately nonlinear,
and strongly nonlinear regimes, because the system does not exhibit the quasi-linear
behavior.
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Figure 2.4a, b demonstrate special orbits (bold lines) satisfying the initial con-
dition d = h = 0. However, motion along these orbits cannot lead to complete
energy exchange between the oscillators, as the trajectory does not reach the value
h ¼ p=2. Below, we refer to this kind of the phase trajectory as the LPT of the first
kind.

Increasing the value of v up to a certain critical value v 2ð Þ
cr , one can observe the

coalescence of the LPT of the first kind with the separatrix (Fig. 2.4c). This coa-
lescence leads to the global bifurcation resulting in the formation of an LPT of the
qualitatively different type (Fig. 2.3d), that is, of the LPT of the second kind.

Phase portraits in Fig. 1.18a are qualitatively similar to that ones in Fig. 2.4a.
However, slightly increasing the strength of coupling v (Fig. 2.5b), we observe the
occurrence of an additional pair of unstable fixed points, and the transition of the
fixed point (d2

(2), h2
(2)) from the saddle point to the stable center. The latter obser-

vation is a result of the above described subcritical pitchfork bifurcation. Clearly,
except the regular LPT starting at h ¼ 0, there exists an additional branch of the
LPT (we will refer to it as the “LPT bubble”) encircling the center (d2

(2), h2
(2)). This

new type of LPT is illustrated in Fig. 2.5c. At a certain critical value v = v 2ð Þ
cr , the

regular LPT collides with the “bubble” LPT exactly at the saddle point, entailing the
occurrence of the LPT of the second kind (Fig. 2.5d). The newborn LPT of the
second kind has a topology different from that one in the case of n = 3 reported in
previous sections.

It is seen in Fig. 2.5 that the LPT of the second kind in the case of n > 5 has a
near rectangular shape instead of the triangle observed at n = 3 and n = 5.

Fig. 2.4 Phase portrait of system (2.7) with n = 3 and different coupling strength: a v = 0.075,
b v = 0.1; c v = 0.1667; d v = 0.19. Limiting phase trajectories (LPTs) are denoted by bold lines
on each plot
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In order to derive analytical conditions of the occurrence of the LPT of the

second kind for any value of n, as well as to find a critical value v 2ð Þ
cr , we consider

the second integral of motion (2.5). Expressing H in terms of (h, d), one obtains

Hðd; h; vÞ ¼ cosnþ 1 hþ sinnþ 1 hþ vð1� sin 2h cos dÞ nþ 1ð Þ=2: ð2:15Þ

Equation (2.15) depicts phase trajectories of (2.7). We recall that the LPT of any
kind passes through zero point d ¼ h ¼ 0. Substituting h ¼ 0 into (2.15) yields the
following exact value of H(d, h, v) corresponding to the LPT:

HLPTðd; h; vÞ ¼ 1þ v: ð2:16Þ

In the case of n < 7, an increase in the coupling parameter v up to a critical value

v 2ð Þ
cr corresponds to the transition from the LPT of the first kind to the LPT of the

second kind. Since the LPT passes through the saddle point (d2
(2), h2

(2)) = (p, p/4),

the value v ¼ v 2ð Þ
cr can be found from the equality

HLPTðp; p=4; v 2ð Þ
cr Þ ¼ 1þ v 2ð Þ

cr : ð2:17Þ

It follows from (2.15) and (2.17) that

v 2ð Þ
cr ¼ 1� 2�

n�1ð Þ
2

� �
2

n�1ð Þ
2 � 1

� �
: ð2:18Þ

Fig. 2.5 Phase portrait of system (2.7) with n = 7 and different coupling strength: a v = 0.040;
b v = 0.055; c v = 0.061; d v = 0.063. Limiting phase trajectories (LPTs) are denoted with the
bold line on each plot
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We recall that the critical value v 2ð Þ
cr is associated with the transition from the

LPT of the first kind to the LPT of the second kind only for n = 3 and n = 5. If
n > 5, then, requiring the fixed point (d2

(2), h2
(2)) to lie on the LPT, we find a critical

value v 3ð Þ
cr corresponding to the occurrence of the LPT “bubble.” To this end, we

require the branch of the LPT to cross a saddle point branching out from (d2
(2), h2

(2))
through the pitchfork bifurcation. This branch of the solutions is given by
Eq. (2.10). Thus, solving the following nonlinear system:

cosn�1 h� sinn�1 h
� �

tan 2h� 2v 3ð Þ
cr ð1þ sin 2hÞn�1

2 ¼ 0;

cosnþ 1 hþ sinnþ 1 hþ v 3ð Þ
cr ð1þ sin 2hÞnþ 1

2 ¼ 1þ v 3ð Þ
cr ;

ð2:19Þ

one can derive a new criterion for the transition from localization to complete
energy transfer for the case of n > 5. In Table 2.1, we summarize critical values of
coupling strength v corresponding to different types of dynamical transitions.

2.1.7 Numerical Analysis of the Fundamental Model

We perform numerical verifications of the theoretical model suggested in the pre-
vious section. We compare the response of the original system (2.1) with initial
conditions x1(0) = 1, x2(0) = 0; v1(0) = v2(0) = 0 with the slow envelope (2.4)
satisfying the corresponding initial conditions u1(0) = i, u2(0) = 0. To confirm the
validity of the theoretical models for two different topologies of the LPT, we choose
two representative values of n, namely n = 3 (Fig. 2.6) and n = 7 (Fig. 2.6).

From the results in Fig. 2.6a (n = 3), it is clear that the choice of coupling
strength v below the predicted threshold (v < vcr

(2) = 0.167) leads to energy local-
ization on the first oscillator. However, if the value of v is increasing above the
threshold (v > vcr

(2)), we clearly observe the occurrence of a strong beating response,
i.e., complete energy exchanges between the oscillators (Fig. 2.6b). Moreover, the
slow flow envelop given by (2.4) is in a very good agreement with the full model
(2.1). This means that the analytical model clearly recovers the mechanism of the
transition from localization to recurrent energy transfer observed in the full model.

R ¼ x1 ¼ 0; _x1 [ 0f g\ Eðx1; _x1; x2; _x2Þ ¼ 1f g

Table 2.1 Critical values of coupling strength v versus for different types of dynamical transitions

Pitchfork
bifurcation value

Formation of the LPT “bubble” Transition from localization to a
complete energy transfer

n > 7 v 1ð Þ
cr ¼ 2�n n� 1ð Þ – v 2ð Þ

cr ¼ 1� 2�
n�1ð Þ
2

� �
2

n�1ð Þ
2 � 1

� �
n > 7 v 1ð Þ

cr ¼ 2�n n� 1ð Þ v 2ð Þ
cr ¼ 1� 2�

n�1ð Þ
2

� �
2

n�1ð Þ
2 � 1

� �
v 3ð Þ
cr -solution of (25)
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To better illustrate the effect of the transition from localization to a complete
transport of energy, we construct the Poincaré maps corresponding to system
chapter (4.1). To this end, we first restrict the system dynamics to an isoenergetic
manifold. It is easy to show that, due to homogeneity of chapter (4.1), the total
system energy can be normalized to unity (E = 1). Thus, fixing the total energy to a
constant level, we restrict the dynamical flow of chapter (5.1) to the
three-dimensional isoenergetic manifold E x1; _x1; x2; _x2ð Þ ¼ 1. By transversely
intersecting the three-dimensional isoenergetic manifold by the two-dimensional
cut plane T : x1 ¼ 0f g, one obtains the Poincaré map P : Z ! Z, where the
Poincaré section is defined as.

Fundamental time-periodic solutions of a basic period T correspond to the period
1 equilibrium points in the Poincaré map. Additional subharmonic solutions of
periods nT correspond to the period n equilibrium points of the Poincaré map, i.e.,
to the orbits that pierce the cut section n times before repeating themselves. Clearly,
the construction of the Poincaré map P : Z ! Zð Þ effectively reduces the global
system dynamics to the plane (x, v). The Poincaré section in Fig. 2.6a corresponds
to the case of v < vcr

(2) (energy localization), while Fig. 2.6b corresponds to the case
of v > vcr

(2) (strong beating response).
From the close observation of the results in Fig. 2.7, one can identify the formation

of special orbits (marked with bold dots) passing through the origin. It is clear that this
invariant set emanating from the origin constitutes a special orbit leading to a complete
energy exchange between the oscillators (strong beating response). However, the
results in Fig. 2.7a suggest that a similar orbit emanating from the origin do not lead to

Fig. 2.6 Superposition of the slow envelope (4.4) on the full response (4.1) for n = 3 and different
coupling strength: a v = 0.08 < vcr

(2); b v = 0.19 > vcr
(2). Initial conditions: x1(0) = 1, x2(0) = 0;

v1(0) = v2(0) = 0 for the full system; u1(0) = i, u2(0) = 0 for the envelope
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complete energy exchange. These special orbits of the Poincaré sections can be
directly correlated to the LPT of the reduced model. This special orbit illustrated in
Fig. 2.7a corresponds to energy localization (LPT of the first kind) while that one in
Fig. 2.7b corresponds to complete energy exchange (LPT of the second kind).

Figures 2.8 and 2.9 present computational results for n = 7. Figure 2.8 depicts
the time response for n = 7. Note that the response of the reduced-order model (2.4)
agrees fairly well with the response of the full model (2.1) despite the relatively
high power of nonlinearity. The theoretical prediction of the threshold value
vcr
(2) = 0.0625 is confirmed in Fig. 2.7.

Fig. 2.7 Poincaré map for n = 3; v = 0.08 < vcr
(2) (a); v = 0.2 > vcr

(2) (b). LPT is marked with bold
dots
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Figure 2.9 demonstrates that, despite the prevalence of the “chaotic sea” region,
which covers almost the entire map, one can still observe the preservation of the
special orbits corresponding to the LPTs of the first and the second types.

Numerical simulations show that, with an increase in the coupling parameter v,
the occurrence of the beating response is usually preceded by the regimes of a
“mixed” type exhibiting a temporal energy localization followed by distinct
irregular transitions into a beating-like response (Fig. 2.10) alternating with sub-
sequent localizations.

In Tables 2.2 and 2.3, we compare the numerically obtained critical values of
coupling v with the theoretically derived values vcr

(2), vcr
(3) for different values of n. In

numerical simulations, the total system energy is normalized to unity E = 1.
Tables 2.2 and 2.3 are constructed for two different initial excitations, namely

x1(0) = 0, v1(0) =
ffiffiffi
2

p
(Table 2.2) and x1(0) = [(n + 1)(1 + v)−1]1/(n+1), v1(0) = 0

(Table 2.3). We consider the following numerically found critical values of v: vb,
corresponding to the breakdown of localization followed by the occurrence of the
response of a “mixed” type, and vSB, related to pure beatings (Fig. 2.11). This
“mixed” type of response has been observed in the interval vb < v < vSB, or, in
other words, in the interval between energy localization (v < vb) and beating,
associated with complete energy exchange (v > vSB).

An insignificant difference in the critical values vb and vSB in Tables 2.2 and 2.3
can be explained by high sensitivity of system (2.1) to the change of the initial
conditions. However, despite these deviations, one can note a good agreement
between the numerical and analytical critical values in Tables 2.2 and 2.3.

It is important to note that the formation of regular beatings for n � 9 is prob-
lematic. However, even in the absence of a regular response, one can observe a tran-
sition from localization to complete energy exchanges at v = vcr

(2) provided the latter

Fig. 2.8 Superposition of the slow envelope (2.4) on the full response (2.1) for n = 7 and different
coupling strength: a v = 0.05 < vcr

(2); b v = 0.05 < vcr
(2). Initial conditions are indicated in Fig. 2.6
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exhibits highly irregular motion, i.e., the chaotic-like behavior. It follows from the
results in Tables 2.2 amd 2.3 that, despite the absence of a regular beating response for
n � 9, the analytical model predicts fairly well a critical value vb corresponding to the
breakdown of localization followedby irregular energy transfer between the oscillators.

If the motion of the particles is transversal to the weightless string itself, the
coupling between the particles is realized by the local strongly nonlinear interac-
tions. If the preliminary stretching of the string is absent, they are cubic functions in
the main approximation. However, we consider even more general case when the
power may be not only three but an arbitrary odd integer.

Fig. 2.9 Poincaré map for n = 7; v = 0.05 < vcr
(2(a); v = 0.07 > vcr

(2) (b). LPT is marked with bold
dots
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Fig. 2.10 Instantaneous energy corresponding to the mixed type of responses exhibiting temporal
localization and sudden bursts of the beating-like behavior (vb = 0.09, n = 3): a energy of the first
oscillator; b energy of the second oscillator. Initial conditions: x1(0) = x2(0) = 0; v1 0ð Þ ¼ ffiffiffi

2
p

,
v2(0) = 0

Table 2.2 Comparison of the threshold values vcr
(2), vcr

(3) obtained from the theoretical analysis
with the critical parameters vb, vSB obtained by numerical calculation of the response of system
(2.1) subject to impulse excitation x1(0) = x2(0) = 0; v1(0) =

ffiffiffi
2

p
, v2(0) = 0

n = 3 n = 5 n = 7 n = 9 n = 11 n = 13

vcr
(2) (n � 5)

vcr
(3) (n � 7)

0.1667 0.1071 0.0625 0.0445 0.0347 0.0285

vSB 0.17 0.112 0.069 – – –

vb 0.09 0.0875 0.054 0.038 0.03 0.027

Table 2.3 Comparison of the threshold values vcr
(2), vcr

(3) obtained from the theoretical analysis
with the critical parameters vb, vSB obtained by numerical calculation of the response of system
(2.1) subject to initial displacement x1(0) = [(n + 1)(1 + v)−1]1/(n+1), x2(0) = 0; v1(0) = v2(0) = 0

n = 3 n = 5 n = 7 n = 9 n = 11 n = 13

vcr
(2) 0.1667 0.1071 0.0625 0.0445 0.0347 0.0285

vSB 0.173 0.11 0.0637 – – –

vb 0.165 0.108 0.0635 0.044 0.035 0.029
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2.2 Non-local Sonic Vacuum

In this section, we remove the restrictions providing purely transversal motion of
the particles accepted in the previous section. We formulate the problem for general
multiparticle system assuming the presence of lateral springs without a preliminary
stretching. However, we discuss here only the result obtained for two-particle
model (Kikot et al. 2015), to compare them directly with those for the case of sonic
vacuum.

2.2.1 The Model

Considered system is depicted in Fig. 2.11. It consists of n particles of identical
mass m connected by linear inter-chain springs of elastic constant k1; moreover,
each particle is connected to the ground by two linear lateral springs of elastic
constant k2. It is assumed that all particles perform in-plane oscillations on the
vertical plane Oxyð Þ, and that all springs are unstretched at the equilibrium of the
system corresponding to the line y ¼ z ¼ 0 (see Fig. 2.11). In addition, fixed-fixed
boundary conditions are assumed for the particle chain, the unstretched length of
the i-th inter-chain spring connecting particles i� 1 and i is being taken equal to li,
for i ¼ 1; 2; . . .; n, and the unstretched lengths of the lateral springs are assumed to
be equal to d. Considering the free in-plane oscillations of this system, the trans-
verse and axial deformations of particle i are denoted by vi and ui, respectively, and
the deformed length of the i-th inter-chain spring by l0i and of the i-th lateral springs
by d0i (both lateral springs have equal stretched lengths due to symmetry). Without
loss of generality gravity forces are disregarded, and it is assumed that no dissi-
pation forces exist. Finally, without loss of generality, the normalization

Pnþ 1
i¼1 li ¼

1 is imposed for the inter-chain springs. Then, the analysis follows the approach
developed in (Manevitch and Vakakis 2014) for the corresponding system with no
lateral grounding supports.

Applying Newton’s law in the vertical and transverse directions, the equations
of motion of i-th particle are expressed as,

m€ui þ Ti cos/i � Tiþ 1 cos/iþ 1 þ Si sin hi sinwi ¼ 0
m€vi þ Ti sin/i � Tiþ 1 sin/iþ 1 þ Si sin hi coswi ¼ 0

ð2:20Þ

where Ti ¼ k1 l0i � li
� �

and Si ¼ k2 d0i � d
� �

are the stretching forces (tensions) in the
i-th inter-chain and lateral springs, respectively, /i is the angle between the i-th
spring and the horizontal direction, hi is the angle between the deformed and
undeformed positions of the i-th lateral springs, wi ¼ tan�1 ui=við Þ, overdots denote
differentiation with respect to the temporal variable t, and i ¼ 1; 2; . . .; n. At this
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point, the elongation of the i-th inter-chain spring, e1i ¼ l0i � li
� �

=li, and the elon-
gation e2i ¼ d0i � d

� �
=d of the i-th lateral springs are introduced, and the limiting

case corresponding to predominantly low-energy transversal oscillations is con-
sidered, taking into account only the corresponding leading-order geometrically
nonlinear effects in the oscillating chain.

Accordingly, the trigonometric expressions in (2.20) are expressed in terms of
the particle displacements vi and ui through the following geometric relations,

cos/i ¼
li þ ui � ui�1

vi � vi�1ð Þ2 þ li þ ui � ui�1ð Þ2
h i1

2

sin/i ¼
vi � vi�1

vi � vi�1ð Þ2 þ li�1 þ ui � ui�1ð Þ2
h i1

2

ð2:21aÞ

sin hi ¼
u2i þ v2i
� �1

2

u2i þ v2i þ d2½ �12
ð2:21bÞ

Fig. 2.11 Model of grounded nonlinear sonic vacuum consisting of 2 particles performing
in-plane oscillations on the (Oxy) plane; the unstretched spring are depicted by solid lines and their
undeformed states are shown by the dashed lines; l is the length of the springs; other notation—see
text below
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coswi ¼
vi

u2i þ v2i½ �12
sinwi ¼

ui

u2i þ v2i½ �12
ð2:21cÞ

and the spring deformations by,

l0i � li ¼ vi � vi�1ð Þ2 þ li þ ui � ui�1ð Þ2
h i1=2

�li ð2:22aÞ

d0i � d ¼ u2i þ v2i þ d2
� �1=2�d ð2:22bÞ

We will be interested in the limit of low-energy oscillations and sufficiently
small angles /i; hi and wi. Specifically, we will assume that the amplitudes of the
transverse oscillations of the particles are much smaller than the axial distances (on
the x-axis) between them; accordingly, we introduce the normalized displacements
�ui ¼ ui=l and �vi ¼ vi=l, and rescale the normalized displacements according to
�ui ! e2�ui and �vi ! e�vi. The small parameter e � 1 is introduced to indicate the
smallness of the transverse and axial normalized deformations and will be regarded
as the small parameter in the perturbation analysis that follows. Moreover, we

introduce the slow timescale ~t ¼ e k1=mð Þ1=2t and assume for simplicity that
li ¼ l ¼ 1= nþ 1ð Þ; i ¼ 0; 1; . . .; nþ 1. Note that by the above rescalings, the axial
displacements are assumed to be an order of magnitude smaller compared to the
transverse ones.

Substituting these normalizations and rescalings into expressions (2.21a)–
(2.21c) and (2.22a), (2.22b), omitting the overbars from the normalized displace-
ments, and expanding in Taylor series with respect to the small parameter, we
derive the following leading-order approximations that are valid in the low-energy
limit:

e1i ¼ e2 ui � ui�1ð Þþ 1
2

vi � vi�1ð Þ2
� 


þ � � � ; Ti ¼ k1le1i

e2i ¼ e2l2

2d2

	 

v2i þ � � � ; Si ¼ k2de2i

cos/i ¼ 1þ � � � ; sin/i ¼ e vi � vi�1ð Þþ � � �

sin hi ¼ el
d

	 

vi þ � � �

coswi ¼ 1þ � � � ; sin wi ¼
eui
vi

þ � � �

ð2:23Þ

In turn, substituting (2.23) into the equations of motion (2.20) governing the
axial and transverse oscillations of the particles, we derive the following
leading-order approximate equations valid in the low-energy limit:
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e2u00i þ 2ui � uiþ 1 � ui�1ð Þ � 1
2

viþ 1 � við Þ2 þ 1
2

vi � vi�1ð Þ2 þO e2
� � ¼ 0

ð2:24aÞ

v00i � uiþ 1 � uið Þ viþ 1 � við Þ
� 1
2

viþ 1 � við Þ3 þ ui � ui�1ð Þ vi � vi�1ð Þþ 1
2

vi � vi�1ð Þ3 þCv3i þO e2
� �

¼ 0

ð2:24bÞ

with i ¼ 1; . . .; n, C ¼ k2l2

2k1d2

� �
, and prime denoting differentiation with respect to

the slow timescale ~t.
We now express the Eqs. (2.24a) governing the O e2ð Þ axial oscillations in terms

of the axial tension developing in the chain,

e2u00i þ �Ti � �Tiþ 1 þ � � � ¼ 0 ð2:25Þ

where �Ti denotes the rescaled tension in the i-th spring (after the previous nor-
malizations and rescalings are imposed on the unscaled variable Ti), and with the
understanding that u0 ¼ unþ 1 	 0 and v0 ¼ vnþ 1 	 0 due to the fixed-fixed
boundary conditions. Both (2.24a) and (2.25) are in singular form since in the limit
e ! 0 the derivative term vanishes, which enables the partition of the axial
dynamics in terms of slow and fast components and the asymptotic treatment of the
dynamics. Indeed, in the leading-order “slow” approximation with e ¼ 0, we may
neglect the axial inertial effects in the dynamics to obtain
�T1 ¼ �T2 ¼ � � � ¼ �Tnþ 1 	 �T , which indicates that to leading-order, the rescaled
tension in the springs is spatially uniform. In physical terms, this means that in slow
timescale s1, the axial oscillations are relatively fast, so that an axial disturbance
generated at a point of the chain propagates quickly to the remainder of the system.
As a result, we can derive the following non-local representation of the average
axial force in the low-energy limit:

�T ¼ 1
nþ 1

Xnþ 1

p¼1

�Tp ¼ 1
nþ 1

Xn
q¼0

uqþ 1 � uq
� �þ 1

2
vqþ 1 � vq
� �2� 


¼ 1
2 nþ 1ð Þ

Xn
q¼0

vqþ 1 � vq
� �2 ð2:26Þ

since u0 ¼ unþ 1 	 0. Note that the tension is uniform in the slow timescale, but
when higher-order terms are taken into account, it becomes slowly varying (and not
uniform) in space. This is equivalent to considering only the outer solutions in the
axial equations of motion (2.24a) by neglecting the derivative term (or, setting
e2 ¼ 0) and deriving the following approximate (slow) expression,
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2ui � uiþ 1 � ui�1ð Þ 
 1
2 viþ 1 � við Þ2� 1

2 vi � vi�1ð Þ2, which combined with (2.26)
brings the equations governing the transverse oscillations (2.24b) in the form:

lv00i ~tð Þþ l�T v ~tð Þ½ � 2vi ~tð Þ � viþ 1 ~tð Þ � vi�1 ~tð Þ½ � þ v3i ~tð Þþ � � � ¼ 0; i ¼ 1; . . .; n

v0 ¼ vnþ 1 	 0

ð2:27Þ

where �T vð~tÞ½ � 	 1
2 nþ 1ð Þ

Pn
q¼0 ðvqþ 1ð~tÞ � vqð~tÞÞ2

h i
is a quadratic term depending on

the transverse displacement vector v sð Þ ¼ v1 . . . vN½ �T , and l 	 C�1 ¼ 2k1d2

k2l2

� �
.

The average longitudinal force may be regarded as a non-local force that is gen-
erated through the elastic extension of the chain by Hooke’s law. The dynamical
system (2.27) governs the leading-order slow transverse oscillations of the particles
and is studied in detail in Sect. 2.3.

Considering the structure of the coupled oscillators (2.27), we note that there is
complete absence of any linear stiffness component since all terms (except the
inertia term) are of the third order. Accordingly, this system represents a nonlinear
sonic vacuum since the linearized speed of sound in this medium is zero.
Furthermore, similar to the nonlinear sonic vacuum derived in (Manevitch and
Vakakis 2014), the system (2.27) governing the transverse oscillations of the par-
ticles contains strongly non-local terms even though starting system of Eqs. 2.20
involves only next-neighbor physical coupling between particles.

In the following analysis, we will consider system Eq. (2.27) in its simplest form
corresponding to n ¼ 2 in an attempt to highlight the highly complex dynamics that
this system possesses. Following to the asymptotic treatment of the slow transverse
oscillations of the chain, we will reconsider the axial oscillations governed by
Eq. (2.24a) or Eq. (2.25) which will be shown to possess both slow and fast
components.

2.2.2 Two-Particle System (n = 2): Slow Transverse
Oscillations

For n ¼ 2 system (2.27) reads,

lv001 þ l
6 v21 þ v2 � v1ð Þ2 þ v22
h i

2v1 � v2ð Þþ v31 þ � � � ¼ 0

lv002 þ l
6 v21 þ v2 � v1ð Þ2 þ v22
h i

2v2 � v1ð Þþ v32 þ � � � ¼ 0
ð2:28Þ

and is in the form of two strongly nonlinear coupled oscillators. It can be also
obtained directly from the variation of the following Lagrange function:
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L ¼ _v21 þ _v22
2

� 1
4l

v41 þ v42
� �� 1

6
v41 þ v42 � 2v32v1 � 2v31v2 þ 3v21v

2
2

� �� 


Given that this system is homogeneous in its nonlinear terms, it admits similar
nonlinear normal modes, i.e., time periodic oscillations corresponding to straight
lines in the configuration plane v1; v2ð Þ. To compute them, we impose the linear
relationship between the two coordinates, v2 ¼ kv1, and substitute into (2.28) to find
the modal constant k by the algebraic relation:

k 1þ l
6

1þ k � 1ð Þ2 þ k2
h i

2� kð Þ
n o

¼ k3 þ l
6

1þ k � 1ð Þ2 þ k2
h i

2k � 1ð Þ
ð2:29aÞ

There are always the solutions k1;2 ¼ �1 which correspond to in-phase and
out-of-phase NNMs resulting due to the symmetry of the system. Two additional
solutions are given by,

k3;4 ¼
l� 3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l� 3ð Þ2�4l2

q
2l

\0

provided that 0\e\l\1 (note that if l\e, we cannot separate transversal from
longitudinal motions through the previous rescalings). This indicates that at l ¼ 1,
a bifurcation of the out-of-phase similar NNM takes place, generating two addi-
tional out-of-phase NNMs; this pitchfork bifurcation, together with other strongly
nonlinear and non-stationary dynamical phenomena that can occur in system (2.28),
will be studied in more detail in the following asymptotic analysis.

For each NNM, the leading-order approximations to the transverse displace-
ments are computed by solving by quadratures the nonlinear equations for modal
oscillators,

v001 þ
1
6

1þ k � 1ð Þ2 þ k2
h i

2� kð Þþ 1=lð Þ
� �

v31 þ � � � ¼ 0;

v2 ¼ kv1

ð2:29bÞ

under the specified initial conditions of the problem.

2.2.3 Slow Flow Reduction of the Dynamics

We resort to a complexification/averaging methodology to analytically study its
stationary and non-stationary resonance dynamics. To this end, we rewrite this
system as,
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l v001 þx2v1
� �þ e1c v31 � lx2v1 þ l

6 v21 þ v2 � v1ð Þ2 þ v22
h i

2v1 � v2ð Þ
n o

þ � � � ¼ 0

l v002 þx2v2
� �þ e1c v32 � lx2v2 þ l

6 v21 þ v2 � v1ð Þ2 þ v22
h i

2v2 � v1ð Þ
n o

þ � � � ¼ 0

ð2:30Þ

where c ¼ 1=e1 and e1 are bookkeeping parameters used in the following asymp-

totic analysis, x ¼ k1=mð Þ1=2, and identical terms were added and subtracted in the
two equations. Then, we complexify the analysis by introducing the new complex
variables,

w1 ¼ v01 þ jxv1;w2 ¼ v02 þ jxv2; j ¼ �1ð Þ1=2

and the difference U ¼ w1 � w2. Expressing (2.11) in terms of the new complex
variables, we obtain,

l w0
1 � jxw1

� � ¼ �e1c
w1 � w�

1

2jx

	 
3

þ l
6

w1 � w�
1

2jx

	 
2

þ /� /�

2jx

	 
2

þ w2 � w�
2

2jx

	 
2
" #(

� 2
w1 � w�

1

2jx
� w2 � w�

2

2jx

	 

þ jlx

2
w1 � w�

1

� ��

l w0
2 � jxw2

� � ¼ �e1c
w2 � w�

2

2jx

	 
3

þ l
6

w1 � w�
1

2jx

	 
2

þ /� /�

2jx

	 
2

þ w2 � w�
2

2jx

	 
2
" #(

� 2
w2 � w�

2

2jx
� w1 � w�

1

2jx

	 

þ jlx

2
w2 � w�

2

� ��
ð2:31Þ

where �ð Þ� denotes complex conjugate. System (2.31) is now analyzed by applying
the method of multiple scales by introducing the new timescales ~t0 ¼ ~t;~t1 ¼ e1~t;
~t2 ¼ e21~t; . . . and considering the asymptotic expansions wi ~tð Þ ¼ wi0 ~t0;~t1;~t2; . . .ð Þ
þ e1wi1 ~t0;~t1;~t2; . . .ð Þþ e21wi2 ~t0;~t1;~t2; . . .ð Þþ � � � ; i ¼ 1; 2: Substituting in (2.31),
expressing the time derivatives in terms of the new timescales and matching
coefficients at different orders of e1, we obtain an hierarchy of subproblems gov-
erning the solutions of (2.31) at progressively higher of approximation. Since the
following analysis will be restricted only up to terms of O e1ð Þ, only the two leading
timescales will be considered.

The zeroth order approximation is obtained by matching coefficients of O e01
� �

and solving the following subproblem:

@wi0 ~t0;~t1ð Þ
@~t0

� jxwi0 ~t0;~t1ð Þ ¼ 0 ) wi0 ~t0;~t1ð Þ ¼ ui0 ~t1ð Þejx~t0 ; i ¼ 1; 2 ð2:32Þ
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This provides the leading-order approximation to the solution and indicates that
at the basic approximation, both particles perform slowly modulated transverse
oscillations with common fast frequency x. Hence, the following analysis is carried
out under the assumption of 1:1 resonance in terms of the transverse oscillations,
and all stationary and non-stationary dynamics discussed below satisfy this 1:1
resonance condition. The slowly varying complex amplitudes ui0 ~t1ð Þ are computed
by substituting (2.32) into the problem governing the O e11

� �
approximation,

l
@w11

@~t0
� jlxw11 ¼ �l

@u10

@~t1
� c

u10e
jx~t0 � u�

10e
�jx~t0

2jx

	 
3(

þ l
6

u10e
jx~t0 � u�

10e
�jx~t0

2jx

	 
2

þ U0 � U�
0

2jx

	 
2
"

þ u20e
jx~t0 � u�

20e
�jx~t0

2jx

	 
2#

� u10e
jx~t0 � u�

10e
�jx~t0

jx
� u20e

jx~t0 � u�
20e

�jx~t0

2jx

	 


þ jlx u10e
jx~t0 � u�

10e
�jx~t0

� �
2

)

l
@w21

@~t0
� jlxw21 ¼ �l

@u20

@~t1
� c

u20e
jx~t0 � u�

20e
�jx~t0

2jx

	 
3(

þ l
6

u10e
jx~t0 � u�

10e
�jx~t0

2jx

	 
2

þ U0 � U�
0

2jx

	 
2
"

þ u20e
jx~t0 � u�

20e
�jx~t0

2jx

	 
2#

� u20e
jx~t0 � u�

20e
�jx~t0

jx
� u10e

jx~t0 � u�
10e

�jx~t0

2jx

	 


þ jlx u20e
jx~t0 � u�

20e
�j 2:2:13ð Þx~t0� �

2

)

ð2:33Þ

and eliminating secular terms proportional to ejx~t0 from the right-hand sides which
render the O e11

� �
approximations non-uniformly valid in the timescale ~t0. This

results in the following set of slowly modulated complex equations in the timescale
~t1:
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l
@u10

@~t1
¼ c

3ju10 u10j j2
8x3 � jlxu10

2
þ

jl u2
10 þ u10 � u20ð Þ2 þu2

20

h i
2u�

10 � u�
20

� �
48x3

8<
:

þ
jl u10j j2 þ u10 � u20j j2 þ u20j j2
h i

2u10 � u20ð Þ
24x3

9=
;

l
@u20

@~t1
¼ c

3ju20 u20j j2
8x3 � jlxu20

2
þ

jl u2
10 þ u10 � u20ð Þ2 þu2

20

h i
2u�

20 � u�
10

� �
48x3

8<
:

þ
jl u10j j2 þ u10 � u20j j2 þ u20j j2
h i

2u20 � u10ð Þ
24x3

9=
;

ð2:34Þ

This represents the complex slow flow of the dynamics of system (2.28). As
shown below, it is fully integrable and, hence, analytically solvable since it pos-
sesses two first integrals of motion. This indicates that the slow dynamics at the
timescale ~t1 can be exactly determined.

A first integral of the slow flow (2.34) is reflecting energy conservation and is
given by

u10 ~t1ð Þj j2 þ u20 ~t1ð Þj j2¼ N ð2:35Þ

To compute a second independent first integral of motion, we express the slow
flow (2.34) in terms of real variables by introducing the following polar
transformations:

u10 ¼
ffiffiffiffi
N

p
cos h ejd1 and u20 ¼

ffiffiffiffi
N

p
sin h ejd2 ð2:36Þ

Substituting (2.36) into (2.34), setting separately the real and imaginary parts
equal to zero, and manipulating the resulting equations, we obtain the following
equations which represent the slow flow of the dynamics of system (2.28) in real
coordinates, on the isoenergetic manifold N ¼ N0:

dh
d~t1

¼ 3cN0

48x3 sin 2h sin 2D� 2 sinDð Þ ð2:37aÞ

l sin h cos h
dD
d~t1

¼ � 3cN0

32x3 sin 4hþ
clN0

24x3

3
4
sin 4h cos 2D3 cos 2h cosD

	 

ð2:37bÞ

where D ¼ d2 � d1. In particular, system (2.37a) and (2.37b) represents a reduction
of the dynamics on the isoenergetic slow flow two-torus h;Dð Þ 2 0; p=2½ � � 0; p½ �:
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2.2.4 Stationary and Non-stationary Dynamics

The stationary (time periodic) solutions of system (2.28) correspond to
dh
d~t1

¼ dD
d~t1

¼ 0, since this leads to constant-amplitude fast oscillations of the

leading-order approximations (2.32). It can be easily shown that he;Deð Þ ¼ p=4; 0ð Þ
is an equilibrium point on the torus corresponding to the in-phase similar NNM
with modal constant k1 ¼ 1; the resulting solutions of system (2.28) are given by
v1 ~tð Þ ¼ v2 ~tð Þ ¼ A sin x~tþ d1ð ÞþO eð Þ, where the amplitude A and phase d1 are
determined by the initial conditions. Similarly, the equilibrium point he;Deð Þ ¼
p=4; pð Þ corresponds to the out-of-phase similar NNM with k2 ¼ �1 with solutions
v1 ~tð Þ ¼ �v2 ~tð Þ ¼ A sin x~tþ d1ð ÞþO eð Þ. Additional equilibrium solutions (NNMs)
correspond to sin 2h sin 2D� 2 sinD ¼ 0, which leads to two additional equilib-

rium positions he;Deð Þ ¼ h�e1;2; p
� �

, where h�e1;2 are the two real roots of

sin 2h ¼ �2l= l� 3ð Þ for l\1; these correspond to the two bifurcating similar
NNMs with modal constants k3; k4\0:

To study the non-stationary dynamics of system (2.28) and investigate changes
in the global dynamics due to the previous bifurcation of NNMs, we reconsider the
reduced slow flow on the isoenergetic two-torus (2.37a), (2.37b), and rescale the
slow timescale as ~t1 ¼ cN0

32x3~t1 to express it in the following simpler form:

dh
d�t1

¼ 2 sin 2h sin 2D� 2 sinDð Þ ð2:38aÞ

dD
d�t1

¼ 2
l sin 2h

�3 sin 4hþ l sin 4h cos 2D� 4 cos 2h cosDð Þ½ � ð2:38bÞ

It can be shown that this system has the first integral of motion,

l
1
2
sin2 2h cos 2D� 2 sin 2h cosD

	 

þ 3

4
cos 4h ¼ H ð2:39Þ

which enables the exact analytic solution of system (2.38a), (2.38b). This represents
a second independent first integral of motion of the slow flow (2.34), in addition to
the energy-conservation first integral (2.35). Before proceeding to a more detailed
analytical treatment of the dynamics on the two-torus (2.38a) and (2.38b) we dis-
cuss the bifurcations that occur in this system as the parameter l changes.

There are two critical values for the parameter l corresponding to two bifur-
cations affecting the stationary and non-stationary dynamics on the two-torus
Eqs. (2.38a) and (2.38b). The first critical value, lc1 ¼ 1, is the point of the
pitchfork bifurcation of the out-of-phase NNM discussed in the introduction of this
section, whereas the second critical value is concerned with a bifurcation of a
limiting phase trajectory and the occurrence of strong energy exchanges between
the coupled oscillators Eq. (2.28). As shown, a unified description of highly
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non-stationary resonance dynamics can be performed by introducing the concept of
LPT. In fact, the LPT may be regarded as the orbit that is “maximally distant” from
the stationary points (NNMs) on the two-torus (2.38a and 2.38b) and passes
through the point h;Dð Þ ¼ 0; 0ð Þ. In that context, the second critical value, l ¼ lc2,
corresponds to the point where an LPT of the slow flow coincides with a separatrix,
after which its topological structure changes drastically and from spatially extended
becomes spatially localized. As shown in the numerical results presented below,
critical value of orbits of the slow flow (2.38a and 2.38b) passing through the points
h;Dð Þ ¼ 0; 0ð Þ and p=4; pð Þ corresponds to the same value of the first integral
Eq. (2.39). This estimates the second critical value as lc2 ¼ 0:6:

The aforementioned transitions of the non-stationary dynamics of system
Eq. (2.28) are depicted in Fig. 2.11 where the slow flow on the isoenergetic
two-torus Eqs. (2.38a) and (2.38b) is depicted for varying values of l. These results
illustrate the transition of the dynamics of system (2.28) from complete energy
exchanges between the two oscillators and energy localization in one of these
oscillators. For l[ lc1, the torus possesses two stable similar NNMs, whereas after
the NNM bifurcation at l ¼ lc1, there are four similar NNMs, with the out-of-phase
NNM becoming unstable and the other NNMs being stable. The instability of the
out-of-phase NNM for l\lc1 affects drastically the global stationary dynamics on
the two-torus since it generates two additional NNMs and two homoclinic loops
(separatrices) that emanate from the unstable mode. However, the full energy
exchange described by LPTs still remains possible. Key to understanding non-
stationary, resonant energy exchanges between the two coupled oscillators
(Eq. (9)) is the topological changes of the LPTs in Fig. 2.12 as l varies. For
l[ lc2, there occur strong energy exchanges along an LPT of the system, signified
by strongly modulated transverse oscillations of the two particles of the system (or
nonlinear beat phenomena). This is due to the fact that for l[ lc2, the LPT
trajectory connects the two distinct localized states i.e. h ¼ 0 (energy localization
on the first oscillator) with h ¼ p=2 (energy localization on the second oscillator)
interval 0; p=2ð Þ; in turn, by the polar transformations Eq. (2.36) we deduce that
intense energy exchanges between the two oscillators take place on the LPT (and on
quasi-periodic orbits in its vicinity), with energy being continuously exchanged
between the first oscillator (where the energy is localized for h 
 0) and the second
(for h 
 p=2). At l ¼ lc2 the LPT coincides with the speratrix emanating form the
unstable out-of-phase NNM, signifying the end of strong energy exchanges in the
dynamics. Indeed, for l\lc2, the topological structure of the LPT changes from a
single spatially extended orbit to two spatially localized orbits, with drastically
decreased ranges in terms of h for each orbit. This indicates a transition of the
resonant non-stationary dynamics of the system, since for l\lc2, the oscillations
of system (2.28) become localized to either one of the two oscillators (within each
of the two disjoint LPTs) and the intensity of energy exchanges between oscillators
drastically decreases. Further decrease in l enhances the intensity of energy
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localization in either one of the two oscillators and energy exchanges between them
increasingly diminish.

The change of the topological structure of the LPT for varying l is numerically
shown in Fig. 2.13, where the two LPTs on the two-torus (Eqs. 2.38a and 2.38b)
for initial conditions h 0ð Þ ¼ 1� 10�3 and D 0ð Þ ¼ 0 (corresponding to energy
initially localized to the first oscillator), and values of l before and after the LPT
bifurcation are depicted. We note that in the regime of strong energy exchanges
ðl ¼ 0:8[ lc2Þ, the dependencies of the angles h and D on the rescaled slow time
�t1 for the LPT are non-smooth, resembling sawtooth, and square-wave functions,
respectively; whereas in the regime of localization ðl ¼ 0:3\lc2Þ the angles for
the LPT have smoother waveforms. These observations will help us derive ana-
lytical approximations for these orbits representing non-stationary dynamics in the
next section. In Fig. 2.14, we confirm the previous analytical predictions by direct
numerical simulations of system (9) with initial conditions v1 0ð Þ ¼ 1 and v01 0ð Þ ¼
v2 0ð Þ ¼ v02 0ð Þ ¼ 0 and varying values of l before and after the LPT bifurcation.
The predicted strong resonant energy exchanges before the bifurcation and the
localization of the motion after it are numerically verified from these results.

Fig. 2.12 Reduced slow flow on the isoenergetic two-torus (2.38a and 2.38b) for a l ¼ 1:4,
b l ¼ lc1 ¼ 1:0, c l ¼ 0:8, d l ¼ lc2 ¼ 0:6, e l ¼ 0:3; the LPTs are indicated by the bold lines.
Different colors in contour lines correspond to values of the integral (2.39) and are used to
highlight the topology of the dynamics on the torus
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Fig. 2.13 Topological change of the LPT before and after the second bifurcation point l ¼
lc2 ¼ 0:6 and initial energy localized to the first oscillator: a l ¼ 0:8 corresponding to strong
energy exchanges between the two oscillators and spatially extended LPT on the two-torus,
b l ¼ 0:3 corresponding to localization in the first oscillator and spatially localized LPT
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Fig. 2.14 Direct numerical
simulations of system (2.28)
for the case when initial
energy is confined in the first
oscillator (v1 0ð Þ ¼ 1 and
v01 0ð Þ ¼ v2 0ð Þ ¼ v02 0ð Þ ¼ 0)
and a l ¼ 0:8, b l ¼ 0:3
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2.2.5 Analytical Approximations of the LPTs
on the Two-Torus

The numerical results of the previous section highlight the importance of the LPT
for understanding of resonant energy exchanges between the two coupled oscilla-
tors in system (2.28). Hence, in this section, we provide an analytical study of the
LPTs in the regimes before and after their bifurcation with the separatrix on the
two-torus. First, we start with the analysis of the LPT for l[ lc2, in the regime
where intense energy exchanges between the two oscillators Eq. (2.28) take place.
This analysis is motivated by the numerical results depicted in Fig. 2.13a which
provide insight on the highly non-stationary dynamics on the two-torus
Eqs. (2.38a) and (2.38b) corresponding to the LPT.

To this end, we reconsider the reduced slow flow Eqs. (2.38a) and (2.38b) in the
regime before the second bifurcation and develop analytical approximations for the
LPT by noting that on that orbit the dependencies of the angles h and D with respect
to the rescaled slow timescale �t1 are periodic but discontinuous, resembling saw-
tooth and square-wave functions, respectively (see Fig. 2.13a). At this point, we
need to emphasize that an LPT is a period orbit in the slow torus with finite period,
contrary to a separatrix in the same torus which is an orbit of infinite period.
Motivated by these observations, we resort to the method of non-smooth temporal
transformations (Pilipchuk 2010) for analytically studying periodic orbits (and their
bifurcations) of strongly nonlinear dynamical systems. We express the sought LPTs
in terms of two new non-smooth variables, s and e, as follows,

h �t1ð Þ ¼ X1 s �t1=að Þ½ � þ e �t1=að ÞY1 s �t1=að Þ½ �
D �t1ð Þ ¼ X2 s �t1=að Þ½ � þ e �t1=að ÞY2 s �t1=að Þ½ � ð2:40Þ

where a ¼ T=4 represents the (yet unknown) quarter-period of the LPT in terms of
the rescaled slow timescale�t1. The non-smooth functions s and e are used to replace
the slow timescale �t1 in the reduced system (2.38a) and (2.38b) and are defined by
the expressions,

sðxÞ ¼ 1
2

2
p
sin�1 sinðpx� p

2

� �
þ 1

	 

; eðxÞ ¼ dsðxÞ

dx
ð2:41Þ

The representations (2.4) provide decompositions of a periodic functions h ~t1ð Þ
and D ~t1ð Þ in terms of symmetric (the X-components) and anti-symmetric (the Y-
components) parts. Moreover, considering the numerical time series of these angles
for the LPT of Fig. 2.13a, we need to set Y1 s ~t1=að Þ½ � ¼ X2 s ~t1=að Þ½ � ¼ 0 in
Eq. (2.40) so that the analytical representations for the angles h ~t1ð Þ and D ~t1ð Þ
resemble sawtooth and a square-wave waveforms, respectively, and retain the
symmetric and anti-symmetric features, respectively, of the numerical results. In the
following analysis, we consider only the leading-order approximations for the
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functions X1 and Y2, and of the quarter-period a; for a regular perturbation scheme
for estimating higher-order approximations, we refer to (Manevitch and Smirnov
2010c: 3).

Considering the first integral (2.39) of the reduced slow flow, and imposing the
condition that the LPT passes through the point h;Dð Þ ¼ 0; 0ð Þ, we compute
H ¼ 3=4, so the equation describing the LPT on the two-torus is given by,

l
1
2
sin2 2h cos 2D� 2 sin 2h cosD

	 

þ 3

4
cos 4h ¼ 3

4
ð2:42aÞ

leading to the following functional relationship between the angles h and D:

cosD ¼ 1
sin 2h

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

sin2 2h
þ lþ 3

2l

s
ð2:42bÞ

In the following analysis, we consider only the �ð Þ sign in this expression so the
result holds for 0\�t1\a, i.e., over a quarter-period of the LPT [in fact, this result
estimates the component Y2 s �t1=að Þ½ � in (2.40)]. Over the same quarter-period, the
angle h varies linearly in �t1 between the two limiting values 0 and p=2, corre-
sponding to energy confined in the first and the second oscillator, respectively, (this
estimates the component X1 s �t1=að Þ½ � in Eq. (2.40). To extend these analytical
results over the entire time domain and obtain a symmetric periodic representation
for the angle h �t1ð Þ, and an anti-symmetric representation for the angle D �t1ð Þ, we
take into account Eq. (2.40) and express the leading-order analytical approximation
for the LPT as:

h �t1ð Þ ¼ p
2 s

�t1
a

� �
D �t1ð Þ ¼ �e �t1

a

� �
cos�1 �lþ 3

2l sin ps
�t1
að Þð Þ

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lþ 3

2l sin2 ps
�t1
að Þð Þ

p" #
ð2:43Þ

Note that by the definitions of the non-smooth variables Eq. (2.41), we get a
symmetric (odd) sawtooth-like periodic extension for h �t1ð Þ, and an anti-symmetric
(even) square-wave-like periodic extension for D �t1ð Þ. These results are in full
agreement with the numerical waveforms depicted in Fig. 2.14.

Now, it remains to analytically estimate the period T ¼ 2a of the LPT. This can
be performed in terms of a definite integral, since Eq. (2.42b) yields the dependence
D ¼ D hð Þ: In addition, from Eq. (2.38a), we can write that

d�t1 ¼ dh
2 sin 2h sin 2D� 2 sinDð Þ )

Za

0

d�t1 ¼
Zp=2
0

dh
2 sin 2h sin 2D� 2 sinDð Þ

ð2:44aÞ
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or

a ¼
Zp=2
0

dh
2 sin 2h sin 2D hð Þ � 2 sinD hð Þð Þ ð2:44bÞ

This is the exact expression for the half-period of the LPT in slow time and
yields excellent agreement with the results of direct numerical integration of system
(2.20) (cf. Fig. 2.15). This last computation completes the leading-order analytical
approximation for the LPT before the second bifurcation (i.e., in the regime of
intense energy exchanges between the oscillators), given by Eq. (2.43) and (2.44b).
The derived analytical approximations can be used for analytically studying the
strongly nonlinear, non-stationary dynamics of system Eq. (2.28) involving highly
intense energy exchanges between the two oscillators.

Considering the original system Eq. (2.28) governing the transverse oscillations
of the two particles, assuming initial conditions v1 0ð Þ ¼ 1 and
v01 0ð Þ ¼ v2 0ð Þ ¼ v02 0ð Þ ¼ 0, and that d1 ¼ 0; d2 ¼ D, the leading-order approxi-
mation for the LPT in the highly intense energy exchange of the dynamics is
expressed as v1 ~tð Þ 
 cos h ~t=32xð Þð Þ sin x~tð Þ and v2 ~tð Þ 
 sin h ~t=32xð Þð Þ sin x~tþð
D ~t=32xð ÞÞ. In Fig. 2.15, we compare the analytical approximations with the
numerical solutions for the LPT corresponding to l ¼ 0:8 (cf. Fig. 2.13a) and the
aforementioned initial conditions, and note satisfactory agreement.

Fig. 2.15 Comparison between the analytical solution for the LPT derived by Eqs. (2.43) and
(2.44b) (blue (solid) line), and the LPT computed by direct numerical simulation of Eq. (2.28) (red
(solid) line) for l ¼ 0:8 (regime of intense energy exchanges between the oscillators)
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We now analyze the LPT for l\lc2, i.e., in the regime where weak energy
exchanges between the two oscillators Eq. (2.28) take place, and the oscillations are
localized in either one of them. This analysis is motivated by the numerical results
depicted in Fig. 2.13b which provide insight on the near-stationary dynamics on the
two-torus (2.38a) and (2.38b) corresponding to the LPT in that regime of the
dynamics. We note that although we employ to term “localization,” to describe the
transverse oscillations of system (2.28) and the absence of complete energy exchange,
the two particles’ partial energy exchange is still possible. In this case, the LPT
corresponds to the orbit where maximum possible (partial) energy exchange between
the two oscillators (2.28) occurs. Moreover, in contrast to the previous regime of
intense resonant energy exchange, for l\lc2, there are two disjoint LPTs corre-
sponding to localized resonant oscillators to either one of the two oscillators.

Similar to the previous case of full energy exchange, the LPT is defined as the
trajectory which passes through the point h;Dð Þ ¼ 0; 0ð Þ. Hence, all previous cal-
culations still hold and the functional relation between the angle variables on the
LPT can be expressed as Eq. (2.42b). In turn, the temporal dependencies of the two
angle variables are expressed as

h ~t1ð Þ ¼ A s ~t1
a

� �
D ~t1ð Þ ¼ e ~t1

a

� �
p� cos�1 1

sin 2A s
~t1
a

� �� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

sin2 2A s
~t1
a

� �� � þ lþ 3
2l

r" #( ) ð2:45aÞ

where the amplitude A is determined from the energy-conservation first integral
(2.39) as

A ¼ 1
2
sin�1 4� l

3l

	 

ð2:45bÞ

and the period T ¼ 2a by employing the methodology outlined for the LPT in the
regime of intense energy exchanges:

a ¼
ZA
0

dh
2 sin 2h sin 2D hð Þ � 2 sinD hð Þð Þ ð2:45cÞ

As shown in Fig. 2.16, the comparison between the analytical solutions (2.45a),
(2.45b) and direct numerical simulations of the original system (2.28) is
satisfactory.

This completes the analytical and numerical study of the transverse oscillations
of system (2.28), including both the stationary and non-stationary regimes and
bifurcations of these motions. In the next section, we consider the axial motions of
the system of two particles governed by the singularly perturbed Eqs. (2.24a)
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2.2.6 Mixed Slow/Fast Axial Oscillations for n = 2

To obtain the leading-order analytical approximations for the axial oscillations of
the particles, we reconsider system (2.24a) which for n ¼ 2 is expressed as:

e2u001 þ 2u1 � u2ð Þ ¼ � 1
2 v21 � v2 � v1ð Þ2
h i

þ � � �
e2u002 þ 2u2 � u1ð Þ ¼ � 1

2 v2 � v1ð Þ2�v22
h i

þ � � �
ð2:46Þ

This problem can be solved by noting that having already computed the ana-
lytical approximations for the transverse displacements vi, the dynamical system
(2.46) can be regarded as a system of two coupled linear oscillators forced by
“pseudo-forcing” terms on the right-hand sides, and so can be studied by standard
linear modal analysis. Then, the leading-order approximations of the amplitudes of
the axial oscillations contain both slow (represented by the particular solutions) and
fast (resulting from the homogeneous solutions) components. We have seen that the
slow dynamics is critical for realizing the nonlinear acoustic vacuum in terms of
transverse oscillations (providing the approximately uniform, in the slow scale,
axial tension in the system), and play the main role in constructing the leading-order
approximations. Regarding the axial oscillations of the particles, however, in
addition to the slow dynamics, the fast dynamics need also to be explicitly taken
into account in the leading-order approximation in order to satisfy the initial con-
ditions for the axial oscillations of the problem (this is demonstrated in the

Fig. 2.16 Comparison between the analytical solution for the LPT derived by (2.45a)–(2.45c)
(blue (solid) line), and the LPT computed by direct numerical simulation of (2.28) (red (solid) line)
for l ¼ 0:3 (regime of weak energy exchanges between the oscillators)
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following example for in-phase transverse oscillations). The combined effect of this
mixed slow/fast dynamics is a fast redistribution of axial forces from an arbitrary
initial state to a nearly uniform state in slow time which is necessary for the
realization of the nonlinear sonic vacuum.

We demonstrate this computation by considering the in-phase mode for trans-
verse oscillations, but a similar procedure can be followed for the other NNMs or
for non-stationary resonant motions such as the LPTs. Accordingly, we set v1 ¼
v2 	 v and introduce the modal coordinates n1 ¼ u1 þ u2 and n2 ¼ u2 � u2 to
express Eq. (2.46) as:

e2n001 þ n1 ¼ 0þ � � �
e2n002 þ 3n2 ¼ �v2 þ � � � ð2:47Þ

where the transverse displacement v ~tð Þ is computed by solving for the nonlinear
modal oscillator (2.29b) with k ¼ 1

v00 þ 1=3ð Þþ 1=lð Þ½ �v3 ¼ 0 ) v ~tð Þ ¼ V cn
ffiffiffi
L

p
~t; 1=

ffiffiffi
2

p� �
ð2:48Þ

where L ¼ 1=3ð Þþ 1=lð Þ, cn �; �ð Þ is the Jacobi elliptic cosine function, and the
initial conditions for the transverse oscillations are assumed in the form
v 0ð Þ ¼ V ; v0 0ð Þ ¼ 0. Substituting (2.48) into (2.47), solving the resulting nonho-
mogeneous system, and transforming back to original coordinates, we derive the
following leading-order approximations for the axial displacements

u1 ~tð Þ ¼ C1 cos ~t=eð ÞþC2 sin ~t=eð ÞþC3 cos ~t
ffiffiffi
3

p
=e

� �
þC4 sin ~t

ffiffiffi
3

p
=e

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Fast oscillations

þ v2=6|ffl{zffl}
Slow oscillations

þ � � �

u2 ~tð Þ ¼ C1 cos ~t=eð ÞþC2 sin ~t=eð Þ � C3 cos ~t
ffiffiffi
3

p
=e

� �
� C4 sin ~t

ffiffiffi
3

p
=e

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Fast oscillations

� v2=6|ffl{zffl}
Slow oscillations

þ � � �

ð2:49Þ

where the coefficients of the fast oscillations are determined by imposing the initial
conditions for the axial oscillations, and we recall the rescaling of the time variable

introduced in Sect. 2.2, ~t ¼ e k1=mð Þ1=2t, in terms of the physical time t. Note that
apart from the mixed slow/fast dynamics, the axial dynamics also mix the in-phase
and out-of-phase axial modes at the fast timescale of the problem.

As discussed above and confirmed by (2.49), the leading-order approximations
for the axial oscillations consist of two parts, namely of fast oscillations with two
different fast frequencies, and of slow oscillations which have the same frequency
as the leading-order (slow) approximations of the transversal oscillations. These fast
axial oscillations play an important role in the dynamics since the generate the
non-local effects in the transverse dynamics by providing the fast redistribution of
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axial forces from an arbitrary initial distribution to a nearly uniform state in the slow
timescale which ultimately generates the nonlinear sonic vacuum.

To demonstrate the validity of the asymptotic analysis, in Fig. 2.17, we depict
the direct numerical integration of the equations of motion of the original system
(2.24a), (2.24b) for n ¼ 2, for the case of the LPT in the regime of intense energy
exchange (after the first but before the second bifurcation), and compare them with
the leading-order analytical results derived by the slow/fast decompositions.
Satisfactory agreement between the asymptotic and numerical results is noted,
confirming the validity of our theoretical predictions.

2.2.7 Global Dynamics

Since contrary to the reduced slow flow on the two-torus Eqs. (2.38a), (2.38b),
system (2.28) is not integrable (since it possesses only one first integral of motion
corresponding to energy conservation), we performed an additional study to clarify
its global dynamics and confirm the theoretical predictions of the previous section
which were based on asymptotic analysis of the slow dynamics. This analysis was
based on the construction of numerical Poincaré maps and clarified the role of the
resonance dynamics and of NNM and LPT bifurcations on the non-stationary and
chaotic dynamics of the strongly nonlinear system (2.28).

To this end, we consider the four-dimensional phase space v1; v2; v01; v
0
2

� � 2 R4

of system (2.28) and reduce the dynamics to a three-dimensional isoenergetic
manifold by fixing the total energy (hamiltonian) of this system to a constant value
F v1; v2; v01; v

0
2

� � ¼ f ) v02 ¼ F�1 v1; v2; v01; f
� �

. This renders _v2 a dependent vari-
able. Then, we introduce the Poincaré cut section R ¼ v1; v2; v01;F

�1
��

v1; v2; v01; f
� �Þ 2 R3=v2 ¼ 0; v02 [ 0g\F v1; v2; v01; v

0
2

� � ¼ f and define the Poincaré
map,

P : R ! R : v1 tkð Þ; v01 tkð Þ� � ! v1 tkþ 1ð Þ; v01 tkþ 1ð Þ� �� �
where tk and tkþ 1 denote consecutive time instances of crossings of orbits on the
isoenergetic manifold with the cut section R. By this construction, the Poincaré is
orientation preserving and captures all the global dynamics on the cut section (since
it can be proven that the isoenergetic flow is always transversal to R, with the only
exception being at the boundary of the map where v02 ¼ 0).

In the following numerical results, we fix the hamiltonian of system (2.28) to
F ¼ 10, and consider the global dynamics for varying values of l; moreover, we
denote the LPTs on the Poincaré maps by bold lines. In Fig. 2.18, we depict the
Poincaré maps of (2.28) for l ¼ 1:6; 0:8 and 0:3, and the global numerical analysis
fully confirms and validates our asymptotic results. The NNMs of the system are
fixed points of the map on the horizontal axis v01 ¼ 0 and the bifurcation of these
stationary solutions at the first bifurcation point lc1 ¼ 1 can be clearly observed in
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the numerical results. Moreover, the stability of the two NNMs before the bifur-
cation (with the NNMs are depicted as centers—cf. Fig. 2.18a) and the instability of
the out-of-phase NNM after the bifurcation (with the mode depicted as a saddle
point—cf. Fig. 2.18b) are clearly inferred. In addition, the change of the topological
structure of the LPT from spatially extended to spatially localized after the second
bifurcation point lc2 ¼ 0:6 is also confirmed. In particular, in Fig. 2.17c, we note
the result of the LPT bifurcation, which is signified by the existence of two disjoint
LPTs, with each of them being localized in the neighborhood of either one of the
stable bifurcated NNMs.

Additionally, we note that the region of chaotic motions depends strongly on the
value of parameter l. When l is large enough (far from both topological trans-
formations resulting from the two bifurcations of the global dynamics), the regions
of chaos are nearly negligible (cf. Fig. 2.18a), and the entire phase space of the
system seems to be foliated by isoenergetic invariant tori where the global
dynamics are topologically similar to the reduced slow flow two-torus (2.38a and
2.38b); given, however, that the dynamical system (2.28) is non-integrable, we infer
that even in this case chaotic layers still exist by they are spatially confined. Hence,
in this case, the asymptotic analysis based on slow flow reduction fully reflects the
behavior of the non-integrable system (2.28).

Fig. 2.17 Comparison between theoretical prediction and numerical simulation for the LPT of the
system with n ¼ 2, l ¼ 0:8; e ¼ 0:05 and initial conditions v1 0ð Þ ¼ 1,
v01 0ð Þ ¼ v2 0ð Þ ¼ v02 0ð Þ ¼ 0, and u1 0ð Þ ¼ u01 0ð Þ ¼ u2 0ð Þ ¼ u02 0ð Þ ¼ 0: a Transverse displacement
v1 tð Þ, and b axial displacement u1 tð Þ; the asymptotic predictions (2.43, 2.44a, 2.44b and 2.46 are
denoted by blue solid) lines, while the numerical simulations of Eqs. (2.24a), (2.24b) by red
(solid) lines; the bold dashed line in (a) shows the analytical prediction of the (slow) envelope
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After the first topological transition (cf. Fig. 2.18b), a weak chaotic layer appears,
together with a set of secondary stationary points. These points correspond to periodic
motions satisfying conditions of 1:3 internal resonance so they are not captured by our
previous asymptotic analysis which is based on the assumption of 1:1 resonance. This
higher-order resonance dynamics can be also treated analytically, e.g., with the
methodologies developed in (2.32 and 2.33). The 1:3 resonant stationary points are
surrounded by secondary LPTs which correspond to less intense energy exchanges
between the two oscillators in Eq. (2.28). Finally, after the second transition takes
place (cf. Fig. 2.18c), the chaotic region expands, and the regime of regular dynamics
is confined only in the neighborhoods of the bifurcated NNMs where the two bifur-
cated localized LPTs can be seen. In this case, the two LPTs provide the boundaries
between the regimes of chaotic and regular dynamics.

Thus, the presence of strongly nonlinear elastic supports changes qualitatively
both the stationary and non-stationary resonance dynamics of the nonlinear sonic
vacuum. Considering the simplest case of the system with only two particles, we
showed that, in contrast to the ungrounded sonic vacuum studied, there occur two
main bifurcations (dynamical transitions) in the dynamics under condition of 1:1

Fig. 2.18 Poincaré maps depicting the global dynamics of system (2.28) for a l ¼ 1:6, b l ¼ 0:8,
and c l ¼ 0:5; LPTs are denoted by bold lines
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resonance. First, a bifurcation of NNMs generates a pair of localized bifurcating
NNMs and an unstable out-of-phase NNM; such NNMs bifurcations are not pos-
sible in the ungrounded sonic vacuum whose NNMs are identical to those of the
corresponding linear spring-mass chain. Second, a bifurcation of the LPT which
changes drastically the intensity of energy exchanges occurring between the two
oscillators of the system; again this type of LPT bifurcation is not possible in the
ungrounded sonic vacuum where, under certain conditions, only a single LPT can
occur corresponding to intense energy exchanges between different NNMs in 1:1
resonance.

The analytical and numerical results presented here show that, alongside with
well-known bifurcation and instability of NNMs (Manevitch and Smirnov 2010c: 3),
full energy exchanges between different parts of the sonic vacuum become possible in
the regime of spatially extended LPTs. For different values of the system parameters
and depending on the energy level of the oscillation, the LPTs can become localized in
neighborhoods of bifurcated NNMs, in which case the intensity of energy exchanges
in the resonant non-stationary dynamics of the sonic vacuum drastically decreases.
This type of strongly non-stationary phenomena can be adequately described by LPTs
whose analytical presentation was obtained in terms of non-smooth basic functions.
An asymptotic analysis performed under condition of 1:1 resonance and based on
slow/fast decomposition of the dynamics fully predicted these previous global
dynamical changes. Moreover, it was shown that chaotic effects due to the
non-integrable nature of the sonic vacuum could not affect the bifurcations and the
corresponding topological changes in the phase space predicted by the slow flow
asymptotic analysis. Another interesting finding was that the LPTs appeared to sep-
arate the regions of regular dynamics in-phase space from the surrounding local or
global chaotic layers.

The results presented in this section can be extended to sonic vacua with larger
number of particles, but the analysis of these higher-dimensional systems is much
more complex (we present such analysis in Part 3). In addition, a new family of sonic
vacua composed of a number of parallel coupled chains of particles similar to the one
shown in Fig. 2.11 can be constructed and its stationary and non-stationary resonant
dynamics examined. Then, it would be of interest to examine the NNMs, LPTs, and
their bifurcations of this class of essentially nonlinear “discrete membranes.” Finally,
from a practical viewpoint, it is significant that the number of resonating modes in the
discrete model of untensioned grounded string may exceed that of the corresponding
ungrounded system and that the non-stationary dynamics and nature of resonant
energy exchanges and LPTs in these two systems are completely different.

Let us note that the obtained results for the two-particle modes are similar to
those presented in the previous section in the case of cubic nonlinearity. Despite the
parameters determining a qualitative change of non-stationary and non-stationary
dynamics are different, the types of dynamical behavior turn out to be similar
(excluding the longitudinal motion which is absent in the case of local sonic
vacuum).
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Chapter 3
Emergence and Bifurcations of LPTs
in the Chain of Three Coupled Oscillators

The natural question is: How the LPT concept may be extended to the systems with
more than two degrees of freedom? To answer this question, we consider first a
simplest extension to the case of three weakly coupled identical oscillators.

3.1 “Hard” Nonlinearity

3.1.1 Bifurcations of Limiting Phase Trajectories
and Routes to Chaos in the Anharmonic Chain
of the Three Coupled Particles

The corresponding non-dimensional equations of motion read

d2xn
dt2

þ xn þ ex3n ¼ le 1� d1nð Þðxn�1 � xnÞ � 1� d3nð Þðxn � xnþ 1Þf g
1� n� 3

ð3:1Þ

Here e is small parameter ð0\e � 1) which reflects both weak coupling and
weak nonlinearity. Presence of this parameter provides existence of the slow
timescale, exactly as in the case of 2DOF system.
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3.1.1.1 Multi-scale Analysis and Derivation of the Slow Flow Model

Analyzing the dynamics of the system in (3.1) is based on development of the
asymptotic series by multiple scales method. We employ a complex multi-scale
expansion procedure introduced previously wn ¼ _xn þ ixn and adopt the following
multi-scale expansion

wn ¼ wn0 s0; s1ð Þþ e wn1 s0; s1ð ÞþO e2
� �

;
@ �ð Þ
@t

¼ @ �ð Þ
@s0

þ e
@ �ð Þ
@s1

þO e2
� � ð3:2Þ

Introducing (3.2) in (3.1) and proceeding systematically up to the order of O eð Þ
and removing the secular terms, leads to the following slow flow model,

dun

ds1
¼ i

c
2
unj j2un þ

il
2

1� d1nð Þ un � un�1ð Þþ 1� dNnð Þ un � unþ 1

� �� �
;

n ¼ 1; 2; 3

ð3:3Þ

where wn ¼ un s1ð Þ expðis0Þ. Performing additional rescale s1 ¼ c=2�s1 and des-
ignating the rescaled coupling b ¼ l

c yields

dun

ds1
¼ i unj j2un þ ib 1� d1nð Þ un � un�1ð Þþ 1� dNnð Þ un � unþ 1

� �� �
;

u1ð0Þ ¼ iN; ukð0Þ ¼ 0; k 6¼ 1; n ¼ 1; 2; 3
ð3:4Þ

It is easy to show that system (3.4) possesses two integrals of motion,

N2 ¼ u1j j2 þ u2j j2 þ u3j j2

H ¼ c
i
2

X
k¼1;2;3

ukj j4 þ il u1 � u2j j2 þ il u2 � u3j j2 ð3:5Þ

In fact, the dimensionality of the system under consideration is six. Interestingly
enough, the global system dynamics can be reduced to the three-dimensional
manifold. To demonstrate that let us start from introduction of spherical
coordinates:

u1 ¼ N cos hð Þ cos uð Þeid1
u2 ¼ N sin hð Þeid2
u3 ¼ N cos hð Þ sin uð Þeid3

8<
: ð3:6Þ

68 3 Emergence and Bifurcations of LPTs in the Chain …



Substitution of (3.6) into (3.4) and using the coordinates of relative phases, i.e.,
D12 ¼ d1 � d2; D23 ¼ d2 � d3 allows for the global flow reduction

dh
ds1

¼ b sin uð Þ sin D12ð Þ � b cos uð Þ sin D23ð Þ
du
ds1

¼ �b tan hð Þ sin D12ð Þ cos uð Þþ sin D23ð Þ sin uð Þð Þ

dD12

ds1
¼

cos2 hð Þ sin2 uð Þ � sin2 hð Þ � bþ b cot hð Þ cos uð Þ cos D23ð Þ

�b
2

sin 2hð Þ sin uð Þ sin2 hð Þ � cos2 hð Þ sin2 uð Þ� �
cos D12ð Þ

2
64

3
75

dD23

ds1
¼

sin2 hð Þ � cos2 hð Þ cos2 uð Þþ b� b cos hð Þ cos uð Þ cos D12ð Þ

� 2
sin 2hð Þ cos uð Þ cos2 hð Þ cos2 uð Þ � sin2 hð Þ� �

cos D23ð Þ

2
64

3
75

ð3:7Þ

The second integral of motion can be expressed in terms of the new coordinates
ðh;/;D12;D23Þ:

H4D ¼
i
2 sin4 hð Þþ cos4 hð Þ cos4 uð Þþ sin4 uð Þ� �� ��
�ib sin 2hð Þ sin uð Þ cos D12ð Þ � ib sin 2hð Þ cos uð Þ cos D23ð Þ
�i b2 cos 2hð Þ;

2
4

3
5 ð3:8Þ

In contrast to the 2DOF counterpart, the reduced slow flow model (3.7) of the
3DOF given in its angular form is not integrable, thus obviously enough the
response of (3.7) can also be chaotic. However, as it will become clear from the
results brought below there exist certain domains in the space of system parameters
where the regular response regimes coexist with the non-regular ones.

3.1.2 Nonlinear Normal Modes (NNMs)

Similarly to the 2DOF system, NNMs turn out to be stationary points in the phase
space of 3DOF system in the slow timescale. The rest of solutions correspond to
ordered non-stationary processes, among which one can distinguish LPT with
maximum possible energy exchange, and chaotic motions.

Let us start the present discussion with the bifurcation analysis of nonlinear
normal modes. Thus, seeking for the stationary solutions of (3.7), we set the

derivatives of (3.7) to zero dh
ds1

¼ du
ds1

¼ dD12

ds1
¼ dD23

ds1
¼ 0

� �
, yielding the algebraic
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system of nonlinear equations. In Figs. 3.1 and 3.2, we plot the amplitudes
u1j j; u2j j; u3j jð Þ of each one of the oscillators corresponding to the stationary

solutions of the out-of-phase modes ðD12 ¼ D23 ¼ pÞ (see Fig. 1.1) and the mixed
mode ðD12 ¼ 0;D23 ¼ pÞ. In-phase mode is not presented (i.e. D12 ¼ D23 ¼ p) as it

yields the rather trivial result of u1j j ¼ u2j j ¼ u2j j ¼ 1ffiffi
3

p
� �

.

It is worthwhile noting that in the present diagrams (Fig. 3.1), we have shown
solely the nonlinear normal modes with the spatial energy localization spanned over
the first two oscillators (i.e., energy localization on either first or the second
oscillators or alternatively on both first and the second oscillators). Interestingly

(a) (b)

Fig. 3.1 Bifurcation diagram of NNMs: a D12 ¼ D23 ¼ p, b ðD12 ¼ 0;D23 ¼ pÞ. Unstable modes
are denoted with the dashed lines

(a) (b)

Fig. 3.2 Phase portraits of the reduced system with v = 0.1667 (a) and v = 0.18 (b)
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enough that the stable and the unstable localized modes bifurcate through the
saddle-center bifurcation, while the additional mode localized on the central
oscillator is stable and persists for all the values of coupling—b.

3.1.3 Emergence and Bifurcations of Limiting Phase
Trajectories (LPTs) in the System of Three Coupled
Oscillators

As it was shown in the previous section, the concept of the limiting phase trajec-
tories plays a crucial role in the analysis of bifurcations of the highly non-stationary
regimes manifested by the massive energy transport between the coupled anhar-
monic conservative systems, generators, externally driven systems as well as the
oscillatory chains and this under various conditions of the system parameters (i.e.,
constant parameters and time-varying parameters). However, in all these works, the
usage of the ideology of limiting phase trajectories has been mostly limited to the
analysis of the two coupled effective particles or alternatively to the externally
driven, single particle.

In the present section, we would like to show the emergence of a somewhat
similar phenomenon of limiting phase trajectories in the system of three coupled
effective particles. Moreover, we show that limiting phase trajectories can also play
a major role in predicting the formation and bifurcations of a special class of
non-stationary regimes which can be characterized by the weak and strong beating
established between the first and the second oscillators having insignificant energy
leakage to the third oscillator. In the same section, we show that breakdown of these
non-stationary regimes yields the significant energy transport to the third oscillator
ending up in chaotic-like motion manifested by the energy equipartition between all
the three particles.

Before proceeding with the further analysis, let us start with the definitions of the
new type of non-stationary regimes directly related to the limiting phase trajectories
discussed above.

First type of non-stationary regimes manifests itself by the significant energy
localization on the first oscillator with the moderate energy exchanges between the
first oscillator and the rest of the chain (i.e., second and third oscillators). This type
of the response is analogous to the weakly modulated regime obtained in the system
of two oscillators (e.g., two coupled pendula) subject to the impulsive excitation of
the first oscillator. As is clear from the above discussion in the framework of the
two coupled oscillators, this type of the response can be attributed to the type-I
limiting phase trajectory.

Second type of non-stationary regimes manifests itself by the significant energy
localization on the first and the second oscillators in the form of the high-energy
exchanges between the first and the second oscillators with the negligibly small
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energy leakage to the third coupled oscillator. This type of the response is analo-
gous to the strongly modulated regime obtained in the system of two oscillators
(e.g., two coupled pendula) subject to the impulsive excitation of the first oscillator.
As is clear from the above discussion in the framework of the two coupled oscil-
lators, this type of the response can be attributed to the type-II limiting phase
trajectory.

The last type of the response discussed in the present section corresponds to the
breakdown of the type-II limiting phase trajectory bringing about the irregular
energy wandering between all the three oscillators of the chain, obviously enough
the latter type of the response has no analogy in the system of two coupled
oscillators.

For the sake of convenience, we refer to this special type of regularly pulsating
regimes as the quasi-periodic LPT of type I and type II accordingly due to their
modulated nature. It is worthwhile noting that these special LPT orbits emerging in
the system of three coupled effective particles highly differ from their two DOF
counterparts due to their aperiodicity. Clearly enough for some particular choice of
initial conditions (fairly close to the impulsive ones), one could also find the per-
fectly periodic LPT similarly to the 2DOF systems. The periodic LPTs will be
illustrated in the following subsections.

To better understand the phenomenon of the consecutive transitions between the
different types of LPTs as well as predicting the formation of the fully delocalized
response, we resort to the construction of the reduced-order model based on “master
and slave” decomposition.

Thus, system (3.4) can be further reduced by assuming that the third element is
hardly excited in comparison to the 1st and the 2nd oscillators. Based on that
assumption, we reduce the slow flow system (3.4) as follows,

du1

ds1
¼ iju1j2u1 þ ivðu1 � u2Þ;

du2

ds1
¼ iju2j2u2 þ ivð2u1 � u1Þ;

du3

ds1
¼ ivu2 ¼ iv sin h eid2 :

ð3:9Þ

The system of the first two equations in (3.9) possesses two integrals of motion

N ¼
X

k¼1 to 2

ðj/kj2Þ;

H ¼
X

k¼1 to 2

ðj/kj4Þþ v � j/1 � /2j2 þ j/2j2
h i ð3:10Þ

A proper change of variables u1 ¼ eid1 cos h;u2 ¼ eid2 sin h reduces the first
two equations in (3.9) to a planar system with two angular variables h and
D = d1 − d2
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dh
ds1

¼ v sinD;

dD
ds1

¼ cos2 h� sin2 hþ v½2 cot 2h cosD� 1�:
ð3:11Þ

It is easy to prove that system (7.11) is Hamiltonian, with the Hamiltonian

H ¼ 1=2ðcos4 hþ sin4 hÞ � cðsin 2h cos D� sin2 DÞ:

Phase portraits of system (3.11) for different values of the parameter v are given
in Fig. 3.2a, b. One can observe localization of energy on the first oscillator at
v = 0.1667 (Fig. 3.2a), and formation of intense beating at the higher value
v = 0.18 (Fig. 3.2b). The LPTs are indicated by the bold solid lines.

It was shown in the previous sections that the transition from the LPT of the first
type (moderate energy exchange) to the LPT of the second type (strong energy
exchange) corresponds to the passage of the LPT of the first type through the
separatrix. Using the same arguments as in Sects. 2 and 3 (see e.g. the analysis
brought in Sect. 2, Eqs. 2.15– 2.19 for the sonic vacuum case), we derive the critical
parameter corresponding to the passage through separatrix as v = v1 = 0.1746.

We now consider the occurrence and the disappearance of the LPTs of the
second type. We show that, at certain coupling strength, the LPT vanishes, yielding
significant energy transfer to the third oscillator and generating chaotic energy
transport in the entire system.

Fig. 3.3 Instantaneous energy recorded on each of the oscillators with coupling strength
v = 0.11 < v1 = 0.175
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We restrict our consideration by the truncated system (3.9). Taking into account
the resonant interaction between the LPT of the first pair of oscillators and the third
oscillator, we formulate a robust analytical criterion for the annihilation of strong
beating between the first and second oscillators.

It follows from Eq. (3.9) that the unbounded growth of the response u3 can be
attained under the condition of resonance, i.e., when the spectrum of cos h coalesces
with that of exp(id2), thus yielding the secular growth of u3. First, we note that the
phases d1(s) and d2(s) represent relatively small oscillations near a slowly
increasing drift, namely,

djðsÞ ¼ xsþ hjðsÞ; j ¼ 1; 2; ð3:12Þ

where x is the average rate of rotation corresponding to the LPT, #j(s) is an
oscillating function. Next, h(s) is assumed to be a periodic function with the period
Tmod = 2p/X corresponding to the period of modulation of strong resonant beating
between the first and second oscillators. It now follows that the slow envelope u3

exhibits the secular growth if the angular frequency x coincides with the modu-
lation frequency X, that is, x = X. This condition allows one to determine the
critical value v2 from the equality

xðv2Þ ¼ Xðv2Þ: ð3:13Þ

The derivation of analytical expressions for x and X and the analytical calcu-
lation of v2 are beyond the scope of this report. To illustrate the criterion for the
second transition phase, we used Fast Fourier Transform to calculate both the
frequency of modulation X and the angular frequency x for the two distinct values
of coupling v = 0.3 < v2 and v = 0.365 = v2. The results are summarized in
Table 3.1.

3.1.4 Numerical Results

Numerical results of this section illustrate the occurrence of the aforementioned
quasi-periodic LPTs due to gradual increase of the coupling parameter v. In
addition to quasi-periodic LPTs, we demonstrate complete spontaneous energy
delocalization for the high values of coupling. The numerical results have been
obtained for system (3.1) with initial conditions (3.2).

Table 3.1 Dependence of the frequency of modulations X and angular frequency x on coupling
strength v

v X x

0.3 0.67 0.83

0.365 0.835 0.835
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1. Quasi-periodic LPTs of the first type. Figure 3.3 depicts instantaneous energy of
each oscillator for weak coupling v < v1. One can observe significant energy
localization on the first oscillator together with weak energy exchange between
the oscillators (weak modulation). In analogy to the 2DOF system, the response
with significant energy localization on the first oscillator is further referred to as
the quasi-periodic LPT of the first type.

2. Quasi-periodic LPTs of the second type. Given that the coupling strength
v > v1, we reveal a global change of the response (Fig. 3.4). Instead of energy
localization on the first oscillator or alternative energy delocalization (i.e.,
energy exchange through the whole chain), the formation of an intermediate
state characterized by regular strongly modulated beating between the first and
the second oscillators is observed.

It is noted in Fig. 3.4 that an insignificant amount of energy is transported to the
third oscillator. This type of highly modulated response with significant energy
localization on the first and the second oscillators is referred to as a quasi-periodic
LPT of the second type.

3. Complete energy delocalization. Further increase of the coupling parameter
entails an additional global change of the system response. In this case, regimes
of regular local pulsations (quasi-periodic LPTs) are completely destroyed,
yielding irregular chaotic behavior in the chain (Fig. 3.5).

The diagrams in Fig. 3.6 demonstrate consecutive transitions between the locally
pulsating regimes as well as the emergence of highly delocalized ones. At v =

Fig. 3.4 Instantaneous energy recorded on each oscillator provided the coupling strength
v = 0.18 (v1 < v < v2) is above the first threshold v1 = 0.175 and below the second threshold
v2 = 0.36
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1 = 0.175, we observe the first transition from energy localization on the first
oscillator to the intermediate state of energy localization on the first two oscillators
with intense energy exchange between them. The second transition at v � v2 =
0.365 is from the moderately localized state (strongly pulsating regimes) to
complete energy delocalization, i.e., maximal amplitudes of the response recorded
on all the three oscillators are nearly equal.

Fig. 3.5 Instantaneous energy recorded on each of the oscillators at v = 0.33 < v2 = 0.36

Fig. 3.6 Transition diagrams
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It is obvious that the first transition is well approximated in the framework of the
LPT concept for the simplified 2DOF model, wherein the effect of the third weakly
excited oscillator introduces asymmetry similar to that considered in the 2DOF
oscillators (Sect. 3). As a result, the numerical critical value for the 3DOF system
v1num = 0.165 is slightly lesser than the critical value v1LPT = 0.175 defined for the
2DOF system (the difference is of the order of 6%). The point of the second
transition from the localized to entirely delocalized states is also in a fairly good
agreement with the transition diagram, namely, the numerical critical point
v2num = 0.31 is close to the theoretically found value v2th = 0.36 (with the differ-
ence *14%).

3.1.5 Spatially Localized Pulsating Regimes

To assess the global dynamics of regular regimes as well as transition to chaos, we
construct the Poincaré sections for the slow flow model (3.7) at fixed energy levels.

As shown above, the global system dynamics can be reduced to the
three-dimensional (3D) manifold. To this end, we fix the value of the Hamiltonian
H to a constant h, thus restricting the flow of (3.7) to the 3D isoenergetic manifold.

H4Dðh;/;D12;D23Þ ¼ h: ð3:14Þ

Transversely intersecting the 3D manifold by a two-dimensional (2D) cut plane
S: {h = h0}, we construct the 2D Poincaré map P : R ! R, where the Poincaré
section is defined as

R ¼ fh ¼ h0; dh=ds1 [ 0g\ fH4Dðh;/;D12;D23Þ ¼ hg; ð3:15Þ

The restriction dh/ds1 > 0 is imposed to indicate the orientation of the Poincaré
map.

Despite apparent limitations, the constructed Poincaré maps faithfully reveal
periodic orbits. The fundamental time-periodic solutions of a basic period
T correspond to the period-1 equilibrium points of the Poincaré map, i.e., to orbits
of system (3.7), which recurrently pierce the cut section at the same point.
Additional subharmonic solutions of periods nT may exist corresponding to the
period-n equilibrium points of the Poincaré map, i.e., to orbits that pierce the cut
section n times before repeating themselves. In the present study, we construct the
Poincaré map P : R ! R such that the global system dynamics is mapped onto the
(D12, /) plane.

To study consequent transitions from the highly localized to delocalized states,
we set the value of the integral of motion corresponding to the initial state of the
system strictly localized on the first oscillator. This restriction corresponds to the
following choice of the initial conditions for the reduced slow flow model:
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h(0) = p/2, /(0) = D12(0) = D23(0) = 0. This choice of initial conditions yields the
following value of the second integral of motion

H4Dðp=2; 0; 0; 0Þ ¼ Hv ¼ i
2

1� v
2

� �
: ð3:16Þ

The Poincaré sections illustrated in Figs. 3.7, 3.8, 3.9, 3.10 and 3.11 correspond
to different values of v and Hv. On each Poincaré diagram, the points of the
quasi-periodic LPT are denoted with red color.

Starting from coupling v < v1, we obtain the orbits encircling the center
(Fig. 3.7). The center corresponds to the periodic LPT characterized by weak
energy pulsations and mostly localized on the first oscillator. This response, referred
to as the periodic LPT of the first type, allows us to determine the transition from
intensive energy exchange to energy localization in the reduced 2DOF model. The

Fig. 3.7 Poincaré section: system parameters: h0 = 1.4, v = 0.15

Fig. 3.8 Poincaré section: system parameters: h0 = 1.23, v = 0.1632
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Fig. 3.9 Poincaré section: system parameters: h0 = 1.23, v = 0.18

Fig. 3.10 Poincaré section: system parameters: h0 = 1.23, v = 0.1991

Fig. 3.11 Poincaré section: system parameters: h 0 = 1.23, v = 0.31
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boundary of the resonant island corresponding to this type of the LPTs is charac-
terized by stronger modulation, which, however, does not describe the maximal
possible energy transport between the oscillators (quasi-periodic LPT of the first
type). Note that this conclusion is in the perfect agreement with the results obtained
for the 2DOF systems.

An increase of coupling strength v entails the growth of the quasi-periodic LPT
(Fig. 3.8), which then destructed while passing the chaotic region (Fig. 1.10). The
annihilation of this regular orbit corresponds to the first transition from energy
localization on the first oscillator to recurrent strong energy exchange between the
first and second oscillators. It is worth noting the intermittent nature of highly
pulsating regime emerging right after the breakdown of the quasi-periodic LPT.
This intermittency is emphasized by its chaotic-like behavior. Naturally, this
peculiarity cannot be observed in the framework of the reduced system (Fig. 3.11).

Further increase of the strength of v results in the termination of the intermittent
response with the following formation of the quasi-periodic LPT of the second type
(Figs. 3.10 and 3.11) encircling the new center. This stationary point corresponds to
the perfectly synchronous periodic LPT with strong energy exchange between the
first two oscillators. As discussed above, the second transition (i.e., breakdown of
local energy pulsations spanned over the first two oscillators) is characterized by
chaotic energy transport between all oscillators. This spontaneous transition of the
second kind is manifested by a sudden blow up of the regular quasi-periodic LPT of
the second type.

3.2 “Soft” Nonlinearity

Let us consider now the case of the “soft” nonlinearity. In the case of two oscillators,
the transition from “hard” to “soft” nonlinearity leads to the exchange of the roles of
NNMs, namely which mode becomes unstable. For the “hard” nonlinearity, this is
the out-of-phase NNM, when for the “soft” nonlinearity, this is the in-phase NNM.
Now we are going to show that in the case of three oscillators, the behavior of the
“soft” system can differ significantly from the behavior of the “hard” one. The basic
model under consideration is the same chain of three weakly coupled oscillators as in
the previous paragraph, but the type of nonlinearity is different (“soft” instead of
“hard”). The dimensionless equations of motion are similar to (3.1):

d2x1
dt2

þ x1 � 8eax31 ¼ 2be x2 � x1ð Þ
d2x2
dt2

þ x2 � 8eax32 ¼ 2be x1 � 2x2 þ x3ð Þ
d2x3
dt2

þ x3 � 8eax33 ¼ 2be x2 � x3ð Þ

ð3:17Þ
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where xn is the displacement of the n-th oscillator, b is the coupling parameter,
a > 0 characterizes “soft” nonlinearity, and e is a formal small system parameter.
Below we present a brief analysis of this system without detailed calculations.

Again, we introduce the complex coordinates wk:

wn ¼ _xn þ ixn; n ¼ 1; 2; 3 ð3:18Þ

Substituting (3.18) into (3.17) and using the multi-scale procedure

wn ¼ wn0 t0; t1ð Þþ ewn1 t0; t1ð ÞþO e2
� �

;
@ �ð Þ
@t

¼ @ �ð Þ
@t0

þ e
@ �ð Þ
@t1

þO e2
� �

;

The main asymptotic approximation yields:

wn0 ¼ un t1ð Þ exp it0ð Þ; n ¼ 1; 2; 3;

du1

dt1
¼ �3aiju1j2u1 þ ib u1 � u2ð Þ

du2

dt1
¼ �3aiju2j2u2 þ ib u2 � u1ð Þþ ib u2 � u3ð Þ

du3

dt1
¼ �3aiju3j2u3 þ ib u3 � u2ð Þ

ð3:19Þ

System (3.19) has two conserved quantities

N2 ¼
X3
k¼1

jukj2

H ¼ � 3ai
2

X3
k¼1

jukj4 þ ib u1 � u2j j2 þ u2 � u3j j2
� � ð3:20Þ

Let us recall that the first conserved quantity is usually referred to as an occu-
pation number, whereas the second one is the Hamilton function (energy) of the
slow flow (3.19). It is important to emphasize here that without any loss of gen-
erality, we can let N ¼ 1, for example, by rescaling the amplitudes of the response.
Obviously, the presence of the occupation number as one of the integrals of motion
in slow timescale enables us to reduce the global six-dimensional phase space to a
four-dimensional subspace, similarly to the case of “hard” nonlinearity.

To this end, we introduce the spherical coordinates (the same way as above):

u1 ¼ cos hð Þ cos uð Þeid1
u2 ¼ sin hð Þeid2
u3 ¼ cos hð Þ sin uð Þeid3

8<
: ð3:21Þ
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Substituting (3.21) into (3.19) and introducing the relative phases
D12 ¼ d1 � d2;D23 ¼ d2 � d3, we can describe the slow flow by four angular
coordinates. The reduced system takes the form:

dh
ds1

¼ b cos uð Þ sin D12ð Þ � b sin uð Þ sin D23ð Þ
du
ds1

¼ b tan hð Þ sin D12ð Þ sin uð Þþ sin D23ð Þ cos uð Þð Þ
dD12

ds1
¼ �3a cos2 hð Þ cos2 uð Þ � sin2 hð Þ� �� bþ b cot hð Þ sin uð Þ cos D23ð Þ

�b 2
sin 2hð Þ cos uð Þ sin2 hð Þ � cos2 hð Þ cos2 uð Þ� �

cos D12ð Þ

" #

dD23

ds1
¼ �3a sin2 hð Þ � cos2 hð Þ sin2 uð Þ� �þ b� b cot hð Þ sin uð Þ cos D12ð Þ

� 2
sin 2hð Þ sin uð Þ cos2 hð Þ sin2 uð Þ � sin2 hð Þ� �

cos D23ð Þ

" #

ð3:22Þ

The Hamilton function given in (3.20) can be rewritten in terms of the new
coordinates ðh;/;D12;D23Þ as follows

H4D ¼
3ia
2 sin hð Þj j4 þ cos hð Þj j4 cos uð Þj j4 þ sin uð Þj j4

� �� �
� ib sin 2hð Þ cos uð Þ cos D12ð Þ

�ib sin 2hð Þ sin uð Þ cos D23ð Þ � i b2 cos 2hð Þ

" #

ð3:23Þ

Note that (3.22) is not integrable and may exhibit chaotic regimes. However, as
it will become clear from the results shown below, there exist certain domains in the
parametric space where the regular response regimes coexist with the non-regular
ones. The intensive energy exchange regime (Fig. 3.12) displays the phase trajec-
tory corresponding to the initial conditions for system (3.22)

hð0Þ ¼ u 0ð Þ ¼ D12ð0Þ ¼ D23ð0Þ ¼ 0 ð3:24Þ

We can observe an almost complete energy exchange between the oscillators 1
and 3 along with energy localization on the initially excited oscillator. The

Fig. 3.12 Intensive energy exchange for the initial excitation of the first element, parameter:
e = 0.1, a b = 0.75; b b = 0.15. Blue lines depict the evolution of the initial system, red lines—the
envelopes obtained from the solution of system (3.23)
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qualitative distinction from the “hard” nonlinearity can be explained as follows. In
both cases, the oscillator 2 interacts with two neighboring oscillators, while the
oscillators 1 and 3 interact only with one neighboring oscillator each. The “hard”
nonlinearity cannot compensate this asymmetry, only the “soft” one can do this.

Thus, we demonstrate the intensive energy transport from one side of the short
chain to another one. The middle element manifests the energy pulsations with the
doubled frequency of the side element pulsations. The considered energy exchange
involves two characteristic timescales, namely the scale of fast oscillations ðt0Þ and
the scale of slow energy exchange ðt1Þ between the coupled oscillators.

We will conclude this section with some observations and remarks concerning
the relation of the quasi-periodic LPTs in the 3DOF system to the general theory of
LPTs. In the case of two coupled anharmonic oscillators, emergence of the LPTs (of
both types) is determined by an initial excitation applied to the first oscillator. The
role of the coupling parameter in the 2DOF and 3DOF systems is similar. Choosing
the coupling strength between the two oscillators below a certain threshold leads to
the formation of the LPT of the first type with energy localization on the first
oscillator and weak energy exchange between the oscillators. However, increasing
the strength of coupling above the threshold leads to global bifurcations of the LPT
of the first type manifested by the formation of the LPT of the second type. In the
case of hard nonlinearity, the latter falls under category of pure beating with
complete energy exchange between the oscillators.

However, the dynamics of the 3DOF system with “hard” nonlinearity is more
complicated than the behavior of its 2DOF counterpart. In particular, the mecha-
nism of transition from a locally pulsating quasi-periodic LPT to a strong energy
exchange can be quite different. The Poincaré sections demonstrate that the first
transition occurs because the quasi-periodic LPT enters a chaotic region. This leads
to an intermittent response corresponding to an almost irreversible energy transfer
from the first to the second oscillator. As the coupling strength increases, we
observe the emergence of a new quasi-periodic LPT (of the second type) charac-
terized by the recurrent energy exchange between the first and second oscillators.
The breakdown of a strong local energy exchange occurs due to the penetration of
the orbit of the second type LPT into the chaotic region. It is clear from the
consideration of the Poincaré sections that the birth and death of the regular
quasi-periodic LPTs of the first and second type goes not through their reconnection
(as is in the case of the periodic LPTs) but through the sudden formation of a stable
strongly pulsating regime. As for the case of “soft” nonlinearity, almost complete
energy exchange is possible between the first (initially excited) and third oscillators.

Thus, the possibility of the generalization of the LPT concept on multi-particle
systems as well as the mechanism of its breaking is clarified. In the case of “hard”
nonlinearity, the reduced 2DOF model plays a key role here, as it does not depend
on the number of weakly interacting oscillators. However, as the number of par-
ticles increases, another significant possibility of the extension of the LPT concept
appears for both types of nonlinearities. This possibility is strongly connected with
the notion of coherence domains. Detailed presentation of this approach is given
below.

3.2 “Soft” Nonlinearity 83



Chapter 4
Quasi-One-Dimensional
Nonlinear Lattices

In this section, it is shown how the LPT concept can be extended to
finite-dimensional oscillatory chains. The systems under consideration are
finite-dimensional analogues of several classical infinite models which were ini-
tially used for analysis of such significant physical phenomena as recurrent energy
transfer and localization.

Over the last several decades, these phenomena remain the subjects of primary
theoretical and experimental interest in various aspects of modern theoretical and
applied physics such as physics of plasma, nonlinear optics, soft matter, fluid
mechanics, and granular matter (Scott 2003). We consider several such problems in
Part 3.

The problem of vibration energy localization in the infinite Fermi–Pasta–Ulam
(FPU) chain can be asymptotically reduced to finding a localized solution (soliton
or breather) of the continuum Korteweg–de Vries (KdV) equation (this long
wavelength limit is not significant for our consideration) or nonlinear Schrodinger
equation (NLSE), which are completely integrable systems (Scott 2003). After such
reducing, the mathematical origin of the phenomenon becomes clear. However, it
can be shown that not an infinite but a finite (periodic) b-FPU chain has to be
chosen to clarify the physical nature of vibration energy localization (Manevitch
and Smirnov 2010). This model has been intensively studied (Poggi and Ruffo
1997; Chechin et al. 2002; Rink and Verhulst 2000; Rink 2001; Henrici and
Kappeler 2008a, 2008b; Flach et al. 2005) in the framework of nonlinear normal
mode (NNM) concept (Manevitch et al. 1989; Vakakis et al. 1996). On the contrary
to NLSE, finite discrete systems are not completely integrable (except the three
particle b-FPU periodic model (Feng 2006). Therefore, the knowledge of NNMs
leads to a unique possibility for constructing a wide class of solutions using a
perturbation technique (Scott 2003). However, an increase of the particle number in
the symmetric (b-FPU) chain leads inevitably to the resonant interaction between
the high-frequency NNMs because of linear spectrum crowding. We consider the
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concepts of “coherence domains” and limiting phase trajectories (LPTs) to under-
stand and describe both complete energy exchange between different parts of the
chain and transition to energy localization.

This concept has been extended to finite Klein–Gordon (KG) (Smirnov and
Manevitch 2011) and dimer chain (Starosvetsky and Manevitch 2013).

4.1 Finite Fermi–Pasta–Ulam Oscillatory Chain

The main problem discussed in the present section is whether we can extend the
LPT concept onto the description of energy exchange in the symmetric b-FPU
chain or similar processes in asymmetric a−b-system. We analyze the influence of
the asymmetry of the potential on the resonant interaction of the NNMs and the
processes of energy localization. We use an analytical description of energy
exchange between “coherent domains” in the (a−b)-FPU chain.

One should note that the effective renormalization of the quartic coupling con-
stant was introduced for modulation instability analysis of normal modes close to
the zone-boundary mode in the rotating-wave approximation in (Sandusky and
Page 1994; Burlakov et al. 1996). The current section considers a more wide class
of the problems, and the key result is in an analytical description of intensive energy
exchange between the “coherent domains” and energy localization on the “coherent
domain” in terms of the non-smooth basic functions.

4.1.1 The Model

We consider the (a–b)-FPU system defined by Hamilton function

H0 ¼
XN
j¼1

1
2
pj

2 þ 1
2

qjþ 1 � qj
� �2 þ a

3
qjþ 1 � qj
� �3 þ b

4
qjþ 1 � qj
� �4� �

ð4:1Þ

and periodic boundary conditions (qN+1 = q1, pN+1 = p1), where qj and pj are the
coordinates and the conjugate momenta, respectively, and N is the number of
particles.

The transition to normal coordinates is given by the linear canonical
transformation

qj ¼
XN�1

k¼0

rj;knk ð4:2Þ
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where

rj;k ¼ 1ffiffiffiffi
N

p sin
2pkj
N

þ cos
2pkj
N

� �

The transformation (4.2) allows us to present the quadratic part of Hamilton
function as the total energy of the independent oscillators:

H2 ¼
XN�1

k¼1

1
2

gk
2 þxk

2nk
2� � ð4:3Þ

Here, nk and ηk are the amplitudes and the momenta of NNMs; the coordinate n0
associated with motion of the center of mass is removed from (4.3). The eigen-
values xk have the form

xk ¼ xN=2 sin
pk
N

; xN=2 ¼ 2; k ¼ 0; . . .;N � 1 ð4:4Þ

In what follows, we consider an even number of particles N. In this case, the
frequencies xk are bounded by the highest value xN/2 = 2. All eigenvalues are
twice degenerated. The zero eigenvalue x0 = 0 corresponds to motion of the chain
as a rigid body. If the number of particles increases, the frequency gap between the
highest frequency mode and nearby modes quickly decreases.

The anharmonic part of the Hamilton function (4.1) for the periodic (a–b)-FPU
chain has the following form:

Hn ¼ a

6
ffiffiffiffi
N

p
XN�1

i;j;k¼1

xixjxkDijkninjnk þ
b
8N

XN�1

k;l;m;n¼1

xkxlxmxnCklmnnknlnmnn ð4:5Þ

where

Dn;m;k ¼ �Dnþmþ k þDnþm�k þDn�mþ k þDn�m�k

Ck;l;m;n ¼ �Dkþ lþmþ n þDkþ l�m�n þDk�lþm�n þDk�l�mþ n

and

Dr ¼ �1ð Þr if r ¼ mN; m 2 Z
0; otherwise

�

4.1 Finite Fermi–Pasta–Ulam Oscillatory Chain 87



So the equations of motion can be written as:

d2nk
dt2

þx2
knk þ

a

2
ffiffiffiffi
N

p xk

XN�1

l;m¼1

xlxmDlmknlnm

þ b
2N

xk

XN�1

l;m;n¼1

xlxmxnCklmnnlnmnn ¼ 0

ð4:6Þ

To analyze the dynamics of the chain, we introduce the complex variables
corresponding to the combination of displacement and velocity in the new basis

Wk ¼ 1ffiffiffi
2

p 1ffiffiffiffiffiffi
xk

p gk þ i
ffiffiffiffiffiffi
xk

p
nk

� �

The inverse transformation allows us to define the coordinates and momenta as
follows:

nk ¼
�iffiffiffiffiffiffiffiffi
2xk

p Wk �Wk
�ð Þ; gk ¼

ffiffiffiffiffiffi
xk

2

r
Wk þWk

�ð Þ

In terms of the complex amplitudes, Eq. (4.6) can be rewritten as follows:

i
dWk

dt
þxkWk � i

a

4
ffiffiffiffiffiffi
2N

p
XN�1

l;m¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xkxlxm

p
Dlmk Wl �Wl

�ð Þ Wm �Wm
�ð Þ

� b
2N

XN�1

l;m;n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xkxlxmxn

p
Cklmn Wl �Wl

�ð Þ Wm �Wm
�ð Þ Wn �Wn

�ð Þ ¼ 0

ð4:7Þ

Taking into account the dependence of the chain properties on the number of the
particles, one can consider 1/N as a small parameter e.

4.1.2 Basic Asymptotic

We employ the multiple scales procedure in order to consider the processes in the
“slow” time with the specific scale greatly exceeding 2p/xk.

Following this procedure, we introduce the timescales:

s0 ¼ t; s1 ¼ �s0; s2 ¼ �2s0; . . .
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where the “fast” time s0 corresponds to the initial timescale, while the slow times
s1, s2 correspond to the slowly varying envelopes. The envelope functions uk are
defined by the relation

Wk ¼ uke
ixks0

We construct the asymptotic representation of uk in the form

uk ¼ vk;0 þ �vk;1 þ �2vk;2 þ � � �� �
The multiple scales expansion based on these relations will be used to derive the

equations of the leading-order approximation.
Terms with e0:

@vk;0
@s0

¼ 0

Terms with e1:

@vk;0
@s1

þ @vk;1
@s0

� �
eixks0

� a
ffiffiffi
2

p

8

XN�1

l;m¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xkxlxm

p
Dlmk vl;0e

ixls0 � vl
�e�ixls0

� �
vm;0e

ixms0 � vm
�e�ixms0

� �
¼ 0

There is one secular term in this equation:

@vk;0
@s1

¼ 0

So, the function vk,0 does not depend on the time s1.
Then, we can get the expression for vk,1 and use it at the further steps of

approximation:

vk;1 ¼ �i
a
ffiffiffi
2

p

8

XN�1

l;m¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xkxlxm

p
Dlmk

vl;0vm;0
ei xl þxm�xkð Þs0

xl þxm � xkð Þ � 2vm;0vl;0
� ei xl�xm�xkð Þs0

xl � xm � xkð Þ þ vm;0
�vl;0

� ei xl þxm þxkð Þs0

xl þxm þxkð Þ
� �

So, one can see that the part of this equation corresponding to the symmetric
nonlinear component of the Hamilton function depends only on {vj,0}, and the part
corresponding to the asymmetric component can be expressed in {vj,0} too. Then,
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we integrate this equation with respect to s0 and obtain equation with the renor-
malized constants.

After some calculations, one can get the equations for the pair of modes with the
same eigenvalue (we denote vk,0 = vk and suppose that the other modes are not
excited):

i
@vk
@s2

þ c1;k vkj2vk þ c2;k
�� ��vN�kj2vk þ c3;kv

2
N�kv

�
k ¼ 0

i
@vN�k

@s2
þ c1;k vN�kj2vN�k þ c2;k

�� ��vkj2vN�k þ c3;kv
�
N�kv

2
k ¼ 0

ð4:8Þ

where

c1;k ¼ 9
8 b� 3

4 a
2

� �
x2

k þ a2

c2;k ¼ 3
4 bþ 1

2 a
2

� �
x2

k � 2a2

c3;k ¼ 3
8 b� 5

4 a
2

� �
x2

k þ 3a2

8<
:

This system possesses the integrals

X ¼ vkj2 þ
�� ��vN�kj2

and

G ¼ i vkvN�k
� � vk

�vN�kð Þ:

So, Eqs. (4.8) can be rewritten as follows:

i
@vk
@s2

þ c1;kXvk þ ic3;kG vN�k ¼ 0

i
@vN�k

@s2
þ c1;kXvN�k � ic3;kG vk ¼ 0

One should note that the effective linearization of equations (4.8) is possible only
due to the existence of the integral G_ on the manifold which contains two
degenerate modes only. On the other side, such integral manifold exists at the
specific initial conditions which prevent an excitation of other nonlinear normal
modes.

The intensity of the energy exchange between conjugate modes is governed by
the value of the parameter G_. While this parameter is small, the energy of the
mode varies slowly, but the complete amount of it is transferred to the conjugate
mode. In the coordinate space, this process corresponds to the slow rearrangement
of the oscillation energy along the system. The rate of energy exchange increases as
the value of G_ grows, but amount of the energy participating in the exchange
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decreases (Fig. 4.1). The dynamics of the normal modes in the essentially discrete
system (small value of N) should be considered in the assumption that the gap
between p-mode and nearby conjugate ones is large enough. However, if the
number of particles grows, then a new opportunity arises. Really, while the
parameter e decreases, the gap between the eigenvalues corresponding to the p-
mode and the nearby ones becomes smaller:

xN
2
� xN

2�1 �
p2

2N2 xN
2

Therefore, the resonant interaction between the highest frequency modes
becomes possible. Let us choose the top frequency X = xN/2 as the basic one. First
of all, because of the closeness of frequencies, additional linear terms appear in the
equations for vN/2−1 and vN/2+1. Moreover, we have to take into account the

Fig. 4.1 The change of the energy exchange rate with the variation of parameter G_. The later
grows from the left to the right, while the “occupation number” X is constant. The green line
corresponds to the total energy of the chain, and the black and red curves correspond to the
energies of resonant modes. The amount of energy transferred from one mode to another one
decreases, while the parameter G_ grows
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resonant interactions in the nonlinear part of equations. The problem turns out to be
more complicated than that for the b-FPU chain. After some manipulations, we
have got the equations

i
@v1
@s2

� p2

2
X2v1 þCX2 v1j2v1 þ v1

�v2
2 þ 2v0

2v1
� þ 2

�� ��v0j2v1	 

¼ 0

i
@v2
@s2

� p2

2
X2v2 þCX2 v2j1v2 þ v2

�v1
2 þ 2v0

2v2
� þ 2

�� ��v0j2v2	 

¼ 0

i
@v0
@s2

þ 2CX2 v1j2 þ
�� ��v2j2	 


v0 þ v1
2 þ v2

2
� �

v0
�

	 

¼ 0

ð4:9Þ

where v0 = vN/2, v1 = vN/2−1, v2 = vN/2+1 and

C ¼ 3
4
b� a2 ¼ 3

4
b1

The obtained equations coincide with those for the b-FPU chain if the constant
of the nonlinear interaction is renormalized (b ! b1). In particular, (4.9) possess an
integral of motion—the total “occupation number”:

X ¼ v0j2 þ
�� ��v1j2 þ jv2j2

We would like to note that the presence of asymmetric term in the potential
function leads to decreasing of the effective nonlinearity up to linearization of (4.9).
It is a good agreement with the numerical simulation results (see Fig. 4.2, where the
processes of energy exchange between different parts of the really linear chain
(a = 0, b = 0) and effectively linear chain (b1 = 0) are compared). Because the
“renormalized” equations for the ab-FPU chain coincide with the equations
described the b-FPU chain, all effects discussed in (Manevitch and Smirnov 2010)
occur in ab-FPU chain also. Therefore, in the framework of this asymptotic
approximation, there is no difference between ab- and b-FPU chains. It is very
interesting that the dynamics of a-FPU system has to correspond to the dynamics of
the b-FPU chain with b < 0. In order to complete the description of the energy
exchange processes, we perform the analytical solution of (4.9) for LPT.

4.1.3 From “Waves” to “Particles”

Since we consider of the energy migration in the nonlinear chain, the description of
system’s dynamics in the terms of NNMs has to be replaced by that in terms of the
“coherent domains” and LPTs. This allows us describing the intensive energy
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exchange between different parts of the chain, which can be identified as “coherent
domains” with “coordinates” W1 and W2:

w1 ¼
1ffiffiffi
2

p v0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p
v1 þ cv2

	 
	 


w2 ¼
1ffiffiffi
2

p v0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p
v1 þ cv2

	 
	 

u ¼ cv1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p
v2

	 


where c is a constant defined by initial conditions (0 � c � 1). Such transfor-
mation preserves the total occupation number in the form X=|W1|

2 + |W2|
2 + |u|2.

For the value c ¼ 1=
ffiffiffi
2

p
which corresponds to equal initial conditions of modes, we

have the equations in the coordinates of “coherent domains”

Fig. 4.2 Distribution of the
energy among the particles of
the chain; initial condition
corresponds to LPT (excited
one half of the chain—
coherent domain): a really
linear system (a = b = 0) and
b “effectively linear” system
(a = 0.5, b = 0.333)
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ð4:10Þ

Since the notion of coherent domains is of great importance, we discuss it in
more details. When dealing with the mechanisms of intensive energy exchange, one
needs to reveal the elementary agents which exchange energy and become the
domains of its localization (after exceeding some critical level of excitation). In
gaseous media, they are the interacting particles (atoms or molecules) themselves,
which participate in almost free motion.

On the contrary, the particles in oscillatory chains as well as in all crystalline
solids undergo a strong mutual interaction. Therefore, the elementary agent here is
all oscillatory chain performing oscillations corresponding to one of non-interacting
normal modes. However, an increase of the particle number leads to the resonance
relations between several normal modes and then between multiple modes with
close frequencies. If the initial conditions are strongly asymmetric (they are far from
those corresponding to every resonating normal modes), it leads to the strong
intermodal interaction.

As a result, the resonating normal modes are no longer the appropriate ele-
mentary agents. In the system of two weakly coupled oscillators, their role is played
by the particles themselves changing slowly by the energy in the beating process
(their displacements can be presented as a sum and a difference of the modal
variables).

As the number of particles increases, the appearance of the resonating modes
does not mean that we have to come back to the real particles. Now, the “coherent
domains” play a role of elementary agents. Their displacements can be constructed
as combinations of resonating modal variables only. These combinations manifest a
beating process described by limiting phase trajectory. Thereby, the beating notion
is extended to multi-dimensional systems. Besides, introducing the LPT allows us
to describe adequately the transition from intensive energy exchange to energy
localization on one of the coherent domain due to an increase of intensity of
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excitation. By this manner, the connection with continuum systems, having the
breathers as localized solutions, is clarified. At last, a most simple analytic pre-
sentation of intensive energy exchange can be attained exactly in terms of the
“coherent domains” and limiting phase trajectories.

Let us consider a particular solution corresponding to u ¼ 0; v1 ¼ v2. In this
case, Hamilton function is

H ¼ X2 � p2

4
jw1 � w2j2 þC 9 w1j2 þ

�� ��w2j2
	 
2

þ 6 w1j2
�� ��w2j2

��

�2 w1j2 þ
�� ��w2j2
	 


w1w2
� þw1

�w2ð Þþw1
2w2

�2 þw1
�2w2

2


 ð4:11Þ

Since occupation number X = |W1|
2 + |W2|

2 is the integral of motion, the vari-
ables W1 and W2 admit the polar representation as follows:

w1 ¼
ffiffiffiffi
X

p
cos heid1 ; w2 ¼

ffiffiffiffi
X

p
sin heid2 ð4:12Þ

Substitution of (4.12) with / = 0 into (4.10) yields the following equations

@h
@s2

þK1 sinDþK2 sin 2h sin 2D ¼ 0 ð4:13Þ

sin 2h
@D
@s2

þ 2K1 cosD cos 2h� 2K2 sin 4h 8� cos2 D
� � ¼ 0

where D = d1 − d2 and

K1 ¼ X2 p2

4
� 3
32

b1X

� �
; K2 ¼ 3

64
b1XX

2 ð4:14Þ

Equations (4.13) correspond to Hamilton function

H h;Dð Þ ¼ X
27b1X � 16p2

64
X2 þK1 sin 2h cosD� K2 8� cos2 D

� �
sin2 2h

� �
ð4:15Þ

At fixed value of X, it is convenient to analyze the solutions of Eqs. (4.13) by the
phase portrait method. Figure 4.3 shows the phase portrait at a small value of
occupation number X.

There are two stationary points corresponding to NNMs:

ðaÞ h ¼ p
4
; D ¼ 0

n o
; ðbÞ h ¼ p

4
; D ¼ p

n o
ð4:16a; bÞ
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The points (a) and (b) correspond to W1 = W2; by definition, this leads either to
the pure p-mode (a) or to the pure (vN/2−1 + vN/2+1)-mode (b).

When the amplitude of excitation grows, the in-phase stationary point (4.16a)
becomes unstable (Fig. 4.4). This instability leads to the appearance of two new
stationary points. Namely, if the occupation number X exceeds the value Xc, then
there exist three stationary solutions of (4.13) with the phase shift Δ = 0:

ðaÞ D ¼ 0; h ¼ p=4

ðbÞ D ¼ 0; h ¼ 1
2
arcsin

K1

14K2

ðcÞ D ¼ 0; h ¼ p
2
� 1
2
arcsin

K1

14K2

ð4:17a–cÞ

The instability threshold of the p-mode is equal to X ¼ p2=3b1, that is in a good
accordance with the estimation obtained in the framework of the “narrow packet”
approximation (Lichtenberg et al. 2008). Any trajectories in the neighborhood of
stationary points (4.17b, c) correspond to weakly localized solutions, for which the
energy of one half of the chain—“coherent domains”—only slightly exceeds the

0,5

1,5

1

Δ

Fig. 4.3 Phase portrait of (4.16) with X < Xc (LPT—dashed line)

Fig. 4.4 Distribution of the energy among the particles of the chain (numerical solution); initial
condition corresponds to p-mode: a before the threshold of instability Xc and b after it
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energy of the second one. At the same time, the trajectories starting beyond this
vicinity and passing through the points W1 (h = 0) or W2 (h = p/2) correspond to
the combinations of modes with approximately equal energies. It means that an
initial excitation of one “coherence domain” entails the complete energy exchange
between both ones, i.e., the transition from the state W1 into the state W2 and
inversely. This implies that a possibility of complete energy exchange between
different parts of the chain exists for the excitation level exceeding the instability
threshold Xc (Fig. 4.5).

A growth of the amplitude X entails an enlargement of the domain encircled by
the separatrix passing through an unstable stationary point (out-of-phase NNM); at
last, the separatrix coincides with the LPT. At this point, the topology of the phase
plane changes drastically (Fig. 4.5). Namely, any energy exchange between the
mixed states W1 and W2 disappears; this implies that a trajectory starting at a point
corresponding to h < p/4 (or h > p/4) and for any D cannot reach a point corre-
sponding to h > p/4 (or h < p/4) (excepting the trajectories surrounding in-phase
stationary points D = p and bounded by the separatrix going through the unstable
point h < p/4, D = 0). Therefore, the energy initially concentrated near the states
W1 or W2 remains confined in the excited effective oscillator Fig. 4.6.

0,5

1,5

-

-

(a) (b)

Fig. 4.5 a Phase portrait of (4.15) (LPT—dashed line) and b distribution of energy among the
particles in the chain along LPT (numerical solution), X < Xc < Xloc

0,5

1,5

-

-

(a) (b)

Fig. 4.6 a Phase portrait of (4.15) (LPT—dashed line) and b distribution of energy among the
particles in the chain along LPT (numerical solution), X > Xloc
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Epy energy threshold associated with the above-mentioned localization can be
found from the condition of equality of the energy corresponding to the LPT and
the energy at the unstable p-mode. It is shown in Figs. 4.3, 4.5 and 4.6 that the LPT
goes through the points h = p/2 and h = 0. This means that

H h;Dð ÞjLPT¼
X2X
64

27b1X � 16p2
� �

and

sin 2h cos2 Dþ K1

K2
cosD� 8 sin 2h ¼ 0

Since the energy of the p-mode is equal to zero, it is easy to calculate the
respective occupation number Xloc = 16p2/27b1 and the energy of the chain
Eloc = 16p2/27b1N. It now follows that above the excitation level Eloc we can
observe the localized vibration excitation (a breather).

If the initial energy is concentrated at the state w1 or w2, the representing point in
the phase plane moves along a trajectory encircling the respective stationary point.
Then, the temporal evolution of the breather corresponds to the regular variation of
its profile (the “breathing” mode of the localized excitation). The period of
breathing can be calculated as the integral taking along the LPT.

T ¼
I

dt ¼ 1
�2

I
dD

@D=@s2

Contrary to “breathing” breathers corresponding to the motion along the LPT,
the stationary points (4.18) determine new normal modes with invariable
non-homogeneous energy distribution, or the breather-like excitations. In spite of
these mode existence at any X > Xc, the true threshold of localization is equal to
Xloc because the possibility of the complete energy exchange is preserved for
motion along the LPT till X = Xloc.

Thus, we get the solution (4.17) corresponding to immobile breather. Finally, we
want to clarify the nature of traveling breathers. We recall that the above results
have been obtained under assumption u = 0 that corresponds to equal amplitudes
of the conjugate modes. Now, we assume that the amplitudes of the conjugate
modes are slightly different, so we consider small enough u 6¼ 0. One can show that
in this case the equations for functions W1 and W2 include only quadratic terms
depending on u. Therefore, in the framework of the linear approximation, if the
value u 6¼ 0 is small enough, there is no qualitative change in the phase portrait in
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Figs. 4.3, 4.5a and 4.6a. As for the behavior of u in the vicinity of any stationary
points (4.17), it is described as follows:

i
@u
@s2

� p2

2
uþ 3

8
b1X 2 sin 2huþ 3þ e2id1 sin 2h

� �
u�� � ¼ 0

The respective eigenvalue

k ¼ � 1
28

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
891b21X2 þ 60p2b1X � 96p4

q

is imaginary if X < Xloc, i.e., if the amplitude of excitation is less than the threshold
corresponding to coincidence of LPT and separatrix.

It is easy to demonstrate that small nonzero u in the equations of motion leads to
small oscillations of the breather center when the eigenvalue k is imaginary. From
the other hand, appearance of a real part in the eigenvalue k at X > Xloc leads to the
directional motion of the breather (Fig. 4.7).
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Fig. 4.7 Standing breather (a) and breather’s directional motion (b–d) at growing value X in the
b-FPU chain with 20 particles. Dimensionless time is measured in the period of p-mode; n is the
number of particle
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4.1.4 Analytical Solution for the LPTs

Using the energy value corrsponding to the LPT, one can get the equation for
variable D, which is solvable in terms of elliptical integrals:

@D
@s2

� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2
2 8� cos2 Dð Þ2�K2

1 cos
2 D

q
¼ 0

or

s2 ¼
ZD

�p=2

dD

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2
2 8� cos2 Dð Þ2�K2

1 cos
2 D

q

We get the formal solution of (4.15) to LPT, but since its use is prohibitively
difficult, we analyze the system in angle variables (4.15) with LPT equation with
X < Xloc, X > Xloc and derive an asymptotic formula to a periodic solution of these
equations.

It is shown in Fig. 4.8 that h(s2) (X < Xloc) and D(s2) (X > Xloc) are close to the
straight line, with an almost instant reverse at p/2 in the case of h and instant step at
−p/2 in the case of D. In order to describe the solution, we introduce new variable
s(/), / = X*s2, X*—constant, which will be yielded from the first-order
approximation.

Function s(/) and its derivative e(/) = ds(/)/ds2 have the form

s /ð Þ ¼ 2
p

arcsin sin
p/
2

� �����
����

e /ð Þ ¼ 1; if 0\/\1
�1; if 1\/\2

�
ð4:18Þ

We construct an approximate solution as a function of s; the inverse transfor-
mation s2 = s2(s) automatically yields a periodic solution in s2. Taking into account
the discontinuity of D(s2), we construct the solution of (4.9) in the form

h s2ð Þ ¼ H sð Þ; D s2ð Þ ¼ e /ð ÞY sð Þ; @

@s2
¼ X�e

@

@s
ð4:19Þ

To derive the equations for H(s), Y(s), we insert (4.18) into (4.14). This yields
the set of equations
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X�
@H
@s

þK1 sin Y þK2 sin 2H sin 2Y ¼ 0

X�
@Y
@s

sin 2Hþ 2K1 cos Y cos 2H� 2K2 sin 4H 8� cos2 Y
� � ¼ 0

H 0ð Þ ¼ 0; Y 0ð Þ ¼ � p
2

ð4:20Þ

Keeping in mind the relation between Y and h corresponding to the LPT

sin2H cos2 Y þ K1

K2
cos Y � 8 sin2H ¼ 0

one can get the leading-order approximation of the solution of system (4.20) in the
case of beating between “coherent domains” far from localization:

Fig. 4.8 Comparing of the numerical solution of (4.15) with the analytical first-order
approximations in the case of beating between the “coherent domains” (a, b) and in the case of
strongly localized solution (c, d)
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2
þ arctan 2

ffiffiffi
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ffiffiffiffiffi
14
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A0X�0
sin 2A0sð Þ

� � !

A0 ¼ p
2
; A0X�0 ¼ K1
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and in the case of strongly localized solution:

H ¼ A� sinps

Y ¼ p
2

s� 1
2

� �

A� ¼ arcsin
K1

7K2
; A�X�0 ¼ K1

Figure 4.8 demonstrates that the numerically constructed solution of (4.18) is in
a good agreement with the yielded approximations.

4.2 Klein–Gordon Lattice

4.2.1 The Model

This section is devoted to the generalization of results obtained in the previous one
to another important class of nonlinear chains, Klein–Gordon models. Unlike
Fermi–Pasta–Ulam chains, the Hamiltonian for these models, along with the gra-
dient component depending on deformations (in this case, quadratic), contains a
component depending on displacements.

Let us consider the periodic system of weakly coupled particles in the field of the
local (on site) potential. It was noted in the introduction that the best known
examples of such systems are the Frenkel–Kontorova and Klein–Gordon models, in
particular, the model /4. In the linear approximation, these models result in
equations of the same type, linear discrete Klein–Gordon equations, the properties
in the continual limit of which are well studied. However, in relatively small
systems, the discrete character plays an important role, and in this case, the tradi-
tional approach consists in the application of the technique of normal oscillations,
linear normal modes. In the quasi-linear case, at first glance, the idea of nonlinear
normal modes (Manevitch et al. 1989; Vakakis et al. 1996) should also be used. The
stability of nonlinear normal modes is usually studied in the linear approximation.
However, this analysis for finite systems turns out to be quite cumbersome and does
not give information on the process realized as a result of loss of stability. The only
factor obtained from linear analysis is the existence of the maximum growth mode.
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Let us represent the Hamiltonian of the considered system in the form

H ¼
XN
j¼1

p2j
2

þ c
2

qjþ 1 � qj
� �2 þV qj

� � !
ð4:22Þ

where

V qð Þ ¼ x2
0 1� cos

2p
d
q

� �� �
ð4:23aÞ

for the Frenkel–Kontorova model and

V qð Þ ¼ x2
0

2
q2 þ b

4
q4 ð4:23bÞ

for the Klein–Gordon model.
Further, the quasi-linear expansion in form (4.23b) will be used for the Klein–

Gordon as well as Frenkel–Kontorova model (with the respective renormalization
of the parameters). The behavior of the system essentially depends on the sign of
the nonlinearity parameter b. In the Klein–Gordon model, this parameter is
assumed to be positive (hard nonlinearity), and in the Frenkel–Kontorova model, it
is assumed to be negative (soft nonlinearity). The FK model describing many
important physical processes will be considered in the Part 3.

Taking into account the generalization to the case of infinite system below, we
use periodic boundary conditions, qN+1 = q1, pN+1 = p1. Then, normal modes are
introduced according to the same rules as in the Fermi–Pasta–Ulam lattice (Poggi
and Ruffo 1997):

qj ¼
XN�1

k¼0

rj;knk

where rj;k ¼ 1ffiffiffi
N

p sin 2pkj
N

� �þ cos 2pkj
N

� �� �
, and nk is the amplitude of the kth mode.

The eigen frequency spectrum is determined by the dispersion relation

x2
k ¼ x2

0 þ 4c2 sin2
pk
N

:

The main difference from the spectrum of the Fermi–Pasta–Ulam lattice is on the
right-hand side, i.e., it is manifested for small values of the “wave number” k (since
the spectrum is symmetric with respect to the point k = N/2, the value k = 0 is
eliminated). Figure 4.9 shows the comparison of eigenfrequency spectra for peri-
odic Klein–Gordon (solid points) and Fermi–Pasta–Ulam (open points) lattices with
20 particles (the value of the “wave vector” k is increased by unity in order to shift
end frequencies from the ordinate axis).
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Unlike the Fermi–Pasta–Ulam lattice, the spectrum of the Klein–Gordon model
has x0 as the left boundary; this value corresponds to homogeneous particle
oscillations in the local potential of the substrate. Thus, the spectrum of the Klein–
Gordon lattice includes two boundary frequencies corresponding to the wave
numbers k = 0 and k = N/2. The following fact should be pointed out: In the Klein–
Gordon lattice, k = 0 and k = N/2 are the points of extremum of the function x(k).
Therefore, there are no linear terms in the neighborhood of these points in the
frequency expansion and eigen frequencies are separated by smaller intervals than
in the intermediate part of the spectrum. The largest values of eigenfrequencies
correspond to the sawtooth (or p) mode realizing out-of-phase shifts of neighboring
particles for the Fermi–Pasta–Ulam and Klein–Gordon lattices. Therefore, it is
natural to assume that the behavior of this mode in both models is similar (to
corresponding renormalization). This study is connected with the analysis of sta-
bility of the lower boundary mode in the Klein–Gordon lattice. Similar to the case
of the p mode, the density of eigenvalues near the end grows quickly with
increasing the number of the particles. Therefore, for systems containing more than
10–15 particles, the resonance conditions are satisfied near the left end of the
spectrum.

In order to elucidate the consequences of the resonance action, let us consider the
initial conditions corresponding to the excitation of two modes with close fre-
quencies (“wave numbers” k = 0 and k = 1). Strictly speaking, three interacting
modes should be taken into account (k = 0, k = 1, k = N − 1), since the two latter
modes have the same eigenfrequency, i.e., are degenerate. However, the general-
ization to the case of three interacting modes does not present any fundamental
difficulties (Manevitch and Smirnov 2010). Therefore, in order to avoid cumber-
some calculations, we consider only two modes, preserving fundamentally

Fig. 4.9 Eigenfrequency
spectra in Fermi–Pasta–Ulam
and Klein–Gordon lattices
(c = 1, x0 = 1)
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important specific features of the studied process. Then, particle displacements in
the lattice are expressed as follows:

qj ¼ 1ffiffiffiffi
N

p n0 þ sin
2pj
N

þ cos
2pj
N

� �
n1

� �

and the potential energy of the system takes the form

U n0; n1ð Þ ¼ 1
2

x2
0n

2
0 þx2

1n
2
1

� �þ b
N

1
2
n40 þ 3n20n

2
1 þ

3
4
n41

� �

x2
1 ¼ x2

0 þ 4c2 sin2
p
N

With increasing number of particles, the gap between the frequencies decreases
according to the dependence

x1 � x0 ffi 2
c2p2

x0N2 : ð4:24Þ

In considering systems with the number of particles N 	 1, we choose 1/N as
the small parameter e and rewrite relation (4.24) in the form

dx ¼ me2; m ¼ 2
c2p2

x0

Then, the motion equations can be written as follows:

d2n0
dt2

þx2
0n0 þ eb n30 þ 3n0n

2
1

� � ¼ 0

d2n1
dt2

þx2
1n1 þ eb

3
2
n31 þ 3n1n

2
0

� �
¼ 0

ð4:25Þ

For analysis of the obtained equations, it is reasonable to introduce the complex
variables. This procedure, as well as subsequent asymptotic analysis based on the
multi-scale method, was described in detail in Manevitch and Smirnov (2010).
Therefore, here, we briefly mention the corresponding calculations.

4.2.2 Asymptotic Analysis

The complex variables are determined as follows:

Wk ¼ 1ffiffiffi
2

p dnk
dt

þ ixknk

� �
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Since the evolution of the envelope of the lower boundary mode n0 is of greatest
interest, it is reasonable to separate the carrier frequency and introduce the time
hierarchy. Moreover, it is necessary to expand the amplitudes with respect to the
small parameter. Thus, we have

Wk ¼ Ukeixk t ¼ ffiffi
e

p
vk þ evk;1 þ e2vk;2 þ � � �� �

eixk t ð4:26Þ

s0 ¼ t; s1 ¼ es0; s2 ¼ e2s0

Substituting expansions (4.26) into Eq. (4.25), collecting terms at different
powers of the small parameter, and equating them to zero, we obtain the following
system of equations:

e1=2 : i
@vk
@s0

¼ 0;

e3=2 : i
@vk
@s1

¼ 0:

These equations show that the amplitudes of the principal approximation for
both modes are independent on the “fast” times s0 and s1. In the next order, with
respect to the small parameter, we obtain the equations for amplitudes in terms of
the slow time s2 that correspond to the main asymptotic approximation

e5=2 : i
@v0
@s2

þ 3b
4x3

0
v0j j2v0 þ 2 v1j j2v0 þ v1

2v�0
h i

¼ 0

i
@v1
@s2

þ mv1 þ
3b
8x3

0
3 v1j j2v1 þ 4 v0j j2v1 þ 2v20v

�
1

h i
¼ 0

ð4:27Þ

It should be noted that Eq. (4.27) describes nonlinear interaction of modes with
the frequency difference m. In this case, the cross-terms containing squared absolute
value of the amplitude are included in the equations in the absence of resonance
interaction; however, their presence does not influence the mode dynamics and in
reality results in frequency shift only. On the contrary, terms containing complex
conjugate quantities occur only in resonance conditions that results in nonlinear
mode interaction. Equation (4.27) corresponds to Hamilton function

Hv ¼ m v1j j2 þ 3
16

b

x3
0

2 v0j j4 þ 3 v1j j4 þ 8 v0j j2 v1j j2 þ 2 v20v
�2
1 þ v�20 v21

� �h i
: ð4:28Þ
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Equations (4.27), unlike the original system, admit a second integral, the
occupation number,

X ¼ v0j j2 þ v1j j2 ð4:29Þ

and therefore, system (4.27) is integrable. Hamilton function (4.28) describes the
system dynamics in the modal, i.e., “wave,” representation. However, it is natural to
analyze the processes resulting in energy localization in the “particle” representa-
tion, which preserves the simplicity of description inherent in Eq. (4.27). For this
purpose, we introduce the new variables

u0 ¼
1ffiffiffi
2

p v0 þ v1ð Þ; u1 ¼
1ffiffiffi
2

p v0 � v1ð Þ

u0j j2 þ u1j j2¼ X

which due to relation (4.28) provide representation of the system dynamics in terms
of polar coordinates—the amplitude and phase (Kosevitch and Kovalev 1989).

u0 ¼
ffiffiffiffi
X

p
cosheid0 ; u1 ¼

ffiffiffiffi
X

p
sinheid1

Then, the change of the system behavior with increasing the excitation intensity
can be clearly traced on the phase plane (h, D = d0 − d1). Omitting details of
calculations, we obtain the equations in terms of angular variables

sin 2h
@D
@s2

� 1
16x3

0
cos 2h 3bXþ 16mx3

0

� �
cosD� 3bX cos2 Dþ 9

� �
sin 2h


 � ¼ 0

sin 2h½ @h
@s2

� 1
32x3

0
3bX þ 16mx3

0 � 3bX cosD sin 2h
� �

sinD
� � ¼ 0

ð4:30Þ

For low-excitation levels X, Eq. (4.30) has two stationary points corresponding
to NNMs. The point (D = 0, h = p/4) corresponds to the lower boundary mode v0
and the point (D = p, h = p/4) to the closest mode v1. States with h = 0 and h = p/2
describe the mixture of these modes; these points are intersected by trajectories
maximally remote from the stationary points. The LPTs, describe the most intense
energy exchange between parts of the system. In the case of weak excitation, the
topology of the phase plane corresponds to Fig. 4.10.

The growth of excitation level results in a qualitative change of the phase portrait
of the system. Indeed, along with the stationary points mentioned above
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corresponding to the NNMs, there exist two additional stationary points, beginning
from some excitation level.

að Þ sin 2h ¼ � 3bXþ 16mx3
0

21bX

cosD ¼ 1

(

bð Þ sin 2h ¼ 3bXþ 16mx3
0

21bX

cosD ¼ �1

(

(The cases (a) and (b) relate to the FK and KG chains, respectively.)
Similarly to the cases of two weakly coupled oscillators and finite FPU chain,

these stationary points occur as a result of the loss of stability of the boundary mode
if the excitation level Xcr is achieved. Its value can be estimated by (4.31a) for the
Frenkel–Kontorova model or by (4.31b) for the Klein–Gordon lattice

Xcr ¼ � 2mx3
0

3b
ðb\0Þ ð4:31aÞ

Xcr ¼ 8mx2
0

9b
ðb[ 0Þ ð4:31bÞ

Fig. 4.10 Topology of phase
plane of Eq. (4.30) for
low-excitation levels in the
Frenkel–Kontorova model.
Dashed line corresponds to
the limiting phase trajectory
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The consequence of instability of these normal modes is the formation of the
separatrix which transforms with increasing excitation level (Fig. 4.11). However,
in this case, the possibility of complete energy exchange between parts of the
system via motion along limiting phase trajectories is retained.

One should note that for the Klein–Gordon lattices, the topology of the phase
plane is similar to that shown in Figs. 4.10 and 4.11 with the phase shift by p.
However, this conclusion is related to the mode closest to the boundary mode,
rather than to the boundary mode itself. Further growth of excitation level results in
the second dynamic transition due to the merging of the limiting phase trajectory
and the separatrix (Fig. 4.12). In this case, complete energy exchange becomes
impossible, since any trajectories beginning at h < p/4 (h > p/4) cannot achieve the
domain h > p/4 (h < p/4). The latter means that the energy initially localized in
some part of the system (coherent domain) is preserved in the excited region in the
course of motion. In order to determine the critical value of excitation level cor-
responding to the second dynamic transition, i.e., merging of the limiting phase
trajectory and the separatrix, let us equate the energies corresponding to these
trajectories

E h ¼ p
4
;D ¼ 0

	 

¼ E h ¼ 0;D ¼ p

2

	 


Fig. 4.11 Topology of phase
plane of Eq. (4.30) for
excitation levels exceeding
the stability threshold in the
Frenkel–Kontorova model.
Short-dashed and
long-dashed lines correspond
to the limiting phase
trajectory and to the
separatrix, respectively
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The energy is calculated based on Hamilton function representation (4.28) in
terms of polar variables

E h;Dð Þ ¼ X
256x3

0
159Xbþ 128mx3

0 þ 45Xb cos 4hþ 6Xb cos 2D sin2 2h
�

�8 cosD sin 2h 3Xbþ 16mx3
0

� ��
As a result, we obtain the following value of the critical excitation level for the

Frenkel–Kontorova model:

X ¼ � 32mx3
0

27b
ð4:32aÞ

and for the Klein–Gordon model:

X ¼ � 32mx3
0

27b
ð4:32bÞ

It should be noted that while before the second dynamic transition the phenomena
similar to pulsations in the system of two coupled oscillators are observed both in the
Frenkel–Kontorova and in Klein–Gordon models, above the second critical exci-
tation level, the behavior of these systems becomes different. The matter is that the
energy localization is connected with perturbation of homogeneous, i.e., lower
boundary mode, and in Klein–Gordon lattices, this mode turns out to be stable. The

Fig. 4.12 Phase portrait of
the Frenkel–Kontorova
system above the second
dynamic transition
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loss of stability and further energy “blocking” take place for the phase D = p. At the
same time, it is the homogeneous mode that is modulationally unstable in the
Frenkel–Kontorova model, which results in the energy localization in the originally
excited part of the system (coherent domain). Thus, at the second critical value of the
nonlinearity parameter in the Frenkel–Kontorova model, the transition “complete
energy exchange–energy localization” is observed, but in the Klein–Gordon model,
there is no such transition (near the upper boundary of the spectrum, the situation is
the opposite). Thus, it becomes clear why localized oscillatory excitations (breath-
ers) are absent near the left end of the spectrum in Klein–Gordon type systems. The
data of numerical simulation prove the results of analytical study.

Figure 4.13 shows the results of simulation for the periodic system with 20
particles in the Frenkel–Kontorova model. The surface of the total particle energy is
shown, and the particle numbers and time in units corresponding to the period of
self-oscillations of the lower boundary mode are shown along the axes. Excitation
levels go from left to right as follows: to the threshold of loss of stability of the
boundary mode, after the loss of stability below the localization threshold, and
above the localization threshold. It can be clearly seen that before the threshold of
true localization, the energy originally concentrated in the central part of the chain
(maximum at approximately 12th particle) is transmitted to particles with small
numbers, while above the localization threshold the energy is preserved in the
central part of the chain. The simulation performed for the Klein–Gordon model in
this spectral region showed the absence of such localization processes.

4.3 Intense Energy Exchange and Localization in Periodic
FPU Dimer Chains

We considered till now the oscillatory chains of homogeneous structure. System
under consideration in the present section is FPU dimer chain given to periodic
boundary conditions and composed of two identical cells of particles. Each cell of the
chain comprises exactly one heavy particle succeeded by a group of N light particles
of identical masses (i.e., 1: N dimer chain). We show that resonant inter-particle
interaction occurring on the optical branch (in the limit of a strong mass mismatch
e ¼ m=M 
 1) leads to a very interesting dynamical transitions undergone by the
entire chain. Here, we would like to bring the main features of the regimes

Fig. 4.13 Total energy surface for the system of 20 particles in the Frenkel–Kontorova model
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corresponding to the optical and acoustic branches. Thus, the regimes of the acoustic
branch are manifested by an in-phase motion of each pair of neighboring elements.
Moreover, the most significant amount of system energy is carried by the heavy
particles. In contrast to the case of acoustic branch, regimes of the optical branch are
manifested by the anti-phase motion of each pair of neighboring elements, as well as
the low-amplitude oscillations of the heavy particles. Thus, in the limit of a strong
mass mismatch e 
 1, it is easy to show that for any particular regime corresponding
to the acoustic branch energy carried by the light particles is negligibly small ðOðeÞÞ
in comparison with the heavy ones. However, in the same limit of a high mass
mismatch, regimes of an optical branch are characterized by a negligibly small
fraction of energy carried by the heavy particles in comparison with the light ones.

We demonstrate the existence of peculiar regimes belonging to the optical
branch and leading to a complete energy transport between the groups of light
particles when the heavy ones remain nearly stationary. Applying the method of
limiting phase trajectories, we find a threshold value of the parameter of nonlin-
earity above which energy imparted on one of the groups remains permanently
localized within the same group and this without leaking to the other parts of the
chain. Moreover, as it will be shown below, the aforementioned regime of strong
energy exchanges between the groups of light particles exists for an arbitrary
number of elements included in each one of the groups.

This result highly differs from those obtained for a homogeneous chain
(Manevitch and Smirnov 2010) where the system is required to include sufficient
number of particles to ensure the formation of beating phenomenon between the
two halves of the chain. Thus, dynamics of the dimer chain reveals a new mech-
anism of formation of highly non-stationary regime leading to a massive transport
of energy between the groups of light elements. As it will become clear from the
analysis brought below, this mechanism of formation of strong beats is fully gov-
erned by the mass ratio between the light and heavy particles. Thus, decreasing the
mass ratio, one effectively creates the closely spaced pairs of modes situated on the
optical branch. These pairs are responsible for resonant interactions between the
groups of light particles leading to complete energy exchanges.

It is worthwhile emphasizing that formation of beats between the groups of light
particles is not the only possible mechanism of a massive energy transport in the
FPU dimer chain. Indeed, one can easily show that operating on the acoustic branch
under assumption of a strong mass mismatch (e ! 0) the FPU dimer chain effec-
tively reduces to a homogeneous FPU chain (i.e., where the elements of the reduced,
chain correspond to the heavy particles of the dimer chain). Thus, according to
Manevitch and Smirnov (2010), inclusion of a sufficient number of heavy particles
in the chain will allow for a complete energy transport solely between the two groups
of heavy particles (i.e., two halves of the chain) when the energy remaining in the
light ones is negligibly small. Here, we note once again that in scope of the present
study we are focusing solely on the regimes corresponding to the optical branch and
revealing the all new mechanism of energy transport between the light elements.

The results of the current study are by no means limited to serve the academic
purposes but have the far-going applications in the real engineering fields such as
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bridge dynamics, vibration isolation, and shock absorption. For instance, as it was
discussed in Manevitch and Oshmyan (1999), a one-dimensional system which
consists of the discrete, light masses linked by a beam with elastic supports is an
adequate dynamic model in a wide field of technical applications such as aero-
nautics, ship building, civil, nuclear, and rocket engineering. As it is evident from
the study pursued in the paper, the introduction of several heavy masses in the
structure of mechanical system (delimiting the light ones) may induce the very
peculiar and at the same time important dynamical regimes leading to energy
localization on a single group of light masses, thus preventing the penetration of
unwanted vibrations or shock waves to the second part of the structure. This is a
highly important feature for the purposes of energy isolation and shock absorption.

In the first section, we present the dynamical system with the necessary physical
and asymptotic adoptions. We demonstrate the mechanism of formation of intense
energy exchanges between the light particles in a simple linear, (1:1) dimer chain.
Sections 4.3.2, 4.3.3 are fully devoted to the analysis of the FPU (1:1) dimer chain.
The main objective of Sect. 4.3.3 is to analytically estimate a threshold value for the
parameter of nonlinearity leading to the dynamical transitions from the regime of a
near complete energy exchanges between the light particles to a strong energy
localization on one of them. In Sect. 4.3.4, we bring the generalization of the results
obtained for (1:1) dimer chain to a (1:N) dimer chain. In the same section, we show
that aforementioned regimes of strong energy exchanges and localization are man-
ifested in terms of interacting groups of light particles rather than single ones, giving
rise to N—possible modes of interaction situated on the optical branch of the chain.

4.3.1 The Model

In the present section, we consider a nonlinear cyclic, FPU dimer chain comprising
2 heavy particles and N > 1 light particles, such that each group of N light particles
is delimited by the two heavy ones from both ends (Fig. 4.14). The system under
consideration is described by the following set of equations

€x1 ¼ x2Nþ 2 � 2x1 þ x2 þ ea~F1

e€x2 ¼ x1 � 2x2 þ x3 þ ea~F2

. . .

e€xNþ 1 ¼ xN � 2xNþ 1 þ xNþ 2 þ ea~FNþ 1

€xNþ 2 ¼ xNþ 1 � 2xNþ 2 þ xNþ 3 þ ea~FNþ 2

e€xNþ 3 ¼ xNþ 2 � 2xNþ 3 þ xNþ 4 þ ea~FNþ 3

� � �
e€x2Nþ 2 ¼ x2Nþ 1 � 2x2Nþ 2 þ x1 þ ea~F2Nþ 2

ð4:33Þ
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where xk ¼ xkþ 2Nþ 2, ~Fj ¼ xj�1 � xj
� �3� xj � xjþ 1

� �3
is a nonlinear part of the

inter-particle, interaction force, xi is the displacement of the ith particle of the chain,
e ¼ m=M is the normalized mass ratio between the light and heavy particles of the
chain and is defined as a small system parameter (0\e 
 1), and a * O(1) is a
parameter of stiffness nonlinearity. In the course of the present study, we are
interested in demonstration of the peculiar intermodal, resonant interactions leading
to the intensive energy exchanges between the light particles as well as strong
energy localization on one of them.

4.3.2 Intensive Energy Exchanges: Linear Case
(N ¼ 1; a ¼ 0)

Let us start with the illustration of the idea of intensive energy exchanges between
the light particles from the simplest, linear case (N ¼ 1; a ¼ 0). The linear sub-
system of (1.138) reads

€x1 ¼ x4 � 2x1 þ x2
e€x2 ¼ x1 � 2x2 þ x3
€x3 ¼ x2 � 2x3 þ x4
e€x4 ¼ x3 � 2x4 þ x1

ð4:34Þ

It is important to note that in the framework of the current study we solely focus
on the resonant interactions between the particles having their eigenfrequencies
situated on the optical branch which for the regular (N = 1), linear (a ¼ 0) dimer
chain is defined by a well-known relation (Brillouin 1946)

x2
n ¼

ð1þ eÞ
e

þ 1þ e
e

� �2

� 4
e
sin

pn
2

	 
( )1=2

; n ¼ 0; 1 ð4:35Þ

where n defines a particular mode of the optical branch and is fully dependent on
the periodicity of the chain. Dimer chain considered in the present section

Fig. 4.14 Scheme of the model under consideration
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comprises exactly two cells, each one containing exactly one heavy and one light
particles, and therefore, n assumes only two values, namely n ¼ 0; 1.

System (4.35) has the following set of eigenvectors and eigenvalues

M ¼
1 �1 0 �e
1 0 �1 1
1 1 0 �e
1 0 1 1

0
BB@

1
CCA; K ¼ 0; 2; 2e�1; 2e�1 1þ eð Þ� � ð4:36Þ

where M is the modal matrix, and K is the set of the corresponding eigenvalues.
In Fig. 4.15, we plot the evolution of all the four eigenfrequencies with respect

to the variation of e parameter in the range of e 2 0; 1ð �.
As one may infer from the diagram presented in Fig. 4.15, the two highest

modes of system (4.32a, b) become closely spaced in the limit of e ! 0. In the
present section, we show that resonant interaction of these two modes leads to the
complete energy exchanges between the light particles. Thus, initial energy pri-
marily supplied to one of the light particles of (4.32a, b) will be completely
exchanged (in the recurrent fashion) with the second light particle of the chain.
Amount of energy stored on the heavy particles is negligibly small in comparison
with that of light ones.

To understand this peculiar resonant exchange between the light particles, it is
convenient to introduce modal coordinates,

x ¼ Mq ð4:37Þ

where, x ¼ x1 x2 x3 x4½ �; q ¼ q1 q2 q3 q4½ �

Fig. 4.15 Evolution of the four eigenfrequencies of (4.35) versus the e parameter
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Thus, after some trivial algebraic manipulations, one obtains the following set of
linear oscillators each one of which corresponds to a certain mode

€q1 ¼ 0

€q2 þ 2q2 ¼ 0

€q3 þ 2
e

� �
q3 ¼ 0

€q4 þ 2 1þ eð Þ
e

� �
q4 ¼ 0

ð4:38Þ

Rescaling of system (6) with respect to time s ¼
ffiffi
2
e

q
t yields

q001 ¼ 0

q002 þ eq2 ¼ 0

q003 þ q3 ¼ 0

q004 þ 1þ eð Þq4 ¼ 0

ð4:39Þ

It is quite evident from the rescaled system (4.40) that considering e as a small
system parameter (e 
 1) the two highest modes (q3; q4) become closely spaced
creating the appropriate conditions for internal resonant interaction in the chain
leading to the recurrent energy exchanges between the different parts of the chain. It
is important to emphasize that this peculiar mechanism of resonant interaction
between certain distinct elements of the chain cannot be observed in the modal
coordinates, as the modal systems (4.38) and (4.39) are decoupled. Thus, in order to
properly illustrate the resonant interaction between the two highest modes, we
introduce the new set of coordinates, referred to as coordinates of “effective
particles”

g ¼ q3 þ q4
m ¼ q3 � q4

ð4:40Þ

Rewriting the last two equations of (4.39) in terms of the new coordinates, the
so-called coordinates of “effective particles” yield

€gþ g ¼ e
m� g
2

	 

€mþ m ¼ e

g� m
2

	 
 ð4:41Þ

The motivation behind this transformation to the new set of coordinates of
“effective particles” is simply to gain back the information regarding the particular
behavior of particles (e.g., energy exchanges between certain groups of particles in
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the chain) which is completely obscured in the modal representation (4.38), (4.39).
In fact, (4.41) describes the system of the two weakly coupled linear oscillators
(coherent domains) exhibiting strong beating phenomenon, leading to the recurrent
energy exchanges between them. Thus, initially exciting one of the effective par-
ticles of (4.41), the energy will be completely transferred from one particle to
another and will wander in a recurrent fashion.

To give a clear physical interpretation of the approach, we look again into the
definition of these coordinates (4.40) as well as on their correspondence to the mode
shapes of the linear system (4.39). In fact, the first effective particle (g) is formed by
summation of both the interacting modes. Thus, a simple summation of the two
corresponding eigenvectors yields

VT
g ¼ V3 þV4ð ÞT¼ �e 0 �e 2½ �T ð4:42Þ

The second effective particle (m) is formed by subtraction of the modes leading to
the following vector

VT
m ¼ V3 � V4ð ÞT¼ e �2 e 0½ �T ð4:43Þ

From the observation of the two vectors corresponding to the effective particles
(VT

g ;V
T
n ;), it is clear that the physical meaning of the first effective particle (g) is the

energy localization on the second light particle of the chain when that of the second
effective particle (m) is the energy localization on the first light particle of the chain.
Therefore, complete energy exchanges between the effective particles governed by
system (4.41) simply mean recurrent transfers of energy from one light particle of
the chain to another. In Fig. 4.16, we illustrate the time series of the response of all
the four elements of the chain, namely the two light and two heavy particles.

As it is clear from the results of Fig. 4.16, the significant amount of energy is
mainly stored on the light particles of the chain and recurrently wanders from one
light particle to another. We also note that initial conditions are chosen in a way to
initially excite one of the “effective particles,” namely gð0Þ ¼ I0; g0ð0Þ ¼ mð0Þ ¼
m0ð0Þ ¼ 0 which finally results in a well-known, pure beating phenomenon exhib-
ited by the weakly coupled effective particles (4.41) with the closely spaced natural
frequencies. In Fig. 4.17, we illustrate the kinetic energy distribution among all the
particles of the chain for the two distinct time snapshots. The first snapshot
(Fig. 4.17a) corresponds to the very initial moment where all the initial energy is
localized on the first light particle. The second snapshot (Fig. 4.17b) corresponds to
the moment when the entire system energy gets almost completely transferred to the
second light particle.
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Fig. 4.16 Time series of the response recorded on each one of the particles: a first light particle,
b first heavy particle, c second light particle, and d second heavy particle. System parameters:
e ¼ 0:01. Initial conditions, x1ð0Þ ¼ �e; _x1ð0Þ ¼ 0; x2 0ð Þ ¼ 2; _x2 0ð Þ ¼ 0; x3 0ð Þ ¼ �e; _x3 0ð Þ
¼ 0; x4 0ð Þ ¼ 0; _x4 0ð Þ ¼ 0

Fig. 4.17 Kinetic energy recorded for each one of the particles in the chain a t = 0 and
b t = 44.54. System parameters: e ¼ 0:01. Initial conditions: x1ð0Þ ¼ �e; _x1ð0Þ ¼ 0; x2 0ð Þ ¼
2; _x2 0ð Þ ¼ 0; x3 0ð Þ ¼ �e; _x3 0ð Þ ¼ 0; x4 0ð Þ ¼ 0; _x4 0ð Þ ¼ 0
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4.3.3 Complete Energy Exchanges and Localization:
Nonlinear Case (N ¼ 1; a[ 0)

In the present section, we study the effect of the parameter of nonlinearity (a) on
energy transfer and find the threshold value beyond which the regime of intensive
energy exchanges between the light particles ceases to exist resulting in permanent
energy localization on one of the light particles.

Again, we start the analysis from transferring system (4.32a, b) to modal
coordinates of the underlying linear subsystem

€q1 ¼ ea V�1� �
1jFj

€q2 þ 2q2 ¼ ea V�1� �
2jFj

€q3 þ 2
e

� �
q3 ¼ ea V�1� �

3jFj

€q4 þ 2 1þ eð Þ
e

� �
q4 ¼ ea V�1� �

4jFj

ð4:44Þ

where V�1 is the inverse of the modal matrix V, and Fj is given by

Fj ¼
xj�1 � xj
� �3� xj � xjþ 1

� �3
; j-odd

1
e xj�1 � xj
� �3� xj � xjþ 1

� �3	 

; j-even

(
ð4:45Þ

We note that in expressions (4.44), (4.45), xj are considered as a linear com-
bination of the modal coordinates, xj ¼ Vjkqk. Again, we are interested in studying
the resonant interaction of the two highest modes of (4.44), and therefore, further
analytical treatment concerns only the last two equations of (4.44). Rescaling

system (1.149) with respect to time s ¼
ffiffi
2
e

q
t yields

q003 þ q3 ¼ e2a
2

V�1� �
3jFjðqÞ

q004 þ 1þ eð Þq4 ¼ e2a
2

V�1� �
4jFjðqÞ

ð4:46Þ

As it is clear from the previous discussion, we are considering only the resonant
interaction of the two highest modes with the closely spaced frequencies (q3; q4). In
fact, no additional intermodal, resonant interaction is possible in the system under
consideration and this is because the frequencies of the rest two modes q1; q2ð Þ are
fairly distant from the resonant frequency under consideration. Therefore, assuming
that only the pair q3; q4ð Þ is initially excited and the level of excitation is of order
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O 1ð Þ, then the magnitude of the rest two modes is bounded by O eð Þ (q1, q2 * O
(e)). Taking this into account, we expand the RHS of (14) retaining the terms up to
O eð Þ

e2a
2

V�1� �
3jFjðqÞ ¼ �ea

4
2 q3 � q4ð Þ3 þ 2 q3 þ q4ð Þ3
	 


þO e2
� �

e2a
2

V�1� �
4jFjðqÞ ¼ ea

4
2 q3 � q4ð Þ3�2 q3 þ q4ð Þ3
	 


þO e2
� � ð4:47Þ

Substituting (4.47) into (4.46), we obtain

q003 þ q3 ¼ �ea
4

2 q3 � q4ð Þ3 þ 2 q3 þ q4ð Þ3
	 


þO e2
� �

q004 þ 1þ eð Þq4 ¼ ea
4

2 q3 � q4ð Þ3�2 q3 þ q4ð Þ3
	 


þO e2
� � ð4:48Þ

Rewriting (4.48) in terms of coherent domains (4.40) yields

g00 þ g ¼ e
2

m� gf g � eag3 þOðe2Þ

m00 þ m ¼ � e
2

m� gf g � eam3 þOðe2Þ
ð4:49Þ

Additional rescaling of time brings system (4.49) to the more convenient form

g00 þ g ¼ e
2
m� ea

1þ e=2
g3 þOðe2Þ

m00 þ m ¼ e
2
g� ea

1þ e=2
m3 þOðe2Þ

ð4:50Þ

As it was shown earlier in Manevitch et al. (2010), there is a threshold value of
the parameter of nonlinearity a ¼ acr beyond which strong energy exchange
between the oscillators of (4.50) ceases to exist, leading to the energy localization
on one of them. In terms of the system under consideration, the transition from the
regime of strong energy exchanges (beating phenomenon) to localization simply
means that the main portion of energy initially supplied to one of the light particles
can barely be transferred to another light particle and remains permanently
entrapped on the first one. To make this point more clear, we briefly repeat the
analysis of Manevitch et al. (2010). To this extent, we perform the following
change of variables

w1 ¼ g0 þ ig;w2 ¼ m0 þ im ð4:51Þ
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Substitution of (19) into (18) yields

w1
0 � iw1 ¼

e
2

w2 � w2
�

2i

� �
� ea

w1 � w1
�

2i

� �3

w2
0 � iw2 ¼

e
2

w1 � w1
�

2i

� �
� ea

w2 � w2
�

2i

� �3
ð4:52Þ

Following the method of multiple scales, we assume the following expansion

wi ¼ wi0 þ ewi1 þOðe2Þ; d
dt

¼ @

@s0
þ e

@

@s1
� � � ; i ¼ 1; 2 ð4:53Þ

After some lengthy, straightforward calculations (Manevitch et al. 2010), we
arrive at the modal system of equations describing the slow evolution

u10
0 þ i

4
u20 �

3ia
8

u10 u10j j2 ¼ 0

u20
0 þ i

4
u10 �

3ia
8

u20 u20j j2 ¼ 0
ð4:54Þ

where w1 0 ¼ u10 exp itð Þ;w20 ¼ u20 exp itð Þ
System (4.54) is fully integrable and possesses two integrals of motion:

H ¼ 1
4

u2u
�
1 þu�

2u1

� �� 3
16

a u1j j4 þ u2j j4
	 


I ¼ u1j j2 þ u2j j2
ð4:55Þ

Accounting for (4.55), it is convenient to transform from the complex coordi-
nates (u10;u20) to the new angular coordinates (h;D),

u10 ¼
ffiffi
I

p
cos h expðid1Þ;u20 ¼

ffiffi
I

p
sin h expðid2Þ; D ¼ d1 � d2 ð4:56Þ

such that the first integral of (4.55) takes the following form

H� ¼ sinð2hÞ cosDþ k sin 2hð Þf g; k ¼ 3Ia
8

ð4:57Þ

In Fig. 4.18, we present several phase portraits governed by (4.50) for the dif-
ferent values of k. As it was shown in Manevitch et al. (2010), the existence of the
complete energy exchanges between the interacting particles (4.49) can be fully
explained by means of a unique phase trajectory (on the h;D plane) the so-called
limiting phase trajectory (LPT) (Manevitch et al. 2010). The LPTs present on
Fig. 4.18a–c and clearly correspond to the complete energy exchanges between the
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effective particles. In fact, the correspondence of the LPTS to the complete energy
exchanges between the interacting particles can be more evident when looking to
the latest coordinate transformation brought in (4.56). Thus, the amplitude of the
envelopes related to the response of each one of the particles is:
u10j j ¼ ffiffi

I
p

cos h; u20j j ¼ ffiffi
I

p
sin h. Therefore, to assure the full energy exchange

between the particles, one may seek for the special phase trajectories (which do not
include any fixed point) on the h;D plane, such that h variable performs the
excursions back and forth between 0 and p=2. Interestingly enough, there is a
unique trajectory on the h;D phase plane which exhibits such behavior. This tra-
jectory is exactly LPT mentioned above.

Results of Fig. 4.18 show that LPTs exist only below a certain threshold value of
k ¼ kcr above which the LPT ceases to exist, and therefore, there is no possible way
for a complete transfer from one effective particle to another. Recent works on the
subject (Manevitch et al. 2010) have shown that this threshold value can be easily
evaluated from the integral of motion (4.57). To show that we note that limiting

Fig. 4.18 Phase portraits on the h;Dð Þ plane a k ¼ 0:55, b k ¼ 0:9, c k ¼ 1, and d k ¼ 1:5.
Limiting phase trajectory is denoted with the bold, solid line
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phase trajectories (LPTs) correspond to the case of H� ¼ 0. This brings to the
following non-trivial relation between h and D

cosDþ k sin 2hð Þ ¼ 0 ð4:58Þ

Obviously enough, (4.58) has a closed loop solution for the values of
k\kcr ¼ 1. Thus, for the k values above the threshold (k[ kcr ¼ 1), no LPT is
possible which brings in turn to the annihilation of the regime of strong energy
exchanges between the effective particles and results in the energy localization on
one of them.

Using this criterion, we compute the critical value of nonlinearity a, above which
the regime of strong energy exchange is annihilated.

acr ¼ 8
3I

ð4:59Þ

As a numerical verification of this prediction, we excite one of the light particles
of (4.44) choosing the parameter of nonlinearity slightly below the threshold
(a\acr) (Fig. 4.19) and slightly above the threshold (a[ acr) (Fig. 4.20).

Results of Figs. 4.19 and 4.20 suggest a very good correspondence between the
analytical predictions of the threshold value (acr ¼ 0:6667—for the initial conditions
chosen) with that of numerical simulations. In fact, in our simulations, we found out
that the transition from the regime of strong energy exchanges to localization hap-
pens for a ¼ acr ¼ 0:65 which is extremely close to the theoretical prediction.

Fig. 4.19 Time series of the response recorded on each one of the particles: a first light particle,
b first heavy particle, c second light particle, and d second heavy particle. Initial conditions:
x1ð0Þ ¼ �e; _x1ð0Þ ¼ 0; x2 0ð Þ ¼ 2; _x2 0ð Þ ¼ 0; x3 0ð Þ ¼ �e; _x3 0ð Þ ¼ 0; x4 0ð Þ ¼ 0; _x4 0ð Þ ¼ 0.
System parameters: e ¼ 0:01; a ¼ 0:65\acr ¼ 0:6667; I ¼ 4
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4.3.4 Extension to the Higher Number of Light Particles
(N[ 1; a[ 0)

In the present section, we illustrate an extension of the simple, cyclic dimer chain (4
particles periodicity) with alternating heavy light particles (1:1 dimer) to the more
complicated, periodic dimer chains comprising 2 heavy particles and N > 1 light
particles, such that each group of N light particles is delimited by the two heavy
ones from both ends (4.32a, b).

The primary goal of the present section is to demonstrate the applicability of the
method of limiting phase trajectories to correctly predict the regimes of strong
energy exchanges and localization when dealing with the group of light particles
rather than single light particle included in each cell of the chain. In the present
section, we concentrate solely on the regimes with a frequency content corre-
sponding to the optical branch of the dimer chain (4.32a, b). Linear normal modes
(a ¼ 0) of (1) related to the optical branch can be easily differentiated and classi-
fied. Indeed, let us consider a pair of linear modes ðV0i;VeiÞ, where V0i corresponds
to the vibrational mode with the two heavy particles remaining permanently sta-
tionary and Vei is related to the OðeÞ small oscillations of the heavy particles in
comparison with the light ones. Because of the symmetry of the system under

Fig. 4.20 Time series of the response recorded on each one of the particles: a first light
particle, b first heavy particle, c second light particle, and d second heavy particle.
Initial conditions, x1ð0Þ ¼ �e; _x1ð0Þ ¼ 0; x2 0ð Þ ¼ 2; _x2 0ð Þ ¼ 0; x3 0ð Þ ¼ �e; _x3 0ð Þ ¼ 0; x4 0ð Þ
¼ 0; _x4 0ð Þ ¼ 0. System parameters: e ¼ 0:01; a ¼ 0:67[ acr ¼ 0:6667; I ¼ 4
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consideration (4.32a, b), the motion of heavy particles for any vibrational mode
satisfies the following relation

x1ðtÞ ¼ XðiÞ
1 exp jxitð Þ; xNþ 2ðtÞ ¼ XðiÞ

Nþ 2 exp jxitð Þ;XðiÞ
1 ¼ �1ð Þp ið ÞXðiÞ

Nþ 2 ð4:60Þ

where x1ðtÞ; xNþ 2ðtÞ describe the displacement of the first and the second heavy

particles, and XðiÞ
1 ;XðiÞ

Nþ 2 define their amplitudes, accordingly. It is also important to
note that there are only two possible motions of the heavy particles, either in-phase
or out-of-phase, and it strictly depends on the mode, under consideration.
Therefore, we introduce additional parameter pðiÞ which returns the values of 0
(in-phase motion) or 1 (out-of-phase motion) depending on the mode under con-
sideration (index i is used as a label for the pair of modes on the optical branch,
possessing closely spaced frequencies). As it will become clear from the further
analysis for each linear, eigenmode V0i of the optical branch (with the corre-
sponding eigenvalue k0i), there exists a mode Vei such that the following asymp-
totical relation holds

kei ¼ k0i þ reþO e2
� �

Vei ¼ V0i þ veþO e2
� � ð4:61Þ

where r denotes the parameter of the frequency detuning between the ith pair of
modes with the closely spaced frequencies.

In fact, further analysis concerns solely the dynamics on the optical branch.
Therefore, one may find it convenient to transform (1) to the anti-continuum limit,

x001 ¼ e x2Nþ 2 � 2x1 þ x2ð Þþ e2a~F1

x002 ¼ x1 � 2x2 þ x3 þ ea~F2

. . .
x00Nþ 1 ¼ xN � 2xN þ 1 þ xNþ 2 þ ea~FN þ 1

x00Nþ 2 ¼ e xNþ 1 � 2xNþ 2 þ xNþ 3ð Þþ e2a~FNþ 2

x00Nþ 3 ¼ xNþ 2 � 2xNþ 3 þ xNþ 4 þ ea~FNþ 3

. . .
x002Nþ 2 ¼ x2Nþ 1 � 2x2Nþ 2 þ x1 þ ea~F2Nþ 2

ð4:62Þ

where the differentiation is performed with respect to a new timescale s ¼ e�1=2t.
Let us start with the analysis of different modes of a linear subsystem of
(30) (a ¼ 0). Thus, the modal solutions of a linear subsystem of (4.62) (s ¼ e�1=2t)
are sought in the following form

xk ¼ Xk expðjxsÞ ð4:63Þ
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Substituting (4.63) into (4.62) and accounting for (4.60), we obtain the following
linear system corresponding to a single cell of (4.62) (i.e., single heavy particle,
succeeded by N—light ones),

ð4:64Þ

It is easy to see that the problem of finding the set of eigenfrequencies corre-
sponding to the family of eigenmodes with the stationary heavy particles
(ki0 ¼ x2

i0) is effectively reduced to the homogeneous chain of light particles with
the fixed ends. Thus, these eigenfrequencies can be easily computed from the
following characteristic polynomial

ð4:65Þ

We denote the ith solution of (33) as ki0 ¼ x2
i0. In fact, all the solutions of

(1.170) can be represented in the well-known explicit form Gregory and Karney
(1969), Elliott (1953),

ki0 ¼ x2
i0¼ 2 1� cos

ip
N þ 1

� �� �
ð4:66aÞ

with their corresponding eigenvectors

V ðiÞ
k ¼ sin

ikp
Nþ 1

� �
; k ¼ 1; . . .;N ð4:66bÞ
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Note that the eigenmode of the entire linear subsystem (a ¼ 0) of (30) corre-
sponding to ki0 reads

V0ið Þj¼
0; j ¼ 1;Nþ 2

V ðiÞ
j�1; 1\j\Nþ 2

ð�1ÞrðiÞV ðiÞ
j�N�2; N þ 2\j� 2Nþ 1

8><
>: ð4:67Þ

where r(i) assumes the values of 0 or 1 depending on the mode under consideration.
We are at a point to describe the second type of the eigenmodes and eigenvalues
defined in (4.60). Clearly enough, the eigenvalue kie ¼ x2

ie is the solution of the
following characteristic polynomial derived from (4.62) and (4.64)

ð4:68Þ
Here, the expression for the determinant is developed with respect to the first

row; D12 and D1ðNþ 1Þ are the minors of the matrix.
In fact, we are interested in the eigenvalues corresponding to the optical branch

and therefore ke * O(1) which is a solution of the characteristic polynomial (4.65).
Let as rewrite the characteristic equation in the more compact form

P0 xð Þþ eP1ðxÞ ¼ 0 ð4:69Þ

Using implicit function theorem, it can be shown that

x2
ie ¼ kie ¼ ki0 þ erþO e2

� � ð4:70Þ

Our next goal is to find the eigenvectors Vei corresponding to (4.70). Deriving an
explicit expression for these eigenvectors is a formidable task. However, recalling
that on the optical branch the motion of the heavy particles is of the order O eð Þ (this
can be directly seen from (4.64) assuming the amplitude of the light particles to be
of order O 1ð Þ), we depict the motion of the heavy particles as the following [see
(4.62)]

X1 ¼ eA;XNþ 2 ¼ e �1ð ÞpðiÞA ð4:71Þ
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Accounting for (4.71) in (4.64), we derive a linear system which synchronizes
the motion of the light particles with the motion of heavy ones

ð4:72Þ

Substituting (4.70) into (4.72) yields

ð4:73Þ

It is clear from (4.83) that for any mode related to the optical branch the
amplitude of the light particles is of order O 1ð Þ. Therefore, applying the pertur-
bation theory, we arrive at the solution of (41) corresponding to the optical branch
which can be written in the following form

Xk ¼ sin
i k � 1ð Þp
N þ 1

� �
þO eð Þ; k ¼ 2; . . .;Nþ 1 ð4:74Þ

The motion of the light particles included in the second cell of the dimer chain is
easily derived

Xk ¼ ð�1ÞpðiÞ sin i k � 1ð Þp
Nþ 1

� �
þO eð Þ; k ¼ Nþ 3; . . .; 2Nþ 1 ð4:75Þ

Note that the eigenmodes of the entire linear subsystem of (4.62) corresponding
to kie read

Veið Þj¼
OðeÞ; j ¼ 1;Nþ 2

V ðiÞ
j�1 þOðeÞ; 1\j\Nþ 2

ð�1ÞpðiÞV ðiÞ
j�N�2 þOðeÞ; Nþ 2\j� 2N þ 1

8><
>: ð4:76Þ

Further study primarily concerns the resonant interaction of effective particles
ginið Þ related to the different pairs of eigenmodes V0i;Veið Þ with the corresponding
eigenfrequencies (ki0; kie). Before proceeding with the direct analysis of the regimes
exhibited by (4.62), we make additional very important observation concerning the
orthogonality of each pair of modes V0i;Veið Þ. Thus, the following property holds
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VT
0iVei ¼ 0 ð4:77Þ

This property can be easily derived by observing that the motion of particles for
both the modes is in-phase on one of the cells of the dimer chain and out-of-phase
on the second one (see Appendix for details). Thus, the result of a scalar multi-
plication of the considered eigenmodes is zero.

Let us rewrite system (1.167) in the matrix form

€x tð ÞþKðeÞx tð Þ ¼ eFnlin x tð Þð Þ ð4:78Þ

where Fnlin ¼ e2a~F1 ea~F2 � � � ea~FNþ 1 � � � e2a~FNþ 2 ea~FNþ 3 � � � ea



~F2Nþ 2�T
Arguing as before, we transform (46) into modal coordinates of the linear

subsystem (a ¼ 0) by assigning

x tð Þ ¼ Mq tð Þ ð4:79Þ

where M is the modal matrix and q ¼ q1ðtÞ; . . .; q2Nþ 2ðtÞ½ �T is a vector of modal
coordinates. Inserting (4.79) into (4.78), we obtain

M€q tð ÞþKMq tð Þ ¼ eFnlin Mq tð Þð Þ ð4:80Þ

Before proceeding with the further analysis, let us bring additional convention
for labeling the modes. In fact, in the present section, we concentrate each time on a
single pair of modes V0i;Vei. However, ð0iÞ; ðeiÞ are not the real indices, but rather
labels which are a somewhat problematic when used in the matrix or vector anal-
ysis. Therefore, each time we need to provide a real index for these pair of modes,
we use the following notation, V0i ¼ Vl;Vei ¼ Vlþ 1.

Multiplying (48) by V0i;Vei separately, we have

€q0i þx2
0iq0i ¼ eVT

0iFnlin Mq tð Þð Þ �
X2Nþ 2

j¼1;
j 6¼l;

j 6¼lþ 1;

c0j€qj þ b0jqj
� �

€qei þx2
eiqei ¼ eVT

eiFnlin Mq tð Þð Þ � P2Nþ 2

j¼1;
j 6¼l;

j6¼lþ 1;

cej€qj þ bejqj
� �

c0j ¼ VT
0i

� �
kMkj; b0j ¼ VT

0i

� �
k KMð Þkj;

cej ¼ VT
ei

� �
kMkj; bej ¼ VT

ei

� �
k KMð Þkj

ð4:81Þ

where the indices l; lþ 1 correspond to the modes V0i;Vei, respectively, and q0i; qei
are their modal coordinates, x2

ei ¼ x2
0i þ er. Einstein summation convention is used
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in the expressions for cij; bij (49). In scope of the present paper, we are interested in
the analysis of resonant interaction of the effective particles in the vicinity of (1:1)
resonance. Therefore, applying the initial excitation only for the two interacting
modes, namely V0i and Vei, and assuming that the number of light particles is such
that the spectrum provided by (4.66a) is well separated p

e 	 N
� �

(i.e., negating the
possibility of additional internal resonances in the system), the following asymp-
totical estimation can be made

qj; €qj �O eð Þ 8j 6¼ l; lþ 1 ð4:82Þ

Moreover, focusing on a certain resonant interaction occurring in the vicinity of
x2

0i, we can completely neglect the contribution of the epsilon order small,
non-resonant terms given in (4.82). This can be also verified by performing a simple
multiple scales expansion of (4.81) in the vicinity of main (1:1) resonance, which
will result in the modulation equations describing the dynamics of the system
without containing the non-resonant terms of (4.82). In scope of the present paper,
we do not bring the multiple scales expansion, but rather get rid of the non-resonant
terms in (4.81) for the sake of brevity.

Thus, system (4.81) reduces to the following form, containing only the resonant
term in the right-hand side of (4.81)

€q0i þx2
0iq0i ¼ eVT

0kFnlin V0iq0i þVeiqeið Þ
€qei þx2

eiqei ¼ eVT
ekFnlin V0iq0i þVeiqeið Þ ð4:83Þ

where

Fnlin ¼ e2a~F1 ea~F2 � � � ea~FNþ 1 � � � e2a~FN þ 2 ea~FN þ 3 � � � ea~F2N þ 2


 �T
~Fj ¼ C0

j�1ð Þj qk þCe
j�1ð Þj qkþ 1

	 
3
� C0

jð Þjþ 1
qk þCe

jðjþ 1Þqkþ 1

	 
3
C0

j�1ð Þj ¼ V0ið Þj�1� V0ið Þj
	 


; Ce
j�1ð Þj ¼ Veið Þj�1� Veið Þj

	 

C0

jð Þjþ 1
¼ V0ið Þj� V0ið Þjþ 1

	 

; Ce

jðjþ 1Þ ¼ Veið Þj� Veið Þjþ 1

	 

V0ið Þj ¼ V0ið Þjþ 2N þ 2; Veið Þj¼ Veið Þjþ 2N þ 2

ð4:84Þ

Accounting for (4.67), (4.76), it is easy to see that

Ce
j�1ð Þj ¼ C0

j�1ð Þj þOðeÞ; j ¼ 1; . . .;Nþ 1

Ce
j�1ð Þj ¼ �C0

j�1ð Þj þOðeÞ; j ¼ Nþ 2; . . .; 2Nþ 2
ð4:85Þ

System (4.85) can be further simplified by explicitly performing all the scalar
multiplications of the right-hand side of (4.85)
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€q0i þx2
0iq0i ¼ ea

XNþ 1

j¼2

V ðiÞ
j�1

~Fj þ
X2Nþ 2

j¼Nþ 3

ð�1ÞrðiÞV ðiÞ
j�N�2

~Fj

 !
þO e2

� �

€qei þx2
eiqei ¼ ea

XNþ 1

j¼2

V ðiÞ
j�1

~Fj þ
X2Nþ 2

j¼Nþ 3

ð�1ÞpðiÞV ðiÞ
j�N�2

~Fj

 !
þO e2

� � ð4:86Þ

where rðiÞ is the binary function assuming the values of 0 and 1 depending on the
interacting pair (i—index) of modes of the optical branch. Exact definitions of rðiÞ
and pðiÞ are given in Appendix (4.100, 4.102). As it is clear from the arguments
brought in the appendix, rðiÞ and pðiÞ are correlated functions, satisfying
rðiÞ ¼ 1� pðiÞ.

Accounting for (4.84), (4.85) yields

~Fj ¼
C0

j�1ð Þj

	 
3
� C0

jð Þjþ 1

	 
3� �
g3i þOðeÞ; j ¼ 2; . . .;N þ 1

C0
j�1ð Þj

	 
3
� C0

jð Þjþ 1

	 
3� �
n3i þOðeÞ; j ¼ N þ 3; . . .; 2N þ 2

8>><
>>: ð4:87Þ

where gi ¼ q0i þ qei; ni ¼ q0i � qei are the coordinates of effective particles corre-
sponding to the pair of modes (V0i;Vei). Transforming (4.86) into coordinates of
effective particles leads to the following form

€gi þx2
0igi þ

er gi � nið Þ
2

¼ 2e~aig3i þO e2
� �

€ni þx2
0ini �

er gi � nið Þ
2

¼ 2e~ain
3
i þO e2

� �
~ai ¼ a

XNþ 1

j¼2

V ðiÞ
j�1 C0

j�1ð Þj
	 
3

� C0
jð Þjþ 1

	 
3� � ð4:88Þ

It is quite easy to see that (56) admits exactly the same form of (1.154) analyzed
in the previous section. We also note that in the derivation of (1.153), we used the
fact that (rðiÞ 6¼ pðiÞ) (Appendix).

Arguing exactly as in the previous section, we find a threshold value for the
parameter of nonlinearity ~ai above which energy gets localized on a single group of
light particles exhibiting oscillations of the type governed by the ith pair of modes
(V0i;Vei).

~aiCR ¼ 4r
3I

) aiCR ¼ 4r
3I

XNþ 1

j¼2

V ðiÞ
j�1 C0

j�1ð Þj
	 
3

� C0
jð Þjþ 1

	 
3� � !�1

ð4:89Þ

To illustrate numerical evidences of energy localization and transfer between the
groups of light particles, we choose N = 3 and show the transitions between the
regimes for each pair of modes situated on the optical branch.
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Let us start with the consideration of the pair of modes corresponding to the
lowest frequency of the optical branch. In fact, this mode corresponds to the
in-phase motion of the light particles in each cell of the dimer chain.

The corresponding eigenvectors and eigenvalues read

V01 ¼ 0 �1 � ffiffiffi
2

p �1 0 1
ffiffiffi
2

p
1


 �
=
ffiffiffi
8

p
; k01 ¼

ffiffiffi
2

p ffiffiffi
2

p
� 1

	 

Ve1 ¼ 0 1

ffiffiffi
2

p
1 0 1

ffiffiffi
2

p
1


 �
=
ffiffiffi
8

p
þOðeÞ; ke1 ¼

ffiffiffi
2

p ffiffiffi
2

p
� 1

	 

þ erþOðe2Þ

r ¼
ffiffiffi
2

p þ 1ffiffiffi
2

p
� �

ð4:90Þ

Using the expression (4.89), we compute the threshold value of the parameter of
nonlinearity above which the regime of strong, recurrent energy exchanges between
the groups of light particles terminates and energy gets localized on one of the
groups.

a1CR ¼
4r
3I

0:0322ð Þ�1 ð4:91Þ

Exciting one of the corresponding effective particles (i.e., xð0Þ ¼ V01 þVe1,
q01ð0Þ ¼ qe1ð0Þ ¼ 1; g1ð0Þ ¼ 2; n1ð0Þ ¼ 0; I ¼ 4), we plot (Fig. 4.21) the total
energies E1ðtÞ;E2ðtÞ for each one of the groups of light particles for the two
aforementioned regimes, namely regime of strong energy exchange between the

Fig. 4.21 Total energy stored on each group of light particles: a a1 ¼ 17, b a1 ¼ 19 Threshold
values: theoretical—a1CR ¼ 17:7, numerical: a1CR ffi 18:4; I ¼ 4
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groups (a\a1CR ) and a regime of energy localization on one of the groups
(a[ a1CR ). The expressions for E1ðtÞ;E2ðtÞ are given by

E1ðtÞ ¼ e
X4
j¼2

_xj
� �2
2

þ
X5
j¼2

xj�1 � xj
� �2

2
þ ea

xj�1 � xj
� �4

4

 !

E2ðtÞ ¼ e
X8
j¼6

_xj
� �2
2

þ
X9
j¼6

xj�1 � xj
� �2

2
þ ea

xj�1 � xj
� �4

4

 ! ð4:92Þ

where x9 ¼ x1. We note that the kinetic energies of the heavy particles are of Oðe2Þ
small and therefore are omitted from the consideration in (4.93).

We continue with the illustration of the regimes of resonant energy interaction
between the effective particles corresponding to the intermediate frequency of the
optical branch. The corresponding eigenvectors and eigenvalues read

V02 ¼ 0 �1=2 0 1=2 0 �1=2 0 1=2½ �; k02 ¼ 2

Ve2 ¼ 0 1=2 0 �1=2 0 �1=2 0 1=2½ �; ke2 ¼ 2þ erþOðe2Þ
r ¼ 1

ð4:93Þ

Using the expression (4.89), we compute the threshold value of the parameter of
nonlinearity above which the regime of strong energy exchange between the groups
of light particles ceases and energy gets localized on one of the groups.

a2CR ¼ 4r
3I

0:25ð Þ�1 ð4:94Þ

Exciting one of the corresponding effective particles (i.e., xð0Þ ¼ V02 þVe2,
q02ð0Þ ¼ qe2ð0Þ ¼ 1; g2ð0Þ ¼ 2; n2ð0Þ ¼ 0; I ¼ 4), we plot (Fig. 4.22) the total
energies E1ðtÞ;E2ðtÞ for each one of the groups of light particles given by (4.92).

As a final example, we consider the interaction of effective particles corre-
sponding to the pair of modes with the highest frequency of the optical branch. In
fact, these modes correspond to the out-of-phase motion of the light particles
included in each cell of the dimer chain. The corresponding eigenvectors and
eigenmodes read

V03 ¼ 0 �1
ffiffiffi
2

p �1 0 1 � ffiffiffi
2

p
1


 �
=
ffiffiffi
8

p
; k03 ¼ 2þ

ffiffiffi
2

p

Ve3 ¼ 0 1 � ffiffiffi
2

p
1 0 1 � ffiffiffi

2
p

1

 �

=
ffiffiffi
8

p
þOðeÞ; ke3 ¼ 2þ

ffiffiffi
2

p
þ erþOðe2Þ

r ¼
ffiffiffi
2

p � 1ffiffiffi
2

p
� �

ð4:95Þ
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Again, using the expression (4.89), we compute the threshold value of the
parameter of nonlinearity above which the regime of strong energy exchange
between the groups of light particles is canceled and energy gets localized on one of
the groups.

a3CR ¼ 4r
3I

1:0928ð Þ�1 ð4:96Þ

Exciting one of the corresponding effective particles (i.e., xð0Þ ¼ V03 þVe3,
q03ð0Þ ¼ qe3ð0Þ ¼ 1; g3ð0Þ ¼ 2; n3ð0Þ ¼ 0; I ¼ 4), we plot (Fig. 4.23) the total
energies E1ðtÞ;E2ðtÞ for each one of the groups of light particles defined in (4.92).

As it is evident from the results of Figs. 4.21, 4.22 and 4.23, the theoretical
prediction of the threshold value (aiCR ) is in a very good agreement with that
obtained from numerical simulation. Thus, near complete energy exchanges
between the groups of light particles corresponding to the different modes of the
optical branch can be observed in Figs. (4.21a, 4.22 and 4.23a). Breakdown in the
regime of complete energy exchanges and localization on a single group of light
particles is evident from Figs. 4.21b, 4.22b and 4.23b.

Thus, in the present study, we have shown that highly non-stationary regime of a
strong energy transfer can also be realized in the short, periodic (1:N) FPU dimer
chains and is manifested by recurrent energy exchanges between the groups of light
particles (i.e., heavy particles remain almost immobile). The mechanism of forma-
tion of the near complete energy exchanges between the light particles of the chain
has been explained first for the simple, linear dimer chain of period 4. Therefore,
concentrating on the two highest modes of the linear system, we first show that in the
limit of a strong mass mismatch (e ! 0), these modes become closely spaced
resulting in the possibility of strong beats exhibited by the two light particles. As it is
also clear from the analysis and discussion brought in Sect. 4.3, this highly

Fig. 4.22 Total energy stored on each group of light particles: a a ¼ 1:3 and b a ¼ 1:4.
Threshold values: theoretical—a2CR ¼ 1:33, a2CR ffi 1:34; I ¼ 4
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non-stationary regime cannot be described in terms of modal coordinates of the
linear subsystem as the diagonalized system of modal oscillators is fully decoupled
and therefore no intermodal interaction can be inferred from it. However, using the
concept of “effective” particles previously introduced for the homogeneous FPU
chain (Manevitch and Smirnov 2010), we define new set of coordinates resulting in
the symmetric linear system of weakly coupled oscillators (“effective” particles)
describing the recurrent energy wandering between the light particles of the original
linear system. The concept of “effective” particles is farther extended to the non-
linear case. Again, focusing on the resonant interaction on the optical branch, we
effectively describe the dynamics of a nonlinear dimer chain of period 4 by a
symmetric system of the two weakly coupled, Duffing oscillators. Fixing the level of
initial excitation, we apply the method of limiting phase trajectories and then find a
threshold value of the parameter of nonlinearity below which strong energy
exchange between the groups of light particles of the chain holds and above which
energy gets permanently localized on one of the light particles. In the last section of
the paper, we consider the extended version of the nonlinear dimer chain where each
single light particle is replaced with the group of light particles. We show that the
analysis carried out in Sect. 4 can be efficiently applied to the higher dimensional
model and again estimates the transition between the regime of a complete energy
transfer between the group of light particles to the permanent energy localization on
one of the groups. We note that for the case of (1:N) dimer chain, the mechanism of a
near complete energy exchange (between the groups of light particles) as well as
energy localization (on one of the groups) can be realized for each vibrational mode
of the optical branch and for any number of light particles included in the cell.
Basically, the fact that near complete energy exchange holds for any number of light
particles included in the cell differs from the results obtained for a homogeneous

Fig. 4.23 Total energy stored on each group of light particles: a a ¼ 0:08 and b a ¼ 0:09.
Threshold values: theoretical—a3CR ¼ 0:0893, numerical: a3CR ffi 0:09; N ¼ 4
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chain (Manevitch and Smirnov 2010) where the length of the chain should be
sufficiently large (i.e., at least 24 particles in the chain) so that the modes considered
become closely spaced. As it will become clear from the results of the current study,
a closeness of the modes of the dimer chain is fully governed by a mass ratio
parameter. Therefore, in the limit of low mass ratios, we show the formation of the
pairs of modes with closely spaced frequencies which are responsible for the peculiar
regimes of intense energy transfer between the groups of light particles.
Consequently, dynamics of dimer chain reveals a new mechanism of formation of
inter-chain resonances without invoking the well-known phenomenon of densifi-
cation of eigenfrequencies driven by the increasing number of particles (Manevitch
and Smirnov 2010). Analytical predictions derived in the paper are in an extremely
close correspondence with the results of numerical simulations.

Appendix

Let us show that the pair of modes V0i;Vei is orthogonal

VT
0iVei ¼ 0 ð4:97Þ

From the consideration of symmetry, the modes have the following form

V0i ¼ 0 X0
2 � � � X0

Nþ 1 0 ð�1ÞrðiÞX0
2 � � � ð�1ÞrðiÞX0

Nþ 1

h i
Vei ¼ Xe

1 Xe
2 � � � Xe

Nþ 1 ð�1ÞpðiÞXe
1 ð�1ÞpðiÞXe

2 � � � ð�1ÞpðiÞXe
Nþ 1�

h i
ð4:98Þ

Using perturbation theory, we have shown that

Xe
j ¼ X0

j þOðeÞ ð4:99Þ

where X0
j � O 1ð Þ:

Therefore,

sgnðXe
j Þ ¼ sgnðX0

j Þ; j ¼ 2; . . .Nþ 1 ð4:100Þ

Note that (A4) can be violated when dealing with the mode possessing the nodal
points on some of the light particles (i.e., X0

j ¼ 0; j 2 ½2; . . .;N�). However, in this

case, the product X0
j X

e
j ¼ 0 and therefore the disparity in signs do not affect the

orthogonality of the modes.
For each mode V0i, we note the two possibilities for the choice of rðiÞ. To this

end, let us consider the signs of X0
2 and X0

Nþ 1. In case X0
2 and X0

Nþ 1 have identical
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signs, the immobile, heavy masses can be balanced by the oscillating light neigh-
bors only if rðiÞ ¼ 1.

Thus,

rðiÞ ¼ 1; sgn X0
2

� � ¼ sgn X0
Nþ 1

� �
0; sgn X0

2

� � ¼ �sgn X0
N þ 1

� ��
ð4:101Þ

As for the second mode Vei, it is obvious that operating on the optical branch of
the chain, each oscillating heavy particle should be out-of-phase with its light
neighbors. In other words, both the light particles neighboring to any of heavy
masses should move in phase. Thus,

pðiÞ ¼ 1; sgn Xe
2

� � ¼ sgn Xe
Nþ 1

� �
0; sgn Xe

2

� � ¼ �sgn Xe
Nþ 1

� ��
ð4:102Þ

From (4.100)–(4.102), it is evident that

rðiÞ 6¼ pðiÞ ð4:103Þ

Thus, the motion of particles for both the modes V0i;Vei is in-phase on one cell
of the dimer chain and out-of-phase on the second one. Accounting for (4.98) and
(4.103), it is easy to see that

VT
0iVei ¼ 0 ð4:104Þ
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Chapter 5
Localized Nonlinear Excitations
and Inter-chain Energy Exchange

The description of the nonlinear media in the framework of the
quasi-one-dimensional models assumes the existence of the essential anisotropy of
the media properties, for example, the considerable difference between coupling
constants along and transversely the chains in the polymeric crystals. Under these
assumptions, the dislocations motion in the Frenkel–Kontorova model and the
domain wall creation in the u4 one are considered as a plane wave along the
transversal direction. However, there are some physical problems where the transfer
of the excitation energy in this direction is the subject of the interest. First of all, one
should keep in mind the polymeric crystals, where the transition of the localized
excitation between the neighbor chains corresponds to the motion of the point-like
defect transversely the crystal (Manevitch and Smirnov 2008). The nonlinear
optical waveguides are the typical quasi-one-dimensional systems with the
transversal transfer of the localized pulses (Akhmediev and Ankiewicz 1997).
Finally, the wandering of the excitation energy between strands of the DNA may be
interesting from the viewpoint of the biology as well as the nanoelectronics. This
phenomenon is important also for description of the processes of the charge
transport along the DNA.

The inter-chain energy exchange by the breathers was first studied both ana-
lytically and numerically in Kosevich et al. (2008). A principal possibility of this
phenomenon has been shown. In the present chapter, we consider the problem of
inter-chain energy exchange using the LPT concept. The weakly coupled nonlinear
chains are regarded as the continuum systems with various degrees of nonlinearity
(linear chains, weakly nonlinear chains, and chains with nonlinearity compared
with coupling).
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5.1 Linear Chains with Weak Coupling

Let us consider a system of weakly coupled Fermi–Pasta–Ulam (FPU) chains with
potential energy containing the terms of fourth order alongside with parabolic ones.
The respective Hamilton function is:

H ¼
X
n

X
j¼1;2

dqn;j
dt

� �2

þ c2

2
qnþ 1;j � qn;j
� �2 þ b

4
qnþ 1;j � qn;j
� �4" #

þ e
c
2

qn;1 � qn;2
� �2( )

ð5:1Þ

where qn,j is dimensionless displacement of particle “n”-th in “j”-th chain, c, b, and
c are dimensionless parameters of interaction, and e is a small coefficient of
inter-chain coupling. It is easy to show that a modulation of particle displacements
at the right edge of the spectrum of linearized system (un,j = (−1)nqn,j) leads to the
following continuum equations for the envelope functions u4:

@2uj
@s2 þ @2uj

@x2 þ uj þ 16bu3j � ecu3�j ¼ 0
s ¼ xt; x2 ¼ 4þ ec

ð5:2Þ

It is convenient to use the complex variables:

Wj ¼ 1ffiffiffi
2

p @uj
@s

þ iuj

� �
; �Wj ¼ 1ffiffiffi

2
p @uj

@s
� iuj

� �
ð5:3Þ

The equations of motion (5.2) are converted to form:

i
@

@s
Wj þWj þ 1

2
@2

@x2
ðWj � �WjÞ � 4bðWj � �WjÞ3 � e

c
2
ðW3�j � �W3�jÞ ¼ 0 ð5:4Þ

Let us assume that the parameter of nonlinearity b is equal to zero. Now, we
consider two linear chains with linear coupling. Using the multi-scale expansion in
e:

Wj ¼ eðwj þ ewj;1 þ e2wj;2 þ . . .Þ
s0 ¼ s; s1 ¼ es; s2 ¼ e2s

n ¼ ex

ð5:5Þ

We obtain the following equations of different orders by small parameter e:
e1:

i@s0wj þwj ¼ 0
wj ¼ vje

is0 ð5:6Þ
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e2:

i@s0wj;1 þ i@s1wj þwj � c
2 ðw3�j � �w3�jÞ ¼ 0

wj;1 ¼ vj;1e
is0

i@s0vj;1 þ i@s1vj � c
2 ðv3�j � �v3�je

�2is0Þ ¼ 0
ð5:7Þ

The last equations lead to following important relationships

i@s1vj � c
2 v3�j ¼ 0

vj;1 ¼ c
4 �v3�je

�2is0 ð5:8Þ

Now, we can get the solution of Eqs. (5.8) in the form:

v1 ¼
1ffiffiffi
2

p X1 cos
c
2
s1

� �
� iX2 sin

c
2
s1

� �h i

v2 ¼
1ffiffiffi
2

p X2 cos
c
2
s1

� �
� iX1 sin

c
2
s1

� �h i ð5:9Þ

e3:

i@s0wj;2 þ i@s1wj;1 þ i@s2wj þ 1
2 @

2
nðwj � �wjÞ � c

2 ðw3�j;1 � �w3�j;1Þ ¼ 0
i@s0vj;2 þ i@s1vj;1 þ i@s2vj þ 1

2 @
2
nðvj � �vje

�2ixs0Þ � c
2 ðv3�j;1 � �v3�j;1e

�2ixs0Þ ¼ 0

ð5:10Þ

It is easy to view that after integrating with respect to fast time s0 with using last
relation (5.8), the equations for different chains turn out to be uncoupled. The main
point in analysis of Eqs. (5.10) are that the unknown functions depend on “inter-
mediate” time s1. The adequate procedure to remove this dependence is the aver-
aging over time s1. After simple algebraic manipulations, we obtain:

i@s2X1 þ 1
2
@2
nX1 � c2

8
X1 ¼ 0

i@s2X2 þ 1
2
@2
nX2 � c2

8
X2 ¼ 0;

ð5:11Þ

where X1 and X2 are the functions of slow time s2. Equations (5.11) have solution in
the form of plane wave.

Xj ¼ Aj expðiðkn� xs2ÞÞ ð5:12Þ
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with dispersion relation

x ¼ 1
2

k2 þ c
2

� �2� �
:

It is important that the structure of Eqs. (5.11) allow the wave localizing on one
chain only. This case corresponds to full energy exchange between the chains, if the
solution (5.12) is considered as initial condition for first of Eqs. (5.8) in the “in-
termediate” time s1. It is obvious that the plane waves (5.12) migrate from one
chain to other in accordance with Eqs. (5.9). Figure 5.1 shows an example of full
exchange between the chains for the initial conditions A1 = 0.10 and A2 = 0.0.

5.2 Nonlinear Chains

If the parameter b in Eqs. (5.4) is not zero, we can study how the nonlinearity
influences on the process of energy exchange. Using the series like (5.5) by small
parameter e, we obtain the weak nonlinearity asymptotics, because the order of
coupling terms is equal e2, while the nonlinear terms give contribution *e3. Thus,
Eqs. (5.6)–(5.9) are the same as for linear and nonlinear systems, but Eqs. (5.11)
resulting from averaging is changed:

i@s2X1 þ 1
2
@2
nX1 � c2

8
X1 þ 3b

8
3 X1j j2X1 þ 2 X2j j2X1 � X2

2
�X1

� �
¼ 0

i@s2X2 þ 1
2
@2
nX2 � c2

8
X2 þ 3b

8
3 X2j j2X2 þ 2 X1j j2X2 � X2

1
�X2

� �
¼ 0

ð5:13Þ

Equations (5.13) describe the pair of nonlinear oscillatory chains with nonlinear
coupling contrary to the initial system with the linear coupling. It is interesting that
the structure of nonlinear terms is similar to that of the case of small FPU system
(Manevich and Smirnov 2007). These equations admit both anharmonic plane wave
solution and solution in the form of localized vibrations (breathers). The plane wave
solution has the form:

Xjðn; s2Þ ¼ Aj expð�iðxs2 � knÞÞ ð5:14Þ

with dispersion relations

x ¼ 1
2

k2 þ c
2

� �2� �
� 6b 3A2

j þA2
3�j

� �
ð5:15Þ

Like the case of linear chains, Eqs. (5.13) admit a wave solution, localized on
one chain only. This solution leads to full energy exchange between chains.
Figure 5.2 shows an example of small-amplitude anharmonic plane wave in the
weakly nonlinear system.
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The analysis of the phase plane in the terms of polar coordinates (Kosevich and
Kovalyov 1989; Manevich 2007) does not show bifurcation both in-phase and
anti-phase stationary points. The solution in the form of plane wave has the phase
shift which is equal to p/2. Thus, this trajectory corresponds to the limiting phase
trajectory (LPT) in the case of two nonlinear oscillators.

Fig. 5.1 a “Map” of total energy of linear chains—bright bands correspond to high energy value,
dark bands—correspond to low energy, t—time, n—number of particle in the chain; b energy of
200-th particles in the different chains versus time. The plane wave was initiated in left chain at the
time t = 0 only
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Fig. 5.2 Plane wave with full energy exchange in the weakly nonlinear system. a Energy
“map”—bright and dark bands correspond to high and low energy values, respectively. The plane
wave was initiated in right chain at t = 0 only. b The energy profiles of 200-th particles in both
chains versus time
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Let us consider a localized solution of Eqs. (5.13):

Xjðn; s2Þ ¼ Ajðn� vs2Þ exp½�iðxs2 � qnÞ�; j ¼ 1; 2: ð5:16Þ

Here, Aj are real functions. Substitution of this form into the equations of motion
gives the relation between wave number q and velocity v:

v ¼ �q:

The equations for amplitudes Aj can be written as follows:

A00
j þ x� q2

2
� c2

8

� �
Aj þ 6b 3A3

j þA2
3�jAj

� �
¼ 0; ð5:17Þ

where primes denote differentiation with respect to argument. Let us suppose that
A1 = kA2. The conditions of compatibility of Eqs. (5.17) lead to following values of
k: k =+1; k = −1; and k = 0. The last value has a principal importance because of
existence of full energy exchange. Thus, the solution of Eqs. (5.13) describing the
localized oscillations have the following form:

X1ðn; s2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þðc=2Þ2
� �

� 2x

6ð3þ j2Þb

vuut
exp �iðxs2 � qnÞ½ �

� sch

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þðc=2Þ2
� �

� 2x

2

vuut ðn� qs2 � n0Þ

2
664

3
775

X2ðn; s2Þ ¼ jX1ðn; s2Þ; j ¼ 0;�1:

ð5:18Þ

It is worth mentioning that the shape of small-amplitude solution is formed in the
timescale that is more slower than the characteristic time of energy transfer between
different chains. This statement is valid for both linear and nonlinear systems. An
example of energy transfer in the case of moving breather is shown in Fig. 5.3.

5.2.1 Chains with Nonlinearity, Compatible with Coupling

Let us return to Eqs. (5.4) for the case of the amplitudes providing compatibility of
nonlinear and coupling terms by parameter e. If their values reach a magnitude

ffiffi
e

p
,

the expansion (5.5) turns out to be invalid. Therefore, we will use multi-scale
expansion:
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Wj ¼
ffiffi
e

p ðwj þ ewj;1 þ e2wj;2 þ . . .Þ
s0 ¼ s; s1 ¼ es; s2 ¼ e2s

n ¼ ffiffi
e

p
x

; ð5:19Þ

That leads to following equations for different orders of small parameter e:
e1/2:

i@s0wj þwj ¼ 0
wj ¼ vje

is0 ð5:20Þ

e3/2:

i@s0wj;1 þ i@s1wj þwj þ 1
2 @

2
nðwj � �wjÞ � c

2 ðw3�j � �w3�jÞ � 4bðwj � �wjÞ3 ¼ 0
wj;1 ¼ vj;1e

is0

i@s0vj;1 þ i@s1vj þ 1
2 @

2
nðvj � �vje

�2is0Þ � c
2 ðv3�j � �v3�je

�2is0Þ � 4bðvjeis0 � �vje
is0Þ3e�is0 ¼ 0

ð5:21Þ

Integrating last of Eqs. (5.21) with respect to “fast” time s0, we get two coupled
equations:

i@s1vj þ
1
2
@2
nvj �

c
2
v3�j þ 12bjvjj2vj ¼ 0 ð5:22Þ

First, we can see that there are two symmetric solutions of Eqs. (5.22). In the
class of localized soliton-like solutions, they have the form:

Fig. 5.3 Energy “map” for moving small-amplitude breather in the case of weak nonlinearity
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in-phase solution

v1ðn; s1Þ ¼
1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2xþ q2 þ c

3b

s
sch

1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2xþ q2 þ c

6b

s
ðnþ qs1Þ

 !

� expðiðxs1 � qnÞÞ;
v1ðn; s1Þ ¼ v2ðn; s1Þ

ð5:23Þ

anti-phase solution

v1ðn; s1Þ ¼
1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2xþ q2 � c

3b

s
sch

1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2xþ q2 � c

6b

s
ðnþ qs1Þ

 !

� expðiðxs1 � qnÞÞ;
v1ðn; s1Þ ¼ �v2ðn; s1Þ

ð5:24Þ

The Hamilton function, corresponding to Eqs. (5.22), is

h ¼ � c
2
ðv1�v2 þ �v1v2Þþ

1
2

@nv1j j2 þ @nv2j j2
� �

þ 6b v1j j4 þ v1j j4
� � ð5:25Þ

Similar to symmetric solutions (5.23)–(5.24), we can suppose that localized
soliton-like solutions of Eqs. (5.22) can be represented in the form:

vj ¼ AðnÞXjðs1Þ; ð5:26Þ

where a space-dependent amplitude A has the same profile for both chains. Thus,
integrating Eqs. (5.25) with respect to space variable n, we get the “energy” of the
system as a function of time variable:

H ¼ � c
2
NðX1�X2 þ �X1X2Þþ 1

2
lN X1j j2 þ X2j j2
� �

þ 6bmN2 X1j j4 þ X2j j4
� �

;

ð5:27Þ

where new parameters are defined by soliton profile:

N ¼
Z

A2dn; l ¼
Z

ð@nAÞ2dn
	Z

A2dn;

m ¼
Z

A4dn
	 Z

A2dn
� �2 ð5:28Þ

In such a case, we get an analog of two nonlinear oscillators, described by
functions Xj. Both beating with full energy exchange and confinement of initial
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excitation in the one of chain can be observed when the value of “occupation
number” N grows. It was shown that the process of energy exchange is defined by
trajectories, closed to LPT and pertinent to attractive area of one of two stationary
points of the system.

There are two stationary points of Eqs. (5.24) at a small “occupation number”
N and four ones exist if N is large enough. It is easy to see from analysis of phase
plane in the terms of “polar variables”:

X1 ¼ cos h eid1 ; X2 ¼ sin h eid2 :

Fig. 5.4 Transformation of “phase plane” of Eq. (5.24) in terms of polar variables. h characterizes
the amplitude ratio and D = d1 − d2—the phase shift. The occupation number N increases from
(a) to (d) fragments: a j < 0.5, b 0.5 < j < 1, c j = 1.0, and d j > 1.0 (see text)
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The parameter controlling a structure of phase plane is j = 6bmN/c. Four typical
cases are shown in Fig. 5.4. Like the case of two weakly coupled oscillators, if the
parameter j is smaller than 0.5, only two stationary points exist: in-phase (d = 0,
h = p/4) and out-of-phase (d = p, h = p/4) ones (see Fig. 5.4). Closed trajectories
near the LPT describe full energy exchange. At j = 0.5, out-of-phase mode
becomes unstable one that leads to separatrix creation (Fig. 5.4b). So, if we start
from the state near the new asymmetric modes, we can not transfer energy effec-
tively from one chain to another one. However, a possibility of full exchange along
the LPT is well preserved. The total prohibition of the energy exchange appears
when j becomes more than unit. Then, the separatrix coincides with LPT and
trajectories closed around out-of-phase mode are broken (Fig. 5.4c). So, full con-
finement of excitation on the one of the chains occurs. The main conclusion is that
the full energy exchange is possible till the parameter j do not exceed unit
(Fig. 5.4d). After that only partial exchange can occur near the asymmetric modes.
The computer simulation data, an example of which is shown in Fig. 5.5,
demonstrate a confinement of initial excitations in the one chain at j * 2.

Analytical and numerical studies of the wandering excitation both in linear and
nonlinear chains coupled by weak linear interaction show an existence of two
asymptotic limits of energy transfer between different chains. First of them is
characterized by quick energy transfer in comparison with processes of excitation
formation. In such a case, the waves in the different chains exhibit the phase shift
which is equal p/2. It means that respective trajectory is closed to the LPT. On the
contrary the excitations with large amplitudes can show both full energy exchange
near LPT and partial exchange near stationary points up to full confinement of
excitation in one of the chains.

Fig. 5.5 Confinement of the breather in the first chain. Breather was initiated in the first chain at
t = 0. After exchange with the second chain, the breather returns to the “parent” chain
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Part II
Extensions to Non-conservative Systems

In this part of the book, we show that the LPT concept which was initially
developed for conservative nonlinear models can be efficiently extended. This
extension allows taking into account the external periodic forcing and damping as
well as feedback which leads to existence of self-sustained oscillations. It is
significant that, contrary to conservative models, in this case even the asymptotic
equations in the main approximation are not integrable. Therefore, the LPTs as
fundamental non-stationary solutions provide an unique possibility to understand
and describe analytically a wide class of non-stationary resonance processes
(similarly to description of the stationary processes on non-conservative systems in
the frameworks of the NNMs concept). Moreover, the LPT concept turns out to be
useful for understanding and analytical description of such significant processes as
autoresonance in the nonlinear systems with variable parameters.



Chapter 6
Duffing Oscillators

In this chapter, we illustrate the role of LPTs in the analysis of nonlinear
non-stationary oscillations in non-stationary systems by a simple example of a
periodically forced single-degree-of-freedom (SDOF) Duffing oscillator. The main
difference from the conservative system described in the preliminary section is that
we deal here with resonance energy flow from the source of energy instead of
internal (intermodal) resonance.

In the first section of this chapter, we define the stationary states and the LPTs
for this model and then employ the LPT concept to describe salient features of the
non-stationary dynamics of the forced Duffing oscillator near 1:1 resonance. It is
shown that LPTs can be considered as borderlines between different types of tra-
jectories, associated with maximum targeted energy transfer from the source of
energy to the oscillator and related, depending on the parameters, to quasi-linear,
moderately nonlinear, and strongly nonlinear regimes of oscillations, while the
steady (stationary) oscillations of the non-autonomic system play the role of NNMs.
We also extend the notion of the LPT to oscillations with maximum energy in
non-dissipated and dissipated oscillators subjected to biharmonic external
excitations.

The main features of the dynamical behavior of the model under consideration
are highlighted with the help of explicit asymptotic solutions. Similar to previous
chapters, we make an extensive use of a special asymptotic technique based on the
complexification of the dynamic and using the non-smooth transformations.
Considering the case of biharmonic excitation leads to revealing the qualitatively
new strongly nonlinear phenomenon. We consider also the case of super-harmonic
resonance.

© Springer Nature Singapore Pte Ltd. 2018
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6.1 Duffing Oscillator with Harmonic Forcing
Near 1:1 Resonance

6.1.1 Main Equations and Definitions

We investigate a dimensionless weakly nonlinear oscillator subject to a periodic
excitation in the neighborhood of 1:1 resonance. The equation of motion is given by

d2u
ds20

þ 2ec
du
ds0

þ uþ 8aeu3 ¼ 2eF sinð1þ esÞs0; ð6:1Þ

where c, a, F, s are positive parameters, and e > 0 is a small parameter of the
system. The oscillator is assumed to be initially at rest; this assumption is equivalent
to initial conditions u = 0, v = du/ds0 = 0 at s0 = 0+. Below, we write s0 = 0
instead of s0 = 0+, except as otherwise noted. The trajectory satisfying these initial
conditions is a limiting phase trajectory (LPT) corresponding to maximum possible
(under given parameters of the system) energy transfer from the source of energy to
the oscillator. This extension of the LPT concept onto forced oscillations was made
in (Manevitch and Musienko 2009) and then in (Manevitch et al. 2011a, b, c).

To construct an explicit asymptotic solution, we make use of the multiple scales
analysis (Nayfeh and Mook 2004). This approach is especially convenient in
neighborhoods of resonances in the framework of the LPT concept.

Similar to previous chapters, the first step is to introduce the complex-valued
variables

Y ¼ vþ iuð Þe�is0 ; Y� ¼ v� iuð Þeis0 ; i ¼
ffiffiffiffiffiffiffi
�1

p
; ð6:2Þ

where asterisk denotes complex conjugate. Substituting the representation (6.2) into
(6.1) yields the following alternative (still exact) equation of motion:

dY
ds0

¼ 3iea Yj j2�Y � cY � ieFeis1 þ ieG0 s0; s1; Y ; Y
�ð Þ; Y 0ð Þ ¼ 0; ð6:3Þ

where s1 = ers0 is the leading-order slow timescale. The coefficient G0 is given by

G0 s0; s1; Y ; Y
�ð Þ ¼ ðFe�is1 þ icY� � 3aY�jY j2Þe�2is0 � aY3e2is0 þðY�Þ3e�4is0 :

ð6:4Þ

Equation (6.3) is exact, as it is derived from the original equation of motion without
omitting any terms in the process. To obtain an approximate solution, we apply the
multiple scales method (Nayfeh and Mook 2004) to Eq. (6.3). Since Eq. (6.3)
depends on two timescales, the fast timescale s0 and the leading-order slow
timescale s1 = ers0, the solution is sought in the form of the expansion:
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Y s0; s1; eð Þ ¼ / 0ð Þ s1ð Þþ e/ 1ð Þ s0; s1ð ÞþO e2
� �

; ð6:5Þ

with the slow leading-order term u(0)(s1). After substituting (6.5) into (6.3) and
eliminating the sum of non-oscillating terms from the resulting equation, we obtain
the following equation for the slow variable u(0)(s1):

s
d/ð0Þ

ds1
þ c/ð0Þ � 3iaj/ð0Þj2/ð0Þ ¼ �iFeis1 ; /ð0Þð0Þ ¼ 0 ð6:6Þ

This equation represents the approximation of the slow flow dynamics of the
system; i.e., it governs approximately the slow evolution of the complex amplitude
with time. Rescaling of the variables and the parameters

/ð0Þðs1Þ ¼ K/ðs1Þeis1 ; K ¼ s
3a

� �1=2
; f ¼ F

s
K ¼ F

ffiffiffiffiffi
3a
s3

r
; c1 ¼

c
s

ð6:7Þ

reduces Eq. (6.6) to the form

d/
ds1

þ c1/þ ið1� j/j2Þ/ ¼ if ; /ð0Þ ¼ 0: ð6:8Þ

After introducing a polar decomposition of / in terms of a real amplitude and a
real phase, / = aetD, Eq. (6.8) is rewritten as follows:

da
ds1

þ c1a ¼ �f sinD

a
dD
ds1

¼ �aþ a3 � f cosD;
ð6:9Þ

with initial condition a(0) = 0. The second initial condition, corresponding to D(0),
will be derived below.

It now follows from (6.2), (6.5) and (6.7) that

uðs0; eÞ ¼ Kaðs1Þ sinðs0 þDðs1Þþ s1ÞþOðeÞ
vðs0; eÞ ¼ Kaðs1Þ cosðs0 þDðs1Þþ s1ÞþOðeÞ ð6:10Þ

It is well known that the difference between a precise solution of Eq. (6.1) and
its approximation (6.10) is of O(e) in large time intervals s0 * O(1/e) (Nayfeh and
Mook 2004). However, a refined analysis (Mirkina (Kovaleva) 1977) shows that
the interval of convergence depends on the properties of higher approximations and
may tend to infinity. Moreover, relatively large values of e in particular problems do
not necessarily imply that the derived analytical approximations will be poor at
larger times; numerical examples are given in (Vakakis et al. 1996).
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6.1.2 Stationary States, LPTs, and Critical Parameters

We start the analysis from the non-dissipative system

da
ds1

¼ �f sinD

a
dD
ds1

¼ �aþ a3 � f cosD:
ð6:11Þ

with initial condition a(0) = 0. It is easy to prove that system (6.11) is integrable,
yielding the following integral of motion

H ¼ a
1
4
a3 � 1

2
a� f cosD

� �
ð6:12Þ

Since a(0) = 0, then H = 0 on the LPT. This implies that there exist two
branches of the LPT, and the branch a � 0 for any D corresponds to an instant
change of the phase shift (Fig. 6.1); the non-trivial branch solves the cubic equation

1
4
a3 � 1

2
a� f cosD ¼ 0: ð6:13Þ

Equality (6.13) determines the second initial condition a(0+) = 0, cosD(0+) = 0.
Suppose that da/ds1 > 0 at s1 = 0+; under this assumption, D(0+) = −p/2. Hence,
initial conditions a = 0, D = −p/2 at s1 = 0 correspond to the LPT of system (6.11).

Our purpose is to find critical values of the parameter f dictating different types
of the dynamical behavior. Since any stable orbit encircles a corresponding sta-
tionary point, the first step is to find the steady states of Eq. (6.11) (they can be
considered as the analogues of NNMs in conservative systems) from the equations
da/ds1 = 0, dD/ds1 = 0, or,

�aþ a3 � f sgnðcosDÞ ¼ 0; cosD ¼ �1: ð6:14Þ

Due to periodicity, only two stationary points D = 0 and D = −p may be con-
sidered. The corresponding stationary states are denoted by C+ and C−, respec-
tively. We analyze the roots of the algebraic equation (6.14) through the properties
of its discriminant (see Korn and Korn 2000 for more details)

D2 ¼ 4� 27 f 2:

If D2 < 0, then Eq. (6.14) has three different real roots; if D2 > 0, then there
exists a single real and two complex conjugate roots; if D2 = 0, two real roots
merge (Korn and Korn 2000). The latter condition determines the critical value
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Fig. 6.1 Phase portraits, slow amplitudes, and phases of system (6.11): a weakly nonlinear
oscillations, f = 0.2714; b moderately nonlinear oscillations, f = 0.2729; c strongly nonlinear
oscillations, f = 0.385. The LPTs are depicted by red color
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f2 ¼ 2=
ffiffiffiffiffi
27

p
� 0:3849: ð6:15Þ

A straightforward investigation of Eq. (6.14) proves that the system has a single
stable center C+: (0, a+) if f > f2 (Fig. 6.1c). Note that the parameter f ¼ F

ffiffiffiffiffiffiffiffiffiffiffi
3a=s3

p
reflects the effect of all parameters on the system dynamics, and the condition f > f2
implies not only strong nonlinearity or large excitation amplitude but also intense
excitation of the oscillator with small frequency detuning.

If f < f2, then there exist two stable centers C−: (−p, a−), C+: (0, a+) and an
intermediate unstable hyperbolic point O: (−p, a0) (Fig. 6.1a, b).

In both cases, the LPT begins at a = 0, D = −p/2, but its direction depends on
the value of f. Note that the stable center C− and the small LPT near C− exist
provided Eq. (6.13) is solvable at D = −p. In order to find a critical value f1 < f2
ensuring the transition from small to large oscillations, we analyze the discriminant
of Eq. (6.13) at D = −p given by

D1 ¼ 16ð2� 27 f 2Þ:

If D1 = 0, the hyperbolic point in the axis D = −p coincides with the maximum
point of the small LPT defined by the conditions da/ds1 = 0, sin D = 0. Thus, the
critical value f1 is given by the condition D1 = 0, or

f1 ¼
ffiffiffiffiffiffiffiffiffiffi
2=27

p
� 0:2722: ð6:16Þ

The threshold f1 corresponds to a boundary between small and large oscillations:
At f = f1, the LPT of small oscillations coalesces with the separatrix going through
the homoclinic point on the axis D = −p. This implies that the transition from small
to large oscillations occurs due to loss of stability of the LPT of small oscillations.
At f = f2, the stable center on the axis D = −p vanishes due to the coalescence with
the homoclinic point, and only a single stable center remains on the axis D = 0.

Conditions f < f1, f1 < f < f2, and f > f2 specify quasi-linear, moderately non-
linear, and strongly nonlinear dynamical behavior, respectively. These definitions
are consistent with the plots presented in Fig. 6.1.

Figure 6.1 clearly demonstrates the “limiting” property of the LPTs in the
time-invariant system. It is seen that the LPT represents an outer boundary for a set
of closed trajectories encircling the stable center in the phase plane (D, a). In
particular, this property proves that motion along the LPT possesses the maximum
amplitude and therefore the maximum energy among all other closed trajectories
characterizing oscillatory motion.

It is important to note that the value f2 is independent on the initial conditions
(see, e.g., Kovaleva and Manevitch 2013; Neishtadt 1975) as a boundary between
the regimes with one or three stationary points. However, the boundary f1 between
small and large oscillations strictly depends on the choice of the initial point. This
boundary was revealed in (Manevitch 2007; Manevitch and Musienko 2009;
Manevitch et al. 2011a, b, c).
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Now, we exclude the phase D(s1) from (6.11) and examine the amplitude a(s1)
on the LPT. It follows from (6.11) that

d2a
ds21

¼ �f cosD
dD
ds1

on the LPT. Taking into account that, by virtue of (6.13), f cosD = a(a2 − 2)/4, we
obtain the following second-order equation for the LPT:

d2a
ds21

þ dU
da

¼ 0 ð6:17Þ

with initial conditions a(0) = 0, v(0) = da/ds1 = f. The potential U(a) is defined by
the condition of the energy conservation, namely E = ½v2 + U(a) = ½v2(0). It
follows from (6.11) and (6.13) that v = −f sinD = ±[f2−1/16 a2(a2 − 2)2]1/2, and
therefore,

U að Þ ¼ a2ða2 � 2Þ2
32

u að Þ ¼ dU
da

¼ a
4

a2

2
� 1

� �
3a2

2
� 1

� � ð6:18Þ

The function U(a) and the phase portraits of oscillator (6.17) in the plane (a, v)
are shown in Fig. 6.2. It is seen that, dependent on the initial energy, motion varies
from small to large oscillations with observable deceleration near the saddle points
and then to motion with an almost constant velocity up to the reflection from the
wall of the potential well (Fig. 6.2). In the latter case, a(s1) tends to a sawtooth
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Fig. 6.2 Normalized potential and phase portraits of system (6.17) corresponding to different
initial energy; As the saddle point; Ac the stable center; A the amplitude of oscillations; red dashed
lines in the left plot represent the quadratic approximation of the potential in the domain DC
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function (Fig. 6.3), and the phase portrait of system (6.17) is consistent with motion
of a free particle between two rigid walls (Sect. 1.1).

The coordinates of the saddle point As and the stable center Ac are defined by the
equality u(a) = 0, that is, As ¼

ffiffiffiffiffiffiffiffi
2=3

p � 0:816;Ac ¼
ffiffiffi
2

p � 1:414. The amplitude
of oscillations A may be calculated by Eq. (6.13) at D = 0 and D = p, that is, A|
A2 − 2| = 4f; the half-period T(A) is calculated by formula (Sagdeev et al. 1988)

TðAÞ ¼
ZA
0

daffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 � 2UðaÞp ð6:19Þ

6.1.3 Non-smooth Approximations of Strongly Nonlinear
Oscillatory Modes

The maximum attention will be paid to highly energetic regimes with large
amplitudes of oscillations occurring at f > f2. In this case, motion along the LPT is
characterized by a sawtooth envelope a(s1) (Fig. 6.1c). This underlines the fact that
important essentially nonlinear phenomena (such as this one) may be missed when
resorting to perturbation techniques based on linear (harmonic) generating func-
tions, whose range of validity is restricted to stationary (or almost stationary) and
non-stationary, but non-resonance processes. The similarity of the LPT to a saw-
tooth function admits an approximation of strongly nonlinear highly energetic
smooth oscillations by a non-smooth response of a free particle moving with
constant velocity between two rigid walls a = 0 and a = A, where A is a maximum
amplitude of oscillations (see also Fig. 1.3 in Sect. 1.1).

Referring to the method of non-smooth transformations (Pilipchuk 2010), we
introduce the pair of non-smooth basic functions s(/) and e(/) = ds/d/, / = Xs1
by formulas

Fig. 6.3 Functions s(/) and
e(/)
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sð/Þ ¼ 2
p
j arcsin sin

p/
2

� �
j; eð/Þ ¼ ds

d/
¼ sgn½sinðp/Þ�

d
ds1

¼ X½eð/Þ @

@s
þ @

@/
�

ð6:20Þ

where X = 1/T; the half-period T will be defined below. Plots of non-smooth
functions (6.20) are given in Fig. 6.3.

It was shown in earlier works (Manevitch et al. 2011a, b, c) that solutions of
(6.11) can be expressed through non-smooth functions as

aðs1Þ ¼ XðsÞ; Dðs1Þ ¼ eð/ÞYðsÞ;
d
ds1

¼ X e
@

@s
þ @

@/

� � ð6:21Þ

While the functions D(s1), da/ds1, and dD/ds1 are formally continuous at
/ = 2n − 1, s = 1 and discontinuous at / = 2n, s = 0, Eq. (6.21) yields discon-
tinuity at both / = 2n − 1, s = 1 and / = 2n, s = 0. Singularity at / = 2n − 1
vanishes if Y(s) = 0 at s = 1. Formally, one can impose this smoothening condition
in order to eliminate singular terms from the resulting equations, but, as shown
below, this condition holds by virtue of the dynamical equations.

To derive the equations for X, Y, we insert (6.21) into (6.11) and then separate
the terms with and without the coefficient e. This yields the set of equations

dX
ds

¼ �f sinY

dY
ds

þX � X3 ¼ �f cos Y
ð6:22Þ

with initial conditions X = 0, Y = −p/2 at s = 0+. It is obvious that

dX
ds ¼ 0 at Y = 0.

It now follows that equality Y(1) = 0 has a simple physical meaning: It means
that X1 is maximal at Y = 0, s = 1.

In order to assess the amplitude and the period of oscillations, we reduce (6.22)
to the second-order form similar to (6.17). Transformations of the same sort as
above reduce (6.22) to the second-order equation

X
d2X
ds2

þ uðXÞ ¼ 0 ð6:23Þ

with initial conditions X = 0, dX/ds = f/X at s = 0+; the function u(X) is given by
(6.18). Using the vibro-impact approximations, we calculate successive iterations
by formulas
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X ¼ x0 þ x1 þ . . .; Y2 ¼ y0 þ y1 þ . . .; ð6:24Þ

where it is assumed that |x1(s)| � |x0(s)|, |y1(s| � |y0(s)| in the interval
0 	 s 	 1. The leading-order approximation x0 is chosen as the solution of the
equation of free particles moving between the walls, namely d2x0/ds

2 = 0, with
initial conditions x0 = 0, dx0/ds = f/X at s = 0+. This yields the following
non-smooth approximations:

x0ð/Þ ¼ a0ð/Þ ¼ A0sð/Þ; v0ð/Þ ¼ A0sgnðsin 2/Þ;
y0ð/Þ ¼ D0ð/Þ ¼ � p

2
eð/Þ; / ¼ X0s1; X0 ¼ 1=T0

ð6:25Þ

By construction, the inverse transformation a0 = A0s(X0s1) produces the saw-
tooth periodic solution associated with the vibro-impact process. The generating
half-period T0 = 1/X0 is defined as T0 = A0/f, where A0 is calculated after the
substitution of the latter equality into expression (6.19).

The first-order term x1 is governed by the equations

d2x1
ds2

¼ �X�2
0 uða0Þ; x1ðsÞ ¼ �X�2

0

Zs
0

ðs� nÞuðA0nÞdn

Integration by parts together with formulas (6.24) gives

a1ðsÞ ¼ a0ðsÞþ x1ðsÞ ¼ A0s� A0s3

8X2
1

ðA0sÞ4
28

� ðA0sÞ2
5

þ 1
3

" #
; . . .

D1ðsÞ ¼ D0ðsÞþ y1ðsÞ ¼ eðuÞ � p
2
þ s

X1
� 1
2
þ ðA0sÞ2

4

 !" # ð6:26Þ
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Fig. 6.4 Exact solution a(s1)
(solid) and approximations
a0(s1) (dash) and a1(s1)
(dash-dot) for Eq. (6.17) with
f = 0.385
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[a detailed derivation of (6.26) can be found in Manevitch et al. (2011a, b, c)]. Note
that the solution (6.26) is constructed as a function of s, but the inverse transfor-
mation s ! s1 by formulas (6.20) automatically yields the solution periodic in s1
(Fig. 6.4). A more detailed consideration of this approach as well as an analysis of
numerical solutions can be found in Manevitch et al. (2011a, b, c).

6.1.4 Analysis with Taking into Account the Energy
Dissipation

We apply now the LPT concept to examine high-energy oscillations of a weakly
damped oscillator. The system with parameters f = 0.385, c1= 0.05 is considered as
an example. In Fig. 6.5, one can observe two stages of motion: In the initial interval
0 	 s1 	 s*, the trajectory is close to the LPT of the conservative system
(c1 = 0), whereas in the second interval s1 > s*, motion is similar to quasi-linear
oscillations and then converges to stationary oscillations of constant amplitude; an
instants* corresponds to the first maximum of the amplitude a(s1). Thus, the first
part of the trajectory may be approximated by the previously obtained segment of
the LPT for the non-dissipative system; the matching point is a(s*) = A at
s* = T0 = A/f, with amplitude A calculated form (6.19).

In the second interval of motion, the trajectory of the dissipative system tends to
the steady-state O: (a0, D0) as s1! ∞. The point O: (a0, D0) is defined by the
equality

Fig. 6.5 Numerical results for the weakly dissipative nonlinear oscillator with parameters
f = 0.385, c1 = 0.05: a phase portrait; b plots of a(s1): the exact (numerical) solution (solid line);
segment (6.25) (dotted-dashed line); segment (6.27) (dashed line)
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a2 ð1� aÞ2 þ c21

h i
¼ f 2;

or, for sufficiently small c1,

c1a0 ¼ f sinD0; a0 � a30 ¼ �f cosD0

D0 � �c1a0=f þOðc31Þ; a0ð1� a20Þ ¼ �f þOðc21Þ

Let n = a − a0, d = D − D0 be deviations from the steady state satisfying the
matching conditions a0 + n = A, dn/ds1 = 0 at s1 = T0.

Assuming negligible contributions of nonlinearity in small oscillations near O,
the system linearized near O can be considered. The linearized equations are given
by

dn
ds1

þ c1nþ f d ¼ 0;
dd
ds1

� k � nþ c1d ¼ 0

where k = 2a0 + f/a0
2. This yields

nðs1Þ ¼ c0e�c1ðs1�T0Þ cos jðs1 � T0Þ;
dðs1Þ ¼ rc0e�c1ðs1�T0Þ sinjðs1 � T0Þ; s1 [ T0

ð6:27Þ

where c0 = A – a0, j = (fk)1/2, r = j/f.
Figure 6.5 demonstrates a good agreement between the numerical solution of

Eq. (6.9) (solid line) and its approximations. Despite a certain discrepancy in the
initial interval, the numerical and analytical solutions closely approach as s1
increases. This simplest matched approximation is sufficient to describe compli-
cated near-resonance dynamics. Note that the simplicity of the obtained solutions,
which results from the attention to the physical properties of the system and
effective treatment of the LPT theory, is contrasted with the daunting complexity of
the traditional analysis of transient nonlinear processes.

6.2 Duffing Oscillator Subjected to Biharmonic Forcing
Near the Primary Resonance

Analytical investigation of non-stationary processes in the Duffing oscillator sub-
jected to biharmonic forcing under conditions of a primary resonance is carried out
in this section. First, we employ the LPT methodology to investigate a
non-dissipative system with a biharmonic excitation. We demonstrate that the
presence of an additional harmonic with a slowly changing frequency entails
recurrent transitions from one type of LPT to another one. Next, we investigate the
occurrence of relaxation oscillations in a lightly damped system. It is also
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demonstrated that the mechanism of relaxations may be approximated and
explained through the existence of the LPTs characterized by a strong energy
exchanges between a single oscillator and an external source of energy. It is shown
that the results of analytical approximations and numerical simulations are in a quite
satisfactory agreement.

6.2.1 Equations of Fast and Slow Motion

We investigate dimensionless weakly nonlinear oscillator subjected to a biharmonic
excitation in the neighborhood of 1:1 resonance. The equation of motion is given by

d2u
ds20

þ 2ec
du
ds

þ uþ 8aeu3 ¼ 2e½~F1 sinð1þ es1Þs0 þ ~F2 sinð1þ es2Þs0� ð6:28Þ

where s2 = (1 + er)s1. External forcing in this system consists of two distinct
harmonic components with close frequencies. We will refer to this type of exci-
tation as a biharmonic (quasi-periodic) one.

We recall that the maximum energy transfer from the source of energy to the
oscillator happens if the oscillator is initially at rest, that is, u = 0, v = du/ds0 = 0 at
s0 = 0. These initial conditions define the above-introduced LPT of the oscillator
with biharmonic forcing.

To derive an analytical solution of Eq. (6.28), we invoke the complex-valued
transformation (u, v) ! (Y, Y*) and then apply the multiple scales decomposition
Y = u(0) + eu(1) + 


. Taking into account that the excitation directly depends on
the fast timescale s0, the slow timescale s1 = ess0, and the super-slow timescale
s2 = es1, the leading-order slow term u(0) and the expansion of the full
time-derivative are presented as

uð0Þ ¼ uð0Þðs1; s2Þ; duð0Þ

ds1
¼ @uð0Þ

@s1
þ e

@uð0Þ

@s2
ð6:29Þ

Therefore, the leading-order equation for u0 includes the slow and super-slow
timescales:

d2u
ds20

þ 2ec
du
ds

þ uþ 8aeu3 ¼ 2e½~F1 sinð1þ es1Þs0 þ ~F2 sinð1þ es2Þs0�

s
@uð0Þ

@s1
þ cuð0Þ � 5iajuð0Þj2uð0Þ ¼ �~F1eis1 � i~F2eiðs1 þrs2Þ; uð0Þð0Þ ¼ 0

ð6:30Þ
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Introducing rescaling of the variables and the parameters

dðs2Þ ¼ rs2; uð0Þðs1Þ ¼ Kuðs1Þeis1 ; K ¼
ffiffiffiffiffiffiffiffiffiffi
s=3a

p
;

Fj ¼ Fj=sK ¼ Fj

ffiffiffiffiffiffiffiffiffiffiffi
3a=s3

p
; c1 ¼ c=s; j ¼ 1; 2

we transform (6.30) into a more convenient form similar to (6.6)

@/
@s1

þ c1/þ i/ð1� j/j2Þ ¼ �iðF1 þF2exp id s2ð Þð Þ; / 0ð Þ ¼ 0: ð6:31Þ

6.2.2 LPTs of Slow Motion in a Non-dissipative System

In this section, we consider a non-dissipative model with the “frozen” phase d. The
equation of motion is given by

@/
@s1

þ i/ð1� j/j2Þ ¼ �iðF1 þF2exp idð Þ; u 0ð Þ ¼ 0: ð6:32Þ

After introducing a polar decomposition u = aeiD, we transform (6.32) into the
equations for the real-valued amplitude a � 0 and phase D

@a
@s1

¼ �F1 sinDþF2 sinðd� DÞ ¼ 0; að0Þ ¼ 0

a
@D
@s1

¼ �aþ a3 � F1 cosD� F2 cosðd� DÞ
ð6:33Þ

As in Sect. 6.1, we investigate the system dynamics through the analysis of
LPTs. It is easy to prove that system (6.33) possesses the integral of motion (with
respect to the timescale s1)

K ¼ a
a3

4
� a
2
� F1cosD� F2cos d� Dð Þ

� �
; ð6:34Þ

and K = 0 on the LPT. As in the time-invariant case, the LPT has two branches: the
first branch is trivial (a = 0), while the second branch satisfies the cubic equation
similar to (6.13)

g a;Dð Þ ¼ 1
4
a3 � 1

2
a� F1cosD� F2cos d� Dð Þ ¼ 0 ð6:35Þ
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Note that the above equation determines the phase D(a) on the LPT for any d.
Since the point a(0) = 0 belongs to the LPT, we obtain from (6.35) the following
expression for the initial phase D0 corresponding to a non-trivial branch of the LPT:

F1 cosD0 þF2 cos d� D0ð Þ ¼ 0;
D0 ¼ � arctan F1 þF2 cos d

g2 sin d
þ np: ð6:36Þ

In the next step, we study bifurcations of the slow motion. We begin with the
analysis of the stationary (in s1) points of system (6.33). By letting da/ds1 = 0,
dD/ds1 = 0, one obtains the following algebraic equations for the stationary points
(as, Ds):

F1 sinD� F2 sinðd� DÞ ¼ 0
a� a3 þ f ¼ 0

ð6:37Þ

where f = ±(F1 cosDs + F2 sin(d − Ds)). It follows from the first equation in (6.37)
that the coordinates Ds of the stationary points in the phase plane are given by

Ds ¼ arctan
F2sind

F1 þF2cosd
þ np: ð6:38Þ

It is important to note that the second equation in (6.37) formally coincides with
Eq. (6.14) and thus determines quasi-stationary points depending on the “frozen”
phase d. This implies that one can consider the critical values (6.15) and (6.16) of
the parameter f as the boundaries separating different types of motion.

As in Sect. 6.1, we obtain two critical relationships determining locations of the
centers and the shape of the phase orbits of system. We recall that the critical value
f1 ¼

ffiffiffiffiffiffiffiffiffiffi
2=27

p
characterizes the boundary between quasi-linear oscillations with

relatively small amplitude (|f| < f1) and moderately nonlinear oscillations with
larger amplitude at f1 < |f| < f2. The threshold f2 ¼ 2=

ffiffiffiffiffi
27

p
corresponds to the

transition from moderately nonlinear (f1 < |f| < f2) to strongly nonlinear (|f| > f2)
regimes with large amplitudes and energy.

It is worth mentioning that, in virtue of (6.37) and (6.38), the reduced forcing
amplitude f directly depends on the parameters F1, F2, d, and a proper choice of
these parameters may provide zero forcing (in s1) such that ∂a/∂s1 = 0 in (6.33). In
this case, the bifurcation analysis presented in this section becomes unacceptable, as
it formally corresponds to an unforced response of the nonlinear oscillator.

6.2.3 Super-Slow Dynamics

Next, we consider the super-slow evolution of the LPT due to monotonous varia-
tions of the parameter d(s2). It was mentioned that in the system under investigation
the parameter f is d-dependent. Furthermore, since the phase d(s2) monotonously
varies with respect to the super-slow timescale s2, all bifurcation parameters are
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also time-varying. This also means that global changes in the system dynamics may
arise as the time increases. We show that at d = 0 there exists the LPT of the second
type (strongly nonlinear high-energy oscillations with a single stable center in the
phase plane) which, after a certain time interval, will bifurcate to the LPT of the first
type (moderately nonlinear oscillations) due to the parametric switching from |f
(d(s2))| > f2 to |f(d(s2))| < f2.

As shown in Fig. 6.6, the LPT starting at d = 0 undergoes global bifurcations. It
is evident that, as the parameter d increases, the LPT slowly changes, and the left
and right corner points of the LPT meet at the saddle point at dcr = 1.99. The
coincidence of the corner points brings about the global bifurcation that finally
results in the disappearance of strongly nonlinear regime and the transition to the
LPT of moderately nonlinear regime (cf. Fig. 6.1).

The sequence of LPTs arising right after the bifurcation is illustrated in Fig. 6.7
for several values of d. It is clearly seen that an increase in phase detuning d(s2) is
equivalent to deviations of the excitation frequency from resonance, which, in turn,
entails a decreasing amplitude and passage from one type of oscillations to another
one.

One may observe in Fig. 6.7 that the aforementioned bifurcation leads to the
transition from a strongly nonlinear regime to a moderately nonlinear one. The LPT
gradually evolves with the variation of d in time until it reaches a certain critical
point beyond which another transition from the moderately to strongly nonlinear
regime is observed. These transitions occur recurrently in large time intervals.

We now estimate analytically the critical values dcr, at which the transitions may
occur. First, we use Eq. (6.35) to find the values of the phase D and the amplitude
acr, at which ∂D/∂a = 0. The critical amplitude acr is defined as follows:

Fig. 6.6 Evolution of the LPT of the second type (strongly nonlinear oscillations) up to the
transition to the LPT of the first type (moderately nonlinear oscillations)
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@g a;D að Þð Þ
@a

j@D
@a¼0 ¼

3
2
a2 � 1 ¼ 0; acr ¼

ffiffiffiffiffiffiffiffi
2=3

p
: ð6:39Þ

Substituting a = acr into (6.35) yields:

2F1cosDþ 2F2cos d� Dð Þ ¼ 1
2
a3cr � acr: ð6:40Þ

Now, we find the critical value dcr at which two stationary points collide. To this
end, we derive the condition for Eq. (6.40) to have a single solution. This can be
achieved by equating the amplitude of the left-hand side “oscillating part” (with
respect to D) to that of the right-hand side. This implies that the critical value
d = dcr satisfies the following equations:

dcr ¼ �arccos
ða3cr2 � acrÞ2 � 4 F2

1 þF2
2

� �
8F1F2

; acr ¼
ffiffiffi
2
3

r
ð6:41Þ

6.2.4 Relaxation Oscillations in a Lightly Damped System

In this section, we demonstrate the possibility of relaxation oscillations in the
lightly damped system (6.31) and a connection between the trajectories of relax-
ation oscillations and the LPTs.

We recall that relaxation oscillations are characterized by the occurrence of
recurrent segments of fast and slow motion. In order to highlight the super-slow
motion, we rewrite Eq. (6.31) as a singular equation

e
@/
@s2

þ c1/þ i/ð1� j/j2Þ ¼ �iðF1 þF2exp id s2ð Þð Þ; /ð0Þ ¼ 0: ð6:42Þ

Fig. 6.7 Formation of the
LPTs of the first type and
their super-slow evolution till
the time point of additional
transition to the LPT of the
second type. The numbers
near curves show the values
of d
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The limit as e ! 0 gives the following algebraic equation

iUð1� jUj2Þþ c1U ¼ �i F1 þF1eirs2
� �

: ð6:43Þ

with trajectories depending on the super-slow time s2. It follows from (6.42), (6.43)
that U(s2) = limu(s1,s2) as e!∞. Thus, U(s2) can be interpreted as a
quasi-stationary value of the complex amplitude u0 with “frozen” parameter s2.

The transformation |U| =
ffiffiffi
Z

p
reduces Eq. (6.43) to the real-valued form:

c21Z þð1� ZÞ2Z ¼ Qðs2Þ; ð6:44Þ

where Q(s2) = F1
2 þF2

2 þ 2F1F2 cos rs2 represents the quadratic amplitude of
excitation. The function |U| =

ffiffiffi
Z

p
obviously evaluates the amplitude of oscillations

a = |u0| as s1!∞.
The plot of U versus Q is presented in Fig. 6.8. It is seen that the plot may be

folded at certain parameters. This folded structure contains two stable branches and
one unstable branch (Fig. 6.8).

It was shown in earlier works(Andronov et al. 1966; Gendelman et al. 2006,
2008; Guckenheimer et al. 2005, 2006; Starosvetsky and Gendelman, 2008a, b: 2,
c: 3, 2009a, b: 2; Theocharis et al. 2010; Szmolyan and Wechselberger 2004) that
relaxation oscillations are characterized by consequent jumps from one stable
branch to another one, accompanied by a super-slow evolution on each of the stable
branches. To find the conditions of jumps, expression (6.44) is differentiated with
respect to Z. Equating the derivative to zero, we obtain the equation

3Z2 � 4Z þ c21 þ 1 ¼ 0 ð6:45Þ

Fig. 6.8 LPT of the second
type slightly before the
bifurcation occurs
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which determines extreme points. It is easy to deduce that a real-valued solution
Z > 0 exists if c1

2 < 1/3. Therefore, above critical damping ccr ¼
ffiffiffiffiffiffiffiffi
1=3

p
, relaxation

is impossible.
It follows from Eq. (6.44) that motion on the stable branches is fully governed

by the forcing amplitudes F1, F2. It is easy to deduce that if F1 6¼ 0, F2 = 0, then
there exist only stationary points on the stable branches of the manifold. If F1 6¼ 0,
F2 6¼ 0, then there are three possibilities: The first two types of motion correspond
to continuous oscillations on each of the stable branches; the third type corresponds
to the aforementioned relaxation oscillations.

The conditions of the occurrence of relaxation oscillations can be found from
(6.44) and (6.45). Solutions of Eq. (6.45) define the values of Z corresponding to
the fold points:

Z1;2 ¼ 2
3

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3

4
c21 þ 1
� �r !

: ð6:46Þ

Substituting (6.46) into (6.44), we find the corresponding excitation amplitude Q

Qj ¼ c21Zj þð1� ZjÞ2Zj; j ¼ 1; 2; ð6:47Þ

Now, one may formulate the following necessary conditions ensuring the regime
of relaxation:

F1
2 þF1

2 þ 2F1F2 [Q1

F1
2 þF1

2 � 2F1F2\Q2
ð6:48Þ

The effect of relaxation is illustrated in Figs. 6.9 and 6.10. In Fig. 6.9, one can
compare numerical results and analytical approximations for the amplitude of
oscillations on the stable branches of the manifold provided conditions (6.48) are
not fulfilled (F1 = F2 = 0.065).

As shown in Fig. 6.9, there exists an initial phase of relaxation oscillations with
a super-slow change of the amplitude corresponding to the upper stable branch, and
then, there is a single jump to the lower stable branch, wherein the system continues
evolving. No additional relaxation oscillations are possible for this case, since
conditions (6.48) are not fulfilled. If the forcing parameters satisfy (6.48), then there
exist relaxation oscillations on the upper and lower stable branches (Fig. 6.10).

The super-slow flow analysis does not demonstrate a global dynamical picture of
the lightly damped system. To make the analysis complete, we need to study the
slow flow dynamics, which corresponds to the phase of relaxations from one stable
branch of the super-slow manifold to another one followed by quasi-linear damped
oscillations. We study the dynamics of a weakly damped oscillator, in which
0 < c < ccr. As in the previous sections, it is rather natural to assume that during the
relaxation period T* (the time required for the trajectory emanating from the fold of
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a super-slow surface to reach its first peak) the weakly damped trajectory runs
sufficiently close to the non-dissipative one, and motion during this period is very
close to motion along the corresponding LPT of the non-dissipative system.

In order to illustrate the correspondence of the LPT of strongly nonlinear
oscillations to the initial phase of relaxation (0 < t < T*), we plot the LPT corre-
sponding to the value of d at the point of relaxation on the phase plane of the
damped system (Fig. 6.11).

It is evident from Fig. 6.11 that the damped trajectory corresponding to a jump
from the lower branch of the super-slow manifold wraps up the LPT of the corre-
sponding non-dissipative system, thus reaching the maximum value in the close
vicinity of the LPT. This also means that the LPT of the non-dissipative system
predicts fairly well the maximum amplitude of oscillations. It is also clear from
Fig. 6.11 that after reaching the peak of the response, the amplitude of oscillations
diminishes and the response becomes quasi-linear. As in Sect. 6.1, this response may
be described with the help of the model linearized around the upper stable branch.

We now calculate the critical values of d in the lower folds, corresponding to the
minimal relaxation amplitude. It follows from (6.46) that the amplitude of the lower
fold equals to:

Fig. 6.9 Comparison of
numerical and analytical
results in the absence of the
stable relaxation regime. Gray
line Analytical approximation
and black line Numerical
simulation

Fig. 6.10 Comparison of
numerical and analytical
results for the case of
relaxation oscillations. Gray
line Analytical approximation
and black line Numerical
simulation
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Z1 ¼ 2
3

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3

4
c21 þ 1
� �r !

: ð6:49Þ

Thus, according to (6.44), one obtains

Q1 ¼ F1
2 þF2

2 þ 2F1F2 cos dcr;

dcr ¼ � arccos
Q1 � F1

2 � F2
2

2F1F2

� �
:

ð6:50Þ

The amplitudes of oscillations and the sequences of the LPTs in the corre-
sponding undamped system at the points of jump are demonstrated in Fig. 6.12. As
one may observe, the LPTs are reconstructed accordingly and provide fairly good
estimations for jumps.

As mentioned above, at the initial stage of motion, wherein the effect of damping
is negligibly small, the trajectory of a lightly damped system is close to the LPT of a
corresponding non-dissipated system (Fig. 6.11), but at the second stage, after
reaching the first peak of the relaxation phase with the coordinates a(T*) = am,
D(T*) = Dm, motion of a lightly damped system may be described fairly well by
linearizing (6.45) near the upper stable branch of the super-slow flow manifold.
Thus, assuming small deviations near the upper stable branch, one may suggest the
following approximation:

Fig. 6.11 Comparison of the damped trajectory of relaxation with the LPT of the corresponding
Hamiltonian system
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uðs1; s2Þ ¼ Uðs2Þþ/ðs1; s2Þ ð6:51Þ

Substituting (6.51) into (6.31), we obtain the following linearized equation:

@u
@s1

þ ið1� 2jUj2Þuþ cu� iU2u ¼ 0: ð6:52Þ

Equation (6.52) describes the last stage of damped oscillations near the stable
attractor. Initial conditions are taken at the point a(T*) = am, D(T*) = Dm.

Comparison of analytical approximations with the results of numerical simula-
tion is given in Fig. 6.13. It is seen that the interval of the slow timescale oscil-
lations can be analytically approximated to a quite satisfactory extent.

We now return to the consideration of the lightly damped system. From Fig. 6.8,
it is seen that the upper fold point is slightly distant from the horizontal axis.
Arguing as above, one can state that the value of damping parameter dictates the
distance of the upper fold from the horizontal axis. At the same time, for sufficiently
light damping the critical parameter dcr (corresponding to a point of jump) may be
related to the non-dissipative case of the LPT of the first type.

Thus, if the jump from the upper stable branch to the lower one occurs far away
from the LPT of the first kind (which is most likely to happen when forcing is small
enough and thus hardly affects the damped response of large amplitude), its tra-
jectory may be roughly approximated by the equation of free oscillations

@u
@s

þ iu� ijuj2uþ cu ffi 0 ð6:53Þ

Fig. 6.12 Sequence of jumps of the LPT for relaxation oscillations; the actual response is marked
with the green solid line
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This immediately yields the exponential decay of the response amplitude:

juj ¼ ffiffiffiffiffi
Z2

p
expð�csÞ ð6:54Þ

We underline that Eq. (6.54) is valid only if the response amplitude far exceeds
the amplitude of forcing. Therefore, if the trajectory of relaxation starts far away
from the LPT of the first type, then the response is of simple exponential decay
type. A comparison of the analytical approximation (6.54) with the actual (nu-
merical) response is presented in Fig. 6.14. As shown in Fig. 6.14, relaxation
oscillations may be approximated by the response of the damped unforced weakly
nonlinear oscillator.

6.3 Super-Harmonic Resonance

In this section, we analyze energy exchange in a system subject to super-harmonic
resonance. We show that the energy imparted in the system is partitioned among the
principal and super-harmonic modes, but energy exchange can arise due to
super-harmonic oscillations. Using the LPT concept, we construct approximate
analytical solutions describing intense irreversible energy transfer in a harmonically
excited Duffing oscillator. Numerical simulations confirm the accuracy of the
analytic approximations.

6.3.1 Equations of Motion

We consider the equation similar to (6.1)

Fig. 6.13 Comparison of analytical approximations and numerical simulations
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d2y
dt2

þ 2ec
dy
dt

þ yþ 8eay3 ¼ 2F sin
1
3
þ es

� �
t ð6:55Þ

with initial conditions y = 0; dy/dt = 0 at t = 0. The solution of (6.55) can be
represented as the sum y = y0 + u, in which y0 is defined as a partial solution of the
linear equation

d2
y0

dt2 þ y0 ¼ 2F sinxes0
y0 ¼ K sinxes0; K ¼ 9F=4; xe ¼ 1=3þ es

; ð6:56Þ

From (6.55) and (6.56) we obtain the equation for the super-harmonic
component

d2u
dt2

þ uþ 2ec
du
dt

þ 8eaðuþ y0Þ3 ¼ 0; ð6:57Þ

with initial conditions u = 0; v = du/dt = −K/3 at t = 0. In Eq. (6.57), principal
harmonics of frequency 1/3 are of O(e); this implies that the generating solution of
(6.57) includes only super-harmonic components of frequency 1.

The non-stationary dynamics of system (6.57) is analyzed with the help of the
multiple scales procedure demonstrated in Sect. 6.1. The change of variables (6.2)
transforms Eq. (6.57) into the complex-valued equation

Fig. 6.14 Comparison of an analytical approximation of relaxation with the result of numerical
simulation. Actual system response is denoted with the bold solid line; analytical approximation is
denoted with thin line
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dw
dt � iwþ ecðwþw�Þþ iea½ðw� w�Þ þKðeixes0 � e�ixes0Þ�3 ¼ 0;
wð0Þ ¼ �K=3

ð6:58Þ

As in Sect. 6.1, the approximate solution of (6.58) is sought by the multiple
scales method with further selection of resonance terms. Introducing the
representation

wðt; eÞ ¼ w0ðs0; s1Þþ ew1ðs0; s1Þþ 
 
 

d
ds0

¼ @

@s0
þ 3se

@

@s1
;

with fast and slow timescales s0 = t and s1 = 3est, respectively, and then repro-
ducing necessary transformations of Sect. 6.1, one obtain the leading-order solution
(6.5) with the slow envelope u(s1) satisfying the equation

@u
@s1

þ c1u� ia½juj2uþ 2K2u0 �
1
3
K3eis1 � ¼ 0; uð0Þ ¼ �K

3
ð6:59Þ

where c1 = c/3 s, a1 = a/s. The transformation u(s1) = Ku0(s1)eis1 reduces (6.37) to
the two-parameter form

@u0

@s1
þ c1u0 þ i½ð1� 2k2Þ � k2ju0j2�u0 ¼

1
3
k2; u0ð0Þ ¼ � 1

3
ð6:60Þ

where k2 = a1K
2 = 81aF2/16s. Finally, the representation u0 = aeiD transforms

Eq. (6.60) into the system

da
ds1

¼ �ca� b sinD

a
dD
ds1

¼ að�fþ 3ba2Þ � b cosD
ð6:61Þ

where b = k2/3, f = 1 − 2k2; initial conditions are given by a(0) = 1/3, D(0) = −p.
System (6.61) may be analyzed in the same way as (6.10). Note that the asymptotic
representations of the solutions for Eqs. (6.55) and (6.57) are given by

uðs0; eÞ ¼ Kaðs1Þ sinðs0 þDðs1Þþ s1ÞþOðeÞ
yðs0; eÞ ¼ K½aðs1Þ sinðs0 þDðs1Þþ s1Þþ sin 1=3ðs0 þ s1Þ� þOðeÞ ð6:62Þ
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6.3.2 Super-Harmonic Resonance in the Non-dissipative
System

Now, we consider the non-dissipative oscillator with c = 0, namely

da
ds1

¼ �b sinD

a
dD
ds1

¼ að�fþ 3ba2Þ � b cosD
ð6:63Þ

The dynamical analysis is performed using the procedures developed in
Sect. 6.2. First, we find stationary points of (6.63) from the equations

að�fþ 3ba2Þ ¼ b cosDi; D1 ¼ 0; D2 ¼ �p

Respective stationary points are denoted as C+ and C−. The phase portraits
corresponding to different values of the parameter b(k) are similar to the ones
shown in Fig. 6.11. Using previous arguments, we obtain the following expressions
for the discriminants and critical parameters, which determine the boundaries
between quasi-linear, moderately nonlinear, and strongly nonlinear systems:

D1 ¼ b2 � 2f3

81b
¼ 0; k2 �

ffiffiffi
2
3

3

r
ð1� 2k2Þ ¼ 0; k1 ¼ 0:564

D1 ¼ b
4

2

� f3

81b
¼ 0; k2 �

ffiffiffi
4
3

3

r
ð1� 2k2Þ ¼ 0; k1 ¼ 0:586

ð6:64Þ

As in the case of 1:1 resonance, the LPT of small oscillations (k < k1) encircles
the stable center in the axis D = −p; if k1 < k < k2, the LPT of large oscillations
encircles the stable center in the axis D = 0; if k > k2, then there exists a single
stable center in the axis D = 0. Inequalities

k\k1; k1\k\k2; k[ k2 ð6:65Þ

determine, respectively, quasi-linear, moderately nonlinear, and strongly nonlinear
oscillations.

We now examine strongly nonlinear oscillations (k > k2). We recall that system
(6.63) conserves the integral of motion

h ¼ �aðfaþ 3ba3
	
2� 2b cosDÞ ð6:66Þ

identifying the phase trajectories in the plane (a, D).
Considering initial conditions a = 1/3, D = −p, we obtain
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h ¼ 1
3

� f
3
þ 37b

18

� �
: ð6:67Þ

Taking into account expressions (6.66) and (6.67), we exclude the variable D
and thus reduce (6.63) to a single second-order equation. From (6.66) and (6.67),
we obtain

cosDðaÞ ¼ 1
2b

3ba3

2
� fa� h

a

� �
;

dD
ds1

¼ xðaÞ;

xðaÞ ¼ 1
2

9ba2

2
� f

� �
þ h

2a2

ð6:68Þ

and therefore, system (6.63) can be rewritten as the second-order equation

d2a
ds21

þ uðaÞ ¼ 0; s1 ¼ 0 : a ¼ 1
3
;

da
dt

¼ v ¼ 0 ð6:69Þ

where

uðaÞ ¼ xðaÞb cosD ¼ a
4

3
2
ba2 � f

� �
9
2
ba2 � f

� �
þ 3bh� h2

a4


 �
:

Initial conditions are given by a = 1/3, v = 0 at s1 = 0. Equation (6.69) corre-
sponds to the conservative oscillator with the potential

UðaÞ ¼
Za
0

uðxÞdx ¼ a2

8
3ba2

2
� f2

� �
þ 3

8
bha2 � h

8a2
ð6:70Þ

Note that oscillator (6.70) preserves the energy E = v2/2 + U(a) = E0, where
E0 = U(1/3). Thus, the amplitude of oscillations A is defined by the condition U
(A) = E0, v = 0; the half-period of oscillations T(A) is given by (cf. 6.18)

TðAÞ ¼
ZA
0

daffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0 � 2UðaÞp : ð6:71Þ

Exact solutions of Eqs. (6.63) and (6.68) cannot be found in closed form. We
compare an exact (numerical) solution with explicit analytical approximations
obtained by the following iterative procedure:
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daiþ 1

ds1
¼ �b sinDi;

dDi

ds1
¼ xðaiÞ; i ¼ 0; 1

aið0Þ ¼ 1=3; Di ¼ �p

a0 ¼ að0Þ ¼ 1=3; x0 ¼ xða0Þ
ð6:72Þ

This implies that

da1
ds1

¼ �b sinD0;
dD0

ds1
¼ x0;

a1ð0Þ ¼ 1=3; D0ð0Þ ¼ �p
ð6:73Þ

It follows from (6.72) and (6.73) that the leading-order approximation takes the
form

a1ðs1Þ ¼ 1=3þðb=x0Þ½1� cosðx0s1Þ�; D0ðs1Þ ¼ �pþx0s1 ð6:74Þ

We take the parameters of numerical simulation:

F ¼ 1; a ¼ 0:27; s ¼ 1=3; e ¼ 0:007; c ¼ 0 or c ¼ 0:2 ð6:75Þ

corresponding to K = 9/4, k = 0.9 > k2, b = 1.35, f = 0.3. It is easy to find that x0

� 3.49, T0 = p/x0� 0.9, and A = a0(T0) � 1.1. As shown in Fig. 6.15, the dis-
crepancy between analytical solution and numerical simulation does not exceed
10%.

Figure 6.16 compares numerical (exact) results for the non-dissipated Duffing
Eq. (6.55) with analytical approximations (6.62) and (6.74).

Fig. 6.15 Temporal behavior of a(s1) (left); principal value of D(si) in the interval (−p, p] (right):
dash Numerical solutions of (6.41) and solid Analytic approximations (6.52)
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Figure 6.16 demonstrates a fairly good agreement of the exact (numerical)
solution and its explicit analytical approximation, despite slight irregularity of
high-frequency components in the right plot.

Transient dynamics of the dissipative oscillator

Figure 6.17 depicts the typical dynamics of a strongly nonlinear oscillator with
weak dissipation (c = 0.2, e = 0.007). Note that the plots in Figs. 6.16 and 6.17
agree with the underlying assumption: Motion of the damped system is similar to
motion of the undamped system up to an instant of the first maximum of the slow
envelope; then, the damped motion approaches stationary oscillations independent
of initial conditions. This assumption motivates the approximation procedure.

We denote by ac(s1) the solution of Eq. (6.61) with initial conditions (6.16); by
ac(s1*), its first maximum at s1 = s1* (Fig. 6.18); and by a(s1), the solution of
(6.63) in the absence of damping (c = 0). As mentioned above, ac(s1) is partitioned
into two segments: On the interval [0, s1*], ac(s1) is considered as being close to
the solution a(s1) of the undamped system (6.63), while on the interval s1 � s1*,
the solution ac(s1) is similar to smooth decaying oscillations of the dissipative
system.

If c 6¼ 0, the steady-state O: (ac0, Dc0) is determined by the equality

a2 f� 3ba2
� �2 þ c2
h i

¼ b2: ð6:76Þ

or, for sufficiently small c,

ca0c ¼ �b sinD0
c ; fa0c � 3bða0cÞ3 ¼ �b cosD0

c

D0
c � �ca0c=bþOðc3Þ; a0c ½f� 3bða0cÞ2� ¼ �bþOðc2Þ

ð6:77Þ

Fig. 6.16 Numerical solution of Eq. (6.55) at c = 0 (left) and its analytical approximation (right)
in the fast timescale
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For the system with parameters (6.75), we have ac0 � 0.73 and Dc0 � −0.54. In
addition, we note that the contribution of nonlinear force in oscillations near O is
relatively small. Under this assumption, in the interval s1 � s1* one can consider
the system linearized near the steady-state ac0, Dc0, namely

dn
ds1

þ bg ¼ �cn;
dg
ds1

� k1
a0c

n ¼ �cg; ð6:78Þ

where n = ac − ac0, η = Dc − Dc0, and k1 = 9b(ac0)2 − f. The matching conditions
at s1 = s1* are given by
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Fig. 6.17 Numerical solution
of (6.55); c = 0.2

Fig. 6.18 Numerical and
analytical solutions: solid
line Numerical solution of
(6.61); dotted line Segment
(6.74); and starred
line segment (6.80); c = 0.2
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a0c þ n ¼ aðs�1Þ ¼ A0;
dn
ds1

¼ 0 ð6:79Þ

If k1 > 0, then we obtain from (6.78)

nðs1Þ ¼ c0e�cðs1�s�1Þ cos jðs1 � s�1Þ;
gðs1Þ ¼ rc0e�cðs1�s�1Þ sinjðs1 � s�1Þ; s1 � s�1 [ 0

; ð6:80Þ

where c0 = A0 − ac0, j2 = Uk1/ac
0 > 0, and r = j/F. Figure 6.18 demonstrates a

good agreement between the numerical solution of Eq. (6.61) (solid line) and
approximations found from matching segment (6.74) (dot line) with solution (6.80)
of the linearized systems (dot-dash line) at the point s1*. Despite a certain dis-
crepancy in the initial interval of motion, the numerical and analytical solutions
approach closely to the steady-state ac* as s1 increases. This implies that a sim-
plified model (6.74) and (6.80) suffices to describe the complicated resonance
dynamics.
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Chapter 7
Non-conventional Synchronization
of Weakly Coupled Active Oscillators

In this chapter, we describe a new type of self-sustained oscillations associated with
the phenomenon of synchronization. Conventional studies of synchronization in the
model of two weakly coupled Van der Pol oscillators considered their synchro-
nization in the regimes close to nonlinear normal modes (NNMs). In Kovaleva et al.
(2013) and Manevitch et al. (2013). It was shown for the first time that in the
important case of the hard excitation, an alternative synchronization mechanism can
emerge even if the conventional synchronization becomes impossible. We identify
this mechanism as an appearance of the dynamic attractor with the complete
periodic energy exchange between the oscillators and then show that it can be
interpreted as a dissipative analogue of highly intensive beats in a conservative
system. This type of motion is therefore opposite to the NNM-type synchronization
in which, by definition, no energy exchange can occur. The analytical study is
based on the LPT concept but, in contrast to the conservative systems, in the present
case the LPT can be regarded as an attractor. Finally, it is shown that within the
LPT approach, the localized mode represents an attractor in the range of model
parameters wherein the LPT as well as the in-phase and anti-phase NNMs become
unstable.

The chain of coupled dissipative oscillators described by the Van der Pol
(VdP) or Van der Pol-Duffing (VdP-D) equations represents one of the fundamental
models of nonlinear dynamics (Pikovsky et al. 2001; Verhulst 2005) with numerous
applications in different fields of physics and biophysics (Chakraborty and Rand
1988; Landa 1989; Pikovsky et al. 2001; Newel and Nazarenko 2001; Rompala
et al. 2007). In the continuum limit, it can be reduced to the complex Ginsburg–
Landau equation (Akhmediev and Ankiewicz 1997; Malomed 1994; Mihalache
et al. 2008), which admits periodic or localized solutions in several significant cases
(Landa 1996; Malomed 1994; Mihalache et al. 2008; Pikovsky et al. 2001). The
simplest discrete model that combines two nonlinear dissipative oscillators was
considered in series of books and papers. The main attention was paid, as a rule, to
synchronization of the oscillators in the regimes close to NNMs (Pikovsky et al.
2001; Rompala and Rand 2007; Newel and Nazarenko 2001; Vakakis et al. 1996;

© Springer Nature Singapore Pte Ltd. 2018
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Landa 1996; Chakraborty and Rand 1988). We have noted above that, in the
conservative case, another type of motion characterized by the complete energy
exchange between oscillators can play the fundamental role. This dynamical
regime, opposite to NNMs by its physical meaning, was defined as the limiting
phase trajectory (LPT). This chapter analytically demonstrates that the LPT cor-
responding to the complete energy exchange between weakly coupled oscillators
appears to be an attractor of the alternative to this one of the NNM types. Revealing
a new class of attractors may serve as the starting point for deeper understanding
and further applications of the synchronization phenomenon.

7.1 Main Equations

We begin with a system of two linearly coupled Lienard oscillators, separately
described by the equation

d2u
dt2

þ f ðuÞ du
dt

þ gðuÞ ¼ 0 ð7:1Þ

It is known that such an oscillator possesses stable periodic attractors (limit
cycles), whenever functions f and g satisfy the conditions of the well-known
Poincare–Bendixson theorem [see, e.g., Landa (1996)]. Usually, f is an even
whereas g is an odd analytical function represented in the form of the truncated
power series

f ðuÞ ¼ a0 þ a2u
2 þ a4u

4 þOðu6Þ; gðuÞ ¼ b1uþ b3u
3 þOðu5Þ ð7:2Þ

The signs of the coefficients are responsible for the qualitative dynamical
behaviors of the model. If a0 < 0, a2 > 0, a4 = 0, and b1 > 0, the oscillator takes
the VdP-D form. In this case, the equilibrium point (u = 0, du/dt = 0) represents an
unstable focus. As a result, the energy flows into the system near the equilibrium for
any small magnitude of initial perturbations. However, it would be physically
reasonable to assume the existence of a threshold of the initial excitation above
which the global dynamical process can be triggered. Within the above expansion
for f(u), the only way to introducing the threshold is to choose the coefficient as
follows: a0 > 0, a2 < 0, a4 > 0. This choice provides local stability of the equi-
librium point so that the energy in-flow into the system is triggered only above
certain nonzero level of excitation, when f(u) becomes negative (Landa 1996).
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7.1.1 Coupled Active Oscillators

Our principal goal is to demonstrate that the presence of the energy threshold allows
revealing a new type of synchronization in the system of two weakly coupled active
oscillators. We denote the numerical and scaling factors as follows: a0 ¼ 2ec,
a2 ¼ �8eg, a4 ¼ 16ed, b1 ¼ 1, b2 ¼ 8ea, and the strength of coupling 2eb where
0\e � 1 is a small parameter of the system. As a result, the model under con-
sideration takes the form

d2u1
ds2o

þ u1 þ 2beðu1 � u2Þþ 8eau31 þ 2eðc� 4gu21 þ 8du41Þ
du1
ds0

¼ 0

d2u2
ds2o

þ u2 þ 2beðu2 � u1Þþ 8eau32 þ 2eðc� 4gu22 þ 8du42Þ
du2
ds0

¼ 0

ð7:3Þ

As in Sect. 2.1, we introduce the change of variables Yr = (vr + iur)e�is0 , r = 1,
2, such that Yr s0; s1; eð Þ ¼ ur

ð0Þ s1ð Þþ eur
ð0Þ s0; s1ð Þ + O(e2), s1 ¼ et and then

conclude that the leading order slow terms ur
ð0Þ s1ð Þ can be presented in the form

(1.4): u1
ð0Þ s1ð Þ ¼ a s1ð Þ exp ibs1ð Þ; u2

ð0Þ s1ð Þ ¼ b s1ð Þ exp ibs1ð Þ where the slow
complex amplitudes a, b are given by

da
ds1

� 3iajaj2aþ c� g aj2 þ d
�� ��aj4

� �
aþ ibb ¼ 0;

db
ds1

� 3iajbj2bþ c� g bj2 þ d
�� ��bj4

� �
bþ iba ¼ 0:

ð7:4Þ

Finally, rewriting a, b in the polar form

a ¼ R1 expðid1Þ; b ¼ R2 expðid2Þ ð7:5Þ

and considering the phase difference D ¼ d1 � d2 as a new variable, we derive the
following system of real-valued equations:

dR1

ds1
þ cR1 � gR3

1 þ dR5
1 þ bR2sin D ¼ 0;

dR2

ds1
þ cR2 � gR3

2 þ dR5
2 � bR1sin D ¼ 0;

R1R2
dD
ds1

þ 3aR1R2 R2
2 � R2

1

� �þ b R2
2 � R2

1

� �
cos D ¼ 0:

ð7:6Þ
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7.2 NNMs and LPTs Symmetries

System (7.6) is non-integrable, but it possesses the discrete symmetry, that is, it
preserves its form under the following coordinate replacement:

ða) R1 ! R2; R2 ! R2; D ! D

ðb) R1 ! �R2; R2 ! �R1; D ! D
ð7:7Þ

The symmetries (a) and (b) provide the existence of the in-phase (R1 = R2, D= 0)
and the out-of-phase (R1 = R2; D = p) NNMs, respectively. In a general case,
Eqs. (7.6) do not explicitly reveal any other simple symmetry, discrete or contin-
uous, except of the temporal translation. However, if any non-trivial continuous
symmetry exists under certain conditions, it can be found in the framework of the
Lie group theory (Ovsyannikov 1982), by manipulating the infinitesimal differential
operator of the dynamical system (7.6), X ¼ X0 þX1 where

X0 ¼ n R1;R2;Dð Þ @

@s1
þ g R1;R2;Dð Þ @

@R1
þ f R1;R2;Dð Þ @

@R2
þ 1 R1;R2;Dð Þ @

@D
;

and X1 is the first continuation of the operator X0, whose components are given by
time derivatives in system (5.6). Following the technique of Ovsyannikov (1982)
and considering the partial differential equations for the components of operator X,
we reveal the existence of the rotation group in the plane (R1, R2) with the invariant
I = N = R1

2 + R2
2 under certain additional conditions. For the rotational symmetry to

take place, the parameters of system (5.6) must satisfy the relation g2 = 9cd/2,
while the initial conditions provide a certain excitation level given by the constant
N = 2 g/3d. In this case, introducing the coordinate transformation R1 ¼

ffiffiffiffi
N

p
cos h

and R2 ¼
ffiffiffiffi
N

p
sin h, we obtain the system

dh
ds2

¼ 1
2 sinD� k sin 4hð Þ;

sin 2h dDds2
¼ cos 2hcos Dþ 2k sin 4h;

ð7:8Þ

where s2 ¼ bs1, and the parameters k = 3aN/2b and k = N2d/8b characterize
nonlinearity and dissipation relatively to coupling of the generators, respectively.

7.3 Analysis of the Phase Plane and Analytical Solutions

Figure 7.1 depicts the system behavior for different combinations of the nonlin-
earity and dissipation parameters. First, we consider the case k ¼ 0, when system
(7.8) is conservative and the NNMs are stable (Fig. 7.1a). Two branches of the LPT
are associated with complete energy exchange between the generators. In order to
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avoid the conservative type bifurcation of the NNMs occurring at k = ½, we choose
the parameter of nonlinearity between 0 and 1/2. When the parameter k is relatively
small, the system has two unstable focuses corresponding to unstable NNMs of the
original system (7.1) (Fig. 7.1b–d). The focuses transform into unstable nodes
when k2 [ 1� 2k (Fig. 7.1e, f). If the dissipative parameter k does not exceed the

value 0:5 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4k2

p� �
, the only attractor of the system is the LPT with intensive

energy exchange between the oscillators.
In Fig. 7.1, one can see that the phase shift between the oscillators on the LPT

remains near �p=2 (Fig. 7.1b), while the sign changes almost instantly as the
system approaches the LTP attractor. Therefore, the oscillators become

Fig. 7.1 Phase planes of system (7.8) in terms of the variables h and D: a k = 0.2, k ¼ 0
(conservative system), b k = 0.2, k ¼ 0:1; c k = 0.44, k ¼ 0:1 d k = 0.2, k ¼ 0:5; e k = 0.1,
k ¼ 0:9; f k = 0.1, k ¼ 0:99. The results are in a good agreement with simulations of the original
system (7.1)
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synchronized in a non-conventional way that can be qualified as the “LPT-type

synchronization”. Furthermore, if k� 0:5 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4k2

p� �
, the LPT becomes

unstable, and the attractor is a stationary point corresponding to the localized NNM
with energy predominantly trapped on one of the two oscillators (Fig. 7.1f).

It is important to note that the evolution of the LPT leading to the transition from
energy exchange to energy localization turns out to be independent on the evolution
of the stationary points and occurs “later” than the transformation from an unstable
focus to an unstable node (Fig. 7.1e).

In the range of intensive energy exchange, one can obtain an analytical solution
of system (7.8) by using the saw-tooth transformations (6.20):

h ¼ Asþ k
4
½cos ð4AsÞ � 1�eþ . . .; D ¼ p� p

2
� 2k sin ð2asÞ

h i
eþ . . . ð7:9Þ

where the basis functions s and e are defined by formulas (6.20) and depicted in
Fig. 6.3. Note that numerical solutions shown in Fig. 7.2a, b appear to be in good
agreement with analytical solutions (7.9) demonstrated in Fig. 7.2c, d.

The behavior of the system before and after the transition (in the parametric
space) from non-conventional synchronization on the LPT to synchronization on
the localized NNM is illustrated in Fig. 7.3a, b, in terms of the original variables.

The amplitudes Rj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2j þ v2j

q
; j ¼ 1; 2, presented in Fig. 7.3, are obtained by

numerical integration of the original system (7.3). Non-conventional synchroniza-
tion on the LPT far from the localization threshold is shown in Fig. 7.3c. Also, we

Fig. 7.2 Numerical (exact) solutions h (a) and D (b) and their non-smooth approximations (c) and
(d)
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present for comparison the plot demonstrating the well-studied conventional syn-
chronization, realized on the out-of-phase NNM (Fig. 7.3d). In the latter case, the
set of parameters is taken far enough from the accepted symmetry conditions.

It is worth noticing that the presented scenario seems to be quite general in the
area of model parameters wherein the conventional synchronization is impossible
(it is confirmed by the analytical estimates and numerical simulations presented in
Manevitch et al. (2013) and Kovaleva et al. (2013). However, the considered case
allows the detailed analytical description and reveals a new important type of
synchronization. Besides, one can see how the complete energy exchange between
different parts of the systems described by the LPT goes over to the energy
localization. After prediction of the domain of the dissipative parameters wherein
the LPT-type synchronization exists, such type of synchronization can be found

Fig. 7.3 Transitions from energy exchange to energy localization in system (7.1) of two coupled

generators. The amplitudes Rj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2j þ v2j

q
; j ¼ 1; 2 are obtained by numerical integration of the

original system (7.3) (R1—orange line, R2—blue line) a energy exchange just before the transition
to localization for the parameters k = 0.1, k ¼ 0:98; b the behavior just over the localization
threshold, in which most part of energy is localized on one of the oscillators for the parameters
k = 0.1, k ¼ 0:99; c non-conventional synchronization corresponding to the parameter set of
Fig. 7.1b, far from the localization threshold; and d conventional synchronization on out-of-phase
NNM when the parameters of generators do not satisfy the accepted symmetry conditions
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experimentally in the physical, chemical, and biological systems modeled by a pair
of coupled generators.
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Chapter 8
Limiting Phase Trajectories
and the Emergence of Autoresonance
in Anharmonic Oscillators

As mentioned above, resonance energy transfer represents one of the most effective
ways of the response enhancement for a broad range of physical and engineering
systems. In this chapter, the notion of resonance energy transfer is extended to the
oscillators subjected to harmonic forcing with a slowly varying frequency. We
investigate capture into resonance of a Klein–Gordon chain of identical linearly
coupled Duffing oscillators excited by a harmonic force with a slowly varying
frequency applied at an edge of the chain.

We begin with the consideration of a single Duffing oscillator. It is important to
underline that properties of the LPTs in the oscillator subjected to a periodic
excitation with a slowly varying frequency do not directly correspond to the
properties of the LPTs in a forced oscillator discussed in Sect. 6.1. In the case under
consideration, the LPT can also be identified as a trajectory corresponding to a
maximum possible irreversible energy transfer from the source of energy to the
oscillator. However, the amplitude of the LPT does not represent a slow periodic
process with a constant mean value; it either converges to a certain stationary level
at large times or can be considered as small oscillations near a slowly increasing
mean value. The ability of a nonlinear oscillator to stay captured into resonance due
to variance of its structural or/and excitation parameters is known as autoresonance
(AR).

An idea of AR or “resonance under the action of a force produced by the
system’s itself” was first suggested in Andronov et al. (1966). The occurrence of
AR may be informally explained by example of the Duffing oscillator. Let the
oscillator be initially at rest and subjected to an external force of small amplitude
and constant frequency equal to the frequency of linear oscillations. It is known that
an increase in the natural frequency due to continuous growth of the amplitude of
nonlinear oscillations results in breakup of resonance in the oscillator with constant
parameters. However, an oscillator may remain persistently captured into resonance
with its drive if the driving frequency, being initially close or equal to the natural
frequency of the oscillator, varies slowly in time to be consistent with the slowly
changing frequency of the oscillator. It is important to underline that the emergence

© Springer Nature Singapore Pte Ltd. 2018
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of AR leads to persistently growing mean amplitude of oscillations, and thus, this
process may be employed to attain the required energy level.

After first studies for the purposes of the particles’ acceleration (McMillan 1945;
Veksler 1944), AR has become a very active field of research. Theoretical
approaches, experimental evidence, and applications of AR in different fields of
natural science, from plasmas to planetary dynamics, are reported in numerous
papers (Friedland); additional theoretical and computational results can be found in
(Ben-David et al. 2006; Chacon 2005; Kalyakin 2008); recent advances in this field
are discussed, e.g., in (Friedland; Murch et al. Shalibo et al. 2012).

It was noticed (e.g., in Bohm 1947) that the physical mechanism behind
autoresonance can be interpreted as adiabatic nonlinear phase-locking between the
system and the driving signal. However, to the best of authors’ knowledge, the
mechanism causing the transition from bounded oscillations to AR has not been
reported in the literature.

In Sect. 8.1, we discuss the emergence and stability of AR in a single Duffing
oscillator subjected to a harmonic forcing with time-varying frequency.
The asymptotic analysis of resonant oscillations is developed with the emphasis on
the calculation of quasi-steady states. This analysis leads to the definition of the
parametric domain, in which stable AR with persistently growing mean amplitude
can occur.

We demonstrate that AR occurs due to the loss of stability of the LPT corre-
sponding to quasi-linear oscillations of small amplitudes. It is shown that a critical
parameter, which determines a boundary between the oscillations with small and
large amplitudes in the time-invariant system, may be treated as a lower threshold
of the emergence of autoresonance in the oscillator with slowly varying parameters.
Furthermore, it is demonstrated that the threshold parameter numerically obtained,
e.g., in Friedland (2008), Marcus et al. (2004), is inacceptable in the problem
examined. Conditions of the transition from small to large oscillations in the
Duffing oscillator is used to derive the critical sweeping rate. The obtained ana-
lytical estimates are proved to be very close to the results of numerical simulations.
Note that the Duffing system is chosen for illustrative purposes. The qualitative
features of the results hold true for a large class of nonlinear oscillators with slowly
time-varying frequencies.

In Sect. 8.2, the results obtained for a single oscillator are extended to the
nonlinear Klein–Gordon chain consisting of n � 2 identical linearly coupled
Duffing oscillators. Parametric criteria, which guarantee the emergence and stability
of AR in the entire chain, are established. It is shown that an increase in the number
of oscillators in the chain does not change the conditions of capture into resonance
in comparison with a two-particle cell. Furthermore, the emergence of AR in the
chain entails the asymptotic equipartition of energy among all oscillators at large
times.
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8.1 Autoresonance in a SDOF Nonlinear Oscillator

The occurrence of autoresonance may be informally explained by an example of
capture into resonance of the Duffing oscillator. Let us assume that the oscillator is
initially at rest and subjected to an external force of small amplitude e and constant
frequency x0 equal to the frequency of linear oscillations. It is known that an
increase in the natural frequency due to continuous growth of the amplitude of
nonlinear oscillations results in breakup of resonance in the oscillator with constant
parameters. However, if slowly decreasing stiffness counterbalances an effect of
increasing amplitudes and sustains the value of the natural frequency near its initial
value x0, the oscillator remains captured into resonance with the external force.
After first studies for the purposes of particle acceleration (McMillan 1945; Veksler
1944), AR has become a very active field of research. Theoretical approaches,
experimental evidence, and applications of AR in different fields of natural science,
from plasmas to planetary dynamics, are reported in numerous papers (Friedland);
additional theoretical and computational results can be found in (Ben-David et al.
2006; Bohm 1947; Chacon 2005; Kalyakin 2008); recent advances in this field are
discussed, e.g., in (Andronov et al. 1966; Friedland; Murch et al. 2011; Neishtadt
1975; Shalibo et al. 2012).

In this section, we study the dynamics of the Duffing oscillator with slowly
varying linear stiffness subjected to a periodic excitation with constant frequency.
The equation of motion is given by

d2u
ds20

þ 1� ef sð Þð Þuþ 8eau3 ¼ 2eF cos s0; ð8:1Þ

where e > 0 is a small parameter of the system, f(s) = s + bs, s = es0 is the slow
timescale. As in the previous sections, initial conditions u = 0, v = du/ds0 = 0 at
s0 = 0 determine the LPT of system (8.1) corresponding to the maximum possible
energy transfer from the source of energy to the oscillator. We consider the case of
s > 0, a > 0.

Asymptotic solutions of Eq. (8.1) for small e can be obtained in the same way as
in Sect. 6.1. First, we introduce the change of variables Y ¼ vþ iuð Þe�is0 , where the
amplitude Y is constructed in the form of the multiple scales expansion with a slow
main term: Y s0; s; eð Þ ¼ / 0ð Þ sð Þþ e/ 1ð Þ t; sð ÞþO e2ð Þ: Using rescaling

s1 ¼ ss; u ¼ K�1uð0Þ; K ¼ ðs=3aÞ1=2; f ¼ F=sK ¼ F
ffiffiffiffiffiffiffiffiffiffiffi
3a=s3

p
; b ¼ b=s2 ð8:2Þ

and repeating the reasoning of Sect. 6.1, a two-parameter equation similar to (6.8)
is derived:
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d/
ds1

þ i 1þ bs1 � j/j2
� �

/ if / 0ð Þ ¼ 0: ð8:3Þ

The polar representation u = aeiD transforms Eq. (8.3) into the system

da
ds1

¼ �f sinD;
dD
ds1

¼ � 1þ bs1ð Þþ a2 � a�1f cos D:
ð8:4Þ

with initial conditions a(0) = 0, D(0) = −p/2. It now follows from (8.2) to (8.4) that

uðs0; eÞ ¼ Kaðs1Þ sinðs0 þDðs1Þþ s1ÞþOðeÞ;
vðs0; eÞ ¼ Kaðs1Þ cosðs0 þDðs1Þþ s1ÞþOðeÞ ð8:5Þ

8.1.1 Critical Parameters

For better understanding of the occurrence of unbounded modes, we first consider
the underlying time-invariant system

da
ds1

¼ �f sinD;
dD
ds1

¼ �1þ a2 � a�1f cosD:
ð8:6Þ

with initial conditions a(0) = 0, D(0) = −p/2 corresponding to the LPT.
It was proved in Sect. 6.1 that there exist two critical relationships

f1 ¼
ffiffiffiffiffiffiffiffiffiffi
2=27

p
� 0:2721; f2 ¼ 2

. ffiffiffiffiffi
27

p
� 0:3849 ð8:7Þ

which define the boundaries between different types of the dynamical behavior.
Conditions f < f1, f1 < f < f2, and f > f2 characterize quasi-linear, moderately
nonlinear, and strongly nonlinear dynamics, respectively.

Now, we extend the above-mentioned results to system (8.4). Figure 8.1 present
the results of numerical simulations for system (8.4) with detuning bs1 and the
following values of the system parameters: b = ±0.07, f = 0.34 (f1 < f < f2).

It is seen in Fig. 8.1 that the solution of Eq. (8.4) is very close to the LPT of the
time-independent system during the first half-cycle of oscillations. If b > 0,
detuning bs1 increases with an increase in s1, thereby shifting the system to the
domain of small oscillations; if b < 0, detuning decreases with an increase in s1; in
the latter case, the system passes through resonance with large amplitude of
oscillations. This implies that the LPT of the time-invariant system (b = 0) deter-
mines the maximum achievable energy level.
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The projection of the trajectory a(s1) onto the phase plane represents the spiral
orbit with an attracting focus (a = a0, sin D = 0),where a0 = lima(s1) as s1 ! ∞.

Figure 8.2 depicts the emergence of AR from stable bounded oscillations under
the change of rate b > 0. As seen in Fig. 8.2, under very slow sweep, the transition
from bounded oscillations to AR takes place if the parameter f is close to the critical
value f1. In particular, this means that the peak of the LPT in the time-invariant
system (b = 0) determines a minimum energy level achievable in the process of
capture into resonance.

It is shown in Fig. 8.2 that at f = 0.274 the transition occurs at b � 0.001; the
difference between f and f1 = 0.2721 is less than 1%; at f � 0.28, the transition
takes place at b � 0.006; the difference between f and f1 is less than 2.7%. On the
other hand, for f = 0.34, the critical rate b � 0.061; the difference between f and f1
is about 20%. This implies that the inequality f > f1 can be interpreted as the
necessary condition of the emergence of AR.
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Fig. 8.1 Plots of a(s1) and phase portraits of system (8.4) with parameters b = ±0.07, f = 0.34.
Plots of the LPTs for the corresponding time-invariant systems (b = 0, black solid lines) are shown
for comparison

Fig. 8.2 Transitions to AR in system (8.4) with different parameters f and b; the cycle of
oscillations in the time-independent system (black line) is demonstrated for comparison
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Figure 8.3 elucidates the nature of AR oscillations. It is seen that in the first
half-cycle of oscillations the amplitude a(s1) is close to the LPT of a moderately
nonlinear mode of motion (see Fig. 8.1b). Then, the shape of the trajectory changes,
and it turns into quasi-linear oscillations near an upward quasi-steady center
ð�aðs1Þ; 0Þ with a slowly increasing value of �aðs1Þ: The quasi-stationary amplitude
�aðs1Þ: is calculated below.

The obtained numerical results motivate the derivation of an analytical threshold
between bounded and unbounded oscillations. In order to evaluate the critical rate b
corresponding to the transition from bounded to unbounded oscillations, we employ
the fact that for sufficiently small s1, the solution a(s1) of system (8.4) is very close
to the LPT of the time-invariant system (8.6). We recall that the LPT of the
moderately nonlinear (f1 < f < f2) time-invariant systems has a distinctive inflection
at an instant s1 = T* (Fig. 8.2). We introduce the parameter f ̃(s1) = f/(1 +bs1)

3/2

such that f ̃(0) = f > f1. Numerical results in Figs. 8.1 and 8.2 indicate that an adi-
abatically varying system in which f ̃(0) > f1 gets captured into the domain of small
oscillations provided f ̃(T*) < f1. Under this assumption, the critical rate is given by

b� ¼ ðT�Þ�1 ðf =f1Þ2=3 � 1
h i

: ð8:8Þ

If b < b*, the system admits AR. In order to check the correctness of equality
(8.8), we calculate the critical rate b* in the system with linear-in-time detuning
(n = 1). First, the instant T* will be found from the obtained numerical results. In
the next step, the analytical estimate of T* and the respective value b* will be
derived.

We recall that the point of inflection is determined by the conditions da/ds1 6¼ 0,
d2a/ds1

2 = 0. It follows from (8.6) that the latter condition corresponds to
dD/ds1 = 0, i.e., the envelope a(s1) achieves the point of inflection when the phase
D achieves its minimum (Fig. 8.4).

As seen in Fig. 8.4, T* � 6.5 for f = 0.274; this yields b* � 0.00075, while
computational results give 0.001 < b < 0.002. Then, T* � 5 and b* � 0.004 for
f = 0.28, while the numerical simulation gives 0.006 < b < 0.007. Note that for
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Fig. 8.3 Transition to AR in
system (8.4) with parameters
f = 0.34, b = 0.061
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f = 0.28, the threshold parameter µth = |bth|
3/4f = 0.41 yields bth = (f/µth)

4/3 =
0.467, which is vastly larger than the real threshold rate. In a similar way, we find
that for f = 0.34, the critical rate b� ¼ 0:053, while the numerical simulation gives
0.061 < b < 0.062. Note that at f = 0.34, the inflection of the curve a(s1) is prac-
tically indistinguishable, but the phase has the distinct minimum at T* � 3
(Fig. 8.4).

It is important to note that formula (8.8) defines the critical rate for systems with
both linear-in-time and nonlinear-in-time detuning laws. For example, in the case of
quadratic detuning bs1

2 and f = 0.28, we find b* = 0.0008; at the same time, the
numerical simulation gives 0.001 < b < 0.002 (Fig. 8.4).

An analytical derivation of both an instant T* and a point of inflection a*, D* is
built upon the results obtained in Sect. 6.1. We recall that the amplitude a(s1)
corresponding to the LPT of conservative system (8.6) satisfies the second-order
Eq. (6.17), namely

d2a
ds21

þ dU
da

¼ 0 ð8:9Þ

with potential (6.18). The inflection point is defined by the condition dU/da = 0 at
a = a* or

a� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=3 ¼ 0:8165

p
ð8:10Þ

The value of the phase D* at inflection is defined by the equality dD/ds1 = 0.
Using (8.6) and (8.10), it is easy to derive that cos D* = a*[(a*)2 − 1]/f, where
a*[(a*)2 − 1] = −f1, and thus,
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cosD� ¼ �f1=f : ð8:11Þ

Since the maximum of U(a) is also defined by the condition dU/da = 0, the
potential barrier passes through the point of inflection a = a*. It follows then that
the time up to inflection T*equals the time s1

* needed to reach the potential barrier.
Using the same arguments as in Sect. 6.1, one can find that

T� ¼ s1 � 3 ln
ðf 2 � f 21 Þ1=2

f � f1
¼ 3

2
ln
f þ f1
f � f1

: ð8:12Þ

For example, in the case of f = 0.274 and f = 0.28, we obtain the approximations
s* � 7.48 and s1

* � 5.9, which exceed the corresponding numerical values T*

(Fig. 8.4) for 15%. It follows then that the substitution of s1
* for T* into (8.8) gives

the rate b1
* < b*. Therefore, detuning rate b < b1

* < b* allows the occurrence of
autoresonance.

8.1.2 Numerical Evidence of Capture into Resonance

The obtained numerical results allow for the representation of the complex
amplitude / s1ð Þ as / s1ð Þ ¼ �/ s1ð Þþ ~/ s1ð Þ, where the terms �/ s1ð Þ and ~/ s1ð Þ
denote a quasi-stationary value of u(s1) and rather small fast fluctuations near �u
respectively. The state �u can be approximately calculated as a stationary point of
Eq. (8.3) with “frozen” detuning f0. We thus obtain

ðf0 ¼ j�/j2Þ�/ ¼ �f ; �/ � � ffiffiffiffiffi
f0

p þ f =2f0
�/ � � ffiffiffiffiffi

f0
p

; �a ¼ j�/j � ffiffiffiffiffi
f0

p
if jf =2f0j � 1

ð8:13Þ
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Fig. 8.5 Capture into resonance: a convergence of a(s1) to a monotonically increasing backbone
�aðs1Þ; b phase-locking at s ! ∞
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The quasi-stationary amplitude �a � ffiffiffiffiffi
f0

p
corresponds to the backbone curve

(Andronov 1966; Hayfeh and Mook 2004) and expresses a relationship between the
amplitude and the frequency of free oscillations (Fig. 7.5). The rapidly oscillating
component ~/0 sð Þ can be approximately computed from the linearized equation

d~/
ds

þ 2if0ðsÞRe ð~/Þ ¼ � b

2
ffiffiffiffiffiffiffiffiffiffi
f0ðsÞ

p ð8:14Þ

Capture into resonance in the system with parameters b = 0.05, f = 0.34 is
depicted in Fig. 8.5. Numerical results demonstrate the convergence of the
amplitude a(s1) to a monotonically increasing backbone curve and phase-locking at
s1 ! ∞.

8.2 Autoresonance Versus Localization in Weakly
Coupled Oscillators

In this section, we extend the notion of the resonance energy transfer along the LPT
on a 2DOF system consisting of a passive linear oscillator weakly coupled with a
nonlinear (Duffing) actuator excited by an external force.

We recall that the analysis of passage through resonance was first concentrated
on the basic nonlinear oscillator, but then, the developed methods and approaches
were extended to two- or three-dimensional systems. Examples in this category are
excitations of continuously phase-locked plasma waves (Barth and Friedland 2013),
particle transport in a weak external field with slowly changing frequency (Dodin
and Flisch 2012; Zelenyi et al. 2013), control of nanoparticles (Kivshar 1993), etc.
Some particular results (Barth and Friedland 2013; Friedland) demonstrated that
external forcing with a slowly varying frequency applied to a pair of coupled
nonlinear oscillators generates AR in both oscillators. We show that this conclusion
is not universal; in particular, it does not hold for a pair of weakly coupled linear
and nonlinear (Duffing) oscillators considered in this section.

In this section, we examine passage through resonance in two classes of systems.
The first class includes the systems, in which a periodic force with constant fre-
quency acts on the Duffing oscillator with slowly time-decreasing linear stiffness; in
the systems of the second class, the time-invariant nonlinear oscillator is excited by
a force with slowly increasing frequency. In both cases, stiffness of the linear
oscillator and linear coupling remains constant, and the entire system is initially
captured into resonance.

We demonstrate that AR in the nonlinear actuator may entail oscillations with
growing amplitude in the coupled oscillator only in the system of the first class with
constant excitation frequency, whereas in the system of the second class, the most
part of energy remains localized on the excited oscillator, and a portion of energy
transferred to the linear oscillator is insufficient to provide growing oscillations.
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This means that the systems that seem to be almost identical exhibit different
dynamical behavior caused by their different resonance properties.

It is important to note that the change of frequency of the forcing field is usually
considered as an effective tool for producing the desired resonance dynamics, and
the failure of this approach in a multi-degrees-of-freedom system has not been
discussed thus far in the literature.

8.2.1 Energy Transfer in a System with Constant Excitation
Frequency

The equations of motion of two coupled oscillators are given by

m1
d2

u1
dt2 þ c1u1 þ c10 u1 � u0ð Þ ¼ 0;

m0
d2

u0
dt2 þC tð Þuþ ku3 þ c10 u0 � u1ð Þ ¼ A cosxt;

ð8:15Þ

where u0 and u1 denote absolute displacements of the nonlinear and linear oscil-
lators, respectively; m0 and m1 are their masses; c1 denotes stiffness of the linear
oscillator; c10 is the linear coupling coefficient; k is the coefficients of cubic non-
linearity; C(t) = c0 − (k1 + k2t), k1,2 > 0; A and x are the amplitude and the fre-
quency of the periodic force. The system is initially at rest, that is, uk = 0, vk = duk/
dt = 0 at t = 0, k = 0, 1. We recall that these initial conditions determine the LPT of
system (8.15) associated with maximum possible energy transfer from the source of
energy to the oscillator.

As in the previous sections, we define the small parameter 2e = c10/c1 � 1.
Considering weak nonlinearity and taking into account resonance properties of the
system, we denote

c1=m1 ¼ c0=m0 ¼ x2; A ¼ emx2F
k1=c0 ¼ 2es; k2=c0 ¼ 2e2bx; k=c0 ¼ 8ea;
c10=c1 ¼ 2ek1; c10=c0 ¼ 2ek0

ð8:16Þ

and then reduce the equations of motion to the form:

d2
u1

ds20
þ u1 þ 2ek1 u1 � u0ð Þ ¼ 0;

d2
u0

ds20
þ 1� 2ef sð Þð Þu0 þ 2ek0 u0 � u1ð Þþ 8eau30 ¼ 2eF sin s0;

ð8:17Þ

where s0 = xt is the fast timescale, and s = es0 is the leading-order slow timescale;
(s) = r + bs. The asymptotic analysis of system (8.17) is analogous to the analysis
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performed in Sects. 8.1 and 2.6. As in the previous sections, we introduce the
following transformations:

vk þ iuk ¼ Ykeis0 ; Ykðs0; s; eÞ ¼ u 0ð Þ
k ðsÞþ eu 0ð Þ

k s0; sð Þþ e2 þ 	 	 	
s1 ¼ ss; uk ¼ K�1u 0ð Þ

k ; K ¼ s=3að Þ1=2; k ¼ 0; 1
ð8:18Þ

and then perform the separation of the fast and slow timescales. As a result, we
obtain the following system for the leading-order slow complex amplitudes u0(s1)
and u1(s1):

d/1

ds1
� il1 /1 � /0ð Þ ¼ 0;/1 0ð Þ ¼ 0;

d/0

ds1
� il0 /0 � /1ð Þþ iðf0 s1ð Þ � j/0j2Þ/0 if u0 0ð Þ ¼ 0:

ð8:19Þ

with coefficients f = F/sK, b = b/s2, µk = kk/s, and detuning f0(s1) = 1 + bs1. For
more details concerning the asymptotic analysis of similar systems, one can refer to
Kovaleva and Manevitch (2012), Kovaleva et al. (2010).

The study of tunneling in weakly coupled oscillator (Kovaleva et al. 2010)
proved that an asymptotic solution of the nonlinear equation can be obtained
separately in the following cases: either coupling is weak enough to provide the
condition l1l2 � b, or the mass of the attached oscillator is much less than the
mass of the actuator, m1 � m0. For brevity, only the first case is discussed below.
Under this assumption, the term proportional to µ0 can be removed from (8.19) in
the main approximation. The resulting truncated system

d/1

ds1
� il1/1 ¼ �il1/0;/1 0ð Þ ¼ 0;

d/0

ds1
þ iðf0 s1ð Þ � j/0j2Þ/0 if /0 0ð Þ ¼ 0:

ð8:20Þ

includes an independent nonlinear equation for the complex amplitude u0 and a
linear equation for u1, in which u0 plays the role an external excitation. The effect
of weak coupling on motion of the nonlinear oscillator may be considered in
subsequent iterations (Kovaleva and Manevitch 2010).

The response u1(s) can be defined from (8.19) or (8.20) by the expression:

/1 s1ð Þ ¼ �il1

Zs1
0

eil1 s�sð Þ/0 sð Þds: ð8:21Þ

As in Sect. 8.1, the solution of the nonlinear equation is represented as
/ s1ð Þ ¼ �/ s1ð Þþ ~/ s1ð Þ, where �/ s1ð Þ and ~/ s1ð Þ denote a quasi-stationary value of
u(s1) and fast fluctuations near �/ s1ð Þ, respectively. Since the contribution from fast
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fluctuations ~/0 sð Þ to integral (8.21) is relatively small compared to the contribution
from the slowly varying component �/0, we employ approximation (8.13) to obtain:

/1 s1ð Þ � �il1e
�il1s1J s1ð Þ; J s1ð Þ ¼

Zs1
0

eil1s/0 sð Þds; ð8:22Þ

where �/0 s1ð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bs1

p
. Integration by parts gives

J s1ð Þ ¼ �il�1
1 eil1s1 �/0 s1ð Þ � �/0 0ð Þ� �� U s1ð Þ;
U s1ð Þ ¼ b

2

Rs1
0

eil1sffiffiffiffiffiffiffiffiffi
1þ bs

p ds:
ð8:23Þ

It follows from (8.23) that U s1ð Þ ¼ ffiffiffi
b

p
F s1ð Þ, where F(s1) is a Fresnel-type

integral bounded for any s1 > 0. Hence,/1 s1ð Þ ¼ �/1 s1ð Þþ ~/1 s1ð ÞþO
ffiffiffi
b

p� �
, where

�/1 s1ð Þ ¼ �/0 s1ð Þ; ~/1 s1ð Þ � ��/ 0ð Þeil1s1 : ð8:24Þ

Although equality �/1 s1ð Þ ¼ �/0 s1ð Þ can be directly obtained from (8.19),
transformations (8.21)–(8.24) formally demonstrate the equality of the averaged
amplitudes for both oscillators, as well as the occurrence of growing oscillations in
the linear oscillator.

Let ak and ak
tr (k = 0, 1) denote real-valued amplitudes oscillations in the full

system (8.19) and the truncated system (6.20), respectively. Plots of ak(s1) and
ak
tr(s1) in the systems with parameters

b ¼ 0:05; l0 ¼ 0:02; l1 ¼ 0:15; f ¼ 0:34 ð8:25Þ

are presented in Fig. 2.36. It is important to note that a single oscillator with
parameters µ0 = 0, b* � 0.06, f = 0.34 admits AR (see Sect. 8.1).

It is seen that the amplitudes ak (solid lines) and ak
tr (dotted lines) calculated for

the full system (8.19) and the truncated system (8.20), respectively, are close to
each other. Dashed lines depict the identical backbone curves. Furthermore,
Fig. 8.6a shows that, as in the case of a SDOF oscillator, in the first half-period of
oscillations, the amplitudes a0 and a0

tr are close to the LPT of the time-invariant
system, but then, motion turns into small fast oscillations near the backbone curve
�a0 �

ffiffiffiffiffi
f0

p
.

Figure 8.6b demonstrates that irregular oscillations of the linear oscillator at the
early stage are then transformed into regular oscillations near the backbone curve.
In the system with coupling µ1 = 0.15, we obtain the period of oscillations T1 = 2p/
µ1 � 25.12, and the amplitude of fluctuations ~/1 s1ð Þ ¼j j�/ 0ð Þ		 		 ¼ 1; both these
values are close to the parameters in Fig. 8.6b.

Although both oscillators possess gradually increasing amplitudes, the nature of
the emerged processes is different. Figure 8.6a depicts AR in the nonlinear
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oscillator with the trajectory corresponding to the LPT of large oscillations. At the
same time, Fig. 8.6b demonstrates forced oscillations, in which the response of the
nonlinear oscillator acts as an external force.

8.2.2 Energy Localization and Transport in a System
with a Slowly Varying Forcing Frequency

In this section, we briefly analyze energy transport in coupled oscillators with
constant parameters and a slowly changing forcing frequency. The equations of
motion are reduced the form similar to (8.17)

d2
u1

ds20
þ u1 þ 2ek1 u1 � u0ð Þ ¼ 0;

d2
u0

ds20
þ uþ 2ek u0 � u1ð Þþ 8eau30 ¼ 2eF sin s0 þ h sð Þð Þ;

dh
ds ¼ sþ bs:

ð8:26Þ

Transformations (8.18) together with the change of variables s1 = ss, /j = uje
−ih

yield the following dimensionless equations for the slow complex amplitudes
/j(s1):

du1

ds1
þ if0 s1ð Þu1 � il1 u1 � u0ð Þ ¼ 0; u1 0ð Þ ¼ 0;

du0

ds1
� il0 u0 � u1ð Þþ iðf0 sð Þ � ju0j2Þu if u0 0ð Þ ¼ 0:

ð8:27Þ
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Fig. 8.6 Amplitudes and phases of oscillations in the full and truncated systems with parameters
(8.25): a amplitudes of the nonlinear oscillators; b amplitudes of the linear oscillators; dashed lines
represent quasi-stationary amplitudes
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Where f0(s1) = 1 + bs1. Note that Eq. (8.27) are similar to (8.19), but the
time-dependent coefficient f0(s1) is now involved in both equations. Details of
transformations are provided in Kovaleva (2015), Kovaleva and Manevitch (2016).

As in the previous section, the sought amplitude of the nonlinear oscillator is
presented as u0 ¼ �u0 þ fu0 , where �u0 s1ð Þ and fu0 s1ð Þ denote the quasi-stationary
amplitude and small fast fluctuations near �u0 s1ð Þ, respectively. It is easy to show
that the state �u0 s1ð Þ and the backbone curve �a0 ¼ j�/0j are defined by relations
(8.13).

After calculating the nonlinear response /0(s1), the solution /1(s1) can be
directly found from the first Eq. (8.27). Ignoring the effect of small fast fluctuations,
we obtain

u1 s1ð Þ � �i l12b e
�iSðs1Þ=2bK s1ð Þ; S s1ð Þ ¼ ð1þ bs1Þ2;

K s1ð Þ ¼ K0 s1ð Þ � K0 1ð Þ; K0 s1ð Þ ¼ RS s1ð Þ

0
eiz=2bz�1=4dz:

ð8:28Þ

Although the expression for K0(s1) cannot be found in closed form, the limiting
value K0(∞) can be explicitly evaluated and equals K0(∞) = (2b)4/3C(¾)e3ip/8,
where C is the gamma function (Gradshtein and Ryzhik 2000). Hence, a1(s1) !
a1∞ = µ1(2b)

1/3C(¾) as s1 ! ∞. This result indicates that AR in the nonlinear
actuator is unable to generate oscillations with permanently growing energy in the
attached oscillator, but the transferred energy suffices to sustain linear oscillations
with bounded amplitude.

Figure 8.7 depicts the amplitudes of oscillations a0(s1) = |/0(s1)| and
a1(s1) = |/1(s1)| calculated from Eq. (8.27). Figure 8.7a shows that the amplitude
of nonlinear oscillations is very close to its analogue presented in Fig. 8.6a but the
amplitude of linear oscillations in Fig. 8.7b drastically differs from the amplitude of
oscillations with growing energy in Fig. 8.6b. The shape of the amplitude a1(s1) is
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Fig. 8.7 Amplitudes of oscillations: a nonlinear oscillations; dashed line denotes the backbone
curve �a0; b linear oscillations
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similar to the resonance curve with a noticeable peak in the initial stage of motion,
but then, motion turns into small oscillations with near the limiting amplitude close
to the theoretically predicted value a1∞ � 0.1.

8.2.3 Energy Transfer in a System with Slow Changes
of the Natural and Excitation Frequencies

A key conclusion from the obtained results is that in the system of with slowly
changing excitation frequency, the energy transferred from the nonlinear oscillator
is insufficient to produce oscillations with growing energy in the attached linear
oscillator. The different dynamical behavior can be considered as a consequence of
different resonance properties of the systems. In the system with a constant fre-
quency of external forcing but slowly varying parameters of the nonlinear actuator,
both oscillators are captured in resonance. If the forcing frequency slowly increases
and the parameters of the system remain constant, resonance in the nonlinear
oscillator is still sustained by increasing amplitude, while the frequency of the linear
oscillator falls into the domain beyond the resonance. This implies that the slow
change of the linear stiffness of the actuator can be considered as a parameter
controlling the occurrence of high-energy oscillations with growing amplitude in
the linear oscillator.

As an illustrating example, we consider a system with slowly changing linear
stiffness of the actuator. The system dynamics is described by the equations

d2
u1

ds20
þ u1 þ 2ek1 u1 � u0ð Þ ¼ 0;

d2
u0

ds20
þ 1� 2en sð Þð Þu0 þ 2ek0 u0 � u1ð Þþ 8eau30 ¼ 2eF sin s0 þ h sð Þð Þ;

dh
ds ¼ f sð Þ;

ð8:29Þ

where f(s) = s + b1s, n(s) = b3s
3, s = es0; all other coefficients are defined by

relations (8.16). We recall that if n(s) = 0, then AR may appear only the nonlinear
oscillator. We will show that slow changes in both natural and excitation fre-
quencies of the actuator may sustain growing oscillations in the coupled linear
oscillator.

Transformations (8.18), together with the change of variables s1 = ss,
/j = uje

−ih, result in the following equations for the slow complex amplitudes
/j(s1):

du1

ds1
þ if1 s1ð Þu1 � il1 u1 � u0ð Þ ¼ 0; u1 0ð Þ ¼ 0;

du0

ds1
þ i½f0 s1ð Þ � ju0j2
u0 � il0 u0 � u1ð Þ if u0 0ð Þ ¼ 0;

ð8:30Þ
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where

s1 ¼ ss; f0 sð Þ ¼ f1 sð Þþ n1ðsÞ; f1 s1ð Þ ¼ 1þ b1s1;

n1 s1ð Þ ¼ b3s
3
1; b1 ¼ b1=s

2; b3 ¼ b3=s
4;

other parameters are defined in (8.19) and (8.27). Note that details of converting the
full system (8.29) into the equations for slow complex amplitudes (8.30) can be
found in (Kovaleva 2015).

It is easy to obtain from (8.30) that the quasi-steady states /j can be evaluated as

�u0 s1ð Þj j � ½f1 s1ð Þþ n1 s1ð Þ
1=2 �O s3=2
� �

;

�u1 s1ð Þj j � l1 f1 s1ð Þþ n1 s1ð Þ
1=2=ðf1 s1ð Þ � l1
h �

�O s1=2
� �

:
ð8:31Þ

Expressions (8.31) imply simultaneous (but not equal) growth of backbone
curves and thus suggest growing energy of oscillations of both oscillators provided
linear stiffness of the actuator varies with rate n1(s) exceeding the rate f1(s1) of the
change of the forcing frequency.

We illustrate these conclusions by the results of numerical simulations for the
system with parameter b1 = 10−3, b3 = 10−5, f = 0.34, µ0 = 0.01, µ1 = 0.15
(Fig. 8.8).

It is seen that an additional slow change of the actuator stiffness entails an
increase in the nonlinear response, thus enhancing energy transfer and making it
sufficient to sustain growing oscillations of the linear oscillator. A thorough theo-
retical analysis of this model is omitted but the obtained results motivate further
analytical investigation of feasible energy transfer in the multi-dimensional arrays
(see, e.g., Kovaleva 2015).
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Fig. 8.8 Amplitudes of oscillations of the actuator (a) and the linear oscillator (b); solid lines
corresponds to system (8.30); dashed lines correspond to the time-independent actuator (b3 = 0)
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8.3 Autoresonance in Nonlinear Chains

It follows from Sect. 8.1 that AR may potentially serve as an effective tool to excite
and control the high-energy regime in a single oscillator. However, the behavior of
coupled oscillators may drastically differ from the dynamics of a single oscillator. In
particular, capture into resonance may not exist, or AR in the excited oscillator may
be insufficient to enhance the response of the attachment. In this section, these
effects are investigated for a nonlinear Klein–Gordon chain consisting of identical
linearly coupled Duffing oscillators, one of which is subjected to periodic forcing
with a slowly varying frequency. It is shown that capture into resonance of the
entire chain may occur if both forcing amplitude and coupling stiffness exceed
certain threshold values, but detuning rate is small enough.

8.3.1 The Model

The dynamics of the chain is described by the following equations:

d2
u1

dt2 þx2u1 þ cu3r þ jðu1 � u2Þ ¼ A cos hðtÞ;
d2

ur
dt2 þx2ur þ cu3r þ jð2ur � urþ 1 � ur�1Þ ¼ 0; r ¼ 2; . . .; n� 1;
d2

un
dt2 þx2un þ cu3r þ jðun � un�1Þ ¼ 0;
dh
dt ¼ xþ fðtÞ; fðtÞ ¼ k1 þ k2t:

ð8:32Þ

Here and below, the variable ur denotes the position of the rth oscillator;
x2 = c/m, m and c being the mass and the linear stiffness of each oscillator; c > 0 is
the cubic stiffness coefficient; the coefficient j represents the stiffness of linear
coupling between the oscillators. The first oscillator is subjected to periodic forcing
with amplitude A and time-dependent frequency X(t) = x + f(t), where f(t) =
k1 + k2t; the parameters k1 > 0 and k2 > 0 denote the initial constant detuning and
the detuning rate, respectively. The array under consideration may be considered an
example of a microelectromechanical system (MEMS) with a broad spectrum of
applications.

Now we reduce Eq. (8.32) to the form more convenient for further analysis.
First, assuming small initial frequency detuning, we introduce the small parameter
e = k1/x, 0 < e � 1. Then, taking into consideration resonance properties of the
oscillators, we define the following rescaled parameters:

s0 ¼ xt; s1 ¼ es0;

c ¼ 8eax2; A ¼ 2eFx2; j ¼ 2 ekx2; k2 ¼ 2e2bx2:
ð8:33Þ
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In these notations, the equations of motion are reduced to the form

d2u1
ds20

þ u1 þ 8eau31 þ 2ekðu1 � u2Þ ¼ 2eF sin hðs0; eÞ;

d2ur
dt2

þ ur þ 8eau3r þ 2ekð2ur � urþ 1 � ur�1Þ ¼ 0; r ¼ 2; . . .; n� 1;

d2un
ds20

þ un þ 8eau3n þ 2ekðun � un�1Þ ¼ 0;

dh
ds0

¼ 1þ ef0ðs1Þ; f0ðs1Þ ¼ 1þ bs1;

ð8:34Þ

If the system is initially at rest, then h = 0, ur = 0, vr ¼ dur=ds0 ¼ 0 at s0 = 0
(r = 1, …, n). We recall that zero initial conditions identify the limiting phase
trajectory (LPT) of the oscillator.

As in the previous section, asymptotic solutions of (8.34) for small e are derived
with the help of the multiple timescale formalism. First, we introduce the dimen-
sionless complex conjugate vector envelopes W and W* with components Wr;W

�
r

and related dimensionless parameters f, l by formulas similar to (8.35)

Wr ¼ K�1ðvr þ iurÞe�ih;W�
r ¼ K�1ðvr � iurÞeih;K ¼ ð1=3aÞ1=2;

f ¼ F=K; l ¼ k=K;
ð8:35Þ

where r = 1, …, n. It follows from (8.35) that the real-valued dimensionless
amplitudes and the phases of oscillations are defined as ~ar ¼ jWrj and ~Dr ¼ argWr,
respectively.

Substituting (8.35) into (8.34), we derive the following equations for the
envelopes Wr:

dW1

ds0
¼ �ie½ðf0ðs1Þ � jW1j2ÞW1 � lðW1 �W2Þþ f þG1
;

dWr

ds0
¼ �ie½ðf0ðs1Þ � jWrj2Þwr � lð2Wr �Wr�1 �Wrþ 1ÞþGr
; 2� r� n� 1;

dWn

ds0
¼ �ie½ðf0ðs1Þ � jWnj2ÞWn � lðWn �Wn�1ÞþGn
;

ð8:36Þ

subject to zero initial conditions. The parameters G1, … Gn involve fast harmonics
with coefficients depending on W and W�, but explicit expressions of these
parameters uninvolved in further analysis.

Asymptotic approximations to the solutions of Eq. (8.36) are constructed with
the help of the multiple timescale approach. First, the asymptotic decomposition
similar to (8.37) is introduced:
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Wrðs0; s1; eÞ ¼ wrðs1Þþ ewð1Þ
r ðs0; s1ÞþOðe2Þ; r ¼ 1; . . .; n: ð8:37Þ

Standard transformations yield the following averaged equations for the slowly
varying envelopes wr(s):

dw1

ds1
¼ �i½ðf0ðs1Þ � jw1j2Þw1 � lðw1 � w2Þþ f 


dwr

ds1
¼ �i½ðf0ðs1Þ � jwrj2Þwr � lð2wr � wr�1 � wrþ 1Þ
; 2� r� n� 1;

dwn

ds1
¼ �i½ðf0ðs1Þ � jwnj2Þwn � lðwn � wn�1Þ


ð8:38Þ

with zero initial conditions. Note that the averaged Eq. (8.38) involve three inde-
pendent coefficients instead of six parameters in (8.32).

The change of variables wr ¼ areiDr yields the following equations for the
real-valued dimensionless amplitudes ar and the phases Dr:

da1
ds1

¼ �la2 sinðD1 � D2Þ � f sinD1;

a1
dD1

ds1
¼ l½a1 � a2 cosðD1 � D2Þ
 � f0ðs1Þa1 þ a31 � f cosD1;

dar
ds1

¼ l½ar�1 sinðDr�1 � DrÞþ arþ 1 sinðDrþ 1 � DrÞ
;

ar
dDr

ds1
¼ l½2ar � ar�1 cosðDr�1 � DrÞ � arþ 1 cosðDrþ 1 � DrÞ
 � f0ðs1Þar þ a3r ;

r 2 ½2; n� 1
;
dan
ds1

¼ lan�1 sinðDn�1 � DnÞ;

an
dDn

ds1
¼ l½an � an�1 cosðDn�1 � DnÞ
 � f0ðs1Þan þ a3n

ð8:39Þ

with initial amplitudes ar(0) = 0 and indefinite initial phases Dr(0), r = 1,…,n. To
overcome this uncertainty, one needs to solve the nonsingular complex-valued
Eq. (8.38), and then, calculate the real-valued amplitudes and the phases by for-
mulas ar = |wr|, Dr = arg(wr). Numerical results presented below have been
obtained from regular Eq. (8.38).

The accuracy of asymptotic approximations for systems with slowly varying
parameters has been discussed, e.g., in Sanders et al. (2007). Recall that the errors
of approximation |ãr(s, e) – ar(s)| ! 0 as e ! 0 in the time interval of interest,
which is, at least, of order O(1/b).
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8.3.2 Quasi-steady States

Quasi-state values of the amplitudes and the phase of oscillations can be calculated
from the following equations:

Pr ¼ dar
ds1

¼ 0;Qr ¼ dDr

ds1
¼ 0; r ¼ 1; . . .; n: ð8:40Þ

The equation Pn = 0 implies sin Dn � Dn�1
� � ¼ 0. Inserting this equality into the

equation Pn−1 = 0, we then have sin Dn�1 � Dn�2
� � ¼ 0. Repeating this procedure

for each equation Pr = 0, we find that sin Dr � Dr�1
� � ¼ 0, r > 1. Finally, the

equation P1 = 0 yields sinD1 ¼ 0. This means that either Dr ¼ 0 (mod 2p) or
Dr ¼ p (mod 2p), r = 1, …, n. One can conclude that, in analogy to a single
oscillator, the phases Dr ¼ 0 (r = 1, …, n) correspond to the stable AR, while the
phases Dr ¼ p (r = 1, …, n) are unstable. Substituting Dr ¼ 0 into the conditions
Qr = 0, one obtains the following equations for the quasi-stationary amplitudes:

lð�a1 � �a2Þ � f0ðs1Þ�a1 þ �a31 � f ¼ 0
lð2�ar � �ar�1 � �arþ 1Þ � f0ðs1Þ�ar þ �a3r ¼ 0; r 2 ½2; n� 1
;
lð�an � �an�1Þ � f0ðs1Þ�an þ �a3n ¼ 0:

ð8:41Þ

Maximal quasi-steady solutions corresponding to AR in the entire chain are
given by

�a1ðs1Þ �
ffiffiffiffiffiffiffiffiffiffiffiffi
f0ðs1Þ

p þ ½f =2f0ðs1Þ
 þOðlf =f0ðs1ÞÞ;
�arðs1Þ �

ffiffiffiffiffiffiffiffiffiffiffiffi
f0ðs1Þ

p þOðlf =fr0ðs1ÞÞ; r ¼ 2; . . .; n:
ð8:42Þ

The slow functions a1 s1ð Þ; . . .; an s1ð Þ can be interpreted as the backbone curves.
It follows from (8.42) that the higher-order corrections may be ignored;

furthermore,

�arðs1Þ ! �aðs1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
f0ðs1Þ

p
; s1 ! 1; r ¼ 1; . . .; n: ð8:43Þ

Formulas (8.42) and (8.43) clearly indicate that the energy initially placed in the
first oscillator tends to equipartition among all oscillators with the limiting
amplitudes of oscillations �aðsÞ: This conclusion is illustrated below by the results of
numerical simulations for the chains with different number of particles.
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8.3.3 Parametric Thresholds

Note that solutions (8.42) formally exist for arbitrary values of structural and
excitation parameters. We establish the parametric thresholds, which allow the
emergence of AR in the entire chain.

In order to simplify an analytical framework and elucidate the interpretation of
the results, we assume that the parameters f * o(1), l * o(1) but b � 1. These
assumptions agree with the earlier obtained theoretical and numerical results
(Kovaleva and Manevitch 2013a, b, c) as well as with the numerical results pre-
sented below.

As remarked above, resonance in the forced oscillator represents a necessary
condition for the emergence of resonance in the passive attachment. This means that
the first parametric boundary can be found assuming small oscillations of the
attachment. Assuming ar = e1/2ãr, r � 2, the equations of the first oscillator are
given by

da1
ds1

¼ �f sinD1;

a1
dD1

ds1
¼ �ðf0ðs1Þ � lÞa1 þ a31 � f cosD1

ð8:44Þ

with initial conditions a1ð0Þ ¼ 0;D1ð0Þ ¼ �p=2. Equation (8.44) describe the slow
dynamics of a single Duffing oscillator with an additional linear spring of stiffness
l. Thus, the results derived in Sect. 8.1 can be directly applied to (8.44). In par-
ticular, this implies that in the first half-cycle of oscillations, the solution of
Eq. (8.44) is very close to the LPT of the underlying time-invariant system

da1
ds1

¼ �f sinD1;

a1
dD1

ds1
¼ �ð1� lÞa1 þ a31 � f cosD1

ð8:45Þ

with initial conditions a1(0) = 0, D1(0) = −p/2 corresponding to the LPTs.
Reproducing the transformation of Sect. 2.2, one can conclude that the parametric
thresholds that determine the boundaries between small and large oscillations of the
oscillator (8.45) are given by

ðaÞ f1l ¼ f1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� lÞ3

q
; ðbÞ f2l ¼ f2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� lÞ3

q
; ð8:46Þ

where f1 ¼
ffiffiffiffiffiffiffiffiffiffi
2=27

p
, f2 ¼ 2=

ffiffiffiffiffi
27

p
. As in the “classical” oscillator (Sect. 2.2), the

transition from small (non-resonant) to large (resonant) oscillations for the oscillator
being initially at rest occurs due to the loss of stability of the LPT of small
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oscillations at f = f1l. At f = f2l, the stable center at D1 = −p vanishes, and only a
single stable center corresponding to nonlinear resonance remains on the axis
D1 = 0.

If the actuator is captured into resonance, resonant oscillations in the attachment
can occur if the coupling response is large enough to transfer the required amount of
energy. This implies that the coupling parameter l cannot be negligibly small. In
order to evaluate the lower bound of the coupling strength l, we consider the
time-invariant analog of Eq. (8.40) with the parameter f0 = 1. It is easy to verify
that the stationary phases are given by the equalities sinD1 ¼ 0; sin Dr � Dr�1ð Þ ¼
0; r 2 2; n½ 
, and the solutions Dr ¼ 0 are stable. If Dr ¼ 0, then the corresponding
stationary amplitudes satisfy the equations

ð1� a21Þa1 � lða1 � a2Þþ f ¼ 0;

ð1� a2r Þar � lð2ar � ar�1 � arþ 1Þ ¼ 0; r 2 ½2; n� 1
;
ð1� a2nÞan � lðan � an�1Þ ¼ 0:

ð8:47Þ

It is easy to prove that maximal solutions of (8.47) are expressed as

�a1 ¼ 1þ f =2þOðlf Þ; �ar ¼ 1þO lr�1f
� �

; r� 2 ð8:48Þ

Solutions (8.48) formally exist even if the coefficient l is insufficient to produce
the coupling response needed to sustain resonance in the attached oscillators. Our
purpose is to define the coefficient of coupling strength l, which yields the coupling
response sufficient to sustain resonance in an arbitrary rth oscillator in the chain
under the condition of resonance in the preceding oscillators. We begin with the
analysis of resonance in the last oscillator. Ignoring higher-order corrections, we
rewrite the nth equation in (8.47) in the form

a3n � ð1� lÞan ¼ un; un ¼ l�an�1; ð8:49Þ

where �an�1 ¼ 1. The roots of Eq. (8.49) are analyzed through the properties of the
discriminant Dn ¼ 27u2

n � 4ð1� lÞ3 (Korn and Korn 2000). If Dn < 0, then
Eq. (8.49) has 3 different real roots; if Dn = 0, two real roots merge; if Dn > 0, there
exists a single real and two complex conjugate roots. The condition Dn > 0 is easily
transformed into the inequality l > f2l, or l > lcr = 0.25.

Next, we analyze the behavior of the rth oscillator assuming resonance in the
preceding oscillator and small oscillations of the subsequent oscillator. Under these
assumptions, the equation for the amplitude ar is rewritten as

a3r � ð1� 2lÞar ¼ ur;ur ¼ l�ar�1; r 2 ½2; n� 1
 ð8:50Þ

The roots of Eq. (8.50) are analyzed through the properties of the discriminant
Dr ¼ 27u2

r � 4ð1� 2lÞ3. It is easy to prove that Dr > 0 at l > 0.189 for all
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attached oscillators from r = 2 to r = n − 1. It now follows that an admissible
parametric domain for a multi-particle chain is determined by the conditions

f [ f1l ¼ f1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� lÞ3

q
; l[ lcr ¼ 0:25: ð8:51Þ

Conditions (8.51) are illustrated in Fig. 8.9. It follows from (8.51) that all
oscillators with the parameters from the domain D1 below f1l execute small
quasi-linear oscillations; if the parameters f, l lie within the dotted domain D0, then
the entire chain is captured into resonance; if the parameters belong to the shaded
domain D, then the actuator is captured into resonance but the dynamics of the
attachment should be investigated separately.

It is important to note that expressions (8.51) have been derived from the con-
ditions of resonance for the time-invariant oscillator. However, numerical examples
demonstrate that slow variations of the forcing frequency weakly affect the con-
ditions of the emergence of AR in a multi-particle chain.

The emergence of AR also depends on the critical detuning rate b*, at which the
transition from bounded to unbounded oscillations occurs. As seen in Fig. 8.2b,
the LPT of the time-invariant oscillator has a noticeable inflection at s1 = T*, and
the transition from small to large oscillations takes place at a time instant close to
T*. Considering f0(s) as a “frozen” parameter, we deduce that AR in the oscillator
(8.44) may occur if

f [ f �1l ¼ f1ð1þ bT� � lÞ3=2 [ f1l;

b\b� ¼ ðT�Þ�1½ðf =f1Þ2=3 � ð1� l
:
; ð8:52Þ

An approximate analytic expressions of the instant T* as well as the points of
inflection a(T*), D(T*) can be derived in the same way as in Sect. 8.1. To improve
the accuracy of calculations, in practice, it is convenient to employ the values of T*

found from the numerical simulation.
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Fig. 8.9 Parametric
thresholds (8.51)
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8.3.4 Numerical Results

In this section, we demonstrate the numerical results that confirm the effect of
parameters on the formation and persistence of AR in the Klein–Gordon chain. We
begin with the basic two-particle model. Equation (8.39) for two coupled oscillators
are given by

da1
ds1

¼ �la2 sinðD1 � D2Þ � f sinD1;

a1
dD1

ds1
¼ �l½a2 cosðD1 � D2Þ � a1
 � f0ðs1Þa1 þ a31 � f cosD1;

da2
ds1

¼ la1 sinðD1 � D2Þ;

a2
dD2

ds1
¼ �l½a1 cosðD1 � D2Þ � a2
 � f0ðs1Þa2 þ a32:

ð8:53Þ

Figure 8.10 depicts the amplitudes of oscillations in the chain with parameters
l = 0.08, b = 0.01 under the change of forcing amplitude from f = 0.235 to f = 0.3.
Figure 8.10a demonstrates that the occurrence of small oscillations or AR with
growing mean amplitude depends on the forcing amplitude. It is easy to obtain from
(8.51) that f1l = 0.24 at l = 0.08. Figure 8.10b shows that in the first cycle of
oscillations, the amplitude a1(s) is close to the LPT of the time-independent
oscillator with the same parameters (the LPTs of the time-invariant oscillator are
depicted by dashed lines). The instant T* � 3.8 corresponds to the point of
inflection of the “large” LPT. It follows from (8.42) that the corresponding detuning
rate b* � 0.037, and thus, the admissible values of detuning rate are determined by
the condition b < 0.037.

Figure 8.11 confirms that the coupling response may be insufficient to sustain
growing oscillations in the attachment even in the presence of AR in the actuator.
This effect is illustrated for two-particle arrays excited by forcing with parameters
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Fig. 8.10 Amplitudes of oscillations of the actuator (a, b) and the attachment (c) in the cell
subjected to an external forcing with amplitude f = 0.235 < f1l or f = 0.3 > f1l, respectively; LPTs
of the time-invariant (b = 0) actuator are depicted by the dashed lines in plot (b)
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f = 0.3, b = 0.01. It is clear that at l = 0.25, both oscillators exhibit AR, but at
l = 0.08, the excited oscillator is captured into resonance while the passive
attachment executes non-resonant oscillations with small amplitude. Localization of
energy in the actuator accompanied by small oscillations of the attachment is
illustrated in Fig. 8.11b.

The quasi-steady amplitudes depicted in Fig. 8.11 are close to curves (8.42). It is
evident that the backbone curves for both oscillators in Fig. 8.11a are nearly
identical at large times.

We recall that the frequency of a nonlinear oscillator changes as its amplitude
changes, and the oscillator stays captured in resonance with its drive if the driving
frequency varies slowly in time to be consistent with the frequency of the oscillator.
The growth of detuning rate entails crossing the resonance domain without capture
(Arnold et al. 2006). Figure 8.12 depicts this effect in the coupled oscillators with
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Fig. 8.11 Response amplitudes a1(s) and a2(s): a AR in both oscillators at l = 0.25; b AR in the
actuator and small-amplitude oscillations in the attachment at l = 0.08. The solid and dashed bold
lines in plots (a) and (b) depict backbones (8.42) for the 1st and 2nd oscillator, respectively
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Fig. 8.12 Influence of rate b on the emergence of AR: a transitions from AR to small oscillations
in the actuator with the growth of detuning rate; b small oscillations in the attached oscillator
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parameters f = 0.3, l = 0.08. From Fig. 8.12a, it is seen that even the excited
oscillator escapes from resonance with an increase in the rate b.

Now, we illustrate the formation of stable AR in the multi-particle chains with
n > 2. First, we investigate the effect of linear coupling on the dynamics of the
four-particle chain. Figure 8.13 demonstrates that a decrease in the coupling stiff-
ness l results in escape of the attached oscillators from resonance in a four-particle
chain subjected to an external force with amplitude f = 0.4 and detuning rate
b = 0.01. Figure 8.13a, b shows that in the weakly coupled chain with
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Fig. 8.13 Amplitudes of oscillations in the four-particle chain: a AR in the actuator and b small
oscillations of the attached oscillators at l = 0.2; c AR with monotonically growing backbones for
all oscillators at l = 0.23. The solid and dashed bold lines in plots (a) and (c) depict backbone
curves (8.42) for the actuator and all attached oscillators, respectively
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Fig. 8.14 Response amplitudes of the four-particle chain: a small oscillations of the entire chain
at f = 0.17 < f1l; b energy localization in the excited oscillator and small oscillations of the
attachment at f = 0.21 > f1l; c AR in the entire chain at f = 0.22 > f1l; solid lines correspond to
a1; dashed-dotted lines to a2; dashed lines to a3; and dotted lines to a4. The solid and dashed bold
lines in Fig. 8.14b, c depict backbone curves (8.42) for the actuator and all attached oscillators,
respectively
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l = 0.2 < lcr, the energy is localized in the excited oscillator, but the attachment
exhibits small non-resonant oscillations. Further increase in the coefficient l
enhances the coupling response and entails AR in the entire chain (Fig. 8.13c).
Note that the both pairs of the parameters (f = 0.4, l = 0.2 and f = 0.4, l = 0.23)
belong to the domain D (Fig. 8.9). This implies that the behavior of the chain
cannot be predicted beforehand and requires a numerical study.

Figure 8.14 depicts the response amplitudes of the four-particle chain with
parameters l = 0.25, b = 0.005 but with different amplitudes of external forcing.

It follows from (8.36) that f1l = 0.176 at l = 0.25. Figure 8.14a depicts small
oscillations of the chain at f = 0.17 < f1l. An increase in the forcing amplitude
entails energy localization in the excited oscillator against small oscillations of the
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Fig. 8.15 Amplitudes a1(s) (solid lines) and a8(s) (dotted lines) of the eight-particle chain:
a small oscillations of the entire chain at l = 0.2169; b energy localization in the excited oscillator
against small oscillations of the attachment at l = 0.21695; and c AR in the entire chain at
l = 0.217
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Fig. 8.16 Dependence of the response amplitudes a1(s) and a8(s) from the forcing amplitude f:
a small oscillations of the entire chain at f = 0.12; b AR in the entire chain at f = 0.18. The solid
and dashed bold lines depict backbones (8.32) for the actuator and the attached oscillators,
respectively
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attachment at f = 0.21 (Fig. 8.14b) and capture into resonance of the entire chain at
f = 0.22 (Fig. 8.14c). The initial segments of chaotic motion and transitions to
regular oscillations are withdrawn from consideration.

Figures 8.15 and 8.16 demonstrate the results of numerical simulations for the
eight-particle chain subjected to forcing with parameters f = 0.25, b = 0.001. For
brevity, only the dynamics of the first (excited) and last (eight) oscillators are
illustrated. Figure 8.15 indicates that an increase in the coupling strength l leads to
the transformations of small oscillations (Fig. 8.15a) into large oscillations of the
actuator (Fig. 8.15b) and then into AR in the entire chain (Fig. 8.15c).

Figure 8.16 illustrates the transitions from small oscillations to AR with an
increase in the forcing amplitude f in the chain with parameters l = 0.25,
b = 0.001.
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Part III
Applications

The final part of this book contains several important and extremely interesting
applications. Besides the classical problem of the forced pendulum, which is solved
for the arbitrary amplitudes for the first time, we consider a number of discrete
systems, which concern the nonlinear sinks, the metamaterials with intrinsic
degrees of freedom, and the locally supported chains. Using the effective
semi-inverse method allows exceeding the frontiers of the small-amplitude
approximation even in the problems where the small parameter is not presented
in the initial formulation of the puzzle. By such a manner, we demonstrate the
fundamental properties of the LPT concept not only for the discrete systems, but for
the objects with distributed parameters such as the carbon nanotubes.



Chapter 9
Targeted Energy Transfer

This chapter presents the analytical and numerical study of energy transport in a
system of n linear impulsively loaded oscillators (a primary linear system), in which
the nth oscillator is coupled with an essentially nonlinear attachment—the nonlinear
energy sink (NES). It was noted [see, e.g., (Vakakis et al. 2008 and references
therein; Manevitch et al. 2007; Vaurigaud et al. 2011; Kovaleva and Manevitch
2013)] that the most effective energy exchange arises when the response of the
primary system without an attachment is almost monochromatic; that is, all oscil-
lators exhibit harmonic oscillations with an identical dominant frequency, close to
that of a linear normal mode.

We suggest an order-reduction procedure, which allows the separated dynamical
analysis for the edge oscillator coupled with the NES and the remaining linear part
of the system. Using simplifications based on the reduced two degree-of-freedom
(2 DOF) model, we depict the admissible domain of parameters and derive a
closed-form approximate solution adequately describing the strongly non-stationary
processes in the entire system in terms of LPTs.

9.1 The Model

We study an array of n linear oscillators (a primary linear system), in which the nth
oscillator is weakly coupled to an essentially nonlinear attachment (NES). For
simplicity, we assume unidirectional motion of the primary system such that each
oscillator moves in line or in parallel with the NES. In this case, the system
dynamics is governed by the equations
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d2Xr

dt2
þ

Xn
k¼1

crkXk ¼ 0; r ¼ 1; 2; . . .; n� 1;

d2Xn

dt2
þ

Xn
k¼1

cnkXk �M�1
n ðKX3 þ 2vXÞ ¼ 0;

d2X
dt2

þ d2Xn

dt2
þm�1ðKX3 þ 2vXÞ ¼ 0;

ð9:1Þ

where Xr r ¼ 1; 2; . . .; nð Þ and X ¼ Xnþ 1 � Xn refer to the absolute displacements
of the rth oscillator and the relative displacement of the NES, respectively;
crk ¼ Crk=Mr, where Mr is the mass of the rth oscillator, Crk is stiffness of linear
coupling between the rth and kth oscillators; m is the attached mass, 2v and
K denote the coefficients of linear and cubic stiffness of the NES with domination of
the nonlinear contribution (in particular, the linear stiffness of NES can be equal to
zero).

The selected initial conditions correspond to impulses imposed onto the linear
oscillators with the system being initially under conditions: Xr = 0, dXr=dt ¼ Pr,
r ¼ 1; 2; . . .; n; X = 0, dX=dt ¼ �Pn at t = +0. In what follows, the sign “+” is
omitted.

9.2 Analytical Study

Let X1; . . .;Xn be the natural frequencies of the decoupled primary linear system. It
is supposed Xr 6¼ Xk if r 6¼ k. The resonance interaction between the linear system
and the NES may exist only if motion of the linear oscillator is close to harmonic
oscillations with a natural frequency, and the NES is well-tuned at the same fre-
quency (it is possible due to domination of the nonlinear contribution into elastic
force arising in the NES). We assume that this condition holds for the frequency X1.

We develop an order-reduction procedure that makes the essential mathematics
of the problem as clear as possible. Assuming a lightweight attachment, we define

the small parameter of the system as e ¼ ðm=MnÞ1=2 � 1. Then, we define the
dimensionless time s0 ¼ X1t and transform the parameters and the initial conditions
as follows:

K=mX2
1 ¼ j�2; v=mX2

1 ¼ er; crk=X
2
1 ¼ rrk; Pr=jX1 ¼ eVr ð9:2Þ

It can be shown that the relative displacement X is of O(1), while the dis-
placements Xr are of O(e). For convenience, the dimensionless variables are rede-
fined as follows:
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u ¼ K�1X; ur ¼ j�1Xr ¼ efr; ð9:3Þ

in which the variable fr is of O(1). Substituting (9.2) and (9.3) into Eq. (9.1), we
obtain the dimensionless equations

d2fr
ds20

þ
Xn
k¼1

rrkfk ¼ 0; r ¼ 1; 2; . . .; n� 1;

d2fn
ds20

þ
Xn
k¼1

rnkfk � eðu3 þ 2eruÞ ¼ 0;

d2u
ds20

þ e
d2fn
ds20

þ uþ elðu3 � uÞþ 2eru ¼ 0; l ¼ 1=e:

ð9:4Þ

With initial conditions fr ¼ 0, dfr=dr0 ¼ Vr; u ¼ 0, du=ds0 ¼ �eVn at s0 = 0.
The dimensionless natural frequencies of the primary linear subsystem are defined
as xk ¼ Xk=X1; the resonance frequency x1 = 1. The resonance condition implies
that the parenthetical expression with factor el in the last equation is relatively
small compared to all other terms of order 1, while the term µ(u3 − u) is of O(1)
[see detailed discussion in Kovaleva and Manevitch (2013)].

The selected mode of oscillations is extracted with the help of the Laplace
transform for the first group of equation in (9.4). The equations for the Laplace
transform Zr(s) are given by

s2ZrðsÞþ
Xn
k¼1

rrkZkðsÞ ¼ Vr; r ¼ 1; 2; . . .; n� 1;

s2ZnðsÞþ
Xn
k¼1

rnkZkðsÞ ¼ eRðsÞþVn;

ð9:5Þ

where Zr(s) is the Laplace transforms of fr(s0), R(s) is the Laplace transform of the
nonlinear coupling r ¼ u3 þ 2eru considered as a function of time s0, and s des-
ignates the Laplace transform variable. It follows from (9.5) that

ZrðsÞ ¼ D�1ðsÞ
Xn
j¼1

lrjðsÞVj þ elrnðsÞRðsÞ
" #

; r ¼ 1; . . .; n: ð9:6Þ

It was proved [see, e.g., (Kolovsky 1999; Meirovitch 2001)] that the charac-
teristic polynomial of the non-dissipative oscillators takes the form
DðsÞ ¼ Qn

k¼1 ðs2 þx2
kÞ, while lrj(s) are the polynomials of order less than n in s2. It

now follows that Eq. (9.5) can be rewritten as
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ðs2 þw2
1ÞZrðsÞ ¼

Xn
j¼1

KrjðsÞVj þ eKrnðsÞðsÞRðsÞ; r ¼ 1; . . .; n;

KrjðsÞ ¼ lrjðsÞ=D1ðsÞ; D1ðsÞ ¼
Yn
k¼2

ðs2 þx2
kÞ:

Inverse Laplace transforming yields the equations with the highlighted reso-
nance substructure

d2fr
ds20

þ
Xn�1

k¼1

rrkfk ¼ �rrnfn; r ¼ 1; 2; . . .; n� 1; ð9:7Þ

d2fn
ds20

þ fn þ elfnðs0Þþ e2qnðs0Þ � eðu3 þ 2eruÞ ¼ 0;

d2u
ds20

þ e
d2fn
ds20

þ uþ elðu3 � uÞþ 2eru ¼ 0;

ð9:8Þ

where the functions fn and qn are defined by the equalities

fnðs0Þ ¼ �
Xn�1

k¼1

rnkwkðs0Þ; wkðs0Þ ¼
Xn
j¼2

akjVj sinxks0;

qnðs0Þ ¼
Xn
k¼2

bkwkðs0Þ; wkðs0Þ ¼
Zs0
0

sinxkðs0 � zÞrðuðzÞÞdz;

with easily calculated coefficients akj and bk; the sum wk(s0) represents the partial
response of the kth oscillator in the primary linear system (excluding the harmonic
of frequency 1). The coefficient el � 1 implies that fnðs0Þj j � 1 but
l fnðs0Þj j �Oð1Þ. Note that if the primary linear system exhibits nearly harmonic
oscillations of frequency x1 = 1, then the contribution of the higher harmonics in
the system dynamics is insignificant and the function fnðs0Þ is necessarily small.

9.3 Selection of Resonance Terms and Principal
Asymptotic Approximation

As in the previous sections, the selection of the resonance terms is performed with
the help of the complexification-averaging procedure. To this end, the following
complex-valued variables are introduced:
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un ¼ ðdfn=ds0 þ ifnÞe�is0 ; u ¼ ðdu=ds0 þ iuÞe�is0 ; ð9:9Þ

where the functions u and un are sought in the form of the timescale series

unðs0; s1Þ ¼ uð0Þ
n ðs1Þþ euð1Þ

n ðs0; s1Þþ � � � ;
uðs0; s1Þ ¼ u 0ð Þðs1Þþ eu 1ð Þðs0; s1Þþ � � � ; s1 ¼ es0

ð9:10Þ

Substituting (4.9) and (4.10) into (4.8) and separating the resonant terms, we

obtain the following equations to the main approximations uð0Þ
n ðs1Þ, uð0Þðs1Þ:

duð0Þ
n

ds1
þ i

2
uð0Þ ¼ 0; uð0Þ

n ð0Þ ¼ Vn;

duð0Þ

ds1
þ il

1
2
� 3
8
uð0Þ�� ��2� �

uð0Þ � iruð0Þ þ i
2
uð0Þ
n ¼ 0; uð0Þð0Þ ¼ 0:

ð9:11Þ

It has been demonstrated (Kovaleva and Manevitch 2013) that Eq. (9.11) is
identical to the equations of the two-state atomic tunneling (Raghavan et al. 1999),
thereby confirming a direct mathematical analogy between quantum and classical
transitions.

For brevity, we denote Vn = v. The transformations uð0Þ
n ¼ v cos heid1 and u 0ð Þ ¼

v sin heid2 lead to the equations for the real-valued variables h and D ¼ d1 � d2

dh
ds1

¼ 1
2
sinD;

sin 2h
dD
ds1

¼ ðcosDþ 2k sin 2hÞ cos 2h� g sin 2h;
ð9:12Þ

with initial conditions hð0Þ ¼ 0, Dð0Þ ¼ p=2. The parameters k and g are defined as

k ¼ 3l
32

v2; g ¼ r� l
2

1� 3
8
v2

� �
: ð9:13Þ

As shown in recent studies (Manevitch et al. 2007), the trajectory with initial
conditions h = 0 and D ¼ p=2 represents an outer boundary for a set of closed
trajectories encircling the stable center in the phase plane (h, D). It is referred to as
the limiting phase trajectory (LPT) of system (9.12). We recall that motion along
the LPT ensures the maximum possible energy exchange between two coupled
oscillators.

Note that system (9.12) conserves the integral of motion
K ¼ ðcosDþ k sin 2hÞ sin 2hþ g cos 2h ¼ const. Since h(0) = 0, Dð0Þ ¼ p=2 on
the LPT, we obtain
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H ¼ ðcosDþ k sin 2hÞ sin 2hþ g cos 2h ¼ g: ð9:14Þ

Once h(s1) and D(s1) are found, the main approximations fð0Þn and u(0) to the
solution of system (9.8) can be calculated by (9.9) and (9.10). As a result, we obtain

f 0ð Þ
n ðs0; s1Þ ¼ �v cos hðs1Þ sinðs0 � d1ðs1ÞÞ;

u 0ð Þðs0; s1Þ ¼ �v sin hðs1Þ sinðs0 � d2ðs1Þ:
ð9:15Þ

It follows from (9.15) that Eq. (9.12) suffices to approximately describe reso-
nance energy transfer provided the phases d1 and d2 are defined. We recall that
fð0Þn ¼ v sin d1ð0Þ ¼ 0, u(0) = 0 at s0 = 0. Hence, one can set d1 ¼ Dþ p=2,
d2 ¼ p=2, or d1ð0Þ ¼ p. It now follows that the leading-order approximations to the
solutions fn and u of system (9.8) are given by:

f 0ð Þ
n ðs0; s1Þ ¼ v cos hðs1Þ cosðs0 � Dðs1ÞÞ; u 0ð Þðs0; s1Þ ¼ v sin hðs1Þ cos s0:

ð9:16Þ

The leading-order approximations fð0Þn ðr� n� 1Þ can be easily found from
Eq. (9.7). An example is given below. Formally, expressions (9.16) are independent
of frðr� n� 1Þ. However, further approximations take into account the higher
frequency components fn, qn that reflect the effect of additional degrees of freedom
on the motion of the nth oscillator and the NES.

It was shown in the previous section that the parametric boundary between the
energy localization on the excited oscillator and strong energy exchange in system
(9.8) is expressed as kþ gj j ¼ 1 or, by the above definition,

l
2

9
16

v2 � 1
� �

þ r

����
���� ¼ 1: ð9:17Þ

The condition kþ gj j\1 corresponds to localization of energy on the initially
excited oscillators, while kþ gj j[ 1 corresponds to energy transfer. We note that
these conditions reflect the essential difference between linear and nonlinear reso-
nances; namely, the NES resonates with a mode of the primary system only above a
certain energy threshold. The obtained conditions are illustrated in Fig. 9.1. The
parameters of the numerical simulation are given by

e ¼ 0:333; r ¼ 0:158; l ¼ 3:16 ð9:18Þ

It now follows from (9.17) and (9.18) that the critical (dimensionless) value of
the impulse v� ¼ 1:59. Plots of h(s1) and D(s1) for v\v� and v[ v� are shown in
Fig. 9.1.
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As shown in Fig. 9.1, in the regime of intense energy exchange, v[ v�hðs1Þ is
close to the sawtooth function (9.19). This implies the leading-order approximation
in the form

hð0Þðs1Þ ¼ hMsð/Þ; Dð0Þðs1Þ ¼ p
2
ds
d/

; / ¼ 2
s1
T0

;

sð/Þ ¼ 2
p
arcsin½sin ðp/=2Þ	j j; eð/Þ ¼ suð/Þ ¼ sign½sinðp/=2Þ	;

ð9:19Þ

where hM and T0 denote the magnitude and the period of functions (9.19),
respectively. Plots of s(/) and ds/d/ are shown in Fig. 6.3 (Part II).

Note that in the interval 0� s1 � T0=2 the sawtooth function
h0ðs1Þ ¼ 2hMs1=T0. Then, it follows from (9.12) that dh0=ds1 ¼ 1=2 at s1 = 0, and
therefore, 2hM=T0 ¼ 1=2, T0 = 4hM. It is important to note that the amplitude hM
can be analytically found using the integral of motion (9.14). Since the maximum
hM is achieved at D = 0, the maximum hM satisfies the equation
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Fig. 9.1 Plots of h(s1) and D(s1) for v = 1.58 < v* (upper panel) and v = 1.9 > v* (bottom panel)
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ð1þ k sin 2hÞ sin 2hM � 2g sin2 hM ¼ 0 ð9:20Þ

Note that equality (9.20) defines an exact maximum hM of h(s1), while the
corresponding period of the slow envelope T0 = 4hM gives an approximation of the
exact period T based on the sawtooth approximation. For example, if v = 1.9 > v*,
then hM = 1.39, T0 = 4hM = 5.56, while the exact period of beat oscillations
T 
 6.3 (Fig. 9.1); the difference between the approximate and exact values is
about 12%. We recall that the envelope of the NES oscillations is defined as
a ¼ v sin hj j. The obtained estimates define the maximum of the slow envelope as
aM ¼ v sin hMj j. Finally, the approximate solution can be represented as

uð0Þn ðs0; s1Þ ¼ em cos hð0Þðs1Þ cosðs0 � Dð0Þðs1ÞÞ;
uð0Þðs0; s1Þ ¼ m sin hð0Þðs1Þ sin s0:

ð9:21Þ

The approximate solution may be improved through successive iterations. The
rth iterations hðrÞðs1Þ;DðrÞðs1Þ are defined by the following equations:

dhðrÞ

ds1
¼ 1

2
sinDðrÞ;

dDðrÞ

ds1
¼ cosDðrÞ cot 2hðr�1Þ þ 2k cos 2hðr�1Þ � g; r ¼ 1; 2; . . .

hðrÞð0Þ ¼ 0; DðrÞð0Þ ¼ p=2:

ð9:22Þ
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Fig. 9.2 Plots of the exact
solution h(s1) (red solid line)
and iterations h0(s1) (black
dashed line), h1(s1) (blue
dotted line)
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From Fig. 9.2, it is seen that the first iteration hð1Þðs1Þ (dotted line) only slightly
improves the initial sawtooth approximation hð0Þðs1Þ (dashed line). This implies that
a simple function hð0Þðs1Þ suffices to adequately describe the real process.

9.4 3 DOF Oscillators with the NES

As an example, we consider a 4 DOF systems consisting of three identical linear
oscillators excited by equal impulses and nonlinearly coupled with an attachment
(Fig. 9.3). Note that this model is chosen for illustrative purposes, but the quali-
tative features of the results hold true for more complicated systems with a single
NES.

Absolute displacements of the oscillators are denoted by Xr(r = 1,…,4); the
equal masses of the oscillators are denoted byM; the attached mass is denoted by m,
the coefficient of linear stiffness is denoted by C; and the nonlinear and linear
stiffness coefficients of the NES are denoted by K and 2v, respectively. In this
notation, the equations of motion are given by

d2X1

dt2
þ k2ð2X1 � X2Þ ¼ 0;

d2X2

dt2
þ k2ð2X2 � X1 � X3Þ ¼ 0;

ð9:23Þ

d2X3

dt2
þ k2ðX3 � X2Þ ¼ M�1ðKX3 þ 2vXÞ;

d2X
dt2

þ d2X3

dt2
¼ �m�1ðKX3 þ 2vXÞ;

where X ¼ X4 � X3, and k2 = C/M. Initial conditions at t = 0 correspond to equal
impulses of strength P applied to linear oscillators, i.e., Xr ¼ 0, dXr=dt ¼ P, r = 1,
2, 3; X = 0, dX=dt ¼ �P.

The characteristic equation of the primary linear system takes the form

DðsÞ ¼ ðs2 þ 2k2Þðs2 þ k2Þ � k2ð2s2 þ 3k2Þ ¼ 0 ð9:24Þ

Fig. 9.3 Identical oscillators coupled with the NES
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The roots s21 ¼ �0:2k2, s22 ¼ �1:5k2, and s23 ¼ �3:2k2 correspond to the fre-
quencies X1 ¼ 0:445k, X2 ¼ 1:22k, and X3 ¼ 1:79k. As in the previous section,
we assume that m=M ¼ e2 � 1. The introduction of the timescale s0 = X1t and
rescaling (9.2) and (9.3) reduces system (9.23) to the dimensionless form with the
nonlinear coefficient to be unity, that is

d2u1
ds20

þ 5ð2u1 � u2Þ ¼ 0;

d2u2
ds20

þ 5ð2u2 � u1 � u3Þ ¼ 0;

d2u3
ds20

þ 5ðu3 � u2Þ � e2ðu3 þ 2eruÞ ¼ 0;

d2u
ds20

þ d2u3
ds20

þ u3 þ 2eru ¼ 0:

ð9:25Þ

With initial conditions ur = u = 0, dur=ds0 ¼ ev, and du=ds0 ¼ �ev at s0 = 0.

As indicated previously, ev ¼ jP=X1, and j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K=mX2

1

q
. The dimensionless

natural frequencies of the primary linear system are calculated as x1 = 1,
x2 = 2.71, and x3 = 3.98.

It was mentioned earlier that the resonance interaction with intense energy
transfer may exist only when the linear oscillations of the primary system are nearly
monochromatic. Formally, this condition can be verified by solving for the linear
system, but the numerical simulations give straightforward results. Figure 9.4
demonstrates numerical results for system (9.25) and its linear counterpart with
parameters (9.18) and v = 1.61 > v*.

In Fig. 9.4, it is clearly seen that all oscillators in the primary linear systems are
nearly monochromatic with frequency close to 1, even though the effect of higher
harmonics is distinguished in the displacement u1 of the first oscillator. At the same
time, in the nonlinear system, the nearly harmonic oscillations turn into nonlinear
beating but with the clearly pronounced higher frequency components in the dis-
placement u1 of the first oscillator.

From Fig. 9.5, it is seen that leading-order approximations u(0) and u3
(0) are close

to the exact (numerical) solutions u and u3 of the full system (9.25); the discrepancy
between the periods and maximum values of the envelope of beating and its ana-
lytical approximation a ¼ v sin hj j is about 12 and 10%, respectively. We recall that
the function h(s0) has been found analytically in the end of Part II. Therefore, the
developed asymptotic procedure provides an effective tool for obtaining a
closed-form approximate solution adequately describing the transient dynamics of
the entire system.
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Now, we calculate the approximate solutions of system (9.25). Recalling that
ur = efr, we obtain from (9.21) that

uð0Þðs0; s1Þ ¼ aðs1Þ cos s0
uð0Þ3 ðs0; s1Þ ¼ a3ðs1Þ cosðs0 � Dð0Þðs1ÞÞ;

ð9:26Þ

where aðs1Þ ¼ v sin hð0Þðs1Þ, and a3ðsiÞ ¼ ev cos hð0Þðs1Þ. It follows from (4.26) that
the maximum amplitudes a3M ¼ ev sin hM ¼ 0:52, aM = vsin hM = 1.65 are close to
the exact (numerical) results presented in Fig. 9.5.

The leading-order approximations to beat oscillations of the first and second
oscillators can be found from the first pair of equations in (9.25), in which u3 is

changed to uð0Þ3 . Considering the slow timescale s1 as a “frozen” parameter, we

obtain the leading-order approximations to beat oscillations as uð0Þr ðs0; s1Þ ¼
arðsiÞ cosðs0 � Dð0Þðs1ÞÞ with slow envelopes arðsiÞ ¼ arM cos hð0Þðs1Þ, r = 1, 2.
The maximum amplitudes a1M = 0.162 and a2M = 0.34 are close to the maximums
of the processes plotted in Fig. 9.4.
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Fig. 9.4 Displacements ur(s0) and u(s0) of the linear (a) and nonlinear (b, c) oscillators, with
parameters e2 = 0.1, r = 0.158, v = 1.61, v* = 1.59
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Fig. 9.5 Exact and approximate solutions of (9.25)
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9.5 Transient Dynamics of the Dissipative System

To provide the efficiency of NES, we have to pass it in the resonance conditions a
significant part of the energy from the linear subsystem and then to prevent a
reverse energy flow. This can be achieved due to dissipation leading to decrease of
the amplitude and consequently of the frequency also. Therefore, in this section, we
analyze the effect of NES in the weakly dissipative system. For brevity, we consider
the 2 DOF systems consisting of the linear oscillator coupled with the NES. The
equations of motion are given by

M
d2X1

dt2
þCX1 � KX3 þ 2vXþH

dX
dt

� �
¼ 0;

m
d2X
dt2

þ d2X1

dt2

� �
þ KX3 þ 2vXþH

dX
dt

� �
¼ 0:

ð9:27Þ

We recall that oscillations of the dissipative system vanish at rest O:
(X1 = X2 = 0, dX1=dt ¼ dX2=dt ¼ 0) as t ! 1. This implies that the effect of
dissipation, whatever small it might be, must be considered in the approximate
solution; otherwise, the convergence to O is lost.

As in previous sections, we consider the small parameter e ¼ ðm=MÞ1=2 and then
introduce the dimensionless time s0 ¼ Xt, X ¼ ðC=MÞ1=2, the dissipation param-
eter H/mx1 = 2eη, and the rescaled variables u1,2 and u (see (9.2), (9.3)). The
resulting dimensionless equations of the weakly dissipative system can be written
as follows:

d2u1
ds20

þ u1 � e2 cðu2 � u1Þ3 þ 2erðu2 � u1Þþ eg
d
ds0

ðu2 � u1Þ
� �

¼ 0;

d2u2
ds20

þ cðu2 � u1Þ3 þ 2erðu2 � u1Þþ eg
d
ds0

ðu2 � u1Þ
� �

¼ 0:

ð9:28Þ

Where u2 ¼ uþ u1 represents the absolute NES displacement. Initial conditions
are defined as u1 ¼ u2 ¼ 0; du1=ds0 ¼ ev, du2=ds0 ¼ 0 at s0 = 0. Figure 9.6 pre-
sents the results of numerical simulation with parameters (9.18) and, additionally,
v = 1.67, and η = 0.333.

From Fig. 9.6, it is seen that motion of the dissipative system is separated into
two parts: In the first interval 0� s0 � s�0, where s�0 corresponds to the first maxi-
mum of the slow envelope of beat oscillations, motion is close to strongly nonlinear
undamped oscillations described well by LPT, but then the system approaches the
rest state O1 with an exponentially decreasing amplitude of oscillations. Different
frequencies of damping oscillations and dissipation rates for the processes u1, u2,
and u = u2 − u1 are observed. Note that the difference in dissipation rates stems
from the difference in masses of coupled bodies.
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In the first interval 0� s0 � s�0, the transient dynamics can be analyzed with the
help of the previously developed procedure. Since the contribution of the nonlinear
force near the rest state is negligible, at large times system (9.28) can be approx-
imated by a system linearized near the rest state O1. Linearization of Eq. (9.28) near
O yields the system

d2~u1
ds20

þ ~u1 � 2e3 rð~u2 � ~u1Þþ g
d
ds0

ð~u2 � ~u1Þ
� �

¼ 0;

d2~u2
ds20

� 2e3 rð~u2 � ~u1Þþ g
d
ds0

ð~u2 � ~u1Þ
� �

¼ 0; s0 � s�0;
ð9:29Þ

The characteristic values of the linearized system (9.29) are given by:
k1;2 
 �i� e3g; k3;4 
 �i

ffiffiffiffiffiffiffi
2er

p � eg. It now follows that the logarithmic decre-
ments for the first and second oscillators are different and equal to e3η and eη,
respectively; the corresponding frequencies of oscillations are equal to 1 and

ffiffiffiffiffiffiffi
2er

p
.

Besides, the following matching constraints at s�0 ¼ s�1=e are imposed:

~u1 ¼ u1; ~u ¼ u;
d~u1
ds0

¼ du1
ds0

;
d~u
ds0

¼ du
ds0

; ð9:30Þ

where u1ðs�0Þ and u1ðs�0Þ are calculated from Eq. (9.28) in the first interval [0, s�0).
By definition, u1ðs�0Þ 
 0, while |u| is close to the maximum u�, that is, d~u=ds0 ¼
du=ds0 
 0 at s�0. This implies that solutions of Eq. (9.28) for s0 [ s�0 can be
approximated as

u1ðs0Þ 
 e�e3gðs0�s�0Þv�1 sinðs0 � s�0Þþ e2. . .;

uðs0Þ 
 u�e�egðs0�s�0Þ cos
ffiffiffiffiffiffiffi
2er

p
ðs0 � s�0Þ

h i
� u1ðs0Þ. . .;

ð9:31Þ
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Fig. 9.6 Displacements u1(s0) (plot (a)) and u(s0) (plot (b)) of the dissipative (dashed lines) and
non-dissipative (solid lines) systems, respectively; plot (c) depicts the absolute NES displacement
u2(s0) in the dissipative system
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where v�1 ¼ du1=ds0 at s0 ¼ s�0. Different effects of dissipation on the linear and
nonlinear oscillators result from the difference in the masses of oscillators.
Figure 9.7 allows the comparison of the exact (numerical) solution u(s0) of system
(9.28) with its analytical approximation (9.31). Note that due to different rates of
decay, the slow-frequency components in u(s0) become negligibly small and thus
uðs0Þ 
 �u1ðs0Þ for s0 � s�0. This conclusion is confirmed by the numerical results
presented in Figs. 9.6 and 9.7.

9.6 Reduction to a Model of the Single Oscillator

This section presents further simplification of the model through the reduction of
the multi-dimensional equations to an equation of a single oscillator. For illustrative
purposes, the non-dissipative (H = 0) two-mass system analogous to (9.27) is
considered. Arguing as above, we introduce the small parameter e = (m/M)1/2 and
define the dimensionless time s0 = Xt, X = (C/M)1/2 and the rescaled variables
(9.2), (9.3). The resulting dimensionless equations take the form similar to (9.8)

d2f1
ds20

þ f1 � eðcu3 þ 2eruÞþ � � � ¼ 0;

d2u
ds20

þ e
d2f1
ds20

þ uþ elðcu3 � uÞþ 2eru ¼ 0;

ð9:32Þ
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Fig. 9.7 Precise (numerical)
solution u = unum of
Eq. (9.28) (solid blue line)
and its analytical
approximation (9.31) in the
first (red dashed line) and
second (black dotted line)
intervals
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(higher-order non-resonant excitations in the first equation are omitted). Initial
conditions are given by f1 ¼ 0, df1=ds0 ¼ v; u ¼ 0, du=ds0 ¼ ev at s0 = 0. At the
next step, we introduce the complex envelopes analogous to (9.9) and then consider
the multiple scales decomposition (9.10). The resulting equations for the main

approximations uð0Þ
1 and u(0) coincide with (9.11), namely:

duð0Þ
1

ds1
þ i

2
uð0Þ ¼ 0; uð0Þ

1 ð0Þ ¼ v;

duð0Þ

ds1
þ il

1
2
� 3
8
uð0Þ�� ��2� �

uð0Þ � iruð0Þ þ i
2
uð0Þ
1 ¼ 0; uð0Þð0Þ ¼ 0:

ð9:33Þ

The elimination of uð0Þ
1 from the first equation reduces (9.33) to the

integro-differential equation for the complex envelope u0(s1)

uð0Þ
1 ðs1Þ ¼ v� i

2
Iðs1Þ; Iðs1Þ

Zs1
0

uð0ÞðsÞds

duð0Þ

ds1
þ il

1
2
� 3
8
uð0Þ�� ��2� �

uð0Þ � iruð0Þ ¼ � i
2

v� i
2
Iðs1Þ

� �
; uð0Þð0Þ ¼ 0:

ð9:34Þ

The right-hand side of (9.34) expresses the cumulative effect of the exciting
impulse and the coupling response on the dynamical behavior of the NES. As in
previous studies, we assume that the contribution of the coupling response in the
system dynamics is less than the effect of the initial impulse, and thus, Eq. (9.34)
may be approximately solved through successive iterations. The initial iteration /(0)

is defined from the truncated equation, in which the term I(s1) is ignored, namely

d/ð0Þ

ds1
þ i l

1
2
� 3
8
/ð0Þ
��� ���2� �

� r

� �
/ð0Þ ¼ � i

2
v; /ð0Þð0Þ ¼ 0: ð9:35Þ

It follows from (9.34), (9.35) that the initial iteration adequately approximates
the process uð0Þðs1Þ if the integral Ið0Þðs1Þ

R s1
0 /ð0ÞðsÞds satisfies the condition

Ið0ÞðsrÞ
�� �� � 2v. Formally, this inequality may be verified when the solution of
Eq. (9.35) is found.

It is easy to deduce that Eq. (9.35) is identical to the equation of the slow
complex envelope for a single oscillator subjected to harmonic forcing with

amplitude v/2. The change of variables /ð0Þ ¼ að0ÞeiD
ð0Þ

leads to the following
equations for the amplitude a(0) and the phase D(0):
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dað0Þ

ds1
¼ � 1

2
v sinDð0Þ

að0Þ
dDð0Þ

ds1
¼ l � 1

2
þ 3

8
ðað0ÞÞ2

� �
þ r

� �
að0Þ � 1

2
v cosDð0Þ:

ð9:36Þ

With initial conditions að0Þð0Þ ¼ 0;Dð0Þð0Þ ¼ �p=2. The first iteration /ð1Þðs1Þ
satisfies the equation

d/ð1Þ

ds1
� ir/ð1Þ þ il � 3c

8
/ð1Þ
��� ���2/ð1Þ þ 1

2
/ð1Þ

� �
¼ � i

2
v0 � i

2
Ið0Þðs1Þ

� �
; ð9:37Þ

with /ð1Þð0Þ ¼ 0. Once /ð0Þðs1Þ is found, the coupling response I(0)(s1) is expressed
as an explicit function of time. Computations can be simplified if the real and
imaginary components Re /(1) and Im /(1) are found separately from Eq. (9.37)

and then the slow envelope að1Þ ¼ /ð1Þ
��� ��� is calculated. Successive iterations can be

constructed in a similar way.
For computational purposes, the numerical values of the system parameters

selected in Sect. 9.5 are used. It is shown in Fig. 9.8 that the approximate envelopes
a(0) and a(1), corresponding to the LPT, are close to the envelope of the exact
solution of system (9.32). This confirms the dominating contribution of the exciting
impulse in the system dynamics.
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Chapter 10
Nonlinear Energy Channeling in the 2D,
Locally Resonant, Systems

10.1 Unit Cell Model: High Energy Pulsations

Passive control of the acoustic wave propagation in metamaterials is a subject of
broad scientific and practical interest in various aspects of applied sciences and
engineering (Nicolaou and Motter 2012; Grima and Garuana-Gauci 2012; Deymier
2013; Boechler et al. 2011). Of late, dynamics of metamaterials has driven a
considerable attention for their highly tunable, material properties (e.g., tailored
band gaps) giving rise to quite an intriguing wave phenomena, e.g., cloaking, sound
focusing, and more. The novel acoustic structure, namely locally resonant meta-
materials (LRSM), has been first introduced by Liu et al. (2000). The main
advantage of LRSM over the typical acoustically absorptive metamaterials is in
their ability to form the low-frequency band gaps.

One of the rapidly developing strategies of passive and semi-active control of
vibrations and waves in various acoustical structures is based on the attachment of
essentially nonlinear elements (e.g., nonlinear energy sinks (NES)) in the externally
loaded structure. As it was shown in many theoretical and experimental works, this
inclusion of essentially nonlinear elements may invoke the well-known dynamical
phenomenon (Vakakis et al. 2008) of unidirectional, broadband, passive energy
transfer (TET) (see also Chap. 9). This phenomenon is characterized by the for-
mation of strong energy exchanges between the weakly nonlinear substructure and
the essentially nonlinear attachment. As it was noted in Chap. 9, the regime of
strong energy transfer (a nonlinear beating phenomenon which is described ade-
quately with using the LPT concept) is characterized by the recurrent, near com-
plete energy exchanges between the several coupled physical systems. Basically,
these regimes are caused by the internal resonant interactions leading, in particular,
to the peculiar behavior which entails the non-stationary, recurrent, spatially
localized energy bursts emerging on the different fragments of the complex system.
Needless to say that in many real physical processes, emergence of highly
non-stationary regimes is of primary importance. Apparently, the existing

© Springer Nature Singapore Pte Ltd. 2018
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methodology which is appropriate for studying the stationary regimes and NNMs is
quite misleading when applied to the strongly non-stationary physical processes
characterized by a major energy transport between the different elements of the
coupled systems. Spontaneous formation of these highly non-stationary processes
can also be a result of some global bifurcation undergone by the spatially localized
regimes. Recently a novel type of NES was introduced based on an eccentric
rotator, inertially coupled to a primary structure with the freedom to oscillate or
rotate in a horizontal plane (Gendelman et al. 2012; Sigalov et al. 2012a, b). In the
same study by Sigalov et al. (2012b), authors have shown that nonlinear inertial
coupling between a linear oscillator and an eccentric rotator can lead to very
interesting interchanges between regular and chaotic dynamical behavior.

In the present section, we perform a thorough theoretical study of highly non-
linear, non-stationary regimes emerging in the 2D, locally resonant unit cell model
incorporating internal rotator in the limit of high energy excitations. The main focus
of the present paper is the analytical investigation of the emergence and bifurcations
of highly non-stationary regimes, manifested by the recurrent, bidirectional energy
transport (i.e., energy wandering between the axial and the lateral vibrations of the
unit cell model) in the limit of high energy excitations. Special emphasis of the
present study is devoted to the analytical investigation of the mechanism of
spontaneous transition from the regime of the unidirectional energy locking (en-
trapment) to the recurrent, complete energy channeling (i.e., high energy pulsations)
between the axial and the lateral vibrations of the 2D, unit cell model.

10.1.1 The Model

System under consideration is the 2D, unit cell, oscillatory model comprising a
locally resonant, outer element (i.e., single mass element containing internal rotator)
subject to the two-dimensional, nonlinear local potential. Scheme of the model
under consideration is illustrated in Fig. 10.1.

Fig. 10.1 Scheme of the 2D,
locally resonant, single cell
model
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For our model, we assume the following: (1) the motion of the system is
in-plane, (2) gravity is not taken into account, and (3) linear, viscous dissipation is
assumed for the internal rotator.

It is easy to show that the underlying Hamiltonian system is defined by the
Lagrangian:

L ¼ 1
2

Mþmð Þ
X2
i¼1

_x2i þm _hR _x2 cos h� _x1 sin hð Þþ
_hR
2

 !

�
X2
i¼1

1
2
kix

2
i þ

1
4
Kix

4
i

� �
; i ¼ 1; 2

ð10:1Þ

To account for the dissipation, introduced in the model, we use a regular
Rayleigh function,

D ¼ 1
2
c _h2 ð10:2Þ

The governing equations of motion are easily derived from (10.1) and (10.2)
using Lagrangian formalism,

Mþmð Þ€x1 � mR €h sin hþ _h2 cos h
� �

þ k1x1 þK1x
3
1 ¼ 0

Mþmð Þ€x2 þmR €h cos h� _h2 sin h
� �

þ k2x2 þK2x32 ¼ 0

mR€x2 cos h� mR€x1 sin hþmR2€h ¼ 0

ð10:3Þ

Here M stands for the mass of the outer element, m is the mass of the internal
rotator, R is the radius of the internal rotatory path (see Fig. 10.1), k1, k2—linear
stiffness coefficients of the horizontal and vertical springs applied on the outer
element, respectively, K1, K2—nonlinear stiffness coefficients, x1; x2—axial and
lateral deflections of the outer mass element, h—angular deflection of the internal
rotator (see Fig. 10.1), and c—linear damping coefficient of the internal rotator. To
bring system (10.3) into its non-dimensional form, we perform a regular system
rescaling:

s ¼ xst; xt ¼ Rni; e ¼ m
Mþm

; g ¼ c
mR2 xs

;

ji ¼ ki
x2

s Mþmð Þ ; eai ¼ KiR2

x2
s Mþmð Þ

ð10:4Þ
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Introducing (10.4) into (10.3), one arrives at the non-dimensional set of the
governing equations of motion,

n001 � e h00 sin hþ h02 cos h
� �þ j1n1 þ e a1 n

3
1 ¼ 0

n002 þ e h00 cos h� h02 sin h
� �þ j2 n2 þ e a2 n

3
2 ¼ 0

n002 cos h� n001 sin hþ h00 þ gh0 ¼ 0
ð10:5Þ

In the present work, we aim at studying the limit of high energy excitations
leading to the resonant, recurrent, and complete energy transport between the axial
and the lateral vibrations of the outer element as well as the spontaneous, unidi-
rectional energy localization.

To satisfy the conditions for the most fundamental resonance case (i.e., 1:1
resonance between the axial and the lateral deflections of the outer mass), we
assume the perfect symmetry conditions on the system under consideration, i.e.,
k1 ¼ k2 ¼ k; j1 ¼ j2 ¼ j; a1 ¼ a2 ¼ a:

Accounting for the aforementioned symmetry conditions and choosing xs ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=ðMþmÞp

yield the following symmetric system,

n001 þ n1 þ e a n31 ¼ e h00 sin hþ h02 cos h
� �

n001 þ n2 þ e a n32 ¼ �e h00 cos h� h02 sin h
� �

h00 þ gh0 ¼ n001 sin h� n002 cos h
ð10:6Þ

At this point, we note that e parameter which is according to (10.4) has a
physical meaning of mass ratio (i.e., ratio between the mass of the internal rotator
and the total system mass) is formally declared as a small system parameter
(0\e � 1). As is evident from (10.6), e—scales the magnitude of nonlinear terms
of the elastic forces applied on the outer element as well as the strength of the
coupling between the rotator and the outer mass. In the present study, we focus on
the analysis of the two peculiar non-stationary states.

Bidirectional, recurrent, energy channeling—corresponds to the complete,
recurrent energy transport from axial to lateral vibrations of the outer element
(controlled by the motion of the internal rotator) being initially excited strictly in the
axial (or lateral) direction.

Unidirectional, energy locking—corresponds to the permanent, unidirectional
energy localization in the outer element being initially excited strictly in the axial
(or lateral) direction.

In the following sections, we perform an extensive analytical and numerical
study of the resonant mechanisms leading to the aforementioned phenomena of
bidirectional, recurrent, energy channeling and unidirectional, energy locking and
their peculiar bifurcations leading to the spontaneous transitions from one state to
another. As it will become clear from the further analysis, despite the complexity of
the system under consideration, these mechanisms can be fully predicted by the
effective reduction of the global system dynamics on the slow invariant manifold
(SIM).
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10.1.2 Analytical Study

In the present section, we devise a singular, multi-scale, analytical procedure enabling
the reduction of the global system dynamics on the 1:1:1 resonance manifold of
(10.6). Special emphasis is given to the analytical description of the mechanism of
formation and annihilation of the resonant energy transport between the axial and the
lateral deflections of the outer element. Local and global bifurcation analysis of the
system dynamics reduced onto the 1:1:1 resonance manifold is considered.

10.1.2.1 Derivation of the Slow Flow System in the Vicinity of 1:1:1
Resonance Manifold

The asymptotic analysis of the dynamics in the vicinity of 1:1:1 resonance manifold
is performed by the method of complexification–averaging (C–A). This method
relies on complexification of the equations of motion, slow–fast partitioning of the
transient dynamics, and, finally, averaging in terms of the dominant frequency of
the fast components (Vakakis et al. 2008).

Following the C–A procedure, we introduce the complex coordinates corre-
sponding to the axial and lateral deflections of the outer mass,

wk ¼ n0k þ ink; k ¼ 1; 2 ð10:7Þ

Substitution of (10.7) into (10.6) yields the following set of equations of motion
(EOM) given in the complex form:

w0
1 � iw1 þ i

ea
8

w1 � w�
1

� �3¼ e h00 sin hþ h02 cos h
� �

w0
2 � iw2 þ i

ea
8

w2 � w�
2

� �3¼ �e h00 cos h� h02 sin h
� �

h00 þ gh0 ¼ w0
1 �

i
2

w1 þw�
1

� �� �
sin h� w0

2 �
i
2

w2 þw�
2

� �� �
cos h

ð10:8Þ

As it has been mentioned above, in the present study, we concentrate solely on
the resonant interaction (i.e., 1:1:1 resonance) between the axial and lateral motions
of the outer mass with the purely rotational motion of the internal device. To this
end, it is rather natural to introduce the following internal resonance relations
among the vibrational and rotational DOFs of the system

wk ¼ uk tð Þ exp itð Þ; k ¼ 1; 2; h ¼ tþ b tð Þ ð10:9Þ

where u1 tð Þ;u2 tð Þ are the slowly varying complex amplitudes of the axial and
lateral deflections duk tð Þ=dtj j � 1ð Þ, respectively, modulating the fast oscillations.
It is also worth noting that the first linear term of the rotational coordinate (h)
defined in (10.9), stands for the constant, resonant rotation of the internal device
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(rotator), while the second term (b) corresponds to the slow phase modulation of the
rotator response in the vicinity of the fundamental resonance. Following the C–A
procedure, we substitute (10.9) into (10.8) and average out the fast components
with respect to the dominant resonant frequency, yielding the following averaged
system

u0
k ¼ e i

3a
8

ukj j2uk þ
�ið Þk
2

b00 þ i 1þ b0ð Þ2
� �

exp ib sð Þð Þ
" #

; k ¼ 1; 2

b00 þ gb0 ¼ � 1
4

u�
1 exp ib sð Þð Þþu1 exp �ib sð Þð Þ� ��

�i u�
2 exp ib sð Þð Þ � u2 exp �ib sð Þð Þ� �" #

� g

ð10:10Þ

As is clear from (10.10), the first two modulation variables (u1, u2) are slowly
varying, while the third modulation variable (b) is the fast one. This property of the
modulated system under consideration makes it a perfect candidate for the singular
multi-scale analysis, thus allowing for the additional slow–fast scale decomposition
and order reduction.

Following the commonly applied approach of the slow–fast system decompo-
sition (see, e.g., Vakakis et al. 2008; Sigalov et al. 2012a), we proceed with the
straightforward multi-scale expansion with respect to the formal small system
parameter e in the form,

d �ð Þ
dt

¼ @ �ð Þ
@s1

þ e
@ �ð Þ
@s2

; uk sð Þ ¼ uk0 s1; s2ð ÞþO eð Þ;
b sð Þ ¼ b0 s1; s2ð ÞþO eð Þ

ð10:11Þ

Substituting (10.11) into (10.10) and expanding with respect to the like powers
of e yields in the leading-order (Oðe0Þ),

@uk0=@s1 ¼ 0; k ¼ 1; 2 ) uk0 ¼ uk0 s2ð Þ ð10:12Þ

Accounting for (10.11) and (10.12) in the third equation of (10.10) gives

@2b0
@s21

þ g
@b0
@s1

¼ � 1
4

u�
10 s2ð Þ exp ib0ð Þþu10 s2ð Þ exp �ib0ð Þ� �

�i u�
20 s2ð Þ exp ib0ð Þ � u20 s2ð Þ exp �ib0ð Þ� �" #

� g

ð10:13Þ

Equation (10.13) depicts the fast evolution of the modulated phase of the rotator
(b), while (uk0; k ¼ 1; 2) are the slowly varying functions which evolve with
respect to the slow timescale s2. In the present work, we aim at studying the slow
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evolution of the averaged flow. To this end, we proceed with the next order of the
multi-scale expansion Oðe1Þ applied on the first two equations of (10.10),

@uk0
@s2

¼ i 3a8 uk0j j2uk0 þ �ið Þk
2

@2b0
@s21

þ i 1þ @b0
@s1

� �2	 

exp ib0ð Þ; k ¼ 1; 2 ð10:14Þ

The derived set of Eqs. (10.13) and (10.14) depicts the multi-scaled evolution of
the averaged flow of (10.6). Clearly, Eqs. (10.13) and (10.14) contain the fast and
the slow evolving components of the averaged flow. To obtain the slow evolution
of the latter, we seek for the stationary points of (10.13) and (10.14) with respect to
the fast timescale (s1). Thus, requiring the nullification of all the time derivatives
with respect to the fast timescale yields

@b0 s1; s2ð Þ
@s1

¼ @2b0 s1; s2ð Þ
@s21

¼ 0 ) b0 ¼ B s2ð Þ ð10:15Þ

Plugging (10.15) into (10.13) and (10.14) leads to the following set of the slowly
evolving averaged flow

@uk0
@s2

� i 3a8 uk0 uk0j j2¼ �ið Þk�1

2 exp iBð Þ; k ¼ 1; 2

4gþ u�
10 s2ð Þ exp iB s2ð Þð Þþu10 s2ð Þ exp �iB s2ð Þð Þ� �

�i u�
20 s2ð Þ exp iB s2ð Þð Þ � u20 s2ð Þ exp �iB s2ð Þð Þ� �" #

¼ 0
ð10:16Þ

We note that the last equation of (10.16) establishes a special algebraic relation
between the slowly varying phase of the rotator (B) and slow evolution of the
modulation coordinates (uk0; k ¼ 1; 2). This algebraic equation defines the SIM of
the full averaged flow (10.10), whereas system (10.16) depicts the evolution of the
averaged flow as a whole on the SIM. This evolution approximates the dynamics of
the full system (10.6) in the vicinity of the 1:1:1 resonance surface.

10.1.2.2 Intrinsic Dynamics on a Slow Invariant Manifold (SIM)

In the present subsection, we analyze the global system dynamics on the SIM for
both the non-dissipative (g ¼ 0) and dissipative cases (g 6¼ 0). The ultimate goal of
the present section is the analytical description of the mechanism of formation of the
aforementioned regimes of bidirectional energy channeling as well as the unidi-
rectional energy locking.

B1. Non-Dissipative Case ðg ¼ 0Þ
It is rather natural to start the analysis of the dynamics on the SIM from the

simplest case of the linear elastic foundation.

10.1 Unit Cell Model: High Energy Pulsations 251



Linear elastic foundation ða ¼ 0Þ
In the case of a linear elastic foundation and zero dissipation, the slow system

(10.16) reads

@u10

@s2
¼ exp iBð Þ

2
;

@u20

@s2
¼ � i exp iBð Þ

2
u10 s2ð Þ exp �iB s2ð Þð Þþu�

10 s2ð Þ exp iB s2ð Þð Þ� �
þ i u20 s2ð Þ exp �iB s2ð Þð Þ � u�

20 s2ð Þ exp iB s2ð Þð Þ� �" #
¼ 0

ð10:17Þ

Interestingly enough, system (10.17) can be solved exactly. To show that we
introduce the new complex variable

Z ¼ u10 þ iu20 ¼ Zj j exp itð Þ ð10:18Þ

Thus, after some trivial algebraic manipulations on (10.17) brings it into the
more simplified form which can be expressed in terms of the new variable Z and the
slow modulated phase of the rotator B:

@Z=@s2 ¼ exp iBð Þ; Z� exp iBð Þþ Z exp �iBð Þ ¼ 0 ð10:19Þ

Introducing the first equation of (10.19) into the second one yields:

d Zj j2
� �
ds2

¼ 0 ) Zj j ¼ const ð10:20Þ

and

cos B s2ð Þ � t s2ð Þð Þ ¼ 0 ) B s2ð Þ ¼ t s2ð Þþ p mþ 1=2ð Þ; m ¼ 1; 2 ð10:21Þ

Using (10.21), we solve the first equation of (10.19):

t s2ð Þ ¼ �1ð Þm Zj j�1s2 þ t0; Zj j 6¼ 0 ð10:22Þ

Plugging (10.22) into (10.21) we get the explicit expression for B s2ð Þ:

B s2ð Þ ¼ �1ð Þm Zj j�1 s2 þ v0; Zj j 6¼ 0; m ¼ 1; 2 ð10:23Þ

where v0 ¼ t0 þ p 1=2þmð Þ. It can be easily shown that combining (10.19) with
(10.17) and (10.18) and accounting for (10.22), one arrives at the explicit solutions
for u10 and u20, reading
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uk0 s2ð Þ ¼ ik �1ð Þm Zj j
2 exp i �1ð Þm Zj j�1s2 þ v0

� �� �
þCk0; k ¼ 1; 2 ð10:24Þ

As is clear from the results of the stability analysis brought in Appendix, the
solutions are stable for m—odd and unstable for m—even. The derived solutions
depict the resonant, recurrent energy transport (beating) between the axial and the
lateral deflections of the outer element induced by the motion of the internal rotator.
Here we note that the response given by (10.24) is essentially nonlinear because of
the strong dependence of the modulation frequency on the amplitude of the
response Zj j. Moreover, it is worthwhile emphasizing that the depth of these
modulated response regimes is controlled by the constants of Ck0 and Zj j. Thus, for
some particular choice of Zj j and C2 (i.e., Zj j ¼ 2 C2j j), the full, recurrent energy
channeling from the axial to the lateral vibrations can be achieved.

Another interesting case corresponds to the stationary solution of (10.17), i.e.,
constant energy distribution between the axial and lateral vibrations of the outer
mass satisfying the following

u1 s2ð Þj j ¼ u2 s2ð Þj j ¼ const; \u1 s2ð Þ � \u2 s2ð Þ ¼ 1=2þmð Þp; m ¼ 1; 2

ð10:25Þ

Thus, in the case of the linear elastic foundation, the only possible mode of
energy transport between the axial and lateral vibrations of the outer mass can be
characterized by the harmonically (e.g., weakly and strongly) modulated orbits
given by (10.24). This result has a very important physical implication. Indeed, by
eliminating the nonlinear term in the local potential (a ¼ 0), we rule out the pos-
sibility of the unidirectional energy localization. This point will become clear in the
following subsection where the effect of nonlinearity introduced in the local
potential is discussed.

Nonlinear elastic foundation ( a[ 0)

Accounting for the nonlinear elastic foundation in the slow system (10.16), one
has,

@uk0
@s2

� i 3a8 uk0 uk0j j2¼ �ið Þk�1

2 exp iBð Þ; k ¼ 1; 2

i u20 s2ð Þ exp �iBð Þ � u�
20 s2ð Þ exp iBð Þ� �

þ u10 s2ð Þ exp �iBð Þþu�
10 s2ð Þ exp iBð Þ� �" #

¼ 0
ð10:26Þ

It can be easily shown that system (10.26) possesses the two integrals of motion.
The first integral reads,

u10j j2 þ u20j j2¼ N2 ð10:27Þ
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Using (10.27), it is convenient to introduce angular coordinates:

u10 s2ð Þ ¼ N cos H s2ð Þ exp id1 s2ð Þð Þ; u20 s2ð Þ ¼ N sin H s2ð Þ exp id2 s2ð Þð Þ
ð10:28Þ

Substituting (10.28) into the last equation of (10.26) yields

cos H� i sin H exp iDð Þð Þ exp i B� d1ð Þð Þþ
cos Hþ i sin H exp �iDð Þð Þ exp �i B� d1ð Þð Þ

" #
¼ 0 ð10:29Þ

where D ¼ d1 � d2. After some simple algebraic manipulations with (10.29), one
arrives at the following important relation,

cos B s2ð Þ � d1 s2ð Þ � j s2ð Þð Þ ¼ 0 ) B s2ð Þ
¼ p 1=2þmð Þþ d1 s2ð Þþ j s2ð Þ; m ¼ 0; 1

ð10:30Þ

where j ¼ tan�1 sin H cos D
cos Hþ sin H sin D

� �
. As it can be inferred from the results of the

stability analysis brought in Appendix, the branch of the SIM corresponding to m—
even is unstable while that of m—odd is stable. Using the angular representation of
(10.28) along with (10.29) allows for the reduction of (10.26) to the following
planar system:

H0 ¼ �1ð Þm cos D

2N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin D sin 2H

p

D0 ¼ 2rN2 cos 2H� �1ð Þm
N

cos 2H sinD

sin 2H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sinD sin 2H

p
� � ð10:31Þ

where r ¼ 3aN3

16 . As is evident from (10.31), the local and global bifurcations of the
two-dimensional flow on the phase plane (H;D) are solely governed by a single
system parameter r. It can be also shown that system (10.31) possesses an addi-
tional integral of motion,

H ¼ r cos4 Hþ sin4 H
� �þ �1ð Þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin 2H sin D

p
ð10:32Þ

It is important to note that system (10.32) defines the two independent planar
flows for the two distinct values of m (i.e., m—even, m—odd) and henceforth each
case should be analyzed separately. We show below that variation of the parameter
r leads to the peculiar local and global bifurcations. Further study of the system
dynamics will be fully concentrated on the analysis of (10.31) for both cases, i.e., m
—even and m—odd. Let us proceed with finding the fixed points of (10.31).
Apparently, fixed points of (10.31) admit the following set of algebraic equations
(by setting H0 ¼ D0 ¼ 0):
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cos D ¼ 0; cos 2H 2r sin 2H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin 2H sin D

p
� �1ð Þm sin D

� �
¼ 0 ð10:33Þ

System (10.33) possesses the two distinct sets of stationary points:

1ð Þ : D 1ð Þ
0 ¼ p 1=2þ lð Þ; H 1ð Þ

0 ¼ p=2 1=2þ kð Þ

2ð Þ : D 2ð Þ
0 ¼ p 1=2þ lð Þ; sin 2H 2ð Þ

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �1ð Þl sin 2H 2ð Þ

0

q
� �1ð Þmþ l

2
l ¼ 0

ð10:34Þ

where l ¼ r�1. It is worth noting that due to the periodicity of the right-hand side
of (10.31) (p periodicity in H and 2p periodicity in D), we restrict the analysis of
fixed points to the range of D 2 ½0; 2p�, H 2 ½0; p�. The first set of the stationary
points corresponds to the periodic motions in both axial and lateral directions with
equal amplitudes having the phase difference of D ¼ p

2 and D ¼ 3p
2 . The second set

of solutions corresponds to the localized nonlinear normal modes, where the
amplitude of the periodic response in, e.g., axial direction is significantly higher
than that of the lateral one. In fact, finding the explicit solutions of the second set of
(10.34) is a formidable task and beyond the scope of the current paper. However, as
it was already mentioned above, the global system dynamics is fully governed by a
single parameter r. Thus, in Fig. 10.2 (Upper Panel), we plot the solutions of
(10.34) versus the variation of the bifurcation parameter l ¼ r�1. Unlike the fixed
points given by the first set of (10.34), the localized solutions given by the second
set of (10.34) depend on l ¼ r�1 and their branches bifurcate from (H0 ¼ p=4).

As is clear from the results of the bifurcation diagram of Fig. 10.2a (Upper Panel)
corresponding to the stable branch of SIM (m—even), the two branches emanating
from (H0 ¼ p=4;D0 ¼ 3p=2) at lcr ¼ 0 correspond to the localized solutions.
Evidently enough, stationary solutions undergo a classical, subcritical, pitchfork
bifurcation. Red lines of the bifurcation diagram correspond to the unstable solu-
tions, while the solid lines correspond to the stable ones.

Interestingly enough, for the case of the unstable branch of the SIM (m—even), the
bifurcation diagram shown in Fig. 10.2b (Upper Panel) is qualitatively different. Thus,
the localized stationary solutions emanating from (H0 ¼ p=4;D0 ¼ p=2) undergo a
supercritical pitchfork bifurcation in contrast to the subcritical bifurcation obtained
in the previous case. Moreover, the critical bifurcation values differ between the two
cases (i.e., m—even and m—odd). In Fig. 10.2 (Lower Panel) and Fig. 10.3, we
illustrate the phase portraits of (10.32) for the two distinct values of m, namely,
m ¼ 0 and m ¼ 1, respectively. Here we note that the phase portraits are plotted in
the range D 2 0; 2p½ �, H 2 0; p=2½ �. As we have already noted above, the main goal
of the present study is to analyze the mechanism of formation of a highly
non-stationary regime of recurrent energy channeling between the axial and lateral
vibrations.
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In terms of the slow flow model (10.31), the aforementioned regime of recurrent
energy channeling corresponds to a special orbit that departs from H ¼ 0 and
reaches the value of H ¼ p=2. As it can be deduced from (10.28), these two
conditions ensure a complete energy exchange between the axial and lateral
oscillations of the outer element. This special type of trajectory is referred to in the
literature as a limiting phase trajectory (Manevitch et al. 2011; Manevitch and
Smirnov 2010). In Fig. 10.2a (Lower Panel), one can clearly see the existence of a
special orbit satisfying the first condition (i.e., the orbit departing from the point
where H ¼ 0).

This trajectory is denoted by a bold solid line. Apparently this orbit cannot lead
to a complete energy exchange between the axial and lateral deflections of the outer
mass as the trajectory by itself does not reach the value of H ¼ p=2 (which is a
necessary condition for the complete energy transfer).

JFig. 10.2 (Upper Panel) Solutions of (10.34) versus the variation of l a m—odd (stable branch of
SIM) b m—even (unstable branch of SIM). Stable branches of solution are denoted by the black
solid line, and unstable branches of solutions are denoted by the red solid line. (Lower Panel)
Phase portraits of (10.31) for unstable branch for a l ¼ 0:91 b l ¼ 1:21 c l ¼ 2 and
d l ¼ 3:33 l ¼ 0:55 LPTs are denoted by the black bold solid line

Fig. 10.3 Phase portraits of (10.31) for stable branch for a l = 0.55, b l = 0.593, c l = 0.667,
and d l = 3.33. LPTs are denoted by the black bold solid line
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In the present study, we refer to this kind of the phase trajectory as LPT of the
first kind. However, increasing the value of l above a certain critical value, one
observes a coalescence of the LPT of the first kind with a separatrix of a saddle
point (Fig. 10.2b Lower Panel). This leads to a global bifurcation, resulting in the
formation of the limiting phase trajectory of a qualitatively different type
(Fig. 10.2c, d Lower Panel). In the present study, we will refer to this trajectory as a
LPT of the second kind.

This type of response corresponds to the bidirectional, recurrent energy chan-
neling, while that of the first kind corresponds to the regime of unidirectional
energy locking in a single direction. As it will become evident from an inspection of
the results of Fig. 10.3 and further analysis, the case of m ¼ 1 is special and reveals
a very interesting global bifurcation undergone by the LPT which is different from
the commonly considered cases (Manevitch and Smirnov 2010; Manevitch et al.
2011). Thus, unlike the previous case (i.e., m—even) in Fig. 10.3a–c, we observe
the formation of the additional pair of fixed points which is clearly a result of a
subcritical pitchfork bifurcation of NNMs [Fig. 10.2a (Upper Panel)]. Obviously
enough, the LPT illustrated in Fig. 10.3a is of the first kind. However, choosing the
value of l above a certain threshold, one observes a completely different scenario
concerning the evolution of LPT of the first kind (Fig. 10.3a). Clearly, except the
regular trajectory of LPT emanating from H ¼ 0, there is a formation of an addi-
tional branch of the LPT encircling a stable center. In the present work, we will
refer to it as the LPT bubble. At some critical value of l, the separatrix coalesces
with the bubble as well as the lower and upper branches of LPT which results in the
reconnection of LPTs and transition to the LPT of the second kind (Fig. 10.3b–d).
To derive the analytical predictions for the formation of the LPT of the second kind
for both cases (i.e., m—even and m—odd), we resort to the second integral given in
(10.32). As is clear from the discussion above, substituting H ¼ 0 into (10.32)
yields the exact constant value of H H;Dð Þ corresponding to the branches of the
limiting phase trajectories,

H H ¼ 0;Dð Þ ¼ rþ �1ð Þm; m ¼ 0; 1 ð10:35Þ

Finding a critical value of r corresponding to the reconnection of LPTs is quite a
trivial task in the case of m—even (i.e., unstable branch of the SIM). Indeed,
requiring the passage of the LPT trajectory through a saddle point
(D ¼ p=2; H ¼ p=4), one arrives at the condition on the critical value of r,
yielding

2
ffiffiffi
2

p
� 1

� �
¼ rcr even ¼ l�1

cr even ð10:36:aÞ

Analytical derivation of the critical value of r corresponding to the formation of
LPT of the second kind is quite a non-trivial task for the case of m—odd (i.e., stable
branch of the SIM). Indeed as is clear from the phase portraits of Fig. 10.3, the
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global bifurcation of the LPT (i.e., the second transition) occurs when it passes

through a saddle point (Hð2Þ
0 ¼ Hð2Þ

0 sad, D
ð2Þ
0 ¼ 3p=2) given by the second set of

(10.34). This condition on the critical value of r in the case of m—odd can be
formulated implicitly as follows,

2 1� ffiffiffi
2

p� �þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin 2H 2ð Þ

0 sad rcr oddð Þ
� �r

cos4 H 2ð Þ
0 sad rcr oddð Þ

� �
þ sin4 H 2ð Þ

0 sad rcr oddð Þ
� � ¼ rcr odd ¼ l�1

cr odd ð10:36:bÞ

where H 2ð Þ
0 sad ¼ H 2ð Þ

0 sad rcr oddð Þ given implicitly by (10.34). Obviously enough,

derivation of the explicit solution of H 2ð Þ
0 sad rcr oddð Þ is a formidable task leading to

a rather cumbersome expression which is beyond the scope of the present study.

B2. Dissipative Case ðg 6¼ 0Þ
In the present and the following subsections, we analyze the dissipative flow of

the averaged system on the SIM.

Linear elastic foundation ða ¼ 0Þ
Accounting for a dissipative term and neglecting the nonlinearity in (10.16) yield

the following set of equations corresponding to the dissipative slow system evolution,

@u10

@s2
¼ exp iBð Þ

2
;

@u20

@s2
¼ � i exp iBð Þ

2
i u20 s2ð Þ exp �iBð Þ � u�

20 s2ð Þ exp iBð Þ� �
þ u10 s2ð Þ exp �iBð Þþu�

10 s2ð Þ exp iBð Þ� �" #
¼ �4g

ð10:37Þ

Similarly to the non-dissipative case of the linear elastic foundation, explicit
solution of system (10.37) can be derived. Thus, arguing as above, we use a new
complex variable given by (10.18) and rewrite (10.37) in the following form:

@Z=@s2 ¼ exp iBð Þ; Z� exp iBð Þþ Z exp �iBð Þ ¼ �4g ð10:38Þ

Introducing the first equation of (10.38) into the second one yields:

d Zj j2=ds2 ¼ �4g ) Z s2ð Þj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C � 4gs2

p
ð10:39Þ

Plugging (10.39) into (10.18) and accounting for (10.38) yield the explicit
solution for Z,

Z s2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C � 4gs2

p
exp itð Þ ð10:40Þ
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where the phase t is given by,

t ¼ � 1
2g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C � 4gs2 � 4g2

p
� tan�1 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C � 4gs2 � 4g2

g

s ! !
þ t0 ð10:41Þ

Substituting (10.40) and (10.41) into (10.38), one obtains the explicit solution
for B,

B s2ð Þ ¼ cos�1 2gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z20 � 4gs2

p !
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z20 � 4gs2 � 4g2

p
2g

� tan�1 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z20 � 4gs2 � 4g2

g

s0@ 1Aþ t0

ð10:42Þ

where C ¼ z20 ¼ Z 0ð Þj j2 and t0 ¼ arg Z 0ð Þð Þ. Clearly, expressions for u10 and u20
can now be given in the following integral forms,

u10 ¼
1
2

Zs2
0

exp iB nð Þð ÞdnþC10;

u20 ¼ � i
2

Zs2
0

exp iB nð Þð ÞdnþC20

ð10:43Þ

where C10 and C20 are the complex constants determined by the initial conditions.
Again, the derived set of solutions is stable for m—odd and unstable for m—even.
The obtained solutions depict the resonant energy exchanges between the axial and
the lateral motions accompanied with the constantly decaying amplitude of the
response (due to the presence of a dissipative term). In Sect. 10.1.3, we demonstrate
numerically the comparison of the dissipative flow reduced on the SIM with the true
response of the original system (10.6) given to the similar initial conditions.

Nonlinear elastic foundation ða[ 0Þ
Assuming a nonzero dissipation and accounting for the nonlinear term of the

local potential, the slow system (10.16) reads

@uk0
@s2

� 3ia
8 uk0 uk0j j2¼ �ið Þk�1exp iBð Þ

2 ; k ¼ 1; 2

i u20 s2ð Þ exp �iBð Þ � u�
20 s2ð Þ exp iBð Þ� �

þ u10 s2ð Þ exp �iBð Þþu�
10 s2ð Þ exp iBð Þ� �" #

þ 4g ¼ 0
ð10:44Þ
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Obviously enough, system (10.44) cannot be solved exactly. However, assuming
the low dissipation rate, we would like to demonstrate the peculiar mechanism of
spontaneous breakdown of energy localization in the axial direction resulting in the
formation of the recurrent, bidirectional energy channeling. Thus, applying the
initial excitation in the axial direction and assuming the initial energy level to be
above the localization threshold, one would expect that low-rate energy decay will
bring the flow to the critical energy threshold resulting in the spontaneous energy
delocalization. Here it is worthwhile noting that the passage through the localization
threshold is certainly a necessary but not a sufficient condition for the emergence of
recurrent energy channeling.

To emphasize this point better, we resort again to the Hamiltonian case, con-
sidered in the previous subsection. Revisiting the results of the phase plane dia-
grams obtained for both stable and unstable branches of the SIM, we note that the
mechanism of formation of the limiting phase trajectory of the second kind, gov-
erning the bidirectional, recurrent energy channeling qualitatively differs between
the two branches of the SIM (i.e., stable and unstable). Importantly, at the bifur-
cation point (i.e., coalescence of LPT with the separatrix), the central fixed point
(H ¼ p=4;D ¼ p=2) (see Fig. 10.2a–c) (Right Panel)) of the unstable branch of
SIM is a saddle point, while the central fixed point (H ¼ p=4;D ¼ 3p=2) (See
Fig. 10.3) of the stable branch of SIM turns out to be a center. Thus, in presence of
dissipation, the center of the stable branch of SIM (H ¼ p=4;D ¼ 3p=2) becomes
an attractor which prevents from the phase trajectory emanating from the initially
localized state (similarly to the limiting phase trajectory of the underlying
Hamiltonian system departing from H ¼ 0) to reach the vicinity of H ¼ p=2
(complete energy transport to the lateral vibrations). In other words, the dissipative
flow on the stable branch of SIM will not show the expected transition from
localization to transport as the phase trajectory escaping from the initially localized
state is being attracted by the central fixed point (H ¼ p=4;D ¼ 3p=2).

Interestingly enough, the flow on the unstable branch of the SIM shows a
qualitatively different behavior. Indeed, same type of the phase trajectory emanating
from the localized state can reach the vicinity of H ¼ p=2 being repelled from the
central saddle point (H ¼ p=4;D ¼ p=2). The dissipative flow on the stable and
unstable branches of the SIM is shown in Fig. 10.4a, b, respectively. Initial stage of
the response (before reaching the transition threshold) corresponding to the local-
ized state is designated with the blue solid line, while the intermediate stage of the
response (right after the passage of the transition threshold) is designated with the
red one. Here by the intermediate stage, we refer to some finite period of the
response starting at the moment when the phase trajectory reaches the transition
threshold and before its escape from the SIM designating the breakdown of 1:1:1
resonance. Here we note in passing that in the case of the dissipative flow, the
escape from the assumed 1:1:1 resonance is rather obvious due to the constant
energy decay bringing the flow to the critical energy threshold below which system
cannot sustain the full resonant rotations of the internal device.

As is clear from the results of the diagrams shown in Fig. 10.4a (stable branch of
SIM), right after the passage of the transition threshold by the phase trajectory
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(starting at the localized state), it is being attracted by the stable focus
(H ¼ p=4;D ¼ 3p=2) and therefore stays in its vicinity. However, phase trajectory
of the unstable branch (Fig. 10.4b) (emanating from the similar localized state) after
passing the threshold starts wandering in the vicinity of the two local states, i.e.,
H ¼ 0 (pure axial vibrations) and H ¼ p=2 (pure lateral vibrations). These recur-
rent transitions between the two local states clearly signify the formation of the
bidirectional, almost complete energy channeling. To depict analytically the
mechanism governing the damped transition from localized state to the recurrent,
energy channeling, we resort to the results of the underlying Hamiltonian system.
Thus, as is shown in the previous subsection, transition from energy localization to
the recurrent energy transport occurs at some particular threshold. As it was argued
above the mechanism of damped transitions from unidirectional localization to the
recurrent, bidirectional energy channeling can be expected only for the unstable
branch of SIM.

To show this, let us define the critical value of N (of the unstable branch) above
which energy is localized in one direction and consequently below which the
recurrent, bidirectional energy channeling is possible,

Ncr even ¼ 16
3alcr even

� �1=3

ð10:45Þ

Fig. 10.4 Phase portraits, a stable branch of SIM, b unstable branch of SIM. The blue solid line
corresponds to the initial stage of the response, and the red solid lines correspond to the
intermediate stage
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here lcr even is defined implicitly in (10.36.a). Performing some basic algebraic
manipulations on (10.44) and accounting for (10.27), one can show that the fol-
lowing holds,

dN2

ds2
¼ �2g ) N s2ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2
0 � 2gs2

q
ð10:46Þ

where N2 s2ð Þ ¼ u10 s2ð Þj j2 þ u20 s2ð Þj j2.
Starting at N0 [Ncr odd (localization) and assuming the adiabatically slow

energy dissipation, one would expect for a spontaneous transition from the unidi-
rectional energy channeling to the bidirectional one in the vicinity of threshold (i.e.,
N ¼ Ncr odd). The time interval required for the transition can be easily assessed
from (10.46) and yields the following,

Tanal cr ¼ 2gð Þ�1 N2
0 � N2

cr even

� � ð10:47Þ

Let us illustrate the mechanism by simulating the slow averaged flow given in
(10.44). To this end, we choose the initial conditions satisfying
u10 0ð Þj j2 þ u20 0ð Þj j2 [N2

cr odd for the fixed values of the parameters of nonlin-
earity a and dissipation g. In Fig. 10.5a, we illustrate an example of the damped
transition from energy localization to the recurrent energy transport. As is evident
from the results of Fig. 10.5a, the transient energy localization in the axial direction
breaks down spontaneously and is followed by the recurrent energy fluctuations
between the axial and the lateral vibrations.

In Fig. 10.5b, c, we illustrate the phase portraits of the underlying Hamiltonian
system (g ¼ 0) corresponding to the two distinct energy levels (these energy levels
satisfy N1 [Ncr and N2\Ncr, they are denoted on Fig. 10.5a with the red lines)
traversed by the dissipative system (10.44). Clearly enough, simulation of the slow
system (10.44) fully confirms the theoretical prediction. In the following section
(B-4), we confirm the preservation of this intriguing effect of spontaneous, spatial
energy delocalization in the full model (10.6).

10.1.3 Numerical Verifications

In the present section, we perform numerical verifications of the validity of a
theoretical model for the four distinct cases considered above.

B-1 Linear elastic foundation ða ¼ 0Þ, no dissipation ðg ¼ 0Þ
We start numerical verifications from a comparison of the analytical solution

derived for the slow flow reduced on the 1:1:1 resonance manifold (10.24) with the
time histories of the response computed for the full model (10.6) (Fig. 10.6).
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Fig. 10.5 a Time histories illustrating the damped transition from the unidirectional energy
localization in the axial direction to the recurrent energy transport in the dissipative slow model
(10.44), b and c phase portraits for unstable branch corresponding to the two distinct states of the
corresponding Hamiltonian system (g ¼ 0) at s2 ¼ 1:25 and s2 ¼ 21:8, respectively. The black
bold solid lines denote the LPTs for both time instants
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As is clear from the analytical solution given by (10.24), the depth of modulation
ranging from zero modulation (i.e., stationary response) and up to the complete
energy transport is fully controlled by the choice of the initial conditions on the
resonance manifold. In Fig. 10.6 (Left Panel) and (Right Panel), we illustrate the
time histories and the Lissajous curves of the response corresponding to complete,
bidirectional energy channeling. As it has been already explained in the theoretical
part, the case of the linear elastic foundation is special. That is the motion on the
1:1:1 resonance manifold can only contain harmonically modulated orbits with
recurrent, uniform, periodic energy exchange between the axial and the lateral
vibrations of the outer mass. In other words, no unidirectional energy localization is
possible in that case. Evidently enough results of numerical simulations of the full
model are in a very good agreement with the analytical solution.

B-2 Linear elastic foundation ða ¼ 0Þ, nonzero dissipation ðg 6¼ 0Þ
In the present subsection, we confirm the validity of the analytical solution

derived for the slow flow model (linear elastic foundation) in the presence of the
internal dissipation. Similarly to the previous subsection, we start with a compar-
ison of the analytical solution derived for the slow dissipative flow reduced on the
1:1:1 resonance manifold (10.37) with the time histories of the response computed
for the full model (10.6) (Fig. 10.7).

Fig. 10.6 (Left Panel) Time histories of the full unit cell model, a axial deflection, b lateral
deflection, c rotator angular coordinate. The blue solid line corresponds to the true system response
of (10.6), and the red solid line denotes the analytical solution (10.24). (Right Panel) Lissajous
curves corresponding to the numerical simulations of fully energy channeling. Initial conditions:
n1 0ð Þ ¼ 0:5; h0 0ð Þ ¼ 1; n01 0ð Þ ¼ n2 0ð Þ ¼ n02 0ð Þ ¼ h 0ð Þ ¼ 0. System parameters: e = 0.01
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As is clear from the results of Fig. 10.7, in the dissipative case, the transient
evolution of the system occurs in the vicinity of the resonance (1:1:1) manifold
which is followed by a spontaneous escape from resonance at approximately
s1 	 300. Obviously enough the proposed approximation becomes invalid far from
the (1:1:1) resonant surface and thus fails to predict the system evolution in the case
of the spontaneous escape from resonance.

Again, results of the numerical simulation of the full system (10.6) are in the
very good agreement with the analytical model in the transient regime in the
vicinity of 1:1:1 resonance surface.

B-3 Nonlinear elastic foundation ða[ 0Þ, zero dissipation ðg ¼ 0Þ
In the present section, we perform the numerical verifications of the validity of

the SIM analysis corresponding to the conservative case of nonlinear elastic
foundation. Let us start the discussion with the comparison of the recurrent energy
channeling predicted by the reduced, slow flow model with the results of numerical
simulations of the full model (10.6).

Fig. 10.7 Time histories of the full unit cell model, a axial deflection, b lateral deflection,
c rotator angular coordinate. The blue solid line corresponds to the true system response of (10.6),
and the red solid line denotes the analytical solution of (10.37). Initial conditions:
n1 0ð Þ ¼ 0:5; h0 0ð Þ ¼ 1; n01 0ð Þ ¼ n2 0ð Þ ¼ n02 0ð Þ ¼ h 0ð Þ ¼ 0, system parameters: e = 0.01,
η = 0.02
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The analytically predicted transition threshold (m—odd) from unidirectional
energy locking to the recurrent energy channeling is compared with the numerically
computed threshold (lcr odd ¼ 0:5882; lcr odd num ¼ 0:5536). In Fig. 10.8 (Upper
Panel), we plot the time histories of the response of the unit cell model subject to
the two distinct initial excitation levels, i.e., above and below the critical threshold
Ncr odd. As is evident from the results of Fig. 10.8, above the critical value of
Ncr odd [Fig. 10.8b, d (Upper Panel)], energy is localized in the axial direction;
however, below the critical value of Ncr odd [Fig. 10.8a, c (Upper Panel)], energy
gets recurrently channeled between both the axial and the lateral vibrations of the
outer element. In Fig. 10.8 (Lower Panel), we plot the Lissajous curves, corre-
sponding to the planar motion of the outer element for both regimes, i.e., recurrent
energy channeling (Fig. 10.8a—Lower Panel) as well as the unidirectional, per-
manent energy locking (Fig. 10.8b—Lower Panel). It is worth noting that analytical
predictions are confirmed by the numerical simulations of the full model.

B-4 Nonlinear elastic foundation ða[ 0Þ, nonzero dissipation ðg 6¼ 0Þ
The second dissipative case considered in the theoretical part which requires

numerical confirmation corresponds to the mechanism of the damped transition
from the unidirectional energy localization in the axial vibrations to the recurrent
energy transport between the axial and lateral vibrations of the outer element. The
first comparison test corresponds to the slow flow model (10.44). Thus, starting
with initial excitation (in the axial direction) on the unstable branch of the SIM
above the critical energy threshold—we plot the response of the dissipative, slow
flow (10.44) (Fig. 10.9).

In Fig. 10.9a, we plot the slow evolution of N given by (10.46). The horizontal,
red, solid line of Fig. 10.9a corresponds to the transition value of
N = Ncr_even = 0.4016 predicted by the analytical model. To confirm the persistence
of the mechanism of damped transition also in the original model, we plot the time
history of the response of (10.6) which corresponds to the unstable branch of the
SIM (Fig. 10.9b–d).

As is evident from the results of Fig. 10.9b–d, transient response of the outer
element is localized initially in the axial direction; however, when reaching the
theoretically predicted critical threshold (N
Ncr even) (see Fig. 10.9a) at
ðs1 	 Tanal cr ¼ 851Þ, the localized state breaks down resulting in the formation of
a new regime of the almost complete, bidirectional, recurrent energy channeling.

It is worth emphasizing that the theoretically predicted, damped transition
illustrated in Fig. 10.9b–d is quite in agreement with the predictions of the theo-
retical model. Another interesting result which comes out of the numerical simu-
lations of the present section is the persistence of the mechanism dictated by the
damped resonant transition occurring on the unstable branch of the SIM. On one
hand it is rather natural to expect that starting on the unstable branch of the SIM the
phase trajectory of the full model escapes from it and therefore the phenomenon of
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Fig. 10.8 (Upper Panel) Time histories of the modulated and localized response of the unit cell
model. a, c Recurrent energy transport between the axial and the lateral vibrations [a deflection of
the outer element in the axial direction and c deflection of the outer element in the lateral
direction]. b, d Permanent energy localization in the axial direction [b deflection of the outer
element in the axial direction and d deflection of the outer element in the lateral direction]. Thin
solid line denotes the true system response (10.6) while the bold solid line corresponds to the slow
flow model (10.26). System parameters: e = 0.01, η = 0, N = 0.5, a, c a = 69.15 b, d a = 106.67
(Lower Panel) Lissajous curves corresponding to the a recurrent energy transport and b energy
localization in the axial direction
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damped transition (predicted by the slow flow model) would not persist in the true
model. However, results of the numerous numerical tests clearly show that for some
sufficiently long, transient period, phase trajectory of the full dissipative flow can stay
sufficiently long in the vicinity of the unstable branch of the resonance manifold and
fully confirms the theoretically predicted scenario of the damped transition.

10.1.4 Concluding Remarks

Dynamic response of the locally resonant, unit cell model to high energy excitation
is considered analytically and numerically. Special analytical treatment based on the
singular multi-scale analysis is developed. The basic question of the existence and
bifurcations of highly non-stationary regime of massive energy transport as well as
the regime of unidirectional energy locking is addressed via the reduction of the
global flow on the SIM in the vicinity of the fundamental resonance manifold
(1:1:1). In the present study, we have shown that below a certain energy threshold,

Fig. 10.9 Damped transition from the unidirectional energy localization in the axial direction to
the recurrent energy transport a slow evolution of N given by (10.44), (b, c, d). Time histories of
the full system (10.6) illustrating the damped transition from the unidirectional energy localization
in the axial direction to the recurrent energy transport in the original model (10.6). Initial
conditions: n1 0ð Þ ¼ 0:41; h0 0ð Þ ¼ 1; n01 0ð Þ ¼ n2 0ð Þ ¼ n02 0ð Þ ¼ 0; h 0ð Þ ¼ p=2. System parameters:
a = 68.21, η = 0.0004, e = 0.01
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regime of a complete, recurrent energy channeling between the axial and the lateral
vibrations is possible; however, above that threshold energy channeling terminates
leading to the unidirectional energy locking. A spontaneous transition from local-
ized state to the recurrent bidirectional energy transport has been obtained for the
dissipative case. The aforementioned transition thresholds from energy localization
to energy transport as well as the local and global bifurcations undergone by the
highly nonlinear, pulsating response regimes are predicted analytically in the
frameworks of the LPT concept. Numerical simulations fully confirm the analytical
predictions concerning the structure of the response regimes and reveal some of
their peculiar local and global bifurcations.

10.2 Unit Cell Model: Low Energy Excitation Regimes

Of late, significant attention has been given to unidirectional devices that pass
acoustic energy in only one direction. Present study is devoted to the analysis of
two-dimensional, nonlinear energy transport emerging in the unit cell model subject
to the low energy initial excitation.

In contrast to the high energy excitation limit, the presently considered limit of
low energy excitations reveals the emergence of quite intriguing, highly nonlinear,
transient regimes of unidirectional energy channeling manifested by the partial and
complete, unidirectional energy flow from axial to lateral vibrations. Here we
demonstrate that the phenomena of recurrent energy channeling and energy locking
persist in the low energy limit as well. The ultimate goal of the present study is the
analytical investigation of the intrinsic mechanisms governing the aforementioned
phenomena of energy channeling in the low energy limit. This limit can be also
characterized by the absence of the resonant interactions between the internal
rotator and the motion of the outer element. To this end, we devise a special
analytical procedure based on a regular multi-scale expansion constructed for the
asymptotic limit of low energy excitations. Special emphasis is given to the analysis
of nonlinear phenomenon of complete, unidirectional energy transport from axial to
lateral vibrations.

10.2.1 Numerical Evidence of the Unidirectional Energy
Channeling

In the present section, we illustrate numerically the existence of some peculiar
response regimes manifested by partial or complete, unidirectional energy flow
from axial to lateral vibrations. In scope of the present work, we refer to this
phenomenon as to the (partial or complete) energy channeling depending on the
amount of energy transfer.
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Here it is important to note that initial excitation applied on the outer mass is
assumed solely in the axial direction. Interestingly enough, the portion of the
unidirectional energy transport from axial direction to the lateral one is fully con-
trolled by the initial tuning (i.e., initial angle) of the rotator. In the following
subsection, we perform a multi-scale analysis revealing the intrinsic mechanisms of
this peculiar type of energy transport.

To illustrate the phenomena of partial as well as a complete energy redirection
(from axial to lateral), we performed the two distinct numerical tests. In both tests,
we apply the same initial impulse on the outer mass (in the axial direction) for the
different tunings of the internal rotator. In Figs. 10.10 (Upper Panel) and 10.11
(Upper Panel), we illustrate the time histories of the response of the outer element
recorded in the axial and the lateral directions as well as the time histories of the
response of the internal rotator for the cases of complete and partial energy chan-
neling, respectively.

Lissajous curves corresponding to the motion of the outer mass (n2ðtÞ vs. n1ðtÞ)
are brought in Figs. 10.10 (Lower Panel) and 10.11 (Lower Panel) for the cases of
complete and partial energy channeling, respectively. Figures 10.10a (Lower Panel)
and 10.11a (Lower Panel) correspond to the transient phase of the response (initial
5% of the total running time), while Figs. 10.10b (Lower Panel) and 10.11b (Lower
Panel) correspond to the steady-state one (the final 5% of the total running time).

Results of Figs. 10.10 and 10.11 clearly show that based on the initial tuning of
the rotator, the total system energy initially imported in the axial direction can be
channeled either partially or completely to the lateral vibrations. In the following
subsection, we show analytically that the ratio of energy partition between the axial
and the lateral vibrations is fully controlled by the initial tuning of the rotator.
Moreover, all the mechanisms bidirectional and unidirectional energy channeling
can be completely described and predicted using a regular, multi-scale, asymptotic
procedure.

10.2.2 Theoretical Study

To describe analytically the mechanism of partial and complete energy channeling
as well as finding the necessary conditions for its existence, we perform an effective
reduction of the full system dynamics into a neighborhood of a 1:1 resonance
manifold. Assuming the 1:1 resonant interaction between the axial and the lateral
vibrations of the outer element, we introduce complex variables in the following
form,

w1 ¼ n01 þ i n1
w2 ¼ n02 þ i n2

ð10:48Þ

Substitution of (10.48) into (10.47) yields the following set of equations of
motion (EOM) represented in the complex form:
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w0
1 � iw1 þ i

e
8
a w1 � w�

1

� �3¼ e h00 sin hþ h02 cos h
� �

w0
2 � iw2 þ i

e
8
a w2 � w�

2

� �3¼ �e h00 cos h� h02 sin h
� �

w0
2 � i

w2 þw�
2

2

� �
cos h� w0

1 � i
w1 þw�

1

2

� �
sin hþ h00 ¼ �e l h0

ð10:49Þ

To analyze the dynamics of (10.49) in the limit of low energy excitations, we use
the regular, multi-scale asymptotic expansion in the form:

dð�Þ
dt ¼ @ð�Þ

@s0
þ e @ð�Þ

@s1
þO ðe2Þ;

wk sð Þ ¼ e wk0 s0; s1ð Þþ e2 wk1 s0; s1ð ÞþO e3ð Þ; k ¼ 1; 2
h sð Þ ¼ h0 s0; s1ð Þþ e h1 s0; s1ð ÞþO ðe2Þ

ð10:50Þ

Introducing (10.50) into (10.49) and expanding with respect to the like powers
of e yield, in zeroth order (O ðe0Þ),

@2h0
@s20

¼ 0 ð10:51Þ

Solution of (10.51) yields,

h0 s0; s1ð Þ ¼ A1ðs1Þs0 þA2ðs1Þ ð10:52Þ

Apparently, angular motion of the rotator given in (10.52) is a rapidly growing,
linear function. However, in scope of the present analysis, we are seeking for the
slow modulation equation depicting the slow evolution of the amplitudes and
phases. To this end, we set A1ðs1Þ to be an identically zero function (A1ðs1Þ � 0).
Proceeding further with a multi-scale expansion yields, in the first order of
approximation (O ðe1Þ),

@wk0

@s0
� iwk0 ¼ 0; k ¼ 1; 2

@2h1
@s20

¼ � i
2

w20 � w�
20

� �
cos h0 � w10 � w�

10

� �
sin h0

� � ð10:53Þ

JFig. 10.10 (Upper Panel) Time histories of the response of a single cell model (10.6) (complete
energy redirection), a axial deflection, b lateral deflection, c rotator angle. System parameters:
e ¼ 0:01; l ¼ 0:15; n1ð0Þ ¼ 0:01; hð0Þ ¼ 1:5708; n01ð0Þ ¼ n2ð0Þ ¼ n02ð0Þ ¼ h0 0ð Þ ¼ 0 (Lower
Panel) Lissajous curve (partial energy redirection) corresponding to the numerical test of
Fig. 10.3, a transient response (initial 5% of the total running time) and b steady-state response
(the final 5% of the total running time)
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Fig. 10.11 (Upper Panel) Time histories of the response of a single cell model (10.6) (partial
energy redirection), a axial deflection, b lateral deflection, c rotator angle. System parameters:
e ¼ 0:01; l ¼ 0:15; n1ð0Þ ¼ 0:01; hð0Þ ¼ 1:048; n01ð0Þ ¼ n2ð0Þ ¼ n02ð0Þ ¼ h0 0ð Þ ¼ 0. (Lower
Panel) Lissajous curve (partial energy redirection) corresponding to the numerical test of
Fig. 10.3a transient response (initial 5% of the total running time) and b steady-state response (the
final 5% of the total running time)
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Solution of the first equation of (10.53) yields

wk0 ¼ uk0 s1ð Þ eis0 ; k ¼ 1; 2 ð10:54Þ

Substituting (10.54) into the second equation of (10.53) and solving for h1 yield

h1 ¼ � i
2

u20 s1ð Þ eis0 � u�
20 s1ð Þ e�is0

� �
cos h0

�
� u10 s1ð Þ eis0 � u�

10 s1ð Þ e�is0
� �

sin h0
� ð10:55Þ

Proceeding to the next order approximation (O ðe2Þ), one obtains,
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0@ 1A
ð10:56Þ

Next, accounting for (10.54), we get rid of the secular terms in the first two
equations of (10.56) deriving the two slow flow equations corresponding to the
slow modulation of the amplitude and phase of axial and lateral coordinates of the
outer element

u0
10 s1ð Þ ¼ i

4
u10 s1ð Þ 1� cos 2h0ð Þ � i

4
u20 s1ð Þ sin 2h0

u0
20 s1ð Þ ¼ i

4
u20 s1ð Þ 1þ cos 2h0ð Þ � i

4
u10 s1ð Þ sin 2h0

ð10:57Þ

It is easy to see that combination of the third equation of (10.56) with system
(10.57) constitutes a slow flow model describing a slow modulation of amplitude
and phases of axial and lateral coordinates as well as the angle of the rotator. The
slow flow model under consideration reads

u0
10 s1ð Þ ¼ i

4 u10 s1ð Þ 1� cos 2h0ð Þ � i
4 u20 s1ð Þ sin 2h0

u0
20 s1ð Þ ¼ i

4 u20 s1ð Þ 1þ cos 2h0ð Þ � i
4 u10 s1ð Þ sin 2h0
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20 s1ð Þu10 s1ð Þþu20 s1ð Þu�

10 s1ð Þ� �
cos 2h0

0@ 1A
ð10:58Þ
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Indeed, despite the presence of a dissipative term, system (10.58) possesses an
integral of motion which is usually referred to in the literature as an “occupation
number.” This integral of motion reads:

u10 s1ð Þj j2 þ u20 s1ð Þj j2¼ N2 ð10:59Þ

The form of the first integral of motion allows for a very convenient change of
coordinates, leading to an angular representation.

u10 s1ð Þ ¼ N cos H s1ð Þ eid1 s1ð Þ

u20 s1ð Þ ¼ N sin H s1ð Þ eid2 s1ð Þ ð10:60Þ

Substituting (10.60) back into (10.58) and performing some trivial algebraic
manipulations yield:

@H
@s1

¼ 1
4
sin D sin 2h0

@D
@s1

¼ � 1
2
cos 2h0 � cos D sin 2h0 cot 2H½ �

@2h0
@s21

¼ �l
@h0
@s1

� N2

4
cos 2H sin 2h0 � cosD sin 2H cos 2h0ð Þ

ð10:61Þ

where D ¼ d1 � d2. It is also worthwhile emphasizing that by deriving system
(10.61), we successfully reduced the dimension of the phase space from six to four.
The underlying conservative system of (10.61) reads

@H
@s1

¼ 1
4
sin D sin 2h0

@D
@s1

¼ � 1
2
cos 2h0 � cos D sin 2h0 cot 2H½ �

@2h0
@s21

¼ �N2

4
cos 2H sin 2h0 � cos D sin 2H cos 2h0ð Þ

ð10:62Þ

System (10.62) possesses the following two integrals,

L ¼ 1
2
N2 sinD sin 2Hþ @h0

@s1
H ¼ � cos 2H cos 2h0 � cosD sin 2H sin 2h0 þ 4N�2 h020

ð10:63Þ

Using the first conserved quantity of (10.63), the four-dimensional slow flow
model (10.62) can be reduced to the three-dimensional phase space, yielding
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@H
@s1

¼ 1
4
sin D sin 2h0

@D
@s1

¼ � 1
2
cos 2h0 � cos D sin 2h0 cot 2H½ �

@h0
@s1

¼ L� 1
2
N2 sin D sin 2H

ð10:64Þ

We start the analytical treatment of (10.64) from the analysis of the stationary
points corresponding the stationary regimes, i.e., nonlinear normal modes (NNMs)
of the full model (47). Thus, seeking for the fixed points of the reduced slow flow
model (10.64), we equate all the time derivatives to zero
ð@H=@s1 ¼ @D=@s1 ¼ @h0=@s1 ¼ 0Þ. This leads to the following set of nonlinear
equations

sin D sin 2h0 ¼ 0

cos 2h0 � cos D sin 2h0 cot 2H ¼ 0

2L� N2 sin D sin 2H ¼ 0

ð10:65Þ

It is easy to show that system (10.65) has a solution only in the case of zero
angular momentum, i.e., L ¼ 0. Thus, assuming (L ¼ 0) and solving (10.65) one
arrives at the two sets of stationary points

D ¼ pn; h0 ¼ �1ð ÞnHþ pm
2 ; n;m 2 Z;m��odd

D ¼ pn; h0 ¼ �1ð ÞnHþ pm
2 ; n; k 2 Z ;m��even

ð10:66Þ

Before proceeding with the stability analysis of the fixed points (10.66), it is
important to make a note that the first set of fixed points cannot be attributed to any
possible normal mode of the full system. Obviously enough, internal rotator cannot
be stationary (as required by the stationary points analysis) as long as its orientation
is perpendicular toward the direction of the linear motion of the outer mass. Thus,
the first set of stationary points provided by the slow flow model (10.64) requires
farther clarification. To understand the origin for the emergence of this “strange” set
of stationary points, we bring both physical and mathematical reasoning. Thus, in
the limit of small-amplitude vibrations of the outer mass (considered in the present
study), the leading-order approximation does not account for the effect of the
inertial excitation applied on the internal rotator by the outer mass. Indeed, as is
clear from the devised asymptotical procedure, due to the assumed limit of small
energy vibrations of the outer element, the effect of the inertial excitation enters into
consideration only in the next order approximation. Thus, to arrive at the final
resolution concerning the essence of the first (“strange”) set of stationary points, we
resort to the next order approximation derived in (10.55). Substituting the first and
the second sets of stationary solutions (10.66) into (10.55) yields
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h1 s0; s1ð Þ ¼ �Nð�1Þk sin d1 s1ð Þþ s0ð Þ ðFirst set)
h1 s0; s1ð Þ ¼ 0 ðSecond set) ð10:67Þ

Clearly, the first set of fixed points of (10.66) corresponds to the low amplitude
ðO ðeÞÞ vibrations of the rotator, while the second one corresponds to the perfectly
periodic motion of the outer element with internal rotator being permanently ori-
ented toward the direction of motion of the outer element. Thus, the second set of
fixed points is the only one which can be related to the real, physical periodic
motion of the full system, i.e., nonlinear normal modes (NNMs) manifested by the
linear, periodic motion of the external element oscillating in the direction parallel to
the internal orientation of the rotator.

Before proceeding with the stability analysis of each set, it is important to clarify
once again that the second set of stationary points of (10.66) corresponds to the
perfectly periodic motion of the full system under consideration (10.47) where the
relative phase between the axial and the lateral motions is an integer multiple of p.
Interestingly enough the angular coordinate H which according to its definition
(10.60) governs the ratio of energy partition between the axial and the lateral
vibrations can assume arbitrary values. In fact this is an important result also from
the viewpoint of practical applications meaning that internal rotator can be tuned
such that it enables an arbitrary energy partition between the axial and the lateral
periodic motion given that the response is stable. Let us proceed with the linear
stability analysis of the stationary points corresponding to the second set of (10.66).

To this end, we assume small deviations ( eH; eD; eh0) in the vicinity of stationary
points:

D ¼ DS þ ~D; h0 ¼ h0S þ ~h0; H¼HS þ ~H ð10:68Þ

where DS; h0S;HS stand for the stationary points. Substituting (10.68) into (10.64)
and performing a trivial linearization, one arrives at the following linear system,

eH0eD0eh00
0@ 1A ¼

0 �1ð Þnsin 2h0Sð Þ
4 0

�1ð Þnþ 1

sin 2h0Sð Þ 0 1
sin 2h0Sð Þ

0 �1ð Þmþ 1

2 N2 sin 2h0Sð Þ 0

2664
3775 eHeDeh0
0@ 1A ð10:69Þ

The characteristic polynomial of the Jacobian matrix of (10.69) reads

k k2 þ 1
4

2 �1ð ÞmN2 þ 1
� �� �

¼ 0 ð10:70Þ

It is easy to show that the second set of stationary points is neutrally stable for
m—even and an arbitrary value of N. Here we also note that stability (or instability)
of the stationary points corresponding to the second set is independent of the values
of the stationary points (i.e., h0S and HS). It is worth noting that the general analysis
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of non-stationary regimes (e.g., weak and strong energy pulsations between the
horizontal and vertical vibrations of the outer element) remains a rather complex
problem. However, as we show below for a certain choice of the system parameters,
one can completely describe and predict analytically the emergence of the
intriguing phenomenon of “bidirectional energy channeling.” In the same study,
this special response has been defined as a complete, recurrent energy transport
from axial to lateral vibrations of the outer element (controlled by the motion of the
internal rotator) being initially excited in the axial direction. To demonstrate the
persistence of similar phenomena for the low energy limit (this limit is also man-
ifested by the lack of strong resonant interactions between the internal rotator and
the outer mass), we resort again to the analysis of the slow flow model (10.64)
under assumption of zero angular momentum L ¼ 0ð Þ. Before proceeding with the
analysis, we would like to make a note concerning this choice of the system
parameters, i.e., zero angular momentum. In fact L ¼ 0ð Þ corresponds to the very
important physical case where internal rotator is initially at rest. This special type of
initial condition has a very special practical implication in the design of the locally
resonant absorptive metamaterials and sonic structures, where at the initial state of
the system, all the internal devices (e.g., internal resonators) are at rest. Thus, for
instance, in various physical and mechanical models, vibration absorbers tuned to
protect the initially excited primary structure are assumed to be initially at rest. Our
system under consideration reads

@H
@s1

¼ 1
4
sin D sin 2h0

@D
@s1

¼ � 1
2
cos 2h0 � cos D sin 2h0 cot 2H½ �

@h0
@s1

¼ � 1
2
N2 sin D sin 2H

ð10:71Þ

It is easy to see that system (10.71) possesses an additional conserved quantity
C, given by

C ¼ 2N2 cos 2Hþ cos 2h0 ð10:72Þ

In fact (10.72) defines a projection of the entire phase space of (10.30) onto the
h0;Hð Þ plane. Four distinct projections (for the different values of N) are illustrated
in Fig. 10.12. To understand better the mechanism of bidirectional energy chan-
neling, it is convenient to define the two basic states for the projections under
consideration. The first state is defined asH � 0 which corresponds to the complete
energy localization in the axial direction, while H � p=2 is the second state cor-
responding to the complete energy localization in the lateral direction. As is clear
from the projections illustrated in Fig. 10.12, there exist three types of projection
curves: (1) curves that depart from a certain state (e.g., H � 0 or H � p=2) and
return to the same state without piercing the other one, (2) curves interconnecting
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both states [i.e., (H � 0) with (H � p=2)], (3) curves which do not pierce any of
the two states, and (4) curves which separate the two distinct families of projection
curves. For the sake of brevity, we define the first type of curves as returning, the
second type as channeling, the third type as disconnecting, and the last one as
separating. Obviously enough, the aforementioned regime of bidirectional, com-
plete energy channeling emerging between the axial and lateral vibrations corre-
sponds to the channeling curves of the projected phase space. In the subplots
(a) and (b) of Fig. 10.12, one can clearly see the special regions containing the
channeling curves. These are the regions of the special interest which will be
referred to as “channeling regions.” As it is also evident from the results of
Fig. 10.12, as we increase the value of N, the “channeling regions” gradually shrink
and at a certain critical value of N ¼ NCR, (Fig. 10.12c) completely disappears.
Increasing the value of N further (N[NCR) brings to a global change in the
topology of the projection. Thus, the whole family of the channeling curves van-
ishes giving rise to the formation of the third type of projection curves, namely the
disconnecting curves.

The first goal of the present subsection is in finding the threshold value of
N ¼ NCR corresponding to the destruction of the “channeling regions” as well as
calculating their zones of existence for each state in the case of (N�NCR). To this
end, we use the conserved quantity given in (10.72) and define

Fig. 10.12 Projection of the phase space of (10.64) onto the ðh0;HÞ plane for the different values
of N: a N = 0.25, b N = 0.5, c N ¼ 1=

ffiffiffi
2

p
, and d N = 1. Channeling path corresponding to the

complete energy transport is denoted with the bold lines, separatrices are denoted with the bold
solid lines, and regular paths are denoted with the thin solid lines. System parameters: L = 0
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h�0 ¼ h0ðH ¼ 0Þ; hþ
0 ¼ h0ðH ¼ p=2Þ ð10:73Þ

here h�0 stands for the values of the rotator angle corresponding to the first and the
second states.

Thus, for the first and the second states, Eq. (10.72) reads

H ¼ 0 : C� ¼ 2N2 þ cos 2h�0

H ¼ p
2
: Cþ ¼ �2N2 þ cos 2hþ

0

ð10:74Þ

Obviously enough, “channeling curves” should satisfy

C� ¼ Cþ ¼ C ð10:75Þ

Equation (10.75) yields the very important relations which will be used below,

cos 2hþ
0

� �þ cos 2h�0
� � ¼ 2C

cos 2hþ
0

� �� cos 2h�0
� � ¼ 4N2

ð10:76Þ

The critical value of N ¼ NCR can be easily derived from the solvability con-
ditions of the second equation of (10.76) yielding

NCR ¼ 2�1=2 ð10:77Þ

Using the solvability conditions of (10.74) and accounting for (10.75) yield the
conditions for the channeling interval,

C � 2N2
�� ��� 1 and Cþ 2N2

�� ��� 1 ð10:78Þ

From (10.74) to (10.78), one infers that channeling curves satisfy

2N2 � 1�C� 1� 2N2; N� 2�1=2 ð10:79Þ

Thus, the intervals of the “channeling regions” of both states can be readily
derived from (10.74)

H ¼ 0 : h�0L ¼
1
2
arc cos 1� 4N2� �þ pðn� 1Þ; h�0R ¼ p=2þ pn; N\NCR

H ¼ p
2
: h�0R ¼ p n; hþ

0L ¼ 1
2
arc cos 4N2 � 1

� �þ pn; N\NCR

ð10:80Þ

Here h�0L; h
�
0R stand for the left and the right boundaries of the “channels” of the

lower state (H ¼ 0), whereas hþ
0L ; h

þ
0R stand for the left and the right boundaries of
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the “channels” of the upper one (H ¼ p=2). As it was already mentioned above, the
diagrams of Fig. 10.12 show the projection of the entire phase space of (10.71) onto
the plane. Therefore, presence of the “channeling regions” on the projection plane
h0;Hð Þ does not necessarily mean that each trajectory of the full phase space of
(10.71) emanating from the lower or upper states and following one of the chan-
neling curves will reach the second state. There might be also a case where fol-
lowing one of the “channeling curves,” the true trajectory of the entire phase space
turns back and arrives at the original state through the same path without piercing
the upper one. This also means that the main condition for bidirectional, complete
energy transport is not satisfied. Thus, the final aim of the present subsection would
be to single out the special “channeling curves” corresponding to the pure energy
transport.

To derive the additional conditions on the phase trajectories corresponding to the
complete energy channeling, we use the second integral of motion of (10.63).
Arguing exactly as above, we compute the values of Hamiltonian for both states

H H ¼ 0ð Þ ¼ H� ¼ � cos 2h�0 ;H H ¼ p=2ð Þ ¼ H þ ¼ cos 2hþ
0 ð10:81Þ

Obviously, each phase trajectory corresponding to the complete energy chan-
neling must satisfy

H� ¼ H þ ¼ h ) cos 2hþ
0

� �þ cos 2h�0
� � ¼ 0 ð10:82Þ

Thus, accounting for (10.82) in the first equation of (10.76) singles out a pro-
jection curve belonging to the “channeling region” and satisfying (C ¼ 0). This
special projection curve is given by

2N2 cos 2Hþ cos 2h0 ¼ 0 ð10:83Þ

In fact Eq. (10.83) defines a special path corresponding to the complete energy
transport between the axial and the lateral vibrations of the outer element and is
denoted with the red bold color on the diagrams of Fig. 10.12. Apparently, there
exists a unique phase trajectory corresponding to the aforementioned bidirectional
energy channeling regimes which can be defined implicitly by the Hamiltonian.
Thus, from (10.83) one has,

h ¼ H� ¼ cos 2h�0 ¼ �2N2 ð10:84Þ

Substituting (10.84) into the expression for the Hamiltonian and setting L ¼ 0
yields,

2N2 � cos 2H cos 2h0 � cos D sin 2H sin 2h0 þN2 sin2 D sin2 2H ¼ 0

ð10:85Þ
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Thus, (10.85) together with (10.83) defines the unique phase trajectory corre-
sponding to the complete, recurrent energy transport. In Fig. 10.13, we plot the time
histories of the response of the slow flow model (10.64) corresponding to the
regime of complete recurrent energy channeling.

Here we mention in passing that the derived, special phase trajectory constitutes
the three-dimensional analog of the LPT introduced in the Part 1. As it was men-
tioned several times, the LPT was initially defined (Manevitch L.I. et al.) as a
special phase trajectory corresponding to the complete recurrent energy transport
emerging in the systems of two weakly coupled anharmonic oscillators (ranging
from linear and up to the purely nonlinear oscillators). The analytical approximation
of this unique higher dimensional LPT defined by (10.83) and (10.85) deserves a
separate study and is beyond the scope of the present book. Clearly, in the dissi-
pative case, angular momentum is a time varying quantity, reading

L s1ð Þ ¼ @h0
@s1

þ 1
2
N2 sin D sin 2H ð10:86Þ

Differentiating (10.86) with respect to a slow timescale yields,

dL
ds1

¼ 1
2
N2 @D

@s1
cos D sin 2Hþ 2

@H
@s1

sin D cos 2H
� �

þ @2h0
@s21

ð10:87Þ

Accounting for (10.61) in (10.87) and performing some simple algebraic
manipulations, one can show that (10.87) reduces to the following simple form

dL
ds1

¼ �l
@h0
@s1

ð10:88Þ

Integrating (10.88) once with respect to s1 allows one to find the following
useful relation,

L ¼ C � l h0 ð10:89Þ

where C ¼ L 0ð Þþ l h0 0ð Þ. Thus, accounting for (10.89), the dissipative slow flow
system can be reformulated as,

@H
@s1

¼ 1
4
sin D sin 2h0

@D
@s1

¼ � 1
2
cos 2h0 � cos D sin 2h0 cot 2H½ �

@h0
@s1

¼ C � l h0 � 1
2
N2 sin D sin 2H

ð10:90Þ

As it was explained above, seeking for the stationary points of the reduced slow
flow model (10.90), we set all the time derivatives to zero
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(@H=@s1 ¼ @D=@s1 ¼ @h0=@s1 ¼ 0). This leads to the following set of nonlinear,
algebraic equations,

sin D sin 2h0 ¼ 0

cos 2h0 � cosD sin 2h0 cot 2H ¼ 0

C � l h0 � 1
2
N2 sin D sin 2H ¼ 0

ð10:91Þ

Similarly to the conservative case, it is easy to show that system (10.91) pos-
sesses the following set of fixed points:

D ¼ p n; h0 ¼ C
l
; H ¼ �1ð Þnh0 þ pm

2
ð10:92Þ

Let us proceed with the linear stability analysis of the stationary points of

(10.92). To this end, we assume again small deviations ( eH; eD; eh0) in the vicinity of
stationary points:

Fig. 10.13 Time histories of the response of a reduced slowflowmodel (10.71) corresponding to the
complete recurrent energy channeling, a normalized angular coordinate (H) describing the
instantaneous energy partition between the axial and lateral vibrations of the outermass,b normalized
relative phase (D) between the axial and lateral vibrations of the outer mass, and c normalized internal
rotator angle (h0). System parameters: N ¼ 0:5; H 0ð Þ ¼ 0; D 0ð Þ ¼ p=2; h0 ¼ p=3
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D ¼ DS þ ~D; h0 ¼ h0S þ ~h0; H¼HS þ ~H ð10:93Þ

where DS; h0S;HS stand for the stationary points. Substituting (10.93) into (10.90)
and performing a trivial linearization in the vicinity of the stationary points of the
set (10.92), one arrives at the following linear system,

eH0eD0eh00
0@ 1A ¼

0 �1ð Þnsin 2h0Sð Þ
4 0

�1ð Þnþ 1

sin 2h0Sð Þ 0 1
sin 2h0Sð Þ

0 �1ð Þmþ 1

2 N2 sin 2h0Sð Þ �l

2664
3775 eHeDeh0
0@ 1A ð10:94Þ

The characteristic polynomial of the Jacobian matrix of (10.94), reads

k3 þ l k2 þ 1
4

2 �1ð ÞmN2 þ 1
� �

kþ l
4
¼ 0 ð10:95Þ

It is easy to show (e.g., Routh–Hurwitz stability criterion) that the set of fixed
points given in (10.92) is stable for (m—even) which as it has been pointed out
above corresponds to the true NNMs of the full model.

In Section III, we demonstrated the intriguing nonlinear phenomenon of unidi-
rectional, partial (Fig. 10.11), and complete (Fig. 10.10) energy channeling from
axial to lateral vibrations of the outer element. This section focuses on the analytical
description of the mechanism governing this nonlinear phenomenon. Authors
believe that the analysis of the present subsection provides very efficient and simple
theoretical tools which have a potential to facilitate the design of optimally tuned
locally resonant mechanical metamaterials and acoustic structures with the unique
dynamical properties enabling the efficient, 2D wave redirection and wave arrest.
Thus, based on the results of the previous subsection, we formulate a simple control
strategy based on the initial tuning of the internal rotator leading to the partial and
complete, unidirectional energy flow. To this end, we define the initial state of the
rotator as hI0 ¼ h0ð0Þ and the final state of the rotator as hF0 ¼ h0ðs1 ! 1Þ. At this
point, it would be rather convenient to define the map from the initial state of the
system to the final one. Thus, using (10.92) and the results of the stability analysis,
one obtains the following map,

DF ¼ pn; hF0 ¼ L 0ð Þþ lhI0
l

; HF ¼ �1ð ÞnL 0ð Þþ lhI0
l

þ pk ð10:96Þ

where HF ;DF ; hF0
� 


define the final (steady) state of the system. Clearly, results of
(10.96) can be used for initial tuning of the internal rotator such that at the final
state, system settles down at the required orientation where the external mass
performs the one-directional, steady-state oscillations (at a certain orientation angle
prescribed by the initial orientation of the rotator). In the same final state, internal
rotator is stationary and is oriented toward the direction of the 2D (linear) motion of
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the outer mass. Thus, to achieve the complete unidirectional energy channeling
from axial to lateral vibrations as is shown in Fig. 10.10 (Upper Panel), let us

consider the following initial state DI ¼ pn; hI0 ¼ pl=2�l
l ;HI ¼ 0; Lð0Þ ¼ l. Here we

note that the values of HI and DI are assumed to be known and correspond to the
initial excitation of the outer mass. In the considered case, we assume the initial
excitation of the outer mass applied strictly in the axial direction HI ¼ 0 (e.g.,
initial deflection). To achieve the complete energy transport from axial to lateral
vibrations for the given initial state, one should require that HF ¼ p=2. Plugging
the required value of HF into the last equation of (10.96), one arrives at the initial

value of the rotator angle (hI0 ¼ pl=2�l
l þ pk) that assures the required complete

energy transport. We note that in the special case of Lð0Þ ¼ 0, the initial value of
the rotator corresponding to the complete energy transport is independent of the
dissipation rate. In summary, we would like to stress that using (10.96) one can tune
the rotator for the arbitrary ratio of energy partition including the two limiting cases,
i.e., zero energy channeling (HF ¼ 0) and complete energy channeling (HF ¼ p

2). In
the following section, we confirm the results of analytical predictions for partial and
complete energy channeling with the numerical simulations of the full and reduced
models.

10.2.3 Numerical Verifications

In the present section, we perform numerical verifications of the validity of a
theoretical model devised in the previous section. In Fig. 10.14, we plot the time
histories of a simple periodic response (NNM) exhibited by the full model
(47) (assuming zero dissipation) and compare it with the predictions of stationary
analysis applied on the slow flow model (10.64). As is clear from the results of
Fig. 10.14, the analytical prediction of the stationary response derived from the
slow flow model depicts fairly well the response of the original one, and above all,
the correspondence of analytical and numerical models is very good. To verify the
occurrence of complete and incomplete recurrent energy channeling emerging in
the underlying Hamiltonian system, we performed the two additional numerical
runs. In Fig. 10.15a, we plot the response of the full (10.47) and the slow (10.71)
models. The time histories corresponding to the predicted regime of complete
(N\NCR ¼ 2�1=2) recurrent energy channeling (i.e., “limiting phase trajectory”) of
the slow flow model (10.71) are compared with these of the full model
(47) (Fig. 10.15, Upper Panel).

The time histories corresponding to the regimes of mild energy transport pre-
dicted by the analytical model (i.e., destruction of “Channeling Regions” for
N[NCR ¼ 2�1=2) are illustrated in (Fig. 10.15, Lower Panel). The results of
numerical simulations presented in Fig. 10.15 confirm the analytically predicted
transition in the response regimes from bidirectional energy channeling to the
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“unidirectional energy locking” manifested by the mild energy exchange between
the axial and lateral vibrations of the outer element and significant energy local-
ization in the axial direction. As it has been proved analytically in the previous
section, this transition from bidirectional energy transport to the unidirectional
energy locking is fully governed by the value of N. Let us proceed with the
comparison of the time histories of the true system response (10.47) with that of a
dissipative, reduced, slow flow model (10.90) for the two distinct cases, namely
complete energy channeling (Fig. 10.16, Upper Panel) as well as a partial energy
channeling (Fig. 10.16, Lower Panel). As is clear from the results of Fig. 10.16, the
derived slow flow model depicts fairly well the response of the full model and
above all faithfully predicts the emergence of both phenomena of complete as well
as the partial energy channeling. Evidently enough numerical simulations of the full
model (10.47) are in the very good correspondence with the analytical predictions
derived from the analysis of the reduced one (10.90).

In summary, we would like to stress once again that the results of Figs. 10.14,
10.15 and 10.16 fully confirm the validity of the analytical model as well as the
analytical predictions of the intrinsic dynamical mechanisms of partial and com-
plete, unidirectional energy channeling. Importantly, numerical simulations of the

Fig. 10.14 Time histories of the response of a single cell model (10.47) (stationary response
regime), a axial deflection, b lateral deflection, c rotator angle. The blue solid line corresponds to
the response of the full model while the red solid line is related to the response of the reduced slow
flow model (10.47). System parameters: e ¼ 0:01, n1 0ð Þ ¼ n2 0ð Þ ¼ 0:0071, h 0ð Þ ¼ p=4,
n01 0ð Þ ¼ n02 0ð Þ ¼ h0 0ð Þ ¼ 0
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present section confirm the main result of the analytical study showing that in the
final (steady) state of the response, energy distribution between the axial and the
lateral vibrations of the outer mass is completely controlled by the initial state of the
internal rotator.

10.2.4 Concluding Remarks

In the present work, we considered the dynamics of a unit cell model comprising an
outer mass incorporating internal rotator and mounted on the 2D, nonlinear elastic
foundation in the limit of low energy excitations. Special analytical treatment based
on the regular multi-scale expansion in the low energy limit is developed. Analysis
of the derived slow flow model reveals the peculiar mechanisms of the bidirectional
recurrent energy channeling for the Hamiltonian case as well as the (partial or
complete) unidirectional energy channeling in the dissipative one. Surprisingly
enough, the derived slow flow system is fully integrable. This property of the
system enabled to find certain symmetries of the system and significantly reduce its
complexity for the certain cases of fundamental and practical importance. Thus, in
the case of zero initial angular momentum (L ¼ 0), authors derived the global
analytical predictions of the mechanism of formation and bifurcations of highly
non-stationary regime of complete, recurrent energy transport (bidirectional energy
channeling) established between the axial and the lateral vibrations of the outer
mass. Here we would like to note that the case of (L ¼ 0) has a very important
practical implication as it corresponds to the case of zero initial (angular) velocity of
the internal rotator. This type of initial condition is commonly assumed in the
problems dealing with vibration and shock absorption, targeted energy transport,
design of absorptive metamaterials, and seismic protection devices. In all these
cases, the LPT concept plays a key role in the understanding and description of
strong non-stationary dynamics. Another interesting phenomena revealed and
analyzed in the present study correspond to the two-dimensional, unidirectional
partial, and complete energy channeling. Using the asymptotical model derived
from the regular multi-scale expansion in the limit of low energy excitations, we
describe the entire mechanism governing the partial and complete unidirectional
energy channeling. Moreover, the derived analytical tools enable the prediction of
the final states of permanent energy localization. The devised analytical prediction
can be further exploited for the design of smart acoustic metamaterials with the
unique dynamical properties enabling the 2D energy redirection and efficient spatial
wave arrest. Results of the analytical model and numerical simulations are found to
be in a very good correspondence.
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Fig. 10.15 (Upper Panel) Time histories of the response of a single cell model (47) (complete
recurrent energy channeling), a axial deflection, b lateral deflection, c rotator angle. The blue solid line
corresponds to the response of the full model, while the red solid line is related to the response
of the reduced slow flow model (10.71). System parameters: e ¼ 0:01; n1 0ð Þ ¼ 0:005;
h 0ð Þ ¼ 1:0472;n2 0ð Þ ¼n01 0ð Þ ¼ n02 0ð Þ ¼ h0 0ð Þ ¼ 0. (Lower Panel) Time histories of the response
of a single cell model (10.47) (incomplete recurrent energy channeling), a axial deflection, b lateral
deflection, c rotator angle. The blue solid line corresponds to the response of full model, and red
solid line is related to the response of the reduced slow flow model (10.71). System
parameters: e ¼ 0:01; n1 0ð Þ ¼ 0:01; h 0ð Þ ¼ 1:5708; n2 0ð Þ ¼ n01 0ð Þ ¼ n02 0ð Þ ¼ h0 0ð Þ ¼ 0
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Appendix

Stability of both branches of the SIM can be directly inferred from the Eq. (10.13),

@2b

@s21
þ g

@b
@s1

þ g ¼ � 1
4

u�
10 s2ð Þ exp ibð Þþu10 s2ð Þ exp �ibð Þ� �

�i u�
20 s2ð Þ exp ibð Þ � u20 s2ð Þ exp �ibð Þ� �" #

ð10:97Þ

Introducing the new coordinates,

Z ¼ u10 þ iu20 ¼ Zj j exp itð Þ; w s1ð Þ ¼ b s1; s2ð Þ � t s2ð Þ ð10:98Þ

we rewrite (10.97) in the more compact form,

@2w

@s21
þ g

@w
@s1

þ Z s2ð Þj j
2

cos wð Þ ¼ �g ð10:99Þ

Equation (10.99) is the well-known equation of the damped mathematical
pendulum driven by the constant external torque. The fixed points (wm) of (10.99)
satisfy

wm ¼ arc cos 2g
Z s2ð Þj j

� �
þ pm; g� Z s2ð Þj j=2; m 2 Z ð10:100Þ

These fixed points define the branches of the SIM which correspond to the state
of the exact 1:1:1 resonance. Using the straightforward, linear stability analysis of
(10.99), one can easily show that m—odd corresponds to the stable branch of SIM
while m—even to the unstable one.

JFig. 10.16 (Upper Panel) Time histories of the response of a single cell model (10.47) (complete
energy redirection), a axial deflection, b lateral deflection, c rotator angle. The blue solid line
corresponds to the response of full model, and red solid line is related to the response of the
reduced slow flow model (10.90). System parameters: e ¼ 0:01; l ¼ 0:15; n1ð0Þ ¼ 0:01;
hð0Þ ¼ 1:5708; n01ð0Þ ¼ n2ð0Þ ¼ n02ð0Þ ¼ h0 0ð Þ ¼ 0. (Lower Panel) Time histories of the response
of a single cell model (10.47) (partial energy redirection), a axial deflection, b lateral deflection,
c rotator angle. The blue solid line corresponds to the response of full model, and red solid line is
related to the response of the reduced slow flow model (10.90). System parameters:
e ¼ 0:01; l ¼ 0:15; n1ð0Þ ¼ 0:01; hð0Þ ¼ 1:048; n01ð0Þ ¼ n2ð0Þ ¼ n02ð0Þ ¼ h0 0ð Þ ¼ 0
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Chapter 11
Nonlinear Targeted Energy Transfer
and Macroscopic Analogue
of the Quantum Landau-Zener Effect
in Coupled Granular Chains

11.1 Introduction

Resonance is the main mechanism for energy propagation in spatially periodic
linear/nonlinear systems. For the case of two weakly coupled identical Hamiltonian
oscillators in resonance, any amount of energy imparted to one of the oscillators
gets transferred back and forth between these oscillators with a frequency pro-
portional to the coupling. On the other hand, localization of energy is also possible
in such systems provided that resonance is broken. This phenomenon is trivial for
linear systems through the use of structural disorder. However, for nonlinear sys-
tems, it has been shown that the inherent nonlinearity plays a “double game”
(Kopidakis and Aubry 1999, 2000a, b; Morgante et al. 2002; Johansson et al. 2002;
Aubry et al. 2001) when one attempts to localize energy in one of the oscillators, in
the sense that nonlinearity can either restore the resonance among the oscillators or
maintain the resonance breakup.

In nonlinear spatially periodic systems, localized nonlinear modes can be formed.
These modes are referred as intrinsic localized modes or discrete breathers—DBs
(Campbell and Peyrard 1990; Scott 1999). Focusing and transport of energy through
discrete breathers can find application to a broad range of physical, chemical, and
biological systems. For example, in chemical systems the concept of DB has been
introduced in studies of the vibrational states of molecules (Scott 1999), whereas
in physics it has been applied in studies of nonlinear lattice problems (Flach and
Willis 1998; Aubry 1997; Kopidakis et al. 2001a, b). Various other systems have
also experienced DBs, such as waveguide arrays (Eisenberg et al. 1998), low-
dimensional crystals (Swanson et al. 1999), antiferromagnetic spin lattices (Sato and
Sievers 2004), underdamped Josephson-junction arrays (Trias et al. 2000) and
Josephson-junction ladders (Binder et al. 2000), charge-transfer solids, photonic
structures and micromechanical oscillator arrays (Campbell et al. 2004), a-helices
(Elder et al. 2004), nonlinear networks proteins (Juanico et al. 2007), and a-uranium
systems (Manley et al. 2006).
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The formation of DBs in ordered granular media is, however, a relatively new
area of study. The dynamics of granular media has been the subject of considerable
attention among the engineers and scientists. One of the prime reasons lies in their
highly tunable dynamical properties which can, indeed, range from being weakly
nonlinear and smooth (when these media are highly pre-compressed) to being
strongly nonlinear and non-smooth (when there is weak or absence of
pre-compression) (Nesterenko 2001). In fact, uncompressed ordered granular media
have been characterized as “sonic vacua” (Nesterenko 2001) since they possess
zero speed of sound (in the classical sense) due to complete lack of linearized
acoustics. In spite of this, it was shown that this type of ordered granular media
possesses interesting nonlinear dynamics in the form of solitary waves (Nesterenko
2001), nonlinear traveling waves (Starosvetsky and Vakakis 2010), nonlinear
normal modes (Jayaprakash et al. 2011a, b), and countable infinities of resonance
and anti-resonance phenomena (Jayaprakash et al. 2011a, b:2). Some recent studies
related to DBs in granular crystals include metastable breathers in one-dimensional
acoustic vacua (Sen and Krishna Mohan 2009); DBs in compressed granular chains
at interfaces between diatomic chains and monoatomic chains (Hoogeboom et al.
2010); and wave localization phenomena (Job et al. 2009) and localized breathing
modes (Theocharis et al. 2009) in granular chains with mass defects.

The majority of published works on ordered granular media concern
one-dimensional media. Starosvetsky et al. (2012) analyzed the dynamics of two
weakly coupled, strongly nonlinear granular chains with no pre-compression, and
identified three different mechanisms for complete and recurrent energy exchanges.
These mechanisms involved the excitation of nonlinear beat phenomena involving
spatially periodic traveling waves, standing localized breathers, or propagating
localized breathers. Rather, in the present subsection we focus on targeted energy
transfer from an excited to an absorbing chain, and thus on localization of energy in
a non-excited initially granular chain instead of beating phenomena leading to
recurring energy exchanges. In a more general context, this work aims to be a first
step toward studying nonlinear irreversible energy transfer and passive wave
redirection in weakly coupled, highly discontinuous and strongly nonlinear ordered
granular media. Irreversible energy transfer can be regarded as targeted energy
transfer—TET, which has gained much attention in the recent literature (Kosevich
et al. 2007, 2008, 2009; Kopidakis et al. 2001a, b; Maniadis and Aubry 2005;
Manevitch 1999). However, unlike previous studies of weakly coupled oscillatory
chains, the dynamical systems considered herein incorporate both non-smooth
effects due to possible separations between neighboring beads (granules), as well as
strongly nonlinear interparticle Hertzian interactions. We show that these systems
exhibit very rich and complex dynamics that, however, can be accurately captured
by analytical approximations. Specifically, we will demonstrate that any particular
amount of energy propagating as a discrete breather in one of the interacting
granular chains can be almost completely and irreversibly transferred to another
weakly coupled chain.
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11.2 System Description

The system shown in Fig. 11.1 consists of two semi-infinite weakly coupled,
uncompressed ordered homogeneous granular chains mounted on linear elastic
foundations and coupled by weak linear stiffnesses. Each chain consists of a
number of identical linearly elastic spherical granular beads, which are in touch
with one another, so their Hertzian interactions are essentially nonlinear (i.e.,
nonlinearizable); moreover, in the absence of compression bead separations may
occur leading to collisions and providing an additional source of strong nonlin-
earity. Here, we denote by k1 and k2 the stiffness coefficients of the linear elastic
foundations and of the linear coupling elements, respectively, and assume weak
coupling by imposing the condition k1 � k2. In addition, we assume that the beads
of both chains are constrained to move in the horizontal direction only, and that no
dissipative forces exist in the system.

Assuming Hertzian contact law interaction between beads, the kinetic and
potential energies of the two semi-infinite granular chains are defined as follows:

T ¼ 1
2
m
X1
n¼1

_xnð Þ2 þ 1
2
m
X1
n¼1

_ynð Þ2

U ¼ 2
5
Eð2RÞ1=2
3ð1� m2Þ

X1
n¼1

xn � xnþ 1ð Þ5=2þ
h i

þ 2
5
Eð2RÞ1=2
3ð1� m2Þ

X1
n¼1

yn � ynþ 1ð Þ5=2þ
h i

þ 1
2
k1

X1
n¼1

xnð Þ2 þ 1
2
k1

X1
n¼1

ynð Þ2 þ 1
2
k2

X1
n¼1

xn � ynð Þ2

ð11:1Þ

Fig. 11.1 Schematic of the
weakly coupled homogeneous
granular chains on elastic
foundations

11.2 System Description 295



where the variables xn and yn denote the displacements of the n-th beads for the
lower and upper chains, respectively, m denotes the mass of each spherical bead,
E its elastic modulus, R its radius, and m the Poisson’s ratio of the linearly elastic
material of the beads. We assume that all the beads have the same material prop-
erties. The subscript (+) in (11.1) indicates that only nonnegative values in the
parentheses should be taken into account, with zero values being assigned other-
wise; this accounts for possible separations between beads that may occur in the
absence of compression. Then, the equations of motion for this system can be
expressed in following non-dimensionless form:

€xn þ xn þ 2ek xn � ynð Þ ¼ ae3=4 xn�1 � xnð Þ3=2þ � xn � xnþ 1ð Þ3=2þ
h i

€yn þ yn þ 2ek yn � xnð Þ ¼ ae3=4 yn�1 � ynð Þ3=2þ � yn � ynþ 1ð Þ3=2þ
h i

n ¼ 1; 2; 3; . . .

ð11:2Þ

In (11.2), a is the normalized stiffness coefficient of the nonlinear Hertzian
interaction between the beads of each chain, k the normalized parameter scaling the
linear coupling between chains and 0\e � 1 the small scaling parameter of the
problem. We assume that an impulsive excitation is applied to the first bead of the
lower chain which is referred to as the “excited chain”, whereas the upper chain is
initially at rest and is designated as the “absorbing chain” . A vectorized
fourth-order Runge-Kutta time integration scheme is used to numerically calculate
the dynamics of system (11.2).

11.3 Recurrent Energy Exchange Phenomena
in the System of Coupled Granular Chains

As a first step, we apply an initial impulse to the first bead of the excited chain and
numerically compute the bead responses of the two chains. In Fig. 11.2, we plot the
relative displacement profile of each bead both in the excited and absorbing chains.
The results clearly depict that nearly complete but reversible energy exchange is
occurring between the two chains. Interestingly enough, this repetitive energy
exchange is caused by the excitation of nonlinear beat phenomena, whereby ini-
tially all input energy is localized in the excited chain, but with progressing time
nearly all of this energy gets transferred to the absorbing chain, as energy is almost
completely “drained” from the excited chain. At a later phase of the dynamics, the
energy gets transferred back to the excited chain, after which this energy exchange
cycle repeats itself recurrently. We note that this repetitive energy exchange occurs
in the absence of dissipative forces in the system. Now, we would like to analyt-
ically study these almost complete and recurrent energy exchanges, which are
similar to nonlinear beats in weakly coupled FPU chains described in the Sect. 11.5
with using the LPT concept. In the following analysis, we focus only in the case of
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1:1 internal resonance, i.e., when the oscillations of the beads of the two chains
possess nearly identical frequencies. To carry the analysis, we will employ the
complexification-averaging (CX-A) technique (Manevitch 1999) and then applied
to various problems related to passive nonlinear targeted energy transfer (Vakakis
et al. 2008).

To this end, we rewrite Eq. (11.2) as follows:

€xn þ xn ¼ ae3=4 xn�1 � xnð Þ3=2þ � xn � xnþ 1ð Þ3=2þ
h i

þ 2ekyn

€yn þ yn ¼ ae3=4 yn�1 � ynð Þ3=2þ � yn � ynþ 1ð Þ3=2þ
h i

þ 2ekxn
ð11:3Þ

Introduce the condition of 1:1 internal resonance, and apply the CX-A
methodology (Manevitch 1999; Vakakis et al. 2008). To this end, we introduce
the following new complex variables:

_xn þ ixn � wx
n; _yn þ iyn � wy

n; _xn � ixn � wx�
n ; _yn � iyn � wy�

n ð11:4Þ

where asterisk denotes complex conjugate and i ¼ ð�1Þ1=2. By relations (11.4), we
implicitly assume that a condition of 1:1 resonance exists between the bead
oscillations of the two chains and that all beads oscillate with normalized frequency

Fig. 11.2 Numerical simulation of the dynamics of (11.2): a Relative displacements (xn−xn+1)
and b (yn−yn+1) of the first 100 beads of the two chains for e = 0.05, a = 10, k = 1.05, and initial
conditions xn ¼ yn ¼ _xn ¼ _yn ¼ 0; n ¼ 1; 2; . . . except x1 ¼ e1=2V0; V0 ¼ 1
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equal to unity. The transformation of variables ð _xn; xnÞ ! wx
n corresponds the

transfer to a convenient complex representation of the phase plane of the i-th
particle in terms of varying amplitude and phase. In physics and engineering, this
representation is known as phasor (phase vector) possessing the information (in a
single complex variable) about the amplitude and phase variation of the oscillatory
response rather than keeping separately the displacement and velocity. Thus, the
filed wx

n can also be viewed as a rotating coordinate system (polar coordinate
system) when ð _xn; xnÞ as a stationary frame. These complex conjugate linear
combinations of displacement and velocities can be visually presented as vectors of
equal length rotating in opposite directions.

From (11.4), we can represent xn; _xn; €xn; y; _yn and €yn as follows:

xn ¼ 1
2i

wx
n � wx�

n

� �
; yn ¼ 1

2i
wy
n � wy�

n

� �
; _xn ¼ 1

2
wx
n þwx�

n

� �
; _yn ¼ 1

2
wy
n þ wy�

n

� �
;

€xn ¼ dwx
n

dt
� i
2

wx
n þwx�

n

� �
; €yn ¼

dwy
n

dt
� i
2

wy
n þ wy�

n

� �
ð11:5Þ

Substituting (11.4) and (11.5) into (11.3) and performing simplifications, we
obtain the following system of first-order complex equations, which is still exact
and completely equivalent to (11.2):

dwx
n

dt
� iwx

n ¼ ae3=4
wx
n�1 � wx�

n�1

� �
2i

� wx
n � wx�

n

� �
2i

� �3=2
þ

(

� wx
n � wx�

n

� �
2i

� wx
nþ 1 � wx�

nþ 1

� �
2i

� �3=2
þ

)
� iek wy

n � wy�
n

� �
dwy

n

dt
� iwy

n ¼ ae3=4
wy
n�1 � wy�

n�1

� �
2i

� wy
n � wy�

n

� �
2i

� �3=2
þ

(

� wy
n � wy�

n

� �
2i

� wy
nþ 1 � wy�

nþ 1

� �
2i

� �3=2
þ

)
� iek wx

n � wx�
n

� �
ð11:6Þ

Now, we introduce the multiple scales method to obtain the approximate solu-
tion of (11.6) under condition of 1:1 resonance. To leading order, we assume the
existence of two timescales in the dynamics, namely a fast timescale s0 ¼ t and a
slow timescale, s1 ¼ es0. The fast timescale is the characteristic timescale of
oscillations governed by the linear foundations of the two chains, whereas the slow
timescale is the characteristic timescale governing the dynamics of nonlinear energy
exchanges between the two chains. Rescaling the complex variables in (11.6) and
expanding in asymptotic series as follows:
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wx
nðtÞ ¼ e1=2 wx

n0ðs0; s1; . . .Þþ ewx
n1ðs0; s1; . . .Þþ . . .

� �
wy
nðtÞ ¼ e1=2 wy

n0ðs0; s1; . . .Þþ ewy
n1ðs0; s1; . . .Þþ . . .

� �
d
dt

¼ @

@s0
þ e

@

@s1
þ . . .

ð11:7Þ

Substituting into (11.6) and matching terms multiplying different powers of the
small parameter e, we obtain a hierarchy of subproblems governing the dynamics at
different approximations.

Considering O e1=2
� �

terms, we derive the following leading-order
approximation:

@wx
n0

@s0
� iwx

n0 ¼ 0 ) wx
n0 ¼ ux

no s1ð Þ exp is0ð Þ
@wy

n0

@s0
� iwy

n0 ¼ 0 ) wy
n0 ¼ uy

no s1ð Þ exp is0ð Þ
ð11:8Þ

Viewed in a different context, (11.8) represents a slow/fast partition of the
dynamics of (11.6) or (11.2), with the complex exponential term exp is0ð Þ repre-
senting the fast oscillating parts of the responses of the beads of the two chains (at
the common fast frequency unity), and ux;y

no s1ð Þ the slow envelopes (modulations) of
the fast oscillations.

Proceeding to the Oðe3=2Þ approximation, we derive the following system, which
yields the following averaged slow flow system:

i
@ux

n0

@s1
¼ ea Fx

n�1ð Þ0 Fx
n�1ð Þ0

��� ���1=2�Fx
nð Þ0 Fx

nð Þ0
��� ���1=2	 


þ ekuy
n0

i
@uy

n0

@s1
¼ ea Fy

n�1ð Þ0 Fy
n�1ð Þ0

��� ���1=2�Fy
nð Þ0 Fy

nð Þ0
��� ���1=2	 


þ ekux
n0

ð11:9Þ

where

ea ¼ a � c1=2p; ek ¼ kc2

c1 ¼
I
2p

cosUx
n

� �3=2
þ expð�iUx

nÞ dUx
n ¼ 2a=pð Þ

I
2p

cosUx
n

� �5=2
þ dUx

n

c2 ¼
I
2p

cos Ux
n � hxn

� �� �3=2
þ exp �i Ux

n � hxn
� �� �

d Ux
n � hxn

� �
The above equation is the slow flow modulation equation governing the nearly

complete but recurrent energy exchange between the excited and absorbing gran-
ular chains mounted on elastic foundations. The derivation of formula (11.9) is
detailed in the appendix. If we plot the response of the coupled slow flow Eq. (11.9)
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for the same system parameters and initial condition as in Fig. 11.2, we get the
responses depicted in Fig. 11.3. These results clearly show that the averaged slow
flow (11.9) accurately captures the energy exchange phenomenon between the
granular chains that is initiated when an initial impulse is applied to the excited
chain.

To study the response of the averaged slow flow model (11.9) in space, in
Fig. 11.4 we plot the spatial profile of the relative displacements of the two chains
at three different (normalized) time instants (the same parameters and initial con-
dition of Figs. 11.2 and 11.3 were employed). Referring to Fig. 11.4, we note that
at time instant t1 = 419, nearly the entire energy of the oscillation is localized in the
excited chain whereas the response of the absorbing chain is almost zero. At a later
instant of time t2 = 453, however, the reverse is observed, since almost all of the
energy is transferred to the absorbing chain leaving an insignificant amount of
energy in the excited chain. Furthermore, at an even later time instant t3 = 488, the
energy of the oscillation is transferred back to the excited chain. Hence, we can
clearly observe the recurrent nonlinear energy exchange (beat) phenomenon in the
weakly coupled granular chains. Moreover, we note that during the nonlinear beats
the energy travels toward the far field on the right, and that the energy localization
occurs in the span of 4–5 beads. The residual response observed in the tail of the

Fig. 11.3 Numerical simulation of the theoretically predicted averaged slow flow model (11.9)
for the same parameters and initial conditions as in Fig. 11.2; the plots show the slow envelopes of
the relative responses of the first 100 beads in the excited and absorbing chains

300 11 Nonlinear Targeted Energy Transfer and Macroscopic Analogue …



propagating pulse (i.e., from beads 1–35 in Fig. 11.4) is due to partial scattering of
the propagating primary pulse when it encounters the beads of the excited and
absorbing chains, resulting in the formation of “oscillating tails” in its wake.

11.4 Nonlinear Targeted Energy Transfer and Energy
Exchange: Analysis

From the results of Fig. 11.4, it is clearly observed that complete and reversible
energy exchange among the two granular chains is possible through the excitation
of nonlinear beat phenomena realized under the condition of 1:1 resonance. Now,
the natural question to address is whether it is possible to completely localize the
energy in the absorbing chain in a one-way irreversible fashion so that energy does
not “spread back” to the excited chain. To address this issue, we will need to extend
the analysis of the previous section. From the exact governing Eqs. (11.2) or (11.6),
and the averaged slow flow model (11.9), it is clear that the dynamics depends on
two parameters, namely the stiffness of the elastic foundation k1, and the stiffness of
coupling parameter k. Below, we will show that, indeed, it is possible to almost
completely localize the impulsive energy in the absorbing granular chain through
suitable tuning of either one of these two system parameters. To this end, two
distinct mechanisms will be used: (a) energy localization through complete

Fig. 11.4 Spatial waveforms of the responses predicted by the averaged slow flow model (9):
a Excited chain and b absorbing chain; three snapshots of the spatial waveforms are shown with
t3 [ t2 [ t1
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decoupling, and (b) Landau-Zener tunneling in space by suitable stratification of the
elastic foundation of the granular chains. We examine each of these two mecha-
nisms separately.

11.4.1 Localization of Energy by Complete Decoupling

Referring to the snapshots of Fig. 11.4, we note that at the particular time instant
t ¼ t2, energy localization in the absorbing chain reaches a maximum (occurring at
approximately bead 43), whereas at the same time instant the response of the
excited chain is almost negligible, consisting of low-amplitude oscillating tails due
to pulse scattering. Hence, it is reasonable to assume that if we decouple the two
chains starting at the 43rd beads of the excited and absorbing chains (cf. Fig. 11.5),
we will be able to interrupt further development of the nonlinear beat phenomenon
and energy will be permanently localized in the absorbing chain. Hence, irre-
versible energy transfer and localization in the absorbing chain can be achieved by
introducing decoupling at the appropriate phase of the nonlinear beat.

This decoupling was performed for the impulsively excited system discussed in
the previous section, and the resulting responses are depicted in Fig. 11.6. For this
series of simulations, the system parameters and initial impulse of the excited chain
were identical to the simulations depicted in Fig. 11.2. From the results of
Fig. 11.6, it is clear that if we completely decouple the two chains after the 43rd
beads of the excited and absorbing chains (when the response in the absorbing
chain reaches a maximum), then we are able to localize most of the energy in the
absorbing chain in a permanent, irreversible fashion. We observe that before
decoupling is applied, complete and recurring energy exchanges occur between the
two chains as discussed in the previous section. However, once the decoupling is
applied at the appropriate phase of the nonlinear beat (i.e., after the 43rd beads of
the two chains), the energy of the oscillation is almost completely localized to the

Fig. 11.5 Schematic of the
system of granular chains
with partial coupling
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absorbing chain. The same localization phenomenon can be observed if we plot the
spatial waveform of the propagating pulse as shown in Fig. 11.7.

11.5 Targeted Energy Transfer Through
the Landau-Zener Tunneling Effect in Space

The results of previous section confirmed that it is possible to localize most of the
impulsive energy initiated in the excited chain to the absorbing chain when we
completely decouple the two chains at an appropriate phase of the recurring non-
linear beat coupling. Given that this is not always practical, in this section we will
demonstrate an alternative mechanism for irreversible targeted energy transfer from
the excited to the absorbing chain, based on inducing the macroscopic analogue of
quantum Landau-Zener tunneling (LZT) effect (Razavy 2003; Zener 1932) in space.
Indeed, instead of complete decoupling between the two chains, we will consider
spatial variation (stratification) of the elastic foundations of the granular chains.
Such a macroscopic analogue of LZT (in time, however) was reported in
(Manevitch et al. 2011) considering a system of two weakly coupled pendula, with
the length of one of the pendula varying with time. LZT is a dynamical transition

Fig. 11.6 Numerical simulation of theoretically predicted averaged slow flow model (11.9) for
the parameters and initial condition as shown in Fig. 11.2 after complete decoupling starting at the
43rd beads; the plots show the slow envelopes of the relative responses of the first 100 beads of the
chains
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where a quantum system tunnels across an energy gap between two anti-crossed
energy levels (states) (Razavy 2003; Zener 1932). Quantum LZT was observed in
semiconductor superlattices for electrons (Rosam et al. 2003), in optical lattices for
ultracold atoms (Anderson and Kasevich 1998) and in Bose-Einstein condensates
(Kovaleva et al. 2011). The common feature of the aforementioned applications of
nonadiabatic LZT is the irreversible (and almost unidirectional) exchange of energy
between two states caused by external forcing or perturbation. This form of energy
exchange is especially suitable for oscillating systems, such as the weakly coupled
granular chain system considered herein, where impulsively induced vibration
energy originally localized in one state (the excited chain) could be irreversibly
transferred to an alternative state (the absorbing chain). It turns out that such a
classical system, governed by equations similar to those of a quantum system
(Manevitch et al. 2011; Kosevich et al. 2010; Kovaleva et al. 2011), can in fact be
realized if the analysis is carried out in the spatial (instead of the temporal) domain.

From a practical point of view, the proposed alternative method of stratification
is more feasible in implementation in material designs compared to complete
decoupling. For simplicity, in the following analysis we keep the elastic foundation
of the absorbing chain uniform while spatially varying (decreasing) the elastic

Fig. 11.7 Spatial waveforms of the responses predicted by the averaged slow flow model (9) with
complete decoupling starting from bead 43: a Excited chain and b absorbing chain; four snapshots
of the spatial waveforms are shown with t4 [ t3 [ t2 [ t1
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foundation of the excited chain from bead to bead. It follows that the normalized
governing equations of motion of such a stratified system are given by:

€xn þ xn þ 2ek xn � ynð Þ � 2ecnxn ¼ ae3=4 xn�1 � xnð Þ3=2þ � xn � xnþ 1ð Þ3=2þ
h i

€yn þ yn þ 2ek yn � xnð Þ ¼ ae3=4 yn�1 � ynð Þ3=2þ � yn � ynþ 1ð Þ3=2þ
h i

n ¼ 1; 2; . . .

ð11:10Þ

In comparison with the original dynamical system (11.2), system (11.10) pos-
sesses one more parameter, namely the coefficient cn, n ¼ 1; 2; . . . denoting the
detuning parameter of the elastic foundation of the excited chain. This parameter
varies in space and will play an important role for realizing passive targeted energy
and nearly irreversible energy localization in the absorbing chain. Moreover, an
initial impulse of intensity

ffiffi
e

p
V0 is applied to the first bead of the excited chain at

t ¼ 0, with the system being initially at rest. In this study, we are interested in
construction of a simplified reduced-order model being able to correctly predict and
explain the mechanism of a near complete targeted energy transport from the
excited chain to the absorbing one. To this extent, we resort to the previously
introduced concept of “effective particle” introduced to model momentum transfer
in homogeneous granular chains. To this end, taking separately the sum of the
responses of all beads of the excited and absorbing chains in (11.10), we obtain the
following:X

€xn þ xn þ 2ek xn � ynð Þ � 2ecnxnf g ¼
X

ae3=4 xn�1 � xnð Þ3=2þ � xn � xnþ 1ð Þ3=2þ
h in o

X
€yn þ yn þ 2ek yn � xnð Þf g ¼

X
ae3=4 yn�1 � ynð Þ3=2þ � yn � ynþ 1ð Þ3=2þ

h in o
ð11:11Þ

where each of the summations is with respect to n, where n ¼ 1; 2; . . .. At this
point, we define the coordinates of the two effective particles of system (11.10) as
follows:

u1 tð Þ �
X

xn tð Þ; u2 tð Þ �
X

yn tð Þ ð11:12Þ

which upon substituting into (11) yields the system of coupled effective particles,

€u1 tð ÞþGðtÞþ 2ek u1 tð Þ � u2 tð Þ½ � ¼ 0

€u2 tð Þþ u2 tð Þþ 2ek u2 tð Þ � u1 tð Þ½ � ¼ 0
ð11:13Þ
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where

GðtÞ � u1 tð Þ � 2e
X

cnxnðtÞ ð11:14Þ

In order to simplify further the analysis, we now make the important assumption
that due to a compacton-like localization of the propagating disturbances considered
in the coupled granular chains, the collective effect of the spatial variation of the
stiffness of elastic foundation of the excited chain can be modeled as if it is a single
oscillator with a slowly, monotonically varying (decreasing) stiffness. Hence, we
introduce the following approximation:

GðtÞ ¼ u1 tð Þ � 2e
X

cnxnðtÞ ffi 1� 2en t1ð Þ½ �u1 tð Þ ð11:15Þ

which enables us to approximate the time-dependent term GðtÞ in terms of the
coordinate of the effective particle of the excited chain. To achieve this, we replaced
the discrete spatial variation of the elastic foundation of the excited chain cn, by the
continuous temporal variation n t1ð Þ. Then, the system of effective particles (11.13)
reduces to the following approximate form:

€u1 tð Þþ u1 tð Þþ 2ek u1 tð Þ � u2 tð Þ½ � � 2en t1ð Þu1 tð Þ ¼ 0

€u2 tð Þþ u2 tð Þþ 2ek u2 tð Þ � u1 tð Þ½ � ¼ 0
ð11:16Þ

The function n t1ð Þ is chosen to model the stiffness variation in time and depends
on the new timescale t1. The quite natural question to be asked is how the time and
space representations of the variation (decrease) of the elastic foundation of the
excited granular chain will correlate in (11.16). The answer can be found by
considering elements from the theory of discrete breathers propagating in granular
media with stratified potentials. Starosvetsky et al. (2012) were able to formulate an
analytical approximation for the propagation of breather solutions in this type of
media. Using this result, we can estimate the time it takes for the propagating signal
(the localized breather) to propagate the distance between two beads of the granular
lattice. It is precisely this time estimate the characteristic time step that is needed for
the construction of the function n t1ð Þ. In Fig. 11.8, we depict the correlation
between the spatial and temporal dependencies of the stiffness variation that we
realize for such an analysis. Here, the discrete reduction of the stiffness parameter in
space (i.e., as the pulse propagates between two neighboring beads of the excited
granular chain) can be approximated by a continuous function of the same stiffness
parameter in time (e.g., the time-varying stiffness of the effective particle of the
excited chain).

In summary, using the concept of effective particles, we attempt to depict the
intrinsic dynamics of the system (11.10) of coupled granular chain by a
reduced-order model (11.16) consisting two weakly coupled linear oscillators with
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a time-dependent parameter. In turn, the reduced-order model can support a
macroscopic analogue of the linear Landau-Zener tunneling in time. That is, by
appropriate design of the stiffness detuning parameter 2en t1ð Þ, we will be able to
achieve targeted and irreversible energy transfer from the excited to the absorbing
effective particle (oscillator) in (11.16); in turn, by inversing the previous trans-
formations, we will demonstrate irreversible targeted energy transfer in space in the
full model (11.10); in effect, this will amount to passive pulse redirection in the
system of coupled granular chains.

The validity of the reduced-order model (11.16) with its numerical verifications
is presented in the last section of this work. In the remainder of this section, we
analyze the dynamics of the reduced model with an applied initial impulse to the
excited u1-oscillator (effective particle) and with the u2-oscillator designated as the
absorbing oscillator (effective particle). Introducing the notation s0 � t in (11.16),
we express this system in the form:

d2u1
ds20

þ u1 þ 2ek u1 � u2ð Þ � 2en s1ð Þu1 ¼ 0

d2u2
ds20

þ u2 þ 2ek u2 � u1ð Þ ¼ 0

ð11:17Þ

In Eq. (11.17), the variables u1 and u2 denote the normalized responses of the
excited and absorbing oscillators, respectively, and k defines the strength of the
linear coupling between the two oscillators. The coefficient, n s1ð Þ ¼ 2b2s1 � r,
defines the detuning modulation parameter, with b2 characterizing the rate of res-
onance crossing and r defining the strength of the foundation stiffness of the excited
oscillator in its initial stage of detuning at the timescale s1.

To formulate an asymptotic analysis, the solution of the second equation in
(11.17) is expressed in the following integral form:

k

Bead index / Time 

Discrete variation (exact) 

Continuous variation (approximate) 

Fig. 11.8 Correlation between the discrete (exact) and continuous (approximate) spatial and
temporal dependencies of the stiffness variation of the excited granular chain
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u2 s0ð Þ ¼ u2 0ð Þ cos xs0ð Þþ _u2 0ð Þ
x

sin xs0ð Þþ 1
x

Zs0
0

2eku1 sð Þ sin x s0 � sð Þ½ �ds

¼ 2ekx�1
Zs0
0

u1 sð Þ sin x s0 � sð Þ½ �ds

ð11:18Þ

with the following, initial conditions u1 0ð Þ ¼ 0; _u1 0ð Þ ¼ ffiffi
e

p
V0 and u2 0ð Þ ¼ 0;

_u2 0ð Þ ¼ 0 are assumed, and x ¼ 1þ 2ekð Þ1=2. Now, substituting (11.18) into the
first of Eq. (11.17), we derive the following linear integro-differential equation with
time-dependent coefficient for u1:

d2u1
ds20

þx u1 � 2en s1ð Þu1 ¼ 4e2k2x�1
Zs0
0

u1 sð Þ sin x s0 � sð Þ½ �ds ð11:19Þ

Hence, we are able to reduce the problem to a single integro-differential equation
for u1.

The asymptotic analysis of (11.19) has been carried out with the help of CX-A
technique. To do so, we again introduce a complex conjugate variable pair,

w ¼ _u1 þ iu1; w� ¼ _u1 � iu1 ð11:20Þ

where again asterisk represents complex conjugate. From (11.20), we can represent
u1 and _u1 in terms of the complex variable w, with initial condition
w 0ð Þ ¼ _u1 0ð Þþ iu1 0ð Þ ¼ ffiffi

e
p

V0. Expressing (11.19) in terms of w, we obtain the
complex ordinary differential equation:

dw
ds0

� ixwþ ien s1ð Þ w� w�ð Þ ¼ �2ie2x�1k2
Zs0
0

w s; eð Þ � w� s; eð Þ½ � sin x s0 � sð Þ½ �ds

ð11:21Þ

Now, we analyze the asymptotic approximation of (11.21) employing the
method of multiple scales, by introducing the fast timescale s0 and the slow
timescale s0 ¼ es1. Applying the asymptotic analysis, we express the dependent
complex variable as w s0; eð Þ ¼ ffiffi

e
p

w0 s0; s1ð Þþ ew1 s0; s1ð Þþ . . .½ �, which upon
substitution into (11.21) and expression of the time derivatives by the chain rule
with respect to the two timescales yields an hierarchy of problems at the different
orders of approximation.
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Considering the leading-order O e1=2
� �

problem, we obtain the following solu-
tion, expressed as a fast oscillation modulated by the slowly varying envelope
u0 s1; eð Þ:

@w0

@s0
� ixw0 ¼ 0 ) w0 ¼ u0 s1; eð Þ exp ixs0ð Þ ð11:22Þ

This envelope is evaluated by considering the O e3=2
� �

subproblem,

@w1

@s0
þ @w0

@s1
� ixw1 þ in s1ð Þ w0 � w�

0

� �
� 2iex�1k2

Zs0
0

w0 s; eð Þ � w�
0 s; eð Þ� �

sin x s0 � sð Þ½ �ds ð11:23Þ

which, taking into account (11.22), is expressed as follows:

@u0

@s1
þ ixu0 þ

@u1

@s0
exp �ixs0ð Þ � ixu1 exp �ixs0ð Þþ in s1ð Þ u0 � u�

0 exp �2ixs0ð Þ� �
¼ �x�1k2

Zes0
0

u0 es0; eð Þ 1� exp �2ix2 s0 � sð Þf g½ �ds
24

þ exp �2ix2s0ð Þ
Zes0
0

u�
0 es0; eð Þ 1� exp �2ix2 s0 � sð Þf g½ �ds

35
ð11:24Þ

Finally, suppressing secular terms in (11.24), we obtain the following slow flow
equation, i.e., the complex modulation equation governing the envelope u0 s1; eð Þ of
the O e1=2

� �
approximation (11.22):

du0

ds1
þ i xþ n s1ð Þ½ �u0 ¼ �x�1k2

Zes0
0

u0 es0; eð Þds
24 35 ¼ �x�1k2

Zs1
0

u0 r; eð Þdr )

du0

ds1
þ i xþ 2b2s1 � r

� �
u0 ¼ �x�1k2

Zs1
0

u0 r; eð Þdr

ð11:25Þ

Alternatively, the slow flow (11.25) can be rewritten as the following complex
second-order differential equation:
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d2u0

ds21
þ i xþ 2b2s1 � r

� � du0

ds1
þ x�1k2 þ 2ib2
� �

u0 ¼ 0 ð11:26Þ

which represents the slow flow of the excited oscillator. To compare the slow flow
Eq. (11.26) with the full model (11.17), first we numerically integrate the full
model with the prescribed initial conditions (corresponding to an initial impulse of
intensity

ffiffi
e

p
V0 applied to the excited chain), and also simulate (11.26) with the

corresponding initial conditions u0 0ð Þ ¼ ffiffi
e

p
V0 ; and

du0 0ð Þ
ds1

¼ �i x� rð Þ ffiffi
e

p
V0. We

note that (11.26) provides an approximation of the slow flow of the excited
oscillator (effective particle); later, we show how based on this result we can
compute the slow flow of the absorbing oscillator.

In Fig. 11.9, we depict the responses of the oscillators of the system of effective
particles (11.17) with parameters b = 0.53, r = 1.35, e = 0.05, and k = 1.05,
where the excited oscillator is forced by an initial impulse of intensity

ffiffi
e

p
V0, with

V0 ¼ 1. From this result, it is clear that as time progress, the response of the excited
oscillator decreases, and simultaneously the response of the absorbing oscillator
increases; hence, irreversible passive targeted energy transfer occurs following the
LZT effect. Indeed, initially the two effective particles are in 1:1 resonance (as
evidenced by their nearly equal oscillation frequencies and the clear nonlinear beat
developing at earlier times), but with increasing time and the gradual decrease of
the elastic foundation of the excited oscillator there occurs escape from the regime

Fig. 11.9 LZT effect: Velocities of excited and absorbing effective particles based on the full
model (11.17) for an initial impulse applied to the excited oscillator and a gradually decreasing
elastic foundation for the excited oscillator
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of 1:1 resonance. As a result, the nonlinear beating phenomenon is gradually
interrupted and the energy transferred to the absorbing oscillator is localized per-
manently to that oscillator. To get a comparison of this result with the previous
theoretical slow flow model, we numerically integrated (11.26) and computed an
analytical approximation of the response of the excited effective particle through
relations (11.20) and (11.22). In Fig. 11.10, we compare the exact numerical
response of the excited oscillator depicted in Fig. 11.9 with the theoretically
obtained response based on the slow flow model (11.26). Good agreement is noted
between the exact and the analytical model which is observed, especially at early
times where the major part of the impulsive energy gets transferred from the excited
to the absorbing chain in an irreversible fashion. This clearly demonstrates that the
theoretical model can fairly capture the exact nonlinear transient dynamics and the
governing LZT effect.

Indeed, based on the previous analysis further insight can be gained for the LZT
energy transfer in the initial stage of the dynamics. Based on the previous
asymptotic analysis and the transformations, we derive the following leading-order
approximation for the excited effective particle (oscillator):

u10 s0; s1ð Þ 	 � i
ffiffi
e

p
2

u0 s1ð Þ exp ixs0ð Þ � u�
0 s1ð Þ exp �ixs0ð Þ� �

¼ ffiffi
e

p
u0 s1ð Þj j sin xs0 þ a s1ð Þ½ �

_u10 s0; s1ð Þ 	
ffiffi
e

p
2

u0 s1ð Þ exp ixs0ð Þþu�
0 s1ð Þ exp �ixs0ð Þ� �

¼ ffiffi
e

p
u0 s1ð Þj j cos xs0 þ a s1ð Þ½ �

a s1ð Þ ¼ argu0 s1ð Þ

ð11:27Þ

Fig. 11.10 Comparison between the exact and slow flow models for the excited effective particle

11.5 Targeted Energy Transfer Through the Landau-Zener Tunneling … 311



Hence, we can express the equation for the slowly varying partial energy of the
excited oscillator as follows:

e10 s1ð Þ 	 1
2

u210
� �þ _u210

� �� � ¼ e
2
u0 s1ð Þj j2 ð11:28Þ

However, for small values of the slow time s1 (i.e., in the initial phase of the
LZT effect during which passive targeted energy transfer occurs), the slow flow
envelope can be approximated directly from the slow flow (11.26) by taking into
account the initial conditions (Kovaleva et al. 2011).

To get similar analytical approximations for the absorbing oscillator (effective
particle), we need to extend the previous slow flow analysis. To this end, from the
second of Eq. (11.17), we can approximate the governing equation for the
absorbing oscillator as

d2u2
ds20

þxu2 ¼ 2eku10 þO e2
� � ð11:29Þ

with initial conditions u2 0ð Þ ¼ 0; _u2 0ð Þ ¼ 0. Again we apply the CX-A method, by
introducing the complex variable y ¼ _u2 þ iu2, and transforming (11.29) to the
following complex ordinary differential equation:

dy
ds0

� ixy ¼ �iek w� w�½ � ð11:30Þ

Again, we use a similar multiple scales asymptotic analysis and represent the
complex variable as y s0; s1ð Þ ¼ ffiffi

e
p

y0 s0; s1ð Þþ ey1 s0; s1ð Þþ . . .½ �. The
leading-order approximation is then evaluated as:

y0 ¼ g0 s1ð Þ exp ixs0ð Þ ð11:31Þ

where the slowly varying complex envelope is governed by the following slow flow
equation for the absorbing oscillator:

@g0
@s1

¼ �iku0 s1ð Þ ð11:32Þ

For sufficiently small values of the slow time s1, the solution of (11.32) for zero
initial conditions can be approximated as g0 s1ð Þ 	 �ik

ffiffi
e

p
V0s1, yielding the fol-

lowing leading-order approximation for the response of the absorbing oscillator:
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u20 s0; s1ð Þ 	 � i
ffiffi
e

p
2

g0 s1ð Þ exp ixs0ð Þ � g�0 s1ð Þ exp �ixs0ð Þ� �
¼ ffiffi

e
p

g0 s1ð Þj j sin xs0 þ d s1ð Þ½ �

_u20 s0; s1ð Þ 	
ffiffi
e

p
2

g0 s1ð Þ exp ixs0ð Þþ g�0 s1ð Þ exp �ixs0ð Þ� �
¼ ffiffi

e
p

g0 s1ð Þj j cos xs0 þ d s1ð Þ½ �
d s1ð Þ ¼ arg g0 s1ð Þ

ð11:33Þ

In Fig. 11.11, we compare the exact response for the absorbing effective particle
computed by numerically integrating system (11.17) with the theoretical approxi-
mation (11.33). At the earlier stage of the dynamics, there is a close correspondence
between the two models; however, with progressing time the theoretical response of
the absorbing oscillator deviates from the exact response. Two important factors
play an important role for this deviation. First, in the asymptotic analysis of the
absorbing oscillator, we are only considering the leading-order term. Moreover, the
slow flow approximation of the absorbing oscillator is dependent on the corre-
sponding approximation of the excited oscillator, which, however, in itself is
approximate. Based on the approximation (11.33), we can estimate the instanta-
neous energy of the absorbing effective particle as follows:

e20 s1ð Þ ¼ 1
2

u220
� �þ _u220

� �� � 	 e
2
g0 s1ð Þj j2 ð11:34Þ

Fig. 11.11 Comparison between the exact and slow flow models for the absorbing effective
particle
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which leads to the following early time approximation:

e20 s1ð Þ 	 e
2

kV0s1ð Þ2 ð11:35Þ

Interestingly enough, using the analytical approximations (11.26), (11.34), and
(11.35), we can estimate the slow time instant s ¼ s� (Kovaleva et al. 2011) at
which equipartition of energy occurs, i.e., when e10 s�ð Þ ¼ e20 s�ð Þ. This time instant
is found to be the following:

s� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

k2 � x� rð Þ2
s

Energy equipartitionð Þ ð11:36Þ

In the next section, we will compare the estimate (11.36) to the exact value
derived by considering the instant of energy equipartition from direct numerical
simulations of the original Eq. (11.10).

11.5.1 Nonlinear Targeted Energy Transfer and Irreversible
Energy Exchange: Simulation

A series of numerical simulations for the discrete system of coupled granular chains
(11.10) was performed in order to verify the theoretical predictions that were based
on the model of effective particles (11.17). As shown in the previous section, in
order to realize the LZT effect in space (leading to passive targeted energy transfer
from the excited to the absorbing chain), it is necessary to gradually decrease the
stiffness coefficient of the elastic foundation of the excited chain in space, while
keeping the elastic foundation of the absorbing chain and the coupling stiffness
uniform. Based on the previous theoretical predictions, for a decrease of the elastic
foundation of the excited chain at a rate of 2b2s1 ¼ 2eb2s0, the peak-to-peak time
delay for the propagating breather is s0 	 8:88. Hence, the required gradual spatial
reduction rate of the elastic foundation of the excited chain should be approximately
22% over the leading 4 beads of the excited chain.

The results of the numerical simulation of the system (11.10) for parameters
e ¼ 0:05; a ¼ 10; k ¼ 1:05 and impulsive excitation

ffiffi
e

p
V0, with V0 ¼ 1, applied to

the excited chain are shown in Fig. 11.12, where we plot the velocity profile of each
bead (starting from bead 6) both for the excited and absorbing chain. According to
the previous discussion, the elastic foundation of the excited chain was reduced by
the 22% over the leading four beads; this was performed by setting c1 ¼ 0; c2 ¼
0:247; c3 ¼ 0:494; c4 ¼ 0:741; cn ¼ 0:988 for n
 5 in (11.10). We can clearly
observe the targeted energy transfer to the absorbing chain due to the LZT effect. It
follows that these results numerically confirm the theoretical prediction that
appropriate spatial variation of the foundation of one of the two chains leads to
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passive targeted energy transfer, or pulse redirection from the excited to the
absorbing chain. In Fig. 11.13, we present the same response in a space-time
diagram. In that figure, the contour plots of total instantaneous energies of each of
the beads of the two granular chains are depicted, with bright shades corresponding
to high, and dark shades to low energy levels. From these results, the passive
energy redirection from the excited to the absorbing chain is clear. One can also
observe that there are regions of oscillating tails in the trail of the propagating
primary pulse in the absorbing chain appearing as traces of secondary propagating
waves.

In Fig. 11.14, we provide the time series of the total instantaneous energies of
the excited and absorbing chains for the same response. We note that as time
progresses, the total energy in the excited chain decreases and at the same time the
total energy in the absorbing chain increases. At normalized time s� 	 20, there
occurs energy equipartition between the two chains, compared to the theoretically
predicted value of s� 	 19:88 using relation (11.36). After that time instant, most of
the input energy remains localized in the absorbing chain, while the part of total
energy that retains in the excited chain is small. It is interesting to note that passive
energy transfer occurs at a rather fast scale in the site of the leading four beads of
the excited chain, where the elastic foundation is gradually reduced. Furthermore, in
Fig. 11.15, we compare the response of the slow flow envelope obtained from
(11.26) to (11.27) with the direct numerical simulation of the exact equations of

Fig. 11.12 Velocity profiles of the first 100 beads of a the excited and b the absorbing granular
chain (starting from the 6th beads) of system (11.10) after gradual reduction by 22% the elastic
foundation of the excited chain
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motion of the system of coupled granular chains (11.10); by asterisks, we denote
the maximum velocity of each bead realized during the propagation of the breather
solution in the excited chain.

(a) 

(b) 

Oscillating tails 

Primary pulse

Fig. 11.13 a Space-time representation of passive targeted energy transfer due to LZT effect in
the system of granular chains (11.10); b Early time details of the plots presented in (a)
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From this comparison, we note that the theoretically predicted slow flow
envelope fairly captures the envelope of the exact breather solution in the critical
initial stage of strong passive targeted energy transfer. The reason for the dis-
crepancy between the theoretical prediction and the exact numerical solution is due
to the fact that the theoretical prediction takes into account only the leading-order
approximation of the asymptotic analysis. It is well known that such a leading-order
approximation can accurately model the transient response at early times, so the

of 
Gradual reduction

elastic foundation 

Fig. 11.14 Temporal dependence of the total instantaneous energy in the excited and absorbing
chains

Fig. 11.15 Comparison between the slow flow prediction (26) with the direct numerical
simulation of the exact system (11.10) for the excited chain; asterisk denotes the maximum
velocity of each bead (except for the first bead)
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correlation between theory and numeric can be further improved over longer time
intervals by adding higher-order terms in the asymptotic analysis of the excited
effective particle (oscillator).

Finally, to clearly visualize the LZT phenomenon in space caused by the
stratification of the elastic foundation of the excited chain, instead of applying the
stratification from the second bead, we stratify the elastic foundation of the excited
chain after the 24th bead where due to the nonlinear beat phenomenon the response
in the excited chain attains a maximum and the response of the absorbing chain a
minimum (the same system and forcing parameters as in the previous simulations
depicted in Figs. 11.12, 11.13, 11.14, 11.15 were used for this simulation). The
result is shown in Fig. 11.16 for a reduction rate of 22% of the elastic foundation of
the excited chain over four beads; for this simulation, the following values for the
detuning stiffness coefficients of the excited chain were used in (11.10):

cp ¼ 0; p ¼ 1; . . .; 24; c25 ¼ 0:247; c26 ¼ 0:494; c27 ¼ 0:741;
cn ¼ 0:988; n
 28

We note that before the stratification is applied, nearly complete and recurring
exchange of energy between the two chains occurs. However, once the stratification
is applied, the LZT effect takes place, and the energy is passively redirected to the
absorbing chain and remains localized there (Fig. 11.16). We note the sudden and
fast targeted energy transfer to the absorbing chain, indicating the feasibility of the
proposed energy redirection mechanism in practical material designs.

Stratification of elastic
foundation begins 

(a) (b)

Fig. 11.16 Space-time representation of passive targeted energy transfer due to LZT effect in the
system of granular chains (11.10): a Excited chain, b absorbing chain, with a spatial decrease rate
by 22% of the elastic foundation of the excited granular chain starting at the 24th bead
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11.6 Conclusions

In this work, we have discussed nonlinear dynamical mechanisms governing the
irreversible energy transfers in weakly coupled granular networks leading to passive
wave redirection. In particular, we considered two homogeneous granular chains
mounted on linear elastic foundations and coupled by weak linear stiffnesses and
showed both theoretically and numerically that efficient targeted energy transfer is
possible from the directly excited chain to the absorbing one by two different
dynamical mechanisms. The first mechanism is based on interrupting the coupling
stiffness between the two chains at an appropriate phase of the developing nonlinear
beat phenomenon, i.e., at the phase when maximum energy exchange occurs
between chains. The second mechanism relies on the realization of a macroscopic
analogue of the Landau-Zener tunneling quantum effect in space. This is achieved
by appropriately varying the stiffness of the elastic foundations of the coupled
chains so that conditions of resonance energy transfer are developed in order to
transfer energy from the excited to the absorbing chain, and then escape from
resonance occurs in order to confine (localize) the transmitted energy to the
absorbing chain without possibility for back scattering.

The analysis presented in this work fully reveals (at least to leading order) the
nonlinear dynamics that governs these two distinct energy transfer mechanisms, and
paves the way for predictive designs for practical implementations of these
mechanisms in material systems with embedded granular media with passive
energy redirection properties.

Appendix

In this appendix, we develop the approximate expression of the slow flow modu-
lation equation shown in Eq. (11.9). Rewriting Eq. (11.8), which shows the
slow/fast partition of the dynamics of the system:

@wx
n0

@s0
� iwx

n0 ¼ 0 ) wx
n0 ¼ ux

no s1ð Þ exp is0ð Þ
@wy

n0

@s0
� iwy

n0 ¼ 0 ) wy
n0 ¼ uy

no s1ð Þ exp is0ð Þ
ð11:37Þ
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Proceeding to the Oðe3=2Þ approximation, we derive the following system:
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Introducing (11.37) into (11.38) yields the following:
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Upon imposing solvability conditions in (11.39), yields the following slow flow,
i.e., the system of modulation equations in the slow timescale governing the (slow)
evolutions of the complex envelopes in (11.37):
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To evaluate the non-smooth terms in (11.40), we follow (Starosvetsky et al.
2012) and introduce the Fourier expansions:
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which when substituted into the non-smooth terms on the right-hand sides of the
slow flow (11.40) lead to the following expressions:
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where Ux;y
k þ p

2 ¼ s0 þ hx;yk . Substituting (11.42) into (11.40) and performing aver-
aging with respect to the fast timescale s0 yields the following averaged slow flow
equations:
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Using Fourier expansion, retaining only the leading-order harmonics, and rear-
ranging terms yields the following averaged slow flow system:
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Chapter 12
Forced Pendulum

Harmonically forced pendulum is one of the basic models of nonlinear dynamics
which has numerous applications in different fields of physics and mechanics
(Baker and Blackburn 2005; Sagdeev et al. 1988; Scott 2003; Arnold et al. 2006).
There are two main directions in the study of this model. First of them can be
denoted as application of general mathematical perturbation theory in which inte-
grable conservative system is a generating model (Sagdeev et al. 1988; Nayfeh and
Mook 2004; Bogolubov and Mitropolsky 1961; Hale 1963; Chirikov and Zaslavsky
1972, Neishtadt 1975; Neishtadt and Vasiliev 2005). The obtained results relate
mainly to the quasi-linear approach (small amplitude) and reflect the common
features of nonlinear oscillator: finiteness of the resonance amplitude and possibility
of abrupt its changes due to instability of a stationary state. The second direction
was developed by physicists and mechanicians and deals with analytical description
of the stationary states (in the quasi-linear approximation also), analysis of their
stability, and numerical study of nonstationary dynamics (Nayfeh and Mook 2004;
Manevitch and Manevitch 2005; Manevitch and Musienko 2009). The concept of
limiting phase trajectories allows to find an efficient analytical description of highly
nonstationary resonance dynamics in which the oscillator (pendulum) takes off a
maximum possible (at given conditions) energy from its source (periodic field). The
goal of this section is to remove the restrictions on the amplitude of pendulum
oscillations. For this, we use a semi-inverse approach in combination with the LPT
concept. In such a case, the analytical description of qualitative transitions in both
stationary and highly nonstationary dynamics can be found.

© Springer Nature Singapore Pte Ltd. 2018
L.I. Manevitch et al., Nonstationary Resonant Dynamics of Oscillatory Chains
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12.1 The Model

We discuss the undamped dynamics of a pendulum excited by a harmonic exci-
tation and undergoing unidirectional motion. Corresponding equation of motion is
well-known

d2q
dt2

þ sin q ¼ f sinXt ð12:1Þ

where q is the angular coordinate of the pendulum, f and Ω are the harmonic forcing
amplitude and frequency, respectively.

By introducing the complex amplitude of the pendulum oscillations as

w ¼ 1ffiffiffi
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� �
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r
wþw�ð Þ

one can rewrite Eq. (12.1) as follows:

i
dw
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þ x
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p eiXt � e�iXt
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To find the stationary solution of Eq. (12.3), one should assume that x = Ω and

w ¼
ffiffiffiffi
X

p
eiXt ð12:4Þ

where X = const is the amplitude.
Substituting solution (12.4) into Eq. (12.3) and multiplying the result on exp(iΩ

t), one can obtain after integration over period 2p/Ω.

X
2

ffiffiffiffi
X

p
þ 1ffiffiffiffiffiffi

2X
p J1

ffiffiffiffiffiffi
2X
X

r !
¼ f

2
ffiffiffiffiffiffi
2X

p ð12:5Þ

With taking into account the relation

X ¼ x
2
Q2 ð12:6Þ

between the moduls of complex function and amplitude, the forcing frequency can
be expressed via the amplitude of stationary oscillations as follows:

328 12 Forced Pendulum



X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Q

2J1 Qð Þ � fð Þ
s

ð12:7Þ

The amplitude–frequency relationship (12.7) for different forces in range
(-0.2, 0.2) is shown in Fig. 12.1.

Figure 12.1 shows that all branches under backbone (black) curve possess two
stationary states—stable and unstable ones. The condition

dX
dQ

¼ 0 ð12:8Þ

determines the high boundary of the frequency range, where three stationary states
occur.

However, if we interest ourself in the nonstationary oscillations of the driven
pendulum, one should consider a solution

w ¼ ueixt ð12:9Þ

where u is a slowly changing function and x = Ω − s (s � Ω).
Substituting solution (12.9) into Eq. (12.3) and assuming that the detuning

parameter s is small enough, one can consider u as a function of the slow time
s = st. The latter is supposed to be a new variable that is independent on the “fast”
time t.

Then, multiplying Eq. (12.3) by the e−ixt and integrating it with respect to the
“fast” time t, the condition, which provides excluding the resonance (secular) terms,
is obtained as:

Fig. 12.1 Driving frequency–amplitude relationship for different values of the force: f = −0.2,…,
0.2 (colors—from red to green). Black curve shows the backbone frequency of free oscillations
(f = 0)
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It is easy to check that the function u ¼ ffiffiffiffi
X

p
eis is the solution of Eq. (12.10) if

the frequency x satisfies the relation

s� x
2
þ 1ffiffiffiffiffiffi

2x
p J1

ffiffiffiffiffiffi
2X
x

r !
¼ fffiffiffiffiffiffiffiffiffiffi

2Xx
p ð12:11Þ

This equation permits to derive a very simple expression for the frequency of
pendulum oscillations as a function of their amplitude:

x ¼ �sþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Q

2J1 Qð Þ � fð Þþ s2

s
ð12:12Þ

One can see that the limit s ! 0 leads to expression (12.7).

12.2 Nonstationary Dynamics and Dynamical Transitions

The nonstationary dynamics of the forced pendulum can be tackled by introducing
the phase d sð Þ and the amplitude a ¼ ffiffiffi

x
2

p
q, such that the slowly varying function u

can now be expressed as u ¼ a e�id. Having introduced the phase shift D ¼ s� d,
the equation of motion (12.10) can be written as

sa
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 !
¼ fffiffiffiffiffiffi
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p cosD ð12:13Þ
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¼ fffiffiffiffiffiffi
2x

p sinD ð12:14Þ

The corresponding integral of motion reads

H ¼ s
2

sþ x
2

� �
a2 þ J0

ffiffiffiffi
2
x

r
a

 !
� 1þ afffiffiffiffiffiffi

2x
p cosD

" #
ð12:15Þ

In order to study the nonstationary processes, one should consider the phase
portrait of the system (12.15) (Fig. 12.2a–d). There are three control parameters in
the considered system: detuning s, forcing f, and frequency x. They are coupled

330 12 Forced Pendulum



with the stationary oscillation amplitude Q by relation (12.7). Let us fix detuning
s and the force amplitude f and will vary the pendulum frequency x.

Figure 12.2a shows the phase portrait in terms of amplitude a and phase shift Δ,
which is typical for the “low” frequency region. Three stationary points associate
with stable and unstable brunches in Fig. 12.1. It is important that the attraction
areas of the stable states are demarcated by two specific trajectories. The first one is
the separatrix that passes through the unstable state and surrounds the
large-amplitude stationary point.

The initial conditions with zero amplitudes (without dependence on the initial
phase shift) lead to the motion along the closed trajectory, bounding the attraction
area of the stable stationary points at Δ = 0 (red curve in Fig. 12.2a). The principal
difference of this trajectory from the separatrix is the finite time of its passing. Due

Fig. 12.2 Evolution of the Δ − Q phase portrait for f = 0.06 for increasing frequency x. a Before
the first transition, x = 0.79; b after the first transition, x = 0.8106; c at the second transition,
x = 0.82; d after the second transition, x = 0.85
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to this, such trajectory is the most distant from the stationary points, and we refer it as
the limiting phase trajectory (LPT). The LPT corresponds to the most intensive
energy taking off by the pendulum from the energy source (at given initial condi-
tions), see also Chap. 6. All other trajectories require nonzero initial conditions.
Increasing the frequency x is accompanied by enlarging of areas inside both the LPT
and the separatrix. This growth is finished when the LPT coincides with the separatrix
(Fig. 12.2b). At this moment, the separatrix is becoming homoclinic and it makes up
two branches of LPT, one of them surrounds the stable state with phase shift Δ = 0
and another one envelopes the stationary point with Δ = p. The latter turns out to be
essentially larger than the first one. Therefore, the amplitudes of nonstationary
oscillations increase stepwise, and the energy flow from the energy source to the
pendulum, respectively, grows. The further rise of the frequency x leads to weak
decreasing of LPT as well as the separatrix up to the annihilation of latter at the
frequency, the value of which is determined by equation (12.8) (see Fig. 12.2c, d).

In order to estimate the threshold of the stepwise changing of oscillation
amplitude, one should note that the value of Hamiltonian (12.15) turns out to be
equal to zero at the bifurcation point. Thus, solving the equation

H Q;xð ÞjD ¼ 0 ¼ 0

jointly with Eq. (12.11) with respect to x and Q at fixed values f and s, one can
calculate the threshold frequency as a function of detuning s and forcing f.
Figure 12.3 shows the threshold values of x at detuning s = 0.1 as the function of
forcing f (red curves). The bifurcation value of x that leads to the annihilation of
unstable stationary point is represented in Fig. 12.3 by blue curves.

12.3 Poincaré Sections and Onset of Chaotic Motion

In this section, a numerical validation of the dynamic regimes exhibited by the
forced pendulum is proposed by resorting to Poincaré sections obtained from direct
integration of the starting equation of motion (12.1). Besides confirming the two
dynamical transitions discussed in Sect. 12.3, the Poincaré sections allow to

Fig. 12.3 Analytic
dynamical transitions
thresholds on the (f − x)
plane for s = 0.1. First (blue)
and second (red) thresholds,
analytical (solid), numerical
(dashed), and points
corresponding to the phase
portraits shown in Fig. 12.2
and Poincaré sections shown
in Fig. 12.4
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identify the onset of non-regular pendulum response and its connection with the LPTs
and the dynamic separatrix. Having fixed the forcing amplitude and detuning, the
dynamic regimes evolution is described for varying forcing frequency. For s = 0.1, in
Figs. 12.4 and 12.5, Poincaré sections are shown for f = 0.06 and f = 0.08, respec-
tively. In more detail, in Fig. 12.4a, the scenario at x = 0.85 corresponding to point
A in Fig. 12.3, whose phase plane is shown in Fig. 12.2a, is depicted. It is charac-
terized by the presence of, the in-phase NNM and the LPT (red curve) encircles it.
Next, in Fig. 12.4b, the Poincaré sections at x = 0.82, corresponding to point B in
Fig. 12.3, is shown. In this case the newborn out-of-phase NNM and unstable
hyperbolic point can be seen together with the LPT (red curve) encircling the
in-phase NNM and the heteroclinic separatrix (blue curve). As the value of x is

Fig. 12.4 Evolution of the Poincaré sections for f = 0.06 for decreasing frequency x. a Before the
first transition, x = 0.85; b after the first transition, x = 0.82; c at the second transition,
x = 0.8047; d after the second transition, x = 0.79; e x = 0.7; f x = 0.6
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lowered to 0.8047, the second transition, corresponding to point C in Fig. 12.3 and
phase plane in Fig. 12.3c, occurs; the LPT (red curve) and the heteroclinic separatrix
coalesce implying the most intense energy exchange between the source of excitation
and the pendulum. At last, after the second transition, the LPT (red curve) localization
is clearly seen in Fig. 12.4d—in which, for x = 0.79, consistently with the phase
plane shown in Fig. 12.2d, the LPT amplitude undergoes a significant reduction
entailing a weak energy exchange with the harmonic forcing. For lower values of x,
the regular motion region, so far characterizing the whole phase plane, splits into two
regions, separated by chaotic sea and surrounding the two stationary points (see
Fig. 12.4e, f). The Poincaré sections reported in Fig. 12.5, corresponding to the case
with f = 0.08, show the analogous qualitative evolution of the previous case with

Fig. 12.5 Evolution of the Poincaré sections for f = 0.08 for decreasing frequency x. a Before the
first transition, x = 0.85; b after the first transition, x = 0.8; c at the second transition,
x = 0.7834; d after the second transition, x = 0.75; e x = 0.7; f x = 0.6
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f = 0.06. The main difference stems from the onset of separatrix chaos that now
occurs for higher values of x, in between the two dynamic transitions (see
Fig. 12.5b). As shown in Fig. 12.5c, at the second transition such chaotization
involves the LPT as well. Afterward, as x decreases, a trend similar to the case for
f = 0.06 can be observed. It is seen that at relatively weak intensity of forcing
(Fig. 12.3), one can observe a regular behavior which corresponds exactly to ana-
lytical predictions. Increase of this intensity leads to manifestation of chaotic behavior
(Figs. 12.4 and 12.5). Two scenarios of chaotization are possible. This phenomenon
can indeed appear after both dynamical transitions (Fig. 12.4) and may be identified
as breaking of regular separatrix (Fig. 12.5e). The second scenario is realized at
f = 0.08 (Fig. 12.5b–f), and its manifestation occurs after stationary transition
(Fig. 12.4b) and becomes especially clear at the nonstationary transition (Fig. 12.4c).
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Chapter 13
Classical Analog of Linear
and Quasi-Linear Quantum Tunneling

In this part of the report, we develop an analytical framework to investigate irre-
versible energy transfer in a system of two unforced weakly coupled oscillators
with slowly time-varying frequencies. In the system under consideration, one of the
oscillators is initially excited by an initial impulse, while the second one is initially
at rest. As shown in the previous sections, these initial conditions provide motion
along the LPT with a maximum possible energy transfer from the excited oscillator
to the second one.

The analysis developed in this section gives special attention to an analogy
between energy transfer in a system of classical oscillators and the quantum
Landau–Zener tunneling. Due to its generality, the Landau–Zener scenario has been
applied to numerous problems in various contexts, such as laser physics (Sahakyan
et al. 2010), semiconductor super-lattices (Rosam et al. 2003), tunneling of optical
(Trompeter et al. 2006) or acoustic waves (Sanchis-Alepuz et al. 2007; de Lima
et al. 2010), and quantum information processing (Saito et al. 2006), to name just a
few examples. Although a passage between two energy levels is an intrinsic feature
of all above-mentioned processes, manifestation of a direct analogy between energy
transfer in a classical system with time-varying parameters and quantum Landau–
Zener tunneling is a recent development (Manevitch et al. 2011). It was shown that
the equations of the adiabatic passage through resonance in a system of two weakly
coupled linear oscillators with a slowly varying frequency detuning are identical to
the equations of the Landau–Zener tunneling problem. This conclusion may be
treated as an extension of a previously found analogy between adiabatic quantum
tunneling and energy exchange in weakly coupled oscillators with constant
parameters demonstrated in Chap. 2.

It is well known that an analytical solution for the problem of transient tunneling
is prohibitively difficult even in the linear case (Zener 1932). The purpose of this
section is to derive an explicit asymptotic approximation, which depicts irreversible
energy transfer on the LPT. In addition, the obtained asymptotic solution provides a
simple and accurate prediction of tunneling over a finite time interval, unlike a
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common approach considering fixed initial conditions at t !− ∞ and a stationary
solution at t ! ∞.

An approximate solution of the quasi-linear problem is found with the help of an
iteration procedure, wherein the linear solution is chosen as an initial approxima-
tion. Correctness of the constructed approximations is confirmed by numerical
simulations.

13.1 Two Weakly Coupled Linear Oscillators

In this section, we study energy transport in a system of two weakly coupled linear
oscillators; the first oscillator of mass m1 and linear stiffness c1 is excited by an
initial impulse V; the coupled oscillator of mass m2 and time-dependent linear
stiffness C2(t) = c2 − (k1 − k2t) is initially at rest; the oscillators are connected by a
linear coupling of stiffness c12. The absolute displacements and velocities of the
oscillators are denoted by ui and Vi = dui/dt, i = 1, 2. We will demonstrate that the
second oscillator with time-dependent frequency acts as an energy sink and ensures
a visible reduction of oscillations of the excited mass. The dynamics of the system
is described by the equations

m1
d2u1
dt2

þ c1u1 þ c12ðu1 � u2Þ ¼ 0;

m2
d2u2
dt2

þC2ðtÞu2 þ c12ðu2 � u1Þ ¼ 0;

ð13:1Þ

with initial conditions u1 = u2 = 0; V1 = V and V2 = 0 at t = 0. We recall that these
conditions determine the limiting phase trajectory (LPT) corresponding to motion
with maximum energy transfer from the first to the excited oscillator to the second
one being initially at rest.

Quasi-resonance interactions between the oscillators imply that (c1/m1)
1/2 = (c2/

m2)
1/2 = x. Assuming weak coupling, we define the small parameter of the problem

by the equality 2e = c12/c2 � 1. Then, considering the rescaled dimensionless
parameters

c12=cr ¼ 2ekr; r ¼ 1; 2; k2 ¼ 1; k1=c2 ¼ 2er; k2=ðc2xÞ ¼ 2e2b2 ð13:2Þ

and introducing the dimensionless timescales s0 = xt, s1 = es0, Eq. (13.1) are
rewritten as

d2u1
ds20

þ u1 þ 2ek1ðu1 � u2Þ ¼ 0;

d2u2
ds20

þ u2 þ 2ek2ðu2 � u1Þ � 2efðs1Þu2 ¼ 0;

ð13:3Þ
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wheref(s1) = r − 2b2s1; initial conditions at s0 = 0 are given by u1 = u2 = 0;
v1 = V/x = V0, v2 = 0, vi = dui/ds0. It is important to note that system (13.3) may
be considered as resonant only in a finite time interval wherein |f(s1)| * 1. In this
case, the value of ef(s1) is small, and instant frequencies of the overall system
remain close.

In analogy to the previous sections, approximate solutions of system (13.3) are
sought with the help of the multiple scales techniques. First, we introduce the
complex-valued amplitudes η and u by formulas

gðs0; eÞ ¼ ðm1 � iu1Þe�ixes0 ;uðs0; eÞ ¼ ðm2 þ iu2Þe�ixes0 ;

where xe = (1 + 2ek1)
1/2. In the next step, the functions η and u are constructed in

the form of the asymptotic series

gðs0; eÞ ¼ g0ðs1Þþ eg1ðs0; s1Þþ e2. . .

uðs0; eÞ ¼ u0ðs1Þþ eu1ðs0; s1Þþ e2. . .
ð13:4Þ

Reproducing standard arguments, we derive the following first-order equations
for the slow complex amplitudes η0 andu0

dg0
ds1

¼ �ik1u0ðs1Þ; g0ð0Þ ¼ V0;

du0

ds1
� iXðs1Þu0 ¼ �ik2g0:

ð13:5Þ

where X(s1) = q + 2b2s1, q = k2 − k1 − r (see (Kosevich et al. 2010; Kovaleva
et al. 2011; Manevich et al. 2011) for more details).

Once the envelopes η0(s1) and u0(s1) are found, the leading-order approxima-
tions to the solutions u1 and u2 are given by

u10ðs0; eÞ ¼ jg0ðs1Þj sinðxes0 þ dðs1ÞÞ; dðs1Þ ¼ argðg0ðs1ÞÞ;
u20ðs0; s1Þ ¼ ju0ðs1Þj sinðxes0 þ aðs1ÞÞ; aðs1Þ ¼ argðu0ðs1ÞÞ:

ð13:6Þ

Partial energy of the oscillators on the LPT is approximately expressed as

e10ðs1Þ ¼ 1
2
ð\u210 [ þ\m210 [ Þ ¼ 1

2
jg0ðs1Þj2:

e20ðs1Þ ¼ 1
2
ð\u220 [ þ\m220 [ Þ ¼ 1

2
ju0ðs1Þj2;

ð13:7Þ

where <�> denotes the averaging over the “fast” period T = 2p/xe. Note that
expressions (13.7) ignore the residual terms of O(e) associated with potential energy
of weak coupling and small slow change of linear stiffness.
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We obtain from (13.5) to (13.7) that for small s1, the following approximations
are valid:

g0ðs1Þ ¼ V0ð1� 1
2
k1k2s

2
1Þ; e10ðs1Þ ¼ 1

2
V2
0 ð1� k1k2s

2
1Þ:

u0ðs1Þ � �ik2V0s1; e20ðs1Þ � 1
2
ðk2V0s1Þ2:

ð13:8Þ

It now follows from (6.39) that in the initial time interval, the energy of the
excited oscillator is decreasing while the energy of the second oscillator is
increasing. An instant s1

* at which e10(s1
*) = e20(s1

*) is defined by the equality
(k2V0s1)

2 = V0
2(1 − k1k2s1

2),

s�1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ðk1 þ k2Þ
p ð13:9Þ

It is obvious that s1
* decreases with an increase in coupling. This conclusion

agrees with the experimental results presented in (Manevitch et al. 2011; Kosevich
et al. 2010).

Finally, we note that Eq. (13.5) are equivalent to the second-order differential
equation

d2u0

ds21
� iXðs1Þ du0

ds1
þðk1k2 � ib2Þu0 ¼ 0 ð13:10Þ

with initial conditions u0 = 0, du0/ds1 = −ik2V0 at s1 = 0. The equivalence of
Eq. (13.10) to the equation of the Landau–Zener transient tunneling problem
[(Landau 1932; Zener 1932) is discussed in (Kovaleva et al. 2011).

13.2 Approximate Analysis of Energy Transfer
in the Linear System

It is well known that an analytical solution for the Landau–Zener problem of
transient tunneling dynamics is prohibitively complicated even in the linear case
(Zener 1932). However, it follows from (13.10) that asymptotic solutions can be
greatly simplified if 2b2 � k1k2 (Kovaleva et al. 2011).

For brevity, we let k1 = k2 = k. Under these assumptions, Eq. (13.10) is
approximated as

d2~u0

ds21
� iX0ðs1Þ d~u0

ds1
� ib2~u0 ¼ 0; ð13:11Þ
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where X0(s1) = (q0 + 2b2s1), q0 = −r. We thus have

~u0ðs1Þ ¼ �ikV0Iðs1Þ; Iðs1Þ ¼ 1
b
eiBðs1ÞFðs1; h0Þeih

2
0 ; ð13:12Þ

where B(s) = q0s + (bs)2 = (bs + h0)
2, h0 = −r/2b, and

Fðs1; h0Þ ¼
Zbs1 þ h0

h0

e�ih2dh ¼ ½Cðbs1 þ h0Þ � Cðh0Þ�

� i½Sðbs1 þ h0Þ � Sðh0Þ�:

C(x) and S(x) are the cos- and sin-Fresnel integrals. Once the envelope ~u0ðs1Þ is
found, the envelope ~g0ðs1Þ is expressed as

~g0ðs1Þ ¼ V0 � ik
Zs1
0

~u0ðsÞds: ð13:13Þ

An approximate solution of system (13.3) is now given by

~u1ðs0; eÞ ¼ j~g0ðs1Þj sinðxes0 þ dðs1ÞÞ; dðs1Þ ¼ argð~g0ðs1ÞÞ;
~u2ðs0; eÞ ¼ j~u0ðs1Þj sinðxes0 þ ~aðs1ÞÞ; ~aðs1Þ ¼ argð~u0ðs1ÞÞ

ð13:14Þ

We evaluate the amplitudes of oscillations in two limiting cases:

1. If bs1 �
ffiffiffi
2

p
, it follows from (13.15) to (13.18) that

ju0ðs1Þj � kV0s1 ð13:15Þ

2. If bs1 �
ffiffiffi
2

p
, then it follows from the properties of the Fresnel integrals

(Gradshtein and Ryzhik 2000) that

~u0ðs1Þ ! �u0 ¼ �i
kV0

b

ffiffiffi
p
8

r
� Cðh0Þ

� �
� i

ffiffiffi
p
8

r
� Sðh0Þ

� �� �

�u0k k ¼ kV0

b

ffiffiffi
p
8

r
� Cðh0Þ

� �2
þ

ffiffiffi
p
8

r
� Sðh0Þ

� �2( )1=2

; as s ! 1:

ð13:16Þ

Expressions (6.47) imply that at large times, the second oscillator (the energy
sink) exhibits quasi-stationary oscillations with constant amplitude j�u0j and energy
�e20 ¼ 1=2j�u0j2. This illustrates almost irreversible energy transfer from the initially
excited oscillator to the sink being initially at rest.
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We now compare exact (numerical) solutions of the initial systems (13.3) with
approximations (13.14). The parameters of the system are given by

e ¼ 0:05; V0 ¼ 1; er ¼ 0:1125; eb ¼ 0:05; k ¼ 1:

In Fig. 13.1, one can observe close proximity of the exact solutions and their
approximations for each oscillator separately (Fig. 3.51a, b). Almost irreversible
energy transfer manifested as a decrease in energy of the first oscillator with a
simultaneously growing energy of the second oscillator is shown in Fig. 13.1c.
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Fig. 13.1 Exact (numerical) and approximate solutions u1,2 and u1̃,2, respectively [plots (a), (b)];
energy of the oscillator e1 and the sink e2 [plot (c)]
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13.3 Classical Analog of Quasi-Linear Quantum
Tunneling

In this section, we expose asymptotic equivalence between the slow passage
through resonance in two weakly coupled quasi-linear oscillators and quasi-linear
Landau–Zener tunneling, thereby extending the previously found mathematical
analogy to quasi-linear systems.

The system considered consists of two weakly coupled oscillators. A linear
oscillator with constant parameters is excited by an initial impulse, while a coupled
nonlinear oscillator with time-dependent stiffness is initially at rest. We will
demonstrate that the nonlinear oscillator acts as an energy sink and ensures a visible
reduction of the amplitude of oscillations of the excited mass.

The nonlinear equations of motion are similar to (13.1) but include an additional
nonlinearity

m1
d2u1
dt2

þ c1u1 þ c12ðu1 � u2Þ ¼ 0;

m2
d2u2
dt2

þC2ðtÞu2 þ c12ðu2 � u1Þþ k3u
3
2 ¼ 0;

ð13:17Þ

Coefficients in Eq. (6.48) coincide with coefficients of Eq. (13.1); k3 denotes
nonlinearity of the sink.

As in Sect. 13.1, we define the small parameter 2e = c12/c2 � 1 and coefficients
(6.33) together with dimensionless nonlinearity k3/c2 = 8ea. Then, introducing the
fast and slow timescales s0 = xt and s1 = es0, the original system (6.48) is rewritten
as

d2u1
ds20

þ u1 þ 2ek1ðu1 � u2Þ ¼ 0;

d2u2
ds20

þ u2 þ 8eau32 þ 2ek2ðu2 � u1Þ � 2efðs1Þu2 ¼ 0;

ð13:18Þ

with detuning f(s1) = r − 2b2s1 and initial conditions u1 = u2 = 0; v1 = V0, v2 = 0.
We recall that these initial conditions determine the LPT of system (13.18) and
provide maximum possible energy transfer from the excited nonlinear oscillator to
the linear sink being initially at rest.

As in the linear case, solutions of system (13.18) are sought by means of the
change of variables η(s0,e) = (v1 + iu1)e�ixes0 , u(s0,e) = (v2 + iu2)e�ixes0 , where
the complex amplitudesη and u are constructed in the form of the multiple scales
expansions (13.4) with slowly varying main terms η0(s1), u0(s1). The series of
obvious transformations (Kovaleva and Manevitch 2012) yield the following
equations for the slow envelopes η0(s1) and u0(s1):
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dg0
ds1

¼ �ik1u0ðs1Þ; g0ð0Þ ¼ V0;

du0

ds1
¼ iXðs1Þu0 � ik2g0 þ 3iau0ju0j2;u0ð0Þ ¼ 0:

ð13:19Þ

where X(s1) = q+2b2s1 and q = k2 − k1 − r. Once the solutions u0(s1) and η0(s1)
are found, the leading-order approximations u10, u20 to the solutions u1, u2 are
calculated by (6.37).

Equation (6.50), which are central to our investigation, are equivalent to the
nonlinear Landau–Zener equations and have a broad scope of physical applications,
from the study of Bose–Einstein condensate in a time-varying double-well trap to
optics, laser physics, etc., (see, e.g., Khomeriki 2011; Ishkhanyan et al. 2009; Itin
and Watanabe 2007; Liu et al. 2002; Nakamura 2002; Sahakyan et al. 2010;
Trimborn et al. 2010, and references therein). Equivalence of the mathematical
description implies that a classical system of two weakly coupled oscillators may be
treated as an adequate model of a wide variety of complicated physical processes.

For further analysis, it is convenient to rewrite (13.19) in the form

dg0
ds1

¼ �ik1u0ðs1Þ; g0ð0Þ ¼ V0;

du0

ds1
� iXðs1Þu0 � 3iau0ju0j2 ¼ �ik2V0 � k1k2

Zs1
0

u0ðrÞdr;

u0ð0Þ ¼ 0

ð13:20Þ

The solution of the coupled problem (13.20) can be significantly simplified if the
integral term in the second equation is negligible in the main approximation. Using
the arguments of Sect. 13.2, one can show that this assumption holds under the
above-mentioned condition k1k2 � 2b2. Using this condition, we develop a rele-
vant iteration procedure for a quasi-linear system [see (Kovaleva and Manevitch
2012) for details and discussion].

For brevity, we consider a symmetric system with m1 = m2 = m, c1 = c2 = c and

weak coupling c12/c = 2ek0. The initial iteration gð0Þ0 ;uð0Þ
0 is defined as a solution of

the linear equations:

dgð0Þ0

ds1
¼ �ik0u

ð0Þ
0 ; gð0Þ0 ð0Þ ¼ V0;

duð0Þ
0

ds1
� iX0u

ð0Þ
0 ¼ �ik0V0;u

ð0Þ
0 ð0Þ ¼ 0;

ð13:21Þ

where X0(s1) = −r + 2b2s1. The initial linear iteration determines the shape of the
solution, while successive iterations improve the accuracy of approximations.
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The first iteration uð1Þ
0 satisfies the linearized equation that approximately con-

siders the effect of weak nonlinearity:

duð1Þ
0

ds1
þ iX0ðs1Þuð1Þ

0 � 3ieajuð0Þ
0 juð1Þ

0 ¼ �ik0V0; uð1Þ
0 ¼ 0: ð13:22Þ

It is easy to verify that the initial iteration (13.21) approximately depicts the slow
envelopes of the linear system (13.3), while the first iteration (13.22) corresponds to
the truncated system similar to (13.23). In both cases, we ignore the effect of slow
changes of the envelope η0(s1) on the evolution of the envelope u0(s1). The

improved iteration uð2Þ
0 takes into account both nonlinearity and slow changes of

the envelope η0(s1):

dgð2Þ0

ds1
¼ �ik0u

ð0Þðs1Þ; g0ð0Þ ¼ V0;

duð2Þ
0

ds1
þ iX0ðs1Þuð2Þ

0 � 3ajuð0Þ
0 j2uð2Þ

0

¼ �ik0V0 � k20

Zs1
0

uð0Þ
0 ðsÞds; uð2Þ

0 ð0Þ ¼ 0:

ð13:23Þ

Note that the solution of the generic problem (13.21) is expressed through the
Fresnel integral; linear Eqs. (13.22) and (13.23) also can be solved analytically
(Kovaleva and Manevitch 2012). In this section, we compare the exact (numerical)
solution of (13.18) with parameters

e ¼ 0:05; k0 ¼ 1; V0 ¼ 1; r ¼ 2:25; 2b2 ¼ 2:25; a ¼ 0:25:

with approximations calculated by formulas (13.16), in which the amplitudes |η0|,

|u0| are changed to their iterations gðjÞ0
��� ���, uðjÞ

0

��� ���, j = 0, 1. A simple calculation proves

that k0
2 < 2b2, k = 3a/4k0 = 0.1875. Therefore, the hypotheses of weak coupling

and weak nonlinearity hold.
Figure 13.2 depicts the energy of the oscillator (1) and the trap (2) in the systems

with coefficients k = 0.1875. Energy of the nonlinear system is calculated by for-
mulas e1 = 1/2|η0|

2 and e2 = 1/2|u0|
2 with η0 and u0 satisfying Landau–Zener

Eq. (13.19) rescaled to the fast timescale s0; approximate values are calculated by

formulas eð0Þ1 ¼ 1=2jgð0Þ0 j2 and eð0Þ2 ¼ 1=2juð0Þ
0 j2. It is easy to conclude that an

increase in nonlinearity renders a difference between the nonlinear and linear
dynamics more pronounced.

Finally, we note that Eq. (13.2), as well as approximations (13.21)–(13.23) are
valid for both classical and quantum problems. The equivalence of the mathe-
matical descriptions implies that a classical system of weakly coupled oscillators
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may serve as a simple but adequate model of complicated physical processes.
Moreover, the mathematical equivalence, in principle, enables the substitution of
mechanical modeling for complicated and costly quantum experiments (Kosevich
et al. 2010; Manevitch et al. 2011).

13.4 Moderately and Strongly Nonlinear Adiabatic
Tunneling

This section explores we examine irreversible energy transfer along the LPTs for
moderately and strongly nonlinear regimes in a system with slowly time-varying
parameters. We demonstrate the equivalence of the equations for the slow passage
through resonance in the classical system and the equations of nonlinear LZ tun-
neling. It is noted here that the well-known LZ tunneling is typical for moderately
nonlinear regimes, while the system with strongly nonlinear behavior can exhibit
both the transition from the energy localization to intense energy exchange (with a
large inductive period) as well as the rapid passage through the separatrix. It is
important to underline that the revealed mathematical equivalence suggests a unified
approach to the study of such physically different processes as energy transfer in
classical oscillatory systems under slow driving and nonlinear quantumLZ tunneling.

13.4.1 Moderately Nonlinear Regimes

We consider adiabatic tunneling in a system of two coupled oscillators similar to
(13.17), namely
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0

0.1

0.2

0.3

0.4

0.50.5
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,  
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Fig. 13.2 Energy of the
excited oscillator (1) and the
trap (2) for the nonlinear
system with parameter
k = 0.1875 (solid lines);
linear approximations are
depicted with dashed lines
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d2u1
ds20

þ u1 þ 2eðu1 � u2Þþ 8eau31 ¼ 0;

d2u2
ds20

þð1þ 2egðs2ÞÞu2 þ 2eðu2 � u1Þþ 8eau32 ¼ 0;

ð13:24Þ

where g(s2) = g0 + g1s2, s2 = e2s0, s1 = es0. It is well known that energy transfer
between coupled oscillators with adiabatically changed parameters is divided into
two stages, with each characterizing by adiabatic invariance but separated by an
abrupt jump at a moment of tunneling. Breaking of adiabaticity under slow driving
has been intensively studied over last decades using various approximations [see,
e.g., (Itin and Törmä 2009, 2010; Itin and Watanabe 2007; Khomeriki 2011;
Sahakyan et al. 2010)]. We investigate slow transient processes before and after
tunneling. The asymptotic analysis accounts for the fact that in the first interval of
motion most part of energy is localized on the excited oscillator while the residual
energy of the coupled oscillator is small enough. After tunneling, localization of
energy takes place on the coupled oscillator, but energy of the initially excited
oscillator becomes small. An introduction of the small parameter characterizing a
relative energy level allows an explicit asymptotic solution.

As in Sect. 13.1, we introduce the change of variables vj þ iuj ¼ Yjeis0 , j = 0,1,

and then obtain that Yj = uj
(0) + euj

(0) + O(e2),where uð0Þ
1 ¼ aeis1 ;uð0Þ

2 ¼ beis1 . The
equations for the slow complex envelopes a and b are given by

da
ds1

þ ib� 3iajaj2a ¼ 0;

db
ds1

þ ia� 3iajbj2b� 2igðs2Þb ¼ 0;
ð13:25Þ

with initial conditions a(0) = 1, b(0) = 0 corresponding to the initial unit impulse
applied to the first oscillators. It is easy to prove that the conservation law
|a|2 + |b|2 = 1 holds true for system (13.25) despite its non-stationarity. We recall
that given initial conditions correspond to the LPT of the system, thus providing
maximum irreversible energy transfer from the excited oscillator to the attached
one. Also, we note that Eq. (13.25) are identical to the nonlinear analog of the LZ
equations of quantum tunneling (see, e.g., [94, 191, 209, 213] for further details).

The change of variables a ¼ cos h eid1 , b ¼ sin h eid2 , D = d1 − d1 reduces
(13.25) to the form

dh
ds1

¼ sinD;

sin 2h
dD
ds1

¼ 2ðcosDþ 2k sin 2hÞ cos 2h� 2gðs2Þ sin 2h;
ð13:26Þ
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with initial conditions h(0) = 0, D(0) = p/2. Figure 13.3 depicts the plots of the
energy 2e1 = |a|2, 2e2 = |b|2 in the interval 0 	 s1 	 1000 for system (13.26)
with parameters k = 0.65, g0 = −0.5, and eg1 = 0.001.

It is observed that the dynamics of each oscillator is close to motion along the
LPT of the time-invariant system in the initial interval of motion, whereas the
change of detuning is negligible (Fig. 13.3a), but afterward the change of energy
becomes evident and the occurrence of tunneling at T* � 585 becomes evident
(Fig. 13.3b). The value of detuning g = g0 + eg1T

* = 0.085 at the instant of tun-
neling is close to critical detuning g* � 0.083 calculated in Sect. 1.1 for a
time-invariant system. Figure 13.3c represents the phase portrait in the plane
(h, V = sinD), which also demonstrates an instant jump between energy levels.
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exchange between the oscillators in the initial interval of motion; b an instant jump between the
energy levels; c the phase portrait of system (13.26)
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Now, we briefly analyze the dynamical behavior in the interval S1 : 0 	 s1 < T*

before tunneling. We employ the change of variables

W ¼ jbjeiD ¼ j sin hjeiD ð13:27Þ

which reduces (6.57) to a complex-valued equation

dW
ds1

¼ 4i
1� 1=2ðW2 þ 2jWj2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� jWj2
q þ 2xðs2ÞW� 8kWjWj2

2
64

3
75;Wð0Þ ¼ 0; ð13:28Þ

where x(s2) = 2k − g(s2) = x0 − g1s2, x0 = 2k − g0. It is important to note that
the frequency x(s2) directly depends on the coefficient k, thereby reflecting the
effect of nonlinearity even in the linear approximation of Eq. (13.28).

Since |b| = |W| � 1 in S1, we introduce the rescaled variable w = e−1/2W and the
new timescale s = e−1/2s1, as well as rescaled coefficients 8k = e−1/2j,
2x0 = e−1/2w0, where j and w0 are of O(1). Finally, we denote e3/2g1 = b2/4
(keeping in mind that b � 1). When we substitute the rescaled variables and
coefficients into (13.28) and ignore the terms of orders higher than e, we obtain the
equation

dw
ds

¼ 4i wðsÞwþ 1� 1
2
eðw2 þ jwj2Þ � jejwj2w

� �
; wð0Þ ¼ 0; ð13:29Þ

where w(s) = w0 − b2s/2. Thus, we get a quasi-linear equation, and the earlier
developed iteration procedure can be employed to construct an approximate solu-
tion. The initial iteration w0(s) is chosen as a solution of the linear equation

dw0

ds
¼ 4i½wðsÞw0 þ 1�; w0ð0Þ ¼ 0;

w0ðsÞ ¼ 4ib�1eið/0ðsÞ�a2ÞU0ðsÞ;
ð13:30Þ

where /0(s) = w0s − (bs)2,a = w0/b, and

U0ðsÞ ¼
Zbs�a

�a

eih
2
dh ¼ ½Cðbs� aÞþCðaÞ� þ i½Sðbs� aÞþ SðaÞ�;

with C(h) and S(h) being the cos- and sin-Fresnel integrals, respectively. Once w0 is
found, the main approximation to the function |b| is calculated as |b0| = e1/2|w0|.
Note that the parameter w0 depends on the coefficient of nonlinearity k, and thus,
the behavior of the solution w0(s) is conditioned by nonlinearity.
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In the next step, the first iteration w1 is found from the linearized equation

dw1

ds
¼ 4i ½wðsÞ � ejjw0ðsÞj2�w1 � e

1
2
w2
0ðsÞþ jw0ðsÞj2

� 	
þ 1

� �
;

w1ð0Þ ¼ 0;

w1ðsÞ ¼ w0ðsÞþ 4iei/1ðsÞU1ðsÞ;

ð13:31Þ

where

/1ðsÞ ¼ /0ðsÞ � ej
Zs

0

jw0ðzÞj2dz;

U1ðsÞ ¼
Zs

0

e�i/1ðzÞdz� e
Zs

0

e�i/1ðzÞRðzÞdz;

RðzÞ ¼ 1
2
w2
0ðzÞþ jw0ðzÞj2:

Once the solution w1 is derived, the first iteration to the function |b| is calculated
as |b1| = e1/2|w1|. The exact solution |b(s1)|

2 and the iterations |b0(s1)|
2 and |b1(s1)|

2

are presented in Fig. 13.4a. Figure 13.4a clearly indicates that in the first half of the
interval S1 the maximal divergence between the exact solution and its linear
approximation is less than 15%. The increased divergence in the second part of S1 is
due to the different behavior of the exact and approximate solutions near the point
of transition, while the exact solution demonstrates a sudden increase at an instant
of tunneling, the linear approximation tends to a certain limit.
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The dynamical behavior in the interval S2 : s1 > T after tunneling is studied in a
similar way. Given |a| � 1, the variable analogous to (13.27) is introduced

Z ¼ � aj jeiD ¼ � cos hj jeiD ð13:32Þ

Transformations of the same sort that led to Eq. (13.29) yield the following
equation:

dZ
ds1

¼ 4i 2x1ðs2ÞZ � 1þ 1
2
ðZ2 þ jZj2Þ � 8jZjZj2

� �
;

ZðTÞ ¼ p0;
ð13:33Þ

where x1(s2) = 2k + g(s2) = x10 + g1s2, x10 = 2 k + g0. As shown in Sect. 3.1,
initial condition for Eq. (13.33) at s1 = T should be defined from the condition of
the coalescence of the stable and unstable states. This means that the quantity
h(T) = hT determines the initial condition |a(T)| = |cos hT| = p0.

Given |Z| � 1 in S2, we introduce the following transformations of the variables
and the parameters: Z = e1/2z, s1 = e1/2s, 8k = e−1/2j, 2x10 = e−1/2w10. Then, we
denote e3/2g1 = b2/4, e−1/2T = s0, e

1/2p0 = p10. Substituting the rescaled quantities
into (13.33) and ignoring the higher-order terms, we obtain the quasi-linear equa-
tion similar to (13.29)

dz
ds

¼ 4i w1ðsÞz� 1þ 1
2
eðz2 þ 2jzj2Þ � ejzjzj2

� �
;

zðs0Þ ¼ p10;
ð13:34Þ

with the adiabatically increasing parameter w1(s) = w10 + b2s/2. The initial itera-
tion z0(s) is given by the following expressions

dz0
ds

¼ 4i½w1ðsÞz0 � 1�; z0ðs0Þ ¼ p10;

z0ðsÞ ¼ ðp1 � 4iHðsÞÞeidðsÞ;
ð13:35Þ

where d(s) = 4[w10s + (bs)2], HðsÞ ¼ eia
2
1F1ðsÞ=2b; and

F1ðsÞ ¼
Z2bsþ a1

a1

e�ih2dh ¼ ½Cð2bsþ a1Þ � Cða1Þ�

� i½Sð2bsþ a1Þ � Sða1Þ�:
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Applying the inverse rescaling, we get the initial iteration |a0| = e1/2|z0|. As
shown in Fig. 13.4(b), the plot of |a0(s1)|

2 is close to |a(s1)|
2. Finally, calculating the

stationary state j�a0j = lim|a0(s1)| as s1 ! ∞, we obtain

j�a0j ¼ e1=2�z0 ¼ jp0 þ 1=x10j: ð13:36Þ

The resulting non-zero value of j�a0j implies the existence of the residual energy
depending on the initial condition p0. Given k = 0.65, g0 = −0.5, we obtain
j�a0j = 0.445. It follows from (13.36) that in the interval S2 : s1 > T the quantity e2
tends to the limiting value e ̅2 = |b0̅|

2/2 = (1 − |a ̅0|
2)/2 = 0.401 as s1 ! ∞. The

quantity e2̅ characterizes the amount of energy transferred from the excited oscil-
lator with initial energy e10 = 1/2 to the coupled oscillator being initially at rest.

13.5 Strongly Nonlinear Regimes

The analysis of strongly nonlinear dynamics of a time-invariant system demon-
strates that the change of detuning g may entail a transition from weak to strong
energy exchange. In this section, we show that this conclusion remains valid for
adiabatic strongly nonlinear tunneling.

Figure 13.5 demonstrates the phase portrait and the transient evolution of the
angle h for system (13.36) with parameters k = 0.9, g0 = −0.25; eg1 = 0.001.

The phenomenon of energy localization with relatively small oscillations around
the slowly varying steady state is observed in the initial interval S1 : 0 	 s1 < T*;
then, in the interval S2 : s1 > T*, energy localization changes to intense exchange.
Note that tunneling occurs at T* = 580 that corresponds to g = 0.33.

The adiabatic convergence to the transition point at the first stage of motion can
be examined in the same way as in Sect. 13.5. In the current section, we briefly
analyze the dynamical behavior in the interval S2, where the variations of h(s1) are
large enough, and the asymptotic approach of Sect. 3.1 is inapplicable. We note
that the local minima h�ðs1Þ and maxima hþ ðs1Þ of h(s1) lie on the slowly varying
envelops Q−(s2) and Q+(s2), respectively, (Fig. 13.5c). Given that at the initial
moment the quantities |Q−| and |p/2 − Q+| are small enough (Fig. 13.5c), the initial
approximation can be chosen as h0

− = Q0
− = 0, h0

+ = Q0
+ = p/2. This yields the first

approximation

Q

1 ðs1Þ ¼ h
0 � eg1ðs1 � TÞ: ð13:37Þ

[see (Manevitch and Kovaleva 2013) for more details]. Figure 13.5c demon-
strates a good agreement of approximations (13.37) with the precise (numerical)
solution in the interval S2.
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Chapter 14
Strongly Nonlinear Lattices

14.1 The Large-Amplitude Oscillations in the Discrete
Finite Frenkel–Kontorova Model

The majority of physical, mechanical and engineering problems dealing with
nonlinear processes cannot be solved by the direct methods. The main goal of the
researchers is the construction of a simplified model, which can be solved by an
approximate method without loosing the physical content. The asymptotic methods,
in particular, the averaging ones, based on using a small parameter, are the
well-developed tools, which are effectively applied in the nonlinear dynamics
(Bogolubov and Mitropolski 1961; Kuehn 2015; Sanders and Verhulst 2007).
Moreover, there is a popular jest that a nonlinear problem is unsolvable, if a small
parameter cannot be found. In this context, we would like to separate the problems
with an external small parameter (ESP) connected with a small perturbation of the
solvable system, and the problems, the small parameter of which is an internal one
(Internal Small Parameter—ISP). Besides, in the latter, an ISP can be a priori
unclear (i.e., ISP is hidden). The most evident example of the system with ESP can
be found in the celestial mechanics. It is a small perturbation of the stationary orbit
of a planet by a remote heavenly body.

The example of the system with the ISP can be found in the theory of nonlinear
oscillations. Let us consider two weakly coupled pendula. The small parameter is
determined by the coupling rigidity, and it is the internal parameter because the
stationary dynamics of the system has to be considered in the terms of normal
modes, but not of the pendula. The small coupling has to be accounted in the main
asymptotic approximation. The resonant interaction of the nonlinear normal modes
(NNMs) of the well-known Fermi–Pasta–Ulam nonlinear lattice gives an example
of the hidden ISP (Manevitch and Smirnov 2010a, b). Really, considering the slow
evolution of the interacting NNMs, we have to remove the fast motion and to
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analyze the envelopes of NNMs. Such an approach leads to the multi-scale expan-
sion, the small parameter of which turns out to be the NNMs’ frequency splitting.
This parameter depends on the length of the lattice and on the wave number.

In this section, we would like to use the effective method of the solution of
nonlinear problems which do not content any small parameter in their initial for-
mulation. This method is based on the averaging procedure, the validity of which is
proven in the process of solution finding. The source of the ISP as well as its value
is dictated by the solution obtained and is verified by the comparison with the
numerical simulation data. Omitting the general discussion of the method, we will
demonstrate its efficiency in the application to both stationary and non-stationary
dynamical processes.

The model

Let us consider the periodic system of N coupled pendula. This system has a
wide application in physics modeling an array of the particles in the field of the
local (on-site) potential (Braun and Kivshar 2004). The best known example of
such systems is the Frenkel–Kontorova model describing a dislocation or interstitial
atom in the crystal lattice (Frenkel and Kontorova 1938). Replacing the pendula by
the nonlinear oscillators with two-well on-site potential, we obtain the Klein–
Gordon model, which is used for the description of the displacement disorder in the
crystals. In the linear approximation, these models lead to equations of the same
type (linear discrete Klein–Gordon equations), the properties of which in the
continual limit are well studied. However, in relatively small systems, the dis-
creteness plays an important role, and the traditional approach consists in the
application of the nonlinear normal mode (NNMs) concept.

Let us write the Hamiltonian of the system with length N in the dimensionless
form:

H ¼
XN
j¼1

p2j
2

þ b
2

qjþ 1 � qj
� �2 þ 1� cos qj

 !
ð14:1Þ

Under periodic boundary conditions: qNþ 1 ¼ q1. The corresponding equation of
motion

d2qj
dt2

� bD2qj þ sin qj ¼ 0

D2qj ¼ qjþ 1 � 2qj þ qj�1
� � ð14:2Þ

may be represented in the terms of complex variables:

Wj ¼ 1ffiffiffi
2

p 1ffiffiffiffi
x

p dqj
dt

þ i
ffiffiffiffi
x

p
qj

� �
ð14:3Þ
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where x is a frequency of the oscillations, which will be later defined.

i
dWj

dt
þ x

2
Wj þW�

j

� �
� b
2x

D2 Wj �W�
j

� �

þ 1
2x

X1
k¼0

1
2kþ 1ð Þ!

1
2x

� �k

Wj �W�
j

� �2kþ 1
¼ 0

ð14:4Þ

Let us represent the solution of Eq. (14.4) in the form:

Wj ¼ wje
ixt ð14:5Þ

where wj is the amplitude.
One can show that function (14.5) is the solution of the resonant equation, which

is obtained by averaging of Eq. (14.4) over the period 2p/x, if the relation

b
2x

D2wj �
x
2
wj þ

1ffiffiffiffiffiffi
2x

p J1

ffiffiffiffi
2
x

r
wj

		 		 !
wj

wj

		 		 ¼ 0 ð14:6Þ

is satisfied. (Here, J1 is the Bessel function of the first kind.)
Equation (14.6) has the sense of dispersion relation, if the function wj is rep-

resented as follows:

wj ¼
ffiffiffiffi
X

p
eijj ð14:7Þ

where X = const and with j ¼ 2pk=N and k = 0, 1, 2, …, N − 1.
Now, one can understand the origin of the frequency x. Really, one can see that

functions (14.5) and (14.7) describe the nonlinear normal mode with the wave
number j. Then, the parameter x is its frequency.

According to definition (14.3) of the function W, the amplitude X is expressed
via the amplitude of the displacement Q:

X ¼ x
2
Q2 ð14:8Þ

Taking into account this relation and Eq. (14.7), one can rewrite dispersion
relation (14.6) as follows:

x2 ¼ 2
Q
J1 Qð Þþ 4b sin2

j
2

ð14:9Þ

If the wave number is zero, j ¼ 0, Eq. (14.9) describes the amplitude depen-
dence of the uniform (gap) mode, when all pendula oscillate in phase:
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x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
Q
J1 Qð Þ

s
ð14:10Þ

In such a case, this frequency has to correspond to oscillation frequency of single
pendulum, the exact value of which is well known:

xp ¼ p

2K sin Q
2

� � ; ð14:11Þ

where K is the complete elliptic integral of first kind. The comparison of these
frequencies is shown in Fig. 14.1.

One can see that the frequencies (14.10) and (14.11) are well accorded,
excluding a vicinity of the limiting oscillation amplitude ¼ p .

To understand the discrepancy, one can assume that Eq. (14.6) is the stationary
version of more general equation:

i
@wj

@s
þ b

2x
D2wj �

x
2
wj þ

1ffiffiffiffiffiffi
2x

p J1

ffiffiffiffi
2
x

r
wj

		 		 !
wj

wj

		 		 ¼ 0 ð14:12Þ

Equation (14.12) can be obtained under assumption that a specific timescale for
the variation of wj is much more than the period of modes 2p/x. In spite of that it is
not clearly appeared, the small parameter is the ratio of mode period to the envelope
variation time. The frequency of pendulum oscillations converges to zero in the

Fig. 14.1 NNMs frequencies calculated according to dispersion ratio (14.9) for the chain with 20
particles and the wave numbers k ¼ 1; . . .; 10. Solid blue and long-dashed red curves correspond
to the uniform (zone-bounding) mode frequencies, calculated according to Eqs. (14.11) and
(14.10), respectively. The coupling parameter is b ¼ 1:0
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vicinity of the limiting oscillation amplitude Q = p, and the separation of the times
turns out to be invalid.

Equation (14.12) describes a slow variation of the envelope function wj that
results from the nonlinear interaction with surrounding modes. Therefore, one can
use it for analyzing the resonant mode interaction.

Equation (14.12) correspond to the Hamilton function in the form:

Ha ¼
XN
j¼1

1
2

1� x wj

		 		2�J0

ffiffiffiffi
2
x

r
wj

		 		 !
þ b

x
wjþ 1 � wj

		 		2" #
ð14:13Þ

The additional integral of motion is the “occupation” number:

X ¼ 1
N

XN
j¼1

wj

		 		2 ð14:14Þ

In such a case, the key small parameter is a difference between the mode fre-
quencies. Let us consider the non-stationary dynamics of the chain following from
the interaction of the low-frequency modes with the wave numbers j0 = 0 and
j1 = 2p/N. It was early shown (Smirnov and Manevitch 2011) that the combination
of these modes leads to dividing the system on two domains, inside of which the
particles move almost coherently. These domains we will designate as the “coherent
domains.” It is convenient to introduce the domain coordinates:

v1 ¼
1ffiffiffiffiffiffi
2N

p
XN
j¼1

1þ cos j1jþ sin jj
� �
 �

wj

v2 ¼
1ffiffiffiffiffiffi
2N

p
XN
j¼1

1� cos j1jþ sinjj
� �
 �

wj

ð14:15Þ

(It is useful to note that the domain coordinates (14.15) are transformed into
coordinates of particles, if the chain length N = 2.) The inverse transformation to
the complex amplitude of the particles is written as follows:

wj ¼
1ffiffiffiffiffiffi
2N

p v1 þ v2ð Þþ v1 � v2ð Þ cos j1jþ sin j1jð Þ½ �: ð14:16Þ

One can see that the amplitude vectors v1; v2ð Þ ¼ 1; 0ð Þ and v1; v2ð Þ ¼ 0; 1ð Þ
correspond to the maximum of pendulum displacements in the one and second
domains, respectively.

After substituting the expression (14.16) into Eq. (14.13), the equations of
motion for the domain coordinates in the terms of complex amplitudes may be
obtained immediately by variation of the Hamiltonian with respect to the domain
coordinates v1; v2. However, the resulting equations are lengthy enough and do not

14.1 The Large-Amplitude Oscillations … 359



allow to analyze the chain dynamics clearly. Therefore, one should simplify the
procedure. First of all, one can see that transformation (14.16) preserves the integral
of occupation number (14.14):

X ¼ v1j j2 þ v2j j2 ð14:17Þ

With using the integral (14.17), the dimension of the system’s phase space may
be reduced by introducing the relative amplitudes of the domain coordinates vj
(Manevitch and Smirnov 2010a, b):

v1 ¼
ffiffiffiffi
X

p
cos heid1 ; v2 ¼

ffiffiffiffi
X

p
sin heid2

In such a case, the parameter X specifies the total excitation of the system, while
the “angle” h reflects the relative excitation of the coherent domains. In fact, the
energy of the system does not depend on the absolute values of the phases d1 and
d2, but it is the function of their difference D ¼ d1 � d2 only:

H h;Dð Þ ¼ �x
2
Xþ bX

x
sin2

j1
2

1� cosD sin 2hð Þ �
XN
j¼1

J0 nj
� �

nj ¼
ffiffiffiffiffiffiffi
2X
xN

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos 2h cos j1jþ sin j1jð Þþ sin j1j cos j1j 1� cosD sin 2hð Þ

p
ð14:18Þ

The first term in Hamiltonian (14.18) corresponds to the kinetic part of the
oscillation energy. The second term describes the linear splitting of the NNMs
frequencies. And the third term is associated with the nonlinear interaction of the
NNMs.

Hamiltonian (14.18) allows to analyze the phase portrait of the system and to
define the bifurcations of the phase trajectories under different excitation level that
is specified by the excitation number X.

This procedure was well discussed for the coupled nonlinear oscillators
(Manevitch 2007; Manevitch and Romeo 2015) as well as for the nonlinear chains
(Manevitch and Smirnov 2010a, b, 2011) in the small-amplitude approximation.
However, the dispersion relation (14.9) and the asymptotic Eq. (14.12) are not
restricted by any assumptions with respect to smallness of the oscillation ampli-
tudes. In such a case, one can find the bifurcations at any given amplitude as a
function of the chain parameters.

One can show that the stationary points (h = p/4, Δ = 0) and (h = p/4, Δ = p) of
system (14.18) correspond to the NNMs, while the values of h, which are equal to 0
and p/2, relate to the coherent domains v1 and v2, respectively. The “domain states”
are the parts of the trajectory, which divides the attraction areas of the NNMs (it is
named the limiting phase trajectory—LPT). It is known (Smirnov and Manevitch
2011) that the uniform (zone-bounding) mode can lose its stability at the certain
conditions, if the nonlinearity is soft. In such a case, two new stationary points,
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which relate to the weakly localized states, appeared. If the oscillation amplitudes
increase or the coupling parameter can be decreased, the separatrix passing through
the unstable NNM expands and it can reach the domain states h = 0 and h = p. At
this moment, any paths from one domain state to another one turn out to be
forbidden. Thus, the energy, initially concentrated in one of the domains, becomes
to be captured in it.

Taking into account all mentioned above, it is easy to formulate the bifurcation
conditions. The lost of stability occurs when Hamiltonian (14.18) plateaus near the
lowest NNM:

@2H h;Dð Þ
@h2

				
h¼p

4;D¼0ð Þ
¼ 0 ð14:19Þ

Solving Eq. (14.19) with respect to coupling parameter b, one can obtain the
instability threshold:

bins ¼
J2 Qð Þ
2 sin2 j1

2

ð14:20Þ

The global bifurcation occurs when the energy of unstable stationary point
(h = p/4, Δ = 0) becomes equal to the energy of “domain states” (h = p/2, Δ = p/2)
and (h = 0, Δ = p/2). Under this condition, the solution of respective equation leads
to the localization threshold as follows:

bloc ¼ 2
1
N

PN
j¼1 J0

Qffiffi
2

p fj
� �

� J0 Qð Þ
Q2 sin2 j1

2

fj ¼ 1þ cos j1jþ sin j1j

ð14:21Þ

The first fact of worth is that instability threshold (14.20) and localization one
(14.21) are in inverse proportion to the squared sin (j1/2). Taking into account that
j1 * 1/N, one can conclude that the crucial values of coupling grow while the
chain length increases. However, it is clear that the real parameter, which deter-
mines the resonant conditions, is a value of the gap between zone-bounding and the
first non-uniform modes. This value is defined by the “effective coupling constant”
that is the production bsin2 (p/N) (Smirnov and Manevitch 2011). Such conclusion
coincides with that the production bins * sin2j1/2 does not depend on the length of
the chain and is equal to eins for the pair of coupled pendula (Manevitch and Romeo
2015). One should notice that threshold (14.21) coincides exactly with the values
that were obtained in the work (Manevitch and Romeo 2015), if N = 2.
Figure 14.2a shows the “effective” threshold values for the instability and local-
ization bifurcations.

The evolution of the phase trajectories of the system can be conveniently ana-
lyzed in the Poincare map for the domain coordinates (Fig. 14.2b–d). Figure 14.2b
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shows the Poincare map for the chain with 16 coupled pendula and the coupling
parameter b > bins. It is well seen that two stationary points correspond to the
modes with wave numbers j = 0 and j = 2p/N. Figure 14.2c, d shows the Poincare
map at the localization threshold and below of it. In Fig. 14.2c, one can see that the
separatrix, passing through the unstable stationary point, surrounds two new stable
stationary points, which were created as a result of instability of the lower mode
with the wave number j = 0. In contrast, the separatrix in Fig. 14.2d encircles the
stationary point corresponding to mode with wave number j = 2p/N, and no path
from one localization state to another one exists.

14.2 Large-Amplitude Nonlinear Normal Modes
of the Discrete Sine-Lattices

The peculiarity of the model condered in the previous section is the presence of the
periodic on-site potential, while the inter-particle interaction can be described by
potentials with nonlinearities of different types. Periodic inter-atomic potentials arise,
in particular, while dealing with magnetic systems, unzipping the DNA molecule and
oscillations of the flexible crystalline polymers (see, e.g., Takeno and Homma 1986;

Fig. 14.2 a Effective thresholds (14.20), (14.21) (blue dashed and red solid curves, respectively)
versus oscillation frequency x for the chain with 16 pendula. b–d Poincare maps for the chain with
16 pendula at oscillation amplitude Q = 3p/4 and different coupling parameters: b b > bins,
c b = bloc, d b < bloc
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Takeno and Peyrard 1996, 1997, where the existence of the highly localized
soliton-like solution has been proved in the framework of the sine-lattice model).

The lucky star of the Frenkel–Kontorova model is the existence of the integrable
continuum limit of the respective equation of motion (sine-Gordon equation). Due to
full integrability of the latter, its spectra of the nonlinear periodic and localized exci-
tations have been studied in detail (Novikov et al. 1984). The continuum limit of the
discrete model with the nonlinear periodic inter-atomic interaction leads to the same
Sine-Gordon equation with understandable restrictions on the wavelengths (accounting
the discreteness effects in the framework of approach introduced by Rosenau (1986)
results in the improvement of the long-wavelength approximation only).

In this section, we study the NNMs of discrete lattice with nonlinear on-site and
inter-site interactions in the wide range of the oscillation amplitudes and wave-
lengths. We use the semi-inverse asymptotic approach, which was successfully
implemented in the previous section to the chain of coupled pendula.

The model

We consider a finite chain of coupled particles with periodic on-site and
inter-particle potentials; each of them is described by a harmonic function with,
generally speaking, different periods. This system will be referred to as sine-lattice
(SL), in contrast to the classic FK system. Keeping in mind the coincidence of the
mathematical descriptions, we will discuss all results in terms of coupled pendu-
lums. The energy of such system may be written as follows:

H ¼
XN
j¼1

1
2

dqj
dt

� �2

þ b
a2

1� cos aðqjþ 1 � qjÞ
� �� �þð1� cos qjÞ

" #
ð14:22Þ

where qj is the deviation of the jth pendulum, while b and a are the parameters,
which specify the rigidity and the period of inter-pendulum coupling. We use the
periodic boundary conditions as the most appropriate for the analysis of the chain
dynamics; i.e., we assume that qNþ 1 ¼ q1 and q0 ¼ qN .

The respective equations of motion can be written as follows:

d2qj
dt2

� b
a

sin aðqjþ 1 � qjÞ
� �� sin aðqj � qj�1Þ

� �� �þ sin qj ¼ 0 ð14:23Þ

Introducing the complex variables given by

\ !½CDATA½
Wj ¼ 1ffiffiffi

2
p 1ffiffiffiffi

x
p dqj

dt
þ i

ffiffiffiffi
x

p
qj

� �

qj ¼ � iffiffiffiffiffiffi
2x

p ðWj �W�
j Þ;

dqj
dt

¼
ffiffiffiffi
x
2

r
Wj þW�

j

� �
aligned

ð14:24Þ

and substituting them in (14.23), one can rewrite Eq. (14.23) as:
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dWj

dt
þ x

2
Wj þW�

j

� �
þ 1

2x

X1
k¼0

1
2kþ 1ð Þ!

1
2x

� �k

ðWj �W�
j Þ2kþ 1

h
� ba2kðððWjþ 1 �W�

jþ 1Þ � ðWj �W�
j ÞÞ2kþ 1

� ðWj �W�
j Þ � ðWj�1 �W�

j�1Þ
� �2kþ 1

�
¼ 0

ð14:25Þ

where the nonlinear terms in Eq. (14.23) are represented as the series of their
arguments.

The semi-inverse resonance approach to the dynamic analysis without any
restrictions on the oscillation amplitudes assumes that the considered system admits
two timescales (fast and slow). In the framework of this approach, corresponding
small parameter as well as the frequency x can be not presented in starting
equations of motion (14.23) and they have to be determined later. In order to
demonstrate these sentences, one can start from the stationary solution of
Eq. (14.25):

Wj ¼ /je
ixt; ð14:26Þ

where /j = const. Inserting solution (14.26) into Eq. (14.25) with further multi-
plying the latter on the factor exp �ixtð Þ and integrating over the period 2p/x leads
to the transcendental equations for the envelope function /j:

� x
2
uj �

b

a
ffiffiffiffiffiffi
2x

p J1 a

ffiffiffiffi
2
x

r
ujþ 1 � uj

		 		 !
ujþ 1 � uj

ujþ 1 � uj

		 		
"

�J1 a

ffiffiffiffi
2
x

r
uj � uj�1

		 		 !
uj � uj�1

uj � uj�1

		 		
#
þ 1ffiffiffiffiffiffi

2x
p J1

ffiffiffiffi
2
x

r
uj

		 		 !
uj

uj

		 		 ¼ 0

ð14:27Þ

where J1 is the Bessel function of the first order.
It is easy to see that the procedure used above is somewhat similar to the

harmonic balance method, which is widely used in the analysis of nonlinear
oscillations (Mickens 2010).

In spite of the complexity of Eq. (14.27), one can directly check that the simple
expression

uj ¼
ffiffiffiffi
X

p
e�ijj ð14:28Þ

with the wave number j = 2pk/N (k is an integer, k � N/2) satisfies it, if the
frequency x is the solution of the equation
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� 2b

a
ffiffiffiffiffiffiffiffiffiffi
2xX

p J1 2a

ffiffiffiffiffiffi
2X
x

r
sin

j
2

 !
sin

j
2
þ 1ffiffiffiffiffiffi

2x
p J1

ffiffiffiffiffiffi
2X
x

r !
¼ 0 ð14:29Þ

The latter equation is strongly simplified, if we use the relationship between the
modulus of complex function X and the amplitude of oscillations Q, which results
from definition (14.24) of complex variable W:

X ¼ x
2
Q2

Taking into account, this relationship leads to the expression for the NNMs’
frequency of the oscillations with the given amplitude Q:

x2 ¼ 2
Q

2
b
a
J1 2aQ sin

j
2

� �
sin

j
2
þ J1ðQÞ

� �
ð14:30Þ

Prior to the analysis of eigenfrequencies (14.30), one should test the limiting
case that corresponds to the oscillations of a single pendulum. Really, if the cou-
pling parameter b ¼ 0, Hamiltonian (14.22) describes a set of independent pen-
dulums, the oscillation frequency of which depends on the amplitude Q. In such a
case, frequency (14.30) has the form:

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
Q
J1 Qð Þ

s
ð14:31Þ

Equation (14.30) can be compared with the exact oscillation frequency of
pendulum:

xe ¼ p

2K sin Q
2

� �� � ð14:32Þ

where K is the complete elliptic integral of the first kind.
One can see from Fig. 14.1 that the agreement for all amplitudes is excellent up

to Q� 3p=4 and turns out to be good enough even for Q = 9p/10.
In order to understand the origin of the frequencies divergence, one should

notice that Eq. (14.27) is the limiting stationary case of more commonly equation,
which describes a slow evolution of the envelope function uj. The latter results
from the interaction of the NNMs with close frequencies (it is an analogue of the
beating phenomenon in the linearized system). The specific time of this evolution is
determined by the relative difference of the NNMs’ frequencies. Until these values
are small enough, the timescales may be separated well. However, when the
oscillation amplitude Q approaches its maximum value p, the frequency rapidly
diminishes and the difference mentioned above turns out to be non-small. So, the
small parameter, which determines the timescale separation, is related with the gap
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between NNMs frequencies. We will demonstrate using this parameter at the
analysis of the stability of the NNMs.

Equation (14.30) describes the NNM “zone” structure, i.e., the dispersion ratio
for the SL model at the arbitrary oscillation amplitude (excluding the vicinity of the
“rotation limit” Q = p).

One should note that because model (14.22) leads to the discrete FK chain in the
“long-wavelength” limit aðqjþ 1 � qjÞ � 1

� �
, Eq. (14.30) has to describe the

respective spectrum. Actually, considering the wave number j as a small value, one
can expand the Bessel function as a power series. The first term of Eq. (14.30)
becomes 2aQ sin j=2, and the eigenfrequency is reduced as follows:

x2 ¼ 2
Q
J1 Qð Þþ 4b sin2

j
2

� �
ð14:33Þ

Figure 14.1 (in the previous section) shows the zone structure for the FK chain
with 20 particles under periodic boundary conditions.

The low-frequency mode, which bounds the zone, corresponds to the uniform
oscillations of the chain or to the oscillations of the single pendulum (14.31), while
the high-frequency bounding mode corresponds to the out-of-phase pendulum
oscillations (“p”-mode). One can see that frequency (14.33) is the monotonically
increasing function of the wave number j, but the difference Dx2 ¼ x2ðj ¼
pÞ � x2ðj ¼ 0Þ does not depend on the amplitude of oscillations.

Figure 14.3 shows zone structure for the harmonically coupled pendulums. The
comparison of Figs. 14.1 and 14.3 shows a cardinal distinction between them.
Firstly, the width of the SL zone depends on the amplitude of oscillations. It is more
important that the dispersion relation at a fixed amplitude Q � p/2 (the threshold
value depends on the parameters a and b) is a non-monotonic function of the wave
number. As a result, the frequency of the zone-bounding p-mode turns out to be
smaller than the frequency of the uniform mode for large Q. In such a case, the
multiple resonances occur in the vicinity of right edge of the spectrum, and their
existence is defined by non-monotonic character of the dispersion relation rather
than by the length of the chain. Figure 14.4 shows the dispersion relation for SL
chain with 20 pendulums and the oscillation amplitude Q = p/10 in comparison
with the same for Q = 9p/10.

The structure of the NNMs zone for the SL chain has been checked by the direct
numerical integration of Eq. (14.23).

Figure 14.5 allows comparing the positions of the zone-bounding modes and
some intermediate ones. One can see that the mutual positions of the modes cor-
respond to the dispersion relations that are shown in Fig. 14.4.

Due to non-monotonic behavior of the dispersion relations at the large ampli-
tudes (Fig. 14.4), a multitude of the resonances can exist for both the NNMs with
the nearby wave numbers and for the modes, the wave numbers of which differ
significantly. Moreover, an almost flat dispersion relation can be obtained for the
certain combination of the lattice parameters such as a and b. In such a case, the
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thermoconductivity of the system decreases essentially due to the effective phonon
scattering (Han et al. 2016).

An initial excitation of general nature a priori contains some combination of the
modes with different amplitudes. In contrast to a linear system, where any inter-
action between normal modes is absent, the NNMs in the essentially nonlinear
systems can interact efficiently if the resonant conditions occur (Chirikov and

Fig. 14.3 The zone structure for the SL chain with 20 pendulums under periodic boundary
conditions. Light blue and light brown curves correspond to the zone-bounding uniform and p-
modes, respectively. The coupling parameters are b = 0.25, a = 1.2. The numbers in the figure
legend show the mode’s number

Fig. 14.4 The comparison of the dispersion relations for the SL chain with 20 pendulums at the
different oscillation amplitudes: Black, red, and blue points correspond to the amplitudes Q = p/
10, Q = 7p/10, and Q = 9p/10, respectively. The relative frequencies x/x0 (x0 is the frequency of
the uniform modes) are shown. The potential parameters are as follows: b = 0.25, a = 1.2
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Zaslavsky 1972). Therefore, the problem of internal resonances is very important
for study of the dynamics of the sine-lattice.

Figure 14.6 show the “map” of resonantly interacting modes for two amplitudes
of the oscillations: Q = 3p/10 and Q = 7p/10. The panels (a–f) differ in the partial
amplitudes of interacting modes Q1 and Q2 at the constant sum of them:
Q = Q1 + Q2.

One can see that for a small amplitude Q, the resonantly interacting modes have
the close numbers: k1, k2 for any ratios of the partial amplitudes of the modes [Q1

and Q2 (see Fig. 14.6a)]. In contrast to that, the oscillations with a large amplitude
(Fig. 14.6c) do not contain the resonantly interacting modes for small values Q2 and
include the multitude of resonant modes in the short wavelength domain of the
spectrum. Figure 14.6 shows the number of resonances as a function of the ratio Q2/
Q1 for three values of the oscillation amplitude: Q = 3/p/10, p/2, 7p/10 (Fig. 14.7).

There are at least two reasons for the importance of the NNMs interactions. As it
was shown early, the resonant interaction of the NNMs leads to the localization
effect (the capture of the energy of oscillations in some domain of the chain)
(Manevitch and Smirnov 2010a, b: 2, 2011). The necessary condition of such
localization is the instability of one of interacting modes (Dauxois and Peyrard
1993).

The second reason arises from the occurrence of the chaotic regimes of the
oscillations under conditions of internal nonlinear resonances (Chirikov and
Zaslavsky 1972; Sagdeev et al. 1988; Neishtadt 1975; Arnold et al. 2006). As it was
mentioned above, the continuum approximation of Eq. (14.23) leads to the
well-known sine-Gordon equation, which corresponds to the integrable system and
does not allow any chaotic behavior. In contrast with latter, the considered system is
not an integrable one. Taking into account the multitude of internal resonances, one
should expect the existence of the chaotic trajectories in the phase space of the
system. The chaotic trajectories arise inside the stochastic layer nearby the sepa-
ratrix passing via the unstable singularity, which is formed when one of resonantly
interacting modes losses its stability (Zaslavsky 1998).

Therefore, the stability of the NNMs is one of the key problems of the dynamics
of the system under consideration.

Fig. 14.5 Fourier spectra of the oscillations of SL chain with 8 pendulums. Left panel shows the
frequencies of the normal mode with j = 0, 3p/4, p (solid black, dot-dashed red, and dashed blue
lines, respectively) at the amplitude Q = p/10. Right panel shows the same as left one at the
amplitude Q = 9p/10. The potential parameters are as follows: b = 0.25, a = 1.2
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In order to analyze the stability of the NNMs, we will use the non-stationary
extension of Eq. (14.25). Let us assume that the initial conditions contain alongside
with considered NNM (stationary solution) a small perturbation corresponding to
mode with different wave number:

uj ¼
ffiffiffiffi
X

p
1þ evj
� �

eijj ¼ uj;0 þ evj ð14:34Þ

where uj,0 is the solution of stationary Eq. (14.27). In such a case, one should wait
that Eq. (14.27) is not satisfied. It is easy to understand that this envelope will have
a large timescale (in comparison with the period of the carrier 2p/x) if the

Fig. 14.6 Maps of resonances for two values of oscillation amplitudes: Q = p/2 (a–c) and
Q = 7p/10 (d–f). k1 and k2 are the modes’ numbers. The panels (a–c) and (d–e) differ in the partial
amplitudes of the modes Q1 and Q2. The red squares correspond to the modes the frequencies of
which differ not more than 5%

Fig. 14.7 The number of
resonances versus partial
amplitude ratio for total
oscillation amplitudes
Q = 3p/10, p/2, 7p/10
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frequencies of the interacting modes turn out to be close. The short discussion of the
time separation procedure is presented in the Appendix 1. As a result, the
time-dependent equations can be written as follows:

i
@uj

@s
� x

2
uj �

b

a
ffiffiffiffiffiffi
2x

p J1 a

ffiffiffiffi
2
x

r
ujþ 1 � uj

		 		 !
ujþ 1 � uj

ujþ 1 � uj

		 		
"

�J1 a

ffiffiffiffi
2
x

r
uj � uj�1

		 		 !
uj � uj�1

uj � uj�1

		 		
#
þ 1ffiffiffiffiffiffi

2x
p J1

ffiffiffiffi
2
x

r
uj

		 		 !
uj

uj

		 		 ¼ 0

ð14:35Þ

Assuming the function (14.34) in the form

uj ¼
ffiffiffiffi
X

p
eijj þ sðsÞeimj� � ¼ ffiffiffiffi

X
p

eijj þ uðsÞþ ivðsÞð Þeimj� � ð14:36Þ

where u and v are the real functions of the slow time s1, one can analyze the effect
of the mode with wave number m on the NNM with wave number j. Expanding
Eq. (14.35) in the vicinity of the NNM uj and keeping the perturbation of first order
only, one can obtain the equation for the real part of the function s as follows:

@2u
@s2

þKu ¼ 0 ð14:37Þ

where the parameter K is

K ¼ 1
8x sin j

2

2
b
a
J1 2aQ sin

j
2

� �
ðcos j� cos mÞ � 4bQJ2 2aQ sin

j
2

� �
sin2

m
2
sin

j
2
� QJ2ðQÞ


 �2

� Q2 sin j
2

8x
2bðcosðj� mÞ � cos kÞJ2 2Qa sin

j
2

� �
þ J2ðQÞ

h i2
:

ð14:38Þ

The stability of the NNM is determined by the sign of the parameter K. If K > 0,
the perturbation remains a small, but it increases if K < 0. The parameter K depends
on the lattice parameters a and b as well as on the amplitude Q. Let us determine the
coupling parameter b at the threshold of stability. Solving the equation

K ¼ 0

with respect to b, one can obtain its critical value as follows:

bins ¼
aQJ2ðQÞ sin j

2

J1 2aQ sin j
2

� �ðcos j� cos mÞ � 4aQJ2 2aQ sin j
2

� �
sin2 j

2 sin
m
2 cos

1
2 ðj� mÞ� �

ð14:39Þ
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As it was shown (Peyrad and Bishop 1989; Manevitch and Smirnov 2010a, b,
2011) the stability of the zone-bounding mode with j = 0 is important for the
localization of the oscillations. Namely, the lost of the stability of this mode is the
first step to stationary non-uniform distribution of the oscillation energy along the
chain. Assuming j = 0 and m = 2p/N, one can obtain the instability threshold for
the zone-bounding mode as follows:

bins ¼
1
2
J2ðQÞ
sin2 p

N

� � ; ð14:40Þ

that correlates well with the estimation of analogous instability threshold for the
Frenkel–Kontorova chain b = (3Q/16p)2N2 in the small-amplitude limit (Smirnov
and Manevitch 2011).

The “instability map” of the zone-bounding mode for the chain with N = 20 is
shown in Fig. 14.8. One can see that the instability threshold increases significantly
while the oscillation amplitude grows. It seems from the physical viewpoint that a
large coupling parameter has no sense. It means that the large-amplitude uniform
oscillations will be unstable in the majority of the physical systems.

We will not consider the stability of other resonantly interacting modes because
due to the simpleness of Eq. (14.39) this problem can be analyzed for any physical
systems.

However, the lost of stability of the zone-bounding mode does not imply the
creation of the localized oscillation in the chain. There is the second bifurcation
after that the processes of the energy redistribution are forbidden (Manevitch and
Smirnov 2010a, b). This bifurcation occurs when the energy of the unstable mode
turns out to be equal the energy of the mixed state of the stable and unstable modes.
Such a state corresponds to the limiting phase trajectory (LPT), which describes the
non-stationary dynamics of the chain with the extremely large energy exchange
between some parts of the system. The motion of the pendula inside these parts is
close to the coherent oscillations, while the dynamics of the pendula in different
parts differ essentially. The process of the energy exchange between these parts
(clusters or coherent domains) of the system is similar to the beating in the system
of two weakly coupled oscillators, while the energy localization is analogous to the
energy capture of one of them.

In order to estimate the localization threshold, one should use the Hamiltonian
corresponding to Eq. (14.35):

H ¼
XN
j¼1

�x
2

uj

		 		2 þ b
a2

1� J0 a

ffiffiffiffi
2
x

r
ujþ 1 � uj

		 		 ! !"

þ 1� J0

ffiffiffiffi
2
x

r
uj

		 		 ! # ð14:41Þ
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As it was mentioned above, the regimes with the energy localization occur when
the NNMs with wave number j = 0 and j = 2p/N interact resonantly. Setting
energy (14.41) of the zone-bounding mode solution (uj = const) equal to the energy
of the mode mixture (uj � 1 + exp(i2p/N), one can get the localization threshold
of the coupling parameter as follows:

bloc ¼
a2

4
4J20

Q
2

� �� 4J0ðQÞ � QJ1ðQÞ
1� J0 aQ sin p

N

� �� � ð14:42Þ

The black dashed curve in Fig. 14.8 shows the value of the localization
threshold (14.42) for the chain with 20 pendula and parameter a = 1.25. One can
see that the localization threshold bloc grows essentially slower than the value bins;
however, it reaches a large enough values for the large oscillation amplitudes
Q � p/2. On the other side, one should notice that the small-amplitude expansion
of Eq. (14.20) shows that the value bsin2p/N turns out to be small if the length of
the chain is large enough. It correlates strongly with the assumptions about the
resonance of the considered modes, because splitting between them is proportional
to this value.

Fig. 14.8 Stability map of the zone-bounding mode with wave number j = 0 in the coordinates
(Q, b). The blue and red domains correspond to the stability and instability of the mode. The figure
legend shows the specific values of the parameter K. The boundary between domains is marked by
bright dashed line. The threshold of the localization is shown as the black dashed curve (see text).
The length of chain is equal to 20 and parameter a = 1.25
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Figure 14.8a–c show the energy distribution along the chain for different values
of the coupling parameter b—before and after threshold value bloc. These figure
were obtained by the direct numerical integration of the equations of motion which
correspond to initial Hamiltonian (14.1) under the periodic boundary conditions.
The period of the zone-bounding mode at the amplitude Q = p/2 is
T = 2p/x * 7.4 time units.

Figure 14.9a shows the periodic energy redistribution along the chain before the
localization (b = 1.76): The bright and dark areas change their location with the
period which is essentially larger than the oscillation one. Figure 14.9b demon-
strates the energy distribution at the coupling parameter b = 1.75, that is, under
previous value less than one percent. One can see that the main part of the energy is
localized near the center of the chain. Finally, Fig. 14.9c shows the well-localized
oscillations at the coupling parameter b = 1.00 � bloc. One should notice that the
estimation of the localization threshold with Eq. (14.42) for the used parameters
gives the value b = 2.044, while it is shown from Fig. 14.9b that the localization
occurs at b * 1.755. The difference between the numerical result and the analytical
estimation is approximately 15%.

Fig. 14.9 Energy distribution along the chain with 20 pendula for three values of the coupling
parameter b: 1.76 (a), 1.75 (b), and 1.50 (c). Parameter, a = 1.25; amplitude of oscillation, Q = p/
2. The figure legend (right panel) shows the energy value in the dimensionless units. n number of
pendulum and t dimensionless time in the reverse gap frequency
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14.3 Is Energy Localization Possible in the Conditions
of Acoustic Vacuum?

In this section, we discuss results of analytical and numerical study of planar
dynamics of a string with uniformly distributed discrete masses without a prelim-
inary stretching. Each mass is also affected by grounding support with cubic
characteristic (which is equivalent to transversal unstretched string). We consider
the most important case of low-energy transversal dynamics. This example is
especially instructive because the considered system which cannot be linearized and
therefore oscillates in the conditions of acoustic vacuum is the model of efficient
energy trap. Adequate analytical description of resonance non-stationary processes
which correspond to intensive energy exchange between different clusters of the
particles in low-frequency domain was obtained in terms of LPTs. We have
revealed also in these terms the conditions of energy localization on the initially
excited cluster. Analytical results are in agreement with the results of numerical
simulations. It is shown that the effectiveness of the system as energy trap con-
sidered system can be strongly promoted when using grounding supports.
Coerrespondinig two particle system was considered in Chap. 2.

It was mentioned in Chap. 2 that in the limit of low energy, a fixed-fixed chain of
linearly coupled particles performing in-plane transverse oscillations possesses
strongly nonlinear dynamics and acoustics due to geometric nonlinearity, forming a
nonlinear acoustic vacuum (see also Manevitch and Vakakis 2014). This desig-
nation denotes the fact that the speed of sound as defined in the sense of classical
acoustic theory is zero in that medium, so the resulting equations of motion lack any
linear stiffness components. A significant feature of that system was the presence of
strongly non-local terms in the governing equations of motion (in the sense that
each equation directly involves all particle displacements), in spite of the fact that
the physical spring-mass chain has only local (nearest-neighbor) interactions
between particles. These non-local terms constitute a time-dependent “effective
speed of sound” for this medium, which is completely tunable with energy. A rich
structure of resonance manifolds of varying dimensions was identified in the
nonlinear sonic vacuum, and 1:1 resonance interactions are studied asymptotically
to prove the possibility of strong energy exchanges between nonlinear modes.

One of distinctive features of chain without grounding support was that its
NNMs (Vakakis et al. 1996) could be exactly determined. Moreover, the analysis
has shown that the number of NNMs in the sonic vacuum was equal to the
dimensionality of the configuration space and that no NNM bifurcations were
possible. In addition, the most intensive 1:1 resonance intermodal interaction was
the one realized by the two NNMs with the highest wave numbers. However, the
unstretched string model considered in Manevitch and Vakakis (2014) is in some
sense a special case, since one of the most significant features of dynamical systems
with homogeneous potentials is that the number of NNMs may exceed the number
of degrees of freedom due to mode bifurcations (Rosenberg 1966). One can expect
that such NNM bifurcations will also lead to drastic modification of the
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non-stationary resonance dynamics of the sonic vacuum described by LPTs. Thus,
it is of great interest to consider an extension of the nonlinear sonic vacuum
developed in Manevitch and Vakakis (2014) so that the modified system has the
capacity to undergo NNM bifurcations. Such a study can provide us with the
opportunity to investigate how these bifurcations can affect the non-stationary
resonant dynamics corresponding to resonant energy exchange and localization.

These questions were discussed Chap. 2 and in paper devoted to unstretched
string with grounding support but carrying only two discrete masses (Koroleva
Kikot et al. 2015). Here, we present an extension to much more complicated system
with arbitrary finite number of discrete masses.

14.3.1 The Model and Equations of Motion

Let us consider unstretched string with uniformly distributed equal masses and
returning forces, proportional to cubes of deformations (see Fig. 14.10). The
equations of motion are as follows:

m d2
Uj

dt2 þ Tj cos hj � Tjþ 1 cos hjþ 1 ¼ 0; j ¼ 1; . . .;N;

m d2
Vj

dt2 þ cV3
j þ Tj sin hj � Tjþ 1 sin hjþ 1 ¼ 0; j ¼ 1; . . .;N;

ð14:43Þ

with Uj, Vj being longitudinal and transversal displacements of jth mass, respec-
tively; hj being angle between jth segment and its equilibrium position. Tensile
forces are proportional to deformations and may be written as follows:

Tj ¼ K
1
l

ðUj � Uj�1Þþ 1
2l
ðVj � Vj�1Þ2


 �
;

with l being equilibrium length of one segment and K being stiffness coefficient.
The mechanism of non-local force formation was discussed in the paper

(Manevitch and Vakakis 2014). According to this mechanism, the tensile forces in
all segments are approximately equal to their mean value:

T ¼ Tj
� � ¼ 1

Nþ 1
K

1
2l2
XN
s¼0

ðVsþ 1 � VsÞ2

Introducing the “slow” timescale s0 ¼ et, where small parameter e describes the
relative smallness of transversal frequencies (e = a/l, with a being an amplitude of
transversal oscillations), we obtain the following equation system for transversal
motion (parameter l = K/Cl3 describes relation between contributions of string
itself and grounding supports):
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d2vj
ds20

þ 1
l
v3j þ

1
2ðNþ 1Þ

XN
s¼0

ðvsþ 1 � vsÞ2 2vj � vjþ 1 � vj�1
� � ¼ 0; v0 ¼ vNþ 1 ¼ 0;

ð14:44Þ

where Vj ¼ evj and vj are normalized displacements, and x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
K=m l

p
(Fig. 14.10).

14.3.2 Two-Mode Approximation

We consider 1:1 resonance on the frequency x and rewrite the system (14.46) in the
following form:

€vj þx2vj
� �þ e1c

1
l
v3j � x2vj þ 2vj � vj�1 � vjþ 1

2ðN þ 1Þ
XN
s¼0

ðvsþ 1 � vsÞ2
 !

¼ 0

ð14:45Þ

Combination in the right-hand side should be small (since we consider a system
near resonance). It is reflected by introducing the small parameter e1. We introduce
parameter c ¼ e�1

1 to provide an equivalence of systems (14.44) and (14.45). We
introduce complex variables as follows:

wj ¼ _vj þ ixvj;Uj ¼ wjþ 1 � wj; j ¼ 1; . . .;N:

Fig. 14.10 Oscillator chain with elastic support
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Then,

_wj � ixwj ¼ �ec
1
l

wj � w�
j

2ix

� �3

þ ix
2
ðwj � w�

j Þþ
1

2ðNþ 1Þ

(

Uj�1 � U�
j�1

2ix

� �
� Uj � U�

j

2ix

� �
 �XN
s¼0

Us � U�
s

2ix

� �2
)

Applying a procedure of multi-scale expansion, we introduce a super-slow
timescale s1 ¼ e1s0. Taking into account that

d
ds0

¼ @

@s0
þ e1

@

@s1
þ 	 	 	 ;

we are looking for a solution in the following form:
wj ¼ wj0 þ e1wj1 þ 	 	 	 ; j ¼ 1; . . .;N. We substitute this expansion into the sys-
tem (14.45) and equate the terms of each order by parameter e1 to zero. In the first
approximation, we get: e1, j = 1,…, N. We substitute this expression into the
equation for complex variables and consider next order of smallness. To avoid
appearance of secular terms while integrating over time s0, coefficient before eixs0

should be zero. Thus, we obtain the system which determines the “amplitude”
functions uj(s1), j = 1, 2 in super-slow time s1:

@uj;0

@s1
� 1
2ðNþ 1Þ

c
2ix

2u�
j;0 � /�

j�1;0 � /�
jþ 1;0

� �XN
s¼0

ðusþ 1;0 � us;0Þ2
4x2

� 1
2ðNþ 1Þ

c
2ix

2uj;0 � uj�1;0 � ujþ 1;0

� �XN
s¼0

usþ 1;0 � us;0

		 		2
2x2

þ c
l

3uj;0 uj;0

		 		2
8ix3 þ c

ix
2
uj;0 ¼ 0

Now, the functions um
j ¼ amðs1Þeipmj= Nþ 1ð Þ and um

j ¼ amðs1Þe�ipmj= Nþ 1ð Þ are the
exact solutions of the equation. Sine-like expression um

j ¼ amðs1Þsin pmj=ðNþ 1Þð Þ
is an exact solution only in the case without grounding supports. Also, it meets the
boundary conditions (fixed ends). That is because we find a solution in two-mode
approximation as a sum of two modes:

um
j ¼ Am sin pmj=ðN þ 1Þð ÞþAnsin pnj=ðNþ 1Þð Þ:
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Projecting these equations onto modes (replacing

sin
pmj
Nþ 1

¼ 1
2i

e
ipmj
N þ 1 � e�

ipmj
N þ 1

� �

getting the coefficient near e
ipmj
N þ 1), we obtain the following:

_Am � 3ic
32lx3 	 3Am Amj j2 þ 2A2

kA
�
m þ 4Am Akj j2

� �

þ icx2
m

32x3 3x2
m Amj j2Am þ 2x2

k Akj j2Am þx2
kA

2
kA

�
m

h i
þ c

ix
2
Am ¼ 0

_Ak � 3ic
32lx3 	 3Ak Akj j2 þ 2A2

mA
�
k þ 4Ak Amj j2

� �

þ icx2
k

32x3 3x2
k Akj j2Ak þ 2x2

m Amj j2Ak þx2
mA

2
mA

�
k

h i
þ c

ix
2
Ak ¼ 0

Here, for shortness and convenience, we denote:

x2
k ¼ 4 sin2

pk
2ðNþ 1Þ :

The obtained system is integrable because besides the integral of energy it
possesses a second integral:

N ¼ Amj j2 þ Akj j2; ð14:46Þ

what can be verified directly. Due to existence of second integral, it is possible to
introduce angular variables:

Am ¼
ffiffiffiffi
N

p
cos heid1 ; Ak ¼

ffiffiffiffi
N

p
sin heid2 :

Here, h and D = d1 − d2 characterize relationship between amplitudes of two
modes and phase shift between them.

In angular variables, equations are the following:

sin 2h _D ¼ 3cN
16lx3

1
4
sin 4hþ 1

2
sin 4h cos 2D

� �

þ cN
16x3

3
2
sin 2h x4

k sin
2 h� x4

m cos2 h
� �þ x2

mx
2
k

4
sin 4hðcos 2Dþ 2Þ

� �

_h ¼ 3cN
32lx3 sin 2h sin 2Dþ cN

32x3 x
2
kx

2
m
1
2
sin 2h sin 2D
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Occurence of resonance is defined by existence of stationary point of this sys-
tem. From the second equation, we get: De ¼ p=2. Substituting in equation for h,
we get:

� 3
2l

cos 2hþ 3
2

x4
k sin

2 h� x4
m cos2 h

� �� 1
2
x2

mx
2
k cos 2h


 �
¼ 0

Therefore

tg2he ¼
3
l þ 3x4

m � x2
mx

2
k

3
l þ 3x4

k � x2
mx

2
k

So, condition of resonance occurence is the following (Fig. 14.11):

3
l þ 3x4

m � x2
mx

2
k

3
l þ 3x4

k � x2
mx

2
k

[ 0

14.3.3 Cluster Variables

We introduce the cluster variables as follows:

Y1 ¼ Am þAk

2
; Y2 ¼ Am � Ak

2
:

Fig. 14.11 Resonance domain for different l: a l = 200, b l = 20. Chain consists of N = 100
particles
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In these variables, we come to equations:

_Y1 � 3ic
32lx3 9Y1 Y1j j2 þ Y2

2Y
�
1 þ 2Y1 Y2j j2

� �
þ ic

64x3 3AY1 Y1j j2 þ 6CY2 Y1j j2 þBY2
2Y

�
1 þ 3CY2

1Y
�
2

�
þ 2BY1 Y2j j2 þ 3CY2 Y2j j2

�
� c

ix
2
Y1 ¼ 0

_Y2 � 3ic
32lx3 9Y2 Y2j j2 þ Y2

1Y
�
2 þ 2Y2 Y1j j2

� �
þ ic

64x3 3AY2 Y2j j2 þ 6CY1 Y2j j2 þBY2
1Y

�
2 þ 3CY2

2Y
�
1

�
þ 2BY2 Y1j j2 þ 3CY1 Y1j j2

�
� c

ix
2
Y2 ¼ 0

Here, we introduce denotations, similar to the paper (Koroleva Kikot and
Manevitch 2015):

A ¼ x2
k þx2

m

� �2
;B ¼ 3x4

k � 2x2
kx

2
m þ 3x4

m;C ¼ x4
m � x4

k :

14.3.4 Equations in Angular Variables in Cluster Variant

The obtained system is integrable because besides the integral of energy it pos-
sesses a second integral:

N ¼ Y1j j2 þ Y2j j2; ð14:47Þ

what can be verified directly. Due to existence of second integral, it is possible to
introduce angular variables:

Y1 ¼
ffiffiffiffi
N

p
cos heid1 ; Y2 ¼

ffiffiffiffi
N

p
sin heid2 :

Here, h and D = d1 − d2 characterize relationship between amplitudes of two
clusters and phase shift between them. In these variables, we obtain the following
system:

1
2
sin 2h _D ¼ � 3

l
� 7
4
sin 4hþ 1

4
sin 4h cos 2D

� �

þ 1
2

3A
4
sin 4h� B

4
sin 4hðcos 2Dþ 2Þ � 3C cos 2h cosD

� �

_h ¼ � 3
2l

sin 2h sin 2D� 1
2

B sin h cos h sin 2Dþ 3C sinDð Þ

ð14:48Þ
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Here, overdot denotes differentiation with respect to normalized (for conve-
nience) time s�1 ¼ cN

32x3 s1.
This first-order system of real equations possesses the energy integral:

H ¼ � 3
l

9
2
sin4 hþ 9

2
cos4 hþ 1

4
sin2 2hðcos 2Dþ 2Þ

� �

þ 1
2

� 3A
2
ðsin4 hþ cos4 hÞ � 3C sin 2h cosD� B sin2 h cos2 hðcos 2Dþ 2Þ

� �
;

ð14:49Þ

and hence, it is integrable. In angular variables, the stationary (equilibrium) points
correspond to NNMs of initial system.

14.3.5 Phase Plane

Due to existence of the integral of motion, the simplest way of investigation is to
study a topology of phase plane. Comparing phase planes for different values of
parameter l, we reveal two dynamical transitions which are reflected in the phase
plane topology. The first one is caused by instability and bifurcation of the highest
NNMs (Fig. 14.12).

When l > lcr1 (as in a particular case also, when there is no grounding supports,
1/l = 0), there are four critical points. When l < lcr1, a bifurcation is observed:
The point (h = p/4, D = 0) (corresponding to in-phase motion of clusters) becomes
unstable, and two additional equilibrium points appear. The first topological tran-
sition caused by bifurcation of considered NNM and appearance of new NNMs is a
significant stage of the system evolution (in parametric space). This stage precedes
to second topological transition which leads to spontaneous energy localization on
initially excited cluster, when l < lcr2 (complete energy exchange becomes
impossible). It is possible to find a critical value lcr2 analytically from the condition
of coincidence of separatrix and LPT: H(p/4,0) = H(0,p/2). Hence,

lcr2 ¼
3

�Aþ 4CþB
:

For two highest NNMs, lcr2 = 1.35 if N = 10.
The obtained results are confirmed by numerical integration of initial system

(14.45) with initial conditions corresponding to excitation of one cluster which is
formed by resonance interaction of two highest modes
mj ¼ sinðpðN � 1Þj=ðN þ 1ÞÞþ sinðpNj=Nþ 1Þ� �

. When l < lcr2, the energy
localization is realized; when l > lcr2, we observe complete energy exchange.
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14.3.6 Analytical solution for LPT

Complete energy exchange between clusters described by LPT is a fundamental
non-stationary process very important for applications. So it is important to have an
analytical description of the process. Analytical description may be obtained in
terms of angular variables obeying the Eq. (14.48). Since LPT is given by a
condition:

Fig. 14.12 Energy exchange and energy localization in initial variables and corresponding phase
plane in angular variables
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Hðh;DÞ ¼ Hð0; 0Þ

where energy integral is given by (14.49), we have the following equation:

� 3
l

9
2
sin4 hþ 9

2
cos4 hþ 1

4
sin2 2hðcos 2Dþ 2Þ

� �

þ 1
2

� 3A
2
ðsin4 hþ cos4 hÞ � 3C sin 2h cosD

�

� Bsin2 h cos2 hðcos 2Dþ 2Þ� ¼ � 9
2
3
l
� 3A

4
:

So, we have a following relationship between h and D on LPT:

� 3
l � 9

4 sin
2 2hþ 1

4 sin
2 2hðcos 2Dþ 2Þ� �

þ 1
2

3A
4 sin2 2h� 3C sin 2h cosD� B

4 sin
2 2hðcos 2Dþ 2Þ� � ¼ 0

Either h = 0, h = p/2, what corresponds to straight-line parts of LPT, either

cosD ¼
3
2C �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2C
� �2 þ 2 3

l � B
8 þ 3A

8

� �
2 3
l þB

� �
sin2 2h

r

� 3
l � B

2

� �
sin 2h

Thus, we have an analytical description of LPT:

h ¼ p
2
sðt=aÞ

D ¼ � arccos

3
2C �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2C
� �2 þ 6

l � B
8 þ 3A

8

� �
6
l þB
� �

sin2 ps

r

� 3
l � B

2

� �
sin ps

0
BB@

1
CCA

ð14:50Þ

Here, s is sawtooth function with period T ¼ 2a:

sðs1Þ ¼ 0:5 ð2=pÞ arcsinðsinðps1=a� p=2ÞÞþ 1ð Þ;

eðsÞ is its derivative in terms of generalized functions: eðs1Þ ¼ ds=ds1. The
period may be found from temporal equation for h (Fig. 14.13).

T ¼ 4a ¼ 4
Zp=2
0

dh
3
l sin 2h sin 2Dþ 1

2 B sin h cos h sin 2Dþ 3C sinDð Þ
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14.3.7 Poincare Sections

Since initial system (14.44) remains non-integrable even after projecting onto
two-dimensional manifold, corresponding to NNM with minimal (in inverted
coordinates) wave number, it is interesting to consider Poincare sections, corre-
sponding to the system (14.48).

Let us consider a set of trajectories with fixed value of energy. The section plane
is ImY2 ¼ 0. Intersection points of each trajectory with this plane are projected onto
the plane ðReY1; ImY1Þ. LPTs are obtained by the same way when initial conditions
correspond to exciting of only one cluster.

Obtained section maps are depicted on Fig. 14.14. One can see that a number of
equilibrium points and LPT correspond to phase portrait obtained by asymptotical
analysis in angular variables. Quite unexpected is the absence of chaotic behavior in
all three domains of the parameter l.

In particular, we reveal that for a string with arbitrary number of discrete masses
in conditions of acoustic vacuum, there exists a regular regime of complete energy
exchange between different domains of the string (clusters) and non-stationary
energy localization on the excited cluster, alongside with NNMs and stationary
energy localization. These regimes have been described analytically, and corre-
sponding thresholds in parametric space were defined. Possibility of existence of
different regimes in the same system is due to nonlinear grounding support, which
enables also to widen the resonance domain. Therefore, the considered string can be
used as an efficient energy sink.

Fig. 14.13 Comparison of results of numerical solution of the system (14.48) and analytical
approximation (14.50) for LPT, l = 20
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Appendix 1: Timescale Separation

In the framework of the multi-scale method, the “fast” and “slow” times are
determined by the rules:

s0 ¼ t; s1 ¼ es0

and the derivative with respect to the time are as follows:

d
dt

¼ @

@s0
þ e

@

@s0

Let us rewrite Eq. (14.27) as follows:

@uj

@s0
þ e

@uj

@s1
� x

2
uj þFðujÞ ¼ 0 ð14:51Þ

Fig. 14.14 Poincare sections a in the absence of grounding supports (l = ∞), b l = 2, c l = 1.2
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where

F uj

� � ¼ � b

a
ffiffiffiffiffiffi
2x

p J1 a

ffiffiffiffi
2
x

r
ujþ 1 � uj

		 		 !
ujþ 1 � uj

ujþ 1 � uj

		 		
"

�J1 a

ffiffiffiffi
2
x

r
uj � uj�1

		 		 !
uj � uj�1

uj � uj�1

		 		
#
þ 1ffiffiffiffiffiffi

2x
p J1

ffiffiffiffi
2
x

r
uj

		 		 !
uj

uj

		 		
Let us consider the solution in the form /j = /j,0 + evj, where /j,0 satisfies

Eq. (14.27) and e is a small parameter. Taking into account that /j,0 = const, one
can write Eq. (14.51) as follows:

e
@vj
@s0

þ e2
@vj
@s1

� x
2
ðuj;0 þ evjÞþFðuj;0 þ evjÞ ¼ 0 ð14:52Þ

One can consider this equation from the viewpoint of the order of small
parameter e:

e
@vj
@s0

þ e2
@vj
@s1

� x
2
uj;0 þFðuj;0Þ � e

x
2
� @

@x
F xð Þ

� �
x¼uj;0

 !
vj ¼ 0 ð14:53Þ

Taking into account Eq. (14.27), one can get:

e
@vj
@s0

þ e2
@vj
@s1

� e
x
2
� @

@x
F xð Þ

� �
x¼uj;0

 !
vj

¼ e
@vj
@s0

þ e2
@vj
@s1

� e
@

@x
x
2
x� F xð Þ

h i
x¼uj;0

vj ¼ 0 ð14:54Þ

So, if the last term in Eq. (14.54) corresponds to a small value of order e, one can
separate the different orders of the small parameter e:

e:
@vj
@s0

¼ 0

e2:
@vj
@s1

� 1
e
@
@x

x
2 x� FðxÞ
 �

x¼uj;0
vj ¼ 0

One should notice that the term in the square brackets has to be proportional to
the relative difference of the modes’ frequencies Δx/x and the small parameter e
can be estimated as follows:

e ffi Dx=x
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Because the stationary solution /j,0 does not depend on the time, the nonlinear
evolution equation may be written as Eq. (14.35).

Appendix 2: Projection onto Two Modes—Formulas
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Nþ 1 � e
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2i
_Am þ e

ijpk
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We calculate sums in brackets separately; they do not depend on index j.
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Analogously,
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Now, we want to project these equations onto modes; that is, we get the coef-
ficient near eipmj=Nþ 1. We obtain the following equations:
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Simplifying these equations, we get the equation. In cluster variables,
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Chapter 15
Nonlinear Vibrations of the Carbon
Nanotubes

The previous sections concern the discrete systems, where the discreteness of the
oscillation spectra is defined by the finiteness of the number of the particles forming
the system under consideration. However, the discreteness of the normal mode
frequencies can also exist in the systems with the distributed parameters. Such a
system with a finite length is described by the set of partial differential equations;
however, the oscillation spectrum is defined by the set of the waves, which satisfy
the boundary conditions. Due to the finiteness of the system, the number of such
waves is denumerable; therefore, the respective normal mode frequencies turn out
to be separated by the finite gaps. Under these circumstances, the resonant condi-
tions are defined by the relative value of the frequencies’ difference. As it was
mentioned above, such conditions can exist near the edges of the optical-type
spectra, where the nonlinear coupling between the frequencies and the wave
numbers occurs.

This chapter contains the analysis of the nonlinear vibrations of the single-walled
carbon nanotubes (SWCNTs) in the framework of the thin elastic shell theory. The
efficiency of the LPT concept in combination with the semi-inverse asymptotic
method becomes apparent in finding phenomena such as the slow energy exchange
and energy localization, that results from the nonlinear resonant interaction of the
normal modes.

The nonlinear dynamics of the CNTs is of great interest from the viewpoint of
understanding the vibrations of the nanotubes embedded into the elastic medium
(Soltani et al. 2012; Mahdavi et al. 2011), the strong modes coupling in the nan-
otube resonators (Eichler et al. 2012; Greaney and Grossman 2007), the processes
of the phonon–phonon interactions (Gambetta et al. 2006; Greaney et al. 2009; De
Martino et al. 2009), and the thermal properties of the CNTs (Li et al. 2005; Savin
et al. 2009; Zhang et al. 2012).

The majority of the CNT dynamics studies deal with the molecular dynamics
(MD) simulation (Greaney and Grossman 2007; Savin et al. 2009; Rafiee and
Moghadam 2014; Hu et al. 2012; Maruyama 2002; Srivastava et al. 2007; Chen and
Kumar 2011; Pine et al. 2011) or the continuum approach (the elastic thin shell or
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beam theory) (Kahn et al. 2001; Mahan 2002; Wang et al. 2004; Chico et al. 2006;
Liew and Wang 2007; Shi et al. 2009a, b; Ghavanloo and Fazelzaden 2012; Soltani
et al. 2011). As concerns the continuum approach, because of the extreme com-
plexity of the phonon band structure, the dynamics of the different types of the CNT
vibrations cannot be described in the framework of the unified viewpoint. In par-
ticular, the reduced nonlinear theory of the elastic thin shell under appropriate
physical hypotheses is required to study the low-frequency circumferential flexure
modes (Smirnov et al. 2014; Strozzi et al. 2014). To investigate analytically the
nonlinear effects, which may occur in the radial breathing branch of the CNT
vibration, a new model in the framework of the thin elastic shell theory is needed.

The specific feature of the optical-type vibrational branches is crowding the
frequencies near the long wave edge of the spectrum. Thus, the possibility of the
resonant interaction of the nonlinear normal modes (NNMs) appears.

This section contains the comparative analysis of the resonant interaction of the
nonlinear normal modes in the cases of two optical-type oscillations: the circum-
ferential flexure mode (CFM) and radial breathing mode (RBM). We consider the
resonant interaction of the NNMs near the long wavelength (low-frequency) edge in
the framework of the nonlinear dynamical equation for the radial component of the
displacement field.

15.1 Nonlinear Optical Vibrations of Single-Walled
Carbon Nanotubes

The RBMs (the circumferential wave number n ¼ 0) belong to the most
well-known Raman-active oscillation branch of the carbon nanotubes vibrations,
and there are many studies of the RBM, which are based on the different approaches
since the continuum shell theory up to the quantum ab initio methods (Ye et al.
2004; Chang 2007; Kürti et al. 2003; Chico et al. 2006; Lawler et al. 2005). The
measurement of the RBM frequency allows to identify the CNT (Rao et al. 1997;
Saito et al. 1998; Dresselhaus and Eklund 2000) as well as to determine the critical
pressure of the structural transition (Yang et al. 2007; Lebedkin et al. 2006).

The CFMs belong to the most low-frequency optical-type modes with the gap
frequency *20 cm−1, which are specific for the deformation of the CNTs under
uniaxial loading in the direction, which is normal to the CNT axis. The respective
circumferential wave number n ¼ 2. The CFMs are specified by intensively
changing the lateral section area without any appreciable changes in the contour
length. Thus, the circumferential and shear deformations are negligible and the
main variations regard to the curvatures and longitudinal deformation. The specific
transversal section of the CNT during the radial breathing and circumferential
flexure modes is shown in Fig. 15.1.
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15.1.1 The Model

The key problem for successful study of CNT’s nonlinear dynamics is a construction of
adequate reduced model. The applicability of the thin elastic shell theory (TTES) to the
mechanics of the CNTs has been discussed in the number of works (Harik et al. 2002;
Harik 2002; Rafiee and Moghadam 2014; Silvestre et al. 2011; Silvestre 2012). It is
noteworthy that, in contrast to macroscopic mechanics, there is no restriction in its
application caused by plastic deformation. The TTES allows us to obtain an effective
description of the vibrational spectrum in the framework of the linear approximation
(Mahan 2002; Hu et al. 2008, 2012; Rafiee and Moghadam 2014; Gibson et al. 2007;
Jiang et al. 2010). The reduced model presented below admits efficient study of both
linear and nonlinear dynamics of CNTs under arbitrary boundary conditions.

As it was mentioned above, the consideration of the oscillations of different
types needs the distinguished approaches, which have to take into account the
specific relationships between CNT deformations. The equations of motion for the
CFMs derived in this chapter are based on the hypothesis of a smallness of cir-
cumferential and shear deformations, while the equations for the RBMs have been
obtained under hypothesis of the smallness of the Poisson ratio. However, all
equations were obtained in the framework of the nonlinear Sanders-Koiter thin shell
theory (Amabili 2008), and the asymptotic limit leads to the equations, which like
the nonlinear Schrodinger equation with the specific type of the nonlinearity. The
spectra of both branches for the CNTs with various aspect ratios and under different
boundary conditions are compared with those obtained by the direct numerical
integration of the equations of the Sanders-Koiter thin shell theory.

Fig. 15.1 The specific
changes of lateral section of
CNT during the radial
breathing (long-dashes) and
circumferential flexure
(dashes) oscillations. The
solid curves show the
undistorted profile of the
CNT. The arrows show the
specific radial displacements
which occur during the radial
breathing (wRBM) and
circumferential flexure
(wCFM) oscillations
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15.1.2 Radial Breathing Mode

In this section, we consider the radial breathing oscillations of the CNT in the
framework of nonlinear Sanders-Koiter thin shell theory and their resonant
interaction.

The dimensionless energy of elastic deformation of CNT elastic deformation can
be written as follows:

E ¼
ZZ

dndu
1
2

e2n þ 2meneu þ e2u þ
1
2

1� mð Þe2nu
�

þ 1
12

b2 j2n þ 2mjnju þ j2u þ
1
2

1� mð Þj2nu
� �� ð15:1Þ

where en, eu, and enu are the longitudinal, circumferential, and shear deformations;
jn, ju, and jnu are the longitudinal and circumferential curvatures, and torsion,
respectively; n is the dimensionless (in the unit of the CNT’s length L) coordinate
along the CNT axis; u is the circumferential one.

The dimensionless energy and time variables are measured in the units:

E0 ¼ YRLh= 1� m2
� �

and t0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qR2 1� m2ð Þ

Y

r
;

respectively. Here, Y is the Young’s modulus of graphene sheet, q is its mass
density, m is the Poisson ratio of CNT, and R, L, and h are the CNT’s radius, length,
and effective thickness of the wall. Two dimensionless geometric parameters
specify the CNT: the inverse aspect ratio a = R/L and the relative thickness of the
effective shell b = h/R.

The Sanders-Koiter approximation of the defectless thin shell (Amabili 2008)
allows to write the nonlinear deformations (e) and curvatures (j) in the following
form:

en ¼ a@nuþ 1
2

a@nwð Þ2 þ 1
8

a@nv� @uu
� �2

eu ¼ @uvþwþ 1
2

@uw� v
� �2 þ 1

8
@uu� a@nv
� �2

enu ¼ @uuþ a@nvþ a@nw @uw� v
� �

jn ¼ �a2@2
nnw

ju ¼ @uv� @2
uuw

jnu ¼ �2a@2
nuwþ 3

2
a@nv� 1

2
@uu

ð15:2Þ
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where u, v, and w are the dimensionless (in the unit of CNT’s radius R) longitudinal,
tangential, and radial displacements, respectively. The symbols @n ¼ @=@n and @2

uu ¼
@2=@u2 correspond to the partial derivatives with respect to independent variables.

Varying energy (15.1) with respect to the variables u, v, and w, one can estimate
the vibration spectrum for different values of the circumferential wave number n in
the linear approximation. The frequencies of oscillations with n = 0, 1, and 2 are
shown in Fig. 15.2 for the CNT with aspect ratio 1/a = 30 and b = 0.1, and the
Poisson ratio m = 0.19. The unit frequency corresponds to the gap of RBM, the
dimensional value of which is equal to xRBM ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Y=qR2 1� m2ð Þp
.

Taking into account that the RBMs have not depend on the azimuthal angle u (the
respective azimuthal wave number n = 0) and the transversal displacement v = 0,
one can obtain the equations of motion with taking into account the elastic
deformation energy (15.1):

@2u
@t2

� am
@w
@n

� a2
@2u

@n2
� a3

@w
@n

@2w

@n2
¼ 0

@2w
@t2

þwþ @2w

@n2
þ am

@w
@n

� a2
@

@n
mw

@w
@n

� a
@w
@n

@u
@x

� �
� 3
2
a4

@w
@n

� �2@2w

@n2
¼ 0

ð15:3Þ

Fig. 15.2 The vibration
spectrum according to the
linearized Sanders-Koiter thin
shell theory for the CNT with
aspect ratio L/R = 30 at the
periodic boundary conditions:
Solid curves correspond to
circumferential wave number
n = 0; dashed ones, to n = 1;
and dot-dashed ones, to
n = 2. All the frequencies x
are measured in
dimensionless units, and
k denotes the number of
longitudinal half-waves along
the CNT
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The dispersion curves of the linearized problem contain two branches:

x ¼ 1
2

1� k2a2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1� 2m2ð Þ2k2a2 þ k4a4

p� �� �
ð15:4Þ

the lower of which corresponds to the longitudinal acoustic modes and the higher
one to the radial breathing modes (k is the longitudinal wave number). Figure 15.3
shows the frequencies of the long wavelength modes for the CNTs with different
aspect ratios. In spite of that the real wave number for the periodic boundary
conditions starts from the value k = 1, the product ak is small if the CNT is long
enough.

The long wavelength limit of (15.4) shows the spectrum crowding:

x ¼ 1þ k2a2m2 þ k4 a4m2 � a4m4
� � ð15:5Þ

The respective eigenvector

u;wf g ¼ ��1þ k2a2 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2k2a2 þ k4a4 þ 4k2a2m2

p

2kam
; 1

( )
� �amk; 1f g

ð15:6Þ

shows the relationship between longitudinal and radial components of the dis-
placement field.

Taking into account the expression (15.6), one can find the relation between u
and w in the coordinate space as:

u ¼ �am
@w
@n

ð15:7Þ

Fig. 15.3 The dimensionless
RBM frequencies for the
CNTs with different aspect
ratios at periodic boundary
conditions according to
Eq. (15.4) (solid lines) and
Eq. (15.5) (dashed lines). The
aspect ratios are equal to 20
(red), 30 (blue), and 40
(black)
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Using this expression, one can rewrite second equation of (15.3) as follows:

@2w
@t2

þw� a2m2
@2w

@n2
� a2m

2
@

@n
w
@w
@n

� �

þ a4 m
@
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@n

@2w

@n2

� �
� 3
2

@w
@n

� �2@2w

@n2

 !
¼ 0

ð15:8Þ

To perform the asymptotic analysis of the long wavelength dynamics of the RB
modes, it is convenient to rewrite Eq. (15.8) using complex variables:

w ¼ 1ffiffiffi
2

p @w
@t

þ iw

� �

Returning to expression (15.6), one can see that the assumption of the Poisson
ratio smallness m < 1 allows to use it as a small parameter. Using the multiple
timescales, s0 = s, s1 = ms, s2 = m2s, etc., and expanding the function w into series
of the small parameter m:

w ¼ mw0 þ m2w1 þ . . .

one can get the equation for the main order amplitude in the “slow” time s2 (see,
e.g., Manevitch and Smirnov 2010a, b, c; Smirnov et al. 2016a, b for details):

i
@v0
@s2

� a2

2
@2v0
@n2

� 3
8
a4

@

@n
@v0
@n

				
				
2
@v0
@n

 !
¼ 0; ð15:9Þ

where v0 = v0(n,s2) is the slow-varying envelope of the function w ¼ v0 n; s2ð Þeis0 .
Equation (15.9) admits the plane wave solution:

v0 n; s2ð Þ ¼ Aei ~xs2�knð Þ ð15:10Þ

Taking into account the “slowness” of the time s2, the respective dispersion
relation should be written as follows:

x ¼ 1þ m2
1
2
a2k2 1þ 3

4
a2k2A2

� �
ð15:11Þ

One can see that the amplitude-independent part of (15.11) is in accordance with
the relation (15.5), while the effective positiveness of nonlinear addition points out
the hard type of nonlinearity.

Equation (15.9) is the modified nonlinear Schrodinger equation (NLSE) with the
gradient type of the nonlinearity. The standard NLSE admits the localized solution.
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However, any localized solutions in Eq. (15.9) is unknown. We will try to examine
the possibility of energy localization while dealing with Eq. (15.9). First of all, we
replace Eq. (15.9) by its modal representation, taking into account only two reso-
nant NNMs with the wave numbers k1 and k2.

v0 ¼ v1 s2ð Þ sin pk1nð Þþ v2 s2ð Þ sin pk2nð Þ ð15:12Þ

After substitution of solution (15.12) into Eq. (15.9), one should use the
Galerkin procedure to obtain the equations for complex amplitudes v1 and v2:

i
@v1
@s2

þ dx1v1 þ
3
2
r11 v1j j2v1 þ r12ð2 v2j j2v1 þ v22v

�
1Þ ¼ 0

i
@v2
@s2

þ dx2v2 þ
3
2
r22 v2j j2v2 þ r12ð2 v1j j2v2 þ v21v

�
2Þ ¼ 0;

ð15:13Þ

where dxj (j = 1, 2) are the frequency shifts (in the “slow” timescale s2) from the
boundary frequency x0 = 1:

dxj ¼ a2

2
p2k2j

rij ¼ 3
16

a4p4k2i k
2
j ; ðj ¼ 1; 2Þ:

ð15:14Þ

The Hamiltonian corresponding to Eq. (15.13) can be written as follows:

H ¼
X2

j¼1
dxj vj

		2 þ 3
4
rjj

				
				vj		4

� �
þ r12 v1j j2 v2j j2 þ 1

2
v1

2v2
�2 þ v1

�2v2
2� �� �

ð15:15Þ

Equation (15.13) possess the “occupation number” integral

X ¼ v1j j2 þ v2j j2; ð15:16Þ

which specifies the excitation level of the system.
Because of our interest in the energy localization, we need in the introduction of

new weakly interacting variables. They are the linear combination of the resonating
modes:

/1 ¼
1ffiffiffi
2

p v1 þ v2ð Þ; /2 ¼
1ffiffiffi
2

p v1 � v2ð Þ ð15:17Þ

Due to small difference between the modal frequencies, the functions (15.17) are
identical to the “coherence domains” coordinates in the discrete nonlinear lattices.

One can notice that the introduction of coherent domains (15.17) makes
Eq. (15.13) to be more complicated. However, due to the presence of the integral
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(15.16), the dimensionality of the phase space of the system can be reduced. The
“occupation number” X parameterizes the total excitation of the system, but the
energy distribution is determined by the amplitudes of the coherent domains as well
as by the phase shift between them. Actually, taking into account expression
(15.16), one can describe the behavior of the coherent domains with two real
functions:

/1 ¼
ffiffiffiffi
X

p
cosheid1 ; /2 ¼

ffiffiffiffi
X

p
sinheid2 ð15:18Þ

where the variable h characterizes the relative amplitudes of the coherent domains
and the variables dj—their phases.

Substituting relationships (15.17) and (15.18) into Eq. (15.13), one can obtain
the equations of motion in terms of polar variables (h, dj):

sin 2h
@h
@s2

� 1
2

�
dx1 � dx2 � 3

4
X r11 � r22ð Þ

� �
sinD

� 1
16

X 3r11 � 4r12 þ 3r22ð Þ sin 2D sin 2h
�

¼ 0

sin 2h
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þ dx1 � dx2 � 3
4
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cosD

� 1
4
X 3r11 � 2r12 þ 3r22ð Þ cos2 D� 4r12
� �

sin 2h
�
cos 2h ¼ 0

ð15:19Þ

There are two types of fundamental solutions on the phase plane of the system
(see Fig. 15.4). The stationary points corresponding (in the slow time) to NNMs
determine the stationary dynamics of the system. Another type of phase trajectories
is significant for understanding and description of strongly non-stationary resonant
dynamics. They are the LPTs. The motion along the LPT between the states h = 0
and h = p/2 leads to the redistribution of the energy between the different parts of
the system, i.e., between the coherent domains. It was shown that an adequate
temporal description of LPT can be obtained in the terms of non-smooth functions
which are sawtooth functions and their derivatives in the sense of the distributions
theory.

All of these peculiarities of the phase space of system (15.19) are shown in
Fig. 15.4 The representative domains of the phase space are bounded by the
intervals 0 < h <p/2 and −p/2 < D <3p/2.

The numerical solutions of Eq. (15.19) with the initial conditions corresponding
to the immovable point (h = p/2, D = p/2) for two values of the excitation X are
shown in Fig. 15.5a, b.

The solutions, which are shown in Fig. 15.5, correspond to a slow redistribution
of the energy between the coherent domains. If the initial conditions respect to the
LPT, the energy exchange reaches the maximum of the possible amount. The
period of such energy exchange may be estimated as the time of the trajectory
passing:
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Fig. 15.4 Phase portraits of the system (15.19) for the aspect ratio L/R = 80 and the “occupation
number” X = 0.5. The LPTs are marked out by the thick black lines
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Fig. 15.5 Time evolution of the variables h (red solid lines) and D (blue dashed lines) for the
CNTs with different aspect ratios: a L/R = 20 and b L/R = 80. The “occupation number” X = 0.5.
One should pay the attention that s is the “slow” time and the real times (in the own period of the
RBM) result as the value of s divided by the square of the small parameter
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T ¼
I

ds2 ¼
I

dh
dh=ds2

ð15:20Þ

The integral in Eq. (15.20) can be estimated from the first of Eq. (15.19) taking
into account that D � �p=2 on the LPT (see Fig. 15.4) and the transition from
D = −p/2 to D = p/2 takes no time:

T ¼ 2
Z p=2

0

dh
dh=ds2

� 2p
dx2 � dx1 þ 3

4 r22 � r11ð Þ ð15:21Þ

The variation in the period (15.21) with the aspect ratio of the CNT is shown in
Fig. 15.6.

To analyze the possibility of the stationary states’ instability, one should rewrite
Hamiltonian (15.15) in the terms of the polar variables h and D:

H h;Dð Þ ¼ X
2

dx1 þ dx2 þ dx1 � dx2ð Þ cosD sin 2hð Þþ 16X2 3r11 1þ cosD sin 2hð Þ2
�

þ 3r22 1� cosD sin 2hð Þ2 þ 4r12 3 cos2 2hþ sin2 2h sin2 D
� ��

ð15:22Þ

The conditions of instability may be formulated as follows:

@2H

@h2
¼ 0 ð15:23Þ

at (h = p/4, D = 0) or (h = p/4, D = p). The latter results in the following:

X ¼ 2 dx2 � dx1ð Þ
3 r11 � 2r12ð Þ ; D ¼ 0

X ¼ 2 dx2 � dx1ð Þ
3 2r12 � r22ð Þ ; D ¼ p

ð15:24Þ

Fig. 15.6 Period of energy
exchange versus inverse
aspect ratio of the CNT. T is
measured in the own period of
the RBM. Blue, orange, and
green curves correspond to
the excitation X = 0.01, 0.5,
and 1, respectively
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Taking into account the definition of dxj and relationship (15.14), one can see
that no bifurcation at the positive values of “occupation number” X exists.
Therefore, no localized breather-like excitations can exist in the single-walled CNT.
So only the intensive energy exchange is possible in the radial breathing branch.

The analysis performed above is based on the asymptotic expansion of the
equations of motion in the framework of the nonlinear Sanders-Koiter elastic thin
shell theory. Only two modes in the RB branch were taken into account. Therefore,
a verification of our conclusion by the independent numerical methods is needed.
Figure 15.3 shows that if the aspect ratio of the CNT is large enough, more than
two modes can exist under resonant conditions. So, the influence of the other part of
the spectrum is very important for the estimation of the reliability of the obtained
results. Our approach includes the direct numerical integration of the modal non-
linear equations of the Sanders-Koiter thin shell theory. The detailed procedure was
described for the circumferential flexure modes in Strozzi et al. (2014).

Therefore, we consider the method extremely shortly. In order to carry out the
numerical analysis of the CNT dynamics, a two-step procedure was used: (i) The
displacement field was expanded by using a double mixed series, and then the
Rayleigh–Ritz method was applied to the linearized formulation of the problem, in
order to obtain an approximation of the eigenfunctions; (ii) the displacement field
was re-expanded by using the linear approximated eigenfunctions, and the
Lagrange equations were then considered in conjunction with the nonlinear elastic
strain energy to obtain a set of nonlinear ordinary differential equations of motion.

To satisfy the boundary conditions, the displacement field was expanded into
series of the Chebyshev orthogonal polynomials.

Such an expansion allows to estimate the natural frequencies (eigenvalues) and
modes of vibrations (eigenvectors) under various boundary conditions. The results
of performed calculation show that the eigenspectrum values are in good accor-
dance with the estimations made within the framework of reduced Sanders-Koiter
theory discussed above (see Fig. 15.3).

In the nonlinear analysis, the full expression of the dimensionless potential
energy containing terms up to the fourth order (cubic nonlinearity) is considered.
Using the Lagrange equations, a set of nonlinear ordinary differential equations is
obtained; these equations must be supplemented with suitable initial conditions on
displacements and velocities. This system of nonlinear equations was finally solved
with using the implicit Runge–Kutta numerical method with suitable accuracy,
precision, and number of steps. The solution of nonlinear equations with initial
conditions close to the LPT shows the energy exchange process, the period of
which coincides with Eq. (15.21) for the wide interval of aspect ratios and exci-
tation amplitudes (see Fig. 15.7).
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15.1.3 Circumferential Flexure Mode

As it was mentioned above, the circumferential flexure mode (CFM) is the most
low-frequency optical mode with the gap frequency *20 cm−1. It is a typical shell
mode. The main deformations of the CNT at the CF vibrations correspond to the
variation in the CNT’s cross section without any bending the CNT axis. In the
contrast with the RB oscillations, the specific feature of the CF ones is the con-
stancy of the contour length. This circumstance appears in the smallness of the
circumferential and shear deformations.

Fig. 15.7 The energy exchange in the CNTs with different aspect ratios: a L/R = 20, b L/R = 40,
c L/R = 80. The initial “occupation number” X = 0.5. The dark blue and light beige areas
correspond to low and high density of the energy, respectively
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The hypotheses of smallness of circumferential and shear deformations lead to
the relations:

eu ¼ 0; enu ¼ 0 ð15:25Þ

(These hypotheses in the relationship of widely used theories of the thin shell were
discussed in Kaplunov et al. 2016 in detail.) However, these assumptions do not mean
that the displacements included to circumferential and shear deformations are small.

The components of displacement filed should be written as follows:

u n;u; sð Þ ¼ U0 n; sð ÞþU n; sð Þ cos nuð Þ
v n;u; sð Þ ¼ V n; sð Þ sin nuð Þ
w n;u; sð Þ ¼ W0 n; sð ÞþW n; sð Þ cos nuð Þ

ð15:26Þ

On the contrary to the linear theory, one has to take into account axisymmetric
constituent of displacement accompanying the oscillations with wave number
n. Using relations (15.25), we can express:
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ð15:27Þ

Omitting the calculation details, one can write the final equation of motion in
terms of radial displacement W (n, t):
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where

x2
0 ¼ b2

n2 n2 � 1ð Þ2
12 n2 þ 1ð Þ ; l ¼ a2b2
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n2 n2 þ 1ð Þ ; a ¼ n2 � 1ð Þ4
2n2 n2 þ 1ð Þ

ð15:29Þ

and only the main order terms are taken into account (see Smirnov et al. 2016a, b
for details). The frequency gap x0 is small because of the effective thickness
smallness.
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We introduce the dimensionless time, which is scaled by the gap frequency x0:
s0 = x0s. Also, we introduce a small parameter e = b and assume that the inverse
aspect ratio a has the same order of smallness. Then, taking into account expression
(15.29), one can evaluate the orders of smallness for the parameters of Eq. (15.28).

l

x2
0
� e2; c� e2;

j

x2
0
� e2 ð15:30Þ

Equation (15.28) can be used to analyze the effect of various boundary condi-
tions on the spectrum of natural oscillations of CNT. However, the solution for
periodic boundary conditions can be considered as a basic one for construction of
the solutions under other conditions, as clamped and free edges. The boundary
conditions may be taken into account in the frameworks of the dynamic boundary
layer concept (Strozzi et al. 2014, Andrianov et al. 2004). The frequency spectrum
in the case of simply supported edges can be written as follows:

x2 ¼ x2
0 þ lp2k2 þ jp4k4

1þ cp2k2
ð15:31Þ

where k is a longitudinal wave number corresponding to the number of half-waves
along the CNT axis (the conditions corresponding to simply supported CNT are a
particular case of periodic boundary conditions).

It is convenient to rewrite Eq. (15.28) in the terms of the complex variables:

W ¼ 1ffiffiffi
2

p @W
@s

þ iW

� �
ð15:32Þ

with the inverse transformation:

W ¼ � iffiffiffi
2

p W�W�ð Þ; @
@s

W ¼ 1ffiffiffi
2

p WþWð Þ

(the asterisk denotes the complex conjugation).
Taking into account the presence of the small parameter e, one can extract the

“fast” oscillations with the frequency x0 (=1 in the current timescale s0):

W ¼ ev0e
is0 : ð15:33Þ

The variable v0 is a slowly changing function. Performing the multi-scale
expansion, the equation for the amplitude of the main order in the “slow” time
s2 = e2s0 can be represented as follows:
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2
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Equation (15.34) admits the plane wave solution:

v0 ¼ A exp �i xs2 � knð Þð Þ; ð15:35Þ

where A is the amplitude. Solution (15.35) corresponds to the nonlinear normal
mode with the dispersion ratio:

x ¼ l� x2
0c

� �
k2 þ jk4

2x2
0

� a
2
A2 ð15:36Þ

As it can be seen, this dispersion relation is in accordance with relation (15.31).
Equation (15.34) differs from the standard Nonlinear SchrodingerEquation

(NLSE) because it contains the fourth derivative and, in accordance withprevious
procedures, is defined on the finite interval n e [0,1]. In order toconsider the
soliton-like solution for the CNT of the infinite length, one shouldredefine the
independent variable as follows: n = x/R. In such a case n e [-∞, ∞] and the
structure of equation (15.34) is preserved, but the parameter a, inthe coefficients l,
c, k should be equaled to unit. One can show that the function

v0 ¼
ffiffiffiffiffi
X0

p
e�i�s2 sec h2ðknÞ; ð15:37Þ

is the solution for equation (15.34) with zero conditions at n ! ± ∞, if its
parameters are determined by the expressions

X0 ¼
15 25j� 8clþ 8c2X2

0 � 5
ffiffiffi
j

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25j� 16clþ 16c2X2

0

q� �
64c2a1X0

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5j� ffiffiffi

j
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

25j� 16clþ 16cl2X2
0

qr
4
ffiffiffi
2

p ffiffiffi
c

p
j

� ¼
�25jþ 8cl� 8c2X2

0 þ 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j 25j� 16clþ 16c2X2

0

� �q
16c2X0

ð15:38Þ

Fig. 15.8 a The breather solution of Eq. (15.34) at the various values of the CNT thickness b (0.1,
0.05, 0.01); b The amplitude X (solid curve), the inverse width k(dashed curve) and the
“frequency” 2 (dot-dashed curve) of the solution (15.38) versus CNT thickness b
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Solution (15.37) describes the breather-like excitation, which is specified by the
“frequency” parameter e. Its value should be negative, because the localizedsolu-
tions can exist in the gap of the vibration spectrum.

Figure 15.9 show the solution (15.37) and its parameters e, k and X0 at the
various values of the effective thickness b.

Nonlinear Eq. (15.34) can be used for the analysis of NNMs interaction. To
perform this, one should take into account that the vibration spectrum for any CNT
with finite length is discrete, i.e., the longitudinal wave numbers are integers. Let us
consider the sum of the resonant NNMs with the wave numbers k1 and k2.

v0 ¼ v01 s2ð Þ sin pk1nð Þþ v02 s2ð Þ sin pk2nð Þ ð15:39Þ

Using the Galerkin procedure, one can obtain the equations for complex
amplitudes v01 and v02:

i
@v01
@s2

þ dx1v01 �
3a
8
ð v01j j2v01 þ 4 v02j j2v01 þ 2v202v

�
01 ¼ 0

i
@v02
@s2

þ dx1v02 �
3a
8
ð v02j j2v02 þ 4 v01j j2v02 þ 2v201v

�
02 ¼ 0

ð15:40Þ

where

dxj ¼ l� cx2
0

2x2
0

p2k2 þ j

2x2
0
p4k4; j ¼ 1; 2

are the intervals between the modal frequencies (The frequency shift between the
lowest modes (k1 = 1, k2 = 2) is approximately twice smaller than that for the next
pair of modes (k2 = 2, k3 = 3)).

The Hamiltonian corresponding to Eqs. (15.40) can be written as follows:

H ¼ dx1 v01j j2 þ dx2 v02j j2� 3a
16

v01j j2v01 þ v02j j2v02
� �

� a
8

4 v01j j2 v02j j2 þ v201v
�2
02 þ v�201v

2
02

� �
ð15:41Þ

Equations (15.40), besides the obvious energy integral (15.41), possess another
integral:

X ¼ v01j j2 þ v02j j2; ð15:42Þ

which specifies the excitation level of the system.
We introduce new “cluster” variables as the linear combinations of resonating

modes with preservation the integral X:

u01 ¼
1ffiffiffi
2

p ðv01 þ v02Þ;u02 ¼
1ffiffiffi
2

p ðv01 � v02Þ ð15:43Þ
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The cluster variables describe the dynamics of some “coherent” domains of the
CNT (Smirnov et al. 2014) [similar to some groups of the particles in the effective
discrete one-dimensional chain (Manevitch and Smirnov 2010a, b, c: 2; Smirnov
and Manevitch 2011)]. In terms of cluster variables, we can study the processes of
intensive energy exchange between the coherent domains and transition to the
energy localization on one of the coherent domains. Considering the energy dis-
tribution along the nanotube, one can see that the combination u1 ¼ 0 and u2 ¼ 0
corresponds to a predominant energy concentration in certain domain of the CNT,
while the rest of which has a lower energy density. The inverse combination
ðu1 ¼ 0;u2 ¼ 0Þ leads to the opposite energy distribution. In the rest of u1 and u2
values, the energy distributes more uniformly along the CNT axis.

Because of small difference between modal frequencies, the mentioned domains
of CNT demonstrate a coherent behavior similar to beating in the system of two
weakly coupled oscillators. Therefore, we can consider these regions as new
large-scale elementary blocks, which can be identified as specific elements of the
system. These blocks are named the “coherent domains,” and they were introduced
for the case of the nonlinear chain as the “effective particles” in (Manevitch and
Smirnov 2010a, b, c).

The existence of integral of motion (15.42) allows to reduce the dimension of the
phase space up to two variables, h and D, which characterize the relationship
between the amplitudes and the phase shift between the coherence domains,
respectively:

u1 ¼
ffiffiffiffi
X

p
cos heid1 ;u1 ¼

ffiffiffiffi
X

p
sin heid2 ð15:44Þ

Substituting these expressions into Eq. (15.40), the equations of motion in the
terms of “angular” variables (h, D) can be obtained:

sin 2h
@h
@s2

� 1
2

dx1 � dx2ð Þ sinDþ aX
8

sin 2D sin 2h
� �

¼ 0

sin 2h
@h
@s2

� 1
2

dx1 � dx2ð Þ cos 2h cosDþ aX
8

cos2 D� 4
� �

sin 4h ¼ 0
ð15:45Þ

Two stationary points with coordinates (h = p/4, D = 0) and (h = p/4, D = p)
correspond to the lowest NNMs v01 and v02. The trajectory, which separates the
NNMs attraction domains, is the LPT.

On the LPT, Eq. (15.45) may be approximately solved in terms of non-smooth
functions (Manevitch and Smirnov 2010a, b, c: 3) or integrated by the numerical
methods. The numerical solutions of Eq. (15.45) with the initial conditions corre-
sponding to the point (h = 0, D = p/2) for the various values of the excitation X are
shown in Fig. 15.9a–f.

The evolution of h(s2) and D(s2) for small value of X, when the system is close
to the linear one, is shown in Fig. 15.9a, b. In this case, one can see the non-smooth
behavior of the relative amplitudes as well as of the phase shift of the coherent
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domains u1 and u2. Such a behavior correlates with that any states belonging to the
lines h = 0 or h = p/2 with D 6¼ (p/2 ± mp), in fact, are some “virtual” ones, and
they must be passed in the infinitesimal time. The respective solutions should be
described in the terms of “non-smooth” functions (Manevitch and Smirnov 2010a,
b, c: 3).

Fig. 15.9 Solutions of Eq. (15.44)—h (left panel) and D (right panel) at the different occupation
numbers X for the CNT (20, 0) (a = 0.08 and b = 0.009): a, b X = 0.1Xloc; c, d X = 0.995Xloc; e,
f X = 1.05Xloc. The initial conditions correspond to nearest vicinity of the LPT
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Figure 15.9c, d demonstrates that the behavior of the system in the case of large
enough X does not qualitatively differ from that in Fig. 15.9a, b.

However, Fig. 15.9e, f exhibit the drastic changes under very small (*0.5%)
changes in X. First of all, the variation range of the function h becomes twice less. It
means that the state with h = p/2 is inaccessible, if the initial conditions correspond
to h = 0 and vice versa. The second feature in Fig. 15.9f is the unlimited growth of
the function D. Such a behavior corresponds to the transit-time trajectories.

Hamilton function (15.41) in terms of angular variables h and D can be written
as follows:

H ¼ X
2

dx1 þ dx2 þ dx1 � dx2ð Þ cosD sin 2h� aX
16

9þ cos2 D� 4
� �

sin2 2h
� �� �

ð15:46Þ

Using this expression, one can plot the phase portraits for various values of the
parameter X. The representative domains of the phase space are bounded by the
intervals 0 � h � p/2 and −p/2 � D � 3p/2. Two stable stationary points
correspond to the normal modes v01 and v02. The LPT contains two lines, h = 0 and
h = p/2, and two fragments, which connect the pairs of points: ((h = 0, D = p/2);
(h = p/2, D = p/2)) and ((h = 0, D = p/2); (h = p/2, D = p/2)). The analogous
trajectory rounds the stationary state v02. The motion along the LPTs leads to the
non-smooth behavior as it is shown in Fig. 15.9.

The stationary state v01 becomes unstable if the parameter X exceeds some
threshold, in which value Xins can be calculated from the instability condition:

@2H

@h2
¼ 0; h ¼ p

4
;D ¼ 0

� �

Xins ¼ 8 dx2 � dx1ð Þ
3a

ð15:47Þ

After this threshold, two new NNMs arise nearby the mode v01. These NNMs
correspond to some non-uniform distribution of the energy along the CNT; how-
ever, this non-uniformity is weak. The distance between them grows, while the
parameter X increases. The main feature of these states consists in that any tra-
jectory surrounding them cannot attain the separatrix, which passes through the
unstable stationary state v01. Any trajectories, which are situated in the gap between
the separatrix and the LPT, preserve the possibility to pass from the vicinity of u1
state (h = 0) into the vicinity of u2 state (h = p/2) (see Fig. 15.9c, d). This process
is accompanied with the slow intensive energy transfer from one part of the CNT to
another one and vice versa.

However, the behavior of the solution of Eq. (15.45) is changed drastically if the
value of X overcomes next threshold Xloc. Its existence results from that the new
stationary points move away from the unstable state, while the LPT moves to the
unstable state in the vicinity of h = p/4. The principal changes happen when the
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LPT reaches the point (h = p/4, D = 0). Then, the gap between the LPT and the
separatrix disappears and the only trajectory passing from h = 0 to h = p/2 is the
LPT. With further increasing of the parameter X, the separatrix passing through the
unstable stationary points (h = p/4, D = 0) and (h = p/4, D = 2p) arises (see
Fig. 15.10c). It separates the phase plane of the system into uncoupled parts, and
any trajectories, which start near the h = 0, cannot attain the value h = p/2 (and vice
versa). It means that the energy originally given in a part of CNT is kept in this
part. The new LPTs enclose the stationary points, which correspond to the stable
NNMs. Figure 15.10c shows the transit-time trajectories, which are in the domain
between LPTs and separatrix.

Fig. 15.10 Phase portraits of the system with Hamiltonian (15.46) for different values of the
excitation: a X = 0.1Xloc, b X = 0.995Xloc, c X = 1.05Xloc (see text)
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The condition of the bifurcation is the degeneration of the energy of the states
v01;u1, and u2, i.e.,

H h ¼ p=4;D ¼ 0ð Þ ¼ H h ¼ 0;D ¼ �p=2ð Þ ¼ H h ¼ p=2;D ¼ �p=2ð Þ: ð15:48Þ

So, the value of the localization threshold turns out to be:

Xloc ¼ 16 dx2 � dx1ð Þ
3a

ð15:49Þ

Figure 15.11 demonstrates the dependence of the localization threshold in the
terms of the radial displacement w from the inverse aspect ratio of the CNT. It is
clearly seen that the results of the asymptotic analysis are well enough for the long
CNTs that agrees with the assumptions, which have been made for the derivation of
Eq. (15.49).

Figure 15.12 shows the evolution of the energy distribution along the CNT axis
during the MD simulation for several values of the excitation parameter X (Smirnov
et al. 2016a, b). The small value X (before instability threshold) corresponds to
Fig. 15.12a; the beating phenomenon is well seen. The intermediate X (before
localization threshold) relates to Fig. 15.12b; the redistribution of the energy likes a
drift along the CNT. Finally, Fig. 15.12c shows the capture of the energy in the
initially excited area.

The phenomenon of the partial or full energy exchange is the specific one for the
resonating nonlinear normal modes. The result of this interaction is determined by the
relations between the parameters of nonlinearity (rij) and the frequency differences
(dxj). The most important notion is the limiting phase trajectory, which corresponds
to the “elementary process” associated with the energy exchange or capture.

Fig. 15.11 Radial displacement W at the localization threshold for the (20, 0) zigzag CNT versus
inverse aspect ratio a: Solid black and dashed red curves are the analytical predictions based on
Eq. (15.49) and the threshold value estimated by the numerical method, respectively. Periodic
boundary conditions are considered
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Fig. 15.12 Distribution of the energy of circumferential oscillations along the CNT axis during
the MD simulation of (20, 0) CNT with aspect ratio 1/a = 20. a X = 0.1Xloc, b X = 0.995Xloc,
c X = 1.25Xloc. The energy is measured in K, and the time, in the periods of the gap mode
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15.2 Coupling Shell- and Beam-Type Oscillations
of Single-Walled Carbon Nanotubes

The resonant nonlinear interactions of the CNT vibrational modes with the identical
circumferential (azimuthal) wave number have been considered in the previous
section. However, the resonant interaction is possible not only for the NNMs, which
belong to the same oscillation branch. In Fig. 15.13, the low-frequency part of the
spectrum is shown for the CNT with relative length L/R = 30 (L and R are the
CNT’s length and its radius, respectively). One can see that the frequencies of the
beam-like and circumferential oscillations are extremely close for the longitudinal
wave number j = 3p/L.

In the framework of the linear theory, these NNMs are independent, and therefore,
no interactions between them can exist. In order to reveal the mode interaction and
the effects, which can arise as its results, we need in the transition to the nonlinear
vibration theory. We consider the CNT oscillations in the framework of the nonlinear
Sanders-Koiter theory (Amabili 2008). We demonstrate that the effective reduction in
the equations of motion in the combination with the asymptotic analysis allows to
study the nonlinear mode coupling and to reveal new stationary oscillations, which
are absent in the framework of the linear approach, as well as to describe the
non-stationary dynamics under condition of the 1:1 resonance.

15.2.1 The Model

The dimensionless energy of the elastic CNT deformation can be written in the
form (15.1).

Using expressions (15.2) for the deformations and curvatures one can vary
elastic energy functional (15.1) with respect to the displacements and obtain cor-
responding equations of motion. When considering the linearized problem for
simple-supported CNT, one can represent the displacements as follows:

Fig. 15.13 The
low-frequency dispersion
relations for CNT vibrations
corresponding to various
circumferential wave number
n. Black, red, and blue curves
correspond to n = 0, n = 1,
and n = 2, respectively
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u n;/; tð Þ ¼ u n; tð Þ cos n/
v n;/; tð Þ ¼ v n; tð Þ sin n/;
w n;/; tð Þ ¼ w n; tð Þ cos n/:

ð15:50Þ

where n is the azimuthal wave number, which can take the integer values n = 0, 1,
2… Taking into account relation (15.50), one can estimate the dispersion relations
for different values of n using the linearized approximation of the equations of
motion mentioned above. The dispersion relations, which are shown in Fig. 15.13,
have been obtained for the values of azimuthal wave number n = 1 (beam-like
oscillations or BLO) and n = 2 (circumferential flexure oscillations or CFO).

However, it is obvious that the full nonlinear set of the equations of motion
leads, generally speaking, to unsolvable problem. Therefore, in order to obtain any
meaningful results, one should make the physically sensible hypotheses concerning
to the shell displacement fields. The specific features of the considered oscillations
—BLO and CFO—are the smallness of the circumferential (eu) and the shear (en)
deformations, in spite of that the displacements, which are included in them may be
not small. These assumptions can be written as follows:

eun ¼ 0; eu ¼ 0: ð15:51Þ

In order to consider the interaction of the oscillations with the different azimuthal
wave number, one should rewrite displacements (15.1) as a combination of the
partial components:

u n;/; tð Þ ¼ U0 n; tð ÞþU1 n; tð Þ cos n1/þU2 n; tð Þ cos n2/;
v n;/; tð Þ ¼ V1 n; tð Þ sin n1/þV2 n; tð Þ sin n2/;
w n;/; tð Þ ¼ W0 n; tð ÞþW1 n; tð Þ cos n1/þW2 n; tð Þ cos n2/;

ð15:52Þ

where functions (U1(n, t), V1(n, t), W1(n, t)), and (U2(n, t), V2(n, t), W2(n, t))
describe the BLO and CFO, respectively. In spite of that we do not consider the
axisymmetrical oscillations with n = 0, the respective adding arises in the nonlinear
elastic problem.

Taking into account hypotheses (15.51) and expressions (15.2), we have a
possibility to define the relationships between longitudinal, tangential, and radial
components of the displacements:

Vi n; tð Þ ¼ �Wi n; tð Þ
ni

;Ui n; tð Þ ¼ � a

n2i

@Wi n; tð Þ
@n

; i ¼ 1; 2

W0 n; tð Þ ¼ � 1
4

X
i¼1;2

1
n2i

n2i � 1
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W2
i n; tð Þþ a2

@Wi n; tð Þ
@n

� �2
 !

@U0 n; tð Þ
@n
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4
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i¼1;2

n2i þ 1
n2i

@Wi n; tð Þ
@n

� �2

þ 1
2

X
i¼1;2

n2i � 1
n2i

� �2

Wi n; tð Þ @Wi n; tð Þ
@n

� �2
 !

ð15:53Þ
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Putting expressions (15.52) with accounting (15.53) into (15.1), one can get the
equations of motion in the next form:
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ð15:54Þ

The azimuthal wave numbers (n1 = 1, n2 = 2) have been taken in order to simplify
Eq. (15.54). It is easy to see that the linearization of Eq. (15.54) leads to the uncoupled
equations of the BLOs and CFOs. In such a case, we can estimate the dispersion
relations for boundary conditions, corresponding to the simple-supported edges:

x2
1 ¼

12þ b2

12 2þ a2j2ð Þ a
4j4

x2
2 ¼

1
20þ a2j2

12b2 þ 2b2 3þ mð Þþ 3þ 4b2

3
a4j4

� � ð15:55Þ

where the longitudinal wave number j = pk with integer value k specifies the
number of half-wavelengths along the CNT axis (k = 0, 1,…).

Figure 15.14 shows the dispersion curves (15.55) in comparison with the exact
ones, which were estimated by the solution of the full linearized system.

One can see that the correspondence is good enough in the resonant frequency
range.

Fig. 15.14 Dispersion
relations for BLOs and CFOs.
Blue and red curves
correspond to the azimuthal
wave numbers n1 = 1 and
n2 = 2, respectively. Solid
and dashed curves show the
exact values and the values
estimated by Eq. (15.55)
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The goal of our study is to reveal the effects of the nonlinear coupling between
resonantly interacting BLOs and CFOs. It is obvious that Eq. (15.54) cannot be
analyzed directly. The semi-inverse method, which have been developed in
(Manevitch and Smirnov 2016; Smirnov and Manevitch 2017), will be discussed in
the next section.

15.2.2 Stationary Solutions

The semi-inverse method for the analysis of the complex nonlinear systems was
used for the investigation of the dynamics of the discrete nonlinear lattices
(Manevitch and Smirnov 2016; Smirnov and Manevitch 2017; Manevitch et al.
2016a, b), the forced oscillations of pendulum (Manevitch and Smirnov 2016;
Manevitch et al. 2016a, b), and, in slightly simplified reduction, to the study of the
CNT oscillations (Manevitch et al. 2016a, b: 2; Smirnov et al. 2016a, b, 2014). The
basis of this method consists in the presentation of the problem in terms of the
complex variables with further analysis by the multi-scale expansion method. The
feature of some dynamical problems is that the small parameter, which is required
for the separation of the timescales, does not present in the initial formulation of the
equations. In such a case, this parameter is defined in the processes of the solution.
The stationary problem in the framework of the semi-inverse method is somewhat
similar to the harmonic balance method (Mikens 2010), but due to the presentation
in terms of the complex variables, it turns out more simple and clear. There is an
additional advantage of the developed procedure. The complex variables are the
classical analogues of the creation and annihilation operators in the formalism of the
secondary quantization. In several cases, it may be useful for the comparison of the
classical and quantum mechanical problems.

Let us define new variables for the description of the CNT dynamics as follows:

Wj n; tð Þ ¼ 1ffiffiffi
2

p 1ffiffiffiffi
x

p @Wj n; tð Þ
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þ i
ffiffiffiffi
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p
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� �
; j ¼ 1; 2 ð15:56Þ

The inverse transformation to the initial variables W is written as follows:

Wj n; tð Þ ¼ � iffiffiffiffiffiffi
2x
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x
2

r
Wj n; tð ÞþW�

j n; tð Þ
� �

; j ¼ 1; 2
ð15:57Þ

where x is an (yet) undefined frequency and the asterisk means the complex
conjugation. First of all, we try to find the stationary solutions for Eq. (15.54),
which correspond to the nonlinear normal modes (NNMs) for the coupled BLOs
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and CFOs. Substituting relations (15.57) into Eq. (15.54), one can find the sta-
tionary one-frequency solution in next form:

Wj n; tð Þ ¼ wj nð Þeixt; j ¼ 1; 2 ð15:58Þ

where functions wj do not depend on the time.

As a result, we obtain the equations which have to determine the profiles of the
NNMs:
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It is easy to see that functions

wj ¼
ffiffiffiffiffi
Xj

p
eijjn ð15:60Þ

are the solutions of Eq. (15.59), if the relations
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X2 þ 9a2j2X1 ¼ 0

ð15:61Þ

are satisfied.
The relationships between the frequency and amplitudes of the BLOs and CFOs

can be obtained due to the simple coupling between the modules of functions
|wj|

2 = Xj and partial amplitudes Aj:

Xj ¼ x
2
A2
j ð15:62Þ

which can be seen from the definition (15.58) of the functions wj.
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Using relations (15.63), the following expressions for the frequencies of the
stationary nonlinear coupling oscillations can be obtained:

x2
1 ¼

4a4 12þ b2
� �

j4

96þ 48a2j2 � 27a2j2A2
2

x2
2 ¼

4 36b2 þ 6a2b2 mþ 3ð Þj2 þ a4 4b2 þ 3
� �

j4
� �

3 4 20þ a2j2ð Þ � 36a2j2A2
1 þ 9 9� 2a2j2ð ÞA2

2

� � :
ð15:63Þ

One can see that expressions (15.63) coincide with dispersion relations (15.55)
in the small-amplitude limit A1 ! 0 and A2 ! 0. One should notice that
Eqs. (15.63) are valid only for resonant interaction of the modes; i.e., at x1 * x2,
due to that we find the solution for the single-frequency motion (15.59).
Figure 15.14 shows the dependences of the frequencies x1 and x2 on the CFOs
amplitude with the various BLOs amplitude at the “resonant” wave number j = 3p.

15.2.3 Multi-scale Expansion

To analize of the non-stationary solutions of Eq. (15.54) one needs in the method,
which allows to describe the time evolution of the BLOs and CFOs in the vicinity
of the resonance. This objective may be realized by the multi-scale expansion
method, which consists in the separation of the timescales. Such a procedure
requires a small parameter. It is obvious that the time separation is better with a
smaller value of this parameter.

We consider the “carrier” time t in Eq. (15.59) as the basic “fast” time. Let us
define the value “e” as a small parameter. Its magnitude will be estimated further.
We introduce the time hierarchy as follows:

s0 ¼ t; s1 ¼ es0; s2 ¼ e2s0; . . . ð15:64Þ

and

@

@t
¼ @

@s0
þ e

@

@s1
þ e2

@

@s2
þ . . . ð15:65Þ

Keeping in mind that the oscillations of the shell should be small enough, we
represent the functions wj as follows:

Wj n; tð Þ ¼ e wj;0 n; s1; s2; . . .ð Þþ ewj;1 n; s1; s2; . . .ð Þþ e2wj;2 n; s1; s2; . . .ð Þþ . . .
� �

eixs0

ð15:66Þ

Substituting expansions (15.66) into Eq. (15.54) and performing the averaging
with respect to the “fast” time s0, we obtain the equations for the functions wj,n
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(j = 1, 2, n = 0, 1,…) in the different orders of small parameter. Because of the
respective procedure has been described above [see, in particular, (Smirnov et al.
2016a, b; Manevitch and Smirnov 2010a, b, c)], we omit the details.

e1:

� x
2
w1;0 þ

a2x
4

@2w1;0

@n2
þ a4 12þ b2

� �
48x

@4w1;0

@n4
¼ 0

�x
2
þ 3b2

10x

� �
w2;0 þ

a2

40
x� 2b2 3þ mð Þ

x

� �
@2w2;0

@n2
þ a4 3þ mð Þ

120x

@4w2;0

@n4
¼ 0

ð15:67Þ

One can verify easily that the first (second) of Eq. (15.67) is satisfied exactly for
the functions wj,0 � exp(ijn), if the frequency x corresponds to one of dispersion
relations (15.55). However, x1 is equal to x2 only approximately (see Fig. 15.15).
Therefore, when the values of x1 and x2 are close, Eqs. (15.67) are satisfied with
some accuracy, which is determined by the frequencies detuning. This detuning is
the required small parameter, which is needed for the separation of the timescales.
In such a case, the expressions in Eqs. (15.67) have to be moved into equations of
another order of e. As it will be shown further, the frequency detuning turns out to
be of the second order with respect to the parameter e.

e2

i
@w1;0

@s1
� i

a2

2
@

@s1

@2w1;0

@n2
� x

2
w1;1 þ

a2x
4

@2w1;1

@n2
þ a4 12þ b2

� �
48x

@4w1;1

@n4
¼ 0

i
@w2;0

@s1
� i

a2

20
@

@s1

@2w2;0

@n2
þ �x

2
þ 3b2

10x

� �
w2;1 þ

a2

40
x� 2b2 3þ mð Þ

x

� �
@2w2;1

@n2

þ a4 3þ mð Þ
120x

@4w2;1

@n4
¼ 0

ð15:68Þ

Fig. 15.15 Dependence of
the frequencies x1 (black) and
x2 (color curves) accordingly
(15.63) on the amplitude of
CFOs at different BLOs’
amplitudes for the CNT with
a = 1/30. The values of
BLOs’ amplitudes are shown
on the right of figure. The
wave number j = 3p
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Spoken above about the oscillation frequencies and their detuning in Eq. (15.67)
is absolutely correct with respect to the expressions in Eq. (15.68), which contain
the functions of the first approximation wj,1. Therefore, one should consider that
these terms have to be moved from equations of this order of the small parameter.
So, Eq. (15.68) can be written as follows:

i
@w1;0

@s1
� i

a2

2
@

@s1

@2w1;0

@n2
¼ 0

i
@w2;0

@s1
� i

a2

20
@

@s1

@2w2;0

@n2
¼ 0

ð15:69Þ

These equations show that the functions w1,0 and w2,0 do not depend on the time
s1.

The arguments which are similar to mentioned above should be applied to the
equations of the next order by the small parameter. According to the series (15.66),
the nonlinear terms should be included into equations of the third order of the small
parameter. The linear terms from Eq. (15.67) have the same order due to our
assumptions about detuning. Omitting some tedious calculations, one can write the
equations of the third order as follows:

e3

i
@w1;0

@s2
� i

a2

2
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@s2

@2w1;0
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48x

@4w1;0

@n4
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32
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w2
2;0
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1;0

@n

� �
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� i

a2

20
@

@s2

@2w2;0
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2
þ 3b2
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40
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þ a4 3þ mð Þ
120x

@4w2;0
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� 81
80
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		 		2w2;0 þ
9a2

80
@
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w2
2;0

@w�
2;0
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� ��

�w�
2;0

@w2;0

@n

� �2

�4
@w1;0

@n

� �2
 !!

¼ 0

ð15:70Þ

So, we have obtained the evolution equations for the main approximation
complex functions wj,0 under conditions of their resonant interaction with frequency
detuning � e2.

One can notice that the second of Eqs. (15.70), which describes the evolution of
circumferential flexure vibrations of the CNT, slightly differs from the respective
equation in Smirnov et al. (2016a, b). The main reason is that the previous con-
sideration was based on the another small parameter, which correlates with the gap
between the modes’ frequencies in the only branch.
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One can easily see that the solutions for Eq. (15.70) are the plane wave functions
exp(ij n) with slowly varying amplitudes, and we will consider their behavior at
various amplitudes in the next section.

15.2.4 Analysis of the Steady States Solutions
and Non-stationary Dynamics

Let us introduce the new variables, which describe the evolution of the normal
modes in the slow time s2:

wj;0 n; s2ð Þ ¼ uj;0 s2ð Þeijn; j ¼ 1; 2 ð15:71Þ

Substituting function (15.71) into Eq. (15.70), we obtain the set of ODEs for the
functions uj:

i 1þ a2j2

2

� �
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@s2
� x

2
þ x

4
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48x
j4
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9a2j2

32
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1u

2
2 ¼ 0

i 1þ a2j2

20

� �
@u2

@s2
� 5x2 � 3b2

10x
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40x

� a4j4
3þ 4b2

120x

� �
u2

� 9
80

9� 2a2j2
� �

u2j j2u2 þ
9a2j2

20
u2
1u

�
2 ¼ 0

ð15:72Þ

In order to obtain the Hamilton system, we need in the renormalization of the
variables. One can show that the functions

v1 s2ð Þ ¼ u1 s2ð Þ; v2 s2ð Þ ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ a2j2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20þ a2j2

p u2 s2ð Þ ð15:73Þ

form the set of the canonical variables for the system with the Hamilton function

H ¼ a1 v1j j2 þ a2 v2j j2 þ b1 v2j j4 þ b2 v21v
�2
2 þ v�21 v22

� � ð15:74Þ
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where

a1 ¼
�12x2ð2þ a2j2Þþ a4j4 12þ b2

� �
24x 2þ a2j2ð Þ

a2 ¼
36b2 � 60x2 þ 3a2j2x2 þ a4j4 3þ 4b2

� �
6x 20þ a2j2ð Þ

b1 ¼ � 18 18þ 5a2j2 � 2a4j4ð Þ
20þ a2j2ð Þ2

b2 ¼ 9a2j2

2 20þ a2j2ð Þ

ð15:75Þ

In such a case, the equations of motion can be written as:

i
@vj
@s2

¼ � @H
@v�j

ð15:76Þ

One should notice that the respective equations of motion have an additional
integral, besides the integral of the energy. It is the integral, which is termed as the
“occupation number”. In our case, it is expressed as follows:

X ¼ v1j j2 þ v2j j2 ð15:77Þ

Before starting the analysis of the system with the Hamilton function (15.77),
one should discuss the question: what effects do result from the interaction of the
BLOs and CFOs? In order to answer this question, let us consider the elastic energy
distribution corresponding to considered oscillations. Figure 15.16 shows the
“surface” distributions of the energy for the BLOs (Fig. 15.16a), the CFOs
(Fig. 15.16b), and their combinations (Fig. 15.16c, d).

The energy distributions along the azimuthal coordinate are shown in Fig. 15.17.
These curves have been obtained by integrating the distribution shown in
Fig. 15.16 along the longitudinal coordinate.

In the case of non-interacting normal modes, due to a small difference between
BLOs’ and CFOs’ frequencies, the transitions between the energy distributions
depicted in Fig. 15.16c, d are similar to the beating in the system of the weakly
coupled linear oscillators. However, the nonlinear coupling of the BLOs and CFOs
may result in other scenarios. As it was shown above, the nonlinear normal modes
do not represent the adequate notions under conditions of 1:1 resonance. It happens
due to that the considered system (it may be a nonlinear lattice or a CNT) is
separated into some domains with coordinate motion of its components, while the
motion in the different domains differs essentially. In such a case, the description of
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Fig. 15.16 Elastic energy distribution on the surface of the CNT. a Beam-like mode;
b circumferential flexure mode; c “sum” of BLO and CFO; d “difference” BLO and CFO.
a = 1/30, j = 3p; amplitudes w = 0.05

(a) (b)

Fig. 15.17 The energy distributions along the azimuthal coordinate. a Solid red and dashed blue
curves correspond to BLO and CFO, respectively; b solid red and dashed blue curves correspond
to “sum” and “difference” of BLO and CFO, respectively
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the system’s nonstationary dynamics in terms of the domain coordinates is more
appropriate (Manevitch et al. 2016a, b: 2). For the system under consideration, the
domain coordinates correspond to the linear combination of the functions v1 and v2:

r1 ¼ 1ffiffiffi
2

p v1 þ v2ð Þ; r2 ¼ 1ffiffiffi
2

p v1 � v2ð Þ ð15:78Þ

One can show that the relations r1 	 r2 and r2 	 r1 correspond to the energy
distributions, which are depicted in Fig. 15.16c, d, respectively. Transformation
(15.78) preserves integrals (15.74, 15.76).

It is convenient to introduce the polar representation of the variables r1 and r2.
Due to the presence of integral (15.76), one can reduce the phase space of the
system for the fixed value of X:

r1 ¼
ffiffiffiffi
X

p
cos heid1 ; r2 ¼

ffiffiffiffi
X

p
sin heid2 ð15:79Þ

It can be shown that the energy of the system turns out to be dependent on the
difference of the phases D ¼ d1 � d2 only.

H ¼ 1
4
X 2 a1 þ a2 � a1 � a2ð Þ sin 2h cosDð Þð

þX b1 1� cosD sin 2hð Þ2 þ b2 4 cos2 Dþ 2� cos2 D
� �

sin4h
� �� �� ð15:80Þ

In such a case, the phase space is two-dimensional one and its structure can be
studied by the phase portrait method.

The equations of motion in the terms h and Δ is resulted from the relations:

sin 2h
@h
@s2

¼ � @H
@D

; sin 2h
@D
@s2

¼ @H
@h

ð15:81Þ

sin 2h
@h
@s2

¼ X
2

Xb1 � a1 þ a2 � X b1 þ b2ð Þ cosD sin 2hð Þ sinD sin 2h

sin 2h
@D
@s2

¼ X Xb1 � a1 þ a2Þ � X b1 cos2 D� 2b2ð2� cos2 D
� �

sin 2h
� �
 �

cos 2h

ð15:82Þ

These equations also may be solved in terms of non-smooth functions (Pilipchuk
1996). We will use Eqs. (15.81 and 15.82) for the numerical verification of the
trajectories, which will be found on the phase portraits at the different levels of
excitations X.

Before starting the study of the phase portraits, one should notice that the
excitation level X � 10−3 corresponds to the amplitude of CNT oscillations
W � 4 
 10–3 that is appropriate for using of the elastic thin shell theory.
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The analysis of the system can be performed by the phase portrait method.
Figure 15.18a shows the phase portrait in terms of variable (h, Δ) for the small
excitation level, which corresponds to the occupation number X = 0.001.

The topology of the phase portrait is defined by the presence of two stationary
points (Δ = 0, h = p/4 and Δ = p, h = p/4), which correspond to the normal BLOs
and CFOs (Eq. 15.61), respectively. Any trajectories surrounding these stationary
states associate with a combination of the BLOs and CFOs. In particular, the
trajectory passing through the states with h = 0 and h = p/2 corresponds to the
“domain” variable (15.79) and separates the attraction areas of the NNMs. This
trajectory is the limiting phase trajectory (LPT). One should note also that the
motion along the LPT is accompanied with the transformation of the energy dis-
tribution as it is shown in Fig. 15.16c, d. However, because expression (15.80) is
the nonlinear function of the occupation number X, the topology of the phase
portrait can be changed while the value of X is varied.

The analysis shows that several qualitative transformations of the phase portrait
occur while the occupation number X grows. Figure 15.19 shows the values of the
stationary points determining topology of the phase portrait in dependence of the
occupation number X.

There are two stable stationary states, which correspond to the NNMs at the
small values of X. The first bifurcation happens when the stationary state (Δ = p,
h = p/4) losses its stability along the h-direction:

@2H

@h2 D¼p;h¼p=4j
¼ 0 ð15:83Þ

This bifurcation occurs at

X ¼ a1 � a2
2 b1 þ b2ð Þ : ð15:84Þ

The value of parameter X is equal to 0.001197 at the current parameters of the
CNT. Simultaneously, two additional stable states are generated on the line Δ = p
with h = p/4.

However, further growth of X leads to the change of the curvature along Δ-
direction.

@2H

@D2
D¼p;h¼p=4j

¼ 0 ð15:85Þ

In such a case, the steady state (Δ = p, h = p/4) becomes stable, but two new
unstable stationary points on the line h = p/4 arise with Δ = p. The respective value
of X can be estimated by the relation:
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Fig. 15.18 Phase portraits in the variables (Δ, h) at different values of occupation number X:
a X = 0.001, b X = 0.0015, c X = 0.00186815, d X = 0.00246, e X = 0.00361645, f X = 0.05
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X ¼ a1 � a2
2 b1 � b2ð Þ ð15:86Þ

The respective value of the parameter X is equal to 0.00126.
Figure 15.18b shows the phase portrait after these bifurcations (X = 0.0015).

One can observe that four additional stationary points, which correspond to new
NNMs, appear in the quadrant (p/2 < Δ <3p/2, 0 < h <p/2). Two separatrices
passing through the unstable stationary points bound the areas with the limiting
variations of the amplitudes. The stationary points with Δ = p correspond to the
stable localization of the energy along the azimuthal angle, while the motion along
the separatrix leads to fast change of the energy distribution. At the time, the
trajectories, which are close to the LPT, preserve passing between the states r1 and
r2. However, the areas which are surrounded by the separatrices are enlarged, while
the parameter X grows. The separatrices coincide with the states (r1, r2) when their
energies become to be equal to the energy at the unstable stationary points. It
happens when the occupation number X satisfies the relation:

X ¼ a1 � a2ð Þ b1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�b1 b1 þ 2b2ð Þp� �

b1 þ 2b2ð Þ2 þ 4b22
ð15:87Þ

Figure 15.18c shows the phase portrait when X reaches the lower value
(sign + in Eq. (15.87), which is equal to 0.00187. At this moment, the LPT coin-
cides with the separatrix and no trajectory, which couples the r1 and r2 states,
occurs.

Two classes of the trajectories, which lead to the approximately equivalent
energy distribution on the CNT surface, arise. The first of them contains the tra-
jectories, which surround the stable stationary points with Δ = p and h = p/4. The
motion along such trajectories is confined within some area, which is bounded by

Fig. 15.19 The stationary points’ coordinates (h and Δ) versus occupation number X. Black and
blue dashed curves show the Δ-coordinates for the unstable stationary points with h = p/4; solid
blue and red curves show the h-coordinates for the stable stationary points with h = p/4 and Δ = 0
and p, respectively. Thin vertical lines represent the bifurcation values of X. CNT’s parameters:
a = 1/30, b = 0.08, m = 0.19
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the LPT passing through the “domain” states r1 (or r2). The second class is
represented as a set of the transit-time trajectories, the “amplitudes” h of which can
change up to p/4, but the phase Δ grows indefinitely. At the same time, the sta-
tionary states with Δ = p and h = p/4 also occur (see Fig. 15.18d). These states
correspond to some stationary energy distribution on the CNT surface. Figure 15.20
show the time evolution of the trajectories on Fig. 15.18c, which correspond to the
different points on the phase portrait. The black and red dashed curves describe the
variables h and Δ corresponding to the non-stationary solutions.

Next, transformation happens when the “amplitude” h of the steady states
reaches the “domain” value (h = 0 or h = p/2):

X ¼ a1 � a2
b1

ð15:88Þ

(X = 0.00246 at the current parameters of the CNT). At this moment, the stable
stationary states with Δ = p disappear and their analogues appear with the phase
shift Δ = 0.

After that, while the parameter X grows, the topology of the phase portrait in the
quadrant p/2 Δ p/2, 0 h p/2 transforms similarly to the previous changes, but it
develops in inverse direction. The transit-time trajectories disappear at the value
X which is determined by Eq. (15.87) with the sign “−” (X = 0.003617). After that
the possibility of the full exchange between domains r1 and r2 arises again
(Fig. 15.18e).

Finally, the unstable stationary points with h = p/4 disappear at X = 0.0459, but
simultaneously the stationary point (Δ = 0, h = p/4) becomes unstable. New sta-
tionary states with Δ = 0 and (h < p/4, h > p/4) appear, but their evolution is not
interesting from our point of view (Fig. 15.18f).

Fig. 15.20 Time evolution of the specific trajectories h(s2), Δ(s2) corresponding to the different
initial conditions on the phase portrait. The occupation number X = 0.001868 (the bifurcation
value). Black and red dot-dashed curves show the non- stationary “localized” solutions
corresponding to LPT and transit-time trajectory, respectively. Green dotted curves show some
trajectory, surrounding the normal mode, and blue dashed curves correspond to the trajectory
passing the unstable stationary point. h and Δ are measured in rad and the time s in units of the
oscillation period 2p/x
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The character of the CNT oscillations is defined by the value of the occupation
number X and the initial conditions (Δ(0), h(0)).

Taking these values, one can integrate Eq. (15.86) numerically and then reinstate
the displacement field (u, v, w).

Figures 15.20 and 15.21 present the examples of the behaviors of the angle
coordinates h and Δ corresponding to the different trajectories on the phase portrait
for two values of the parameter X. Figures 15.20a, b correspond to the value of
X (15.87) when the energy exchange between “domains” r1 and r2 disappears. The
non-stationary behavior corresponding to the passing along the LPT and
transit-time trajectories (black and red curves) couples with the variation of the
angles h, Δ with the large period T * 1.5 
 107. Such a large period is explained
by that these trajectories are in the vicinity of the separatrix. One should pay the
attention that the phase Δ grows indefinitely for the transit-time trajectories, while it
is bounded for the LPT. The green dotted curves on Fig. 15.20 correspond to the
evolution of the angles h, Δ on the trajectory, which is inside the separatrix and
surrounds the circumferential normal modes h = p/4, Δ = p. Finally, the blue
dashed curves show the evolution of the angles variables on the separatrix.
Therefore, their behavior is distinguished for others essentially. The presence of two
non-identical variations of the angles corresponds to motion along the different
branches of the separatrix (see Fig. 15.20d).

The essential distinction of Fig. 15.21 from Fig. 15.20 is that the variations in
the angles during passing LPT as well as transit-time trajectory have the extremely
small amplitudes because the value of the parameter X = 0.00246 is approximately
equal to the bifurcation value, when the stable stationary points disappears at Δ = p.
In such a case, these stationary points are extremely close to the “domain” states r1
and r2. Therefore, the non-stationary solutions do not practically distinguished from
the stationary ones. At the same time, other curves are similar to their analogues on
Fig. 15.20.

Fig. 15.21 The same as in Fig. 15.20 for the occupation number X = 0.00246
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The curves on Figs. 15.20 and 15.21 have been calculated by the numerical
integration of Eqs. (15.81 and 15.82) for two values of the parameter X. Also, we
have estimated the behavior of the variables h(s2) and Δ(s2) for other values of
X under various initial conditions. In all cases, the data obtained show the excellent
agreement with the structure of the phase portrait.
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Conclusions

The accepted classification of the problems of mathematical physics (in the oscil-
lation and wave theory), first of all, draws a sharp distinction between linear and
nonlinear models. Such a distinction is caused by understandable mathematical
reasons including the inapplicability of the superposition principle in the nonlinear
case. However, in-depth physical analysis allows us to introduce another basis for
the classification of ordered oscillation problems, focusing on the difference
between the stationary (or nonstationary, but non-resonance) and resonance non-
stationary processes. In the latter case, the difference between the linear and non-
linear problems is not fundamental, and a specific technique, equally efficient for
description in the same degree for description of both linear and nonlinear reso-
nance nonstationary processes, has been developed. The existence of an alternative
approach in the framework of linear theory seems unexpected. Really, the super-
position principle allows us to find a solution describing arbitrary nonstationary
oscillations as a combination of linear normal modes, which correspond to sta-
tionary processes. However, in the systems of weakly coupled oscillators, where
resonant nonstationary oscillations can occur, another type of fundamental solution
exists. It describes strongly modulated nonstationary oscillations characterized by
the maximum possible energy exchange between the oscillators or the clusters of
the oscillators (effective particles). Such solutions are referred to as limiting phase
trajectories (LPTs). This book demonstrates that the LPT concept suggests a unified
approach to the study of such physically different processes as strongly nonsta-
tionary energy transfer in a wide range of classical oscillatory systems and quantum
dynamical systems with both constant and time-varying parameters. Furthermore,
this analogy paves the way for simple mechanical simulation of complicated
quantum effects. The role of the LPTs in a deeper understanding and the description
of resonance highly nonstationary processes is similar to the role of NNMs in the
analysis of the stationary and nonstationary non-resonance, regimes. Moreover, the
presented technique can be extended to the models with many degrees of freedom.
This technique is based on the statement that every periodic process, independently
on the class of its smoothness, can be uniquely expressed as a smooth function of
non-smooth variables s and e or as an element of the algebra of hyperbolic numbers
with the basis (1,e) (e2=1, but e does not equal to unit). It is very important that in
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this case the algebraic operations and (under special conditions) differentiation and
integration preserve the structure of a hyperbolic number. This property provides
applicability and convenience of the corresponding transformations during the
process of solving the differential equations.

Interestingly, the hyperbolic numbers, which are frequently used for a simplest
illustration of the Clifford algebra, were known since the middle of the nineteenth
century as abstract mathematical objects without any connection with vibration
processes. On the other hand, the elliptic complex numbers with the basis {1, i}
(i2 = −1) and corresponding trigonometric functions turned out, in essence, the
main tool for the description of such processes.

Finally, we highlight differences between the NNMs and the LPTs that have
motivated the introduction and the development of the LPT concept:

NNM LPT

Represents a stationary process independent
of initial conditions

Represents a nonstationary process dependent
of initial conditions

Is not involved in energy exchange Corresponds to maximum possible energy
exchange between different parts of the system

Can undergo local bifurcation Can undergo global bifurcation

Can be localized (stationary localization) Can be localized (nonstationary localization)

Can become an attractor in an active system
(synchronization of a traditional type)

Can become an attractor in an active system
(synchronization of a new type)

Corresponds to a steady solution in a
system subjected to external periodic
excitation

Corresponds to maximum energy transfer from
a source of external periodic excitation

Is described by smooth sinusoidal functions Is described by non-smooth functions

Can be extended to systems with infinite
numbers of particles

Cannot be extended to systems with infinite
numbers of particles but can be considered as a
prototype of a breather
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